

ETSI TS 132 158 V15.1.0 (2019-04)

LTE;
5G;

Management and orchestration;
Design rules for REpresentational State Transfer (REST)

Solution Sets (SS)
(3GPP TS 32.158 version 15.1.0 Release 15)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)13GPP TS 32.158 version 15.1.0 Release 15

Reference
RTS/TSGS-0532158vf10

Keywords
5G,LTE

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)23GPP TS 32.158 version 15.1.0 Release 15

Intellectual Property Rights
Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under
http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
http://webapp.etsi.org/key/queryform.asp
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)33GPP TS 32.158 version 15.1.0 Release 15

Contents
Intellectual Property Rights .. 2

Foreword ... 2

Modal verbs terminology .. 2

Foreword ... 4

1 Scope .. 5

2 References .. 5

3 Definitions and abbreviations ... 5

3.1 Definitions .. 5

3.2 Abbreviations ... 6

4 General rules .. 6

4.1 Information models and resources .. 6

4.1.1 Information models ... 6

4.1.2 Resources .. 6

4.1.3 Resource archetypes ... 6

4.1.4 Mapping of information models to resources ... 6

4.2 Managed object naming and resource identification .. 7

4.2.1 Managed object naming .. 7

4.2.2 Resource identification ... 7

4.2.3 Mapping of DNs to URIs .. 7

4.3 Media types .. 7

4.4 URI structure .. 8

4.5 Response status codes .. 8

5 Basic design patterns .. 8

5.1 Design pattern for creating a resource .. 8

5.1.1 Creating a resource with identifier creation by the MnS Producer ... 8

5.1.2 Creating a resource with identifier creation by the MnS Consumer ... 8

5.2 Design pattern for reading a resource ... 9

5.3 Design pattern for updating a resource ... 9

5.4 Design pattern for deleting a resource .. 10

5.5 Design pattern for subscribe/notify .. 10

5.5.1 Concept ... 10

5.5.2 Subscription creation .. 10

5.5.3 Subscription deletion .. 11

5.5.4 Notification emission .. 11

5.5.5 Subscription retrieval .. 12

6 Advanced design patterns ... 12

6.1 Design pattern for scoping and filtering ... 12

6.2 Design pattern for attribute selection.. 13

6.3 Design pattern for partially updating a resource ... 13

7 Resource representation formats .. 13

7.1 Introduction .. 13

7.2 Top-level object .. 14

7.3 Data objects .. 14

7.4 Data arrays.. 14

7.5 Error objects ... 14

7.6 Resource objects ... 15

7.7 Resource objects carried in data objects and arrays ... 15

8 REST SS specification template ... 16

Annex A (informative): Change history ... 20

History .. 21

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)43GPP TS 32.158 version 15.1.0 Release 15

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)53GPP TS 32.158 version 15.1.0 Release 15

1 Scope
The present document defines design rules for REpresentational State Transfer (REST) Solution Sets (SS). These rules
are applied when specifying REST Solution Sets.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

- For a specific reference, subsequent revisions do not apply.

- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".

[3] 3GPP TS 32.300: "Telecommunication management; Configuration Management (CM); Name
convention for Managed Objects".

[4] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[5] IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".

[6] IETF RFC 7159: " The JavaScript Object Notation (JSON) Data Interchange Format".

[7] draft-wright-json-schema-01 (October 2017): "JSON Schema: A Media Type for Describing JSON
Documents".

 Editor's note: The above document cannot be formally referenced until it is published as an RFC.

[8] draft-wright-json-schema-validation-01 (October 2017: "JSON Schema Validation: A Vocabulary
for Structural Validation of JSON".

 Editor's note: The above document cannot be formally referenced until it is published as an RFC.

[9] draft-wright-json-schema-hyperschema-01 (October 2017): "JSON Hyper-Schema: A Vocabulary
for Hypermedia Annotation of JSON.

 Editor's note: The above document cannot be formally referenced until it is published as an RFC.

