
ETSITS 134 229-1 V5.0.0 (2006-06)

Technical Specification

Universal Mobile Telecommunications System (UMTS); Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Part 1: Protocol conformance specification (3GPP TS 34.229-1 version 5.0.0 Release 5)

Reference
DTS/TSGR-0534229-1v500

Keywords
UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.
All rights reserved.

DECTTM, **PLUGTESTS**TM and **UMTS**TM are Trade Marks of ETSI registered for the benefit of its Members. **TIPHON**TM and the **TIPHON logo** are Trade Marks currently being registered by ETSI for the benefit of its Members. **3GPP**TM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intell	ectual Property Rights	2
Forev	word	2
Forev	word	
Introd	duction	7
1	Scope	
2	References	
3	Definitions, symbols and abbreviations	
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	1
4	Overview	11
4.1	Test Methodology	11
4.1.1	Testing of optional functions and procedures	11
4.2	Implicit Testing	
4.3	Conformance Requirements	12
5	Reference Conditions	12
5.1	Generic setup procedures	12
6	PDP Context Activation	10
6.1	General Purpose PDP Context Establishment	
6.2	General Purpose PDP Context Establishment (UE Requests for a Dedicated PDP Context)	
6.2.1	Definition	
6.2.2	Conformance requirement	
6.2.3	Test purpose	
6.2.4	Method of test	
6.2.5	Test requirements	
6.3	Dedicated PDP Context Establishment	
6.3.1	Definition	
6.3.2	Conformance requirement	15
6.3.3	Test purpose	15
6.3.4	Method of test	
6.3.5	Test requirements	17
7	P-CSCF Discovery	17
7.1	P-CSCF Discovery via PDP Context.	
7.1.1	Definition	
7.1.2	Conformance requirement	17
7.1.3	Test purpose	19
7.1.4	Method of test	19
7.1.5	Test requirements	
7.2	P-CSCF Discovery via DHCP – IPv4	
7.2.1	Definition	
7.2.2	Conformance requirement	
7.2.3	Test purpose	
7.2.4	Method of test	
7.2.5	Test requirements	
7.3	P-CSCF Discovery via DHCP – IPv4 (UE Requests P-CSCF discovery via PCO)	
7.3.1	Definition	
7.3.2	Conformance requirement	
7.3.3 7.3.4	Test purpose	
7.3.4	Test requirements	
7.3.3 7.1	P-CSCE Discovery by DHCP - IPv6	31

7.4.1	Definition	
7.4.2	Conformance requirement	
7.4.3	Test purpose	32
7.4.4	Method of test	32
7.4.5	Test requirements	
7.5	P-CSCF Discovery by DHCP-IPv6 (UE Requests P-CSCF discovery by PCO)	
7.5.1	Definition	
7.5.2	Conformance requirement	
7.5.3	Test purpose	
7.5.4	Method of test	
7.5.5	Test requirements	44
7.6	P-CSCF Discovery by DHCP – IPv6 (UE does not Request P-CSCF discovery by PCO, SS includes P-	
	CSCF Address(es) in PCO)	
7.6.1	Definition	
7.6.2	Conformance requirement	
7.6.3	Test purpose	
7.6.4	Method of test	
7.6.5	Test requirements	51
8	Registration	51
8.1	Initial registration	
8.1.1	Definition and applicability	
8.1.2	Conformance requirement	
8.1.3	Test purpose	
8.1.4	Method of test	
8.1.5	Test requirements	57
8.2	User Initiated Re-Registration	58
8.2.1	Definition	
8.2.2	Conformance requirement	
8.2.3	Test purpose	
8.2.4	Method of test	
8.2.5	Test requirements	
8.3	Mobile Initiated Deregistration	
8.3.1	Definition and applicability	
8.3.2	Conformance requirement	
8.3.3	Test purpose	
8.3.4	Method of test	
8.3.5 8.4	Test Requirements	
8.4.1	Definition and applicability	
8.4.2	Conformance requirement	
8.4.3	Test purpose	
8.4.4	Method of test	
8.4.5	Test requirements.	
	•	
9	Authentication	
9.1	Invalid Behaviour – MAC Parameter Invalid	
9.1.1	Definition	
9.1.2	Conformance requirement	
9.1.3	Test purpose	
9.1.4	Method of test	
9.1.5	Test requirements	
9.2	Invalid Behaviour – SQN out of range	
9.2.1	Definition	
9.2.2	Conformance requirement	
9.2.3	Test purpose	
9.2.4 9.2.5	Method of test	
9.4.3	Test requirements	
10	Subscription	75
10.1	Invalid Behaviour – 503 Service Unavailable	
10.1.1		
10 1 2	Conformance requirement	76

10.1.3	1 1	
10.1.4	Method of test	76
10.1.5	Test requirements	77
11	Notification	
11.1	Network-initiated deregistration	
11.1.1		
11.1.2	1 · · · · · ·	
11.1.3	T T	
11.1.4		
11.1.5	1	
11.2	Network initiated re-authentication	
11.2.1		
11.2.2	1 · · · · · ·	
11.2.3	1 1	
11.2.4		
11.2.5	1	
12	Call Control	
12.1	MO Call Successful	
12.1.1		
12.1.2	1 · · · · · · · · · · ·	
12.1.3	1 1	
12.1.4		
12.1.5	1	
12.2 12.2.1	MO Call – 503 Service Unavailable Definition	
12.2.1		
12.2.2	<u>-</u>	
12.2.3	1 1	
12.2.5		
12.3	MO Call – 488 Not Acceptable Here	
12.3.1	*	
12.3.2		
12.3.3	1	
12.3.4	± ±	
12.3.5		
12.4	Call initiation – Mobile termination	95
12.4.1		
12.4.2	Conformance requirement	95
12.4.3	1 1	
12.4.4		
12.4.5	Test requirements	102
13	Signalling Compression (SIGComp)	
13.1	SigComp in the Initial registration	
13.1.1		
13.1.2	1	
13.1.3	1 1	
13.1.4		
13.1.5	1	
14	Emergency Service	
14.1	Emergency Call Initiation – Using CS domain	
14.1.1		
14.1.2	1	
14.1.3 14.1.4	1 1	
14.1.4		
14.1.3	Emergency Call Initiation – 380 Alternative Service	
14.2.1	· ·	
14.2.2		
14.2.3	1	

14.2.4					
14.2.5	Test requirements				
Anne	x A (normative):	Default Messages	111		
A.1		r IMS Registration			
A.1.1					
A.1.2	401 Unauthorized	for REGISTER	114		
A.1.3		STER			
A.1.4		eg-event package			
A.1.5		CRIBE			
A.1.6		vent package			
A.1.7	423 Interval Too E	rief for REGISTER	119		
A.2	Default messages fo	r Call Setup	120		
A.2.1	INVITE for MO C	'all Setup	120		
A.2.2		VITE			
A.2.3		gress for INVITE			
A.2.4	PRACK		124		
A.2.5					
A.2.6		IVITE			
A.2.7					
A.2.8					
A.2.9	INVITE for MT C	all	129		
A.3	Generic Common M	lessages	130		
A.3.1		requests than REGISTER or SUBSCRIBE			
Anne	x B (normative):	Default DHCP messages	131		
B.1 B.1.1		sages (IPv6)			
B.1.1 B.1.2		TION-REQUEST			
B.1.2					
B.1.4		TSE			
B.2		sages (IPv4)			
B.2.1		R			
B.2.2					
B.2.3 B.2.4					
D.2.4	DHCP ACK		134		
Anne	x C (normative):	Generic Test Procedure	135		
C.1	Introduction		135		
C.2	Generic Registration	n Test Procedure	135		
C.3	Generic DHCP test	procedure for IPv6	137		
C.4	Generic DHCP test	procedure for IPv4	137		
Anne	x D (Informative):	Example values for certain IXIT parameters	138		
	x E (informative):	Change history			
		Change instory			

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is the first part of a multi-part conformance specification valid for 3GPP Release 5 and later releases.

3GPP TS 34.229-1 (the present document): Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification- current document.

3GPP TS 34.229-2 [5]: "Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 2: Implementation Conformance Statement (ICS) proforma specification".

3GPP TS 34.229-3 [6]: "Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 3: Abstract Test Suites (ATS)".

- Note 1: The ATS is written in a standard testing language, TTCN-3, as defined in ETSI ES 201 873 Parts 1 to 3 [36] [37] [38].
- Note 2: For conformance testing of the UTRAN requirements refer to 3GPP TS 34.123 Parts 1 to 3 [2] [3] [4].
- Note 3: Further information on testing can be found in ETSI ETS 300 406[9] and ISO/IEC 9646-1 [7].

For at least a minimum set of services, the prose descriptions of test cases will have a matching detailed test case implemented in TTCN-3 (and provided in 3GPP TS 34.229-3 [6]).

1 Scope

The present document specifies the protocol conformance testing for the User Equipment (UE) supporting the Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP).

This is the first part of a multi-part test specification. The following information can be found in this part:

- the overall test structure;
- the test configurations;
- the conformance requirement and reference to the core specifications;
- the test purposes; and
- a brief description of the test procedure, the specific test requirements and short message exchange table.

The following information relevant to testing can be found in accompanying specifications:

- the applicability of each test case [5].

A detailed description of the expected sequence of messages can be found in the 3rd part of present test specification [6].

The Implementation Conformance Statement (ICS) pro-forma can be found in the 2nd part of the present test specification [5].

The present document is valid for UE implemented according to 3GPP Releases starting from Release 5 up to the Release indicated on the cover page of the present document.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
 - For a Release 1999 UE, references to 3GPP documents are to version 3.x.y, when available.
 - For a Release 4 UE, references to 3GPP documents are to version 4.x.y, when available.
 - For a Release 5 UE, references to 3GPP documents are to version 5.x.y, when available.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 34.123-1: "User Equipment (UE) conformance specification; Part 1: Protocol conformance specification".
- [3] 3GPP TS 34.123-2: "User Equipment (UE) conformance specification; Part 2: Implementation Conformance Statement (ICS) proforma specification".
- [4] 3GPP TS 34.123-3: "User Equipment (UE) conformance specification; Part 3: Abstract Test Suites (ATS)".

[5]	3GPP TS 34.229-2: "Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 2: Implementation Conformance Statement (ICS) proforma specification".
[6]	3GPP TS 34.229-3: "Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 3: Abstract Test Suites (ATS)".
[7]	ISO/IEC 9646-1: "Information technology - Open systems interconnection - Conformance testing methodology and framework - Part 1: General concepts".
[8]	ISO/IEC 9646-7: "Information technology - Open systems interconnection - Conformance testing methodology and framework - Part 7: Implementation Conformance Statements".
[9]	ETSI ETS 300 406: "Methods for testing and Specification (MTS); Protocol and profile conformance testing specifications; Standardization methodology".
[10]	3GPP TS 24.229: "IP Multimedia Call Control Protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3".
[11]	3GPP TS 26.234: "Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs ".
[12]	3GPP TS 24.008: "Mobile Radio Interface Layer 3 specification; Core Network Protocols; Stage 3".
[13]	3GPP TS 33.102: "3GPPSecurity; Security architecture".
[14]	3GPP TS 33.203: "Access security for IP based services".
[15]	RFC 3261: "SIP: Session Initiation Protocol".
[16]	RFC 2617: "HTTP Authentication: Basic and Digest Access Authentication".
[17]	RFC 3310: "Hypertext Transfer Protocol (HTTP) Digest Authentication Using Authentication and Key Agreement (AKA)".
[18]	RFC 3455: "Private Header (P-Header) Extensions to the Session Initiation Protocol (SIP) for the 3rd-Generation Partnership Project (3GPP)"
[19]	RFC 3608: "Session Initiation Protocol (SIP) Extension Header Field for Service Route Discovery During Registration".
[20]	RFC 3327: "Session Initiation Protocol Extension Header Field for Registering Non-Adjacent Contacts".
[21]	RFC 3329: "Security Mechanism Agreement for the Session Initiation Protocol (SIP)".
[22]	RFC 3680: "A Session Initiation Protocol (SIP) Event Package for Registrations".
[23]	RFC 3315: "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".
[24]	RFC 3320: 'Signaling Compression (SigComp)'
[25]	RFC 3485: 'The Session Initiation Protocol (SIP) and Session Description Protocol (SDP) Static Dictionary for Signaling Compression (SigComp)'
[26]	RFC 3486: 'Compressing the Session Initiation Protocol (SIP)'
[27]	RFC 2327: "SDP: Session Description Protocol".
[28]	RFC 2403: "The Use of HMAC-MD5-96 within ESP and AH".
[29]	RFC 2404: "The Use of HMAC-SHA-1-96 within ESP and AH".
[30]	RFC 3264: "An Offer/Answer Model with the Session Description Protocol (SDP)".

[31]	RFC 3312: "Integration of Resource Management and Session Initiation Protocol (SIP)".
[32]	3GPP TS 23.003: "Numbering, addressing and identification".
[33]	RFC 3262: "Registration of provisional responses in Session Initiation Protocol (SIP)".
[34]	RFC 3265: "Session Initiation Protocol (SIP) Specific Event Notification".
[35]	3GPP TR 23.981 'Universal Mobile Telecommunications System (UMTS); Interworking aspects and migration scenarios for IPv4-based IP Multimedia Subsystem (IMS) implementations'.
[36]	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language'.
[37]	ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 2: TTCN-3 Tabular Presentation Format (TFT)".
[18]	ETSI TR 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 3: TTCN-3 Graphical Presentation Format (GFT)".
[39]	3GPP TS 22.101: "Service aspects; Service principles".
[40]	3GPP TS 34.108: "Common test environments for User Equipment (UE); Conformance testing".
[41]	3GPP TS 23.060: "General Packet Radio Service (GPRS); Service description; Stage 2".
[42]	3GPP TS 27.060: "Packet domain; Mobile Station (MS) supporting Packet Switched services".
[43]	3GPP TS 29.061: "Interworking between the Public Land Mobile Network (PLMN) supporting packet based services and Packet Data Networks (PDN)".
[44]	3GPP TS 23.107: "Quality of Service (QoS) concept and architecture".
[45]	3GPP TS 29.207: "Policy control over Go interface".
[46]	3GPP TS 29.208: "End-to-end Quality of Service (QoS) signalling flows".
[47]	RFC 2373: "IP Version 6 Addressing Architecture".
[48]	RFC 3646: "DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".
[49]	RFC 2132: "DHCP Options and BOOTP Vendor Extensions "
[50]	RFC 3263: "Session Initiation Protocol (SIP): Locating SIP Servers".
[51]	RFC 3319: "Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation Protocol (SIP) Servers".
[52]	RFC 1035: "Domain Names - Implementation And Specification".
[53]	RFC 3556: "Session Description Protocol (SDP) Bandwidth Modifiers for RTP Control Protocol (RTCP) Bandwidth".
[54]	RFC 2833: "RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals".
[55]	RFC 2131: "Dynamic Host Configuration Protocol".
[56]	RFC 2782: "A DNS RR for specifying the location of services (DNS SRV)".
[57]	RFC 3361: " Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for Session Initiation Protocol (SIP) Servers".

3 Definitions, symbols and abbreviations

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

3.1 Definitions

For the purposes of the present document, the following additional abbreviations apply:

example: text used to clarify abstract rules by applying them literally

Floor: Floor(x) is the largest integer smaller than or equal to x.

Ceil: Ceil (x) is the smallest integer larger than or equal to x.

3.2 Symbols

For the purposes of the present document, the following additional symbols apply:

None.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AAAA Address (IP v6)

AKA Authentication and Key Agreement

AKAv1-MD5 Authentication and Key Agreement version 1- Message-Digest 5

DUID DHCP Unique Identifier
FQDN Fully Qualified Domain Name

HMAC-MD5-96 Hashing for Message Authentication Code - Message-Digest 5 – 96 (bits)
HMAC-SHA-1-96 Hashing for Message Authentication Code - Secure Hash Algorithm 1 - 96 (bits)

ICS Implementation Conformance Statement

IN INternet IPsec IP Security

IXIT Implementation eXtra Information for Testing
MIME Multi purpose Internet Mail Extensions

NAPTR Naming Authority Pointer

P-CSCF Proxy – Call Session Control Function RTCP Real Time Transport Control Protocol

SIGComp SIGnalling Compression

SRV SeRVice

SS System Simulator

4 Overview

4.1 Test Methodology

4.1.1 Testing of optional functions and procedures

Any function or procedure which is optional, as indicated in the present document, may be subject to a conformance test if it is implemented in the UE.

A declaration by the apparatus supplier (Implementation Conformance Statement (ICS)) is used to determine whether an optional function/procedure has been implemented (see ISO/IEC 9646-7 [8] for general information about ICS).

4.2 Implicit Testing

For some 3GPP signalling and protocol features conformance is not verified explicitly in the present document. This does not imply that correct functioning of these features is not essential, but that these are implicitly tested to a sufficient degree in other tests.

4.3 Conformance Requirements

The Conformance Requirements clauses in the present document are copy/paste from the relevant core specification where skipped text have been replaced with "...". References to clauses in the Conformance Requirements section of the test body refers to clauses in the referred specification, not sections in the present document.

5 Reference Conditions

The test cases are expected to be executed through the 3GPP radio interface. Details of the radio interfaces are outside the scope of this specification. The reference environments used by tests are specified in the test.

5.1 Generic setup procedures

A set of basic generic procedures for PDP Context Activation, P-CSCF Discovery and Registration are described in Annex C. These procedures are used in numerous test cases throughout the present document.

6 PDP Context Activation

6.1 General Purpose PDP Context Establishment

Implicitly tested.

Note: This is implicitly tested as part of generic procedures.

6.2 General Purpose PDP Context Establishment (UE Requests for a Dedicated PDP Context)

6.2.1 Definition

Test to verify that the UE can establish a "General Purpose PDP context" for SIP signalling.

6.2.2 Conformance requirement

Prior to communication with the IM CN subsystem, the UE shall

- a) perform a GPRS attach procedure;
- b) establish a PDP context used for SIP signalling according to the APN and GGSN selection criteria described in 3GPP TS 23.060 and 3GPP TS 27.060. This PDP context shall remain active throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration. As a result, the PDP context provides the UE with information that makes the UE able to construct an IPv6 address;

The UE shall choose one of the following options when performing establishment of this PDP context:

- I.
- II. A general-purpose PDP context:

The UE may decide to use a general-purpose PDP Context to carry IM CN subsystem-related signaling. The UE shall indicate to the GGSN that this is a general-purpose PDP context by not setting the IM CN Subsystem Signalling Flag. The UE may carry both signalling and media on the general-purpose PDP context. The UE can also set the Signalling Indication attribute within the QoS IE.

The UE indicates the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message. Upon successful signalling PDP context establishment the UE receives an indication from GGSN in the form of IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE. If the flag is not received, the UE shall consider the PDP context as a general-purpose PDP context.

The encoding of the IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE is described in 3GPP TS 24.008.

Reference(s)

3GPPTS 24.229[10], clause 9.2.1

6.2.3 Test purpose

To verify that the UE sends a correctly composed Activate PDP context request by setting the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IE.

On receiving Activate PDP Context accept with IM CN Subsystem Signalling Flag not set within the Protocol Configuration Options IE, UE shall consider the PDP context as a General Purpose PDP context for SIP signalling.

6.2.4 Method of test

Initial conditions

The UE is in GMM-state "GMM-REGISTERED, normal service" with valid P-TMSI and CKSN. UE is not registered to IMS services, has not established PDP context for IMS

Related ICS/IXIT Statement(s)

UE capable of being configured to initiate Dedicated PDP Context (Yes/No)

UE Supports IPv4 (Yes/No)

UE Supports IPv6 (Yes/No)

Test procedure

- 1) UE is configured for setting the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IE in Activate PDP Context Request message. UE initiates an Activate PDP Context procedure.
- 2) SS Responds with an Activate PDP Context Accept message by not setting IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE
- 3) UE is made to continue with Registration procedure, Annex C, step 3.

Expected sequence

Step	Direc	tion	Message	Comment
	UE	SS		
1	-	>	Activate PDP Context Request	UE sends this PDU by setting the IM CN
				Subsystem Signalling Flag to the GGSN within the
				Protocol Configuration Options IE
2	· ·	-	Activate PDP Context Accept	SS Sends this response by not setting IM CN
				Subsystem Signalling Flag within the Protocol
				Configuration Options IE
3	+	→	Initiate Annex C step 3	UE is made to continue with Registration procedure
				Annex C step 3

Specific Message Contents:

Activate PDP Context Request (step 1)

IE	Value/Remarks
Protocol Configuration options	
- Additional Parameters	*
container 1 Identifier	0002H (IM CN Subsystem Signaling Flag)
Container 1 Length	0 bytes

^{*}Note: UE may include additional containers also. If multiple containers are present they can be in any order.

Activate PDP Context Accept (step 2)

Case 1: UE supports IPv6 / IPv6 and IPv4

IE	Value/Remarks
Protocol Configuration options	
- Additional Parameters	
container 1 Identifier	0001H (P-CSCF Address) (Included if "P-CSCF Server
	Address Request" is received)
Container 1 Length	16 bytes
Container 1 contents	IPV6 address of SS P-CSCF Server
container 2 Identifier	0003H (DNS Address) (Included if "DNS Server Address
	Request" is received)
Container 2 Length	16 bytes
Container 2 contents	IPV6 address of SS DNS Server

Case 2: UE supports only IPv4

IE	Value/Remarks
Protocol Configuration options	
- Additional Parameters	
container 1 Identifier	0001H (P-CSCF Address)
Container 1 Length	16 bytes
Container 1 contents	IPV4 address of SS P-CSCF encoded as per 3GPP TR
	23.981[35]
container 2 Identifier	0003H (DNS Address) (Included if "DNS Server Address
	Request" is received)
Container 2 Length	16 bytes
Container 2 contents	IPV4 address of SS DNS server encoded as per 3GPP
	TR23.981[35]

6.2.5 Test requirements

1) In step 1, UE sets the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IE.

2) After step 2, UE shall consider the PDP context as a general purpose PDP context for SIP signalling and continue with Registration procedure in Annex C.2 step 3.

6.3 Dedicated PDP Context Establishment

6.3.1 Definition

Test to verify that the UE can establish a "Dedicated PDP context" for SIP signalling.

6.3.2 Conformance requirement

A. Prior to communication with the IM CN subsystem, the UE shall:

- a) perform a GPRS attach procedure;
- b) establish a PDP context used for SIP signalling according to the APN and GGSN selection criteria described in 3GPP TS 23.060 and 3GPP TS 27.060. This PDP context shall remain active throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration. As a result, the PDP context provides the UE with information that makes the UE able to construct an IPv6 address;

The UE shall choose one of the following options when performing establishment of this PDP context:

I. A dedicated PDP context for SIP signalling:

The UE shall indicate to the GGSN that this is a PDP context intended to carry IM CN subsystem-related signalling only by setting the IM CN Subsystem Signalling Flag. The UE may also use this PDP context for DNS and DHCP signalling according to the static packet filters as described in 3GPP TS 29.061 . The UE can also set the Signalling Indication attribute within the QoS IE;

II. A general-purpose PDP context:

The UE may decide to use a general-purpose PDP Context to carry IM CN subsystem-related signaling. The UE shall indicate to the GGSN that this is a general-purpose PDP context by not setting the IM CN Subsystem Signalling Flag. The UE may carry both signalling and media on the general-purpose PDP context. The UE can also set the Signalling Indication attribute within the QoS IE.

The UE indicates the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message. Upon successful signalling PDP context establishment the UE receives an indication from GGSN in the form of IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE. If the flag is not received, the UE shall consider the PDP context as a general-purpose PDP context.

The encoding of the IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE is described in 3GPP TS 24.008.

Reference(s)

3GPPTS 24.229[10], clause 9.2.1.

6.3.3 Test purpose

To verify that on receiving Activate PDP Context accept with IM CN Subsystem Signalling Flag included within the Protocol Configuration Options IE, UE shall consider the PDP context as a Dedicated PDP context for SIP signalling.

6.3.4 Method of test

Initial conditions

The UE is in GMM-state "GMM-REGISTERED, normal service" with valid P-TMSI and CKSN. UE is not registered to IMS services, has not established PDP context.

Related ICS/IXIT Statement(s)

UE capable of being configured to initiate Dedicated PDP Context (Yes/No)

UE Supports IPv4 (Yes/No)

UE Supports IPv6 (Yes/No)

Test procedure

- 1) UE is configured for setting the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IE in Activate PDP Context Request message. UE initiates an Activate PDP Context procedure.
- 2) SS Responds with an Activate PDP Context Accept message by including IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE
- 3) UE is made to continue with Registration procedure, Annex C, step 3.

Expected sequence

Step	Direction	Message	Comment
	UE SS		
1	\rightarrow	Activate PDP Context Request	UE sends this PDU by setting the IM CN
			Subsystem Signalling Flag to the GGSN within the
			Protocol Configuration Options IE
2	←	Activate PDP Context Accept	SS Sends this response by including IM CN
			Subsystem Signalling Flag within the Protocol
			Configuration Options IE
3	$\leftarrow \rightarrow$	Initiate Annex C step 3	UE is made to continue with Registration procedure
		·	Annex C step 3

Specific Message Contents:

Activate PDP Context Request (step 1)

IE	Value/Remarks
Protocol Configuration options	
- Additional Parameters	*
container 1 Identifier	0002H (IM CN Subsystem Signaling Flag)
Container 1 Length	0 bytes

^{*} Note: UE may include additional containers also. If multiple containers are present they can be in any order.

Activate PDP Context Accept (step 2)

Case 1: UE supports IPv6 / IPv6 and IPv4

IE	Value/Remarks
Protocol Configuration options	
- Additional Parameters	
container 1 Identifier	0002H (IM CN Subsystem Signaling Flag)
Container 1 Length	0 bytes
container 2 Identifier	0001H (P-CSCF Address) (Included if "P-CSCF Server
	Address Request" is received)
Container 2 Length	16 bytes
Container 2 contents	IPV6 address of SS P-CSCF Server
container 3 Identifier	0003H (DNS Address) (Included if "DNS Server Address
	Request" is received)
Container 3 Length	16 bytes
Container 3 contents	IPV6 address of SS DNS Server

Case 2: UE supports only IPv4

IE	Value/Remarks
Protocol Configuration options	
- Additional Parameters	
container 1 Identifier	0002H (IM CN Subsystem Signaling Flag)
Container 1 Length	0 bytes
container 2 Identifier	0001H (P-CSCF Address)
Container 2 Length	16 bytes
Container 2 contents	IPV4 address of SS P-CSCF encoded as per 3GPP TR
	23.981
container 3 Identifier	0003H (DNS Address) (Included if "DNS Server Address
	Request" is received)
Container 3 Length	16 bytes
Container 3 contents	IPV4 address of SS DNS server encoded as per 3GPP
	TR 23.981[35]

6.3.5 Test requirements

- 1) In step 1, UE sets the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IE.
- 2) After step 2, UE shall consider the PDP context as a dedicated PDP context for SIP signalling and continue with Registration procedure in Annex C.2 step 3

7 P-CSCF Discovery

7.1 P-CSCF Discovery via PDP Context

7.1.1 Definition

Test to verify that the UE can establish a PDP context for SIP signalling and acquire P-CSCF address(es) during PDP Context Activation procedure.

7.1.2 Conformance requirement

Prior to communication with the IM CN subsystem, the UE shall:

a) perform a GPRS attach procedure;

b) establish a PDP context used for SIP signalling according to the APN and GGSN selection criteria described in 3GPP TS 23.060 and 3GPP TS 27.060. This PDP context shall remain active throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration. As a result, the PDP context provides the UE with information that makes the UE able to construct an IPv6 address;

The UE shall choose one of the following options when performing establishment of this PDP context:

I. ...

II. A general-purpose PDP context:

The UE may decide to use a general-purpose PDP Context to carry IM CN subsystem-related signaling. The UE shall indicate to the GGSN that this is a general-purpose PDP context by not setting the IM CN Subsystem Signalling Flag. The UE may carry both signalling and media on the general-purpose PDP context. The UE can also set the Signalling Indication attribute within the QoS IE.

The UE indicates the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message. Upon successful signalling PDP context establishment the UE receives an indication from GGSN in the form of IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE. If the flag is not received, the UE shall consider the PDP context as a general-purpose PDP context.

The encoding of the IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE is described in 3GPP TS 24.008.

The UE can indicate a request for prioritised handling over the radio interface by setting the Signalling Indication attribute (see 3GPP TS 23.107 [4A]). The general QoS negotiation mechanism and the encoding of the Signalling Indication attribute within the QoS IE are described in 3GPP TS 24.008.

NOTE: A general-purpose PDP Context may carry both IM CN subsystem signaling and media, in case the media does not need to be authorized by Service Based Local Policy mechanisms defined in 3GPP TS 29.207 and the media stream is not mandated by the P-CSCF to be carried in a separate PDP Context.

c) acquire a P-CSCF address(es).

The methods for P-CSCF discovery are:

I. ...

II. Transfer P-CSCF address(es) within the PDP context activation procedure.

The UE shall indicate the request for a P-CSCF address to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message.

If the GGSN provides the UE with a list of P-CSCF IPv6 addresses in the ACTIVATE PDP CONTEXT ACCEPT message or ACTIVATE SECONDARY PDP CONTEXT ACCEPT message, the UE shall assume that the list is prioritised with the first address within the Protocol Configuration Options IE as the P-CSCF address with the highest priority.

From 23.981 [35]:

The existing P-CSCF discovery mechanism are either IPv6 specific or use Release 5 or later GPRS. For an IPv4 based IMS implementation, operators may need other mechanisms not currently defined as possible options in 3GPP IMS.

The following mechanisms need to be evaluated for P-CSCF discovery in IPv4:

a) the address of the P-CSCF can be requested by the UE and returned by the GGSN at PDP context establishment time. An IPv4 UE would need to obtain an IPv4 address as part of this exchange.

If the PDP context established is of PDP type IPv4, then the GGSN may provide an IPv4 P-CSCF address. This does not preclude scenarios, where the GGSN returns an IPv6 P-CSCF address at IPv4 PDP context establishment, e.g. for the support of tunnelling (see subclause 5.3.4.3), or both IPv4 and IPv6 P-CSCF addresses. If the PDP type is IPv4 then it is recommended that the GGSN always return both IP versions, if it is capable, using the existing capabilities to send multiple P-CSCF addresses within the PCO IE.

According to TS 24.008, the P-CSCF address in the PCO field is an IPv6 address. Thus there are at least two possible approaches: The first approach would be to avoid any changes to or deviations from TS 24.008 and use the existing methods to transfer an IPv4 address as an IPv6 address ("IPv6 address with embedded IPv4 address", as defined in RFC 2373.

Reference(s)

3GPPTS 24.229[10], clause 9.2.1, 3GPPTR 23.981[35], clause 5.2.1

7.1.3 Test purpose

To verify that the UE sends a correctly composed Activate PDP context request message requesting for P-CSCF address(es) to the GGSN within the Protocol Configuration Options IE.

On receiving Activate PDP Context accept with IM CN Subsystem Signalling Flag not included within the Protocol Configuration Options IE and list of P-CSCF IPv6/IPv4 addresses included, UE shall consider the PDP context as a general purpose PDP context for SIP signalling and P-CSCF discovery procedure to be successful.

7.1.4 Method of test

Initial conditions

The UE is in GMM-state "GMM-REGISTERED, normal service" with valid P-TMSI and CKSN. UE is not registered to IMS services, has not established PDP context for IMS.

Related ICS/IXIT Statement(s)

UE Supports IPv4 (Yes/No)

UE Supports IPv6 (Yes/No)

UE capable of being configured to initiate P-CSCF Discovery via PCO (Yes/No)

Test procedure

- 1) UE is configured for setting request for a P-CSCF address to the GGSN within the Protocol Configuration Options IE in Activate PDP Context Request message. UE initiates an Activate PDP Context procedure.
- 2) SS responds with an Activate PDP Context Accept including list of P-CSCF IPv6 and IPv4 addresses. IPv4 addresses are encoded as per 23.981[35] clause 5.2.1
- 3) UE is made to initiate Registration procedure for IMS services.

