Digital cellular telecommunications system (Phase 2+);
Universal Mobile Telecommunications System (UMTS);
3G Security;
Security of Multimedia Broadcast/Multicast Service (MBMS)
(3GPP TS 33.246 version 6.7.0 Release 6)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.
Annex A (informative): Trust model ...33

Annex B (informative): Security threats ..34

B.1 Threats associated with attacks on the radio interface34
B.1.1 Unauthorised access to MBMS User Service data34
B.1.2 Threats to integrity ..34
B.1.3 Denial of service attacks ...34
B.1.4 Unauthorised access to MBMS User Services ...34
B.1.5 Privacy violation ..35

B.2 Threats associated with attacks on other parts of the system35
B.2.1 Unauthorised access to data ..35
B.2.2 Threats to integrity ..35
B.2.3 Denial of service ..35
B.2.4 A malicious UE generating MTKs for malicious use later on35
B.2.5 Unauthorised insertion of MBMS user data and key management data36

Annex C (normative): MBMS security requirements ..37

C.1 Requirements on security service access ...37
C.1.1 Requirements on secure service access ..37
C.1.2 Requirements on secure service provision ...37

C.2 Requirements on MBMS Transport Service signaling protection37

C.3 Requirements on Privacy ...37

C.4 Requirements on MBMS Key Management ..38

C.5 Requirements on integrity protection of MBMS User Service data38

C.6 Requirements on confidentiality protection of MBMS User Service data39

C.7 ...39

Annex D (normative): UICC-ME interface ..40

D.1 MSK Update Procedure ...40
D.2 Void ... 40
D.3 MTK generation and validation ... 40
Annex E (Informative): MIKEY features not used in MBMS ... 42
Annex F (normative): MRK key derivation for ME based MBMS key management ... 43
Annex G (normative): HTTP based key management messages .. 44
G.1 Introduction ... 44
G.2 Key management procedures .. 44
G.2.1 MBMS User Service Registration .. 44
G.2.2 MBMS User Service Deregistration .. 45
G.2.3 MSK request .. 45
G.2.4 Error situations ... 46
Annex H (informative): Signalling flows for MSK procedures ... 48
H.1 Scope of signalling flows ... 48
H.2 Signalling flows demonstrating a successful MSK request procedure ... 48
H.2.1 Successful MSK request procedure .. 48
Annex I (informative): Example of using MSKs and MTKs in MBMS .. 52
Annex J (informative): Mapping the MBMS security requirements into security functions and mechanism 53
J.1 Consistency check .. 53
J.1.1 Requirements on secure service access ... 53
J.1.2 Requirements on MBMS transport Service signaling protection ... 53
J.1.3 Requirements on Privacy ... 54
J.1.4 Requirements on MBMS Key Management .. 54
J.1.5 Requirements on integrity protection of MBMS User Service data .. 55
J.1.6 Requirements on confidentiality protection of MBMS User Service data .. 56
J.1.7 Requirements on content provider to BM-SC reference point .. 56
J.2 Conclusions ... 56
Annex K (informative): Change history .. 57
History .. 59
Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:
 1 presented to TSG for information;
 2 presented to TSG for approval;
 3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The security of MBMS provides different challenges compared to the security of services delivered over point-to-point services. In addition to the normal threat of eavesdropping, there is also the threat that it may not be assumed that valid subscribers have any interest in maintaining the privacy and confidentiality of the communications, and they may therefore conspire to circumvent the security solution (for example one subscriber may publish the decryption keys enabling non-subscribers to view broadcast content). Countering this threat requires the decryption keys to be updated frequently in a manner that may not be predicted by subscribers while making efficient use of the radio network.
1 Scope

The Technical Specification covers the security procedures of the Multimedia Broadcast/Multicast Service (MBMS) for 3GPP systems (UTRAN and GERAN). MBMS is a 3GPP system network bearer service over which many different applications could be carried. The actual method of protection may vary depending on the type of MBMS application.

2 References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2] 3GPP TS 22.146: "Multimedia Broadcast/Multicast Service; Stage 1".
[3] 3GPP TS 23.246: "Multimedia Broadcast/Multicast Service (MBMS); Architecture and Functional Description".
[5] 3GPP TS 22.246: "MBMS User Services".
[8] IETF RFC 2617 "HTTP Digest Authentication".
[9] IETF RFC 3830 "MIKEY: Multimedia Internet KEYing"
[14] 3GPP TS 33.210: "Network domain security; IP network layer security".
[18] 3GPP TS 24.109: "3rd Generation Partnership Project; Technical Specification Group Core Network; Bootstrapping interface (Ub) and network application function interface (Ua); Protocol details".
[19] IETF RFC 2616 "Hypertext Transfer Protocol -- HTTP/1.1".
3 Definitions, abbreviations, symbols and conventions

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply.

For the definitions of MBMS User Service refer to TS 22.246 [5].

HDR = the general MIKEY HeaDeR.

IMPI = In the context of current specification IMSI is used in the format of IMPI as specified in GBA, cf. TS 33.220 [6].

KEMAC = A payload included in the MIKEY message, which contains a set of encrypted sub-payloads and a MAC.

Key Group = A group of MSKs that are identified by the same Key Group part of the MSK ID. Key Group part is used to group keys together in order to allow redundant MSKs to be deleted.

MBMS download session: See TS 26.346 [13].

MBMS streaming session: See TS 26.346 [13].

MRK = MBMS Request Key: This key is to authenticate the UE to the BM-SC when performing key requests etc.

MSK = MBMS Service Key: The MBMS Service key that is securely transferred (using the key MUK) from the BM-SC towards the UE. The MSK is not used directly to protect the MBMS User Service data (see MTK).

MTK = MBMS Traffic Key: A key that is obtained by the UICC or ME by calling a decryption function MGV-F with the MSK. The key MTK is used to decrypt the received MBMS data on the ME.

MUK = MBMS User Key: The MBMS user individual key that is used by the BM-SC to protect the point to point transfer of MSK’s to the UE.

NOTE: The keys MSK and MUK may be stored within the UICC or the ME depending on the UICC capabilities.

Salt key = a random or pseudo-random string used to protect against some off-line pre-computation attacks on the underlying security protocol.

SEQl = Lower limit of the MTK ID sequence number interval: Last accepted MTK ID sequence number interval stored within MGV-S. The original value of SEQl is delivered in the key validity data field of MSK messages.

SEQp = The MTK ID, which is received in a MIKEY packet.

SEQU = Upper limit of the MTK ID sequence number interval, which is delivered in the key validity data field of MSK messages.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

- **B-TID** = Bootstrapping Transaction Identifier
- **BM-SC** = Broadcast-Multicast Service Centre
- **BSF** = Bootstrapping Server Function
DCF DRM Content Format
DRM Digital Rights Management
EXT Extension payload
FDT FLUTE File Delivery Table
FLUTE File delivery over Unidirectional Transport
GBA Generic Bootstrapping Architecture
GBA_ME ME-based GBA
GBA_U GBA with UICC-based enhancements
IDi Identity of the initiator
IDr Identity of the responder
Ks_ext_NAF Derived key in GBA_U
Ks_int_NAF Derived key in GBA_U, which remains on UICC
Ks_NAF Derived key in GBA_ME
MAC Message authentication code
MBMS Multimedia Broadcast/Multicast Service
MGV-F MBMS key Generation and Validation Function
MGV-S MBMS key Generation and Validation Storage
MIKEY Multimedia Internet Keying
MKI Master Key identifier
MRK MBMS Request Key
MSK MBMS Service Key
MSK_C Confidentiality key derived from key MSK
MSK_I Integrity key derived from key MSK
MTK MBMS Traffic Key
MUK MBMS User Key
MUK_C Confidentiality key derived from key MUK
MUK_I Integrity key derived from key MUK
NAF Network Application Function
OMA Open Mobile Alliance
ROC Roll-Over Counter
SP Security Policy
SRTP Secure RTP

3.3 Symbols
For the purposes of the present document, the following symbols apply:

\|

Concatenation

3.4 Conventions
All data variables in this specification are presented with the most significant substring on the left hand side and the least significant substring on the right hand side. A substring may be a bit, byte or other arbitrary length bitstring. Where a variable is broken down into a number of substrings, the leftmost (most significant) substring is numbered 0, the next most significant is numbered 1, and so on through to the least significant.

4 MBMS security overview

4.1 MBMS security architecture

4.1.1 General
MBMS introduces the concept of a point-to-multipoint service into a 3GPP system. A requirement of a MBMS User Service is to be able to securely transmit data to a given set of users. In order to achieve this, there needs to be a method of authentication, key distribution and data protection for a MBMS User Service.
Figure 4.1: MBMS security architecture

Figure 4.1 gives an overview of the network elements involved in MBMS from a security perspective. Nearly all the security functionality for MBMS, except for the normal network bearer security, resides in either the BM-SC or the UE. The BSF is a part of GBA (TS 33.220 [6]). The UE and the BM-SC use GBA to establish shared keys that are used to protect the point-to-point communication between the UE and the BM-SC.

The BM-SC is a source for MBMS data. It could also be responsible for scheduling data and receiving data from third parties (this is beyond the scope of the standardisation work) for transmission. The BM-SC is responsible for establishing shared secrets with the UE using GBA, authenticating the UE with HTTP digest authentication mechanism, registering and de-registering UEs for MBMS User Services, generating and distributing the keys necessary for MBMS security to the UEs with MIKEY protocol and for applying the appropriate protection to data that is transmitted as part of a MBMS User Service. The BM-SC also provides the MBMS bearer authorisation for UEs attempting to establish MBMS bearer.
The UE is responsible for establishing shared secrets with the BM-SC using GBA, registering to and de-registering from MBMS User Services, requesting and receiving keys for the MBMS User Service from the BM-SC and also using those keys to decrypt the MBMS data that is received.

MBMS imposes the following requirements on the MBMS capable elements:

- a UICC that contains MBMS key management functions shall implement GBA_U;
- a ME that supports MBMS shall implement GBA_U and GBA_ME, and shall be capable of utilising the MBMS key management functions on the UICC as well as providing MBMS key management functions itself;
- a BM-SC shall support using both GBA_ME and GBA_U keys to enable both ME based and UICC based MBMS key management, respectively.

4.1.2 BM-SC sub-functions

The BM-SC has the following sub-functions related to MBMS security, see figure 4.1.

- **Key Management function:** The Key Management function includes two sub-functions: Key Request function and Key Distribution function.

- **Key Request function:** The sub-function is responsible for retrieving GBA keys from the BSF, deriving MUK and MRK from GBA keys, performing MBMS User Service Registration, Deregistration and MSK request procedures and related user authentication using MRK, providing MUK to Key Distribution function, performing subscription check from Membership function. The sub-function implements the following functions and procedures:
 - Bootstrapping initiation
 - Bootstrapping re-negotiation
 - HTTP digest authentication
 - MRK derivation
 - MBMS User Service Registration procedure
 - MBMS User Service Deregistration procedure
 - MSK request procedure

- **Key Distribution function:** The sub-function is responsible for retrieving MUK from Registration function, generating and distributing MSKs and MTKs to the UE, providing MTK to Session and Transmission function. The sub-function implements the following security procedures:
 - MSK delivery procedure
 - MTK delivery procedure
 - BM-SC solicited pull procedure

- **Session and Transmission function:** The sub-function is responsible for session and transmission functions cf. TS 26.346 [13]. As part of these session and transmission functions, this function performs protection of data with MTK (encryption and/or integrity protection). The sub-function implements the following security procedures:
 - Protection of streaming data
 - Protection of download data

- **Membership function:** The Membership function is used to verify if a user is authorized to register, receive keys or to establish a MBMS bearer. The Membership function is defined in TS 23.246 [3].
4.1.3 UE security architecture

It is assumed that the UE includes a secure storage (MGV-S). This MGV-S may be realized on the ME or on the UICC. The MGV-F is implemented in a protected execution environment to prevent leakage of security sensitive information such as MBMS keys. MGV-S stores the MBMS keys and MGV-F performs the functions that should not be exposed to unprotected parts of the ME. An overview of ME based key management and UICC based key management in UE is described in figure 4.2.

In particular in ME based key management it shall be ensured that the keys are not exposed to unprotected parts of the ME when they are transmitted from the UICC to the MGV-S or during the key derivations.

![Figure 4.2: ME and UICC based key management in UE](image)

4.1A Granularity of MBMS security

An MBMS User Service is composed of one or more MBMS Streaming Sessions and/or MBMS Download Sessions. An MBMS Streaming Session is composed of one or more RTP sessions, and an MBMS Download Session is composed of one or more FLUTE channels as defined in TS 26.346 [13]. MBMS streaming/download sessions may be transported over one or more MBMS Transport Services. Transport Services are defined in TS 23.246 [3]. MBMS security is used to protect RTP sessions and FLUTE channels. As such MBMS User Service protection is Transport Service independent, in particular, it is independent on whether it is carried over point-to-point bearer or MBMS bearer.

4.2 Key management overview

The BM-SC controls the use of the MBMS Service Keys (MSKs) to secure the different RTP sessions and FLUTE channels. The MSKs are used to protect the delivery of MBMS Transport Keys (MTKs), which are used to secure the RTP sessions and FLUTE channels as specified within clauses 6.5 and 6.6. The delivery of MSKs is secured with user specific MBMS User Key (MUK), which is received from GBA, cf. clause 6.1. MSKs and MTKs are managed at the MBMS User Service Level.

The following rules apply for MBMS key management:
The use of the same MTK within two different RTP sessions is not allowed according to RFC3711 [11] section 9.1.

It shall be possible to update the MTKs during an RTP session or FLUTE channel to enhance the security.

MSKs shall be used to protect MTKs of only one RTP session or FLUTE channel. It shall be possible to update the MSKs during an RTP session or FLUTE channel to enhance the security.

MSKs within one Key Group shall be used to protect MTKs of only one RTP session or FLUTE channel. To allow smooth transition from "current" MSK to the "next", the MGV-S shall be capable of storing two MSKs within the same Key Group as specified in clause 6.3.2.1 of TS 33.246.