[10] OpenAPI Specification (https://github.com/OAI/OpenAPI-Specification)

[11] IETF RFC 5789: "PATCH Method for HTTP".

[12] IETF RFC 7396: "JSON Merge Patch".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following
apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP
TR 21.905 [1].

https://github.com/OAI/OpenAPI-Specification

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)63GPP TS 32.158 version 15.1.0 Release 15

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An
abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in
3GPP TR 21.905 [1].

CRUD Create, Retrieve, Update, Delete
DN Distinguished Name
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
LDN Local Distinguished Name
MnS Management Service
REST REpresentational State Transfer
RPC Remote Procedure Call
URI Uniform Resource Identifier

4 General rules

4.1 Information models and resources

4.1.1 Information models

An information model is a representation of a system. Typical models do not reflect all facets of the system, but only
certain aspects required to solve the management problem the model is designed for. 3GPP follows an object-oriented
modelling approach. Models are built from managed object classes. Relationships between classes represent the logical
connections. Models are specified formally with class diagrams of the Unified Modelling Language (UML).

The instantiation of a managed object is called managed object instance. All managed object instances together with the
relationships between them are depicted in an object diagram.

4.1.2 Resources

HTTP uses a different terminology based on the notion of resources, as defined in clause 2 of RFC 7231 [2]. Each
resource is represented by a resource representation as defined in clause 3 of RFC 7231 [2]. Valid resource
representations are e.g. XML instance documents or JSON instance documents.

4.1.3 Resource archetypes

Resources can be classified according to their structure and behaviour into resource archetypes. This helps specifying
clear and understandable interfaces. The following three archetypes are defined:

- Document resource: This is the standard resource containing data in form of name value pairs and links to
related resources. This kind of resource typically represents a real-world object or a logical concept.

- Collection resource: A collection resource is grouping resources of the same kind. The resources below the
collection resource are called items of the collection. An item of a collection is normally a document resource.
Collection resources typically contain links to the items of the collection and information about the collection
like the total number of items in the collection. Collection resources can be further distinguished into server-
managed and client-managed resources. Collection resources are also known as container resources.

- Operation resource: Operation resources represent executable functions. They may have input and output
parameters. Operation resources allow some sort of fall back to an RPC style design in case application specific
actions cannot be mapped easily to CRUD style operations.

4.1.4 Mapping of information models to resources

RESTful SS shall be specified in a way that managed object instances are described by document resources. Collection
resources have no equivalent in an information model unless some dedicated collection class is introduced.

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)73GPP TS 32.158 version 15.1.0 Release 15

4.2 Managed object naming and resource identification

4.2.1 Managed object naming

According to TS 32.300 [3] a Distinguished Name (DN) is used in 3GPP to uniquely identify a managed object instance
within a specific name space. A DN is the concatenation of Relative Distinguished Names (RDNs). A RDN is a name
value pair. The name is the naming attribute of the managed object, which is equal to the class name of the managed
object.

A DN in the global name space is globally unique and starts with the RDN of the global root. A DN in a local name
space starts with the RDN of the local root and is unique only within this name space. A DN in a local namespace is
also referred to as Local Distinguished Name (LDN). The DN of the local root relative to the global root is called DN
prefix. The concatenation of DN prefix and LDN is equal to the globally unique DN of a managed object.

The local root is typically the root of the network resource model representing the managed network.

4.2.2 Resource identification

HTTP uses a subset of the generic Uniform Resource Identifier (URI) scheme (RFC 3986 [4]) defined in RFC 7230 [5]
for target resource identification.

http-URI = "http:" "//" authority path-abempty ["?" query] ["#" fragment]

The path component is an absolute path (one that starts with a single slash character) or empty.

4.2.3 Mapping of DNs to URIs

The slash "/"shall be used as delineator between the naming attribute name and naming attribute value when
constructing a RDN. The naming attribute name shall be equal to the class name.

