LTE;
Evolved Universal Terrestrial Radio Access (E-UTRA);
User Equipment (UE) radio transmission and reception
(3GPP TS 36.101 version 10.13.0 Release 10)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.
Contents

Intellectual Property Rights ... 2
Foreword ... 2

1 Scope ... 13
2 References .. 14
3 Definitions, symbols and abbreviations .. 14
 3.1 Definitions ... 14
 3.2 Symbols ... 15
 3.3 Abbreviations ... 17
4 General ... 18
 4.1 Relationship between minimum requirements and test requirements ... 18
 4.2 Applicability of minimum requirements ... 18
 4.3 Void .. 18
 4.3A Applicability of minimum requirements (CA, UL-MIMO, eDL-MIMO) ... 18
 4.4 RF requirements in later releases .. 19
5 Operating bands and channel arrangement .. 19
 5.1 General ... 19
 5.2 Void .. 19
 5.3 Void .. 19
 5.4 Void .. 19
 5.5 Operating bands ... 19
 5.5A Operating bands for CA .. 20
 5.5B Operating bands for UL-MIMO .. 21
 5.6 Channel bandwidth .. 21
 5.6.1 Channel bandwidths per operating band .. 22
 5.6A Channel bandwidth for CA .. 23
 5.6B Channel bandwidth for UL-MIMO .. 26
 5.6B.1 Void .. 26
 5.7 Channel arrangement .. 26
 5.7.1 Channel spacing .. 26
 5.7.2 Channel raster ... 26
 5.7.2A Channel raster for CA .. 26
 5.7.3 Carrier frequency and EARFCN .. 27
 5.7.4 TX–RX frequency separation ... 28
 5.7.4A TX–RX frequency separation for CA .. 28
6 Transmitter characteristics .. 28
 6.1 General ... 28
 6.2 Transmit power ... 29
 6.2.1 Void .. 29
 6.2.2 UE maximum output power ... 29
 6.2.2A UE maximum output power for CA ... 30
 6.2.2B UE maximum output power for UL-MIMO .. 30
 6.2.3 UE maximum output power for modulation / channel bandwidth ... 31
 6.2.3A UE Maximum Output power for modulation / channel bandwidth for CA ... 32
 6.2.3B UE maximum output power for modulation / channel bandwidth for UL-MIMO ... 33
 6.2.4 UE maximum output power with additional requirements .. 33
 6.2.4A UE maximum output power with additional requirements for CA ... 37
 6.2.4A.1 A-MPR for CA_NS_01 for CA_1C ... 38
 6.2.4A.2 A-MPR for CA_NS_02 for CA_1C ... 39
 6.2.4A.3 A-MPR for CA_NS_03 for CA_1C ... 39
6.2.4B UE maximum output power with additional requirements for UL-MIMO
6.2.5 Configured transmitted power
6.2.5A Configured transmitted power for CA
6.2.5B Configured transmitted power for UL-MIMO
6.3 Output power dynamics
 (Void)
6.3.1 Minimum output power
6.3.2.1 Minimum requirement
6.3.2A UE Minimum output power for CA
6.3.2A.1 Minimum requirement for CA
6.3.2B UE Minimum output power for UL-MIMO
6.3.2B.1 Minimum requirement
6.3.3 Transmit OFF power
6.3.3.1 Minimum requirement
6.3.3A UE Transmit OFF power for CA
6.3.3A.1 Minimum requirement for CA
6.3.3B UE Transmit OFF power for UL-MIMO
6.3.3B.1 Minimum requirement
6.3.4 ON/OFF time mask
6.3.4.1 General ON/OFF time mask
6.3.4.2 PRACH and SRS time mask
6.3.4.2.1 PRACH time mask
6.3.4.2.2 SRS time mask
6.3.4.3 Slot / Sub frame boundary time mask
6.3.4.4 PUCCH / PUSCH / SRS time mask
6.3.4A ON/OFF time mask for CA
6.3.4B ON/OFF time mask for UL-MIMO
6.3.5 Power Control
6.3.5.1 Absolute power tolerance
6.3.5.1.1 Minimum requirements
6.3.5.2 Relative Power tolerance
6.3.5.2.1 Minimum requirements
6.3.5.3 Aggregate power control tolerance
6.3.5.3.1 Minimum requirement
6.3.5A Power control for CA
6.3.5A.1 Absolute power tolerance
6.3.5A.1.1 Minimum requirements
6.3.5A.2 Relative power tolerance
6.3.5A.2.1 Minimum requirements
6.3.5A.3 Aggregate power control tolerance
6.3.5A.3.1 Minimum requirements
6.3.5B Power control for UL-MIMO
6.4 Void
6.5 Transmit signal quality
6.5.1 Frequency error
6.5.1A Frequency error for CA
6.5.1B Frequency error for UL-MIMO
6.5.2 Transmit modulation quality
6.5.2.1 Error Vector Magnitude
6.5.2.1.1 Minimum requirement
6.5.2.2 Carrier leakage
6.5.2.2.1 Minimum requirements
6.5.2.3 In-band emissions
6.5.2.3.1 Minimum requirements
6.5.2.4 EVM equalizer spectrum flatness
6.5.2.4.1 Minimum requirements
6.5.2A Transmit modulation quality for CA
6.5.2A.1 Error Vector Magnitude
6.5.2A.2 Carrier leakage for CA
6.5.2A.2.1 Minimum requirements
6.5.2A.3 In-band emissions
6.5.2A.3.1 Minimum requirement for CA
6.5.2B Transmit modulation quality for UL-MIMO ... 61
6.5.2B.1 Error Vector Magnitude .. 62
6.5.2B.2 Carrier leakage .. 62
6.5.2B.3 In-band emissions ... 62
6.5.2B.4 EVM equalizer spectrum flatness for UL-MIMO ... 62
6.6 Output RF spectrum emissions .. 62
6.6.1 Occupied bandwidth .. 62
6.6.1A Occupied bandwidth for CA .. 63
6.6.1B Occupied bandwidth for UL-MIMO ... 63
6.6.2 Out of band emission .. 63
6.6.2.1 Spectrum emission mask .. 63
6.6.2.1.1 Minimum requirement ... 63
6.6.2.1A Spectrum emission mask for CA .. 64
6.6.2.2 Additional spectrum emission mask .. 64
6.6.2.2.1 Minimum requirement (network signalled value "NS_03", "NS_11", and "NS_20") ... 64
6.6.2.2.2 Minimum requirement (network signalled value "NS_04") 65
6.6.2.2.3 Minimum requirement (network signalled value "NS_06" or "NS_07") 65
6.6.2.3 Adjacent Channel Leakage Ratio .. 66
6.6.2.3.1 Minimum requirement E-UTRA ... 66
6.6.2.3.1.1 Void ... 67
6.6.2.3.2 Minimum requirements UTRA ... 67
6.6.2.3.2.1 Minimum requirement UTRA for CA .. 68
6.6.2.3.3A Minimum requirements for CA E-UTRA ... 68
6.6.2.4 Void ... 69
6.6.2.4.1 Void ... 69
6.6.2.4.2 Void ... 69
6.6.2B Out of band emission for UL-MIMO ... 69
6.6.3 Spurious emissions .. 69
6.6.3.1 Minimum requirements .. 69
6.6.3.1A Minimum requirements for CA .. 70
6.6.3.2 Spurious emission band UE co-existence .. 70
6.6.3.2A Spurious emission band UE co-existence for CA 74
6.6.3.3 Additional spurious emissions ... 75
6.6.3.3.1 Minimum requirement (network signalled value "NS_05") 75
6.6.3.3.2 Minimum requirement (network signalled value "NS_07") 76
6.6.3.3.3 Minimum requirement (network signalled value "NS_08") 76
6.6.3.3.4 Minimum requirement (network signalled value "NS_09") 77
6.6.3.3A Additional spurious emissions for CA .. 77
6.6.3.3A.1 Minimum requirement for CA_1C (network signalled value "CA_NS_01") 77
6.6.3.3A.2 Minimum requirement for CA_1C (network signalled value "CA_NS_02") 77
6.6.3.3A.3 Minimum requirement for CA_1C (network signalled value "CA_NS_03") 78
6.6.3A Void ... 78
6.6.3B Spurious emission for UL-MIMO .. 78
6.6A Void .. 78
6.6B Void .. 78
6.7 Transmit intermodulation ... 78
6.7.1 Minimum requirement ... 78
6.7.1A Minimum requirement for CA ... 79
6.7.1B Minimum requirement for UL-MIMO .. 79
6.8 Void .. 80
6.8A Void .. 80
6.8B Time alignment error for UL-MIMO ... 80
6.8B.1 Minimum Requirements .. 80
7 Receiver characteristics ... 80
7.1 General .. 80
7.2 Diversity characteristics .. 80
7.3 Reference sensitivity power level ... 80
7.3.1 Minimum requirements (QPSK) .. 81
7.3.1A Minimum requirements (QPSK) for CA .. 84
7.3.1B Minimum requirements (QPSK) for UL-MIMO ... 84
7.3.2 Void ... 85
7.4 Maximum input level ... 85
7.4.1 Minimum requirements .. 85
7.4.1A Minimum requirements for CA 85
7.4.1B Minimum requirements for UL-MIMO 86
7.4A Void... 86
7.4A.1 Void ... 86
7.5 Adjacent Channel Selectivity (ACS)......................... 86
7.5.1 Minimum requirements ... 86
7.5.1A Minimum requirements for CA 87
7.5.1B Minimum requirements for UL-MIMO 88
7.6 Blocking characteristics ... 88
7.6.1 In-band blocking .. 88
7.6.1.1 Minimum requirements 88
7.6.1.1A Minimum requirements for CA 89
7.6.2 Out-of-band blocking ... 90
7.6.2.1 Minimum requirements 90
7.6.2.1A Minimum requirements for CA 91
7.6.3 Narrow band blocking .. 93
7.6.3.1 Minimum requirements 93
7.6.3.1A Minimum requirements for CA 93
7.6A Void... 94
7.6B Blocking characteristics for UL-MIMO 94
7.7 Spurious response ... 94
7.7.1 Minimum requirements ... 94
7.7.1A Minimum requirements for CA 95
7.7.1B Minimum requirements for UL-MIMO 95
7.8 Intermodulation characteristics 95
7.8.1 Wide band intermodulation 96
7.8.1.1 Minimum requirements 96
7.8.1A Minimum requirements for CA 96
7.8.1B Minimum requirements for UL-MIMO 97
7.8.2 Void... 97
7.9 Spurious emissions .. 97
7.9.1 Minimum requirements ... 97
7.10 Receiver image ... 98
7.10.1 Void... 98
7.10.1A Minimum requirements for CA 98

8 Performance requirement ... 99
8.1 General ... 99
8.1.1 Dual-antenna receiver capability 99
8.1.1.1 Simultaneous unicast and MBMS operations 99
8.1.1.2 Dual-antenna receiver capability in idle mode 99
8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols) .. 99
8.2.1 FDD (Fixed Reference Channel) 99
8.2.1.1 Single-antenna port performance 100
8.2.1.1.1 Minimum Requirement 100
8.2.1.1.2 Void ... 101
8.2.1.1.3 Void ... 101
8.2.1.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN 101
8.2.1.2 Transmit diversity performance 102
8.2.1.2.1 Minimum Requirement 2 Tx Antenna Port 102
8.2.1.2.2 Minimum Requirement 4 Tx Antenna Port 103
8.2.1.2.3 Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS) ... 103
8.2.1.3 Open-loop spatial multiplexing performance 105
8.2.1.3.1 Minimum Requirement 2 Tx Antenna Port 105
8.2.1.3.2 Minimum Requirement 4 Tx Antenna Port 106
8.2.1.3.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS) 106
8.2.1.4 Closed-loop spatial multiplexing performance 110
9 Reporting of Channel State Information .. 163
9.1 General .. 163
9.2 CQI reporting definition under AWGN conditions .. 163
 9.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols) .. 163
 9.2.1.1 FDD .. 163
 9.2.1.2 TDD .. 163
 9.2.1.3 FDD (CSI measurements in case two CSI subframe sets are configured) ... 164
 9.2.1.4 TDD (CSI measurements in case two CSI subframe sets are configured) ... 166
 9.2.2 Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols) .. 168
 9.2.2.1 FDD .. 168
 9.2.2.2 TDD .. 169
 9.2.3 Minimum requirement PUCCH 1-1 (CSI Reference Symbols) ... 170
 9.2.3.1 FDD .. 170
 9.2.3.2 TDD .. 171
 9.3 CQI reporting under fading conditions ... 172
 9.3.1 Frequency-selective scheduling mode .. 172
 9.3.1.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols) ... 173
 9.3.1.1.1 FDD .. 173
 9.3.1.1.2 TDD .. 174
 9.3.1.2 Minimum requirement PUSCH 3-1 (CSI Reference Symbol) .. 175
 9.3.1.2.1 FDD .. 175
 9.3.1.2.2 TDD .. 176
 9.3.2 Frequency non-selective scheduling mode .. 178
 9.3.2.1 Minimum requirement PUSCH 1-0 (Cell-Specific Reference Symbol) ... 178
 9.3.2.1.1 FDD .. 178
 9.3.2.1.2 TDD .. 179
 9.3.2.2 Minimum requirement PUSCH 1-1 (CSI Reference Symbol) .. 181
 9.3.2.2.1 FDD .. 181
 9.3.2.2.2 TDD .. 182
 9.3.3 Frequency-selective interference ... 185
 9.3.3.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol) ... 185
 9.3.3.1.1 FDD .. 185
 9.3.3.1.2 TDD .. 186
 9.3.3.2 Void .. 187
 9.3.3.2.1 Void .. 187
 9.3.3.2.2 Void .. 187
 9.3.4 UE-selected subband CQI .. 187
9.3.4.1 Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols) ... 187
9.3.4.1.1 FDD ... 187
9.3.4.1.2 TDD ... 188
9.3.4.2 Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols) ... 189
9.3.4.2.1 FDD ... 189
9.3.4.2.2 TDD ... 191
9.5 Reporting of Rank Indicator (RI) ... 209
9.5.1 Minimum requirement (Cell-Specific Reference Symbols) ... 209
9.5.1.1 FDD ... 209
9.5.1.2 TDD ... 211
9.5.2 Minimum requirement (CSI Reference Symbols) ... 212
9.5.2.1 FDD ... 212
9.5.2.2 TDD ... 214
9.5.3 Minimum requirement (CSI measurements in case two CSI subframe sets are configured) 216
9.5.3.1 FDD ... 216
9.5.3.2 TDD ... 218
9.6 Additional requirements for carrier aggregation ... 220
9.6.1 Periodic reporting on multiple cells (Cell-Specific Reference Symbols) ... 220
9.6.1.1 FDD ... 220
9.6.1.2 TDD ... 221
10 Performance requirement (MBMS) ... 222
10.1 FDD (Fixed Reference Channel) ... 222
10.1.1 Minimum requirement ... 223
10.2 TDD (Fixed Reference Channel) ... 223
10.2.1 Minimum requirement ... 224
Annex A (normative): Measurement channels .. 225
A.1 General .. 225
A.2 UL reference measurement channels ... 225
A.2.1 General .. 225
A.2.1.1 Applicability and common parameters .. 225

ETSI
A.2.1.2 Determination of payload size ... 225
A.2.1.3 Overview of UL reference measurement channels 226
A.2.2 Reference measurement channels for FDD ... 231
A.2.2.1 Full RB allocation .. 231
A.2.2.1.1 QPSK ... 231
A.2.2.1.2 16-QAM .. 231
A.2.2.1.3 64-QAM .. 231
A.2.2.2 Partial RB allocation ... 231
A.2.2.2.1 QPSK ... 232
A.2.2.2.2 16-QAM .. 232
A.2.2.2.3 64-QAM .. 233
A.2.2.3 Reference measurement channels for sustained downlink data rate provided by lower layers .. 234
A.2.3 Reference measurement channels for TDD ... 234
A.2.3.1 Full RB allocation .. 234
A.2.3.1.1 QPSK ... 234
A.2.3.1.2 16-QAM .. 235
A.2.3.1.3 64-QAM .. 235
A.2.3.2 Partial RB allocation ... 235
A.2.3.2.1 QPSK ... 236
A.2.3.2.2 16-QAM .. 236
A.2.3.2.3 64-QAM .. 237
A.2.3.3 Reference measurement channels for sustained downlink data rate provided by lower layers .. 238
A.3 DL reference measurement channels ... 238
A.3.1 General ... 238
A.3.1.1 Overview of DL reference measurement channels 239
A.3.2 Reference measurement channel for receiver characteristics 244
A.3.3 Reference measurement channels for PDSCH performance requirements (FDD) ... 252
A.3.3.1 Single-antenna transmission (Common Reference Symbols) 252
A.3.3.2 Multi-antenna transmission (Common Reference Symbols) 257
A.3.3.2.1 Two antenna ports ... 257
A.3.3.2.2 Four antenna ports ... 258
A.3.3.3 Reference Measurement Channel for UE-Specific Reference Symbols ... 258
A.3.3.3.1 Two antenna port (CSI-RS) .. 258
A.3.3.3.2 Four antenna ports (CSI-RS) .. 259
A.3.4 Reference measurement channels for PDSCH performance requirements (TDD) ... 262
A.3.4.1 Single-antenna transmission (Common Reference Symbols) 262
A.3.4.2 Multi-antenna transmission (Common Reference Signals) 270
A.3.4.2.1 Two antenna ports ... 270
A.3.4.2.2 Four antenna ports ... 271
A.3.4.3 Reference Measurement Channels for UE-Specific Reference Symbols ... 271
A.3.4.3.1 Single antenna port (Cell Specific) ... 271
A.3.4.3.2 Two antenna ports (Cell Specific) .. 272
A.3.4.3.3 Two antenna ports (CSI-RS) .. 273
A.3.4.3.4 Four antenna ports (CSI-RS) .. 274
A.3.4.3.5 Eight antenna ports (CSI-RS) .. 275
A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements ... 278
A.3.5.1 FDD ... 278
A.3.5.2 TDD ... 278
A.3.6 Reference measurement channels for PHICH performance requirements ... 278
A.3.7 Reference measurement channels for PBCH performance requirements ... 279
A.3.8 Reference measurement channels for MBMS performance requirements ... 279
A.3.8.1 FDD ... 279
A.3.8.2 TDD ... 281
A.3.9 Reference measurement channels for sustained downlink data rate provided by lower layers ... 283
A.3.9.1 FDD ... 283
A.3.9.2 TDD ... 284
A.4 CSI reference measurement channels ... 285
A.5 OFDMA Channel Noise Generator (OCNG) ... 298
A.5.1 OCNG Patterns for FDD .. 298
A.5.1.1 OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern 299
ETSI TS 136 101 V10.13.0 (2014-03)

A.5.1.2 OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern ... 309
A.5.1.3 OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz ... 309
A.5.1.4 OCNG FDD pattern 4: One sided dynamic OCNG FDD pattern for MBMS transmission 310
A.5.1.5 OCNG FDD pattern 5: One sided dynamic 16QAM modulated OCNG FDD pattern 310
A.5.1.6 OCNG FDD pattern 6: dynamic OCNG FDD pattern when user data is in 2 non-contiguous blocks 310
A.5.2 OCNG Patterns for TDD ... 309
A.5.2.1 OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern ... 309
A.5.2.2 OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern ... 310
A.5.2.3 OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz ... 310
A.5.2.4 OCNG TDD pattern 4: One sided dynamic OCNG TDD pattern for MBMS transmission 310
A.5.2.5 OCNG TDD pattern 5: One sided dynamic 16QAM modulated OCNG TDD pattern 310
A.5.2.6 OCNG TDD pattern 6: dynamic OCNG TDD pattern when user data is in 2 non-contiguous blocks 310

Annex B (normative): Propagation conditions .. 308
B.1 Static propagation condition .. 308
B.2 Multi-path fading propagation conditions .. 309
B.2.1 Delay profiles ... 309
B.2.2 Combinations of channel model parameters .. 309
B.2.3 MIMO Channel Correlation Matrices ... 310
B.2.3.1 Definition of MIMO Correlation Matrices .. 310
B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level .. 311
B.2.3A MIMO Channel Correlation Matrices using cross polarized antennas ... 313
B.2.3A.1 Definition of MIMO Correlation Matrices using cross polarized antennas ... 313
B.2.3A.2 Spatial Correlation Matrices using cross polarized antennas at eNB and UE sides 314
B.2.3A.2.1 Spatial Correlation Matrices at eNB side ... 314
B.2.3A.2.2 Spatial Correlation Matrices at UE side ... 314
B.2.3A.4 Beam steering approach ... 315
B.2.4 Propagation conditions for CQI tests ... 316
B.2.5 Void ... 316
B.2.6 MBSFN Propagation Channel Profile ... 316
B.3 High speed train scenario .. 317
B.4 Beamforming Model .. 318
B.4.1 Single-layer random beamforming (Antenna port 5, 7, or 8) .. 318
B.4.2 Dual-layer random beamforming (antenna ports 7 and 8) ... 318
B.4.3 Generic beamforming model (antenna ports 7-14) ... 319

Annex C (normative): Downlink Physical Channels ... 320
C.1 General ... 320
C.2 Set-up .. 320
C.3 Connection .. 320
C.3.1 Measurement of Receiver Characteristics .. 320
C.3.2 Measurement of Performance requirements .. 321
C.3.3 Aggressor cell power allocation for Measurement of Performance Requirements when ABS is Configured................................. 321

Annex D (normative): Characteristics of the interfering signal ... 323
D.1 General ... 323
D.2 Interference signals ... 323

Annex E (normative): Environmental conditions ... 324
E.1 General ... 324
E.2 Environmental .. 324
E.2.1 Temperature ... 324
E.2.2 Voltage ... 324
E.2.3 Vibration ... 325
Annex F (normative): Transmit modulation ... 326
F.1 Measurement Point ... 326
F.2 Basic Error Vector Magnitude measurement .. 326
F.3 Basic in-band emissions measurement ... 327
F.4 Modified signal under test .. 327
F.5 Window length ... 329
F.5.1 Timing offset .. 329
F.5.2 Window length ... 329
F.5.3 Window length for normal CP ... 330
F.5.4 Window length for Extended CP ... 330
F.5.5 Window length for PRACH ... 330
F.6 Averaged EVM .. 331
F.7 Spectrum Flatness ... 332

Annex G (informative): Reference sensitivity level in lower SNR 333
G.1 General .. 333
G.2 Typical receiver sensitivity performance (QPSK) .. 333
G.3 Reference measurement channel for REFSENSE in lower SNR 336

Annex H (informative): Change history .. 338
History .. 349
Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

Where:

- **x** the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.

- **y** the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

- **z** the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document establishes the minimum RF characteristics and minimum performance requirements for E-UTRA User Equipment (UE).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[4] 3GPP TS 36.211: "Physical Channels and Modulation".
[7] 3GPP TS 36.331: "Requirements for support of radio resource management".
[8] 3GPP TS 36.307: "Requirements on User Equipments (UEs) supporting a release-independent frequency band".
[9] 3GPP TS 36.423: "X2 application protocol (X2AP)".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply in the case of a single component carrier. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Aggregated Transmission Bandwidth Configuration: The number of resource block allocated within the aggregated channel bandwidth.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.
Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

Channel edge: The lowest and highest frequency of the carrier, separated by the channel bandwidth.

Channel bandwidth: The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Contiguous carriers: A set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous resource allocation: A resource allocation of consecutive resource blocks within one carrier or across contiguous aggregated carriers. The gap between contiguous aggregated carriers due to the nominal channel spacing is allowed.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

Synchronized operation: Operation of TDD in two different systems, where no simultaneous uplink and downlink occur.

Unsynchronized operation: Operation of TDD in two different systems, where the conditions for synchronized operation are not met.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

- BW_channel: Channel bandwidth
- BW_channel_CA: Aggregated channel bandwidth, expressed in MHz.
- BW_GB: Virtual guard band to facilitate transmitter (receiver) filtering above / below edge CCs.
- E_RS: Transmitted energy per RE for reference symbols during the useful part of the symbol, excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the eNode B transmit antenna connector.
- \(\hat{E}_s \): The averaged received energy per RE of the wanted signal during the useful part of the symbol, i.e. excluding the cyclic prefix, at the UE antenna connector; average power is computed within a set of REs used for the transmission of physical channels (including user specific RSs when present), divided by the number of REs within the set, and normalized to the subcarrier spacing.
- F: Frequency
- F_Interferer (offset): Frequency offset of the interferer
- F_Interferer: Frequency of the interferer
- F_CA: Frequency of the carrier centre frequency
- F_CA_low: The centre frequency of the lowest carrier, expressed in MHz.
- F_CA_high: The centre frequency of the highest carrier, expressed in MHz.
- F_DL_low: The lowest frequency of the downlink operating band
- F_DL_high: The highest frequency of the downlink operating band
- F_UL_low: The lowest frequency of the uplink operating band
- F_UL_high: The highest frequency of the uplink operating band
- F_Edge_low: The lower edge of aggregated channel bandwidth, expressed in MHz.
- F_Edge_high: The higher edge of aggregated channel bandwidth, expressed in MHz.
- F_offset: Frequency offset from FC_high to the higher edge or FC_low to the lower edge.
- FOOB: The boundary between the E-UTRA out of band emission and spurious emission domains.
The power spectral density of the total input signal (power averaged over the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector, including the own-cell downlink signal.

I_{or}

The total transmitted power spectral density of the own-cell downlink signal (power averaged over the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector.

I_{ot}

The total received power spectral density of the own-cell downlink signal (power averaged over the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector.

\hat{j}_{or}

The total received power spectral density of the own-cell downlink signal (power averaged over the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector.

I_{oi}

The received power spectral density of the total noise and interference for a certain RE (average power obtained within the RE and normalised to the subcarrier spacing) as measured at the UE antenna connector.

L_{CRB}

Transmission bandwidth which represents the length of a contiguous resource block allocation expressed in units of resource blocks.

N_{cp}

Cyclic prefix length.

N_{DL}

Downlink EARFCN.

N_{oc}

The power spectral density of a white noise source (average power per RE normalised to the subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as measured at the UE antenna connector.

N_{oc1}

The power spectral density of a white noise source (average power per RE normalize to the subcarrier spacing), simulating interference in non-CRS symbols in ABS subframe from cells that are not defined in a test procedure, as measured at the UE antenna connector.

N_{oc2}

The power spectral density of a white noise source (average power per RE normalized to the subcarrier spacing), simulating interference in CRS symbols in ABS subframe from all cells that are not defined in a test procedure, as measured at the UE antenna connector.

N_{oc3}

The power spectral density of a white noise source (average power per RE normalised to the subcarrier spacing), simulating interference in non-ABS subframe from cells that are not defined in a test procedure, as measured at the UE antenna connector.

$N_{Offs-DL}$

Offset used for calculating downlink EARFCN.

$N_{Offs-UL}$

Offset used for calculating uplink EARFCN.

N_{ort}

The power spectral density of a white noise source (average power per RE normalised to the subcarrier spacing) simulating eNode B transmitter impairments as measured at the eNode B transmit antenna connector.

N_{RB}

Transmission bandwidth configuration, expressed in units of resource blocks.

$N_{RB_{agg}}$

Aggregated Transmission Bandwidth Configuration. The number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth.

$N_{RB_{ alloc}}$

Total number of simultaneously transmitted resource blocks in Aggregated Channel Bandwidth configuration.

N_{UL}

Uplink EARFCN.

R_{av}

Minimum average throughput per RB.

P_{MAX}

The configured maximum UE output power.

$P_{MAX,c}$

The configured maximum UE output power for serving cell c.

P_{MAX}

Maximum allowed UE output power signalled by higher layers. Same as IE $P-Max$, defined in [7].

$P_{MAX,c}$

Maximum allowed UE output power signalled by higher layers for serving cell c. Same as IE $P-Max$, defined in [7].

$P_{interferer}$

Modulated mean power of the interferer.

$P_{PowerClass}$

$P_{PowerClass}$ is the nominal UE power (i.e., no tolerance).

P_{MAX}

The measured configured maximum UE output power.

RB_{start}

Indicates the lowest RB index of transmitted resource blocks.

RB_{end}

Indicates highest RB index of transmitted resource blocks.

Δ_{OOB}

Δ Frequency of Out Of Band emission.

$\Delta R_{IB,c}$

Allowed reference sensitivity relaxation due to support for inter-band CA operation, for serving cell c.

$\Delta T_{IB,c}$

Allowed maximum configured output power relaxation due to support for inter-band CA operation, for serving cell c.
\[\Delta T_c \] Allowed operating band edge transmission power relaxation.
\[\Delta T_{c,e} \] Allowed operating band edge transmission power relaxation for serving cell \(c \).
\[\sigma \] Test specific auxiliary variable used for the purpose of downlink power allocation, defined in Annex C.3.2.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

- **ABS**: Almost Blank Subframe
- **ACLR**: Adjacent Channel Leakage Ratio
- **ACS**: Adjacent Channel Selectivity
- **A-MPR**: Additional Maximum Power Reduction
- **AWGN**: Additive White Gaussian Noise
- **BS**: Base Station
- **CA**: Carrier Aggregation
- **CA_X**: CA for band X where X is the applicable E-UTRA operating band
- **CA_X-Y**: CA for band X and Band Y where X and Y are the applicable E-UTRA operating band
- **CC**: Component Carriers
- **CPE**: Customer Premise Equipment
- **CPE_X**: Customer Premise Equipment for E-UTRA operating band X
- **CW**: Continuous Wave
- **DL**: Downlink
- **eDL-MIMO**: Down Link Multiple Antenna transmission
- **E-UTRAN**: Evolved UMTS Terrestrial Radio Access Network
- **EARFCN**: E-UTRA Absolute Radio Frequency Channel Number
- **EPRE**: Energy Per Resource Element
- **FDD**: Frequency Division Duplex
- **FRC**: Fixed Reference Channel
- **HD-FDD**: Half-Duplex FDD
- **MCS**: Modulation and Coding Scheme
- **MOP**: Maximum Output Power
- **MPR**: Maximum Power Reduction
- **MSD**: Maximum Sensitivity Degradation
- **OCNG**: OFDMA Channel Noise Generator
- **OFDMA**: Orthogonal Frequency Division Multiple Access
- **OOB**: Out-of-band
- **PA**: Power Amplifier
- **PCC**: Primary Component Carrier
- **P-MPR**: Power Management Maximum Power Reduction
- **PSS**: Primary Synchronization Signal
- **PSS_RA**: PSS-to-RS EPRE ratio for the channel PSS
- **RE**: Resource Element
- **REFSENS**: Reference Sensitivity power level
- **r.m.s**: Root Mean Square
- **SCC**: Secondary Component Carrier
- **SNR**: Signal-to-Noise Ratio
- **SSS**: Secondary Synchronization Signal
- **SSS_RA**: SSS-to-RS EPRE ratio for the channel SSS
- **TDD**: Time Division Duplex
- **UE**: User Equipment
- **UL**: Uplink
- **UL-MIMO**: Up Link Multiple Antenna transmission
- **UMTS**: Universal Mobile Telecommunications System
- **UTRA**: UMTS Terrestrial Radio Access
- **UTRAN**: UMTS Terrestrial Radio Access Network
- **xCH_RA**: xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols not containing RS
xCH_RBe xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols containing RS

4 General

4.1 Relationship between minimum requirements and test requirements

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 36.521-1 Annex F defines Test Tolerances. These Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in this specification to create Test Requirements.

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

4.2 Applicability of minimum requirements

a) In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios

b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.

c) The reference sensitivity power levels defined in subclause 7.3 are valid for the specified reference measurement channels.

d) Note: Receiver sensitivity degradation may occur when:

 1) The UE simultaneously transmits and receives with bandwidth allocations less than the transmission bandwidth configuration (see Figure 5.6-1), and
 2) Any part of the downlink transmission bandwidth is within an uplink transmission bandwidth from the downlink center subcarrier.

e) The spurious emissions power requirements are for the long term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.

4.3 Void

4.3A Applicability of minimum requirements (CA, UL-MIMO, eDL-MIMO)

The requirements in clauses 5, 6 and 7 which are specific to CA, UL-MIMO, and eDL-MIMO are specified as suffix A, B, C, D where;

a) Suffix A additional requirements need to support CA
b) Suffix B additional requirements need to support UL-MIMO
c) Suffix C additional requirements need to support TBD
d) Suffix D additional requirements need to support eDL-MIMO
A terminal which supports the above features needs to meet both the general requirements and the additional requirement applicable to the additional sub-clause (suffix A, B, C, and D) in clauses 5, 6, and 7. Where there is a difference in requirement between the general requirements and the additional subclause requirements (suffix A, B, C, and D) in clauses 5, 6, and 7, the tighter requirements are applicable unless stated otherwise in the additional subclause.

A terminal which supports more than one feature (CA, UL-MIMO, and eDL-MIMO) in clauses 5, 6, and 7 shall meet all of the separate corresponding requirements.

4.4 RF requirements in later releases

The standardisation of new frequency bands may be independent of a release. However, in order to implement a UE that conforms to a particular release but supports a band of operation that is specified in a later release, it is necessary to specify some extra requirements. TS 36.307 [8] specifies requirements on UEs supporting a frequency band that is independent of release.

NOTE: For terminals conforming to the 3GPP release of the present document, some RF requirements in later releases may be mandatory independent of whether the UE supports the bands specified in later releases or not. The set of requirements from later releases that is also mandatory for UEs conforming to the 3GPP release of the present document is determined by regional regulation.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

5.2 Void

5.3 Void

5.4 Void

5.5 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.5-1.
Table 5.5-1 E-UTRA operating bands

<table>
<thead>
<tr>
<th>E-UTRA Operating Band</th>
<th>Uplink (UL) operating band BS receive UE transmit</th>
<th>Downlink (DL) operating band BS transmit UE receive</th>
<th>Duplex Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_{UL_low} – F_{UL_high}</td>
<td>F_{DL_low} – F_{DL_high}</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1920 MHz – 1980 MHz</td>
<td>2110 MHz – 2170 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>2</td>
<td>1850 MHz – 1910 MHz</td>
<td>1930 MHz – 1990 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>3</td>
<td>1710 MHz – 1785 MHz</td>
<td>1805 MHz – 1880 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>4</td>
<td>1710 MHz – 1755 MHz</td>
<td>2110 MHz – 2155 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>5</td>
<td>824 MHz – 849 MHz</td>
<td>869 MHz – 894 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>6</td>
<td>830 MHz – 840 MHz</td>
<td>875 MHz – 885 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>7</td>
<td>2500 MHz – 2570 MHz</td>
<td>2620 MHz – 2690 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>8</td>
<td>880 MHz – 915 MHz</td>
<td>925 MHz – 960 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>9</td>
<td>1749.9 MHz – 1784.9 MHz</td>
<td>1844.9 MHz – 1879.9 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>10</td>
<td>1710 MHz – 1770 MHz</td>
<td>2110 MHz – 2170 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>11</td>
<td>1427.9 MHz – 1447.9 MHz</td>
<td>1475.9 MHz – 1495.9 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>12</td>
<td>699 MHz – 716 MHz</td>
<td>729 MHz – 746 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>13</td>
<td>777 MHz – 787 MHz</td>
<td>746 MHz – 756 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>14</td>
<td>788 MHz – 798 MHz</td>
<td>758 MHz – 768 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td>Reserved</td>
<td>FDD</td>
</tr>
<tr>
<td>16</td>
<td>Reserved</td>
<td>Reserved</td>
<td>FDD</td>
</tr>
<tr>
<td>17</td>
<td>704 MHz – 716 MHz</td>
<td>734 MHz – 746 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>18</td>
<td>815 MHz – 830 MHz</td>
<td>860 MHz – 875 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>19</td>
<td>830 MHz – 845 MHz</td>
<td>875 MHz – 890 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>20</td>
<td>832 MHz – 862 MHz</td>
<td>791 MHz – 821 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>21</td>
<td>1447.9 MHz – 1462.9 MHz</td>
<td>1495.9 MHz – 1510.9 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>22</td>
<td>3410 MHz – 3490 MHz</td>
<td>3510 MHz – 3590 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>23</td>
<td>2000 MHz – 2020 MHz</td>
<td>2180 MHz – 2200 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>24</td>
<td>1626.5 MHz – 1660.5 MHz</td>
<td>1525 MHz – 1559 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>25</td>
<td>1850 MHz – 1915 MHz</td>
<td>1930 MHz – 1995 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>33</td>
<td>1900 MHz – 1920 MHz</td>
<td>1900 MHz – 1920 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>34</td>
<td>2010 MHz – 2025 MHz</td>
<td>2010 MHz – 2025 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>35</td>
<td>1850 MHz – 1910 MHz</td>
<td>1850 MHz – 1910 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>36</td>
<td>1930 MHz – 1990 MHz</td>
<td>1930 MHz – 1990 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>37</td>
<td>1910 MHz – 1930 MHz</td>
<td>1910 MHz – 1930 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>38</td>
<td>2570 MHz – 2620 MHz</td>
<td>2570 MHz – 2620 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>39</td>
<td>1880 MHz – 1920 MHz</td>
<td>1880 MHz – 1920 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>40</td>
<td>2300 MHz – 2400 MHz</td>
<td>2300 MHz – 2400 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>41</td>
<td>2496 MHz – 2690 MHz</td>
<td>2496 MHz – 2690 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>42</td>
<td>3400 MHz – 3600 MHz</td>
<td>3400 MHz – 3600 MHz</td>
<td>TDD</td>
</tr>
<tr>
<td>43</td>
<td>3600 MHz – 3800 MHz</td>
<td>3600 MHz – 3800 MHz</td>
<td>TDD</td>
</tr>
</tbody>
</table>

NOTE 1: Band 6 is not applicable

5.5A Operating bands for CA

E-UTRA carrier aggregation is designed to operate in the operating bands defined in Tables 5.5A-1 and 5.5A-2.

Table 5.5A-1: Intra-band contiguous CA operating bands

<table>
<thead>
<tr>
<th>E-UTRA CA Band</th>
<th>E-UTRA Band</th>
<th>Uplink (UL) operating band BS receive / UE transmit</th>
<th>Downlink (DL) operating band BS transmit / UE receive</th>
<th>Duplex Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1920 MHz – 1980 MHz</td>
<td>2110 MHz – 2170 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td>CA_40</td>
<td>40</td>
<td>2300 MHz – 2400 MHz</td>
<td>2300 MHz – 2400 MHz</td>
<td>TDD</td>
</tr>
</tbody>
</table>
Table 5.5A-2: Inter-band CA operating bands

<table>
<thead>
<tr>
<th>E-UTRA CA Band</th>
<th>E-UTRA Band</th>
<th>Uplink (UL) operating band BS receive / UE transmit</th>
<th>Downlink (DL) operating band BS transmit / UE receive</th>
<th>Duplex Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA_1-5</td>
<td>1</td>
<td>1920 MHz – 1980 MHz</td>
<td>2110 MHz – 2170 MHz</td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>824 MHz – 849 MHz</td>
<td>869 MHz – 894 MHz</td>
<td></td>
</tr>
</tbody>
</table>

5.5B Operating bands for UL-MIMO

E-UTRA UL-MIMO is designed to operate in the operating bands defined in Table 5.5-1.

Table 5.5B-1: Void

5.6 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.6-1.

Table 5.6-1: Transmission bandwidth configuration N_{RB} in E-UTRA channel bandwidths

<table>
<thead>
<tr>
<th>Channel bandwidth $BW_{Channel}$ [MHz]</th>
<th>1.4</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission bandwidth configuration N_{RB}</td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 5.6-1 shows the relation between the Channel bandwidth ($BW_{Channel}$) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at $F_C +/- BW_{Channel}/2$.
5.6.1 Channel bandwidths per operating band

a) The requirements in this specification apply to the combination of channel bandwidths and operating bands shown in Table 5.6.1-1. The transmission bandwidth configuration in Table 5.6.1-1 shall be supported for each of the specified channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.
5.6.1-1: E-UTRA channel bandwidth

<table>
<thead>
<tr>
<th>E-UTRA Band</th>
<th>1.4 MHz</th>
<th>3 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes*</td>
<td>Yes**</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Yes'</td>
<td>Yes'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Yes</td>
<td>Yes'</td>
<td>Yes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Yes</td>
<td>Yes'</td>
<td>Yes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Yes</td>
<td>Yes'</td>
<td>Yes'</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Yes</td>
<td>Yes'</td>
<td>Yes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Yes</td>
<td>Yes'</td>
<td>Yes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Yes</td>
<td>Yes'</td>
<td>Yes'</td>
<td>Yes'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Yes</td>
<td>Yes'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Yes</td>
<td>Yes'</td>
<td>Yes'</td>
<td>Yes'</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes*</td>
<td>Yes*</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: 1 refers to the bandwidth for which a relaxation of the specified UE receiver sensitivity requirement (subclause 7.3) is allowed.

NOTE 2: refers to the bandwidth for which the uplink transmission bandwidth can be restricted by the network for some channel assignments in FDD/TDD coexistence scenarios in order to meet unwanted emissions requirements (Clause 6.6.3.2).

b) The use of different (asymmetrical) channel bandwidth for the TX and RX is not precluded and is intended to form part of a later release.

5.6A Channel bandwidth for CA

For intra-band contiguous carrier aggregation Aggregated Channel Bandwidth, Aggregated Transmission Bandwidth Configuration and Guard Bands are defined as follows, see Figure 5.6A-1.
The aggregated channel bandwidth, $\text{BW}_{\text{Channel,CA}}$, is defined as

$$\text{BW}_{\text{Channel,CA}} = F_{\text{edge,high}} - F_{\text{edge,low}} \ [\text{MHz}].$$

The lower bandwidth edge $F_{\text{edge,low}}$ and the upper bandwidth edge $F_{\text{edge,high}}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

$$F_{\text{edge,low}} = F_{\text{C,low}} - F_{\text{offset,low}}$$
$$F_{\text{edge,high}} = F_{\text{C,high}} + F_{\text{offset,high}}$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$F_{\text{offset,low}} = (0.18N_{\text{RB,low}} + \Delta f_1)/2 + \text{BW}_{\text{GB}} \ [\text{MHz}]$$
$$F_{\text{offset,high}} = (0.18N_{\text{RB,high}} + \Delta f_1)/2 + \text{BW}_{\text{GB}} \ [\text{MHz}]$$

where $\Delta f = \Delta f$ for the downlink with Δf the subcarrier spacing and $\Delta f_1 = 0$ for the uplink, while $N_{\text{RB,low}}$ and $N_{\text{RB,high}}$ are the transmission bandwidth configurations according to Table 5.6-1 for the lowest and highest assigned component carrier, respectively. BW_{GB} denotes the Nominal Guard Band and is defined in Table 5.6A-1, and the factor 0.18 is the PRB bandwidth in MHz.

NOTE: The values of $\text{BW}_{\text{Channel,CA}}$ for UE and BS are the same if the lowest and the highest component carriers are identical.

Aggregated Transmission Bandwidth Configuration is the number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth and is defined per CA Bandwidth Class (Table 5.6A-1).
Table 5.6A-1: CA bandwidth classes and corresponding nominal guard bands

<table>
<thead>
<tr>
<th>CA Bandwidth Class</th>
<th>Aggregated Transmission Bandwidth Configuration</th>
<th>Maximum number of CC</th>
<th>Nominal Guard Band BW_{GB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N_{RB,agg} ≤ 100</td>
<td>1</td>
<td>0.05BW_{Channel(1)} - 0.5Δf_1</td>
</tr>
<tr>
<td>B</td>
<td>N_{RB,agg} ≤ 100</td>
<td>2</td>
<td>FFS</td>
</tr>
<tr>
<td>C</td>
<td>100 < N_{RB,agg} ≤ 200</td>
<td>2</td>
<td>0.05 max(BW_{Channel(1)},BW_{Channel(2)}) - 0.5Δf_1</td>
</tr>
<tr>
<td>D</td>
<td>200 < N_{RB,agg} ≤ [300]</td>
<td>FFS</td>
<td>FFS</td>
</tr>
<tr>
<td>E</td>
<td>(300) < N_{RB,agg} ≤ [400]</td>
<td>FFS</td>
<td>FFS</td>
</tr>
<tr>
<td>F</td>
<td>(400) < N_{RB,agg} ≤ [500]</td>
<td>FFS</td>
<td>FFS</td>
</tr>
</tbody>
</table>

NOTE 1: BW_{Channel(1)} and BW_{Channel(2)} are channel bandwidths of two E-UTRA component carriers according to Table 5.6-1 and Δf_1 = Δf for the downlink with Δf the subcarrier spacing while Δf_1 = 0 for the uplink.

The channel spacing between centre frequencies of contiguously aggregated component carriers is defined in subclause 5.7.1A

5.6A.1 Channel bandwidths per operating band for CA

The requirements for carrier aggregation in this specification are defined for carrier aggregation configurations with associated bandwidth combination sets. For inter-band carrier aggregation, a carrier aggregation configuration is a combination of operating bands, each supporting a carrier aggregation bandwidth class. For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class.

For each carrier aggregation configuration, requirements are specified for all bandwidth combinations contained in a bandwidth combination set, which is indicated per supported band combination in the UE radio access capability. A UE can indicate support of several bandwidth combination sets per band combination. Furthermore, if the UE indicates support of a bandwidth combination set that is a superset of another applicable bandwidth combination set, the latter is supported by the UE even if not indicated.

Requirements for intra-band contiguous carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-1. Requirements for inter-band carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-2.

The DL component carrier combinations for a given CA configuration shall be symmetrical in relation to channel centre unless stated otherwise in Table 5.6A.1-1 or 5.6A.1-2.

Table 5.6A.1-1: E-UTRA CA configurations and bandwidth combination sets defined for intra-band contiguous CA

<table>
<thead>
<tr>
<th>E-UTRA CA configuration / Bandwidth combination set</th>
<th>Component carriers in order of increasing carrier frequency</th>
<th>Maximum aggregated bandwidth [MHz]</th>
<th>Bandwidth combination set</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-UTRA configuration</td>
<td>Allowed channel bandwidths for carrier [MHz]</td>
<td>Allowed channel bandwidths for carrier [MHz]</td>
<td>E-UTRA CA configuration</td>
</tr>
<tr>
<td>CA_1C</td>
<td>15</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>CA_40C</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10, 20</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: The CA configuration refers to an operating band and a CA bandwidth class specified in Table 5.6A-1 (the indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes.

NOTE 2: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal.
Table 5.6A.1-2: E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA

<table>
<thead>
<tr>
<th>E-UTRA CA configuration</th>
<th>E-UTRA bands</th>
<th>1.4 MHz</th>
<th>3 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
<th>Maximum aggregated bandwidth [MHz]</th>
<th>Bandwidth combination set</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA_1A-5A</td>
<td>1</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: The CA Configuration refers to a combination of an operating band and a CA bandwidth class specified in Table 5.6A-1 (the indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes.

NOTE 2: For each band combination, all combinations of indicated bandwidths belong to the set.

NOTE 3: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal.

5.6B Channel bandwidth for UL-MIMO

The requirements specified in subclause 5.6 are applicable to UE supporting UL-MIMO.

5.6B.1 Void

5.7 Channel arrangement

5.7.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

\[\text{Nominal Channel spacing} = \frac{BW_{\text{Channel}(1)} + BW_{\text{Channel}(2)}}{2} \]

where \(BW_{\text{Channel}(1)} \) and \(BW_{\text{Channel}(2)} \) are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

5.7.1A Channel spacing for CA

For intra-band contiguous carrier aggregation bandwidth class C, the nominal channel spacing between two adjacent E-UTRA component carriers is defined as the following:

\[\text{Nominal channel spacing} = \frac{BW_{\text{Channel}(1)} + BW_{\text{Channel}(2)} - 0.1|BW_{\text{Channel}(1)} - BW_{\text{Channel}(2)}|}{0.6} \times 0.3 \text{ [MHz]} \]

where \(BW_{\text{Channel}(1)} \) and \(BW_{\text{Channel}(2)} \) are the channel bandwidths of the two respective E-UTRA component carriers according to Table 5.6-1 with values in MHz. The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of 300 kHz less than the nominal channel spacing to optimize performance in a particular deployment scenario.

5.7.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.7.2A Channel raster for CA

For carrier aggregation the channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.
5.7.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 65535. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where F_{DL_low} and $N_{Offs-DL}$ are given in Table 5.7.3-1 and N_{DL} is the downlink EARFCN.

$$F_{DL} = F_{DL_low} + 0.1(N_{DL} - N_{Offs-DL})$$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where F_{UL_low} and $N_{Offs-UL}$ are given in Table 5.7.3-1 and N_{UL} is the uplink EARFCN.

$$F_{UL} = F_{UL_low} + 0.1(N_{UL} - N_{Offs-UL})$$

<table>
<thead>
<tr>
<th>E-UTRA Operating Band</th>
<th>Downlink F$_{DL_low}$ (MHz)</th>
<th>Range of N_{DL}</th>
<th>Uplink F$_{UL_low}$ (MHz)</th>
<th>Range of N_{UL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2110</td>
<td>0 - 599</td>
<td>1920</td>
<td>18000 - 18599</td>
</tr>
<tr>
<td>2</td>
<td>1930</td>
<td>600 - 1199</td>
<td>1850</td>
<td>18600 - 19199</td>
</tr>
<tr>
<td>3</td>
<td>1805</td>
<td>1200 - 1949</td>
<td>1710</td>
<td>19200 - 19949</td>
</tr>
<tr>
<td>4</td>
<td>2110</td>
<td>1950 - 2399</td>
<td>1710</td>
<td>19950 - 20399</td>
</tr>
<tr>
<td>5</td>
<td>869</td>
<td>2400 - 2649</td>
<td>824</td>
<td>20400 - 20649</td>
</tr>
<tr>
<td>6</td>
<td>875</td>
<td>2650 - 2749</td>
<td>830</td>
<td>20650 - 20749</td>
</tr>
<tr>
<td>7</td>
<td>2620</td>
<td>2750 - 3449</td>
<td>2500</td>
<td>20750 - 21448</td>
</tr>
<tr>
<td>8</td>
<td>925</td>
<td>3450 - 3799</td>
<td>880</td>
<td>21450 - 21799</td>
</tr>
<tr>
<td>9</td>
<td>1844.9</td>
<td>3800 - 4149</td>
<td>1749.9</td>
<td>21800 - 22149</td>
</tr>
<tr>
<td>10</td>
<td>2110</td>
<td>4150 - 4749</td>
<td>1710</td>
<td>22150 - 22749</td>
</tr>
<tr>
<td>11</td>
<td>1475.9</td>
<td>4750 - 4949</td>
<td>1427.9</td>
<td>22750 - 22949</td>
</tr>
<tr>
<td>12</td>
<td>729</td>
<td>5010 - 5179</td>
<td>699</td>
<td>23010 - 23179</td>
</tr>
<tr>
<td>13</td>
<td>746</td>
<td>5180 - 5279</td>
<td>777</td>
<td>23180 - 23279</td>
</tr>
<tr>
<td>14</td>
<td>758</td>
<td>5280 - 5379</td>
<td>788</td>
<td>23280 - 23379</td>
</tr>
<tr>
<td>...</td>
<td>734</td>
<td>5730 - 5849</td>
<td>704</td>
<td>23730 - 23849</td>
</tr>
<tr>
<td>17</td>
<td>860</td>
<td>5850 - 5999</td>
<td>815</td>
<td>23850 - 23999</td>
</tr>
<tr>
<td>18</td>
<td>875</td>
<td>6000 - 6149</td>
<td>830</td>
<td>24000 - 24149</td>
</tr>
<tr>
<td>19</td>
<td>791</td>
<td>6150 - 6449</td>
<td>832</td>
<td>24150 - 24449</td>
</tr>
<tr>
<td>20</td>
<td>1495.9</td>
<td>6450 - 6599</td>
<td>1447.9</td>
<td>24450 - 24599</td>
</tr>
<tr>
<td>21</td>
<td>3510</td>
<td>6600 - 7399</td>
<td>3410</td>
<td>24600 - 25399</td>
</tr>
<tr>
<td>22</td>
<td>2180</td>
<td>7500 - 7699</td>
<td>2000</td>
<td>25500 - 25699</td>
</tr>
<tr>
<td>23</td>
<td>1525</td>
<td>7700 - 8039</td>
<td>1626.5</td>
<td>25700 - 26039</td>
</tr>
<tr>
<td>24</td>
<td>1930</td>
<td>8040 - 8689</td>
<td>1850</td>
<td>26040 - 26689</td>
</tr>
<tr>
<td>...</td>
<td>1900</td>
<td>36000 - 36199</td>
<td>1900</td>
<td>36000 - 36199</td>
</tr>
<tr>
<td>31</td>
<td>36200</td>
<td>36200 - 36349</td>
<td>2010</td>
<td>36200 - 36349</td>
</tr>
<tr>
<td>35</td>
<td>36350</td>
<td>36350 - 36949</td>
<td>1850</td>
<td>36350 - 36949</td>
</tr>
<tr>
<td>36</td>
<td>36950</td>
<td>36950 - 37549</td>
<td>1930</td>
<td>36950 - 37549</td>
</tr>
<tr>
<td>37</td>
<td>37550</td>
<td>37550 - 37749</td>
<td>1910</td>
<td>37550 - 37749</td>
</tr>
<tr>
<td>38</td>
<td>2570</td>
<td>37750 - 38249</td>
<td>2570</td>
<td>37750 - 38249</td>
</tr>
<tr>
<td>39</td>
<td>1880</td>
<td>38250 - 38649</td>
<td>1880</td>
<td>38250 - 38649</td>
</tr>
<tr>
<td>40</td>
<td>2300</td>
<td>38650 - 39649</td>
<td>2300</td>
<td>38650 - 39649</td>
</tr>
<tr>
<td>41</td>
<td>2496</td>
<td>39650 - 41589</td>
<td>2496</td>
<td>39650 - 41589</td>
</tr>
<tr>
<td>42</td>
<td>3400</td>
<td>41590 - 43589</td>
<td>3400</td>
<td>41590 - 43589</td>
</tr>
<tr>
<td>43</td>
<td>3600</td>
<td>43590 - 45589</td>
<td>3600</td>
<td>43590 - 45589</td>
</tr>
</tbody>
</table>

NOTE: The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends beyond the operating band edge shall not be used. This implies that the first 7, 15, 25, 50, 75 and 100 channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upper operating band edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively.
5.7.4 TX–RX frequency separation

a) The default E-UTRA TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation is specified in Table 5.7.4-1 for the TX and RX channel bandwidths defined in Table 5.6.1-1

<table>
<thead>
<tr>
<th>E-UTRA Operating Band</th>
<th>TX - RX carrier centre frequency separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>190 MHz</td>
</tr>
<tr>
<td>2</td>
<td>80 MHz</td>
</tr>
<tr>
<td>3</td>
<td>95 MHz</td>
</tr>
<tr>
<td>4</td>
<td>400 MHz</td>
</tr>
<tr>
<td>5</td>
<td>45 MHz</td>
</tr>
<tr>
<td>6</td>
<td>45 MHz</td>
</tr>
<tr>
<td>7</td>
<td>120 MHz</td>
</tr>
<tr>
<td>8</td>
<td>45 MHz</td>
</tr>
<tr>
<td>9</td>
<td>95 MHz</td>
</tr>
<tr>
<td>10</td>
<td>400 MHz</td>
</tr>
<tr>
<td>11</td>
<td>48 MHz</td>
</tr>
<tr>
<td>12</td>
<td>30 MHz</td>
</tr>
<tr>
<td>13</td>
<td>-31 MHz</td>
</tr>
<tr>
<td>14</td>
<td>-30 MHz</td>
</tr>
<tr>
<td>15</td>
<td>30 MHz</td>
</tr>
<tr>
<td>16</td>
<td>45 MHz</td>
</tr>
<tr>
<td>17</td>
<td>45 MHz</td>
</tr>
<tr>
<td>18</td>
<td>-41 MHz</td>
</tr>
<tr>
<td>19</td>
<td>48 MHz</td>
</tr>
<tr>
<td>20</td>
<td>100 MHz</td>
</tr>
<tr>
<td>21</td>
<td>180 MHz</td>
</tr>
<tr>
<td>22</td>
<td>-101.5 MHz</td>
</tr>
<tr>
<td>23</td>
<td>80 MHz</td>
</tr>
</tbody>
</table>

b) The use of other TX channel to RX channel carrier centre frequency separation is not precluded and is intended to form part of a later release.

5.7.4A TX–RX frequency separation for CA

For intra-band contiguous carrier aggregation, the same TX-RX frequency separation as specified in Table 5.7.4-1 is applied to PCC and SCC, respectively.

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.
6.2 Transmit power

6.2.1 Void

6.2.2 UE maximum output power

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth for non CA configuration and UL-MIMO unless otherwise stated. The period of measurement shall be at least one sub frame (1ms).

<table>
<thead>
<tr>
<th>EUTRA band</th>
<th>Class 1 (dBm)</th>
<th>Tolerance (dB)</th>
<th>Class 2 (dBm)</th>
<th>Tolerance (dB)</th>
<th>Class 3 (dBm)</th>
<th>Tolerance (dB)</th>
<th>Class 4 (dBm)</th>
<th>Tolerance (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>13</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>17</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>19</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>20</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>25</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>...</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>33</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>34</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>36</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>37</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>38</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>39</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>40</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>41</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>42</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
<tr>
<td>43</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
<td>23</td>
<td>±2</td>
</tr>
</tbody>
</table>

NOTE 1: Void
NOTE 2: \(^2\) refers to the transmission bandwidths (Figure 5.6-1) confined within \(F_{UL_low}\) and \(F_{UL_low} + 4\) MHz or \(F_{UL_high} - 4\) MHz and \(F_{UL_high}\), the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB
NOTE 3: For the UE which supports both Band 11 and Band 21 operating frequencies, the tolerance is FFS.
NOTE 4: \(P_{\text{PowerClass}}\) is the maximum UE power specified without taking into account the tolerance
NOTE 5: When \(NS_20\) is signalled, the total output power within 2000-2005 MHz shall be limited to 7 dBm.
6.2.2A UE maximum output power for CA

The following UE Power Classes define the maximum output power for any transmission bandwidth within the aggregated channel bandwidth.

The maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the requirements in subclause 6.2.2 apply.

For intra-band contiguous carrier aggregation the maximum output power is specified in Table 6.2.2A-1.

<table>
<thead>
<tr>
<th>E-UTRA CA Configuration</th>
<th>Class 1 (dBm)</th>
<th>Tolerance (dB)</th>
<th>Class 2 (dBm)</th>
<th>Tolerance (dB)</th>
<th>Class 3 (dBm)</th>
<th>Tolerance (dB)</th>
<th>Class 4 (dBm)</th>
<th>Tolerance (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA 1C</td>
<td>23</td>
<td>+2/-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 40C</td>
<td>23</td>
<td>+2/-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Void

NOTE 2: For transmission bandwidths (Figure 5.6-1) confined within FUL_low and FUL_low + 4 MHz or FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 4: For intra-band contiguous carrier aggregation the maximum power requirement should apply to the total transmitted power over all component carriers (per UE).

6.2.2B UE maximum output power for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the maximum output power for any transmission bandwidth within the channel bandwidth is specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).
Table 6.2.2B-1: UE Power Class for UL-MIMO in closed loop spatial multiplexing scheme

<table>
<thead>
<tr>
<th>EUTRA band</th>
<th>Class 1 (dBm)</th>
<th>Tolerance (dB)</th>
<th>Class 2 (dBm)</th>
<th>Tolerance (dB)</th>
<th>Class 3 (dBm)</th>
<th>Tolerance (dB)</th>
<th>Class 4 (dBm)</th>
<th>Tolerance (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>13</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>15</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>16</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>17</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>19</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>20</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>25</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>26</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>27</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>28</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>29</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>30</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>31</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>32</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>33</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>34</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>36</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>37</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>38</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>39</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>40</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>41</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>42</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
<tr>
<td>43</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
<td>23</td>
<td>+2/-3</td>
</tr>
</tbody>
</table>

NOTE 1: Void
NOTE 2: \(^2\) refers to the transmission bandwidths (Figure 5.6-1) confined within F_{UL,low} and F_{UL,low} + 4 MHz or F_{UL,high} - 4 MHz and F_{UL,high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB
NOTE 3: For the UE which supports both Band 11 and Band 21 operating frequencies, the tolerance is FFS.
NOTE 4: \(P_{PowerClass}\) is the maximum UE power specified without taking into account the tolerance

Table 6.2.2B-2: UL-MIMO configuration in closed-loop spatial multiplexing scheme

<table>
<thead>
<tr>
<th>Transmission mode</th>
<th>DCI format</th>
<th>Codebook index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 2</td>
<td>DCI format 4</td>
<td>Codebook index 0</td>
</tr>
</tbody>
</table>

For single-antenna port scheme, the requirements in subclause 6.2.2 apply.

6.2.3 UE maximum output power for modulation / channel bandwidth

For UE Power Class 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2B-1 due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.
Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Channel bandwidth / Transmission bandwidth (N RB)</th>
<th>MPR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 MHz</td>
<td>3.0 MHz</td>
</tr>
<tr>
<td>QPSK</td>
<td>> 5</td>
<td>> 4</td>
</tr>
<tr>
<td>16 QAM</td>
<td>≤ 5</td>
<td>≤ 4</td>
</tr>
<tr>
<td>16 QAM</td>
<td>> 5</td>
<td>> 4</td>
</tr>
</tbody>
</table>

For PRACH, PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5 apply.

6.2.3A UE Maximum Output power for modulation / channel bandwidth for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band (Table 5.6A-1), the requirements in subclause 6.2.3 apply.

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 due to higher order modulation and contiguously allocated transmissions (resource blocks) is specified in Table 6.2.3A-1. In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

Table 6.2.3A-1: Maximum Power Reduction (MPR) for Power Class 3

<table>
<thead>
<tr>
<th>Modulation</th>
<th>CA bandwidth Class C</th>
<th>MPR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 RB + 100 RB</td>
<td>75 RB + 75 RB</td>
</tr>
<tr>
<td>QPSK</td>
<td>> 12 and ≤ 50</td>
<td>> 16 and ≤ 75</td>
</tr>
<tr>
<td>QPSK</td>
<td>> 50</td>
<td>> 75</td>
</tr>
<tr>
<td>16 QAM</td>
<td>≤ 12</td>
<td>≤ 16</td>
</tr>
<tr>
<td>16 QAM</td>
<td>> 12 and ≤ 50</td>
<td>> 16 and ≤ 75</td>
</tr>
<tr>
<td>16 QAM</td>
<td>> 50</td>
<td>> 75</td>
</tr>
</tbody>
</table>

For PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 is specified as follows

\[
\text{MPR} = \text{CEIL} \{ M_A, 0.5 \}
\]

Where \(M_A \) is defined as follows

\[
M_A = \begin{cases}
8.2 & ; 0 \leq A < 0.025 \\
9.2 - 40A & ; 0.025 \leq A < 0.05 \\
8 - 16A & ; 0.05 \leq A < 0.25 \\
4.83 - 3.33A & ; 0.25 \leq A \leq 0.4, \\
3.83 - 0.83A & ; 0.4 \leq A \leq 1,
\end{cases}
\]

Where

\[
A = \frac{N_{RB_alloc}}{N_{RB_agg}}
\]
CEIL\{M_A, 0.5\} means rounding upwards to closest 0.5dB, i.e. MPR∈[3.0, 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5]

For intra-band carrier aggregation, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5A apply.

6.2.3B UE maximum output power for modulation / channel bandwidth for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2B-1 is specified in Table 6.2.3-1. The requirements shall be met with UL-MIMO configurations defined in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5B apply.

For single-antenna port scheme, the requirements in subclause 6.2.3 apply.

6.2.4 UE maximum output power with additional requirements

Additional ACLR and spectrum emission requirements can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the output power as specified in Table 6.2.2-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For UE Power Class 3 the specific requirements and identified subclauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-6 are in addition to the allowed MPR requirements specified in subclause 6.2.3.
Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

<table>
<thead>
<tr>
<th>Network Signalling value</th>
<th>Requirements (subclause)</th>
<th>E-UTRA Band</th>
<th>Channel bandwidth (MHz)</th>
<th>Resources Blocks (N_{RB})</th>
<th>A-MPR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS_01</td>
<td>6.6.2.1.1</td>
<td>1.4, 3, 5, 10, 15, 20</td>
<td>Table 5.6-1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>NS_03</td>
<td>6.6.2.2.1</td>
<td>2, 4, 10, 23, 25, 35, 36</td>
<td>3 >5</td>
<td>≤ 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 >6</td>
<td>≤ 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 >6</td>
<td>≤ 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 >8</td>
<td>≤ 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 >10</td>
<td>≤ 1</td>
<td></td>
</tr>
<tr>
<td>NS_04</td>
<td>6.6.2.2.2</td>
<td>41</td>
<td>5 >6</td>
<td>≤ 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10, 15, 20</td>
<td>Table 6.2.4-4</td>
<td></td>
</tr>
<tr>
<td>NS_05</td>
<td>6.6.3.3.1</td>
<td>1</td>
<td>10, 15, 20</td>
<td>≥ 50</td>
<td>≤ 1</td>
</tr>
<tr>
<td>NS_06</td>
<td>6.6.2.2.3</td>
<td>12, 13, 14, 17</td>
<td>1.4, 3, 5, 10</td>
<td>Table 5.6-1</td>
<td>N/A</td>
</tr>
<tr>
<td>NS_07</td>
<td>6.6.2.2.3, 6.6.3.3.2</td>
<td>13</td>
<td>10</td>
<td>Table 6.2.4-2</td>
<td>Table 6.2.4-2</td>
</tr>
<tr>
<td>NS_08</td>
<td>6.6.3.3.3</td>
<td>19</td>
<td>10, 15</td>
<td>> 44</td>
<td>≤ 3</td>
</tr>
<tr>
<td>NS_09</td>
<td>6.6.3.3.4</td>
<td>21</td>
<td>10, 15</td>
<td>> 40</td>
<td>≤ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 55</td>
<td>≤ 2</td>
</tr>
<tr>
<td>NS_10</td>
<td></td>
<td>20</td>
<td>15, 20</td>
<td>Table 6.2.4-3</td>
<td>Table 6.2.4-3</td>
</tr>
<tr>
<td>NS_11</td>
<td>6.6.2.2.1</td>
<td>23</td>
<td>1.4, 3, 5, 10, 15, 20</td>
<td>Table 6.2.4-5</td>
<td>Table 6.2.4-5</td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS_20</td>
<td>6.2.2, 6.6.2.2.1, 6.6.3.2</td>
<td>23</td>
<td>5, 10, 15, 20</td>
<td>Table 6.2.4-6</td>
<td>Table 6.2.4-6</td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS_32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2.4-2: A-MPR for “NS_07”

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Region A</th>
<th>Region B</th>
<th>Region C</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB_{start}</td>
<td>0 - 12</td>
<td>13 – 18</td>
<td>19 – 42</td>
</tr>
<tr>
<td>L_{CRB} [RBs]</td>
<td>6-8</td>
<td>1 to 5 and 9-50</td>
<td>≥8</td>
</tr>
<tr>
<td>A-MPR [dB]</td>
<td>≤ 8</td>
<td>≤ 12</td>
<td>≤ 12</td>
</tr>
</tbody>
</table>

NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks
NOTE 2: L_{CRB} is the length of a contiguous resource block allocation
NOTE 3: For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a per slot basis.
NOTE 4: For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.
Table 6.2.4-3: A-MPR for “NS_10”

<table>
<thead>
<tr>
<th>Channel bandwidth [MHz]</th>
<th>Parameters</th>
<th>Region A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RB<sub>start</sub></td>
<td>0 – 10</td>
</tr>
<tr>
<td></td>
<td>L<sub>CRB</sub> [RBs]</td>
<td>1 -20</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB]</td>
<td>≤ 2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RB<sub>start</sub></td>
<td>0 – 15</td>
</tr>
<tr>
<td></td>
<td>L<sub>CRB</sub> [RBs]</td>
<td>1 -20</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB]</td>
<td>≤ 5</td>
</tr>
</tbody>
</table>

NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks
NOTE 2: L_{CRB} is the length of a contiguous resource block allocation
NOTE 3: For intra-subframe frequency hopping which intersects Region A, notes 1 and 2 apply on a per slot basis
NOTE 4: For intra-subframe frequency hopping which intersect Region A, the larger A-MPR value may be applied for both slots in the subframe

Table 6.2.4-4: A-MPR requirements for "NS_04" with bandwidth >5MHz

<table>
<thead>
<tr>
<th>Channel bandwidth [MHz]</th>
<th>Parameters</th>
<th>Region A</th>
<th>Region B</th>
<th>Region C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RB<sub>start</sub></td>
<td>0 – 12</td>
<td>13 – 36</td>
<td>37 – 49</td>
</tr>
<tr>
<td></td>
<td>RB<sub>start</sub> + L<sub>CRB</sub> [RBs]</td>
<td>N/A</td>
<td>>37</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB]</td>
<td>≤3dB</td>
<td>≤2dB</td>
<td>≤3dB</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RB<sub>start</sub></td>
<td>0 – 18</td>
<td>19 – 55</td>
<td>56 – 74</td>
</tr>
<tr>
<td></td>
<td>RB<sub>start</sub> + L<sub>CRB</sub> [RBs]</td>
<td>N/A</td>
<td>>56</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB]</td>
<td>≤3dB</td>
<td>≤2dB</td>
<td>≤3dB</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RB<sub>start</sub></td>
<td>0 – 24</td>
<td>25 – 74</td>
<td>75 – 99</td>
</tr>
<tr>
<td></td>
<td>RB<sub>start</sub> + L<sub>CRB</sub> [RBs]</td>
<td>N/A</td>
<td>>75</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB]</td>
<td>≤3dB</td>
<td>≤2dB</td>
<td>≤3dB</td>
</tr>
</tbody>
</table>

NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks
NOTE 2: L_{CRB} is the length of a contiguous resource block allocation
NOTE 3: 3 refers to any RB allocation that starts in Region A or C is allowed the specified A-MPR
NOTE 4: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis
NOTE 5: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe
Table 6.2.4-5: A-MPR for "NS_11"

<table>
<thead>
<tr>
<th>Channel Bandwidth [MHz]</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Fc (MHz) <2004 ≥2004</td>
</tr>
<tr>
<td></td>
<td>L_CRB [RBs] 1-15 5</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB] ≤5 ≤1</td>
</tr>
<tr>
<td>5</td>
<td>Fc (MHz) <2004 2004 ≤ Fc <2007 ≥2007</td>
</tr>
<tr>
<td></td>
<td>L_CRB [RBs] 1-25 1-6 & 15-25 8-12 >6</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB] ≤7 ≤4 0 ≤1</td>
</tr>
<tr>
<td>10</td>
<td>Fc (MHz) 2005 ≤ Fc <2015 2015</td>
</tr>
<tr>
<td></td>
<td>RBstart 0-49 0-49</td>
</tr>
<tr>
<td></td>
<td>L_CRB [RBs] 1-50 1-50</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB] ≤12 0</td>
</tr>
<tr>
<td>15</td>
<td>Fc (MHz) <2012.5</td>
</tr>
<tr>
<td></td>
<td>RBstart 0-4 5-21 22-56 57-74</td>
</tr>
<tr>
<td></td>
<td>L_CRB [RBs] ≥1 7-50 0-6 & ≥50 ≤25 >25 >0</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB] ≤15 ≤7 ≤10 0 ≤6 ≤15</td>
</tr>
<tr>
<td>20</td>
<td>Fc (MHz) 2012.5</td>
</tr>
<tr>
<td></td>
<td>RBstart 0-12 13-39 40-65 66-74</td>
</tr>
<tr>
<td></td>
<td>L_CRB [RBs] ≥1 ≥30 <30 ≥(69 – RBstart) ≥1</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB] ≤10 ≤6 0 ≤2 ≤6.5</td>
</tr>
<tr>
<td>20</td>
<td>Fc (MHz) 2012.5</td>
</tr>
<tr>
<td></td>
<td>RBstart 0-12 13-29 30-68 69-99</td>
</tr>
<tr>
<td></td>
<td>L_CRB [RBs] ≥1 10-60 1-9 & >60 1-24 ≥25 ≥1</td>
</tr>
<tr>
<td></td>
<td>A-MPR [dB] ≤15 ≤7 ≤10 0 ≤7 ≤15</td>
</tr>
</tbody>
</table>
For PRACH, PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5 apply.

6.2.4A UE maximum output power with additional requirements for CA

Additional ACLR, spectrum emission and spurious emission requirements for carrier aggregation can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the CA Power Class as specified in Table 6.2.2A-1.

If for intra-band carrier aggregation the UE is configured for transmissions within an E-UTRA channel bandwidth, then subclauses 6.2.3 and 6.2.4 apply with the Network Signaling value indicated by the IE `additionalSpectrumEmission` of the PCC.
For intra-band contiguous aggregation with the UE configured for transmissions within the aggregated channel bandwidth, the maximum output power reductions specified in Table 6.2.4A-1 is allowed when the applicable CA network signalling value is indicated by the IE additionalSpectrumEmissionSCell-r10. Then clause 6.2.3A does not apply, i.e. carrier aggregation MPR = 0 dB.

Table 6.2.4A-1: Additional Maximum Power Reduction (A-MPR) for CA

<table>
<thead>
<tr>
<th>CA Network Signalling value</th>
<th>Requirements (subclause)</th>
<th>Uplink CA Configuration</th>
<th>A-MPR [dB] (subclause)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA_NS_01</td>
<td>6.6.3.3A.1</td>
<td>CA_1C</td>
<td>6.2.4A.1</td>
</tr>
<tr>
<td>CA_NS_02</td>
<td>6.6.3.3A.2</td>
<td>CA_1C</td>
<td>6.2.4A.2</td>
</tr>
<tr>
<td>CA_NS_03</td>
<td>6.6.3.3A.3</td>
<td>CA_1C</td>
<td>6.2.4A.3</td>
</tr>
</tbody>
</table>

For PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band carrier aggregation, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR specified in table 6.2.4A-1, the power limits specified in subclause 6.2.5A apply. 6.2.4A.1 A-MPR for CA_NS_01 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_01 the allowed maximum output power reduction applied to transmissions on the PCC and the SCC for contiguously aggregated signals is specified in table 6.2.4A.1-1.