Some of the rules are illustrated in figures 4.3 and 4.4.

The usage of MSKs and MTKs applied to a RTP session or FLUTE channel (i.e. usage of MSKs and MTKs for one Key group) is depicted in figure 4.3. Figure 4.4 shows an example of the usage of MSKs and MTKs for three RTP sessions. In particular it shows that MSKs and MTKs of one Key Group are used to protect exactly one RTP session.

![Diagram](image)

Figure 4.3: MBMS key hierarchy: usage of MSKs and MTKs within one RTP session or FLUTE channel

According to TS 22.246 [5] there exist MBMS User Services with shared and non-shared Transport Services. In case two MBMS User Services share an MBMS Transport Service, they also share one or more RTP sessions or FLUTE channels carried in the Transport Service. In this case, it shall be possible for the MBMS User Services to share one or more MSKs and MTKs of the Key Groups that are used to protect the MBMS data.

An example showing how key management is used with MBMS User and Transport Services is depicted in Annex I.
5 MBMS security functions

5.1 Authenticating and authorizing the user

A UE is authenticated and authorised such that only legitimate users are able to participate in an MBMS User Service.

When the UE uses HTTP protocol towards the BM-SC, the UE is authenticated with HTTP digest as described in clause 6.2.1. The Membership function within the BM-SC is used to verify the subscription information.

The following procedures use HTTP digest authentication:

- MBMS User Service Registration procedure (clause 6.3.2);
- MBMS User Service Deregistration procedure (clause 6.3.2);
- MSK request procedure. This can have many triggers (clause 6.3.2);
- Associated delivery procedures (specified in TS 26.346 [13]).

When the UE establishes (or releases) the MBMS bearer(s) to receive an MBMS User Service, it is authenticated and authorized as defined in clause 6.2.2.

5.2 Key derivation, management and distribution

Like any service, the keys that are used to protect the transmitted data in a MBMS User Service should be regularly changed to ensure that they are fresh. This ensures that only legitimate users can get access to the data in the MBMS User Service. In particular frequent re-keying acts as a deterrent for an attacker to pass the MBMS keys to others users to allow those other users to access the data in an MBMS User Service.

The BM-SC is responsible for the generation and distribution of the MBMS keys to the UE. A UE has the ability to request a key when it does not have the relevant key to decrypt the data. This request may also be initiated by a message from the BM-SC to indicate that a new key is available.

The following function is used by the procedures listed below:

- MRK derivation (clause 6.1);

The following procedures are involved in Key management and distribution:

- MBMS User Service Registration procedure (clause 6.3.2);
- MBMS User Service Deregistration procedure (clause 6.3.2);
- MSK request procedure (clause 6.3.2);
- MSK delivery procedure (clause 6.3.2);
- MTK delivery procedure (clause 6.3.3);
- BM-SC solicited pull procedure (clause 6.3.2).

5.3 Protection of the transmitted traffic

The traffic for a particular MBMS User Service may require some protection depending on the sensitivity of the data being transmitted (e.g. it is possible that the data being transmitted by the MBMS User Service is actually protected by the DRM security method and hence might not require additional protection. However, MBMS protection is independent of DRM protection). If this protection is required, it will be either confidentiality and integrity or confidentiality only, or integrity only. The protection is applied end-to-end between the BM-SC and the UEs and will be based on a symmetric key shared between the BM-SC and the UEs that are currently accessing the service. The actual
method of protection specified may vary depending on the type of data being transmitted, e.g. media streaming application or file download.

NOTE: When MBMS data is received over a point-to-point MBMS radio bearer, it would be ciphered between the BM-SC and UE and may also ciphered over the radio interface. This "double ciphering" is unnecessary from a security point of view and hence the decision of whether or not to apply radio interface ciphering to a point-to-point MBMS radio bearer is outside the scope of this specification.

The following traffic protection functions can be distinguished:

- Protection of streaming data (clause 6.6.2);
- Protection of download data (clause 6.6.3).

6 Security mechanisms

6.1 Using GBA for MBMS

TS 33.220 [6] GBA (Generic Bootstrapping Architecture) is used to agree keys that are needed to run an MBMS User Service. The Ua security protocol identifier that shall be used for MBMS is defined in TS 33.220 [6].

If the Service Announcement indicates that protection of the MBMS User Service is applied, then the UE needs to share GBA-keys with the BM-SC. If no valid GBA-keys are available at the UE, the UE shall perform a GBA run with the BSF of the home network as described within TS 33.220 [6]. The BM-SC will act as a NAF (Network Application Function) according to TS 33.220 [6].

Along with the GBA-keys the BSF shall send the IMPI of the user to the BM-SC. When the UE has bootstrapped, it will use a new B-TID over the Ua reference point. The IMPI is used in the BM-SC to bind the old and the new B-TID together.

The MSKs for an MBMS User Service shall be stored on either the UICC if the UICC is capable of MBMS key management or the ME if the UICC is not capable of MBMS key management.

Storing the MSKs on the UICC requires a UICC that contains the MBMS management functions.

As a result of a GBA_U run, the BM-SC will share a key $K_{s_ext_NAF}$ with the ME and share a key $K_{s_int_NAF}$ with the UICC. This key $K_{s_int_NAF}$ is used by the BM-SC and the UICC as the key MUK (MBMS User Key) to protect MSK (MBMS Service Key) deliveries to the UICC as described within clause 6.3. The key $K_{s_ext_NAF}$ is used as the key MRK (MBMS Request Key) within the protocols as described within clause 6.2.

A run of GBA_ME results in the BM-SC sharing a key K_{s_NAF} with the ME. Both the BM-SC and the ME use the key K_{s_NAF} as MUK. The key MRK is derived from the key K_{s_NAF} by the BM-SC and the ME as specified in Annex F of this specification. The key MUK is used to protect MSK deliveries to the ME as described within clause 6.3. The key MRK is used to authenticate the UE towards the BM-SC within the protocols as described within clause 6.2.

The MUK and MRK are identified by the combination of B-TID and NAF-ID (without the Ua security protocol identifier) in the UE and by B-TID in the BM-SC, where B-TID and NAF-ID are defined as specified in TS 33.220 [6].

In the UE two different MUKs, i.e. the last generated and the last successfully used, are used to guarantee that the UE and the BM-SC share always one MUK. The last generated MUK is replaced immediately after when a new MUK is generated and the last successfully used MUK is updated after the successful reception of the MIKEY message, which is protected using the last generated MUK. The usage of MUKs is described within clause 6.3.

For ME based key management:

- All MBMS keys (MUK, MRK, MSK and MTK) shall be deleted from the ME when a different UICC is inserted. Therefore the ME needs to store in non-volatile memory the last inserted UICC-identity to be able to compare that with the used UICC-identity at UICC insertion and power on.

- All MBMS keys (MRK, MSK and MTK) may be deleted from the ME when the ME is powered down. If the ME does not delete the MBMS keys at power down then the MBMS keys need to be stored in non-volatile
memory. The ME should store the MUKs in non-volatile memory in order to be able to authenticate the first MIKEY message of a BM-SC solicited pull procedure (see clause 6.3.2.2.4).

NOTE: If the ME deletes the MSK at power down, then the MBMS client would need to request MSK to the BM-SC and may need to run GBA to reconvene an MBMS session.

6.2 Authentication and authorisation of a user

6.2.1 Authentication and authorisation in HTTP procedures

6.2.1.1 General

This clause describes authentication of the user to the BM-SC when using HTTP digest with bootstrapped security associations.

6.2.1.2 Bootstrapping

The BM-SC shall implement Bootstrapping procedure over Ub, Initiation of bootstrapping and Bootstrapping renegotiation procedures over Ua as specified in TS 33.220 [6] and in clauses 4 and 5.2 of TS 24.109 [18]. The Ua interface procedures shall use MRK.

6.2.1.3 HTTP digest authentication

When the UE initiates an HTTP procedure towards the BM-SC, HTTP digest authentication as defined in RFC 2617 [8] shall be used for mutual authentication. HTTP digest is run between BM-SC and ME. The MBMS authentication procedure is based on the general user authentication procedure over Ua interface that is specified in clause "Procedures using the bootstrapped Security Association" in TS 33.220 [6]. The BM-SC will act as a NAF according to TS 33.220 [6]. Along with the GBA-keys the BSF shall send the IMPI of the user to the BM-SC. The details of HTTP digest authentication are specified in clause 5.2 of TS 24.109 [18].

The following adaptations apply to HTTP digest:

- the B-TID as specified in TS 33.220 [6] is used as username;
- MRK (MBMS Request Key) is used as password.

All HTTP procedures within this specification including the associated delivery procedures in TS 26.346 [13] shall be integrity protected with HTTP digest as specified in this clause.

6.2.2 Authentication and authorisation in MBMS bearer establishment

The authentication of the UE during MBMS bearer establishment relies on the authenticated point-to-point connection with the network, which was set up using network security described in TS 33.102 [4] or TS 43.020 [12]. Authorisation for the MBMS bearer establishment happens by the network making an authorisation request to the BM-SC to ensure that the UE is allowed to establish the MBMS bearer(s) corresponding to an MBMS User Service (see TS 23.246 [3] for the details). As MBMS bearer establishment authorisation lies outside the control of the MBMS bearer network (i.e. it is controlled by the BM-SC), there is an additional procedure to remove the MBMS bearer(s) related to a UE that is no longer authorised to access an MBMS User Service.

6.2.3 Void

6.2.4 Void
6.3 Key management procedures

6.3.1 General

In order to protect an MBMS User Service, it is necessary to deliver both MSKs and MTKs from the BM-SC to the UE. MSK procedures are further divided to MSK request procedures, described in clause 6.3.2.2, and MSK delivery procedure, described in clause 6.3.2.3. MSK procedures use a point-to-point bearer. MSK procedures are similar for both streaming and download services.

The operator may configure the BM-SC to refrain from pushing the MSK update message to the UE and let the UE request for the MSK. This may be needed in some download services where the UE fetches the MSK after receiving encrypted download object. In this case the back-off mode as described in clause 6.3.2.2.1 shall be used if present within the Service Announcement.

MTK delivery procedures use the same bearer as the MBMS User Service. MTK delivery procedures are different for streaming and download services and they are described in clause 6.3.3.

The details of the HTTP procedures and HTTP error situations are specified in Annex G. An example of detailed MSK request procedure is described in Annex H. The XML schemas of the HTTP payloads are specified in TS 26.346 [13].

6.3.2 MSK procedures

6.3.2.1 MSK identification

Every MSK is uniquely identifiable by its Key Domain ID and MSK ID

where

Key Domain ID = MCC || MNC and is 3 bytes long.

NOTE 1: When MCC || MNC is used as key identifier, the UE should not try to use it in another context, e.g. the UE should not compare the received MCC || MNC to parameters in radio level.

MSK ID is 4 bytes long and with byte 0 and 1 containing the Key Group part, and byte 2 and 3 containing the Key Number part. The Key Number part is used to distinguish MSKs that have the same Key Domain ID and Key Group part. Key Group part is used to group keys together in order to allow redundant MSKs to be deleted. The MSK ID is carried in the extension payload of MIKEY extension payload.

NOTE 2: If the Key Domain ID does not uniquely identify the BM-SC, it needs to be ensured that the Key Group parts are unique within an operator, i.e. two BM-SCs within an operator shall not use the same Key Group value.

6.3.2.1A MBMS User Service Registration procedure

When a UE has received MBMS User Service information via User Service Discovery / Announcement procedures describing a MBMS User Service and the user wants to receive that MBMS User Service, the UE should register to the MBMS User Service.

NOTE 1: The User Service Discovery / Announcement procedures are specified in TS 26.346 [13]. It is out of the scope of the present specification how the UE receives the User Service information and how the User Service is triggered in the UE.

NOTE 2: The MBMS User Service announcements are not protected when sent over MBMS bearer.

The UE shall receive the following information via the User Service Discovery / Announcement procedures if protection of the MBMS User Service is applied. In this case the UE shall register for the MBMS User Service. If on the other hand, the MBMS User Service does not require any protection (i.e. if service protection description is not present in the Service Announcement), the UE shall not register for key management purposes, which means that the UE needs no shared secret with the BM-SC and should therefore not perform a GBA-run with BSF for MBMS (e.g. if no shared secret for MBMS is available in the UE).
- One or more fully qualified domain names (FQDN) of the key management servers (i.e. the BM-SC). This is for the UE to know to which IP address to send within the MBMS User Service Registration/Deregistration and MSK request Procedures. One or more FQDNs may be indicated in the Service Announcement for load balancing purposes. The UE shall choose the FQDN at the registration phase with the same mechanism as the File Repair Server is selected in TS 26.346 [13]. The UE shall keep the same FQDN for subsequent key management procedures.

- UICC key management required: yes/ no.

- MIKEY FEC-protection, as defined in TS 26.346 [13], may be specified in the service protection description if MIKEY is FEC protected and encapsulated in FEC source packets.

- Identifiers of the MSKs needed for the User Service.

 For each MSK, the identifiers that shall be included are Key Domain ID and MSK ID. The Key Number part of each MSK ID shall be set to 0x0 to denote the current MSK. The Key Number values in the Service Announcement shall be ignored by the UE, since they may change over time and Key Group part of MSK ID is sufficient to identify the MSKs, see clause 6.3.2.1.

- Mapping information how the MSKs are used to protect the different RTP sessions or FLUTE channels. If the MSK is applied to streaming data, then the following parameters shall be present per MSK:

 - SRTP authentication tag length

 NOTE 3: If there is no integrity protection applied to the data, the length of the authentication tag shall be zero.

 - SRTP MKI length

 NOTE 4: Using the lengths of the authentication tag and the MKI field, the UE is able to locate the beginning of the MKI field in SRTP packets even before it has received the security policy payload supplied with the delivery of the MSK. This makes it possible for the UE to request the MSK required for the packet.