RDN = "/"{namingAttribute} "/" {namingAttributeValue}

The LDN is the concatenation of RDNs separated as well by a slash "/".

LDN = *("/" RDN)

The LDN is mapped to the rightmost part of the path component of URIs. The DN prefix is mapped to the remainder of
the path component and to the authority.

URIs ending with a naming attribute value identify a document resource representing a managed object instance.

URIs ending with a naming attribute name (class name) identify a collection resource representing all managed object
instances (document resources) of this class directly below the collection resource.

In the following example the DN prefix is identical to the URI authority component, the network resource model has at
its root an instance of class SubNetwork.

http://operator.com/subnetwork/south/managedelement/abc

The DN prefix may include, besides the authority component, additional RDNs.

http://operator.com/country/germany/subnetwork/south/managedelement/abc

or additional path segments.

http://operator.com/germany/subnetwork/south/managedelement/abc

4.3 Media types
The format of resource representations carried in the message body is indicated by the media type in the Content-Type
and Accept header fields. Media types that shall be supported are:

- application/json (RFC 7159 [6])

- application/merge-patch+json (RFC 7396 [12])

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)83GPP TS 32.158 version 15.1.0 Release 15

JSON resource representations shall conform to JSON Schema ([7], [8], [9]).

4.4 URI structure
URIs shall follow a common structure given by

URI = {URI-prefix}/{resourcepath}
URI-prefix = {MnSRoot}/{MnSName}/{MnSVersion}

where:

{MnSRoot} indicates the scheme ("http" or "https"), the host name and optional port, and an optional prefix path.

{MnSName} indicates the MnS name.

{MnSVersion} indicates the version of the MnS.

4.5 Response status codes
The response status codes as defined in section 6 of RFC 7231 [2] shall be supported.

5 Basic design patterns

5.1 Design pattern for creating a resource

5.1.1 Creating a resource with identifier creation by the MnS Producer

Operations to create a resource shall be specified with the HTTP POST method, when the MnS Producer shall create
the identifier of the new resource.

Figure 5.1.1-1: Flow for creating a resource with HTTP POST

The procedure is as follows:

1) The MnS Consumer sends a HTTP POST request to the MnS Producer. The target URI identifies the parent
resource below which the new resource shall be created. Only container resources are valid target resources. The
message body shall carry a complete resource representation.

2) The MnS Producer returns the HTTP POST response. On success, "201 Created" shall be returned. The
"Location" header shall be present and carry the URI of the new resource. The URI is constructed by the MnS
Producer by creating an identifier for the new resource and appending it to the request URI. The message body
shall carry the complete representation of the new resource. On failure, the appropriate error code shall be
returned. The response message body may provide additional error information.

5.1.2 Creating a resource with identifier creation by the MnS Consumer

Operations to create a resource shall be specified with the HTTP PUT method, when the MnS Consumer wishes to
impose the identifier of the new resource to the MnS Producer.

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)93GPP TS 32.158 version 15.1.0 Release 15

Figure 5.1.2-1: Flow for creating a resource with HTTP PUT

The procedure is as follows:

1) The MnS Consumer sends a HTTP PUT request to the MnS Producer. The target URI identifies the resource to
be created. The message body carries the complete resource representation.

2) The MnS Producer returns the HTTP PUT response. On success, "201 Created" shall be returned. The Location
header shall carry the URI of the new resource and the message body the complete representation of the new
resource. On failure, the appropriate error code shall be returned. The response message body may provide
additional error information.

5.2 Design pattern for reading a resource
Operations to read the representation of a resource shall be specified with the HTTP GET method. The resource to be
read is identified with a URI.

Figure 5.2-1: Flow for reading a resource

The procedure is as follows:

1) The MnS Consumer sends a HTTP GET request to the MnS Producer. The resource to be read is identified with
the URI. The message body shall be empty.

a) If the URI identifies a document resource, the document resource shall be returned.

b) If the URI identifies a collection resource, all document resources of the collection shall be returned.