Table 6.2.4A.1-1: Contiguous allocation A-MPR for CA_NS_01

<table>
<thead>
<tr>
<th>CA_1C: CA_NS_01</th>
<th>RB<sub>start</sub></th>
<th>L<sub>CRB</sub> [RBs]</th>
<th>RB<sub>start</sub> + L<sub>CRB</sub> [RBs]</th>
<th>A-MPR for QPSK and 16-QAM [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 RB / 100 RB</td>
<td>0 – 23 and 176 – 199</td>
<td>> 0</td>
<td>N/A</td>
<td>≤ 12.0</td>
</tr>
<tr>
<td></td>
<td>24 – 105</td>
<td>> 64</td>
<td>N/A</td>
<td>≤ 6.0</td>
</tr>
<tr>
<td></td>
<td>106 – 175</td>
<td>N/A</td>
<td>> 175</td>
<td>≤ 5.0</td>
</tr>
<tr>
<td>75 RB / 75 RB</td>
<td>0 – 6 and 143 – 149</td>
<td>0 < L<sub>CRB</sub> ≤ 10</td>
<td>N/A</td>
<td>≤ 11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 10</td>
<td>N/A</td>
<td>≤ 6.0</td>
</tr>
<tr>
<td></td>
<td>7 – 90</td>
<td>> 44</td>
<td>N/A</td>
<td>≤ 5.0</td>
</tr>
<tr>
<td></td>
<td>91 – 142</td>
<td>N/A</td>
<td>> 142</td>
<td>≤ 2.0</td>
</tr>
</tbody>
</table>

NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks

NOTE 2: L_{CRB} is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis

NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

If the UE is configured to CA_1C and it receives IE CA_NS_01 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

$$A\text{-MPR} = \text{CEIL} \left(M_A \times 0.5 \right)$$

Where M_A is defined as follows

$$M_A = \begin{cases} -22.5 \times A + 17 & ; 0 \leq A < 0.20 \\ -11.0 \times A + 14.7 & ; 0.20 \leq A < 0.70 \\ -1.7 \times A + 8.2 & ; 0.70 \leq A \leq 1 \end{cases}$$
Where \(A = \frac{N_{RB_{alloc}}}{N_{RB_{agg}}} \).

6.2.4A.2 A-MPR for CA_NS_02 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_02 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.2-1.

Table 6.2.4A.2-1: Contiguous allocation A-MPR for CA_NS_02

<table>
<thead>
<tr>
<th>CA_1C: CA_NS_02</th>
<th>RBend</th>
<th>L_{CRB} [RBs]</th>
<th>A-MPR for QPSK and 16 QAM[dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 RB / 100 RB</td>
<td>0 - 20</td>
<td>> 0</td>
<td>(\leq 4) dB</td>
</tr>
<tr>
<td></td>
<td>21 - 46</td>
<td>> 0</td>
<td>(\leq 3) dB</td>
</tr>
<tr>
<td></td>
<td>47 - 99</td>
<td>(> RB_{end} - 20)</td>
<td>(\leq 3) dB</td>
</tr>
<tr>
<td></td>
<td>100 - 184</td>
<td>> 75</td>
<td>(\leq 6) dB</td>
</tr>
<tr>
<td></td>
<td>185 - 199</td>
<td>> 0</td>
<td>(\leq 10) dB</td>
</tr>
<tr>
<td>75 RB / 75 RB</td>
<td>0 - 48</td>
<td>> 0</td>
<td>(\leq 2) dB</td>
</tr>
<tr>
<td></td>
<td>49 - 80</td>
<td>(> RB_{end} - 20)</td>
<td>(\leq 3) dB</td>
</tr>
<tr>
<td></td>
<td>81 - 129</td>
<td>> 60</td>
<td>(\leq 5) dB</td>
</tr>
<tr>
<td></td>
<td>130 - 149</td>
<td>> 84</td>
<td>(\leq 6) dB</td>
</tr>
<tr>
<td></td>
<td>130 - 149</td>
<td>1-84</td>
<td>(\leq 2) dB</td>
</tr>
</tbody>
</table>

If the UE is configured to CA_1C and it receives IE CA_NS_02 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

\[
A\text{-MPR} = \text{CEIL} \left\{ M_A, 0.5 \right\}
\]

Where \(M_A \) is defined as follows

\[
[M_A = \begin{cases}
-22.5 A + 17 ; & 0 \leq A < 0.20 \\
-11.0 A + 14.7 ; & 0.20 \leq A < 0.70 \\
-1.7 A + 8.2 ; & 0.70 \leq A \leq 1
\end{cases}
\]

Where \(A = \frac{N_{RB_{alloc}}}{N_{RB_{agg}}} \).

6.2.4A.3 A-MPR for CA_NS_03 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_03 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.3-1.
Table 6.2.4A.3-1: Contiguous allocation A-MPR for CA_NS_03

<table>
<thead>
<tr>
<th>CA_1C: CA_NS_03</th>
<th>RB_{end}</th>
<th>L_{CRB} [RBs]</th>
<th>A-MPR for QPSK and 16-QAM [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 RB / 100 RB</td>
<td>0 - 26</td>
<td>> 0</td>
<td>≤ 10 dB</td>
</tr>
<tr>
<td></td>
<td>27 - 63</td>
<td>≥ RB_{end} - 27</td>
<td>≤ 6 dB</td>
</tr>
<tr>
<td></td>
<td>27 - 63</td>
<td>< RB_{end} - 27</td>
<td>≤ 1 dB</td>
</tr>
<tr>
<td></td>
<td>64 - 100</td>
<td>> RB_{end} - 20</td>
<td>≤ 4 dB</td>
</tr>
<tr>
<td></td>
<td>101 - 171</td>
<td>> 68</td>
<td>≤ 7 dB</td>
</tr>
<tr>
<td></td>
<td>172 - 199</td>
<td>> 0</td>
<td>≤ 10 dB</td>
</tr>
<tr>
<td>75 RB / 75 RB</td>
<td>0 - 20</td>
<td>> 0</td>
<td>≤ 10 dB</td>
</tr>
<tr>
<td></td>
<td>21 - 45</td>
<td>> 0</td>
<td>≤ 4 dB</td>
</tr>
<tr>
<td></td>
<td>46 - 75</td>
<td>> RB_{end} - 13</td>
<td>≤ 2 dB</td>
</tr>
<tr>
<td></td>
<td>76 - 95</td>
<td>> 45</td>
<td>≤ 5 dB</td>
</tr>
<tr>
<td></td>
<td>96 - 149</td>
<td>> 43</td>
<td>≤ 8 dB</td>
</tr>
<tr>
<td></td>
<td>120 - 149</td>
<td>1 - 43</td>
<td>≤ 6 dB</td>
</tr>
</tbody>
</table>

If the UE is configured to CA_1C and it receives IE CA_NS_03 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

\[A\text{-}MPR = \text{CEIL} \{ M_A, 0.5 \} \]

Where \(M_A \) is defined as follows

\[M_A = \begin{cases} -23.33A + 17.5 & ; \ 0 \leq A < 0.15 \\ -7.65A + 15.15 & ; \ 0.15 \leq A \leq 1 \end{cases} \]

Where \(A = N_{RB,alloc} / N_{RB,agg} \).

6.2.4B UE maximum output power with additional requirements for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the A-MPR values specified in subclause 6.2.4 shall apply to the maximum output power specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For single-antenna port scheme, the requirements in subclause 6.2.4 apply.

6.2.5 Configured transmitted power

The UE is allowed to set its configured maximum output power \(P_{C MAX,c} \) for serving cell \(c \). The configured maximum output power \(P_{C MAX,c} \) is set within the following bounds:

\[P_{C MAX,L,c} \leq P_{C MAX,c} \leq P_{C MAX,H,c} \]

with

\[P_{C MAX,L,c} = \text{MIN} \{ P_{E MAX,c} - \Delta T_{C,c}, P_{\text{PowerClass}} - \text{MAX}(\text{MPR}_c + A\text{-}MPR_c + \Delta T_{IL,c} + \Delta T_{C,c}, P\text{-}MPR_c) \} \]

\[P_{C MAX,H,c} = \text{MIN} \{ P_{E MAX,c}, P_{\text{PowerClass}} \} \]

where
- $P_{\text{EMAX},c}$ is the value given by IE P_{Max} for serving cell c, defined in [7];
- $P_{\text{PowerClass}}$ is the maximum UE power specified in Table 6.2.2-1 without taking into account the tolerance specified in the Table 6.2.2-1.
- MPR$_c$ and A-MPR$_c$ for serving cell c are specified in subclause 6.2.3 and subclause 6.2.4, respectively;
- $\Delta T_{\text{IB},c}$ is the additional tolerance for serving cell c as specified in Table 6.2.5-2; $\Delta T_{\text{IB},c} = 0$ dB otherwise;
- $\Delta T_{C,c} = 1.5$ dB when Note 2 in Table 6.2.2-1 applies;
- $\Delta T_{C,c} = 0$ dB when Note 2 in Table 6.2.2-1 does not apply.

P_{MPR}_c is the allowed maximum output power reduction for

a) ensuring compliance with applicable electromagnetic energy absorption requirements and addressing unwanted emissions / self desense requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;

b) ensuring compliance with applicable electromagnetic energy absorption requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.

The UE shall apply P_{MPR}_c for serving cell c only for the above cases. For UE conducted conformance testing P_{MPR} shall be 0 dB.

NOTE 1: P_{MPR}_c was introduced in the $P_{\text{CMAX},c}$ equation such that the UE can report to the eNB the available maximum output transmit power. This information can be used by the eNB for scheduling decisions.

NOTE 2: P_{MPR}_c may impact the maximum uplink performance for the selected UL transmission path.

For each subframe, the $P_{\text{CMAX},L,c}$ for serving cell c is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum $P_{\text{CMAX},L,c}$ over the two slots is then applied for the entire subframe. $P_{\text{PowerClass}}$ shall not be exceeded by the UE during any period of time.

The measured configured maximum output power $P_{\text{UMAX},c}$ shall be within the following bounds:

$$P_{\text{CMAX},L,c} - \max\left\{T_L, T(P_{\text{CMAX},L,c})\right\} \leq P_{\text{UMAX},c} \leq P_{\text{CMAX,H,c}} + T(P_{\text{CMAX,H,c}})$$

where $T(P_{\text{CMAX},c})$ is defined by the tolerance table below and applies to $P_{\text{CMAX},L,c}$ and $P_{\text{CMAX,H,c}}$ separately, while T_L is the absolute value of the lower tolerance in Table 6.2.2-1 for the applicable operating band.

<table>
<thead>
<tr>
<th>$P_{\text{CMAX},c}$ (dBm)</th>
<th>Tolerance $T(P_{\text{CMAX},c})$ (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$21 \leq P_{\text{CMAX},c} \leq 23$</td>
<td>2.0</td>
</tr>
<tr>
<td>$20 \leq P_{\text{CMAX},c} < 21$</td>
<td>2.5</td>
</tr>
<tr>
<td>$19 \leq P_{\text{CMAX},c} < 20$</td>
<td>3.5</td>
</tr>
<tr>
<td>$18 \leq P_{\text{CMAX},c} < 19$</td>
<td>4.0</td>
</tr>
<tr>
<td>$13 \leq P_{\text{CMAX},c} < 18$</td>
<td>5.0</td>
</tr>
<tr>
<td>$8 \leq P_{\text{CMAX},c} < 13$</td>
<td>6.0</td>
</tr>
<tr>
<td>$-40 \leq P_{\text{CMAX},c} < 8$</td>
<td>7.0</td>
</tr>
</tbody>
</table>

For the UE which supports inter-band carrier aggregation configurations with the uplink assigned to one E-UTRA band the $\Delta T_{\text{IB},c}$ is defined for applicable bands in Table 6.2.5-2.
Table 6.2.5-2: $\Delta T_{IB,c}$

<table>
<thead>
<tr>
<th>Inter-band CA Configuration</th>
<th>E-UTRA Band</th>
<th>$\Delta T_{IB,c}$ [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA_1A-5A</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

NOTE 2: The above additional tolerances also apply in non-aggregated operation for the supported E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

NOTE 3: In case the UE supports more than one of the above inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one inter-band carrier aggregation configurations then:
- When the E-UTRA operating band frequency range is \leq 1GHz, the applicable additional tolerance shall be the average of the tolerances in Table 6.2.5A-3, truncated to one decimal place for that operating band among the supported CA configurations. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported carrier aggregation configurations involving such band shall be applied.
- When the E-UTRA operating band frequency range is >1GHz, the applicable additional tolerance shall be the maximum tolerance in Table 6.2.5A-3 that applies for that operating band among the supported CA configurations.

NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is $<$1GHz and another band is $>$1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

6.2.5A Configured transmitted power for CA

For uplink carrier aggregation the UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for serving cell c and its total configured maximum output power P_{CMAX}.

The configured maximum output power $P_{CMAX,c}$ on serving cell c shall be set as specified in subclause 6.2.5.

For uplink inter-band carrier aggregation, MPR_c and $A-MPR_c$ apply per serving cell c and are specified in subclause 6.2.3 and subclause 6.2.4, respectively. P_{MPR_c} accounts for power management for serving cell c. $P_{CMAX,c}$ is calculated under the assumption that the transmit power is increased independently on all component carriers.

For uplink intra-band contiguous carrier aggregation, $MPR_c = MPR$ and $A-MPR_c = A-MPR$ with MPR and A-MPR specified in subclause 6.2.3A and subclause 6.2.4A respectively. There is one power management term for the UE, denoted P_{MPR}, and $P_{MPR,c} = P_{MPR}$. $P_{CMAX,c}$ is calculated under the assumption that the transmit power is increased by the same amount in dB on all component carriers.

The total configured maximum output power P_{CMAX} shall be set within the following bounds:

$$P_{CMAX,L} \leq P_{CMAX} \leq P_{CMAX,H}$$

For uplink inter-band carrier aggregation with up to one serving cell c per operating band,

$$P_{CMAX,L} = \text{MIN} \left\{ 10 \log_{10} \sum \text{MIN} \left[P_{EMAX,c} \left(\Delta t_{C,c} \right), \frac{P_{PowerClass}}{mpr_c \cdot a-mpr_c \cdot \Delta t_{IB,c} \cdot \Delta t_{IB,c}} \right] \cdot P_{PowerClass} \right\}$$

$$P_{CMAX,H} = \text{MIN} \left\{ 10 \log_{10} \sum P_{EMAX,c} \cdot P_{PowerClass} \right\}$$

where

- $P_{EMAX,c}$ is the linear value of $P_{EMAX,c}$ which is given by IE $P-Max$ for serving cell c in [7];
- $P_{\text{PowerClass}}$ is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1; $p_{\text{PowerClass}}$ is the linear value of $P_{\text{PowerClass}}$;

- mpr_c and a-mpr_c are the linear values of MPR_c and A-MPR_c as specified in subclause 6.2.3 and subclause 6.2.4, respectively;

- p_{mpr_c} is the linear value of P_{MPR_c};

- $\Delta t_{\text{C,c}}$ is the linear value of $\Delta T_{\text{C,c}}$. $\Delta t_{\text{C,c}} = 1.41$ when Note 2 in Table 6.2.2-1 applies for a serving cell c, otherwise $\Delta t_{\text{C,c}} = 1$;

- $\Delta t_{\text{IB,c}}$ is the linear value of the inter-band relaxation term $\Delta T_{\text{IB,c}}$ of the serving cell c as specified in Table 6.2.5-2; otherwise $\Delta t_{\text{IB,c}} = 1$.

For uplink intra-band contiguous carrier aggregation,

$$P_{\text{CMAX,L}} = \min\{10 \log_{10} \sum p_{\text{EMAX,c}} - \Delta t_{\text{C,c}}, P_{\text{PowerClass}} - \max(\text{MPR} + \text{A-MPR} + \Delta t_{\text{IB,c}} + \Delta t_{\text{C,c}}, P_{\text{MPR}})\}$$

$$P_{\text{CMAX,H}} = \min\{10 \log_{10} \sum p_{\text{EMAX,c}}, P_{\text{PowerClass}}\}$$

where

- $p_{\text{EMAX,c}}$ is the linear value of P_{EMAX_c} which is given by IE P_{Max} for serving cell c in [7];

- $P_{\text{PowerClass}}$ is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1;

- MPR and A-MPR are specified in subclause 6.2.3A and subclause 6.2.4A respectively;

- $\Delta t_{\text{IB,c}}$ is the additional tolerance for serving cell c as specified in Table 6.2.5-2;

- P_{MPR} is the power management term for the UE;

- ΔT_{C} is the highest value $\Delta T_{\text{C,c}}$ among all serving cells c in the subframe over both timeslots. $\Delta T_{\text{C,c}} = 1.5$ dB when Note 2 in Table 6.2.2A-1 applies to the serving cell c, otherwise $\Delta T_{\text{C,c}} = 0$ dB.

For each subframe, the $P_{\text{CMAX,L}}$ is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum $P_{\text{CMAX,L}}$ over the two slots is then applied for the entire subframe. $P_{\text{PowerClass}}$ shall not be exceeded by the UE during any period of time.

The measured maximum output power P_{UMAX} over all serving cells shall be within the following range:

$$P_{\text{CMAX,L}} - T(P_{\text{CMAX,L}}) \leq P_{\text{UMAX}} \leq P_{\text{CMAX,H}} + T(P_{\text{CMAX,H}})$$

$$P_{\text{UMAX}} = 10 \log_{10} \sum p_{\text{UMAX,c}}$$

where $p_{\text{UMAX,c}}$ denotes the measured maximum output power for serving cell c expressed in linear scale. The tolerance $T(P_{\text{CMAX}})$ is defined by the table below and applies to $P_{\text{CMAX,L}}$ and $P_{\text{CMAX,H}}$ separately.
Table 6.2.5A-2: P_{CMAX} tolerance

<table>
<thead>
<tr>
<th>P_{CMAX} (dBm)</th>
<th>Tolerance T(P_{CMAX}) Intra-band with two active UL serving cells (dB)</th>
<th>Tolerance T(P_{CMAX}) Inter-band with two active UL serving cells (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 ≤ P_{CMAX} ≤ 23</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>20 ≤ P_{CMAX} < 21</td>
<td>[2.5]</td>
<td>TBD</td>
</tr>
<tr>
<td>19 ≤ P_{CMAX} < 20</td>
<td>[3.5]</td>
<td>TBD</td>
</tr>
<tr>
<td>18 ≤ P_{CMAX} < 19</td>
<td>[4.0]</td>
<td>TBD</td>
</tr>
<tr>
<td>13 ≤ P_{CMAX} < 18</td>
<td>[5.0]</td>
<td>TBD</td>
</tr>
<tr>
<td>8 ≤ P_{CMAX} < 13</td>
<td>[6.0]</td>
<td>TBD</td>
</tr>
<tr>
<td>-40 ≤ P_{CMAX} < 8</td>
<td>[7.0]</td>
<td>TBD</td>
</tr>
</tbody>
</table>

6.2.5B Configured transmitted power for UL-MIMO

For UE supporting UL-MIMO, the transmitted power is configured per each UE.

The definitions of configured maximum output power P_{CMAX,c}, the lower bound P_{CMAX,L,c}, and the higher bound P_{CMAX,H,c} specified in subclause 6.2.5 shall apply to UE supporting UL-MIMO, where

- P_{PowerClass} and ΔT_{c,c} are specified in subclause 6.2.2B;
- MPR_{c,c} is specified in subclause 6.2.3B;
- A-MPR_{c,c} is specified in subclause 6.2.4B.

The measured configured maximum output power P_{U(MAX,c) for serving cell c shall be within the following bounds:

\[
P_{CMAX,L,c} - \max(T_L, T_{LOW}(P_{CMAX,L,c})) \leq P_{U(MAX,c) \leq P_{CMAX,H,c} + T_{HIGH}(P_{CMAX,H,c})}
\]

where T_{LOW}(P_{CMAX,L,c}) and T_{HIGH}(P_{CMAX,H,c}) are defined as the tolerance and applies to P_{CMAX,L,c} and P_{CMAX,H,c} separately, while T_L is the absolute value of the lower tolerance in Table 6.2.2B-1 for the applicable operating band.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the tolerance is specified in Table 6.2.5B-1. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2.

Table 6.2.5B-1: P_{CMAX,c} tolerance in closed-loop spatial multiplexing scheme

<table>
<thead>
<tr>
<th>P_{CMAX,c} (dBm)</th>
<th>Tolerance T_{LOW}(P_{CMAX,L,c}) (dB)</th>
<th>Tolerance T_{HIGH}(P_{CMAX,H,c}) (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{CMAX,c} = 23</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>[22] ≤ P_{CMAX,c} < [23]</td>
<td>[5.0]</td>
<td>[2.0]</td>
</tr>
<tr>
<td>[21] ≤ P_{CMAX,c} < [22]</td>
<td>[5.0]</td>
<td>[3.0]</td>
</tr>
<tr>
<td>[20] ≤ P_{CMAX,c} < [21]</td>
<td>[6.0]</td>
<td>[4.0]</td>
</tr>
<tr>
<td>[16] ≤ P_{CMAX,c} < [20]</td>
<td>[6.0]</td>
<td>[5.0]</td>
</tr>
<tr>
<td>[11] ≤ P_{CMAX,c} < [16]</td>
<td>[6.0]</td>
<td>[6.0]</td>
</tr>
<tr>
<td>[-40] ≤ P_{CMAX,c} < [11]</td>
<td>[7.0]</td>
<td>[7.0]</td>
</tr>
</tbody>
</table>

For single-antenna port scheme, the requirements in subclause 6.2.5 apply.
6.3 Output power dynamics

6.3.1 (Void)

6.3.2 Minimum output power

The minimum controlled output power of the UE is defined as the broadband transmit power of the UE, i.e. the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

6.3.2.1 Minimum requirement

The minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2.1-1.

<table>
<thead>
<tr>
<th>Channel bandwidth / Measurement bandwidth</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum output power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-40 dBm</td>
</tr>
<tr>
<td>Measurement bandwidth</td>
<td>1.08 MHz</td>
<td>2.7 MHz</td>
<td>4.5 MHz</td>
<td>9.0 MHz</td>
<td>13.5 MHz</td>
<td>18 MHz</td>
</tr>
</tbody>
</table>

6.3.2A UE Minimum output power for CA

For intra-band contiguous carrier aggregation, the minimum controlled output power of the UE is defined as the transmit power of the UE per component carrier, i.e., the power in the channel bandwidth of each component carrier for all transmit bandwidth configurations (resource blocks), when the power on both component carriers are set to a minimum value.

6.3.2A.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation the minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2A.1-1.

<table>
<thead>
<tr>
<th>CC Channel bandwidth / Measurement bandwidth</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum output power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-40 dBm</td>
</tr>
<tr>
<td>Measurement bandwidth</td>
<td></td>
<td></td>
<td></td>
<td>9.0 MHz</td>
<td>13.5 MHz</td>
<td>18 MHz</td>
</tr>
</tbody>
</table>

6.3.2B UE Minimum output power for UL-MIMO

For UE supporting UL-MIMO, the minimum controlled output power is defined as the broadband transmit power of the UE, i.e. the sum of the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks) at each transmit antenna connector, when the UE power is set to a minimum value.
6.3.2B.1 Minimum requirement

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the minimum output power is defined as the sum of the mean power at each transmit connector in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2B.1-1.

Table 6.3.2B.1-1: Minimum output power

<table>
<thead>
<tr>
<th>Channel bandwidth / Measurement bandwidth</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum output power</td>
<td>-40 dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement bandwidth</td>
<td>1.08 MHz</td>
<td>2.7 MHz</td>
<td>4.5 MHz</td>
<td>9.0 MHz</td>
<td>13.5 MHz</td>
<td>18 MHz</td>
</tr>
</tbody>
</table>

For single-antenna port scheme, the requirements in subclause 6.3.2 apply.

6.3.3 Transmit OFF power

Transmit OFF power is defined as the mean power when the transmitter is OFF. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

6.3.3.1 Minimum requirement

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3.1-1.

Table 6.3.3.1-1: Transmit OFF power

<table>
<thead>
<tr>
<th>Channel bandwidth / Measurement bandwidth</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit OFF power</td>
<td>-50 dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement bandwidth</td>
<td>1.08 MHz</td>
<td>2.7 MHz</td>
<td>4.5 MHz</td>
<td>9.0 MHz</td>
<td>13.5 MHz</td>
<td>18 MHz</td>
</tr>
</tbody>
</table>

6.3.3A UE Transmit OFF power for CA

For intra-band contiguous carrier aggregation, transmit OFF power is defined as the mean power per component carrier when the transmitter is OFF on both component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During measurements gaps, the UE is not considered to be OFF.

6.3.3A.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation the transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3A.1-1.
Table 6.3.3A.1-1: Transmit OFF power for intra-band contiguous CA UE

<table>
<thead>
<tr>
<th>Transmit OFF power</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement bandwidth</td>
<td>-50 dBm</td>
<td>9.0 MHz</td>
<td>13.5 MHz</td>
<td>18 MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3.3B UE Transmit OFF power for UL-MIMO

For UE supporting UL-MIMO, the transmit OFF power is defined as the mean power at each transmit antenna connector when the transmitter is OFF at all transmit antenna connectors. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

6.3.3B.1 Minimum requirement

The transmit OFF power is defined as the mean power at each transmit antenna connector in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3.3B.1-1.

Table 6.3.3B.1-1: Transmit OFF power per antenna port

<table>
<thead>
<tr>
<th>Transmit OFF power</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement bandwidth</td>
<td>-50 dBm</td>
<td>1.08 MHz</td>
<td>2.7 MHz</td>
<td>4.5 MHz</td>
<td>9.0 MHz</td>
<td>13.5 MHz</td>
</tr>
</tbody>
</table>

6.3.4 ON/OFF time mask

6.3.4.1 General ON/OFF time mask

The General ON/OFF time mask defines the observation period between Transmit OFF and ON power and between Transmit ON and OFF power. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission.

The OFF power measurement period is defined in a duration of at least one sub-frame excluding any transient periods. The ON power is defined as the mean power over one sub-frame excluding any transient period.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.
6.3.4.2 PRACH and SRS time mask

6.3.4.2.1 PRACH time mask

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.4.2-1. The measurement period for different PRACH preamble format is specified in Table 6.3.4.2-1.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

Table 6.3.4.2-1: PRACH ON power measurement period

<table>
<thead>
<tr>
<th>PRACH preamble format</th>
<th>Measurement period (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9031</td>
</tr>
<tr>
<td>1</td>
<td>1.4844</td>
</tr>
<tr>
<td>2</td>
<td>1.8031</td>
</tr>
<tr>
<td>3</td>
<td>2.2844</td>
</tr>
<tr>
<td>4</td>
<td>0.1479</td>
</tr>
</tbody>
</table>

6.3.4.2.2 SRS time mask

In the case a single SRS transmission, the ON power is defined as the mean power over the symbol duration excluding any transient period. Figure 6.3.4.2.2-1

In the case a dual SRS transmission, the ON power is defined as the mean power for each symbol duration excluding any transient period. Figure 6.3.4.2.2-2

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3
6.3.4.3 Slot / Subframe boundary time mask

The subframe boundary time mask defines the observation period between the previous/subsequent subframe and the (reference) subframe. A transient period at a slot boundary within a subframe is only allowed in the case of Intra-subframe frequency hopping. For the cases when the subframe contains SRS the time masks in subclause 6.3.4.4 apply.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

Figure 6.3.4.3-1: Transmission power template
6.3.4.4 PUCCH / PUSCH / SRS time mask

The PUCCH/PUSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PUSCH/PUCCH symbol and subsequent sub-frame.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

<table>
<thead>
<tr>
<th>N₀ Sub-frame</th>
<th>N₁ Sub-frame</th>
<th>SRS</th>
<th>N₂ Sub-frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of N₀ power PUSCH/PUCCH</td>
<td>End of N₁ power PUSCH/PUCCH</td>
<td>SRS ON power requirement</td>
<td>Start of N₂ power PUSCH/PUCCH</td>
</tr>
<tr>
<td>Transient period</td>
<td>Transient period</td>
<td>Transient period</td>
<td>Transient period</td>
</tr>
<tr>
<td>20µs ↔ 20µs</td>
<td>40µs ↔ 40µs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.3.4.4-1: PUCCH/PUSCH/SRS time mask when there is a transmission before SRS but not after

<table>
<thead>
<tr>
<th>N₀ Sub-frame</th>
<th>N₁ Sub-frame</th>
<th>SRS</th>
<th>N₂ Sub-frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of N₀ power PUSCH/PUCCH</td>
<td>End of N₁ power PUSCH/PUCCH</td>
<td>SRS ON power requirement</td>
<td>Start of N₂ power PUSCH/PUCCH</td>
</tr>
<tr>
<td>Transient period</td>
<td>Transient period</td>
<td>Transient period</td>
<td>Transient period</td>
</tr>
<tr>
<td>20µs ↔ 20µs</td>
<td>40µs ↔ 40µs</td>
<td></td>
<td>40µs ↔ 140µs</td>
</tr>
</tbody>
</table>

Figure 6.3.4.4-2: PUCCH/PUSCH/SRS time mask when there is transmission before and after SRS

<table>
<thead>
<tr>
<th>SRS</th>
<th>N₂ Sub-frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS ON power requirement</td>
<td>Start of N₂ power PUSCH/PUCCH</td>
</tr>
<tr>
<td>Transient period</td>
<td>Transient period</td>
</tr>
<tr>
<td>20µs ↔ 40µs</td>
<td>140µs ↔ 140µs</td>
</tr>
</tbody>
</table>

Figure 6.3.4.4-3: PUCCH/PUSCH/SRS time mask when there is a transmission after SRS but not before
6.3.4A ON/OFF time mask for CA

For intra-band contiguous carrier aggregation, the general output power ON/OFF time mask specified in subclause 6.3.4.1 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in subclause 6.3.4.1 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3.4B ON/OFF time mask for UL-MIMO

For UE supporting UL-MIMO, the ON/OFF time mask requirements in subclause 6.3.4 apply at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the general ON/OFF time mask requirements specified in subclause 6.3.4.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.3.4 apply.

6.3.5 Power Control

6.3.5.1 Absolute power tolerance

Absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms. This tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133).

In the case of a PRACH transmission, the absolute tolerance is specified for the first preamble. The absolute power tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133).

6.3.5.1.1 Minimum requirements

The minimum requirement for absolute power tolerance is given in Table 6.3.5.1.1-1 over the power range bounded by the Maximum output power as defined in subclause 6.2.2 and the Minimum output power as defined in subclause 6.3.2.

For operating bands under Note 2 in Table 6.2.2-1, the absolute power tolerance as specified in Table 6.3.5.1.1-1 is relaxed by reducing the lower limit by 1.5 dB when the transmission bandwidth is confined within $F_{UL_{low}}$ and $F_{UL_{low}} + 4$ MHz or $F_{UL_{high}} - 4$ MHz and $F_{UL_{high}}$.

Figure 6.3.4.4-4: SRS time mask when there is FDD SRS blanking

<table>
<thead>
<tr>
<th>N_0 Sub-frame</th>
<th>N_1 Sub-frame (incl. SRS blanking)</th>
<th>SRS blanking</th>
<th>N_2 Sub-frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of N_0 power</td>
<td>PUSCH/PUCCH</td>
<td>End of N_1 power</td>
<td>PUSCH/PUCCH</td>
</tr>
<tr>
<td>20µs</td>
<td>Transient period</td>
<td>20µs</td>
<td>Transient period</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3.5.2 Relative Power tolerance

The relative power tolerance is the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is ≤ 20 ms.

For PRACH transmission, the relative tolerance is the ability of the UE transmitter to set its output power relatively to the power of the most recently transmitted preamble. The measurement period for the PRACH preamble is specified in Table 6.3.4.2-1.

6.3.5.2.1 Minimum requirements

The requirements specified in Table 6.3.5.2.1-1 apply when the power of the target and reference sub-frames are within the power range bounded by the Minimum output power as defined in subclause 6.3.2 and the measured P_{UMAX} as defined in subclause 6.2.5 (i.e., the actual power as would be measured assuming no measurement error). This power shall be within the power limits specified in subclause 6.2.5.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of two test patterns. The test patterns are a monotonically increasing power sweep and a monotonically decreasing power sweep over a range bounded by the requirements of minimum power and maximum power specified in subclauses 6.3.2 and 6.2.2. For these exceptions the power tolerance limit is a maximum of ±6.0 dB in Table 6.3.5.2.1-1

Table 6.3.5.2.1-1 Relative power tolerance for transmission (normal conditions)

<table>
<thead>
<tr>
<th>Power step ΔP (Up or down) [dB]</th>
<th>All combinations of PUSCH and PUCCH transitions [dB]</th>
<th>All combinations of PUSCH/PUCCH and SRS transitions between sub-frames [dB]</th>
<th>PRACH [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta P < 2$</td>
<td>±2.5 (Note 3)</td>
<td>±3.0</td>
<td>±2.5</td>
</tr>
<tr>
<td>$2 \leq \Delta P < 3$</td>
<td>±3.0</td>
<td>±4.0</td>
<td>±3.0</td>
</tr>
<tr>
<td>$3 \leq \Delta P < 4$</td>
<td>±3.5</td>
<td>±5.0</td>
<td>±3.5</td>
</tr>
<tr>
<td>$4 \leq \Delta P \leq 10$</td>
<td>±4.0</td>
<td>±6.0</td>
<td>±4.0</td>
</tr>
<tr>
<td>$10 \leq \Delta P < 15$</td>
<td>±5.0</td>
<td>±8.0</td>
<td>±5.0</td>
</tr>
<tr>
<td>$15 \leq \Delta P$</td>
<td>±6.0</td>
<td>±9.0</td>
<td>±6.0</td>
</tr>
</tbody>
</table>

NOTE 1: For extreme conditions an additional ± 2.0 dB relaxation is allowed

NOTE 2: For operating bands under Note 2 in Table 6.2.2-1, the relative power tolerance is relaxed by increasing the upper limit by 1.5 dB if the transmission bandwidth of the reference sub-frames is confined within $F_{\text{UL,low}}$ and $F_{\text{UL,low}} + 4$ MHz or $F_{\text{UL,high}} - 4$ MHz and $F_{\text{UL,high}}$ and the target sub-frame is not confined within any one of these frequency ranges; if the transmission bandwidth of the target sub-frame is confined within $F_{\text{UL,low}}$ and $F_{\text{UL,low}} + 4$ MHz or $F_{\text{UL,high}} - 4$ MHz and $F_{\text{UL,high}}$ and the reference sub-frame is not confined within any one of these frequency ranges, then the tolerance is relaxed by reducing the lower limit by 1.5 dB.

NOTE 3: For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods for TDD: for a power step $\Delta P \leq 1$ dB, the relative power tolerance for transmission is ±1.0 dB.

Table 6.3.5.1.1-1: Absolute power tolerance

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>± 9.0 dB</td>
</tr>
<tr>
<td>Extreme</td>
<td>± 12.0 dB</td>
</tr>
</tbody>
</table>
The power step (\(\Delta P\)) is defined as the difference in the calculated setting of the UE Transmit power between the target and reference sub-frames with the power setting according to subclause 5.1 of [TS 36.213]. The error is the difference between \(\Delta P\) and the power change measured at the UE antenna port with the power of the cell-specific reference signals kept constant. The error shall be less than the relative power tolerance specified in Table 6.3.5.2.1-1.

For sub-frames not containing an SRS symbol, the power change is defined as the relative power difference between the mean power of the original reference sub-frame and the mean power of the target subframe not including transient durations. The mean power of successive sub-frames shall be calculated according to Figure 6.3.4.1-1 if there is a transmission gap between the reference and target sub-frames.

If at least one of the sub-frames contains an SRS symbol, the power change is defined as the relative power difference between the mean power of the last transmission within the reference sub-frame and the mean power of the first transmission within the target sub-frame not including transient durations. A transmission is defined as PUSCH, PUCCH or an SRS symbol. The mean power of the reference and target sub-frames shall be calculated according to Figures 6.3.4.1-1, 6.3.4.2-1, 6.3.4.4-1, 6.3.4.4-2 and 6.3.4.4-3 for these cases.

6.3.5.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in TS 36.213 are constant.

6.3.5.3.1 Minimum requirement

The UE shall meet the requirements specified in Table 6.3.5.3.1-1 for aggregate power control over the power range bounded by the minimum output power as defined in subclause 6.3.2 and the maximum output power as defined in subclause 6.2.2.

<table>
<thead>
<tr>
<th>TPC command</th>
<th>UL channel</th>
<th>Aggregate power tolerance within 21 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 dB</td>
<td>PUCCH</td>
<td>(\pm 2.5) dB</td>
</tr>
<tr>
<td>0 dB</td>
<td>PUSCH</td>
<td>(\pm 3.5) dB</td>
</tr>
</tbody>
</table>

NOTE: The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission.

6.3.5A Power control for CA

The requirements apply for one single PUCCH, PUSCH or SRS transmission of contiguous PRB allocation per component carrier.

6.3.5A.1 Absolute power tolerance

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on each active component carriers larger than 20ms. The requirement can be tested by time aligning any transmission gaps on the component carriers.

6.3.5A.1.1 Minimum requirements

For intra-band contiguous carrier aggregation bandwidth class C the absolute power control tolerance per component carrier is given in Table 6.3.5.1.1-1.
6.3.5A.2 Relative power tolerance

6.3.5A.2.1 Minimum requirements

The requirements apply when the power of the target and reference sub-frames on each component carrier exceed the minimum output power as defined in subclause 6.3.2A and the total power is limited by P_{UMAX} as defined in subclause 6.2.5A.

For intra-band contiguous carrier aggregation bandwidth class C, the UE transmitter shall have the capability of changing the output power in both assigned component carrier in the uplink with a step size of ΔP between subframes on the two respective component carrier as follows:

a) the requirements for all combinations of PUSCH and PUCCH transitions per component carrier is given in Table 6.3.5.2.1-1, when the average transmit power per PRB for the transmissions on the assigned carriers are aligned to within ±[2] dB in the reference sub-frame and the target subframe after the transition.

b) for SRS the requirements for combinations of PUSCH/PUCCH and SRS transitions between sub-frames given in Table 6.3.5.2.1-1 apply per component carrier when the target and reference subframes are configured for either simultaneous SRS or simultaneous PUSCH, and with the average transmit power per PRB for the transmission on the assigned carriers aligned to within±[2] in the reference sub-frame and target subframe after the transition.

c) for RACH the requirements apply for the primary cell and are given in Table 6.3.5.2.1-1.

6.3.5A.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in [TS 36.213] are constant on all active component carriers.

6.3.5A.3.1 Minimum requirements

For intra-band contiguous carrier aggregation bandwidth class C, the aggregate power tolerance per component carrier is given in Table 6.3.5.3.1-1 with simultaneous PUCCH and PUSCH configured if supported. The requirement can be tested with the transmission gaps time aligned between component carriers.

6.3.5B Power control for UL-MIMO

For UE supporting UL-MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.5 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2, wherein

- The Maximum output power requirements for UL-MIMO are specified in subclause 6.2.2B
- The Minimum output power requirements for UL-MIMO are specified in subclause 6.3.2B
- The requirements for configured transmitted power for UL-MIMO are specified in subclause 6.2.5B.

For single-antenna port scheme, the requirements in subclause 6.3.5 apply.
6.4 Void

6.5 Transmit signal quality

6.5.1 Frequency error

The UE modulated carrier frequency shall be accurate to within ±0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B

6.5.1A Frequency error for CA

For intra-band contiguous carrier aggregation the UE modulated carrier frequencies per band shall be accurate to within ±0.1 PPM observed over a period of one timeslot compared to the carrier frequency of primary component carrier received from the E-UTRA in the corresponding band.

6.5.1B Frequency error for UL-MIMO

For UE(s) supporting UL-MIMO, the UE modulated carrier frequency at each transmit antenna connector shall be accurate to within ±0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B.

6.5.2 Transmit modulation quality

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

All the parameters defined in subclause 6.5.2 are defined using the measurement methodology specified in Annex F.

6.5.2.1 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the IQ origin offset shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further modified by selecting the absolute phase and absolute amplitude of the Tx chain. The EVM result is defined after the front-end IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and is one slot for the PUCCH and PUSCH in the time domain.. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the EVM measurement interval is reduced by one symbol, accordingly. The PUSCH or PUCCH EVM measurement interval is also reduced when the mean power, modulation or allocation between slots is expected to change. In the case of PUSCH transmission, the measurement interval is reduced by a time interval equal to the sum of 5 μs and the applicable exclusion period defined in subclause 6.3.4, adjacent to the boundary where the power change is expected to occur. The PUSCH exclusion period is applied to the signal obtained after the front-end IDFT. In the case of PUCCH transmission with power change, the PUCCH EVM measurement interval is reduced by one symbol adjacent to the boundary where the power change is expected to occur.
6.5.2.1.1 Minimum requirement

The RMS average of the basic EVM measurements for 10 sub-frames excluding any transient period for the average EVM case, and 60 sub-frames excluding any transient period for the reference signal EVM case, for the different modulations schemes shall not exceed the values specified in Table 6.5.2.1.1-1 for the parameters defined in Table 6.5.2.1.1-2. For EVM evaluation purposes, [all PRACH preamble formats 0-4 and] all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

Table 6.5.2.1.1-1: Minimum requirements for Error Vector Magnitude

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Average EVM Level</th>
<th>Reference Signal EVM Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK or BPSK</td>
<td>%</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>16QAM</td>
<td>%</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Table 6.5.2.1.1-2: Parameters for Error Vector Magnitude

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE Output Power</td>
<td>dBm</td>
<td>≥ -40</td>
</tr>
<tr>
<td>Operating conditions</td>
<td></td>
<td>Normal conditions</td>
</tr>
</tbody>
</table>

6.5.2.2 Carrier leakage

Carrier leakage (The IQ origin offset) is an additive sinusoid waveform that has the same frequency as the modulated waveform carrier frequency. The measurement interval is one slot in the time domain.

6.5.2.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2.2.1-1.

Table 6.5.2.2.1-1: Minimum requirements for relative carrier leakage power

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Relative limit (dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power >0 dBm</td>
<td>-25</td>
</tr>
<tr>
<td>-30 dBm ≤ Output power ≤0 dBm</td>
<td>-20</td>
</tr>
<tr>
<td>-40 dBm ≤ Output power < -30 dBm</td>
<td>-10</td>
</tr>
</tbody>
</table>

6.5.2.3 In-band emissions

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

6.5.2.3.1 Minimum requirements

The relative in-band emission shall not exceed the values specified in Table 6.5.2.3.1-1.
Table 6.5.2.3.1-1: Minimum requirements for in-band emissions

<table>
<thead>
<tr>
<th>Parameter description</th>
<th>Unit</th>
<th>Limit (Note 1)</th>
<th>Applicable Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>dB</td>
<td>(\max \left{ -25 - 10 \log_{10} \left(\frac{N_{RB}}{L_{CRB}} \right), \right.) (20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left</td>
<td>\Delta_{RB} \right</td>
</tr>
<tr>
<td>IQ Image</td>
<td>dB</td>
<td>-25</td>
<td>Image frequencies (Notes 2, 3)</td>
</tr>
<tr>
<td>Carrier leakage</td>
<td>dBC</td>
<td>-25 Output power > 0 dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-20 -30 dBm ≤ Output power ≤ 0 dBm</td>
<td>Carrier frequency (Notes 4, 5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10 -40 dBm ≤ Output power < -30 dBm</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of \(P_{RB} - 30 \) dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. \(P_{RB} \) is defined in Note 10.

NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.

NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RBs.

NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.

NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency if \(N_{RB} \) is odd, or in the two RBs immediately adjacent to the DC frequency if \(N_{RB} \) is even, but excluding any allocated RB.

NOTE 6: \(L_{CRB} \) is the Transmission Bandwidth (see Figure 5.6-1).

NOTE 7: \(N_{RB} \) is the Transmission Bandwidth Configuration (see Figure 5.6-1).

NOTE 8: \(EVM \) is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.

NOTE 9: \(\Delta_{RB} \) is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. \(\Delta_{RB} = 1 \) or \(\Delta_{RB} = -1 \) for the first adjacent RB outside of the allocated bandwidth).

NOTE 10: \(P_{RB} \) is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

6.5.2.4 EVM equalizer spectrum flatness

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex F) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block. The basic measurement interval is the same as for EVM.

6.5.2.4.1 Minimum requirements

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.5.2.4.1-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 7 dB (see Figure 6.5.2.4.1-1).

The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.5.2.4.1-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.5.2.4.1-1).
Table 6.5.2.4.1-1: Minimum requirements for EVM equalizer spectrum flatness (normal conditions)

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Maximum ripple [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{UL_Meas} - F_{UL_Low} ≥ 3 MHz and F_{UL_High} - F_{UL_Meas} ≥ 3 MHz (Range 1)</td>
<td>4 (p-p)</td>
</tr>
<tr>
<td>F_{UL_Meas} - F_{UL_Low} < 3 MHz or F_{UL_High} - F_{UL_Meas} < 3 MHz (Range 2)</td>
<td>8 (p-p)</td>
</tr>
</tbody>
</table>

NOTE 1: F_{UL_Meas} refers to the sub-carrier frequency for which the equalizer coefficient is evaluated
NOTE 2: F_{UL_Low} and F_{UL_High} refer to each E-UTRA frequency band specified in Table 5.5-1

Table 6.5.2.4.1-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Maximum Ripple [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{UL_Meas} - F_{UL_Low} ≥ 5 MHz and F_{UL_High} - F_{UL_Meas} ≥ 5 MHz (Range 1)</td>
<td>4 (p-p)</td>
</tr>
<tr>
<td>F_{UL_Meas} - F_{UL_Low} < 5 MHz or F_{UL_High} - F_{UL_Meas} < 5 MHz (Range 2)</td>
<td>12 (p-p)</td>
</tr>
</tbody>
</table>

NOTE 1: F_{UL_Meas} refers to the sub-carrier frequency for which the equalizer coefficient is evaluated
NOTE 2: F_{UL_Low} and F_{UL_High} refer to each E-UTRA frequency band specified in Table 5.5-1

Figure 6.5.2.4.1-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement within brackets).

6.5.2A Transmit modulation quality for CA

The requirements in this clause apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

6.5.2A.1 Error Vector Magnitude

For the intra-band contiguous carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers.

When a single component carrier is configured Table 6.5.2.1.1-1 apply.

The EVM requirements are according to Table 6.5.2A.1-1 if CA is configured in uplink.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Average EVM Level per CC</th>
<th>Reference Signal EVM Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK or BPSK</td>
<td>%</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>16QAM</td>
<td>%</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

6.5.2A.2 Carrier leakage for CA

Carrier leakage (The IQ origin offset) is an additive sinusoid waveform that has the same frequency as the modulated waveform carrier frequency. Carrier leakage is defined for each component carrier and is measured on the carrier with PRBs allocated. The measurement interval is one slot in the time domain.

6.5.2A.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2A.2.1-1.

<table>
<thead>
<tr>
<th>Parameters Relative Limit (dBc)</th>
<th>Output power >0 dBm</th>
<th>-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30 dBm ≤ Output power ≤0 dBm</td>
<td></td>
<td>-20</td>
</tr>
<tr>
<td>-40 dBm ≤ Output power <-30 dBm</td>
<td></td>
<td>-10</td>
</tr>
</tbody>
</table>

6.5.2A.3 In-band emissions

6.5.2A.3.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation bandwidth class C, the requirements in Table 6.5.2A.3.1-1 and 6.5.2A.3.1-2 apply within the aggregated transmission bandwidth configuration with both component carrier(s) active and one single contiguous PRB allocation of bandwidth L_{CRB} at the edge of the aggregated transmission bandwidth configuration.

The inband emission is defined as the interference falling into the non allocated resource blocks for all component carriers. The measurement method for the inband emissions in the component carrier with PRB allocation is specified in annex F. For a non allocated component carrier a spectral measurement is specified.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Limit</th>
<th>Applicable Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>dB</td>
<td>max { -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}), 20 \cdot \log_{10} EVM - 3 - 5 \cdot (</td>
<td>A_{RB}</td>
</tr>
<tr>
<td>IQ Image</td>
<td>dB</td>
<td>-25</td>
<td>Exception for IQ image (Note 2)</td>
</tr>
<tr>
<td>Carrier leakage</td>
<td>dBC</td>
<td>-25</td>
<td>Output power > 0 dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-20</td>
<td>-30 dBm ≤ Output power ≤ 0 dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10</td>
<td>-40 dBm ≤ Output power < -30 dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exception for Carrier frequency (Note 3)</td>
</tr>
<tr>
<td>NOTE 1:</td>
<td>An in-band emissions combined limit is evaluated in each non-allocated RB in the allocated component carrier. For each such RB, the minimum requirement is calculated as the higher of $P_{RB} - 30$ dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in Note 8. The limit is evaluated in each non-allocated RB. The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 2:</td>
<td>Exceptions to the general limit are allowed for up to L_{CRB} RBs within a contiguous width of L_{CRBs} non-allocated RBs in the allocated component carrier. The measurement bandwidth is 1 RB.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 3:</td>
<td>Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs in the allocated component carrier. The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in the non-allocated RB to the measured total power in all allocated RBs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 4:</td>
<td>L_{CRB} is the Transmission Bandwidth (see Figure 5.6-1) not exceeding $\left\lfloor N_{RB} / 2 - 1 \right\rfloor$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 5:</td>
<td>N_{RB} is the Transmission Bandwidth Configuration (see Figure 5.6-1) of the component carrier with RBs allocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 6:</td>
<td>EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 7:</td>
<td>Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB in the allocated component carrier (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 8:</td>
<td>P_{RB} is the transmitted power per 180 kHz in allocated RBs, measured in dBm.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6.5.2A.3.1-2: Minimum requirements for in-band emissions (non-allocated component carrier)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Meas BW Note 1</th>
<th>Limit</th>
<th>remark</th>
<th>Applicable Frequencies</th>
</tr>
</thead>
</table>
| General | dB | BW of 1 RB (180KHz rectangular) | \[
\max \left\{ -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}} \right) , \\
20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\frac{\Delta_{RB}}{L_{CRB}} \right) - 1 \right\} / 180 \text{kHz} - P_{RB} \] | The reference value is the average power per allocated RB in the allocated component carrier. | Any RB in the non allocated component carrier. The frequency raster of the RBs is derived when this component carrier is allocated with RBs. |
| IQ Image | dB | BW of 1 RB (180KHz rectangular) | -25 | Note 2 | The frequencies of the \(L_{CRB} \) contiguous non-allocated RBs are unknown. The frequency raster of the RBs is derived when this component carrier is allocated with RBs. |
| Carrier leakage| dBc | BW of 1 RB (180KHz rectangular) | -25 | Output power > 0 dBm | The frequencies of the up to 2 non-allocated RBs are unknown. The frequency raster of the RBs is derived when this component carrier is allocated with RBs. |
| | | | -20 | -30 dBm ≤ Output power ≤ 0 dBm | |
| | | | -10 | -40 dBm ≤ Output power < -30 dBm | |

NOTE 1: Resolution BWs smaller than the measurement BW may be integrated to achieve the measurement bandwidth.

NOTE 2: Exceptions to the general limit are allowed for up to \(L_{CRB} \) RBs within a contiguous width of \(L_{CRB} \) non-allocated RBs.

NOTE 3: Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs.

NOTE 4: Note 4 to note 8 from Table 6.5.2A.3.1-1 apply for Table 6.5.2A.3.1-2 as well.

6.5.2B Transmit modulation quality for UL-MIMO

For UE supporting UL-MIMO, the transmit modulation quality requirements are specified at each transmit antenna connector.

For single-antenna port scheme, the requirements in subclause 6.5.2 apply.

The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

6.5.2B.1 Error Vector Magnitude

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Error Vector Magnitude requirements specified in Table 6.5.2.1.1-1 which is defined in subclause 6.5.2.1 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.2 Carrier leakage

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Relative Carrier Leakage Power requirements specified in Table 6.5.2.2.1-1 which is defined in subclause 6.5.2.2 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.3 In-band emissions

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the In-band Emission requirements specified in Table 6.5.2.3.1-1 which is defined in subclause 6.5.2.3 apply at each transmit antenna connector. The requirements shall be met with the uplink MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.4 EVM equalizer spectrum flatness for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the EVM Equalizer Spectrum Flatness requirements specified in Table 6.5.2.4.1-1 and Table 6.5.2.4.1-2 which are defined in subclause 6.5.2.4 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.6 Output RF spectrum emissions

The output UE transmitter spectrum consists of the three components; the emission within the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

![Figure 6.6-1: Transmitter RF spectrum](image)

6.6.1 Occupied bandwidth

Occupied bandwidth is defined as the bandwidth containing 99% of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.6.1-1.
Table 6.6.1-1: Occupied channel bandwidth

<table>
<thead>
<tr>
<th>Channel bandwidth (MHz)</th>
<th>Occupied channel bandwidth / Channel bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 MHz</td>
</tr>
<tr>
<td>1.4 MHz</td>
<td>1.4</td>
</tr>
</tbody>
</table>

6.6.1A Occupied bandwidth for CA

For intra-band contiguous carrier aggregation the occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmitted spectrum. The OBW shall be less than the aggregated channel bandwidth defined in subclause 5.6A.

6.6.1B Occupied bandwidth for UL-MIMO

For UE supporting UL-MIMO, the requirements for occupied bandwidth is specified at each transmit antenna connector. The occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the occupied bandwidth at each transmitter antenna shall be less than the channel bandwidth specified in Table 6.6.1B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

Table 6.6.1B-1: Occupied channel bandwidth

<table>
<thead>
<tr>
<th>Channel bandwidth (MHz)</th>
<th>Occupied channel bandwidth / Channel bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 MHz</td>
</tr>
<tr>
<td>1.4 MHz</td>
<td>1.4</td>
</tr>
</tbody>
</table>

For single-antenna port scheme, the requirements in subclause 6.6.1 apply.

6.6.2 Out of band emission

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and anAdjacent Channel Leakage power Ratio.

6.6.2.1 Spectrum emission mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the ± edge of the assigned E-UTRA channel bandwidth. For frequencies greater than (Δf_{OOB}) as specified in Table 6.6.2.1.1-1 the spurious requirements in subclause 6.6.3 are applicable.

6.6.2.1.1 Minimum requirement

The power of any UE emission shall not exceed the levels specified in Table 6.6.2.1.1-1 for the specified channel bandwidth.
Table 6.6.2.1.1-1: General E-UTRA spectrum emission mask

<table>
<thead>
<tr>
<th>∆f_{OOB} (MHz)</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
<th>Measurement bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0-1</td>
<td>-10</td>
<td>-13</td>
<td>-15</td>
<td>-18</td>
<td>-20</td>
<td>-21</td>
<td>30 kHz</td>
</tr>
<tr>
<td>± 1-2.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 2.5-2.8</td>
<td>-25</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 2.8-5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 5-6</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 6-10</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.1A Spectrum emission mask for CA

For intra-band contiguous carrier aggregation the spectrum emission mask of the UE applies to frequencies (∆f_{OOB}) starting from the ± edge of the aggregated channel bandwidth (Table 5.6A-1) For intra-band contiguous carrier aggregation the bandwidth class C, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.1A-1 for the specified channel bandwidth.

Table 6.6.2.1A-1: General E-UTRA CA spectrum emission mask for Bandwidth Class C

<table>
<thead>
<tr>
<th>∆f_{OOB} (MHz)</th>
<th>50RB+100RB (29.9 MHz)</th>
<th>75RB+75RB (30 MHz)</th>
<th>100RB+100RB (39.8 MHz)</th>
<th>Measurement bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0-1</td>
<td>-22.5</td>
<td>-22.5</td>
<td>-24</td>
<td>30 kHz</td>
</tr>
<tr>
<td>± 1-5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 5-29.9</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 29.9-30</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 30-34.9</td>
<td>-25</td>
<td>-25</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 34.9-35</td>
<td>-25</td>
<td>-25</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 35-39.8</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 39.8-44.8</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

6.6.2.2 Additional spectrum emission mask

This requirement is specified in terms of an “additional spectrum emission” requirement.

6.6.2.2.1 Minimum requirement (network signalled value "NS_03", “NS_11”, and “NS_20”)

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_03", "NS_11" or "NS_20" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.1-1.
Table 6.6.2.2.1-1: Additional requirements

<table>
<thead>
<tr>
<th>∆f_{OOB} (MHz)</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
<th>Measurement bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0-1</td>
<td>-10</td>
<td>-13</td>
<td>-15</td>
<td>-18</td>
<td>-20</td>
<td>-21</td>
<td>30 kHz</td>
</tr>
<tr>
<td>± 1-2.5</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 2.5-2.8</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 2.8-5.5</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 5-6</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 6-10</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2 Minimum requirement (network signalled value "NS_04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.2-1.

Table 6.6.2.2.2-1: Additional requirements

<table>
<thead>
<tr>
<th>∆f_{OOB} (MHz)</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
<th>Measurement bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0-1</td>
<td>-10</td>
<td>-13</td>
<td>-15</td>
<td>-18</td>
<td>-20</td>
<td>-21</td>
<td>30 kHz</td>
</tr>
<tr>
<td>± 1-2.5</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 2.5-2.8</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 2.8-5.5</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 5-6</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 6-10</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.3 Minimum requirement (network signalled value "NS_06" or “NS_07”)

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_06" or “NS_07” is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3-1.
Table 6.6.2.2.3-1: Additional requirements

<table>
<thead>
<tr>
<th>(\Delta f_{\text{OOB}}) (MHz)</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>Measurement bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0.0-0.1</td>
<td>-13</td>
<td>-13</td>
<td>-15</td>
<td>-18</td>
<td>30 kHz</td>
</tr>
<tr>
<td>± 0.1-1</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>100 kHz</td>
</tr>
<tr>
<td>± 1-2.5</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 2.5-2.8</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 2.8-5</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 5-6</td>
<td>±0-0.1</td>
<td>-25</td>
<td>-13</td>
<td>-13</td>
<td>1 MHz</td>
</tr>
<tr>
<td>± 6-10</td>
<td>±0-0.1</td>
<td>±0-0.1</td>
<td>±0-0.1</td>
<td>±0-0.1</td>
<td>±0-0.1</td>
</tr>
<tr>
<td>± 10-15</td>
<td>±0-0.1</td>
<td>±0-0.1</td>
<td>±0-0.1</td>
<td>±0-0.1</td>
<td>±0-0.1</td>
</tr>
</tbody>
</table>

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.3 Adjacent Channel Leakage Ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirements for one E-UTRA carrier are specified for two scenarios for an adjacent E-UTRA and/or UTRA channel as shown in Figure 6.6.2.3-1.

![Figure 6.6.2.3-1: Adjacent Channel Leakage requirements for one E-UTRA carrier](image)

6.6.2.3.1 Minimum requirement E-UTRA

E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA_ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned E-UTRA channel power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.1-1. If the measured adjacent channel power is greater than –50dBm then the E-UTRA_ACLR shall be higher than the value specified in Table 6.6.2.3.1-1.
Table 6.6.2.3.1-1: General requirements for E-UTRA\textsubscript{ACLR}

<table>
<thead>
<tr>
<th>Channel bandwidth / E-UTRA\textsubscript{ACLR1} / Measurement bandwidth</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-UTRA\textsubscript{ACLR1}</td>
<td>30 dB</td>
<td>30 dB</td>
<td>30 dB</td>
<td>30 dB</td>
<td>30 dB</td>
<td>30 dB</td>
</tr>
<tr>
<td>E-UTRA channel Measurement bandwidth</td>
<td>1.08 MHz</td>
<td>2.7 MHz</td>
<td>4.5 MHz</td>
<td>9.0 MHz</td>
<td>13.5 MHz</td>
<td>18 MHz</td>
</tr>
<tr>
<td>Adjacent channel centre frequency offset [MHz]</td>
<td>+1.4 MHz</td>
<td>+3.0 MHz</td>
<td>+5 MHz</td>
<td>+10 MHz</td>
<td>+15 MHz</td>
<td>+20 MHz</td>
</tr>
</tbody>
</table>

6.6.2.3.1A Void

6.6.2.3.2 Minimum requirements UTRA

UTRA Adjacent Channel Leakage power Ratio (UTRA\textsubscript{ACLR}) is the ratio of the filtered mean power centred on the assigned E-UTRA channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA\textsubscript{ACLR1}) and the 2nd UTRA adjacent channel (UTRA\textsubscript{ACLR2}). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor $\alpha = 0.22$. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2-1. If the measured UTRA channel power is greater than –50dBm then the UTRA\textsubscript{ACLR} shall be higher than the value specified in Table 6.6.2.3.2-1.

Table 6.6.2.3.2-1: Requirements for UTRA\textsubscript{ACLR1/2}

<table>
<thead>
<tr>
<th>Channel bandwidth / UTRA\textsubscript{ACLR1/2} / Measurement bandwidth</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTRA\textsubscript{ACLR1}</td>
<td>33 dB</td>
<td>33 dB</td>
<td>33 dB</td>
<td>33 dB</td>
<td>33 dB</td>
<td>33 dB</td>
</tr>
<tr>
<td>Adjacent channel centre frequency offset [MHz]</td>
<td>0.7+BW\textsubscript{UTRA}/2</td>
<td>1.5+BW\textsubscript{UTRA}/2</td>
<td>2.5+BW\textsubscript{UTRA}/2</td>
<td>5+BW\textsubscript{UTRA}/2</td>
<td>7.5+BW\textsubscript{UTRA}/2</td>
<td>10+BW\textsubscript{UTRA}/2</td>
</tr>
<tr>
<td></td>
<td>-0.7- BW\textsubscript{UTRA}/2</td>
<td>-1.5- BW\textsubscript{UTRA}/2</td>
<td>-2.5- BW\textsubscript{UTRA}/2</td>
<td>-5- BW\textsubscript{UTRA}/2</td>
<td>-7.5- BW\textsubscript{UTRA}/2</td>
<td>-10- BW\textsubscript{UTRA}/2</td>
</tr>
<tr>
<td>UTRA\textsubscript{ACLR2}</td>
<td>-</td>
<td>-</td>
<td>36 dB</td>
<td>36 dB</td>
<td>36 dB</td>
<td>36 dB</td>
</tr>
<tr>
<td>Adjacent channel centre frequency offset [MHz]</td>
<td>-</td>
<td>-</td>
<td>+2.5+3*BW\textsubscript{UTRA}/2</td>
<td>+5+3*BW\textsubscript{UTRA}/2</td>
<td>+7.5+3*BW\textsubscript{UTRA}/2</td>
<td>+10+3*BW\textsubscript{UTRA}/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.5-3*BW\textsubscript{UTRA}/2</td>
<td>-5-3*BW\textsubscript{UTRA}/2</td>
<td>-7.5-3*BW\textsubscript{UTRA}/2</td>
<td>-10-3*BW\textsubscript{UTRA}/2</td>
</tr>
<tr>
<td>E-UTRA channel Measurement bandwidth</td>
<td>1.08 MHz</td>
<td>2.7 MHz</td>
<td>4.5 MHz</td>
<td>9.0 MHz</td>
<td>13.5 MHz</td>
<td>18 MHz</td>
</tr>
<tr>
<td>UTRA 5MHz channel Measurement bandwidth (Note 1)</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
</tr>
<tr>
<td>UTRA 1.6MHz channel measurement bandwidth (Note 2)</td>
<td>1.28 MHz</td>
<td>1.28 MHz</td>
<td>1.28 MHz</td>
<td>1.28 MHz</td>
<td>1.28 MHz</td>
<td>1.28 MHz</td>
</tr>
</tbody>
</table>

NOTE 1: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum.

NOTE 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.
6.6.2.3.2A Minimum requirement UTRA for CA

For intra-band contiguous carrier aggregation the UTRA Adjacent Channel Leakage power Ratio (UTRAACLR) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent UTRA channel frequency.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRAACLRL) and the 2nd UTRA adjacent channel (UTRAACLR2). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor $\alpha=0.22$. The assigned aggregated channel bandwidth power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2A-1. If the measured UTRA channel power is greater than -50dBm then the UTRAACLRL shall be higher than the value specified in Table 6.6.2.3.2A-1.

Table 6.6.2.3.2A-1: Requirements for UTRAACLRL/2

<table>
<thead>
<tr>
<th>CA bandwidth class / UTRAACLRL/2 / measurement bandwidth</th>
<th>CA bandwidth class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTRAACLRL1</td>
<td>33 dB</td>
</tr>
<tr>
<td>Adjacent channel centre frequency offset (in MHz)</td>
<td>$+\text{BW}{\text{Channel,CA}}/2 + \text{BW}{\text{UTRA}}/2$</td>
</tr>
<tr>
<td></td>
<td>$-\text{BW}{\text{Channel,CA}}/2 - \text{BW}{\text{UTRA}}/2$</td>
</tr>
<tr>
<td>UTRAACLRL2</td>
<td>36 dB</td>
</tr>
<tr>
<td>Adjacent channel centre frequency offset (in MHz)</td>
<td>$+\text{BW}{\text{Channel,CA}}/2 + 3*\text{BW}{\text{UTRA}}/2$</td>
</tr>
<tr>
<td></td>
<td>$-\text{BW}{\text{Channel,CA}}/2 - 3*\text{BW}{\text{UTRA}}/2$</td>
</tr>
<tr>
<td>CA E-UTRA channel Measurement bandwidth</td>
<td>$\text{BW}{\text{Channel,CA}} - 2* \text{BW}{\text{GB}}$</td>
</tr>
<tr>
<td>UTRA 5MHz channel Measurement bandwidth (Note 1)</td>
<td>3.84 MHz</td>
</tr>
<tr>
<td>UTRA 1.6MHz channel measurement bandwidth (Note 2)</td>
<td>1.28 MHz</td>
</tr>
</tbody>
</table>

NOTE 1: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum.
NOTE 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.

6.6.2.3.3A Minimum requirements for CA E-UTRA

For intra-band contiguous carrier aggregation the carrier aggregation E-UTRA Adjacent Channel Leakage power Ratio (CA E-UTRAACLRL) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent aggregated channel bandwidth at nominal channel spacing. The assigned aggregated channel bandwidth power and adjacent aggregated channel bandwidth power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.3A-1. If the measured adjacent channel power is greater than -50dBm then the E-UTRAACLRL shall be higher than the value specified in Table 6.6.2.3.3A-1.

Table 6.6.2.3.3A-1: General requirements for CA E-UTRAACLRL

<table>
<thead>
<tr>
<th>CA bandwidth class / CA E-UTRAACLRL / Measurement bandwidth</th>
<th>CA bandwidth class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA E-UTRAACLRL</td>
<td>30 dB</td>
</tr>
<tr>
<td>CA E-UTRA channel Measurement bandwidth</td>
<td>$\text{BW}{\text{Channel,CA}} - 2* \text{BW}{\text{GB}}$</td>
</tr>
<tr>
<td>Adjacent channel centre frequency offset (in MHz)</td>
<td>$+\text{BW}_{\text{Channel,CA}}$</td>
</tr>
<tr>
<td></td>
<td>$-\text{BW}_{\text{Channel,CA}}$</td>
</tr>
</tbody>
</table>
6.6.2.4 Void

6.6.2.4.1 Void

6.6.2A Void

<reserved for future use>

6.6.2B Out of band emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.2 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.6.2 apply.

6.6.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements inline with SM.329 [2] and E-UTRA operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.3.1 Minimum requirements

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.6.3.1-2 apply for all transmitter band configurations (N_{RB}) and channel bandwidths.

<table>
<thead>
<tr>
<th>Channel bandwidth</th>
<th>1.4 MHz</th>
<th>3.0 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOB boundary F_{OOB} (MHz)</td>
<td>2.8</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than F_{OOB} (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the channel should be $F_{\text{OOB}} + MBW/2$. MBW denotes the measurement bandwidth defined in Table 6.6.3.1-2.
Table 6.6.3.1-2: Spurious emissions limits

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Maximum Level</th>
<th>Measurement bandwidth</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 kHz ≤ f < 150 kHz</td>
<td>-36 dBm</td>
<td>1 kHz</td>
<td></td>
</tr>
<tr>
<td>150 kHz ≤ f < 30 MHz</td>
<td>-36 dBm</td>
<td>10 kHz</td>
<td></td>
</tr>
<tr>
<td>30 MHz ≤ f < 1000 MHz</td>
<td>-36 dBm</td>
<td>100 kHz</td>
<td></td>
</tr>
<tr>
<td>1 GHz ≤ f < 12.75 GHz</td>
<td>-30 dBm</td>
<td>1 MHz</td>
<td></td>
</tr>
<tr>
<td>12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz</td>
<td>-30 dBm</td>
<td>1 MHz</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE 1: Applies for Band 22, Band 42 and Band 43

6.6.3.1A Minimum requirements for CA

For intra-band contiguous carrier aggregation the spurious emission limits apply for the frequency ranges that are more than \(F_{OOB} \) (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth (Table 5.6A-1). For frequencies \(\Delta f_{OOB} \) greater than \(F_{OOB} \) as specified in Table 6.6.3.1A-1 the spurious emission requirements in Table 6.6.3.1-2 are applicable.

Table 6.6.3.1A-1: Boundary between E-UTRA out of band and spurious emission domain for intra-band contiguous carrier aggregation

<table>
<thead>
<tr>
<th>CA Bandwidth Class</th>
<th>OOB boundary (F_{OOB}) (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Table 6.6.3.1-1</td>
</tr>
<tr>
<td>B</td>
<td>FFS</td>
</tr>
<tr>
<td>C</td>
<td>(BW_{Channel\ CA} + 5)</td>
</tr>
</tbody>
</table>

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than \(F_{OOB} \) (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the aggregated channel should be \(F_{OOB} + MBW/2 \). MBW denotes the measurement bandwidth defined in Table 6.6.3.1-2.

6.6.3.2 Spurious emission band UE co-existence

This clause specifies the requirements for the specified E-UTRA band, for coexistence with protected bands

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.
Table 6.6.3.2-1: Requirements

<table>
<thead>
<tr>
<th>E-UTRA Band</th>
<th>Protected band</th>
<th>Frequency range (MHz)</th>
<th>Spurious emission (MHz)</th>
<th>Maximal Level (dBm)</th>
<th>MBW (MHz)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E-UTRA Band 1, 7, 8, 11, 18, 19, 20, 21, 22, 38, 40, 42, 43</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 3, 34</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1880 - 1895</td>
<td>-40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1895 - 1915</td>
<td>-15.5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1915 - 1920</td>
<td>+1.6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1884.5 - 1915.7</td>
<td>-41</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1839.9 - 1879.9</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 41, 42</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 2, 25</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 43</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E-UTRA Band 1, 7, 8, 20, 33, 34, 38, 43</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 3</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 11, 18, 19, 21</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 22, 42</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1884.5 - 1915.7</td>
<td>-41</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 41, 43</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 42</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 41</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 42, 43</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1884.5 - 1919.6</td>
<td>-41</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1884.5 - 1915.7</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>E-UTRA Band 1, 9, 11, 34</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 860 - 875</td>
<td>-37</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 875 - 895</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>E-UTRA Band 1, 3, 7, 8, 20, 22, 33, 34, 40, 42, 43</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 2570 - 2575</td>
<td>+1.6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 2575 - 2595</td>
<td>-15.5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 2595 - 2620</td>
<td>-40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>E-UTRA Band 1, 20, 33, 34, 38, 40</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 3</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 7</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 8</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 22, 42, 43</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 11, 21</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 860 - 890</td>
<td>-40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>E-UTRA Band 1, 11, 18, 19, 21, 34</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1884.5 - 1915.7</td>
<td>-41</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 41, 43</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 22, 42</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>E-UTRA Band 1, 11, 18, 19, 21, 34</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1884.5 - 1915.7</td>
<td>-41</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>E-UTRA Band 2, 5, 13, 14, 17, 23, 24, 25, 41</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 4, 10</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 12</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>E-UTRA Band 2, 4, 5, 10, 12, 13, 17, 23, 25, 41</td>
<td>F\textsubscript{DL_low} - F\textsubscript{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>MHz</td>
<td>MHz</td>
<td>MHz</td>
<td>MHz</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>769 - 775</td>
<td>35</td>
<td>0.00625</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>799 - 805</td>
<td>35</td>
<td>0.00625</td>
<td>11, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 14</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 24</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 41</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>769 - 775</td>
<td>35</td>
<td>0.00625</td>
<td>12, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>799 - 805</td>
<td>35</td>
<td>0.00625</td>
<td>11, 12, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 1, 11, 21, 34</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1884.5 - 1915.7</td>
<td>-41</td>
<td>0.3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>945 - 960</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1839.9 - 1879.9</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 1, 11, 21, 34</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>860 - 890</td>
<td>-40</td>
<td>1</td>
<td>9, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1884.5 - 1915.7</td>
<td>-41</td>
<td>0.3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>945 - 960</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1839.9 - 1879.9</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 1, 3, 7, 8, 20, 22, 33, 34, 40, 43</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 20</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 38, 42</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 11</td>
<td>FD_Low - FD_High</td>
<td>-35</td>
<td>1</td>
<td>10, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 1, 18, 19, 34</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 21</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1884.5 - 1915.7</td>
<td>-41</td>
<td>0.3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>945 - 960</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1839.9 - 1879.9</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 1, 3, 7, 8, 20, 33, 34, 38, 39, 40, 43</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>3510 - 3525</td>
<td>-40</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>3525 - 3590</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 23, 24, 41</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRA Band 2</td>
<td>FD_Low - FD_High</td>
<td>-50</td>
<td>1</td>
<td>14, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1999 - 1999</td>
<td>-21</td>
<td>1</td>
<td>14, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1997 - 1998</td>
<td>-27</td>
<td>1</td>
<td>14, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1996 - 1997</td>
<td>-32</td>
<td>1</td>
<td>14, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1995 - 1996</td>
<td>-37</td>
<td>1</td>
<td>14, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1990 - 1995</td>
<td>-40</td>
<td>1</td>
<td>14, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1990 - 1999</td>
<td>-40</td>
<td>1</td>
<td>15, 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1999 - 2000</td>
<td>-40</td>
<td>Note 22</td>
<td>15, 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band</td>
<td>Frequency range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 41</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 41, 42</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 2</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 25</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 43</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1, 7, 8, 20, 22, 34, 38, 39, 40, 42, 43</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 3</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 33, 38, 39, 40, 42, 43</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1884.5</td>
<td>1915.7 -41 0.3 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 1839.9</td>
<td>1879.9 -50 1 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1, 3, 8, 20, 22, 33, 34, 40, 42, 43</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 2620</td>
<td>2645 -15.5 5 15, 17, 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range 2645</td>
<td>2690 -40 1 15, 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>22, 34, 40, 42</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 43</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1, 3, 7, 8, 20, 22, 33, 34, 38, 39, 42, 43</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1, 2, 3, 4, 5, 7, 8, 10, 20, 25, 33, 34, 38, 40</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 43</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>1, 2, 3, 4, 5, 7, 8, 10, 20, 25, 33, 34, 38, 40</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 42</td>
<td>F\text{DL_low} - F\text{DL_high} -50 1 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-UTRA Band 22</td>
<td>F\text{DL_low} - F\text{DL_high} [-50] [1] 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 1:</td>
<td>(F_{DL_{low}}) and (F_{DL_{high}}) refer to each E-UTRA frequency band specified in Table 5.5-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 2:</td>
<td>As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2(^{nd}), 3(^{rd}) or 4(^{th}) harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 3:</td>
<td>To meet these requirements some restriction will be needed for either the operating band or protected band</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 4:</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 5:</td>
<td>For non-synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 6:</td>
<td>Applicable when NS_05 in section 6.6.3.3.1 is signalled by the network.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 7:</td>
<td>Applicable when co-existence with PHS system operating in 1884.5 - 1919.6MHz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 8:</td>
<td>Applicable when co-existence with PHS system operating in 1884.5 - 1915.7MHz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 9:</td>
<td>Applicable when NS_08 in section 6.6.3.3.3 is signalled by the network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 10:</td>
<td>Applicable when NS_09 in section 6.6.3.3.4 is signalled by the network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 11:</td>
<td>Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 12:</td>
<td>The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 13:</td>
<td>This requirement applies for 5, 10, 15 and 20 MHz E-UTRA channel bandwidth allocated within 1744.9MHz and 1784.9MHz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 14:</td>
<td>To meet this requirement NS_11 value shall be signalled when operating in 2000-2020 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 15:</td>
<td>These requirements also apply for the frequency ranges that are less than (F_{CE}) (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 16:</td>
<td>This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 17:</td>
<td>This requirement is applicable for any channel bandwidths within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 18:</td>
<td>This requirement is applicable only for the following cases:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 19:</td>
<td>This requirement is applicable for any channel bandwidths within the range 1920 - 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 - 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 20:</td>
<td>For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 21:</td>
<td>Applicable when NS_20 is signalled by the network.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 22:</td>
<td>The measurement bandwidth is 1% of the applicable E-UTRA channel bandwidth (Table 5.6-1).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The restriction on the maximum uplink transmission to 54 RB in Notes 16, 17, and 19 of Table 6.6.3.2-1 is intended for conformance testing and may be applied to network operation to facilitate coexistence when the aggressor and victim bands are deployed in the same geographical area. The applicable spurious emission requirement of -15.5 dBm/5MHz is a least restrictive technical condition for FDD/TDD coexistence and may have to be revised in the future.