Expected sequence

Step	p Direction		Message	Comment
	UE	SS		
1	\	•	Activate PDP Context Request	UE sends this PDU by setting request for P-CSCF
				address(es) to the GGSN within the Protocol
				Configuration Options IE
2	+	-	Activate PDP Context Accept	SS Sends this response byincluding list of P-CSCF
				addresses
3	→	\rightarrow	Registration	UE is made to initiate Registration procedure to IMS
				services as defined in Annex C Generic
				Registration Procedure.

NOTE: The test sequence is identical for IPv4 and IPv6 except the message contents of Activate PDP Context Accept message. For a UE supporting both IPv4 and IPv6, only IPv6 option need to be executed.

Specific Message Contents:

Activate PDP Context Request (step 1)

Note: Containers can be in any order.

IE	Value/Remarks
Protocol Configuration options	
- Additional Parameters	
container 1 Identifier	0001H (P-CSCF Address Request);
Container 1 Length	0 bytes
container 2 Identifier	0003H (DNS Server Address Request) (Optional)
Container 2 Length	0 bytes

Activate PDP Context Accept (step 2)

Case 1: UE supports IPv6 / IPv6 and IPv4

IE	Value/Remarks
Protocol Configuration options	
- Additional Parameters	
container 1 Identifier	0001H (P-CSCF Address)
Container 1 Length	16 bytes
Container 1 contents	IPV6 address of SS P-CSCF Server
container 2 Identifier	0003H (DNS Address) (Included if "DNS Server Address
	Request" is received)
Container 2 Length	16 bytes
Container 2 contents	IPV6 address of SS DNS Server

Case 2: UE supports only IPv4

IE	Value/Remarks
- Additional Parameters	
Protocol Configuration options	
- Additional Parameters	
container 2 Identifier	0001H (P-CSCF Address)
Container 2 Length	16 bytes
Container 2 contents	IPV4 address of SS encoded as per 3GPP TR 23.981[35]
container 3 Identifier	0003H (DNS Address) (Included if "DNS Server Address
	Request" is received)
Container 3 Length	16 bytes
Container 3 contents	IPV4 address of SS DNS server encoded as per 3GPP
	TR 23.981[35]

7.1.5 Test requirements

- 1) In step 1, UE requests for P-CSCF address to the GGSN within the Protocol Configuration Options IE.
- 3) After step 2, UE shall consider P-CSCF discovery procedure to be successful. and should initiate Registration for IMS services

7.2 P-CSCF Discovery via DHCP – IPv4

7.2.1 Definition

Test to verify that UE will perform P-CSCF discovery procedure via DHCP.

7.2.2 Conformance requirement

A. Prior to communication with the IM CN subsystem, the UE shall:

- a) perform a GPRS attach procedure;
- b) establish a PDP context used for SIP signalling according to the APN and GGSN selection criteria described in 3GPP TS 23.060 and 3GPP TS 27.060. This PDP context shall remain active throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration. As a result, the PDP context provides the UE with information that makes the UE able to construct an IPv6 address;

. . .

c) acquire a P-CSCF address(es).

The methods for P-CSCF discovery are:

 Employ Dynamic Host Configuration Protocol for IPv6 (DHCPv6) RFC 3315, the DHCPv6 options for SIP servers RFC 3319 and the DHCPv6 options for Domain Name Servers (DNS) RFC 3646 after PDP context activation.

The UE shall either:

- in the DHCP query, request a list of SIP server domain names of P-CSCF(s) and the list of Domain Name Servers (DNS); or
- request a list of SIP server IPv6 addresses of P-CSCF(s).

The UE can freely select method I or II for P-CSCF discovery. In case method I is selected and several P-CSCF addresses or FQDNs are provided to the UE, the selection of P-CSCF address or FQDN shall be performed as indicated in RFC 3319 If sufficient information for P-CSCF address selection is not available, selection of the P-CSCF address by the UE is implementation specific.

If the UE is designed to use I above, but receives P-CSCF address(es) according to II, then the UE shall either ignore the received address(es), or use the address(es) in accordance with II, and not proceed with the DHCP request according to I.

The UE may request a DNS Server IPv6 address(es) via RFC 3315 or by the Protocol Configuration Options IE when activating a PDP context according to 3GPP TS 27.060.

From 23.981[35]

b) based on DHCP. Currently the specifications limit this to the IPv6 methods for DHCP. In order for this method to be used by an IPv4 UE, it needs to be identified how IPv4 DHCP is used to obtain the P-CSCF address. A solution that provides access independence would be that an IPv4 P-CSCF and IPv4 UE support configuration of the appropriate P-CSCF information via DHCPv4. In this solution, use of DHCP provides the UE with the fully qualified domain name of a P-CSCF and the address of a Domain Name Server (DNS) that is capable of resolving the P-CSCF name. When using DHCP/DNS procedure for P-CSCF discovery with IPv4 GPRS-access, the GGSN acts as DHCP Relay agent relaying DHCP messages between UE and the DHCP server. This is necessary to allow the UE to properly interoperate with the GGSN. This solution however requires that a UE supporting early IPv4 implementations would support DHCPv4.

Reference(s)

3GPP TS 24.229[10], clause 9.2.1

3GPP TR 23.981[35], clause 5.2.1.

7.2.3 Test purpose

To verify UE shall initiate and successfully complete a P-CSCF discovery procedure via DHCP when P-CSCF address is not provided as part of PDP Context Activation procedure.

7.2.4 Method of test

Initial conditions

The UE is in GMM-state "GMM-REGISTERED, normal service" with valid P-TMSI and CKSN. UE is not registered to IMS services. UE is not configured for using static P-CSCF address. UE has established a PDP context (No P-CSCF address information provided).). If UE sets flag "DNS Server Address Request" in PCO of PDP Context Request, DNS server address list is provided in PDP Context Accept message.

Related ICS/IXIT Statement(s)

UE Supports IPv4 (Yes/No)

UE capable of being configured to initiate P-CSCF Discovery via DHCPv4 (Yes/No)

Test procedure

- 1) If UE already knows DHCP server address, it goes to step 3. Otherwise, UE sends DHCPDISCOVER message locating a server.
- 2) SS responds by DHCPOFFER message.
- 3) UE sends DHCPINFORM message requesting for P-CSCF address(es) in options field.
- 4) SS responds by DHCPACK message providing the domain names of P-CSCF address(es) and giving DNS server address.
- 5) UE initiates a DNS NAPTR query to select the transport protocol. UE"s configured to use specific Transport protocol on default ports, can skip steps 5 to 8 and go directly to step 9.
- 6) SS responds with NAPTR response.
- 7) UE initiates a DNS SRV query.
- 8) SS responds with SRV response.
- 9) UE initiates a DNS A query
- 10) SS responds with DNS A response.
- 11) UE is made to initiate Registration procedure for IMS services.

Expected sequence

Step	Direction	Message	Comment
_	UE SS	7	
1	→	DHCPDISCOVER	Optionally sent if UE does not have DHCP server address.
2	+	DHCPOFFER	Sent if DHCP Discover message is received.
3	\rightarrow	DHCPINFORM	Requesting P-CSCF Address(es)
4	+	DHCPACK	Including P-CSCF Address(es)
5	→	DNS NAPTR Query	UE configured to use specific Transport protocol on default ports, can skip steps 5 to 8 and go directly to step 9
6	+	DNS NAPTR Response	
7	\rightarrow	DNS SRV Query	
8	+	DNS SRV Response	
9	\rightarrow	DNS A Query	
10	+	DNS A Response	
11	←→	Registration	UE is made to initiate Registration procedure to IMS services as defined in Annex C Generic Registration Procedure.

Specific Message Contents:

DHCPDISCOVER (step 1)

Use the default message in annex B

DHCPOFFER (step 2)

Use the default message in annex B

DHCPINFORM (step 3)

Use the default message in annex B with the following exeptions

Field	Value/Remarks
Options	*
- code	53 (DHCP Message Type)
- len	1
-Type	2 (DHCP OFFER)
option-code	55 (Parameter Request List)
- option-len	Set to number of values requested for configuration
·	parameters
Option code	120 (SIP Server Option) **
Option code	6(Domain Server) Optionally present

^{*}Note 1: Other options may also be present

^{**} Note 2:Other option codes may also be present and options can be in any order

DHCPACK (step 4)

Use the default message in annex B.2 with the following exceptions

Field	Value/Remarks
option-code	120 (SIP Server option)
- option-len	Length of encoded server domain address +1 (for enc field)
-enc	0
Domain-address 1	SS P-CSCF server domain AddressRFC 3361[57]
option-code	6 (DNS option RFC 2132[49]))(Included only if requested in DHCP INFORM)
- option-len	4
DNS Address	4 byte IPv4 address of DNS server

DNS NAPTR Query (step 5)

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	P-CSCF domain name received
QCLASS=	IN
QTYPE=	NAPTR

DNS NAPTR Response (step 6)

Field	Value/Remarks
OPCODE=	SQUERY, RESPONSE, AA
QNAME=	Same as received in NAPTR Query
QCLASS=	IN
QTYPE=	NAPTR
NAPTR Records	NAPTR Records included for each Transport protocol (TLS, TCP, UDP) supported RFC 3263[50]

DNS SRV Query (step 7)

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	Corresponding to the transport protocol selected by UE among those provided in DNS NAPTR Response
QCLASS=	IN
QTYPE=	SRV

DNS SRV Response (step 8)

Field	Value/Remarks
OPCODE=	SQUERY, RESPONSE, AA
QNAME=	Same as received in SRV Query
QCLASS=	IN
QTYPE=	NAPTR
SRV Records	SRV Resource Record included providing the SS target server FQDN RFC 3263[50].

DNS A Query (step 9)

Case 1: steps 5 to 8 executed:

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	Selected P-CSCF name among provided in step 8 based on priority and weight RFC 2728[56]
QCLASS=	IN
QTYPE=	A

Case 2: steps 5 to 8 not executed:

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	Selected P-CSCF name among addresses provided in step 4.
QCLASS=	IN
QTYPE=	A

DNS A Response (step 10)

IE	Value/Remarks
OPCODE=	SQUERY, RESPONSE, AA
QNAME=	Same as received in SRV Query
QCLASS=	IN
QTYPE=	A
A or AAAA records	Includes resolved IP address(es).

7.2.5 Test requirements

- 1) In step 3, UE shall initiate a P-CSCF discovery employing DHCP.
- 2) After step 4, UE shall initiate a DNS query for domain address to IPv4 address translation.
- 3) After step 10, UE should have resolved P-CSCF IPv4 address and should initiate Registration procedure to IMS services.

7.3 P-CSCF Discovery via DHCP – IPv4 (UE Requests P-CSCF discovery via PCO)

7.3.1 Definition

Test to verify that on not receiving P-CSCF Address(es) in PCO, UE will perform P-CSCF discovery procedure employing DHCP.

7.3.2 Conformance requirement

Prior to communication with the IM CN subsystem, the UE shall:

- a) perform a GPRS attach procedure;
- b) establish a PDP context used for SIP signalling according to the APN and GGSN selection criteria described in 3GPP TS 23.060 and 3GPP TS 27.060. This PDP context shall remain active throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration. As a result, the PDP context provides the UE with information that makes the UE able to construct an IPv6 address;

...

c) acquire a P-CSCF address(es).

The methods for P-CSCF discovery are:

I. Employ Dynamic Host Configuration Protocol for IPv6 (DHCPv6) RFC 3315, the DHCPv6 options for SIP servers RFC 3319 and the DHCPv6 options for Domain Name Servers (DNS) RFC 3646 after PDP context activation.

The UE shall either:

- in the DHCP query, request a list of SIP server domain names of P-CSCF(s) and the list of Domain Name Servers (DNS); or
- request a list of SIP server IPv6 addresses of P-CSCF(s).
- II. Transfer P-CSCF address(es) within the PDP context activation procedure.

The UE shall indicate the request for a P-CSCF address to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message.

If the GGSN provides the UE with a list of P-CSCF IPv6 addresses in the ACTIVATE PDP CONTEXT ACCEPT message or ACTIVATE SECONDARY PDP CONTEXT ACCEPT message, the UE shall assume that the list is prioritised with the first address within the Protocol Configuration Options IE as the P-CSCF address with the highest priority.

The UE can freely select method I or II for P-CSCF discovery. In case method I is selected and several P-CSCF addresses are provided to the UE, the selection of P-CSCF address or FQDNs shall be performed as indicated in RFC 3319 . If sufficient information for P-CSCF address selection is not available, selection of the P-CSCF address by the UE is implementation specific.

If the UE is designed to use I above, but receives P-CSCF address(es) according to II, then the UE shall either ignore the received address(es), or use the address(es) in accordance with II, and not proceed with the DHCP request according to I.

The UE may request a DNS Server IPv6 address(es) via RFC 3315 or by the Protocol Configuration Options IE when activating a PDP context according to 3GPP TS 27.060.

From 23.981[35]

b) based on DHCP. Currently the specifications limit this to the IPv6 methods for DHCP. In order for this method to be used by an IPv4 UE, it needs to be identified how IPv4 DHCP is used to obtain the P-CSCF address. A solution that provides access independence would be that an IPv4 P-CSCF and IPv4 UE support configuration of the appropriate P-CSCF information via DHCPv4. In this solution, use of DHCP provides the UE with the fully qualified domain name of a P-CSCF and the address of a Domain Name Server (DNS) that is capable of resolving the P-CSCF name. When using DHCP/DNS procedure for P-CSCF discovery with IPv4 GPRS-access, the GGSN acts as DHCP Relay agent relaying DHCP messages between UE and the DHCP server. This is necessary to allow the UE to properly interoperate with the GGSN. This solution however requires that a UE supporting early IPv4 implementations would support DHCPv4.

Reference(s)

3GPP TS 24.229[10], clause 9.2.1

3GPP TR 23.981[35], clause 5.2.1.

7.3.3 Test purpose

To verify that the UE sends a correctly composed Activate PDP context request message requesting for P-CSCF address(es) to the GGSN within the Protocol Configuration Options IE.

On receiving Activate PDP Context accept not including P-CSCF address(es) in PCO, UE will initiate a P-CSCF discovery procedure employing DHCP/DNS.

7.3.4 Method of test

Initial conditions

The UE is in GMM-state "GMM-REGISTERED, normal service" with valid P-TMSI and CKSN. UE is not registered to IMS services, has not established PDP context. UE is not configured for using static P-CSCF address.

Related ICS/IXIT Statement(s)

UE Supports IPv4 (Yes/No)

UE capable of being configured to initiate P-CSCF Discovery via PCO (Yes/No)

UE supports P-CSCF Discovery via PCO and DHCPv4(Yes/No)Test procedure

- 1) UE is configured for requesting P-CSCF address(es) in Protocol Configuration Options IE in Activate PDP Context Request message. UE initiates an Activate PDP Context procedure.
- 2) SS Responds with an Activate PDP Context Accept message by not including P-CSCF Address(es). If a UE already knows DHCP server address, it goes to step 5. If UE sets flag "DNS Server Address Request" in PCO of PDP Context Request, DNS server address list is provided in PDP context Accept message.
- 3) If UE already knows DHCP server address, it goes to step 5. Otherwise, UE sends DHCPDISCOVER message locating a server.
- 4) SS responds by DHCPOFFER message.
- 5) UE sends DHCPINFORM message requesting for P-CSCF address(es) in options field.
- 6) SS responds by DHCPACK message providing the domain names of P-CSCF address(es) and giving a DNS server address.
- 7) UE initiates a DNS NAPTR query to select the transport protocol. UE"s configured to use specific Transport protocol on default ports, can skip steps 7 to 10 and go directly to step 11.
- 8) SS responds with NAPTR response.
- 9) UE initiates a DNS SRV query.
- 10) SS responds with SRV response.
- 11) UE initiates a DNS A or query
- 12) SS responds with DNS A or response

Expected sequence

Step	Direc	tion	Message	Comment
-	UE	SS	7	
1	→	•	Activate PDP Context Request	UE sends this PDU by setting request for P-CSCF address(es) to the GGSN within the Protocol Configuration Options IE
2	←		Activate PDP Context Accept	SS Sends this response by not including P-CSCF address(es).). If UE sets flag "DNS Server Address Request" in PCO of PDP Context Request, DNS server address list is provided in PDP context Accept message .IF UE knows DHCP server address, it goes to step 5.
3	\rightarrow	•	DHCPDISCOVER	Optionally sent if UE does not have DHCP server address.
4	←		DHCPOFFER	Sent if DHCP Discover message is received.
5	\rightarrow		DHCPINFORM	Requesting P-CSCF Address(es)
6	+		DHCPACK	Including P-CSCF Address(es)
7	→	•	DNS NAPTR Query	UE"s configured to use specific Transport protocol on default ports, can skip steps 7 to 10 and go directly to step 11
8	←	•	DNS NAPTR Response	
9	\rightarrow		DNS SRV Query	
10	←	•	DNS SRV Response	
11	\rightarrow		DNS A or AAAA Query	
12	+		DNS A or AAAA Response	
13	←-	→	Registration	UE is made to initiate Registration procedure to IMS services as defined in Annex C Generic Registration Procedure.

Specific Message Contents:

Activate PDP Context Request (step 1)

IE	Value/Remarks
Protocol Configuration options	
- Additional Parameters	
container 1 Identifier	0001H (P-CSCF Address Request)
Container 1 Length	0 bytes

Activate PDP Context Accept (step 2)

IE	Value/Remarks
Protocol Configuration options	Present only if "DNS Server Address Request" received in Request message
Additional Parameterscontainer 1 IdentifierContainer 1 Length	0003H (DNS Address) 16 bytes
Container 1 contents	IPV4 address of SS DNS server encoded as per 3GPP TR 23.981[35]

DHCPDISCOVER (step 3)

Use the default message in annex B.

DHCPOFFER (step 4)

Use the default message in annex B.

DHCPINFORM (step 5)

Use the default message in annex B with the following exceptions:

Field	Value/Remarks
Options	*
- code	53 (DHCP Message Type)
- len	1
-Type	2 (DHCP OFFER)
option-code	55 (Parameter Request List)
- option-len	Set to number of values requested for configuration
	parameters
Option code	120 (SIP Server Option) **
Option code	6(Domain Server) Optionally present

^{*}Note 1: Other options may also be present.

DHCPACK (step 6)

Use the default message in annex B with the following exceptions:

Field	Value/Remarks
option-code	120 (SIP Server option)
- option-len	Length of encoded server domain address +1 (for enc
	field)
-enc	0
Domain-address 1	SS P-CSCF server domain AddressRFC 3361[57]
option-code	6 (DNS option RFC 2132[49]) (Included only if requested
•	in DHCP INFORM)
- option-len	4
DNS Address	4 byte IPv4 address of DNS server

DNS NAPTR Query (step 7)

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	P-CSCF domain name received
QCLASS=	IN
QTYPE=	NAPTR

DNS NAPTR Response (step 8)

Field	Value/Remarks
OPCODE=	SQUERY, RESPONSE, AA
QNAME=	Same as received in NAPTR Query
QCLASS=	IN
QTYPE=	NAPTR
NAPTR Records	NAPTR Records included for each Transport protocol
	(TLS, TCP, UDP) supported RFC 3263[50]

DNS SRV Query (step 9)

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	Corresponding to the transport protocol selected by UE among those provided in DNS NAPTR Response
QCLASS=	IN
QTYPE=	SRV

^{**} Note 2:Other option codes may also be present and options can be in any order.

DNS SRV Response (step 10)

Field	Value/Remarks
OPCODE=	SQUERY, RESPONSE, AA
QNAME=	Same as received in SRV Query
QCLASS=	IN
QTYPE=	NAPTR
SRV Records	SRV Resource Record included providing the SS target server FQDN RFC 3263[50].

DNS A Query (step 11)

Case 1: steps 7 to 10 executed:

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	Selected P-CSCF name among provided in step 8 based on priority and weight RFC 2728[56]
QCLASS=	IN
QTYPE=	A

Case 2: steps 7 to 10 not executed:

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	Selected P-CSCF name among addresses provided in step 6.
QCLASS=	IN
QTYPE=	A

DNS A Response (step 12)

Field	Value/Remarks
OPCODE=	SQUERY, RESPONSE, AA
QNAME=	Same as received in SRV Query
QCLASS=	IN
QTYPE=	A
A records	Includes resolved IP address(es).

7.3.5 Test requirements

- 1) In step 1, UE sets the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IF
- 2) After step 2, UE shall initiate a P-CSCF discovery employing DHCP.
- 3) In step 3, if UE has no knowledge of DHCP server address sends Discover message.
- 4) In step 5, UE shall send DHCPRequest message, including options filed with option code 120.
- 5) After step 6, UE shall initiate DNS query.
- 6) After step 12, UE should have resolved P-CSCF IPv4 address and should initiate Registration procedure to IMS services.

7.4 P-CSCF Discovery by DHCP - IPv6

7.4.1 Definition

Test to verify that UE will perform P-CSCF discovery procedure employing DHCP.

7.4.2 Conformance requirement

Prior to communication with the IM CN subsystem, the UE shall:

- a) perform a GPRS attach procedure;
- b) establish a PDP context used for SIP signalling according to the APN and GGSN selection criteria described in 3GPP TS 23.060 and 3GPP TS 27.060 This PDP context shall remain active throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration. As a result, the PDP context provides the UE with information that makes the UE able to construct an IPv6 address;

. . .

c) acquire a P-CSCF address(es).

The methods for P-CSCF discovery are:

 Employ Dynamic Host Configuration Protocol for IPv6 (DHCPv6) RFC 3315, the DHCPv6 options for SIP servers RFC 3319 and the DHCPv6 options for Domain Name Servers (DNS) RFC 3646 after PDP context activation.

The UE shall either:

- in the DHCP query, request a list of SIP server domain names of P-CSCF(s) and the list of Domain Name Servers (DNS); or
- request a list of SIP server IPv6 addresses of P-CSCF(s).
- II. Transfer P-CSCF address(es) within the PDP context activation procedure.

The UE shall indicate the request for a P-CSCF address to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message.

If the GGSN provides the UE with a list of P-CSCF IPv6 addresses in the ACTIVATE PDP CONTEXT ACCEPT message or ACTIVATE SECONDARY PDP CONTEXT ACCEPT message, the UE shall assume that the list is prioritised with the first address within the Protocol Configuration Options IE as the P-CSCF address with the highest priority.

The UE can freely select method I or II for P-CSCF discovery. In case method I is selected and several P-CSCF addresses or FQDNs are provided to the UE, the selection of P-CSCF address or FQDN shall be performed as indicated in RFC 3319. If sufficient information for P-CSCF address selection is not available, selection of the P-CSCF address by the UE is implementation specific.

If the UE is designed to use I above, but receives P-CSCF address(es) according to II, then the UE shall either ignore the received address(es), or use the address(es) in accordance with II, and not proceed with the DHCP request according to I.

The UE may request a DNS Server IPv6 address(es) via RFC 3315 and RFC 3646 or by the Protocol Configuration Options IE when activating a PDP context according to 3GPP TS 27.060.

Reference(s)

3G TS 24.229[10], clause 9.2.1

7.4.3 Test purpose

UE will initiate P-CSCF discovery procedure employing DHCP.

7.4.4 Method of test

Initial conditions

The UE is in GMM-state "GMM-REGISTERED, normal service" with valid P-TMSI and CKSN. UE is not registered to IMS services. UE has established a PDP context. UE has not received P-CSCF address(es) during PDP context establishment. If UE sets flag "DNS Server Address Request" in PCO of PDP Context Request, DNS server address list is provided in PDP Context Accept message.

Related ICS/IXIT Statement(s)

UE Supports IPv6 (Yes/No)

UE capable of being configured to initiate P-CSCF Discovery via DHCPv6 (Yes/No)

Test procedure

- 1. UE sends DHCP SOLICIT message locating a server.
- 2. SS responds with DHCP ADVERTISE message. If UE requested for domain names or both domain names and IP address(es), SS will include P-CSCF server domain names. If UE requested for IP address only, SS includes IP address(es) of P-CSCF servers. If UE Requested for DNS Server Address, it is provided. If P-CSCF IP addresses are included go to step 11, else go to step 5
- 3. UE sends DHCP Query requesting either IP address(es) of P-CSCF server(s) or domain names of P-CSCF server(s) and DNS Server.
- 4. SS responds by DHCP Reply message. If UE requested for domain names or both domain names and IP address(es), SS will include P-CSCF server domain names. If UE requested for IP address only, SS includes IP address(es) of P-CSCF servers. If UE Requested for DNS Server Address, it is provided. If P-CSCF IP addresses are included go to step 11.
- 5. UE initiates a DNS NAPTR query to select the transport protocol. UE"s configured to use specific Transport protocol on default ports, can skip steps 5 to 8 and go directly to step 11.
- 6. SS responds with NAPTR response.
- 7. UE initiates a DNS SRV query.
- 8. SS responds with SRV response.
- 9. UE initiates a DNS AAAA query
- 10. SS responds with DNS AAAA response.
- 11. UE is made to initiate Registration procedure for IMS services.

Expected sequence

Step	Direction	Message	Comment
-	UE SS	7	
1	\rightarrow	DHCP SOLICIT	
2	←	DHCP ADVERTISE	Sent if DHCP Solicit message is received. Including P-CSCF Address(es). If P-CSCF IP addresses are included go to step 11, else go to step 5
3	\rightarrow	DHCP Information-Request	Requesting P-CSCF Address(es)*
4	+	DHCP Reply	Including P-CSCF Address(es). If P-CSCF IP addresses are included go to step 11.
5	\rightarrow	DNS NAPTR Query	UE"s configured to use specific Transport protocol on default ports, can skip steps 5 to 8 and go directly to step 9
6	+	DNS NAPTR Response	
7	\rightarrow	DNS SRV Query	
8	←	DNS SRV Response	
9	\rightarrow	DNS AAAA Query	
10	+	DNS AAAA Response	
11	←→	Registration	UE is made to initiate Registration procedure to IMS services as defined in Annex A.2 Generic Registration Procedure.

^{*} Note: UE may request all options in one Information Request or send multiple Information Requests. If UE opts for multiple Information Request transmissions, SS transmits accordingly multiple Reply messages including corresponding requested options.

Specific Message Contents:

Step 1: DHCP SOLICIT*

Use the default message in annex B.1 with the following exceptions

Options	Value/Remarks
option-code	OPTION_ORO (6)
- option-len	2 times number of requested options
-requested-option-code-1	OPTION_SIP_SERVER_D (21) OR OPTION_SIP_SERVER_A (22)
- requested-option-code-2	OPTION_DNS_SERVERS (23)
- requested-option-code-3	OPTION_DOMAIN_LIST (24)

*Note: Options can be optionally present and option codes can be in any order

**Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 2: DHCP ADVERTISE

Use the default message in annex B.1 with the following exceptions

Note: Options are included only if corresponding Requests are received.

Case 1: OPTION_SIP_SERVER_D (21)) or both (OPTION_SIP_SERVER_D (21) and OPTION_SIP_SERVER_A (22)) and OPTION_DOMAIN_LIST(24) or OPTION_DNS_SERVERS (23) received in step 1

Options Value/Remarks option-code OPTION_SIP_SERVER_D (21) Length of encoded domain address RFC 3319[51] - option-len SS P-CSCF server domain address RFC 3319[51] Domain-address 1 OPTION_DNS_SERVERS (23) option-code - option-len Length of encoded DNS server address RFC 3646[48] SS DNS server IPv6 address RFC 3646[48] Domain-address 1 option-code OPTION_DOMAIN_LIST (24) - option-len Length of Domain search list searchlist List of Domain Names encoded as per RFC 1035[52]

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Case 2: OPTION_SIP_SERVER_A (22) received in step 1

Options	Value/Remarks
option-code	OPTION_SIP_SERVER_A (22)
- option-len	128
Domain-address 1	IPv6 address of SS P-CSCF Server
option-code	OPTION_DNS_SERVERS (23)
- option-len	Length of encoded DNS server address RFC 3646[48]
Domain-address 1	SS DNS server IPv6 address RFC 3646[48]
option-code	OPTION_DOMAIN_LIST (24)
- option-len	Length of Domain search list
searchlist	List of Domain Names encoded as per RFC 1035[52]

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 3: DHCP Information-Request

Use the default message in annex B.1 with the following exceptions

Options Value/Remarks	
option-code	OPTION_ORO (6)
- option-len	2 * number of requested options
- requested-option-code-1	OPTION_SIP_SERVER_D (21) OR OPTION_SIP_SERVER_A (22)
- requested-option-code-2	OPTION_DNS_SERVERS (23)(Optional)
- requested-option-code-3	OPTION_DOMAIN_LIST (24) (Optional)

Note: All options can be either received in one message or multiple messages. If more than one option codes

present they can be in any order.

**Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 4: DHCP Reply

Use the default message in annex B.1 with the following exceptions

Note: Options are included only if corresponding Requests are received.

Case 1: OPTION_SIP_SERVER_D (21)) or both (OPTION_SIP_SERVER_D (21) and OPTION_SIP_SERVER_A (22)) and OPTION_DOMAIN_LIST(24) or OPTION_DNS_SERVERS (23) received in step 3

Value/Remarks
OPTION_SIP_SERVER_D (21)
Length of encoded domain address RFC 3319[51]
SS P-CSCF server domain Address RFC 3319[51]
OPTION_DNS_SERVERS (23)
Length of encoded DNS server address RFC 3646[48]
SS DNS server IPv6 address RFC 3646[48]
OPTION_DOMAIN_LIST (24)
Length of Domain search list
List of Domain Names encoded as per RFC 1035[52]
_

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Case 2: OPTION_SIP_SERVER_A (22) received in step 3

<u>Options</u>	Value/Remarks
option-code	OPTION_SIP_SERVER_A (22)
- option-len	128
Domain-address 1	IPv6 address of SS P-CSCF Server
option-code	OPTION_DNS_SERVERS (23)
- option-len	Length of encoded DNS server address RFC 3646[48]
Domain-address 1	SS DNS server IPv6 address RFC 3646[48]
option-code	OPTION_DOMAIN_LIST (24)
- option-len	Length of Domain search list
searchlist	List of Domain Names encoded as per RFC 1035 [52]

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 5: DNS NAPTR Query

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	P-CSCF domain name received
QCLASS=	IN
QTYPE=	NAPTR

Step 6: DNS NAPTR Response

Field Value/Remarks

OPCODE= SQUERY, RESPONSE, AA

QNAME= Same as received in NAPTR Query

QCLASS= IN
QTYPE= NAPTR

NAPTR Records included for each Transport protocol

(TLS, TCP, UDP) supported RFC 3263[50]

Step 7: DNS SRV Query

Field Value/Remarks

OPCODE= SQUERY

QNAME= Corresponding to the transport protocol selected by UE

among those provided in DNS NAPTR Response

QCLASS= IN QTYPE= SRV

Step 8: DNS SRV Response

Field Value/Remarks

OPCODE= SQUERY, RESPONSE, AA

QNAME= Same as received in SRV Query

QCLASS= IN
QTYPE= NAPTR

SRV Records SRV Resource Record included providing the SS target

server FQDN RFC 3263[50].

Step 9: DNS AAAA Query

Case 1: steps 5 to 8 executed:

Field Value/Remarks

OPCODE= SQUERY

QNAME= Selected P-CSCF name among provided in step 8 based

on priority and weight RFC 2728[56]

QCLASS= IN
QTYPE= AAAA

Case 2: steps 5 to 8 not executed:

Field Value/Remarks

OPCODE= SQUERY

QNAME= Selected P-CSCF name among addresses provided in

step 2 or 4.

QCLASS= IN
QTYPE= AAAA

Step 10: DNS AAAA Response

Field Value/Remarks

OPCODE= SQUERY, RESPONSE, AA

QNAME= Same as received in AAAA Query

QCLASS= IN
QTYPE= AAAA

AAAA records Includes resolved IP address(es).