2) The MnS Producer returns the HTTP Get response. On success, "200 OK" shall be returned. The resource
representation is carried in the response message body. On failure, the appropriate error code shall be returned.
The response message body may provide additional error information.

5.3 Design pattern for updating a resource
Operations to update the complete representation of a resource shall be specified with the HTTP PUT method. The
resource to be updated is identified with a URI.

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)103GPP TS 32.158 version 15.1.0 Release 15

 Figure 5.3-1: Flow for updating a resource

The procedure is as follows:

1) The MnS Consumer sends a HTTP PUT request to the MnS Producer. The resource to be updated is identified
with the URI. The message body carries the new resource representation. Note, the complete resource
representation needs to present.

2) The MnS Producer returns the HTTP PUT response to the MnS Consumer. On success, "200 OK" or "204 No
Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body
may provide additional error information. In case the resource does not exist, the resource is created in case this
is supported (see subclause 5.1.2).

5.4 Design pattern for deleting a resource
Operations to delete the representation of a resource shall be specified with the HTTP DELETE method. The resource
to be deleted is identified with a URI in the request message.

Figure 5.4-1: Flow for deleting a resource

The procedure is as follows:

1) The MnS Consumer sends a HTTP DELETE request to the MnS Producer. The resource to be deleted is
identified with the URI. The message body is empty.

2) The MnS Producer returns the HTTP DELETE response to the MnS Consumer. On success, "204 No Content"
shall be returned. The message body is empty. On failure, the appropriate error code shall be returned. The
response message body may provide additional error information.

5.5 Design pattern for subscribe/notify

5.5.1 Concept

HTTP is based on requests and responses. There is no built-in support for notifications and subscriptions to
notifications. These mechanisms need to be modelled based on special subscription resources and the available HTTP
methods. When notifications are used the server shall expose at least one subscription resource.

5.5.2 Subscription creation

To subscribe to notifications the subscriber shall send a HTTP POST request to the subscription resource.

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)113GPP TS 32.158 version 15.1.0 Release 15

Figure 5.5.2-1: Flow for creating a subscription

The procedure is as follows:

1) The MnS Consumer (notification subscriber) sends a HTTP POST to the MnS Producer. The URI shall indicate
a container subscription resource. The resources representing existing subscriptions are created below the
container resource. The subscriber shall indicate in the message body the URI of the resource notifications shall
be sent to (notification sink) and the type of notifications that are subscribed to. Additional filter information
may be included in the message body.

2) The MnS Producer returns "201 Created" on success. The message body carries the representation of the created
subscription resource. The Location header shall carry the URI of the created subscription resource. On failure,
the appropriate error code shall be returned. The response message body may provide additional error
information.

5.5.3 Subscription deletion

To cancel a subscription, the subscriber shall delete the corresponding resource with HTTP DELETE.

Figure 5.5.3-1: Flow for deleting a subscription

The procedure is as follows:

1) The MnS Consumer (notification subscriber) sends a HTTP DELETE to the MnS Producer. The URI shall
indicate the subscription resource to be deleted.

2) The MnS Producer returns the HTTP DELETE response to the MnS Consumer. On success, "204 No Content"
shall be returned. The message body is empty. On failure, the appropriate error code shall be returned. The
response message body may provide additional error information.

5.5.4 Notification emission

To send a notification on the occurrence of a notifiable event the MnS Producer sends a HTTP POST request to the
notification sink.

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)123GPP TS 32.158 version 15.1.0 Release 15

Figure 5.5.4-1: Flow for sending a notification

The procedure is as follows:

1) The MnS Producer sends a HTTP POST to the MnS Consumer. The URI identifies the notification sink. The
notification content is included in the message body.

2) The MnS Consumer returns "204 No Content". The message body shall be empty. On failure, the appropriate
error code shall be returned. The response message body may provide additional error information.