6.6.3.2A Spurious emission band UE co-existence for CA

This clause specifies the requirements for the specified carrier aggregation configurations for coexistence with protected bands.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.
Table 6.6.3.2A-1: Requirements

<table>
<thead>
<tr>
<th>E-UTRA CA Configuration</th>
<th>Spurious emission</th>
<th>Protected band</th>
<th>Frequency range (MHz)</th>
<th>Maximum Level (dBm)</th>
<th>MBW (MHz)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA_1C</td>
<td></td>
<td>E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 38, 40, 42, 43</td>
<td>FDL_low - FDL_high</td>
<td>-50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-UTRA band 34</td>
<td>Frequency range</td>
<td>-50</td>
<td>1, 4, 6, 7, 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency range</td>
<td>1880 - 1895</td>
<td>-40</td>
<td>1</td>
<td>7, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency range</td>
<td>1895 - 1915</td>
<td>-15.5</td>
<td>5</td>
<td>7, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency range</td>
<td>1900 - 1915</td>
<td>-15.5</td>
<td>5</td>
<td>6,8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency range</td>
<td>1915 - 1920</td>
<td>+1.6</td>
<td>5</td>
<td>6,7,8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency range</td>
<td>1884.5 - 1915.7</td>
<td>-41</td>
<td>0.3</td>
<td>4, 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency range</td>
<td>1839.9 - 1879.9</td>
<td>-50</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.5-1.
NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd or 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RE within the transmission bandwidth (see Figure 5.6-1) for which the 2nd or 3rd harmonic, i.e., the frequency equal to two or three times the frequency of that RE, is within the measurement bandwidth (MBW).

NOTE 3: To meet these requirements some restriction will be needed for either the operating band or protected band.
NOTE 4: Applicable when CA_NS_01 in section 6.6.3.3A.1 is signalled by the network.
NOTE 5: Applicable when co-existence with PHS system operating in 1884.5-1915.7MHz.
NOTE 6: Applicable when CA_NS_02 in section 6.6.3.3A.2 is signalled by the network.
NOTE 7: Applicable when CA_NS_03 in section 6.6.3.3A.3 is signalled by the network.
NOTE 8: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.
NOTE 9: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3 Additional spurious emissions

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.6.3.3.1 Minimum requirement (network signalled value "NS_05")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.1-1: Additional requirements (PHS)

<table>
<thead>
<tr>
<th>Frequency band (MHz)</th>
<th>Channel bandwidth / Spectrum emission limit (dBm)</th>
<th>Measurement bandwidth</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 MHz</td>
<td>10 MHz</td>
<td>15 MHz</td>
</tr>
<tr>
<td>1884.5 ≤ f ≤ 1915.7</td>
<td>-41</td>
<td>-41</td>
<td>-41</td>
</tr>
</tbody>
</table>

NOTE 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned, where channel BW is as defined in subclause 5.6. Additional restrictions apply for operations below this point.
The requirements in Table 6.6.3.3.1-1 apply with the additional restrictions specified in Table 6.6.3.3.1-2 when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is less than the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned.

<table>
<thead>
<tr>
<th>15 MHz channel bandwidth with f_c = 1932.5 MHz</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RB_{start}</td>
<td>0-7</td>
</tr>
<tr>
<td>L_{CRB}</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20 MHz channel bandwidth with f_c = 1930 MHz</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RB_{start}</td>
<td>0-23</td>
</tr>
<tr>
<td>L_{CRB}</td>
<td>N/A</td>
</tr>
</tbody>
</table>

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

6.6.3.3.2 Minimum requirement (network signalled value “NS_07”)

When “NS_07” is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

<table>
<thead>
<tr>
<th>Frequency band (MHz)</th>
<th>Channel bandwidth / Spectrum emission limit (dBm)</th>
<th>Measurement bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>769 ≤ f ≤ 775</td>
<td>-57</td>
<td>6.25 kHz</td>
</tr>
</tbody>
</table>

NOTE: The emissions measurement shall be sufficiently power averaged to ensure standard deviation < 0.5 dB.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (6.25 kHz).

6.6.3.3.3 Minimum requirement (network signalled value “NS_08”)

When “NS 08” is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

<table>
<thead>
<tr>
<th>Frequency band (MHz)</th>
<th>Channel bandwidth / Spectrum emission limit (dBm)</th>
<th>Measurement bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5MHz</td>
<td>10MHz</td>
<td>15MHz</td>
</tr>
<tr>
<td>860 ≤ f ≤ 890</td>
<td>-40</td>
<td>-40</td>
</tr>
</tbody>
</table>

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).
6.6.3.3.4 Minimum requirement (network signalled value “NS_09”)

When “NS 09” is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.4-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

<table>
<thead>
<tr>
<th>Frequency band (MHz)</th>
<th>Channel bandwidth / Spectrum emission limit (dBm)</th>
<th>Measurement bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5MHz</td>
<td>10MHz</td>
</tr>
<tr>
<td>1475.9 ≤ f ≤ 1510.9</td>
<td>-35</td>
<td>-35</td>
</tr>
</tbody>
</table>

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

NOTE 2: To improve measurement accuracy, A-MPR values for NS_09 specified in Table 6.2.4-1 in subclause 6.2.4 are derived based on both the above NOTE 1 and 100 kHz RBW.

6.6.3.3A Additional spurious emissions for CA

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell reconfiguration message.

6.6.3.3A.1 Minimum requirement for CA_1C (network signalled value "CA_NS_01")

When "CA_NS_01" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

<table>
<thead>
<tr>
<th>Protected band</th>
<th>Frequency range (MHz)</th>
<th>Maximum Level (dBm)</th>
<th>MBW (MHz)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-UTRA band 34</td>
<td>F_{DL_low} - F_{DL_high}</td>
<td>-50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>1884.5 - 1915.7</td>
<td>-41</td>
<td>0.3</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE 1: Applicable when the aggregated channel bandwidth is confined within frequency range 1940 – 1980 MHz

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

6.6.3.3A.2 Minimum requirement for CA_1C (network signalled value "CA_NS_02")

When "CA_NS_02" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

<table>
<thead>
<tr>
<th>Protected band</th>
<th>Frequency range (MHz)</th>
<th>Maximum Level (dBm)</th>
<th>MBW (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-UTRA band 34</td>
<td>F_{DL_low} - F_{DL_high}</td>
<td>-50</td>
<td>1</td>
</tr>
<tr>
<td>Frequency range</td>
<td>1900 - 1915</td>
<td>-15.5</td>
<td>5</td>
</tr>
<tr>
<td>Frequency range</td>
<td>1915 - 1920</td>
<td>+1.6</td>
<td>+1.6</td>
</tr>
</tbody>
</table>
6.6.3.3A.3 Minimum requirement for CA_1C (network signalled value "CA_NS_03")

When "CA_NS_03" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.3-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

<table>
<thead>
<tr>
<th>Protected band</th>
<th>Frequency range (MHz)</th>
<th>Maximum Level (dBm)</th>
<th>MBW (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-UTRA band 34</td>
<td>F_{DL, low} - F_{DL, high}</td>
<td>-50</td>
<td>1</td>
</tr>
<tr>
<td>Frequency range</td>
<td>1880 - 1895</td>
<td>-40</td>
<td>1</td>
</tr>
<tr>
<td>Frequency range</td>
<td>1895 - 1915</td>
<td>-15.5</td>
<td>5</td>
</tr>
<tr>
<td>Frequency range</td>
<td>1915 - 1920</td>
<td>+1.6</td>
<td>5</td>
</tr>
</tbody>
</table>

6.6A Void

<reserved for future use>

6.6.3B Spurious emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.3 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-1.

For single-antenna port scheme, the requirements in subclause 6.6.3 apply.

6.6A Void

6.6B Void

6.7 Transmit intermodulation

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.7.1 Minimum requirement

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through E-UTRA rectangular filter with measurement bandwidth shown in Table 6.7.1-1.

The requirement of transmitting intermodulation is prescribed in Table 6.7.1-1.
Table 6.7.1-1: Transmit Intermodulation

<table>
<thead>
<tr>
<th>BW Channel (UL)</th>
<th>5MHz</th>
<th>10MHz</th>
<th>15MHz</th>
<th>20MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interference Signal Frequency Offset</td>
<td>5MHz</td>
<td>10MHz</td>
<td>10MHz</td>
<td>20MHz</td>
</tr>
<tr>
<td>Interference CW Signal Level</td>
<td>-40dBC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement bandwidth</td>
<td>4.5MHz</td>
<td>4.5MHz</td>
<td>9.0MHz</td>
<td>9.0MHz</td>
</tr>
</tbody>
</table>

6.7.1A Minimum requirement for CA

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product on both component carriers when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through rectangular filter with measurement bandwidth shown in Table 6.7.1A-1.

For intra-band contiguous carrier aggregation the requirement of transmitting intermodulation is specified in Table 6.7.1A-1.

Table 6.7.1A-1: Transmit Intermodulation

<table>
<thead>
<tr>
<th>CA bandwidth class(UL)</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interference Signal Frequency Offset</td>
<td>BW\text{Channel, CA}</td>
</tr>
<tr>
<td>Interference CW Signal Level</td>
<td>-40dBC</td>
</tr>
<tr>
<td>Intermodulation Product</td>
<td>-29dBC</td>
</tr>
<tr>
<td>Measurement bandwidth</td>
<td>BW\text{Channel, CA}</td>
</tr>
</tbody>
</table>

6.7.1B Minimum requirement for UL-MIMO

For UE supporting UL-MIMO, the transmit intermodulation requirements are specified at each transmit antenna connector and the wanted signal is defined as the sum of output power at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.7.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.7.1 apply.
6.8 Void

6.8.1 Void

6.8A Void

6.8B Time alignment error for UL-MIMO

For UE(s) with multiple transmit antenna connectors supporting UL-MIMO, this requirement applies to frame timing differences between transmissions on multiple transmit antenna connectors in the closed-loop spatial multiplexing scheme.

The time alignment error (TAE) is defined as the average frame timing difference between any two transmissions on different transmit antenna connectors.

6.8B.1 Minimum Requirements

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 ns.

7 Receiver characteristics

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UE(s) with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective sections below.

With the exception of subclause 7.3, the requirements shall be verified with the network signalling value NS_01 configured (Table 6.2.4-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1

7.2 Diversity characteristics

The requirements in Section 7 assume that the receiver is equipped with two Rx port as a baseline. These requirements apply to all UE categories unless stated otherwise. Requirements for 4 ports are FFS. With the exception of subclause 7.9 all requirements shall be verified by using both (all) antenna ports simultaneously.

7.3 Reference sensitivity power level

The reference sensitivity power level REFSENS is the minimum mean power applied to both the UE antenna ports at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.
7.3.1 Minimum requirements (QPSK)

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2

<table>
<thead>
<tr>
<th>Channel bandwidth</th>
<th>E-UTRA Band</th>
<th>1.4 MHz (dBm)</th>
<th>3 MHz (dBm)</th>
<th>5 MHz (dBm)</th>
<th>10 MHz (dBm)</th>
<th>15 MHz (dBm)</th>
<th>20 MHz (dBm)</th>
<th>Duplex Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-102.7</td>
<td>-99.7</td>
<td>-98</td>
<td>-95</td>
<td>-93.2</td>
<td>-92</td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-101.7</td>
<td>-98.7</td>
<td>-97</td>
<td>-94</td>
<td>-92.2</td>
<td>-91</td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-104.7</td>
<td>-101.7</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-103.2</td>
<td>-100.2</td>
<td>-98</td>
<td>-95</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-100</td>
<td>-97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-98</td>
<td>-95</td>
<td>-93.2</td>
<td>-92</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-102.2</td>
<td>-99.2</td>
<td>-97</td>
<td>-94</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-99</td>
<td>-96</td>
<td>-94.2</td>
<td>-93</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-100</td>
<td>-97</td>
<td></td>
<td></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-101.7</td>
<td>-98.7</td>
<td>-97</td>
<td>-94</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-97</td>
<td>-94</td>
<td></td>
<td></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-97</td>
<td>-94</td>
<td></td>
<td></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>-97</td>
<td>-94</td>
<td></td>
<td></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-97</td>
<td>-94</td>
<td></td>
<td></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-97</td>
<td>-94</td>
<td>-91.2</td>
<td>-90</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-97</td>
<td>-94</td>
<td>-92.2</td>
<td>-91</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-104.7</td>
<td>-101.7</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-100</td>
<td>-97</td>
<td></td>
<td></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-101.2</td>
<td>-98.2</td>
<td>-96.5</td>
<td>-93.5</td>
<td>-91.7</td>
<td>-90.5</td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-106.2</td>
<td>-102.2</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>TDD</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-106.2</td>
<td>-102.2</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>TDD</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>-100</td>
<td>-97</td>
<td>-95.2</td>
<td>-94</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>-98</td>
<td>-95</td>
<td>-93.2</td>
<td>-92</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>-99</td>
<td>-96</td>
<td>-94.2</td>
<td>-93</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>-99</td>
<td>-96</td>
<td>-94.2</td>
<td>-93</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

NOTE 3: The signal power is specified per port

NOTE 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

NOTE 5: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.
The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.1-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.1-2.

NOTE: Table 7.3.1-2 is intended for conformance tests and does not necessarily reflect the operational conditions of the network, where the number of uplink and downlink allocated resource blocks will be practically constrained by other factors. Typical receiver sensitivity performance with HARQ retransmission enabled and using a residual BLER metric relevant for e.g. Speech Services is given in the Annex X (informative).

For the UE which supports inter-band carrier aggregation configuration in Table 7.3.1-1A with uplink in one E-UTRA band, the minimum requirement for reference sensitivity in Table 7.3.1-1 shall be increased by the amount given in $\Delta R_{IB,c}$ in Table 7.3.1-1A for the applicable E-UTRA bands.

Table 7.3.1-1A: $\Delta R_{IB,c}$

<table>
<thead>
<tr>
<th>Inter-band CA Configuration</th>
<th>E-UTRA Band</th>
<th>$\Delta R_{IB,c}$ [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA_1A-5A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

NOTE 2: The above additional tolerances also apply in intra-band CA and non-aggregated operation for the supported E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

NOTE 3: In case the UE supports more than one of the above inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one inter-band carrier aggregation configurations then:

- When the E-UTRA operating band frequency range is \leq 1GHz, the applicable additional tolerance shall be the average of the tolerances in Table 7.3.1-1A, truncated to one decimal place that would apply for that operating band among the supported CA configurations. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported carrier aggregation configurations involving such band shall be applied.

- When the E-UTRA operating band frequency range is >1GHz, the applicable additional tolerance shall be the maximum tolerance in Table 7.3.1-1A that would apply for that operating band among the supported CA configurations.

NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and another band is >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.
Table 7.3.1-2: Uplink configuration for reference sensitivity

<table>
<thead>
<tr>
<th>E-UTRA Band / Channel bandwidth / NRB / Duplex mode</th>
<th>1.4 MHz</th>
<th>3 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
<th>Duplex Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>50<sup>1</sup></td>
<td>50<sup>1</sup></td>
<td>FDD</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>50<sup>1</sup></td>
<td>50<sup>1</sup></td>
<td>FDD</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>FDD</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>25<sup>1</sup></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>75<sup>1</sup></td>
<td>FDD</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75<sup>1</sup></td>
<td>FDD</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>25<sup>1</sup></td>
<td>FDD</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>50<sup>1</sup></td>
<td>50<sup>1</sup></td>
<td>FDD</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>FDD</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>25</td>
<td>25<sup>1</sup></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
<td>20<sup>1</sup></td>
<td>20<sup>1</sup></td>
<td>FDD</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>20<sup>1</sup></td>
<td>20<sup>1</sup></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>15<sup>1</sup></td>
<td>15<sup>1</sup></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>20<sup>1</sup></td>
<td>20<sup>1</sup></td>
<td>FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>25</td>
<td>25<sup>1</sup></td>
<td>25<sup>1</sup></td>
<td>FDD</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>25</td>
<td>25<sup>1</sup></td>
<td>25<sup>1</sup></td>
<td>FDD</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>25</td>
<td>20<sup>1</sup></td>
<td>20<sup>3</sup></td>
<td>20<sup>3</sup></td>
<td>FDD</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>25</td>
<td>25<sup>1</sup></td>
<td>25<sup>1</sup></td>
<td>FDD</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>50<sup>1</sup></td>
<td>50<sup>1</sup></td>
<td>FDD</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>50<sup>1</sup></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>TDD</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>TDD</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>TDD</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>TDD</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>TDD</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>TDD</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>TDD</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>TDD</td>
</tr>
</tbody>
</table>

Note 1: ¹ refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

Note 2: For the UE which supports both Band 11 and Band 21 the uplink configuration for reference sensitivity is FFS.

Note 3: ³ refers to Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16.

Unless given by Table 7.3.1-3, the minimum requirements specified in Tables 7.3.1-1 and 7.3.1-2 shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.
Table 7.3.1-3: Network signalling value for reference sensitivity

<table>
<thead>
<tr>
<th>E-UTRA Band</th>
<th>Network Signalling value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NS_03</td>
</tr>
<tr>
<td>4</td>
<td>NS_03</td>
</tr>
<tr>
<td>10</td>
<td>NS_03</td>
</tr>
<tr>
<td>12</td>
<td>NS_06</td>
</tr>
<tr>
<td>13</td>
<td>NS_06</td>
</tr>
<tr>
<td>14</td>
<td>NS_06</td>
</tr>
<tr>
<td>17</td>
<td>NS_06</td>
</tr>
<tr>
<td>19</td>
<td>NS_08</td>
</tr>
<tr>
<td>21</td>
<td>NS_09</td>
</tr>
<tr>
<td>23</td>
<td>NS_03</td>
</tr>
</tbody>
</table>

7.3.1A Minimum requirements (QPSK) for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the throughput shall be ≥ 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2. The reference sensitivity is defined to be met with both downlink component carriers active and either of the uplink carriers active. The UE shall meet the requirements specified in subclause 7.3.1.

For intra-band contiguous carrier aggregation the throughput of each component carrier shall be ≥ 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1A-1. Table 7.3.1A-1 specifies the maximum number of allocated uplink resource blocks for which the intra-band contiguous carrier aggregation reference sensitivity requirement shall be met. The PCC and SCC allocations follow Table 7.3.1A-1 and form a contiguous allocation where TX–RX frequency separations are as defined in Table 5.7.4-1. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2 and the downlink PCC carrier center frequency shall be configured closer to uplink operating band than the downlink SCC center frequency.

Table 7.3.1A-1: Intra-band CA uplink configuration for reference sensitivity

<table>
<thead>
<tr>
<th>CA configuration / CC combination / NRB_agg / Duplex mode</th>
<th>CA configuration</th>
<th>100RB+50RB</th>
<th>75RB+75RB</th>
<th>100RB+100RB</th>
<th>Duplex Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCC</td>
<td>SCC</td>
<td>PCC</td>
<td>SCC</td>
<td>PCC</td>
</tr>
<tr>
<td>CA_1C</td>
<td>N/A</td>
<td>N/A</td>
<td>75</td>
<td>54</td>
<td>100</td>
</tr>
<tr>
<td>CA_40C</td>
<td>100</td>
<td>50</td>
<td>75</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

NOTE 1: The carrier centre frequency of SCC in the UL operating band is configured closer to the DL operating band.
NOTE 2: The transmitted power over both PCC and SCC shall be set to P_{UMAX} as defined in subclause 6.2.5A.
NOTE 3: The UL resource blocks in both PCC and SCC shall be confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

7.3.1B Minimum requirements (QPSK) for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.3.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P_{UMAX} is the total transmitter power over the two transmit antenna connectors.
7.3.2 Void

7.4 Maximum input level

This is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel.

7.4.1 Minimum requirements

The throughput shall be ≥ 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1-1

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>Channel bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power in Transmission</td>
<td></td>
<td>1.4 MHz</td>
</tr>
<tr>
<td>Bandwidth Configuration</td>
<td></td>
<td>3 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 MHz</td>
</tr>
<tr>
<td>NOTE 1: The transmitter shall be set to 4dB below P_{CMAX,L} at the minimum uplink configuration specified in Table 7.3.1-2 with P_{CMAX,L} as defined in subclause 6.2.5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 2: Reference measurement channel is Annex A.3.2: 64QAM, R=3/4 variant with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.4.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the maximum input level is defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.4.1 for each component carrier while both downlink carriers are active.

For intra-band contiguous carrier aggregation maximum input level is defined as a mean power received at the UE antenna port over the aggregated channel bandwidth, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel over each component carrier. The downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.4.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The throughput shall be ≥ 95% of the maximum throughput of the reference measurement channels over each component carrier as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1A-1.

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>CA Bandwidth Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power in Transmission</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Aggregated Bandwidth Configuration</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>NOTE 1: The transmitter shall be set to 4dB below P_{CMAX,L} or P_{CMAX,L,CA} as defined in subclause 6.2.5A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 2: Reference measurement channel is Annex A.3.2: 64QAM, R=3/4 variant with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.4.1B Minimum requirements for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing, the minimum requirements in Clause 7.4.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter $P_{\text{CMAX,L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.4A Void

7.4A.1 Void

7.5 Adjacent Channel Selectivity (ACS)

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.5.1 Minimum requirements

The UE shall fulfil the minimum requirement specified in Table 7.5.1-1 for all values of an adjacent channel interferer up to –25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.1-2 and Table 7.5.1-3 where the throughput shall be ≥ 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

Table 7.5.1-1: Adjacent channel selectivity

<table>
<thead>
<tr>
<th>Channel bandwidth</th>
<th>1.4 MHz</th>
<th>3 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS dB</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>30</td>
<td>27</td>
</tr>
</tbody>
</table>

Table 7.5.1-2: Test parameters for Adjacent channel selectivity, Case 1

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>Channel bandwidth</th>
<th>1.4 MHz</th>
<th>3 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power in Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>REFSENS + 14 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{\text{interferer}}$</td>
<td>dBm</td>
<td>+45.5dB</td>
<td>+45.5dB</td>
<td>+45.5dB</td>
<td>+45.5dB</td>
<td>+45.5dB</td>
<td>+45.5dB</td>
<td>+45.5dB</td>
</tr>
<tr>
<td>BW$_{\text{interferer}}$</td>
<td>MHz</td>
<td>1.4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$F_{\text{interferer}}$ (offset)</td>
<td>MHz</td>
<td>1.4+0.0025</td>
<td>3+0.0075</td>
<td>5+0.0025</td>
<td>7.5+0.0075</td>
<td>10+0.0125</td>
<td>12.5+0.0025</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.4-0.0025</td>
<td>-3.0075</td>
<td>-5.0025</td>
<td>-7.5-0.0075</td>
<td>-10-0.0125</td>
<td>-12.5-0.0025</td>
<td>/</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 4dB below $P_{\text{CMAX,L}}$ at the minimum uplink configuration specified in Table 7.3.1-2 with $P_{\text{CMAX,L}}$ as defined in subclause 6.2.5.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.
Table 7.5.1-3: Test parameters for Adjacent channel selectivity, Case 2

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>Channel bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.4 MHz</td>
</tr>
<tr>
<td>Power in Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>-56.5</td>
</tr>
<tr>
<td>P_{interferer}</td>
<td>dBm</td>
<td>-25</td>
</tr>
<tr>
<td>BW_{interferer} (offset)</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.4</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 24dB below P_{CMAX,L} at the minimum uplink configuration specified in Table 7.3.1-2 with P_{CMAX,L} as defined in subclause 6.2.5.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex 3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

7.5.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band, the adjacent channel requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.5.1 for each component carrier while both downlink carriers are active.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.5.1A-2 or 7.5.1A-3 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall meet the minimum requirement specified in Table 7.5.1A-1 for an adjacent channel interferer on either side of the aggregated downlink signal at a specified frequency offset and for an interferer power up to -25 dBm. The throughput of each carrier shall be ≥ 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5.1A-2 and 7.5.1A-3.

Table 7.5.1A-1: Adjacent channel selectivity

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>dB</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.5.1A-2: Test parameters for Adjacent channel selectivity, Case 1

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>CA Bandwidth Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power per CC in Aggregated</td>
<td></td>
<td>REFSENS + 14 dB</td>
</tr>
<tr>
<td>Transmission Bandwidth</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>BW_{interferer}</td>
<td>MHz</td>
<td>Aggregated power + 22.5 dB</td>
</tr>
<tr>
<td>F_{interferer} (offset)</td>
<td>MHz</td>
<td>2.5 + F_{offset}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.5 - F_{offset}</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX,L} or P_{CMAX,L,CA} as defined in subclause 6.2.5A.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

NOTE 3: The F_{interferer} (offset) is relative to the center frequency of the adjacent CC being tested and shall be further adjusted to [F_{interferer} /0.015 + 0.5][0.015 + 0.0075 MHz] to be offset from the sub-carrier raster.
Table 7.5.1 A-3: Test parameters for Adjacent channel selectivity, Case 2

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>CA Bandwidth Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power per CC in Aggregated Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>-50.5</td>
</tr>
<tr>
<td>(P_{\text{interferer}})</td>
<td>dBm</td>
<td>-25</td>
</tr>
<tr>
<td>(\text{BW}_{\text{interferer}})</td>
<td>MHz</td>
<td>5</td>
</tr>
<tr>
<td>(F_{\text{interferer (offset)}})</td>
<td>MHz</td>
<td>2.5 + (F_{\text{offset}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.5 - (F_{\text{offset}})</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 24dB below \(P_{\text{CMAX,L}} \) or \(P_{\text{CMAX,L,CA}} \) as defined in subclause 6.2.5A.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex 3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

NOTE 3: The \(F_{\text{interferer (offset)}} \) is relative to the center frequency of the adjacent CC being tested and shall be further adjusted to \(\left\lfloor \frac{0.015 + 0.5}{0.015 + 0.0075} \right\rfloor \) MHz to be offset from the sub-carrier raster.

7.5.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.5.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter \(P_{\text{CMAX,L}} \) is defined as the total transmitter power over the two transmit antenna connectors.

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

7.6.1 In-band blocking

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels.

7.6.1.1 Minimum requirements

The throughput shall be \(\geq 95\% \) of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1-1 and 7.6.1.1-2.

<table>
<thead>
<tr>
<th>Rx parameter</th>
<th>Units</th>
<th>Channel bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power in Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REFSENS + channel bandwidth specific value below</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 6 6 6 7 9</td>
</tr>
<tr>
<td>BW_{interferer}</td>
<td>MHz</td>
<td>1.4 3 5 5 5 5</td>
</tr>
<tr>
<td>(F_{\text{offset, case 1}})</td>
<td>MHz</td>
<td>2.1 + 0.0125 4.5 + 0.0075 7.5 + 0.0125 7.5 + 0.0025 7.5 + 0.0075 7.5 + 0.0125</td>
</tr>
<tr>
<td>(F_{\text{offset, case 2}})</td>
<td>MHz</td>
<td>3.5 + 0.0075 7.5 + 0.0075 12.5 + 0.0075 12.5 + 0.0125 12.5 + 0.0025 12.5 + 0.0075</td>
</tr>
</tbody>
</table>
NOTE 1: The transmitter shall be set to 4dB below $P_{\text{CMAX, L}}$ at the minimum uplink configuration specified in Table 7.3.1-2 with $P_{\text{CMAX, L}}$ as defined in subclause 6.2.5.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

Table 7.6.1.1-2: In-band blocking

<table>
<thead>
<tr>
<th>E-UTRA band</th>
<th>Parameter</th>
<th>Unit</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_{\text{Interferer}}$</td>
<td>dBM</td>
<td>-56</td>
<td>-44</td>
<td>-30</td>
<td>-30</td>
</tr>
<tr>
<td></td>
<td>$F_{\text{Interferer}}$ (offset)</td>
<td>MHz</td>
<td>$= -\frac{\text{BW}}{2} - F_{\text{offset, case 1}}$ & $\geq +\frac{\text{BW}}{2} + F_{\text{offset, case 1}}$</td>
<td>$\leq -\frac{\text{BW}}{2} - F_{\text{offset, case 2}}$ & $\geq +\frac{\text{BW}}{2} + F_{\text{offset, case 2}}$</td>
<td>$-\frac{\text{BW}}{2} - 15$ & $-\frac{\text{BW}}{2} - 9$</td>
<td>$-\frac{\text{BW}}{2} - 10$</td>
</tr>
<tr>
<td>1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 19, 20, 21, 22, 23, 25, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43</td>
<td>$F_{\text{Interferer}}$</td>
<td>MHz</td>
<td>(Note 2)</td>
<td>$F_{\text{DL, low}} \sim 15$ to $F_{\text{DL, high}} + 15$</td>
<td>$F_{\text{DL, low}} \sim 15$ to $F_{\text{DL, high}} + 15$</td>
<td>$F_{\text{DL, low}} \sim 10$ to $F_{\text{DL, high}} + 15$</td>
</tr>
<tr>
<td>12</td>
<td>$F_{\text{Interferer}}$</td>
<td>MHz</td>
<td>(Note 2)</td>
<td>$F_{\text{DL, low}} \sim 10$ to $F_{\text{DL, high}} + 15$</td>
<td>$F_{\text{DL, low}} \sim 15$ and $F_{\text{DL, low}} \sim 9$ to $F_{\text{DL, high}} + 15$</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>$F_{\text{Interferer}}$</td>
<td>MHz</td>
<td>(Note 2)</td>
<td>$F_{\text{DL, low}} \sim 9$ to $F_{\text{DL, high}} + 15$</td>
<td>$F_{\text{DL, low}} \sim 9$ to $F_{\text{DL, high}} + 15$</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band.

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:
- a. the carrier frequency $-\frac{\text{BW}}{2} - F_{\text{offset, case 1}}$ and
- b. the carrier frequency $+\frac{\text{BW}}{2} + F_{\text{offset, case 1}}$

NOTE 3: $F_{\text{Interferer}}$ range values for unwanted modulated interfering signal are interferer center frequencies

NOTE 4: Case 3 and Case 4 only apply to assigned UE channel bandwidth of 5 MHz

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{\text{Interferer}}$ power defined in Table 7.6.1.1-2 is increased by the amount given by $\Delta R_{\text{IB,c}}$ in Table 7.3.1-1A.

7.6.1.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the in-band blocking requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.1.1 for each component carrier while both downlink carriers are active. For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{\text{Interferer}}$ power defined in Table 7.6.1.1-2 is increased by the amount given by $\Delta R_{\text{IB,c}}$ in Table 7.3.1-1A.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.6.1.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Tables 7.6.1.1A-1 and 7.6.1.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1A-1 and 7.6.1.1A-2.
Table 7.6.1.1A-1: In band blocking parameters

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>CA Bandwidth Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power per CC in Aggregated Transmission</td>
<td>dBm</td>
<td>REFSENS + CA Bandwidth Class specific value below</td>
</tr>
<tr>
<td>Bandwidth Configuration</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>BW_interferer</td>
<td>MHz</td>
<td>12</td>
</tr>
<tr>
<td>F_offset, case 1</td>
<td>MHz</td>
<td>5</td>
</tr>
<tr>
<td>F_offset, case 2</td>
<td>MHz</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 4dB below P_CMAX_L or P_CMAX_L_CA as defined in subclause 6.2.5A.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.

Table 7.6.1.1A-2: In-band blocking

<table>
<thead>
<tr>
<th>CA configuration</th>
<th>Parameter</th>
<th>Unit</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA_1C, CA_40C</td>
<td>P_interferer</td>
<td>dBm</td>
<td>-56</td>
<td>-44</td>
</tr>
<tr>
<td></td>
<td>F_interferer</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F_offset - F_offset, case 1</td>
<td>F_offset + F_offset, case 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ F_offset + F_offset, case 2</td>
<td>≤ F_offset - F_offset, case 2</td>
</tr>
<tr>
<td></td>
<td>F_interferer</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA_1C, CA_40C</td>
<td>MHz</td>
<td></td>
<td>F_DL_low - 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F_DL_high + 15</td>
</tr>
</tbody>
</table>

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band.

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:
a. the carrier frequency - F_offset - F_offset, case 1 and
b. the carrier frequency + F_offset + F_offset, case 1

NOTE 3: F_offset is the frequency offset from the center frequency of the adjacent CC being tested to the edge of aggregated channel bandwidth.

NOTE 4: The F_interferer (offset) is relative to the center frequency of the adjacent CC being tested and shall be further adjusted to \[F_{\text{interferer}} / 0.015 + 0.5 \] 0.015 + 0.0075 MHz to be offset from the sub-carrier raster.

7.6.2 Out-of-band blocking

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band. For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in subclause 7.5.1 and subclause 7.6.1 shall be applied.

7.6.2.1 Minimum requirements

The throughput shall be \(\geq 95\% \) of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1-2.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to \(\max(24, 6 \cdot \left\lceil N_{RB} / 6 \right\rceil) \) exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where \(N_{RB} \) is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.6-1). For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to \(\max(8, \left\lceil (N_{RB} + 2 \cdot L_{CRBs}) / 8 \right\rceil) \) exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where \(N_{RB} \) is the number of resource blocks in the downlink transmission bandwidth configurations (see Figure 5.6-1) and \(L_{CRBs} \) is the
number of resource blocks allocated in the uplink. For these exceptions the requirements of clause 7.7 spurious response are applicable.

Table 7.6.2.1-1: Out-of-band blocking parameters

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>Channel bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power in Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>REFSENS + channel bandwidth specific value below</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 4dB below P_CMAX, L at the minimum uplink configuration specified in Table 7.3.1-2 with P_CMAX, L as defined in subclause 6.2.5.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.

Table 7.6.2.1-2: Out of band blocking

<table>
<thead>
<tr>
<th>E-UTRA band</th>
<th>Parameter</th>
<th>Units</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>range 1</td>
</tr>
<tr>
<td>1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43</td>
<td>P_interferer</td>
<td>dBm</td>
<td>-44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F_DL_low -15 to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F_DL_low -60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MHz</td>
<td>F_DL_high +15 to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F_DL_high +60</td>
</tr>
<tr>
<td>2, 5, 12, 17</td>
<td>F_interferer</td>
<td>MHz</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTE 1: For the UE which supports both Band 11 and Band 21 the out of blocking is FFS.

7.6.2.1A Minimum requirements for CA

For inter-band carrier aggregation with the uplink assigned to one E-UTRA band, the out-of-band blocking requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The throughput in the downlink measured shall be ≥ 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1A-0. The UE shall meet these requirements for each component carrier while both downlink carriers are active.
Table 7.6.2.1A-0: out-of-band blocking for inter-band carrier aggregation with one active uplink

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Range 1</th>
<th>Range 2</th>
<th>Range 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{wanted}</td>
<td>dBm</td>
<td>$-44 + \Delta R_{\text{IB,C}}$</td>
<td>$-30 + \Delta R_{\text{IB,C}}$</td>
<td>$-15 + \Delta R_{\text{IB,C}}$</td>
</tr>
<tr>
<td>$P_{\text{interferer}}$</td>
<td>dBm</td>
<td>$-60 < f - \text{FDL}_\text{Low(1)} < -15$</td>
<td>$-85 < f - \text{FDL}_\text{Low(1)} < -60$</td>
<td>$1 \leq f \leq \text{FDL}_\text{Low(1)} - 85$</td>
</tr>
<tr>
<td>(CW)</td>
<td>MHz</td>
<td>$-60 < f - \text{FDL}_\text{Low(2)} < -15$</td>
<td>$-85 < f - \text{FDL}_\text{Low(2)} < -60$</td>
<td>$\text{FDL}_\text{High(1)} + 85 \leq f$</td>
</tr>
<tr>
<td>or</td>
<td>MHz</td>
<td>$15 < f - \text{FDL}_\text{High(1)} < 60$</td>
<td>$60 \leq f - \text{FDL}_\text{High(1)} < 85$</td>
<td>$\text{FDL}_\text{High(1)} + 85 \leq f$</td>
</tr>
<tr>
<td>or</td>
<td>MHz</td>
<td>$15 < f - \text{FDL}_\text{High(2)} < 60$</td>
<td>$60 \leq f - \text{FDL}_\text{High(2)} < 85$</td>
<td>$\text{FDL}_\text{High(2)} + 85 \leq f$</td>
</tr>
</tbody>
</table>

NOTE 1: $\text{FDL}_\text{Low(1)}$ and $\text{FDL}_\text{High(1)}$ denote the respective lower and upper frequency limits of the lower operating band, $\text{FDL}_\text{Low(2)}$ and $\text{FDL}_\text{High(2)}$ the respective lower and upper frequency limits of the upper operating band.

NOTE 2: For $\text{FDL}_\text{Low(2)} - \text{FDL}_\text{High(1)} < 145$ MHz and $P_{\text{interferer}}$ in $\text{FDL}_\text{High(1)} < f < \text{FDL}_\text{Low(2)}$, $P_{\text{interferer}}$ can be in both Range 1 and Range 2. Then the lower of the $P_{\text{interferer}}$ applies.

NOTE 3: For $\text{FDL}_\text{Low(1)} - 15$ MHz $\leq f \leq \text{FDL}_\text{High(1)} + 15$ MHz and $\text{FDL}_\text{Low(2)} - 15$ MHz $\leq f \leq \text{FDL}_\text{High(2)} + 15$ MHz the appropriate adjacent channel selectivity and in-band blocking in the respective subclauses 7.5.1A and 7.6.1.1A shall be applied.

NOTE 4: $\Delta R_{\text{IB,C}}$ according to Table 7.3.1-1A applies when serving cell c is measured.

For Table 7.6.2.1A-0 in frequency ranges 1, 2 and 3, up to $\lfloor \frac{24}{6 \cdot \lfloor \frac{N_{RB}}{6} \rfloor} \rfloor$ exceptions per downlink are allowed for spurious response frequencies when measured using a step size of 1 MHz. For these exceptions the requirements in clause 7.1.1A apply.

For intra-band contiguous carrier aggregations the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.6.2.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The UE shall fulfill the minimum requirement in presence of an interfering signal specified in Tables 7.6.2.1A-1 and Tables 7.6.2.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1A-1 and 7.6.2.1A-2.

For Table 7.6.2.1A-2 in frequency range 1, 2 and 3, up to $\lfloor \frac{24}{6 \cdot \lfloor \frac{N_{RB,agg}}{6} \rfloor} \rfloor$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where $N_{RB,agg}$ is the number of aggregated resource blocks in the downlink transmission bandwidth configuration. For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

Table 7.6.2.1A-1: Out-of-band blocking parameters

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>CA Bandwidth Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power per CC in Aggregated Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>REFSENS + CA Bandwidth Class specific value below 9</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 4dB below $P_{\text{CMAX.L}}$ or $P_{\text{CMAX.L CA}}$ as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.
Table 7.6.2.1A-2: Out of band blocking

<table>
<thead>
<tr>
<th>CA configuration</th>
<th>Parameter</th>
<th>Units</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(P_{\text{Interferer}})</td>
<td>dBm</td>
<td>(F_{\text{DL}_{\text{low}}})</td>
</tr>
<tr>
<td>(\text{CA}_1C, \text{CA}_40C)</td>
<td>(F_{\text{DL}_{\text{low}}})</td>
<td>-15 to -60</td>
<td>-15</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{DL}_{\text{high}}})</td>
<td>+15 to +60</td>
<td>+15</td>
</tr>
</tbody>
</table>

7.6.3 Narrow band blocking

This requirement is a measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

7.6.3.1 Minimum requirements

The relative throughput shall be \(\geq 95\% \) of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1-1.

Table 7.6.3.1-1: Narrow-band blocking

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Channel Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{w})</td>
<td>dBm</td>
<td>1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz</td>
</tr>
<tr>
<td>(P_{\text{uw}}) (CW)</td>
<td>dBm</td>
<td>(P_{\text{REFSEN}}) + channel-bandwidth specific value below</td>
</tr>
<tr>
<td>(F_{\text{uw}}) (offset for (\Delta f = 15 \text{ kHz}))</td>
<td>MHz</td>
<td>0.9075 1.7025 2.7075 5.2125 7.7025 10.2075</td>
</tr>
<tr>
<td>(F_{\text{uw}}) (offset for (\Delta f = 7.5 \text{ kHz}))</td>
<td>MHz</td>
<td>-55 -55 -55 -55 -55 -55</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set 4 dB below \(P_{\text{CMAX,L}} \) at the minimum uplink configuration specified in Table 7.3.1-2 with \(P_{\text{CMAX,L}} \) as defined in subclause 6.2.5.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, \(P_{\text{uw}} \) power defined in Table 7.6.3.1-1 is increased by the amount given by \(\Delta R_{\text{IB,C}} \) in Table 7.3.1-1A.

7.6.3.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the narrow-band blocking requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.3.1 for each component carrier while both downlink carriers are active.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.6.3.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfill the minimum requirement in presence of an interfering signal specified in Table 7.6.3.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be \(\geq 95\% \) of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1A-1.
Table 7.6.3.1A-1: Narrow-band blocking

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>CA Bandwidth Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power per CC in Aggregated Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>REFSENS + CA Bandwidth Class specific value below</td>
</tr>
<tr>
<td>P_{uw} (CW)</td>
<td>dBm</td>
<td>-55</td>
</tr>
<tr>
<td>F_{uw} (offset for $\Delta f = 15$ kHz)</td>
<td>MHz</td>
<td>$- \frac{F_{offset} - 0.2}{F_{offset} + 0.2}$</td>
</tr>
<tr>
<td>F_{uw} (offset for $\Delta f = 7.5$ kHz)</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 4dB below $P_{CMAX,L}$ or $P_{CMAX,L,CA}$ as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

NOTE 3: The $F_{interferer}$ (offset) is relative to the center frequency of the adjacent CC being tested and shall be further adjusted to $\left\lfloor 0.015 + 0.5 \left(0.015 + 0.0075 \right) MHz \right\rfloor$ to be offset from the sub-carrier raster.

7.6A Void

<Reserved for future use>

7.6B Blocking characteristics for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.6 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter $P_{CMAX,L}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.7 Spurious response

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in subclause 7.6.2 is not met.

7.7.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2.

<table>
<thead>
<tr>
<th>Rx parameter</th>
<th>Units</th>
<th>Channel bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power in Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>REFSENS + channel bandwidth specific value below</td>
</tr>
<tr>
<td>P_{uw}</td>
<td>dBm</td>
<td>6 6 6 6 7 9</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 4dB below $P_{CMAX,L}$ at the minimum uplink configuration specified in Table 7.3.1-2.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.
Table 7.7.1-2: Spurious response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\text{Interferer}}$ (CW)</td>
<td>dBm</td>
<td>-44</td>
</tr>
<tr>
<td>$F_{\text{Interferer}}$</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, $P_{\text{Interferer}}$ power defined in Table 7.7.1-2 is increased by the amount given by $\Delta R_{\text{IB,c}}$ in Table 7.3.1-1A.

7.7.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the spurious response requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The throughput measured in each downlink with $F_{\text{Interferer}}$ in Table 7.6.2.1A-0 at spurious response frequencies shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2. The UE shall meet these requirements for each component carrier while both downlink carriers are active.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.7.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The throughput of each carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1A-1 and 7.7.1A-2.

Table 7.7.1A-1: Spurious response parameters

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>CA Bandwidth Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power per CC in Aggregated Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>REFSENS + CA Bandwidth Class specific value below</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>NOTE 1: The transmitter shall be set to 4dB below $P_{\text{CMAX,L}}$ or $P_{\text{CMAX,L,CA}}$ as defined in subclause 6.2.5A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.7.1A-2: Spurious response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\text{Interferer}}$ (CW)</td>
<td>dBm</td>
<td>-44</td>
</tr>
<tr>
<td>$F_{\text{Interferer}}$</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

7.7.1B Minimum requirements for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.7.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter $P_{\text{CMAX,L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.8 Intermodulation characteristics

Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.
7.8.1 Wide band intermodulation

The wide band intermodulation requirement is defined following the same principles using modulated E-UTRA carrier and CW signal as interferer.

7.8.1.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1.1 for the specified wanted signal mean power in the presence of two interfering signals.

Table 7.8.1.1-1: Wide band intermodulation

<table>
<thead>
<tr>
<th>Rx Parameter</th>
<th>Units</th>
<th>Channel bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.4 MHz</td>
</tr>
<tr>
<td>Power in Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td>REFSENS + channel bandwidth specific value below</td>
</tr>
<tr>
<td>$P_{\text{Interferer 1}}$ (CW)</td>
<td>dBm</td>
<td>-46</td>
</tr>
<tr>
<td>$P_{\text{Interferer 2}}$ (Modulated)</td>
<td>dBm</td>
<td>-46</td>
</tr>
<tr>
<td>$B_{\text{Interferer 2}}$</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>$F_{\text{Interferer 1}}$ (Offset)</td>
<td>MHz</td>
<td>-BW/2 - 2.1</td>
</tr>
<tr>
<td>$F_{\text{Interferer 2}}$ (Offset)</td>
<td>MHz</td>
<td>2*F_{\text{Interferer 1}}</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L} at the minimum uplink configuration specified in Table 7.3.1-2 with P_{CMAX_L} as defined in subclause 6.2.5.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

NOTE 3: The interfering modulated signal is 5MHz E-UTRA signal as described in Annex D for channel bandwidth ≥ 5MHz.

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{\text{Interferer 1}}$ and $P_{\text{Interferer 2}}$ powers defined in Table 7.8.1.1-1 are increased by the amount given by ΔR_{UBCA} in Table 7.3.1-1A.

7.8.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the wide band intermodulation requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.8.1.1 for each component carrier while both downlink carriers are active.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.8.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.8.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1A-1.
Table 7.8.1A-1: Wide band intermodulation

<table>
<thead>
<tr>
<th>Rx parameter</th>
<th>Units</th>
<th>CA Bandwidth Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power per CC in Aggregated Transmission Bandwidth Configuration</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>$P_{\text{Interferer 1}}$ (CW)</td>
<td>dBm</td>
<td>-46</td>
</tr>
<tr>
<td>$P_{\text{Interferer 2}}$ (Modulated)</td>
<td>dBm</td>
<td>-46</td>
</tr>
<tr>
<td>BW$_{\text{Interferer 2}}$</td>
<td>MHz</td>
<td>5</td>
</tr>
<tr>
<td>$F_{\text{Interferer 1}}$ (Offset)</td>
<td>MHz</td>
<td>$-F_{\text{offset}} + 7.5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+ F_{\text{offset}} + 7.5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2*F_{\text{Interferer 1}}$</td>
</tr>
</tbody>
</table>

NOTE 1: The transmitter shall be set to 4dB below $P_{\text{CMAX,L}}$ or $P_{\text{CMAX,L,CA}}$ as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

NOTE 3: The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 with set-up according to Annex C.3.1.

NOTE 4: The interfering modulated signal is 5MHz E-UTRA signal as described in Annex D for channel bandwidth \geq5MHz

7.8.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.8.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter $P_{\text{CMAX,L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.8.2 Void

7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

7.9.1 Minimum requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.1-1

<table>
<thead>
<tr>
<th>Frequency band</th>
<th>Measurement bandwidth</th>
<th>Maximum level</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>$30\text{MHz} \leq f < 1\text{GHz}$</td>
<td>100 kHz</td>
<td>-57 dBm</td>
<td></td>
</tr>
<tr>
<td>$1\text{GHz} \leq f \leq 12.75\text{GHz}$</td>
<td>1 MHz</td>
<td>-47 dBm</td>
<td></td>
</tr>
<tr>
<td>$12.75\text{GHz} \leq f \leq 5^{\text{th}}$ harmonic of the upper frequency edge of the DL operating band in GHz</td>
<td>1 MHz</td>
<td>-47 dBm</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE 1: Applies only for Band 22, Band 42 and Band 43

NOTE 2: Unused PDCCH resources are padded with resource element groups with power level given by PDCCH_RA/RB as defined in Annex C.3.1.
7.10 Receiver image

7.10.1 Void

7.10.1A Minimum requirements for CA

Receiver image rejection is a measure of a receiver’s ability to receive the E-UTRA signal on one component carrier while it is also configured to receive an adjacent aggregated carrier. Receiver image rejection ratio is the ratio of the wanted received power on a sub-carrier being measured to the unwanted image power received on the same sub-carrier when both sub-carriers are received with equal power at the UE antenna connector.

For intra-band contiguous carrier aggregation the UE shall fulfil the minimum requirement specified in Table 7.10.1A-1 for all values of aggregated input signal up to –22 dBm.

<table>
<thead>
<tr>
<th>CA bandwidth class</th>
<th>Rx parameter</th>
<th>Units</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Receiver image rejection</td>
<td>dB</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 Performance requirement

This clause contains performance requirements for the physical channels specified in TS 36.211 [4]. The performance requirements for the UE in this clause are specified for the measurement channels specified in Annex A.3, the propagation conditions in Annex B and the downlink channels in Annex C.3.2.

Note: For the requirements in the following sections, similar Release 8 and 9 requirements apply for time domain measurements restriction under colliding CRS.

8.1 General

8.1.1 Dual-antenna receiver capability

The performance requirements are based on UE(s) that utilize a dual-antenna receiver.

For all test cases, the SNR is defined as

$$SNR = \frac{\hat{E}_c^{(1)} + \hat{E}_c^{(2)}}{N_{oc}^{(1)} + N_{oc}^{(2)}}$$

where the superscript indicates the receiver antenna connector. The above SNR definition assumes that the REs are not precoded. The SNR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SNR requirement applies for the UE categories and CA capabilities given for each test.

The applicability of the requirements with respect to CA capabilities is given as in Table 8.1.1-1. In case the CA capability is omitted, the requirement is applicable to a UE regardless of its CA capability.

<table>
<thead>
<tr>
<th>CA Capability</th>
<th>CA Capability Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL_X</td>
<td>The requirement is applicable to a UE that indicates a CA bandwidth class X on at least one E-UTRA band.</td>
</tr>
<tr>
<td>CL_X-Y</td>
<td>The requirement is applicable to a UE that indicates CA bandwidth classes X and Y on at least one E-UTRA band combination.</td>
</tr>
</tbody>
</table>

Note: The CA bandwidth classes are defined in Table 5.6A-1

For test cases with more than one component carrier, "Fraction of Maximum Throughput" in the performance requirement refers to the ratio of the sum of throughput values of all component carriers to the sum of the nominal maximum throughput values of all component carriers.

8.1.1.1 Simultaneous unicast and MBMS operations

8.1.1.2 Dual-antenna receiver capability in idle mode

8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols)

8.2.1 FDD (Fixed Reference Channel)

The parameters specified in Table 8.2.1-1 are valid for all FDD tests unless otherwise stated.
Table 8.2.1-1: Common Test Parameters (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-TTI Distance</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Number of HARQ processes per component carrier</td>
<td>Processes</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of HARQ transmission</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3) for QPSK and 16QAM; (0,0,1,2) for 64QAM</td>
</tr>
<tr>
<td>Number of OFDM symbols for PDCCH per component carrier</td>
<td>OFDM symbols</td>
<td>4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths</td>
</tr>
<tr>
<td>Cyclic Prefix</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Cell_ID</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Cross carrier scheduling</td>
<td></td>
<td>Not configured</td>
</tr>
</tbody>
</table>

8.2.1.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.3 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.1.1.1 Minimum Requirement

The requirements are specified in Table 8.2.1.1.1-2, with the addition of the parameters in Table 8.2.1.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.1.1.1-2: Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-5</th>
<th>Test 6-8</th>
<th>Test 9-15</th>
<th>Test 16-18</th>
<th>Test 19-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_1 dB</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ρ_0 dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_∞ at antenna port</td>
<td></td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td></td>
<td>OCNG (Note 2)</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
<td>16QAM</td>
<td>64QAM</td>
<td>16QAM</td>
<td>QPSK</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: $\rho_0 = 0$
Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.
Note 3: For CA test cases, PUCCH format 1b with channel selection is used to feedback ACK/NACK.
Note 4: For CA test cases, the same PDSCH transmission mode is applied to each component carrier.
Table 8.2.1.1.1-2: Minimum performance (FRC)

<table>
<thead>
<tr>
<th>Test</th>
<th>Band-</th>
<th>Reference</th>
<th>OCNG</th>
<th>Propagation</th>
<th>Correlation</th>
<th>Reference value</th>
<th>UE cat.</th>
<th>CA capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>num.</td>
<td>width</td>
<td>channel</td>
<td>pattern</td>
<td>condition</td>
<td>matrix and</td>
<td>Fraction</td>
<td>SNR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>antenna config.</td>
<td>of maximum throughput (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.2 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>-0.4</td>
<td>1-8</td>
</tr>
<tr>
<td>1A</td>
<td>2x10 MHz</td>
<td>R.2 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>-0.4</td>
<td>1-8</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.2 FDD</td>
<td>OP.1 FDD (Note 1)</td>
<td>1x2 Low</td>
<td>ETU70</td>
<td>70</td>
<td>-0.4</td>
<td>1-8</td>
</tr>
<tr>
<td>3</td>
<td>10 MHz</td>
<td>R.2 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>ETU300</td>
<td>70</td>
<td>0.0</td>
<td>1-8</td>
</tr>
<tr>
<td>4</td>
<td>10 MHz</td>
<td>R.2 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>HST</td>
<td>70</td>
<td>-2.4</td>
<td>1-8</td>
</tr>
<tr>
<td>5</td>
<td>1.4 MHz</td>
<td>R.4 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>0.0</td>
<td>1-8</td>
</tr>
<tr>
<td>6</td>
<td>10 MHz</td>
<td>R.3 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>6.7</td>
<td>2-8</td>
</tr>
<tr>
<td>7</td>
<td>10 MHz</td>
<td>R.3 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>6.7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>10 MHz</td>
<td>R.3 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 High</td>
<td>ETU70</td>
<td>70</td>
<td>1.4</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>5 MHz</td>
<td>R.3-1 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 High</td>
<td>ETU300</td>
<td>70</td>
<td>9.4</td>
<td>2-8</td>
</tr>
<tr>
<td>9</td>
<td>3 MHz</td>
<td>R.5 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>17.6</td>
<td>1-8</td>
</tr>
<tr>
<td>10</td>
<td>5 MHz</td>
<td>R.6 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>17.4</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>5 MHz</td>
<td>R.6-1 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>17.5</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>10 MHz</td>
<td>R.7 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>17.7</td>
<td>2-8</td>
</tr>
<tr>
<td>12</td>
<td>10 MHz</td>
<td>R.7-1 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>16.7</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>10 MHz</td>
<td>R.7 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 High</td>
<td>ETU70</td>
<td>70</td>
<td>19.0</td>
<td>2-8</td>
</tr>
<tr>
<td>14</td>
<td>10 MHz</td>
<td>R.7-1 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 High</td>
<td>ETU70</td>
<td>70</td>
<td>18.1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>15 MHz</td>
<td>R.8 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>17.7</td>
<td>2-8</td>
</tr>
<tr>
<td>16</td>
<td>15 MHz</td>
<td>R.8-1 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>16.8</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>20 MHz</td>
<td>R.9 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>17.6</td>
<td>3-8</td>
</tr>
<tr>
<td>18</td>
<td>20 MHz</td>
<td>R.9-2 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>17.3</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>20 MHz</td>
<td>R.9-1 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>16.7</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>3 MHz</td>
<td>R.0 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>ETU70</td>
<td>70</td>
<td>1.9</td>
<td>1-8</td>
</tr>
<tr>
<td>21</td>
<td>10 MHz</td>
<td>R.1 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>ETU70</td>
<td>70</td>
<td>1.9</td>
<td>1-8</td>
</tr>
<tr>
<td>22</td>
<td>20 MHz</td>
<td>R.1 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>1.9</td>
<td>1-8</td>
</tr>
<tr>
<td>23</td>
<td>10 MHz</td>
<td>R.41 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>-5.4</td>
<td>1-8</td>
</tr>
<tr>
<td>24</td>
<td>2x20 MHz</td>
<td>R.42 FDD</td>
<td>OP.1 FDD</td>
<td>1x2 Low</td>
<td>EVA5</td>
<td>70</td>
<td>-1.3</td>
<td>5-8</td>
</tr>
</tbody>
</table>

Note 1: For CA test cases, the OCNG pattern applies for each CC.
Note 2: 30usec timing difference between two CCs is applied in inter-band CA case.
Note 3: Test 1 may not be executed for UE-s for which Test 1A is applicable.

8.2.1.1.2 Void

8.2.1.1.3 Void

8.2.1.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.1.1.4-2, with the addition of the parameters in Table 8.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.
Table 8.2.1.1.4-1: Test Parameters for Testing 1 PRB allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_λ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>ρ_β</td>
<td>dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for MBSFN portion of MBSFN subframes (Note 2)</td>
<td></td>
<td>OCNG (Note 3)</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: $P_\beta = 0$

Note 2: The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the first slot.

Note 3: The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN subframes, QPSK modulated MBSFN data is used instead.

Table 8.2.1.1.4-2: Minimum performance 1PRB (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 MHz</td>
<td>R.29 FDD</td>
<td>OP.3 FDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-8</td>
<td></td>
</tr>
</tbody>
</table>

8.2.1.2 Transmit diversity performance

8.2.1.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.1.4-2, with the addition of the parameters in Table 8.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.2.1.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_λ</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>ρ_β</td>
<td>dB</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Note 1: $P_\beta = 1$.
8.2.1.2.1 Minimum Performance Transmit Diversity (FRC)

Table 8.2.1.2.1-2: Minimum performance Transmit Diversity (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNQ Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.11 FDD</td>
<td>OP.1 FDD</td>
<td>EVA5</td>
<td>2x2 Medium</td>
<td>70</td>
<td>6.8</td>
</tr>
<tr>
<td>1</td>
<td>5 MHz</td>
<td>R.11-2 FDD</td>
<td>OP.1 FDD</td>
<td>EVA5</td>
<td>2x2 Medium</td>
<td>70</td>
<td>5.9</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.10 FDD</td>
<td>OP.1 FDD</td>
<td>HST</td>
<td>2x2</td>
<td>70</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

8.2.1.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.2-2, with the addition of the parameters in Table 8.2.1.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Table 8.2.1.2.2-1: Test Parameters for Transmit diversity Performance (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>£\rho_\lambda$</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>£\rho_\mu$</td>
<td>dB</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td>£\sigma$</td>
<td>dB</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 8.2.1.2.2-2: Minimum performance Transmit Diversity (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNQ Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4 MHz</td>
<td>R.12 FDD</td>
<td>OP.1 FDD</td>
<td>EPA5</td>
<td>4x2 Medium</td>
<td>70</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.13 FDD</td>
<td>OP.1 FDD</td>
<td>ETU70</td>
<td>4x2 Low</td>
<td>70</td>
<td>-0.9</td>
</tr>
</tbody>
</table>

8.2.1.2.3 Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.1.2.3-2, with the addition of parameters in Table 8.2.1.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.
Table 8.2.1.2.3-1: Test Parameters for Transmit diversity Performance (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_A</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>ρ_B</td>
<td>dB</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>N_{oc1}</td>
<td>dBm/15kHz</td>
<td>-102 (Note 2)</td>
</tr>
<tr>
<td></td>
<td>N_{oc2}</td>
<td>dBm/15kHz</td>
<td>-98 (Note 3)</td>
</tr>
<tr>
<td></td>
<td>N_{oc3}</td>
<td>dBm/15kHz</td>
<td>-94.8 (Note 4)</td>
</tr>
<tr>
<td>$\frac{\bar{E}1}{N{oc2}}$</td>
<td>dB</td>
<td>Reference Value in Table 8.2.1.2.3-2</td>
<td>6</td>
</tr>
<tr>
<td>BWChannel</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ABS pattern (Note 5)</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern (Note 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI Subframe Sets (Note7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_{CSI,0}$</td>
<td>11000100, 11000000, 11000000, 11000000, 11000000, 11000000</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>$C_{CSI,1}$</td>
<td>00111111, 00111111, 00111111, 00111111, 00111111, 00111111</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: $P_B = 1$.
Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 5: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 9: SIB-1 will not be transmitted in Cell2 in this test.
Table 8.2.1.2.3-2: Minimum Performance Transmit Diversity (FRC)

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R.11-4 FDD</td>
<td>OP.1 FDD</td>
<td>EVA5</td>
<td>2x2 Medium</td>
<td>70</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.
Note 2: SNR corresponds to E_b/N_0 of cell 1.
Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.2.1.3 Open-loop spatial multiplexing performance

8.2.1.3.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.3.1-2, with the addition of the parameters in Table 8.2.1.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.1.3.1-1: Test Parameters for Large Delay CDD (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_α dB</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>ρ_β dB</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>0</td>
</tr>
<tr>
<td>N_α at antenna port dBm/15kHz</td>
<td></td>
<td>-98</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1: $\rho_\beta = 1$.
Note 2: For CA test cases, PUCCH format 1b with channel selection is used to feedback ACK/NACK.
Note 3: For CA test cases, the same PDSCH transmission mode is applied to each component carrier.

Table 8.2.1.3.1-2: Minimum performance Large Delay CDD (FRC)

<table>
<thead>
<tr>
<th>Test num.</th>
<th>Bandwidth</th>
<th>Reference channel</th>
<th>OCNG pattern</th>
<th>Propagation condition</th>
<th>Correlation matrix and antenna config.</th>
<th>Reference value</th>
<th>UE category</th>
<th>CA capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.11 FDD</td>
<td>OP.1 FDD</td>
<td>EVA70</td>
<td>2x2 Low</td>
<td>70</td>
<td>13.0</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>2x10 MHz</td>
<td>R.11 FDD</td>
<td>OP.1 FDD (Note 1)</td>
<td>EVA70</td>
<td>2x2 Low</td>
<td>70</td>
<td>13.7</td>
<td>CL_A-A</td>
</tr>
<tr>
<td>2</td>
<td>2x20 MHz</td>
<td>R.30 FDD</td>
<td>OP.1 FDD (Note 1)</td>
<td>EVA70</td>
<td>2x2 Low</td>
<td>70</td>
<td>13.2</td>
<td>3.5-8</td>
</tr>
<tr>
<td>3</td>
<td>2x20 MHz</td>
<td>R.35-1 FDD</td>
<td>OP.1 FDD (Note 1)</td>
<td>EVA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>15.8</td>
<td>CL_A-A, CL_C</td>
</tr>
</tbody>
</table>

Note 1: For CA test cases, the OCNG pattern applies for each CC.
Note 2: Test 1 may not be executed for UE-s for which Test 1A is applicable.
Note 3: For UE category 5-8 test CA capability is CL_C; for UE category 3 test CA capability is CL_A-A and CL_C.
8.2.1.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.3.2-2, with the addition of the parameters in Table 8.2.1.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Table 8.2.1.3.2-1: Test Parameters for Large Delay CDD (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>dB</td>
<td>-6</td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>-6 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>3</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1: $P_a = 1$

Table 8.2.1.3.2-2: Minimum performance Large Delay CDD (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>Fraction of Maximum Throughput (%)</th>
<th>SNR (dB)</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.14 FDD</td>
<td>OP.1 FDD</td>
<td>EVA70</td>
<td>4x2 Low</td>
<td>70</td>
<td>14.3</td>
<td>2-8</td>
<td></td>
</tr>
</tbody>
</table>

8.2.1.3.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.1.3.3-2, with the addition of parameters in Table 8.2.1.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.1.3.3-4, with the addition of parameters in Table 8.2.1.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.1.3.3-1 and 8.2.1.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.
Table 8.2.1.3.3-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>(\rho_A)</td>
<td>dB</td>
<td>-3 (Note 1)</td>
<td>-3</td>
</tr>
<tr>
<td>(\rho_B)</td>
<td>dB</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>dB</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(N_{oc1}) at antenna port</td>
<td>dBm/15kHz</td>
<td>-102 (Note 2)</td>
<td>N/A</td>
</tr>
<tr>
<td>(N_{oc2}) at antenna port</td>
<td>dBm/15kHz</td>
<td>-98 (Note 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>(N_{oc3}) at antenna port</td>
<td>dBm/15kHz</td>
<td>-94.8 (Note 4)</td>
<td>N/A</td>
</tr>
<tr>
<td>(\frac{\bar{E}1}{N{oc2}})</td>
<td>dB</td>
<td>Reference Value in Table 8.2.1.3.3-2</td>
<td>6</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>(\mu s)</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>ABS pattern (Note 5)</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Pattern(Note 6)</td>
<td></td>
<td>100000000</td>
<td>100000000</td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 7)</td>
<td></td>
<td>11000100</td>
<td></td>
</tr>
<tr>
<td>(C_{CSI,0})</td>
<td></td>
<td>11000000</td>
<td>N/A</td>
</tr>
<tr>
<td>(C_{CSI,1})</td>
<td></td>
<td>00111011</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: \(\rho_B = 1 \).
Note 2: This noise is applied in OFDM symbols \#1, \#2, \#3, \#5, \#6, \#8, \#9, \#10,\#12, \#13 of a subframe overlapping with the aggressor ABS.
Note 3: This noise is applied in OFDM symbols \#0, \#4, \#7, \#11 of a subframe overlapping with the aggressor non-ABS.
Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 5: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 9: SIB-1 will not be transmitted in Cell2 in this test.
Table 8.2.1.3.3-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cell 1</td>
<td>Cell 2</td>
<td></td>
<td>Fraction of Maximum Throughput (%)</td>
<td>SNR (dB) (Note 2)</td>
</tr>
<tr>
<td>1</td>
<td>R.11 FDD</td>
<td>OP.1 FDD</td>
<td>OP.1 FDD</td>
<td>EVA 5</td>
<td>2x2 Low</td>
<td>70</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SNR corresponds to $\frac{E_s}{N_\text{oc}2}$ of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.
Table 8.2.1.3.3-3: Test Parameters for Large Delay CDD (FRC) – MBSFN ABS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_A</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>ρ_B</td>
<td>-3 (Note 1)</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>N_{oc1}</td>
<td>dBm/15kHz</td>
<td>-102 (Note 2)</td>
</tr>
<tr>
<td></td>
<td>N_{oc2}</td>
<td>dBm/15kHz</td>
<td>-98 (Note 3)</td>
</tr>
<tr>
<td></td>
<td>N_{oc3}</td>
<td>dBm/15kHz</td>
<td>-94.8 (Note 4)</td>
</tr>
<tr>
<td>E_s/N_{oc2}</td>
<td>dB</td>
<td>Reference Value in Table 8.2.1.3.3-4</td>
<td>6</td>
</tr>
<tr>
<td>BWChannel</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>MBSFN</td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>ABS pattern (Note 5)</td>
<td></td>
<td>N/A</td>
<td>000100000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0100000010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern (Note 6)</td>
<td>CCSI,0</td>
<td>00100000000</td>
<td>01000000010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000000000</td>
<td>00000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 7)</td>
<td>CCSI,1</td>
<td>11101111111</td>
<td>10111111011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11111101111</td>
<td>11111111111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>MBSFN Subframe Allocation (Note 10)</td>
<td>N/A</td>
<td>00100000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000000000</td>
<td>00000000000</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: $P_B = 1$.

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbol #0 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.

Note 5: ABS pattern as defined in [9]. The 4th, 12th, 19th and 27th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Note 10: MBSFN Subframe Allocation as defined in [7], four frames with 24 bits is chosen for MBSFN subframe allocation.

Note 11: The maximum number of uplink HARQ transmission is limited to 2 so that each PHICH channel transmission is in a subframe protected by MBSFN ABS in this test.

Table 8.2.1.3.3-4: Minimum Performance Large Delay CDD (FRC) – MBSFN ABS

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cell 1</td>
<td>Cell 2</td>
<td></td>
<td>Fraction of Maximum Throughput (%)</td>
<td>SNR (dB) (Note 2)</td>
</tr>
<tr>
<td>1</td>
<td>R.11 FDD</td>
<td>OP.1 FDD</td>
<td>EVA 5</td>
<td>2x2 Low</td>
<td>70</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SNR corresponds to $\frac{E_s}{N_0}$ of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.2.1.4 Closed-loop spatial multiplexing performance

8.2.1.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1-2, with the addition of the parameters in Table 8.2.1.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.1.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_A dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>ρ dB</td>
<td>-3 (Note 1)</td>
<td>-3 (Note 1)</td>
<td></td>
</tr>
<tr>
<td>σ dB</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>N_0 at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 1-2</td>
<td></td>
<td>PUSCH 3-1</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction on bitmap</td>
<td>001111</td>
<td>001111</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.10 FDD</td>
<td>OP.1 FDD</td>
<td>EVA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>-2.5</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.10 FDD</td>
<td>OP.1 FDD</td>
<td>EPA5</td>
<td>2x2 High</td>
<td>70</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

8.2.1.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1A-2, with the addition of the parameters in Table 8.2.1.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.
Table 8.2.1.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>-6</td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>-6 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>3</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>6</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>8</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 1-2</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction on bitmap</td>
<td></td>
<td>0000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1111111111111111</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: $P_b = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.1A-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.13 FDD</td>
<td>OP.1 FDD</td>
<td>EVA5</td>
<td>4x2 Low</td>
<td>70</td>
<td>1-8</td>
</tr>
</tbody>
</table>

8.2.1.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.2-2, with the addition of the parameters in Table 8.2.1.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.
Table 8.2.1.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_A dB</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>ρ_B dB</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>0</td>
</tr>
<tr>
<td>N_{∞} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>50</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>8</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction</td>
<td>bitmap</td>
<td>110000</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: $P_B = 1$.
Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth (MHz)</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>Fraction of Maximum Throughput (%)</th>
<th>SNR (dB)</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>R.35 FDD</td>
<td>OPER.1 FDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>18.9</td>
<td>2-8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>R.11 FDD</td>
<td>OPER.1 FDD</td>
<td>ETU70</td>
<td>2x2 Low</td>
<td>70</td>
<td>14.3</td>
<td>2-8</td>
<td></td>
</tr>
</tbody>
</table>

8.2.1.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.3-2, with the addition of the parameters in Table 8.2.1.4.3-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.
Table 8.2.1.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>-6</td>
<td>-6</td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>-6 (Note 1)</td>
<td>-6 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$\mathcal{N}_	ext{ec}$ at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>00000000000000</td>
<td>00000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000000000000</td>
<td>00000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000011111111</td>
<td>11111111110000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000000000000</td>
<td>00000000000000</td>
</tr>
<tr>
<td>CSI request field (Note 3)</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: $P_r = 1$.
Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
Note 3: CSI request field applies for CA demodulation requirement only. Multiple CC-s under test are configured as the 1st set of serving cells by higher layers.
Note 4: For CA test cases, ACK/NACK bits are transmitted using PUSCH with PUCCH format 1b with channel selection configured.
Note 5: For CA test cases, the same PDSCH transmission mode is applied to each component carrier.

Table 8.2.1.4.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Test num.</th>
<th>Bandwidth</th>
<th>Reference channel</th>
<th>OCNG pattern</th>
<th>Propagation condition</th>
<th>Correlation matrix and antenna config.</th>
<th>Reference value</th>
<th>CA capability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fraction of maximum throughput (%)</td>
<td>SNR (dB)</td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.36 FDD</td>
<td>OP.1 FDD</td>
<td>EPA5</td>
<td>4x2 Low</td>
<td>70</td>
<td>14.7</td>
</tr>
<tr>
<td>2</td>
<td>2x10 MHz</td>
<td>R.14 FDD</td>
<td>OP.1 FDD</td>
<td>EVA5</td>
<td>4x2 Low</td>
<td>70</td>
<td>10.8</td>
</tr>
<tr>
<td>3</td>
<td>2x20 MHz</td>
<td>R.14-3 FDD</td>
<td>OP.1 FDD</td>
<td>EVA5</td>
<td>4x2 Low</td>
<td>70</td>
<td>[10.9]</td>
</tr>
</tbody>
</table>

Note 1: For CA test cases, the OCNG pattern applies for each CC.