7.4.5 Test requirements

- 1. In step 1, UE shall initiate a P-CSCF discovery employing DHCP.
- 2. After step 2 and 4, if P-CSCF IPv6 address is received UE will consider P-CSCF discovery procedure successful, else will initiate a DNS query for domain address to IPv6 address translation.
- 3. After step 10, UE will consider P-CSCF discovery procedure to be successful and should initiate Registration procedure to IMS services.

7.5 P-CSCF Discovery by DHCP-IPv6 (UE Requests P-CSCF discovery by PCO)

7.5.1 Definition

Test to verify that on not receiving P-CSCF Address(es) in PCO, will perform P-CSCF discovery procedure employing DHCP.

7.5.2 Conformance requirement

Prior to communication with the IM CN subsystem, the UE shall:

- a) perform a GPRS attach procedure;
- b) establish a PDP context used for SIP signalling according to the APN and GGSN selection criteria described in 3GPP TS 23.060 and 3GPP TS 27.060. This PDP context shall remain active throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration. As a result, the PDP context provides the UE with information that makes the UE able to construct an IPv6 address;

...

c) acquire a P-CSCF address(es).

The methods for P-CSCF discovery are:

I. Employ Dynamic Host Configuration Protocol for IPv6 (DHCPv6) RFC 3315, the DHCPv6 options for SIP servers RFC 3319 and the DHCPv6 options for Domain Name Servers (DNS) RFC 3646 after PDP context activation.

The UE shall either:

- in the DHCP query, request a list of SIP server domain names of P-CSCF(s) and the list of Domain Name Servers (DNS); or
- request a list of SIP server IPv6 addresses of P-CSCF(s).
- II. Transfer P-CSCF address(es) within the PDP context activation procedure.

The UE shall indicate the request for a P-CSCF address to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message.

If the GGSN provides the UE with a list of P-CSCF IPv6 addresses in the ACTIVATE PDP CONTEXT ACCEPT message or ACTIVATE SECONDARY PDP CONTEXT ACCEPT message, the UE shall assume that the list is prioritised with the first address within the Protocol Configuration Options IE as the P-CSCF address with the highest priority.

The UE can freely select method I or II for P-CSCF discovery. In case method I is selected and several P-CSCF addresses or FQDNs are provided to the UE, the selection of P-CSCF address or FQDN shall be performed as indicated in RFC 3319 [41]. If sufficient information for P-CSCF address selection is not available, selection of the P-CSCF address by the UE is implementation specific.

If the UE is designed to use I above, but receives P-CSCF address(es) according to II, then the UE shall either ignore the received address(es), or use the address(es) in accordance with II, and not proceed with the DHCP request according to I.

The UE may request a DNS Server IPv6 address(es) via RFC 3315 and RFC 3646 or by the Protocol Configuration Options IE when activating a PDP context according to 3GPP TS 27.060.

Reference(s)

3G TS 24.229[10], clause 9.2.1

7.5.3 Test purpose

To verify that the UE sends a correctly composed Activate PDP context requesting for P-CSCF address(es) to the GGSN within the Protocol Configuration Options IE.

On receiving Activate PDP Context accept not including P-CSCF address(es) in PCO IE, will initiate a P-CSCF discovery procedure employing DHCP.

7.5.4 Method of test

Initial conditions

The UE is in GMM-state "GMM-REGISTERED, normal service" with valid P-TMSI and CKSN. UE is not registered to IMS services, has not established PDP context.

Related ICS/IXIT Statement(s)

UE Supports IPv6 (Yes/No)

UE capable of being configured to initiate P-CSCF Discovery via PCO (Yes/No)

UE supports P-CSCF Discovery via PCO and DHCPv6(Yes/No)

Test procedure

- 1. UE is configured for requesting P-CSCF address(es) in Protocol Configuration Options IE in Activate PDP Context Request message. UE initiates an Activate PDP Context procedure.
- 2. SS Responds with an Activate PDP Context Accept message by not including P-CSCF address(es). If UE sets flag "DNS Server Address Request" in PCO of PDP Context Request, DNS server address list is provided in PDP Context Accept message.
- 3. UE sends Solicit message locating a server.
- 4. SS responds by Advertise message. If UE requested for domain names or both domain names and IP address(es), SS will include P-CSCF server domain names. If UE requested for IP address only, SS includes IP address(es) of

P-CSCF servers. If UE Requested for DNS Server Address, it is provided. If P-CSCF IP addresses are included go to step 13 else go to step 7.

- 5. UE sends DHCP Information-Request Query requesting either IP address(es) of P-CSCF server(s) or domain names of P-CSCF server(s) and DNS Server.
- 6. SS responds by DHCP Reply message. . If UE requested for domain names or both domain names and IP address(es), SS will include P-CSCF server domain names. If UE requested for IP address only, SS includes IP address(es) of P-CSCF servers. If UE Requested for DNS Server Address, it is provided. If P-CSCF IP addresses are included go to step 13.
- 7. UE initiates a DNS NAPTR query to select the transport protocol. UE"s configured to use specific Transport protocol on default ports, can skip steps 7 to 10 and go directly to step 11.
- 8. SS responds with NAPTR response.
- 9. UE initiates a DNS SRV query.
- 10. SS responds with SRV response.
- 11. UE initiates a DNS AAAA query
- 12. SS responds with DNS AAAA response
- 13. UE is made to initiate Registration procedure for IMS services.

Expected sequence

Step	ep Direction		Message	Comment
	UE	SS	<u> </u>	
1)		Activate PDP Context Request	UE sends this PDU by setting request for P-CSCF address(es) to the GGSN within the Protocol Configuration Options IE
2		-	Activate PDP Context Accept	SS Sends this response by not including P-CSCF address(es). If UE sets flag "DNS Server Address Request" in PCO of PDP Context Request, DNS server address list is provided.
3	\rightarrow	•	DHCP SOLICIT	
4	→	•	DHCP ADVERTISE	Sent if DHCP Solicit message is received. Including P-CSCF Address(es). If P-CSCF IP addresses are included go to step 13 else go to step 7
5	\rightarrow	•	DHCP Information-Request	Requesting P-CSCF Address(es)*
6	+	-	DHCP Reply	Including P-CSCF Address(es). If P-CSCF IP addresses are included go to step 13.
7	→	•	DNS NAPTR Query	UE"s configured to use specific Transport protocol on default ports, can skip steps 7 to 10 and go directly to step 11
8	+		DNS NAPTR Response	
9	\rightarrow	·	DNS SRV Query	
10	+		DNS SRV Response	
11	\rightarrow	•	DNS AAAA Query	
12	+		DNS AAAA Response	
13	← -	→	Registration	UE is made to initiate Registration procedure to IMS services as defined in Annex A.2 Generic Registration Procedure.

* Note: UE may request all options in one Information Request or send multiple Information Requests. If UE opts for multiple Information Request transmissions, SS transmits accordingly multiple Reply messages including corresponding requested options.

Specific Message Contents:

Step 1: Activate PDP Context Request

Options	Value/Remarks
Protocol Configuration options	
- Additional Parameters	
container 1 Identifier	0001H (P-CSCF Address Request)
Container 1 Length	0 bytes
container 2 Identifier	0003H (DNS Server Address Request) (Optionally present)
Container 2 Length	0 bytes

Step 2: Activate PDP Context Accept

Options	Value/Remarks
Protocol Configuration options	(Included if "DNS Server Address Request" is received)
- Additional Parameters	
container 1 Identifier	0003H (DNS Address)
Container 1 Length	16 bytes
Container 1 contents	IPV6 address of SS DNS Server

Step 3: DHCP SOLICIT*

Use the default message in annex B.1 with the following exceptions

Options	Value/Remarks
option-code	OPTION_ORO (6)
- option-len	2 times number of requested options
- requested-option-code-1	OPTION_SIP_SERVER_D (21) OR OPTION_SIP_SERVER_A (22)
- requested-option-code-2	OPTION_DNS_SERVERS (23)
- requested-option-code-3	OPTION_DOMAIN_LIST (24)

*Note: Options can be optionally present and option codes can be in any order

**Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 4: DHCP ADVERTISE

Use the default message in annex B.1 with the following exceptions

Note: Options are included only if corresponding Requests are received.

Case 1: OPTION_SIP_SERVER_D (21) or both (OPTION_SIP_SERVER_D (21) and OPTION_SIP_SERVER_A (22)) and OPTION_DOMAIN_LIST(24) or OPTION_DNS_SERVERS (23) received in step 3

Options	Value/Remarks
option-code	OPTION_SIP_SERVER_D (21)
- option-len	Length of encoded domain address RFC 3319[51]
Domain-address 1	SS P-CSCF server domain Address RFC 3319[51]
option-code	OPTION_DNS_SERVERS (23)
- option-len	Length of encoded DNS server address RFC 3646[48]
Domain-address 1	SS DNS server IPv6 address RFC 3646[48]
option-code	OPTION_DOMAIN_LIST (24)
- option-len	Length of Domain search list
searchlist	List of Domain Names encoded as per RFC 1035[52]

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Case 2: OPTION_SIP_SERVER_A (22) received in step 3

Options	Value/Remarks
option-code	OPTION_SIP_SERVER_A (22)
- option-len	128
Domain-address 1	IPv6 address of SS P-CSCF Server
option-code	OPTION_DNS_SERVERS (23)
- option-len	Length of encoded DNS server address RFC 3646[48]
Domain-address 1	SS DNS server IPv6 address RFC 3646[48]
option-code	OPTION_DOMAIN_LIST (24)
- option-len	Length of Domain search list
searchlist	List of Domain Names encoded as per RFC 1035 [52]

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 5: DHCP Information-Request

Use the default message in annex B.1 with the following exceptions

Options	Value/Remarks
option-code	OPTION_ORO (6)
- option-len	2 * number of requested options
-requested-option-code-1	OPTION_SIP_SERVER_D (21) OR OPTION_SIP_SERVER_A (22)
- requested-option-code-2	OPTION_DNS_SERVERS (23)(Optional)
- requested-option-code-3	OPTION_DOMAIN_LIST (24) (Optional)

Note: All options can be either received in one message or multiple messages. If more than one option codes present they can be in any order.

**Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 6: DHCP Reply

Use the default message in annex B.1 with the following exceptions

Note: Options are included only if corresponding Requests are received.

Case 1: OPTION_SIP_SERVER_D (21)) or both (OPTION_SIP_SERVER_D (21) and OPTION_SIP_SERVER_A (22)) and OPTION_DOMAIN_LIST(24) or OPTION_DNS_SERVERS (23) received in step 5

Value/Remarks
OPTION_SIP_SERVER_D (21)
Length of encoded domain address RFC 3319[51]
SS P-CSCF server domain Address RFC 3319[51]
OPTION_DNS_SERVERS (23)
Length of encoded DNS server address RFC 3646[48]
SS DNS server IPv6 address RFC 3646[48]
OPTION_DOMAIN_LIST (24)
Length of Domain search list
List of Domain Names encoded as per RFC 1035[52]
_

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Case 2: OPTION_SIP_SERVER_A (22) received in step 5

Options	Value/Remarks
option-code	OPTION_SIP_SERVER_A (22)
- option-len	128
Domain-address 1	IPv6 address of SS P-CSCF Server
option-code	OPTION_DNS_SERVERS (23)
- option-len	Length of encoded DNS server address RFC 3646[48]
Domain-address 1	SS DNS server IPv6 address RFC 3646[48]
option-code	OPTION_DOMAIN_LIST (24)
- option-len	Length of Domain search list
searchlist	List of Domain Names encoded as per RFC 1035 [52]

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 7: DNS NAPTR Query

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	P-CSCF domain name received
QCLASS=	IN
QTYPE=	NAPTR

Step 8: DNS NAPTR Response

Field Value/Remarks

OPCODE= SQUERY, RESPONSE, AA

QNAME= Same as received in NAPTR Query

QCLASS= IN
QTYPE= NAPTR

NAPTR Records included for each Transport protocol

(TLS, TCP, UDP) supported RFC 3263[50]

Step 9: DNS SRV Query

Field Value/Remarks

OPCODE= SQUERY

QNAME= Corresponding to the transport protocol selected by UE

among those provided in DNS NAPTR Response

QCLASS= IN QTYPE= SRV

Step 10: DNS SRV Response

Field Value/Remarks

OPCODE= SQUERY, RESPONSE, AA

QNAME= Same as received in SRV Query

QCLASS= IN
QTYPE= NAPTR

SRV Records SRV Resource Record included providing the SS target

server FQDN RFC 3263[50].

Step 11: DNS AAAA Query

Case 1: steps 7 to 10 executed:

Field Value/Remarks

OPCODE= SQUERY

QNAME= Selected P-CSCF name among provided in step 10

based on priority and weight RFC 2728[56]

QCLASS= IN
QTYPE= AAAA

Case 2: steps 7 to 10 not executed:

Field Value/Remarks

OPCODE= SQUERY

QNAME= Selected P-CSCF name among addresses provided in

step 4 or 6.

QCLASS= IN
QTYPE= AAAA

Step 12: DNS AAAA Response

Field Value/Remarks

OPCODE= SQUERY, RESPONSE, AA

QNAME= Same as received in AAAA Query

QCLASS= IN
QTYPE= AAAA

AAAA records Includes resolved IP address(es).

7.5.5 Test requirements

- 1. In step 1, UE sets the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IF
- 2. After step 2, UE shall initiate a P-CSCF discovery employing DHCP.
- 3. After step 6, if P-CSCF IPv6 address is received UE will consider P-CSCF discovery procedure successful, else will initiate a DNS query for domain address to IPv6 address translation.
- 4. After step 12, UE will consider P-CSCF discovery procedure to be successful and should initiate Registration procedure to IMS services.

7.6 P-CSCF Discovery by DHCP – IPv6 (UE does not Request P-CSCF discovery by PCO, SS includes P-CSCF Address(es) in PCO)

7.6.1 Definition

Test to verify that on not receiving P-CSCF Address(es) in PCO, will perform P-CSCF discovery procedure employing DHCP.

7.6.2 Conformance requirement

Prior to communication with the IM CN subsystem, the UE shall:

- a) perform a GPRS attach procedure;
- b) establish a PDP context used for SIP signalling according to the APN and GGSN selection criteria described in 3GPP TS 23.060 and 3GPP TS 27.060. This PDP context shall remain active throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration. As a result, the PDP context provides the UE with information that makes the UE able to construct an IPv6 address;

c) acquire a P-CSCF address(es).

The methods for P-CSCF discovery are:

I. Employ Dynamic Host Configuration Protocol for IPv6 (DHCPv6) RFC 3315, the DHCPv6 options for SIP servers RFC 3319 and the DHCPv6 options for Domain Name Servers (DNS) RFC 3646 after PDP context activation.

The UE shall either:

- in the DHCP query, request a list of SIP server domain names of P-CSCF(s) and the list of Domain Name Servers (DNS); or
- request a list of SIP server IPv6 addresses of P-CSCF(s).

II. Transfer P-CSCF address(es) within the PDP context activation procedure.

The UE shall indicate the request for a P-CSCF address to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message.

If the GGSN provides the UE with a list of P-CSCF IPv6 addresses in the ACTIVATE PDP CONTEXT ACCEPT message or ACTIVATE SECONDARY PDP CONTEXT ACCEPT message, the UE shall assume that the list is prioritised with the first address within the Protocol Configuration Options IE as the P-CSCF address with the highest priority.

The UE can freely select method I or II for P-CSCF discovery. In case method I is selected and several P-CSCF addresses or FQDNs are provided to the UE, the selection of P-CSCF address or FQDN shall be performed as indicated in RFC 3319 [41]. If sufficient information for P-CSCF address selection is not available, selection of the P-CSCF address by the UE is implementation specific.

If the UE is designed to use I above, but receives P-CSCF address(es) according to II, then the UE shall either ignore the received address(es), or use the address(es) in accordance with II, and not proceed with the DHCP request according to I.

The UE may request a DNS Server IPv6 address(es) via RFC 3315 and RFC 3646 or by the Protocol Configuration Options IE when activating a PDP context according to 3GPP TS 27.060.

Reference(s)

3G TS 24.229[10], clause 9.2.1

7.6.3 Test purpose

To verify that a UE, which has not requested for P-CSCF address in PDP context activate message, receives P-CSCF address, may accept the P-CSCF address or ignore it and hence initiate P-CSCF discovery by DHCP.

7.6.4 Method of test

Initial conditions

The UE is in GMM-state "GMM-REGISTERED, normal service" with valid P-TMSI and CKSN. UE is not registered to IMS services, has not established PDP context.

Related ICS/IXIT Statement(s)

UE Supports IPv6 (Yes/No)

UE capable of being configured to initiate P-CSCF Discovery via DHCPv6 (Yes/No)

UE supports P-CSCF Discovery via PCO and DHCPv6(Yes/No)

Test procedure

- 1. UE is configured for not requesting P-CSCF addresses in PCO.
- 2. SS Responds with an Activate PDP Context Accept message by including P-CSCF Address(es). UE can either assume P-CSCF procedure to be complete or neglect the P-CSCF address(es) in PDP context Accept. Test Ends if UE assumes P-CSCF procedure to be complete.
- 3. UE sends Solicit message locating a server.
- 4. SS responds by Advertise message. If UE requested for domain names or both domain names and IP address(es), SS will include P-CSCF server domain names. If UE requested for IP address only, SS includes IP address(es) of P-CSCF servers. If UE Requested for DNS Server Address, it is provided. If P-CSCF IP addresses are included go to step 13, else go to step 7.

- 5. UE sends DHCP Information-Request Query requesting either IP address(es) of P-CSCF server(s) or domain names of P-CSCF server(s) and DNS Server.
- 6. SS responds by DHCP Reply message. If UE requested for domain names or both domain names and IP address(es), SS will include P-CSCF server domain names. If UE requested for IP address only, SS includes IP address(es) of P-CSCF servers. If UE Requested for DNS Server Address, it is provided. If P-CSCF IP addresses are included go to step 13.
- 7. UE initiates a DNS NAPTR query to select the transport protocol. UE"s configured to use specific Transport protocol on default ports, can skip steps 7 to 10 and go directly to step 11.
- 8. SS responds with NAPTR response.
- 9. UE initiates a DNS SRV query.
- 10. SS responds with SRV response.
- 11. UE initiates a DNS AAAA query
- 12. SS responds with DNS AAAA response.
- 13. UE is made to initiate Registration procedure for IMS services.

Expected sequence

Step	Directio	Message	Comment
-	UE S	SS	
1)	Activate PDP Context Request	UE sends this PDU not requesting for P-CSCF address(es)
2	←	Activate PDP Context Accept	SS Sends this response including P-CSCF Address(es). UE shall either ignore the received address, or use the address. If UE uses address, go to step 13.
3	\rightarrow	DHCP SOLICIT	
4	+	DHCP ADVERTISE	Sent if DHCP Solicit message is received. Including P-CSCF Address(es). If P-CSCF IP addresses are included go to step 13, else go to step 7
5	\rightarrow	DHCP Information-Request	Requesting P-CSCF Address(es)*
6	+	DHCP Reply	Including P-CSCF Address(es). If P-CSCF IP addresses are included go to step 13.
7	\rightarrow	DNS NAPTR Query	UE"s configured to use specific Transport protocol on default ports, can skip steps 7 to 10 and go directly to step 11
8	←	DNS NAPTR Response	
9	\rightarrow	DNS SRV Query	
10	+	DNS SRV Response	
11	\rightarrow	DNS AAAA Query	
12	+	DNS AAAA Response	
13	←→	Registration	UE is made to initiate Registration procedure to IMS services as defined in Annex A.2 Generic Registration Procedure.

* Note: UE may request all options in one Information Request or send multiple Information Requests. If UE opts for multiple Information Request transmissions, SS transmits accordingly multiple Reply messages including corresponding requested options.

Specific Message Contents:

Step 2: Activate PDP Context Accept

Options	Value/Remarks
Protocol Configuration options	
- Additional Parameters	
container 1 Identifier	0001H (P-CSCF Address)
Container 1 Length	16 bytes
Container 1 contents	IPV6 address of SS
container 2 Identifier	0003H (DNS Address)
Container 2 Length	16 bytes
Container 2 contents	IPV6 address of SS DNS Server

Step 3: DHCP SOLICIT*

Use the default message in annex B.1 with the following exceptions

Options	Value/Remarks
option-code	OPTION_ORO (6)
- option-len	2 times number of requested options
-requested-option-code-1	OPTION_SIP_SERVER_D (21) OR OPTION_SIP_SERVER_A (22)
- requested-option-code-2	OPTION_DNS_SERVERS (23)
- requested-option-code-3	OPTION_DOMAIN_LIST (24)

^{*}Note: Options can be optionally present and option codes can be in any order

Step 4: DHCP ADVERTISE

Use the default message in annex B.1 with the following exceptions

Note: Options are included only if corresponding Requests are received.

Case 1: OPTION_SIP_SERVER_D (21)) or both (OPTION_SIP_SERVER_D (21) and OPTION_SIP_SERVER_A (22)) and OPTION_DOMAIN_LIST(24) or OPTION_DNS_SERVERS (23) received in step 3

Options	Value/Remarks
option-code	OPTION_SIP_SERVER_D (21)
- option-len	Length of encoded domain address RFC 3319[51]
Domain-address 1	SS P-CSCF server domain Address RFC 3319[51]
option-code	OPTION_DNS_SERVERS (23)
- option-len	Length of encoded DNS server address RFC 3646[48]
Domain-address 1	SS DNS server IPv6 address RFC 3646[48]
option-code	OPTION_DOMAIN_LIST (24)
- option-len	Length of Domain search list
searchlist	List of Domain Names encoded as per RFC 1035 [52]

^{**}Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Case 2: OPTION_SIP_SERVER_A (22) received in step 3

Options	Value/Remarks
option-code	OPTION_SIP_SERVER_A (22)
- option-len	128
Domain-address 1	IPv6 address of SS P-CSCF Server
option-code	OPTION_DNS_SERVERS (23)
- option-len	Length of encoded DNS server address RFC 3646[48]
Domain-address 1	SS DNS server IPv6 address RFC 3646[48]
option-code	OPTION_DOMAIN_LIST (24)
- option-len	Length of Domain search list
searchlist	List of Domain Names encoded as per RFC 1035 [52]

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 5: DHCP Information-Request

Use the default message in annex B.1 with the following exceptions

Options	Value/Remarks
option-code	OPTION_ORO (6)
- option-len	2 * number of requested options
-requested-option-code-1	OPTION_SIP_SERVER_D (21) OR OPTION_SIP_SERVER_A (22)
- requested-option-code-2	OPTION_DNS_SERVERS (23)(Optional)
- requested-option-code-3	OPTION_DOMAIN_LIST (24) (Optional)

Note: All options can be either received in one message or multiple messages. If more than one option codes present they can be in any order.

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 6: DHCP Reply

Use the default message in annex B.1 with the following exceptions

Note: Options are included only if corresponding Requests are received.

Case 1: OPTION_SIP_SERVER_D (21)) or both (OPTION_SIP_SERVER_D (21) and OPTION_SIP_SERVER_A (22)) and OPTION_DOMAIN_LIST(24) or OPTION_DNS_SERVERS (23) received in step 5

Options	Value/Remarks
option-code	OPTION_SIP_SERVER_D (21)
- option-len	Length of encoded domain address RFC 3319[51]
Domain-address 1	SS P-CSCF server domain Address RFC 3319[51]
option-code	OPTION_DNS_SERVERS (23)
- option-len	Length of encoded DNS server address RFC 3646[48]
Domain-address 1	SS DNS server IPv6 address RFC 3646[48]
option-code	OPTION_DOMAIN_LIST (24)
- option-len	Length of Domain search list
searchlist	List of Domain Names encoded as per RFC 1035 [52]

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Case 2: OPTION_SIP_SERVER_A (22) received in step 5

Options	Value/Remarks
option-code	OPTION_SIP_SERVER_A (22)
- option-len	128
Domain-address 1	IPv6 address of SS P-CSCF Server
option-code	OPTION_DNS_SERVERS (23)
- option-len	Length of encoded DNS server address RFC 3646[48]
Domain-address 1	SS DNS server IPv6 address RFC 3646[48]
option-code	OPTION_DOMAIN_LIST (24)
- option-len	Length of Domain search list
searchlist	List of Domain Names encoded as per RFC 1035 [52]

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

Step 7: DNS NAPTR Query

Field	Value/Remarks
OPCODE=	SQUERY
QNAME=	P-CSCF domain name received
QCLASS=	IN
QTYPE=	NAPTR

Step 8: DNS NAPTR Response

Field Value/Remarks

OPCODE= SQUERY, RESPONSE, AA

QNAME= Same as received in NAPTR Query

QCLASS= IN
QTYPE= NAPTR

NAPTR Records included for each Transport protocol

(TLS, TCP, UDP) supported RFC 3263[50]

Step 9: DNS SRV Query

Field Value/Remarks

OPCODE= SQUERY

QNAME= Corresponding to the transport protocol selected by UE

among those provided in DNS NAPTR Response

QCLASS= IN QTYPE= SRV

Step 10: DNS SRV Response

Field Value/Remarks

OPCODE= SQUERY, RESPONSE, AA

QNAME= Same as received in SRV Query

QCLASS= IN
QTYPE= NAPTR

SRV Records SRV Resource Record included providing the SS target

server FQDN RFC 3263[50].

Step 11: DNS AAAA Query

Case 1: steps 7 to 10 executed:

Field Value/Remarks

OPCODE= SQUERY

QNAME= Selected P-CSCF name among provided in step 10

based on priority and weight RFC 2728[56]

QCLASS= IN
QTYPE= AAAA

Case 2: steps 7 to 10 not executed:

Field Value/Remarks

OPCODE= SQUERY

QNAME= Selected P-CSCF name among addresses provided in

step 4 or 6.

QCLASS= IN
QTYPE= AAAA

Step 12: DNS AAAA Response

Field Value/Remarks

OPCODE= SQUERY, RESPONSE, AA

QNAME= Same as received in AAAA Query

QCLASS= IN
QTYPE= AAAA

AAAA records Includes resolved IP address(es).

7.6.5 Test requirements

- 1. In step 1, UE sends PDP Context Request message.
- 2. After step 2, UE shall either ignore the received address, or use the address received.
- 3. If UE ignores P-CSCF address in step 2, will send DHCP query in step 3
- 4. After step 4 and 6, if P-CSCF IPv6 address is received UE will consider P-CSCF discovery procedure successful, else will initiate DNS query for domain address to IPv6 address translation.
- 5) After step 12, UE will consider P-CSCF discovery procedure to be successful and should initiate Registration procedure to IMS services.

8 Registration

8.1 Initial registration

8.1.1 Definition and applicability

Test to verify that the UE can correctly register to IMS services when equipped with UICC that contains either both ISIM and USIM applications or only USIM application but not ISIM. The process consists of sending initial registration to S-CSCF via the P-CSCF discovered, authenticating the user and finally subscribing the registration event package for the registered default public user identity.

8.1.2 Conformance requirement

If there is an ISIM and a USIM application on a UICC, then the ISIM application shall always be used for IMS authentication, as described in 3GPP TS 33.203.

In case the UE is loaded with a UICC that contains the ISIM application, it will be preconfigured with all the necessary parameters to initiate the registration to the IM CN subsystem. These parameters include:

- the private user identity;
- one ore more public user identities; and
- the home network domain name used to address the SIP REGISTER request

In case the UE is loaded with a UICC that does not contain the ISIM application, the UE shall:

- generate a private user identity;
- generate a temporary public user identity; and
- generate a home network domain name to address the SIP REGISTER request to.

All these three parameters are derived from the IMSI parameter in the USIM, according to the procedures described in 3GPP TS 23.003. If the UICC does not contain the ISIM application, the UE shall derive new values every time the UICC is changed, and shall discard existing values if the UICC is removed.

The temporary public user identity is only used in REGISTER requests, i.e. initial registration, re-registration, mobile-initiated deregistration. After a successful registration, the UE will get the associated public user identities, and the UE may use any of them in subsequent non-REGISTER requests.

The UE shall not reveal to the user the temporary public user identity if the temporary public user identity is barred. The temporary public user identity is not barred if received by the UE in the P-Associated-URI header.

The UE can register a public user identity at any time that a valid PDP context exists. However, the UE shall only initiate a new registration procedure when it has received a final response from the registrar for the ongoing registration, or the previous REGISTER request has timed out.

The UE shall send only the initial REGISTER requests to the port advertised to the UE during the P-CSCF discovery procedure. If the UE does not receive any specific port information during the P-CSCF discovery procedure, the UE shall send the initial REGISTER request to the SIP default port values as specified in RFC 3261.

A REGISTER request may be protected using a security association, see 3GPP TS 33.203, established as a result of an earlier registration.

The UE shall extract or derive from the UICC a public user identity, the private user identity, and the domain name to be used in the Request-URI in the registration, according to the procedures described in 3GPP TS 24.229 subclause 5.1.1.1A. A public user identity may be input by the end user.

On sending a REGISTER request, the UE shall populate the header fields as follows:

- a) the Authorization header, with:
 - the username directive, set to the value of the private user identity;
 - the realm directive, set to the domain name of the home network;
 - the uri directive, set to the SIP URI of the domain name of the home network;
 - the nonce directive, set to an empty value; and
 - the response directive, set to an empty value.
- b) the From header set to the SIP URI that contains the public user identity to be registered;
- c) the To header set to the SIP URI that contains the public user identity to be registered;
- d) the Contact header set to include SIP URI(s) containing the IP address of the UE in the hostport parameter or FQDN. If the REGISTER request is protected by a security association, the UE shall also include the protected server port value in the hostport parameter;
- e) the Via header containing the IP address or FQDN of the UE in the sent-by field. If the REGISTER request is protected by a security association, the UE shall also include the protected server port value in the sent-by field.
- NOTE 1: If the UE specifies its FQDN in the host parameter in the Contact header and in the sent-by field in the Via header, then it has to ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address that is bound to the security association.
- NOTE 2: The UE associates two ports, a protected client port and a protected server port, with each pair of security association. For details on the selection of the protected port value see 3GPP TS 33.203.
- f) the Expires header, or the expires parameter within the Contact header, set to the value of 600 000 seconds as the value desired for the duration of the registration;
- NOTE 3: The registrar (S-CSCF) might decrease the duration of the registration in accordance with network policy. Registration attempts with a registration period of less than a predefined minimum value defined in the registrar will be rejected with a 423 (Interval Too Brief) response.
- g) a Request-URI set to the SIP URI of the domain name of the home network;

- h) the Security-Client header field set to specify the security mechanism the UE supports, the IPsec layer algorithms the UE supports and the parameters needed for the security association setup. The UE shall support the setup of two pairs of security associations as defined in 3GPP TS 33.203. The syntax of the parameters needed for the security association setup is specified in Annex H of 3GPP TS 33.203. The UE shall support the "ipsec-3gpp" security mechanism, as specified in RFC 3329. The UE shall support the HMAC-MD5-96 (RFC 2403) and HMAC-SHA-1-96 (RFC 2404) IPsec layer algorithms, and shall announce support for them according to the procedures defined in RFC 3329;
- i) the Supported header containing the option tag "path"; and
- j) if a security association exists, a P-Access-Network-Info header that contains information concerning the access network technology and, if applicable, the cell ID.

When a 401 (Unauthorized) response to a REGISTER is received the UE shall behave as described in 3GPP TS 24.229 subclause 5.1.1.5.1.

Authentication is achieved via the registration and re-registration procedures. When the network requires authentication or re-authentication of the UE, the UE will receive a 401 (Unauthorized) response to the REGISTER request.

On receiving a 401 (Unauthorized) response to the REGISTER request, the UE shall:

- 1) extract the RAND and AUTN parameters;
- 2) check the validity of a received authentication challenge, as described in 3GPP TS 33.203 i.e. the locally calculated XMAC must match the MAC parameter derived from the AUTN part of the challenge; and the SQN parameter derived from the AUTN part of the challenge must be within the correct range; and
- 3) check the existence of the Security-Server header as described in RFC 3329. If the header is not present or it does not contain the parameters required for the setup of the set of security associations (see annex H of 3GPP TS 33.203), the UE shall abandon the authentication procedure and send a new REGISTER request with a new Call-ID.