 - Back off mode parameters, as defined in TS 26.346 [13], may be specified for MSK requests, if wanted by the service provider. These parameters are then valid for all MSKs in the user service. The Back off mode is used to avoid congestion in MSK requests. In the rare cases that more than one User Service share the same MSK, but have different back off parameters, the UE is allowed to choose which ones to use. The Back off mode is optional to implement in the BM-SC and mandatory to implement in the UE. The UE shall use Back off mode if it is requested by the BM-SC in the Service Announcement.

In case the service protection description indicates that the UICC key management is required, the UE should only try to access the MBMS User Service if the selected UICC application is capable of MBMS key management.

In case the service protection description indicates that UICC key management is not required, the use of either UICC key management or ME key management for a particular UE, depends on if the used UICC application is capable of MBMS key management or not.
Figure 6.0A: MBMS User Service Registration procedure

The communication between the UE and the BM-SC is authenticated and integrity protected with HTTP Digest using bootstrapped security association as described in clause 6.2.1 of this specification.

The UE sends a registration request for the MBMS User Service using the HTTP POST message to the BM-SC Key Request function. The following information shall be included in the HTTP message:

- Indication that the UE requests to register to the MBMS User Service;
- A list of one or more MBMS User Service IDs.

The BM-SC Key Request function authenticates the UE with HTTP Digest using MRK key as described in clause 6.2.1. If the authentication is successful, the BM-SC Key Request function verifies from the BM-SC Membership function whether the UE is authorized to register to the MBMS User Service(s) specified in the request. If the UE is authorized, the BM-SC Key Request function registers the UE to the MBMS User Service(s), which means that the UE is registered to receive the MSKs used in these MBMS User Service(s). The BM-SC Key Request function sends a HTTP 200 OK message with Authentication-Info header to the UE. The following information shall be included in the payload of the HTTP response message:

- A list including one status code for each MBMS User Service ID that was present in the Registration request.

The handling of multiple status codes in one response message is specified in clause 6.3.2.4.

NOTE 5: The BM-SC may not need to challenge the UE (dashed box in figure 6.0A), if the UE has used WWW Authorization request headers in the first message in figure 6.0A and BM-SC is able to authenticate the UE.

If the authentication fails, the BM-SC Key Request function resends HTTP 401 Authorization required message with the WWW-Authenticate header.

The UE checks the validity of the HTTP response message. If the message indicated failure in the HTTP status line, the UE may retry to send the request message.

The UE shall check the status codes in the payload and act accordingly. For example, the UE may retry to register to the MBMS User Service(s) that were indicated to have failed. Further error cases are described in clause G.2.4.

The BM-SC Key Distribution function initiates MSK delivery procedure(s) as specified in clause 6.3.2.3 for those MBMS User Services for which the response message indicated success. The BM-SC may decide to not initiate MSK key delivery procedures, if the combination of services is such that it only makes sense to use all of them simultaneously.

NOTE 6: The time between the MBMS User Service Registration procedure and MSK delivery procedures may vary, i.e. the UE should not expect the MSK delivery procedures to start immediately.
6.3.2.1B MBMS User Service Deregistration procedure

When the UE desires to deregister from one or more MBMS User Services, it shall indicate this to the BM-SC.

![Figure 6.0B: MBMS User Service Deregistration procedure](image)

The communication between the UE and the BM-SC is authenticated and integrity protected with HTTP Digest using bootstrapped security association as described in clause 6.2.1 of this specification.

The UE sends a deregistration request for the MBMS User Service using the HTTP POST message to the BM-SC Key Request function. The following information shall be included in the HTTP message:

- Indication that the UE requests to deregister from the MBMS User Service;
- A list of one or more MBMS User Service IDs.

The BM-SC Key Request function authenticates the UE with HTTP Digest using MRK key as described in clause 6.2.1. If the authentication is successful, the BM-SC Key Request function deregisters the UE from the MBMS User Service(s), which means that the UE will no longer receive the MSKs used in these MBMS User Service(s). The BM-SC Key Request function sends a HTTP 200 OK message with Authentication-Info header to the UE. The following information shall be included in the payload of the HTTP response message:

- A list including one status code for each MBMS User Service ID that was present in the De-Registration request.

The handling of multiple status codes in one response message is specified in clause 6.3.2.4.

NOTE: The BM-SC may not need to challenge the UE (dashed box in figure 6.0B), if the UE has used WWW Authorization request headers in the first message in figure 6.0.B and BM-SC is able to authenticate the UE.

If the authentication fails then the BM-SC Key Request function resends HTTP 401 Authorization required message with the WWW-Authenticate header.

The UE checks the validity of the HTTP response message. If the message indicated failure in the HTTP status line, the UE may retry to send the request message. The UE shall check the status codes in the payload and act accordingly. Error cases are described in clause G.2.4.

The BM-SC should invalidate those MSKs from the UE, which are not used by any other MBMS User Services where the UE is registered. The BM-SC Key Distribution function performs this by running MSK delivery procedure for each MSK, where the Key Validity data is set to invalid value (see clause 6.3.2.3), i.e. SEQ1 is greater than SEQu.
6.3.2.2 MSK request procedures

6.3.2.2.1 Basic MSK request procedure

When a UE detects that it needs the MSK(s) for a specific MBMS User Service, the UE should try to get the MSKs that will be used to protect the data transmitted as part of this MBMS User Service. In the MSK request procedure the UE shall list the Key Domain ID - MSK ID pairs for which the UE needs the MSK(s). The UE shall always (except in the case of a BM-SC solicited pull) wait a period of time as specified by the back-off parameters in the User Service Description (if they are present) before making a request.

The basic MSK request procedure is a part of different other procedures, e.g.:

- request of MSK(s) when the UE has missed a key update procedure e.g. due to being out of coverage.
- BM-SC solicited pull procedure.

![Figure 6.1: Basic MSK request procedure](image)

The communication between the UE and the BM-SC is authenticated and integrity protected with HTTP Digest using bootstrapped security association as described in clause 6.2.1 of this specification.

The UE requests for one or several MSKs using the HTTP POST message. The following information is included in the HTTP message.

- key identification information: a list of one or several Key Domain ID - MSK ID pairs.

UEs may request specific MSK(s) by setting the Key Number part of the MSK ID to the requested value. When the Key Number part of the MSK ID is set to 0x0, this means the current MSK, see clause 6.3.2.1. The UE may request MSK(s) associated to more than one MBMS User Service in the same MSK request procedure.

The BM-SC Key Request function authenticates the UE with HTTP Digest using the keys received from GBA as described in clause 6.2.1.

If the authentication is successful, the BM-SC Key Request function verifies whether the UE is registered to any MBMS User Service that uses the MSKs specified in the request. If the UE is authorized, the BM-SC Key Distribution function shall deliver requested MSKs to the UE (see clause 6.3.2.3). The BM-SC sends a HTTP 200 OK message with Authentication-Info header. The following information shall be included in the payload of the HTTP response message:

- A list including one status code for each Key Domain ID - MSK ID pair that was present in the Registration request.

The handling of multiple status codes in one response message is specified in clause 6.3.2.4.

NOTE 1: The BM-SC may not need to challenge the UE (dashed box in figure 6.1), if the UE has used WWW Authorization request headers in the first message in figure 6.1 and BM-SC is able to authenticate the UE.
If the authentication fails then the BM-SC Key Request function resends HTTP 401 Authorization required message with the WWW-Authenticate header.

The UE checks the validity of the HTTP response message. If the message indicated failure in the HTTP status line, the UE may retry to send the request message.

The UE shall check the status codes in the payload and act accordingly. For example, the UE may retry to request those MSKs that were indicated to have failed or leave the MBMS User Service.

If the HTTP procedure above resulted to success, the BM-SC Key Distribution function initiates MSK delivery procedure as specified in clause 6.3.2.3.

6.3.2.2.2 Void

6.3.2.2.3 Missed key update procedure

When the UE has missed an MSK update and it detects that it has not got the current MSK, e.g. from the received traffic, it may trigger the retrieval of the current MSK from the BM-SC. The procedure is the same as the Basic MSK request procedure in clause 6.3.2.2.1.

6.3.2.2.4 BM-SC solicited pull procedure

While the push is the regular way of updating the MSK to the UE, there may be situations where the BM-SC Key Distribution function solicits the UE to contact the BM-SC and request for new MSK. An example of such a situation is when the BM-SC Key Distribution function wants to trigger the UE that it needs to update the MSK.

When receiving the message, the UE shall request for the current MSK for the specified Key Group as specified in clause 6.3.2.2.1.
6.3.2.3 MSK delivery procedures

6.3.2.3.1 Pushing the MSK to the UE

The BM-SC Key Distribution function controls when the MSKs used in a MBMS User Service are to be changed. The below flow describes how MSK changes are performed. This procedure can be initiated after the UE has requested for MSK(s) as described in clause 6.3.2.2.

![Figure 6.3: Pushing the MSKs to the UE](image)

When the BM-SC Key Distribution function decides that it is time to update the MSK, the BM-SC Key Distribution function sends MIKEY message over UDP transporting the requested MSK to the UE.

If requested by the BM-SC Key Distribution function, the UE sends a MIKEY acknowledgement message to the BM-SC.

NOTE: The MSK is not necessarily updated in the message, since a MSK transport message can be sent e.g. to update the Key Validity data.

When an MSK push MIKEY message is not directly preceded by an MSK key request, then it may happen that the BM-SC uses a still valid MUK that is not the last generated MUK at the UE. The UE shall handle such a MIKEY push message in a similar way as the push solicited pull MIKEY message (i.e. upon a successful integrity check the UE shall initiate an MSK request with the specified Key Group). Additionally, in this case, the UE shall not create a MIKEY acknowledgement message.

NOTE: This procedure guarantees that the UE contacts the BM-SC with the last B-TID, such that the UE now receives a MIKEY push message with the last generated MUK. The integrity of the initial pushed MIKEY message can be verified at the UE with the MUK-ID that is known as the last successfully used BM-SC MUK-ID.

6.3.2.3.2 Void

6.3.2.4 Handling of multiple status codes within one response message

The UE shall include a list of one or more MBMS User Service IDs (in MBMS User Service registration and de-registration procedures) or MSK ID-Key Domain ID -pairs (in MSK request procedure) in the payload of one HTTP request message.

When the BM-SC has processed the request message, it shall include a list of corresponding status codes in the HTTP response message, i.e. a status code for each MBMS User Service ID or MSK ID-Key Domain ID -pair. The status codes are carried in the payload of the HTTP response message and they use the values as specified in RFC 2616 [19]. A successful code, e.g. 200 OK, means that the (de-) registration or MSK request for that specific MBMS User Service ID or MSK was successful. The MBMS specific error codes are described in clause G.2.4.

There is also a status code in the status line of the HTTP response message, which has a successful value if the BM-SC was able to successfully process the corresponding request message. Otherwise the status code in the HTTP status line shall indicate the appropriate error.

NOTE 1: This means that there are two levels of status codes in the response message: the status code in the HTTP status line that is specific to the HTTP message and processed by the HTTP application and the one or more status codes in the payload that are specific to and processed by the MBMS application.
In case the response message does not include all the same status codes in the payload that were in the request message, the UE may still process the status codes that it is able to process.

The list of status codes is also used in case only one MSK or registration is requested. Figure 6.4 below illustrates an example of a UE trying to register to two MBMS User Services. The registration is successful for the first but fails for the second MBMS User service. The example procedure shows only parameters that are relevant for the functionality in question.

![Figure 6.4: Example registration procedure](image)

6.3.3 MTK procedures

6.3.3.1 MTK identification

Every MTK is uniquely identifiable by its Key Domain ID, MSK ID and MTK ID

where

- Key Domain ID, and MSK ID are as defined in clause 6.3.2.1.
- MTK ID is 2 bytes long sequence number and is used to distinguish MTKs that have the same Key Domain ID and MSK ID. It is carried in the MTK ID field of MIKEY extension payload. Every time a MSK with a new MSK ID is taken into use by the BM-SC, the MTK ID of the first MTK sent by the BM-SC protected by that MSK shall be set to an initial value greater than zero chosen by the BM-SC.

NOTE 1: In most situations the practical choice for the initial MTK ID will be one, but this does not prevent the BM-SC to choose a value different for each service and greater than one.

The MTK ID that will be used in a next MTK update needs to be greater than the previously used MTK-ID.

NOTE 2: The practical choice to increment is 1 but also other increments are allowed.

NOTE 3: As the MTK ID is 2 bytes long, this allows to use $2^{16} - 1$ MTKs protected by one MSK if the MTK-ID is always incremented by one and the initial MTK ID starts at 1.

6.3.3.2 MTK update procedure

The MTK is delivered to the UE using MIKEY over UDP, but the V-bit in the common header shall not be set.

The UE shall not send an error message to the BM-SC as a result of receiving an MTK message.
6.3.3.2.1 MTK delivery in download

In the download case the MIKEY message carrying the MTK shall be delivered over the same FLUTE stream as the object to be downloaded to the UE (see TS 26.346 [13]). This means that the message is specified as a separate object in the FLUTE File Delivery Table (FDT), having its own identifier. This means the MTK delivery inherits the reliability features of FLUTE. The mime-type of the object carrying the MIKEY message shall be the IANA-registered type for MIKEY.

6.3.3.2.2 MTK delivery in streaming

MIKEY messages transporting MTKs shall be sent using the same IP destination address as the RTP traffic. MIKEY messages shall be transported to UDP port number 2269 specified for MIKEY. Reliability of MTK delivery is reached by re-sending MTK messages periodically. In order to increase the possibility that UEs receive a new MTK in time, MTK messages may be sent before the RTP traffic changes over to a new MTK.

6.4 MIKEY message creation and processing in the ME

6.4.1 General

MIKEY is used to transport the MSKs and MTKs from the BM-SC to the UE. Clauses 6.4.2, 6.4.3, 6.4.4 and 6.4.5 describe how to create the MIKEY messages, while clause 6.4.6 describes the initial processing by the ME on these messages. The final processing is done by the MBMS key Generation and Validation Function (MGV-F) and is described in clause 6.5.

MIKEY shall be used with pre-shared keys as described in RFC 3830 [9]. The UDP port number for MIKEY is 2269 (see [17]).