8.2.1.5 MU-MIMO

8.2.1.6 [Control channel performance: D-BCH and PCH]

8.2.1.7 Carrier aggregation with power imbalance

The requirements in this section verify the ability of an intraband adjacent carrier aggregation UE to demodulate the signal transmitted by the PCell in the presence of a stronger SCell signal on an adjacent frequency. Throughput is measured on the PCell only.

8.2.1.7.1 Minimum Requirement

The requirements are specified in Table 8.2.1.7.1-2, with the addition of the parameters in Table 8.2.1.7.1-1 and the downlink physical channel setup according to Annex C.3.2.
Table 8.2.1.7.1-1: Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_\Delta)</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>(P_\beta)</td>
<td>dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{E}_{s,PCell}) at antenna port of PCell</td>
<td>dBm/15kHz</td>
<td>-85</td>
</tr>
<tr>
<td>(\hat{E}_{s,SCell}) at antenna port of SCell</td>
<td>dBm/15kHz</td>
<td>-79</td>
</tr>
<tr>
<td>(N_{oc}) at antenna port</td>
<td>dBm/15kHz</td>
<td>Off (Note 2)</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td>OCNG</td>
<td>(Note 3,4)</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64 QAM</td>
</tr>
<tr>
<td>Maximum number of HARQ transmission</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>{0}</td>
</tr>
<tr>
<td>PDSCH transmission mode of PCell</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PDSCH transmission mode of SCell</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1: \(P_\beta = 0 \).
Note 2: No external noise sources are applied
Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data.
Note 4: The OCNG pattern is used to fill the SCell control channel and PDSCH.

Table 8.2.1.7.1-2: Minimum performance (FRC)

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCGN Pattern</th>
<th>Propagation Conditions</th>
<th>Correlation Matrix and Antenna</th>
<th>Reference value Fraction of Maximum Throughput (%)</th>
<th>UE Category</th>
<th>CA capability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCell</td>
<td>SCell</td>
<td>PCell</td>
<td>SCell</td>
<td>PCell</td>
<td>SCell</td>
</tr>
<tr>
<td>1</td>
<td>2x20M Hz</td>
<td>R.49 FDD</td>
<td>OP.1</td>
<td>FDD</td>
<td>OP.5</td>
<td>FDD</td>
<td>AWGN</td>
<td>Clause B.1</td>
</tr>
</tbody>
</table>

8.2.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.2.2-1 are valid for all TDD tests unless otherwise stated.
Table 8.2.2-1: Common Test Parameters (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration (Note 1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration (Note 2)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Cell ID</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Inter-TTI Distance</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Number of HARQ processes per component carrier</td>
<td>Processes</td>
<td>7</td>
</tr>
<tr>
<td>Maximum number of HARQ transmission</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3) for QPSK and 16QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,0,1,2) for 64QAM</td>
</tr>
<tr>
<td>Number of OFDM symbols for PDCCH per component carrier</td>
<td>OFDM symbols</td>
<td>4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths</td>
</tr>
<tr>
<td>Cross carrier scheduling</td>
<td></td>
<td>Not configured</td>
</tr>
</tbody>
</table>

Note 1: as specified in Table 4.2-2 in TS 36.211 [4].
Note 2: as specified in Table 4.2-1 in TS 36.211 [4].

8.2.2.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.4 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.2.1.1 Minimum Requirement

The requirements are specified in Table 8.2.2.1.1-2, with the addition of the parameters in Table 8.2.2.1.1-1 and the downlink physical channel setup according to Annex C.3.2.
Table 8.2.2.1.1-1: Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-5</th>
<th>Test 6-8</th>
<th>Test 9-15</th>
<th>Test 16-18</th>
<th>Test 19</th>
<th>Test 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td></td>
<td>dB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td></td>
<td>OCNG (Note 2)</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
<td>16QAM</td>
<td>64QAM</td>
<td>16QAM</td>
<td>QPSK</td>
<td>QPSK</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td>Multiplexing</td>
<td>Multiplexing</td>
<td>Multiplexing</td>
<td>Multiplexing</td>
<td>Multiplexing</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: $P_\rho = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: PUCCH format 1b with channel selection is used to feedback ACK/NACK.

Note 4: For CA test cases, the same PDSCH transmission mode is applied to each component carrier.
Table 8.2.2.1.1-2: Minimum performance (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
<th>CA capability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.2 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>-1.2</td>
<td>1-8</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.2 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>70</td>
<td>-0.6</td>
<td>1-8</td>
</tr>
<tr>
<td>3</td>
<td>10 MHz</td>
<td>R.2 TDD</td>
<td>OP.1 TDD</td>
<td>ETU300</td>
<td>1x2 Low</td>
<td>70</td>
<td>-0.2</td>
<td>1-8</td>
</tr>
<tr>
<td>4</td>
<td>10 MHz</td>
<td>R.2 TDD</td>
<td>OP.1 TDD</td>
<td>HST</td>
<td>1x2</td>
<td>70</td>
<td>-2.6</td>
<td>1-8</td>
</tr>
<tr>
<td>5</td>
<td>1.4 MHz</td>
<td>R.4 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>0.0</td>
<td>1-8</td>
</tr>
<tr>
<td>6</td>
<td>10 MHz</td>
<td>R.3 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>6.7</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>5 MHz</td>
<td>R.3-1 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>6.7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>10 MHz</td>
<td>R.3 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>30</td>
<td>1.4</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>5 MHz</td>
<td>R.3-1 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>30</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>10 MHz</td>
<td>R.3 TDD</td>
<td>OP.1 TDD</td>
<td>ETU300</td>
<td>1x2 High</td>
<td>70</td>
<td>9.3</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>5 MHz</td>
<td>R.3-1 TDD</td>
<td>OP.1 TDD</td>
<td>ETU300</td>
<td>1x2 High</td>
<td>70</td>
<td>9.3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>3 MHz</td>
<td>R.5 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.6</td>
<td>1-8</td>
</tr>
<tr>
<td>10</td>
<td>5 MHz</td>
<td>R.6 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.6</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>5 MHz</td>
<td>R.6-1 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.6</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>10 MHz</td>
<td>R.7 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.6</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>10 MHz</td>
<td>R.7-1 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.6</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>10 MHz</td>
<td>R.7 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>70</td>
<td>19.1</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>10 MHz</td>
<td>R.7-1 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>70</td>
<td>19.1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>10 MHz</td>
<td>R.7 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 High</td>
<td>70</td>
<td>19.1</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>10 MHz</td>
<td>R.7-1 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 High</td>
<td>70</td>
<td>19.1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>15 MHz</td>
<td>R.8 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.8</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>15 MHz</td>
<td>R.8-1 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.8</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>20 MHz</td>
<td>R.9 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.7</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>20 MHz</td>
<td>R.9-2 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>20 MHz</td>
<td>R.9-1 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>17.7</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>3 MHz</td>
<td>R.0 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>30</td>
<td>2.1</td>
<td>1-8</td>
</tr>
<tr>
<td>17</td>
<td>10 MHz</td>
<td>R.1 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>30</td>
<td>2.0</td>
<td>1-8</td>
</tr>
<tr>
<td>18</td>
<td>20 MHz</td>
<td>R.1 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>30</td>
<td>2.1</td>
<td>1-8</td>
</tr>
<tr>
<td>19</td>
<td>10 MHz</td>
<td>R.41 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>-5.3</td>
<td>1-8</td>
</tr>
<tr>
<td>20</td>
<td>2x20 MHz</td>
<td>R.42 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>1x2 Low</td>
<td>70</td>
<td>-1.2</td>
<td>5-8</td>
</tr>
</tbody>
</table>

Note 1: For CA test cases, the OCNG pattern applies for each CC.

8.2.2.1.2 Void

8.2.2.1.3 Void

8.2.2.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.2.1.4-2, with the addition of the parameters in Table 8.2.2.1.1-4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.
Table 8.2.2.1.4-1: Test Parameters for Testing 1 PRB allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_s</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for MBSFN portion of MBSFN subframes (Note 2)</td>
<td></td>
<td>OCNG (Note 3)</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: $P_s = 0$.
Note 2: The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the first slot.
Note 3: The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN subframes, QPSK modulated MBSFN data is used instead.

Table 8.2.2.1.4-2: Minimum performance 1PRB (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>SNR (dB)</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.29 TDD</td>
<td>OP=3 TDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>30</td>
<td>2.0</td>
<td>1-8</td>
</tr>
</tbody>
</table>

8.2.2.2 Transmit diversity performance

8.2.2.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.1-2, with the addition of the parameters in Table 8.2.2.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.2.2.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_s</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Note 1: $P_s = 1$
Table 8.2.2.2.1-2: Minimum performance Transmit Diversity (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value (UE Category)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.11 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>2x2 Medium</td>
<td>70 6.8 2-8</td>
</tr>
<tr>
<td>2</td>
<td>5 MHz</td>
<td>R.11-2 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>2x2 Medium</td>
<td>70 6.8 1</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.10 TDD</td>
<td>OP.1 TDD</td>
<td>HST</td>
<td>2x2</td>
<td>70 -2.3 1-8</td>
</tr>
</tbody>
</table>

8.2.2.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.2-2, with the addition of the parameters in Table 8.2.2.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Table 8.2.2.2.2-1: Test Parameters for Transmit diversity Performance (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_A</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>ρ_B</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>dB</td>
</tr>
<tr>
<td>N_{oc} at antenna port dBm/15kHz</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td>Multiplexing</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: $P_s = 1$

Table 8.2.2.2.2-2: Minimum performance Transmit Diversity (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value (UE Category)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4 MHz</td>
<td>R.12 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>4x2 Medium</td>
<td>70 0.2 1-8</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.13 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>4x2 Low</td>
<td>70 -0.5 1-8</td>
</tr>
</tbody>
</table>

8.2.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.2.2.3-2, with the addition of parameters in Table 8.2.2.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.
Table 8.2.2.2.3-1: Test Parameters for Transmit diversity Performance (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>-3 (Note 1)</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc1}</td>
<td>dBm/15kHz</td>
<td>-102 (Note 2)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc2}</td>
<td>dBm/15kHz</td>
<td>-98 (Note 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc3}</td>
<td>dBm/15kHz</td>
<td>-94.8 (Note 4)</td>
<td>N/A</td>
</tr>
<tr>
<td>E_s/N_{oc2}</td>
<td>dB</td>
<td>Reference Value in Table 8.2.2.2.3-2</td>
<td>6</td>
</tr>
<tr>
<td>BW\text{Channel}</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ABS pattern (Note 5)</td>
<td></td>
<td>N/A</td>
<td>0000010001 0000000001</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 6)</td>
<td></td>
<td>0000000001 0000000001</td>
<td></td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 7)</td>
<td></td>
<td>0000010001 0000000001</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1100101000 1100111000</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: $\rho_B = 1$.

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.

Note 5: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 9: SIB-1 will not be transmitted in Cell2 in this test.
Table 8.2.2.3-2: Minimum Performance Transmit Diversity (FRC)

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R.11-4 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>2x2 Medium</td>
<td>70</td>
<td>2-8</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SNR corresponds to E_b/N_0 of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.2.2.3 Open-loop spatial multiplexing performance

8.2.2.3.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.3.1-2, with the addition of the parameters in Table 8.2.2.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.2.3.1-1: Test Parameters for Large Delay CDD (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>-3 (Note 1)</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td>Bundling</td>
<td>-</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: $P_h = 1$

Note 2: PUCCH format 1b with channel selection is used to feedback ACK/NACK.

Note 3: For CA test cases, the same PDSCH transmission mode is applied to each component carrier.

Table 8.2.2.3.1-2: Minimum performance Large Delay CDD (FRC)

| Test number | Bandwidth | Reference Channel | OCNG Pattern | Propagation Condition | Correlation Matrix and Antenna Configuration | Reference value | UE Category | ca |
|-------------|-----------|-------------------|--------------|-----------------------|---|----------------|-------------|
| 1 | 10 MHz | R.11-1 TDD | OP.1 TDD | EVA70 | 2x2 Low | 70 | 2-8 |
| 2 | 2x20 MHz | R.30-1 TDD | OP.1 TDD (Note 1) | EVA70 | 2x2 Low | 70 | 5-8 |
| 3 | 2x20 MHz | R.30-2 TDD | OP.1 TDD (Note 1) | EVA70 | 2x2 Low | 70 | 3 |
| 4 | 2x20 MHz | R.35-1 TDD | OP.1 TDD (Note 1) | EVA5 | 2x2 Low | 70 | 4 |

Note 1: For CA test cases, the OCNG pattern applies for each CC.
8.2.2.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.3.2-2, with the addition of the parameters in Table 8.2.2.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Table 8.2.2.3.2-1: Test Parameters for Large Delay CDD (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>-6</td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>-6 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>3</td>
</tr>
<tr>
<td>N_{oc}^{at} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Bundling</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1: $P_a = 1$.

Table 8.2.2.3.2-2: Minimum performance Large Delay CDD (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>SNR (dB)</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.14 TDD</td>
<td>OP.1 TDD</td>
<td>EVA70</td>
<td>4x2 Low</td>
<td>70</td>
<td>14.2</td>
<td>2-8</td>
</tr>
</tbody>
</table>

8.2.2.3.3 Minimum Requirement 2Tx antenna port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.2.3.3-2, with the addition of parameters in Table 8.2.2.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.2.3.3-4, with the addition of parameters in Table 8.2.2.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.2.3.3-1 and 8.2.2.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.
Table 8.2.2.3.3-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_a)</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>(\rho_b)</td>
<td>dB</td>
<td>-3 (Note 1)</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>dB</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>(N_{oc1})</td>
<td>dBm/15kHz</td>
<td>-102 (Note 2)</td>
<td>N/A</td>
</tr>
<tr>
<td>(N_{oc2})</td>
<td>dBm/15kHz</td>
<td>-98 (Note 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>(N_{oc3})</td>
<td>dBm/15kHz</td>
<td>-94.8 (Note 4)</td>
<td>N/A</td>
</tr>
<tr>
<td>(\frac{E_s}{N_{oc2}})</td>
<td>dB</td>
<td>Reference Value in Table 8.2.2.3.3-2</td>
<td>6</td>
</tr>
<tr>
<td>BW\text{channel}</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Cell Id</td>
<td>(\mu s)</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS pattern (Note 5)</td>
<td></td>
<td>N/A</td>
<td>00000100001, 00000000001</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 6)</td>
<td></td>
<td>00000000001, 00000000001</td>
<td>N/A</td>
</tr>
<tr>
<td>CSI Subframe Sets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Note 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{CSI,0})</td>
<td></td>
<td>00000100001, 00000000001</td>
<td>N/A</td>
</tr>
<tr>
<td>(C_{CSI,1})</td>
<td></td>
<td>11001010000, 11001110000</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: \(P_b = 1 \).
Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 5: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 9: SIB-1 will not be transmitted in Cell2 in this test.
Table 8.2.2.3.3-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Reference Channel</th>
<th>OCNG Pattern (Cell 1)</th>
<th>OCNG Pattern (Cell 2)</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R.11 TDD</td>
<td>OP.1 TDD</td>
<td>OP.1 TDD</td>
<td>EVA 5</td>
<td>2x2 Low</td>
<td>70</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SNR corresponds to E_s/\mathcal{N}_0 of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.
Table 8.2.2.3.3-3: Test Parameters for Large Delay CDD (FRC) – MBSFN ABS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_A)</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>(\rho_B)</td>
<td>dB</td>
<td>-3 (Note 1)</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>dB</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>(N_{oc1})</td>
<td>dBm/15kHz</td>
<td>-102 (Note 2)</td>
<td>N/A</td>
</tr>
<tr>
<td>(N_{oc2})</td>
<td>dBm/15kHz</td>
<td>-98 (Note 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>(N_{oc3})</td>
<td>dBm/15kHz</td>
<td>-94.8 (Note 4)</td>
<td>N/A</td>
</tr>
<tr>
<td>(\frac{E_s}{N_{oc2}})</td>
<td>dB</td>
<td>Reference Value in Table 8.2.2.3.3-4</td>
<td>6</td>
</tr>
<tr>
<td>BW_channel</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>MBSFN</td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>(\mu s)</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>ABS pattern (Note 5)</td>
<td></td>
<td>N/A</td>
<td>00000000001</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 6)</td>
<td></td>
<td>0000000001</td>
<td>N/A</td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 7)</td>
<td></td>
<td>0000000001</td>
<td>N/A</td>
</tr>
<tr>
<td>CSI_</td>
<td>0</td>
<td></td>
<td>0000000001</td>
</tr>
<tr>
<td>CSI_</td>
<td>1</td>
<td></td>
<td>1100111000</td>
</tr>
<tr>
<td>MBSFN Subframe Allocation (Note 10)</td>
<td></td>
<td>N/A</td>
<td>000010</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: \(\rho_B = 1 \).
Note 2: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, and #13 of a subframe overlapping with the aggressor ABS.
Note 3: This noise is applied in OFDM symbol #0 of a subframe overlapping with the aggressor ABS.
Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 5: ABS pattern as defined in [9]. The 10th and 20th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 9: SIB-1 will not be transmitted in Cell2 in this test.
Note 10: MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation.
Table 8.2.2.3.3-4: Minimum Performance Large Delay CDD (FRC) – MBSFN ABS

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>R.11 TDD</td>
<td>OP.1 TDD</td>
<td>EVA 5</td>
<td>2x2 Low</td>
<td>70</td>
<td>12.2</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.
Note 2: SNR corresponds to $\frac{E_b}{N_0}$ of cell 1.
Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.2.2.4 Closed-loop spatial multiplexing performance

8.2.2.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1-2, with the addition of the parameters in Table 8.2.2.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.2.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>ρ_s</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>10 or 11</td>
<td>10 or 11</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1 or 4 (Note 3)</td>
<td>1 or 4 (Note 3)</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 1-2</td>
<td>PUSCH 3-1</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>001111</td>
<td>001111</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td>Multiplexing</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: $P_b = 1$.
Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Table 8.2.2.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>SNR (dB)</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.10 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>-3.1</td>
<td>1-8</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.10 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 High</td>
<td>70</td>
<td>-2.8</td>
<td>1-8</td>
</tr>
</tbody>
</table>
8.2.2.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1A-2, with the addition of the parameters in Table 8.2.2.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.2.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>-6</td>
</tr>
<tr>
<td>ρ_a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>-6 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>3</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>6</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>10 or 11</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1 or 4 (Note 3)</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction on bitmap</td>
<td></td>
<td>00000000000000000</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: $P_a = 1$.
Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Table 8.2.2.4.1A-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Fraction of Maximum Throughput (%)</th>
<th>SNR (dB)</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.13 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>4x2 Low</td>
<td>70</td>
<td>-3.5</td>
<td>1-8</td>
</tr>
</tbody>
</table>

8.2.2.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.2-2, with the addition of the parameters in Table 8.2.2.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.
Table 8.2.2.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_A dB</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>ρ_B dB</td>
<td>-3 (Note 1)</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>50</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>10 or 11</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1 or 4 (Note 3)</td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 3-1</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction</td>
<td>bitmap</td>
<td>110000</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: $P_B = 1$.
Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Table 8.2.2.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.35 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>19.5</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.11-1 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>2x2 Low</td>
<td>70</td>
<td>13.9</td>
</tr>
</tbody>
</table>

8.2.2.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.3-2, with the addition of the parameters in Table 8.2.2.4.3-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.
Table 8.2.2.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>-6</td>
<td>-6</td>
</tr>
<tr>
<td>ρ_i</td>
<td>dB</td>
<td>-6 (Note 1)</td>
<td>-6 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>10 or 11</td>
<td>10 or 11</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1 or 4 (Note 3)</td>
<td>1 or 4 (Note 3)</td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 1-2</td>
<td>PUSCH 1-2</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Bundling</td>
<td>-</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>000000000000000</td>
<td>000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000000000000000</td>
<td>000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000000111111111</td>
<td>000000111111111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111111111100000</td>
<td>111111111100000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000000000000000</td>
<td>000000000000000</td>
</tr>
<tr>
<td>CSI request field (Note 4)</td>
<td></td>
<td>10 (Note 5)</td>
<td>10 (Note 5)</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: $P_n = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Note 4: CSI request field applies for CA demodulation requirement only. Multiple CC-s under test are configured as the 1st set of serving cells by high layers.

Note 5: ACK/NACK bits are transmitted using PUSCH with PUCCH format 1b with channel selection configured.

Note 6: For CA test cases, the same PDSCH transmission mode is applied to each component carrier.

Table 8.2.2.4.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>SNR (dB)</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 MHz</td>
<td>R.36 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>4x2 Low</td>
<td>70</td>
<td>15.7</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>2x20 MHz</td>
<td>R.43 TDD</td>
<td>OP.1 TDD (Note 1)</td>
<td>EVA5</td>
<td>4x2 Low</td>
<td>70</td>
<td>11.1</td>
<td>5-8 C</td>
</tr>
</tbody>
</table>

Note 1: For CA test cases, the OCNNG pattern applies for each CC.

8.2.2.5 MU-MIMO

8.2.2.6 [Control channel performance: D-BCH and PCH]

8.2.2.7 Carrier aggregation with power imbalance

The requirements in this section verify the ability of an intraband adjacent carrier aggregation UE to demodulate the signal transmitted by the PCell in the presence of a stronger SCell signal on an adjacent frequency. Throughput is measured on the PCell only.

8.2.2.7.1 Minimum Requirement

The requirements are specified in Table 8.2.2.7.1-2, with the addition of the parameters in Table 8.2.2.7.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.2.7.1-1: Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>P_1</td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>$E_{\text{s}}_{\text{- PCell}}$ at antenna port of PCell</td>
<td>dBm/15kHz</td>
<td>-85</td>
</tr>
<tr>
<td>$E_{\text{s}}_{\text{- SCell}}$ at antenna port of SCell</td>
<td>dBm/15kHz</td>
<td>-79</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>Off</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td></td>
<td>OCNG</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64 QAM</td>
</tr>
<tr>
<td>Maximum number of HARQ transmission</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0)</td>
</tr>
<tr>
<td>PDSCH transmission mode of PCell</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PDSCH transmission mode of SCell</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1: $P_b = 0$.
Note 2: No external noise sources are applied.
Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data.
Note 4: The OCNG pattern is used to fill the SCell control channel and PDSCH.

Table 8.2.2.7.1-2: Minimum performance (FRC)

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions</th>
<th>Correlation Matrix and Antenna</th>
<th>Reference value Fraction of Maximum Throughput (%)</th>
<th>UE Category</th>
<th>CA capability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2x20M Hz</td>
<td>R.49 TDD</td>
<td>OP.1 TDD</td>
<td>AWG N</td>
<td>Claus e B.1</td>
<td>85%</td>
<td>5-8</td>
<td>CL-C</td>
</tr>
</tbody>
</table>

8.3 Demodulation of PDSCH (User-Specific Reference Symbols)

8.3.1 FDD

The parameters specified in Table 8.3.1-1 are valid for FDD unless otherwise stated.
Table 8.3.1-1: Common Test Parameters for User-specific Reference Symbols

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Cell ID</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Inter-TTI Distance</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Number of HARQ processes</td>
<td>Processes</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of HARQ transmission</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3) for QPSK and 16QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,0,1,2) for 64QAM</td>
</tr>
<tr>
<td>Number of OFDM symbols for PDCCH</td>
<td>OFDM symbols</td>
<td>2</td>
</tr>
<tr>
<td>Precoder update granularity</td>
<td>Frequency domain: 1 PRG for Transmission mode 9 Time domain: 1 ms</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: as specified in Table 4.2-2 in TS 36.211 [4].
Note 2: as specified in Table 4.2-1 in TS 36.211 [4].

8.3.1.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.1-1 and 8.3.1.1-2, with the addition of the parameters in Table 8.3.1.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.
Table 8.3.1.1-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_a</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td></td>
<td>ρ_b</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>-3 dB</td>
<td>-3 dB</td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td>Antenna ports 0,1</td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna ports 15,…,18</td>
<td>Antenna ports 15,…,18</td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td>Annex B.4.1</td>
<td>Annex B.4.1</td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td>T_CSI-RS / Δ_CSI-RS</td>
<td>Subframes 5 / 2</td>
<td>Subframes 5 / 2</td>
</tr>
<tr>
<td>CSI reference signal configuration</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Zero-power CSI-RS configuration</td>
<td></td>
<td>Subframes / bitmap 3 / 0001000000000000</td>
<td>3 / 0001000000000000000000</td>
</tr>
<tr>
<td>N_0 at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td></td>
<td>OCNG (Note 4)</td>
<td>OCNG (Note 4)</td>
</tr>
<tr>
<td>Number of allocated resource blocks (Note 2)</td>
<td>PRB</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Simultaneous transmission</td>
<td></td>
<td>No</td>
<td>Yes (Note 3, 5)</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Note 1: \(P_a = 1 \).
Note 2: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.
Note 3: Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the input signal under test.
Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.
Note 5: The two UEs’ scrambling identities \(n_{\text{SCID}} \) are set to 0 for CDM-multiplexed DM RS with interfering simultaneous transmission test cases.

Table 8.3.1.1-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value (Fraction of Maximum Throughput (%))</th>
<th>SNR (dB)</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz QPSK 1/3</td>
<td>R.43 FDD</td>
<td>OP.1 FDD</td>
<td>EVA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>-1</td>
<td>1-8</td>
</tr>
</tbody>
</table>
Table 8.3.1.1-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10 MHz 64QAM 1/2</td>
<td>R.50 FDD</td>
<td>OP.1 FDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>2-8</td>
</tr>
</tbody>
</table>

Note 1: The reference channel applies to both the input signal under test and the interfering signal.

8.3.1.2 Dual-Layer Spatial Multiplexing

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.2-2, with the addition of the parameters in Table 8.3.1.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.3.1.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>P_A dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P_B dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>-3</td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td>Antenna ports 0 and 1</td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td>Antenna ports 15,16</td>
<td></td>
</tr>
<tr>
<td>Beamforming model</td>
<td>Annex B.4.2</td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset $T_{\text{CSI-RS}} / \Delta_{\text{CSI-RS}}$</td>
<td>Subframes 5 / 2</td>
<td></td>
</tr>
<tr>
<td>CSI reference signal configuration</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Zero-power CSI-RS configuration $I_{\text{CSI-RS}} / \text{ZeroPowerCSI-RS bitmap}$</td>
<td>Subframes / bitmap 3 / 00100000000000000000</td>
<td></td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td>OCNG (Note 2)</td>
<td></td>
</tr>
<tr>
<td>Number of allocated resource blocks (Note 2)</td>
<td>PRB</td>
<td>50</td>
</tr>
<tr>
<td>Simultaneous transmission</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: $P_A = 1$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.
Table 8.3.1.2-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz 16QAM 1/2</td>
<td>R.51 FDD</td>
<td>OP.1 FDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>13.3</td>
</tr>
</tbody>
</table>

8.3.2 TDD

The parameters specified in Table 8.3.2-1 are valid for TDD unless otherwise stated.

Table 8.3.2-1: Common Test Parameters for User-specific Reference Symbols

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration (Note 1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration (Note 2)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Cell ID</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Inter-TTI Distance</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Number of HARQ processes</td>
<td>Processes</td>
<td>7</td>
</tr>
<tr>
<td>Maximum number of HARQ transmission</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td>{0,1,2,3} for QPSK and 16QAM, {0,0,1,2} for 64QAM</td>
<td></td>
</tr>
<tr>
<td>Number of OFDM symbols for PDCCH</td>
<td>OFDM symbols</td>
<td>2</td>
</tr>
<tr>
<td>Precoder update granularity</td>
<td>Frequency domain: 1 PRB for Transmission mode 8, 1 PRG for Transmission mode 9, Time domain: 1 ms</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td>Multiplexing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: as specified in Table 4.2-2 in TS 36.211 [4]
Note 2: as specified in Table 4.2-1 in TS 36.211 [4]

8.3.2.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna port 5, the requirements are specified in Table 8.3.2.1-2, with the addition of the parameters in Table 8.3.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the demodulation performance using user-specific reference signals with full RB or single RB allocation.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation ρ_A</td>
<td>dB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>dB</td>
<td>(Note 1)</td>
<td>(Note 1)</td>
<td>(Note 1)</td>
<td>(Note 1)</td>
</tr>
<tr>
<td></td>
<td>dB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td>Antenna port 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td>Annex B.4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_αc at antenna port</td>
<td>dB/15kHz</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td></td>
<td>OCNG (Note 2)</td>
<td>OCNG (Note 2)</td>
<td>OCNG (Note 2)</td>
<td>OCNG (Note 2)</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Note 1: \(P_A = 0 \).

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz QPSK 1/3</td>
<td>R.25 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70 -0.8</td>
<td>1-5</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz 16QAM 1/2</td>
<td>R.26 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70 7.0</td>
<td>2-5</td>
</tr>
<tr>
<td>3</td>
<td>10 MHz 64QAM 3/4</td>
<td>R.27 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70 17.0</td>
<td>2-5</td>
</tr>
<tr>
<td>4</td>
<td>10 MHz 64QAM 1/2</td>
<td>R.28 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>30 1.7</td>
<td>1-5</td>
</tr>
</tbody>
</table>

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.1-4 and 8.3.2.1-5, with the addition of the parameters in Table 8.3.2.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port.
Table 8.3.2.1-3: Test Parameters for Testing CDM-multiplexed DM RS (single layer)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
<th>Test 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antenna port 0 and antenna port 1</td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Annex B.4.1</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OCNG (Note 4)</td>
</tr>
<tr>
<td>Simultaneous transmission</td>
<td></td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes (Note 3, 5)</td>
<td>Yes (Note 3, 5)</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Note 1: $P_a = 1$.

Note 2: The modulation symbols of the signal under test is mapped onto antenna port 7 or 8.

Note 3: Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the input signal under test.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 5: The two UEs’ scrambling identities n_{SCID} are set to 0 for CDM-multiplexed DM RS with interfering simultaneous transmission test cases.

Table 8.3.2.1-4: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz QPSK 1/3</td>
<td>R.31 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>2x2 Low</td>
<td>70 -1.0</td>
<td>1-5</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz 16QAM 1/2</td>
<td>R.32 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Medium</td>
<td>70 7.7</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>5MHz 16QAM 1/2</td>
<td>R.32-1 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Medium</td>
<td>70 7.7</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>10 MHz 64QAM 3/4</td>
<td>R.33 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70 17.7</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>10 MHz 64QAM 3/4</td>
<td>R.33-1 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70 17.7</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 8.3.2.1-5: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10 MHz 16QAM 1/2</td>
<td>R.32 TDD (Note 1)</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Medium</td>
<td>70 21.9</td>
<td>2-5</td>
</tr>
<tr>
<td>5</td>
<td>10 MHz 64QAM 1/2</td>
<td>R.34 TDD (Note 1)</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70 22.0</td>
<td>2-5</td>
</tr>
</tbody>
</table>

Note 1: The reference channel applies to both the input signal under test and the interfering signal.
8.3.2.1A Single-layer Spatial Multiplexing (with multiple CSI-RS configurations)

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.1A-2 and 8.3.2.1A-3, with the addition of the parameters in Table 8.3.2.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.3.2.1A-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_A</td>
<td>dB</td>
<td>0 (Note 1)</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td>P_B</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td>Antenna ports 0,1</td>
<td>Antenna ports 7,8</td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna ports 15,...,22</td>
<td>Antenna ports 15,...,18</td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td>Annex B.4.1</td>
<td>Annex B.4.1</td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$</td>
<td>Subframes</td>
<td>5 / 4</td>
<td>5 / 4</td>
</tr>
<tr>
<td>CSI reference signal configuration</td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Zero-power CSI-RS configuration $I_{CSI-RS} / ZeroPowerCSI-RS bitmap$</td>
<td>Subframes / bitmap</td>
<td>4 / 00100000000000000000000000</td>
<td>4 / 00100000000000000000000000</td>
</tr>
<tr>
<td>N_c at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td></td>
<td>OCNG (Note 4)</td>
<td>OCNG (Note 4)</td>
</tr>
<tr>
<td>Number of allocated resource blocks (Note 2)</td>
<td>PRB</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Simultaneous transmission</td>
<td></td>
<td>No</td>
<td>Yes (Note 3, 5)</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Note 1: $P_B = 1$.
Note 2: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.
Note 3: Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the input signal under test.
Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.
Note 5: The two UEs’ scrambling identities n_{SCID} are set to 0 for CDM-multiplexed DM RS with interfering simultaneous transmission test cases.
Table 8.3.2.1A-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz QPSK 1/3</td>
<td>R.50 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Table 8.3.2.1A-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10 MHz 64QAM 1/2</td>
<td>R.44 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>2-8</td>
</tr>
</tbody>
</table>

Note 1: The reference channel applies to both the input signal under test and the interfering signal.

8.3.2.2 Dual-Layer Spatial Multiplexing

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.2-2, with the addition of the parameters in Table 8.3.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation.

Table 8.3.2.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>ρ_s dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cell-specific reference symbols</td>
<td>ρ_b dB</td>
<td>0 (Note 1)</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td>Beamforming model</td>
<td>σ dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>N_{α} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td></td>
<td>OCNG (Note 2)</td>
<td>OCNG (Note 2)</td>
</tr>
<tr>
<td>Number of allocated resource blocks</td>
<td>PRB</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Note 1: $P_t = 1$.
Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.
Table 8.3.2.2-2: Minimum performance for CDM-multiplexed DM RS (FRC)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fraction of Maximum Throughput (%)</td>
<td>SNR (dB)</td>
</tr>
<tr>
<td>1</td>
<td>10 MHz QPSK 1/3</td>
<td>R.31 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz 16QAM 1/2</td>
<td>R.32 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Medium</td>
<td>70</td>
<td>21.7</td>
</tr>
</tbody>
</table>

8.3.2.3 Dual-Layer Spatial Multiplexing (with multiple CSI-RS configurations)

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.3-2, with the addition of the parameters in Table 8.3.2.3-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.3.2.3-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td>P_A dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P_B dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>-3</td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td>Antenna ports 0</td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td>Antenna ports 15,16</td>
<td></td>
</tr>
<tr>
<td>Beamforming model</td>
<td>Annex B.4.2</td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td>$T_{CSI-RS} / \Delta_{CSI-RS}$</td>
<td>5 / 4</td>
</tr>
<tr>
<td>CSI reference signal configuration</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Zero-power CSI-RS configuration</td>
<td>$l_{CSI-RS} / \text{ZeroPowerCSI-RS bitmap}$</td>
<td>4 / 0010000000000000</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td>OCNG (Note 2)</td>
<td></td>
</tr>
<tr>
<td>Number of allocated resource blocks (Note 2)</td>
<td>PRB</td>
<td>50</td>
</tr>
<tr>
<td>Simultaneous transmission</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: $P_A = 1$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.
Table 8.3.2.3-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth and MCS</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference value</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 MHz 16 QAM 1/2</td>
<td>R.51 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>70</td>
<td>14.5</td>
</tr>
</tbody>
</table>

8.4 Demodulation of PDCCH/PCFICH

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

8.4.1 FDD

The parameters specified in Table 8.4.1-1 are valid for all FDD tests unless otherwise stated.

Table 8.4.1-1: Test Parameters for PDCCH/PCFICH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Single antenna port</th>
<th>Transmit diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of PDCCH symbols</td>
<td>symbols</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Number of PHICH groups (N_g)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHICH duration</td>
<td>Normal</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td>OCNG</td>
<td>OCNG</td>
<td></td>
</tr>
<tr>
<td>Cell ID</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>N_m at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td>Normal</td>
<td>Normal</td>
<td></td>
</tr>
</tbody>
</table>

8.4.1.1 Single-antenna port performance

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.1-1: Minimum performance PDCCH/PCFICH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Aggregation level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>8 CCE</td>
<td>R.15 FDD</td>
<td>OP.1 FDD</td>
<td>ETU70</td>
<td>1x2 Low</td>
<td>1</td>
</tr>
</tbody>
</table>

ETSI
8.4.1.2 Transmit diversity performance

8.4.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.2.1-1: Minimum performance PDCCH/PCFICH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Aggregation level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pm-dsg (%)</td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>4 CCE</td>
<td>R.16 FDD</td>
<td>OP.1 FDD</td>
<td>EVA70</td>
<td>2 x 2 Low</td>
<td>1</td>
</tr>
</tbody>
</table>

8.4.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.2.2-1: Minimum performance PDCCH/PCFICH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Aggregation level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pm-dsg (%)</td>
</tr>
<tr>
<td>1</td>
<td>5 MHz</td>
<td>2 CCE</td>
<td>R.17 FDD</td>
<td>OP.1 FDD</td>
<td>EPA5</td>
<td>4 x 2 Medium</td>
<td>1</td>
</tr>
</tbody>
</table>

8.4.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters for non-MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2, and Annex C.3.3. In Table 8.4.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-4. In Table 8.4.1.2.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.
Test Parameters for PDCCH/PCFICH – Non-MBSFN ABS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDCCH_RA</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PHICH_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCFICH_RB</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PDCCH_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHICH_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{sc1} at antenna port</td>
<td>dBm/15kHz</td>
<td>-100.5 (Note 1)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{sc2}</td>
<td>dBm/15kHz</td>
<td>-98 (Note 2)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{sc3}</td>
<td>dBm/15kHz</td>
<td>-95.3 (Note 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>$\frac{E_b}{N_0}$</td>
<td>dB</td>
<td>Reference Value in Table 8.4.1.2.3-2</td>
<td>1.5</td>
</tr>
<tr>
<td>BW</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS pattern (Note 4)</td>
<td></td>
<td>N/A</td>
<td>00000100 00000100 00000100 01000100 00000100</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 5)</td>
<td></td>
<td>00000100 00000100 00000100 00000100</td>
<td>N/A</td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_{CSI,0}$</td>
<td></td>
<td>00000100 00000100 00000100 01000100 00000100</td>
<td>N/A</td>
</tr>
<tr>
<td>$C_{CSI,1}$</td>
<td></td>
<td>11111011 11111011 11111011 10111011 11111011</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Number of PHICH groups (N_g)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHICH duration</td>
<td></td>
<td>extended</td>
<td></td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td></td>
<td>OCNG</td>
<td></td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.

Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.

Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.

Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7];

Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7];

Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 8: SIB-1 will not be transmitted in Cell2 in the test.
Table 8.4.1.2.3-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Aggregation Level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell 1</td>
<td>EVA5</td>
<td>Pm-dsg (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell 2</td>
<td>Cell 1</td>
<td>SNR (dB) (Note 2)</td>
</tr>
<tr>
<td>1</td>
<td>8 CCE</td>
<td>R15-1</td>
<td>OP.1</td>
<td>FDD</td>
<td>EVA5</td>
<td>2x2 Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDD</td>
<td>OP.1</td>
<td>FDD</td>
<td>Cell 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell 2</td>
<td>-3.9</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SNR corresponds to $\frac{E_s}{N_{\text{ec}2}}$ of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.
Table 8.4.1.2.3-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCFICH_RA</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PDCCH_RA</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PHICH_RA</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>OCNG_RA</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PCFICH_RB</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PDCCH_RB</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PHICH_RB</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>OCNG_RB</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>N_{oc1} at antenna port</td>
<td>dBm/15kHz</td>
<td>-100.5 (Note 1)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc2}</td>
<td>dBm/15kHz</td>
<td>-98 (Note 2)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc3}</td>
<td>dBm/15kHz</td>
<td>-95.3 (Note 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>$\frac{\hat{E}s}{N{oc2}}$</td>
<td>dB</td>
<td>Reference Value in Table 8.4.1.2.3-4</td>
<td>1.5</td>
</tr>
<tr>
<td>BWChannel</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-MBSFN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBSFN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>ABS pattern (Note 4)</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>[RLM/RRM Measurement Subframe Pattern (Note 5)]</td>
<td></td>
<td>0001000000</td>
<td>N/A</td>
</tr>
<tr>
<td>[RLM/RRM Measurement Subframe Pattern (Note 5)]</td>
<td></td>
<td>0100000010</td>
<td></td>
</tr>
<tr>
<td>[RLM/RRM Measurement Subframe Pattern (Note 5)]</td>
<td></td>
<td>0000001000</td>
<td></td>
</tr>
<tr>
<td>[RLM/RRM Measurement Subframe Pattern (Note 5)]</td>
<td></td>
<td>0000000000</td>
<td></td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_{CSI,0}$</td>
<td></td>
<td>0001000000</td>
<td>N/A</td>
</tr>
<tr>
<td>$C_{CSI,1}$</td>
<td></td>
<td>0100000010</td>
<td></td>
</tr>
<tr>
<td>$C_{CSI,1}$</td>
<td></td>
<td>0000001000</td>
<td></td>
</tr>
<tr>
<td>$C_{CSI,1}$</td>
<td></td>
<td>0000000000</td>
<td></td>
</tr>
<tr>
<td>MBSFN Subframe Allocation (Note 9)</td>
<td></td>
<td>N/A</td>
<td>001000</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Number of PHICH groups (N_g)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHICH duration</td>
<td></td>
<td>extended</td>
<td></td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td></td>
<td>OCNG</td>
<td></td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>
3GPP TS 36.101 version 10.13.0 Release 10

Table 8.4.1.2.3-4: Minimum performance PDCCH/PCHICH – MBSFN ABS

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Aggregation Level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8 CCE</td>
<td>R15-1 FDD</td>
<td>OP.1 FDD</td>
<td>OP.1 FDD</td>
<td>EVA5, EVA5, 2x2 Low</td>
<td>Pm-dsg (%) 1 SNR (dB) 4.2</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.
Note 2: SNR corresponds to $\frac{\hat{E}_s}{N_0}$ of cell 1.
Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.4.2 TDD

The parameters specified in Table 8.4.2-1 are valid for all TDD tests unless otherwise stated.
Table 8.4.2-1: Test Parameters for PDCCH/PCFICHC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Single antenna port</th>
<th>Transmit diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration (Note 1)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Special subframe configuration (Note 2)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Number of PDCCH symbols</td>
<td>symbols</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Number of PHICH groups (N_g)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHICH duration</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td>OCNG</td>
<td>OCNG</td>
<td></td>
</tr>
<tr>
<td>Cell ID</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Downlink power allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Single antenna port</th>
<th>Transmit diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCCH_RA</td>
<td>dB</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>PHICH_RA</td>
<td>dB</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>OCNG_RA</td>
<td>dB</td>
<td>0</td>
<td>-3</td>
</tr>
</tbody>
</table>

N_{av} at antenna port dBm/15kHz -98 -98

Cyclic prefix Normal Normal

ACK/NACK feedback mode Multiplexing Multiplexing

Note 1: as specified in Table 4.2-2 in TS 36.211 [4].
Note 2: as specified in Table 4.2-1 in TS 36.211 [4].

8.4.2.1 Single-antenna port performance

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.1-1: Minimum performance PDCCH/PCFICHC

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Aggregation level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Pm-dsg (%)</th>
<th>SNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>8 CCE</td>
<td>R.15 TDD</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1x2 Low Low</td>
<td>1</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

8.4.2.2 Transmit diversity performance

8.4.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.
Table 8.4.2.2.1-1: Minimum performance PDCCH/PCFICH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Aggregation level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>4 CCE</td>
<td>R.16 TDD</td>
<td>OP.1 TDD</td>
<td>EVA70</td>
<td>2 x 2 Low</td>
<td>1</td>
</tr>
</tbody>
</table>

8.4.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.2.2-1: Minimum performance PDCCH/PCFICH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Aggregation level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 MHz</td>
<td>2 CCE</td>
<td>R.17 TDD</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>4 x 2 Medium</td>
<td>1</td>
</tr>
</tbody>
</table>

8.4.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.4.2-1 and Table 8.4.2.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2. and Annex C.3.3.. In Table 8.4.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for non-MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.3-4. In Table 8.4.2.2.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDCCH_RA</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PHICH_RA</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>OCNG_RA</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PCFICH_RB</td>
<td>dB</td>
<td>-100.5 (Note 1)</td>
<td>N/A</td>
</tr>
<tr>
<td>PDCCH_RB</td>
<td>dB</td>
<td>-98 (Note 2)</td>
<td>N/A</td>
</tr>
<tr>
<td>PHICH_RB</td>
<td>dB</td>
<td>-95.3 (Note 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>OCNG_RB</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{oc1}</td>
<td>dBm/15kHz</td>
<td>-100.5 (Note 1)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc2}</td>
<td>dBm/15kHz</td>
<td>-98 (Note 2)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc3}</td>
<td>dBm/15kHz</td>
<td>-95.3 (Note 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>$\frac{E_{s}}{N_{oc2}}$</td>
<td>dB</td>
<td>Reference Value in Table 8.4.2.2.3-2</td>
<td>1.5</td>
</tr>
<tr>
<td>BW</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ABS pattern (Note 4)</td>
<td></td>
<td>N/A</td>
<td>0000010000001 0000000000001</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 5)</td>
<td></td>
<td>0000000000001 0000000000001</td>
<td></td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_{CSI,0}$</td>
<td></td>
<td>0000010000001</td>
<td>N/A</td>
</tr>
<tr>
<td>$C_{CSI,1}$</td>
<td></td>
<td>1100101000000</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
<tr>
<td>Number of PHICH groups (N_g)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHICH duration</td>
<td></td>
<td>extended</td>
<td></td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td></td>
<td>OCNG</td>
<td></td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Notes:

1. This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
2. This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
3. This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
4. ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.
5. Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
6. As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
7. Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
8. SIB-1 will not be transmitted in Cell2 in the test.
Table 8.4.2.3-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Aggregation Level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 CCE</td>
<td>R15-1 TDD</td>
<td>OP.1 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>2x2 Low</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Cell 1</td>
<td>Cell 1</td>
<td>1 SNR (-3.9)</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SNR corresponds to $\frac{E_s}{N_{\text{tot}}}$ of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.
Table 8.4.2.2.3-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>PCFICH_RA</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>PDCCH_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHICH_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCFICH_RB</td>
<td></td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>PDCCH_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHICH_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>N_{oc1}</td>
<td>dBm/15kHz</td>
<td>-100.5 (Note 1)</td>
</tr>
<tr>
<td>N_{oc2}</td>
<td></td>
<td>dBm/15kHz</td>
<td>-98 (Note 2)</td>
</tr>
<tr>
<td>N_{oc3}</td>
<td></td>
<td>dBm/15kHz</td>
<td>-95.3 (Note 3)</td>
</tr>
<tr>
<td>E_s/N_{oc2}</td>
<td></td>
<td>dB</td>
<td>Reference Value in Table 8.4.2.2.3-4</td>
</tr>
<tr>
<td>BWChannel</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td>Non-MBSFN</td>
<td>MBSFN</td>
<td></td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>µs</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>ABS pattern (Note 4)</td>
<td></td>
<td>N/A</td>
<td>00000000001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00000000001</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern(Note 5)</td>
<td></td>
<td>00000000001</td>
<td>00000000001</td>
</tr>
<tr>
<td>CSI Subframe Sets(Note 6)</td>
<td>$C_{CSI,0}$</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000000001</td>
<td>00000000001</td>
</tr>
<tr>
<td></td>
<td>$C_{CSI,1}$</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1100111000</td>
<td>1100111000</td>
</tr>
<tr>
<td>MBSFN Subframe Allocation (Note 9)</td>
<td></td>
<td>N/A</td>
<td>000010</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td></td>
<td>Multiplexing</td>
</tr>
<tr>
<td>Number of PHICH groups (N_g)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PHICH duration</td>
<td></td>
<td></td>
<td>extended</td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td></td>
<td></td>
<td>OCNG</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.

Note 2: This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 4: ABS pattern as defined in [9]. The 10th and 20th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].

Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 8: SIB-1 will not be transmitted in Cell2 in this test.

Note 9: MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation.
Table 8.4.2.2.3-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Aggregation Level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Correlation Matrix and Antenna Configuration</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Aggregation Level</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Cell 1</th>
<th>Cell 2</th>
<th>Cell 1</th>
<th>Cell 2</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 CCE</td>
<td>R15-1 TDD</td>
<td>OP.1 TDD</td>
<td>EVA5</td>
<td>EVA5</td>
<td>2x2 Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-4.1</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SNR corresponds to $\frac{E_r}{N_\text{inv}}$ of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.5 Demodulation of PHICH

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK ($P_{\text{m-an}}$). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

8.5.1 FDD

The parameters specified in Table 8.5.1-1 are valid for all FDD tests unless otherwise stated.

Table 8.5.1-1: Test Parameters for PHICH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Single antenna port</th>
<th>Transmit diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDCCH_RA</td>
<td>dB</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>PHICH_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCFICH_RB</td>
<td>dB</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>PDCCH_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHICH_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHICH duration</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Number of PHICH groups (Note 1)</td>
<td></td>
<td>Ng = 1</td>
<td>Ng = 1</td>
</tr>
<tr>
<td>PDCCH Content</td>
<td></td>
<td>UL Grant should be included with the proper information aligned with A.3.6.</td>
<td></td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td></td>
<td>OCNG</td>
<td>OCNG</td>
</tr>
<tr>
<td>Cell ID</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_{inv} at antenna port</td>
<td></td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: according to Clause 6.9 in TS 36.211 [4]

8.5.1.1 Single-antenna port performance

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK ($P_{\text{m-an}}$) shall be below the specified value in Table 8.5.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.1-1: Minimum performance PHICH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.18</td>
<td>OP.1 FDD</td>
<td>ETU70</td>
<td>1 x 2 Low</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.24</td>
<td>OP.1 FDD</td>
<td>ETU70</td>
<td>1 x 2 Low</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
</tbody>
</table>
8.5.1.2 Transmit diversity performance

8.5.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2-1. The downlink physical setup is in accordance with Annex C.3.2.

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pm-an (%)</td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.19</td>
<td>OP.1 FDD</td>
<td>EVA70</td>
<td>2 x 2 Low</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
</tr>
</tbody>
</table>

8.5.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pm-an (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNR (dB)</td>
</tr>
<tr>
<td>1</td>
<td>5 MHz</td>
<td>R.20</td>
<td>OP.1 FDD</td>
<td>EPA5</td>
<td>4 x 2 Medium</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.1</td>
</tr>
</tbody>
</table>

8.5.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.1-1 and Table 8.5.1.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.5.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.
Table 8.5.1.2.3-1: Test Parameters for PHICH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDCCH_RA</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PHICH_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCFICH_RB</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>PDCCH_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHICH_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG_RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{oc1}</td>
<td>dBm/15kHz</td>
<td>-100.5 (Note 1)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc2}</td>
<td>dBm/15kHz</td>
<td>-98 (Note 2)</td>
<td>N/A</td>
</tr>
<tr>
<td>N_{oc3}</td>
<td>dBm/15kHz</td>
<td>-95.3 (Note 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>$\frac{E_s}{N_{oc2}}$</td>
<td>dB</td>
<td>Reference Value in Table 8.5.1.2.3-2</td>
<td>1.5</td>
</tr>
<tr>
<td>BWChannel</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td></td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ABS pattern (Note 4)</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 5)</td>
<td>00000100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_{CSI,0}$</td>
<td></td>
<td>00000100</td>
<td></td>
</tr>
<tr>
<td>$C_{CSI,1}$</td>
<td></td>
<td>00000100</td>
<td></td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Number of PHICH groups (N_g)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHICH duration</td>
<td></td>
<td>extended</td>
<td></td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td></td>
<td>OCNG</td>
<td>OCNG</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS
Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 4: ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in the 26th subframe indicated by the ABS pattern.
Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 8: SIB-1 will not be transmitted in Cell2 in the test.
Table 8.5.1.2.3-2: Minimum performance PHICH

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Conditions (Note 1)</th>
<th>Antenna Configuration and Correlation Matrix</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cell 1</td>
<td>Cell 2</td>
<td>Pm-an (%)</td>
<td>SNR (dB) (Note 2)</td>
</tr>
<tr>
<td>1</td>
<td>R.19</td>
<td>OP.1 FDD</td>
<td>OP.1 FDD</td>
<td>EPA5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SNR corresponds to \(\frac{E_s}{N_{0,2}} \) of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.5.2 TDD

The parameters specified in Table 8.5.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.5.2-1: Test Parameters for PHICH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Single antenna port</th>
<th>Transmit diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration (Note 1)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration (Note 2)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>PHICH duration</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Number of PHICH groups (Note 3)</td>
<td></td>
<td>Nq = 1</td>
<td>Nq = 1</td>
</tr>
<tr>
<td>PDCCH Content</td>
<td></td>
<td>UL Grant should be included with the proper information aligned with A.3.6.</td>
<td></td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td></td>
<td>OCNG</td>
<td>OCNG</td>
</tr>
<tr>
<td>Cell ID</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(N_{0,2}) at antenna port</td>
<td></td>
<td>dB/m/15kHz</td>
<td>-98</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td>Multiplexing</td>
</tr>
</tbody>
</table>

Note 1: as specified in Table 4.2-2 in TS 36.211 [4]
Note 2: as specified in Table 4.2-1 in TS 36.211 [4]
Note 3: according to Clause 6.9 in TS 36.211 [4]

8.5.2.1 Single-antenna port performance

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.
Table 8.5.2.1-1: Minimum performance PHICH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pm-an (%)</td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.18</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1 x 2 Low</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.24</td>
<td>OP.1 TDD</td>
<td>ETU70</td>
<td>1 x 2 Low</td>
<td>0.1</td>
</tr>
</tbody>
</table>

8.5.2.2 Transmit diversity performance

8.5.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.2.1-1: Minimum performance PHICH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pm-an (%)</td>
</tr>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.19</td>
<td>OP.1 TDD</td>
<td>EVA70</td>
<td>2 x 2 Low</td>
<td>0.1</td>
</tr>
</tbody>
</table>

8.5.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.2.2-1: Minimum performance PHICH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pm-an (%)</td>
</tr>
<tr>
<td>1</td>
<td>5 MHz</td>
<td>R.20</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>4 x 2 Medium</td>
<td>0.1</td>
</tr>
</tbody>
</table>

8.5.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.2-1 and Table 8.5.2.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.5.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.
Table 8.5.2.2.3-1: Test Parameters for PHICH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>PDCCH_RA</td>
<td>Cell 1</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>PHICH_RA</td>
<td>Cell 2</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>OCNG_RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCFICH_RB</td>
<td></td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>PDCCH_RB</td>
<td></td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>PHICH_RB</td>
<td></td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>OCNG_RB</td>
<td></td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>(N_{oc1}) at antenna port</td>
<td></td>
<td>dBm/15kHz</td>
<td>-100.5 (Note 1)</td>
</tr>
<tr>
<td>(N_{oc2})</td>
<td></td>
<td>dBm/15kHz</td>
<td>-98 (Note 2)</td>
</tr>
<tr>
<td>(N_{oc3})</td>
<td></td>
<td>dBm/15kHz</td>
<td>-95.3 (Note 3)</td>
</tr>
<tr>
<td>(\frac{E_b}{N_0})</td>
<td></td>
<td>dB</td>
<td>Reference Value in Table 8.5.2.2.3-2</td>
</tr>
<tr>
<td>BW</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td></td>
<td>(\mu s)</td>
<td>2.5 (synchronous cells)</td>
</tr>
<tr>
<td>ABS pattern (Note 4)</td>
<td></td>
<td>N/A</td>
<td>00000100001 00000000001</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 5)</td>
<td></td>
<td>00000000001 00000000001</td>
<td>N/A</td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 6)</td>
<td></td>
<td>00000100001 00000000001</td>
<td>N/A</td>
</tr>
<tr>
<td>(C_{CSI,0})</td>
<td></td>
<td>11001110000</td>
<td>N/A</td>
</tr>
<tr>
<td>(C_{CSI,1})</td>
<td></td>
<td>11011001000</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
<tr>
<td>Number of PHICH groups ((N_g))</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PHICH duration</td>
<td></td>
<td>extended</td>
<td></td>
</tr>
<tr>
<td>Unused RE-s and PRB-s</td>
<td></td>
<td>OCNG</td>
<td>OCNG</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS

Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS

Note 4: ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in subframe 5

Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]

Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]

Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 8: SIB-1 will not be transmitted in Cell2 in the test.
8.5.2.2.3-2: Minimum performance PHICH

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Reference Channel</th>
<th>OCNG Pattern Cell 1</th>
<th>Propagation Conditions (Note 1) Cell 1</th>
<th>Antenna Configuration and Correlation Matrix Cell 1</th>
<th>Reference Value</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R.19</td>
<td>OP.1 TDD</td>
<td>EPA5</td>
<td>2x2 Low</td>
<td>0.1</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SNR corresponds to $\frac{E_s}{N_{oc}^2}$ of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.6 Demodulation of PBCH

The receiver characteristics of the PBCH are determined by the probability of miss-detection of the PBCH (Pm-bch).

8.6.1 FDD

8.6.1.1 Single-antenna port performance

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detecting PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

8.6.1.2 Transmit diversity performance

8.6.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.
Table 8.6.1.2.1-1: Minimum performance PBCH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 MHz</td>
<td>R.22</td>
<td>EPA5</td>
<td>2 x 2 Low</td>
<td>1</td>
</tr>
</tbody>
</table>

8.6.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.2.2-1: Minimum performance PBCH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 MHz</td>
<td>R.23</td>
<td>EVA5</td>
<td>4 x 2 Medium</td>
<td>1</td>
</tr>
</tbody>
</table>

8.6.2 TDD

Table 8.6.2-1: Test Parameters for PBCH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Single antenna port</th>
<th>Transmit diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink downlink configuration (Note 1)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration (Note 2)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>(N_{\text{av}}) at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td>Normal</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Cell ID</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: as specified in Table 4.2-2 in TS 36.211 [4].
Note 2: as specified in Table 4.2-1 in TS 36.211 [4].

8.6.2.1 Single-antenna port performance

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.1-1: Minimum performance PBCH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 MHz</td>
<td>R.21</td>
<td>ETU70</td>
<td>1 x 2 Low</td>
<td>1</td>
</tr>
</tbody>
</table>
8.6.2.2 Transmit diversity performance

8.6.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (P_{m-bch}) shall be below the specified value in Table 8.6.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.2.1-1: Minimum performance PBCH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 MHz</td>
<td>R.22</td>
<td>EPA5</td>
<td>2 x 2 Low</td>
<td>1</td>
</tr>
</tbody>
</table>

8.6.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (P_{m-bch}) shall be below the specified value in Table 8.6.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.2.2-1: Minimum performance PBCH

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>Propagation Condition</th>
<th>Antenna configuration and correlation Matrix</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 MHz</td>
<td>R.23</td>
<td>EVA5</td>
<td>4 x 2 Medium</td>
<td>1</td>
</tr>
</tbody>
</table>

8.7 Sustained downlink data rate provided by lower layers

The purpose of the test is to verify that the Layer 1 and Layer 2 correctly process in a sustained manner the received packets corresponding to the maximum number of DL-SCH transport block bits received within a TTI for the UE category indicated. The sustained downlink data rate shall be verified in terms of the success rate of delivered PDCP SDU(s) by Layer 2. The test case below specifies the RF conditions and the required success rate of delivered TB by Layer 1 to meet the sustained data rate requirement. The size of the TB per TTI corresponds to the largest possible DL-SCH transport block for each UE category using the maximum number of layers for spatial multiplexing. Transmission modes 1 and 3 are used with radio conditions resembling a scenario where sustained maximum data rates are available.

8.7.1 FDD

The parameters specified in Table 8.7.1-1 are valid for all FDD tests unless otherwise stated.
Table 8.7.1-1: Common Test Parameters (FDD)

Parameter	Unit	Value
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes per component carrier	Processes	8
Maximum number of HARQ transmission		4
Redundancy version coding sequence		(0,0,1,2) for 64QAM
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	1
Cross carrier scheduling		Not configured

The requirements are specified in Table 8.7.1-3, with the addition of the parameters in Table 8.7.1-2 and the downlink physical channel setup according to Annex C.3.2. The TB success rate shall be sustained during at least 300 frames.

Table 8.7.1-2: test parameters for sustained downlink data rate (FDD)

Parameter	Unit	Test 1	Test 2	Test 3,4,6	Test 3A	Test 3B	Test 4A	Test 6A
Bandwidth	MHz	10	10	20	10	2x10	2x10	2x20
Transmission mode		1	3	3	3	3	3	3
Antenna configuration		1 x 2	2 x 2	2 x 2	2 x 2	2x2	2x2	2 x 2
Propagation condition		n/a	10	10	10	10	10	10
CodeBookSubsetRestriction bitmap	n/a	10	10	10	10	10	10	10
Downlink power allocation								
ρ_A	dB	0	-3	-3	-3	-3	-3	-3
ρ_B	dB	0	-3	-3	-3	-3	-3	-3
σ	dB	0	0	0	0	0	0	0
\(\hat{E}_a \) at antenna port	dBm/15kHz	-85	-85	-85	-85	-85	-85	-85
Symbols for unused PRBs		OP.6	OP.1	OP.1	OP.1	OP.1	OP.1	OP.1
FDD		FDD	FDD	FDD	FDD	FDD	FDD	FDD

Note 1: No external noise sources are applied.

Note 2: For CA test cases, PUCCH format 1b with channel selection is used to feedback ACK/NACK.
Table 8.7.1-3: Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Test</th>
<th>UE Category</th>
<th>CA capability</th>
<th>Number of bits of a DL-SCH transport block received within a TTI</th>
<th>Measurement channel</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Category 1</td>
<td>-</td>
<td>10296</td>
<td>R.31-1 FDD</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>Category 2</td>
<td>-</td>
<td>25456</td>
<td>R.31-2 FDD</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>Category 3 (Note 1)</td>
<td>-</td>
<td>51024</td>
<td>R.31-3 FDD</td>
<td>95</td>
</tr>
<tr>
<td>3A</td>
<td>Category 3 (Note 2)</td>
<td>-</td>
<td>36696 (Note 4)</td>
<td>R.31-3A FDD</td>
<td>85</td>
</tr>
<tr>
<td>3B</td>
<td>Category 3 CL_A-A</td>
<td>25456</td>
<td>R.31-2 FDD</td>
<td>[95]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Category 4</td>
<td>-</td>
<td>75376 (Note 5)</td>
<td>R.31-4 FDD</td>
<td>85</td>
</tr>
<tr>
<td>4A</td>
<td>Category 4 CL_A-A</td>
<td>36696 (Note 4)</td>
<td>R.31-3A FDD</td>
<td>[85]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Category 6, 7</td>
<td>- (Note 7)</td>
<td>75376 (Note 5)</td>
<td>R.31-4 FDD</td>
<td>85</td>
</tr>
<tr>
<td>6A</td>
<td>Category 6, 7 CL_A-A,CL_C</td>
<td>75376 (Note 5)</td>
<td>R.31-4 FDD</td>
<td>[85]</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the operating band under test does not support 20 MHz channel bandwidth, then test is executed according to Test 3A.

Note 2: Applicable to operating bands not supporting 20 MHz channel bandwidth.

Note 3: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 4: 35160 bits for sub-frame 5.

Note 5: 71112 bits for sub-frame 5.

Note 6: The TB success rate is defined as TB success rate = 100%*N_{DL_correct_rx}/ (N_{DL_newtx} + N_{DL_retx}), where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and N_{DL_correct_rx} is the number of correctly received DL transport blocks.

Note 7: Test 3 or Test 3A may not be executed for UE-s for which Test 3B is applicable. Test 4 may not be executed for UE-s for which Test 4A is applicable. Test 6 may not be executed for UE-s for which Test 6A is applicable.

8.7.2 TDD

The parameters specified in Table 8.7.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.7.2-1: Common Test Parameters (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cyclic prefix</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Cell ID</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Inter-TTI Distance</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Maximum number of HARQ transmission</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,0,1,2) for 64QAM</td>
</tr>
<tr>
<td>Number of OFDM symbols per component carrier</td>
<td>OFDM symbols</td>
<td>1</td>
</tr>
<tr>
<td>Cross carrier scheduling</td>
<td></td>
<td>Not configured</td>
</tr>
</tbody>
</table>

Note 1: as specified in Table 4.2-1 in TS 36.211 [4].

The requirements are specified in Table 8.7.2-3, with the addition of the parameters in Table 8.7.2-2 and the downlink physical channel setup according to Annex C.3.2. The TB success rate shall be sustained during at least 300 frames.
Table 8.7.2-2: Test parameters for sustained downlink data rate (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 3A</th>
<th>Test 4,6</th>
<th>Test 6A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>20 2x20</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Antenna configuration</td>
<td></td>
<td>1 x 2</td>
<td>2 x 2</td>
</tr>
<tr>
<td>Propagation condition</td>
<td></td>
<td>Static propagation condition (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td>n/a</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td>(\rho_A) dB</td>
<td>0</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\rho_B) dB</td>
<td>0</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\sigma) dB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{E}_s) at antenna port</td>
<td>dBm/15kHz</td>
<td>-85</td>
<td>-85</td>
<td>-85</td>
<td>-85</td>
<td>-85</td>
<td>-85</td>
</tr>
<tr>
<td>Symbols for unused PRBs</td>
<td></td>
<td>OP.6 TDD</td>
<td>OP.1 TDD</td>
<td>OP.1 TDD</td>
<td>OP.2 TDD</td>
<td>OP.1 TDD</td>
<td>OP.1 TDD</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Bundling</td>
<td>Bundling</td>
<td>Bundling</td>
<td>Multiplexing</td>
<td>Multiplexing</td>
<td>- (Note 2)</td>
</tr>
</tbody>
</table>

Note 1: No external noise sources are applied.

Note 2: PUCCH format 1b with channel selection is used to feedback ACK/NACK.

Table 8.7.2-3: Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>Test</th>
<th>UE Category</th>
<th>CA Capability</th>
<th>Number of bits of a DL-SCH transport block received within a TTI for normal/special sub-frame</th>
<th>Measurement channel</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Category 1</td>
<td>-</td>
<td>10296/0</td>
<td>R31-1 TDD</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>Category 2</td>
<td>-</td>
<td>25456/0</td>
<td>R31-2 TDD</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>Category 3</td>
<td>-</td>
<td>51024/0</td>
<td>R31-3 TDD</td>
<td>95</td>
</tr>
<tr>
<td>3A</td>
<td>Category 3</td>
<td>-</td>
<td>51024/0</td>
<td>R31-3A TDD</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>Category 4</td>
<td>-</td>
<td>75376/0 (Note 4)</td>
<td>R31-4 TDD</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>Category 6,7</td>
<td>-</td>
<td>75376/0 (Note 4)</td>
<td>R.31-4 TDD</td>
<td>85</td>
</tr>
<tr>
<td>6A</td>
<td>Category 6,7</td>
<td>CL_C</td>
<td>75376/0 (Note 4)</td>
<td>R.31-4 TDD</td>
<td>85</td>
</tr>
</tbody>
</table>

Note 1: If the operating band under test does not support 20 MHz channel bandwidth, then test is executed according to Test 3A.

Note 2: Applicable to operating bands not supporting 20 MHz channel bandwidth.

Note 3: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 4: 71112 bits for sub-frame 5.

Note 5: The TB success rate is defined as TB success rate = \(100\% \times \frac{N_{DL_correct_rx}}{N_{DL_newtx} + N_{DL_retx}}\), where \(N_{DL_newtx}\) is the number of newly transmitted DL transport blocks, \(N_{DL_retx}\) is the number of retransmitted DL transport blocks, and \(N_{DL_correct_rx}\) is the number of correctly received DL transport blocks.

Note 6: Test 6 may not be executed for UE-s for which Test 6A is applicable.
9 Reporting of Channel State Information

9.1 General

This section includes requirements for the reporting of channel state information (CSI). For all test cases in this section, the definition of SNR is in accordance with the one given in clause 8.1.1, where

$$ SNR = \frac{\sum \hat{f}_{or}^{(j)} \sigma_{or}^{(j)}}{\sum N_{oc}^{(j)}} $$

9.2 CQI reporting definition under AWGN conditions

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective conditions is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median. The purpose is to verify that the reported CQI values are in accordance with the CQI definition given in TS 36.213 [6]. To account for sensitivity of the input SNR the reporting definition is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols)

9.2.1.1 FDD

The following requirements apply to UE Category 1-8. For the parameters specified in Table 9.2.1.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-1 shall be in the range of ±1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Table 9.2.1.1-1: PUCCH 1-0 static test (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Propagation condition and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antenna configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR (Note 2)</td>
<td>dB</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\hat{f}_{or}^{(j)}$</td>
<td>[dB/mW/15kHz]</td>
<td>-98</td>
<td>-97</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$</td>
<td>[dB/mW/15kHz]</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
9.2.1.2 TDD

The following requirements apply to UE Category 1-8. For the parameters specified in Table 9.2.1.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-2 shall be in the range of ±1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Table 9.2.1.2-1: PUCCH 1-0 static test (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_B</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td>AWGN (1 x 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR (Note 2) dB</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>$\bar{j}_{\text{sr}}^{(j)}$ dB[mW/15kHz]</td>
<td>-98</td>
<td>-97</td>
<td>-92</td>
</tr>
<tr>
<td>$\bar{N}_{\text{oc}}^{(j)}$ dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td>PUSCH (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity ms</td>
<td>$N_{pd} = 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td>Multiplexing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 1:</td>
<td>Reference measurement channel according to Table A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 2:</td>
<td>For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 3:</td>
<td>To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2.1.3 FDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category 1-8. For the parameters specified in Table 9.2.1.3-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C.3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ±1 of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets C_{CSL} is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets C_{CSL} minus the median CQI obtained by reports in CSI subframe sets C_{CSL} shall be larger than or equal to 2 and less than or equal to 5 in Test 1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.
Table 9.2.1.3-1: PUCCH 1-0 static test (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Cell 1</th>
<th>Cell 2</th>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td></td>
<td></td>
<td>Clause B.1 (2x2)</td>
<td>Clause B.1 (2x2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_s / N_{oc,2}$ (Note 1)</td>
<td>dB</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$N_{oc,1}^{(j)}$ at antenna port</td>
<td>dBm/15kHz</td>
<td>-102</td>
<td>N/A</td>
<td>-98</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>$N_{oc,2}^{(j)}$ at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>N/A</td>
<td>-98</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>$N_{oc,3}^{(j)}$ at antenna port</td>
<td>dBm/15kHz</td>
<td>-94.8</td>
<td>N/A</td>
<td>-94</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>$\hat{P}_{oc}^{(j)}$</td>
<td>dB [mW/15kHz]</td>
<td>-94</td>
<td>-93</td>
<td>-92</td>
<td>-94</td>
<td>-93</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td>2.5 (synchronous cells)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS pattern (Note 2)</td>
<td></td>
<td>N/A</td>
<td>01010101</td>
<td>01010101</td>
<td>01010101</td>
<td>01010101</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 4)</td>
<td></td>
<td>000000100</td>
<td>N/A</td>
<td>000000100</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 3)</td>
<td></td>
<td></td>
<td>01010101</td>
<td>01010101</td>
<td>01010101</td>
<td>01010101</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for $C_{CSI,0}$ CQI reporting</td>
<td></td>
<td></td>
<td>PUCCH Format 2</td>
<td>PUCCH Format 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for $C_{CSI,1}$ CQI reporting</td>
<td></td>
<td></td>
<td>PUSCH (Note 2)</td>
<td>PUSCH (Note 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>Ms</td>
<td></td>
<td>$N_{pd} = 5$</td>
<td>$N_{pd} = 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex$C_{CSI,0}$ (Note 13)</td>
<td></td>
<td>6</td>
<td>N/A</td>
<td>6</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex$C_{CSI,1}$ (Note 14)</td>
<td></td>
<td>5</td>
<td>N/A</td>
<td>5</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
9.2.1.4 TDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category 1-8. For the parameters specified in Table 9.2.1.4-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to Table A.4-2 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ±1 of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets CCSI,1 is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets CCSI,1 minus the median CQI obtained by reports in CSI subframe sets CCSI,1 shall be larger than or equal to 2 and less than or equal to 5 in Test 1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.

Note 1:	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
Note 2:	ABS pattern as defined in [9].
Note 3:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 4:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 6:	Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 7:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
Note 8:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 9:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 10:	Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5.
Note 11:	Reference measurement channel in Cell 1 according to Table A.4-1 for UE Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.
Note 12:	To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #9.
Note 13:	cqi-pmi-ConfigurationIndex is applied for CCSI,0.
Note 14:	cqi-pmi-ConfigurationIndex2 is applied for CCSI,1.
Table 9.2.1.4-1: PUCCH 1-0 static test (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th></th>
<th></th>
<th>Test 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cell 1</td>
<td>Cell 2</td>
<td>Cell 1</td>
<td>Cell 2</td>
<td>Cell 2</td>
<td>Cell 2</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>2</td>
<td>Note 10</td>
<td>2</td>
<td>Note 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna config.</td>
<td></td>
<td>Clause B.1 (2x2)</td>
<td>Clause B.1 (2x2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_s/N_{oc2} (Note 1)</td>
<td>dB</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>-12</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$ at antenna port</td>
<td>dBm/15kHz</td>
<td>-102</td>
<td>N/A</td>
<td>-98(Note 7)</td>
<td>N/A</td>
<td>-98(Note 7)</td>
<td>N/A</td>
</tr>
<tr>
<td>$N_{oc2}^{(j)}$</td>
<td>dBm/15kHz</td>
<td>-98</td>
<td>N/A</td>
<td>-98(Note 8)</td>
<td>N/A</td>
<td>-98(Note 8)</td>
<td>N/A</td>
</tr>
<tr>
<td>$N_{oc3}^{(j)}$</td>
<td>dBm/15kHz</td>
<td>-94.8</td>
<td>N/A</td>
<td>-98(Note 9)</td>
<td>N/A</td>
<td>-98(Note 9)</td>
<td>N/A</td>
</tr>
<tr>
<td>$\tilde{j}_{oc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-94</td>
<td>-93</td>
<td>-92</td>
<td>-94</td>
<td>-93</td>
<td>-110</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>(\mu s)</td>
<td>2.5</td>
<td>(synchronous cells)</td>
<td>2.5 (synchronous cells)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS pattern (Note 2)</td>
<td></td>
<td>N/A</td>
<td>01000100010100000001</td>
<td>N/A</td>
<td></td>
<td>01000100010100000001</td>
<td>N/A</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 4)</td>
<td></td>
<td>000000000001</td>
<td>N/A</td>
<td>000000000001</td>
<td>N/A</td>
<td>000000000001</td>
<td>N/A</td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_{CSI,0}$</td>
<td></td>
<td>01000100010100000001</td>
<td>N/A</td>
<td>01000100010100000001</td>
<td>N/A</td>
<td>01000100010100000001</td>
<td>N/A</td>
</tr>
<tr>
<td>$C_{CSI,1}$</td>
<td></td>
<td>10000101000100010001</td>
<td>N/A</td>
<td>10000101000100010001</td>
<td>N/A</td>
<td>10000101000100010001</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of control OFDM symbols</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for $C_{CSI,0}$ CQI reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td>PUCCH Format 2</td>
<td></td>
<td></td>
<td>PUCCH Format 2</td>
<td>PUCCH Format 2</td>
</tr>
<tr>
<td>Physical channel for $C_{CSI,1}$ CQI reporting</td>
<td></td>
<td>PUSCH (Note 12)</td>
<td>PUSCH (Note 12)</td>
<td></td>
<td></td>
<td>PUSCH (Note 12)</td>
<td>PUSCH (Note 12)</td>
</tr>
<tr>
<td>PUCCH Report Type</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity ms</td>
<td>ms</td>
<td></td>
<td>(N_{ld} = 5)</td>
<td>(N_{ld} = 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex $C_{CSI,0}$ (Note 13)</td>
<td></td>
<td>3</td>
<td>N/A</td>
<td>3</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex2 $C_{CSI,1}$ (Note 14)</td>
<td></td>
<td>4</td>
<td>N/A</td>
<td>4</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td>Multiplexing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.2.2 Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter `codebookSubsetRestriction`. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

9.2.2.1 FDD

The following requirements apply to UE Category 2-8. For the parameters specified in table 9.2.2.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

\[
\text{wideband CQI}_1 = \text{wideband CQI}_0 - \text{Codeword 1 offset level}
\]

The wideband CQI1 shall be within the set {median CQI1 -1, median CQI1 +1} for more than 90% of the time, where the resulting wideband values CQI1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI0 -1 and median CQI1 - 1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI0 +1 and median CQI1 + 1 shall be greater than or equal to 0.1.

Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
Note 2: ABS pattern as defined in [9].
Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5.
Note 11: Reference measurement channel in Cell 1 according to Table A.4-2 for UE Category 2-8 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1, and Table A.4-8 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1 and Annex A.5.2.2.
Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
Note 13: `cqi-pmi-ConfigurationIndex` is applied for C\textsubscript{CSI,0}.
Note 14: `cqi-pmi-ConfigurationIndex2` is applied for C\textsubscript{CSI,1}.

Table 9.2.2.1-1: PUCCH 1-1 static test (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>dB</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td></td>
<td>Clause B.1 (2 x 2)</td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>010000</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 2)</td>
<td>dB</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>$\hat{N}_{oc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-88</td>
<td>-87</td>
</tr>
<tr>
<td>$\hat{J}_{ar}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-82</td>
<td>-81</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI/PMI reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for CQI/PMI</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for RI</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td>N_{pd} = 5</td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>n-ConfigIndex</td>
<td></td>
<td>1 (Note 3)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 3: It is intended to have UL collisions between RI reports and HARQ-ACK, since the RI reports shall not be used by the eNB in this test.

9.2.2.2 TDD

The following requirements apply to UE Category 2-8. For the parameters specified in table 9.2.2.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

\[
\text{wideband CQI}_1 = \text{wideband CQI}_0 \text{ - Codeword 1 offset level}
\]

The wideband CQI shall be within the set \{median CQI$_1$ -1, median CQI$_1$ +1\} for more than 90% of the time, where the resulting wideband values CQI$_1$ shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI$_0 - 1$ and median CQI$_1 - 1$ shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI$_0 + 1$ and median CQI$_1 + 1$ shall be greater than or equal to 0.1.
Table 9.2.2.2-1: PUCCH 1-1 static test (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>dB</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Propagation condition and</td>
<td>Clause B.1 (2 x 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>antenna configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>010000</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 2)</td>
<td>dB</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>$\tilde{I}^{(j)}_{oc}$ dB[mW/15kHz]</td>
<td>-88</td>
<td>-87</td>
<td>-82</td>
</tr>
<tr>
<td>$N^{(j)}_{oc}$ dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI/PMI</td>
<td>PUSCH (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reporting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$cqi-pmi-ConfigurationIndex$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n-ConfigIndex$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td>Multiplexing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Reference measurement channel according to Table A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

Note 4: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.2.3 Minimum requirement PUCCH 1-1 (CSI Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter codebookSubsetRestriction. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

9.2.3.1 FDD

The following requirements apply to UE Category 2-8. For the parameters specified in table 9.2.3.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

$$\text{wideband CQI}_1 = \text{wideband CQI}_0 - \text{Codeword 1 offset level}$$

The wideband CQI shall be within the set [median CQI1 -1, median CQI1 +1] for more than 90% of the time, where the resulting wideband values CQI1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI0 – 1 and median CQI1 – 1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER...
using the transport format indicated by the respective median $CQI_0 + 1$ and median $CQI_1 + 1$ shall be greater than or equal to 0.1.

<table>
<thead>
<tr>
<th>Table 9.2.3.1-1: PUCCH 1-1 static test (FDD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
</tr>
<tr>
<td>Downlink power allocation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
</tr>
<tr>
<td>CSI reference signals</td>
</tr>
<tr>
<td>Beamforming model</td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
</tr>
<tr>
<td>CSI reference signal configuration</td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
</tr>
<tr>
<td>SNR (Note 2) (dB)</td>
</tr>
<tr>
<td>$J_{wr}^{(j)}$ dB[mW/15kHz]</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$ dB[mW/15kHz]</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
</tr>
<tr>
<td>Physical channel for CQI/PMI reporting</td>
</tr>
<tr>
<td>PUCCH Report Type for CQI/PMI</td>
</tr>
<tr>
<td>Physical channel for RI reporting</td>
</tr>
<tr>
<td>PUCCH Report Type for RI</td>
</tr>
<tr>
<td>Reporting periodicity (ms)</td>
</tr>
<tr>
<td>CQI delay (ms)</td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
</tr>
<tr>
<td>n-ConfigIndex</td>
</tr>
</tbody>
</table>

Note 1: Reference measurement channel according to Table A.4-1a with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

9.2.3.2 TDD

The following requirements apply to UE Category 2-8. For the parameters specified in table 9.2.3.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

$$\text{wideband CQI}_1 = \text{wideband CQI}_0 - \text{Codeword 1 offset level}$$

The wideband CQI1 shall be within the set [median CQI1 -1, median CQI1 +1] for more than 90% of the time, where the resulting wideband values CQ1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI0 – 1 and median CQI1 – 1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI0 + 1 and median CQI1 + 1 shall be greater than or equal to 0.1.
Table 9.2.3.2-1: PUCCH 1-1 submode 1 static test (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ρ_S</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P_c</td>
<td>dB</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>CRS reference signals</td>
<td></td>
<td>Antenna ports 0, 1</td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna ports 15,…,22</td>
<td></td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td>As specified in Section B.4.3</td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td></td>
<td>$T_{CSI-RS} / \Delta T_{CSI-RS}$</td>
<td>5/ 3</td>
</tr>
<tr>
<td>CSI reference signal configuration</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td></td>
<td>Clause B.1 (8 x 2)</td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>0x0000 0000 0020 0000 0000 0001 0000</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 2) dB</td>
<td></td>
<td>4 5 10 11</td>
<td></td>
</tr>
<tr>
<td>$\hat{N}_{oc}^{(j)}$ dB[mW/15kHz]</td>
<td></td>
<td>-94 -93 -88 -87</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI/PMI reporting</td>
<td></td>
<td>PUSCH (Note 3)</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for CQI/second PMI</td>
<td></td>
<td>2b</td>
<td></td>
</tr>
<tr>
<td>Physical channel for RI reporting</td>
<td></td>
<td>PUSCH</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for RI/first PMI</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity ms</td>
<td></td>
<td>$N_{df} = 5$</td>
<td></td>
</tr>
<tr>
<td>CQI delay ms</td>
<td></td>
<td>10 or 11</td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>r-ConfigIndex</td>
<td></td>
<td>805 (Note 4)</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Reference measurement channel according to Table A.4-2a with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2.

Note 4: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.3 CQI reporting under fading conditions

9.3.1 Frequency-selective scheduling mode

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective fading conditions is determined by a double-sided percentile of the reported differential CQI offset level 0 per sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set S of TS 36.213 [6]. The purpose is to verify that preferred sub-bands can be used for frequently-selective scheduling. To account for sensitivity of the input SNR the sub-band CQI reporting under
frequency selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two
SNR levels separated by an offset of 1 dB.

9.3.1.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols)

9.3.1.1.1 FDD

For the parameters specified in Table 9.3.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2,
the minimum requirements are specified in Table 9.3.1.1.1-2 and by the following

a) a sub-band differential CQI offset level of 0 shall be reported at least $\alpha\%$ of the time but less than $\beta\%$ for each sub-
band;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with
the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated
by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset
level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by
selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. The transport
block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

Table 9.3.1.1.1-1 Sub-band test for single antenna transmission (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td>1 (port 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_a dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ρ_b dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>$\hat{f}_{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-89</td>
<td>-88</td>
</tr>
<tr>
<td>$N_{(j)}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Propagation channel</td>
<td>Clause B.2.4 with $\tau_p = 0.45 \mu s$, $a = 1$, $f_B = 5$ Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna configuration</td>
<td>1 x 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 3-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-band size</td>
<td>RB</td>
<td>6 (full size)</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ</td>
<td>transmissions</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-4 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
Table 9.3.1.1.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α [%]</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>β [%]</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>γ</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.3.1.1.2 TDD

For the parameters specified in Table 9.3.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.2-2 and by the following:

a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.
Table 9.3.1.1.2-1 Sub-band test for single antenna transmission (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>1 (port 0)</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_d</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ρ_e</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>$j_{oc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-89</td>
<td>-88</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>Propagation channel</td>
<td>Clause B.2.4 with</td>
<td>$\tau_d = 0.45 \mu s$, $a = 1$,</td>
<td>$f_D = 5$ Hz</td>
</tr>
<tr>
<td>Antenna configuration</td>
<td></td>
<td>1 x 2</td>
<td></td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>10 or 11</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 3-0</td>
<td></td>
</tr>
<tr>
<td>Sub-band size</td>
<td>RB</td>
<td>6 (full size)</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-5 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.3.1.1.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>α [%]</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>β [%]</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>γ</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.3.1.2 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

9.3.1.2.1 FDD

For the parameters specified in Table 9.3.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.1-2 and by the following:

a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6a or Table A.4-6b.

Table 9.3.1.2.1-1 Sub-band test for FDD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a dB</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ρ_b dB</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P_c dB</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>σ dB</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3) dB</td>
<td></td>
<td>4 5 11 12</td>
<td></td>
</tr>
<tr>
<td>$I_{\text{off}}^{(j)}$ dB</td>
<td>mW/15kHz</td>
<td>-94 -93 -87 86</td>
<td></td>
</tr>
<tr>
<td>$N_{\text{oc}}^{(j)}$ dB</td>
<td>mW/15kHz</td>
<td>-98 -98</td>
<td></td>
</tr>
<tr>
<td>Propagation channel</td>
<td>Clause B.2.4 with $\tau_d = 0.45 \mu s$, $a = 1$, $f_0 = 5$ Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna configuration</td>
<td>2x2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS reference signals</td>
<td>Antenna ports 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td>Antenna ports 15, 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beamforming model</td>
<td>As specified in Section B.4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td>5/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI-RS reference signal configuration</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td>000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting interval (Note 4) ms</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CQI delay ms</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 3-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-band size RB</td>
<td>6 (full size)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-4a with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Table 9.3.1.2.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α [%]</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>β [%]</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>γ</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.3.1.2.2 TDD

For the parameters specified in Table 9.3.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.2-2 and by the following
a) a sub-band differential CQI offset level of 0 shall be reported at least $\alpha\%$ of the time but less than $\beta\%$ for each sub-band;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6a or Table A.4-6b.

Table 9.3.1.2.2-1 Sub-band test for TDD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation ρ_a</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation ρ_b</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation ρ_c</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation ρ_d</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$I_{or}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-94</td>
<td>-93</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>Clause B.2.4 with $\tau_d = 0.45\mu s$, $a = 1$, $f_D = 5$ Hz</td>
<td></td>
</tr>
<tr>
<td>Antenna configuration</td>
<td></td>
<td>2x2</td>
<td></td>
</tr>
<tr>
<td>CRS reference signals</td>
<td></td>
<td>Antenna port 0</td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna port 15,16</td>
<td></td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td>As specified in Section B.4.3</td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset T_{CSI-RS}</td>
<td>MHz</td>
<td>5/3</td>
<td></td>
</tr>
<tr>
<td>CSI-RS reference signal configuration</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>000001</td>
<td></td>
</tr>
<tr>
<td>Reporting interval (Note 4)</td>
<td>ms</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 3-1</td>
<td></td>
</tr>
<tr>
<td>Sub-band size</td>
<td>RB</td>
<td>6 (full size)</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel according to Table A.4-5a with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#3 and #8 to allow aperiodic CQI/PMI/RI to be transmitted on uplink SF#2 and #7.
9.3.2 Frequency non-selective scheduling mode

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective fading conditions is determined by the reporting variance, and the relative increase of the throughput obtained when the transport format transmitted is that indicated by the reported CQI compared to the case for which a fixed transport format configured according to the reported median CQI is transmitted. In addition, the reporting accuracy is determined by a minimum BLER using the transport formats indicated by the reported CQI. The purpose is to verify that the UE is tracking the channel variations and selecting the largest transport format possible according to the prevailing channel state for frequently non-selective scheduling. To account for sensitivity of the input SNR the CQI reporting under frequency non-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)

9.3.2.1.1 FDD

For the parameters specified in Table 9.3.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.1-2 and by the following

a) a CQI index not in the set \{median CQI -1, median CQI +1\} shall be reported at least $\alpha\%$ of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3 (for Category 2-8) or Table A.4-9 (for Category 1).

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha%$</td>
<td>2</td>
</tr>
<tr>
<td>$\beta%$</td>
<td>40</td>
</tr>
<tr>
<td>γ</td>
<td>1.1</td>
</tr>
</tbody>
</table>

| UE Category | 1-8 | 1-8 |

Table 9.3.1.2.2-2 Minimum requirement (TDD)
Table 9.3.2.1.1-1 Fading test for single antenna (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>\hat{f}_{or}</td>
<td>dB[mW/15kHz]</td>
<td>-92</td>
<td>-91</td>
</tr>
<tr>
<td>$N_{\text{oc}}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EPA5</td>
<td></td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td>High (1 x 2)</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 1-0</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td>N_{pd} = 2</td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td></td>
<td>PUSCH (Note 4)</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$cp-	ext{pmi-ConfigurationIndex}$</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.

Table 9.3.2.1.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Test</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α [%]</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>γ</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.3.2.1.2 TDD

For the parameters specified in Table 9.3.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.2-2 and by the following:

a) a CQI index not in the set \{median CQI -1, median CQI +1\} shall be reported at least α % of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3 (for Category 2-8) or Table A.4-9 (for Category 1).

Table 9.3.2.1.2-1 Fading test for single antenna (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>1 (port 0)</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ρ_p</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>6, 7, 12, 13</td>
<td></td>
</tr>
<tr>
<td>$f_{or}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-92, -91, -86, -85</td>
<td></td>
</tr>
<tr>
<td>$N_{fc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98, -98</td>
<td></td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EPA5</td>
<td></td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td>High (1 x 2)</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 1-0</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td>N_{pd} = 5</td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>10 or 11</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td></td>
<td>PUSCH (Note 4)</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-2 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1 and Table A.4-8 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

Table 9.3.2.1.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α [%]</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>γ</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>
9.3.2.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

9.3.2.2.1 FDD

For the parameters specified in Table 9.3.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.1-2 and by the following:

a) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least $\alpha\%$ of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3b or Table A.4-3c.
Table 9.3.2.2.1-1 Fading test for FDD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_a)</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\rho_b)</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\rho_c)</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(\hat{I}_{\text{or}}^{(j)})</td>
<td>dB[mW/15kHz]</td>
<td>-96</td>
<td>-95</td>
</tr>
<tr>
<td>(N_{\text{sc}}^{(j)})</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EPA5</td>
<td></td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td>ULA High (4 x 2)</td>
<td></td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td>Antenna ports 0.1</td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna ports 15…18</td>
<td></td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td>As specified in Section B.4.3</td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td></td>
<td>5/1</td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>0x0000 0000 0000 0001</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 1-1</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td>(N_{pd} = 5)</td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI/PMI reporting</td>
<td></td>
<td>PUSCH (Note 4)</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for CQI/PMI</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PUCCH channel for RI reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td></td>
</tr>
<tr>
<td>PUCCH report type for RI</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ri-ConfigIndex</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 2: Reference measurement channel according to Table A.4-1a with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 4: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9.3.2.2.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)[%]</td>
<td>20</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>1.05</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.3.2.2 TDD

For the parameters specified in Table 9.3.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.2-2 and by the following

a) a CQI index not in the set \{median CQI -1, median CQI +1\} shall be reported at least \(\alpha\)% of the time;
b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3b or Table A.4-3d.
Table 9.3.2.2.2-1 Fading test for TDD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_s</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>P_c</td>
<td>dB</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>1 2 7 8</td>
<td></td>
</tr>
<tr>
<td>$\tilde{I}_c^{(j)}$ dB[mW/15kHz]</td>
<td></td>
<td>-97 -96 -91 -90</td>
<td></td>
</tr>
<tr>
<td>$N_c^{(j)}$ dB[mW/15kHz]</td>
<td></td>
<td>-98 -98</td>
<td></td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EPA5</td>
<td></td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td>XP High (8 x 2)</td>
<td></td>
</tr>
<tr>
<td>CRS reference signals</td>
<td></td>
<td>Antenna ports 0, 1</td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna ports 15,…,22</td>
<td></td>
</tr>
<tr>
<td>Beamforming Model</td>
<td></td>
<td>As specified in Section B.4.3</td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td>T_{CSI-RS} Δ_{CSI-RS}</td>
<td>5/ 3</td>
<td></td>
</tr>
<tr>
<td>CSI-RS reference signal configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>0x0000 0000 0000 0020 0000 0000 0001</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 1-1 (Sub-mode: 2)</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td>N_{pd} = 5</td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI/ PMI reporting</td>
<td></td>
<td>PUSCH (Note 4)</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for CQI/ PMI</td>
<td>2c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for RI reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td></td>
</tr>
<tr>
<td>PUCCH report type for RI</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ri-ConfigIndex</td>
<td>805 (Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-2a with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#2 and #7.

Table 9.3.2.2.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α [%]</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>γ</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>
9.3.3 Frequency-selective interference

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective interference conditions is determined by a percentile of the reported differential CQI offset level +2 for a preferred sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set S of TS 36.213 [6]. The purpose is to verify that preferred sub-bands are used for frequently-selective scheduling under frequency-selective interference conditions.

9.3.3.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol)

9.3.3.1.1 FDD

For the parameters specified in Table 9.3.3.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.1-2 and by the following:

a) a sub-band differential CQI offset level of +2 shall be reported at least \(\alpha \% \) for at least one of the sub-bands of full size at the channel edges;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set \(S \) shall be \(\geq \gamma \).

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

<table>
<thead>
<tr>
<th>Table 9.3.3.1.1-1 Sub-band test for single antenna transmission (FDD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Transmission mode</td>
</tr>
<tr>
<td>Downlink power allocation</td>
</tr>
<tr>
<td>(\sigma) dB</td>
</tr>
<tr>
<td>(I^{(j)}_{\text{ot}}) for RB 0…5 dB[mW/15kHz]</td>
</tr>
<tr>
<td>(I^{(j)}_{\text{ot}}) for RB 6…41 dB[mW/15kHz]</td>
</tr>
<tr>
<td>(I^{(j)}_{\text{ot}}) for RB 42…49 dB[mW/15kHz]</td>
</tr>
<tr>
<td>(\tilde{I}^{(j)}_{\text{ot}}) dB[mW/15kHz]</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
</tr>
<tr>
<td>Propagation channel</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Reporting interval</td>
</tr>
<tr>
<td>Antenna configuration</td>
</tr>
<tr>
<td>CQI delay</td>
</tr>
<tr>
<td>Reporting mode</td>
</tr>
<tr>
<td>Sub-band size</td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel according to Table A.4-4 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
Table 9.3.3.1.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α [%]</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>γ</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.3.3.1.2 TDD

For the parameters specified in Table 9.3.3.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.2-2 and by the following:

a) a sub-band differential CQI offset level of +2 shall be reported at least α % for at least one of the sub-bands of full size at the channel edges;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

Table 9.3.3.1.2-1 Sub-band test for single antenna transmission (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td>10 MHz</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>1 (port 0)</td>
<td>1 (port 0)</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a dB</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_b dB</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>σ dB</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$I_{ol}^{(j)}$ for RB 0…5 dB[mW/15kHz]</td>
<td></td>
<td>-102</td>
<td>-93</td>
</tr>
<tr>
<td>$I_{ol}^{(j)}$ for RB 6…41 dB[mW/15kHz]</td>
<td></td>
<td>-93</td>
<td>-93</td>
</tr>
<tr>
<td>$I_{ol}^{(j)}$ for RB 42…49 dB[mW/15kHz]</td>
<td></td>
<td>-93</td>
<td>-102</td>
</tr>
<tr>
<td>$I_{or}^{(j)}$ dB[mW/15kHz]</td>
<td></td>
<td>-94</td>
<td>-94</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>Clause B.2.4 with $\tau_d = 0.45 \mu s$, $a = 1$, $f_d = 5$ Hz</td>
<td></td>
</tr>
<tr>
<td>Antenna configuration</td>
<td></td>
<td>1 x 2</td>
<td></td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>10 or 11</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 3-0</td>
<td></td>
</tr>
<tr>
<td>Sub-band size</td>
<td>RB</td>
<td>6 (full size)</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to table A.4-5 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
Table 9.3.3.1.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α [%]</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>γ</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.3.3.2 Void

9.3.3.2.1 Void

9.3.3.2.2 Void

9.3.4 UE-selected subband CQI

The accuracy of UE-selected subband channel quality indicator (CQI) reporting under frequency-selective fading conditions is determined by the relative increase of the throughput obtained when transmitting on the UE-selected subbands with the corresponding transport format compared to the case for which a fixed format is transmitted on any subband in set S of TS 36.213 [6]. The purpose is to verify that correct subbands are accurately reported for frequency-selective scheduling. To account for sensitivity of the input SNR the subband CQI reporting under frequency-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.4.1 Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols)

9.3.4.1.1 FDD

For the parameters specified in Table 9.3.4.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.1-2 and by the following:

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$.

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PCH} entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.
Table 9.3.4.1.1-1 Subband test for single antenna transmission (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>1 (port 0)</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_d</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ρ_e</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>9, 10</td>
<td>14, 15</td>
</tr>
<tr>
<td>$\tilde{f}_{oc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-89, -88</td>
<td>-84, -83</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>Clause B.2.4 with $\tau_d = 0.45 \mu$s, $a = 1$, $f_{c} = 5$ Hz</td>
<td></td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 2-0</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Subband size (k)</td>
<td>RBs</td>
<td>3 (full size)</td>
<td></td>
</tr>
<tr>
<td>Number of preferred subbands (M)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel according to Table A.4-10 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.3.4.1.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.3.4.1.2 TDD

For the parameters specified in Table 9.3.4.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.2-2 and by the following

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set \mathcal{S} shall be $\geq \gamma$.

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.
Table 9.3.4.1.2-1 Sub-band test for single antenna transmission (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>1 (port 0)</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_d</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>SNR</td>
<td>dB</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>$\tilde{f}_{or}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-89</td>
<td>-88</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Propagation channel</td>
<td>Clause B.2.4 with $\tau_d = 0.45 \mu s$, $a = 1$, $f_d = 5$ Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Reporting delay</td>
<td>ms</td>
<td>10 or 11</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 2-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subband size (k)</td>
<td>RBs</td>
<td>3 (full size)</td>
<td></td>
</tr>
<tr>
<td>Number of preferred subbands (M)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td>Multiplexing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel according to Table A.4-11 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2. Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.3.4.1.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>γ</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.3.4.2 Minimum requirement PUCCH 2-0 (Cell-Specific Reference Symbols)

9.3.4.2.1 FDD

For the parameters specified in Table 9.3.4.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.1-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$.

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.
Table 9.3.4.2.1-1 Subband test for single antenna transmission (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>1 (port 0)</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td>ρ_d dB 0</td>
<td></td>
</tr>
<tr>
<td>ρ_e dB</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ dB</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>$\tilde{f}^{(j)}_{oc}$ dB[mW/15kHz]</td>
<td>-90</td>
<td>-89</td>
<td>-85</td>
</tr>
<tr>
<td>$N^{(j)}_{oc}$ dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>Propagation channel</td>
<td>Clause B.2.4 with $\tau_d = 0.45 \mu s$, $d = 1$, $f_d = 5$ Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td></td>
<td>$N_P = 2$</td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td>PUSCH (Note 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for wideband CQI</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for subband CQI</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subband size (k)</td>
<td>RBs</td>
<td>6 (full size)</td>
<td></td>
</tr>
<tr>
<td>Number of bandwidth parts (J)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$cqi-pmi-ConfigIndex$</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel according to Table A.4-4 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink subframe SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.

Note 5: CQI reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and data scheduling according to the most recent subband CQI report for bandwidth part with $j=1$.

Note 6: In the case where wideband CQI is reported, data is to be scheduled according to the most recently used subband CQI report.

Table 9.3.4.2.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>γ</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE Category</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>1-8</td>
<td>1-8</td>
<td></td>
</tr>
</tbody>
</table>
9.3.4.2.2 TDD

For the parameters specified in Table 9.3.4.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.2-2 and by the following:

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.
Table 9.3.4.2.2-1 Sub-band test for single antenna transmission (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10 MHz</td>
<td></td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>1 (port 0)</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>(\rho_s) dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\rho_d) dB</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma) dB</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td>dB</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>SNR (Note 3)</td>
<td></td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>(f_{or}^{(j)}) dB[mW/15kHz]</td>
<td>-90</td>
<td>-89</td>
<td>-85</td>
</tr>
<tr>
<td>(N_{oc}^{(j)}) dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CQI delay</td>
<td>ms</td>
<td>10 or 11</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for wideband CQI</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PUCCH Report Type for subband CQI</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Subband size ((k)) RBs</td>
<td></td>
<td>6 (full size)</td>
<td></td>
</tr>
<tr>
<td>Number of bandwidth parts ((J))</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(K)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(cqi-pmi-ConfigIndex)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4.5 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

Note 5: CQI reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and data scheduling according to the most recent subband CQI report for bandwidth part with \(j=1 \).

Note 6: In the case where wideband CQI is reported, data is to be scheduled according to the most recently used subband CQI report.

Clause B.2.4 with \(\tau_d = 0.45 \mu s \), \(a = 1 \), \(f_d = 5 \) Hz
Table 9.3.4.2.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.4 Reporting of Precoding Matrix Indicator (PMI)

The minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reports compared to the case when the transmitter is using random precoding, respectively. When the transmitter uses random precoding, for each PDSCH allocation a precoder is randomly generated and applied to the PDSCH. A fixed transport format (FRC) is configured for all requirements.

The requirements for transmission mode 6 with 1 TX and transmission mode 9 with 4 TX are specified in terms of the ratio

$$\gamma = \frac{t_{ur}}{t_{rd}}.$$

In the definition of γ, for PUSCH 3-1 single PMI and PUSCH 1-2 multiple PMI requirements, t_{rd} is 60% of the maximum throughput obtained at SNR_{rd} using random precoding, and t_{ur} the throughput measured at SNR_{rd} with precoders configured according to the UE reports;

For the PUCCH 2-1 single PMI requirement, t_{rd} is 60% of the maximum throughput obtained at SNR_{rd} using random precoding on a randomly selected full-size subband in set S subbands, and t_{ur} the throughput measured at SNR_{rd} with both the precoder and the preferred full-size subband applied according to the UE reports;

For PUSCH 2-2 multiple PMI requirements, t_{rd} is 60% of the maximum throughput obtained at SNR_{rd} using random precoding on a randomly selected full-size subband in set S subbands, and t_{ur} the throughput measured at SNR_{rd} with both the subband precoder and a randomly selected full-size subband (within the preferred subbands) applied according to the UE reports.

The requirements for transmission mode 9 with 8 TX are specified in terms of the ratio

$$\gamma = \frac{t_{ur, follow1, follow2}}{t_{rd1, rd2}}.$$

In the definition of γ, for PUSCH 3-1 single PMI and PUSCH 1-2 multiple PMI requirements, $t_{follow1, follow2}$ is 70% of the maximum throughput obtained at $SNR_{follow1, follow2}$ using the precoders configured according to the UE reports, and $t_{rd1, rd2}$ is the throughput measured at $SNR_{follow1, follow2}$ with random precoding.

9.4.1 Single PMI

9.4.1.1 Minimum requirement PUSCH 3-1 (Cell-Specific Reference Symbols)

9.4.1.1.1 FDD

For the parameters specified in Table 9.4.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.1.1-2.
Table 9.4.1.1.1-1 PMI test for single-layer (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EVA5</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>50</td>
</tr>
<tr>
<td>Correlation and antenna config.</td>
<td></td>
<td>Low 2 × 2</td>
</tr>
<tr>
<td>ρ_A</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>$N_{ec}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 3-1</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>8</td>
</tr>
<tr>
<td>Measurement channel</td>
<td></td>
<td>R. 10 FDD</td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td></td>
<td>OP.1 FDD</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>{0,1,2,3}</td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 9.4.1.1.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1.1</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.4.1.1.2 TDD

For the parameters specified in Table 9.4.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.1.1.2-2.
Table 9.4.1.1.2-1 PMI test for single-layer (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EVA5</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>50</td>
</tr>
<tr>
<td>Correlation and antenna config</td>
<td></td>
<td>Low 2 x 2</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>ρ_b</td>
<td>dB</td>
<td>-3</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>$N_{\text{ref}}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 3-1</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>10 or 11</td>
</tr>
<tr>
<td>Measurement channel</td>
<td></td>
<td>R.10 TDD</td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td></td>
<td>OP.1 TDD</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3)</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoder shall be updated in each available downlink transmission instance.

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 9.4.1.1.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.1</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.4.1.2 Minimum requirement PUCCH 2-1 (Cell-Specific Reference Symbols)

9.4.1.2.1 FDD

For the parameters specified in Table 9.4.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.1-2.
Table 9.4.1.2.1-1 PMI test for single-layer (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td>Low 4 x 2</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_1 dB</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>ρ_2 dB</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>3</td>
</tr>
<tr>
<td>$\gamma^{(j)}(\omega)$ dB [mW/15kHz]</td>
<td></td>
<td>-98</td>
</tr>
<tr>
<td>PMI delay</td>
<td>ms</td>
<td>8 or 9</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 2-1 (Note 6)</td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td>$N_{pd} = 2$</td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td></td>
<td>PUSCH (Note 3)</td>
</tr>
<tr>
<td>PUCCH Report Type for wideband CQI/PMI</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>PUCCH Report Type for subband CQI</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Measurement channel</td>
<td></td>
<td>R.14-1 FDD</td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td></td>
<td>OP.1/2 FDD</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>6 (full size)</td>
</tr>
<tr>
<td>Number of bandwidth parts (J)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$cqi-pmi-ConfigIndex$</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3)</td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoder shall be updated every two TTI (2 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.

Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with $j=1$.

Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.

Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to “0” and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI report on PUCCH.

Table 9.4.1.2.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.2</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>
9.4.1.2.2 TDD

For the parameters specified in Table 9.4.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.2-2.

Table 9.4.1.2.2-1 PMI test for single-layer (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Uplink downlink</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special subframe</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation channel</td>
<td>EVA5</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td>Low 4 x 2</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_α dB -6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ρ_β dB -6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ dB 3</td>
<td></td>
</tr>
<tr>
<td>$N_{nc}^{(j)}$ dB[mW/15kHz]</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>PMI delay</td>
<td>ms 10</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUCCH 2-1 (Note 6)</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms $N_{nl} = 5$</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td>PUSCH (Note 3)</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for wideband CQI/PMI</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for subband CQI</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Measurement channel</td>
<td>R.14-1 TDD</td>
<td></td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td>OP.1/2 TDD</td>
<td></td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB 6 (full size)</td>
<td></td>
</tr>
<tr>
<td>Number of bandwidth parts (J)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigIndex</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td>(0,1,2,3)</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td>Multiplexing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoder shall be updated in each available downlink transmission instance.

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.

Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with $j=1$.

Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.

Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI report on PUCCH.

Table 9.4.1.2.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>Test 1</th>
<th>γ</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE Category</td>
<td>1-8</td>
<td></td>
</tr>
</tbody>
</table>

9.4.1.3 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

9.4.1.3.1 FDD

For the parameters specified in Table 9.4.1.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.1-2.
Table 9.4.1.3.1-1 PMI test for single-layer (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EPA5</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>50</td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td>Low ULA 4 x 2</td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td>Antenna ports 0,1</td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna ports 15,...,18</td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td>Annex B.4.3</td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td></td>
<td>5/1</td>
</tr>
<tr>
<td>CSI-RS reference signal configuration</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>0x0000 0000 0000 FFFF</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a dB</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ρ_b dB</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>P_c dB</td>
<td></td>
<td>-3</td>
</tr>
<tr>
<td>σ dB</td>
<td></td>
<td>-3</td>
</tr>
<tr>
<td>$N_{rec}^{(j)}$ dB/mW/15kHz</td>
<td></td>
<td>-98</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 3-1</td>
</tr>
<tr>
<td>Reporting interval ms</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>PMI delay (Note 2) ms</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Measurement channel</td>
<td></td>
<td>R.44 FDD</td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td></td>
<td>OP.1 FDD</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3)</td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity).
Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
Note 3: PDSCH _RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per subcarrier at the receiver.

Table 9.4.1.3.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.2</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.4.1.3.2 TDD

For the parameters specified in Table 9.4.1.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.2-2.
Table 9.4.1.3.2-1 PMI test for single-layer (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EVA5</td>
</tr>
<tr>
<td>Precoding granularity</td>
<td>PRB</td>
<td>50</td>
</tr>
<tr>
<td>Antenna configuration</td>
<td></td>
<td>8 x 2</td>
</tr>
<tr>
<td>Correlation modeling</td>
<td></td>
<td>High, Cross polarized</td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td>Antenna ports 0,1</td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna ports 15….22</td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td>Annex B.4.3</td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td></td>
<td>5/4</td>
</tr>
<tr>
<td>CSI-RS reference signal configuration</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>00000 0000 001F FFE0 0000 0000 FFFFF</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_a dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ρ_b dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P_c dB</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>-3</td>
</tr>
<tr>
<td>$N_{bo}^{(1)}$ dB [mW/15kHz]</td>
<td></td>
<td>-98</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 3-1</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>5</td>
</tr>
<tr>
<td>PMI delay (Note 2)</td>
<td>ms</td>
<td>10</td>
</tr>
<tr>
<td>Measurement channel</td>
<td></td>
<td>R.45-1 TDD for UE Category 1, R.45 TDD for UE Category 2-8</td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td></td>
<td>OP.1 TDD</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3)</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9 to allow aperiodic CQI/PMI/RI to be transmitted on uplink SF#3 and #8.

Note 4: Randomization of the principle beam direction shall be used as specified in B.2.3A.4.
Table 9.4.1.3.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>3</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.4.1a Void

9.4.1a.1 Void

9.4.1a.1.1 Void

9.4.1a.1.2 Void

9.4.2 Multiple PMI

9.4.2.1 Minimum requirement PUSCH 1-2 (Cell-Specific Reference Symbols)

9.4.2.1.1 FDD

For the parameters specified in Table 9.4.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.1-2.
Table 9.4.2.1.1-1 PMI test for single-layer (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EPA5</td>
</tr>
<tr>
<td>Precoding granularity (only for reporting and following PMI)</td>
<td>PRB</td>
<td>6</td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td>Low 2 x 2</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td>ρ_A dB -3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ρ_B dB -3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>σ dB 0</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$ dB[mW/15kHz]</td>
<td></td>
<td>-98</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 1-2</td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>PMI delay</td>
<td>ms</td>
<td>8</td>
</tr>
<tr>
<td>Measurement channel</td>
<td></td>
<td>R.11-3 FDD for UE Category 1, R.11 FDD for UE Category 2-8</td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td></td>
<td>OP.1/2 FDD</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>{0,1,2,3}</td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: One/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2 shall be used.

Table 9.4.2.1.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.2</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.4.2.1.2 TDD

For the parameters specified in Table 9.4.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.2-2.
Table 9.4.2.1.2-1 PMI test for single-layer (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precoding granularity (only for reporting and following PMI)</td>
<td>PRB</td>
<td>6</td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td>Low 2 x 2</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a dB</td>
<td></td>
<td>-3</td>
</tr>
<tr>
<td>ρ_b dB</td>
<td></td>
<td>-3</td>
</tr>
<tr>
<td>σ dB</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$ dB[mW/15kHz]</td>
<td></td>
<td>-98</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting interval ms</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PMI delay ms</td>
<td></td>
<td>10 or 11</td>
</tr>
<tr>
<td>Measurement channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td></td>
<td>R.11-3 TDD for UE Category 1, R.11 TDD for UE Category 2-8</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3)</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoders shall be updated in each available downlink transmission instance.

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: One/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2 shall be used.

Table 9.4.2.1.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.2</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.4.2.2 Minimum requirement PUSCH 2-2 (Cell-Specific Reference Symbols)

9.4.2.2.1 FDD

For the parameters specified in Table 9.4.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.1-2.
Table 9.4.2.2.1-1 PMI test for single-layer (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Propagation channel</td>
<td>EVA5</td>
<td></td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td>Low 4 x 2</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_a dB</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>ρ_b dB</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>3</td>
</tr>
<tr>
<td>N(j) dB[mW/15kHz]</td>
<td></td>
<td>-98</td>
</tr>
<tr>
<td>PMI delay</td>
<td>ms</td>
<td>8</td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 2-2</td>
<td></td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>Measurement channel</td>
<td>R.14-2 FDD</td>
<td></td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td>OP.1/2 FDD</td>
<td></td>
</tr>
<tr>
<td>Subband size (k) RBs</td>
<td></td>
<td>3 (full size)</td>
</tr>
<tr>
<td>Number of preferred subbands (M)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3)</td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Table 9.4.2.2.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>UE Category</td>
</tr>
<tr>
<td>1-8</td>
</tr>
</tbody>
</table>

9.4.2.2.2 TDD

For the parameters specified in Table 9.4.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.2-2.

Table 9.4.2.2.2-1 PMI test for single-layer (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Propagation channel</td>
<td>EVAS</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td>Low 4 x 2</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_a dB</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>ρ_b dB</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>3</td>
</tr>
<tr>
<td>$N_{rec}^{(j)}$ dB[mW/15kHz]</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>PMI delay ms</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 2-2</td>
<td></td>
</tr>
<tr>
<td>Reporting interval ms</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Measurement channel</td>
<td>R.14-2 TDD</td>
<td></td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td>OP.1/2 FDD</td>
<td></td>
</tr>
<tr>
<td>Subband size (k) RBs</td>
<td>3 (full size)</td>
<td></td>
</tr>
<tr>
<td>Number of preferred subbands (M)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td>{0,1,2,3}</td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td>Multiplexing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoders shall be updated in each available downlink transmission instance.

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 9.4.2.2.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>Test 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.15</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>

9.4.2.3 Minimum requirement PUSCH 1-2 (CSI Reference Symbol)

9.4.2.3.1 FDD

For the parameters specified in Table 9.4.2.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.1-2.
Table 9.4.2.3.1-1 PMI test for single-layer (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Propagation channel</td>
<td>EVA5</td>
<td></td>
</tr>
<tr>
<td>Precoding granularity (only for reporting and following PMI)</td>
<td>PRB</td>
<td>6</td>
</tr>
<tr>
<td>Correlation and antenna configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td>Antenna ports 0,1</td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td>Antenna ports 15,…,18</td>
<td></td>
</tr>
<tr>
<td>Beamforming model</td>
<td>Annex B.4.3</td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$</td>
<td>5/1</td>
<td></td>
</tr>
<tr>
<td>CSI-RS reference signal configuration</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td>0x0000 0000 0000 FFFF</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_1 dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ρ_2 dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P_c dB</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>-3</td>
</tr>
<tr>
<td>$N_{nc}^{(j)}$ dB[mW/15kHz]</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td>PUSCH 1-2</td>
<td></td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>5</td>
</tr>
<tr>
<td>PMI delay</td>
<td>ms</td>
<td>8</td>
</tr>
<tr>
<td>Measurement channel</td>
<td>R.45-1 FDD for UE Category 1, R.45 FDD for UE Category 2-8</td>
<td></td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td>OP.1 FDD</td>
<td></td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td>(0,1,2,3)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: One/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2 shall be used.

Note 4: PDSCH _RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per subcarrier at the receiver.

Table 9.4.2.3.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.3</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>
9.4.2.3.2 TDD

For the parameters specified in Table 9.4.2.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.2-2.
Table 9.4.2.3.2-1 PMI test for single-layer (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Transmission mode</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Propagation channel</td>
<td></td>
<td>EVA5</td>
</tr>
<tr>
<td>Precoding granularity (only for reporting and following PMI)</td>
<td>PRB</td>
<td>6</td>
</tr>
<tr>
<td>Antenna configuration</td>
<td></td>
<td>8 x 2</td>
</tr>
<tr>
<td>Correlation modeling</td>
<td></td>
<td>High, Cross polarized</td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td>Antenna ports 0,1</td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna ports 15,…,22</td>
</tr>
<tr>
<td>Beamforming model</td>
<td></td>
<td>Annex B.4.3</td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td></td>
<td>5/4</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td>0x0000 0000 001F FFE0 0000 0000 FFFF</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_A dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ρ_B dB</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P_c dB</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>σ dB</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>$N_{dc}^{(j)}$ dB [mW/15kHz]</td>
<td>-98</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 1-2</td>
</tr>
<tr>
<td>Reporting interval ms</td>
<td></td>
<td>5 (Note 4)</td>
</tr>
<tr>
<td>PMI delay ms</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Measurement channel</td>
<td></td>
<td>R.45-1 TDD for UE Category 1, R.45 TDD for UE Category 2-8</td>
</tr>
<tr>
<td>OCNG Pattern</td>
<td></td>
<td>OP.1 FDD</td>
</tr>
<tr>
<td>Max number of HARQ transmissions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Redundancy version coding sequence</td>
<td></td>
<td>(0,1,2,3)</td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Multiplexing</td>
</tr>
</tbody>
</table>

Note 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: One/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2 shall be used.

Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9 to allow aperiodic CQI/PMI/RI to be transmitted.
9.4.3 Void

9.4.3.1 Void

9.4.3.1.1 Void

9.4.3.1.2 Void

9.5 Reporting of Rank Indicator (RI)

The purpose of this test is to verify that the reported rank indicator accurately represents the channel rank. The accuracy of RI (CQI) reporting is determined by the relative increase of the throughput obtained when transmitting based on the reported rank compared to the case for which a fixed rank is used for transmission. Transmission mode 4 is used with the specified CodebookSubSetRestriction in section 9.5.1, transmission mode 9 is used with the specified CodebookSubSetRestriction in section 9.5.2 and transmission mode 3 is used with the specified CodebookSubSetRestriction in section 9.5.3.

For fixed rank 1 transmission in sections 9.5.1 and 9.5.2, the RI and PMI reporting is restricted to two single-layer precoders. For fixed rank 2 transmission in sections 9.5.1 and 9.5.2, the RI and PMI reporting is restricted to one two-layer precoder. For follow RI transmission in sections 9.5.1 and 9.5.2, the RI and PMI reporting is restricted to select the union of these precoders. Channels with low and high correlation are used to ensure that RI reporting reflects the channel condition.

For fixed rank 1 transmission in section 9.5.3, the RI reporting is restricted to single-layer, for fixed rank 2 transmission in section 9.5.3, the RI reporting is restricted to two-layers. For follow RI transmission in section 9.5.3, the RI reporting is either one or two layers.

9.5.1 Minimum requirement (Cell-Specific Reference Symbols)

9.5.1.1 FDD

The minimum performance requirement in Table 9.5.1.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.1-2.

Table 9.4.2.3.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>3.5</td>
</tr>
<tr>
<td>UE Category</td>
<td>1-8</td>
</tr>
</tbody>
</table>
Table 9.5.1.1-1 RI Test (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>10</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
<td>0</td>
</tr>
<tr>
<td>Propagation condition and</td>
<td></td>
<td>2 x 2 EPA5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>antenna configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction</td>
<td></td>
<td>000011 for fixed RI = 1</td>
<td>010000 for fixed RI = 2</td>
<td>010011 for UE reported RI</td>
</tr>
<tr>
<td>bitmap</td>
<td></td>
<td>000011 for fixed RI = 1</td>
<td>010000 for fixed RI = 2</td>
<td>010011 for UE reported RI</td>
</tr>
<tr>
<td>Antenna correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI configuration</td>
<td></td>
<td>Fixed RI=2 and follow RI</td>
<td>Fixed RI=1 and follow RI</td>
<td>Fixed RI=1 and follow RI</td>
</tr>
<tr>
<td>SNR</td>
<td>dB</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>(N_{(j)}^{(\text{oc})})</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>(\hat{I}_{(j)}^{(\text{oc})})</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-78</td>
<td>-78</td>
</tr>
<tr>
<td>Maximum number of HARQ</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transmisions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 1-1 (Note 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI/PMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for CQI/PMI</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for RI reporting</td>
<td></td>
<td>PUSCH (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for RI</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMI and CQI delay</td>
<td>ms</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ri-ConfigurationIndex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 2: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 3: To avoid collisions between RI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 4: The bit field for precoding information in DCI format 2 shall be mapped as:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● For reported RI = 1 and PMI = 0 >> precoding information bit field index = 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● For reported RI = 1 and PMI = 1 >> precoding information bit field index = 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● For reported RI = 2 and PMI = 0 >> precoding information bit field index = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 5: To avoid the ambiguity of TE behaviour when applying CQI and PMI during rank switching, RI reports are to be applied at the TE with one subframe delay in addition to Note 1 to align with CQI and PMI reports.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9.5.1.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>(\gamma_1)</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>1.05</td>
<td>0.9 (Note 1)</td>
</tr>
<tr>
<td>(\gamma_2)</td>
<td>1</td>
<td>N/A</td>
<td>1.1 (Note 1)</td>
</tr>
<tr>
<td>UE Category</td>
<td>2-8</td>
<td>2-8</td>
<td>2-8</td>
</tr>
</tbody>
</table>

Note 1: For Test 3, the minimum requirements shall be fulfilled for at least one of \(\gamma_1\) or \(\gamma_2\).
9.5.1.2 TDD

The minimum performance requirement in Table 9.5.1.2-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.2-2.

Table 9.5.1.2-1 RI Test (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_a</td>
<td>dB</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ρ_b</td>
<td>dB</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td></td>
<td>2×2 EPA5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>000011 for fixed RI = 1</td>
<td>010000 for fixed RI = 2</td>
<td>010011 for UE reported RI</td>
</tr>
<tr>
<td>Antenna correlation</td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>dB</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>$\lambda^{(1)}_a$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>$\lambda^{(1)}_b$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-78</td>
<td>-78</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUSCH 3-1 (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting interval</td>
<td>ms</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMI and CQI delay</td>
<td>ms</td>
<td>10 or 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Bundling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: Reported wideband CQI and PMI are used and sub-band CQI is discarded.

Table 9.5.1.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>N/A</td>
<td>1.05</td>
<td>0.9 (Note 1)</td>
</tr>
<tr>
<td>γ_2</td>
<td>1</td>
<td>N/A</td>
<td>1.1 (Note 1)</td>
</tr>
<tr>
<td>UE Category</td>
<td>2-8</td>
<td>2-8</td>
<td>2-8</td>
</tr>
</tbody>
</table>

Note 1: For Test 3, the minimum requirements shall be fulfilled for at least one of γ_1 or γ_2.

9.5.2 Minimum requirement (CSI Reference Symbols)

9.5.2.1 FDD

The minimum performance requirement in Table 9.5.2.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3e or Table A.4-3f.

For the parameters specified in Table 9.5.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.1-2.
Table 9.5.2.1-1 RI Test (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Downlink power distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A dB</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_B dB</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_c dB</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ dB</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td></td>
<td></td>
<td>2 x 2 EPA5</td>
<td></td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td></td>
<td>Antenna ports 0</td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td></td>
<td>Antenna ports 15, 16</td>
<td></td>
</tr>
<tr>
<td>Beamforming Model</td>
<td></td>
<td></td>
<td>As specified in Section B.4.3</td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset</td>
<td></td>
<td>$T_{CSI-RS}/\Delta_{CSI-RS}$</td>
<td>5/1</td>
<td></td>
</tr>
<tr>
<td>CSI reference signal configuration</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CodebookSubsetRestriction bitmap</td>
<td></td>
<td>000011 for fixed RI = 1</td>
<td>010000 for fixed RI = 2</td>
<td>010011 for UE reported RI</td>
</tr>
<tr>
<td>Antenna correlation</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR dB</td>
<td></td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$ dB[mW/15kHz]</td>
<td></td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>$\hat{J}_{ar}^{(j)}$ dB[mW/15kHz]</td>
<td></td>
<td>-98</td>
<td>-78</td>
<td>-78</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI/PMI reporting</td>
<td></td>
<td>PUSCH (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for CQI/PMI</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for RI reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for RI</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity ms</td>
<td></td>
<td>N_{pd} = 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMI and CQI delay ms</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ri-ConfigurationInd</td>
<td></td>
<td>1 (Note 4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4.1-b with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

Note 4: To avoid the ambiguity of TE behaviour when applying CQI and PMI during rank switching, RI reports are to be applied at the TE with one subframe delay in addition to Note 1 to align with CQI and PMI reports.

Table 9.5.2.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>N/A</td>
<td>1.05</td>
</tr>
<tr>
<td>γ_2</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>UE Category</td>
<td>2-8</td>
<td>2-8</td>
</tr>
</tbody>
</table>
9.5.2.2 TDD

The minimum performance requirement in Table 9.5.2.2-2 is defined as:

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be \(\geq \gamma_1 \);

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be \(\geq \gamma_2 \);

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3e or Table A.4-3f.

For the parameters specified in Table 9.5.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.2-2.
Table 9.5.2.2-1 RI Test (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>dB</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_c</td>
<td>dB</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td></td>
<td>2 x 2 EPA5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell-specific reference signals</td>
<td></td>
<td>Antenna ports 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI reference signals</td>
<td></td>
<td>Antenna ports 15, 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beamforming Model</td>
<td></td>
<td>As specified in Section B.4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI reference signal configuration</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI-RS periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$</td>
<td></td>
<td>5/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>000011 for fixed RI = 1</td>
<td>010000 for fixed RI = 2</td>
<td>010011 for UE reported RI</td>
</tr>
<tr>
<td>Antenna correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>dB</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>$\hat{j}_{or}^{(j)}$</td>
<td>dB[mW/15kHz]</td>
<td>-98</td>
<td>-78</td>
<td>-78</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI/PMI reporting</td>
<td></td>
<td>PUSCH (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH report type for CQI/PMI</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for RI reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td>$N_{pd} = 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMI and CQI delay</td>
<td>ms</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACK/NACK feedback mode</td>
<td></td>
<td>Bundling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$cqi-pmi-ConfigurationIndex$</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ri-ConfigurationInd$</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-2b with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#3 and #8.

Table 9.5.2.2-2 Minimum requirement (TDD)

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>N/A</td>
<td>1.05</td>
<td>0.9</td>
</tr>
<tr>
<td>γ_2</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>UE Category</td>
<td>2-8</td>
<td>2-8</td>
<td>2-8</td>
</tr>
</tbody>
</table>
9.5.3 Minimum requirement (CSI measurements in case two CSI subframe sets are configured)

9.5.3.1 FDD

The minimum performance requirement in Table 9.5.3.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.1-2.
Table 9.5.3.1-1 RI Test (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cell 1</td>
<td>Cell 2</td>
<td>Cell 1</td>
<td>Cell 2</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td>3</td>
<td>Note 10</td>
<td>3</td>
<td>Note 10</td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td></td>
<td>2 x 2 EPA5</td>
<td>2 x 2 EPA5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>01 for fixed RI = 1</td>
<td>N/A</td>
<td>01 for fixed RI = 1</td>
<td>N/A</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>10 for fixed RI = 2</td>
<td>N/A</td>
<td>10 for fixed RI = 2</td>
<td>N/A</td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>11 for UE reported RI</td>
<td>N/A</td>
<td>11 for UE reported RI</td>
<td>N/A</td>
</tr>
<tr>
<td>Antenna correlation</td>
<td></td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>RI configuration</td>
<td></td>
<td>Fixed RI=1 and follow RI</td>
<td>N/A</td>
<td>Fixed RI=1 and follow RI</td>
<td>N/A</td>
</tr>
<tr>
<td>$E_s/N_{oc,2}$</td>
<td>dB</td>
<td>0</td>
<td>-12</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>$N_{oc,1}^{(j)}$</td>
<td></td>
<td>-98 (Note 3) N/A</td>
<td>-102 (Note 3) N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{oc,2}^{(j)}$</td>
<td></td>
<td>-98 (Note 4) N/A</td>
<td>-98 (Note 4) N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{oc,3}^{(j)}$</td>
<td></td>
<td>-98 (Note 5) N/A</td>
<td>-94.8 (Note 5) N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j_{or}^{(j)}$</td>
<td>dB mW/1 5kHz</td>
<td>-98</td>
<td>-110</td>
<td>-78</td>
<td>-92</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td>2.5 (synchronous cells)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS Pattern (Note 6)</td>
<td></td>
<td>N/A</td>
<td>10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 7)</td>
<td></td>
<td>10000000 10000000 10000000 10000000 10000000</td>
<td>N/A</td>
<td>10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000</td>
<td></td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 8)</td>
<td></td>
<td>N/A</td>
<td>01111111 01111111 01111111 01111111 01111111 01111111 01111111 01111111 01111111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of control OFDM Symbols</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 1-0</td>
<td>PUCCH 1-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td>PUCCH Format 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for CQI reporting</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physical channel for RI reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td>PUCCH Format 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for RI</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Reporting periodicity

<table>
<thead>
<tr>
<th></th>
<th>ms</th>
<th>$N_{pd} = 10$</th>
<th>$N_{pd} = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>cqi-pmi-ConfigurationIndex</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>ri-ConfigurationInd</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>cqi-pmi-ConfigurationIndex2</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ri-ConfigurationInd2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

| Cyclic prefix | Normal | Normal | Normal | Normal |

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel in Cell 1 according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 3: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 5: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.

Note 6: ABS pattern as defined in [9].

Note 7: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].

Note 8: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 9: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell 1 and Cell 2 is the same.

Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5.

Table 9.5.3.1-2 Minimum requirement (FDD)

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>0.9</td>
<td>1.05</td>
</tr>
<tr>
<td>UE Category</td>
<td>2-8</td>
<td>2-8</td>
</tr>
</tbody>
</table>

9.5.3.2 TDD

The minimum performance requirement in Table 9.5.3.2-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$.

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.2-2.
Table 9.5.3.2-1 RI Test (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test1 Cell 1</th>
<th>Test1 Cell 2</th>
<th>Test2 Cell 1</th>
<th>Test2 Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>3</td>
<td>Note 11</td>
<td>3</td>
<td>Note 11</td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_x</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_y</td>
<td>dB</td>
<td>-3</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td></td>
<td>2 x 2 EPA5</td>
<td>2 x 2 EPA5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeBookSubsetRestriction bitmap</td>
<td></td>
<td>01 for fixed RI = 1</td>
<td>N/A</td>
<td>01 for fixed RI = 1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 for fixed RI = 2</td>
<td></td>
<td>10 for fixed RI = 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 for UE reported RI</td>
<td></td>
<td>11 for UE reported RI</td>
<td></td>
</tr>
<tr>
<td>Antenna correlation</td>
<td>Low</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tilde{E}s/N{oc2}$</td>
<td>dB</td>
<td>0</td>
<td>-12</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>N_{oc}</td>
<td>dB[mW/1 5kHz]</td>
<td>-98 (Note 4)</td>
<td>N/A</td>
<td>-102 (Note 4)</td>
<td>N/A</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$</td>
<td>dB[mW/1 5kHz]</td>
<td>-98 (Note 5)</td>
<td>N/A</td>
<td>-98 (Note 5)</td>
<td>N/A</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$</td>
<td>dB[mW/1 5kHz]</td>
<td>-98 (Note 6)</td>
<td>N/A</td>
<td>-94.8 (Note 6)</td>
<td>N/A</td>
</tr>
<tr>
<td>$\hat{I}_{or}^{(j)}$</td>
<td>dB[mW/1 5kHz]</td>
<td>-98</td>
<td>-110</td>
<td>-78</td>
<td>-92</td>
</tr>
<tr>
<td>Subframe Configuration</td>
<td></td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
<td>Non-MBSFN</td>
</tr>
<tr>
<td>Cell Id</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Time Offset between Cells</td>
<td>μs</td>
<td>2.5 (synchronous cells)</td>
<td>2.5 (synchronous cells)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS Pattern (Note 7)</td>
<td></td>
<td>N/A</td>
<td>0000000000 1</td>
<td>N/A</td>
<td>00000000001 00000000001</td>
</tr>
<tr>
<td>RLM/RRM Measurement Subframe Pattern (Note 8)</td>
<td></td>
<td>000000000 01</td>
<td>N/A</td>
<td>00000000001 0000000001</td>
<td>N/A</td>
</tr>
<tr>
<td>CSI Subframe Sets (Note 9)</td>
<td></td>
<td>C_{CSI,0}</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>000000000 01</td>
<td>000000000 01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>110011100 00</td>
<td>110011100 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>00000000001 00000000001</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1100111000 1100111000</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of control OFDM Symbols</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting mode</td>
<td></td>
<td>PUCCH 1-0</td>
<td>PUCCH 1-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical channel for $C_{CSI,0}$ and RI reporting</td>
<td></td>
<td>PUCCH Format 2</td>
<td>PUCCH Format 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type for CQI</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physical channel for CSIT, CQI and RI reporting | PUSCH (Note 3) | PUSCH (Note 3)
---|---|---
PUCCH Report Type for RI | 3 | 3
Reporting periodicity | ms | \(N_{\text{dell}} = 10 \)
ACK/NACK feedback mode | Multiplexing | Multiplexing
cqi-pmi-ConfigurationIndex | 8 | 8
ri-ConfigurationInd | 5 | 5
cqi-pmi-ConfigurationIndex2 | 9 | 9
ri-ConfigurationInd2 | 0 | 0
Cyclic prefix | Normal | Normal | Normal | Normal

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel in Cell 1 according to Table A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: To avoid collisions between RI/CQI reports and HARQ-ACK it is necessary to report them on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI/CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.

Note 4: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.

Note 5: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 6: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.

Note 7: ABS pattern as defined in [9].

Note 8: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].

Note 9: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 10: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell 1 and Cell 2 is the same.

Note 11: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5.

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)</td>
<td>0.9</td>
</tr>
<tr>
<td>UE Category</td>
<td>2-8</td>
</tr>
</tbody>
</table>

9.6 Additional requirements for carrier aggregation

This clause includes requirements for the reporting of channel state information (CSI) with the UE configured for carrier aggregation. The purpose is to verify that the channel state for each cell is correctly reported with multiple cells configured for periodic reporting.

9.6.1 Periodic reporting on multiple cells (Cell-Specific Reference Symbols)

9.6.1.1 FDD

The following requirements apply to UE Category 3-8. For the parameters specified in Table 9.6.1.1-1 and Table 9.6.1.1-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported according to Table A.4-3 shall be such that

\[
\text{wideband CQI}_{\text{Pcell}} - \text{wideband CQI}_{\text{Scell}} \geq 2
\]

for more than 90% of the time.
Table 9.6.1.1-1: Parameters for PUCCH 1-0 static test on multiple cells (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Pcell</th>
<th>Scell</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Propagation condition and antenna config</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>dB</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>$\tilde{I}_{oc}^{(j)}$ dB[mW/15kHz]</td>
<td>-88</td>
<td>-94</td>
<td></td>
</tr>
<tr>
<td>$\tilde{N}_{oc}^{(j)}$ dB[mW/15kHz]</td>
<td>-98</td>
<td>-98</td>
<td></td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td></td>
<td>PUCCH</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type</td>
<td></td>
<td>PUCCH Format 2</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity ms</td>
<td></td>
<td>$N_{pd} = 10$</td>
<td></td>
</tr>
<tr>
<td>$cqi\text{-pmi-ConfigurationIndex}$</td>
<td></td>
<td>11</td>
<td>16 [shift of 5 ms relative to Pcell]</td>
</tr>
</tbody>
</table>

Note 1: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Table 9.6.1.1-2: PUCCH 1-0 static test (FDD)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth combination</th>
<th>CA capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10MHz for both cells</td>
<td>CL_A-A</td>
</tr>
<tr>
<td>2</td>
<td>20MHz for both cells</td>
<td>CL_C</td>
</tr>
</tbody>
</table>

9.6.1.2 TDD

The following requirements apply to UE Category 3-8. For the parameters specified in Table 9.6.1.2-1 and Table 9.6.1.2-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported according to Table A.4-3 shall be such that

$\text{wideband CQI}_{\text{Pcell}} - \text{wideband CQI}_{\text{Scell}} \geq 2$

for more than 90% of the time.
Table 9.6.1.2-1: PUCCH 1-0 static test on multiple cells (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Pcell</th>
<th>Scell</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDSCH transmission mode</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Uplink downlink configuration</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Special subframe configuration</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Downlink power allocation</td>
<td>ρ_A dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ρ_B dB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Propagation condition and antenna configuration</td>
<td></td>
<td>AWGN (1 x 2)</td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>dB</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>$\hat{\gamma}_{dB}[mW/15kHz]$</td>
<td></td>
<td>-88</td>
<td>-94</td>
</tr>
<tr>
<td>$N_{oc}^{(j)}$ [dB[mW/15kHz]]</td>
<td></td>
<td>-98</td>
<td>-98</td>
</tr>
<tr>
<td>Physical channel for CQI reporting</td>
<td></td>
<td>PUCCH</td>
<td></td>
</tr>
<tr>
<td>PUCCH Report Type</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reporting periodicity</td>
<td>ms</td>
<td>$N_{pd} = 10$</td>
<td></td>
</tr>
<tr>
<td>$cqi-pmi-Configuration/\text{Index}$</td>
<td></td>
<td>8</td>
<td>13 [shift of 5 ms relative to Pcell]</td>
</tr>
</tbody>
</table>

Note 1: Reference measurement channel according to Table A.4.2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Table 9.6.1.2-2: PUCCH 1-0 static test (TDD)

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth combination</th>
<th>CA capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20MHz for both cells</td>
<td>CL, C</td>
</tr>
</tbody>
</table>

10 Performance requirement (MBMS)

10.1 FDD (Fixed Reference Channel)

The parameters specified in Table 10.1-1 are valid for all FDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Table 10.1-1: Common Test Parameters (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of HARQ processes</td>
<td>Processes</td>
<td>None</td>
</tr>
<tr>
<td>Subcarrier spacing</td>
<td>kHz</td>
<td>15 kHz</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (Note 1)</td>
<td></td>
<td>6 subframes</td>
</tr>
<tr>
<td>Number of OFDM symbols for PDCCH</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cyclic Prefix</td>
<td></td>
<td>Extended</td>
</tr>
</tbody>
</table>

Note1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.
10.1.1 Minimum requirement

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.1-1 and Table 10.1.1-1 and Annex A.3.8.1, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.1.1-2.

Table 10.1.1-1: Test Parameters for Testing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>ρ_B</td>
<td>dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBM/15kHz</td>
<td>-98</td>
</tr>
</tbody>
</table>

Note 1: $P_B = 0$

Table 10.1.1-2: Minimum performance

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation condition</th>
<th>Reference value</th>
<th>MBMS UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 MHz</td>
<td>R.37 FDD</td>
<td>OP.4 FDD</td>
<td>1x2 low</td>
<td>4.1</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>10 MHz</td>
<td>R.38 FDD</td>
<td>OP.4 FDD</td>
<td></td>
<td>11.0</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>10 MHz</td>
<td>R.39 FDD</td>
<td>OP.4 FDD</td>
<td></td>
<td>20.1</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>5.0 MHz</td>
<td>R.39-1 FDD</td>
<td>OP.4 FDD</td>
<td></td>
<td>20.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.4 MHz</td>
<td>R.40 FDD</td>
<td>OP.4 FDD</td>
<td></td>
<td>6.6</td>
<td>1-8</td>
</tr>
</tbody>
</table>

10.2 TDD (Fixed Reference Channel)

The parameters specified in Table 10.2-1 are valid for all TDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Table 10.2-1: Common Test Parameters (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of HARQ processes</td>
<td>Processes</td>
<td>None</td>
</tr>
<tr>
<td>Subcarrier spacing</td>
<td>kHz</td>
<td>15 kHz</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (Note 1)</td>
<td>5 subframes</td>
<td></td>
</tr>
<tr>
<td>Number of OFDM symbols for PDCCH</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cyclic Prefix</td>
<td></td>
<td>Extended</td>
</tr>
</tbody>
</table>

Note1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.
10.2.1 Minimum requirement

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.2-1 and Table 10.2.1-1 and Annex A.3.8.2, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.2.1-2.

Table 10.2.1-1: Test Parameters for Testing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Test 1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink power allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_λ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>ρ_β</td>
<td>dB</td>
<td>0 (Note 1)</td>
</tr>
<tr>
<td>σ</td>
<td>dB</td>
<td>0</td>
</tr>
<tr>
<td>N_{oc} at antenna port</td>
<td>dBm/15kHz</td>
<td>-98</td>
</tr>
</tbody>
</table>

Note 1: $P_\beta = 0$.

Table 10.2.1-2: Minimum performance

<table>
<thead>
<tr>
<th>Test number</th>
<th>Bandwidth</th>
<th>Reference Channel</th>
<th>OCNG Pattern</th>
<th>Propagation condition</th>
<th>Correlation Matrix and antenna</th>
<th>Reference value BLER (%)</th>
<th>Reference value SNR(dB)</th>
<th>MBMS UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz</td>
<td>R.37 TDD</td>
<td>OP.4 TDD</td>
<td></td>
<td></td>
<td>3.4</td>
<td>1-8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10 MHz</td>
<td>R.38 TDD</td>
<td>OP.4 TDD</td>
<td></td>
<td></td>
<td>11.1</td>
<td>1-8</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>10 MHz</td>
<td>R.39 TDD</td>
<td>OP.4 TDD</td>
<td>MBSFN channel model (Table B.2.6-1)</td>
<td>1x2 low</td>
<td>20.1</td>
<td>2-8</td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>5 MHz</td>
<td>R.39-1 TDD</td>
<td>OP.4 TDD</td>
<td></td>
<td></td>
<td>20.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.4 MHz</td>
<td>R.40 TDD</td>
<td>OP.4 TDD</td>
<td></td>
<td></td>
<td>5.8</td>
<td>1-8</td>
<td></td>
</tr>
</tbody>
</table>
Annex A (normative):
Measurement channels

A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per datastream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all datastreams (codewords).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

A.2 UL reference measurement channels

A.2.1 General

A.2.1.1 Applicability and common parameters

The following sections define the UL signal applicable to the Transmitter Characteristics (clause 6) and for the Receiver Characteristics (clause 7) where the UL signal is relevant.

The Reference channels in this section assume transmission of PUSCH and Demodulation Reference signal only. The following conditions apply:

- 1 HARQ transmission
- Cyclic Prefix normal
- PUSCH hopping off
- Link adaptation off
- Demodulation Reference signal as per TS 36.211 [4] subclause 5.5.2.1.2.

Where ACK/NACK is transmitted, it is assumed to be multiplexed on PUSCH as per TS 36.212 [5] subclause 5.2.2.6.

- ACK/NACK 1 bit
- ACK/NACK mapping adjacent to Demodulation Reference symbol
- ACK/NACK resources punctured into data
- Max number of resources for ACK/NACK: 4 SC-FDMA symbols per subframe
- No CQI transmitted, no RI transmitted

A.2.1.2 Determination of payload size

The algorithm for determining the payload size \(A \) is as follows; given a desired coding rate \(R \) and radio block allocation \(N_{RB} \)

1. Calculate the number of channel bits \(N_{ch} \) that can be transmitted during the first transmission of a given sub-frame.
2. Find \(A \) such that the resulting coding rate is as close to \(R \) as possible, that is,
\[\min \left| R - \frac{(A + 24)}{N_{ch}} \right| , \]

subject to

a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of \(N_{RB} \) resource blocks.

b) Segmentation is not included in this formula, but should be considered in the TBS calculation.

c) For RMC-s, which at the nominal target coding rate do not cover all the possible UE categories for the given modulation, reduce the target coding rate gradually (within the same modulation), until the maximal possible number of UE categories is covered.

