ETS| TS 129 501 V15.8.0 (2020-11)

. “E'-“:"::--—

TECHNICAL SPECIEICATION

5G;
5G System;
Principles and Guidelines for Services Definition;
Stage 3
(3GPP TS 29.501 version 15.8.0 Release 15)

H°56

A GLOBAL INITIATIVE

3GPP TS 29.501 version 15.8.0 Release 15 1 ETSI TS 129 501 V15.8.0 (2020-11)

Reference
RTS/TSGC-0429501vf80

Keywords
5G

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal .etsi.org/ TB/ETSI DeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https:.//portal .etsi .org/People/ CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ |ogo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3GPP TS 29.501 version 15.8.0 Release 15 2 ETSI TS 129 501 V15.8.0 (2020-11)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Legal Notice
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be
interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto beinterpreted as described in clause 3.2 of the ETS| Drafting Rules (Verba forms for the expression of
provisions).

"must” and "must not" are NOT alowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
http://webapp.etsi.org/key/queryform.asp
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

3GPP TS 29.501 version 15.8.0 Release 15 3 ETSI TS 129 501 V15.8.0 (2020-11)

Contents

INtellectual Property RIGNES.... ..ot b e e e en e ns 2
LB INOLICE ... bbbt et h bt b b nE e b e b e e et bt e bt Rt e s e e e e e e eb e n e e ns 2
AV TeTo = L= g oY = 01T 070] oo | OSSPSR 2
1= 11 o TSRS 6
1 o0 o< TP P URUP PRSPPSO 8
2 REFEIBINCES ...ttt a b b e sttt e £ e e et e e st e be e b e sE e benb et et e neenenneebeneen 8
3 Definitions and @DDreVILiONS..........coiieieeiee ettt 9
31 D= T aT] (0] TP P TR PRTUPTPPURRSI 9
3.2 ADDIEVIBLIONS ...ttt et bbbt a et e e e b e sh e e b e b e e he e s e e e e besheeb e e Rt e R e et e e e bt sheebenneeneennen 9
4 Design PrinCipleS fOr 5GC SBI APIS ...t nrea 9
4.1 GENEIEl PrINCIPIES ...ttt bbb e bbbt h e se ekt b e seeb e s e et ebesb e e et e sbe e ebesbenene s 9
4.2 API Design Style and REST Implementation LEVEIS..........ccoiiiiiiienereese et 10
42.1 (€71 TSP 10
4.2.2 API Design Principles for QUENY OPEIIONcuiirieiriieireieeries et 10
4.2.3 API Design Principles for Delete OPeration...........cccveieieieeseeseesessieseeseeseeesaesassseesseesseesessaessaesseesenns 10
4.3 V4= £ o W O] 5 11 {0 PSPPSR 11
4.3.0 LCT= 0T o SO PPSPPSN 11
431 Structure of APl VEIrSION NUMDEIS........couiiiiei e bbb e sb et e e 11
4311 AP VErsion NUMDEN FOMMEL..........coueiieeieieie ettt b b et se b e bt sae b e e e e e 11
4312 Rulesfor incrementing fleld VAIUES..........c.coee et 11
4313 Visibility of the APl version NUMDEr fIEldScoooiiiiiii e 14
4314 Relation to the Technical Specification Version NUMDEN ..o 14
4315 Discovery of the SUPPOIEA VEISIONScoveeiteriiieierienietesie ettt sr e et eb e e e b sae e ebe b neenen 14
4.3.1.6 WithdraWinNg APL VEFSIONS.c.oiuiiiiiieieeie sttt sttt sttt b e et b et b e et e b e et b e n e 15
4.4 L0]S U o LU PP SSRRO 15
441 RESOUINCE URI SIIUCKUE.ttt ettt ettt et e et e e be e e be e e s me e e nbe e e eme e e sbeeesnneesnreeanneesans 15
4.4.2 Custom OpPEratioNS URI SLIUCLUIE.eeieiieieeceee e eie et eee st e e e e e e s saeesaeenaeesaesseasse e seenteennenneesnes 16
443 CallDACK URI SIIUCLUIE ...ttt bbbt bt bt se et e s et sr e b e sneene e e ennas 16
45 Resource Representation and Content Format NegOtialioN............ccveieiieieeiee e eee e see e 16
4.5.1 RESOUICE REDIESENIALIONc.eiceieeeiesteeseeseesesreesee st e ste e teeteestessaessaesseeste e seessesseesseesseeseenseesseaseessaesseessensenseaneennes 16
4.5.2 Content FOrmMat NEQOUIALIONeiiieieiie e st e sttt e e e este s e e e e s teesaeentesseesseesseenseanseeseessaesseesseenseesesnsennes 16
4.6 (0SSN o i o I V=1 o o LSRR 17
4.6.1 Use of Reguest/Response COMMUNICALTIONcceiiieeiierieiesieseeie sttt st sre bbb 17
46.1.1 L1 1 1 USSR 17
46111 Creating @ RESOUICE........cuiitieeiirtieeert ettt b et bbb et e b et be b 17
46.1.1.11 (1= 0 - | OSSR 17
461112 Creating aReSOUICE USING POSTcouiiiiiiieiite ettt sttt 17
46.1.1.1.3 Creating aResOUrCE USING PUT ..ottt sttt ene e 18
46.1.1.2 REAING A RESOUICE........eeieeiiee ettt et e s e e st e e te e e e sae e sae e te e teenteentesseeseeseenseeneennns 19
46.1.1.2.1 Reading @ SiNQIE RESOUICEcviiiieie ettt ae e e sae e saeeteeneeeseesneesreenrens 19
46.1.1.22 QuUErYing a Set Of RESOUICES........cciveiiieiieeeseesees e e stesae s e sreesreesteetesseessaesteesteeteenseeneesneesnes 19
46.1.1.3 UPAating @ RESOUICE.eiveeieeieeiesiecee st e ste et ete e este e te e teetesseesseesaeesseenteensesssessaesseessennseensesneesans 20
46.1.1.31 USBGE OF HTTP PUT ..ottt sttt sttt st 20
46.1.1.32 USAgE Of HTTP PATCH ...ttt ettt st ene et 21
4.6.1.1.4 DElEliNG BRESDUICE.......ceceeitereeieetereeeet ettt b bbb bbbt b et b et bene e ens 21
4.6.1.1.5 QUENY PaIBIMELENSeectiieieeieieet ettt se b e bt bt a e e e reseear e resreere e e ennennens 22
46.1.151 (€7 01 SRR 22
4.6.1.15.2 COMPIEX QUENY EXPIESSION......c.eeueetereeueetesiestetesreseesesseseesesbeseesesbeseesesbesseseabesse st sbesbe e sbessenesbeseeneens 22
46.1.2 (TN 0] 1@ o = 1 o 1SS 23
46.1.3 Use Of ASYNCroN0US OPEIaLiONS..........ceieeiieieerieeieeeeseeseestees e e teseeseesseesreesaeesseeseensesseesseesseesseessnns 24
46.1.4 Special provisions to support the seamless change of AMF as NF service producer............ccoeevevveeneen. 24
4.6.2 Use of Subscribe/Notify COmMMUNICALION..........cciiiiiieiie et eae e ne e 25
46.2.1 LC T o1 - TSRS 25
46.2.2 Management Of SUDSCIIPLIONS.cccueiieiie et e e se e s sre e saeeteeae e sraesreeseesnaessaesseesrens 25