To keep track of MSKs and MTKs, a new Extension Payload (EXT) [16] is added to MIKEY. The Extension Payload can contain the key types and identities of MSK and the MTK and Key Domain ID (see clauses 6.3.2 and 6.3.3).

Some MIKEY payloads contain text strings, e.g., the IDi and IDR payloads. These strings shall be encoded according to UTF-8 [21].

In case MIKEY packets are FEC-protected (see TS 26.346 [13]), this is signalled within the MBMS User Service Description.

6.4.2 MIKEY common header

MSKs shall be carried in MIKEY messages. The messages are sent point-to-point between the BM-SC and each UE. The messages use the MUK shared between the BM-SC and the UE as the pre-shared secret in MIKEY.

Once the MSK is in place in the UE, the UE can make use of the MTK messages sent by the BM-SC over MBMS bearer. The MTK is carried in messages conforming to the structure defined by MIKEY and use the MSK as the pre-shared secret.

If the BM-SC requires an ACK for an MSK key update message this is indicated by setting the V-bit in the MIKEY common header. The UE shall then respond with a MIKEY message containing the verification payload. In the case the server does not receive an ACK, normal reliability constructions can be used, e.g., start a timer when the message is sent and then resend the message if no ACK is received before the timer expires.

The CSB ID field of MIKEY common header is not used for identification purposes but shall be present. The UE shall use the same CSB ID of the MSK delivery message in the ACK message.

NOTE: As the CSB ID field has no meaning within the context of MBMS, the BM-SC is free to assign any value to CSB ID. Assigning random values to CSB ID enhances security as CSB ID is taken into account for MIKEY key derivations (section 4.1.3 and 4.1.4 of RFC 3830 [9]).

In case of download services, the SP payload shall not be present and CS ID map type is set to value ‘1’ as defined in [16]. In case of streaming services the CS ID map type is set to value "0" as defined in RFC 3830 [9].
6.4.3 Replay protection

Each MIKEY message contains the timestamp field (TS) of type 2. This means that the contents of the timestamp field is a 32-bit counter. The counter is increased by one for each message sent from the BM-SC to the UE even in case BM-SC retransmits a previously sent message. Note that there is one counter per UE for MSK delivery, and one counter common to all UEs for MTK delivery. The counter is used for replay protection; messages with a counter less than or equal to the current counter are discarded. Less than or equal is to be taken in the meaning of RFC1982. If the less than or equal relation is undefined in the sense of RFC1982, the message should be considered as being replayed and shall be discarded. The counter in the TS field shall be reset for MSK transport messages when the MUK is updated. The counter in the TS field shall be reset for MTK transport messages when the MSK is updated.

NOTE: The counter in TS field in MTK transport messages is used to detect replay attacks while the counter in MTK field of the EXT payload is used to detect the resendings of the same MTK keys.

6.4.4 General extension payload

The MSK and MTK shall be delivered in messages that conform to the structure defined in RFC 3830 [9] (MIKEY). To be able to keep track of the key that is derived in the message, a general Extension Payload (EXT) with Type field value x is used that conforms to the structure defined in reference [16].

Editor's Note: The type value will be replaced by value requested from IANA.

The EXT includes a Key Domain ID and one or two Key Type ID sub-payloads depending on the message. These are used as follows.

For MSK delivery the EXT includes the Key Domain ID and a Key Type ID sub-payload. The Key Domain ID has the value as specified in clause 6.3.2.1. The Key Type ID sub-payload includes the type and ID of the key that is delivered in the message, i.e. the MSK ID, see figure 6.4a. The key that is used to protect the message, i.e. MUK, is identified as specified in clause 6.1.

For MTK delivery the EXT includes the Key Domain ID and two Key Type ID sub-payloads. The Key Domain ID has the value as specified in clause 6.3.2.1. The first Key Type ID sub-payload includes the type and ID of the key that is used to protect the message, i.e. the MSK ID, and the second Key Type ID sub-payload includes the type and ID of the key that is delivered in the message, i.e. the MTK ID, see figure 6.4b.

See clauses 6.3.2.1 and 6.3.3.1 for definition of MSK ID and MTK ID. The MTK ID is increased every time the corresponding key is updated. It is possible that the same MTK is delivered several times over MBMS bearer, and the ME can then discard messages related to a key it already has instead of passing them to the MGV-F.

The MGV-F (see clause 6.5) protects itself from a possibly malicious ME by checking the integrity and freshness of the MIKEY message.

The format of the key IDs shall be represented by unsigned integers, different from zero. The reason for disallowing zero is that it is reserved for future use. Note that this means that there can only be $2^n - 1$ different keys in use during the same session, where n is the number of bits in the ID field.

<table>
<thead>
<tr>
<th>Key Domain ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Type ID sub-payload (MSK ID)</td>
</tr>
</tbody>
</table>

Figure 6.4a: Extension payload used with MIKEY MSK message

<table>
<thead>
<tr>
<th>Key Domain ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Type ID sub-payload (MSK ID)</td>
</tr>
<tr>
<td>Key Type ID sub-payload (MTK ID)</td>
</tr>
</tbody>
</table>

Figure 6.4b: Extension payload used with MIKEY MTK message
6.4.5 MIKEY message structure

6.4.5.1 MSK message structure

The structure of the MIKEY message carrying a MSK key shall be according to Figure 6.5. (For handling of unknown MIKEY extension payloads in MGV-F, cf. clause 6.5.3.) The actual key that is delivered is kept in the KEMAC payload. The MIKEY-RAND is used to derive e.g. encryption and authentication keys from the received keys. It is sent in all the MSK delivery messages. The identity payloads of the initiator's and responder's IDs shall be included in the MSK transport messages. IDi is the ID of the BM-SC (i.e. NAF-ID without the Ua security protocol identifier) and IDR is the ID of the UE's username (i.e. B-TID). Security Policy (SP) payload includes information for the security protocol such as algorithms to use, key lengths, initial values for algorithms etc. The SP payload is used only with streaming services. The BM-SC shall ensure that the UE has received the SP payload before the SP payload needs to be applied in the streaming service. The BM-SC shall include the SP payload when the MSK delivery was triggered by the UE using the MSK request procedure or the MBMS User Service Registration procedure, otherwise it is optional for the BM-SC to include the SP payload into MSK delivery messages. The Key Validity Data subfield is present in the KEMAC payload when MSK is transported but it is not present for MTK transport. The field defines the Key Validity Time for MSK in terms of sequence number interval (i.e. lower limit of MTK ID and upper limit of MTK ID). The lower limit of the interval defines the original value of SEQl to be used by the MGV-F (see clause 6.5) and the upper limit of the interval defines the SEQu. The BM-SC shall never set SEQu to its maximum possible value.

![Figure 6.5: The logical structure of the MIKEY message used to deliver MSK. For use of brackets, cf. section 1.3 of RFC 3830 [9] (MIKEY)](image)

6.4.5.2 MSK verification message structure

If the BM-SC expects a response to the MSK-transport message (i.e., the V-bit in the MIKEY common header is equal to 1), the UE shall send a verification message as a response. The verification message shall be constructed according to section 3.1 of MIKEY, and shall consist of the following fields: HDR || TS || IDR || V, where IDR is the ID of the UE. Note that the MAC included in the verification payload, shall be computed over both the initiator's and the responder's ID as well as the timestamp in addition to be computed over the response message as defined in RFC 3830 [9]. The key used in the MAC computation is the MUK_I.

![Figure 6.6: The logical structure of the MIKEY Verification message](image)

The verification message shall not be sent as a response to MIKEY messages delivering MTK.

The ME shall send the verification message, when received as result from the MGV-F, to the BM-SC.
6.4.5.3 MTK message structure

The structure of the MIKEY message carrying a MTK key shall be according to Figure 6.7. (For handling of unknown MIKEY extension payloads in MGV-F, cf. clause 6.5.4) The actual key that is delivered is kept in the KEMAC payload. The EXT payload has format as described in clause 6.4.4. If MTK is to be used for streaming protection, then a 112 bit salt shall be added to the KEMAC payload in addition to the MTK. The #CS field shall be set to zero, and no CS ID map info shall be present in the MTK message. Neither shall the SP payload be included in MTK messages.

![Figure 6.7: The logical structure of the MIKEY message used to deliver MTK]

6.4.6 Processing of received messages in the ME

6.4.6.1 MSK MIKEY Message Reception

When the MIKEY message arrives at the ME, the processing proceeds following the steps below (basically following section 5.3 of RFC 3830 [9]).

1. The Extension Payload (EXT) is examined, and if it indicates an MSK delivery protected with MUK, the MUK ID is received by combining IDi and IDR.
2. The Timestamp Payload is checked, and the message is discarded if the counter in the Timestamp Payload is smaller or equal to the stored replay counter associated with the given MUK (the stored replay counter value is retrieved from MGV-S).
3. The Security Policy payload is stored temporarily in the ME if it was present.
4. The message is transported to MGV-F for further processing, cf. clause 6.5.3.
5. The MGV-F replies success or failure. In case of success the temporarily stored Security Policy payload is taken into use. Otherwise it is deleted.

6.4.6.2 MTK MIKEY Message Reception

When the MIKEY message arrives at the ME, the processing proceeds following the steps below (basically following section 5.3 of RFC 3830 [9]).

1. The Extension Payload (EXT) is examined, and if it indicates an MTK delivery protected with MSK, the MSK ID is extracted from the Extension Payload.
2. The Timestamp Payload is checked, and the message is discarded if the counter in the Timestamp Payload is smaller or equal to the stored replay counter associated with the given MSK (the stored replay counter value is retrieved from MGV-S).
3. If the MTK ID extracted from the Extension payload is less than or equal to the current MTK ID (kept in the ME), the message shall be discarded.
4. The message is transported to MGV-F for further processing, cf. 6.5.4.
5. The MGV-F replies success (i.e. sending the MTK and salt if available) or failure.
6.5 Validation and key derivation functions in MGV-F

6.5.1 General

When an MSK or MTK message is received in the UE, it is processed in protected environment MGV-S.

6.5.2 Usage of MUK

When a MUK has been installed in the MGV-S, i.e. as a result of a GBA run, it is used as pre-shared secret used to verify the integrity of the MSK transport message and decrypt the MSK carried in the KEMAC payload as described in RFC 3830 [9].

6.5.3 MSK processing

When the MGV-F receives the MIKEY message, the MGV-F first determines the type of message by reading the EXT. If the EXT indicates MSK delivery (clause 6.4.4) then the text in this clause applies.

The MGV-F shall not abort processing of a MIKEY message when encountered with an extension payload with unknown type. The content of an unknown extension payload (except for the next payload, type and length fields) shall be treated as an opaque object. The MAC computation required for the KEMAC payload shall include any unknown extension payloads preceeding it.

NOTE: This is because an unknown extension payload may be specified for ME use only and it is therefore 'unknown' to the MGV-F. Skipping unknown payloads during the payload parsing is a deviation from recommended receiver behavior in section 5.3 of RFC 3830.

The MGV-F retrieves the MUK identified as specified in clause 6.1. If the Key Number part of the MSK ID in the EXT equals 0x0 then this indicates a solicited pull procedure (clause 6.3.2.2.4) for which the MIKEY message does not contain an MSK and for which the MUK shall be applied according to clause 6.3.2.2.4.

The integrity of the message is validated and if valid then the MSK, if present, shall be extracted from the KEMAC payload as described in section 5 of reference [9], and the Key Validity data, shall be extracted from the message and stored (in the form of MTK ID interval).

If integrity validation is successful, then the MGV-F shall update the stored Time Stamp value associated with the corresponding MUK ID in MGV-S with the counter value in the Time Stamp payload.

If the MGV-F receives an MSK and already contains two other MSKs under the same Key Domain ID and Key Group part, then the UE shall keep the newer and delete the older of these two MSKs. The newer MSK (i.e. the MSK to be kept) of the two stored MSKs under the same Key Domain ID and Key Group part is determined by the UE from the combination of MUK ID and Time Stamp value in the following way. The MSK that was protected with the newer MUK is the newer MSK regardless of the value of the Time Stamp. In case the MUK IDs are equal, the MSK with higher Time Stamp value is the newer MSK. Updating an existing MSK (e.g. by updating the Key Validity Data) or resending an MSK means then also that the updated MSK becomes the newer MSK since the Time Stamp value is increased in these cases. In case the MUK ID values are not equal, the newer MSK is the last MUK successfully used by the BM-SC as specified in clause 6.3.2.2.4.

If the MGV-F receives an MSK, which has the same MSK ID as a stored MSK, the received MSK shall replace the stored MSK and update the Key Validity data. In case the MSK message does not include any key in KEMAC payload, then the Key Validity data shall be updated for the specified MSK except if the MSK ID is 0x0.

6.5.4 MTK processing

When the MGV-F receives the MIKEY message, it first determines the type of message by reading the EXT. If the key inside the message is an MTK protected by MSK, MGV-F retrieves the MSK with the ID given by the Extension payload.

The MGV-F shall not abort processing of a MIKEY message when encountered with an extension payload with unknown type. The content of an unknown extension payload (except for the next payload, type and length fields) shall be treated as an opaque object. The MAC computation required for the KEMAC payload shall include any unknown extension payloads preceeding it.
NOTE: This is because an unknown extension payload may be specified for ME use only and it is therefore ‘unknown’ to the MGV-F. Skipping unknown payloads during the payload parsing is a deviation from recommended receiver behavior in section 5.3 of RFC 3830.

It is assumed that the MBMS service specific data, MSK and the sequence numbers SEQI and SEQu, have been stored within a secure storage (MGV-S). MSK, SEQI and SEQu were transferred to the MGV-S with the execution of the MSK update procedures. The initial values of SEQI and SEQu are determined by the service provider.

The MGV-F shall only calculate and deliver the MBMS Traffic Keys (MTK) to the ME if the ptm-key information is deemed to be fresh.