In the case that the 401 (Unauthorized) response to the REGISTER request is deemed to be valid the UE shall:

- 1) calculate the RES parameter and derive the keys CK and IK from RAND as described in 3GPP TS 33.203;
- 2) set up a temporary set of security associations based on the static list and parameters it received in the 401 (Unauthorized) response and its capabilities sent in the Security-Client header in the REGISTER request. The UE sets up the temporary set of security associations using the most preferred mechanism and algorithm returned by the P-CSCF and supported by the UE and using IK as the shared key. The UE shall use the parameters received in the Security-Server header to setup the temporary set of security associations. The UE shall set a temporary SIP level lifetime for the temporary set of security associations to the value of reg-await-auth timer; and
- 3) send another REGISTER request using the temporary set of security associations to protect the message. The header fields are populated as defined for the initial request, with the addition that the UE shall include an Authorization header containing the private user identity and the authentication challenge response calculated by the UE using RES and other parameters, as described in RFC 3310. The UE shall also insert the Security-Client header that is identical to the Security-Client header that was included in the previous REGISTER request (i.e. the REGISTER request that was challenged with the received 401 (Unauthorized) response). The UE shall also insert the Security-Verify header into the request, by mirroring in it the content of the Security-Server header received in the 401 (Unauthorized) response. The UE shall set the Call-ID of the integrity protected REGISTER request which carries the authentication challenge response to the same value as the Call-ID of the 401 (Unauthorized) response which carried the challenge.

On receiving the 200 (OK) response for the integrity protected REGISTER request, the UE shall:

- change the temporary set of security associations to a newly established set of security associations, i.e. set its SIP level lifetime to the longest of either the previously existing set of security associations SIP level lifetime, or the lifetime of the just completed registration plus 30 seconds; and
- use the newly established set of security associations for further messages sent towards the P-CSCF as appropriate.

NOTE: In this case, the UE will send requests towards the P-CSCF over the newly established set of security associations. Responses towards the P-CSCF that are sent via UDP will be sent over the newly established set of security associations. Responses towards the P-CSCF that are sent via TCP will be sent over the same set of security associations that the related request was received on.

When the first request or response protected with the newly established set of security associations is received from the P-CSCF, the UE shall delete the old set of security associations and related keys it may have with the P-CSCF after all SIP transactions that use the old set of security associations are completed.

On receiving the 200 (OK) response to the REGISTER request, the UE shall:

- a) store the expiration time of the registration for the public user identities found in the To header value;
- b) store the list of URIs contained in the P-Associated-URI header value. This list contains the URIs that are associated to the registered public user identity;
- c) store as the default public user identity the first URI on the list of URIs present in the P-Associated-URI header;
- d) treat the identity under registration as a barred public user identity, if it is not included in the P-Associated-URI header;
- e) store the list of Service-Route headers contained in the Service-Route header, in order to build a proper preloaded Route header value for new dialogs; and
- f) set the security association lifetime to the longest of either the previously existing security association lifetime (if available), or the lifetime of the just completed registration plus 30 seconds.

Upon receipt of a 2xx response to the initial registration, the UE shall subscribe to the reg event package for the public user identity registered at the users registrar (S-CSCF) as described in RFC 3680.

The UE shall use the default public user identify for subscription to the registration-state event package, if the public user identity that was used for initial registration is a barred public user identity. The UE may use either the default public user identity or the public user identity used for initial registration for the subscription to the registration-state event package, if the initial public user identity that was used for initial registration is not barred.

On sending a SUBSCRIBE request, the UE shall populate the header fields as follows:

- a) a Request URI set to the resource to which the UE wants to be subscribed to, i.e. to a SIP URI that contains the public user identity used for subscription;
- b) a From header set to a SIP URI that contains the public user identity used for subscription;
- c) a To header set to a SIP URI that contains the public user identity used for subscription;
- d) an Event header set to the "reg" event package;
- e) an Expires header set to 600 000 seconds as the value desired for the duration of the subscription; and
- f) a P-Access-Network-Info header that contains information concerning the access network technology and, if applicable, the cell ID.

The procedures of this subclause are general to all requests and responses, except those for the REGISTER method.

When the UE sends any request, the UE shall:

- include the protected server port in the Via header entry relating to the UE; and
- include the protected server port in any Contact header that is otherwise included.

. . .

The UE shall insert a P-Access-Network-Info header into any request for a dialog, any subsequent request (except ACK requests and CANCEL requests) or response (except CANCEL responses) within a dialog or any request for a standalone method. This header shall contain information concerning the access network technology and, if applicable, the cell ID.

The UE shall build a proper preloaded Route header value for all new dialogs and standalone transactions. The UE shall build a list of Route header values made out of, in this order, the P-CSCF URI (containing the IP address or the FQDN learnt through the P-CSCF discovery procedures, and the protected port learnt during the registration procedure), and the values received in the Service-Route header saved from the 200 (OK) response to the last registration or reregistration.

Upon receipt of a 2xx response to the SUBSCRIBE request, the UE shall store the information for the established dialog and the expiration time as indicated in the Expires header of the received response.

Upon receipt of a NOTIFY request on the dialog which was generated during subscription to the reg event package the UE shall perform the following actions:

- if a state attribute "active", i.e. registered is received for one or more public user identities, the UE shall store the indicated public user identities as registered;
- if a state attribute "terminated", i.e. deregistered is received for one or more public user identities, the UE shall store the indicated public user identities as deregistered.

NOTE: There may be public user identities which are automatically registered within the registrar (S-CSCF) of the user upon registration of one public user identity. Usually these automatically or implicitly registered public user identities belong to the same service profile of the user and they might not be available within the UE. The implicitly registered public user identities may also belong to different service profiles. The here-described procedures provide a different mechanism (to the 200 (OK) response to the REGISTER request) to inform the UE about these automatically registered public user identities.

Reference(s)

3GPPTS 24.229[10], clauses 5.1.1.1A, 5.1.1.2, 5.1.1.3, 5.1.1.5.1, 5.1.2.1 and 5.1.2A.1

8.1.3 Test purpose

- 1) To verify that UE correctly derives a private user identity, a temporary public user identity and a home network domain name from the IMSI parameter in the USIM, according to the procedures described in 3GPP TS 23.003 [32] clause 13 or alternatively uses the values retrieved from ISIM; and
- 2) To verify that the UE sends a correctly composed initial REGISTER request to S-CSCF via the discovered P-CSCF, according to 3GPP TS 24.229 [10] clause 5.1.1.2; and
- 3) To verify that after receiving a valid 401 (Unauthorized) response from S-CSCF for the initial REGISTER sent, the UE correctly authenticates itself by sending another REGISTER request with correctly composed Authorization header using AKAv1-MD5 algorithm (as described in RFC 3310 [17]); and
- 4) To verify that the UE announces to support the "ipsec-3gpp" security mechanism together with HMAC-MD5-96 (RFC 2403 [28]) and HMAC-SHA-1-96 (RFC 2404 [29]) IPsec layer algorithms according to the procedures defined in RFC 3329 [21]; and
- 5) To verify that the UE supports both the HMAC-MD5-96 (RFC 2403 [28]) and HMAC-SHA-1-96 (RFC 2404 [29]) IPsec layer algorithms for integrity protection and uses the one that is preferred by the P-CSCF according to the procedures defined in RFC 3329 [21]; and
- 6) To verify that the UE sets up two pairs of security associations as defined in 3GPP TS 33.203 [14] clause 7 and uses those for sending the REGISTER request to authenticate itself and for sending any other subsequent request; and
- 7) To verify that after receiving a valid 200 OK response from S-CSCF for the REGISTER sent for authentication, the UE stores the default public user identity and information about barred user identities; and
- 8) To verify that after receiving a valid 200 OK response from S-CSCF for the REGISTER sent for authentication, the UE subscribes to the reg event package for the public user identity registered at the users registrar (S-CSCF) as described in RFC 3680 [22]; and
- 9) To verify that the UE uses the default public user identify for subscription to the registration-state event package, when the public user identity that was used for initial registration is a barred public user identity; and

- 10) To verify that the UE uses the stored service route for routing the SUBSCRIBE sent; and
- 11) To verify that after receiving a valid 200 OK response from S-CSCF to the SUBSCRIBE sent for registration event package, the UE maintains the generated dialog; and
- 12) To verify that after receiving a valid NOTIFY for the registration event package, the UE will update and store the registration state of the indicated public user identities accordingly (as specified in RFC 3680 [22] clause 5); and
- 13) To verify that the UE responds the received valid NOTIFY with 200 OK.

8.1.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE is not registered to IMS services, but has an active PDP context and has discovered the SS as P-CSCF by executing the generic test procedure in Annex C.2 up to step 3.

SS is configured with the IMSI within the USIM application, the home domain name, public and private user identities together with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) that is configured on the UICC card equipped into the UE. SS is listening to SIP default port 5060 for both UDP and TCP protocols. SS is able to perform AKAv1-MD5 authentication algorithm for that IMPI, according to 3GPP TS 33.203 [14] clause 6.1 and RFC 3310 [17].

Related ICS/IXIT Statement(s)

-

Test procedure

- 1) IMS registration is initiated on the UE. SS waits the UE to send an initial REGISTER request.
- 2) SS responds to the initial REGISTER request with a valid 401 Unauthorized response, headers populated according to the 401 response common message definition.
- 3) SS waits for the UE to set up a temporary set of security associations and send another REGISTER request, over those security associations.
- 4) SS responds to the second REGISTER request with valid 200 OK response, sent over the same temporary set of security associations that the UE used for sending the REGISTER request. SS shall populate the headers of the 200 OK response according to the 200 response for REGISTER common message definition.
- 5) SS waits for the UE to send a SUBSCRIBE request over the newly established security associations.
- 6) SS responds to the SUBSCRIBE request with a valid 200 OK response, headers populated according to the 200 response for SUBSCRIBE common message definition.
- 7) SS sends UE a NOTIFY request for the subscribed registration event package. In the request the Request URI, headers and the request body shall be populated according to the NOTIFY common message definition.
- 8) SS waits for the UE to respond the NOTIFY with 200 OK response.
- NOTE: This test case shall be run twice in order to test that the UE correctly supports both HMAC-MD5-96 and HMAC-SHA-1-96 algorithms. For each test round the name of the corresponding algorithm shall be configured into px_IpSecAlgorithm PIXIT.

Expected sequence

Step	Direction	Message	Comment
	UE SS		
1	\rightarrow	REGISTER	UE sends initial registration for IMS services.
2	←	401 Unauthorized	The SS responds with a valid AKAv1-MD5
			authentication challenge and security mechanisms
			supported by the network.
3	\rightarrow	REGISTER	UE completes the security negotiation procedures,
			sets up a temporary set of SAs and uses those for
			sending another REGISTER with AKAv1-MD5
			credentials.
4	←	200 OK	The SS responds with 200 OK.
5	\rightarrow	SUBSCRIBE	UE subscribes to its registration event package.
6	+	200 OK	The SS responds SUBSCRIBE with 200 OK
7	←	NOTIFY	The SS sends initial NOTIFY for registration event
			package, containing full registration state
			information for the registered public user identity in
			the XML body
8	\rightarrow	200 OK	The UE responds the NOTIFY with 200 OK

Specific Message Contents

REGISTER (Step 1)

Use the default message 'REGISTER' in annex A.1.1 with condition A1 "Initial unprotected REGISTER"

401 Unauthorized for REGISTER (Step 2)

Use the default message '401 Unauthorized for REGISTER' in annex A.1.2

REGISTER (Step 3)

Use the default message 'REGISTER' in annex A.1.1 with condition A2 "Subsequent REGISTER sent over security associations

200 OK for REGISTER (Step 4)

Use the default message '200 OK for REGISTER' in annex A.1.3

SUBSCRIBE (Step 5)

Use the default message 'SUBSCRIBE for reg-event package' in annex A.1.4

200 OK for SUBSCRIBE (Step 6)

Use the default message '200 OK for SUBSCRIBE' in annex A.1.5

NOTIFY (Step 7)

Use the default message 'NOTIFY for reg-event package' in annex A.1.6

200 OK for NOTIFY (Step 8)

Use the default message '200 OK for other requests than REGISTER or SUBSCRIBE' in annex A.3.1

8.1.5 Test requirements

Step 3: SS shall check that in accordance to the 3GPP TS 24.229 [10] clause 5.1.1.5 the UE sends another REGISTER request as follows:

- a) the UE sets up the temporary set of security associations between the ports announced in Security-Client header (UE) in the REGISTER request and Security-Server header (SS) in the 401 Unauthorized response; and
- b) the UE uses the most preferred mechanism and algorithm returned by the SS and supported by the UE for the temporary set of security associations; and
- the UE uses IK derived from RAND as the shared key for integrity protection for the temporary set of security associations; and
- d) the UE sends the second REGISTER over the temporary set of security associations; and

Step 5: SS shall check that, in accordance to the 3GPP TS 24.229 [10] clause 5.1.1.3, the UE sends a SUBSCRIBE request for registration event package over the newly established set of security associations.

NOTE: If the UE specifies its FQDN in the host parameter in the Contact header and in the sent-by field in the Via header (within any of the request sent by the UE), then SS has to ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address that is bound to the security association (or to the unprotected port in the initial REGISTER).

8.2 User Initiated Re-Registration

8.2.1 Definition

Test to verify that the UE can re-register a previously registered public user identity at any time. This process is described in 3GPPTS 24.229 [10], clause 5.1.1.4

8.2.2 Conformance requirement

Unless either the user or the application within the UE has determined that a continued registration is not required the

UE shall reregister the public user identity either 600 seconds before the expiration time if the initial registration was for greater than 1200 seconds, or when half of the time has expired if the initial registration was for 1200 seconds or less.

The UE shall protect the REGISTER request using a security association, see 3GPP TS 33.203, established as a result of an earlier registration, if IK is available.

The UE shall extract or derive from the UICC a public user identity, the private user identity, and the domain name to be used in the Request-URI in the registration, according to the procedures described in subclause 5.1.1.1A.

On sending a REGISTER request that does not contain a challenge response, the UE shall populate the header fields as follows:

- a) an Authorization header, with with:
 - the username directive set to the value of the private user identity;
 - the realm directive, set to the domain name of the home network;
 - the uri directive, set to the SIP URI of the domain name of the home network;
 - the nonce directive, set to last received nonce value; and
 - the response directive, set to the last calculated response;
- b) a From header set to the SIP URI that contains the public user identity to be registered;
- c) a To header set to the SIP URI that contains the public user identity to be registered;
- d) a Contact header set to include SIP URI(s) that contain(s) in the hostport parameter the IP address of the UE or FQDN and protected server port value bound to the security association;
- e) a Via header containing the IP address or FQDN of the UE in the sent-by field and the protected server port value bound to the security association;

- NOTE 1: If the UE specifies its FQDN in the host parameter in the Contact header and in the sent-by field in the Via header, then it has to ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address that is bound to the security association.
- NOTE 2: The UE associates two ports, a protected client port and a protected server port, with each pair of security associations. For details on the selection of the protected port value see 3GPP TS 33.203.
- f) an Expires header, or an expires parameter within the Contact header, set to 600 000 seconds as the value desired for the duration of the registration;
- NOTE 3: The registrar (S-CSCF) might decrease the duration of the registration in accordance with network policy. Registration attempts with a registration period of less than a predefined minimum value defined in the registrar will be rejected with a 423 (Interval Too Brief) response.
- g) a Request-URI set to the SIP URI of the domain name of the home network;
- h) a Security-Client header field, set to specify the security mechanism it supports, the IPsec layer algorithms it supports and the new parameter values needed for the setup of two new pairs of security associations. For further details see 3GPP TS 33.203 and RFC 3329;
- i) a Security-Verify header that contains the content of the Security-Server header received in the 401 (Unauthorized) response of the last successful authentication;
- j) the Supported header containing the option tag "path"; and
- k) the P-Access-Network-Info header that contains information concerning the access network technology and, if applicable, the cell ID (see subclause 7.2A.4).

On receiving the 200 (OK) response to the REGISTER request, the UE shall:

- a) store the new expiration time of the registration for this public user identity found in the To header value;
- b) store the list of URIs contained in the P-Associated-URI header value. This list contains the URIs that are associated to the registered public user identity;
- c) store the list of Service-Route headers contained in the Service-Route header, in order to build a proper preloaded Route header value for new dialogs; and
- d) set the security association lifetime to the longest of either the previously existing security association lifetime, or the lifetime of the just completed registration plus 30 seconds.

When a 401 (Unauthorized) response to a REGISTER is received the UE shall behave as described in subclause 5.1.1.5.1. On receiving a 423 (Interval Too Brief) response to the REGISTER request, the UE shall:

- send another REGISTER request populating the Expires header or the expires parameter with an expiration timer of at least the value received in the Min-Expires header of the 423 (Interval Too Brief) response.

NOTE: There may be public user identities which are automatically registered within the registrar (S-CSCF) of the user upon registration of one public user identity. Usually these automatically or implicitly registered public user identities belong to the same service profile of the user and they might not be available within the UE. The implicitly registered public user identities may also belong to different service profiles. The here-described procedures provide a different mechanism (to the 200 (OK) response to the REGISTER request) to inform the UE about these automatically registered public user identities.

Reference(s)

3GPP TS 24.229[10], clauses 5.1.1.4

8.2.3 Test purpose

1) To verify that the UE can re-register a previously registered public user identity at either 600 seconds before the expiration time if the initial registration was for greater than 1200 seconds, or when half of the time has expired if the initial registration was for 1200 seconds or less; and

- 2) Extract or derive from the UICC a public user identity, the private user identity, and the domain name to be used in the Request-URI in the registration; and
- 3) To verify that the UE populates the header field in the REGISTER request with From, To, Via, Contact, Authorization, Expires, Security-Client, Security-verify, Supported, and P-Access-Network-Info headers; and
- 4) Upon receiving 200 OK for REGISTER, the UE shall store the new expiration time of the registration for this public user identity, the list of URIs contained in the P-Associated-URI header value and use these values in the next re-register request.

8.2.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE is not registered to IMS services, but has an active PDP context and has discovered the SS as P-CSCF by executing the generic test procedure in Annex C.2 up to step 3.

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS is able to perform AKAv1-MD5 authentication algorithm for that IMPI, according to 3GPP TS 33.203 [14] clause 6.1 and RFC 3310 [17].

Related ICS/IXIT Statement(s)

-

Test procedure

- 1-8) The same procedure as in subclause 8.1.4 are used with the exception that the SS sets the expiration time to 120 seconds in Step 4.
- 9) Before half of the time has expired from the initial registration SS receives re-register message request with the From, To, Via, Contact, Authorization, Expires, Security-Client, Security-verify, Supported, and P-Access-Network-Info header fields.
- 10) SS responds to the REGISTER request with valid 200 OK response with the list of URIs contained in the P-Associated-URI header value, the new expiration time (1200 seconds) of the registration for this public user identity,.
- 11)SS waits for the REGISTER request and verifies it is received at least 600 seconds before the expected expiration time.
- 12) SS responds to the REGISTER request with valid 200 OK response with the list of URIs contained in the P-Associated-URI header value, the new expiration time (1800 seconds) of the registration for this public user identity.
- 13)SS waits for the REGISTER request and verifies it is received at least 600 seconds before the expected expiration time.
- 14)SS responds to the REGISTER request with valid 200 OK response. SS shall populate the headers of the 200 OK response according to the 200 response for REGISTER common message definition.

Expected sequence

Step	Dire	ction	Message	Comment
	UE	SS		
1-8			Messages in Initial Registration Test case (subclause 8.1.4)	The same messages as in subclause 8.1.4 are used with the exception that in Step 4, the SS responds with 200 OK indicating 120 seconds expiration time.
9	<u>-</u>	>	REGISTER	The SS receives REGISTER from the UE 60 seconds before the expiration time set in the initial registration request.
106	•	.	200 OK	The SS responds with 200 OK indicating 1200 seconds expiration time.
11	-	>	REGISTER	The SS receives REGISTER from the UE 600 seconds before the expiration time set in step 6.
128	•	.	200 OK	The SS responds with 200 OK indicating 1800 seconds expiration time.
13	_	→	REGISTER	The SS receives REGISTER from the UE 600 seconds before the expiration time set in step 8
14	•	-	200 OK	The SS responds with 200 OK indicating the default expiration time.

Specific Message Contents

Messages in Step 1-8

Messages in Step 1-8 are the same as those specified in subclause 8.1.4 with the following exception for the 200 OK for REGISTER in Step 4:

Use the default message 'REGISTER' in annex A.1.1 with condition A1 "Subsequent REGISTER sent over security associations" and with the following exceptions:

Header/param	Value/remark
Contact	
expires	120

REGISTER (Step 9)

Use the default message 'REGISTER' in annex A.1.1 with condition A2 "Subsequent REGISTER sent over security associations" and with the following exceptions:

Header/param	Value/remark
Security-Client	
spi-c	new SPI number of the inbound SA at the protected client port
spi-s	new SPI number of the inbound SA at the protected server port
port-c	new protected client port needed for the setup of new pairs of security associations
port-s	Same value as in the previous REGISTERs

200 OK for REGISTER (Step 10)

Use the default message '200 OK for REGISTER' in annex A.1.3 with the following exceptions:

Header/param	Value/remark
Contact	
expires	1200

REGISTER (Step 11)

Use the default message 'REGISTER' in annex A.1.1 with condition A2 "Subsequent REGISTER sent over security associations" and with the following exceptions:

Header/param	Value/remark		
Security-Client			
spi-c	new SPI number of the inbound SA at the protected client port, may or may not be the same as in step 1		
spi-s	new SPI number of the inbound SA at the protected server port, may or may not be the same as in step 1		
port-c	new protected client port needed for the setup of new pairs of security associations, may or may not be the same as in step 1		
port-s	Same value as in the previous REGISTERs		

200 OK for REGISTER (Step 12)

Use the default message '200 OK for REGISTER' in annex A.1.3 with the following exceptions:

Header/param	Value/remark			
Contact				
expires	1800			

REGISTER (Step 13)

Use the default message 'REGISTER' in annex A.1.1 with condition A2 "Subsequent REGISTER sent over security associations" and with the following exceptions:

Header/param	Value/remark	
Security-Client		
spi-c	new SPI number of the inbound SA at the protected client port, may or may not be the same as in step 1 and 3	
spi-s	new SPI number of the inbound SA at the protected server port, may or may not be the same as in step 1 and 3	
port-c	new protected client port needed for the setup of new pairs of security associations, may or may not be the same as in step 1 or 3	
port-s	Same value as in the previous REGISTERs	

200 OK for REGISTER (Step 14)

Use the default message '200 OK for REGISTER' in annex A.1.3.

8.2.5 Test requirements

- 1. The UE shall in step 9 send the REGISTER request within 60 seconds from the time instant that it receives 200 OK in step 4 from the SS-
- 2. The UE shall in step 11 send the REGISTER request within 600 seconds from the time instant that it receives 200 OK from the SS in step 10.-
- 3. The UE shall in step 13 send the REGISTER request within 1200 seconds from the time instant that it receives 200 OK from the SS in step 12.

8.3 Mobile Initiated Deregistration

8.3.1 Definition and applicability

Test to verify that the UE can perform a correct de-registration procedure. This process is described in 3GPPTS 24.229 [10], clause 5.1.1.6

8.3.2 Conformance requirement

The UE can deregister a previously registered public user identity at any time.

The UE shall integrity protect the REGISTER request using a security association, see 3GPP TS 33.203, established as a result of an earlier registration, if one is available.

The UE shall extract or derive from the UICC a public user identity, the private user identity, and the domain name to be used in the Request-URI in the registration, according to the procedures described in subclause 5.1.1.1A.

Prior to sending a REGISTER request for deregistration, the UE shall release all dialogs related to the public user identity that is going to be deregistered or to one of the implicitly registered public user identities.

On sending a REGISTER request, the UE shall populate the header fields as follows:

- a) the Authorization header, with;
 - the username directive, set to the value of the private user identity;
 - the realm directive, set to the domain name of the home network;
 - the uri directive, set to the SIP URI of the domain name of the home network;
 - the nonce directive, set to last received nonce value; and
 - the response directive, set to the last calculated response value;
- b) the From header set to the SIP URI that contains the public user identity to be deregistered;
- c) the To header set to the SIP URI that contains the public user identity to be deregistered;
- d) the Contact header set to either the value of "*" or SIP URI(s) that contain(s) in the hostport parameter the IP address of the UE or FQDN and the protected server port value bound to the security association;
- e) a Via header containing the IP address or FQDN of the UE in the sent-by field and the protected server port value bound to the security association;
 - NOTE 1: If the UE specifies its FQDN in the host parameter in the Contact header and in the sent-by field in the Via header, then it has to ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address that is bound to the security association.
- f) the Expires header, or the expires parameter of the Contact header, set to the value of zero, appropriate to the deregistration requirements of the user;
- g) a Request-URI set to the SIP URI of the domain name of the home network; and
- h) a P-Access-Network-Info header that contains information concerning the access network technology and, if applicable, the cell ID (see subclause 7.2A.4).

On receiving the 200 (OK) response to the REGISTER request, the UE shall remove all registration details relating to this public user identity.

If there are no more public user identities registered, the UE shall delete the security associations and related keys it may have towards the P-CSCF.

If all public user identities are deregistered and the security association is removed, then the UE shall consider subscription to the reg event package cancelled (i.e. as if the UE had sent a SUBSCRIBE request with an Expires header containing a value of zero).

NOTE: When the UE has received the 200 (OK) response for the REGISTER request of the only public user identity currently registered with its associated set of implicitly registered public user identities (i.e. no other is registered), the UE removes the security association established between the P-CSCF and the UE. Therefore further SIP signalling (e.g. the NOTIFY request containing the deregistration event) will not reach the UE.

Reference(s)

3GPPTS 24.229[10], clause 5.1.1.6

8.3.3 Test purpose

1) To verify that the UE sends a correctly composed initial REGISTER request with an Expires header or expires parameter set to 0 to S-CSCF via the discovered P-CSCF, according to 3GPP TS 24.229 [10] clause 5.1.1.6.

8.3.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE is registered to IMS services by performing the generic registration test procedure in Annex C up to the last step.

SS is configured with the IMSI within the USIM application, the home domain name, public and private user identities together with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) that is configured on the UICC card equipped into the UE. SS is listening to SIP default port 5060 for both UDP and TCP protocols. SS is able to perform AKAv1-MD5 authentication algorithm for that IMPI, according to 3GPP TS 33.203[14] clause 6.1 and RFC 3310 [17].

Related ICS/IXIT Statement(s)

Method of triggering the UE to deregister from IMS services Yes/No

Test procedure

- 1) The UE is triggered by MMI to initiate a deregistration procedure
- 2) IMS deregistration is initiated on the UE. SS waits the UE to send a REGISTER request, in accordance to 3GPP TS 24.229 [10], clause 5.1.1.6

Expected sequence

Step	Direction	Message	Comment	
	UE SS			
1	\rightarrow		UE sends deregistration for IMS services. (Register request with Expires header set to 0).	
2	←	200 OK	The SS responds REGISTER with 200 OK	

Specific message contents

REGISTER (step 1)

SS shall check that in accordance to the 3GPP TS 24.229 [10] clause 5.1.1.6 the UE sends an initial REGISTER request where the Request-URI and the headers have been correctly populated according to the REGISTER common message definition in annex A.1.1condition A2 with the following exception:

Header/param	Value/remark		
Contact			
addr-spec	SIP URI with IP address or FQDN and protected server port of UE or *		
expires	0 (if present, see Rule)		
Expires	(if present, see Rule)		
delta-seconds	0		

Rule:

if the addr-spec parameter of **Contact** header is *, expires parameter must not be present and **Expires** header is mandatory, if the addr-spec parameter of **Contact** header is not *, expires parameter is mandatory and **Expires** header must not be present.

8.3.5 Test Requirements

SS shall check in step 1 that the de-register request sent by the UE have the headers correctly populated as per the default message 'REGISTER' in annex A.1.1condition A2, except for the headers described in 8.3.4.

8.4 Invalid behaviour- 423 Interval too brief

8.4.1 Definition and applicability

Test to verify that the UE another REGISTER request using a correct expiration timer when a registration attempt was rejected with a 423 (Interval Too Brief) response.

8.4.2 Conformance requirement

On receiving a 423 (Interval Too Brief) too brief response to the REGISTER request, the UE shall:

- send another REGISTER request populating the Expires header or the expires parameter with an expiration timer of at least the value received in the Min-Expires header of the 423 (Interval Too Brief) response.

Reference(s)

3G TS 24.229[10], clause 5.1.1.2

8.4.3 Test purpose

To verify that after receiving a valid 423 (Interval Too Brief) response to the REGISTER request, the UE sends another REGISTER request populating the Expires header or the expires parameter in the Contact header with an expiration timer of at least the value received in the Min-Expires header of the 423 (Interval Too Brief) response.

8.4.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE is not registered to IMS services, but has an active PDP context and has discovered the SS as P-CSCF by executing the generic test procedure in Annex C.2 up to step 3.

SS is configured with the IMSI within the USIM application, the home domain name, public and private user identities together with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) that is configured on the UICC card equipped into the UE. SS is listening to SIP default port 5060 for both UDP and TCP protocols.

Related ICS/IXIT Statement(s)

<To be added>

Test procedure

- 1 IMS registration is initiated on the UE. SS waits for the UE to send an initial REGISTER request.
- 2 SS responds to the initial REGISTER request with a 423 (Interval Too Brief) response because the expiration time of the resource refreshed by the request is too short.
- 3 SS waits for the UE to send another REGISTER request populating the Expires header or the expires parameter in the Contact header with an expiration timer of at least the value received in the Min-Expires header of the 423 (Interval Too Brief) response.

Expected sequence

Step	Direction	Message	Comment	
	UE SS	-		
1	→	REGISTER	UE sends initial registration for IMS services.	
2	+	423 Interval Too Brief	The SS responds with a 423 (Interval Too Brief) too brief response to the REGISTER request with T value in Min-Expires header	
3	→	REGISTER	UE sends a new REGISTER request with expires parameter value set to Tmod (equal or greater to value in Min-Expires header of 423 Interval Too Brief)	

Specific Message Contents

REGISTER (Step 1)

Use the default message 'REGISTER' in annex A.1.1 with condition A1 'Initial unprotected REGISTER'.

423 Interval Too Brief for REGISTER (Step 2)

Use the default message '423 Interval Too Brief for REGISTER' in annex A.1.7 with the following exception:

Header/param	Value/remark
Min-Expires	
delta-seconds	800000 (referred to as T in the test procedure and test requirement)

REGISTER (Step 3)

Use the default message 'REGISTER' in annex A.1.1 with condition A2 "Subsequent REGISTER sent over security associations" with the following exception:

Header/param	Value/remark
Contact	
expires	800000 (referred to as Tmod in the expected sequence)

8.4.5 Test requirements

Step 3: The UE shall send another REGISTER request populating the Expires header or the expires parameter in the Contact header with an expiration timer of at least the value received in the Min-Expires header of the 423 (Interval Too Brief) response.

9 Authentication

9.1 Invalid Behaviour – MAC Parameter Invalid

9.1.1 Definition

To test that the UE when receiving an invalid 401 (Unauthorized) response to its initial REGISTER request behaves correctly. This procedure is described in 24.229 [10] clause 5.1.1.5.

9.1.2 Conformance requirement

Whenever the 200 (OK) response is not received before the temporary SIP level lifetime of the temporary set of security associations expires or a 403 (Forbidden) response is received, the UE shall consider the registration to have failed. The UE shall delete the temporary set of security associations it was trying to establish, and use the old set of security associations. The UE should send an unprotected REGISTER message according to the procedure specified in subclause 5.1.1.2 if the UE considers the old set of security associations to be no longer active at the P-CSCF.

. . .