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 4 ETSI TS 129 501 V15.8.0 (2020-11)

46.2.2.1 (7 01 U PTSRRSRSN 25
4.6.222 Creation Of @ SUBSCITPIIONc.iitiieiieie bbb 25
4.6.2.2.3 MOITY @ SUDSCITPIION. ...ttt bbbt b et ens 26
4.6.2231 Modification of a Subscription USING HTTP PUT ... 26
4.6.2.2.32 Modification of a Subscription USINg HTTP PATCH ..ot 27
46.224 (DTS (= W o1 ot (o] o 28
4.6.2.3 [N Lo 0] o= 1T o]0 L OSSO PP UPURURRSPIN 28
4.6.2.4 Special provisions to support the seamless change of AMF as NF service consumerccccceeeveeneen. 29
4.7 AN I S TR 29
4.7.1 LCT= 0T o SO PPSPPSN 29
4.7.2 3GPP hypermMedia fOrMEL..........coeeiieiieierieet bbbt bbb e 29
4.7.3 Advertising legitimate application State tranSitioNS...........ccoeeiirerie e 30
4.7.4 Inferring 1Nk relation SEMENLIC........co ettt eb e 30
4.7.5 COMMON REIGLTON TYPES ...ttt etk b e et b e et b e st b e b e se bt sb e e ebesb e e ebesbennenea 30
4751 0100 1 1 o PR 30
4752 REGISIEred el aliON TYPES ...ttt ettt b e et b e et b e e e e b et sbeneebesbe e eneas 31
4753 = gt o N = = Ko 1Y 0= SR 31
4.7.6 Negotiating the support of optional HATEOAS fEALUIESccceveeiee e 31
4.8 0 (= 00 1= T USSP PSPPI 32
4.9 Transferring multiple resources to aNF Service CONSUMIETccveiueeierieiee e seesseeeeseeseesseesseeeesneesseeseens 33
491 (CT= 0T o SO PPSPPSN 33
49.2 T = ot 1= Y o S 33
4.9.3 Direct DEliVery With [TEIaliONSceiirieiieeeereee ettt 33
494 INDITECE DEIIVEY ...t b et b e st b e bbbt b e b et b b et b b 34
4.9.5 Indirect Delivery With HTTP/2 SErver PUSN.......c.ooiiieee e 34
4.9.6 Criteriafor choosing the transfer MEthodcccoiiiiiie e 36
5 DocuUmMENtiNg 5GC SBI APIS ...ttt ettt ettt sttt s teere e be s re e e et e saeensesbeetesreennens 36
51 N g o T @1V 14T 36
511 CASE CONVENLIONS ...ttt sttt ettt e et etk e bt bt e ae e e e e se e e b e e bt eh e e heeaeea b e se e b e sb e eh e e e et e besbeebeeneenne s entes 36
5.1.2 AP NamMiNG CONVENLIONS.........ccouiieeeiesieesieeieetesieesieeseesseesseeteessesseessaesseesseesseesseesseansesssnseensesssessesssenssees 38
513 ConVENLIONS FOr URI PaITS. ...ttt ettt et b et e et et sr bt ene e e ennas 38
5131 0100 1 1 o PR 38
5132 URI Path Segment Naming CONVENLIONS.ciueeiirieieierieieiesieestesseesse s e sesseseeesseseeseeseseeseesens 38
5133 URI Query Naming CONVENTIONS..........cuiiieiririeeeie sttt st e ebe e e b e e b seeseebeseesessesseseenens 39
514 Conventions for Names in Data SEIUCLUIES..........coueeuereeiererese st eeee e ee sttt ese e e sseseeseeseesneeneeeeneas 39
52 N T T T o o 39
521 RESOUICE SITUCLUIE........c ettt ettt et b e b e be et e st e sae e saeesse e et embeeseeebeeebeesbeesbeeabeennesnneenes 39
522 Resources and HTTP MENOUScoueiuiiiei et neen 40
523 Representing RPC as Custom Operations 0N RESOUICEScccuviueieeieeseesteesseseeseesseesseesessessssssesssessnes 43
524 (D= =11V Lo 0 (= K= TP TP S U PPURTURURPRRN 44
5241 LC T o1 = TR 44
5.24.2 S TN =o 0= = 1 = S 45
5243 Simple data types and ENUMEIELIONSooeiiirieirer ettt 46
5244 BINANY DBIA.ccveeeueetertee ettt ettt b et b e bt bt e e bR e bR e bt h e e bt R et bt R e ene b neeneas 46
5245 Data types describing alternative data types or combinations of datatypes.........c.ccovvvreerierceneneenens 46
525 REIBIION TYPES ...ttt bbbttt b e bt bt b e bt b e b e b s et e b e et bbb n e 48
53 OPENAPI SPECITICALION FIES.ccvieeicie bbb ettt b e 48
531 (€71 SO RS 48
5.3.2 Formatting of OpenAPI SPECITiCaION FIlES........ccue i e 48
533 g1 T OSSPSR 48
534 EXEEIMAIDIOCS ... ettt ettt b h et e bbbt b e ae R e e nE e b e Rt SR e eR e R e e R e e R e e a e e e e R e b ehe b et eneenennen 48
535 SEIVET'S ..ttt sttt ettt ettt st ettt e e be s te e bt e e bt R e e ke eE e ekt e R e e ekt eE e e eRe e R et eReeE et eReeb et ebeeEe e ebenbe st erenbeneerens 49
5.3.6 References to other 3GPP-defined OpenAPI specification fil€S........cccocvviveieeie e 49
537 Server-initiated COMMUNICALTION.........coeeiiierirere ettt sb e sb et se e bbb b st ene e e ennas 50
538 Describing the body of HTTP PATCH FEQUESES.ciueiiirieeieree et s 50
5381 LT 07 | PO 50
5382 JSON MEIGE PAICH. ...t bbbttt b bbb 51
5383 JSON PATCH ...ttt ettt b b e etk e bt se b e Rt ee et ene s e beseaeebenesebeneaeetenesea 51
539 SUTUCLUrEA BEALYPIES. ...ttt ettt b bbbt b e et b e se et b e se et et e sb e e ebesbe e enenbennenea 51
5.3.10 Data types describing alternative data types or combinations of datatypes..........ccceveverereieneneieneneeeenn 53
5311 ETTON RESDONSES.ei ittt ettt ettt ettt s e bt e s st e e s b e e s st e e s h b e e sab e e sa b e e e abe e she e e s ae e e nbbe e s abeenabeesnreenares 55