This design pattern requires the MnS Producer (HTTP server) to contain a reduced feature HTTP client for sending
HTTP POST requests, and vice versa, the MnS Consumer (HTTP client) to contain a reduced feature HTTP server for
receiving HTTP POST requests and sending HTTP POST responses.

5.5.5 Subscription retrieval

The subscriber can retrieve the information about a specific subscription by sending a HTTP GET request to the URI
returned by the server upon creation of this subscription. Information about all subscriptions of a subscriber can be read
by invoking a HTTP GET on the parent subscription resource whilst instructing the server, using the query component,
to return only the subscriptions related to the client invoking the request.

Figure 5.5.5-1: Flow for subscription retrieval

The procedure is as follows:

1) The MnS Consumer sends a HTTP GET to the MnS Producer. The URI specifies the subscription resource to be
read.

2) The MnS Producer returns the HTTP Get response. On success, "200 OK" shall be returned. The representation
of the subscription resource is carried in the response message body. On failure, the appropriate error code shall
be returned. The response message body may provide additional error information.

6 Advanced design patterns

6.1 Design pattern for scoping and filtering
Scoping is the process of targeting more than one resource for manipulation with HTTP methods. The URI query
component shall be used for scoping resources below the resource identified by the URI path component.

Filtering is the process of selecting a subset of the scoped resources based on filtering criteria applied to the scoped
resources. The URI query component shall be used for filtering.

No query language is specified in the present document for scoping and filtering.

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)133GPP TS 32.158 version 15.1.0 Release 15

6.2 Design pattern for attribute selection
This design pattern allows to select the attributes to be returned by the GET method. This pattern is not applicable to
any other HTTP methods.

The attributes to be returned are specified in the query part of the URI with a key value pair. The key is "fields", the
value is equal to the attribute names separated by a comma.

6.3 Design pattern for partially updating a resource
HTTP PUT allows replacing only the complete resource. For partial resource updates HTTP PATCH (RFC 5789 [11])
shall be used. The set of changes to be applied to the target resource is described in the request message body (patch
document). The format of the patch document is identified by a media type.

RFC 7396 [12] specifies a simple format in JSON (JSON Merge Patch) allowing to describe a set of modifications to be
applied to the target resource's content. JSON Merge Patch works at the level of name/value pairs contained in a JSON
object. The media type is application/merge-patch+json.

Three types of patches are described in RFC 7396 [12]:

1) Replacing the value of an already existing name/value pair by a new value.

2) Adding a new name/value pair.

3) Removing an existing name/value pair.

Not all three patch types are allowed on all resources.

JSON Merge Patch does not allow manipulation of arrays other than replacing the complete array. It is not possible to
change an item in an array or to add a new item.

Figure 6.3-1: Flow for partially updating a resource

The procedure flow is as follows:

1) The MnS Consumer sends a HTTP PATCH request to the MnS Producer. The resource to be updated is
identified with the URI. The message body carries a set of modification instructions in the form a partial
resource representation to be applied to the identified resource.

2) The MnS Producer returns the HTTP PUT response to the MnS Consumer. On success, "200 OK" or "204 No
Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body
may provide additional error information.

7 Resource representation formats

7.1 Introduction
According to clause 4.3 the media type specifies only that JSON is used as resource representation format carried in the
HTTP request and HTTP response message bodies. Some resource patterns are quite common and it is desirable to use
a common pattern throughout different APIs. This clause identifies some patterns frequently encountered and provides a
JSON schema for them.

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)143GPP TS 32.158 version 15.1.0 Release 15

7.2 Top-level object
A single JSON object shall be at the top-level of the document carried in the message body of HTTP requests and
HTTP responses.

{"type": "object"}

Example:

{}

Members of the top-level object can be either a data object, a data array or an error object.

7.3 Data objects
Data objects are carried in HTTP requests and in HTTP responses in case of success. One and only one data object shall
be a member of a top-level object. If a data object is present, no error object shall be present.