When the network requires authentication of the UE, the UE will receive a 401 (Unauthorized) response to the REGISTER request.

On receiving a 401 (Unauthorized) response to the REGISTER request, the UE shall:

- 1) extract the RAND and AUTN parameters;
- 2) check the validity of a received authentication challenge, as described in 3GPP TS 33.203 i.e. the locally calculated XMAC must match the MAC parameter derived from the AUTN part of the challenge; and the SQN parameter derived from the AUTN part of the challenge must be within the correct range; and

If, in a 401 (Unauthorized) response, either the MAC or SQN is incorrect the UE shall respond with a further REGISTER indicating to the S-CSCF that the challenge has been deemed invalid as follows:

- in the case where the UE deems the MAC parameter to be invalid the subsequent REGISTER request shall contain noAUTS directive and an empty response directive, i.e. no authentication challenge response;
- in the case where the UE deems the SQN to be out of range, the subsequent REGISTER request shall contain the AUTS directive (see 3GPP TS 33.102).

NOTE: In the case of the SQN being out of range, a response directive can be included by the UE, based on the procedures described in RFC 3310. Whenever the UE detects any of the above cases, the UE shall:

- send the REGISTER request using an existing set of security associations, if available (see 3GPP TS 33.203);
- populate a new Security-Client header within the REGISTER request, set to specify the security mechanism it supports, the IPsec layer algorithms it supports and the parameters needed for the new security association setup; and
- not create a temporary set of security associations.

A UE shall only respond to two consecutive invalid challenges. The UE may attempt to register with the network again after an implementation specific time.

Reference(s)

3GPPTS 24.229[10], clauses 5.1.1.5

9.1.3 Test purpose

- 1) To verify that after receiving a 401 (Unauthorized) response from S-CSCF for the initial REGISTER sent, the UE checks the validity of the received authentication challenge, as described in 3GPP TS 33.203 [14] i.e. the locally calculated XMAC must match the MAC parameter derived from the AUTN part of the challenge
- 2) If, the value of MAC derived from the AUTN part of the 401 (Unauthorized) received by the UE does not match the value of locally calculated XMAC:
 - the UE responds with a further REGISTER indicating to the S-CSCF that the challenge has been deemed invalid and:
 - this subsequent REGISTER request contains no AUTS directive and an empty response directive, i.e. no authentication challenge response- populates a new Security-Client header within the REGISTER request, set to specify the security mechanism it supports, the IPsec layer algorithms it supports and the parameters needed for the new security association setup; and
 - does not create a temporary set of security associations.

9.1.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE is not registered to IMS services, but has an active PDP context and has discovered the SS as P-CSCF by executing the generic test procedure in Annex C.2 up to step 3.

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS is able to perform AKAv1-MD5 authentication algorithm for that IMPI, according to 3GPP TS 33.203 [14] clause 6.1 and RFC 3310 [17]. SS is listening to SIP default port 5060 for both UDP and TCP protocols.

Related ICS/IXIT Statement(s)

<To be added>

Test procedure

- 1) IMS registration is initiated on the UE. SS waits for the UE to send an initial REGISTER request, in accordance to 3GPP TS 24.229 [10], clause 5.1.1.2
- 2) SS responds to the initial REGISTER request with an invalid 401 Unauthorized response, headers populated as follows:
 - a) To, From, Via, CSeq, Call-ID and Content-Length headers according to RFC 3261 [15] clauses 8.2.6.2 and 20.14; and
 - b) WWW-Authentication header with AKAv1-MD5 authentication challenge according to in 3GPP TS 24.229 [10], clause 5.4.1.2.1 and RFC 3310 [17] clause 3; except that the MAC value in AUTN should be incorrect and the CK and IK values are not included
 - c) Security-Server header according to 3GPP TS 24.229 [10], clause 5.2.2 and RFC 3329 [21] clause 2.
- 3) SS waits for the UE to send a second Registration message indicating that the received 401 (Unauthorized) message was invalid
- 4) SS sends an invalid 401 (UNAUTHORIZED) message, same as in step b)

5) SS waits for the UE to send a second Registration message indicating that the received 401 (Unauthorized) message was invalid

Note: From this point onward the SS shall ignore any Registration message sent by the UE.

6) SS sends a 403 (Forbidden) message to the UE (to get the UE in a stable state at the end of the test case).

Expected sequence

Step	Direction		Message	Comment	
-	UE	SS]		
1	-)	REGISTER	UE sends initial registration for IMS services.	
2	←		401 Unauthorized	The SS responds with an invalid AKAv1-MD5	
				authentication challenge with an invalid MAC value.	
3))			REGISTER request:	
				 - contains no AUTS directive and an empty 	
				response directive, i.e. no authentication challenge	
				response	
				- UE populates a new Security-Client header set to	
				specify the security mechanism it supports, the	
				IPsec layer algorithms it supports and the	
				parameters needed for the new security association setup	
4	+	_	401 Unauthorized	The SS responds with an invalid AKAv1-MD5	
4	`		401 Offauthorized	authentication challenge with an invalid MAC value.	
5	-	>	REGISTER	REGISTER request:	
	1		KEGIOTEK	- contains no AUTS directive and an empty	
				response directive, i.e. no authentication challenge	
				response	
				- UE populates a new Security-Client header set to	
				specify the security mechanism it supports, the	
				IPsec layer algorithms it supports and the	
				parameters needed for the new security association	
				setup	
				Note: From this point onward the SS shall ignore	
				any Registration message sent by the UE.	
6	←	_	403 Forbidden	The SS sends this message to get the UE in a	
				stable state.	

Specific message contents

401 UNAUTHORIZED (Steps 2 and 4)

Use the default message '401 Unauthorized for REGISTER' in annex A.1.2 with the following modification:

Header/param	Value/remark	
WWW-Authenticate		
nonce	Base 64 encoding of RAND and AUTN, incorrect MAC	
	value is used to generate	

REGISTER (Step 1)

Use the default message 'REGISTER' in annex A.1.1 with condition A1

REGISTER (Steps 3 and 5)

Use the default message 'REGISTER' in annex A.1.1 with condition A1 with the following exceptions:

Header/param	Value/remark		
CSeq			
value	The value sent in the previous REGISTER message + 1 (incremented)		
Call-ID			
Call-ID	The same value as in REGISTER in Step 1		
Security-Verify	Header must not appear in the request		
Authorization			
response	It should be present but empty		
auth-param	If present it should not contain the auts=' <base 64="" encoded="" value=""/> ' directive		
nonce-count	value or presence of the parameter not to be checked		

403 FORBIDDEN (Step 6)

Header/param	Value/remark	Rel	Reference
Status-Line			RFC 3261 [15]
SIP-Version	SIP/2.0		
Status-Code	403		
Reason-Phrase	Forbidden		
Via			RFC 3261 [15]
via-parm	same value as received in the previous REGISTER message		
То			RFC 3261 [15]
addr-spec	same value as received in the previous REGISTER message		
tag	px_ToTagRegister		
From			RFC 3261 [15]
addr-spec	same value as received in the previous REGISTER message		
Call-ID			RFC 3261 [15]
value	same value as received in the previous REGISTER message		
CSeq			RFC 3261 [15]
value	same value as received in the previous REGISTER message		
Content-length			RFC 3261 [15]
value	0		RFC 3261 [15]

Editor"s note: This table has got a special format with 2 extra columns as this message is supposed to be moved to the default messages from the next meeting.

9.1.5 Test requirements

SS shall check in step 3 and 5 that in accordance to the 3GPP TS 24.229 [10] clause 5.1.1.5

- the UE responds with a further REGISTER indicating to the S-CSCF that the challenge has been deemed invalid and:
- sends the REGISTER request using no security associations; and
- the REGISTER request contains no AUTS directive and an empty response directive, i.e. no authentication challenge; and

- populates a new Security-Client header within the REGISTER request, set to specify the security mechanism it supports, the IPsec layer algorithms it supports and the parameters needed for the new security association setup; and
- does not create a temporary set of security associations.

9.2 Invalid Behaviour – SQN out of range

9.2.1 Definition

To test that the UE when receiving an invalid 401 (Unauthorized) response to its initial REGISTER request behaves correctly. This procedure is described in 24.229 [10] clause 5.1.1.5.

To test after a failed authentication attempt that the UE when receiving a valid 401 (Unauthorized) response to its initial REGISTER request behaves correctly. This procedure is described in 24.229 [10] clause 5.1.1.5.

9.2.2 Conformance requirement

When the network requires authentication of the UE, the UE will receive a 401 (Unauthorized) response to the REGISTER request.

On sending a REGISTER request, the UE shall populate the header fields as follows:

- a) the Authorization header, with the username field, set to the value of the private user identity;
- b) the From header set to the SIP URI that contains the public user identity to be registered;
- c) the To header set to the SIP URI that contains the public user identity to be registered;
- d) the Contact header set to include SIP URI(s) containing the IP address of the UE in the hostport parameter or FQDN. If the REGISTER request is protected by a security association, the UE shall also include the protected server port value in the hostport parameter;
- e) the Via header containing the IP address or FQDN of the UE in the sent-by field. If the REGISTER request is protected by a security association, the UE shall also include the protected server port value in the sent-by field.
- NOTE 1: If the UE specifies its FQDN in the host parameter in the Contact header and in the sent-by field in the Via header, then it has to ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address that is bound to the security association.
- NOTE 2: The UE associates two ports, a protected client port and a protected server port, with each pair of security association. For details on the selection of the protected port value see 3GPP TS 33.203.
- f) the Expires header, or the expires parameter within the Contact header, set to the value of 600 000 seconds as the value desired for the duration of the registration;
- NOTE 3: The registrar (S-CSCF) might decrease the duration of the registration in accordance with network policy. Registration attempts with a registration period of less than a predefined minimum value defined in the registrar will be rejected with a 423 (Interval Too Brief) response.
- g) a Request-URI set to the SIP URI of the domain name of the home network;
- h) the Security-Client header field set to specify the security mechanism the UE supports, the IPsec layer algorithms the UE supports and the parameters needed for the security association setup. The UE shall support the setup of two pairs of security associations as defined in 3GPP TS 33.203. The syntax of the parameters needed for the security association setup is specified in Annex H of 3GPP TS 33.203. The UE shall support the "ipsec-3gpp" security mechanism, as specified in RFC 3329. The UE shall support the HMAC-MD5-96 (RFC 2403) and HMAC-SHA-1-96 (RFC 2404) IPsec layer algorithms, and shall announce support for them according to the procedures defined in RFC 3329;
- i) the Supported header containing the option tag "path"; and

j) if a security association exists, a P-Access-Network-Info header that contains information concerning the access network technology and, if applicable, the cell ID (see subclause 7.2A.4).

. . .

On receiving a 401 (Unauthorized) response to the REGISTER request, the UE shall:

- 1) extract the RAND and AUTN parameters;
- 2) check the validity of a received authentication challenge, as described in 3GPP TS 33.203 i.e. the locally calculated XMAC must match the MAC parameter derived from the AUTN part of the challenge; and the SQN parameter derived from the AUTN part of the challenge must be within the correct range; and
- 3) check the existence of the Security-Server header as described in RFC 3329. If the header is not present or it does not contain the parameters required for the setup of the set of security associations (see annex H of 3GPP TS 33.203), the UE shall abandon the authentication procedure and send a new REGISTER request with a new Call-ID.

In the case that the 401 (Unauthorized) response to the REGISTER request is deemed to be valid the UE shall:

- 1) calculate the RES parameter and derive the keys CK and IK from RAND as described in 3GPP TS 33.203;
- 2) set up a temporary set of security associations based on the static list and parameters it received in the 401 (Unauthorized) response and its capabilities sent in the Security-Client header in the REGISTER request. The UE sets up the temporary set of security associations using the most preferred mechanism and algorithm returned by the P-CSCF and supported by the UE and using IK as the shared key. The UE shall use the parameters received in the Security-Server header to setup the temporary set of security associations. The UE shall set a temporary SIP level lifetime for the temporary set of security associations to the value of reg-await-auth timer; and
- 3) send another REGISTER request using the temporary set of security associations to protect the message. The header fields are populated as defined for the initial request, with the addition that the UE shall include an Authorization header containing the private user identity and the authentication challenge response calculated by the UE using RES and other parameters, as described in RFC 3310. The UE shall also insert the Security-Client header that is identical to the Security-Client header that was included in the previous REGISTER request (i.e. the REGISTER request that was challenged with the received 401 (Unauthorized) response). The UE shall also insert the Security-Verify header into the request, by mirroring in it the content of the Security-Server header received in the 401 (Unauthorized) response. The UE shall set the Call-ID of the integrity protected REGISTER request which carries the authentication challenge response to the same value as the Call-ID of the 401 (Unauthorized) response which carried the challenge.

. . .

If, in a 401 (Unauthorized) response, either the MAC or SQN is incorrect the UE shall respond with a further REGISTER indicating to the S-CSCF that the challenge has been deemed invalid as follows:

- in the case where the UE deems the MAC parameter to be invalid the subsequent REGISTER request shall contain no AUTS directive and an empty response directive, i.e. no authentication challenge response;
- in the case where the UE deems the SQN to be out of range, the subsequent REGISTER request shall contain the AUTS directive(see 3GPP TS 33.102).

NOTE: In the case of the SQN being out of range, a response directive can be included by the UE, based on the procedures described in RFC 3310.

Whenever the UE detects any of the above cases, the UE shall:

- send the REGISTER request using an existing set of security associations, if available (see 3GPP TS 33.203);
- populate a new Security-Client header within the REGISTER request, set to specify the security mechanism it supports, the IPsec layer algorithms it supports and the parameters needed for the new security association setup; and
- not create a temporary set of security associations.

A UE shall only respond to two consecutive invalid challenges. The UE may attempt to register with the network again after an implementation specific time.

Reference(s)

3GPPTS 24.229[10], clauses 5.1.1.2 and 5.1.1.5

9.2.3 Test purpose

- 1) To verify that after receiving a 401 (Unauthorized) response for the initial REGISTER sent, the UE checks that the SQN parameter derived from the AUTN part of the authentication challenge is within the correct range
- 2) If, the value of SQN derived from the AUTN part of the 401 (Unauthorized) received by the UE is out of range the UE reacts correctly:
- 3) To verify after a failed authentication attempt if the UE on receives a valid 401 (Unauthorized) message from the network in response to the Register request sent, the UE is able to perform the authentication and registration successfully:

9.2.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE is not registered to IMS services, but has an active PDP context and has discovered the SS as P-CSCF by executing the generic test procedure in Annex C.2 up to step 3.

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS is able to perform AKAv1-MD5 authentication algorithm for that IMPI, according to 3GPP TS 33.203 [14] clause 6.1 and RFC 3310 [17]. SS is listening to SIP default port 5060 for both UDP and TCP protocols.

Related ICS/IXIT Statement(s)

<To be added>

Test procedure

- 1) IMS registration is initiated on the UE. SS waits for the UE to send an initial REGISTER request, in accordance to 3GPP TS 24.229 [10], clause 5.1.1.2
- 2) SS responds to the initial REGISTER request with an invalid 401 Unauthorized response, headers populated as follows:
 - a) To, From, Via, CSeq, Call-ID and Content-Length headers according to RFC 3261 [15] clauses 8.2.6.2 and 20.14; and
 - b) WWW-Authentication header with AKAv1-MD5 authentication challenge according to in 3GPP TS 24.229 [10], clause 5.4.1.2.1 and RFC 3310 [17] clause 3; except that the SQN value in AUTN should be out of range and the CK and IK values are not included
 - c) Security-Server header according to 3GPP TS 24.229 [10], clause 5.2.2 and RFC 3329 [21] clause 2.
- 3) SS waits for the UE to send a second Registration message indicating that the received 401 (Unauthorized) message was invalid
- 4) SS sends a valid 401 (Unauthorized) message to the UE
- 5) SS waits for the UE to send a Registration request using the temporary set of security associations to protect the message. The Registration request shall contain the valid answer to the authentication challenge in 401 (Unauthorized) sent in the previous step

6.) SS responds to the second REGISTER request with valid 200 OK response, sent over the same temporary set of security associations that the UE used for sending the REGISTER request. SS shall populate the headers of the 200 OK response according to the 200 response for REGISTER common message definition.

Expected sequence

Step	Direction		Message	Comment
	UE	SS		
1))	REGISTER	UE sends initial registration for IMS services.
2	+	-	401 Unauthorized	The SS responds with an invalid AKAv1-MD5
				authentication challenge with SQN out of range.
3))	•	REGISTER	REGISTER request:
				- contains AUTS directive
				- UE populates a new Security-Client header set to
				specify the security mechanism it supports, the
				IPsec layer algorithms it supports and the
				parameters needed for the new security association
				setup
4	-	-	401 Unauthorized	This is a valid 401 (Unauthorized) message
5))	•	REGISTER	Message is sent using the temporary set of security
				associations to protect the message
				Contains the valid answer to the authentication
				challenge sent in the 401 (Unauthorized) message
6	-	-	200 OK	The SS responds with 200 OK.

Specific message contents

REGISTER (Step 1)

Use the default message 'REGISTER' in annex A.1.1 with condition A1.

401 UNAUTHORIZED (Step 2)

Use the default message '401 Unauthorized for REGISTER' in annex A.1.2 with the following modification:

Header/param	Value/remark
WWW-Authenticate	
nonce	Base 64 encoding of RAND and AUTN, Generated with SQN out of range

REGISTER (Step 3)

Use the default message 'REGISTER' in annex A.1.1 with condition A1 with the following exceptions:

Header/param	Value/remark
CSeq	
value	The value sent in the previous REGISTER message + 1 (incremented)
Call-ID	
Call-ID	The same value as in REGISTER in Step 1
Authorization	
nonce	Same value as the opaque value in the previous 401 UNAUTHORIZED message
opaque	Same value as the opaque value in the previous 401 UNAUTHORIZED message
response	parameter must exist, but value not to be checked
auth-param	auts= LDQUOT auts-value RDQUOT, auts-value not to be checked
nonce-count	value or presence of the parameter not to be checked

REGISTER (Step 5)

Use the default message 'REGISTER' in annex A.1.1 with option A2 with the following exceptions:

Header/param	Value/remark	
CSeq		
value	The value sent in the previous REGISTER message + 1 (incremented)	
Call-ID		
Call-ID	The same value as in REGISTER in Step 1	

Note: This message should be sent using the temporary set of security associations to protect the message.

9.2.5 Test requirements

SS shall check in step 3 that in accordance to the 3GPP TS 24.229 [10] clause 5.1.1.5

- the UE responds with a further REGISTER indicating to the S-CSCF that the challenge has been deemed invalid and:
- sends the REGISTER request using no security associations; and
- the REGISTER request contains AUTS directive; and
- populates a new Security-Client header within the REGISTER request, set to specify the security mechanism it supports, the IPsec layer algorithms it supports and the parameters needed for the new security association setup; and
- does not create a temporary set of security associations.

SS shall check that in step 5 the UE:

- Sends the Registration request using the temporary set of security associations to protect the message
- The header fields are populated as defined for the initial request, with the addition that the UE shall include an Authorization header containing the private user identity and the authentication challenge response calculated by the UE using RES and other parameters, as described in RFC 3310 [17]
- inserts the Security-Client header into the request that is identical to the Security-Client header that was included in the previous REGISTER request(the message sent in step 3)
- inserts the Security-Verify header into the request, by mirroring in it the content of the Security-Server header received in the 401 (Unauthorized) response
- sets the Call-ID of the integrity protected REGISTER request which carries the authentication challenge response to the same value as the Call-ID of the 401 (Unauthorized) response which carried the challenge(the message sent in step 4)

10 Subscription

10.1 Invalid Behaviour – 503 Service Unavailable

10.1.1 Definition and applicability

Test to verify that when the UE receives a 503 (Service Unavailable) response to a SUBSCRIBE request containing a Retry-After header, then the UE shall not automatically reattempt the request until after the period indicated by the Retry-After header contents. This can happen when the server is temporarily unable to process the request due to a temporary overloading or maintenance of the server.

10.1.2 Conformance requirement

If the UA receives a 503 (Service Unavailable) response to an initial SUBSCRIBE request containing a Retry-After header, then the UE shall not automatically reattempt the request until after the period indicated by the Retry-After header contents.

Reference(s)

3G TS 24.229[10], clause 5.1.2.2

10.1.3 Test purpose

To verify that after receiving a 503 (Service Unavailable) response to a SUBSCRIBE request, containing a Retry-After header, the UE shall not automatically reattempt the request until after the period indicated by the Retry-After header contents. This can happen when the server is temporarily unable to process the request due to a temporary overloading or maintenance of the server.

10.1.4 Method of test

Initial conditions

UE contains either ISIM or USIM application or only one USIM application on UICC. UE has an active PDP context, discovered the SS as P-CSCF and registered to IMS services by executing the generic test procedure in Annex C.2 up to step 7.

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS has performed AKAv1-MD5 authentication with the UE and accepted the registration.

Related ICS/IXIT Statement(s)

<To be added>

Test procedure

- 1) The UE sends a SUBSCRIBE request over the established security associations.
- 2) The SS responds to the SUBSCRIBE request with a 503 (Service Unavailable) response with the Retry-After header with period set to T, indicating how long the service is expected to be unavailable to the requesting client.
- 3) The SS waits for the period of time T defined in the Retry-After header, to check that the UE does not try to SUBSCRIBE for the registration event during this period..
- 4) The UE sends a new SUBSCRIBE request and the SS responds with a valid 200 OK response.

Expected sequence

Step	Direction		Message	Comment
	UE	SS		
1	7	>	SUBSCRIBE	UE subscribes to its registration event package.
2	←		503 Service Unavailable	The SS responds with 503 response containing a Retry-After header with period set to T
3				SS waits for Time T to check that the UE does not re-attempt the request .
4	→		SUBSCRIBE	UE reattempts to subscribe to its registration event package.
5	+	_	200 OK	SS responds to SUBSCRIBE with 200 OK

Specific Message Contents

SUBSCRIBE (Step 1)

Use the default message 'SUBSCRIBE for reg-event package' in annex A.1.4.

503 Service Unavailable response (Step 2)

Header/param	Value/remark
Retry-after	
period	60 (referred to as T in the test procedure and test requirement)
duration	Not present
comment	Not present

SUBSCRIBE (Step 4)

Use the default message 'SUBSCRIBE for reg-event package' in annex A.1.4 with the following exception:

Header/param	Value/remark
Call-ID	
callid	value different from the previous SUBSCRIBE request

200 OK for SUBSCRIBE (Step 5)

Use the default message '200 OK for SUBSCRIBE' in annex A.1.5.

10.1.5 Test requirements

Step 3: The UE shall not automatically reattempt the request during the period duration T.

Step 4: The UE reattempts to send a SUBSCRIBE request for registration event package.

11 Notification

11.1 Network-initiated deregistration

11.1.1 Definition and applicability

Test to verify that the UE can correctly process the network initiated deregistration request.

11.1.2 Conformance requirement

Upon receipt of a NOTIFY request on the dialog which was generated during subscription to the reg event package as described in subclause 5.1.1.3, including one or more <registration> element(s) with the state attribute set to "terminated" and the event attribute set to "rejected" or "deactivated", the UE shall remove all registration details relating to these public user identities. In case of a "deactivated" event attribute, the UE shall start the initial registration procedure as described in subclause 5.1.1.2. In case of a "rejected" event attribute, the UE shall release all dialogs related to those public user identities.

Upon receipt of a NOTIFY request with all <registration> element(s) having their state attribute set to "terminated" (i.e. all public user identities are deregistered) and the Subscription-State header contains the value of "terminated", the UE

shall delete the security associations towards the P-CSCF after the server transaction (as defined in RFC 3261) pertaining to the NOTIFY request terminates.

- NOTE 1: Deleting a security association is an internal procedure of the UE and does not involve any SIP procedures.
- NOTE 2: If the security association towards the P-CSCF is removed, then the UE considers the subscription to the reg event package terminated (i.e. as if the UE had sent a SUBSCRIBE request with an Expires header containing a value of zero, or a NOTIFY request was received with Subscription-State header containing the value of "terminated").
- NOTE 3: When the P-CSCF has removed the security association established between the P-CSCF and the UE, further SIP signalling (e.g. the NOTIFY containing the deregistration event) will not reach the UE.

Reference(s)

3GPPTS 24.229[10], clauses 5.1.1.7

11.1.3 Test purpose

To verify that UE will not try registration after getting a NOTIFY with all <registration> element(s) set to "terminated" and "rejected".

11.1.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE has activated a PDP context, discovered P-CSCF and registered to IMS services by executing the generic test procedure in Annex C.2 up to the last step..

SS is configured with the IMSI within the USIM application, the home domain name, public and private user identities together with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) that is configured on the UICC card equipped into the UE. SS is able to perform AKAv1-MD5 authentication algorithm for that IMPI, according to 3GPP TS 33.203 [14] clause 6.1 and RFC 3310 [17].

Related ICS/IXIT Statement(s)

-

Test procedure

- 1) SS sends UE a NOTIFY request for the subscribed registration event package, indicating that registration for all the previously registered user identities has been terminated and that new registration shall not be performed. Request is sent over the existing security associations between SS and UE.
- 2) SS waits for the UE to respond the NOTIFY with 200 OK response.

Expected sequence

Step	Direction	Message	Comment
	UE SS		
1	←		The SS sends a NOTIFY for registration event package, containing full registration state information, with all previously registered public user identities "terminated" and "rejected"
2	\rightarrow	200 OK	The UE responds the NOTIFY with 200 OK

Specific Message Contents

NOTIFY (Step 1)

Use the default message 'NOTIFY for reg-event package' in annex A.1.6 with the following exceptions:

Header/param	Value/remark
CSeq	
value	2
Subscription-State	
substate-value	terminated
expires	0
Message-body	<pre><?xml version='1.0?> <reginfo state="full" version="1" xmlns="urn:ietf:params:xml:ns:reginfo"> <registration aor="px_PublicUserIdentity" id="a100" state="terminated"> <contact event="rejected" id="980" state="terminated"> <uri>>same value as in Contact header of REGISTER request</uri> </contact> </registration> <registration aor="px_AssociatedTelUri" id="a101" state="terminated"> <contact event="rejected" id="981" state="terminated"> <uri>>same value as in Contact header of REGISTER request</uri> </contact> </registration> </reginfo></pre>

200 OK for NOTIFY (Step 2)

Use the default message '200 OK for other requests than REGISTER or SUBSCRIBE' in annex A.3.1

11.1.5 Test requirements

Step 2: SS shall check that the UE sends the 200 OK response over the existing set of security associations.

SS shall check that terminal does not try to send a REGISTER message after sending 200 OK. Waiting period of one minute is sufficient.

11.2 Network initiated re-authentication

11.2.1 Definition and applicability

Test to verify that the UE can correctly process the network initiated re-authentication request and re-authenticate the user before the registration expires, in accordance to 3GPP TS 24.229 [10], clause 5.1.1.5.2.

11.2.2 Conformance requirement

At any time, the UE can receive a NOTIFY request carrying information related to the reg event package (as described in subclause 5.1.1.3). If:

- the state attribute in any of the <registration> elements is set to "active";
- the value of the <uri> sub-element inside the <contact> sub-element is set to the Contact address that the UE registered; and
- the event attribute of that <contact> sub-element(s) is set to "shortened";

the UE shall:

use the expiry attribute within the <contact> element to adjust the expiration time for that public user identity;
 and

2) start the re-authentication procedures at the appropriate time (as a result of the S-CSCF procedure described in subclause 5.4.1.6) by initiating a reregistration as described in subclause 5.1.1.4.

Reference(s)

3GPPTS 24.229[10], clause 5.1.1.5.2

11.2.3 Test purpose

- To verify that UE adjusts the expiration time for a public user identity as indicated within the received NOTIFY related to reg event package; and
- 2) To verify that the UE will start the re-authentication procedures at the appropriate time before the registration expires.

11.2.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE has activated a PDP context, discovered P-CSCF and registered to IMS services by executing the generic test procedure in Annex C.2 up to the last step.. The expiration time for the registration (as controlled by px_RegisterExpiration) must be at least 600 seconds. Security associations have been set up between UE and the SS.

SS is configured with the IMSI within the USIM application, the home domain name, public and private user identities together with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) that is configured on the UICC card equipped into the UE. SS is able to perform AKAv1-MD5 authentication algorithm for that IMPI, according to 3GPP TS 33.203 [14] clause 6.1 and RFC 3310 [17].

Related ICS/IXIT Statement(s)

_

Test procedure

- 1) SS sends UE a NOTIFY request for the subscribed registration event package, indicating the shortened expiration time as 60 seconds. Request is sent over the existing security associations between SS and UE.
- 2) SS waits for the UE to respond the NOTIFY with 200 OK response.
- 3) SS waits for the UE send a REGISTER request 30 seconds before the expected new expiration time.
- 4) SS responds to the REGISTER request with a valid 401 Unauthorized response, headers populated according to the 401 response common message definition.
- 5) SS waits for the UE to set up a new set of security associations and send another REGISTER request, over those security associations.
- 6) SS responds to the REGISTER request with valid 200 OK response sent over the newly set up security associations

Expected sequence

Step	Direction	Message	Comment
	UE SS	5	
1	←	NOTIFY	The SS sends a NOTIFY for registration event package, containing partial registration state information, indicating shortened expiration time (60 seconds) for the registered public user identity in the XML body
2	\rightarrow	200 OK	The UE responds the NOTIFY with 200 OK
3	\rightarrow	REGISTER	UE re-registers the user 30 seconds before the expected expiration
4	+	401 Unauthorized	The SS responds with a valid AKAv1-MD5 authentication challenge and security mechanisms supported by the network
5	→	REGISTER	UE completes the security negotiation procedures, sets up a new temporary set of SAs and uses those for sending another REGISTER with AKAv1-MD5 credentials.
6	+	200 OK	The SS responds with 200 OK to complete the reauthentication

Specific Message Contents

NOTIFY (Step 1)

Use the default message 'NOTIFY for reg-event package' in annex A.1.6 with the following exceptions:

Header/param	Value/remark
CSeq	
value	2
Message-body	xml version='1.0?
	<reginfo state="partial" version="1" xmlns="urn:ietf:params:xml:ns:reginfo"></reginfo>
	<pre><registration aor="px_PublicUserIdentity" id="a100" state="active"></registration></pre>
	<pre><contact event="shortened" expires="60" id="980" state="active"></contact></pre>
	<uri>same value as in Contact header of REGISTER request</uri>

200 OK for NOTIFY (Step 2)

Use the default message '200 OK for other requests than REGISTER or SUBSCRIBE' in annex A.3.1

REGISTER (Step 3)

Use the default message 'REGISTER' in annex A.1.1 condition A2 with the following exceptions:

Header/param	Value/remark	
CSeq		
value	sequence number incremented by one compared to the previous REGISTER	
Security-Client		
spi-c	new SPI number of the inbound SA at the protected client port	
spi-s	new SPI number of the inbound SA at the protected server port	
port-c	new protected client port needed for the setup of new pairs of security associations	
port-s	Same value as in the previous REGISTER	

401 Unauthorized for REGISTER (Step 4)

Use the default message '401 Unauthorized for REGISTER' in annex A.1.2 with the following exceptions:

Header/param	Value/remark	
Security-Server		
spi-c	new SPI number of the inbound SA at the protected client port	
spi-s	new SPI number of the inbound SA at the protected server port	
port-c	new protected client port needed for the setup of new pairs of security associations	
port-s	Same value as in the previous Security-Server headers	
WWW-Authenticate		
nonce	Base 64 encoding of a new RAND and AUTN	

REGISTER (Step 5)

Use the default message 'REGISTER' in annex A.1.1 with condition A2 and the following exceptions:

Header/param	Value/remark	
CSeq		
value	sequence number incremented by one compared to the previous REGISTER request	

200 OK for REGISTER (Step 6)

Use the default message '200 OK for REGISTER' in annex A.1.3

11.2.5 Test requirements

Step 2: SS shall check that the UE sends the 200 OK response over the existing set of security associations.