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 5 ETSI TS 129 501 V15.8.0 (2020-11)

5.3.12 ENUMIEI LI ONS ...ttt ettt ettt ettt s e n e e e seesbesseeaeeneese e beseeebesaeeneeneeneeneeeeseesbesnessesneensensens 56
5.3.13 Formatting of structured data typesin QUENY ParamELErS.........cccoereerrereresieneeie et 56
5.3.14 Attribute Presence CONAItIONSooi ittt st st s e e e e et e seesaesneene e e eneees 57
5.3.15 Usage Of the "tags" FIEId ..o bbb 59
5.3.16 RS U 11 OSSP PSP O ST PPPTSTURTPRRON 59
5.3.17 ReUSE Of SIrUCIUIEA Dala TYPES .. e eeiciieeieieetiesteee e te s ee st e ste e sae e sae et e sae e s reesse e teentees e enaeseeseenseennesnnesnns 60
6 Requirements for SECUIE API JESION ..ottt 61
6.1 (T goo W 1T oo BTSSP PP USSP 61
6.2 LT 0T USSR 61
6.3 SBA-SPECITIC FEUITEIMIENLS. ...ttt sttt sttt st b e et b e st b e et b e e bt b e e et b e s e et e b e b et eb e b e 61
Annex A (informative): TS SKElEtoN TEMPIALE.......c.oiireiereeee e 63
Annex B (informative): Backward Incompatible Changes..........cccceveeeieieene e 64
Annex C (Informative): ReSOUIce MOAEING......coiiiieie e ereas 65
C.o (€T 0T PSSO U SO PP URPSROSPP 65
Cl1 Do ot 11 1= | PP UP PRSP 65
C.2 (070 11<ot i o] o IO P TSP PP URUSROTRP 65
C3 R0 TSP PPOPR PR 65
c4 LU 01T o= 1110 o 1SS 66
Annex D (informative): Example of an OpenAPI specification filefor Patch..........ccccooeviveieienenns 67
Annex E (informative): (O T lo =N aTES (0] YRS 70
L 11 (TSP OP PR PRORPRTRORN 73

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 6 ETSI TS 129 501 V15.8.0 (2020-11)

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z
where;
x thefirst digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit isincremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z thethird digit isincremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall indicates a mandatory requirement to do something
shall not indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in
Technical Reports.

The constructions "must” and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided
insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced,
non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a
referenced document.

should indicates a recommendation to do something
should not indicates a recommendation not to do something
may indicates permission to do something

need not indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions
"might not" or "shall not" are used instead, depending upon the meaning intended.

can indicates that something is possible
cannot indicates that something isimpossible
The constructions "can" and "cannot” are not substitutes for "may" and "need not".

will indicates that something is certain or expected to happen as aresult of action taken by an agency
the behaviour of which is outside the scope of the present document

will not indicates that something is certain or expected not to happen as aresult of action taken by an
agency the behaviour of which is outside the scope of the present document

might indicates a likelihood that something will happen as aresult of action taken by some agency the
behaviour of which is outside the scope of the present document

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 7 ETSI TS 129 501 V15.8.0 (2020-11)

might not indicates a likelihood that something will not happen as a result of action taken by some agency
the behaviour of which is outside the scope of the present document
In addition:
is (or any other verb in the indicative mood) indicates a statement of fact
isnot (or any other negative verb in the indicative mood) indicates a statement of fact

The constructions"is" and "is not" do not indicate requirements.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 8 ETSI TS 129 501 V15.8.0 (2020-11)

1 Scope

The present document defines design principles and documentation guidelines for 5GC SBI APIs. These principles and
guidelines should be followed when drafting the 5G System SBI1 Stage 3 specifications.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

- For aspecific reference, subsequent revisions do not apply.

- For anon-specific reference, the latest version applies. In the case of areference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications'.

2] 3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

[3] IETF RFC 8259: "The JavaScript Object Notation (JSON) Data I nterchange Format”.

[4] OpenAPI: "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md.

[5] 3GPP TS 29.571: "5G System; Common Data Types for Service Based Interfaces Stage 3".

[6] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"

[7] IETF RFC 7396: "JSON Merge Patch".

[8] IETF RFC 6902; "JavaScript Object Notation (JSON) Patch”.

[9] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax"

[10] IETF RFC 5789: "PATCH Method for HTTP"

[171] IETF RFC 8288: "Web Linking".

[12] IANA: "HTTP Status Code Registry at IANA", http://www.iana.org/assi gnments/http-status-codes

[13] IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)"

[14] Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[15] Erik Wilde, Cesare Pautasso, REST: From Research to Practice, Springer

[16] YAML 1.2: "YAML Ain't Markup Language", http://yaml.org.

[17] Semantic Versioning Specification: https.//semver.org

[18] 3GPP TS 29.510: "5G System; Network Function Repository Services, Stage 3".