3. If there is more than one \(A \) that minimises the equation above, then the larger value is chosen per default.

A.2.1.3 Overview of UL reference measurement channels

In Table A.2.1.3-1 are listed the UL reference measurement channels specified in annexes A.2.2 and A.2.3 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation’s parameters as to be used for requirements are annexes A.2.2 and A.2.3 as appropriate.
Table A.2.1.3-1: Overview of UL reference measurement channels

<table>
<thead>
<tr>
<th>Duplex</th>
<th>Table</th>
<th>Name</th>
<th>BW</th>
<th>Mod</th>
<th>TCR</th>
<th>RB Off set</th>
<th>UE Category</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD, Full RB allocation, QPSK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.1-1</td>
<td>1.4</td>
<td>QPSK</td>
<td>1/3</td>
<td>6</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.1-1</td>
<td>3</td>
<td>QPSK</td>
<td>1/3</td>
<td>15</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.1-1</td>
<td>5</td>
<td>QPSK</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>50</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.1-1</td>
<td>15</td>
<td>QPSK</td>
<td>1/5</td>
<td>75</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/6</td>
<td>100</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Full RB allocation, 16-QAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.2-1</td>
<td>1.4</td>
<td>16QAM</td>
<td>3/4</td>
<td>6</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.2-1</td>
<td>3</td>
<td>16QAM</td>
<td>1/2</td>
<td>15</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.2-1</td>
<td>5</td>
<td>16QAM</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.2-1</td>
<td>10</td>
<td>16QAM</td>
<td>3/4</td>
<td>50</td>
<td>≥ 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.2-1</td>
<td>15</td>
<td>16QAM</td>
<td>1/2</td>
<td>75</td>
<td>≥ 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.1.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>1/3</td>
<td>100</td>
<td>≥ 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Partial RB allocation, QPSK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>1.4</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>1</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>1.4</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>2</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>1.4</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>3</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>1.4</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>4</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>1.4</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>5</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>3</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>6</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>3</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>8</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>3</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>9</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>3</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>10</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>3</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>12</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>5</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>15</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>5</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>16</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>5</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>18</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>5</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>20</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>5</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>24</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>10</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>27</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>10</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>30</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>10</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>32</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>10</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>36</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>10</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>40</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>10</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>45</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>10</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>48</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>15</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>50</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>15</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>54</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>15</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/4</td>
<td>60</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>15</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/4</td>
<td>64</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>15</td>
<td>- 20</td>
<td>QPSK</td>
<td>1/4</td>
<td>72</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/5</td>
<td>75</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/5</td>
<td>80</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/5</td>
<td>81</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/6</td>
<td>90</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/6</td>
<td>96</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FDD, Partial RB allocation, 16-QAM

<table>
<thead>
<tr>
<th>FDD</th>
<th>Table A.2.2.2.2-1</th>
<th>1.4 - 20</th>
<th>16QAM</th>
<th>3/4</th>
<th>1</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>1.4 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>2</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>1.4 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>3</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>1.4 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>4</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>1.4 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>5</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>6</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>8</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>9</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>10</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>12</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>5 - 20</td>
<td>16QAM</td>
<td>1/2</td>
<td>15</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>5 - 20</td>
<td>16QAM</td>
<td>1/2</td>
<td>16</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>5 - 20</td>
<td>16QAM</td>
<td>1/2</td>
<td>18</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>5 - 20</td>
<td>16QAM</td>
<td>1/3</td>
<td>20</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>5 - 20</td>
<td>16QAM</td>
<td>1/3</td>
<td>24</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>1/3</td>
<td>27</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>30</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>32</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>36</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>40</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>45</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>48</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>54</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>2/3</td>
<td>60</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>2/3</td>
<td>64</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>1/2</td>
<td>72</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>75</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>80</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>81</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>2/5</td>
<td>90</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>2/5</td>
<td>96</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

FDD, Sustained data rate

<table>
<thead>
<tr>
<th>FDD</th>
<th>Table A.2.2.3-1</th>
<th>R.1-1 FDD</th>
<th>10</th>
<th>QPSK</th>
<th>0.31</th>
<th>40</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>Table A.2.2.3-1</td>
<td>R.1-2 FDD</td>
<td>10</td>
<td>QPSK</td>
<td>0.31</td>
<td>40</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.3-1</td>
<td>R.1-3 FDD</td>
<td>20</td>
<td>QPSK</td>
<td>0.31</td>
<td>90</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.3-1</td>
<td>R.1-3A FDD</td>
<td>10</td>
<td>QPSK</td>
<td>0.31</td>
<td>40</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.2.2.3-1</td>
<td>R.1-4 FDD</td>
<td>20</td>
<td>QPSK</td>
<td>0.31</td>
<td>90</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

TDD, Full RB allocation, QPSK

<table>
<thead>
<tr>
<th>TDD</th>
<th>Table A.2.3.1.1-1</th>
<th>1.4</th>
<th>QPSK</th>
<th>1/3</th>
<th>6</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table A.2.3.1.1-1</td>
<td>3</td>
<td>QPSK</td>
<td>1/3</td>
<td>15</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.1.1-1</td>
<td>5</td>
<td>QPSK</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.1.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>Mode</td>
<td>Table</td>
<td>RBs</td>
<td>Modulation</td>
<td>Code Rate</td>
<td>Target SIR</td>
<td>Min. Target SIR</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>TDD, Full RB allocation, 16-QAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.1.2-1</td>
<td>1.4</td>
<td>16QAM</td>
<td>3/4</td>
<td>6</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.1.2-1</td>
<td>3</td>
<td>16QAM</td>
<td>1/2</td>
<td>15</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.1.2-1</td>
<td>5</td>
<td>16QAM</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.1.2-1</td>
<td>10</td>
<td>16QAM</td>
<td>3/4</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.1.2-1</td>
<td>15</td>
<td>16QAM</td>
<td>1/2</td>
<td>75</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.1.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>1/3</td>
<td>100</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD, Partial RB allocation, 16-QAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>1.4 - 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>1</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>1.4 - 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>2</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>1.4 - 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>3</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>1.4 - 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>4</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>1.4 - 20</td>
<td>QPSK</td>
<td>1/3</td>
<td>5</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>3</td>
<td>QPSK</td>
<td>1/3</td>
<td>6</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>3</td>
<td>QPSK</td>
<td>1/3</td>
<td>8</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>3</td>
<td>QPSK</td>
<td>1/3</td>
<td>9</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>3</td>
<td>QPSK</td>
<td>1/3</td>
<td>10</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>3.2</td>
<td>QPSK</td>
<td>1/3</td>
<td>12</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>5</td>
<td>QPSK</td>
<td>1/3</td>
<td>15</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>5</td>
<td>QPSK</td>
<td>1/3</td>
<td>16</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>5</td>
<td>QPSK</td>
<td>1/3</td>
<td>18</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>5</td>
<td>QPSK</td>
<td>1/3</td>
<td>20</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>5</td>
<td>QPSK</td>
<td>1/3</td>
<td>24</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>27</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>30</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>32</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>36</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>40</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>45</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>48</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>15</td>
<td>QPSK</td>
<td>1/3</td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>15</td>
<td>QPSK</td>
<td>1/3</td>
<td>54</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>15</td>
<td>QPSK</td>
<td>1/4</td>
<td>60</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>15</td>
<td>QPSK</td>
<td>1/4</td>
<td>64</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>15</td>
<td>QPSK</td>
<td>1/4</td>
<td>72</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/5</td>
<td>75</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/5</td>
<td>80</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/5</td>
<td>81</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/6</td>
<td>90</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.1-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/6</td>
<td>96</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD, Partial RB allocation, 16-QAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>1.4 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>1</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>1.4 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>2</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>1.4 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>3</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>1.4 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>4</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>1.4 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>5</td>
<td>≥ 1</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>----------</td>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>6</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>8</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>9</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>10</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>3 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>12</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>5 - 20</td>
<td>16QAM</td>
<td>1/2</td>
<td>15</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>5 - 20</td>
<td>16QAM</td>
<td>1/2</td>
<td>18</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>5 - 20</td>
<td>16QAM</td>
<td>1/3</td>
<td>20</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>5 - 20</td>
<td>16QAM</td>
<td>1/3</td>
<td>24</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>1/3</td>
<td>27</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>30</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>32</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>36</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>40</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>45</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>10 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>48</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>3/4</td>
<td>54</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>2/3</td>
<td>60</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>2/3</td>
<td>64</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>15 - 20</td>
<td>16QAM</td>
<td>1/2</td>
<td>72</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>75</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>80</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>81</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>2/5</td>
<td>90</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.2.2-1</td>
<td>20</td>
<td>16QAM</td>
<td>2/5</td>
<td>96</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD, Sustained data rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.3-1</td>
<td>R.1-1 TDD</td>
<td>QPSK</td>
<td>0.43</td>
<td>40</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.3-1</td>
<td>R.1-2 TDD</td>
<td>QPSK</td>
<td>0.61</td>
<td>40</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.3-1</td>
<td>R.1-3 TDD</td>
<td>QPSK</td>
<td>0.49</td>
<td>90</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.3-1</td>
<td>R.1-3B TDD</td>
<td>QPSK</td>
<td>0.42</td>
<td>60</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.2.3.3-1</td>
<td>R.1-4 TDD</td>
<td>QPSK</td>
<td>0.49</td>
<td>90</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>
A.2.2 Reference measurement channels for FDD

A.2.2.1 Full RB allocation

A.2.2.1.1 QPSK

Table A.2.2.1.1-1 Reference Channels for QPSK with full RB allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>DFT-OFDM Symbols per Sub-Frame</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Target Coding rate</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Payload size</td>
<td>Bits</td>
<td>20</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>6</td>
</tr>
<tr>
<td>Number of code blocks per Sub-Frame</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Total number of bits per Sub-Frame</td>
<td>Bits</td>
<td>400</td>
</tr>
<tr>
<td>Total symbols per Sub-Frame</td>
<td></td>
<td>5600</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>5700</td>
</tr>
</tbody>
</table>

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.1.2 16-QAM

Table A.2.2.1.2-1 Reference Channels for 16-QAM with full RB allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>DFT-OFDM Symbols per Sub-Frame</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Target Coding rate</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Payload size</td>
<td>Bits</td>
<td>20</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>24</td>
</tr>
<tr>
<td>Number of code blocks per Sub-Frame</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Total number of bits per Sub-Frame</td>
<td>Bits</td>
<td>4400</td>
</tr>
<tr>
<td>Total symbols per Sub-Frame</td>
<td></td>
<td>5200</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>5500</td>
</tr>
</tbody>
</table>

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.1.3 64-QAM

[FFS]

A.2.2.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.
A.2.2.2.1 QPSK

Table A.2.2.2.1-1 Reference Channels for QPSK with partial RB allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ch BW</th>
<th>Allocated RBs</th>
<th>DFT-OFDM Symbols per Sub-Fram</th>
<th>Mod’n</th>
<th>Target Coding rate</th>
<th>Payload size</th>
<th>Transport block CRC</th>
<th>Numbr of code blocks per Sub-Frame (Note 1)</th>
<th>Total number of bits per Sub-Frame</th>
<th>Total symbols per Sub-Frame</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>1</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>72</td>
<td>24</td>
<td>1</td>
<td>288</td>
<td>144 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>2</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>176</td>
<td>24</td>
<td>1</td>
<td>576</td>
<td>288 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>3</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>256</td>
<td>24</td>
<td>1</td>
<td>864</td>
<td>432 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>4</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>392</td>
<td>24</td>
<td>1</td>
<td>1152</td>
<td>576 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>5</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>424</td>
<td>24</td>
<td>1</td>
<td>1440</td>
<td>720 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>6</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>600</td>
<td>24</td>
<td>1</td>
<td>1728</td>
<td>864 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>8</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>808</td>
<td>24</td>
<td>1</td>
<td>2304</td>
<td>1152 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>9</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>776</td>
<td>24</td>
<td>1</td>
<td>2592</td>
<td>1296 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>10</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>872</td>
<td>24</td>
<td>1</td>
<td>2880</td>
<td>1440 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>12</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>1224</td>
<td>24</td>
<td>1</td>
<td>3456</td>
<td>1728 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>15</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>1320</td>
<td>24</td>
<td>1</td>
<td>4320</td>
<td>2160 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>16</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>1384</td>
<td>24</td>
<td>1</td>
<td>4608</td>
<td>2304 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>18</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>1864</td>
<td>24</td>
<td>1</td>
<td>5184</td>
<td>2592 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>20</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>1736</td>
<td>24</td>
<td>1</td>
<td>5760</td>
<td>2880 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>24</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>2472</td>
<td>24</td>
<td>1</td>
<td>6912</td>
<td>3456 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>25</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>2216</td>
<td>24</td>
<td>1</td>
<td>7200</td>
<td>3600 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>27</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>2792</td>
<td>24</td>
<td>1</td>
<td>7776</td>
<td>3888 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>30</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>2664</td>
<td>24</td>
<td>1</td>
<td>8640</td>
<td>4320 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>32</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>2792</td>
<td>24</td>
<td>1</td>
<td>9216</td>
<td>4608 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>36</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>3752</td>
<td>24</td>
<td>1</td>
<td>10368</td>
<td>5184 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>40</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>4136</td>
<td>24</td>
<td>1</td>
<td>11520</td>
<td>5760 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>45</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>4008</td>
<td>24</td>
<td>1</td>
<td>12960</td>
<td>6480 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>48</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>4264</td>
<td>24</td>
<td>1</td>
<td>13824</td>
<td>6912 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 20</td>
<td>50</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>5160</td>
<td>24</td>
<td>1</td>
<td>14400</td>
<td>7200 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 20</td>
<td>54</td>
<td>12 QPSK</td>
<td>1/3</td>
<td>4776</td>
<td>24</td>
<td>1</td>
<td>15552</td>
<td>7776 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 20</td>
<td>60</td>
<td>12 QPSK</td>
<td>1/4</td>
<td>4264</td>
<td>24</td>
<td>1</td>
<td>17280</td>
<td>8640 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 20</td>
<td>64</td>
<td>12 QPSK</td>
<td>1/4</td>
<td>4584</td>
<td>24</td>
<td>1</td>
<td>18432</td>
<td>9216 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 20</td>
<td>72</td>
<td>12 QPSK</td>
<td>1/4</td>
<td>5160</td>
<td>24</td>
<td>1</td>
<td>20736</td>
<td>10368 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>12 QPSK</td>
<td>1/5</td>
<td>4392</td>
<td>24</td>
<td>1</td>
<td>21600</td>
<td>10800 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>12 QPSK</td>
<td>1/5</td>
<td>4776</td>
<td>24</td>
<td>1</td>
<td>23040</td>
<td>11520 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>12 QPSK</td>
<td>1/5</td>
<td>4776</td>
<td>24</td>
<td>1</td>
<td>23328</td>
<td>11664 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>12 QPSK</td>
<td>1/6</td>
<td>4008</td>
<td>24</td>
<td>1</td>
<td>25920</td>
<td>12960 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Note 1:</td>
<td></td>
</tr>
</tbody>
</table>

| Note 1: | | | | | | | | | | | |

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.2.2 16-QAM

Table A.2.2.2.2-1 Reference Channels for 16-QAM with partial RB allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ch BW</th>
<th>Allocated RBs</th>
<th>DFT-OFDM Symbols per Sub-Fram</th>
<th>Mod’n</th>
<th>Target Coding rate</th>
<th>Payload size</th>
<th>Transport block CRC</th>
<th>Numbr of code blocks per Sub-Frame (Note 1)</th>
<th>Total number of bits per Sub-Frame</th>
<th>Total symbols per Sub-Frame</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>1</td>
<td>12 16QAM</td>
<td>3/4</td>
<td>408</td>
<td>24</td>
<td>1</td>
<td>576</td>
<td>144 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>2</td>
<td>12 16QAM</td>
<td>3/4</td>
<td>840</td>
<td>24</td>
<td>1</td>
<td>1152</td>
<td>288 ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ETSI
<table>
<thead>
<tr>
<th>Rate</th>
<th>Code Rate</th>
<th>Modulation</th>
<th>Code Rate</th>
<th>L (Bits)</th>
<th>(K)</th>
<th>(N)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4 - 20</td>
<td>3</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>1288</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>4</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>1736</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>5</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>2152</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>3-20</td>
<td>6</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>2600</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>3-20</td>
<td>8</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>3496</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>3-20</td>
<td>9</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>3880</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>3-20</td>
<td>10</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>4264</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>3-20</td>
<td>12</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>5160</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>5-20</td>
<td>15</td>
<td>12</td>
<td>16QAM</td>
<td>1/2</td>
<td>4264</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>5-20</td>
<td>16</td>
<td>12</td>
<td>16QAM</td>
<td>1/2</td>
<td>4584</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>5-20</td>
<td>18</td>
<td>12</td>
<td>16QAM</td>
<td>1/2</td>
<td>5160</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>5-20</td>
<td>20</td>
<td>12</td>
<td>16QAM</td>
<td>1/2</td>
<td>4008</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>5-20</td>
<td>24</td>
<td>12</td>
<td>16QAM</td>
<td>1/2</td>
<td>4776</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>10-20</td>
<td>25</td>
<td>12</td>
<td>16QAM</td>
<td>1/3</td>
<td>4968</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>10-20</td>
<td>27</td>
<td>12</td>
<td>16QAM</td>
<td>1/3</td>
<td>4776</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>10-20</td>
<td>30</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>12960</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>10-20</td>
<td>32</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>13536</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>10-20</td>
<td>36</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>15264</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>10-20</td>
<td>40</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>16992</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>10-20</td>
<td>45</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>19080</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>10-20</td>
<td>48</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>20616</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>15 - 20</td>
<td>50</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>21384</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>15 - 20</td>
<td>54</td>
<td>12</td>
<td>16QAM</td>
<td>3/4</td>
<td>22920</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>15 - 20</td>
<td>60</td>
<td>12</td>
<td>16QAM</td>
<td>2/3</td>
<td>23688</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>15 - 20</td>
<td>64</td>
<td>12</td>
<td>16QAM</td>
<td>2/3</td>
<td>25456</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>15 - 20</td>
<td>72</td>
<td>12</td>
<td>16QAM</td>
<td>1/2</td>
<td>20616</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>12</td>
<td>16QAM</td>
<td>1/2</td>
<td>21384</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>12</td>
<td>16QAM</td>
<td>1/2</td>
<td>22920</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>12</td>
<td>16QAM</td>
<td>1/2</td>
<td>22920</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>12</td>
<td>16QAM</td>
<td>2/5</td>
<td>20616</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>96</td>
<td>12</td>
<td>16QAM</td>
<td>2/5</td>
<td>22152</td>
<td>24</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: If more than one Code Block is present, an additional CRC sequence of \(L = 24 \) Bits is attached to each Code Block (otherwise \(L = 0 \) Bit)

A.2.2.2.3 64-QAM

[FFS]
A.2.2.3 Reference measurement channels for sustained downlink data rate provided by lower layers

Table A.2.2.3-1: Uplink Reference Channels for sustained data-rate test (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Channel</td>
<td></td>
<td>R.1-1 FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.1-2 FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.1-3 FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.1-3A FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.1-4 FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FFS</td>
</tr>
<tr>
<td>Channel Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated Resource Blocks</td>
<td>(Note 2)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Allocated Sub-Frames per Radio-Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>DFT-OFDM Symbols per Sub-Frame</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Coding Rate</td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>3496</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3496</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3496</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7992</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 1)</td>
<td>Bits</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Modulation Symbols per Sub-Frame</td>
<td></td>
<td>5760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12960</td>
</tr>
<tr>
<td>Binary Channel Bits per Sub-Frame</td>
<td></td>
<td>11520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25920</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25920</td>
</tr>
<tr>
<td>Max Throughput over 1 Radio-Frame</td>
<td>Mbps</td>
<td>3.496</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.496</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.496</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.992</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
</tr>
<tr>
<td>Note 1:</td>
<td></td>
<td>If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</td>
</tr>
<tr>
<td>Note 2:</td>
<td></td>
<td>RB-s 5-44 allocated with PUSCH.</td>
</tr>
<tr>
<td>Note 3:</td>
<td></td>
<td>RB-s 5-94 allocated with PUSCH.</td>
</tr>
</tbody>
</table>

A.2.3 Reference measurement channels for TDD

For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL:2UL.

A.2.3.1 Full RB allocation

A.2.3.1.1 QPSK

Table A.2.3.1.1-1 Reference Channels for QPSK with full RB allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 2)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DFT-OFDM Symbols per Sub-Frame</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Target Coding rate</td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/6</td>
</tr>
<tr>
<td>Payload size</td>
<td>Bits</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1544</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4584</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Number of code blocks per Sub-Frame (Note 1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 2,3,7,8</td>
<td>Bits</td>
<td>1728</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28800</td>
</tr>
<tr>
<td>Total number of bits per Sub-Frame</td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td>Note 1:</td>
<td></td>
<td>If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)</td>
</tr>
<tr>
<td>Note 2:</td>
<td></td>
<td>As per Table 4.2-2 in TS 36.211 [4]</td>
</tr>
</tbody>
</table>

ETSIG
A.2.3.1.2 16-QAM

Table A.2.3.1.2-1 Reference Channels for 16-QAM with full RB allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>1.4</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 2)</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DFT-OFDM Symbols per Sub-Frame</td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
<td>16QAM</td>
<td>16QAM</td>
<td>16QAM</td>
<td>16QAM</td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding rate</td>
<td></td>
<td>3/4</td>
<td>1/2</td>
<td>1/3</td>
<td>3/4</td>
<td>1/2</td>
<td>1/3</td>
</tr>
<tr>
<td>Payload size</td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
<td>16QAM</td>
<td>16QAM</td>
<td>16QAM</td>
<td>16QAM</td>
<td>16QAM</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>For Sub-Frame 2,3,7,8</td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Number of code blocks per Sub-Frame</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>For Sub-Frame 2,3,7,8</td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Total number of bits per Sub-Frame</td>
<td></td>
<td></td>
<td></td>
<td>3456</td>
<td>8640</td>
<td>14400</td>
<td>28800</td>
</tr>
<tr>
<td>For Sub-Frame 2,3,7,8</td>
<td></td>
<td></td>
<td>3456</td>
<td>8640</td>
<td>14400</td>
<td>28800</td>
<td>43200</td>
</tr>
<tr>
<td>Total symbols per Sub-Frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 2,3,7,8</td>
<td></td>
<td>864</td>
<td>2160</td>
<td>3600</td>
<td>7200</td>
<td>10800</td>
<td>14400</td>
</tr>
<tr>
<td>Number of code blocks per Sub-Frame</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>For Sub-Frame 2,3,7,8</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total number of bits per Sub-Frame</td>
<td></td>
<td>3456</td>
<td>8640</td>
<td>14400</td>
<td>28800</td>
<td>43200</td>
<td>57600</td>
</tr>
<tr>
<td>For Sub-Frame 2,3,7,8</td>
<td></td>
<td>864</td>
<td>2160</td>
<td>3600</td>
<td>7200</td>
<td>10800</td>
<td>14400</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 2</td>
<td>≥ 2</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2.2 in TS 36.211 [4]

A.2.3.1.3 64-QAM

[FFS]

A.2.3.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.
A.2.3.2.1 QPSK

Table A.2.3.2.2.1-1 Reference Channels for QPSK with partial RB allocation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ch BW</th>
<th>Allocated RBs</th>
<th>UDL Configuration (Note 2)</th>
<th>DFT-OFDM Symbols per Sub-Fram</th>
<th>Mod’n</th>
<th>Target Coding rate</th>
<th>Payload size for Sub-Fram e 2, 3, 7, 8</th>
<th>Transport block CRC</th>
<th>Nummber of code block s per Sub-Fram e (Note 1)</th>
<th>Total number of bits per Sub-Fram e 2, 3, 7, 8</th>
<th>Total symbols per Sub-Fram e for Sub-Fram e 2, 3, 7, 8</th>
<th>UE Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>72</td>
<td>24</td>
<td>1</td>
<td>288</td>
<td>144</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>176</td>
<td>24</td>
<td>1</td>
<td>576</td>
<td>288</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>256</td>
<td>24</td>
<td>1</td>
<td>864</td>
<td>432</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>4</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>392</td>
<td>24</td>
<td>1</td>
<td>1152</td>
<td>576</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>424</td>
<td>24</td>
<td>1</td>
<td>1440</td>
<td>720</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>6</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>600</td>
<td>24</td>
<td>1</td>
<td>1728</td>
<td>864</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>808</td>
<td>24</td>
<td>1</td>
<td>2304</td>
<td>1152</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>9</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>776</td>
<td>24</td>
<td>1</td>
<td>2592</td>
<td>1296</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>10</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>872</td>
<td>24</td>
<td>1</td>
<td>2880</td>
<td>1440</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>1224</td>
<td>24</td>
<td>1</td>
<td>3456</td>
<td>1728</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>15</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>1320</td>
<td>24</td>
<td>1</td>
<td>4320</td>
<td>2160</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>16</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>1384</td>
<td>24</td>
<td>1</td>
<td>4608</td>
<td>2304</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>18</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>1864</td>
<td>24</td>
<td>1</td>
<td>5184</td>
<td>2592</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>20</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>1736</td>
<td>24</td>
<td>1</td>
<td>5760</td>
<td>2880</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>24</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>2472</td>
<td>24</td>
<td>1</td>
<td>6912</td>
<td>3456</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>25</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>2216</td>
<td>24</td>
<td>1</td>
<td>7200</td>
<td>3600</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>27</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>2792</td>
<td>24</td>
<td>1</td>
<td>7776</td>
<td>3888</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>30</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>2664</td>
<td>24</td>
<td>1</td>
<td>8640</td>
<td>4320</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>32</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>2792</td>
<td>24</td>
<td>1</td>
<td>9216</td>
<td>4608</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>36</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>3752</td>
<td>24</td>
<td>1</td>
<td>10368</td>
<td>5184</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>40</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>4136</td>
<td>24</td>
<td>1</td>
<td>11520</td>
<td>5760</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>45</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>4008</td>
<td>24</td>
<td>1</td>
<td>12960</td>
<td>6480</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>48</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>4264</td>
<td>24</td>
<td>1</td>
<td>13824</td>
<td>6912</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>15-20</td>
<td>50</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>5160</td>
<td>24</td>
<td>1</td>
<td>14400</td>
<td>7200</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>15-20</td>
<td>54</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/3</td>
<td>4776</td>
<td>24</td>
<td>1</td>
<td>15552</td>
<td>7776</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>15-20</td>
<td>60</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/4</td>
<td>4264</td>
<td>24</td>
<td>1</td>
<td>17280</td>
<td>8640</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>15-20</td>
<td>64</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/4</td>
<td>4584</td>
<td>24</td>
<td>1</td>
<td>18432</td>
<td>9216</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>15-20</td>
<td>72</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/4</td>
<td>5160</td>
<td>24</td>
<td>1</td>
<td>20736</td>
<td>10368</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/5</td>
<td>4392</td>
<td>24</td>
<td>1</td>
<td>21600</td>
<td>10800</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/5</td>
<td>4776</td>
<td>24</td>
<td>1</td>
<td>23040</td>
<td>11520</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/5</td>
<td>4776</td>
<td>24</td>
<td>1</td>
<td>23328</td>
<td>11664</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/6</td>
<td>4008</td>
<td>24</td>
<td>1</td>
<td>25920</td>
<td>12960</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>96</td>
<td>1</td>
<td>12</td>
<td>QPSK</td>
<td>1/6</td>
<td>4264</td>
<td>24</td>
<td>1</td>
<td>27648</td>
<td>13824</td>
<td>≥ 1</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

A.2.3.2.2 16-QAM

Table A.2.3.2.2.1-1 Reference Channels for 16QAM with partial RB allocation

Parameter	Ch BW	Allocated RBs	UDL Configuration (Note 2)	DFT-OFDM Symbols per Sub-Fram	Mod’n	Target Coding rate	Payload size for Sub-Fram e 2, 3, 7, 8	Transport block CRC	Nummber of code block s per Sub-Fram e (Note 1)	Total number of bits per Sub-Fram e 2, 3, 7, 8	Total symbols per Sub-Fram e for Sub-Fram e 2, 3, 7, 8	UE Category
-----------	-------	---------------	----------------------------	-------------------------------	-------	-------------------	--------------------------------	----------------				
	MHz											

ETSI
<table>
<thead>
<tr>
<th>Unit</th>
<th>MHz</th>
<th>e</th>
<th>Sub-Fram e 2, 3, 7, 8</th>
<th>7, 8</th>
<th>e (Note 1)</th>
<th>e for Sub-Fram e 2, 3, 7, 8</th>
<th>e for Sub-Fram e 2, 3, 7, 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4 - 20</td>
<td>1</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>408</td>
<td>24</td>
<td>1</td>
<td>576</td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>2</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>840</td>
<td>24</td>
<td>1</td>
<td>1152</td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>3</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>1288</td>
<td>24</td>
<td>1</td>
<td>1728</td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>4</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>1736</td>
<td>24</td>
<td>1</td>
<td>2304</td>
</tr>
<tr>
<td>1.4 - 20</td>
<td>5</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>2152</td>
<td>24</td>
<td>1</td>
<td>2880</td>
</tr>
<tr>
<td>3-20</td>
<td>6</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>2600</td>
<td>24</td>
<td>1</td>
<td>3456</td>
</tr>
<tr>
<td>3-20</td>
<td>8</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>3496</td>
<td>24</td>
<td>1</td>
<td>4608</td>
</tr>
<tr>
<td>3-20</td>
<td>9</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>3880</td>
<td>24</td>
<td>1</td>
<td>5184</td>
</tr>
<tr>
<td>3-20</td>
<td>10</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>4264</td>
<td>24</td>
<td>1</td>
<td>5760</td>
</tr>
<tr>
<td>3-20</td>
<td>12</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>5160</td>
<td>24</td>
<td>1</td>
<td>6912</td>
</tr>
<tr>
<td>5-20</td>
<td>15</td>
<td>1</td>
<td>12 16QAM 1/2</td>
<td>4264</td>
<td>24</td>
<td>1</td>
<td>8640</td>
</tr>
<tr>
<td>5-20</td>
<td>16</td>
<td>1</td>
<td>12 16QAM 1/2</td>
<td>4584</td>
<td>24</td>
<td>1</td>
<td>9216</td>
</tr>
<tr>
<td>5-20</td>
<td>18</td>
<td>1</td>
<td>12 16QAM 1/2</td>
<td>5160</td>
<td>24</td>
<td>1</td>
<td>10368</td>
</tr>
<tr>
<td>5-20</td>
<td>20</td>
<td>1</td>
<td>12 16QAM 1/3</td>
<td>4008</td>
<td>24</td>
<td>1</td>
<td>11520</td>
</tr>
<tr>
<td>5-20</td>
<td>24</td>
<td>1</td>
<td>12 16QAM 1/3</td>
<td>4776</td>
<td>24</td>
<td>1</td>
<td>13824</td>
</tr>
<tr>
<td>10-20</td>
<td>25</td>
<td>1</td>
<td>12 16QAM 1/3</td>
<td>4968</td>
<td>24</td>
<td>1</td>
<td>14400</td>
</tr>
<tr>
<td>10-20</td>
<td>27</td>
<td>1</td>
<td>12 16QAM 1/3</td>
<td>4776</td>
<td>24</td>
<td>1</td>
<td>15552</td>
</tr>
<tr>
<td>10-20</td>
<td>30</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>12960</td>
<td>24</td>
<td>3</td>
<td>17280</td>
</tr>
<tr>
<td>10-20</td>
<td>32</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>13536</td>
<td>24</td>
<td>3</td>
<td>18432</td>
</tr>
<tr>
<td>10-20</td>
<td>36</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>15264</td>
<td>24</td>
<td>3</td>
<td>20736</td>
</tr>
<tr>
<td>10-20</td>
<td>40</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>16992</td>
<td>24</td>
<td>3</td>
<td>23040</td>
</tr>
<tr>
<td>10-20</td>
<td>45</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>19080</td>
<td>24</td>
<td>4</td>
<td>25920</td>
</tr>
<tr>
<td>10-20</td>
<td>48</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>20616</td>
<td>24</td>
<td>4</td>
<td>27648</td>
</tr>
<tr>
<td>15-20</td>
<td>50</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>21384</td>
<td>24</td>
<td>4</td>
<td>28800</td>
</tr>
<tr>
<td>15-20</td>
<td>54</td>
<td>1</td>
<td>12 16QAM 3/4</td>
<td>22920</td>
<td>24</td>
<td>4</td>
<td>31104</td>
</tr>
<tr>
<td>15-20</td>
<td>60</td>
<td>1</td>
<td>12 16QAM 2/3</td>
<td>23688</td>
<td>24</td>
<td>4</td>
<td>34560</td>
</tr>
<tr>
<td>15-20</td>
<td>64</td>
<td>1</td>
<td>12 16QAM 2/3</td>
<td>25456</td>
<td>24</td>
<td>4</td>
<td>36864</td>
</tr>
<tr>
<td>15-20</td>
<td>72</td>
<td>1</td>
<td>12 16QAM 1/2</td>
<td>20616</td>
<td>24</td>
<td>4</td>
<td>41472</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>1</td>
<td>12 16QAM 1/2</td>
<td>21384</td>
<td>24</td>
<td>4</td>
<td>43200</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>1</td>
<td>12 16QAM 1/2</td>
<td>22920</td>
<td>24</td>
<td>4</td>
<td>46080</td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>1</td>
<td>12 16QAM 1/2</td>
<td>22920</td>
<td>24</td>
<td>4</td>
<td>46656</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>1</td>
<td>12 16QAM 2/5</td>
<td>20616</td>
<td>24</td>
<td>4</td>
<td>51840</td>
</tr>
<tr>
<td>20</td>
<td>96</td>
<td>1</td>
<td>12 16QAM 2/5</td>
<td>22152</td>
<td>24</td>
<td>4</td>
<td>55296</td>
</tr>
</tbody>
</table>

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

A.2.3.2.3 64-QAM

[FFS]
A.2.3.3 Reference measurement channels for sustained downlink data rate provided by lower layers

<table>
<thead>
<tr>
<th>Reference Channel</th>
<th>Uplink Reference Channels for sustained data-rate test (TDD)</th>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.1-1 TDD</td>
<td>Channel Bandwidth</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R.1-2 TDD</td>
<td>Uplink-Downlink Configuration (Note 2)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>R.1-3 TDD</td>
<td>Allocated Resource Blocks (Note 3)</td>
<td>40</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>R.1-3B TDD</td>
<td>Allocated Sub-Frames per Radio-Frame (Note 5)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R.1-4 TDD</td>
<td>DFT-OFDM Symbols per Sub-Frame</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
<td>QPSK</td>
</tr>
<tr>
<td></td>
<td>Coding Rate</td>
<td></td>
<td>0.43</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>4968</td>
<td>6968</td>
</tr>
<tr>
<td></td>
<td>Number of Code Blocks per Sub-Frame (Note 1)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Modulation Symbols per Sub-Frame</td>
<td>5760</td>
<td>5760</td>
<td>12960</td>
</tr>
<tr>
<td></td>
<td>Binary Channel Bits per Sub-Frame</td>
<td>11520</td>
<td>11520</td>
<td>25920</td>
</tr>
<tr>
<td></td>
<td>Max Throughput over 1 Radio-Frame</td>
<td>Mbps</td>
<td>0.4968</td>
<td>0.6968</td>
</tr>
<tr>
<td></td>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
Note 2: As per Table 4.2-2 in TS 36.211 [4]
Note 3: RB-s 5-44 allocated with PUSCH.
Note 4: RB-s 7-66 allocated with PUSCH.
Note 5: RB-s 9-94 allocated with PUSCH.

A.3 DL reference measurement channels

A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

No user data is scheduled on subframes #5 in order to facilitate the transmission of system information blocks (SIB).

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation \(N_{RB} \):

1. Calculate the number of channel bits \(N_{ch} \) that can be transmitted during the first transmission of a given sub-frame.
2. Find A such that the resulting coding rate is as close to R as possible, that is,

\[
\min \left| R - \left(A + 24 \right) / N_{ch} \right|
\]

subject to

a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of \(N_{RB} \) resource blocks.
b) Segmentation is not included in this formula, but should be considered in the TBS calculation.

3. If there is more than one A that minimizes the equation above, then the larger value is chosen per default.

4. For TDD, the measurement channel is based on DL/UL configuration ratio of $2DL+DwPTS$ (12 OFDM symbol): $2UL$

A.3.1.1 Overview of DL reference measurement channels

In Table A.3.1.1-1 are listed the DL reference measurement channels specified in annexes A.3.2 to A.3.9 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation’s parameters as to be used for requirements are annexes A.3.2 to A.3.9 as appropriate.
Table A.3.1.1-1: Overview of DL reference measurement channels

<table>
<thead>
<tr>
<th>Duplex, Table</th>
<th>Name</th>
<th>BW</th>
<th>Mod</th>
<th>TCR</th>
<th>RB Off set</th>
<th>UE Cat eg</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD, Receiver requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-1</td>
<td>1.4</td>
<td>QPSK</td>
<td>1/3</td>
<td>6</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-1</td>
<td>3</td>
<td>QPSK</td>
<td>1/3</td>
<td>15</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-1</td>
<td>5</td>
<td>QPSK</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-1</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>50</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-1</td>
<td>15</td>
<td>QPSK</td>
<td>1/3</td>
<td>75</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-1</td>
<td>20</td>
<td>QPSK</td>
<td>1/3</td>
<td>100</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Receiver requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-2</td>
<td>1.4</td>
<td>QPSK</td>
<td>1/3</td>
<td>6</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-2</td>
<td>3</td>
<td>QPSK</td>
<td>1/3</td>
<td>15</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-2</td>
<td>5</td>
<td>QPSK</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-2</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>50</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-2</td>
<td>15</td>
<td>QPSK</td>
<td>1/3</td>
<td>75</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-2</td>
<td>20</td>
<td>QPSK</td>
<td>1/3</td>
<td>100</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Receiver requirements, Maximum input level for UE Categories 3-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3</td>
<td>1.4</td>
<td>64QAM</td>
<td>3/4</td>
<td>6</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3</td>
<td>3</td>
<td>64QAM</td>
<td>3/4</td>
<td>15</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3</td>
<td>5</td>
<td>64QAM</td>
<td>3/4</td>
<td>25</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>50</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3</td>
<td>15</td>
<td>64QAM</td>
<td>3/4</td>
<td>75</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3</td>
<td>20</td>
<td>64QAM</td>
<td>3/4</td>
<td>100</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Receiver requirements, Maximum input level for UE Categories 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3a</td>
<td>1.4</td>
<td>64QAM</td>
<td>3/4</td>
<td>6</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3a</td>
<td>3</td>
<td>64QAM</td>
<td>3/4</td>
<td>15</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3a</td>
<td>5</td>
<td>64QAM</td>
<td>3/4</td>
<td>18</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3a</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>17</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3a</td>
<td>15</td>
<td>64QAM</td>
<td>3/4</td>
<td>17</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3a</td>
<td>20</td>
<td>64QAM</td>
<td>3/4</td>
<td>17</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Receiver requirements, Maximum input level for UE Categories 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3b</td>
<td>1.4</td>
<td>64QAM</td>
<td>3/4</td>
<td>6</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3b</td>
<td>3</td>
<td>64QAM</td>
<td>3/4</td>
<td>15</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3b</td>
<td>5</td>
<td>64QAM</td>
<td>3/4</td>
<td>25</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3b</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>50</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3b</td>
<td>15</td>
<td>64QAM</td>
<td>3/4</td>
<td>75</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD, Table A.3.2-3b</td>
<td>20</td>
<td>64QAM</td>
<td>3/4</td>
<td>83</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Receiver requirements, Maximum input level for UE Categories 3-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-4</td>
<td>1.4</td>
<td>64QAM</td>
<td>3/4</td>
<td>6</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-4</td>
<td>3</td>
<td>64QAM</td>
<td>3/4</td>
<td>15</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-4</td>
<td>5</td>
<td>64QAM</td>
<td>3/4</td>
<td>25</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-4</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>50</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-4</td>
<td>15</td>
<td>64QAM</td>
<td>3/4</td>
<td>75</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-4</td>
<td>20</td>
<td>64QAM</td>
<td>3/4</td>
<td>100</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Receiver requirements, Maximum input level for UE Categories 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-4a</td>
<td>1.4</td>
<td>64QAM</td>
<td>3/4</td>
<td>6</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD, Table A.3.2-4a</td>
<td>3</td>
<td>64QAM</td>
<td>3/4</td>
<td>15</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TDD, Receiver requirements, Maximum input level for UE Categories 2

<table>
<thead>
<tr>
<th>TDD, Receiver requirements</th>
<th>Maximum input level for UE Categories 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A.3.2-4a</td>
<td>5 64QAM 3/4 18 -</td>
</tr>
<tr>
<td>Table A.3.2-4a</td>
<td>10 64QAM 3/4 17 -</td>
</tr>
<tr>
<td>Table A.3.2-4a</td>
<td>15 64QAM 3/4 17 -</td>
</tr>
<tr>
<td>Table A.3.2-4a</td>
<td>20 64QAM 3/4 17 -</td>
</tr>
</tbody>
</table>

FDD, PDSCH Performance, Single-antenna transmission (CRS)

<table>
<thead>
<tr>
<th>FDD</th>
<th>R.4 FDD</th>
<th>1.4 QPSK 1/3 6 ≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A.3.3.1-1</td>
<td>R.42 FDD</td>
<td>20 QPSK 1/3 100 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.1-1</td>
<td>R.2 FDD</td>
<td>10 QPSK 1/3 50 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.1-2</td>
<td>R.3-1 FDD</td>
<td>5 16QAM 1/2 25 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.1-2</td>
<td>R.3 FDD</td>
<td>10 16QAM 1/2 50 ≥ 2</td>
</tr>
<tr>
<td>Table A.3.3.1-3</td>
<td>R.5 FDD</td>
<td>3 64QAM 3/4 15 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.1-3</td>
<td>R.6 FDD</td>
<td>5 64QAM 3/4 25 ≥ 2</td>
</tr>
<tr>
<td>Table A.3.3.1-3</td>
<td>R.7 FDD</td>
<td>10 64QAM 3/4 50 ≥ 2</td>
</tr>
<tr>
<td>Table A.3.3.1-3</td>
<td>R.8 FDD</td>
<td>15 64QAM 3/4 75 ≥ 2</td>
</tr>
<tr>
<td>Table A.3.3.1-3</td>
<td>R.9 FDD</td>
<td>20 64QAM 3/4 100 ≥ 3</td>
</tr>
<tr>
<td>Table A.3.3.1-3a</td>
<td>R.6-1 FDD</td>
<td>5 64QAM 3/4 12 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.1-3a</td>
<td>R.7-1 FDD</td>
<td>10 64QAM 3/4 17 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.1-3a</td>
<td>R.8-1 FDD</td>
<td>15 64QAM 3/4 17 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.1-3a</td>
<td>R.9-1 FDD</td>
<td>20 64QAM 3/4 17 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.1-3a</td>
<td>R.9-2 FDD</td>
<td>20 64QAM 3/4 17 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.1-6</td>
<td>R.41 FDD</td>
<td>10 QPSK 1/10 50 ≥ 1</td>
</tr>
</tbody>
</table>

FDD, PDSCH Performance, Single-antenna transmission (CRS), Single PRB (Channel edge)

<table>
<thead>
<tr>
<th>FDD</th>
<th>R.0 FDD</th>
<th>3 16QAM 1/2 1 ≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A.3.3.1-4</td>
<td>R.1 FDD</td>
<td>10 / 20 16QAM 1/2 1 ≥ 1</td>
</tr>
</tbody>
</table>

FDD, PDSCH Performance, Single-antenna transmission (CRS), Single PRB (MBSFN Configuration)

<table>
<thead>
<tr>
<th>FDD</th>
<th>R.29 FDD</th>
<th>10 16QAM 1/2 1 ≥ 1</th>
</tr>
</thead>
</table>

FDD, PDSCH Performance, Multi-antenna transmission (CRS), Two antenna ports

<table>
<thead>
<tr>
<th>FDD</th>
<th>R.10 FDD</th>
<th>10 QPSK 1/3 50 ≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A.3.3.2.1-1</td>
<td>R.11 FDD</td>
<td>10 16QAM 1/2 50 ≥ 2</td>
</tr>
<tr>
<td>Table A.3.3.2.1-1</td>
<td>R.11-2 FDD</td>
<td>5 16QAM 1/2 25 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.2.1-1</td>
<td>R.11-3 FDD</td>
<td>10 16QAM 1/2 40 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.2.1-1</td>
<td>R.11-4 FDD</td>
<td>10 QPSK 1/2 50 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.2.1-1</td>
<td>R.30 FDD</td>
<td>20 16QAM 1/2 100 ≥ 2</td>
</tr>
<tr>
<td>Table A.3.3.2.1-1</td>
<td>R.35 FDD</td>
<td>10 64QAM 1/2 50 ≥ 2</td>
</tr>
<tr>
<td>Table A.3.3.2.1-1</td>
<td>R.35-1 FDD</td>
<td>20 64QAM 0.39 100 ≥ 4</td>
</tr>
</tbody>
</table>

FDD, PDSCH Performance, Multi-antenna transmission (CRS), Four antenna ports

<table>
<thead>
<tr>
<th>FDD</th>
<th>R.12 FDD</th>
<th>1.4 QPSK 1/3 6 ≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A.3.3.2.2-1</td>
<td>R.13 FDD</td>
<td>10 QPSK 1/3 50 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.2.2-1</td>
<td>R.14 FDD</td>
<td>10 16QAM 1/2 50 ≥ 2</td>
</tr>
<tr>
<td>Table A.3.3.2.2-1</td>
<td>R.14-1 FDD</td>
<td>10 16QAM 1/2 6 ≥ 1</td>
</tr>
<tr>
<td>Table A.3.3.2.2-1</td>
<td>R.14-2 FDD</td>
<td>10 16QAM 1/2 3 ≥ 1</td>
</tr>
</tbody>
</table>
FDD, PDSCH Performance (UE specific RS) Two antenna ports (CSI-RS)

<table>
<thead>
<tr>
<th>FDD</th>
<th>Table</th>
<th>R.14-3 FDD</th>
<th>20</th>
<th>16QAM</th>
<th>1/2</th>
<th>100</th>
<th>≥ 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>Table</td>
<td>R.36 FDD</td>
<td>10</td>
<td>64QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

FDD, PDSCH Performance (UE specific RS) Four antenna ports (CSI-RS)

| FDD | Table | R.51 FDD | 10 | 16QAM | 1/2 | 50 | ≥ 2 |

FDD, PDSCH Performance: Carrier aggregation with power imbalance

| FDD | Table | R.49 FDD | 20 | 64QAM | | | 5-8 |

TDD, PDSCH Performance, Single-antenna transmission (CRS)

<table>
<thead>
<tr>
<th>TDD</th>
<th>Table</th>
<th>R.4 TDD</th>
<th>1.4</th>
<th>QPSK</th>
<th>1/3</th>
<th>6</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.42 TDD</td>
<td>20</td>
<td>QPSK</td>
<td>1/3</td>
<td>100</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.2 TDD</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.3-1 TDD</td>
<td>5</td>
<td>16QAM</td>
<td>1/2</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.3 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.5 TDD</td>
<td>3</td>
<td>64QAM</td>
<td>3/4</td>
<td>15</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.6 TDD</td>
<td>5</td>
<td>64QAM</td>
<td>3/4</td>
<td>25</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.7 TDD</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.8 TDD</td>
<td>15</td>
<td>64QAM</td>
<td>3/4</td>
<td>75</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.9 TDD</td>
<td>20</td>
<td>64QAM</td>
<td>3/4</td>
<td>100</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.6-1 TDD</td>
<td>5</td>
<td>64QAM</td>
<td>3/4</td>
<td>18</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.7-1 TDD</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>17</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.8-1 TDD</td>
<td>15</td>
<td>64QAM</td>
<td>3/4</td>
<td>17</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.9-1 TDD</td>
<td>20</td>
<td>64QAM</td>
<td>3/4</td>
<td>17</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.9-2 TDD</td>
<td>20</td>
<td>64QAM</td>
<td>3/4</td>
<td>83</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.41 TDD</td>
<td>10</td>
<td>QPSK</td>
<td>1/10</td>
<td>50</td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

TDD, PDSCH Performance, Single-antenna transmission (CRS), Single PRB (Channel edge)

<table>
<thead>
<tr>
<th>TDD</th>
<th>Table</th>
<th>R.0 TDD</th>
<th>3</th>
<th>16QAM</th>
<th>1/2</th>
<th>1</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.1 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>1</td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

TDD, PDSCH Performance, Single-antenna transmission (CRS), Single PRB (MBSFN Configuration)

| TDD | Table | R.29 TDD | 10 | 16QAM | 1/2 | 1 | ≥ 1 |

TDD, PDSCH Performance, Multi-antenna transmission (CRS), Two antenna ports

<table>
<thead>
<tr>
<th>TDD</th>
<th>Table</th>
<th>R.10 TDD</th>
<th>10</th>
<th>QPSK</th>
<th>1/3</th>
<th>50</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.11 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.11-1 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.11-2 TDD</td>
<td>5</td>
<td>16QAM</td>
<td>1/2</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.11-3 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>40</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.11-4 TDD</td>
<td>10</td>
<td>QPSK</td>
<td>1/2</td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.30 TDD</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>100</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.30-1 TDD</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>100</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.30-2 TDD</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.35 TDD</td>
<td>10</td>
<td>64QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table</td>
<td>R.35-1 TDD</td>
<td>20</td>
<td>64QAM</td>
<td>0.39</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

TDD, PDSCH Performance, Multi-antenna transmission (CRS), Four antenna ports

<p>| TDD | Table | R.12 TDD | 1.4 | QPSK | 1/3 | 6 | ≥ 1 |</p>
<table>
<thead>
<tr>
<th>TDD</th>
<th>Table A.3.4.2.2-1</th>
<th>R.13 TDD</th>
<th>10</th>
<th>QPSK</th>
<th>1/3</th>
<th>50</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table A.3.4.2.2-1</td>
<td>R.14 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.2.2-1</td>
<td>R.14-1 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>6</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.2.2-1</td>
<td>R.14-2 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>3</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.2.2-1</td>
<td>R.43 TDD</td>
<td>20</td>
<td>16QAM</td>
<td>1/2</td>
<td>100</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.2.2-1</td>
<td>R.36 TDD</td>
<td>10</td>
<td>64QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

TDD, PDSCH Performance, Single antenna port (DRS)

<table>
<thead>
<tr>
<th>TDD</th>
<th>Table A.3.4.3.1-1</th>
<th>R.25 TDD</th>
<th>10</th>
<th>QPSK</th>
<th>1/3</th>
<th>50</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.1-1</td>
<td>R.26 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.1-1</td>
<td>R.26-1 TDD</td>
<td>5</td>
<td>16QAM</td>
<td>1/2</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.1-1</td>
<td>R.27 TDD</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.1-1</td>
<td>R.27-1 TDD</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>18</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.1-1</td>
<td>R.28 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>1</td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

TDD, PDSCH Performance, Two antenna ports (DRS)

<table>
<thead>
<tr>
<th>TDD</th>
<th>Table A.3.4.3.2-1</th>
<th>R.31 TDD</th>
<th>10</th>
<th>QPSK</th>
<th>1/3</th>
<th>50</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.2-1</td>
<td>R.32 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.2-1</td>
<td>R.32-1 TDD</td>
<td>5</td>
<td>16QAM</td>
<td>1/2</td>
<td>[25]</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.2-1</td>
<td>R.33 TDD</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.2-1</td>
<td>R.33-1 TDD</td>
<td>10</td>
<td>64QAM</td>
<td>3/4</td>
<td>[18]</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.2-1</td>
<td>R.34 TDD</td>
<td>10</td>
<td>64QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

TDD, PDSCH Performance (UE specific RS) Two antenna ports (CSI-RS)

| TDD | Table A.3.4.3.3-1 | R.51 TDD | 10 | 16QAM | 1/2 | 50 | ≥ 2 |

TDD, PDSCH Performance (UE specific RS) Four antenna ports (CSI-RS)

| TDD | Table A.3.4.3.4-1 | R.44 TDD | 10 | 64QAM | 1/2 | 50 | ≥ 2 |

TDD, PDSCH Performance (UE specific RS) Eight antenna ports (CSI-RS)

<table>
<thead>
<tr>
<th>TDD</th>
<th>Table A.3.4.3.5-1</th>
<th>R.50 TDD</th>
<th>10</th>
<th>QPSK</th>
<th>1/3</th>
<th>50</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.5-2</td>
<td>R.45 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.4.3.5-2</td>
<td>R.45-1 TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>39</td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

TDD, PDSCH Performance: Carrier aggregation with power imbalance

| TDD | Table A.3.3.1-7 | R.49 TDD | 20 | 64QAM | 5-8 |

FDD, PDCCH / PCFICH Performance

<table>
<thead>
<tr>
<th>FDD</th>
<th>Table A.3.5.1-1</th>
<th>R.15 FDD</th>
<th>10</th>
<th>PDCCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>Table A.3.5.1-1</td>
<td>R.15-1 FDD</td>
<td>10</td>
<td>PDCCH</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.3.5.1-1</td>
<td>R.16 FDD</td>
<td>10</td>
<td>PDCCH</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.3.5.1-1</td>
<td>R.17 FDD</td>
<td>5</td>
<td>PDCCH</td>
</tr>
</tbody>
</table>

TDD, PDCCH / PCFICH Performance

<table>
<thead>
<tr>
<th>TDD</th>
<th>Table A.3.5.2-1</th>
<th>R.15 TDD</th>
<th>10</th>
<th>PDCCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table A.3.5.2-1</td>
<td>R.15-1 TDD</td>
<td>10</td>
<td>PDCCH</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.5.2-1</td>
<td>R.16 TDD</td>
<td>10</td>
<td>PDCCH</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.5.2-1</td>
<td>R.17 TDD</td>
<td>5</td>
<td>PDCCH</td>
</tr>
</tbody>
</table>

FDD / TDD, PHICH Performance

<table>
<thead>
<tr>
<th>FDD / TDD</th>
<th>Table A.3.6-1</th>
<th>R.18</th>
<th>10</th>
<th>PHICH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD / TDD</td>
<td>Table A.3.6-1</td>
<td>R.19</td>
<td>10</td>
<td>PHICH</td>
</tr>
<tr>
<td>FDD / TDD</td>
<td>Table A.3.6-1</td>
<td>R.20</td>
<td>5</td>
<td>PHICH</td>
</tr>
<tr>
<td>FDD / TDD</td>
<td>Table A.3.6-1</td>
<td>R.24</td>
<td>10</td>
<td>PHICH</td>
</tr>
</tbody>
</table>

FDD / TDD, PBCH Performance

<table>
<thead>
<tr>
<th>FDD / TDD</th>
<th>Table A.3.7-1</th>
<th>R.21</th>
<th>1.4</th>
<th>QPSK</th>
<th>40/1920</th>
</tr>
</thead>
</table>
FDD / TDD

<table>
<thead>
<tr>
<th>Type</th>
<th>Table</th>
<th>R</th>
<th>Modulation</th>
<th>Rate</th>
<th>QPSK</th>
<th>40/1920</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD / TDD</td>
<td>Table A.3.7-1</td>
<td>R.22</td>
<td>1.4</td>
<td>QPSK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD / TDD</td>
<td>Table A.3.7-1</td>
<td>R.23</td>
<td>1.4</td>
<td>QPSK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FDD, PMCH Performance

<table>
<thead>
<tr>
<th>Type</th>
<th>Table</th>
<th>R</th>
<th>Modulation</th>
<th>Rate</th>
<th>QPSK</th>
<th>1/3</th>
<th>6</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>Table A.3.8.1-1</td>
<td>R.40</td>
<td>FDD</td>
<td>1.4</td>
<td>QPSK</td>
<td></td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.3.8.1-1</td>
<td>R.37</td>
<td>FDD</td>
<td>10</td>
<td>QPSK</td>
<td>1/2</td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.3.8.1-2</td>
<td>R.38</td>
<td>FDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.3.8.1-3</td>
<td>R.39</td>
<td>FDD</td>
<td>5</td>
<td>64QAM</td>
<td>1/3</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.3.8.1-3</td>
<td>R.39</td>
<td>FDD</td>
<td>10</td>
<td>64QAM</td>
<td>2/3</td>
<td>50</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

TDD, PMCH Performance

<table>
<thead>
<tr>
<th>Type</th>
<th>Table</th>
<th>R</th>
<th>Modulation</th>
<th>Rate</th>
<th>QPSK</th>
<th>1/3</th>
<th>6</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table A.3.8.2-1</td>
<td>R.40</td>
<td>TDD</td>
<td>1.4</td>
<td>QPSK</td>
<td></td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.8.2-1</td>
<td>R.37</td>
<td>TDD</td>
<td>10</td>
<td>QPSK</td>
<td>1/3</td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.8.2-2</td>
<td>R.38</td>
<td>TDD</td>
<td>10</td>
<td>16QAM</td>
<td>1/2</td>
<td>50</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.8.2-3</td>
<td>R.39</td>
<td>TDD</td>
<td>5</td>
<td>64QAM</td>
<td>2/3</td>
<td>25</td>
<td>≥ 1</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.8.2-3</td>
<td>R.39</td>
<td>TDD</td>
<td>10</td>
<td>64QAM</td>
<td>2/3</td>
<td>50</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

FDD, Sustained data rate (CRS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Table</th>
<th>R</th>
<th>Modulation</th>
<th>Rate</th>
<th>QPSK</th>
<th>0.40</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>Table A.3.9.1-1</td>
<td>R.31</td>
<td>FDD</td>
<td>10</td>
<td>64QAM</td>
<td>0.59-0.64</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.3.9.1-1</td>
<td>R.31</td>
<td>FDD</td>
<td>20</td>
<td>64QAM</td>
<td>0.59-0.62</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.3.9.1-1</td>
<td>R.31</td>
<td>FDD</td>
<td>10</td>
<td>64QAM</td>
<td>0.85-0.90</td>
<td>≥ 2</td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.3.9.1-1</td>
<td>R.31</td>
<td>FDD</td>
<td>20</td>
<td>64QAM</td>
<td>0.87-0.90</td>
<td>≥ 3</td>
</tr>
</tbody>
</table>

TDD, Sustained data rate (CRS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Table</th>
<th>R</th>
<th>Modulation</th>
<th>Rate</th>
<th>QPSK</th>
<th>0.40</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>Table A.3.9.2-1</td>
<td>R.31</td>
<td>TDD</td>
<td>10</td>
<td>64QAM</td>
<td>0.59-0.64</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.9.2-1</td>
<td>R.31</td>
<td>TDD</td>
<td>20</td>
<td>64QAM</td>
<td>0.59-0.62</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.9.2-1</td>
<td>R.31</td>
<td>TDD</td>
<td>15</td>
<td>64QAM</td>
<td>0.87-0.90</td>
<td>≥ 2</td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.3.9.2-1</td>
<td>R.31</td>
<td>TDD</td>
<td>20</td>
<td>64QAM</td>
<td>0.87-0.90</td>
<td>≥ 3</td>
</tr>
</tbody>
</table>

A.3.2 Reference measurement channel for receiver characteristics

Tables A.3.2-1 and A.3.2-2 are applicable for measurements on the Receiver Characteristics (clause 7) with the exception of sub-clause 7.4 (Maximum input level).

Tables A.3.2-3, A.3.2-3a, A.3.2-3b, A.3.2-4, A.3.2-4a and A.3.2-4b are applicable for sub-clause 7.4 (Maximum input level).

Tables A.3.2-1 and A.3.2-2 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.
Table A.3.2-1 Fixed Reference Channel for Receiver Requirements (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
| Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz. Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]. If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.2-2 Fixed Reference Channel for Receiver Requirements (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10 15 20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6 15 25 50 75 100</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 5)</td>
<td></td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3 3+2 3+2 3+2 3+2 3+2</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>7 7 7 7 7 7</td>
</tr>
<tr>
<td>Maximum number of HARQ transmission</td>
<td></td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK QPSK QPSK QPSK QPSK QPSK</td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td>1/3 1/3 1/3 1/3 1/3 1/3</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>24 24 24 24 24 24</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td></td>
<td>24 24 24 24 24 24</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
<td></td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td>Bits</td>
<td>1368 3780 6300 13800 20700 27600</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>kbps</td>
<td>102.4 564 932 1965. 6 3007. 2 3970. 4</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1</td>
</tr>
</tbody>
</table>

Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.

Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.

Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: As per Table 4.2-2 in TS 36.211 [4]
Table A.3.2-3 Fixed Reference Channel for Maximum input level for UE Categories 3-8 (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Max. number of HARQ transmissions</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>5</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>5</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>1</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>kbps</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.2-3a Fixed Reference Channel for Maximum input level for UE Category 1 (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Max. number of HARQ transmissions</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>12</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>1</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>kbps</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.2-3b Fixed Reference Channel for Maximum input level for UE Category 2 (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>20</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td>Bits</td>
<td>6</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>64QAM</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>3/4</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td>Bits</td>
<td>24</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td>Bits</td>
<td>4104</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>11340</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>18900</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>41400</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>62100</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>kbps</td>
<td>2387.2</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>7448.8</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>12547</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>30576</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>42046</td>
</tr>
<tr>
<td>Note 1:</td>
<td></td>
<td>45922</td>
</tr>
<tr>
<td>Note 2:</td>
<td></td>
<td>2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.</td>
</tr>
<tr>
<td>Note 3:</td>
<td></td>
<td>Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].</td>
</tr>
<tr>
<td>Note 3:</td>
<td></td>
<td>If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>1.4</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 5)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>7</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>Binary Channel Bits per Sub-Frame</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td></td>
<td>kbps</td>
</tr>
</tbody>
</table>

Note 1: For normal subframes (0, 4, 5, 9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.

Note 2: For 1.4 MHz, no data shall be scheduled on special subframes (1&6) to avoid problems with insufficient PDCCH performance.

Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: As per Table 4.2-2 in TS 36.211 [4].
Table A.3.2-4a Fixed Reference Channel for Maximum input level for UE Category 1 (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10 15 20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6 15 18 17 17 17</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12 12 12 12 12 12</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 5)</td>
<td></td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>2 3+2 3+2 3+2 3+2 3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM 64QAM 64QAM 64QAM 64QAM 64QAM</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>7 7 7 7 7 7</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td></td>
<td>2984 8504 10296 10296 10296 10296</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td></td>
<td>n/a 6968 8248 7480 7480 7480</td>
</tr>
<tr>
<td>For Sub-Frames 1,6 Bits</td>
<td></td>
<td>n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Bits</td>
<td></td>
<td>n/a 6968 8248 10296 10296 10296</td>
</tr>
<tr>
<td>Transport block CRC Bits</td>
<td></td>
<td>24 24 24 24 24 24</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td>1 2 2 2 2 2</td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>n/a 2 2 2 2 2</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>n/a 2 2 2 2 2</td>
</tr>
<tr>
<td>Binary Channel Bits per Sub-Frame</td>
<td></td>
<td>4104 11340 13608 14076 14076 14076</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td></td>
<td>n/a 9828 11880 11628 11628 11628</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>n/a 9252 11520 14076 14076 14076</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame kbps</td>
<td></td>
<td>596.8 3791.2 4533.6 4584.8 4584.8 4584.8</td>
</tr>
</tbody>
</table>

Note 1: For normal subframes (0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW: 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.

Note 2: For 1.4MHz, no data shall be scheduled on special subframes (1&6) to avoid problems with insufficient PDCCH performance.

Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: As per Table 4.2-2 in TS 36.211 [4].
Table A.3.2-4b Fixed Reference Channel for Maximum input level for UE Category 2 (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10 15 20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6 15 25 50 75 83</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12 12 12 12 12 12</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 5)</td>
<td></td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>2 3+2 3+2 3+2 3+2 3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM 64QAM 64QAM 64QAM 64QAM 64QAM</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>7 7 7 7 7 7</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td></td>
<td>2984 8504 14112 30576 46888 51024</td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>2984 8504 14112 30576 46888 51024</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>n/a 6968 11448 23688 35160 39232</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>n/a 6968 12576 30576 45352 51024</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>24 24 24 24 24 24</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td>1 2 3 5 8 9</td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>1 2 3 5 8 9</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>n/a 2 3 5 7 7</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>n/a 2 3 5 8 9</td>
</tr>
<tr>
<td>Binary Channel Bits per Sub-Frame</td>
<td></td>
<td>4104 11340 18900 41400 62100 68724</td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>4104 11340 18900 41400 62100 68724</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>n/a 9828 16668 33768 50868 56340</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>n/a 9252 16380 39312 60012 66636</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>kbps</td>
<td>596.8 3791.2 6369.6 13910 20945 23154</td>
</tr>
</tbody>
</table>

Note 1: For normal subframes (0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.

Note 2: For 1.4MHz, no data shall be scheduled on special subframes (1&6) to avoid problems with insufficient PDCCH performance.

Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: As per Table 4.2-2 in TS 36.211 [4].
A.3.3 Reference measurement channels for PDSCH performance requirements (FDD)

A.3.3.1 Single-antenna transmission (Common Reference Symbols)

| Table A.3.3.1-1: Fixed Reference Channel QPSK R=1/3 |
|---------------------------------|----------|----------|
| Parameter | Unit | Value |
| Reference channel | R.4 FDD | R.42 FDD | R.2 FDD |
| Channel bandwidth | MHz | |
| FDD | 1.4 | 20 | 10 |
| Allocated resource blocks (Note 4) | 6 | 100 | 50 |
| Allocated subframes per Radio Frame | 9 | 9 | 9 |
| Modulation | QPSK | QPSK | QPSK |
| Target Coding Rate | 1/3 | 1/3 | 1/3 |
| Information Bit Payload (Note 4) | | |
| For Sub-Frames 1,2,3,4,6,7,8,9 | Bits | 408 | 8760 | 4392 |
| For Sub-Frame 5 | Bits | n/a | n/a | n/a |
| For Sub-Frame 0 | Bits | 152 | 8760 | 4392 |
| Number of Code Blocks | | |
| (Notes 3 and 4) | | |
| For Sub-Frames 1,2,3,4,6,7,8,9 | 1 | 2 | 1 |
| For Sub-Frame 5 | n/a | n/a | n/a |
| For Sub-Frame 0 | 1 | 2 | 1 |
| Binary Channel Bits (Note 4) | | |
| For Sub-Frames 1,2,3,4,6,7,8,9 | Bits | 1368 | 27600 | 13800 |
| For Sub-Frame 5 | Bits | n/a | n/a | n/a |
| For Sub-Frame 0 | Bits | 528 | 26760 | 12960 |
| Max. Throughput averaged over 1 frame (Note 4) | Mbps | 0.342 | 7.884 | 3.953 |
| UE Category | | |
| ≥ 1 | | |

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Given per component carrier per codeword.
Table A.3.3.1-2: Fixed Reference Channel 16QAM R=1/2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>6456</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>5736</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>12600</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>10920</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>5.738</td>
</tr>
<tr>
<td></td>
<td>Mbps</td>
<td>12.586</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-3: Fixed Reference Channel 64QAM R=3/4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>8504</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>6456</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>11340</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>8820</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>7.449</td>
</tr>
<tr>
<td></td>
<td>Mbps</td>
<td>12.547</td>
</tr>
<tr>
<td></td>
<td>Mbps</td>
<td>27.294</td>
</tr>
<tr>
<td></td>
<td>Mbps</td>
<td>42.046</td>
</tr>
<tr>
<td></td>
<td>Mbps</td>
<td>55.498</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 3</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.3.1-3a: Fixed Reference Channel 64QAM R=3/4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.6-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.7-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.8-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.9-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.9-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>5</td>
</tr>
<tr>
<td>Allocated resource blocks (Note 3)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Sub-Frame 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Sub-Frame 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allocated resource blocks (Note 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allocated subframes per Radio Frame</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target Coding Rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information Bit Payload</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Sub-Frame 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Sub-Frame 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary Channel Bits Per Sub-Frame</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. Throughput averaged over 1 frame</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UE Category</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: Localized allocation started from RB #0 is applied.

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-4: Fixed Reference Channel Single PRB (Channel Edge)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Sub-Frame 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Sub-Frame 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of Code Blocks per Sub-Frame (Note 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary Channel Bits Per Sub-Frame</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. Throughput averaged over 1 frame</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UE Category</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.3.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.29 FDD (MBSFN)</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MBSFN Configuration</td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>256</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>256</td>
</tr>
<tr>
<td>For Sub-Frame 1,2,3,6,7,8</td>
<td>Bits</td>
<td>0 (MBSFN)</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 1,2,3,6,7,8</td>
<td></td>
<td>0 (MBSFN)</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>552</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>552</td>
</tr>
<tr>
<td>For Sub-Frame 1,2,3,6,7,8</td>
<td>Bits</td>
<td>0 (MBSFN)</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>kbps</td>
<td>76.8</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH.
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.3.1-6: Fixed Reference Channel QPSK R=1/10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.41</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10 15 20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/10</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>1384</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>1384</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>13800</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>12960</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>1.246</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-7: PCell Fixed Reference Channel for CA demodulation with power imbalance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.49</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td>Coding Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>0.87</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 0,1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>63776</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 0,1,2,3,4,6,7,8,9</td>
<td>Code Blocks</td>
<td>11</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Code Blocks</td>
<td>n/a</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>75600</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>73080</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>57.398</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>5-8</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
A.3.3.2 Multi-antenna transmission (Common Reference Symbols)

A.3.3.2.1 Two antenna ports

Table A.3.3.2.1-1: Fixed Reference Channel two antenna ports

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>FDD</td>
<td>FDD</td>
<td>FDD</td>
<td>Note 5</td>
<td>FDD</td>
<td>FDD</td>
<td>FDD</td>
<td>FDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks (Note 4)</td>
<td></td>
<td>50</td>
<td>50</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
<td>16QA</td>
<td>16QA</td>
<td>M</td>
<td>16QA</td>
<td>M</td>
<td>QPSK</td>
<td>64QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/3</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>0.39</td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload (Note 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>4392</td>
<td>12960</td>
<td>5736</td>
<td>10296</td>
<td>6968</td>
<td>25456</td>
<td>30576</td>
<td>19848</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>4392</td>
<td>12960</td>
<td>4968</td>
<td>10296</td>
<td>6968</td>
<td>25456</td>
<td>n/a</td>
<td>18336</td>
</tr>
<tr>
<td>Number of Code Blocks (Notes 3 and 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>Binary Channel Bits (Note 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td>Bits</td>
<td>13200</td>
<td>26400</td>
<td>12000</td>
<td>21120</td>
<td>13200</td>
<td>52800</td>
<td>79200</td>
<td>39600</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>12384</td>
<td>24768</td>
<td>10368</td>
<td>19488</td>
<td>12384</td>
<td>51168</td>
<td>n/a</td>
<td>37152</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame (Note 4)</td>
<td>Mbps</td>
<td>3.953</td>
<td>11.664</td>
<td>5.086</td>
<td>9.266</td>
<td>6.271</td>
<td>22.910</td>
<td>24.461</td>
<td>17.712</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Given per component carrier per codeword.

Note 5: For R.11-3 resource blocks of RB6–RB45 are allocated.
A.3.3.2.2 Four antenna ports

Table A.3.3.2.2-1: Fixed Reference Channel four antenna ports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 10 10 10 10 20 10</td>
</tr>
<tr>
<td>Allocated resource blocks (Note 4)</td>
<td></td>
<td>6 50 50 6 3 100 50</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>9 9 9 8 8 9 9</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK QPSK 16QA M 16QA M 16QA M 16QA M 64QA M</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/3 1/3 1/2 1/2 1/2 1/2 1/2 1/2</td>
</tr>
<tr>
<td>Information Bit Payload (Note 4)</td>
<td></td>
<td>For Sub-Frames 1,2,3,4,6,7,8,9 Bits 408 4392 12960 1544 744 25456 18336</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>Bits n/a n/a n/a n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>Bits 152 3624 11448 n/a n/a 22920 18336</td>
</tr>
<tr>
<td>Number of Code Blocks (Notes 3 and 4)</td>
<td></td>
<td>For Sub-Frames 1,2,3,4,6,7,8,9 1 1 3 1 1 5 3</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>Bits n/a n/a n/a n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>Bits 1 1 2 n/a n/a 4 3</td>
</tr>
<tr>
<td>Binary Channel Bits (Note 4)</td>
<td></td>
<td>For Sub-Frames 1,2,3,4,6,7,8,9 Bits 1248 12800 25600 3072 1536 51200 38400</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>Bits n/a n/a n/a n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>Bits 480 12032 24064 n/a n/a 49664 36096</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame (Note 4)</td>
<td>Mbps</td>
<td>3.042 3.876 11.51 1.235 0.595 22.65 16.50</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 1 ≥ 2 ≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Note 4: Given per component carrier per codeword.

A.3.3.3 Reference Measurement Channel for UE-Specific Reference Symbols

A.3.3.3.1 Two antenna port (CSI-RS)

The reference measurement channels in Table A.3.3.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.
Table A.3.3.3.1-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.51</td>
<td>FDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50 (Note 3)</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,4,6,9</td>
<td>Bits</td>
<td>11448</td>
</tr>
<tr>
<td>For Sub-Frames 2,3,7,8</td>
<td>Bits</td>
<td>11448</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>9528</td>
</tr>
<tr>
<td>Number of Code Blocks (Note 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,4,6,9</td>
<td>Code blocks</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frames 2,3,7,8</td>
<td>Code blocks</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>Binary Channel Bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,4,6,9</td>
<td>Bits</td>
<td>24000</td>
</tr>
<tr>
<td>For Sub-Frames 2,7</td>
<td>Bits</td>
<td>23600</td>
</tr>
<tr>
<td>For Sub-Frames 3,8</td>
<td>Bits</td>
<td>23200</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>19680</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>10.1112</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH.
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: 50 resource blocks are allocated in sub-frames 1, 2, 3, 4, 6, 7, 8, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.
Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.3.3.2 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.3.3.2-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.
Table A.3.3.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.43 FDD</td>
<td>R.50 FDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50 (Note 3) 50 (Note 3)</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>9 9</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK 64QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/3 1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 1,4,6,9 Bits</td>
<td>Bits</td>
<td>3624 18336</td>
</tr>
<tr>
<td>For Sub-Frames 2,3,7,8 Bits</td>
<td>Bits</td>
<td>3624 16416</td>
</tr>
<tr>
<td>For Sub-Frame 5 Bits</td>
<td>Bits</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Bits</td>
<td>Bits</td>
<td>2984 14688</td>
</tr>
<tr>
<td>Number of Code Blocks (Note 4)</td>
<td>Code blocks</td>
<td>1 3</td>
</tr>
<tr>
<td>For Sub-Frames 1,4,6,9 Code blocks</td>
<td></td>
<td>1 3</td>
</tr>
<tr>
<td>For Sub-Frames 2,3,7,8 Code blocks</td>
<td></td>
<td>1 3</td>
</tr>
<tr>
<td>For Sub-Frame 5 Code blocks</td>
<td></td>
<td>n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Code blocks</td>
<td></td>
<td>1 3</td>
</tr>
<tr>
<td>Binary Channel Bits</td>
<td>Bits</td>
<td>12000 36000</td>
</tr>
<tr>
<td>For Sub-Frames 1,4,6,9</td>
<td></td>
<td>11600 34800</td>
</tr>
<tr>
<td>For Sub-Frames 2,7</td>
<td></td>
<td>11600 34800</td>
</tr>
<tr>
<td>For Sub-Frames 3,8</td>
<td></td>
<td>11600 34800</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>9840 29520</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>3.1976 15.3696</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1 ≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH.
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: 50 resource blocks are allocated in sub-frames 1, 2, 3, 4, 6, 7, 8, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.
Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

The reference measurement channels in Table A.3.3.3.2-2 apply for verifying FDD PMI accuracy measurement with two CRS antenna ports and four CSI-RS antenna ports.
Table A.3.3.3.2-2: Fixed Reference Channel for four antenna ports (CSI-RS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Reference channel</th>
<th>Channel bandwidth</th>
<th>Allocated resource blocks</th>
<th>Allocated subframes per Radio Frame</th>
<th>Modulation</th>
<th>Target Coding Rate</th>
<th>Information Bit Payload</th>
<th>Number of Code Blocks per Sub-Frame (Note 4)</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R.44</td>
<td>MHz</td>
<td>10</td>
<td>50</td>
<td>FDD</td>
<td>1/3</td>
<td>3624</td>
<td>12000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.45</td>
<td>MHz</td>
<td>10</td>
<td>50</td>
<td>FDD</td>
<td>1/2</td>
<td>11448</td>
<td>24000</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.45-1</td>
<td>MHz</td>
<td>10</td>
<td>39</td>
<td>FDD</td>
<td>1/2</td>
<td>8760</td>
<td>18720</td>
<td>2</td>
</tr>
<tr>
<td>Reference channel R.44</td>
<td>FDD</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>FDD</td>
<td>1/2</td>
<td>11448</td>
<td>24000</td>
<td>2</td>
</tr>
<tr>
<td>Reference channel R.45</td>
<td>FDD</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>FDD</td>
<td>1/2</td>
<td>8760</td>
<td>18720</td>
<td>2</td>
</tr>
<tr>
<td>Reference channel R.45-1</td>
<td>FDD</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>39</td>
<td>FDD</td>
<td>1/2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td></td>
<td>MHz</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
<td>10</td>
<td>FDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td></td>
<td></td>
<td>1/3</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame (Non CSI-RS subframe)</td>
<td>Bits</td>
<td>3624</td>
<td>11448</td>
<td>8760</td>
<td>2984</td>
<td>9528</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame (CSI-RS subframe)</td>
<td>Bits</td>
<td>3624</td>
<td>11448</td>
<td>8760</td>
<td>2984</td>
<td>9528</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame (ZeroPowerCSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2984</td>
<td>9528</td>
<td>8760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
<td></td>
<td></td>
<td>MHz</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame (ZeroPowerCSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
<td>MHz</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>12000</td>
<td>24000</td>
<td>18720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>11600</td>
<td>23200</td>
<td>18096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame (ZeroPowerCSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>9840</td>
<td>19680</td>
<td>18720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>3.1976</td>
<td>10.1112</td>
<td>7.884</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: For R. 44 and R.45, 50 resource blocks are allocated in sub-frames 1,2,3,4,6,7,8,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
A.3.4 Reference measurement channels for PDSCH performance requirements (TDD)

A.3.4.1 Single-antenna transmission (Common Reference Symbols)

| Table A.3.4.1-1: Fixed Reference Channel QPSK R=1/3 |
|------------------|------------------|------------------|
| **Parameter** | **Unit** | **Value** |
| Reference channel| R.4 TDD | R.42 TDD |
| Channel bandwidth| MHz | |
| Allocated resource blocks (Note 6) | 6 | 100 | 50 |
| Uplink-Downlink Configuration (Note 4) | 1 | 1 | 1 |
| Allocated subframes per Radio Frame (D+S) | 3 | 3+2 | 3+2 |
| Modulation | QPSK | QPSK |
| Target Coding Rate| 1/3 | 1/3 |
| Information Bit Payload (Note 6) | | | |
| For Sub-Frames 4,9 | Bits | 408 |
| For Sub-Frames 1,6 | Bits | n/a |
| For Sub-Frame 5 | Bits | n/a |
| For Sub-Frame 0 | Bits | 208 |
| Number of Code Blocks (Notes 5 and 6) | | | |
| For Sub-Frames 4,9 | 1 | 2 | 1 |
| For Sub-Frames 1,6 | n/a | 2 | 1 |
| For Sub-Frame 5 | n/a | n/a | n/a |
| For Sub-Frame 0 | 1 | 2 | 1 |
| Binary Channel Bits (Note 6) | | | |
| For Sub-Frames 4,9 | Bits | 1368 | 27600 |
| For Sub-Frames 1,6 | Bits | n/a | 22656 |
| For Sub-Frame 5 | Bits | n/a | n/a |
| For Sub-Frame 0 | Bits | 672 | 26904 |
| Max. Throughput averaged over 1 frame (Note 6) | Mbps | 0.102 | 4.175 |
| UE Category | ≥ 1 | ≥ 1 | ≥ 1 |

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.

Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 4: As per Table 4.2-2 in TS 36.211 [4].

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Given per component carrier per codeword.
Table A.3.4.1-2: Fixed Reference Channel 16QAM R=1/2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.3-1</td>
</tr>
<tr>
<td></td>
<td>R.3</td>
</tr>
<tr>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>Channel bandwidth MHz</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td>3+2</td>
</tr>
<tr>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td>16QAM</td>
</tr>
<tr>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td>6456</td>
</tr>
<tr>
<td></td>
<td>14112</td>
</tr>
<tr>
<td>For Sub-Frames 1,6 Bits</td>
<td>5160</td>
</tr>
<tr>
<td></td>
<td>11448</td>
</tr>
<tr>
<td>For Sub-Frame 5 Bits</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Bits</td>
<td>5736</td>
</tr>
<tr>
<td></td>
<td>12960</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td>12600</td>
</tr>
<tr>
<td></td>
<td>27600</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>11112</td>
</tr>
<tr>
<td></td>
<td>22512</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>11208</td>
</tr>
<tr>
<td></td>
<td>26208</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame Mbps</td>
<td>2.897</td>
</tr>
<tr>
<td></td>
<td>6.408</td>
</tr>
<tr>
<td>UE Category</td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.4.1-3: Fixed Reference Channel 64QAM R=3/4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>R.5 TDD</th>
<th>R.6 TDD</th>
<th>R.7 TDD</th>
<th>R.8 TDD</th>
<th>R.9 TDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3+2</td>
<td>3+2</td>
<td>3+2</td>
<td>3+2</td>
<td>3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
<td>64QAM</td>
<td>64QAM</td>
<td>64QAM</td>
<td>64QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>8504</td>
<td>14112</td>
<td>30576</td>
<td>46888</td>
<td>61664</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>6968</td>
<td>11448</td>
<td>23688</td>
<td>35160</td>
<td>46888</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>6968</td>
<td>12576</td>
<td>30576</td>
<td>45352</td>
<td>61664</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>11340</td>
<td>18900</td>
<td>41400</td>
<td>62100</td>
<td>82800</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>9828</td>
<td>16668</td>
<td>33768</td>
<td>50868</td>
<td>67968</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>9252</td>
<td>16812</td>
<td>39312</td>
<td>60012</td>
<td>80712</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>3.791</td>
<td>6.370</td>
<td>13.910</td>
<td>20.945</td>
<td>27.877</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
<td>≥ 2</td>
<td>≥ 2</td>
<td>≥ 2</td>
<td>≥ 3</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.4.1-3a: Fixed Reference Channel 64QAM R=3/4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.6-1 TDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Channel bandwidth MHz</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks (Note 3)</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 4)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td>R.7-1 TDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39232</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 4)</td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 5)</td>
<td></td>
<td>R.8-1 TDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td></td>
<td>10296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51024</td>
</tr>
<tr>
<td>For Sub-Frames 1,6 Bits</td>
<td></td>
<td>8248</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39232</td>
</tr>
<tr>
<td>For Sub-Frame 5 Bits</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Bits</td>
<td></td>
<td>8248</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51024</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>For Sub-Frames 1,6 Bits</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>For Sub-Frame 5 Bits</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Bits</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td></td>
<td>13608</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14076</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14076</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14076</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68724</td>
</tr>
<tr>
<td>For Sub-Frames 1,6 Bits</td>
<td></td>
<td>11880</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56340</td>
</tr>
<tr>
<td>For Sub-Frame 5 Bits</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Bits</td>
<td></td>
<td>11520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14076</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14076</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14076</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66636</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame Mbps</td>
<td></td>
<td>4.534</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.585</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.585</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.585</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.154</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]
Note 3: Localized allocation started from RB #0 is applied.
Note 4: As per Table 4.2-2 TS 36.211 [4].
Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.4.1-4: Fixed Reference Channel Single PRB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.0 TDD R.1 TDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10/20 15 20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>3+2 3+2</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>16QAM 16QAM</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>1/2 1/2</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td>Bits</td>
<td>224 256 268 208</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
<td></td>
<td>1 1 1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td>Bits</td>
<td>504 552 456 456</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>0.109 0.118</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1 ≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 in TS 36.211 [4]

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.4.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.29 TDD</td>
<td>MBSFN</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MBSFN Configuration</td>
<td>[TBD]</td>
<td></td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>1+2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>0 (MBSFN)</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>208</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>256</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>0 (MBSFN)</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>0 (MBSFN)</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>456</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>552</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>kbps</td>
<td>67.2</td>
</tr>
<tr>
<td>UE Category</td>
<td>≥ 1</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH.
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: as per Table 4.2-2 in TS 36.211 [4].
Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.4.1-6: Fixed Reference Channel QPSK R=1/10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.41 TDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10 15 20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 4)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/10</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>1384</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>1032</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>1384</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>13800</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>11256</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>13104</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>0.622</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.

Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 4: As per Table 4.2-2 in TS 36.211 [4].

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.4.1-7: PCell Fixed Reference Channel for CA demodulation with power imbalance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.49 TDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>20</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td>Number of OFDM symbols for PDCCH per component carrier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 0,4,5,9</td>
<td>OFDM symbols</td>
<td>3</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>OFDM symbols</td>
<td>2</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td>For Sub-Frames 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 0</td>
<td></td>
<td>0.87</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 0, 4,9</td>
<td>Bits</td>
<td>63776</td>
</tr>
<tr>
<td>For Sub-Frame 1,6</td>
<td>Bits</td>
<td>55056</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 0, 4,9</td>
<td>Code Blocks</td>
<td>11</td>
</tr>
<tr>
<td>For Sub-Frame 1,6</td>
<td>Code Blocks</td>
<td>9</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Code Blocks</td>
<td>n/a</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>75600</td>
</tr>
<tr>
<td>For Sub-Frame 1,6</td>
<td>Bits</td>
<td>67968</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>73512</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>30.144</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>5-8</td>
</tr>
</tbody>
</table>

Note 1: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
A.3.4.2 Multi-antenna transmission (Common Reference Signals)

A.3.4.2.1 Two antenna ports

Table A.3.4.2.1-1: Fixed Reference Channel two antenna ports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.10 TDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks (Note 5)</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>1+2</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td>Information Bit Payload (Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td></td>
<td>4392</td>
</tr>
<tr>
<td>For Sub-Frames 1,6 Bits</td>
<td></td>
<td>3240</td>
</tr>
<tr>
<td>For Sub-Frame 5 Bits</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Bits</td>
<td></td>
<td>4392</td>
</tr>
<tr>
<td>Number of Code Blocks (Notes 4 and 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 n/a</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames 1,6 n/a</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5 n/a</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 n/a</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits (Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td></td>
<td>13200</td>
</tr>
<tr>
<td>For Sub-Frames 1,6 Bits</td>
<td></td>
<td>10656</td>
</tr>
<tr>
<td>For Sub-Frame 5 Bits</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Bits</td>
<td></td>
<td>12528</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame (Note 5)</td>
<td>Mbps</td>
<td>1.966</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz channel BW; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (other than the last Code Block).

Note 5: Given per component carrier per codeword.

Note 6: For R.11-3 resource blocks of RB6–RB45 are allocated.
A.3.4.2.2 Four antenna ports

Table A.3.4.2.2-1: Fixed Reference Channel four antenna ports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth (MHz)</td>
<td>1.4 10 10 10 10 20 10</td>
</tr>
<tr>
<td>Allocated resource blocks (Note 6)</td>
<td>6 50 50 6 3 100 50</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 4)</td>
<td>1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td>3 3+2 2+2 2 2 2+2 2+2</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM</td>
</tr>
<tr>
<td>Target Coding Rate (1/3)</td>
<td>1/3 1/3 1/2 1/2 1/2 1/2 1/2 1/2</td>
</tr>
<tr>
<td>Information Bit Payload (Note 6)</td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits 408 4392 12960 1544 744 25456 18336</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits n/a 3240 9528 n/a n/a 21384 15840</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits n/a n/a n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td>Number of Code Blocks (Notes 5 and 6)</td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits 1 1 3 1 1 5 3 5</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits n/a 1 2 n/a 4 3 3</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits n/a n/a n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits 1 1 n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits n/a 12800 25600 3072 1536 51200 38400</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits n/a 10256 20512 n/a n/a 41312 30768</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits n/a n/a n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits 624 12176 n/a n/a n/a n/a n/a n/a</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits 0.102 1.966 4.498 0.309 0.149 9.368 6.835</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 1 ≥ 2 ≥ 2</td>
</tr>
<tr>
<td></td>
<td>For Sub-Frames 4,9</td>
</tr>
<tr>
<td></td>
<td>Bits ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 1 ≥ 2 ≥ 2 ≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.

Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 4: As per Table 4.2-2 in TS 36.211 [4].

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Given per component carrier per codeword.

A.3.4.3 Reference Measurement Channels for UE-Specific Reference Symbols

A.3.4.3.1 Single antenna port (Cell Specific)

The reference measurement channels in Table A.3.4.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with one cell-specific antenna port.
Table A.3.4.3.1-1: Fixed Reference Channel for DRS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50 *</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>4392</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>3240</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2984</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>12600</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>10356</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>10332</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>1.825</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: For R.25, R.26, and R.27, 50 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0. For R.26-1, 25 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Localized allocation started from RB #0 is applied.

A.3.4.3.2 Two antenna ports (Cell Specific)

The reference measurement channels in Table A.3.4.3.2-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports.
Table A.3.4.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS

<table>
<thead>
<tr>
<th>Reference channel</th>
<th>R.31 TDD</th>
<th>R.32 TDD</th>
<th>R.32-1 TDD</th>
<th>R.33 TDD</th>
<th>R.33-1 TDD</th>
<th>R.34 TDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50 a</td>
<td>50 a</td>
<td>25 a</td>
<td>50 a</td>
<td>18 b</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td>3+2</td>
<td>3+2</td>
<td>3+2</td>
<td>3+2</td>
<td>3+2</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td>16QAM</td>
<td>16QAM</td>
<td>64QAM</td>
<td>64QAM</td>
<td>64QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td>1/3</td>
<td>1/2</td>
<td>1/2</td>
<td>3/4</td>
<td>3/4</td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 Bits</td>
<td>3624</td>
<td>11448</td>
<td>5736</td>
<td>27376</td>
<td>9528</td>
<td>18336</td>
</tr>
<tr>
<td>For Sub-Frames 1,6 Bits</td>
<td>2664</td>
<td>7736</td>
<td>3112</td>
<td>16992</td>
<td>7480</td>
<td>11832</td>
</tr>
<tr>
<td>For Sub-Frame 5 Bits</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0 Bits</td>
<td>2984</td>
<td>9528</td>
<td>3496</td>
<td>22152</td>
<td>9528</td>
<td>14688</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>12000</td>
<td>24000</td>
<td>10800</td>
<td>36000</td>
<td>12960</td>
<td>36000</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>7872</td>
<td>15744</td>
<td>6528</td>
<td>23616</td>
<td>10368</td>
<td>23616</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>9840</td>
<td>19680</td>
<td>7344</td>
<td>29520</td>
<td>12960</td>
<td>29520</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame Mbps</td>
<td>1.556</td>
<td>4.79</td>
<td>2.119</td>
<td>11.089</td>
<td>4.354</td>
<td>7.502</td>
</tr>
<tr>
<td>UE Category</td>
<td>≥ 1</td>
<td>≥ 2</td>
<td>≥ 1</td>
<td>≥ 2</td>
<td>≥ 1</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: For R.31, R.32, R.33 and R.34, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6. For R.32-1, 25 resource blocks are allocated in sub-frames 4,9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Localized allocation started from RB #0 is applied.

A.3.4.3.3 Two antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.3-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.
Table A.3.4.3.3-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.51 TDD</td>
<td></td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50 (Note 5)</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (non CSI-RS subframe)</td>
<td>Bits</td>
<td>11448</td>
</tr>
<tr>
<td>For Sub-Frame 4,9</td>
<td>Bits</td>
<td>11448</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>7736</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>9528</td>
</tr>
<tr>
<td>Number of Code Blocks (Note 4)</td>
<td>Code blocks</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (non CSI-RS subframe)</td>
<td>Code blocks</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Code blocks</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Code blocks</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Code blocks</td>
<td>2</td>
</tr>
<tr>
<td>Binary Channel Bits</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (non CSI-RS subframe)</td>
<td>Bits</td>
<td>24000</td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>22800</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>15744</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>19680</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>4.7896</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6.

A.3.4.3.4 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.4-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.
A.3.4.3.4-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.44 TDD</td>
<td></td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50 (Note 4)</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td>64QAM</td>
<td></td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>½</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (non CSI-RS subframe)</td>
<td>Bits</td>
<td>18336</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (CSI-RS subframe)</td>
<td>Bits</td>
<td>16416</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>11832</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>14688</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (non CSI-RS subframe)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (CSI-RS subframe)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (non CSI-RS subframe)</td>
<td>Bits</td>
<td>36000</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (CSI-RS subframe)</td>
<td>Bits</td>
<td>33600</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>23616</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>29520</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>7.1184</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH.
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: as per Table 4.2.2 in TS 36.211 [4].
Note 4: 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6.
Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.4.3.5 Eight antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.5-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and eight CSI-RS antenna ports.
Table A.3.4.3.5-1: Fixed Reference Channel for CDM-multiplexed DM RS with eight CSI-RS antenna ports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.50 TDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50 (Note 4)</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>3+2</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td></td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (non CSI-RS subframe)</td>
<td>Bits</td>
<td>3624</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (CSI-RS subframe)</td>
<td>Bits</td>
<td>3624</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>2664</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2984</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (non CSI-RS subframe)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (CSI-RS subframe)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (non CSI-RS subframe)</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>For Sub-Frames 4,9 (CSI-RS subframe)</td>
<td></td>
<td>10400</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>7872</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>9840</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>1.556</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH.
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: as per Table 4.2-2 in TS 36.211 [4].
Note 4: 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6.
Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

The reference measurement channels in Table A.3.4.3.5-2 apply for verifying TDD PMI accuracy measurement with two CRS antenna ports and eight CSI-RS antenna ports.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.45-1</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50^*</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>4+2</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (Non CSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (CSI-RS subframe)</td>
<td>Bits</td>
<td>11448</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>7736</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>9528</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (Non CSI-RS subframe)</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (CSI-RS subframe)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (Non CSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (CSI-RS subframe)</td>
<td>Bits</td>
<td>22400</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>15744</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>19680</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>4.7896</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 2</td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: For R. 45, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1.6.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Localized allocation started from RB #0 is applied.
A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements

A.3.5.1 FDD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.15 FDD</td>
</tr>
<tr>
<td>Number of transmitter antennas</td>
<td></td>
<td>1, 2, 2, 4</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10, 10, 10, 5</td>
</tr>
<tr>
<td>Number of OFDM symbols for PDCCH</td>
<td></td>
<td>2, 3, 2, 2</td>
</tr>
<tr>
<td>Aggregation level</td>
<td>CCE</td>
<td>8, 8, 4, 2</td>
</tr>
<tr>
<td>DCI Format</td>
<td></td>
<td>Format 1, Format 1, Format 2, Format 2</td>
</tr>
<tr>
<td>Cell ID</td>
<td></td>
<td>0, 0, 0, 0</td>
</tr>
<tr>
<td>Payload (without CRC)</td>
<td>Bits</td>
<td>31, 31, 43, 42</td>
</tr>
</tbody>
</table>

A.3.5.2 TDD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.15 TDD</td>
</tr>
<tr>
<td>Number of transmitter antennas</td>
<td></td>
<td>1, 2, 2, 4</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10, 10, 10, 5</td>
</tr>
<tr>
<td>Number of OFDM symbols for PDCCH</td>
<td></td>
<td>2, 3, 2, 2</td>
</tr>
<tr>
<td>Aggregation level</td>
<td>CCE</td>
<td>8, 8, 4, 2</td>
</tr>
<tr>
<td>DCI Format</td>
<td></td>
<td>Format 1, Format 1, Format 2, Format 2</td>
</tr>
<tr>
<td>Cell ID</td>
<td></td>
<td>0, 0, 0, 0</td>
</tr>
<tr>
<td>Payload (without CRC)</td>
<td>Bits</td>
<td>34, 34, 46, 45</td>
</tr>
</tbody>
</table>

A.3.6 Reference measurement channels for PHICH performance requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.18, R.19, R.20, R.24</td>
</tr>
<tr>
<td>Number of transmitter antennas</td>
<td></td>
<td>1, 2, 4, 1</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10, 10, 5, 10</td>
</tr>
<tr>
<td>User roles (Note 1)</td>
<td></td>
<td>W I1 I2 W I1 I2 W I1 I2 W I1 I2</td>
</tr>
<tr>
<td>Resource allocation (Note 2)</td>
<td></td>
<td>(0,0) (0,1) (0,4) (0,0) (0,1) (0,4) (0,0) (0,1) (0,4) (0,0) (0,1)</td>
</tr>
<tr>
<td>Power offsets (Note 3)</td>
<td>dB</td>
<td>-4 0 -3 -4 0 -3 -4 0 -3 +3 0</td>
</tr>
<tr>
<td>Payload (Note 4)</td>
<td></td>
<td>A R R A R R A R R A R R A R R</td>
</tr>
</tbody>
</table>

Note 1: W=wanted user, I1=interfering user 1, I2=interfering user 2.
Note 2: The resource allocation per user is given as (N_group_PHICH, N_seq_PHICH).
Note 3: The power offsets (per user) represent the difference of the power of BPSK modulated symbol per PHICH relative to the first interfering user.
Note 4: A=fixed ACK, R=random ACK/NACK.
A.3.7 Reference measurement channels for PBCH performance requirements

Table A.3.7-1: Reference Channel FDD/TDD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.21</td>
<td>R.22</td>
</tr>
<tr>
<td>Number of transmitter antennas</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Channel bandwidth MHz</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td>QPSK</td>
</tr>
<tr>
<td>Target coding rate</td>
<td>40/1920</td>
<td>40/1920</td>
</tr>
<tr>
<td>Payload (without CRC)</td>
<td>Bits</td>
<td>24</td>
</tr>
</tbody>
</table>

A.3.8 Reference measurement channels for MBMS performance requirements

A.3.8.1 FDD

Table A.3.8.1-1: Fixed Reference Channel QPSK R=1/3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.40 FDD</td>
<td>R.37 FDD</td>
</tr>
<tr>
<td>Channel bandwidth MHz</td>
<td>1.4</td>
<td>3</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (Note 1)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td>QPSK</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>Information Bit Payload (Note 2)</td>
<td>Bits</td>
<td>408</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,6,7,8</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 0,4,5,9</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>Number of Code Blocks per Subframe (Note 3)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Subframe</td>
<td>Bits</td>
<td>1224</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,6,7,8</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 0,4,5,9</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>MBMS UE Category</td>
<td>≥ 1</td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.8.1-2: Fixed Reference Channel 16QAM R=1/2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PMCH</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.38 FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
<td>3</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (Note 1)</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
<td></td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td>R.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Bit Payload (Note 2)</td>
<td>Bits</td>
<td>9912</td>
<td></td>
</tr>
<tr>
<td>Number of Code Blocks per Subframe (Note 3)</td>
<td>Bits</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Binary Channel Bits Per Subframe</td>
<td>Bits</td>
<td>20400</td>
<td></td>
</tr>
<tr>
<td>MBMS UE Category</td>
<td></td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of $L = 24$ Bits is attached to each Code Block (otherwise $L = 0$ Bit).

Table A.3.8.1-3: Fixed Reference Channel 64QAM R=2/3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PMCH</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.39 FDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
<td>3</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (Note 1)</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
<td></td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td>R.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Bit Payload (Note 2)</td>
<td>Bits</td>
<td>9912</td>
<td></td>
</tr>
<tr>
<td>Number of Code Blocks per Subframe (Note 3)</td>
<td>Bits</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Binary Channel Bits Per Subframe</td>
<td>Bits</td>
<td>15300</td>
<td></td>
</tr>
<tr>
<td>MBMS UE Category</td>
<td></td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of $L = 24$ Bits is attached to each Code Block (otherwise $L = 0$ Bit).
A.3.8.2 TDD

Table A.3.8.2-1: Fixed Reference Channel QPSK R=1/3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PMCH</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td></td>
<td>R.40 TDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
<td>3</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 1)</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td>1/3</td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td>Information Bit Payload (Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 3,4,7,8,9</td>
<td>Bits</td>
<td>408</td>
<td>3624</td>
</tr>
<tr>
<td>For Sub-Frames 0,1,2,5,6</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Number of Code Blocks per Subframe (Note 3)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Subframe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 3,4,7,8,9</td>
<td>Bits</td>
<td>1224</td>
<td>10200</td>
</tr>
<tr>
<td>For Sub-Frames 0,1,2,5,6</td>
<td>Bits</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.8.2-2: Fixed Reference Channel 16QAM R=1/2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PMCH</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td></td>
<td>R.38 TDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
<td>3</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 1)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>16QAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td>1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Bit Payload (Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 3,4,7,8,9</td>
<td>Bits</td>
<td>9912</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 0,1,2,5,6</td>
<td>Bits</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Number of Code Blocks per Subframe (Note 3)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Binary Channel Bits Per Subframe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 3,4,7,8,9</td>
<td>Bits</td>
<td>20400</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 0,1,2,5,6</td>
<td>Bits</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>MBMS UE Category</td>
<td>≥ 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Table A.3.8.2-3: Fixed Reference Channel 64QAM R=2/3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>PMCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.39-1TDD</td>
<td>R.39 TDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10 15 20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td>MHz</td>
<td>25 50</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration(Note 1)</td>
<td>MHz</td>
<td>5 5</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td>MHz</td>
<td>5 5</td>
</tr>
<tr>
<td>Modulation</td>
<td>MHz</td>
<td>64QAM 64QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td>MHz</td>
<td>2/3 2/3</td>
</tr>
<tr>
<td>Information Bit Payload (Note 2)</td>
<td>MHz</td>
<td>9912 19848</td>
</tr>
<tr>
<td>For Sub-Frames 3,4,7,8,9</td>
<td>Bits</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 3)</td>
<td>Bits</td>
<td>2 4</td>
</tr>
<tr>
<td>Binary Channel Bits Per Subframe</td>
<td>Bits</td>
<td>15300 30600</td>
</tr>
<tr>
<td>MBMS UE Category</td>
<td>Bits</td>
<td>≥ 1 ≥ 2</td>
</tr>
</tbody>
</table>

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
A.3.9 Reference measurement channels for sustained downlink data rate provided by lower layers

A.3.9.1 FDD

Table A.3.9.1-1: Fixed Reference Channel for sustained data-rate test (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.31-1 FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.31-2 FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.31-3 FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.31-3A FDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.31-4 FDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks (Note 8)</td>
<td>Note 5</td>
<td>Note 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note 7</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td>Coding Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 1,2,3,4,6,7,8,9</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>Information Bit Payload (Note 8)</td>
<td>Bits</td>
<td>10296</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>25456</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>51024</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>51024</td>
</tr>
<tr>
<td>Number of Code Blocks (Notes 3 and 8)</td>
<td>Bits</td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Binary Channel Bits (Note 8)</td>
<td>Bits</td>
<td>26100</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>43200</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>39744</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>40752</td>
</tr>
<tr>
<td>Number of layers</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame (Note 8)</td>
<td>Mbps</td>
<td>10.296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.456</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.542</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74.950</td>
</tr>
<tr>
<td>UE Categories</td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 3</td>
</tr>
</tbody>
</table>

Note 1: 1 symbol allocated to PDCCH for all tests.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Resource blocks nPRB = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.

Note 5: Resource blocks nPRB = 6..14,30..49 are allocated for the user data in all sub-frames.

Note 6: Resource blocks nPRB = 3..49 are allocated for the user data in sub-frame 5, and resource blocks nPRB = 0..49 in sub-frames 0,1,2,3,4,6,7,8,9.

Note 7: Resource blocks nPRB = 4..99 are allocated for the user data in sub-frame 5, and resource blocks nPRB = 0..99 in sub-frames 0,1,2,3,4,6,7,8,9.

Note 8: Given per component carrier per codeword.
A.3.9.2 TDD

Table A.3.9.2-1: Fixed Reference Channel for sustained data-rate test (TDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.31-1</td>
<td>R.31-2</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td>Note 6</td>
<td>Note 7</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Number of HARQ Processes per component carrier</td>
<td>Processes</td>
<td>15</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>8+1</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>64QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>For Sub-Frames 3,7,8</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>For Sub-Frames 1</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 5</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>For Sub-Frames 6</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>For Sub-Frames 0</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>10296</td>
</tr>
<tr>
<td>For Sub-Frames 3,7,8</td>
<td>Bits</td>
<td>10296</td>
</tr>
<tr>
<td>For Sub-Frame 1</td>
<td>Bits</td>
<td>0</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>10296</td>
</tr>
<tr>
<td>For Sub-Frame 6</td>
<td>Bits</td>
<td>10296</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>10296</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frames 3,7,8</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 1</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4,9</td>
<td>Bits</td>
<td>26100</td>
</tr>
<tr>
<td>For Sub-Frames 3,7,8</td>
<td>Bits</td>
<td>26100</td>
</tr>
<tr>
<td>For Sub-Frame 1</td>
<td>Bits</td>
<td>0</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>26100</td>
</tr>
<tr>
<td>For Sub-Frame 6</td>
<td>Bits</td>
<td>26100</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>26100</td>
</tr>
<tr>
<td>Number of layers</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>8.237</td>
</tr>
<tr>
<td>(Note 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 1 symbol allocated to PDCCH for all tests.
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: As per Table 4.2-2 in TS 36.211 [4].
Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
Note 5: Resource blocks \(n_{PRB} = 0..2 \) are allocated for SIB transmissions in sub-frame 5 for all bandwidths.
Note 6: Resource blocks \(n_{PRB} = 6..14,30..49 \) are allocated for the user data in all subframes.
Note 7: Resource blocks \(n_{PRB} = 3..49 \) are allocated for the user data in sub-frame 5, and resource blocks \(n_{PRB} = 0..49 \) in sub-frames \(0,3,4,6,7,8,9 \).
Note 8: Resource blocks \(n_{PRB} = 4..99 \) are allocated for the user data in sub-frame 5, and resource blocks \(n_{PRB} = 0..99 \) in sub-frames \(0,3,4,6,7,8,9 \).
Note 9: Resource blocks \(n_{PRB} = 4..71 \) are allocated for the user data in all sub-frames
Note 10: Given per component carrier per codeword.
A.4 CSI reference measurement channels

This section defines the DL signal applicable to the reporting of channel quality information (Clause 9.2, 9.3 and 9.5).

In Table A.4-0 are listed the UL/DL reference measurement channels specified in annex A.4 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation’s parameters as to be used for requirements are the other tables of this annex as appropriate.

<table>
<thead>
<tr>
<th>Duplex</th>
<th>Table</th>
<th>Name</th>
<th>BW</th>
<th>Mod</th>
<th>TCR</th>
<th>RB</th>
<th>RB Offset</th>
<th>UE Category</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CSI Performance, PDSCH, Full allocation (CRS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.4-1</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.4-2</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSI Performance for CA, PDSCH, Full allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.4-2</td>
<td>20</td>
<td>CQI</td>
<td>CQI</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSI Performance, PDSCH, Full allocation (CSI-RS): 2 CRS ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.4-1a</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.4-2a</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSI Performance, PDSCH, Full allocation (CSI-RS): 1 CRS port</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.4-1b</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.4-2b</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSI Performance, PDSCH, Partial allocation (CRS) (6 RB-s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.4-4</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.4-5</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSI Performance, PDSCH, Partial allocation (CSI-RS) (6 RB-s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.4-4a</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.4-5a</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSI Performance, PDSCH, Partial allocation (CRS) (15 RB-s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.4-7</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.4-8</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSI Performance, PDSCH, Partial allocation (CRS) (3 RB-s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Table A.4-10</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Table A.4-11</td>
<td>10</td>
<td>CQI</td>
<td>CQI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The reference channel in Table A.4-1 complies with the CQI definition specified in Sec. 7.2.3 of [6]. Table A.4-3 specifies the transport format corresponding to each CQI for single antenna transmission. Table A.4-3a specifies the transport format corresponding to each CQI for dual antenna transmission.
Table A.4-1: Reference channel for CQI requirements (FDD) full PRB allocation (CRS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6 15 25 50</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12 12 12 12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>8 8 8 8 8</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>Table A.4-3</td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td>Table A.4-3</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>8 8 8 8 8</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead.

Table A.4-1a: Reference channel for CQI requirements (FDD) full PRB allocation (CSI-RS): 2 CRS ports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6 15 25 50</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12 12 12 12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>8 8 8 8 8</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>Table A.4-3b</td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td>Table A.4-3b</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>8 8 8 8 8</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead.

Table A.4-1b: Reference channel for CQI requirements (FDD) full PRB allocation (CSI-RS): 1 CRS port

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4 3 5 10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6 15 25 50</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12 12 12 12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>8 8 8 8 8</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>Table A.4-3e</td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td>Table A.4-3e</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>8 8 8 8 8</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>10</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: UL-DL configuration 1 is used and only subframes 4 and 9 are allocated to avoid PBCH and synchronization signal overhead.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>10</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>10</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: UL-DL configuration 1 is used and only subframes 4 and 9 are allocated to avoid PBCH and synchronization signal overhead.
Table A.4-3: Transport format corresponding to each CQI index for 50 PRB allocation single antenna transmission (CRS)

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>1384</td>
<td>12600</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>1384</td>
<td>12600</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>2216</td>
<td>12600</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>4</td>
<td>3624</td>
<td>12600</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>6</td>
<td>5160</td>
<td>12600</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>8</td>
<td>6968</td>
<td>12600</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>11</td>
<td>8760</td>
<td>25200</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>13</td>
<td>11448</td>
<td>25200</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>16</td>
<td>15264</td>
<td>25200</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>18</td>
<td>16416</td>
<td>37800</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>21</td>
<td>21384</td>
<td>37800</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>23</td>
<td>25456</td>
<td>37800</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>25</td>
<td>28336</td>
<td>37800</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>27</td>
<td>31704</td>
<td>37800</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>27</td>
<td>31704</td>
<td>37800</td>
</tr>
</tbody>
</table>

Note 1: Sub-frame #0 and #5 are not used for the corresponding requirement.

Table A.4-3a: Transport format corresponding to each CQI index for 50 PRB allocation dual antenna transmission (CRS)

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>1384</td>
<td>12000</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>1384</td>
<td>12000</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>2216</td>
<td>12000</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>4</td>
<td>3624</td>
<td>12000</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>6</td>
<td>5160</td>
<td>12000</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>8</td>
<td>6968</td>
<td>12000</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>11</td>
<td>8760</td>
<td>24000</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>13</td>
<td>11448</td>
<td>24000</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>15</td>
<td>14112</td>
<td>24000</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>18</td>
<td>16416</td>
<td>36000</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>20</td>
<td>19848</td>
<td>36000</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>22</td>
<td>22920</td>
<td>36000</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>24</td>
<td>27376</td>
<td>36000</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>26</td>
<td>30576</td>
<td>36000</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>27</td>
<td>31704</td>
<td>36000</td>
</tr>
</tbody>
</table>

Note 1: Sub-frame #0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame #1 or #6) shall be used for the retransmission.
Table A.4-3b: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 2 CRS ports, Non CSI-RS subframe

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>1384</td>
<td>10800</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>1384</td>
<td>10800</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>2216</td>
<td>10800</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>3</td>
<td>2856</td>
<td>10800</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>5</td>
<td>4392</td>
<td>10800</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>7</td>
<td>6200</td>
<td>10800</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>10</td>
<td>7992</td>
<td>21600</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>12</td>
<td>9912</td>
<td>21600</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>14</td>
<td>12960</td>
<td>21600</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>17</td>
<td>15264</td>
<td>32400</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>19</td>
<td>18336</td>
<td>32400</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>21</td>
<td>21384</td>
<td>32400</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>23</td>
<td>25456</td>
<td>32400</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>24</td>
<td>27376</td>
<td>32400</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>25</td>
<td>28336</td>
<td>32400</td>
</tr>
</tbody>
</table>

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission.

Table A.4-3c: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 2 CRS ports, 4 CSI-RS ports, CSI-RS Subframe

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>1384</td>
<td>10400</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>1384</td>
<td>10400</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>1</td>
<td>1800</td>
<td>10400</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>3</td>
<td>2856</td>
<td>10400</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>5</td>
<td>4392</td>
<td>10400</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>7</td>
<td>6200</td>
<td>10400</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>10</td>
<td>7992</td>
<td>20800</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>12</td>
<td>9912</td>
<td>20800</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>14</td>
<td>12960</td>
<td>20800</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>17</td>
<td>15264</td>
<td>31200</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>18</td>
<td>16416</td>
<td>31200</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>20</td>
<td>19848</td>
<td>31200</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>22</td>
<td>22920</td>
<td>31200</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>24</td>
<td>27376</td>
<td>31200</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>25</td>
<td>28336</td>
<td>31200</td>
</tr>
</tbody>
</table>

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission.
Table A.4-3d: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 2 CRS ports, 8 CSI-RS ports, CSI-RS Subframe

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>1384</td>
<td>10000</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>1384</td>
<td>10000</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>1</td>
<td>1800</td>
<td>10000</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>3</td>
<td>2856</td>
<td>10000</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>5</td>
<td>4392</td>
<td>10000</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>7</td>
<td>6200</td>
<td>10000</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>10</td>
<td>7992</td>
<td>20000</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>12</td>
<td>9912</td>
<td>20000</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>13</td>
<td>11448</td>
<td>20000</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>17</td>
<td>15264</td>
<td>30000</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>18</td>
<td>16416</td>
<td>30000</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>20</td>
<td>19848</td>
<td>30000</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>22</td>
<td>22920</td>
<td>30000</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>23</td>
<td>25456</td>
<td>30000</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>24</td>
<td>27376</td>
<td>30000</td>
</tr>
</tbody>
</table>

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission.

Table A.4-3e: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 1 CRS port, Non CSI-RS subframe

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>1384</td>
<td>11400</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>1384</td>
<td>11400</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>2216</td>
<td>11400</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>4</td>
<td>3624</td>
<td>11400</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>6</td>
<td>5160</td>
<td>11400</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>8</td>
<td>6968</td>
<td>11400</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>10</td>
<td>7992</td>
<td>22800</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>13</td>
<td>11448</td>
<td>22800</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>15</td>
<td>14112</td>
<td>22800</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>17</td>
<td>15264</td>
<td>34200</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>19</td>
<td>18336</td>
<td>34200</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>21</td>
<td>21384</td>
<td>34200</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>23</td>
<td>25456</td>
<td>34200</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>25</td>
<td>28336</td>
<td>34200</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>26</td>
<td>30576</td>
<td>34200</td>
</tr>
</tbody>
</table>

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission.
Table A.4-3f: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 1 CRS port, 2 CSI-RS ports, CSI-RS Subframe

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>1384</td>
<td>11200</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>1384</td>
<td>11200</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>2216</td>
<td>11200</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>4</td>
<td>3624</td>
<td>11200</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>6</td>
<td>5160</td>
<td>11200</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>7</td>
<td>6200</td>
<td>11200</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>10</td>
<td>7992</td>
<td>22400</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>12</td>
<td>9912</td>
<td>22400</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>14</td>
<td>12960</td>
<td>22400</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>17</td>
<td>15264</td>
<td>33600</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>19</td>
<td>18336</td>
<td>33600</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>21</td>
<td>21384</td>
<td>33600</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>23</td>
<td>25456</td>
<td>33600</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>25</td>
<td>28336</td>
<td>33600</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>26</td>
<td>30576</td>
<td>33600</td>
</tr>
</tbody>
</table>

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission.

Table A.4-3g: Transport format corresponding to each CQI index for 100 PRB allocation single antenna transmission (CRS)

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>2792</td>
<td>25200</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>2792</td>
<td>25200</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>4584</td>
<td>25200</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>4</td>
<td>7224</td>
<td>25200</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>6</td>
<td>10296</td>
<td>25200</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>8</td>
<td>14112</td>
<td>25200</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>11</td>
<td>17568</td>
<td>50400</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>13</td>
<td>22920</td>
<td>50400</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>16</td>
<td>30576</td>
<td>50400</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>18</td>
<td>32856</td>
<td>75600</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>21</td>
<td>43816</td>
<td>75600</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>23</td>
<td>51024</td>
<td>75600</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>25</td>
<td>57336</td>
<td>75600</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>27</td>
<td>63776</td>
<td>75600</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>27</td>
<td>63776</td>
<td>75600</td>
</tr>
</tbody>
</table>

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement.
Table A.4-4: Reference channel for CQI requirements (FDD) 6 PRB allocation (CRS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>Processes</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: Only subframes 1, 2, 3, 4, 6, 7, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.

Table A.4-4a: Reference channel for CQI requirements (FDD) 6 PRB allocation (CSI-RS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>Processes</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: Only subframes 1, 2, 3, 4, 6, 7, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.

Table A.4-5: Reference channel for CQI requirements (TDD) 6 PRB allocation (CRS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>Processes</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.
Table A.4-5a: Reference channel for CQI requirements (TDD) 6 PRB allocation (CSI-RS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.

Table A.4-6: Transport format corresponding to each CQI index for 6 PRB allocation (CRS)

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>152</td>
<td>1512</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>152</td>
<td>1512</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>256</td>
<td>1512</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>4</td>
<td>408</td>
<td>1512</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>6</td>
<td>600</td>
<td>1512</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>8</td>
<td>808</td>
<td>1512</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>11</td>
<td>1032</td>
<td>3024</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>13</td>
<td>1352</td>
<td>3024</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>16</td>
<td>1800</td>
<td>3024</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>19</td>
<td>2152</td>
<td>4536</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>21</td>
<td>2600</td>
<td>4536</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>23</td>
<td>2984</td>
<td>4536</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>25</td>
<td>3496</td>
<td>4536</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>27</td>
<td>3752</td>
<td>4536</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>27</td>
<td>3752</td>
<td>4536</td>
</tr>
</tbody>
</table>

Note 1: Sub-frame#0 and #5 are not used for the corresponding requirement.
Table A.4-6a: Transport format corresponding to each CQI index for 6 PRB allocation (CSI-RS): 1 CRS port, Non CSI-RS subframe

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>out of range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>out of range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>152</td>
<td>1368</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>152</td>
<td>1368</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>256</td>
<td>1368</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>4</td>
<td>408</td>
<td>1368</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>6</td>
<td>600</td>
<td>1368</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>8</td>
<td>808</td>
<td>1368</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>11</td>
<td>1032</td>
<td>2736</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>13</td>
<td>1352</td>
<td>2736</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>14</td>
<td>1544</td>
<td>2736</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>17</td>
<td>1800</td>
<td>4104</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>20</td>
<td>2344</td>
<td>4104</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>21</td>
<td>2600</td>
<td>4104</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>23</td>
<td>2984</td>
<td>4104</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>25</td>
<td>3496</td>
<td>4104</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>27</td>
<td>3752</td>
<td>4104</td>
</tr>
</tbody>
</table>

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement.

Table A.4-6b: Transport format corresponding to each CQI index for 6 PRB allocation (CSI-RS): 1 CRS port, 2 CSI-RS ports, CSI-RS Subframe

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>out of range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>out of range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>152</td>
<td>1344</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>152</td>
<td>1344</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>1</td>
<td>208</td>
<td>1344</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>4</td>
<td>408</td>
<td>1344</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>6</td>
<td>600</td>
<td>1344</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>8</td>
<td>808</td>
<td>1344</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>10</td>
<td>936</td>
<td>2688</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>12</td>
<td>1192</td>
<td>2688</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>14</td>
<td>1544</td>
<td>2688</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>17</td>
<td>1800</td>
<td>4032</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>19</td>
<td>2152</td>
<td>4032</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>21</td>
<td>2600</td>
<td>4032</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>23</td>
<td>2984</td>
<td>4032</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>25</td>
<td>3496</td>
<td>4032</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>26</td>
<td>3624</td>
<td>4032</td>
</tr>
</tbody>
</table>

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement.
Table A.4-7: Reference channel for CQI requirements (FDD) partial PRB allocation (CRS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
<td>Table A.4-9</td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td></td>
<td>Table A.4-9</td>
</tr>
<tr>
<td>Number of HARQ processes</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead.
Note 3: Centered within the Transmission Bandwidth Configuration (Figure 5.6-1).

Table A.4-8: Reference channel for CQI requirements (TDD) partial PRB allocation (CRS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
<td>Table A.4-9</td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td></td>
<td>Table A.4-9</td>
</tr>
<tr>
<td>Number of HARQ processes</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: 3 symbols allocated to PDCCH.
Note 2: When UL-DL configuration 1 is used and only subframes 4 and 9 are allocated to avoid PBCH and synchronization signal overhead. When UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.
Note 3: Centered within the Transmission Bandwidth Configuration (Figure 5.6-1).

Table A.4-9: Transport format corresponding to each CQI index for 15 PRB allocation (CRS)

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>392</td>
<td>3780</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0</td>
<td>392</td>
<td>3780</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>648</td>
<td>3780</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>4</td>
<td>1064</td>
<td>3780</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>6</td>
<td>1544</td>
<td>3780</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>8</td>
<td>2088</td>
<td>3780</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>11</td>
<td>2664</td>
<td>7560</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>13</td>
<td>3368</td>
<td>7560</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>16</td>
<td>4584</td>
<td>7560</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>18</td>
<td>4968</td>
<td>11340</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>21</td>
<td>6456</td>
<td>11340</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>23</td>
<td>7480</td>
<td>11340</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>25</td>
<td>8504</td>
<td>11340</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>27</td>
<td>9528</td>
<td>11340</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>27</td>
<td>9528</td>
<td>11340</td>
</tr>
</tbody>
</table>

Note 1: Sub-frame#0 and #5 are not used for the corresponding requirement.
Table A.4-10: Reference channel for CQI requirements (FDD) 3 PRB allocation (CRS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of HARQ Transmissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 2: Ul-Dl configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.4-11: Reference channel for CQI requirements (TDD) 3 PRB allocation (CRS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>1.4</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target coding rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>10</td>
</tr>
<tr>
<td>Maximum number of HARQ Transmissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 2: Ul-Dl configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.4-12: Transport format corresponding to each CQI index for 3 PRB allocation (CRS)

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Target code rate</th>
<th>Imcs</th>
<th>Information Bit Payload</th>
<th>Binary Channel Bits Per Sub-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td>out of range</td>
<td>DTX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0</td>
<td>56</td>
<td>756</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>1</td>
<td>88</td>
<td>756</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>2</td>
<td>144</td>
<td>756</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>5</td>
<td>224</td>
<td>756</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>7</td>
<td>328</td>
<td>756</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>9</td>
<td>456</td>
<td>756</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>12</td>
<td>584</td>
<td>1512</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>13</td>
<td>744</td>
<td>1512</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>16</td>
<td>904</td>
<td>1512</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>19</td>
<td>1064</td>
<td>2268</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>21</td>
<td>1288</td>
<td>2268</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>23</td>
<td>1480</td>
<td>2268</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>25</td>
<td>1736</td>
<td>2268</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>27</td>
<td>1864</td>
<td>2268</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>27</td>
<td>1864</td>
<td>2268</td>
</tr>
</tbody>
</table>

Note 1: Sub-frame#0 and #5 are not used for the corresponding requirement.
Table A.4-13: Fixed Reference Channel for four antenna ports (CSI-RS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td></td>
<td>R.44 FDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames (Non CSI-RS subframe)</td>
<td>Bits</td>
<td>3624</td>
</tr>
<tr>
<td>For Sub-Frames (CSI-RS subframe)</td>
<td>Bits</td>
<td>3624</td>
</tr>
<tr>
<td>For Sub-Frames (ZeroPowerCSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>2984</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Note 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames (Non CSI-RS subframe)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames (CSI-RS subframe)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames (ZeroPowerCSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames (Non CSI-RS subframe)</td>
<td>Bits</td>
<td>12000</td>
</tr>
<tr>
<td>For Sub-Frames (CSI-RS subframe)</td>
<td>Bits</td>
<td>11600</td>
</tr>
<tr>
<td>For Sub-Frames (ZeroPowerCSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>9840</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>3.1976</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: For R.44 and R.45, 50 resource blocks are allocated in sub-frames 1,2,3,4,6,7,8,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

The reference measurement channels in Table A.14 apply for verifying TDD PMI accuracy measurement with two CRS antenna ports and eight CSI-RS antenna ports.
Table A.14: Fixed Reference Channel for eight antenna ports (CSI-RS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference channel</td>
<td>R.45</td>
<td>R.45-1</td>
</tr>
<tr>
<td></td>
<td>TDD</td>
<td>TDD</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50°</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 3)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>4+2</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Information Bit Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (Non CSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (CSI-RS subframe)</td>
<td></td>
<td>11448</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td>Bits</td>
<td>7736</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>9528</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (Non CSI-RS subframe)</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (CSI-RS subframe)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (Non CSI-RS subframe)</td>
<td>Bits</td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frames 4 and 9 (CSI-RS subframe)</td>
<td></td>
<td>22400</td>
</tr>
<tr>
<td>For Sub-Frames 1,6</td>
<td></td>
<td>15744</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>19680</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>Mbps</td>
<td>4.7896</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>≥ 2</td>
</tr>
<tr>
<td>Note 1:</td>
<td></td>
<td>≥ 1</td>
</tr>
<tr>
<td>Note 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 5:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 6:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1 OCNG Patterns for FDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test) and/or allocations used for MBSFN. The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.
In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level \(\gamma \) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

\[
\gamma_i = \frac{PDSCH_i - RA}{OCNG _ RA} = \frac{PDSCH_i _ RB}{OCNG _ RB},
\]

where \(\gamma_i \) denotes the relative power level of the \(i \)-th virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels \(\gamma \) are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a constant transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

For the performance requirements of UE with the CA capability, the OCNG patterns apply for each CC.

A.5.1.1 OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

<table>
<thead>
<tr>
<th>Relative power level (\gamma_{PRB}) [dB]</th>
<th>Subframe</th>
<th>PDSCH Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Allocation

<table>
<thead>
<tr>
<th>First unallocated PRB</th>
<th>First unallocated PRB</th>
<th>First unallocated PRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last unallocated PRB</td>
<td>Last unallocated PRB</td>
<td>Last unallocated PRB</td>
</tr>
</tbody>
</table>

| Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter \(\gamma_{PRB} \) is used to scale the power of PDSCH. |

| Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter \(\gamma_{PRB} \) applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213. |

A.5.1.2 OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB \(N_{RB} _ 1 \).
A.5.1.2-1: OP.2 FDD: Two sided dynamic OCNG FDD Pattern

<table>
<thead>
<tr>
<th>Subframe</th>
<th>Allocation</th>
<th>PDSCH Data</th>
<th>PRBγ [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – (First allocated PRB-1) and (Last allocated PRB+1) – ((N_{RB} - 1))</td>
<td>0 – (First allocated PRB-1) and (Last allocated PRB+1) – ((N_{RB} - 1))</td>
<td>0 – (First allocated PRB-1) and (Last allocated PRB+1) – ((N_{RB} - 1))</td>
<td>0 – (First allocated PRB-1) and (Last allocated PRB+1) – ((N_{RB} - 1))</td>
</tr>
<tr>
<td>0 5 1 – 4, 6 – 9</td>
<td>0 0 0</td>
<td>0 0</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter \(\gamma_{PRB}\) is used to scale the power of PDSCH.

Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter \(\gamma_{PRB}\) applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.1.3 OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Relative power level (\gamma_{PRB}) [dB]</th>
<th>PDSCH Data</th>
<th>PMCH Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_{PRB})</td>
<td>Subframe</td>
<td>0 5 4, 9 1 – 3, 6 – 8</td>
<td></td>
</tr>
<tr>
<td>1 – 49</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>(Allocation: all empty PRB-s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 49</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter \(\gamma_{PRB}\) is used to scale the power of PDSCH.

Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter \(\gamma_{PRB}\) is used to scale the power of PMCH.

Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable
A.5.1.4 OCNG FDD pattern 4: One sided dynamic OCNG FDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

Table A.5.1.4-1: OP.4 FDD: One sided dynamic OCNG FDD Pattern for MBMS transmission

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Relative power level γ_{PRB} [dB]</th>
<th>PDSCH Data</th>
<th>PMCH Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subframe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0, 4, 9</td>
<td>5</td>
<td>1 – 3, 6 – 8</td>
</tr>
<tr>
<td>First unallocated PRB</td>
<td>0</td>
<td>N/A</td>
<td>Note 1</td>
</tr>
<tr>
<td>Last unallocated PRB</td>
<td>(Allocation: all empty PRB-s)</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>First unallocated PRB</td>
<td>N/A</td>
<td>N/A</td>
<td>Note 2</td>
</tr>
<tr>
<td>Last unallocated PRB</td>
<td>N/A</td>
<td>N/A</td>
<td>Note 2</td>
</tr>
</tbody>
</table>

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter γ_{PRB} is used to scale the power of PMCH.

Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

A.5.1.5 OCNG FDD pattern 5: One sided dynamic 16QAM modulated OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of DL sub-frames, when the unallocated area is continuous in the frequency domain (one sided).
Table A.5.1.5-1: OP.5 FDD: One sided dynamic 16QAM modulated OCNG FDD Pattern

<table>
<thead>
<tr>
<th>Relative power level γ_{PRB} [dB]</th>
<th>Subframe</th>
<th>Allocation</th>
<th>PDSCH Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>First unallocated PRB</td>
<td>1 – 4, 6 – 9</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>First unallocated PRB</td>
<td>1 – 4, 6 – 9</td>
</tr>
</tbody>
</table>

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is 16QAM modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 3 (Large Delay CDD). The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.1.6 OCNG FDD pattern 6: dynamic OCNG FDD pattern when user data is in 2 non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB $N_{RB}^{-} - 1$.

Table A.5.1.6-1: OP.6 FDD: OCNG FDD Pattern when user data is in 2 non-contiguous blocks

<table>
<thead>
<tr>
<th>Relative power level γ_{PRB} [dB]</th>
<th>Subframe</th>
<th>Allocation</th>
<th>PDSCH Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0 – (First allocated PRB of first block -1) and (Last allocated PRB of first block +1) – (First allocated PRB of second block -1)</td>
<td>1 – 4, 6 – 9</td>
</tr>
</tbody>
</table>

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
A.5.2 OCNG Patterns for TDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level (γ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

\[\gamma_i = \frac{PDSCH_{i,RA}}{OCNG_{i,RA}} = \frac{PDSCH_{i,RB}}{OCNG_{i,RB}}, \]

where \(\gamma_i \) denotes the relative power level of the \(i:th \) virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels \(\gamma \) are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

A.5.2.1 OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

<table>
<thead>
<tr>
<th>Subframe (only if available for DL)</th>
<th>Relative power level (\gamma_{PRB}) [dB]</th>
<th>PDSCH Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>3, 4, 7, 8, 9 and 6 (as normal subframe) (Note 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 and 6 (as special subframe) (Note 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation</th>
<th>First unallocated PRB</th>
<th>First unallocated PRB</th>
<th>First unallocated PRB</th>
<th>First unallocated PRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last unallocated PRB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter \(\gamma_{PRB} \) is used to scale the power of PDSCH.

Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211

Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter \(\gamma_{PRB} \) applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.2 OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is...
discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB $N_{RB}-1$.

Table A.5.2.2-1: OP.2 TDD: Two sided dynamic OCNG TDD Pattern

![Table A.5.2.2-1](https://example.com/table.png)

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.

Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.3 OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

![Table A.5.2.3-1](https://example.com/table.png)

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.

Note 3: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals.

Note 4: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A Not Applicable
A.5.2.4 OCNG TDD pattern 4: One sided dynamic OCNG TDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

Table A.5.2.4-1: OP.4 TDD: One sided dynamic OCNG TDD Pattern for MBMS transmission

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Relative power level γ_{PRB} [dB]</th>
<th>PDSCH Data</th>
<th>PMCH Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_{PRB}</td>
<td>Subframe (only for DL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 and 6 (as normal subframe)</td>
<td>1 (as special subframe)</td>
<td>5</td>
<td>3, 4, 7 – 9</td>
</tr>
<tr>
<td>First unallocated PRB – Last unallocated PRB</td>
<td>0 (Allocation: all empty PRB-s of DwPTS)</td>
<td>0 (Allocation: all empty PRB-s)</td>
<td>N/A</td>
</tr>
<tr>
<td>First unallocated PRB – Last unallocated PRB</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals.

Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A Not Applicable

A.5.2.5 OCNG TDD pattern 5: One sided dynamic 16QAM modulated OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the sub-frames available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).
A.5.2.5-1: OP.5 TDD: One sided dynamic 16QAM modulated OCNG TDD Pattern

<table>
<thead>
<tr>
<th>Subframe (only if available for DL)</th>
<th>PDSCH Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3, 4, 7, 8, 9 and 6 (as normal subframe)¹ Note 2</td>
</tr>
<tr>
<td>1</td>
<td>1 and 6 (as special subframe)¹ Note 2</td>
</tr>
</tbody>
</table>

Allocation

<table>
<thead>
<tr>
<th>First unallocated PRB</th>
<th>First unallocated PRB</th>
<th>First unallocated PRB</th>
<th>First unallocated PRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last unallocated PRB</td>
<td>Last unallocated PRB</td>
<td>Last unallocated PRB</td>
<td>Last unallocated PRB</td>
</tr>
</tbody>
</table>

| 0 | 0 | 0 | 0 |

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is 16QAM modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.

Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2 (Large Delay CDD). The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.6 OCNG TDD pattern 6: dynamic OCNG TDD pattern when user data is in 2 non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB $N_{RB} = 1$.

<table>
<thead>
<tr>
<th>Subframe (only if available for DL)</th>
<th>PDSCH Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3, 4, 6, 7, 8, 9 (6 as normal subframe)¹ Note 2</td>
</tr>
<tr>
<td>1</td>
<td>1,6 (6 as special subframe)¹ Note 2</td>
</tr>
</tbody>
</table>

Allocation

<table>
<thead>
<tr>
<th>0 – (First allocated PRB of first block -1) and (Last allocated PRB of first block +1) – (First allocated PRB of second block -1)</th>
<th>0 – (First allocated PRB of first block -1) and (Last allocated PRB of first block +1) – (First allocated PRB of second block -1)</th>
<th>0 – (First allocated PRB of first block -1) and (Last allocated PRB of first block +1) – (First allocated PRB of second block -1)</th>
<th>0 – (First allocated PRB of first block -1) and (Last allocated PRB of first block +1) – (First allocated PRB of second block -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.

Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
Annex B (normative):
Propagation conditions

B.1 Static propagation condition

For 2 port transmission the channel matrix is defined in the frequency domain by

\[
H = \begin{pmatrix}
1 & j \\
1 & -j
\end{pmatrix}.
\]

For 4 port transmission the channel matrix is defined in the frequency domain by

\[
H = \begin{pmatrix}
1 & 1 & j & j \\
1 & 1 & -j & -j
\end{pmatrix}.
\]

For 8 port transmission the channel matrix is defined in the frequency domain by

\[
H = \begin{pmatrix}
1 & 1 & 1 & j & j & j & j \\
1 & 1 & 1 & -j & -j & -j & -j
\end{pmatrix}.
\]

B.2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.

- A combination of channel model parameters that include the Delay profile and the Doppler spectrum, that is characterized by a classical spectrum shape and a maximum Doppler frequency

- A set of correlation matrices defining the correlation between the UE and eNodeB antennas in case of multi-antenna systems.

- Additional multi-path models used for CQI (Channel Quality Indication) tests

B.2.1 Delay profiles

The delay profiles are selected to be representative of low, medium and high delay spread environments. The resulting model parameters are defined in Table B.2.1-1 and the tapped delay line models are defined in Tables B.2.1-2, B.2.1-3 and B.2.1-4.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of channel taps</th>
<th>Delay spread (r.m.s.)</th>
<th>Maximum excess tap delay (span)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Pedestrian A (EPA)</td>
<td>7</td>
<td>45 ns</td>
<td>410 ns</td>
</tr>
<tr>
<td>Extended Vehicular A model (EVA)</td>
<td>9</td>
<td>357 ns</td>
<td>2510 ns</td>
</tr>
<tr>
<td>Extended Typical Urban model (ETU)</td>
<td>9</td>
<td>991 ns</td>
<td>5000 ns</td>
</tr>
</tbody>
</table>
Table B.2.1-2 Extended Pedestrian A model (EPA)

<table>
<thead>
<tr>
<th>Excess tap delay [ns]</th>
<th>Relative power [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>-1.0</td>
</tr>
<tr>
<td>70</td>
<td>-2.0</td>
</tr>
<tr>
<td>90</td>
<td>-3.0</td>
</tr>
<tr>
<td>110</td>
<td>-8.0</td>
</tr>
<tr>
<td>190</td>
<td>-17.2</td>
</tr>
<tr>
<td>410</td>
<td>-20.8</td>
</tr>
</tbody>
</table>

Table B.2.1-3 Extended Vehicular A model (EVA)

<table>
<thead>
<tr>
<th>Excess tap delay [ns]</th>
<th>Relative power [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>-1.5</td>
</tr>
<tr>
<td>150</td>
<td>-1.4</td>
</tr>
<tr>
<td>310</td>
<td>-3.6</td>
</tr>
<tr>
<td>370</td>
<td>-0.6</td>
</tr>
<tr>
<td>710</td>
<td>-9.1</td>
</tr>
<tr>
<td>1090</td>
<td>-7.0</td>
</tr>
<tr>
<td>1730</td>
<td>-12.0</td>
</tr>
<tr>
<td>2510</td>
<td>-16.9</td>
</tr>
</tbody>
</table>

Table B.2.1-4 Extended Typical Urban model (ETU)

<table>
<thead>
<tr>
<th>Excess tap delay [ns]</th>
<th>Relative power [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.0</td>
</tr>
<tr>
<td>50</td>
<td>-1.0</td>
</tr>
<tr>
<td>120</td>
<td>-1.0</td>
</tr>
<tr>
<td>200</td>
<td>0.0</td>
</tr>
<tr>
<td>230</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>0.0</td>
</tr>
<tr>
<td>1600</td>
<td>-3.0</td>
</tr>
<tr>
<td>2300</td>
<td>-5.0</td>
</tr>
<tr>
<td>5000</td>
<td>-7.0</td>
</tr>
</tbody>
</table>

B.2.2 Combinations of channel model parameters

Table B.2.2-1 shows propagation conditions that are used for the performance measurements in multi-path fading environment for low, medium and high Doppler frequencies.

Table B.2.2-1 Channel model parameters

<table>
<thead>
<tr>
<th>Model</th>
<th>Maximum Doppler frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 5Hz</td>
<td>5 Hz</td>
</tr>
<tr>
<td>EVA 5Hz</td>
<td>5 Hz</td>
</tr>
<tr>
<td>EVA 70Hz</td>
<td>70 Hz</td>
</tr>
<tr>
<td>ETU 30Hz</td>
<td>30 Hz</td>
</tr>
<tr>
<td>ETU 70Hz</td>
<td>70 Hz</td>
</tr>
<tr>
<td>ETU 300Hz</td>
<td>300 Hz</td>
</tr>
</tbody>
</table>
B.2.3 MIMO Channel Correlation Matrices

The MIMO channel correlation matrices defined in B.2.3 apply for the antenna configuration using uniform linear arrays at both eNodeB and UE.

B.2.3.1 Definition of MIMO Correlation Matrices

Table B.2.3.1-1 defines the correlation matrix for the eNodeB

<table>
<thead>
<tr>
<th></th>
<th>One antenna</th>
<th>Two antennas</th>
<th>Four antennas</th>
</tr>
</thead>
<tbody>
<tr>
<td>eNode B Correlation</td>
<td>$R_{eNB} = 1$</td>
<td>$R_{eNB} = \begin{pmatrix} 1 & \alpha^* \ \alpha & 1 \end{pmatrix}$</td>
<td>$R_{eNB} = \begin{pmatrix} 1 & \alpha^{1/2} & \alpha^{3/2} & \alpha \ \alpha^{1/2} & 1 & \alpha^{3/2} & \alpha^{3/2} \ \alpha^{3/2} & \alpha^{3/2} & 1 & \alpha^{1/2} \end{pmatrix}$</td>
</tr>
</tbody>
</table>

Table B.2.3.1-2 defines the correlation matrix for the UE:

<table>
<thead>
<tr>
<th></th>
<th>One antenna</th>
<th>Two antennas</th>
<th>Four antennas</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE Correlation</td>
<td>$R_{UE} = 1$</td>
<td>$R_{UE} = \begin{pmatrix} 1 & \beta^* \ \beta & 1 \end{pmatrix}$</td>
<td>$R_{UE} = \begin{pmatrix} 1 & \beta^{1/2} & \beta^{3/2} & \beta \ \beta^{1/2} & 1 & \beta^{3/2} & \beta^{3/2} \ \beta^{3/2} & \beta^{3/2} & 1 & \beta^{1/2} \end{pmatrix}$</td>
</tr>
</tbody>
</table>

Table B.2.3.1-3 defines the channel spatial correlation matrix R_{spat}. The parameters, α and β in Table B.2.3.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

Table B.2.3.1-3: R_{spat} correlation matrices

<table>
<thead>
<tr>
<th></th>
<th>1x2 case</th>
<th>2x2 case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$R_{\text{spat}} = R_{UE} = \begin{pmatrix} 1 & \beta \ \beta^* & 1 \end{pmatrix}$</td>
<td>$R_{\text{spat}} = R_{eNB} \otimes R_{UE} = \begin{pmatrix} 1 & \alpha \ \alpha^* & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & \beta \ \beta^* & 1 \end{pmatrix} = \begin{pmatrix} 1 & \beta & \alpha & \alpha \beta \ \beta & 1 & \alpha \beta & \alpha \ \alpha & \alpha \beta & 1 & \beta \ \alpha^* & \alpha^* \beta & \beta & 1 \end{pmatrix}$</td>
</tr>
</tbody>
</table>
For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{eNB} and R_{UE} according to $R_{spat} = R_{eNB} \otimes R_{UE}$.

B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table B.2.3.2-1.

Table B.2.3.2-1

<table>
<thead>
<tr>
<th>Low correlation</th>
<th>Medium Correlation</th>
<th>High Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>β</td>
<td>α</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9</td>
</tr>
</tbody>
</table>

The correlation matrices for high, medium and low correlation are defined in Table B.2.3.1-2, B.2.3.2-3 and B.2.3.2-4, as below.

The values in Table B.2.3.2-2 have been adjusted for the 4x2 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$ R_{\text{high}} = \left[R_{\text{spat}} + aI_n \right] / (1 + a) $$

Where the value “a” is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 4x2 high correlation case, $a=0.00010$. For the 4x4 high correlation case, $a=0.00012$.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.2.3.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with $a = 0.00012$.

Table B.2.3.2-2: MIMO correlation matrices for high correlation

<table>
<thead>
<tr>
<th>1x2 case</th>
<th>$R_{\text{high}} = \begin{bmatrix} 1 & 0.9 \ 0.9 & 1 \end{bmatrix}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2 case</td>
<td>$R_{\text{high}} = \begin{bmatrix} 1 & 0.9 & 0.9 & 0.81 \ 0.9 & 1 & 0.81 & 0.9 \ 0.9 & 0.81 & 1 & 0.9 \ 0.81 & 0.9 & 0.9 & 1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>
Table B.2.3.2-3: MIMO correlation matrices for medium correlation

<table>
<thead>
<tr>
<th>Case</th>
<th>Correlation Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>(R_{\text{medium}} = \begin{pmatrix} 1 & 0.9 & 0.3 & 0.27 \ 0.9 & 1 & 0.27 & 0.3 \ 0.3 & 0.27 & 1 & 0.9 \ 0.27 & 0.3 & 0.9 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>4x2 case</td>
<td>(R_{\text{highR}} = \begin{pmatrix} 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 & 0.8999 & 0.8099 \ 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 & 0.8099 & 0.8999 \ 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 \ 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 \ 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 \ 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 \ 0.8999 & 0.8999 & 0.8587 & 0.9542 & 0.8894 & 0.9883 & 1.0000 & 0.8999 \ 0.8099 & 0.8999 & 0.8999 & 0.8894 & 0.9883 & 0.8894 & 0.9883 & 1.0000 \end{pmatrix})</td>
</tr>
<tr>
<td>4x4 case</td>
<td>(R_{\text{medium}} = \begin{pmatrix} 1.0000 & 0.9000 & 0.8748 & 0.7873 & 0.5856 & 0.5271 & 0.3000 & 0.2700 \ 0.9000 & 1.0000 & 0.7873 & 0.8748 & 0.5271 & 0.5856 & 0.2700 & 0.3000 \ 0.8748 & 0.7873 & 1.0000 & 0.9000 & 0.8748 & 0.7873 & 0.5856 & 0.5271 \ 0.7873 & 0.8748 & 0.9000 & 1.0000 & 0.7873 & 0.8748 & 0.5271 & 0.5856 \ 0.5856 & 0.5271 & 0.8748 & 0.7873 & 1.0000 & 0.9000 & 0.8748 & 0.7873 \ 0.5271 & 0.5856 & 0.7873 & 0.8748 & 0.9000 & 1.0000 & 0.7873 & 0.8748 \ 0.3000 & 0.2700 & 0.5856 & 0.5271 & 0.8748 & 0.7873 & 1.0000 & 0.9000 \ 0.2700 & 0.3000 & 0.5271 & 0.5856 & 0.7873 & 0.8748 & 0.9000 & 1.0000 \end{pmatrix})</td>
</tr>
</tbody>
</table>
is a polarization correlation matrix, and

For the channel spatial correlation matrix, the following is used:

\[\mathbf{R}_{medium} = \mathbf{\Gamma}^T \mathbf{\Gamma} \]

\[\mathbf{R}_{low} = \mathbf{I}_d \]

\[\mathbf{R}_{low} = \mathbf{I}_4 \]

\[\mathbf{R}_{low} = \mathbf{I}_8 \]

\[\mathbf{R}_{low} = \mathbf{I}_{16} \]

In Table B.2.3.2-4, \(\mathbf{I}_d \) is the \(d \times d \) identity matrix.

B.2.3A MIMO Channel Correlation Matrices using cross polarized antennas

The MIMO channel correlation matrices defined in B.2.3A apply for the antenna configuration using cross polarized antennas at both eNodeB and UE. The cross-polarized antenna elements with +/-45 degrees polarization slant angles are deployed at eNB and cross-polarized antenna elements with +90/0 degrees polarization slant angles are deployed at UE.

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to \(N/2 \) and antennas for the other polarization are listed from \(N/2+1 \) to \(N \), where \(N \) is the number of transmit or receive antennas.

B.2.3A.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

\[\mathbf{R}_{\text{spat}} = \mathbf{P} (\mathbf{R}_{\text{eNB}} \otimes \mathbf{\Gamma} \otimes \mathbf{R}_{\text{UE}})^T \mathbf{P}^T \]

Where

- \(\mathbf{R}_{\text{UE}} \) is the spatial correlation matrix at the UE with same polarization,
- \(\mathbf{R}_{\text{eNB}} \) is the spatial correlation matrix at the eNB with same polarization,
- \(\mathbf{\Gamma} \) is a polarization correlation matrix, and
- \((\bullet)^T\) denotes transpose.

The matrix \(\Gamma\) is defined as

\[
\Gamma = \begin{bmatrix}
1 & 0 & -\gamma & 0 \\
0 & 1 & 0 & \gamma \\
-\gamma & 0 & 1 & 0 \\
0 & \gamma & 0 & 1
\end{bmatrix}
\]

A permutation matrix \(P\) elements are defined as

\[
P(a,b) = \begin{cases}
1 & \text{for } a = (j-1)Nr + i \text{ and } b = (j-1)Nr + i, \quad i = 1,\ldots,Nr, j = 1,\ldots,Nt/2 \\
1 & \text{for } a = (j-1)Nr + i \text{ and } b = (j-Nt/2)Nr - Nr + i, \quad i = 1,\ldots,Nr, j = Nt/2 + 1,\ldots,Nt \\
0 & \text{otherwise}
\end{cases}
\]

where \(N_t\) and \(N_r\) is the number of transmitter and receiver respectively. This is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in B.2.3A.

B.2.3A.2 Spatial Correlation Matrices using cross polarized antennas at eNB and UE sides

B.2.3A.2.1 Spatial Correlation Matrices at eNB side

For 2-antenna transmitter using one pair of cross-polarized antenna elements, \(R_{eNB} = 1\).

For 4-antenna transmitter using two pairs of cross-polarized antenna elements, \(R_{eNB} = \begin{bmatrix} 1 & \alpha^* \\ \alpha & 1 \end{bmatrix}\).

For 8-antenna transmitter using four pairs of cross-polarized antenna elements, \(R_{eNB} = \begin{bmatrix}
1 & \alpha^{*\gamma} & \alpha^{\frac{\gamma}{2}} & \alpha \\
\alpha^{\gamma} & 1 & \alpha^{\frac{\gamma}{2}} & \alpha^{\frac{\gamma}{2}} \\
\alpha^{\frac{\gamma}{2}} & \alpha^{\frac{\gamma}{2}} & 1 & \alpha^{\frac{\gamma}{2}} \\
\alpha^* & \alpha^{\frac{\gamma}{2}} & \alpha^{\frac{\gamma}{2}} & 1
\end{bmatrix}\).

B.2.3A.2.2 Spatial Correlation Matrices at UE side

For 2-antenna receiver using one pair of cross-polarized antenna elements, \(R_{UE} = 1\).

For 4-antenna receiver using two pairs of cross-polarized antenna elements, \(R_{UE} = \begin{bmatrix} 1 & \beta^* \\ \beta & 1 \end{bmatrix}\).

B.2.3A.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters \(\alpha, \beta\) and \(\gamma\) for high spatial correlation are given in Table B.2.3A.3-1.

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Note 1: Value of \(\alpha\) applies when more than one pair of cross-polarized antenna elements at eNB side.

Note 2: Value of \(\beta\) applies when more than one pair of cross-polarized antenna elements at UE side.
The correlation matrices for high spatial correlation are defined in Table B.2.3A.3-2 as below.

The values in Table B.2.3A.3-2 have been adjusted to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

\[R_{\text{high}} = \left(R_{\text{spat}} + aI_n \right) / (1 + a) \]

Where the value “a” is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 8x2 high spatial correlation case, a=0.00010.

- Table B.2.3A.3-2: MIMO correlation matrices for high spatial correlation

<table>
<thead>
<tr>
<th>8x2 case</th>
<th>(R_{\text{high}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>0.0000 0.9883 0.0000 0.9542 0.0000 0.8999 0.0000 0.3000 -0.2965 0.0000 0.2862 0.0000 0.2700</td>
</tr>
<tr>
<td>0.0000</td>
<td>1.0000 0.9883 0.0000 0.9542 0.0000 0.8999 0.0000 0.3000 0.2656 0.0000 0.2862 0.0000 0.2700</td>
</tr>
<tr>
<td>0.9883</td>
<td>0.0000 1.0000 0.0000 0.9883 0.0000 0.9542 0.0000 0.2965 0.0000 0.3000 0.2656 0.0000 0.2700</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.9883 1.0000 0.0000 0.9883 0.0000 0.9542 0.0000 0.2656 0.0000 0.3000 0.2656 0.0000 0.2862</td>
</tr>
<tr>
<td>0.9542</td>
<td>0.0000 0.9883 0.0000 1.0000 0.0000 0.9883 0.0000 0.2656 0.0000 0.3000 0.2656 0.0000 0.2862</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.9542 0.0000 0.9883 1.0000 0.0000 0.9883 0.0000 0.2656 0.0000 0.3000 0.2656 0.0000 0.2862</td>
</tr>
<tr>
<td>0.8999</td>
<td>0.0000 0.9542 0.0000 0.9883 0.0000 1.0000 0.0000 0.2700 0.0000 0.3000 0.2656 0.0000 0.2862</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.8999 0.0000 0.9542 0.0000 0.9883 0.0000 1.0000 0.0000 0.2700 0.0000 0.3000 0.2656 0.0000</td>
</tr>
<tr>
<td>0.3000</td>
<td>0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.3000 0.0000 0.0000 0.2656 0.0000 0.2626 0.0000 0.2700 0.0000 0.1000 0.0000 0.9883 0.0000</td>
</tr>
<tr>
<td>0.2965</td>
<td>0.0000 0.0000 0.0000 0.2656 0.0000 0.2626 0.0000 0.2700 0.0000 0.1000 0.0000 0.9883 0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.2965 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td>0.2656</td>
<td>0.0000 0.2656 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.2656 0.0000 0.2656 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td>0.2700</td>
<td>0.0000 0.2656 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.2700 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td>
</tr>
</tbody>
</table>

B.2.3A.4 Beam steering approach

Given the channel spatial correlation matrix in B.2.3A.1, the corresponding random channel matrix \(H \) can be calculated. The signal model for the k-th subframe is denoted as

\[y = HD_{\theta_k} W x + n \]

Where

- \(H \) is the Nr xNt channel matrix per subcarrier.
- \(D_{\theta_k} \) is the steering matrix, which is

\[D_{\theta_k} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{j\theta_k} & 0 & 0 \\ 0 & 0 & e^{j2\theta_k} & 0 \\ 0 & 0 & 0 & e^{j3\theta_k} \end{bmatrix} \]

- \(\theta_k \) controls the phase variation, and the phase for k-th subframe is denoted by \(\theta_k = \theta_0 + \Delta\theta \cdot k \), where \(\theta_0 \) is the random start value with the uniform distribution, i.e., \(\theta_0 \in [0,2\pi] \), \(\Delta\theta \) is the step of phase variation, which is defined in Table B.2.3A.4-1, and \(k \) is the linear increment of 1 for every subframe throughout the simulation.
- \(W \) is the precoding matrix for 8 transmission antennas,
- \(y \) is the received signal, \(x \) is the transmitted signal, and \(n \) is AWGN.