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {}
 }
 }
}

Example:

{
 "data": {}
}

7.4 Data arrays
Data arrays are carried in HTTP requests and in HTTP responses when data is transferred. One and only one data array
shall be a member of a top-level object. If a data array is present, no error object shall be present.

{
 "type": "object",
 "properties": {
 "data": {
 "type": "array",
 "items": {}
 }
 }
}

Example JSON instance:

{
 "data": []
}

7.5 Error objects
Error objects are carried in HTTP responses in case of failure. One and only one error object shall be a member of a
top-level object.

{
 "type": "object",
 "properties": {
 "error": {
 "type": "object"
 "properties": {}
 }
 }
}

Example JSON instance:

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)153GPP TS 32.158 version 15.1.0 Release 15

{
 "error": {}
}

7.6 Resource objects
Resource objects are representations of managed object instances. They shall be compliant to the following schema:

{
 "type": "object",
 "properties": {
 "href": { "type": "string" },
 "class": { "type": "string" },
 "id": { "type": "string" },
 "attributes": {
 "type": "object",
 "properties": {}
 }
 }
}

The attributes object has an empty property object in this generic schema. The attribute properties shall be specified
elsewhere. Mandatory attributes shall be indicated with the "required" keyword.

Example JSON instance::

{
 "type": "object",
 "properties": {
 "href": { "type": "string" },
 "class": { "type": "string" },
 "id": { "type": "string" },
 "attributes": {
 "type": "object",
 "properties": {
 "attribute1": { "type": "string" },
 "attribute2": { "type": "integer" }
 },
 "required": ["attribute1"]
 }
 }

 Attribute definitions defined elsewhere are referenced, for example:

{
 "type": "object",
 "properties": {
 "href": { "type": "string" },
 "class": { "type": "string" },
 "id": { "type": "string" },
 "attributes": {
 "$ref": "http://3gpp.org/28623/genericNrm.json#definitions/managedElement"
 }
 }
}

7.7 Resource objects carried in data objects and arrays
When a resource object is carried in a data object the schema is given by

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "href": { "type": "string" },
 "class": { "type": "string" },
 "id": { "type": "string" },
 "attributes": {
 "type": "object",
 "properties": {}
 }

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)163GPP TS 32.158 version 15.1.0 Release 15

 }
 }
 }
}

Example JSON instance:

{
 "data": {
 "href": "/subnetwork/south/managedElement/6",
 "class": "managedElement",
 "id": "6",
 "attributes": {
 "attribute1": "This is a string.",
 "attribute2": 39
 }
 }
}

Multiple resource objects are carried in a data array.

{
 "type": "object",
 "properties": {
 "data": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "href": { "type": "string" },
 "class": { "type": "string" },
 "id": { "type": "string" },
 "attributes": {
 "type": "object",
 "properties": {}
 }
 }
 }
 }
 }
}

Example JSON instance:

{
 "data": [{
 "href": "/subnetwork/south/managedElement/6",
 "class": "managedElement",
 "id": "6",
 "attributes": {
 "attribute1": "This is a string.",
 "attribute2": 39
 }
 },
 {
 "href": "/subnetwork/south/managedElement/5",
 "class": "managedElement",
 "id": "5",
 "attributes": {
 "attribute1": "This is another string.",
 "attribute2": 139
 }
 }]
}

8 REST SS specification template
This clause contains the REST SS specification template.

W Mapping of operations

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)173GPP TS 32.158 version 15.1.0 Release 15

W.1 Introduction

Table W.1-1: Mapping of IS operations to SS equivalents

IS operation HTTP Method Resource URI Qualifier

W.2 Operation <operation 1>

W.3 Operation <operation 2>

X Usage of HTTP

Y Resources

Y.1 Resource structure

Y.2 Resource definitions

Y.2.1 Resource <resource 1>

Y.2.1.1 Description

Y.2.1.2 URI

Y.2.1.3 HTTP methods

Y.2.1.3.1 <method 1>

This method shall support the URI query parameters specified in table Y.2.1.3.1-1.