Step 3: SS shall check that in accordance to the 3GPP TS 24.229 [10] clause 5.1.1.4 the UE sends a REGISTER request over the existing set of security associations.

12 Call Control

12.1 MO Call Successful

12.1.1 Definition and applicability

Test to verify that the UE correctly performs IMS mobile originated call setup and release. This process is described in 3GPPTS 24.229 [10], clauses 5.1.3 and 6.1.

12.1.2 Conformance requirement

- . When the UE sends any request, the UE shall:
 - include the protected server port in the Via header entry relating to the UE; and
 - include the protected server port in any Contact header that is otherwise included.

....

The UE shall insert a P-Access-Network-Info header into any request for a dialog, any subsequent request (except ACK requests and CANCEL requests) or response (except CANCEL responses) within a dialog or any request for a standalone method. This header shall contain information concerning the access network technology and, if applicable, the cell ID (see subclause 7.2A.4 of TS 24.229).

The UE shall build a proper preloaded Route header value for all new dialogs and standalone transactions. The UE shall build a list of Route header values made out of, in this order, the P-CSCF URI (containing the IP address or the FQDN learnt through the P-CSCF discovery procedures, and the protected port learnt during the registration procedure), and the values received in the Service-Route header saved from the 200 (OK) response to the last registration or re-registration.

Upon generating an initial INVITE request, the UE shall:

- indicate the support for reliable provisional responses and specify it using the Supported header mechanism;
- indicate the requirement of precondition and specify it using the Require header mechanism.

. . . .

When a final answer is received for one of the early dialogues, the UE proceeds to set up the SIP session.

Usage of SDP by the UE:

- 1) In order to authorize the media streams, the P-CSCF and S-CSCF have to be able to inspect the SDP payloads. Hence, the UE shall not encrypt the SDP payloads.
- 2) An INVITE request generated by a UE shall contain SDP payload. The SDP payload shall reflect the calling user's terminal capabilities and user preferences for the session. The UE shall order the SDP payload with the most preferred codec listed first. In addition, the calling user shall indicate the desired QoS for the session, using the segmented status type. In an initial INVITE request the UE shall indicate that it mandates local QoS and that this precondition is not yet satisfied, i.e. the UE shall include the following preconditions:

a=des: qos mandatory local sendrecv

a=curr: qos local none

3) Providing that the INVITE request received by the UE contains an SDP offer including one or more "m=" media descriptions, the first 183 (Session Progress) provisional response that the UE sends, shall contain the answer for the SDP received in the INVITE. The said SDP answer shall reflect the called user's terminal capabilities and user preferences.

- 4) When the UE sends a 183 (Session Progress) response with SDP payload including one or more "m=" media descriptions, it shall request confirmation for the result of the resource reservation at the originating end point.
- 5) During session establishment procedure, SIP messages shall only contain SDP payload if that is intended to modify the session description.
- 6) For "video" and "audio" media types that utilize the RTP/RTCP, the UE shall specify the proposed bandwidth for each media stream utilizing the "b=" media descriptor and the "AS" bandwidth modifier in the SDP.

If the media line in the SDP indicates the usage of RTP/RTCP, in addition to the "AS" bandwidth modifier in the media-level "b=" line, the UE shall include two media-level "b=" lines, one with the "RS" bandwidth modifier and the other with the "RR" bandwidth modifier as described in RFC 3556 to specify the required bandwidth allocation for RTCP.

For other media streams the "b=" media descriptor may be included. The value or absence of the "b=" parameter will affect the assigned QoS which is defined in 3GPP TS 29.208.

- NOTE 1: In a two-party session where both participants are active, the RTCP receiver reports are not sent, therefore, the RR bandwidth modifer will typically get the value of zero.
 - 7) The UE shall include the MIME subtype "telephone-event" in the "m=" media descriptor in the SDP for audio media flows that support both audio codec and DTMF payloads in RTP packets as described in RFC 2833.

Reference(s)

3GPPTS 24.229[10], clauses 5.1.2A.1, 5.1.3 and 6.1

12.1.3 Test purpose

- 1) To verify that when initiating MO call the UE performs correct exchange of SIP protocol signalling messages for setting up the session; and
- 2) To verify that within SIP signalling the UE performs the correct exchange of SDP messages for negotiating media and indicating preconditions for resource reservation (as described by 3GPP TS 24.229 [10], clause 6.1).
- 3) To verify that the UE is able to release the call.

12.1.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE has activated a PDP context, discovered P-CSCF and registered to IMS services, by executing the generic test procedure in Annex C.2 up to the last step.

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS has performed AKAv1-MD5 authentication with the UE and accepted the registration.

Related ICS/IXIT Statement(s)

Support for initiating a session (Yes/No)

Support for use of preconditions (Yes/No)

Test procedure

1) MO call is initiated on the UE. SS waits the UE to send an INVITE request with first SDP offer, over the security associations set up during registration, in accordance to 3GPP TS 24.229 [10], clause 5.1.3

- 2) SS responds to the INVITE request with a 100 Trying response.
- 3) SS responds to the INVITE request with a 183 Session in Progress response

NOTE: SS is not expected to take care of the media, so the IP address and port could be assigned so that the SS is listening to it, but may discard the RTP packets received.

- 4) SS waits for the UE to send a PRACK request possibly containing the second SDP offer.
- 5) SS responds to the PRACK request with valid 200 OK response.
- 6) SS waits for the UE to optionally send a UPDATE request containing the final SDP offer. UE will not send the UPDATE request if PRACK request of step 4 already contained the final offer with preconditions met.
- 7) SS responds to the UPDATE request (if UE sent one) with valid 200 OK response.
- 8) SS responds to the INVITE request with 180 Ringing response.
- 9) SS waits for the UE to send a PRACK request.
- 10)SS responds to the PRACK request with valid 200 OK response.
- 11. SS responds to the INVITE request with valid 200 OK response.
- 12)SS waits for the UE to send an ACK to acknowledge receipt of the 200 OK for INVITE.
- 13) Call is released on the UE. SS waits the UE to send a BYE request.
- 14)SS responds to the BYE request with valid 200 OK response.

Expected sequence

Step	Direction	Message	Comment
·	UE SS	7	
1	\rightarrow	INVITE	UE sends INVITE with the first SDP offer indicating
			all desired medias and codecs the UE supports
2	+	100 Trying	The SS responds with a 100 Trying provisional
			response
3	←	183 Session in Progress	The SS responds with an SDP answer indicating
			the medias and codecs acceptable for SS
4	\rightarrow	PRACK	UE acknowledges the receipt of 183 response with
			PRACK and offers second SDP that indicates one
			agreed codec per media and possibly indicates
			preconditions as met after having reserved the
			resources with GPRS
5	←	200 OK	The SS responds PRACK with 200 OK and
			answers the second SDP with mirroring its contents
			and indicates having reserved the resources if UE
			has also done so.
6	\rightarrow	UPDATE	Optional step: UE sends an UPDATE after having
			reserved the resources with GPRS procedures for
			PDP context used for the media
7	+	200 OK	Optional step: The SS responds UPDATE with 200
			OK and indicates having reserved the resourced for
			the virtual remote UE
8	←	180 Ringing	The SS responds INVITE with 180 Ringing to
			indicate that the virtual remote UE has started
			ringing
9	\rightarrow	PRACK	UE acknowledges the receipt of 180 response by
			sending PRACK
10	←	200 OK	The SS responds PRACK with 200 OK
11	+	200 OK	The SS responds INVITE with 200 OK to indicate
			that the virtual remote UE had answered the call
12	\rightarrow	ACK	The UE acknowledges the receipt of 200 OK for
			INVITE
13	\rightarrow	BYE	The UE releases the call with BYE
14	+	200 OK	The SS sends 200 OK for BYE

Specific Message Contents

INVITE (Step 1)

Use the default message 'INVITE for MO call setup' in annex A.2.1 For the contents of SDP body see test requirement details.

100 Trying for INVITE (Step 2)

Use the default message '100 Trying for INVITE' in annex A.2.2 $\,$

183 Session in Progress for INVITE (Step 3)

Use the default message '183 Session in Progress for INVITE' in annex A.2.3

PRACK (Step 4)

Use the default message 'PRACK' in annex A.2.4

200 OK for PRACK (Step 5)

Use the default message " $200\,\mathrm{OK}$ for other requests than REGISTER or SUBSCRIBE" in annex A.3.1 with the following exceptions:

Header/param	Value/remark	
Content-Type	header shall be present only if there is SDP in message-body	
media-type	application/sdp	
Content-Length		
value	length of message-body	
Message-body SDP body of the 200 response copied from the received PRACK, if but otherwise omitted. The copied SDP body must be modified as f 200 OK response:		
	- IP address on "o=" and "c=" lines and transport port on "m=" lines changed to indicate to which IP address and port the UE should start sending the media; and	
	optional "a=sendonly" line inverted to "a=recvonly" and vice versa; and	
	- the "a=" lines describing the current and desired state of the preconditions, as described in RFC 3312 [31], updated as follows: a=curr:qos local [direction-tag] (1 a=curr:qos remote [direction-tag] (2 a=des:qos mandatory local [direction-tag] (3 a=des:qos mandatory remote [direction-tag] (3 a=conf:qos remote [direction-tag] (4	
	1) The value of direction-tag in a=curr qos local line of of 200 must be the inverse of that in the a=curr:qos local line of PRACK. If the PRACK contained the direction-tag as "recv" the 200 must have it as "send" and vice versa. The values "none" and "sendrecv" will be kept as is.	
	2) The value of direction-tag in a=curr qos remote line of 200 must be the inverse from the a=curr:qos local line of PRACK.	
	3) The value of direction-tags in a=des lines of 200 must be the inverse from those of PRACK (both a= lines for local and remote). If the PRACK contained the direction-tag as "recv" the 200 must have it as "send" and vice versa. The value "sendrecv" will be kept as is.	
	4) The value of direction-tag for the optional line conf:qos remote shall be the same as for des: qos mandatory remote. This line is only included if a=curr:qos remote is still "none".	

UPDATE (Step 6) optional step used when PRACK contained a=curr:qos local none

Use the default message 'UPDATE' in annex A.2.5

200 OK for UPDATE (Step 7) - optional step used when UE sent UPDATE

Use the default message '200 OK for other requests than REGISTER or SUBSCRIBE' in annex A.3.1 with the following exceptions:

Header/param	Value/remark
Content-Type	
media-type	application/sdp
Content-Length	
value	length of message-body
Message-body	SDP body of the 200 response copied from the received UPDATE but modified as follows:
	- IP address on "o=" and "c=" lines and transport port on "m=" lines changed to indicate to which IP address and port the UE should start sending the media; and
	optional "a=sendonly" line inverted to "a=recvonly" and vice versa; and
	- the "a=" lines describing the current and desired state of the preconditions, as described in RFC 3312 [31], updated as follows: a=curr:qos local [direction-tag] (1 a=curr:qos remote [direction-tag] (2 a=des:qos mandatory local [direction-tag] (3 a=des:qos mandatory remote [direction-tag] (3
	1) The value of direction-tag in a=curr qos local line of 200 must be the inverse of that in the a=curr:qos local line of UPDATE. If the UPDATE contained the direction-tag as "recv" the 200 must have it as "send" and vice versa. The value "sendrecv" will be kept as is.
	2) The value of direction-tag in a=curr qos remote line of 200 must be the inverse from the a=curr:qos local line of UPDATE.
	3) The value of direction-tags in a=des lines of 200 must be the inverse from those of UPDATE (both a= lines for local and remote). If the UPDATE contained the direction-tag as "recv" the 200 must have it as "send" and vice versa. The value "sendrecv" will be kept as is.

180 Ringing for INVITE (Step 8)

Use the default message '180 Ringing for INVITE' in annex A.2.6

PRACK (Step 9)

Use the default message 'PRACK' in annex A.2.4

200 OK for PRACK (Step 10)

Use the default message '200 OK for other requests than REGISTER or SUBSCRIBE' in annex A.3.1.

200 OK for INVITE (Step 11)

Use the default message '200 OK for other requests than REGISTER or SUBSCRIBE' in annex A.3.1 with the following exceptions:

Header/param	Value/remark
Record-Route	
rec-route	Same value as in the 180 response
Contact	
addr-spec	Same value as in the 180 response

ACK (Step 12)

Use the default message 'ACK' in annex A.2.7

BYE (Step 13)

Use the default message 'BYE' in annex A.2.8

200 OK for BYE (Step 14)

Use the default message '200 OK for other requests than REGISTER or SUBSCRIBE' in annex A.3.1.

12.1.5 Test requirements

SS must check that the UE sends all the requests over the security associations set up during registration, in accordance to 3GPP TS 24.229 [10], clause 5.1.1.5.1.

Step 1: the UE shall send an INVITE message with correct content. The UE shall include the following lines in the SDP body:

- All mandatory SDP lines, as specified in SDP grammar in RFC 2327 [27] appendix A, including:
 - "o=" line indicating e.g. the session identifier and the IP address of the UE;
 - "c=" line indicating the IP address of the UE for receiving the media flow;
- Media description lines for the media proposed by UE for the MO call. For each type of offered media the following lines must exist within the SDP:
 - "m=" line describing the media type, transport port and protocol used for media and media format;
 - "b=" line proposing the application specific maximum bandwidth ("AS" modifier) for the media, however this line may be missing if the SDP contains "a=sendonly" line, according to RFC 3264 [30];
 - optionally two "b=" lines proposing the bandwidth allocations for RTCP (for "RS" and "RR" modifiers), if the media line in the SDP indicates the usage of RTP/RTCP, as described in RFC 3556;
 - extra "a=" line for rtpmap attribute per each dynamic payload type given in the "m=" line:

- If the UE supports DTMF payloads in RTP packets for audio type of media, then one of the "a=" lines shall indicate "telephone-event" MIME subtype;
- Any of the "a=" line for rtpmap attribute may be followed by extra "a=" line for fmtp attribute to convey parameters specific to a particular format;
- four "a=" lines describing the current and desired state of the preconditions, as described in RFC 3312 [31]. At this stage of the call setup the lines shall be as follows:

```
a=curr:qos local none
```

a=curr:qos remote none

a=des:qos mandatory local [send, recv or sendrecv]

a=des:qos [none optional or mandatory] remote [send, recv or sendrecv]s

The direction tag for remote shall be the same as for local

...

Step 4: the UE shall send a PRACK request with the correct content. The UE may include a SDP body in the PRACK request if SDP body of INVITE offered multiple codecs per media. In that case the following lines shall be included in the SDP body of PRACK:

- All mandatory SDP lines, like in INVITE request except the version number in the 'o' line incremented by one; and
- All media description lines as in the INVITE and the order of those lines preserved. The permitted changes to the media description lines and media dependent attribute lines are as described in RFC 3264 [30] and include e.g. the following:
 - New media lines (if any) shall be added after the media lines introduced within the INVITE.
 - Media lines dropped in the offer/answer negotiation indicated by port number changed as zero. Any attribute lines related to dropped media may have been removed.
 - Address, port or transport, media types, formats or attributes of original media lines may have been modified.
 - Optional new "a=" lines may be introduced that the SS shall ignore The "a=" lines for preconditions in the PRACK shall be like for INVITE in step 1 but with the following exceptions:
 - in attribute line a=curr:qos local the direction-tag may have either the value "none" or the same value that the direction-tag has in the attribute line a=des:qos mandatory local. The latter case indicates that the UE has already met its local preconditions.
 - in attribute line a=des:qos [strength-tag] remote [direction-tag] the strength-tag must be "mandatory" (according to what SS answered in 183 response)

...

Step 6: the UE may conditionally send an UPDATE request with the correct content. The UE shall include the following lines in the SDP body:

- All mandatory SDP lines, like in INVITE request except the version number in the 'o' line incremented by two;
 and
- All media description lines as in the INVITE and the order of those lines preserved. The permitted changes to the media description lines and media dependent attribute lines are as described in RFC 3264 [30]
- Optional new "a=" lines may be introduced that the SS shall ignore
- The "a=" lines for preconditions in the UPDATE shall be like for INVITE in step 1 but with the following exceptions:
 - in attribute line a=curr:qos local the direction-tag must have the same value that the direction-tag has in the attribute line a=des:qos mandatory local, to indicate that the UE has met its local preconditions.
 - in attribute line a=des:qos [strength-tag] remote [direction-tag] the strength-tag must be "mandatory" (according to what SS answered in 183 response)

...

Step 9: the UE shall send a PRACK request with the correct content, according to common message definitions.

•••

Step 12: the UE shall send an ACK request with the correct content, according to common message definitions.

Step 13: the UE shall send a BYE request with the correct content, according to common message definitions.

12.2 MO Call – 503 Service Unavailable

12.2.1 Definition

When a server is temporarily unable to process an INVITE request due to a temporary overloading or maintenance of the server sends a 503 Service Unavailable response. The server may indicate when the service will be available again in a Retry-After header field. This process is described in 3GPP TS 24.229 [10], clause 5.1.3.1.

12.2.2 Conformance requirement

If the UA receives a 503 (Service Unavailable) response to an initial INVITE request containing a Retry-After header, then the UE shall not automatically reattempt the request until after the period indicated by the Retry-After header contents.

Reference(s)

3GPPTS 24.229[10], clause 5.1.3.1

12.2.3 Test purpose

To verify that when the UE receives a 503 (Service Unavailable) response to an initial INVITE request containing a Retry-After header, then the UE shall not automatically reattempt the request until after the period indicated by the Retry-After header contents.

12.2.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE has activated a PDP context, discovered P-CSCF and registered to IMS services, by executing the generic test procedure in Annex C.2 up to the last step.

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS has performed AKAv1-MD5 authentication with the UE and accepted the registration.

Related ICS/IXIT Statement(s)

-

Test procedure

For value of T see specific message content for 503 (Service Unavailable) message.

- 1) MO call is initiated on the UE. SS waits for the UE to send an INVITE request with first SDP offer, over the security associations set up during registration, in accordance to 3GPP TS 24.229 [10], clause 5.1.3
- 2) The SS responds with a provisional 100 (Trying) response to the INVITE request followed by a 503 (Service Unavailable) response with the Retry-After header set to T.

- 3) The SS waits for the UE to send an ACK to acknowledge the reception of the 503 (Service Unavailable) response.
- 4) SS waits for a duration of time T and checks that the UE does not reattempt sending the INVITE request. After the time T the UE may reattempt sending the INVITE request.
- 5) The UE may reattempt sending the INVITE request after time T.

Expected sequence

Step	Direction		Message	Comment
	UE	SS		
1	→	•	INVITE	The UE sends an INVITE request with the first SDP offer indicating all desired medias and codecs the UE supports
2a	+	•	100 Trying	The SS responds with a 100 Trying provisional response
2b	+		503 Service Unavailable	Including Retry-After header with period set to T
3	→	•	ACK	The UE acknowledges the reception of the 503 (Service Unavailable) response
4				The SS waits for a duration of time T and checks that the UE does not re-send the INVITE request
5	\rightarrow		INVITE	Optional

Specific Message Contents

INVITE (Step 1)

Use the default message 'INVITE for MO call setup' in annex A.

100 Trying (Step 2a)

Use the default message '100 Trying for MO INVITE' in annex A.

503 Service Unavailable (Step 2b)

Header	Value/remark
Retry-After	
period	60secs (referred to as T in the test procedure and test requirement)
duration	Not present
comment	Not present

ACK (Step 3)

Use the default message 'ACK' in annex A.

INVITE (Step 4)

Use the default message 'INVITE for MO call setup' in annex A.

12.2.5 Test requirements

At step 4 the UE shall not reattempt the INVITE request before time T from the time the SS receives the ACK from the UE in step 2b.

12.3 MO Call – 488 Not Acceptable Here

12.3.1 Definition

When a UA has been contacted successfully but some aspects of the session description such as the requested media, bandwidth, or addressing style were not acceptable then the UA may send a 488 (Not Acceptable Here) response. A message body containing a description of media capabilities may be present in the response. This process is described in 3GPP TS 24.229 [10], clauses 5.1.3.1 and 6.1.

12.3.2 Conformance requirement

If the UE receives a 488 (Not Acceptable Here) response to an initial INVITE request, the UE should send a new INVITE request containing SDP according to the procedures defined in subclause 6.1 of 24.229.

. . .

Usage of SDP by the UE:

. . . .

- 10. If the UE builds SDP for an INVITE request generated after receiving a 488 (Not Acceptable Here) response, as described in subclause 5.1.3.1 of 24.229, the UE shall include SDP payload containing a subset of the allowed media types, codecs and other parameters from the SDP payload of all 488 (Not Acceptable Here) responses related to the same session establishment attempt (i.e. a set of INVITE requests used for the same session establishment). The UE shall order the codecs in the SDP payload according to the order of the codecs in the SDP payload of the 488 (Not Acceptable Here) response.
- NOTE 2: The UE may be attempting a session establishment through multiple networks with different policies and potentially may need to send multiple INVITE requests and receive multiple 488 (Not Acceptable Here) responses from different CSCF nodes. The UE therefore takes into account the SDP contents of all the 488 (Not Acceptable Here) responses received related to the same session establishment when building a new INVITE request.

Reference(s)

3GPP TS 24.229[10], clauses 5.1.3.1 and 6.1

12.3.3 Test purpose

- 1) To verify that the UE includes SDP payload containing a subset of the allowed media types, codecs and other parameters from the SDP payload of the 488 (Not Acceptable Here) response.
- 2) To verify that the UE orders the codecs in the SDP payload according to the order of the codecs in the SDP payload of the 488 (Not Acceptable Here) response.

12.3.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE has activated a PDP context, discovered P-CSCF and registered to IMS services, by executing the generic test procedure in Annex C.2 up to the last step

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS has performed AKAv1-MD5 authentication with the UE and accepted the registration.

Related ICS/IXIT Statement(s)

[UE supports sending of new INVITE request upon receiving a 488 (Not Acceptable Here) response]

UEs supporting more than one media

Test procedure

- 1) MO call is initiated on the UE. SS waits for the UE to send an INVITE request with first SDP offer, over the security associations set up during registration, in accordance to 3GPP TS 24.229 [10], clause 5.1.3
- 2) The SS responds with a provisional 100 (Trying) response to the INVITE request followed by a 488 (Not Acceptable Here) response. The SS includes a SDP payload [TBD].
- 3) The SS waits for the UE to send an ACK to acknowledge the reception of the 488 (Not Acceptable Here) response.
- 4) SS wait for the UE to send a new INVITE request. The SS checks that the SDP payload of the new INVITE request includes a subset of the allowed media types, codecs and other parameters from the SDP payload of the 488 (Not Acceptable Here) response in step 2.

Expected sequence

Step	Direc	tion	Message	Comment
	UE	SS		
1	→	•	INVITE	The UE sends an INVITE request with the first SDP offer indicating all desired medias and codecs the UE supports
2a	+	•	100 Trying	The SS responds with a 100 Trying provisional response
2b	+	•	488 Not Acceptable Here	The SS includes a SDP payload being a subset of the offer in the first SDP offer in step 1.
3)	•	ACK	The UE acknowledges the reception of the 488 (Not Acceptable Here) response
4	\rightarrow	•	INVITE	The UE sends a new INVITE request.

Specific Message Contents

INVITE (Step 1)

Use the default message 'INVITE for MO call setup' in annex A.

100 Trying (Step 2a)

Use the default message '100 Trying for MO INVITE' in annex A.

488 Not Acceptable Here (Step 2b)

Header	Value/remark	
SDP	[FFS]	

ACK (Step 3)

Use the default message 'ACK' in annex A.

INVITE (Step 4)

Use the default message 'INVITE for MO call setup' in annex A. For the contents of SDP body see test requirement details.

12.3.5 Test requirements

- 1) At step 4 the SDP payload in the INVITE request shall include a SDP payload containing a subset of the allowed media types, codecs and other parameters from the SDP payload of the 488 (Not Acceptable Here) response in step 2b.
- 2) At step 4 the codecs in the SDP payload in the INVITE request shall be in the same order as in the SDP payload of the 488 (Not Acceptable Here) response.

12.4 Call initiation – Mobile termination

12.4.1 Definition

Test to verify that the UE can correctly receive a call initiation request and generate the correct response. This process is described in 3GPP TS 24.229 [10], clause 5.1.4.1

12.4.2 Conformance requirement

When the UE sends any response, the UE shall:

- include the protected server port in any Contact header that is otherwise included.

The UE shall discard any SIP request that is not integrity protected and is received from the P-CSCF outside of the registration and authentication procedures.

The UE can indicate privacy of the P-Asserted-Identity that will be generated by the P-CSCF in accordance with RFC 3323 and the additional requirements contained within RFC 3325.

The UE shall insert a P-Access-Network-Info header into any response to a request for a dialog, any subsequent request (except CANCEL requests) or response (except CANCEL responses) within a dialog or any response to a standalone method. This header shall contain information concerning the access network technology and, if applicable, the cell ID

Upon receiving an initial INVITE request without containing either Supported: precondition or Require: precondition header values, the UE shall generate a 421 (Extension Required) response indicating the required extension in the Require header field.

Upon generating the first response to the initial INVITE request, the UE shall indicate the requirement for reliable provisional responses and specify it using the Require header mechanism. The UE shall send the 200 (OK) response to the initial INVITE request only after the local resource reservation has been completed.

In order to authorize the media streams, the P-CSCF and S-CSCF have to be able to inspect the SDP payloads. Hence, the UE shall not encrypt the SDP payloads.

An INVITE request generated by a UE shall contain SDP payload. The SDP payload shall reflect the calling user's terminal capabilities and user preferences for the session. The UE shall order the SDP payload with the most preferred codec listed first. In addition, the calling user shall indicate the desired QoS for the session, using the segmented status

type. In an initial INVITE request the UE shall indicate that it mandates local QoS and that this precondition is not yet satisfied, i.e. the UE shall include the following preconditions:

a=des: qos mandatory local sendrecv

a=curr: qos local none

Providing that the INVITE request received by the UE contains an SDP offer including one or more "m=" media descriptions, the first 183 (Session Progress) provisional response that the UE sends, shall contain the answer for the SDP received in the INVITE. The said SDP answer shall reflect the called user's terminal capabilities and user preferences.

When the UE sends a 183 (Session Progress) response with SDP payload including one or more "m=" media descriptions, it shall request confirmation for the result of the resource reservation at the originating end point.

During session establishment procedure, SIP messages shall only contain SDP payload if that is intended to modify the session description.

For "video" and "audio" media types that utilize the RTP/RTCP, the UE shall specify the proposed bandwidth for each media stream utilizing the "b=" media descriptor and the "AS" bandwidth modifier in the SDP.

If the media line in the SDP indicates the usage of RTP/RTCP, in addition to the "AS" bandwidth modifier in the media-level "b=" line, the UE shall include two media-level "b=" lines, one with the "RS" bandwidth modifier and the other with the "RR" bandwidth modifier as described in RFC 3556 to specify the required bandwidth allocation for RTCP.

For other media streams the "b=" media descriptor may be included. The value or absence of the "b=" parameter will affect the assigned QoS which is defined in 3GPP TS 29.208.

The UE shall include the MIME subtype "telephone-event" in the "m=" media descriptor in the SDP for audio media flows that support both audio codec and DTMF payloads in RTP packets as described in RFC 2833.

The UE shall inspect the SDP contained in any SIP request or response, looking for possible indications of grouping of media streams according to RFC 3524 and perform the action outlined in subclause 9.2.5.

Reference(s)

3GPPTS 24.229[10], clauses 5.1.2A.2, 5.1.4.1, 6.1

12.4.3 Test purpose

- 1) To verify that after receiving a valid INVITE for call initiation, the UE correctly generates and sends the first 183 Session Progress response; and
- 2) To verify that the UE includes the proper SDP answer to the SDP offer in the INVITE; and
- 3) To verify that the UE inserts a P-Access-Network-Info header into any response to a request for a dialog, any subsequent request (except CANCEL requests) or response (except CANCEL responses) within a dialog or any response to a standalone method. This header shall contain information concerning the access network technology and, if applicable, the cell ID; and
- 4) To verify that the UE includes the protected server port in any Contact header; and
- 5) To verify that the UE does not encrypt the SDP payload; and
- 6) To verify that the UE supports and handles the precondition extension properly
- 7) To verify that the UE can release the call on receiving BYE from the SS

12.4.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE has activated a PDP context, discovered P-CSCF and registered to IMS services, by executing the generic test procedure in Annex C.2 up to the last step.

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS has performed AKAv1-MD5 authentication with the UE and accepted the registration.

Related ICS/IXIT Statement(s)

<The SS is preconfigured to generate SDP offers that are compatible with the UE"s capabilities.>

Test procedure

- 1) SS sends an INVITE request to the UE.
- 2) SS may receive 100 Trying from the UE.
- 3) SS expects and receives 183 Session Progress from the UE.
- 4) SS sends PRACK to the UE to acknowledge the 183 Session Progress.
- 5) SS expects and receives 2000K for PRACK from the UE.
- 6) SS sends UPDATE to the UE, with SDP indicating that precondition is met on the server side.
- 7) SS expects and receives 2000K for UPDATE from the UE, with proper SDP as answer.
- 8) SS expects and receives 180 Ringing from the UE.
- 9) SS sends PRACK to the UE to acknowledge the 180 Ringing.
- 10)SS expects and receives 200OK for PRACK from the UE.
- 11)SS expects and receives 200OK for INVITE from the UE.
- 12)SS sends ACK to the UE.
- 13)SS sends BYE to the UE.
- 14)SS expects and receives 200OK for BYE from the UE.

Expected sequence

Step	Direction	Message	Comment
	UE SS		
1	+	INVITE	SS sends INVITE with the first SDP offer.
2	\rightarrow	100 Trying	(Optional) The UE responds with a 100 Trying provisional response
3	\rightarrow	183 Session Progress	The UE sends 183 response reliably with the SDP answer to the offer in INVITE
4	+	PRACK	SS acknowledges the receipt of 183 from the UE. No SDP offer is included here.
5	\rightarrow	200OK	The UE responds to PRACK with 2000K.
6	+	UPDATE	SS sends an UPDATE with a second SDP offer after having reserved the resources.
7	→	200OK	The UE acknowledges the UPDATE with 2000K and includes SDP answer to acknowledge its current precondition status.
8	\rightarrow	180 Ringing	The UE responds to INVITE with 180 Ringing after its resource is ready.
9	+	PRACK	The SS acknowledges the 180 response with PRACK.
10	\rightarrow	200OK	The UE acknowledges the PRACK with 2000K.
11	\rightarrow	200OK	The UE responds to INVITE with 200 OK final response after the user answers the call.
12	+	ACK	The SS acknowledges the receipt of 2000K for INVITE.
13	+	BYE	The SS sends BYE to release the call.
14	\rightarrow	200OK	The UE sends 2000K for the BYE request and ends the call.

Specific Message Content

INVITE (Step 1)

Same as the default message in subclause A.2.9 with the following exceptions:

Headers to be included	Value/Remark
SDP	The SDP contains all mandatory SDP lines, as specified in SDP grammar in RFC 2327[27], including: - 'v= 0' - "o=" line indicating e.g. the session identifier and the IP address of the SS; - 's=IMS conformance test' - 't=0 0' - "c=" line indicating the IP address of the SS for receiving the media flow;
	The SDP includes one or more media description lines based on preconfigured information so that the SDP is compatible with the UE"s capabilities.
	For each type of offered media the following lines must exist within the SDP: - "m=" line describing the media type, transport port and protocol used for media and media format; - "b=" line proposing the application specific maximum bandwidth ("AS" modifier) for the media; - two "b=" lines proposing the bandwidth allocations for RTCP (for "RS" and "RR" modifiers), if the media line in the SDP indicates the usage of RTP/RTCP, as described in RFC 3556[53]; - extra "a=" line for rtpmap attribute per each dynamic payload type given in the "m=" line. - Any of the "a=" line for rtpmap attribute may be followed by extra "a=" line for fmtp attribute to convey parameters specific to a particular format;
	For each offered media, the precondition shall be set as follows: a=curr:qos local none a=curr:qos remote none a=des:qos mandatory local [direction-tag] (note 1) a=des:qos mandatory remote [direction-tag] (note 2) note 1: The value of direction-tag may be sendrecv, send, or recv. It is preconfigured based on the UE"s capability. note 2: The value of direction-tag may be sendrecv, send, or recv.