- Table B.2.3A.4-1: The step of phase variation

<table>
<thead>
<tr>
<th>Variation Step</th>
<th>Value (rad/subframe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta\theta)</td>
<td>1.2566 \times 10^{-3}</td>
</tr>
</tbody>
</table>
B.2.4 Propagation conditions for CQI tests

For Channel Quality Indication (CQI) tests, the following additional multi-path profile is used:

\[h(t, \tau) = \delta(\tau) + a \exp(-i 2\pi f_d t) \delta(\tau - \tau_d). \]

in continuous time \((t, \tau)\) representation, with \(\tau_d\) the delay, \(a\) a constant and \(f_d\) the Doppler frequency. The same \(h(t, \tau)\) is used to describe the fading channel between every pair of Tx and Rx.

B.2.5 Void

B.2.6 MBSFN Propagation Channel Profile

Table B.2.6-1 shows propagation conditions that are used for the MBSFN performance requirements in multi-path fading environment in an extended delay spread environment.

<table>
<thead>
<tr>
<th>Relative Delay [ns]</th>
<th>Relative Mean Power [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>-1.5</td>
</tr>
<tr>
<td>150</td>
<td>-1.4</td>
</tr>
<tr>
<td>310</td>
<td>-3.6</td>
</tr>
<tr>
<td>370</td>
<td>-0.6</td>
</tr>
<tr>
<td>1090</td>
<td>-7.0</td>
</tr>
<tr>
<td>12490</td>
<td>-10</td>
</tr>
<tr>
<td>12520</td>
<td>-11.5</td>
</tr>
<tr>
<td>12640</td>
<td>-11.4</td>
</tr>
<tr>
<td>12800</td>
<td>-13.6</td>
</tr>
<tr>
<td>12860</td>
<td>-10.6</td>
</tr>
<tr>
<td>13580</td>
<td>-17.0</td>
</tr>
<tr>
<td>27490</td>
<td>-20</td>
</tr>
<tr>
<td>27520</td>
<td>-21.5</td>
</tr>
<tr>
<td>27640</td>
<td>-21.4</td>
</tr>
<tr>
<td>27800</td>
<td>-23.6</td>
</tr>
<tr>
<td>27860</td>
<td>-20.6</td>
</tr>
<tr>
<td>28580</td>
<td>-27.0</td>
</tr>
</tbody>
</table>

B.3 High speed train scenario

The high speed train condition for the test of the baseband performance is a non fading propagation channel with one tap. Doppler shift is given by

\[f_s(t) = f_d \cos \theta(t). \]

\[(B.3.1)\]
where \(f_s(t) \) is the Doppler shift and \(f_d \) is the maximum Doppler frequency. The cosine of angle \(\theta(t) \) is given by

\[
\cos \theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\text{min}}^2 + (D_s/2 - vt)^2}}, \quad 0 \leq t \leq D_s/v \tag{B.3.2}
\]

\[
\cos \theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\text{min}}^2 + (-1.5D_s + vt)^2}}, \quad D_s/v < t \leq 2D_s/v \tag{B.3.3}
\]

\[
\cos \theta(t) = \cos \theta(t \mod (2D_s/v)), \quad t > 2D_s/v \tag{B.3.4}
\]

where \(D_s/2 \) is the initial distance of the train from eNodeB, and \(D_{\text{min}} \) is eNodeB Railway track distance, both in meters; \(v \) is the velocity of the train in m/s, \(t \) is time in seconds.

Doppler shift and cosine angle are given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift shown in Figure B.3-1 are applied for all frequency bands.

Table B.3-1: High speed train scenario

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_s)</td>
<td>300 m</td>
</tr>
<tr>
<td>(D_{\text{min}})</td>
<td>2 m</td>
</tr>
<tr>
<td>(v)</td>
<td>300 km/h</td>
</tr>
<tr>
<td>(f_d)</td>
<td>750 Hz</td>
</tr>
</tbody>
</table>

NOTE 1: Parameters for HST conditions in table B.3-1 including \(f_d \) and Doppler shift trajectories presented on figure B.3-1 were derived for Band 7.

![Figure B.3-1: Doppler shift trajectory](image)

For 1x2 antenna configuration, the same \(h(t,\tau) \) is used to describe the channel between every pair of Tx and Rx.
For 2x2 antenna configuration, the same \(h(t,\tau) \) is used to describe the channel between every pair of Tx and Rx with phase shift according to \(H = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix} \).

B.4 Beamforming Model

B.4.1 Single-layer random beamforming (Antenna port 5, 7, or 8)

Single-layer transmission on antenna port 5 or on antenna port 7 or 8 without a simultaneous transmission on the other antenna port, is defined by using a precoder vector \(\hat{W}(i) \) of size \(2 \times 1 \) randomly selected with the number of layers \(\nu = 1 \) from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input the signal \(y^{(p)}(i) \), \(i = 0,1,\ldots,M_{\text{symb}} - 1 \), for antenna port \(p \in \{5,7,8\} \), with \(M_{\text{symb}} \) the number of modulation symbols including the user-specific reference symbols (DRS), and generates a block of signals \(y_{bf}(i) = [y_{bf}(i) \; \tilde{y}_{bf}(i)] \) the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

\[
\begin{bmatrix}
 y_{bf}(i) \\
 \tilde{y}_{bf}(i)
\end{bmatrix} = \hat{W}(i)y^{(p)}(i)
\]

Single-layer transmission on antenna port 7 or 8 with a simultaneous transmission on the other antenna port, is defined by using a pair of precoder vectors \(W_1(i) \) and \(W_2(i) \) each of size \(2 \times 1 \), which are not identical and randomly selected with the number of layers \(\nu = 1 \) from Table 6.3.4.2.3-1 in [4], as beamforming weights, and normalizing the transmit power as follows:

\[
\begin{bmatrix}
 y_{bf}(i) \\
 \tilde{y}_{bf}(i)
\end{bmatrix} = \frac{1}{\sqrt{2}} \left(W_1(i)y^{(7)}(i) + W_2(i)y^{(8)}(i) \right)
\]

The precoder update granularity is specific to a test case.

The CSI reference symbols \(a_{k,l}^{(p)} \) satisfying \(p \mod 2 = 1 \), \(p \in \{15,16,22\} \), are transmitted on the same physical antenna element as the modulation symbols \(y_{bf}(i) \). The CSI reference symbols \(a_{k,l}^{(p)} \) satisfying \(p \mod 2 = 0 \), \(p \in \{15,16,22\} \), are transmitted on the same physical antenna element as the modulation symbols \(\tilde{y}_{bf}(i) \).

B.4.2 Dual-layer random beamforming (antenna ports 7 and 8)

Dual-layer transmission on antenna ports 7 and 8 is defined by using a precoder matrix \(\hat{W}(i) \) of size \(2 \times 2 \) randomly selected with the number of layers \(\nu = 2 \) from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input a block of signals for antenna ports 7 and 8, \(y(i) = [y^{(7)}(i) \; y^{(8)}(i)] \), \(i = 0,1,\ldots,M_{\text{symb}} - 1 \), with \(M_{\text{symb}} \) being the number of modulation symbols per antenna port including the user-specific reference symbols, and generates a block of signals \(y_{bf}(i) = [y_{bf}(i) \; \tilde{y}_{bf}(i)] \) the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

\[
\begin{bmatrix}
 y_{bf}(i) \\
 \tilde{y}_{bf}(i)
\end{bmatrix} = \hat{W}(i)\begin{bmatrix}
 y^{(7)}(i) \\
 y^{(8)}(i)
\end{bmatrix}
\]

The precoder update granularity is specific to a test case.
The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 1$, $p \in \{15,16,\ldots,22\}$, are transmitted on the same physical antenna element as the modulation symbols $y_{bf}(i)$. The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 0$, $p \in \{15,16,\ldots,22\}$, are transmitted on the same physical antenna element as the modulation symbols $\tilde{y}_{bf}(i)$.

B.4.3 Generic beamforming model (antenna ports 7-14)

The transmission on antenna port(s) $p = 7,8,\ldots,\nu + 6$ is defined by using a precoder matrix $W(i)$ of size $N_{CSI} \times \nu$, where N_{CSI} is the number of CSI reference signals configured per test and ν is the number of spatial layers. This precoder takes as an input a block of signals for antenna port(s) $p = 7,8,\ldots,\nu + 6$,

$$y^{(p)}(i) = \begin{bmatrix} y^{(7)}(i) & y^{(8)}(i) & \cdots & y^{(\nu+6)}(i) \end{bmatrix}, \quad i = 0,1,\ldots,M_{\text{symb}}^{\text{ap}} - 1,$$

with $M_{\text{symb}}^{\text{ap}}$ being the number of modulation symbols per antenna port including the user-specific reference symbols (DM-RS), and generates a block of signals

$$y_{bf}^{(q)}(i) = \begin{bmatrix} y_{bf}^{(0)}(i) & y_{bf}^{(1)}(i) & \cdots & y_{bf}^{(N_{CSI}-1)}(i) \end{bmatrix}^T$$

the elements of which are to be mapped onto the same time-frequency index pair (k,l) but transmitted on different physical antenna elements:

$$\begin{bmatrix} y_{bf}^{(0)}(i) \\ y_{bf}^{(1)}(i) \\ \vdots \\ y_{bf}^{(N_{CSI}-1)}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \\ \vdots \\ y^{(\nu+6)}(i) \end{bmatrix}$$

The precoder matrix $W(i)$ is specific to a test case.

The physical antenna elements are identified by indices $j = 0,1,\ldots,N_{\text{ANT}} - 1$, where $N_{\text{ANT}} = N_{CSI}$ is the number of physical antenna elements configured per test.

Modulation symbols $y_{bf}^{(q)}(i)$ with $q \in \{0,1,\ldots,N_{CSI} - 1\}$ (i.e. beamformed PDSCH and DM-RS) are mapped to the physical antenna index $j = q$.

Modulation symbols $y^{(p)}(i)$ with $p \in \{0,1,\ldots,P - 1\}$ (i.e. PBCH, PDCCH, PHICH, PCFICH) are mapped to the physical antenna index $j = p$, where P is the number of cell-specific reference signals configured per test.

Modulation symbols $a_{k,l}^{(p)}$ with $p \in \{0,1,\ldots,P - 1\}$ (i.e. CRS) are mapped to the physical antenna index $j = p$, where P is the number of cell-specific reference signals configured per test.

Modulation symbols $a_{k,l}^{(p)}$ with $p \in \{15,16,\ldots,14 + N_{CSI}\}$ (i.e. CSI-RS) are mapped to the physical antenna index $j = p - 15$, where N_{CSI} is the number of CSI reference signals configured per test.
Annex C (normative): Downlink Physical Channels

C.1 General

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

C.2 Set-up

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

<table>
<thead>
<tr>
<th>Physical Channel</th>
<th>EPRE Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBCH</td>
<td>PBCH_RA = 0 dB</td>
</tr>
<tr>
<td></td>
<td>PBCH_RB = 0 dB</td>
</tr>
<tr>
<td>PSS</td>
<td>PSS_RA = 0 dB</td>
</tr>
<tr>
<td>SSS</td>
<td>SSS_RA = 0 dB</td>
</tr>
<tr>
<td>PCFICH</td>
<td>PCFICH_RB = 0 dB</td>
</tr>
<tr>
<td>PDCCH</td>
<td>PDCCH_RA = 0 dB</td>
</tr>
<tr>
<td></td>
<td>PDCCH_RB = 0 dB</td>
</tr>
<tr>
<td>PDSCH</td>
<td>PDSCH_RA = 0 dB</td>
</tr>
<tr>
<td></td>
<td>PDSCH_RB = 0 dB</td>
</tr>
<tr>
<td>OCNG</td>
<td>OCNG_RA = 0 dB</td>
</tr>
<tr>
<td></td>
<td>OCNG_RB = 0 dB</td>
</tr>
</tbody>
</table>

NOTE 1: No boosting is applied.

C.3 Connection

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.3.1 Measurement of Receiver Characteristics

Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

<table>
<thead>
<tr>
<th>Physical Channel</th>
<th>EPRE Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBCH</td>
<td>PBCH_RA = 0 dB</td>
</tr>
<tr>
<td></td>
<td>PBCH_RB = 0 dB</td>
</tr>
<tr>
<td>PSS</td>
<td>PSS_RA = 0 dB</td>
</tr>
<tr>
<td>SSS</td>
<td>SSS_RA = 0 dB</td>
</tr>
<tr>
<td>PCFICH</td>
<td>PCFICH_RB = 0 dB</td>
</tr>
<tr>
<td>PDCCH</td>
<td>PDCCH_RA = 0 dB</td>
</tr>
<tr>
<td></td>
<td>PDCCH_RB = 0 dB</td>
</tr>
<tr>
<td>PDSCH</td>
<td>PDSCH_RA = 0 dB</td>
</tr>
<tr>
<td></td>
<td>PDSCH_RB = 0 dB</td>
</tr>
<tr>
<td>OCNG</td>
<td>OCNG_RA = 0 dB</td>
</tr>
<tr>
<td></td>
<td>OCNG_RB = 0 dB</td>
</tr>
</tbody>
</table>

NOTE 1: No boosting is applied.
Table C.3.1-2: Power allocation for OFDM symbols and reference signals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted power spectral density I_{or}</td>
<td>dBm/15 kHz</td>
<td>Test specific</td>
<td>1. I_{or} shall be kept constant throughout all OFDM symbols</td>
</tr>
<tr>
<td>Cell-specific reference signal power ratio E_{RS} / I_{or}</td>
<td></td>
<td>0 dB</td>
<td></td>
</tr>
</tbody>
</table>

C.3.2 Measurement of Performance requirements

Table C.3.2-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels.

Table C.3.2-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

<table>
<thead>
<tr>
<th>Physical Channel</th>
<th>EPRE Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBCH</td>
<td>$\text{PBCH\ RA} = \rho_A + \sigma$</td>
</tr>
<tr>
<td></td>
<td>$\text{PBCH\ RB} = \rho_B + \sigma$</td>
</tr>
<tr>
<td>PSS</td>
<td>$\text{PSS\ RA} = 0$ (Note 3)</td>
</tr>
<tr>
<td>SSS</td>
<td>$\text{SSS\ RA} = 0$ (Note 3)</td>
</tr>
<tr>
<td>POFICH</td>
<td>$\text{POFICH\ RB} = \rho_B + \sigma$</td>
</tr>
<tr>
<td>PDCCH</td>
<td>$\text{PDCCH\ RA} = \rho_A + \sigma$</td>
</tr>
<tr>
<td></td>
<td>$\text{PDCCH\ RB} = \rho_B + \sigma$</td>
</tr>
<tr>
<td>PDSCH</td>
<td>$\text{PDSCH\ RA} = \rho_A$</td>
</tr>
<tr>
<td></td>
<td>$\text{PDSCH\ RB} = \rho_B$</td>
</tr>
<tr>
<td>PMCH</td>
<td>$\text{PMCH\ RA} = \rho_A$</td>
</tr>
<tr>
<td></td>
<td>$\text{PMCH\ RB} = \rho_B$</td>
</tr>
<tr>
<td>MBSFN RS</td>
<td>$\text{MBSFN RS\ RA} = \rho_A$</td>
</tr>
<tr>
<td></td>
<td>$\text{MBSFN RS\ RB} = \rho_B$</td>
</tr>
<tr>
<td>OCNG</td>
<td>$\text{OCNG\ RA} = \rho_A + \sigma$</td>
</tr>
<tr>
<td></td>
<td>$\text{OCNG\ RB} = \rho_B + \sigma$</td>
</tr>
</tbody>
</table>

NOTE 1: $\rho_A = \rho_B = 0$ dB means no RS boosting.

NOTE 2: MBSFN RS and OCNG are not defined downlink physical channels in [4].

NOTE 3: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 4: ρ_A, ρ_B and σ are test specific.

NOTE 5: For TM 8 and TM 9 ρ_A, ρ_B are used for the purpose of the test set up only.
Table C.3.2-2: Power allocation for OFDM symbols and reference signals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total transmitted power</td>
<td>dBm/15 kHz</td>
<td>Test specific</td>
<td>I_{off} shall be kept constant throughout all OFDM symbols</td>
</tr>
<tr>
<td>spectral density I_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell-specific reference signal power ratio $E_{\text{R}}/I_{\text{off}}$</td>
<td>Test specific</td>
<td></td>
<td>1. Applies for antenna port p</td>
</tr>
<tr>
<td>Energy per resource element EPRE</td>
<td>Test specific</td>
<td></td>
<td>1. The complex-valued symbols $y_{\text{R}}^{(i)}$ and $a_{\text{K}}^{(p)}$ defined in [4] shall conform to the given EPRE value. 2. For TM8 and TM9 the reference point for EPRE is before the precoder in Annex B.4.</td>
</tr>
</tbody>
</table>

C.3.3 Aggressor cell power allocation for Measurement of Performance Requirements when ABS is Configured

For the performance requirements and channel state information reporting when ABS is configured, the power allocation for the physical channels of the aggressor cell in non-ABS and ABS is listed in Table C.3.3-1.

Table C.3.3-1: Downlink physical channels transmitted in aggressor cell when ABS is configured in this cell

<table>
<thead>
<tr>
<th>Physical Channel</th>
<th>Parameters</th>
<th>Unit</th>
<th>EPRE Ratio</th>
<th>Non-ABS</th>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBCH</td>
<td>PBCH RA</td>
<td>dB</td>
<td>ρ_A</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PBCH RB</td>
<td>dB</td>
<td>ρ_B</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>PSS</td>
<td>PSS RA</td>
<td>dB</td>
<td>ρ_A</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>SSS</td>
<td>SSS RA</td>
<td>dB</td>
<td>ρ_A</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>PCFICH</td>
<td>PCFICH RB</td>
<td>dB</td>
<td>ρ_B</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>PHICH</td>
<td>PHICH RA</td>
<td>dB</td>
<td>ρ_A</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHICH RB</td>
<td>dB</td>
<td>ρ_B</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>PDCCH</td>
<td>PDCCH RA</td>
<td>dB</td>
<td>ρ_A</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDCCH RB</td>
<td>dB</td>
<td>ρ_B</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>PDSCH</td>
<td>PDSCH RA</td>
<td>dB</td>
<td>N/A</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDSCH RB</td>
<td>dB</td>
<td>N/A</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>OCNG</td>
<td>OCNG RA</td>
<td>dB</td>
<td>ρ_A</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OCNG RB</td>
<td>dB</td>
<td>ρ_B</td>
<td>Note 1</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: $-\infty$ dB is allocated for this channel in this test.
Annex D (normative):
Characteristics of the interfering signal

D.1 General

When the channel band width is wider or equal to 5MHz, a modulated 5MHz full band width E-UTRA down link signal and CW signal are used as interfering signals when RF performance requirements for E-UTRA UE receiver are defined. For channel band widths below 5MHz, the band width of modulated interferer should be equal to band width of the received signal.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel band width options.

<table>
<thead>
<tr>
<th>Channel bandwidth</th>
<th>1.4 MHz</th>
<th>3 MHz</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW_{interferer}</td>
<td>1.4 MHz</td>
<td>3 MHz</td>
<td>5 MHz</td>
<td>5 MHz</td>
<td>5 MHz</td>
<td>5 MHz</td>
</tr>
<tr>
<td>RB</td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>
Annex E (normative):
Environmental conditions

E.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

E.2 Environmental

The requirements in this clause apply to all types of UE(s).

E.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>Requirement Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>+15°C to +35°C</td>
<td>for normal conditions (with relative humidity of 25% to 75%)</td>
</tr>
<tr>
<td>-10°C to +55°C</td>
<td>for extreme conditions (see IEC publications 68-2-1 and 68-2-2)</td>
</tr>
</tbody>
</table>

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation.

E.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

<table>
<thead>
<tr>
<th>Power source</th>
<th>Lower extreme voltage</th>
<th>Higher extreme voltage</th>
<th>Normal conditions voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC mains</td>
<td>0.9 * nominal</td>
<td>1.1 * nominal</td>
<td>nominal</td>
</tr>
<tr>
<td>Regulated lead acid battery</td>
<td>0.9 * nominal</td>
<td>1.3 * nominal</td>
<td></td>
</tr>
<tr>
<td>Non regulated batteries:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leclanché</td>
<td>0.85 * nominal</td>
<td>Nominal</td>
<td>Nominal</td>
</tr>
<tr>
<td>Lithium</td>
<td>0.95 * nominal</td>
<td>1.1 * Nominal</td>
<td></td>
</tr>
<tr>
<td>Mercury/nickel & cadmium</td>
<td>0.90 * nominal</td>
<td></td>
<td>Nominal</td>
</tr>
</tbody>
</table>

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.
E.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>ASD (Acceleration Spectral Density) random vibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Hz to 20 Hz</td>
<td>0,96 m²/s³</td>
</tr>
<tr>
<td>20 Hz to 500 Hz</td>
<td>0,96 m²/s³ at 20 Hz, thereafter –3 dB/Octave</td>
</tr>
</tbody>
</table>

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 36.101 for extreme operation.
Annex F (normative):
Transmit modulation

Note: this annex applies for single carrier and in case of carrier aggregation for the component carrier, with PRBs allocated.

F.1 Measurement Point

Figure F.1-1 shows the measurement point for the unwanted emission falling into non-allocated RB(s) and the EVM for the allocated RB(s).

F.2 Basic Error Vector Magnitude measurement

The EVM is the difference between the ideal waveform and the measured waveform for the allocated RB(s)

\[
EVM = \sqrt{\frac{\sum_{v \in T}\left| z(v) - i(v) \right|^2}{|T_m| \cdot P_0}},
\]

where

- \(T_m \) is a set of modulation symbols with the considered modulation scheme being active within the measurement period,
- \(z(v) \) are the samples of the signal evaluated for the EVM,
- \(i(v) \) is the ideal signal reconstructed by the measurement equipment, and
- \(P_0 \) is the average power of the ideal signal. For normalized modulation symbols \(P_0 \) is equal to 1.

The basic EVM measurement interval is defined over one slot in the time domain for PUCCH and PUSCH and over one preamble sequence for the PRACH.
F.3 Basic in-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks. The in-band emission requirement is evaluated for PUCCH and PUSCH transmissions. The in-band emission requirement is not evaluated for PRACH transmissions.

The in-band emissions are measured as follows

\[
\text{Emissions}_{\text{absolute}}(\Delta_{RB}) = \begin{cases}
 \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{f_s \in \Delta_{RB}} \left| Y(t, f_s) \right|^2, & \Delta_{RB} < 0 \\
 \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{f_s \in \Delta_{RB}} \left| Y(t, f_s) \right|^2, & \Delta_{RB} > 0
\end{cases}
\]

where

- \(T_s \) is a set of \(|T_s|\) SC-FDMA symbols with the considered modulation scheme being active within the measurement period,
- \(\Delta_{RB} \) is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g., \(\Delta_{RB} = 1 \) or \(\Delta_{RB} = -1 \) for the first adjacent RB),
- \(f_{\text{min}} \) (resp. \(f_{\text{max}} \)) is the lower (resp. upper) edge of the UL system BW,
- \(f_l \) and \(f_h \) are the lower and upper edge of the allocated BW, and
- \(Y(t, f) \) is the frequency domain signal evaluated for in-band emissions as defined in the subsection (ii)

The relative in-band emissions are given by

\[
\text{Emissions}_{\text{relative}}(\Delta_{RB}) = \frac{\text{Emissions}_{\text{absolute}}(\Delta_{RB})}{|T_s| \cdot N_{RB} \sum_{t \in T_s} \sum_{f_s \in f_{\text{min}} + (12 \cdot N_{RB} - 1) \cdot \Delta f} \left| Y(t, f) \right|^2}
\]

where

- \(N_{RB} \) is the number of allocated RBs

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

In the evaluation of in-band emissions, the timing is set according to \(\Delta \tilde{t} = \Delta \tilde{c} \), where sample time offsets \(\Delta \tilde{t} \) and \(\Delta \tilde{c} \) are defined in subclause F.4.

F.4 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments.
The PUSCH data or PRACH signal under test is modified and, in the case of PUSCH data signal, decoded according to:

\[Z'(t, f) = IDFT \left\{ \frac{FFT \left\{ z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\phi(t,f)} \right\}}{\tilde{a}(t, f) \cdot e^{j\phi(t,f)}} \right\} \]

where

\(z(v) \) is the time domain samples of the signal under test.

The PUCCH or PUSCH demodulation reference signal or PUCCH data signal under test is equalised and, in the case of PUCCH data signal decoded according to:

\[Z'(t, f) = \frac{FFT \left\{ z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\phi(t,f)} \right\}}{\tilde{a}(t, f) \cdot e^{j\phi(t,f)}} \]

where

\(z(v) \) is the time domain samples of the signal under test.

To minimize the error, the signal under test should be modified with respect to a set of parameters following the procedure explained below.

Notation:

\(\Delta \tilde{t} \) is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal.

\(\Delta \tilde{f} \) is the RF frequency offset.

\(\tilde{\phi}(t, f) \) is the phase response of the TX chain.

\(\tilde{a}(t, f) \) is the amplitude response of the TX chain.

In the following, \(\Delta \tilde{c} \) represents the middle sample of the EVM window of length \(W \) (defined in the next subsections) or the last sample of the first window half if \(W \) is even.

The EVM analyser shall

- detect the start of each slot and estimate \(\Delta \tilde{t} \) and \(\Delta \tilde{f} \),
- determine \(\Delta \tilde{c} \) so that the EVM window of length \(W \) is centred
 - on the time interval determined by the measured cyclic prefix minus 16 samples of the considered OFDM symbol for symbol 0 for normal CP, i.e. the first 16 samples of the CP should not be taken into account for this step. In the determination of the number of excluded samples, a sampling rate of 30.72MHz was assumed. If a different sampling rate is used, the number of excluded samples is scaled linearly.
 - on the measured cyclic prefix of the considered OFDM symbol symbol for symbol 1 to 6 for normal CP and for symbol 0 to 5 for extended CP.
 - on the measured preamble cyclic prefix for the PRACH

To determine the other parameters a sample timing offset equal to \(\Delta \tilde{c} \) is corrected from the signal under test. The EVM analyser shall then

- correct the RF frequency offset \(\Delta \tilde{f} \) for each time slot, and
apply an FFT of appropriate size. The chosen FFT size shall ensure that in the case of an ideal signal under test, there is no measured inter-subcarrier interference.

The IQ origin offset shall be removed from the evaluated signal before calculating the EVM and the in-band emissions; however, the removed relative IQ origin offset power (relative carrier leakage power) also has to satisfy the applicable requirement.

At this stage the allocated RBs shall be separated from the non-allocated RBs. In the case of PUCCH and PUSCH EVM, the signal on the non-allocated RB(s), \(Y(t, f) \), is used to evaluate the in-band emissions.

Moreover, the following procedure applies only to the signal on the allocated RB(s).

- In the case of PUCCH and PUSCH, the UL EVM analyzer shall estimate the TX chain equalizer coefficients \(\tilde{a}(t, f) \) and \(\tilde{\phi}(t, f) \) used by the ZF equalizer for all subcarriers by time averaging at each signal subcarrier of the amplitude and phase of the reference and data symbols. The time-averaging length is 1 slot. This process creates an average amplitude and phase for each signal subcarrier used by the ZF equalizer. The knowledge of data modulation symbols may be required in this step because the determination of symbols by demodulation is not reliable before signal equalization.

- In the case of PRACH, the UL EVM analyzer shall estimate the TX chain coefficients \(\tilde{a}(t) \) and \(\tilde{\phi}(t) \) used for phase and amplitude correction and are selected so as to minimize the resulting EVM. The TX chain coefficients are not dependent on frequency, i.e. \(\tilde{a}(t, f) = \tilde{a}(t) \) and \(\tilde{\phi}(t, f) = \tilde{\phi}(t) \). The TX chain coefficient are chosen independently for each preamble transmission and for each \(\Delta t \).

At this stage estimates of \(\Delta \tilde{t} \), \(\tilde{a}(t, f) \), \(\tilde{\phi}(t, f) \) and \(\Delta \tilde{c} \) are available. \(\Delta \tilde{t} \) is one of the extremities of the window \(W \), i.e. \(\Delta \tilde{t} = \Delta \tilde{c} + \alpha \left\lfloor \frac{W}{2} \right\rfloor \) or \(\Delta \tilde{t} = \Delta \tilde{c} + \frac{W}{2} \), where \(\alpha = 0 \) if \(W \) is odd and \(\alpha = 1 \) if \(W \) is even. The EVM analyzer shall then

- calculate EVMl with \(\Delta \tilde{t} \) set to \(\Delta \tilde{c} + \alpha \left\lfloor \frac{W}{2} \right\rfloor \).
- calculate EVMh with \(\Delta \tilde{t} \) set to \(\Delta \tilde{c} + \frac{W}{2} \).

F.5 Window length

F.5.1 Timing offset

As a result of using a cyclic prefix, there is a range of \(\Delta \tilde{t} \), which, at least in the case of perfect Tx signal quality, would give close to minimum error vector magnitude. As a first order approximation, that range should be equal to the length of the cyclic prefix. Any time domain windowing or FIR pulse shaping applied by the transmitter reduces the \(\Delta \tilde{t} \) range within which the error vector is close to its minimum.

F.5.2 Window length

The window length \(W \) affects the measured EVM, and is expressed as a function of the configured cyclic prefix length. In the case where equalization is present, as with frequency domain EVM computation, the effect of FIR is reduced. This is because the equalization can correct most of the linear distortion introduced by the FIR. However, the time domain windowing effect can’t be removed.
F.5.3 Window length for normal CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for normal CP. The nominal window length for 3 MHz is rounded down one sample to allow the window to be centered on the symbol.

<table>
<thead>
<tr>
<th>Channel Bandwidth MHz</th>
<th>Cyclic prefix length(^1) (N_{cp}) for symbol 0</th>
<th>Cyclic prefix length(^1) (N_{cp}) for symbols 1 to 6</th>
<th>Nominal FFT size</th>
<th>Cyclic prefix for symbols 1 to 6 in FFT samples</th>
<th>EVM window length (W) in FFT samples</th>
<th>Ratio of (W) to CP for symbols 1 to 6(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>160</td>
<td>144</td>
<td>128</td>
<td>9</td>
<td>5</td>
<td>55.6</td>
</tr>
<tr>
<td>3</td>
<td>256</td>
<td>18</td>
<td>64</td>
<td>58</td>
<td>9</td>
<td>87.5</td>
</tr>
<tr>
<td>5</td>
<td>512</td>
<td>36</td>
<td>128</td>
<td>124</td>
<td>124</td>
<td>96.9</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>72</td>
<td>256</td>
<td>250</td>
<td>250</td>
<td>97.4</td>
</tr>
<tr>
<td>15</td>
<td>1536</td>
<td>108</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>94.4</td>
</tr>
<tr>
<td>20</td>
<td>2048</td>
<td>144</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>94.4</td>
</tr>
</tbody>
</table>

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.
Note 2: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage.

F.5.4 Window length for Extended CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for extended CP. The nominal window lengths for 3 MHz and 15 MHz are rounded down one sample to allow the window to be centered on the symbol.

<table>
<thead>
<tr>
<th>Channel Bandwidth MHz</th>
<th>Cyclic prefix length(^1) (N_{cp})</th>
<th>Nominal FFT size</th>
<th>Cyclic prefix for FFT samples</th>
<th>EVM window length (W) in FFT samples</th>
<th>Ratio of (W) to CP (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>128</td>
<td>32</td>
<td>28</td>
<td>87.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>256</td>
<td>64</td>
<td>58</td>
<td>90.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>512</td>
<td>128</td>
<td>124</td>
<td>96.9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>256</td>
<td>250</td>
<td>97.4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1536</td>
<td>384</td>
<td>374</td>
<td>97.4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2048</td>
<td>512</td>
<td>504</td>
<td>98.4</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.
Note 2: These percentages are informative.

F.5.5 Window length for PRACH

The table below specifies the EVM window length for PRACH preamble formats 0-4.
Table F.5.5-1 EVM window length for PRACH

<table>
<thead>
<tr>
<th>Preamble format</th>
<th>Cyclic prefix length (N_{cp})</th>
<th>Nominal FFT size (N_{FFT})</th>
<th>EVM window length (W) in FFT samples</th>
<th>Ratio of (W) to CP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3168</td>
<td>24576</td>
<td>3072</td>
<td>96.7%</td>
</tr>
<tr>
<td>1</td>
<td>21024</td>
<td>24576</td>
<td>20928</td>
<td>99.5%</td>
</tr>
<tr>
<td>2</td>
<td>6240</td>
<td>49152</td>
<td>6144</td>
<td>98.5%</td>
</tr>
<tr>
<td>3</td>
<td>21024</td>
<td>49152</td>
<td>20928</td>
<td>99.5%</td>
</tr>
<tr>
<td>4</td>
<td>448</td>
<td>4096</td>
<td>432</td>
<td>96.4%</td>
</tr>
</tbody>
</table>

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.
Note 2: The use of other FFT sizes is possible as long as appropriate scaling of the window length is applied.
Note 3: These percentages are informative.

F.6 Averaged EVM

The general EVM is averaged over basic EVM measurements for 20 slots in the time domain.

\[
\overline{EVM} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_i^2}
\]

The EVM requirements shall be tested against the maximum of the RMS average at the window \(W \) extremities of the EVM measurements:

Thus \(\overline{EVM_1} \) is calculated using \(\Delta \tilde{t} = \Delta \tilde{t}_1 \) in the expressions above and \(\overline{EVM_h} \) is calculated using \(\Delta \tilde{t} = \Delta \tilde{t}_h \).

Thus we get:

\[
EVM = \max(\overline{EVM_1}, \overline{EVM_h})
\]

The calculation of the EVM for the demodulation reference signal, \(EVM_{DMRS} \), follows the same procedure as calculating the general EVM, with the exception that the modulation symbol set \(T_{su} \) defined in clause F.2 is restricted to symbols containing uplink demodulation reference signals.

The basic \(EVM_{DMRS} \) measurements are first averaged over 20 slots in the time domain to obtain an intermediate average \(\overline{EVM}_{DMRS} \).

\[
\overline{EVM}_{DMRS} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{DMRS,i}^2}
\]

In the determination of each \(EVM_{DMRS,i} \), the timing is set to \(\Delta \tilde{t} = \Delta \tilde{t}_1 \) if \(\overline{EVM_1} > \overline{EVM_h} \), and it is set to \(\Delta \tilde{t} = \Delta \tilde{t}_h \) otherwise, where \(\overline{EVM_1} \) and \(\overline{EVM_h} \) are the general average EVM values calculated in the same 20 slots over which the intermediate average \(\overline{EVM}_{DMRS} \) is calculated. Note that in some cases, the general average EVM may be calculated only for the purpose of timing selection for the demodulation reference signal EVM.

Then the results are further averaged to get the EVM for the demodulation reference signal, \(EVM_{DMRS} \).

\[
EVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{j=1}^{6} EVM_{DMRS,j}^2}
\]
The PRACH EVM, EVM_{PRACH}, is averaged over two preamble sequence measurements for preamble formats 0, 1, 2, 3, and it is averaged over 10 preamble sequence measurements for preamble format 4.

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $EVM_{PRACH,I}$ is calculated using $\Delta \tilde{I} = \Delta \tilde{I}_I$ and $EVM_{PRACH,h}$ is calculated using $\Delta \tilde{I} = \Delta \tilde{I}_h$.

Thus we get:

$$EVM_{PRACH} = \max(EVM_{PRACH,I}, EVM_{PRACH,h})$$

F.7 Spectrum Flatness

The data shall be taken from FFT coded data symbols and the demodulation reference symbols of the allocated resource block.
Annex G (informative):
Reference sensitivity level in lower SNR

This annex contains information on typical receiver sensitivity when HARQ transmission is enabled allowing operation in lower SNR regions (HARQ is disabled in conformance testing), thus representing the configuration normally used in live network operation under noise-limited conditions.

G.1 General

The reference sensitivity power level P_{SENS} with HARQ retransmission enabled (operation in lower SNR) is the minimum mean power applied to both the UE antenna ports at which the residual BLER after HARQ shall meet or exceed the requirements for the specified reference measurement channel. The residual BLER after HARQ transmission is defined as follows:

$$BLER_{residual} = 1 - \frac{A}{B}$$

A: Number of correctly decoded MAC PDUs

B: Number of transmitted MAC PDUs (Retransmitted MAC PDUs are not counted)

G.2 Typical receiver sensitivity performance (QPSK)

The residual BLER after HARQ shall be lower than 1% for the reference measurement channels as specified in Annexes G.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table G.2-1 and Table G.2-2
Table G.2-1: Reference sensitivity QPSK P_{SENS}

<table>
<thead>
<tr>
<th>E-UTRA Band</th>
<th>1.4 MHz (dBm)</th>
<th>3 MHz (dBm)</th>
<th>5 MHz (dBm)</th>
<th>10 MHz (dBm)</th>
<th>15 MHz (dBm)</th>
<th>20 MHz (dBm)</th>
<th>Duplex Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>2</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>3</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>4</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>5</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>6</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>7</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>8</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>9</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>10</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>11</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>12</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>13</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>14</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>18</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>19</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>20</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>21</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>22</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td>23</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>34</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>35</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>36</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>37</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>38</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>39</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>40</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>41</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
<tr>
<td>42</td>
<td>[-102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDD</td>
</tr>
</tbody>
</table>

Note 1: The transmitter shall be set to P_{UMAX} as defined in clause 6.2.5

Note 2: Reference measurement channel is G.3 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

Note 3: The signal power is specified per port

Note 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

Note 5: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.

Table G.2-2 specifies the minimum number of allocated uplink resource blocks for which the reference receive sensitivity requirement in lower SNR must be met.
Table G.2-2: Minimum uplink configuration for reference sensitivity

<table>
<thead>
<tr>
<th>E-UTRA Band</th>
<th>Channel bandwidth</th>
<th>NRB</th>
<th>Duplex Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>2</td>
<td>3 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>3</td>
<td>5 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>4</td>
<td>10 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>5</td>
<td>15 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>6</td>
<td>20 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>7</td>
<td>3 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>8</td>
<td>5 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>9</td>
<td>10 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>10</td>
<td>15 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>11</td>
<td>20 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>12</td>
<td>3 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>13</td>
<td>5 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>14</td>
<td>10 MHz</td>
<td>[6]</td>
<td>FDD</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>FDD</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
<tr>
<td>34</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
<tr>
<td>35</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
<tr>
<td>38</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
<tr>
<td>39</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
<tr>
<td>41</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
<tr>
<td>42</td>
<td>50</td>
<td>50</td>
<td>TDD</td>
</tr>
</tbody>
</table>

Note

1. The UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).
2. For the UE which supports both Band 11 and Band 21 the minimum uplink configuration for reference sensitivity is FFS.
3. For Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RBstart _11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RBstart _16.

Unless given by Table G.2-3, the minimum requirements specified in Tables G.2-1 and G.2-2 shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.
Table G.2-3: Network Signalling Value for reference sensitivity

<table>
<thead>
<tr>
<th>E-UTRA Band</th>
<th>Network Signalling value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NS_03</td>
</tr>
<tr>
<td>4</td>
<td>NS_03</td>
</tr>
<tr>
<td>10</td>
<td>NS_03</td>
</tr>
<tr>
<td>12</td>
<td>NS_06</td>
</tr>
<tr>
<td>13</td>
<td>NS_06</td>
</tr>
<tr>
<td>14</td>
<td>NS_06</td>
</tr>
<tr>
<td>17</td>
<td>NS_06</td>
</tr>
<tr>
<td>19</td>
<td>NS_08</td>
</tr>
<tr>
<td>21</td>
<td>NS_09</td>
</tr>
<tr>
<td>23</td>
<td>NS_03</td>
</tr>
<tr>
<td>35</td>
<td>NS_03</td>
</tr>
<tr>
<td>36</td>
<td>NS_03</td>
</tr>
</tbody>
</table>

G.3 Reference measurement channel for REFSENSE in lower SNR

Tables G.3-1A and G.3-2 are applicable for Annex G.2 (Reference sensitivity level in lower SNR).

Table G.3-1 Fixed Reference Channel for Receiver Requirements (FDD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Subcarriers per resource block</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Target Coding Rate</td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of HARQ transmissions</td>
<td></td>
<td>[4]</td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td>4392</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>4392</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>24</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>2400</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 4)</td>
<td>Bits</td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>12960</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td>Bits</td>
<td>13800</td>
</tr>
<tr>
<td>For Sub-Frames 1,2,3,4,6,7,8,9</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td>Bits</td>
<td>3952.8</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td>Bits</td>
<td>8</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>kbps</td>
<td>3952.8</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>1-8</td>
</tr>
</tbody>
</table>

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz
Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
Note 4: Redundancy version coding sequence is {0, 1, 2, 3} for QPSK.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Bandwidth</td>
<td>MHz</td>
<td>10</td>
</tr>
<tr>
<td>Allocated resource blocks</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Uplink-Downlink Configuration (Note 5)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allocated subframes per Radio Frame (D+S)</td>
<td></td>
<td>4+2</td>
</tr>
<tr>
<td>Number of HARQ Processes</td>
<td>Processes</td>
<td>7</td>
</tr>
<tr>
<td>Maximum number of HARQ transmission</td>
<td></td>
<td>[4]</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td></td>
</tr>
<tr>
<td>Target coding rate</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>Information Bit Payload per Sub-Frame</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 4, 9</td>
<td></td>
<td>4392</td>
</tr>
<tr>
<td>For Sub-Frame 1, 6</td>
<td></td>
<td>3240</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>4392</td>
</tr>
<tr>
<td>Transport block CRC</td>
<td>Bits</td>
<td>24</td>
</tr>
<tr>
<td>Number of Code Blocks per Sub-Frame (Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 4, 9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 1, 6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Binary Channel Bits Per Sub-Frame</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>For Sub-Frame 4, 9</td>
<td></td>
<td>13800</td>
</tr>
<tr>
<td>For Sub-Frame 1, 6</td>
<td></td>
<td>11256</td>
</tr>
<tr>
<td>For Sub-Frame 5</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>For Sub-Frame 0</td>
<td></td>
<td>13104</td>
</tr>
<tr>
<td>Max. Throughput averaged over 1 frame</td>
<td>kbps</td>
<td>1965.6</td>
</tr>
<tr>
<td>UE Category</td>
<td></td>
<td>1-5</td>
</tr>
</tbody>
</table>

Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.

Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.

Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: As per Table 4.2-2 in TS 36.211 [4].

Note 6: Redundancy version coding sequence is {0, 1, 2, 3} for QPSK.
Annex H (informative):
Change history

Table G.1: Change History

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG#</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Subject</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-2007</td>
<td>R4#45</td>
<td>R4-72206</td>
<td></td>
<td>TS36.101v0.1.0 approved by RAN4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2007</td>
<td>RP#38</td>
<td>RP-070979</td>
<td></td>
<td>Approved version at TSG RAN #38</td>
<td>1.0.0</td>
<td>8.0.0</td>
</tr>
<tr>
<td>03-2008</td>
<td>RP#39</td>
<td>RP-080123</td>
<td>3</td>
<td>TS36.101 - Combined updates of E-UTRA UE requirements</td>
<td>8.0.0</td>
<td>8.1.0</td>
</tr>
<tr>
<td>05-2008</td>
<td>RP#40</td>
<td>RP-080325</td>
<td>4</td>
<td>TS36.101 - Combined updates of E-UTRA UE requirements</td>
<td>8.1.0</td>
<td>8.2.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>5r1</td>
<td>Addition of Ref Sens figures for 1.4MHz and 3MHz Channel bandwidths</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>7r1</td>
<td>Transmitter intermodulation requirements</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>10</td>
<td>CR for clarification of additional spurious emission requirement</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>15</td>
<td>Correction of In-band Blocking Requirement</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>18r1</td>
<td>TS36.101: CR for section 6: NS. 06</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>19r1</td>
<td>TS36.101: CR for section 6: Tx modulation</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>20r1</td>
<td>TS36.101: CR for UE minimum power</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>21r1</td>
<td>TS36.101: CR for UE OFF power</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>24r1</td>
<td>TS36.101: CR for section 7: Band 13 Rx sensitivity</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>26</td>
<td>UE EVM Windowing</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080638</td>
<td>29</td>
<td>Absolute ACLR limit</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>23r2</td>
<td>TS36.101: CR for section 6: UE to UE co-existence</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>30</td>
<td>Removal of [] for UE Ref Sens figures</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>31</td>
<td>Correction of PA, PB definition to align with RAN1 specification</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>37r2</td>
<td>UE Spurious emission band UE co-existence</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>44</td>
<td>Definition of specified bandwidths</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>48r3</td>
<td>Addition of Band 17</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>50</td>
<td>Alignment of the UE ACS requirement</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>52r1</td>
<td>Frequency range for Band 12</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>54r1</td>
<td>Absolute power tolerance for LTE UE power control</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080731</td>
<td>55</td>
<td>TS36.101 section 6: Tx modulation</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080732</td>
<td>56</td>
<td>Absolute ACLR definition for UE Receiver tests</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>09-2008</td>
<td>RP#41</td>
<td>RP-080732</td>
<td>60</td>
<td>UL EVM equalizer definition</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080907</td>
<td>63</td>
<td>Correction of spurious response parameters</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080909</td>
<td>66</td>
<td>Clarification for UE additional spurious emissions</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080909</td>
<td>72</td>
<td>Introducing ACLR requirement for coexistence with UTRA 1.6MHz channel</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080909</td>
<td>75</td>
<td>Removal of [] from Section 6 transmitter characteristics</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080909</td>
<td>81</td>
<td>Clarification for PHS band protection</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080909</td>
<td>101</td>
<td>Alignment for the measurement interval for transmit signal quality</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080909</td>
<td>98r1</td>
<td>Maximum power</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080909</td>
<td>57r1</td>
<td>CR UE spectrum flatness</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080909</td>
<td>71r1</td>
<td>UE in-band emission</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080909</td>
<td>58r1</td>
<td>CR Number of TX exceptions</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080951</td>
<td>99r2</td>
<td>CR UE output power dynamic</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080951</td>
<td>79r1</td>
<td>LTE UE transmitter intermodulation</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080910</td>
<td>91</td>
<td>Update of Clause 8</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080950</td>
<td>106r1</td>
<td>Structure of Clause 9 including CSI requirements for PUCCH mode 1.0</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080911</td>
<td>59</td>
<td>CR UE ACS test frequency offset</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080911</td>
<td>65</td>
<td>Correction of spurious response parameters</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080911</td>
<td>80</td>
<td>Removal of LTE UE narrowband intermodulation</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080911</td>
<td>90r1</td>
<td>Introduction of Maximum Sensitivity Degradation</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>Date</td>
<td>RP#</td>
<td>ID</td>
<td>Description</td>
<td>8.3.0</td>
<td>8.4.0</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>--------</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080911</td>
<td>103 Removal of [] from Section 7 Receiver characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080912</td>
<td>62 Alignment of TB size n Ref Meas channel for RX characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080912</td>
<td>78 TDD Reference Measurement channel for RX characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080912</td>
<td>73r1 Addition of 64QAM DL referenbce measurement channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080912</td>
<td>74r1 Addition of UL Reference Measurement Channels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080912</td>
<td>104 Reference measurement channels for PDSCH performance requirements (TDD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080913</td>
<td>68 MIMO Correlation Matrix Corrections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080915</td>
<td>67 Correction to the figure with the Transmission Bandwidth configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080916</td>
<td>77 Modification to EARFCN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080917</td>
<td>85r1 New Clause 5 outline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080919</td>
<td>102 Introduction of Bands 12 and 17 in 36.101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2008</td>
<td>RP#42</td>
<td>RP-080927</td>
<td>84r1 Clarification of HST propagation conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>156r2 A-MPR table for NS_07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>170 Corrections of references (References to tables and figures)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>108 Removal of [] from Transmitter Intermodulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>155 E-UTRA ACLR for below 5 MHz bandwidths</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>116 Clarification of PHS band including the future plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>119 Spectrum emission mask for 1.4 MHz and 3 MHz bandwidths</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>120 Removal of "Out-of-synchronization handling of output power" heading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>126 UE uplink power control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>128 Transmission BW Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>130 Spectrum flatness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>132r2 PUCCH EVM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>134 UL DM-RS EVM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090170</td>
<td>140 Removal of ALCR2bis requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090171</td>
<td>113 In-band blocking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090171</td>
<td>127 In-band blocking and sensitivity requirement for band 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090171</td>
<td>137r1 Wide band intermodulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090171</td>
<td>141 Correction of reference sensitivity power level of Band 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090172</td>
<td>109 AWGN level for UE DL demodulation performance tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090172</td>
<td>124 Update of Clause 8: additional test cases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090172</td>
<td>139r1 Performance requirement structure for TDD PDSCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090172</td>
<td>142r1 Performance requirements and reference measurement channels for TDD PDSCH demodulation with UE-specific reference symbols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090172</td>
<td>145 Number of information bits in DwPTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090172</td>
<td>160r1 MBSFN-Unicast demodulation test case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090172</td>
<td>163r1 MBSFN-Unicast demodulation test case for TDD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090173</td>
<td>162 Clarification of EARFCN for 36.101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090369</td>
<td>110 Correction to UL Reference Measurement Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090369</td>
<td>114 Addition of MIMO (4x4, medium) Correlation Matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090369</td>
<td>121 Correction of 36.101 DL RMC table notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090369</td>
<td>125 Update of Clause 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090369</td>
<td>138r1 Clarification on OCNG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090369</td>
<td>161 CQI reference measurement channels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090369</td>
<td>164 PUCCH 1-1 Static Test Case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#43</td>
<td>RP-090369</td>
<td>111 Reference Measurement Channel for TDD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-2009</td>
<td>RP#44</td>
<td>RP-090540</td>
<td>167 Boundary between E-UTRA I0OB and spurious emission domain for 1.4 MHz and 3 MHz bandwidths. (Technically Endorsed CR in R4-50bis - R4-091205)</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>RP-090540</td>
<td>168 EARFCN correction for TDD DL bands. (Technically Endorsed CR in R4-50bis - R4-091206)</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>RP-090540</td>
<td>169 Editorial correction to in-band blocking table. (Technically Endorsed CR in R4-50bis - R4-091233)</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>RP-090540</td>
<td>171 CR PRACH EVM. (Technically Endorsed CR in R4-50bis - R4-091233)</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>RP#</td>
<td>CR</td>
<td>Text</td>
<td>Release</td>
<td>CR Type</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----</td>
<td>--</td>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>172</td>
<td>CR: EVM correction. (Technically Endorsed CR in R4-50bis - R4-091309)</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>177</td>
<td>CR: power control accuracy. (Technically Endorsed CR in R4-50bis - R4-091418)</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>179</td>
<td>Correction of SRS requirements. (Technically Endorsed CR in R4-50bis - R4-091426)</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>186</td>
<td>Clarification for EVM. (Technically Endorsed CR in R4-50bis - R4-091512)</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>187</td>
<td>Removal of [] from band 17 Refens values and ACS offset frequencies</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>191</td>
<td>Completion of band 17 requirements</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>192</td>
<td>Removal of 1.4 MHz and 3 MHz bandwidths from bands 13, 14 and 17.</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>223</td>
<td>Correction of SRS requirements. (Technically Endorsed CR in R4-50bis - R4-091426)</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>227</td>
<td>Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths into band 38</td>
<td>8.5.1</td>
<td>8.6.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#44</td>
<td>236</td>
<td>Operating band edge relaxation of maximum output power for Band 18 and 19</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>05-2009</td>
<td>RP#45</td>
<td>225</td>
<td>LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>227</td>
<td>Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>233</td>
<td>Operating band edge relaxation of maximum output power for Band 18 and 19</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>238</td>
<td>Addition of 5MHz channel bandwidth for Band 40</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>245</td>
<td>Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>261</td>
<td>Correction of LTE UE ACS test parameter</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>263R1</td>
<td>Correction of LTE UE ACLR test parameter</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>286</td>
<td>Uplink power and RB allocation for receiver tests</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>320</td>
<td>CR: Sensitivity relaxation for small BW</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>324</td>
<td>Correction of Band 3 spurious emission band UE co-existence</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>249R1</td>
<td>CR: Pmax definition (working assumption)</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>330</td>
<td>Spectrum flatness clarification</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>RP#</td>
<td>RP</td>
<td>Note</td>
<td>Version</td>
<td>Release</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090877</td>
<td>Transmit power: removal of TC and modification of REFSENS note</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>332</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090877</td>
<td>Additional SRS relative power update and requirement of measurement definition</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>282R1</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090877</td>
<td>Power range applicable for relative tolerance</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>284R1</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>TDD UL/DL configurations for CQI reporting</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>233</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>Further clarification on CQI test configurations</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>235</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>Corrections to UL- and DL-RMC-s</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>243</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>Reference measurement channel for multiple PMI requirements</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>247</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>CQI reporting test for a scenario with frequency-selective interference</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>290</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>Additional SRS relative power requirement and update of measurement definition</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>282R1</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>Power range applicable for relative tolerance</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>284R1</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>TDD UL/DL configurations for CQI reporting</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>233</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>Further clarification on CQI test configurations</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>235</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>Corrections to UL- and DL-RMC-s</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>243</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>Reference measurement channel for multiple PMI requirements</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>247</td>
</tr>
<tr>
<td>09-2009</td>
<td>RP#45</td>
<td>RP-090878</td>
<td>CQI reporting test for a scenario with frequency-selective interference</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td>290</td>
</tr>
</tbody>
</table>

EUTSI

ETSI TS 136 130 V10.13.0 (2014-03)
<table>
<thead>
<tr>
<th>Date</th>
<th>RP</th>
<th>Document ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-2009</td>
<td>RP-46</td>
<td>RP-091264</td>
<td>Correction of the payload size for PDCCH/PCFICH performance requirements</td>
</tr>
<tr>
<td>12-2009</td>
<td>RP-46</td>
<td>RP-091263</td>
<td>Transport format and test point updates to RI reporting test cases</td>
</tr>
<tr>
<td>12-2009</td>
<td>RP-46</td>
<td>RP-091263</td>
<td>Transport format and test setup updates to frequency-selective interference CQI tests</td>
</tr>
<tr>
<td>12-2009</td>
<td>RP-46</td>
<td>RP-091263</td>
<td>CR RI reporting configuration in PUCCH 1-1 test</td>
</tr>
<tr>
<td>12-2009</td>
<td>RP-46</td>
<td>RP-091261</td>
<td>Addition of R.11-1 TDD references</td>
</tr>
<tr>
<td>12-2009</td>
<td>RP-46</td>
<td>RP-091232</td>
<td>Performance requirements for LTE MBMS</td>
</tr>
<tr>
<td>12-2009</td>
<td>RP-46</td>
<td>RP-091262</td>
<td>In Band Emissions Requirements Correction CR</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100246</td>
<td>Corrections of various errors in the UE RF requirements</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100246</td>
<td>UTRA ACLR measurement bandwidths for 1.4 and 3 MHz</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100246</td>
<td>Band 8: Coexistence Requirement Table Correction</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100246</td>
<td>Rel 9 CR for Band 14</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100246</td>
<td>CR Band 1- PHS coexistence</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100247</td>
<td>Fading CQI requirements for FDD mode</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100247</td>
<td>CR correction to RI test</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100249</td>
<td>Reporting mode, Reporting interval and Editorial corrections for demodulation</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100249</td>
<td>Corrections to 1PRB PDSCH performance test in presence of MBSFN.</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100249</td>
<td>CCNG corrections</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100249</td>
<td>Addition of ONCNG configuration in DRS performance test</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100249</td>
<td>PDSCH performance tests for low UE categories</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100250</td>
<td>Use of ONCNG in CSI tests</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100250</td>
<td>Corrections to CQI test configurations</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100250</td>
<td>Corrections of some CSI test parameters</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100251</td>
<td>TBS correction for RMC UL TDD 16QAM full allocation BW 1.4 MHz</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100262</td>
<td>Editorial corrections on Band 19 REFSENS</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100262</td>
<td>Band 20 UE RF requirements</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100262</td>
<td>A-MPR for Band 21</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100264</td>
<td>RF requirements for UE in later releases</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100268</td>
<td>36.101 CR: Editorial corrections on LTE MBMS reference measurement channels</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100268</td>
<td>The definition of the Doppler shift for LTE MBSFN Channel Model</td>
</tr>
<tr>
<td>03-2010</td>
<td>RP-47</td>
<td>RP-100239</td>
<td>Modification of the spectral flatness requirement and some editorial corrections</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100619</td>
<td>Corrections of tables for Additional Spectrum Emission Mask</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100619</td>
<td>Correction of transient time definition for EVM requirements</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100619</td>
<td>CR on UE coexistence requirement</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100619</td>
<td>Correction of antenna configuration and beam-forming model for DRS</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100619</td>
<td>CR: Corrections on MIMO demodulation performance requirements</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100619</td>
<td>Corrections on the definition of PCMAX</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100619</td>
<td>Relaxation of the PDＳCH demodulation requirements due to control channel errors</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100619</td>
<td>Correction of the UE output power definition for RX tests</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100620</td>
<td>Fading CQI requirements for TDD mode</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100620</td>
<td>Correction to FRC for CQI index 0</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100620</td>
<td>Correction to CQI test configuration</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100620</td>
<td>Correction of CQI and PMI delay configuration description for TDD</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100620</td>
<td>Correction to FDD and TDD CSI test configurations</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100620</td>
<td>Minimum requirements for Rank indicator reporting</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100628</td>
<td>LTE MBMS performance requirements (FDD)</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100628</td>
<td>LTE MBMS performance requirements (TDD)</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100629</td>
<td>Performance requirements for dual-layer beamforming</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100630</td>
<td>CR: low Category CSI requirement</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100630</td>
<td>Correction of FRC reference and test case numbering</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100630</td>
<td>Correction of carrier frequency and EARFCN of Band 21 for TS36.101</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100630</td>
<td>Addition of PDSCH TDD DRS demodulation tests for Low UE categories</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100630</td>
<td>Specification of minimum performance requirements for low UE category</td>
</tr>
<tr>
<td>06-2010</td>
<td>RP-48</td>
<td>RP-100631</td>
<td>Add CCNG to MBMS requirements</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100916</td>
<td>Correction of PDCCH content for PHICH test</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100920</td>
<td>Beamforming model for transmission on antenna port 7/8</td>
</tr>
<tr>
<td>Date</td>
<td>RP</td>
<td>Document Number</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100920</td>
<td>Correction of full correlation in frequency-selective CQI test</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100920</td>
<td>Reference sensitivity requirements for the 1.4 and 3 MHz bandwidths</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100914</td>
<td>CR for DL sustained data rate test</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100920</td>
<td>Correction of references in section 10 (MBMS performance requirements)</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100914</td>
<td>Band 13 and Band 14 spurious emission corrections</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100919</td>
<td>Rx Requirements</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100914</td>
<td>Additional minimum performance requirements for low UE category TDD tests</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100914</td>
<td>Downlink power for receiver tests</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100920</td>
<td>OCNG use and power in beamforming tests</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100916</td>
<td>Throughput for multi-datastream transmissions</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100914</td>
<td>Missing note in Additional spurious emission test with NS_07</td>
</tr>
<tr>
<td>09-2010</td>
<td>RP-49</td>
<td>RP-100927</td>
<td>CR LTE_TDD_2600_US spectrum band definition additions to TS 36.101</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101309</td>
<td>Demodulation performance requirements for dual-layer beamforming</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101325</td>
<td>Correction on the statement of TB size and subband selection in CSI tests</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101327</td>
<td>Correction to Band 12 frequency range</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101329</td>
<td>Removal of [] from TDD Rank Indicator requirements</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101329</td>
<td>Test configuration corrections to CQI TDD reporting in AWGN (Rel-10)</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101330</td>
<td>EVM window length for PRACH</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101330</td>
<td>Removal of NS signalling from TDD RFSENS tests</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101330</td>
<td>Correction of Note 4 In Table 7.3.1-1: Reference sensitivity QPSK PREFSENS</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101341</td>
<td>Add 20 RB UL Ref Meas channel</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101341</td>
<td>Additional in-band blocking requirement for Band 12</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101341</td>
<td>Further clarifications for the Sustained Downlink Data Rate Test</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101341</td>
<td>Correction on MBMS performance requirements</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101349</td>
<td>CR Removing brackets of Band 41 reference sensitivity to TS 36.101</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101356</td>
<td>Band 42 and 43 parameters for UMTS/LTE 3500 (TDD) for TS 36.101</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101359</td>
<td>CR for CA, UL-MIMO, eDL-MIMO, CPE</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101361</td>
<td>Introduction of L-band in TS 36.101</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101379</td>
<td>Correction on the PMI reporting in Multi-Layer Spatial Multiplexing performance test</td>
</tr>
<tr>
<td>12-2010</td>
<td>RP-50</td>
<td>RP-101380</td>
<td>Adding antenna configuration in CQI fading test case</td>
</tr>
<tr>
<td>01-2011</td>
<td>RP-49</td>
<td>RP-100920</td>
<td>Reference sensitivity requirements for the 1.4 and 3 MHz bandwidths</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110359</td>
<td>Definition of configured transmitted power for Rel-10</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110359</td>
<td>Removal of E-UTRA ACLR for CA</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110338</td>
<td>PSDCCH and PHICH performance: OCNG and power settings</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110338</td>
<td>Spurious emissions measurement uncertainty</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110352</td>
<td>RFSENSE in lower SNR</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110338</td>
<td>PMI performance: Power settings and preceding granularity</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110359</td>
<td>Definition of configured transmitted power for Rel-10</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110359</td>
<td>Removal of E-UTRA ACLR for CA</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110338</td>
<td>Removing the square bracket for TS36.101</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110349</td>
<td>Removal of square brackets for dual-layer beamforming demodulation performance requirements</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110349</td>
<td>CR: Maximum input level for intra band CA</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110349</td>
<td>UC category coverage for dual-layer beamforming</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110343</td>
<td>Further clarifications for the Sustained Downlink Data Rate Test</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110343</td>
<td>Removal of square brackets in sustained data rate tests</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110337</td>
<td>Clarification to LTE relative power tolerance table</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110349</td>
<td>Introducing UE-selected subband CQI tests</td>
</tr>
<tr>
<td>03-2011</td>
<td>RP-51</td>
<td>RP-110349</td>
<td>Verification framework for PUSCH 2-2 and PUSCH 2-1 reporting</td>
</tr>
<tr>
<td>04-2011</td>
<td>RP-52</td>
<td>RP-110804</td>
<td>Add Expanded 1900MHz Band (Band 25) in 36.101</td>
</tr>
<tr>
<td>06-2011</td>
<td>RP-52</td>
<td>RP-110795</td>
<td>Fixing Band 24 inclusion in TS 36.101</td>
</tr>
<tr>
<td>Date</td>
<td>RP-ID</td>
<td>CR Number</td>
<td>CR Title</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111248</td>
<td>862r1</td>
<td>Removal of unnecessary channel bandwidths from REFSENS tables</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111248</td>
<td>869r1</td>
<td>Clarification on BS precoding information field for RI FDD and PUCCH 2-1 PMI tests</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111248</td>
<td>872r1</td>
<td>CR for B14Rx requirement Rel 10</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111248</td>
<td>890r1</td>
<td>CR to TS36.101: Correction on the accuracy test of COI</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111248</td>
<td>893</td>
<td>CR to TS36.101: Correction on CQI mapping index of TDD RI test</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111248</td>
<td>904</td>
<td>Correction of code block numbers for some RMCs</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111248</td>
<td>907</td>
<td>Correction to UL RMC for FDD and TDD</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111248</td>
<td>914r1</td>
<td>Adding codebook subset restriction for single layer closed-loop spatial multiplexing test</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111251</td>
<td>883</td>
<td>Sustained data rate: Correction of the ACK/NACK feedback mode</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111251</td>
<td>929</td>
<td>36.101 CR on MBSFN FDD requirements(R10)</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111251</td>
<td>938</td>
<td>TDD MBMS performance requirements for 64QAM mode</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111252</td>
<td>895</td>
<td>Further clarification for the dual-layer beamforming demodulation requirements</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111255</td>
<td>908r1</td>
<td>Introduction of Band 22</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111255</td>
<td>939</td>
<td>Modifications of Band 42 and 43</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111260</td>
<td>944</td>
<td>CR for TS 36.101 Annex B: Static channels for CQI tests</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111262</td>
<td>878r1</td>
<td>Correction of CSI reference channel subframe description</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111262</td>
<td>887</td>
<td>Correction to UL MIMO</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111262</td>
<td>926r1</td>
<td>Power control accuracy for intra-band carrier aggregation</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111262</td>
<td>927r1</td>
<td>In-band emissions requirements for intra-band carrier aggregation</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111262</td>
<td>930r1</td>
<td>Adding the operating band for UL MIMO</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111265</td>
<td>848</td>
<td>Corrections to in-band contiguous CA RX requirements</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111265</td>
<td>863</td>
<td>Intra-band contiguous CA MPR requirement refinement</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111265</td>
<td>866r1</td>
<td>Intra-band contiguous CA EVM</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111266</td>
<td>935</td>
<td>Introduction of the downlink CA demodulation requirements</td>
</tr>
<tr>
<td>09-2011 RP-53</td>
<td>RP-111266</td>
<td>936r1</td>
<td>Introduction of CA UE demodulation requirements for TDD</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111684</td>
<td>947</td>
<td>Corrections of UE categories of Rel-10 reference channels for RF requirements</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111684</td>
<td>948</td>
<td>Alternative way to define channel bandwidths per operating band for</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111686</td>
<td>949</td>
<td>CR for TS36.101: Adding note to the function of MPR</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111680</td>
<td>950</td>
<td>Clarification on applying CSI reports during rank switching in RI</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111734</td>
<td>953r1</td>
<td>Corrections for Band 42 and 43 introduction</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111680</td>
<td>956</td>
<td>UE spurious emissions</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111682</td>
<td>959</td>
<td>Add scrambling identity n_SCID for MU-MIMO test</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111690</td>
<td>960r1</td>
<td>P-MPR definition</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111693</td>
<td>962</td>
<td>Pcmx,c Computation Assumptions</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111733</td>
<td>963r1</td>
<td>Correction of frequency range for spurious emission requirements</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111680</td>
<td>966</td>
<td>General review of the reference measurement channels</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111691</td>
<td>945</td>
<td>Corrections of Rel-10 demodulation performance requirements</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111684</td>
<td>946</td>
<td>Corrections of UE categories for Rel-10 CSI requirements</td>
</tr>
<tr>
<td>12-2011 RP-54</td>
<td>RP-111691</td>
<td>982r2</td>
<td>Introduction of SDR TDD test scenario for CA UE demodulation</td>
</tr>
<tr>
<td>Date</td>
<td>RP</td>
<td>RP-121860/61/62/63/64</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>12-2012</td>
<td>RP-58</td>
<td>1403</td>
<td>CR on eICIC RI test</td>
</tr>
<tr>
<td>12-2012</td>
<td>RP-58</td>
<td>1404</td>
<td>Correction of some errors in reference sensitivity for CA in TS 36.101 (R10)</td>
</tr>
<tr>
<td>12-2012</td>
<td>RP-58</td>
<td>1408r1</td>
<td>Cleaning of 36.101 Performance sections Rel-10</td>
</tr>
<tr>
<td>12-2012</td>
<td>RP-58</td>
<td>1415r1</td>
<td>Out-of-band blocking requirements for inter-band carrier aggregation</td>
</tr>
<tr>
<td>12-2012</td>
<td>RP-58</td>
<td>1417r1</td>
<td>Brackets clean up for eICIC CSI/demodulation</td>
</tr>
<tr>
<td>12-2012</td>
<td>RP-58</td>
<td>1430</td>
<td>Clean up of specification R10</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1514</td>
<td>Corrections to TM4 rank indicator Test 3</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1522</td>
<td>Brackets removal in Rel-10 TM4 rank indicator Test 3</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1527</td>
<td>Corrections to CA co-existence</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1533r2</td>
<td>CR for CA performance requirements</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1535</td>
<td>Corrections for eICIC performance requirements</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1538</td>
<td>Correction of CA power imbalance performance requirements</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1542r3</td>
<td>Clarification of spurious emission domain for CA in TS 36.101 (R10)</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1556r1</td>
<td>CA NS_02 and CA NS_03 A-MPR REL-10</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1561r1</td>
<td>Addition of UE Regional Requirements to Band 23 Based on New Regulatory Order in the US</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1573</td>
<td>Remove [] from CSI test case parameters</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1578</td>
<td>UE-UE co-existence between Band 1 and Band 33/39</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1583r1</td>
<td>Cleanup for CA UE RF requirements</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1585</td>
<td>Corrections on UL configuration for CA UE receiver requirements</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1587</td>
<td>Correction of Transmit modulation quality requirements for CA</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1589</td>
<td>Revision of Common Test Parameters for User-specific Demodulation Tests</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1596</td>
<td>Correction of CA CQI test setup</td>
</tr>
<tr>
<td>03-2013</td>
<td>RP-59</td>
<td>1601</td>
<td>Correction of table reference</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1603</td>
<td>Complementary description for definition of MIMO Correlation Matrices using cross polarized antennas</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1606</td>
<td>Correction of transport format parameters for CQI index 10 (15 RBs) - Rel 10</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1609</td>
<td>Maintenance of Band 23 A-MPR (NS_11) in TS 36.101 (Rel-10)</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1622r1</td>
<td>Correction of test parameters for eICIC performance requirements</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1624</td>
<td>Correction of test parameters for eICIC CSI requirements</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1626r1</td>
<td>Correction of eICIC performance requirements for the multiple PMI Cat 1 UE test cases</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1630</td>
<td>Minor correction for CA CQI test setup</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1655r1</td>
<td>Modification of configured output power to account for larger tolerance</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1680r1</td>
<td>Correction of TS 36.101</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1683</td>
<td>RF: Corrections to RMC-s for sustained data rate test</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1688</td>
<td>Carrier aggregation in multi RAT and multiple band combination terminals</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1690r1</td>
<td>Completion of out-of-band blocking requirements for inter-band CA with one UL</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1694r1</td>
<td>CR on the bandwidth coverage issue of CA demodulation performance (Rel-10)</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1696r1</td>
<td>Correction on UE maximum output power for intra-band CA (R10)</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1702</td>
<td>CR on the bandwidth coverage issue of CA CQI performance(Rel-10)</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1704</td>
<td>Corrections to ACLR for Rel-10 CA</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1708</td>
<td>Corrections for co-existence(Rel-10)</td>
</tr>
<tr>
<td>06-2013</td>
<td>RP-60</td>
<td>1715</td>
<td>Corrections to NS_11 A-MPR Table</td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>1728</td>
<td>CR on applicability of CA sustained data rate tests (Rel-10)</td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>1737</td>
<td>Correction of the CA capabilities for the soft buffer tests (Rel-10)</td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>1759r1</td>
<td>Correction of the missing frequency range for B7 UE co-existence requirements in R10</td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>1765</td>
<td>UE RFSENS when supporting intra-band CA and inter-band CA</td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>1770</td>
<td>Correlation matrix for high speed train demodulation scenarios</td>
</tr>
</tbody>
</table>

ETSI TS 136 101 V10.13.0 (2014-03)
<table>
<thead>
<tr>
<th>Date</th>
<th>RP</th>
<th>CR Number</th>
<th>CR Description</th>
<th>Release 10</th>
<th>Release 11</th>
<th>Release 12</th>
<th>Release 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>RP-131280</td>
<td>1774 Correlations to sustained data rate test (Rel-10)</td>
<td>10.11.0</td>
<td>10.12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>RP-131281</td>
<td>1792r1 Clarification of "multi-cluster" transmission</td>
<td>10.11.0</td>
<td>10.12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>RP-131281</td>
<td>1798r1 CA UE Coexistence Table update (Release 10)</td>
<td>10.11.0</td>
<td>10.12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>RP-131281</td>
<td>1805 Incorrect REFSENS UL allocation for CA_1C</td>
<td>10.11.0</td>
<td>10.12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>RP-131281</td>
<td>1809 Contiguous intraband CA REFSENS with one UL</td>
<td>10.11.0</td>
<td>10.12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>RP-131281</td>
<td>1817 Correction to Rel-10 A-MPR for CA_NS_04: This CR is not implemented as it is based on a wrong version of the Spec</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-2013</td>
<td>RP-61</td>
<td>RP-131281</td>
<td>1818r1 The Pcm max clauses restructured</td>
<td>10.11.0</td>
<td>10.12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131928</td>
<td>1845r1 Corrections to the notes in the band UE co-existence requirements table (Rel-10)</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131928</td>
<td>1850 Clean-up of uplink reference measurement channels (Rel-10)</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131928</td>
<td>1875r2 Intraband CA channel bandwidth combination table restructuring</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131926</td>
<td>1902 Correction on the UE category for cCIC CQI test</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131928</td>
<td>1914r2 Allowed power reductions for multiple transmissions in a subframe</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131927</td>
<td>1943 CR Removing Addition of DTc to P-MPR</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131928</td>
<td>1982r1 Correction to blocking requirements and use of Delta_Rib</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131924</td>
<td>2012 P-max for Band 38 to Band 7 coexistence</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131928</td>
<td>2033r1 Nominal guard bands for CA bandwidth classes A and C</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131926</td>
<td>2038 CA_1C: Correction on CA_NS_02 A-MPR table</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2013</td>
<td>RP-62</td>
<td>RP-131924</td>
<td>2063 Simplification of Band 12/17 in-band blocking test cases that were not implemented as it was not based on the latest version of the Spec</td>
<td>10.12.0</td>
<td>10.13.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V10.1.1</td>
<td>January 2011</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.2.1</td>
<td>May 2011</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.3.0</td>
<td>June 2011</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.4.0</td>
<td>November 2011</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.5.0</td>
<td>January 2012</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.6.0</td>
<td>March 2012</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.7.0</td>
<td>July 2012</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.8.0</td>
<td>November 2012</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.9.0</td>
<td>February 2013</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.10.0</td>
<td>April 2013</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.11.0</td>
<td>July 2013</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.12.0</td>
<td>October 2013</td>
<td>Publication</td>
</tr>
<tr>
<td>V10.13.0</td>
<td>March 2014</td>
<td>Publication</td>
</tr>
</tbody>
</table>