The MGV-F shall compare the received SEQp, i.e. MTK ID from the MIKEY message with the stored SEQI and SEQu. If SEQp is equal to or lower than SEQI or SEQp is greater than SEQu, then the MGV-F shall indicate a failure to the ME. Otherwise, the MGV-F shall verify the integrity of the MIKEY message according to RFC 3830 [9]. If the verification is unsuccessful, then the MGV-F will indicate a failure to the ME. If the verification is successful, then the MGV-F shall update SEQI with SEQp value and extract the MTK from the message. The MGV-F then provides the MTK to the ME.

If MAC verification is successful, the MGV-F shall update in MGV-S the counter value in the Time Stamp payload associated with the corresponding MSK ID.

In the case of streaming, SRTP requires a master key and a master salt. The MTK is used as master key, and the salt in the KEMAC payload is used as master salt.

NOTE: MIKEY includes functionality to derive further keys from MTK if needed by the security protocol. The key derivation is defined in section 4.1.3 of RFC 3830 [9] (MIKEY).

In case of download service, MIKEY key derivation as defined in section 4.1.3 of MIKEY [9] shall be used to derive MTK authentication and encryption keys from MTK in the ME. These keys shall be provided to the download protection protocol.

6.6 Protection of the transmitted traffic

6.6.1 General

The data transmitted to the UEs is protected by a symmetric key (an MTK) that is shared by the BM-SC and UEs that are accessing the MBMS User Service. The protection of the data is applied by the BM-SC Session and Transmission Function. In order to determine which MTK was used to protect the data key identification information is included with the protected data. The key identification information will uniquely identify the MSK and MTK. The MTK is processed according to the methods described in clauses 6.4 and 6.5. Whenever data from an MBMS User Service has been decrypted, if it is to be stored on the UE it will be stored decrypted.

NOTE: Including the key identification information with the protected data stops the UE trying to decrypt and render content for which it does not have the MSK.

6.6.2 Protection of streaming data

6.6.2.1 Usage of SRTP

When it is required to protect MBMS streaming data SRTP (Secure Real-time Transport Protocol) as defined in RFC 3711 [11] shall be used. The MTK is carried to the UEs from the BM-SC using RFC 3830 [9] (MIKEY) with extensions defined according to this specification. MTK shall be used as the master key in SRTP key derivation to derive the SRTP session keys as defined in section 4.3 of RFC 3711 [11]. The correct MTK to use to decrypt the data is indicated using the MKI (Master Key identifier) field, which is included in the SRTP packets as defined in RFC 3711 [11]. The form of MKI shall be a concatenation of MSK ID and MTK ID, i.e. MKI = (MSK ID || MTK ID).

NOTE 1: The UE knows the Key Domain ID related to this MKI from the User Service Description which includes mapping between IP address and port of the traffic and the corresponding Key Domain ID and MSK ID.

The SRTP authentication tag shall be appended to the packets as defined in [22].
NOTE 2: In [22] it is specified that the ROC is transferred in every Rth SRTP packet. The specification furthermore defines how the constant R and the integrity transform is negotiated using MIKEY.

The parameter, constant R, shall be included in the MSK delivery messages.

SRTP security policy parameters, such as encryption algorithm, are transported in MIKEY Security Policy payload as defined in section 6.10.1 in RFC 3830 [9].

FEC shall be applied beneath the SRTP layer as described within TS 26.346 [13]

NOTE 3: This deviates from the default FEC order as described within RFC3711 [11] clause 10. The reversed order is not signalled within the service protection description of the MBMS User Service Announcement.

6.6.2.2 Packet processing in the UE

When the SRTP module receives a packet, it will retrieve the correct cryptographic context identified by destination transport address, destination port and SSRC (according to RFC 3711 [11]), check if it has the MTK corresponding to the value in the MKI field in the SRTP cryptographic context.

NOTE 1: The cryptographic context needs to be unique for each SRTP stream.

NOTE 2: The SRTP module does not need to interpret the MKI field semantics. It only checks whether it has the MTK corresponding to the MKI value.

If the check is successful, the SRTP module processes the packet according to the security policy.

If the SRTP module does not have the MTK, it will request the MTK corresponding to the MKI from the key management module. When the key management module returns a new MTK, the SRTP module will derive new session keys from the MTK and process the packet. However, if the key management module does not have the MSK indicated by MKI, then it should fetch the MSK using the methods discussed in the clause 6.3.

If the correct MTK is not present in the UE when RTP traffic arrives, the UE shall wait for the next MTK update procedure from the BM-SC as described in clause 6.3.3.2.

NOTE 3: It is implementation specific issue whether the UE spools encrypted packets or discards all packets before the UE has received the correct MTK.

The below flow shows how the protected content is delivered to the UE.

```
UE         BM-SC
           SRTP packet (MKI, auth tag)
```

Figure 6.8: Delivery of protected streaming content to the UE

6.6.3 Protection of download data

6.6.3.1 General

Data that belongs to a download MBMS User Service is decrypted as soon as possible by the UE, if the MSK needed to provide the relevant MTK is already available on the UE.

6.6.3.2 Usage of OMA DRM DCF

NOTE: If the OMA DRM V2.0 DCF [15] specification is upgraded, these upgrades do not apply for the present document.

When it is required to protect MBMS download data, OMA DRM V2.0 DCF as defined in reference [15] shall be used. In particular, minor version 0x00000003 of OMA DRM V2.0 DCF specifies how DCF is used to protect MBMS download data. MBMS download data are therefore indicated by minor version 0x00000003 in a DCF. OMA DRM Rights Objects are not utilized. Instead, encryption and authentication keys are generated from MTK. For integrity
protection, an OMADRMSignature as specified below is attached inside the optional Mutable DRM information box ('mdri') of the DCF.

The OMADRMSignature Box is an extension to OMA DRM V2.0 DCF for use by MBMS, and is defined as follows:

```java
class OMADRMSignature extends Fullbox("odfssign", version, flags) {
    Unsigned int(8) SignatureMethod; // Signature Method
    Char    Signature[];   // Actual Signature
}
```

SignatureMethod Field:
- NULL 0x00
- HMAC-SHA1 0x01

The range of data for the HMAC calculation shall be according to section 5.3 of reference [15].

The correct MTK for decrypting and verifying the integrity of the download data is indicated by the key_id in the RightsIssuerURL field as follows:

```
mbms-key://<key_id>
```

where key_id is defined as the base64 encoded concatenation (Key Domain ID || MSK ID || MTK ID).

In case the FDT of the FLUTE protocol needs to be protected, the FDT may also be wrapped in a different DCF. Confidentiality and/or integrity protection of FDT can be provided this way.

The MBMS DCF implementation shall support the following boxes specified in OMA DRM V2.0 DCF [15]:

- Fixed DCF header;
- Mutable DRM information Box;
- OMA DRM Container Box.

Editors' note: The optionality of FDT protection is still under study (i.e. whether it should be mandated).
Annex A (informative):
Trust model

The following trust relationship between the roles that are participating in MBMS services are proposed:

- the user trusts the home network operator to provide the MBMS service according to the service level agreement;
- the user trusts the network operator after mutual authentication;
- the network trusts an authenticated user using integrity protection and encryption at RAN level;
- the network may have trust or no trust in a content provider.

The home network and visited network trust each other when a roaming agreement is defined, in the case the user is roaming in a VPLMN.
Annex B (informative):
Security threats

B.1 Threats associated with attacks on the radio interface

The threats associated with attacks on the radio interface are split into the following categories, which are described in the following clauses:

- unauthorized access to MBMS User Service data;
- threats to integrity;
- denial of service;
- unauthorized access to MBMS User Services;
- privacy violation.

The attacks on the MBMS service announcements to the users on the radio interface are not discussed here because in case these are transferred on a point-to-point connection (e.g. PS signalling connection), they are already secured. In case the service announcement is transferred over HTTP, it is protected by HTTP Digest as defined in the current specification and/or it may be integrity protected and optionally encrypted at the RAN level. In case the service announcements are sent over MBMS bearer, it is impractical to protect them.

B.1.1 Unauthorised access to MBMS User Service data

A1: Intruders may eavesdrop MBMS User Service data on the air-interface.

A2: Users that have not joined and activated a MBMS User Service receiving that service without being charged.

A3: Users that have joined and then left a MBMS User Service continuing to receive the MBMS User Service without being charged.

A4: Valid subscribers may derive decryption keys (MTK) and distribute them to unauthorized parties.

NOTE: It is assumed that the legitimate end user has a motivation to defeat the system and distribute the shared keys (MSK, MTK) that are a necessary feature of any broadcast security scheme.

B.1.2 Threats to integrity

B1: Modifications and replay of messages in a way to fool the user of the content from the actual source, e.g. replace the actual content with a fake one.

B.1.3 Denial of service attacks

C1: Jamming of radio resources. Deliberate manipulation of the data to disturb the communication.

B.1.4 Unauthorised access to MBMS User Services

D1: An attacker using the 3GPP network to gain "free access" of MBMS User Services and other services on another user's bill.

D2: An attacker using MBMS shared keys (MSK, MTK) to gain free access to content without any knowledge of the service provider.
NOTE: It cannot be assumed that keys held in a terminal are secure. No matter how the shared keys (MSK, MTK) are delivered to the terminal, we have to assume they can be derived in an attack. For example, the shared keys, while secure in the UICC, may be passed over an insecure SIM-ME interface.

B.1.5 Privacy violation

E1: The user identity could be exposed to the content provider, in the case the content provider is located in the 3GPP network, and then linked to the content.

B.2 Threats associated with attacks on other parts of the system

The threats associated with attacks on other parts of the system are split into the following categories, which are described in the following clauses:

- unauthorized access to data;
- threats to integrity;
- denial of service;
- a malicious UE generating MTKs for malicious use later on;
- unauthorized insertion of MBMS user data and key management data.

B.2.1 Unauthorised access to data

F1: It is assumed that the BM-SC and the GGSN are located in the same network. The BM-SC can though be located in a different place than the GGSN, and therefore can open up for intruders who may eavesdrop the interface Gi and Gmb between the BM-SC and GGSN.

F2: Intruders may eavesdrop the interface between the content provider and the BM-SC.

B.2.2 Threats to integrity

G1: It is assumed that the BM-SC and the GGSN are located in the same network. The BM-SC can though be located in a different place than the GGSN, and therefore can open up for new attacks on the interfaces Gi and Gmb between the BM-SC and GGSN.

G2: The interface between the content provider and the BM-SC may open up for attacks as modifications of multimedia content.

B.2.3 Denial of service

H1: Deliberated manipulation of the data between the BM-SC <-> Content Provider to disturb the communication.

H2: Deliberated manipulation of the data between the BM-SC <-> GGSN to disturb the communication.

B.2.4 A malicious UE generating MTKs for malicious use later on

I1: A malicious ME querying the MTK generation function for MTK's to use them later on in an attack (e.g. in order to use the retrieved MTKs within an unauthorized data insertion attacks (See B.2.5)).
B.2.5 Unauthorised insertion of MBMS user data and key management data

J1: An ME, which deliberately inserts key management and malicious data, encrypted with valid (previously retrieved) MTK from the MTK generation function, within the MBMS User Service stream.

J2: An ME, which deliberately inserts key management and malicious data, encrypted with old (using replayed key management messages) MTK, within the MBMS User Service stream.

J3: An attacker, which deliberately inserts incorrect key management information within the MBMS User Service stream to cause Denial of Service attacks.
Annex C (normative):
MBMS security requirements

C.1 Requirements on security service access

C.1.1 Requirements on secure service access

R1a: A valid USIM shall be required to access MBMS User Services.

R1b: It shall be possible to prevent intruders from obtaining unauthorized access of MBMS User Services by masquerading as authorized users.

C.1.2 Requirements on secure service provision

R2a: It shall be possible for the network (i.e. BM-SC) to authenticate users at the start of, and during, service delivery to prevent intruders from obtaining unauthorized access to MBMS User Services.

R2b: It shall be possible to prevent the use of a particular USIM to access MBMS User Services.

NOTE: No security requirements shall be placed on the UE that requires UE to be customised to a particular customer prior to the point of sale.

C.2 Requirements on MBMS Transport Service signaling protection

R3a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS transport service signaling on the Gmb reference point.

NOTE 1: This requirement may be fulfilled by physical or proprietary security measures if the Gmb protocol endpoints (i.e. GGSN, Gmb-Proxy and BM-SC) are located within the same security domain of the operator’s network. Otherwise the security mechanisms as specified within TS 33.210 [14] shall be applied.

R3b: Unauthorized modification, insertion, replay or deletion of all MBMS Transport Service signaling, on the RAN shall be prevented when the RAN selects a point-to-multipoint (ptm) link for the distribution of MBMS data to the UE.

NOTE 2: UTRAN bearer signalling integrity protection will not be provided for point to multipoint MBMS signalling and GERAN has no bearer signalling integrity protection, even for point to point signalling.

C.3 Requirements on Privacy

R4a: The User identity should not be exposed to the content provider or linked to the content in the case the Content Provider is located outside the 3GPP operator’s network.

R4b: MBMS identity and control information shall not be exposed when the RAN selects a point-to-multipoint link for the distribution of MBMS data to the UE.

NOTE: UTRAN and GERAN bearer confidentiality protection will be not be provided for point to multipoint MBMS sessions.
C.4 Requirements on MBMS Key Management

R5a: The transfer of the MBMS keys between the MBMS key generator and the UE shall be confidentiality protected.

R5b: The transfer of the MBMS keys between the MBMS key generator and the UE shall be integrity protected.

R5c: The UE and MBMS key generator shall support the operator to perform re-keying as frequently as it believes necessary to ensure that:

- users that have joined an MBMS User Service, but then left, shall not gain further access to the MBMS User Service without being charged appropriately
- users joining an MBMS User Service shall not gain access to data from previous transmissions in the MBMS User Service without having been charged appropriately
- the effect of subscribed users distributing decryption keys to non-subscribed users shall be controllable.

R5d: Only authorized users that have joined an MBMS User Service shall be able to receive MBMS keys delivered from the MBMS key generator.

R5e: The MBMS keys shall not allow the BM-SC to infer any information about used UE-keys at radio level (i.e. if they would be derived from it).