100 Trying (Step 2)

Shall be formatted same as the default message in subclause A2.2.

183 Session Progress (Step 3)

Same as the default message in subclause A.2.3 with the following exceptions:

Headers to be included	Value/Remark
Status-Line Reason-Phrase	Not checked
SDP	Properly generated SDP answer to the SDP offer contained in the INVITE.
	For each media, the precondition attribute lines are set as follows: a=curr:qos local [direction-tag] (note 1) a=curr:qos remote none
	a=des:qos mandatory local [direction-tag] (note 2) a=des:qos mandatory remote [direction-tag] (note 3) a=conf:qos remote [direction-tag] (note 4)
	note 1: The current qos status for local may be either none or the inverse of the desired remote value in Step 1 depending on whether the UE"s precondition status has been met.
	note 2: The inverse of the desired remote value in Step 1. note 3: The inverse of the desired local value in Step 1. note 4: The inverse of the desired local value in Step 1.

PRACK (step 4)

Shall be formatted as the default message in subclause A.2.4, but without 'Route' and 'P-Access-Network-Info' headers. No content body is included in the PRACK.

200 OK (Step 5)

Shall be formatted as the default message in subclause A.3.1 with following exceptions:

Headers to be included	Value/Remark
P-Access-Network-Info	same value as in 183 message

UPDATE (step 6)

Shall be the same as the default message in subclause A.2.5, but without including 'Route', 'Proxy-Require', 'Security-Verify', and 'P-Access-Network-Info' headers and with the following exceptions:

Headers to be included	Value/Remark
SDP	Same SDP offer as in INVITE with version number in the 'o' line incremented by one.
	For each media, the precondition attributes are set as follows: a=curr:qos local local [direction-tag] (note 1) a=curr:qos remote local [direction-tag] (note 2) a=des:qos mandatory local local [direction-tag] (note 3) a=des:qos mandatory remote local [direction-tag] (note 4)
	note 1: The same value as the desired local value in Step 1. note 2: The inverse of the current local value in Step 3. note 3: The same value as the desired local value in Step 1. note 4: The same value as the desired remote value in Step 1.
Require	Option tag 'sec-agree' is not included

200 OK (step 7)

Shall be the same as the default message '200 OK' ' in subclause A.3.1 with the following exceptions:

Headers to be included	Value/Remark
SDP	Same SDP answer as in 183 with version number in the 'o' line incremented by one.
	For each media, the precondition attributes are set as follows: a=curr:qos local [direction-tag] (note 1) a=curr:qos remote [direction-tag] (note 2) a=des:qos mandatory local [direction-tag] (note 3) a=des:qos mandatory remote [direction-tag] (note 4)
	note 1: The current qos status for local may be either none or the same as the desired local value in Step 3 depending on whether the UE"s precondition status has been met. note 2: The same value as the desired remote value in Step 3. note 3: The same value as the desired local value in Step 3. note 4: The same value as the desired remote value in Step 3.
P-Access-Network-Info	same value as in 183 message
Content-Type	application/SDP

180 Ringing (step 8)

Shall be formatted as the default message in subclause A.2.6 without the 'Record-Route' header and with the following exceptions:

Headers to be included	Value/Remark
Status-Line	
Reason-Phrase	Not checked
P-Access-Network-Info	same value as in 183 message
RSeq	
response-num	the value in 183 incremented by one

PRACK (step 9)

Shall be formatted as the default message in subclause A.2.4, but without 'Route' and 'P-Access-Network-Info' headers. No content body is included in the PRACK.

200 OK (step 10)

Shall be formatted as the default message '200 OK' ' in subclause A.3.1 with following exceptions:

Headers to be included	Value/Remark
P-Access-Network-Info	same value as in 183 message

200 OK (step 11)

Shall be formatted as the default message '200 OK' in subclause A.3.1 with following exceptions:

Headers to be included	Value/Remark
P-Access-Network-Info	same value as in 183 message
Record-Route	same value as in INVITE message

ACK (step 12)

Shall be formatted the same as the default message in subclause A.2.7 without the 'Route' header.

BYE (step 13)

Shall be formatted the same as the default message in subclause A.2.8 without 'Require', 'Proxy-Require', 'Route', 'Security-Verify', and 'P-Access-Network-Info' headers.

200 OK (step 14)

Shall be formatted the same as the default message in subclause A.3.1 with following exceptions:

Headers to be included	Value/Remark
P-Access-Network-Info	same value as in 183 message

12.4.5 Test requirements

The UE shall send requests and responses described in subclause 12.4. over the security association established during the registration/authentication process. The UE shall also include the P-Access-Network-Info header in these messages. If the UE includes Contact header in the request or response, it shall include the protected server port in the Contact header. In addition, if there is SDP content in the SIP message body, the UE shall not encrypt the SDP content.

In step 2, if 100 Trying is sent, the UE shall populate the headers as defined in subclause 12.4.4.

In step 3, the UE shall populate the headers as defined in subclause 12.4.4, and:

- 1) The UE shall include the answer for the SDP offer in the INVITE. The SDP answer indicates that the UE supports the media type and MIME type offered by the SS.
- 2) The UE shall request confirmation for the result of the resource reservation at the originating end point. The precondition related SDP lines are verified as described in subclause 12.4.4.

In step 5, the UE shall populate the headers as defined in subclause 12.4.4.

In step 7, the UE shall populate the headers as defined in subclause 12.4.4 and

- the UE indicates in the SDP answer the precondition status on both ends as described in subclause 12.4.4.

In step 8, the UE shall populate the headers as defined in subclause 12.4.4.

In step 10, the UE shall populate the headers as defined in subclause 12.4.4.

In step 11, the UE shall populate the headers as defined in subclause 12.4.4.

In step 14, the UE shall populate the headers as defined in subclause 12.4.4.

The SS shall check in step 8) that in accordance to the 3GPP TS 24.229[10], the headers covered in the specific message

13 Signalling Compression (SIGComp)

13.1 SigComp in the Initial registration

13.1.1 Definition and applicability

Test to verify that the UE can correctly register to IMS services when the P-CSCF supports and uses SigComp. The process consists of sending initial registration by the UE to S-CSCF via the P-CSCF with SIP Compression enabled and support of SIP Compression indicated by 'comp=sigcomp'.

13.1.2 Conformance requirement

The UE shall support SigComp as specified in RFC 3320. When using SigComp the UE shall send compressed SIP messages in accordance with RFC 3486.

. . .

The UE shall support the SIP dictionary specified in RFC 3485. If compression is enabled, the UE shall use the dictionary to compress the first message.

. . .

The UE shall decompress the compressed requests and responses received from the P-CSCF according to subclause 8.1.1.

Reference(s)

3GPPTS 24.229 [10], clauses 8.1.1, 8.1.2, and 8.1.3.

13.1.3 Test purpose

- 1) To verify that the UE sends a initial REGISTER request, which announces to support SIP Compression 'comp=sigcomp', to S-CSCF via the discovered P-CSCF, according to 3GPP TS 24.229 [10] clause 8.1.1; and
- 2) To verify that the UE sends a compressed initial REGISTER request to S-CSCF via the discovered P-CSCF, according to 3GPP TS 24.229 [10] clause 8.1.1 if the UE is capable to compress the first REGISTER message; and
- 3) To verify that after receiving a valid 401 (Unauthorized) response from S-CSCF for the initial REGISTER sent, the UE sends a compressed initial REGISTER request, which announces to support SIP Compression 'comp=sigcomp', to S-CSCF via the discovered P-CSCF, according to 3GPP TS 24.229 [10] clause 8.1.1 if the UE is capable to compress upon receiving the first compressed message; and
- 4) To verify that after receiving a valid NOTIFY request from S-CSCF, which announces to support SIP Compression 'comp=sigcomp' parameter in the Via header the UE sends a compressed 200 OK response; and
- 5) To verify that the UE sends the compressed initial REGISTER in accordance with SIP dictionary specified in RFC 3485 [25] if the UE is capable to compress the first REGISTER message; and
- 6) To verify that the UE sends the compressed second REGISTER in accordance with SIP dictionary specified in RFC 3485 [25] if the UE is capable to compress upon receiving the first compressed message; and?) To verify that the UE sends the compressed 200 OK response to NOTIFY in accordance with SIP dictionary specified in RFC 3485 [25] in the case the UE is not capable to compress the first REGISTER message or is not capable to compress upon receiving the first compressed message; and
- 7) To verify that UE decompress all the SIP messages sent by the SS in accordance 3GPP TS 24.229 [10] clause 8.1.1.

13.1.4 Method of test

Initial conditions

UE contains either ISIM and USIM applications or only USIM application on UICC. UE is not registered to IMS services, but has an active PDP context and has discovered the SS as P-CSCF by executing the generic test procedure in Annex C.2 up to step 3.SS is configured with the IMSI within the USIM application, the home domain name, public and private user identities together with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) that is configured on the UICC card equipped into the UE. SS is listening to SIP default port 5060 for both UDP and TCP protocols. SS is able to perform AKAv1-MD5 authentication algorithm for that IMPI, according to 3GPP TS 33.203 [14] clause 6.1 and RFC 3310 [17].

Related ICS/IXIT Statement(s)

UE compresses the initial REGISTER message (Yes/No)

UE compresses upon receiving the first compressed message (Yes/No)

Test procedure

- IMS registration is initiated on the UE. SS waits the UE to sends an uncompressed initial REGISTER request (or compressed in the case the 'UE compresses the initial REGISTER message') with SIP Compression announcement 'comp=sigcomp'.
- 2) SS responds to the initial REGISTER request with a compressed valid 401 Unauthorized response, headers populated according to the 401 response common message definition.
- 3) SS waits for the UE to set up a temporary set of security associations and send another uncompressed REGISTER request over those security associations (or compressed in the case: 'UE compresses the initial REGISTER message' or 'UE compress upon receiving the first compressed message'), with SIP Compression announcement 'comp=sigcomp'.
- 4) SS responds to the second REGISTER request with valid compressed 200 OK response, sent over the same temporary set of security associations that the UE used for sending the REGISTER request. SS shall populate the headers of the 200 OK response according to the 200 response for REGISTER common message definition.
- 5) SS waits for the UE to send an uncompressed SUBSCRIBE request (or compressed in the case 'UE compress upon receiving the first compressed message') with SIP Compression announcement 'comp=sigcomp'.
- 6) SS responds to the SUBSCRIBE request with a valid compressed 200 OK response, headers populated according to the 200 response for SUBSCRIBE common message definition with the SIP Compression announcement 'comp=sigcomp' in the record-route header.
- 7) SS sends UE a compressed NOTIFY request for the subscribed registration event package. In the request the Request URI, headers and the request body shall be populated according to the NOTIFY common message definition.
- 8) SS waits for the UE to respond the NOTIFY with compressed 200 OK response.

Expected sequence

Step	Direc	tion	Message	Comment
· -	UE	SS		
1	-	•	REGISTER	UE sends initial registration for IMS services with comp=sigcomp in the Via and Contact headers. The message is uncompressed.
1a				Optional The message is compressed, according to the capability 'UE compress the initial REGISTER message', using SigComp.
2	+	=	401 Unauthorized	The SS responds with an authentication challenge compressed message.
3	7	>	REGISTER	UE completes the security negotiation procedures sending another REGISTER. The message is uncompressed.
3a				Optional The message is compressed, according to the capability 'UE compress the initial REGISTER message' or 'UE compress upon receiving compressed message', using SigComp.
4	+	-	200 OK	The SS responds with 200 OK compressed message.
5	7	•	SUBSCRIBE	UE subscribes to its registration event package. The message is uncompressed with sigcomp.
5a				Optional The message is compressed, according to the capability 'UE compress the initial REGISTER message' or 'UE compress upon receiving compressed message', using SigComp.
6	+	-	200 OK	The SS responds SUBSCRIBE with 200 OK compressed message.
7	+	-	NOTIFY	The SS sends initial NOTIFY for registration event package. The message is compressed.
8	7	\	200 OK	The UE responds the NOTIFY with 200 OK compressed message

Specific Message Contents

REGISTER (Step 1)

Use the default message 'REGISTER' in annex A.1.1, condition A1 "Initial unprotected REGISTER", with the following exceptions:

Header/param	Value/remark
Via	
via-compression	comp=sigcomp
Contact	
compression-param	comp=sigcomp

401 Unauthorized for REGISTER (Step 2)

Use the default message '401 Unauthorized for REGISTER' in annex A.1.2.

REGISTER (Step 3)

Use the default message 'REGISTER' in annex A.1.1, condition A2 "Subsequent REGISTER sent over security associations", with the following exceptions:

Header/param	Value/remark
Via	
via-compression	comp=sigcomp
Contact	
compression-param	comp=sigcomp

200 OK for REGISTER (Step 4)

Use the default message '200 OK for REGISTER' in annex A.1.3.

SUBSCRIBE (Step 5)

Use the default message 'SUBSCRIBE for reg-event package' in annex A.1.4 with the following exceptions:

Header/param	Value/remark
Via	
via-compression	comp=sigcomp
Contact	
compression-param	comp=sigcomp

200 OK for SUBSCRIBE (Step 6)

Use the default message '200 OK for SUBSCRIBE' in annex A.1.5 with the following exceptions:

Header/param	Value/remark
Record-Route	
compression-param	comp=sigcomp

NOTIFY (Step 7)

Use the default message 'NOTIFY for reg-event package' in annex A.1.6. with the following exceptions:

Header/param	Value/remark
Via	
via-parm1:	
via-compression	comp=sigcomp

200 OK for NOTIFY (Step 8)

Use the default message '200 OK for other requests than REGISTER or SUBSCRIBE' in annex A.3.1.

13.1.5 Test requirements

Step 1: SS shall check that in accordance to the 3GPP TS 24.229 [10] clause 8.1.1 the UE sends initial REGISTER request as follows:

- a) the Via header contains the SIP Compression announcement 'comp=sigcomp'; and
- b) the Contact header contains the SIP Compression announcement 'comp=sigcomp'; and
- c) the message is sent compressed according to RFC 3320 [24] in case the 'UE compresses the initial REGISTER message'; and
- d) the compression support SIP dictionary specified in RFC 3485 [25]; and

Step 3: SS shall check that in accordance to the 3GPP TS 24.229 [10] clause 8.1.1 the UE sends second REGISTER request as follows:

- a) the Via header contains the SIP Compression announcement 'comp=sigcomp'; and
- b) the Contact header contains the SIP Compression announcement 'comp=sigcomp'; and
- c) the message is sent compressed according to RFC 3320 [24] in case the 'UE compresses the initial REGISTER message' or 'UE compress upon receiving the first compressed message'; and

Step 5: SS shall check that, in accordance to the 3GPP TS 24.229 [10] clause 8.1.1, the UE sends a SUBSCRIBE request as follows:

- a) the Via header contains the SIP Compression announcement 'comp=sigcomp'; and
- b) the Contact header contains the SIP Compression announcement 'comp=sigcomp'; and
- c) the message is sent compressed according to RFC 3320 [24] in case the 'UE compresses the initial REGISTER message' or 'UE compress upon receiving the first compressed message'; and

Step 8: SS shall check that, in accordance to the 3GPP TS 24.229 [10] clause 8.1.1, the UE sends a 200 OK for NOTIFY response as follows:

- a) the Via header contains the SIP Compression announcement 'comp=sigcomp'; and
- b) the message is sent compressed according to RFC 3320 [24].

14 Emergency Service

14.1 Emergency Call Initiation – Using CS domain

14.1.1 Definition and applicability

Test to verify that the UE correctly requests an emergency service on the CS domain. This process is described in 3GPP TS 24.229 [10], clauses 5.1.6.

14.1.2 Conformance requirement

If the UE does recognise the emergency call MMI(s) (i.e. the dialled number is stored in USIM/ME), then the UE shall use the CS CN domain to attempt to establish the emergency call.

A UE shall not attempt to establish an emergency session via the IM CN Subsystem when the UE can detect that the number dialled is an emergency number. The UE shall use the CS domain as described in 3GPP TS 24.008.

As a consequence of this, a UE operating in MS operation mode C cannot perform emergency calls.

Reference(s)

3GPP TS 24.229[10], clauses 5.16; 3GPP TS 22.101[39], clause 10.4

14.1.3 Test purpose

To verify that when calling an emergency number the UE attempts an emergency call setup according to the procedures described in 3GPP TS 24.008 [12]

14.1.4 Method of test

Initial conditions

UE contains ISIM and USIM applications or only USIM application on UICC. UE has activated a PDP context, discovered P-CSCF and registered to IMS services, by executing the generic test procedure in Annex C.2 up to the last step.

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS has performed AKAv1-MD5 authentication with the UE and accepted the registration.

Related ICS/IXIT Statement(s

UE supports Emergency speech call (Yes/No)

Test procedure

- 1) MO call is initiated on the UE by dialling emergency number, e.g. 112.
- 2) SS waits for an emergency call setup according to the procedures described in 3GPP TS 24.008 [12].
- 3) Having reached the active state, the call is cleared by the SS.

Expected sequence

Step	Direction		Direction		Direction		Message	Comment
	UE	SS						
1				MO call is initiated on the UE by dialling emergency number, e.g. 112. The dialled number shall be one programmed in test USIM EF_{ECC} (Emergency Call Codes), ref. 34.108 [40] clause 8.3.2.21.				
2				SS waits for an emergency call setup according to the procedures described in 3GPP TS 24.008[12]				
3				Having reached the active state, the call is cleared by the SS				

Specific Message Contents

None

14.1.5 Test requirements

Step 2, 3: SS must check that the emergency call on the CS domain is successfully established according to the procedures described in 3GPP TS 24.008 [12].

14.2 Emergency Call Initiation – 380 Alternative Service

14.2.1 Definition and applicability

Test to verify that the UE correctly requests an emergency service on CS domain if the UE has received a 380 (Alternative Service) response to an INVITE request. This process is described in 3GPP TS 24.229 [10], clauses 5.1.6.

14.2.2 Conformance requirement

If the UE does not recognise the emergency call MMI(s) (i.e. the dialled number is not stored in USIM/ME) but the serving network recognises the dialled number as an emergency call number used in the country then the IM CN subsystem shall inform the UE to use a CS CN domain for emergency services.

In the event the UE receives a 380 (Alternative Service) response to an INVITE request the response containing a XML body that includes an <alternative service> element with the <type> child element set to "emergency", the UE shall automatically:

- send an ACK request to the P-CSCF as per normal SIP procedures;
- attempt an emergency call setup according to the procedures described in 3GPP TS 24.008.

The UE may also provide an indication to the user based on the text string contained in the <reason> element.

As a consequence of this, a UE operating in MS operation mode C cannot perform emergency calls.

Reference(s)

3GPPTS 24.229[10], clauses 5.16; 3GPP TS 22.101[39], clause 10.4

14.2.3 Test purpose

To verify that if the UE is not able to detect that an emergency number has been dialled:

- in the event the UE receives a 380 (Alternative Service) response to an INVITE request the response containing a XML body that includes an <alternative service> element with the <type> child element set to "emergency", the UE:
 - send an ACK request to the P-CSCF as per normal SIP procedures;
 - attempt an emergency call setup according to the procedures described in 3GPP TS 24.008 [12].

14.2.4 Method of test

Initial conditions

UE contains ISIM and USIM applications or only USIM application on UICC. UE has activated a PDP context, discovered P-CSCF and registered to IMS services, by executing the generic test procedure in Annex C.2 up to the last step.

SS is configured with the shared secret key of IMS AKA algorithm, related to the IMS private user identity (IMPI) configured on the UICC card equipped into the UE. SS has performed AKAv1-MD5 authentication with the UE and accepted the registration.

Related ICS/IXIT Statement(s)

UE supports Emergency speech call (Yes/No)

UE capable of initiating a bidirectional voice session over IMS (Yes/No)

UE capable of using Tel URI for setting up a voice session (Yes/No)

Test procedure

- 1) MO call is initiated on the UE by dialling a non emergency number.
- SS waits the UE to send an INVITE request with Request-URI that matches the non emergency number dialled.
- 3) SS responds to the INVITE request with a 380 Alternative Service.

- 4) SS waits for the UE to send an ACK to acknowledge receipt of the 380 Alternative Service.
- 5) SS waits for an emergency call setup according to the procedures described in 3GPP TS 24.008 [12].
- 6) Having reached the active state, the call is cleared by the SS.

Expected sequence

Step	Direc	ction	Message	Comment
_	UE	SS	-	
1				MO call is initiated on the UE by dialling a 'non emergency' number. The dialled number shall not be one programmed in test USIM field EF_{ECC} (Emergency Call Codes), ref. 34.108[40] clause 8.3.2.21.
2	->	>	INVITE	UE sends INVITE. Request-URI of the INVITE request matches with the 'non emergency' number dialled.
3	+	_	380 Alternative Service	The SS responds with a 380 Alternative Service
4	3	>	ACK	The UE acknowledges the receipt of 200 OK for INVITE and starts the emergency call in CS domain
5				SS waits for an emergency call setup according to the procedures described in 3GPP TS 24.008[12]
6				Having reached the active state, the call is cleared by the SS

Specific Message Contents

380 Alternative Service (Step 3)

Header/param	Value/remark	Rel	Reference
Status-Line			RFC 3261 [15]
SIP-Version	SIP/2.0		
Status-Code	380		
Reason-Phrase	Alternative Service		
XML Message body			
<alternative service=""></alternative>			
<type></type>	Emergency		

Editor"s note: This table has got a special format with 2 extra columns as this message is supposed to be moved to the default messages from the next meeting.

14.2.5 Test requirements

SS must check that the UE sends all the requests over the security associations set up during registration, in accordance to 3GPP TS 24.229 [10], clause 5.1.1.5.1.Step 2: the UE shall send an INVITE message with correct content.

Step 2: the UE sends an INVITE message with correct content.

Step 4: the UE shall send an ACK.

Step 5, 6: SS must check that the emergency call on the CS domain is successfully established according to the procedures described in 3GPP TS 24.008 [12].

Annex A (normative): Default Messages

For all the message definitions below, the acceptable order and syntax of headers and fields within these headers must be according to IETF RFCs where those headers have been defined. Typically the order of headers is not significant, but there are well defined exceptions (like Via, Route and Record-Route headers) where the order is important.

The contents of the messages described in the present Annex is not complete - only the fields and headers required to be checked or generated by SS are listed here. The messages sent by the UE may contain additional parameters, fields and headers which are not checked and must thus be ignored by SS.

Values prefixed with px_ will be implemented in the TTCN with a PIXIT.

Values shown in *italics* shall be used in the messages as such.

A.1 Default messages for IMS Registration

A.1.1 REGISTER

Header/param	Cond	Value/remark	Rel	Reference
Request-Line	A1, A2			RFC 3261 [15]
Method		REGISTER		
Request-URI SIP-Version		px_HomeDomainName (when using ISIM) or home domain name derived from px_IMSI (when using USIM) SIP/2.0		
Route	A1, A2	(if present)		RFC 3261 [15]
route-param	A1	<pre><sip:px_pcscf;lr></sip:px_pcscf;lr></pre>		[]
route-param	A2	<pre><sip:px_pcscf:protected of="" p-cscf;="" port="" r="" server=""></sip:px_pcscf:protected></pre>		
Via	A1, A2	7,7, =,,		RFC 3261 [15]
sent-protocol		SIP/2.0/UDP (when using UDP) or SIP/2.0/TCP (when using TCP)		
sent-by	A1	indicate an unprotected port from which the request was sent. Port number may be omitted if the request was sent from port 5060.		
sent-by	A2	IP address or FQDN and protected server port of the UE		
via-branch	A1, A2	value starting with "z9hG4bk"		BE0 000 : 1: -1
From addr-spec tag	A1, A2	px_PublicUserIdentity (when using ISIM) or public user identity derived from px_IMSI (when using USIM) must be present, value not checked		RFC 3261 [15]
To	A1, A2	most bo procent, value not encoded		RFC 3261 [15]
addr-spec	7(1,7)2	px_PublicUserIdentity (when using ISIM) or public user identity derived from px_IMSI (when using USIM)		N 0 0201 [10]
tag		must not be present		
Contact	A1, A2			RFC 3261 [15]
addr-spec addr-spec	A1 A2	SIP URI to either indicate an unprotected port selected by the UE or no port at all SIP URI with IP address or FQDN and protected server port of UE		
expires	A1, A2	600000 (if present, see Rule 1)		
Expires	A1, A2	(if present, see Rule 1)		RFC 3261 [15]
delta-seconds		600000		
Require	A1, A2			RFC 3261 [15]
option-tag		sec-agree		RFC 3329 [21]
Proxy-Require	A1, A2			RFC 3261 [15]
option-tag		sec-agree		RFC 3329 [21]
Supported	A1, A2		_	RFC 3261 [15]
option-tag		path		
CSeq	A1, A2			RFC 3261 [15]
value	A1	must be present, value not checked		
value	A2	must be incremented from the previous REGISTER		
method		REGISTER		
Call-ID	A1, A2			RFC 3261 [15]
Call-ID	A1	value not checked		
Call-ID	A2	the same value as in the previous REGISTER		
Security-Client	A1, A2			RFC 3329 [21]
mechanism- name		ipsec-3gpp		

Header/param	Cond	Value/remark	Rel	Reference
algorithm		hmac-md5-96		
protocol		esp (if present)		
mode		trans (if present)		
spi-c		SPI number of the inbound SA at the protected client port		
spi-s		SPI number of the inbound SA at the protected server		
		port		
port-c		protected client port		
port-s		protected server port		
mechanism-		ipsec-3gpp		
name algorithm		hmac-sha-1-96		
protocol		esp (if present)		
mode		trans (if present)		
spi-c		SPI number of the inbound SA at the protected client port		
spi-s		SPI number of the inbound SA at the protected server		
		port		
port-c		protected client port		
port-s		protected server port		
Security-Verify	A2	(not present when A1)		RFC 3329 [21]
sec-mechanism	A2	same value as SecurityServer header sent by SS		
Authorization	A1	Carrie taile de Courry Corrie neutro contray Co		RFC 2617 [16]
username	A1	px_PrivateUserIdentity (when using ISIM) or		RFC 3310 [17]
		private user identity derived from px_IMSI (when using		
		USIM)		
realm	A1	px_HomeDomainName (when using ISIM) or home domain name derived from px_IMSI (when using		
		USIM)		
nonce	A1	set to an empty value		
digest-uri	A1	SIP URI formed from px_HomeDomainName		
response	A1	set to an empty value		
algorithm	A1	AKAv1-MD5		
Authorization	A2			RFC 2617 [16]
username	A2	px_PrivateUserIdentity (when using ISIM) or		RFC 3310 [17]
		private user identity derived from px_IMSI (when using USIM)		
realm	A2	px_HomeDomainName (when using ISIM) or		
		home domain name derived from px_IMSI (when using		
nonco	۸۵	USIM) same value as in WWW-Authenticate header sent by SS		
nonce	A2 A2	· ·		
opaque digest-uri	A2 A2	px_Opaque SIP URI formed from px_HomeDomainName		
qop-value	A2 A2	auth		
cnonce-value	A2 A2	value assigned by UE affecting the response calculation		
nonce-count	A2 A2	counter to indicate how many times UE has sent the		
nonce count	/ _	same value of nonce within successive REGISTERs,		
		initial value shall be 1		
response	A2	response calculated by UE		
algorithm	A2	AKAv1-MD5		DE0 6334 313
Max-Forwards	A1, A2			RFC 3261 [15]
value	100	non-zero value		DEC 0455 (40)
P-Access- Network-Info	A2	(not present when A1)		RFC 3455 [18]
access-net-	A2	access network technology and, if applicable, the cell ID		
spec		52		
Content-Length	A1, A2			RFC 3261 [15]
value	<u> </u>	length of request body, if such is present		

Rule 1: The REGISTER request must contain either an Expires header or an expires parameter in the Contact header. If both are present the value of Expires header is not important.