[19] IETF RFC 7807: "Problem Detailsfor HTTP APIS".

[20] 3GPP TS 29.502: "5G System; Session Management Services, Stage 3".

[21] 3GPP TS 29.509: "Authentication Server Services; Stage 3".

[22] 3GPP TS 33.501: "Security architecture and procedures for 5G system”.

ETSI

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
http://www.iana.org/assignments/http-status-codes
http://yaml.org/
https://semver.org/

3GPP TS 29.501 version 15.8.0 Release 15 9 ETSI TS 129 501 V15.8.0 (2020-11)

[23] IETF RFC 6749: "The OAuth 2.0 Authorization Framework".
[24] 3GPP TS 29.573: "5G System; Public Land Mobile Network (PLMN) Interconnection;Stage 3".
[25] 3GPP TR 21.900: "Technical Specification Group working methods'.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following
apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP
TR 21.905[1].

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An
abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in
3GPP TR 21.905 [1].

5GC 5G Core Network

CNF Conjunctive Normal Form

DNF Disjunctive Normal Form

HAL Hypertext Application Language

HATEOAS Hypermedia as the Engine of Application State
SBI Service Based Interface

YAML YAML Ain't Markup Language

4 Design Principles for 5GC SBI APIs

4.1 General Principles
Each 5GC SBI API specification should include the following information for each specified service:
- Purpose of the API;
- URIsof resources,
- Supported HTTP methods for a given resource;
- Supported representations (e.g. JSON, see IETF RFC 8259 [3]);
- Request body schema(s) (where applicable);
- Response body schema(s) (where applicable);
- Supported response status codes;
- Relation types supported if HATEOAS isimplemented by the API;

- A referencein the resource description clause to one of the archetypes defined in Annex C if the resource design
matches one of them; and

- Alist defining identifiers of optional features (see clause 6.6 of 3GPP TS 29.500 [2] for related procedures).

For each specified service a clause to a normative Annex should be provided containing the OpenAPI definitions
according to OpenAPI Specification [4] for the service. The specifications should state that content of this normative

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 10 ETSI TS 129 501 V15.8.0 (2020-11)
annex takes precedence when being discrepant to other parts of the specification with respect to the encoding of
information elements and methods.

NOTE: The semantics and procedures, as well as conditions, e.g. for the applicability and allowed combinations
of attributes or values, not expressed in the OpenAPI definitions but defined in other parts of the
specification also apply.

The TS Skeleton Template as provided in Annex A should be used as a starting point when drafting 5GC SBI API
specifications.

Common procedures, HTTP extensions and error handling applicable to several 5GC SBI APl specifications should be
defined in 3GPP TS 29.500 [2] and should be referenced from individual 5GC SBI API specifications.

Common data types applicable to several 5GC SBI API specifications should be defined in 3GPP TS 29.571 [5] and
should be referenced from individual 5GC SBI API specifications.

4.2 API Design Style and REST Implementation Levels

421 General

5GC SBI API specifications should apply a protocol design framework as follows:

a) REST-style service operations should implement the Level 2 of the Richardson maturity model, with standard
HTTP methods, whenever it is a good match for the style of interaction to model, e.g. service operations that can
naturally map to one of the standard methods (CRUD operations), this should be the preferred modelling
attempt;

b) service operations may use custom API operations (RPC-style interaction), when it is seen a better fit for the
style of interaction to model, e.g. non-CRUD service operations;

¢) itispossibleto mix REST-style operations and RPC-style operations in the same API.

NOTE: Level 3 (HATEOAY) of the Richardson maturity model in the 5G Service-Based Architecture can be
implemented by an API but is optional. Hypermedia usage guidelines are provided in clause 4.7 of the
present specification.

4.2.2 API Design Principles for Query Operation

When designing a query operation API, i.e. the NF service consumer invokes the APl aiming to retrieve certain
information from the NF service producer, the following principles should be applied:

a) if the query operation does not require any input parameter for the NF service producer, then the REST-style
service operation with standard HTTP GET method should be used (see clause 4.6.1.1.2);

b) if
- the query operation requires input parameter(s) for the NF service producer; and

- dl therequired input parameter(s) are used to identify a particular resource and/or control the content of the
result of the query operation;

then the REST-style service operation with standard HTTP GET method should be used (see clause 4.6.1.1.2);

¢) standard HTTP GET method shall not be used for non-safe operations and non-idempotent operations.

4.2.3 API Design Principles for Delete Operation

When designing a delete operation API, i.e. the NF service consumer invokes the APl aiming to delete certain resource
on the NF service producer, the following principles should be applied:

a) if the delete operation does not require any input parameter for the NF service producer, then the REST-style
service operation with standard HTTP DELETE method should be used (see clause 4.6.1.1.4);

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 11 ETSI TS 129 501 V15.8.0 (2020-11)

b) if
- the delete operation requires input parameter(s) for the NF service producer; and

- dl the required input parameter(s) are used to identify a particular resource and/or control the content of the
result of the delete operation;

then the REST-style service operation with standard HTTP DELETE method should be used (see
clause 4.6.1.1.4);

¢) standard HTTP DELETE method shall not be used for non-idempotent operations.

4.3 Version Control

4.3.0 General

The version control mechanism in the present clause allows the management of changes to an API and provides a
version number that is incremented whenever changes to the API are applied.

NOTE: The version number does not reflect the usage of optional features. A mechanism to negotiate the usage
of optional featuresis defined in clause 6.6 of 3GPP TS 29.500 [2].
4.3.1 Structure of API version numbers

43.1.1 API version number format

API version numbers shall consist of at least 3 fields, following a MAJOR.MINOR.PATCH pattern according to the
Semantic Versioning Specification [17] with exceptions for 3GPP Releases under development. A fourth DRAFT field
is added to denote an OpenAPI version under development i.e., prior to the freeze of the corresponding OpenAPI
description for a given 3GPP Release. Optionally, additional fields can be added after those fields based on operator

policy.
The 1t field (MAJOR), the 2nd field (MINOR), and the 3rd field (PATCH) shall contain unsigned integer numbers.

During the development of an API (i.e. before the freeze of a given 3GPP Release), the 4th field is called DRAFT, and
it shall have the format "alpha-n", where "n" is an unsigned integer number.