R5f: All keys used for the MBMS User Service shall be uniquely identifiable. The identity may be used by the UE to retrieve the actual key (based on identity match, and mismatch recognition) when an update was missed or was erroneous/incomplete.

R5g: The BM-SC shall be aware of where all MBMS specific keys are stored in the UE (i.e. ME or UICC).

R5h: The function of providing MTK to the ME shall only deliver a MTK to the ME if the input values used for obtaining the MTK were fresh (have not been replayed) and came from a trusted source.

C.5 Requirements on integrity protection of MBMS User Service data

R6a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS User Service data sent to the UE on the radio interface. The use of integrity shall be optional.

NOTE 1: It may be possible to detect the deletion of MBMS data packets, but it is impossible to prevent the deletion. Packets may be lost because of bad radio conditions, providing integrity protection will not help to detect or recover from this situation.

NOTE 2: The use of shared keys (integrity and confidentiality) to a group of untrusted users only prevents attacks of lower levels of sophistication, such as preventing eavesdroppers from simply listening in

R6b: The MBMS User Service data may be integrity protected with a common integrity key, which shall be available to all users that have joined the MBMS User Service.

R6c: It may be required to integrity protect the "BM-SC - GGSN" interface i.e. reference point Gi.
C.6 Requirements on confidentiality protection of MBMS User Service data

R7a: It shall be possible to protect the confidentiality of MBMS User Service data on the radio interface.

R7b: The MBMS User Service data may be encrypted with common encryption keys, which shall be available to all users that have joined the MBMS User Service.

R7c: It may be required to encrypt the MBMS User Service data on the "BM-SC - GGSN" interface, i.e. the reference points Gi.

R7d: It shall be infeasible for a man-in-the-middle to bid down the confidentiality protection used on protect the MBMS User Service from the BM-SC to the UE.

R7e: It shall be infeasible for an eavesdropper to break the confidentiality protection of the MBMS User Service when it is applied.

C.7 Requirements on content provider to BM-SC reference point

R8a: The BM-SC shall be able to authenticate and authorize a 3rd party content provider that wishes to transmit data to the BM-SC.

R8b: It shall be possible to integrity and confidentiality protect data sent from a 3rd party content provider to the BM-SC.

NOTE: This reference point will not be standardised.
Annex D (normative):
UICC-ME interface

D.1 MSK Update Procedure

This procedure is part of the MSK update procedure as described in clause 6.5 (Validation and key derivation functions in MGV-F).

The ME has previously performed a GBA_U bootstrapping procedure and a subsequent GBA_U NAF Derivation procedure as described in TS 33.220. The UICC stores the corresponding Ks_int_NAF and associated B-TID together with the NAF_Id without the Ua security protocol identifier, associated with this particular bootstrapping procedure.

The ME receives a MIKEY message containing an MSK update. After performing some validity checks, the ME sends the whole message to the UICC. The UICC uses the MUK ID (included in the MIKEY message, see clause 6.1) to identify the stored Ks_int_NAF.

The UICC then uses Ks_int_NAF as the MUK value for MUK derivation and MSK validation and derivation (as described in clause 6.5.3).

After successful MSK Update procedure the UICC stores the Key Domain ID, MSK ID, MSK and MSK Validity Time (in the form of MTK ID interval).

UICC

\[MBMS \text{ Procedure (MSK Update Mode)} \]

\[MIKEY \]

Success/Failure, optional verification message

\[Figure \ D.1: \text{ MSK Update Procedure} \]

In case the MSK update MIKEY message is acceptable (i.e. the received MSK ID corresponds to the last generated MUK in the UE, and the MSK Update procedure has been performed successfully) and the V-bit was set in the HDR, then a MSK Verification Message as described in clause 6.4.5.2 (MSK Verification message) shall be produced. The UICC uses the same MUK ID and TS, which were received from the MSK MIKEY Message (see clause 6.1), for the MSK Verification Message Generation.

D.2 Void

D.3 MTK generation and validation

This procedure is part of the MTK generation and validation function as described in clause 6.5.4 (MTK processing).

The ME receives the MIKEY message (containing Header, Time stamp, Key Domain ID, MSK ID, MTK ID = SEQp, MSK_C[MTK||Salt (if salt is available)] and MAC). After performing some validity checks, the ME sends the whole message to the UICC. The UICC computes the MGV-F function as described in clause 6.5. (Validation and key derivation functions in MGV-F). After successful MGV-F procedure the UICC returns the MTK.
Figure D.3: MTK Generation and Validation
Annex E (Informative):
MIKEY features not used in MBMS

- An MBMS capable ME/UICC and BM-SC do not need to implement the public key encryption method of MIKEY (section 3.2 of RFC 3830 [9]) and related payloads, although mentioned in RFC 3830 [9] as mandatory for implementation.

- An MBMS capable ME/UICC and BM-SC do not need to implement the Time Stamp payload types NTP-UTC and NTP of MIKEY (section 6.6 of RFC 3830 [9]) although mentioned in RFC 3830 [9] as mandatory for implementation.
Annex F (normative): MRK key derivation for ME based MBMS key management

The MRK shall be derived from the key Ks_NAF using the GBA key derivation function (see Annex B of TS 33.220 [6]) as follows (see notation style is explained in Annex B of TS 33.220 [6]):

- \(FC = 0x01 \),
- \(P0 = \text{"mbms-mrk"} \) (i.e. 0x6d 0x62 0x6d 0x73 0x2d 0x6d 0x72 0x6b), and
- \(L0 = \) length of P0 is 8 octets (i.e. 0x00 0x08).

The Key to be used in key derivation shall be:

- \(Ks_NAF \) (i.e. NAF specific key) as specified in TS 33.220 [6].

In summary, the MRK shall be derived from the Ks_NAF, and static string "mbms-mrk" as follows:

- MRK = KDF (Ks_NAF, "mbms-mrk").
Annex G (normative):
HTTP based key management messages

G.1 Introduction

Clause 6 specifies the HTTP based key management procedures between the BM-SC and the UE. It specifies that the authentication of these procedures is based on GBA and more specifically on the HTTP Digest authentication as described in clause 6.2 of the present document.

G.2 Key management procedures

This clause contains the following HTTP based procedures:

- MBMS User Service Registration;
- MBMS User Service Deregistration;
- MSK request.

G.2.1 MBMS User Service Registration

The UE shall generate a request for MBMS User Service Registration according to clause 6.3.2.1A. The UE shall send the Registration request for one or more MBMS User Services to the BM-SC in the HTTP payload in a HTTP POST request. The Request-URI shall indicate the type of the message, i.e. Registration request. Upon successful request, BM-SC shall return indication of success.

The UE populates the HTTP POST request as follows:

- the HTTP version shall be 1.1 which is specified in RFC 2616 [19];
- the base of the Request-URI shall contain the full BM-SC key management URI (e.g. http://bmsc.home1.net/keymanagement);
- the Request-URI shall contain an URI parameter "requesttype" that shall be set to "register", i.e. Request-URI takes the form of "/bmsc.home1.net/keymanagement?requesttype=register";
- the UE may add additional URI parameters to the Request-URI;
- the HTTP header Content-Type shall be the MIME type of the payload, i.e. "application/mbms-register+xml". The XML schema of the payload is specified in TS 26.346 [13];
- the HTTP header Content-Length shall be the length of the Base64 encoded Register request in octets; and
- the HTTP payload shall contain the Base64 encoded Register request including a list of one or more userServiceIds of MBMS User Services to which the UE wants to register;
- the UE may add additional HTTP headers to the HTTP POST request.

The UE sends the HTTP POST to the BM-SC. The BM-SC checks that the HTTP POST is valid, and extracts the Base64 encoded Register request for further processing. The BM-SC Key Management function shall verify from BM-SC Membership function that the subscriber is authorized to register to the particular MBMS User Service.

Upon successful authorization verification, the BM-SC shall return the HTTP 200 OK to the UE.

The BM-SC shall populate HTTP response as follows:

- the HTTP status code in the HTTP status line shall be 200;
G.2.2 MBMS User Service Deregistration

The UE shall generate a request for MBMS User Service Deregistration according to clause 6.3.2.1B. The UE shall send the Deregistration request for one or more MBMS User Services to the BM-SC in the HTTP payload in a HTTP POST request. The Request-URI shall indicate the type of the message, i.e. Deregistration request. Upon successful request, BM-SC shall return indication of success.

The UE populates the HTTP POST request as follows:

- the HTTP version shall be 1.1 which is specified in RFC 2616 [19];
- the base of the Request-URI shall contain the full BM-SC key management URI (e.g. http://bmsc.home1.net/keymanagement);
- the Request-URI shall contain an URI parameter "requesttype" that shall be set to "deregister", i.e. Request-URI takes the form of "/bmsc.home1.net/keymanagement?requesttype=deregister";
- the UE may add additional URI parameters to the Request-URI;
- the HTTP header Content-Type shall be the MIME type of the payload, i.e. "application/mbms-deregister+xml". The XML schema of payload is specified in TS 26.346 [13];
- the HTTP header Content-Length shall be the length of the Base64 encoded Deregister request in octets; and
- the HTTP payload shall contain the Base64 encoded Deregister request including a list of one or more userServiceIds of MBMS User Services from which the UE wants to deregister;
- the UE may add additional HTTP headers to the HTTP POST request.

The UE sends the HTTP POST to the BM-SC. The BM-SC checks that the HTTP POST is valid, and extracts the Base64 encoded Deregister request for further processing.

Upon successful authentication verification, the BM-SC shall return the HTTP 200 OK to the UE.

The BM-SC shall populate HTTP response as follows:

- the HTTP status code in the HTTP status line shall be 200;
- a list including one status code for each MBMS User Service.

The BM-SC shall send the HTTP response to the UE. The UE shall check that the HTTP response is valid.

G.2.3 MSK request

The UE shall generate a MSK request according to clause 6.3.2.2. The UE shall send the MSK request for one or more MSKs to the BM-SC in the HTTP payload in a HTTP POST request. The Request-URI shall indicate the type of the message, i.e., MSK request. Upon successful request, BM-SC shall return indication of success.

The UE populates the HTTP POST request as follows:

- the HTTP version shall be 1.1 which is specified in RFC 2616 [19];
- the base of the Request-URI shall contain the full BM-SC key management URI (e.g. http://bmsc.home1.net/keymanagement);
- the Request-URI shall contain an URI parameter "requesttype" that shall be set to "msk-request", i.e. Request-URI takes the form of "/bmsc.home1.net/keymanagement?requesttype=msk-request";
- the UE may add additional URI parameters to the Request-URI;
- the HTTP header Content-Type shall be the MIME type of the payload, i.e., "application/mbms-msk+xml". The XML schema of payload is specified in TS 26.346 [13];
- the HTTP header Content-Length shall be the length of the Base64 encoded MSK request in octets; and
- the HTTP payload shall contain the Base64 encoded MSK request including a list of one or more Key Domain ID - MSK ID pair(s) of the MSKs that the UE wants to receive;
- the UE may add additional HTTP headers to the HTTP POST request.

The UE sends the HTTP POST to the BM-SC. The BM-SC checks that the HTTP POST is valid, and extracts the Base64 encoded MSK request for further processing. The BM-SC Key Management function shall verify from the BM-SC Membership function that the subscriber is authorized to receive the particular MSKs.

Upon successful authorization verification, the BM-SC shall return the HTTP 200 OK to the UE.

The BM-SC shall populate HTTP response as follows:
- the HTTP status code in the HTTP status line shall be 200;
- a list including one status code for each MSK.

The BM-SC shall send the HTTP response to the UE. The UE shall check that the HTTP response is valid.

An example flow of a successful MSK request procedure can be found in Annex H.

G.2.4 Error situations

The key management procedures may not be successful for multiple reasons. The error cases are indicated by using 4xx and 5xx HTTP Status Codes as defined in RFC 2616 [19]. The 4xx status code indicates that the UE seems to have erred, and the 5xx status code indicates that the BM-SC is aware that it has erred. Possible error situations during key management and their mappings to HTTP Status Codes are described in table G.2.4-1. The handling of multiple status codes within one response message is specified in clause 6.3.2.4.

NOTE: In table G.2.4-1, the "Description" column describes the error situation in BM-SC. The "BM-SC error" column describes the typical reason for the error.
<table>
<thead>
<tr>
<th>HTTP Status Code</th>
<th>HTTP Error</th>
<th>UE should repeat the request</th>
<th>Description</th>
<th>BM-SC error</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Bad Request</td>
<td>No</td>
<td>Request could not be understood</td>
<td>Request was missing, or malformed</td>
</tr>
<tr>
<td>401</td>
<td>Unauthorized</td>
<td>Yes</td>
<td>Request requires authentication (cf. clause 6.2)</td>
<td>Authentication pending, (cf. clause 6.2)</td>
</tr>
<tr>
<td>402</td>
<td>Payment Required</td>
<td>No</td>
<td>Reserved for future use</td>
<td>-</td>
</tr>
<tr>
<td>403</td>
<td>Forbidden</td>
<td>No</td>
<td>BM-SC understood the request, but is refusing to fulfil it</td>
<td>The request was valid, but subscriber is not allowed to register to this particular MBMS User Service or UE requested MSK for a MBMS User Service where it was not registered or request contained unacceptable parameters</td>
</tr>
<tr>
<td>404</td>
<td>Not Found</td>
<td>No</td>
<td>BM-SC has not found anything matching the Request-URI</td>
<td>The Request-URI was malformed and BM-SC cannot fulfil the request</td>
</tr>
<tr>
<td>405</td>
<td>Method not allowed</td>
<td>No</td>
<td>The method specified in the Request-Line is not allowed for the resource identified by the Request-URI.</td>
<td>-</td>
</tr>
<tr>
<td>406 to 417</td>
<td>*</td>
<td>No</td>
<td>Not used by BM-SC</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>Internal Server Error</td>
<td>No</td>
<td>Not used by BM-SC</td>
<td>-</td>
</tr>
<tr>
<td>501</td>
<td>Not Implemented</td>
<td>No</td>
<td>BM-SC does not support the requested functionality</td>
<td>The server does not contain particular BM-SC service requested</td>
</tr>
<tr>
<td>502</td>
<td>Bad Gateway Service Unavailable</td>
<td>No</td>
<td>Not used by BM-SC</td>
<td>-</td>
</tr>
<tr>
<td>503</td>
<td>Service Unavailable</td>
<td>Yes</td>
<td>BM-SC service is currently unavailable</td>
<td>BM-SC is temporarily unavailable, UE may repeat the request after delay indicated by "Retry-After" header</td>
</tr>
<tr>
<td>504</td>
<td>Gateway Timeout</td>
<td>No</td>
<td>The server, while acting as a gateway or proxy, did not receive a timely response from the upstream server</td>
<td>The BM-SC did not get response over Zn interface.</td>
</tr>
<tr>
<td>505</td>
<td>HTTP Version Not Supported</td>
<td>No</td>
<td>BM-SC does not support the HTTP protocol version that was used in the request line</td>
<td>UE should use HTTP/1.1 version with BM-SC</td>
</tr>
</tbody>
</table>
Annex H (informative):
Signalling flows for MSK procedures

H.1 Scope of signalling flows
This annex gives examples of signalling flows for the key management procedures.