Condition	Explanation
A1	Initial unprotected REGISTER
A2	Subsequent REGISTER sent over security associations

A.1.2 401 Unauthorized for REGISTER

Header/param	Value/remark	Rel	Reference
Status-Line			RFC 3261 [15]
SIP-Version	SIP/2.0		
Status-Code	401		
Reason-Phrase	Unauthorized		
Via			RFC 3261 [15]
via-parm	same value as received in REGISTER message		
То			RFC 3261 [15]
addr-spec	same value as received in REGISTER message		
tag	px_ToTagRegister		
From			RFC 3261 [15]
addr-spec	same value as received in REGISTER message		
tag	same value as received in REGISTER message		
Call-ID			RFC 3261 [15]
value	same value as received in REGISTER message		
CSeq			RFC 3261 [15]
value	same value as received in REGISTER message		
WWW-Authenticate			RFC 2617 [16]
realm	px_HomeDomainName or home domain name derived from px_IMSI		RFC 3310 [17]
algorithm	AKAv1-MD5		
qop-value	auth		
nonce	Base 64 encoding of RAND and AUTN		
opaque	px_Opaque		
Security-Server			RFC 3329 [21]
mechanism-name	ipsec-3gpp		
algorithm	px_lpSecAlgorithm		
spi-c	SPI number of the inbound SA at the protected client port		
spi-s	SPI number of the inbound SA at the protected server port		
port-c	px_SSProtectedClientPort		
port-s	px_SSProtectedServerPort		
Content-Length			RFC 3261 [15]
value	0		

A.1.3 200 OK for REGISTER

Header/param	Value/remark	Rel	Reference
Status-Line			RFC 3261 [15]
SIP-Version	SIP/2.0		
Status-Code	200		
Reason-Phrase	OK		
Via			RFC 3261 [15]
via-parm	same value as received in REGISTER message		
То			RFC 3261 [15]
addr-spec	same value as received in REGISTER message		
tag	px_ToTagRegister		
From			RFC 3261 [15]
addr-spec	same value as received in REGISTER message		
tag	same value as received in REGISTER message		
Call-ID			RFC 3261 [15]
value	same value as received in REGISTER message		
CSeq			RFC 3261 [15]
value	same value as received in REGISTER message		
Contact			RFC 3261 [15]
addr-spec	same value as received in REGISTER message		
expires	px_RegisterExpiration		
P-Associated-URI	order of the parameters in this header must be like in this table		RFC 3455 [18]
addr-spec	px_PublicUserIdentity		
addr-spec	px_AssociatedTelUri any arbitary TEL URI for the user		
Service-Route			RFC 3608 [19]
addr-spec	px_scscf		
uri-parameter	lr .		
Path			RFC 3327 [20]
addr-spec	px_pcscf		
uri-parameter	lr .		
Content-Length			RFC 3261 [15]
value	0		

A.1.4 SUBSCRIBE for reg-event package

Header/param	Value/remark	Rel	Reference
Request-Line			RFC 3261 [15]
Method	SUBSCRIBE		
Request-URI	px_PublicUserIdentity		
SIP-Version	SIP/2.0		
Route	order of the parameters in this header must be like in this table		RFC 3261 [15]
route-param	<pre><sip:px_pcscf:protected of="" p-cscf;lr="" port="" server="">, <sip:px_scscf;lr></sip:px_scscf;lr></sip:px_pcscf:protected></pre>		
Via			RFC 3261 [15]
sent-protocol	SIP/2.0/UDP when using UDP or SIP/2.0/TCP when using TCP		
sent-by	IP address or FQDN and protected server port of the UE		
via-branch	value starting with "z9hG4bk"		
From			RFC 3261 [15]
addr-spec	px_PublicUserIdentity		
tag	must be present, value not checked but stored for later reference		
То			RFC 3261 [15]
addr-spec	px_PublicUserIdentity		
tag	must not be present		
Contact			RFC 3261 [15]
addr-spec	SIP URI with IP address or FQDN and protected server port of UE		
Expires			RFC 3261 [15]
delta-seconds	600000		
Security-Verify			RFC 3329 [21]
sec-mechanism	same value as SecurityServer header sent by SS		
Require			RFC 3261 [15]
option-tag	sec-agree		RFC 3329 [21]
Proxy-Require			RFC 3261 [15]
option-tag	sec-agree		RFC 3329 [21]
CSeq			RFC 3261 [15]
value	must be present, value not checked		
method	SUBSCRIBE		
Call-ID			RFC 3261 [15]
callid	value not checked, but stored for later reference		
Max-Forwards			RFC 3261 [15]
value	non-zero value		
P-Access-Network- Info			RFC 3455 [18]
access-net-spec	access network technology and, if applicable, the cell ID		
Accept	(if present)		RFC 3261 [15]
media-range	application/reginfo+xml		RFC 3680 [22]
Event			RFC 3265 [34]
event-type	reg		RFC 3680 [22]
Content-Length			RFC 3261 [15]
value	length of request body, if such is present		

A.1.5 200 OK for SUBSCRIBE

Header/param	Value/remark	Rel	Reference
Status-Line			RFC 3261 [15]
SIP-Version	SIP/2.0		
Status-Code	200		
Reason-Phrase	OK		
Via			RFC 3261 [15]
via-parm	same value as received in SUBSCRIBE message		
То			RFC 3261 [15]
addr-spec	px_PublicUserIdentity		
tag	px_ToTagSubscribeDialog		
From			RFC 3261 [15]
addr-spec	same value as received in SUBSCRIBE message		
tag	same value as received in SUBSCRIBE message		
Call-ID			RFC 3261 [15]
value	same value as received in SUBSCRIBE message		
CSeq			RFC 3261 [15]
value	same value as received in SUBSCRIBE message		
Contact			RFC 3261 [15]
addr-spec	<sip:px_scscf></sip:px_scscf>		
Expires			RFC 3261 [15]
delta-seconds	600000		
Record-Route			RFC 3261 [15]
addr-spec	px_pcscf: protected server port of P-CSCF		
uri-parameter	lr .		
Content-Length			RFC 3261 [15]
value	0		

A.1.6 NOTIFY for reg-event package

Header/param	Value/remark	Rel	Reference
Request-Line			RFC 3261 [15]
Method	NOTIFY		
Request-URI	SIP URI with IP address or FQDN and protected server port of UE		
SIP-Version	SIP/2.0		
Via	order of the parameters in this header must be like in this table		RFC 3261 [15]
via-parm1:			
sent-protocol	SIP/2.0/UDP when using UDP or SIP/2.0/TCP when using TCP		
sent-by	IP address and protected server port of SS		
via-branch	value starting with "z9hG4bk"		
via-parm2:			
sent-protocol	SIP/2.0/UDP when using UDP or SIP/2.0/TCP when using TCP		
sent-by	px_scscf		
via-branch	value starting with "z9hG4bk"		
From			RFC 3261 [15]
addr-spec	px_PublicUserIdentity		
tag	px_ToTagSubscribeDialog		
То			RFC 3261 [15]
addr-spec	px_PublicUserIdentity		
tag	same value as received in From tag of SUBSCRIBE message		
Call-ID			RFC 3261 [15]
callid	same as value received in SUBSCRIBE message		
CSeq			RFC 3261 [15]
value	1		
method	NOTIFY		
Contact			RFC 3261 [15]
addr-spec	<sip:px_scscf></sip:px_scscf>		
Content-Type			RFC 3261 [15]
media-type	application/reginfo+xml		RFC 3680 [22]
Event			RFC 3265[34]
event-type	reg		RFC 3680 [22]
Max-Forwards			RFC 3261 [15]
value	69		
Subscription-State			RFC 3265[34]
substate-value	active		
expires	600000		
Content-Length			RFC 3261 [15]
value	length of message-body		
Message-body	<pre><?xml version='1.0?> <reginfo state="full" version="0" xmlns="urn:ietf:params:xml:ns:reginfo"></reginfo></pre>		RFC 3680 [22]
	<pre><registration aor="px_PublicUserIdentity" id="a100" state="active"> <contact event="registered" id="980" state="active"></contact></registration></pre>		
	<ur><uri>>same value as in Contact header of REGISTER</uri>request</ur>		
	<pre> <registration aor="px_AssociatedTelUri" id="a101" state="active"> <contact event="created" id="981" state="active"></contact></registration></pre>		
	<pre><uri>same value as in Contact header of REGISTER request</uri> </pre>		

A.1.7 423 Interval Too Brief for REGISTER

Header/param	Value/remark	Rel	Reference
Status-Line			RFC 3261 [15]
SIP-Version	SIP/2.0		
Status-Code	423		
Reason-Phrase	Interval Too Brief	<u> </u>	
Via			RFC 3261 [15]
via-parm	same value as received in REGISTER message	<u></u>	
То			RFC 3261 [15]
addr-spec	same value as received in REGISTER message		
tag	px_ToTagRegister		
From			RFC 3261 [15]
addr-spec	same value as received in REGISTER message		
Call-ID			RFC 3261 [15]
value	same value as received in REGISTER message	<u></u>	
CSeq			RFC 3261 [15]
value	same value as received in REGISTER message	<u></u>	
Min-Expires			RFC 3261 [15]
delta-seconds	T (a decimal integer number of seconds from 0 to		
	(2**32)-1)		

A.2 Default messages for Call Setup

A.2.1 INVITE for MO Call Setup

Header/param	Value/remark	Rel	Reference
Request-Line			RFC 3261 [15]
Method	INVITE		
Request-URI	px_CalleeUri		
SIP-Version	SIP/2.0		
Via			RFC 3261 [15]
sent-protocol	SIP/2.0/UDP (when using UDP) or SIP/2.0/TCP (when using TCP)		
sent-by	IP address or FQDN and protected server port of the UE		
via-branch	value starting with "z9hG4bk"		
Route	order of the parameters in this header must be like in this table		RFC 3261 [15]
route-param	<pre><sip:px_pcscf:px_ssprotectedserverport;lr>, <sip:px_scscf;lr></sip:px_scscf;lr></sip:px_pcscf:px_ssprotectedserverport;lr></pre>		
From			RFC 3261 [15]
addr-spec	any SIP URI except public user identity derived from px_IMSI		
tag	must be present, value not checked		
То			RFC 3261 [15]
addr-spec	px_CalleeUri		
tag	not present		
Call-ID			RFC 3261 [15]
callid	value different to that received in REGISTER message		
CSeq			RFC 3261 [15]
value	must be present, value not checked		
method	INVITE		
Supported			RFC 3261 [15]
option-tag	100rel		
Require			RFC 3261 [15]
option-tag	precondition, sec-agree		RFC 3312 [31] RFC 3329 [21]
Proxy-Require			RFC 3261 [15]
option-tag	sec-agree		RFC 3329 [21]
Security-Verify			RFC 3329 [21]
sec-mechanism	same value as SecurityServer header sent by SS		
Contact			RFC 3261 [15]
addr-spec	SIP URI with IP address or FQDN and protected server port of UE		
Content-Type			RFC 3261 [15]
media-type	application/sdp		
Max-Forwards			RFC 3261 [15]
value	non-zero value		
P-Access-Network- Info			RFC 3455 [18]
access-net-spec	access network technology and, if applicable, the cell ID		
Content-Length			RFC 3261 [15]
value	length of message-body		

A.2.2 100 Trying for INVITE

Header/param	Value/remark	Rel	Reference
Status-Line			RFC 3261 [15]
SIP-Version	SIP/2.0		
Status-Code	100		
Reason-Phrase	Trying		
Via			RFC 3261 [15]
via-parm	same value as received in INVITE message		
From			RFC 3261 [15]
addr-spec	same value as received in INVITE message		
tag	same value as received in INVITE message		
То			RFC 3261 [15]
addr-spec	same value as received in INVITE message		
tag	not present		
Call-ID			RFC 3261 [15]
callid	same value as received in INVITE message		
CSeq			RFC 3261 [15]
value	same value as received in INVITE message		
Content-Length			RFC 3261 [15]
value	0		

A.2.3 183 Session in Progress for INVITE

Header/param	Cond	Value/remark	Rel	Reference
Status-Line	A3,A4			RFC 3261 [15]
SIP-Version		SIP/2.0		
Status-Code		183		
Reason-Phrase		Session in Progress		
Record-Route	A3,A4	order of the parameters in this header must be like in this table		RFC 3261 [15]
rec-route		<pre><sip:pcscf.other.com;lr>, <sip:scscf.other.com;lr>, <sip:orig@px_scscf;lr>, <sip:px_pcscf:px_ssprotectedserverport;lr></sip:px_pcscf:px_ssprotectedserverport;lr></sip:orig@px_scscf;lr></sip:scscf.other.com;lr></sip:pcscf.other.com;lr></pre>		
Via	A3,A4	Colp.px_posor.px_correctedcorverrerr,		RFC 3261 [15]
via-parm	12,111	same value as received in INVITE message		[]
Require	A3,A4			RFC 3261 [15]
option-tag		100rel		
From	A3,A4			RFC 3261 [15]
addr-spec		same value as received in INVITE message		
tag		same value as received in INVITE message		
То	A3,A4			RFC 3261 [15]
addr-spec		same value as received in INVITE message		
tag		px_InviteToTag		
Contact	A3,A4			RFC 3261 [15]
addr-spec	A3	px_CalleeContactUri		
addr-spec	A4	SIP URI with IP address or FQDN and protected server port of UE		
Rseq	A3,A4			RFC 3262 [33]
response-num		px_RSeqNumFor183		
Call-ID	A3,A4			RFC 3261 [15]
callid		same value as received in INVITE message		
CSeq	A3,A4			RFC 3261 [15]
value		same value as received in INVITE message		
Allow	A3,A4			RFC 3261 [15]
method		UPDATE		
Content-Type	A3,A4			RFC 3261 [15]
media-type		application/sdp		
Content-Length	A3,A4			RFC 3261 [15]
value		length of message-body		

Header/param	Cond	Value/remark	Rel	Reference
Message-body	A3,A4	SDP body of the 183 response copied from the received INVITE but modified as follows:		RFC 2327 [27] RFC 3264 [30] RFC 3312 [31]
		- IP address on "o=" and "c=" lines and transport port on "m=" lines changed to indicate to which IP address and port the UE should start sending the media; and		
		- optional "a=sendonly" line inverted to "a=recvonly" and vice versa		
		- the "a=" lines describing the current and desired state of the preconditions, updated as follows:		
		a=curr:qos local none a=curr:qos remote none a=des:qos mandatory local [direction-tag] (* a=des:qos mandatory remote [direction-tag] (* a=conf:qos remote [direction-tag] (**		
		*) The value of direction-tags in 183 must be the inverse from those of INVITE (both a= lines for local and remote). If the INVITE contained the direction-tag as "recv" the 183 must have it as "send" and vice versa. The value "sendrecv" will be kept as is. The value for direction tag of remote must be the same as for local		
		**) The value of direction-tag for conf:qos remote shall be the same as for des: qos mandatory remote.		

Condition	Explanation
A3	MO call setup
A4	MT call setup

A.2.4 PRACK

RFC 3261 [15] RFC 3261 [15] RFC 3261 [15] RFC 3261 [15]
RFC 3261 [15]
onse in reverse
RFC 3261 [15]
RFC 3261 [15]
sponse
RFC 3261 [15]
RFC 3261 [15]
one
RFC 3261 [15]
RFC 3329 [21]
RFC 3261 [15]
RFC 3262 [33]
response
RFC 3455 [18]
the cell ID
message-body RFC 3261 [15]
RFC 3261 [15]
nts of the SDP shall RFC 2327 [27]
tl

A.2.5 UPDATE

Header/param	Value/remark	Rel	Reference
Request-Line			RFC 3261 [15]
Method	UPDATE		
Request-URI	same value as in PRACK message		
SIP-Version	SIP/2.0		
Via			RFC 3261 [15]
sent-protocol	SIP/2.0/UDP (when using UDP) or SIP/2.0/TCP (when using TCP)		
sent-by	same value as in INVITE message		
via-branch	value starting with "z9hG4bk"		
Route			RFC 3261 [15]
route-param	URIs of the Record-Route header of 183 response in reverse order		
From			RFC 3261 [15]
addr-spec	same value as received in INVITE message		
tag	same value as received in INVITE message		
То			RFC 3261 [15]
addr-spec	same value as received in INVITE message		
tag	same value as in 183 message		
Call-ID			RFC 3261 [15]
callid	same value as received in INVITE message		
CSeq			RFC 3261 [15]
value	value of received in INVITE incremented by two		
method	UPDATE		
Require			RFC 3261 [15]
option-tag	precondition, sec-agree		RFC 3329 [21]
Proxy-Require			RFC 3261 [15]
option-tag	sec-agree		RFC 3329 [21]
Max-Forwards			RFC 3261 [15]
value	non-zero value		
Security-Verify			RFC 3329 [21]
sec-mechanism	same value as SecurityServer header sent by SS		
P-Access-Network- Info			RFC 3455 [18]
access-net-spec	access network technology and, if applicable, the cell ID		
Content-Type			RFC 3261 [15]
media-type	application/sdp		0 020 . [.0]
Content-Length	appaap		RFC 3261 [15]
value	length of message-body		1.1. 0 0201 [10]
Message-body	Contents of the SDP body shall be checked as described in the		RFC 2327 [27]
messaye-bouy	Test requirements section of the test case.		RFC 2327 [27] RFC 3264 [30] RFC 3312 [31]

A.2.6 180 Ringing for INVITE

Header/param	Value/remark	Rel	Reference
Status-Line			RFC 3261 [15]
SIP-Version	SIP/2.0		
Status-Code	180		
Reason-Phrase	Ringing		
Record-Route			RFC 3261 [15]
rec-route	same value as in the 183 response		
Via			RFC 3261 [15]
via-parm	same value as in the 183 response		
Require			RFC 3261 [15]
option-tag	100rel		
From			RFC 3261 [15]
addr-spec	same value as in the 183 response		
tag	same value as in the 183 response		
То			RFC 3261 [15]
addr-spec	same value as in the 183 response		
tag	same value as in the 183 response		
Contact			RFC 3261 [15]
addr-spec	same value as in the 183 response		
Rseq			RFC 3262 [33]
response-num	px_RSeqNumFor183 incremented by one		
Call-ID			RFC 3261 [15]
callid	same value as in the 183 response		
CSeq			RFC 3261 [15]
value	same value as in the 183 response		
Content-Length			RFC 3261 [15]
value	0		
	1		

A.2.7 ACK

Header/param	Value/remark	Rel	Reference
Request-Line			RFC 3261 [15]
Method	ACK		
Request-URI	same value as in PRACK message		
SIP-Version	SIP/2.0		
Via			RFC 3261 [15]
via-parm	same value as received in INVITE message		
Route			RFC 3261 [15]
route-param	URIs of the Record-Route header of 183 response in reverse order		
From			RFC 3261 [15]
addr-spec	same value as received in INVITE message		
tag	same value as received in INVITE message		
То			RFC 3261 [15]
addr-spec	same value as received in INVITE message		
tag	same value as received in 183 message		
Call-ID			RFC 3261 [15]
callid	same value as received in INVITE message		
CSeq			RFC 3261 [15]
value	same value as received in INVITE message		
method	ACK		
Max-Forwards			RFC 3261 [15]
value	non-zero value		
P-Access-Network- Info	must not be present		RFC 3455 [18]
Content-Length			RFC 3261 [15]
value	0		

A.2.8 BYE

Header/param	Value/remark	Rel	Reference
Request-Line			RFC 3261 [15]
Method	BYE		
Request-URI	same value as in PRACK message		
SIP-Version	SIP/2.0		
Via			RFC 3261 [15]
sent-protocol	SIP/2.0/UDP (when using UDP) or SIP/2.0/TCP (when using TCP)		
sent-by	same value as in INVITE message		
via-branch	value starting with "z9hG4bk"		
Route			RFC 3261 [15]
route-param	URIs of the Record-Route header of 183 response in reverse order		
From			RFC 3261 [15]
addr-spec	same value as received in INVITE message		
tag	same value as received in INVITE message		
То			RFC 3261 [15]
addr-spec	same value as received in INVITE message		
tag	same value as in the 183 message		
Call-ID			RFC 3261 [15]
callid	same value as received in INVITE message		
CSeq			RFC 3261 [15]
value	must be present, not checked		
method	BYE		
Require			RFC 3261 [15]
option-tag	sec-agree		RFC 3329 [21]
Proxy-Require			RFC 3261 [15]
option-tag	sec-agree		RFC 3329 [21]
Max-Forwards			RFC 3261 [15]
value	non-zero value		
Security-Verify			RFC 3329 [21]
sec-mechanism	same value as SecurityServer header sent by SS		
P-Access-Network-			RFC 3455 [18]
Info			
access-net-spec	access network technology and, if applicable, the cell ID		
Content-Length			RFC 3261 [15]
value	length of message body		

A.2.9 INVITE for MT Call

Header/param Value/remark	Rel	Reference
Request-Line		RFC 3261[15]
Method INVITE		
Request-URI UE"s registered contact address in SIP URI form		
SIP-Version SIP/2.0		
Via		RFC 3261[15]
sent-protocol SIP/2.0/UDP (when using UDP) or		
SIP/2.0/TCP (when using TCP)		
sent-by IP address or FQDN and protected server port of the SS		
Via-branch value starting with "z9hG4bk"		
Via		RFC 3261[15]
via-parm SIP/2.0/UDP scscf1.3gpp.org;branch=z9hG4bK1234567890, SIP/2.0/UDP scscf2.3gpp.org;branch=z9hG4bK2345678901, SIP/2.0/UDP pcscf2.3gpp.org;branch=z9hG4bk3456789012		
Record-Route		RFC 3261[15]
rec-route SIP URI with FQDN or IP address and protected server port of the SS		
Record-Route		RFC 3261[15]
rec-route <sip:term@scscf1.3gpp.org;lr>, <sip:orig@scscf2.3gpp.org;lr>, <sip:pcscf2.3gpp.org;lr></sip:pcscf2.3gpp.org;lr></sip:orig@scscf2.3gpp.org;lr></sip:term@scscf1.3gpp.org;lr>		
From		RFC 3261[15]
addr-spec an SIP URI representing the calling UE		
Tag must be present, value not checked		
То		RFC 3261[15]
addr-spec SIP or TEL URI of the UE		
Tag not present		
Call-ID		RFC 3261[15]
callid a random text string generated by the SS		
CSeq		RFC 3261[15]
value must be present, value not checked		
method INVITE		
Supported		RFC 3261[15]
option-tag 100rel		
Require		RFC 3261[15]
option-tag Precondition		
P-Called-Party-ID One of the UE"s registered, non-barred public ID		RFC 3455[18]
Contact		RFC 3261[15]
addr-spec SIP URI with IP address or FQDN and protected server port of the calling UE		
Content-Type		RFC 3261[15]
media-type application/sdp		
Max-Forwards		RFC 3261[15]
value non-zero value		
Content-Length		RFC 3261[15]

A.3 Generic Common Messages

A.3.1 200 OK for other requests than REGISTER or SUBSCRIBE

Header/param	Value/remark	Rel	Reference
Status-Line			RFC 3261 [15]
SIP-Version	SIP/2.0		
Status-Code	200		
Reason-Phrase	OK		
Via			RFC 3261 [15]
via-parm	same value as received in request		
From			RFC 3261 [15]
addr-spec	same value as received in request		
tag	same value as received in request		
То			RFC 3261 [15]
addr-spec	same value as received in request		
tag	same value as received in request or px_InviteToTag added if missing from request		
Call-ID			RFC 3261 [15]
callid	same value as received in request		
CSeq			RFC 3261 [15]
value	same value as received in request		
Content-Length			RFC 3261 [15]
value	0		

Annex B (normative): Default DHCP messages

For all the message definitions below, the acceptable order and syntax of headers and fields within these headers must be according to IETF RFCs where those headers have been defined. Typically the order of headers is not significant, but there are well defined exceptions where the order is important.

For IPv6 DHCP messages refer to RFC 3315[23]

For IPv4 DHCP messages refer to RFC 2131[55].

The contents of the messages described in the present Annex is not complete - only the fields and headers required to be checked or generated by SS are listed here. The messages sent by the UE may contain additional parameters, fields and headers which are not checked and must thus be ignored by SS.

B.1 Default DHCP messages (IPv6)

B.1.1 DHCP INFORMATION-REQUEST

	Options	Value/Remarks
m	sg-type	INFORMATION-REQUEST (11)
tra	ansaction-id	Check If Present
		Note the Value to be included in Reply Message
o	ption-code	OPTION_CLIENTID (1)
- (option-len	Length of the DUID of Client
- 1	DUID	Set to DUID of Cleint

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

B.1.2 DHCP REPLY

Options	Value/Remarks
msg-type	REPLY (7)
transaction-id	Set the same value as received in the corresponding Uplink Information Request message
option-code	OPTION_CLIENTID (1)
- option-len	Length of the DUID of client
- DUID	Set to DUID of Cleint
option-code	OPTION_SERVERID 21)
- option-len	Length of the DUID of Server
- DUID	Set to DUID of Server

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

B.1.3 DHCP SOLICIT

Options	Value/Remarks
msg-type	SOLICIT (1)
transaction-id	Check If Present
	Note the Value to be included in Reply Message
option-code	OPTION_CLIENTID (1)
- option-len	Length of the DUID of Client
- DUID	Set to DUID of Client
option-code	OPTION_ORO (6)
- option-len	Check Specific message contents in test case
- requested-option-code	Check Specific message contents in test case

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

B.1.4 DHCP ADEVERTISE

Options	Value/Remarks			
msg-type	ADVERTISE (2)			
transaction-id	Set the same value as received in the corresponding Uplink solicit message			
option-code	OPTION_CLIENTID (1)			
- option-len	Length of the DUID of client			
- DUID	Set to DUID of Client			
option-code	OPTION_SERVERID (21)			
- option-len	Length of the DUID of Server			
- DUID	Set to DUID of Server			

*Note: Numerical value, "(n)", provided in brackets in Column Value/Remarks is the 'octal' value for this option.

B.2 Default DHCP messages (IPv4)

B.2.1 DHCP DISCOVER

Fields	Value/Remarks		
ор	1 (BOOTREQUEST)		
htype	Check if valid value is included		
hlen	Check if valid value is included		
hops	0		
xid	Check For Presence		
	Note the Value to be included in Offer Message		
secs	Any Value		
flags	Check For Presence		
	Note the Value to be included in Offer Message		
ciaddr	0		
yiaddr	0		
siaddr	0		
giaddr 0			
chaddr	FFS		
sname	Options if indicated in sname/file else not used		
file	Options if indicated in sname/file else not used		
options	*		
- code	53 (DHCP Message Type)		
- len	1		
- Type	1 (DHCP DISCOVER)		

^{*} Note: Additional options may be present

B.2.2 DHCP OFFER

Fields	Value/Remarks			
ор	2 (BOOTREPLY)			
htype	Set to SS Hardware Type			
hlen	Set to SS Hardware Address Len			
hops	0			
xid	Set to same value as received in corresponding DISCOVER message			
secs	0			
flags	Set to same value as received in corresponding DISCOVER message			
ciaddr	0			
yiaddr	IP address of Mobile			
siaddr	Set to IP address of next Boot Strap server			
giaddr Set to same value as received in correspondir DISCOVER message				
chaddr	Set to same value as received in corresponding DISCOVER message			
sname	Set to Server Host name			
file	Set to Client Boot File Name			
options	*			
- code	53 (DHCP Message Type)			
- len	1			
- Type	2 (DHCP OFFER)			

^{*} Note: Additional options included in response to options requested by UE and supported by SS

B.2.3 DHCP INFORM

Fields	Value/Remarks			
ор	1 (BOOTREQUEST)			
htype	Check if valid value is included			
hlen	Check if valid value is included			
hops	0			
xid	Check For Presence Note the Value to be included in Offer Message			
secs	Any Value			
flags	Check For Presence Note the Value to be included in Offer Message			
ciaddr	Set to UE"s Network address			
yiaddr	0			
siaddr 0				
giaddr 0				
chaddr	FFS			
sname	Options if indicated in sname/file else not used			
file	Options if indicated in sname/file else not used			
options	*			
- code	53 (DHCP Message Type)			
- len	1			
- Type	8 (DHCP INFORM)			

^{*} Note: Additional options may be present

B.2.4 DHCP ACK

Fields	Value/Remarks					
ор	2 (BOOTREPLY)					
htype	Set to SS Hardware Type					
hlen Set to SS Hardware Address Len						
hops	0					
xid Set to same value as received in corresponding INFORM message						
secs	0					
flags Set to same value as received in correspond INFORM message						
ciaddr	0					
yiaddr	IP address of Mobile					
siaddr	Set to IP address of next Boot Strap server					
giaddr Set to same value as received in correspondi INFORM message						
chaddr	Set to same value as received in corresponding					
	INFORM message					
sname	Set to Server Host name					
file	Set to Client Boot File Name					
options	*					
- code	53 (DHCP Message Type)					
- len	1					
- Type	5 (DHCP ACK)					

^{*} Note: Additional options included in response to options requested by UE

Annex C (normative): Generic Test Procedure

This Annex contains information about generic test procedures.

C.1 Introduction

This annex specifies the general test procedure required to get the UE to activate PDP context, discover P-CSCF and register to IMS services. Since 3GPP TS 24.229[10] specifies two options for both PDP context activation and P-CSCF discovery, the UE specific general test procedure depends on the option selected by the UE.

C.2 Generic Registration Test Procedure

The generic test procedure:

- 1 The UE sends an Activate PDP Context Request message. In the Protocol Configuration Options IE the IM CN Subsystem Signalling Flag may be set or not set, a request for P-CSCF Address or a request for DNS Server Address may be included or not.
- 2 The SS responds with an Activate PDP Context Accept message. In the Protocol Configuration Options IE the IM CN Subsystem Signalling Flag shall not be set, a list of P-CSCF addresses or DNS Server addresses shall only be included if a corresponding request was included in step 1.
- 3 Optional P-CSCF address discovery using the DHCP procedure according to Annex C.3 for IPv6 or Annex C.4 for IPv4.
- 4 The UE initiates IMS registration. SS waits for the UE to send an initial REGISTER request.
- 5 The SS responds to the initial REGISTER request with a valid 401 Unauthorized response.
- 6 The SS waits for the UE to set up a temporary set of security associations and to send another REGISTER request, over those security associations.
- 7 The SS responds to the second REGISTER request with valid 200 OK response, sent over the same temporary set of security associations that the UE used for sending the REGISTER request.
- 8 The SS waits for the UE to send a SUBSCRIBE request over the newly established security associations.
- 9 The SS responds to the SUBSCRIBE request with a valid 200 OK response.
- 10 The SS sends a valid NOTIFY request for the subscribed registration event package.
- 11 The SS waits for the UE to respond to the NOTIFY with a 200 OK response.

Expected sequence

Step	Direction	Message	Comment			
_	UE SS	7				
1	→	Activate PDP Context Request	In the Protocol Configuration Options IE the IM CN Subsystem Signalling Flag may be set or not set, a request for P-CSCF Address or a request for DNS Server Address may be included or not.			
2	+	Activate PDP Context Accept	In the Protocol Configuration Options IE the IM CN Subsystem Signalling Flag shall not be set, a list of P-CSCF IP addresses or DNS Server addresses shall only be included if a corresponding request was included in step 1.			
3			Optional P-CSCF address discovery using the DHCP procedure according to Annex C.3 for IPv6 or Annex C.4 for IPv4.			
4	\rightarrow	REGISTER	The UE sends initial registration for IMS services.			
5	+	401 Unauthorized	The SS responds with a valid AKAv1-MD5 authentication challenge and security mechanisms supported by the network.			
6	→	REGISTER	The UE completes the security negotiation procedures, sets up a temporary set of SAs and uses those for sending another REGISTER with AKAv1-MD5 credentials.			
7	+	200 OK	The SS responds with 200 OK.			
8	→	SUBSCRIBE	The UE subscribes to its registration event package.			
9	←	200 OK	The SS responds with 200 OK.			
10						
11	\rightarrow	200 OK	The UE responds with 200 OK.			

NOTE: The default message contents in annex A are used.

C.3 Generic DHCP test procedure for IPv6

The generic test procedure (according to RFC 3315[23

- 1 The UE sends a DHCPSOLICT message requesting to resolve P-CSCF Domain Name(s).
- 2 The SS responds with a DHCPADVERTISE message containing the IP address of the SS as P-CSCF address, if the UE requested the SIP Servers option within the DHCPSOLICIT message.
- 3 The UE may send a DHCPINFORMATION-REQUEST message.
- 4 The SS responds with a DHCPREPLY message containing the IP address of the SS as P-CSCF address.

Expected sequence

Step	Direction		Message	Comment
	UE SS			
1	→		DHCPSOLICIT	Requesting to locate a DHCP server
2	←		DHCPADVERTISE	
3	\rightarrow		DHCPINFORMATION-REQUEST	Optional message.
4	←		DHCPREPLY	Sent if DHCPINFORMATION-REQUEST is
				received.

NOTE: The default message contents in annex B are used.

C.4 Generic DHCP test procedure for IPv4

The generic test procedure (according to RFC 2131[55]):

- 1 If the UE already knows a DHCP server address, it goes to step 3. Otherwise, the UE sends a DHCPDISCOVER message locating a server.
- 2 The SS responds with a DHCPOFFER message.
- 3 The UE sends a DHCPINFORM message requesting P-CSCF address(es) in the options field.
- 4 The SS responds with a DHCPACK message providing the IP address of the SS as P-CSCF address.

Expected sequence

Step	Direction		Message	Comment
	UE SS			
1	1 >		DHCPDISCOVER	Optionally sent if UE does not have DHCP server address.
2	2 ←		DHCPOFFER	Sent if DHCP Discover message is received.
3	\rightarrow		DHCPINFORM	Requesting P-CSCF Address(es).
4	4 ← □		DHCPACK	Including P-CSCF IP Address.

NOTE: The default message contents in annex B are used.

Annex D (Informative): Example values for certain IXIT parameters

This table contains syntactically correct example values for a number of headers and parameters that may be used as such by SS when sending downlink messages and checking that the uplink messages would contain the same values. These values will be defined as IXIT.

IMS registration parameters from ISIM application

px_HomeDomainName sip:3gpp.org

px_PublicUserIdentity sip:localuser@3gpp.org px_PrivateUserIdentity <u>privateuser@3gpp.org</u>

IMS registration parameters derived from IMSI when using USIM application TS 23.003 [32]

px_IMSI 12345611223344

home domain name sip:ims.mnc123.mcc456.3gppnetwork.org

public user identity sip:12345611223344@ ims.mnc123.mcc456.3gppnetwork.org private user identity 12345611223344@ ims.mnc123.mcc456.3gppnetwork.org

CSCF domain names

px_pcscf pcscf.3gpp.org (FDQN that resolves to the IP address of SS)

px_scscf scscf.3gpp.org (FDQN that does not resolve to the IP address of SS)

Annex E (informative): Change history

Meeting -1st-	Doc-1st- Level	CR	Rev	Subject	Cat	-	Version -New	Doc-2nd- Level
Level						Current		
RP-31	RP-060052	-	-	Update to version 1.0.0 and present to RAN#31 for information	=	0.0.1	1.0.0	R5-060292
-	-	-	-	Update to version 2.0.0 at RAN5#31	-	1.0.0	2.0.0	R5-061398
-	-	-	-	Update to version 2.1.0 during RAN5#31 e-mail agreement procedure	-	2.0.0	2.1.0	R5-061398r1
RP-32	RP-060269	-	-	MCC Editorial clean up version 2.1.1 - and present to RAN#32 for approval to go under revision control (as version 5.0.0)	-	2.1.0	2.1.1	-
-	-	-	-	Update to version 5.0.0 after RAN#32	-	2.1.1	5.0.0	-

History

Document history		
V5.0.0	June 2006	Publication