After the freeze of a 3GPP Release, the optional 4th field shall not be considered as DRAFT and it may contain any
string, with aformat other than "alpha-n"; any additional optional field(s), when present, may contain any string.

The fields shall be separated by ".".
EXAMPLE: "1.0.0.apha-1".

4312 Rules for incrementing field values

Thefirst version of anew API under development shall obtain the version number "1.0.0.apha-1". At the first
publication of the 3GPP Technical Specification defining the API after the OpenAPI freeze of the first 3GPP Release
that contains the API, the version number of the API shall be set to "1.0.0".

When a new version of the 3GPP TS containing OpenAPI file(s) is published, the fields of the corresponding API
version number(s) shall be incremented according to the following rules:

1st Field (MAJOR):
- Thisnumerical field shall be incremented when:

a)- there are one or more backward incompatible changes to the API after the OpenAPI freeze for agiven
3GPP Release; and

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 12 ETSI TS 129 501 V15.8.0 (2020-11)

b) there arethe first backward incompatible change(s) to the existing API with respect to the latest versionin
the previous 3GPP Release while a 3GPP Release is under development (i.e. prior to the OpenAPI freeze
for agiven 3GPP Release).

EXAMPLE 1: Assuming that 3GPP Rel-16 under development contains API version "1.1.0.alpha-2", and a
backward incompatible change with respect to the latest version in the previous 3GPP Releaseis
applied to that API before the OpenAPI freeze, the new Rel-16 API versionis"2.0.0.alpha-1".

NOTE 1. Subsequent changesin a given 3GPP Release under development do not lead to increment of the 1<t field
(MAJOR) and 2nd field (MINOR).

NOTE 2: Rulesfor determining backward incompatible changes are provided in Annex B.

NOTE 3: It isrecommended to avoid backward incompatible change to the API after the OpenAPI freeze whenever
possible, especialy after OpenAPI freeze of a succeeding Release. It is preferable to introduce such
changes only in the 3GPP Release under devel opment.

- If abackward incompatible change needs to be applied to several 3GPP Releases the following applies:

a) If the 3GPP Releases contain different MAJOR versions of the same API, anew MAJOR API version
shall be assigned to each 3GPP Release in the order of those 3GPP Releases in such a manner that the
lowest of those 3GPP Releases shall obtain the first unassigned MAJOR version value.

EXAMPLE 2: Assuming that 3GPP Rel-15 contains API version "1.0.0", and Rel-16 contains API version
"2.0.0", and that the same backward incompatible change is applied to that API in both Releases,
the new Rel-15 API versionis"3.0.0" and the new Rel-16 API versionis"4.0.0".

b) If the 3GPP Releases contain the same MAJOR version but different MINOR versions of the same API, a
single new MAJOR API version value shall be assigned for all those 3GPP Releases, unless other
backward incompatible changes only applied to some of those Releases require the creation of separate
MAJOR versions.

NOTE 4: For each such Release anew MINOR version is assigned.

EXAMPLE 3: Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0", and Rel-17 contains API
version "1.2.0", and that the same backward incompatible change is applied to that API in al
3GPP Releases, the new 3GPP Rel-15 and Rel-16 API version is"2.0.0" and the new 3GPP Rel-17
API versionis"2.2.0".

¢) If the 3GPP Releases contain the same API versions, asingle new API version shall be assigned for all
those 3GPP Releases, unless other changes only applied to some of those Releases require the creation of
separate versions.

EXAMPLE 4: Assuming that 3GPP Rel-15 and 3GPP Rel-16 contain API version "1.0.0", and that only the same
backward incompatible change is applied to that API in both 3GPP Releases, the new 3GPP Rel-
15 and Rel-16 APl versionis"2.0.0".

EXAMPLES5: Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0", and that the same backward
incompatible change is applied to that API in both Releases and an additional backward
compatible changeis applied in 3GPP Rel-16, the new 3GPP Rel-15 APl versionis"2.0.0", and
the 3GPP Rel-16 API versionis"2.1.0".

EXAMPLE 6: Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0", and that the same backward
incompatible change is applied to that API in both Releases and an additional backward
incompatible change is applied in 3GPP Rel-16, the new 3GPP Rel-15 APl versionis"2.0.0", and
the 3GPP Rel-16 API version is"3.0.0".

2nd Field (MINOR):
- Thisnumerical field shall be incremented when:

a) there arethefirst one or more backward compatible changes not corresponding to changes to earlier
3GPP Releases (i.e. changes introduced by 3GPP CR with other categories than "mirror") to the same
API in agiven 3GPP Release without any prior backward incompatible changesin that Release. If the
same 1st field (MAJOR) and the 2nd field (MINOR) are assigned to n previous 3GPP Releases, a

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 13 ETSI TS 129 501 V15.8.0 (2020-11)

MINOR version number shall be reserved for each intermediate 3GPP Release for possible subsequent
changes in that Release and the MINOR version number shall be incremented by n; and

EXAMPLE 7: Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0" (because there were no
changesto the API in Rel-16), and in Rel-17 the first backward compatible new feature is added
before the OpenAPI freeze, the API version "1.2.0.alpha-1" is assigned to Rel-17.

b) there are one or more subsequent backward compatible additions of features not corresponding to changes
to previous 3GPP Releases to the API in afrozen 3GPP Release before a higher MINOR number has
been allocated for the same MAJOR version (for a subsequent Release).

- Thisfield shal bereset to "0" if the 1st field (MAJOR) is changed, unless a backward incompatible change
needs to be applied to several 3GPP Releases that already contain the same MAJOR but different MINOR API
versions. In that case a single new major APl version is assigned, and for each such 3GPP Release with an own
MINOR version, anew MINOR version shall be assigned, starting with MINOR version "0" for the lowest such
Release, and reserving a MINOR version number for each intermediate Release without an own MINOR
version. (see Example 3)

NOTE 5: In most cases the MINOR version isincremented when new backward compatible features are added in a
3GPP Release. In rare cases, where only backward compatible changes not corresponding to changes to
previous 3GPP Releases are applied to a 3GPP Release, the MINOR version is also incremented. It is
recommended to avoid such changes in 3GPP Releases without added functionality whenever possible.

NOTE 6: Subsequent backward compatible changesin a given 3GPP Release before OpenAPI freeze do not lead to
an increment of the 2nd field (MINOR).