Table Y.2.1.3.1-1: URI query parameters supported by the <method 1> on this resource

Name Data type P Cardinality Description

This method shall support the request data structures specified in table Y.2.1.3.1-2 and the response data structures and
response codes specified in table Y.2.1.3.1-3.

Table Y.2.1.3.1-2: Data structures supported by the <method 1> request body on this resource

Data type P Cardinality Description

Table Y.2.1.3.1-3: Data structures supported by the <method 1> response body on this resource

Data type P Cardinality Response
codes

Description

Y.2.1.3.2 <method 2>

Y.2.2 Resource <resource 2>

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)183GPP TS 32.158 version 15.1.0 Release 15

Z Data type definitions

Z.1 General
Table Z.1-1: Data types defined in the present document

Data type Reference Description

Table Z.1-2: Data types imported

Data type Reference Description

Z.2 Structured data types

Z.2.1 Type <TypeName 1>

Table Z.2.1-1: Definition of type <TypeName 1>

Attribute name Data type P Cardinality Description

Z.2.2 Type <TypeName 2>

Z.3 Simple data types and enumerations

Z.3.1 General

This subclause defines simple data types and enumerations that are used by the data structures defined in the previous
subclauses.

Z.3.2 Simple data types

Table Z.3.2-1: Simple data types

Type Name Type Definition Description

Z.3.3 Enumeration <EnumType1>

Table Z.3.3-1: Enumeration < EnumType1>

Enumeration value Description

Z.3.4 Enumeration <EnumType2>

Annex A (normative)

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)193GPP TS 32.158 version 15.1.0 Release 15

OpenAPI specification
It contains this leading paragraph:

"This clause describes the capabilities of the service in the structure of the OpenAPI Specification Version 3.0.1 [10].
The OpenAPI document is represented in the JSON format option."

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)203GPP TS 32.158 version 15.1.0 Release 15

Annex A (informative):
Change history

Change history
Date Meeting TDoc CR Rev Cat Subject/Comment New

version
2018-09 SA#81 Upgrade to change control version 15.0.0
2018-09 Editorial fix (EditHelp/MCC) 15.0.1
2018-12 SA#82 SP-181051 0001 1 F Extend resource representation format descriptions 15.1.0

ETSI

ETSI TS 132 158 V15.1.0 (2019-04)213GPP TS 32.158 version 15.1.0 Release 15

History

Document history

V15.0.1 October 2018 Publication

V15.1.0 April 2019 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 General rules
	4.1 Information models and resources
	4.1.1 Information models
	4.1.2 Resources
	4.1.3 Resource archetypes
	4.1.4 Mapping of information models to resources

	4.2 Managed object naming and resource identification
	4.2.1 Managed object naming
	4.2.2 Resource identification
	4.2.3 Mapping of DNs to URIs

	4.3 Media types
	4.4 URI structure
	4.5 Response status codes

	5 Basic design patterns
	5.1 Design pattern for creating a resource
	5.1.1 Creating a resource with identifier creation by the MnS Producer
	5.1.2 Creating a resource with identifier creation by the MnS Consumer

	5.2 Design pattern for reading a resource
	5.3 Design pattern for updating a resource
	5.4 Design pattern for deleting a resource
	5.5 Design pattern for subscribe/notify
	5.5.1 Concept
	5.5.2 Subscription creation
	5.5.3 Subscription deletion
	5.5.4 Notification emission
	5.5.5 Subscription retrieval

	6 Advanced design patterns
	6.1 Design pattern for scoping and filtering
	6.2 Design pattern for attribute selection
	6.3 Design pattern for partially updating a resource

	7 Resource representation formats
	7.1 Introduction
	7.2 Top-level object
	7.3 Data objects
	7.4 Data arrays
	7.5 Error objects
	7.6 Resource objects
	7.7 Resource objects carried in data objects and arrays

	8 REST SS specification template
	Annex A (informative): Change history
	History