H.2 Signalling flows demonstrating a successful MSK request procedure

H.2.1 Successful MSK request procedure
The signalling flow in figure H.2.1-1 describes the message exchange between UE and BM-SC when UE wants to request MSK.

Figure H.2.1-1: Successful MSK request procedure.

1. Initial MSK request (UE to BM-SC) - see example in table H.2.1-1
The UE sends an HTTP request to the BM-SC containing a MSK request.
Table H.2.1-1: MSK request (UE to BM-SC)

Request-URI:	The Request-URI (the URI that follows the method name, "POST", in the first line) indicates the resource of this POST request. The Request-URI contains the parameter "requesttype" which is set to "msk-request" to indicate to the BM-SC the desired request type, i.e. UE requests for one or several MSKs.
Host:	Specifies the Internet host and port number of the BM-SC, obtained from the original URI given by referring resource.
Content-Type:	Contains the media type "application/mbms-msk+xml", i.e. MSK request.
Content-Length:	Indicates the size of the entity-body, in decimal number of OCTETs, sent to the recipient.
User-Agent:	Contains information about the user agent originating the request and it shall include the static string "3gpp-gba" to indicate to the application server (i.e. NAF) that the UE supports 3GPP-bootstrapping based authentication.
Date:	Represents the date and time at which the message was originated.
Accept:	Media types which are acceptable for the response.
Referrer:	Allows the user agent to specify the address (URI) of the resource from which the URI for the BM-SC was obtained.

NOTE 1: This step is used to trigger the GBA-based authentication between the UE and the BM-SC.

2. 401 Unauthorized response (BM-SC to UE) - see example in table H.2.1-2

Upon receiving an HTTP request that contains static string "3gpp-gba" in the User-Agent header the BM-SC responds with HTTP response code 401 "Unauthorized" which contains a WWW Authenticate header. The header instructs the UE to use HTTP Digest Authentication with a bootstrapped security association.

Table H.2.1-2: 401 Unauthorized response (BM-SC to UE)

HTTP/1.1 401 Unauthorized
Server: Apache/1.3.22 (Unix) mod_perl/1.27
Date: Thu, 08 Jan 2004 10:50:35 GMT
WWW-Authenticate: Digest realm="3GPP-bootstrapping@bmsc.home1.net", nonce="6629fae49393a05397450978507c4ef1", algorithm=MD5, qop="auth,auth-int", opaque="5ccc069c403ebaf9f0171e95f3e41"

Server: Contains information about the software used by the origin server (BM-SC).

Date: Represents the date and time at which the message was originated.

WWW-Authenticate: The BM-SC challenges the user. The header instructs the UE to use HTTP Digest Authentication with a bootstrapped security association.

The options for the quality of protection (qop) attribute is by default "auth-int" meaning that the payload of the following HTTP requests and responses should be integrity protected.

The realm attribute contains two parts delimited by "@" sign. The first part is a constant string "3GPP-bootstrapping" instructing the UE to use a bootstrapped security association. The second part is the hostname of the server (i.e. FQDN of the BM-SC).
3. **Generation of NAF specific keys at UE**

 The UE verifies that the second part of the realm attribute does correspond to the server it is talking to.

 UE derives the NAF specific key material as specified in TS 33.220 [6]. UE further derives MBMS specific key material MRK and MUK as specified in clause 6.1.

 NOTE 2: If UE does not have a bootstrapped security association available, it will obtain one by running bootstrapping procedure over Ub interface.

4. **Authenticated MSK request (UE to BM-SC)** - see example in table H.2.1-3

 UE generates the HTTP request by calculating the Authorization header values using the bootstrapping transaction identifier B-TID it received from the BSF as the username and the MRK (base64 encoded) as the password, and sends the request to BM-SC.

 Table H.2.1-3: Authenticated MSK request (UE to BM-SC)

   ```
   POST /bmsc.home1.net/keymanagement?requesttype=msk-request HTTP/1.1
   Host: bmsc.home1.net:1234
   Content-Type: application/mbms-msk+xml
   Content-Length: (...) 
   User-Agent: MBMSAgent; Release-6 3gpp-gba
   Date: Thu, 08 Jan 2004 10:50:35 GMT
   Accept: */*
   Referer: http://bmsc.home1.net:1234/service
   Authorization: Digest username="(B-TID)", realm="3GPP-bootstrapping@bmsc.home1.net",
   nonce="a6332ffed2d2d34==", uri="/bmsc.home1.net/keymanagement?requesttype=msk-request",
   qop=auth-int, nc=00000001, cnonce="6629fae49393a05397450978507c4ef1",
   response="6629fae49393a05397450978507c4ef1",
   opaque="5ccc069c403ebaf9f0171e951f70e41", algorithm=MD5
   <MSK request BLOB>
   ```

 Authorization: This carries the response to the authentication challenge received in step 2 along with the username, the realm, the nonce, the URI, the qop, the NC, the cnonce, the response, the opaque, and the algorithm.

 The qop attribute is set to "auth-int" by default.

 NOTE 3: If step 1 was a POST request then this request would also be a POST request and contain the same client payload in the HTTP request as was carried in step 1.

5. **Zn: NAF specific key procedure**

 BM-SC retrieves the NAF specific key material and IMPI of the user. BM-SC further derives MBMS specific key material MRK and MUK as specified in clause 6.1.

 For detailed signalling flows see TS 29.109 [20].

 Table H.2.1-4: Bootstrapping authentication information procedure (BM-SC to BSF)

<table>
<thead>
<tr>
<th>Message source and destination</th>
<th>Zn Information element name</th>
<th>Information Source in GET</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAF to BSF</td>
<td>B-TID</td>
<td>Authorization</td>
<td>The bootstrapping transaction identifier is encoded in the username field according to the Authorization protocol.</td>
</tr>
</tbody>
</table>

6. **Authentication at BM-SC**

 BM-SC verifies the Authorization header by using the bootstrapping transaction identifier B-TID and the key MRK. BM-SC calculates the corresponding digest values using MRK, and compares the calculated values with the received values in the Authorization header.

 The BM-SC also verifies that the hostname (i.e. its FQDN) in the realm attribute matches its own.
If the verification succeeds, the incoming client-payload request is taken in for further processing. The BM-SC continues processing of the MSK request according to its internal policies. The BM-SC verifies that the subscriber is allowed to receive the particular MSK(s) indicated in the MSK request by checking the BM-SC Membership function.

7. **Response indicating success (BM-SC to UE)** - see example in table H.2.1-5

The BM-SC sends 200 OK response to the UE to indicate the success of the authentication and the MSK request. The BM-SC generates a HTTP response. The BM-SC can use key MRK derived from NAF key material to integrity protect and authenticate the response.

NOTE 5: The requested MSK keys are not delivered within the MSK request procedure. They are delivered with a separate MIKEY procedure, see clause 6.3.2.3.

Table H.2.1-5: Successful HTTP response (BM-SC to UE)

HTTP/1.1 200 OK
Server: Apache/1.3.22 (Unix) mod_perl/1.27
Content-Type: application/mbs-msk+xml
Content-Length: (...)
Authentication-Info: qop=auth-int, rspauth="6629fae49394a05397450978507c4ef1", cnonce="6629fae49393a05397450978507c4ef1", nc=00000001
Date: Thu, 08 Jan 2004 10:50:35 GMT
Expires: Fri, 09 Jan 2004 10:50:36 GMT
<MSK response BLOB>

Authentication-Info: This carries the protection.

Expires: Gives the date/time after which the response is considered stale.

8. **Authentication at UE**

The UE receives the response and verifies the Authentication-Info header. If the verification succeeds, the UE can regard the MSK request procedure as successful.
Annex I (informative):
Example of using MSKs and MTKs in MBMS

The following table shows an example of two MBMS User Services, sports Mobile TV channel and news Mobile TV channel. Both of the MBMS User Services include an MBMS User Service Session that downloads a joke per day. The table shows how the MBMS User Services are broken down into RTP sessions (each including the data stream with related RTCP) and FLUTE channels.

The table shows how MSKs and MTKs belonging to different Key Groups are used to protect the RTP sessions and FLUTE channels. It should be noted that the MBMS download session is shared with User Services 1 and 2 so these MBMS User Services need to be able to share MSKs in Key Group C.

Furthermore the table shows how traffic could be carried over MBMS bearers, but this is not a security issue and is only shown here for completeness.

Table J.-1: Example of using MSKs and MTKs in MBMS

User Service level	User Service 1	User Service 2								
--------------------	---------------	---------------								
User Service Session										
MBMS Streaming Session (Sport)	MBMS Download Session (Joke / day)	MBMS Streaming Session (News)								
RTP session/ FLUTE channel	streaming audio (RTP session)	streaming video (RTP session)	file object download (FLUTE channel)	streaming audio (RTP session)	streaming video (RTP session)					
Key management level	Key Group A	Key Group B	Key Group C	Key Group D	Key Group E					
Key Domain	MCC/MNC	MCC/MNC	MCC/MNC	MCC/MNC	MCC/MNC					
Key Group	MSK A1 (current)	MSK A2 (next)	MSK B1	MSK B2	MSK C1	MSK C2	MSK D1	MSK D2	MSK E1	MSK E2
MSK Note 1	MTK									
MTK Note 1	MT K									
Transport Service level	Transport Service	MBMS Bearer N	MBMS Bearer N+1	MBMS Bearer N+2	MBMS Bearer N+3	MBMS Bearer N+4				
Note 1: This row has a time dimension to illustrate that MSKs and MTKs can be updated.										

Note 1: This row has a time dimension to illustrate that MSKs and MTKs can be updated.
Annex J (informative): Mapping the MBMS security requirements into security functions and mechanism

J.1 Consistency check

J.1.1 Requirements on secure service access

<table>
<thead>
<tr>
<th>Security requirement</th>
<th>Check result</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1a: A valid USIM shall be required to access MBMS User Services.</td>
<td>This is provided by GBA. Ks_(ext/int)_NAF generation requires a valid USIM.</td>
</tr>
<tr>
<td>R1b: It shall be possible to prevent intruders from obtaining unauthorized access</td>
<td>GBA and HTTP digest authentication provide this.</td>
</tr>
<tr>
<td>of MBMS User Services by masquerading as authorized users.</td>
<td></td>
</tr>
<tr>
<td>R2a: It shall be possible for the network (i.e. BM-SC) to authenticate users at</td>
<td>A user is authenticated during the MBMS user service registration and MSK re-keying.</td>
</tr>
<tr>
<td>the start of, and during, service delivery to prevent intruders from obtaining</td>
<td></td>
</tr>
<tr>
<td>unauthorized access to MBMS User Services.</td>
<td></td>
</tr>
<tr>
<td>R2b: It shall be possible to prevent the use of a particular USIM to access MBMS</td>
<td>GAA user security settings provide this.</td>
</tr>
<tr>
<td>User Services.</td>
<td></td>
</tr>
</tbody>
</table>

J.1.2 Requirements on MBMS transport Service signaling protection

<table>
<thead>
<tr>
<th>Security requirement</th>
<th>Check result</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3a: It shall be possible to protect against unauthorized modification, insertion,</td>
<td>NDS/IP covers this.</td>
</tr>
<tr>
<td>replay or deletion of MBMS transport service signaling on the Gmb reference point.</td>
<td></td>
</tr>
<tr>
<td>R3b: Unauthorized modification, insertion, replay or deletion of all transport</td>
<td>Examples of the attacks could be:</td>
</tr>
<tr>
<td>service signaling, on the RAN shall be prevented when the RAN selects a point-to-</td>
<td>• Changing the source address of the content e.g. from indicating company</td>
</tr>
<tr>
<td>multipoint (ptm) link for the distribution of MBMS data to the UE.</td>
<td>A to company B.</td>
</tr>
<tr>
<td></td>
<td>• Changing data indicating the type of content from type A to Type B</td>
</tr>
<tr>
<td></td>
<td>• Changing data indicating type of protection required etc</td>
</tr>
<tr>
<td></td>
<td>• Appending content to the end of the original content</td>
</tr>
<tr>
<td></td>
<td>Analysis has shown that there is not any transport service signaling sent</td>
</tr>
<tr>
<td></td>
<td>over PTM that would need</td>
</tr>
</tbody>
</table>
J.1.3 Requirements on Privacy

<table>
<thead>
<tr>
<th>Security requirement</th>
<th>Check result</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4a: The User identity should not be exposed to the content provider or linked to the content in the case the Content Provider is located outside the 3GPP operator's network.</td>
<td>The content provider knows only the BM-SC.</td>
</tr>
</tbody>
</table>
| R4b: MBMS identity and control information shall not be exposed when the RAN selects a point-to-multipoint link for the distribution of MBMS data to the UE. | Such identity and control information could be:
• The identities of the content providers
• Information on which content providers have the most customers
• The identities of the content recipients in the case of multicast services to small groups of users

Information which could be used to identify specific users is not exposed on the point-to-multipoint channel. However, it may still be possible to identify whether a particular user is subscribed to a particular MBMS service. This could be done by following the physical movement of a particular subscriber and the changes between the use of point-to-point and point-to-multipoint bearers for particular MBMS services in the cells that serve the target subscriber. It is seen unnecessary to protect against this kind of an attack.