NOTE 7: Changes corresponding to changes in previous 3GPP Releases do not lead to an increment of the 2nd field
(MINOR).

NOTE 8: If two 3GPP Releases are under parallel development (because the work on Rel-X+1 has commenced
before the OpenAPI freeze of Rel-X), the corresponding APIs will obtain distinct values of the 1st field
(MAJOR) or 2nd field (MINOR).

EXAMPLE 8. Assuming that an APl was introduced with version "1.0.0" in Rel-15, and that the Rel-16 version
is"1.1.0.alpha-5" because the OpenAPI is not yet frozen in Rel-16, and that a new backward
compatible Rel-17 feature is added, the Rel-17 API versionis"1.2.0.apha-1".

3rd Field (PATCH):
- Thisnumerical field shall be incremented:

a) if the changes are only one or more backward-compatible corrections (but no changes requiring an update
of the 1st field (MAJOR) or of the 2nd field (MINOR) are made to the API after the OpenAPI freeze of a
3GPP Release; and

b) if one or more backward compatible additions of features, but no changes requiring an update of the 1st
field (MAJOR) or of the 2nd field (MINOR), are made to the API after the OpenAPI freeze of a 3GPP
Release and after the assignment of a MINOR version to a higher 3GPP Release.

- Thisfield shall bereset to "0" if the 1st field (MAJOR) or 2nd field (MINOR) is changed.
NOTE 9: Before the OpenAPI freeze for a given 3GPP Release, the 3rd field will not be incremented.

NOTE 10:1f the 1t field (MAJOR) and 2nd field (MINOR) were not incremented between 3GPP Releases (because
there were no added features and no backward incompatible changes), and the same backward compatible
changes are then applied to those 3GPP Releases, the API filesin those 3GPP Releases are identical and
will obtain the same API version number.

NOTE 11:Inrare cases for which a new backward compatible functionality needs to be added in an older 3GPP
Release after the OpenAPI freeze and work on that API already started in alater Release, the new
functionality is exceptionally introduced asa PATCH correction and a new supported feature could be
defined accordingly.

4th Field:

- Beforethe OpenAPI freeze of a 3GPP Release, the 4th field (DRAFT) shall be supplied as follows:

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 14 ETSI TS 129 501 V15.8.0 (2020-11)
a) When the 1st or 2nd field is incremented before the OpenAPI freeze of a 3GPP Release, thisfield shall
obtain the value "alpha-1".

b) Thenumerical value "n" within the field value "apha-n" shall be incremented if one or more subsequent
changes are made to the APl under devel opment.

- After the OpenAPI freeze of a 3GPP Release, the 4th field is not managed anymore by 3GPP.

After the OpenAPI freeze of a 3GPP Release, additional fields may be supplied based on operator policy after the 3rd
field. Therulesfor setting, or incrementing, such fields are out of the scope of 3GPP.

If no changeis applied to an APl in anew published TS version, the API version number shall not be incremented
unless the draft field needs to be removed at OpenAPI freeze. Thisaso appliesif the TS is published in a new 3GPP
Release.

NOTE 12: OpenAPI files can contain references to other OpenAPI files. Changes to referenced parts of such other
OpenAPI files need to be considered when determining if and how to update an API version.

NOTE 13: The API version number of those version fields managed by 3GPP is incremented using 3GPP change
requests.
4.3.1.3 Visibility of the API version number fields
The API version shall be indicated in the resource URI of every API, as described in clause 4.4.1.
The API version shall be indicated as the concatenation of the letter "v" and the 1% field of the API version number.
The other fields shall not be included in the resource URI.

NOTE: Including these digitsin the URI would force the NF service consumer to select a specific sub-version, at the
risk of seeing the request rejected if the NF service provider does not support it, while the request could have
been served by ignoring unknown elements.

The full API version number (i.e., containing all the fields) shall be visible in the OpenAPI specifications, in the
"version" subfield of the "info" field, as described in clause 5.3.3.
43.1.4 Relation to the Technical Specification version number

There is no one-to-one mapping between an API version number and the version number of the 3GPP Technical
Specification defining this API.

A 3GPP Technical Specification specifies one or more APIs, which may have different versions.

A change in the 3 field of a 3GPP TS version number (i.e. an editorial change) should not lead to a change in the
version number of the APIs specified in the 3GPP TS.

A change in the 1% and 2™ fields of the 3GPP TS version number islikely to lead to at least a change in the minor
version number of the APIs specified in the 3SGPP TS.

EXAMPLE: If version 15.4.1 of a3GPP TS contains version "1.1.1" of APl A, B and C, and a version 16.0.0 of
this 3GPP TSis derived from version 15.4.1, TS version 16.0.0 can contain version "1.2.0.alpha-
1" of API A (if al changes made are backward compatible), version "2.0.0.alpha-1" of API B (if
some changes are no backward compatible) and version "1.1.1" of API C (if no changes were
made).

The 3GPP TS defining the API isindicated in the OpenAPI specification of the API, as described in clause 5.3.4.

4315 Discovery of the supported versions

The NF service consumer may discover the API version(s) supported by an NF service producer using the following
mechanisms:

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 15 ETSI TS 129 501 V15.8.0 (2020-11)

- NRFquery: The NF service consumer may retrieve from the NRF the NF profile of agiven NF Instance. This
NF profile contains the full version number(s) of the API(s) supported by an NF Service Instance, as described in
the clause 6.2.6.2.4 of 3GPP TS 29.510 [18] and the planned retirement date.

- NF profile change notifications: The NF service consumer may subscribe for NF status change notifications with
the NRF as specified in clause 5.2.2.5 of 3GPP TS 29.510 [18]. The NRF shall notify as specified in clause
5.2.2.6 of 3GPP TS 29.510 [18], any change to the NF profile which may include updated NF service profile
containing the current list of NF services and their versions supported by the NF.

When a new major version is created, the NF service producer shall continue supporting at least the previous major
version until aretirement date unless all APl versions (except for draft APl versions published prior to the OpenAPI
freeze) with that previous major version are withdrawn (see clause 4.3.1.6); this enables NF service consumers to
migrate to the new version. After expiration of the retirement date, the old major version should be deprecated. The
retirement date of an old major version supported by a NF service instance may be updated in the NF profile in the
NRF.

4.3.1.6 Withdrawing API versions

If it is discovered that one or several previous API versions are not providing the basic mandatory functionality of an
API due to severe functional or encoding deficits (for instance, thereis no or very limited interoperability between the
NF service consumer and NF service producer when such an API version is used, or the API is hardly implementable
because of severe deficitsin the OpenAPI file that cannot easily be fixed by implementorsin an interoperable manner),
those API versions shall be listed as withdrawn in subsequent versions of the TS defining the corresponding API; any
withdrawn API versions from the same or previous 3GPP releases shall be listed. API versions published before the
OpenAPI freeze of the corresponding 3GPP Release, i.e. with a4th Field (DRAFT) as part of the version number, shall
not be withdrawn.

NOTE 1: Itisrecommended to avoid withdrawing API versions whenever possible. It is expected that a need to
withdraw API versionsis most likely detected when discussing corrections soon after the OpenAPI freeze
of anew API.

NOTE 2: Correctionsto optional or minor parts of the API functionality do not lead to the withdrawal of API
versions. However, if severe functional or encoding deficits of the functionality related to an optional
functionality with a corresponding supported feature (see 3GPP TS 29.500 [2] clause 6.6.2) are
discovered, a new supported feature can be introduced to enable a negotiation of the support of the
correction, and the old corresponding supported feature can be marked as "withdrawn" in the table
defining the supported features of an API.

Withdrawn API versions should not be deployed.

4.4 URI Structure

441 Resource URI structure

Resources are either individual resources, or structured resources that can contain child resources. It is recommended to
design each resource following one of the archetypes provided in the Annex C.

A URI uniquely identifies aresource. In the 5GC SBI APIs, when aresource URI is an absolute URI, its structure shall
be specified as follows:

{apiRoot}/{apiName}/{apiV er sion}/{apiSpecificResour ceUriPart}
"apiRoot" shall be a concatenation of the following parts:
- scheme ("http" or "https")

NOTE: Inthisrelease of the specification both http and https scheme URIs are allowed. See clause 13.1 of
3GPP TS 33.501[22] for further details on security of Service Based Interfaces.

- thefixed string "://"

- authority (host and optional port) as defined in IETF RFC 3986 [9]

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 16 ETSI TS 129 501 V15.8.0 (2020-11)

- anoptional deployment-specific string (API prefix) that startswith a"/" character.

"apiName" shall define the name of the API.

"apiVersion" shal indicate the 1% Field (MAJOR) of the version of the API. See also clause 4.3.1.3.

While "apiRoot", "apiName" and "apiVersion" together define the base URI of the API, each

"api SpecificResourceUriPart" defines a resource URI of the API relative to the base URI.

4.4.2 Custom operations URI structure

The custom operation definitionisin Annex C.

The URI of acustom operation which is associated with a resource shall have the following structure:
{apiRoot}/{apiName}/{apiV er sion}/{api SpecificResour ceUriPart}/{custOpName}

Custom operations can a so be associated with the service instead of aresource. The URI of a custom operation which
is not associated with aresource shall have the following structure;

{apiRoot}/{apiName}/{apiVersion}/{custOpName}
In the above URI structures, "apiRoot", "apiName", "apiVersion" and "api SpecificResourceUriPart" are as defined in

clause 4.4.1 and "custOpName" represents the name of the custom operation as defined in clause 5.1.3.2.

4.4.3 Callback URI structure

The callback URI shall bein the form of an absolute URI as defined in clause 4.3 of IETF RFC 3986 [9], including an
authority, and excluding any query component, any fragment component and any userinfo subcomponent.

4.5 Resource Representation and Content Format Negotiation

4.5.1 Resource Representation

A resource representation is a serialization of the resource state in a particular content format. It'sincluded in the data
frame of an HTTP/2 request or response. Representation header fields provide metadata about the representation. When
amessage includes a data frame, the representation data enclosed in the data frame. HTTP/2 reuses the definition of
Representation header asHTTP 1.1 in IETF RFC 7231 [6]. Content-type field in HTTP/2 header performs as
representation header fields and describes the representation data that would have been enclosed in the data frame, e.g.
if content-type is application/json, resource representation in data frame is serialized in JSON format.

Server supports the content format of the representation received in the data frame of the request and returns the 200
OK" response code.

4.5.2 Content Format Negotiation

IETF RFC 7231 [6] provides a mechanism to negotiate the content format of a representation.

In HTTP/2 requests and responses, the "Content-Type" HTTP/2 header field is used to signal the format of the actual
representation included in the data frame. If the format of the representation in an HTTP/2 request is not supported by
the server, it responds with the "415 Unsupported Media Type" response code.

For GET method, the "Accept" HTTP header of the HTTP/2 request signals the content formats that a client supports. If
the server cannot provide any of the accepted formats, it returns the "406 Not Acceptable" response code.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 17 ETSI TS 129 501 V15.8.0 (2020-11)

4.6 Use of HTTP Methods

4.6.1 Use of Request/Response Communication

46.1.1 CRUD
46.1.1.1 Creating a Resource
46.1.1.1.1 General

Procedures that allow an NF service consumer to create a new resource at the NF service producer shall be specified to
either use the HTTP POST method with procedures according to clause 4.6.1.1.1.2 or the HTTP PUT method with
procedures according to clause 4.6.1.1.1.3.

46.1.1.1.2 Creating a Resource using POST

The HTTP POST method (see IETF RFC 7231 [6]) allows an NF service consumer to create a new child resource at the
NF service producer in such a manner that the NF service producer selects the child resource identifier and the URI for
the child resource.

Figure 4.6.1.1.1.2-1 illustrates creating a resource using POST.

NF service NF service

consumer producer
| |
| . |
——1. POST .../parent-resource (ResourceRepresentation)—»
| |

|

:4—2. 201 Created (ResourceRepresentation)—:
| |
| |

Figure 4.6.1.1.1.2-1: Creating aresource using POST

1. The parent resource of which the new resource isto be created as a child isidentified by the request URI. The
payload body of the POST request shall contain a representation of the resource to be created without a child
resource identifier. For forward compatibility, the NF service producer ignores unknown attributes in the received
resource representation unless specified otherwise by the particular application.