The only control information exposed on the point-to-multipoint channel is the unprotected fields in the MIKEY MTK transport message. However, revealing this information does not seem to pose a significant security risk. |

J.1.4 Requirements on MBMS Key Management

<table>
<thead>
<tr>
<th>Security requirement</th>
<th>Check result</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5a: The transfer of the MBMS keys between the MBMS key</td>
<td>The MSK and MTK update</td>
</tr>
</tbody>
</table>
R5b: The transfer of the MBMS keys between the MBMS key generator and the UE shall be integrity protected.

R5c: The UE and MBMS key generator shall support the operator to perform re-keying as frequently as it believes necessary to ensure that:

- users that have joined an MBMS User Service, but then left, shall not gain further access to the MBMS User Service without being charged appropriately
- users joining an MBMS User Service shall not gain access to data from previous transmissions in the MBMS User Service without having been charged appropriately
- the effect of subscribed users distributing decryption keys to non-subscribed users shall be controllable.

R5d: Only authorized users that have joined an MBMS User Service shall be able to receive MBMS keys delivered from the MBMS key generator.

R5e: The MBMS keys shall not allow the BM-SC to infer any information about used UE-keys at radio level (i.e. if they would be derived from it).

R5f: All keys used for the MBMS User Service shall be uniquely identifiable. The identity may be used by the UE to retrieve the actual key (based on identity match, and mismatch recognition) when an update was missed or was erroneous/incomplete

R5g: The BM-SC shall be aware of where all MBMS specific keys are stored in the UE (i.e. ME or UICC).

R5h: The function of providing MTK to the ME shall only deliver a MTK to the ME if the input values used for obtaining the MTK were fresh (have not been replayed) and came from a trusted source.

J.1.5 Requirements on integrity protection of MBMS User Service data

<table>
<thead>
<tr>
<th>Security requirement</th>
<th>Check result</th>
</tr>
</thead>
<tbody>
<tr>
<td>R6a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS User Service data sent to the UE on the radio interface. The use of integrity shall be optional.</td>
<td>This is provided at the application layer using SRTP or OMA DRM DCF.</td>
</tr>
<tr>
<td>R6b: The MBMS User Service data may be integrity protected with a common integrity key, which shall be available to all users that have joined the MBMS User Service.</td>
<td>This is provided at the application layer using SRTP or OMA DRM DCF.</td>
</tr>
<tr>
<td>R6c: It may be required to integrity protect the "BM-SC - GGSN" data.</td>
<td>This can be provided by NDS/IP.</td>
</tr>
</tbody>
</table>
J.1.6 Requirements on confidentiality protection of MBMS User Service data

<table>
<thead>
<tr>
<th>Security requirement</th>
<th>Check result</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7a: It shall be possible to protect the confidentiality of MBMS User Service data on the radio interface.</td>
<td>This is provided at the application layer using SRTP or OMA DRM DCF.</td>
</tr>
<tr>
<td>R7b: The MBMS User Service data may be encrypted with common encryption keys, which shall be available to all users that have joined the MBMS User Service</td>
<td>This is provided at the application layer using SRTP or OMA DRM DCF.</td>
</tr>
<tr>
<td>R7c: It may be required to encrypt the MBMS User Service data on the "BM-SC - GGSN" interface, i.e. the reference points Gi.</td>
<td>This can be provided by NDS/IP.</td>
</tr>
<tr>
<td>R7d: It shall be infeasible for a man-in-the-middle to bid down the confidentiality protection used on protect the MBMS User Service from the BM-SC to the UE.</td>
<td>The BM-SC decides about the security level. There is no security association negotiation between the UE and the BM-SC.</td>
</tr>
<tr>
<td>R7e: It shall be infeasible for an eavesdropper to break the confidentiality protection of the MBMS User Service when it is applied.</td>
<td>This is provided at the application layer using SRTP or OMA DRM DCF.</td>
</tr>
</tbody>
</table>

J.1.7 Requirements on content provider to BM-SC reference point

<table>
<thead>
<tr>
<th>Security requirement</th>
<th>Check result</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8a: The BM-SC shall be able to authenticate and authorize a 3rd party content provider that wishes to transmit data to the BM-SC.</td>
<td>The mechanism to meet the requirement is left to be implemented between the BM-SC and a 3rd party.</td>
</tr>
<tr>
<td>R8b: It shall be possible to integrity and confidentiality protect data sent from a 3rd party content provider to the BM-SC.</td>
<td>The mechanism to meet the requirement is left to be implemented between the BM-SC and a 3rd party.</td>
</tr>
</tbody>
</table>

J.2 Conclusions

Based on the above results of the consistency check between the security requirements and security functions/mechanisms the MBMS security requirements have been adequately met.
Annex K (informative):
Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG #</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Rev</th>
<th>Cat</th>
<th>Subject/Comment</th>
<th>Old</th>
<th>New</th>
<th>WI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-11</td>
<td>SP-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Updated with some editorial modification and presented to the SA plenary for information</td>
<td>0.3.0</td>
<td>1.0.0</td>
<td></td>
</tr>
<tr>
<td>2004-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Updated to reflect changes agreed at SA3#32</td>
<td>1.0.0</td>
<td>1.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minor corrections agreed by e-mail discussion</td>
<td>1.1.0</td>
<td>1.1.1</td>
<td></td>
</tr>
<tr>
<td>2004-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Updated to reflect the decisions taken at SA3#33</td>
<td>1.1.1</td>
<td>1.2.0</td>
<td></td>
</tr>
<tr>
<td>2004-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Small editorial corrections</td>
<td>1.2.0</td>
<td>1.2.1</td>
<td></td>
</tr>
<tr>
<td>2004-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Updated to reflect the decisions taken at SA3#34</td>
<td>1.2.1</td>
<td>1.3.0</td>
<td></td>
</tr>
<tr>
<td>2004-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S3-040470, S3-040469, S3-040563, S3-040555, S3-040489, S3-040565, S3-04573, S3-040620 (update of S3-040582), S3-040676 (update of S3-040497 via S3-040618) and S3-040677 (update of S3-040582 via S3-040619)</td>
<td>1.3.0</td>
<td>1.3.1</td>
<td></td>
</tr>
<tr>
<td>2004-09</td>
<td>SP_25</td>
<td>SP-040624</td>
<td></td>
<td></td>
<td></td>
<td>Editorial updates after SA3#34 and some changes proposed by joint SA3/SA4 meeting</td>
<td>1.3.0</td>
<td>2.0.0</td>
<td></td>
</tr>
<tr>
<td>2004-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Updated to v6.0.0 after approval by TSG SA #26 for approval</td>
<td>2.0.0</td>
<td>6.0.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>001</td>
<td>4</td>
<td></td>
<td>Deletion of MBMS keys stored in the ME</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>002</td>
<td></td>
<td></td>
<td>Clarification on key management</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>005</td>
<td>3</td>
<td></td>
<td>Clean up of MBMS TS</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>006</td>
<td>1</td>
<td></td>
<td>Traffic protection combinations</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>007</td>
<td>3</td>
<td></td>
<td>Clarifying ME and BM-SC capabilities</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>009</td>
<td>1</td>
<td></td>
<td>MBMS MTK Download transport</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>010</td>
<td>3</td>
<td></td>
<td>MBMS Transport of salt</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>011</td>
<td>1</td>
<td></td>
<td>SRTP index synchronisation within ME</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>012</td>
<td>2</td>
<td></td>
<td>Clarify the use of mandatory MIKEY features for MBMS</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>014</td>
<td></td>
<td></td>
<td>Protection of the Gmb reference point</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>015</td>
<td>1</td>
<td></td>
<td>Use of parallel MSKs and MTks</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>016</td>
<td>3</td>
<td></td>
<td>Scope of MBMS security</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>018</td>
<td>4</td>
<td></td>
<td>Clarification of the format of MTK ID and MSK ID</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>020</td>
<td>3</td>
<td></td>
<td>MTK update procedure for streaming services</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>021</td>
<td>8</td>
<td></td>
<td>Clarification of MSK key management</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>022</td>
<td>1</td>
<td></td>
<td>Modification of delivery of MIKEY RAND field in MSK updates</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>023</td>
<td>2</td>
<td></td>
<td>OMA DRM DCF for protection of download services</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>028</td>
<td>1</td>
<td></td>
<td>Shorter MKI</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2004-12</td>
<td>SP_26</td>
<td>SP-040859</td>
<td>033</td>
<td>1</td>
<td></td>
<td>Handling of MBMS identities and definition completion/modification</td>
<td>6.0.0</td>
<td>6.1.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>034</td>
<td>2</td>
<td></td>
<td>Handling of MBMS identities and definition completion/modification</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>035</td>
<td></td>
<td></td>
<td>ME based MBMS key derivation for ME based MBMS key management</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>037</td>
<td>1</td>
<td></td>
<td>Correct the MSK verification message handling</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>038</td>
<td>2</td>
<td></td>
<td>Clarify MUK key synchronisation for MTK push procedure</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>039</td>
<td></td>
<td></td>
<td>Add missing parts of CR33 (SA3#36)</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>042</td>
<td></td>
<td></td>
<td>Annex D.1: correction of the description of the GBA run</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>043</td>
<td>1</td>
<td></td>
<td>Alignment according to MIKEY related IETF work</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>044</td>
<td>1</td>
<td></td>
<td>Clarification of HTTP procedures</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>045</td>
<td>1</td>
<td></td>
<td>Usage of security policy payload</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>047</td>
<td>1</td>
<td></td>
<td>Clarification of MSK and MTK procedures</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>049</td>
<td>2</td>
<td></td>
<td>MGV-F functionality related to MTK-ID upper limit</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>SP</td>
<td>TS</td>
<td>Doc</td>
<td>Description</td>
<td>Version</td>
<td>Progression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>---</td>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>051</td>
<td>Using the term "MBMS User Service" instead of "multicast"</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>052</td>
<td>Introduction of BM-SC subfunctions</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>053</td>
<td>Removing IDi from MTK message</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>054</td>
<td>MBMS download protection details</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>055</td>
<td>Removal of Editors notes</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>056</td>
<td>Protection of MBMS Service Announcement sent over MBMS bearer</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-03</td>
<td>SP_27</td>
<td>SP-050143</td>
<td>057</td>
<td>Introduction of missing abbreviations, symbols and definitions</td>
<td>6.1.0</td>
<td>6.2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>058</td>
<td>MKI and authentication tag length in User Service Description</td>
<td>6.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>059</td>
<td>Clarification of Key domain ID in service announcement</td>
<td>6.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>060</td>
<td>Key usage clarification</td>
<td>5.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>061</td>
<td>Omitted MTK Update Error Message</td>
<td>6.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>062</td>
<td>Editorial corrections to TS 33.246</td>
<td>6.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>063</td>
<td>Clarifications on MBMS key management</td>
<td>6.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>064</td>
<td>Use of IMPI in MBMS</td>
<td>6.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>065</td>
<td>Clarification on CSB ID and SP payload use</td>
<td>6.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>066</td>
<td>MIME type adjustments according to LS S3-050192</td>
<td>6.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-06</td>
<td>SP_28</td>
<td>SP-050266</td>
<td>067</td>
<td>Results of mapping the MBMS security requirements into security functions and mechanisms</td>
<td>6.2.0</td>
<td>6.3.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>006</td>
<td>Clarify FEC handling</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>009</td>
<td>Clarification of UE handling at reception of service announcement description</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>007</td>
<td>Back-off parameter binding scope</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>008</td>
<td>IDs and encoding of MIKEY messages</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>002</td>
<td>Moving the EXT payload</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>003</td>
<td>Handling of re-sent MSK messages</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>004</td>
<td>Clarification of MSK ID in service announcement</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>005</td>
<td>More than one FQDN for key management</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050559</td>
<td>007</td>
<td>NAF Id alignment with TS 33.220</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>SECI-SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>007</td>
<td>Key Domain ID in MSK request</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-09</td>
<td>SP_29</td>
<td>SP-050548</td>
<td>008</td>
<td>Identifying correct MIME types, correcting various editorials and wrong references</td>
<td>6.3.0</td>
<td>6.4.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-12</td>
<td>SP_30</td>
<td>SP-050766</td>
<td>007</td>
<td>ROC synchronization</td>
<td>6.4.0</td>
<td>6.5.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-12</td>
<td>SP_30</td>
<td>SP-050766</td>
<td>008</td>
<td>Correction on MSK processing in case of solicited pull procedure</td>
<td>6.4.0</td>
<td>6.5.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-12</td>
<td>SP_30</td>
<td>SP-050766</td>
<td>001</td>
<td>Handling several status codes in one response message</td>
<td>6.4.0</td>
<td>6.5.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006-03</td>
<td>SP_31</td>
<td>SP-060048</td>
<td>002</td>
<td>Definition of newer MSK</td>
<td>6.4.0</td>
<td>6.5.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006-03</td>
<td>SP_31</td>
<td>SP-060048</td>
<td>003</td>
<td>Handling unknown MIKEY payloads in MGV-F</td>
<td>6.5.0</td>
<td>6.6.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006-03</td>
<td>SP_31</td>
<td>SP-060048</td>
<td>004</td>
<td>Clarification of MTK ID reset in MSK update</td>
<td>6.5.0</td>
<td>6.6.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006-06</td>
<td>SP_32</td>
<td>SP-060376</td>
<td>005</td>
<td>Clarification of MTK ID reset</td>
<td>6.6.0</td>
<td>6.7.0</td>
<td>MBMS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V6.1.0</td>
</tr>
<tr>
<td>V6.2.0</td>
</tr>
<tr>
<td>V6.3.0</td>
</tr>
<tr>
<td>V6.4.0</td>
</tr>
<tr>
<td>V6.5.0</td>
</tr>
<tr>
<td>V6.6.0</td>
</tr>
<tr>
<td>V6.7.0</td>
</tr>
</tbody>
</table>