2. The NF service producer generates a child resource identifier and constructs the URI for the created resource by
appending that child resource identifier to the parent resource URI received as request URI of the POST request
(e.g.".../parent-resource/childresourcel").

On success, "201 Created” shall be returned, the payload body of the POST response should contain a representation
of the created resource, and the "Location™ header shall be present and shall contain the URI of the created resource.

The URI included in the "Location" header may be an absolute URI or arelative URI reference (see
IETF RFC 3986 [9]); when the URI isin relative form, the base URI used to resolve the URI reference is the target
URI included in the received POST request.

NOTE: The representations of the resource in the request and response can differ, e.g. the representation of the
resource in the response can be empty or can contain a subset of the representation as received in the
request possibly with modified attributes, and in addition can contain additional attributes. Exact details
will be specified by the application.

On failure, the appropriate HT TP status code indicating the error shall be returned and appropriate additional error
information should be returned in the POST response body (see clause 4.8).

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 18 ETSI TS 129 501 V15.8.0 (2020-11)

A collection may be used to model aresource that serves as a directory of resources that may be distributed on different
processing instances or hosts. If so:

- theauthority and/or deployment-specific string of the apiRoot of the created resource URI returned by the NF
Service Producer in the "Location™ header may differ from the authority and/or deployment-specific string of the
apiRoot of the request URI received in the POST request.

- the NF Service Consumer shall be capable to receive and process an authority and/or deployment-specific string
in the apiRoot of the created resource URI that differs from the authority and/or deployment-specific string of
the apiRoot of the Request URI.

It needs to be clearly stated in the 5GC SBI API specifications when a NF Service Producer may return a different
authority and/or deployment-specific string in the apiRoot of the created resource URI for a collection resource.

46.1.1.1.3 Creating a Resource using PUT

The HTTP PUT method (see IETF RFC 7231 [6]) allows an NF service consumer to create a new resource at the NF
service producer in such a manner that the NF service consumer selects the resource identifier and the URI for the
resource.

Figure 4.6.1.1.1.3-1 illustrates creating aresource using HTTP PUT.

NF service NF service

consumer producer
| |

:—1 . PUT .../resource (ResourceRepresentation)—A

| |

| |
:4—2. 201 Created (ResourceRepresentation)—:
| |
| |

Figure 4.6.1.1.1.3-1: Creating a Resource using HTTP PUT

1. The NF service consumer selects aresource identifier and constructs the URI for the resource to be created by
appending that resource identifier to the parent resource URI. The resource that isto be created is identified by
that URI asrequest URI. The payload body of the PUT request shall contain a representation of the resource to
be created. For forward compatibility, the NF service producer ignores unknown attributes in the received
resource representation unless specified otherwise by the particular application.

2. On success, "201 Created" shall be returned, the payload body of the PUT response should contain the
representation of the created resource, and the "Location™ header shall be present and shall contain the URI of
the created resource.

NOTE: The representations of the resource in the request and response can differ, e.g. the representation of the
resource in the response can be empty or can contain a subset of the representation as received in the
request possibly with modified attributes, and in addition can contain additional attributes. Exact details
will be specified by the application.

On failure, the appropriate HT TP status code indicating the error shall be returned and appropriate additional
error information should be returned in the PUT response body (see clause 4.8).

If the resource that isto be created already exists at the NF service producer, the following applies:

1) If the update of that resource by PUT is supported, the existing representation of the resource is replaced with the
representation received in the PUT request body; see clause 4.6.1.1.3.1.

2) If the update of that resource by PUT is not supported, the "403 Forbidden" HT TP status code shall be returned
and appropriate additional error information should be returned in the PUT response body (see clause 4.8).

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 19 ETSI TS 129 501 V15.8.0 (2020-11)

46.1.1.2 Reading a Resource

46.1.1.2.1 Reading a Single Resource

Procedures that allow a service consumer NF (client) to read information from the server shall be specified to use the
HTTP GET method (see IETF RFC 7231 [6]) to obtain the current representation of aresource.

Figure 4.6.1.1.2-1 illustrates reading a resource.

NF service NF service

consumer producer

I I

| |

| |
——————1. GET .../resource?query-parameter=value ()———»
|

|
:4—2. 200 OK (ResourceRepresentation)

Figure 4.6.1.1.2.1-1: Reading aresource

1. Theresource of which arepresentation isto be obtained isidentified by the request URI. Query parameters may
be used to control the content of the result.

Editor's Note: Exact limits for number and length of query parameters are ffs.

Editor's Note: Alternatives to the GET method for cases where the limits for number and length of query parameters
are exceeded are ffs.

The payload body of the GET request shall be empty.

2. On success, "200 OK" shall be returned and the payload body of the GET response shall contain the obtained
resource representation.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional
error information should be returned in the GET response body (see clause 4.8).

46.1.1.2.2 Querying a Set of Resources

Procedures that allow a service consumer NF (client) to querying a set of resources from the server shall be specified to
use HTTP GET method towards a resource modelled as Collection or Store archetype.

Query parameters (see clause 4.6.1.1.5) may be provided when querying a set of resources. The query component
contains non-hierarchical datathat, along with datain the path component, to filter the resources identified within the
scope of the URI's scheme to a subset of the resources matching the query parameters. The query component is
indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the
URI.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 20 ETSI TS 129 501 V15.8.0 (2020-11)

client server

I
1. GET .../resource?q uery-parameters—»}

|
2. 200 OK (ResourceRepresentation) :
——————— or |
|
|
!

| 404 Not Found

Figure 4.6.1.1.2.2-1: Query of a collection of resources by using query parameters.

Step 1. The client shall send aHTTP GET request using the URI of aresource modelled as Collection or Store
archetype, optionally with query parameters, to the server.

Step 2. On success, the server shall return a set of sub-resources that includes only those entries filtered by the query
parameters. If no sub-resource is matched for the querying service operation, the server shall return "200 OK" with an
empty array (e.g. "[]" in JSON) in response body. If the resource in the URI doesn't exist on the server, the server shall
return 404 Not Found" with optionally the cause information in response body.

NOTE: Theresult array/empty array can be defined as an attribute of an object, if the service operation returns an
object in the response payload for extensibility consideration.

Clause 4.9 specifies some possible options for an NF Service Producer to return the representations of multiple
resources to a NF Service Consumer.

46.1.1.3 Updating a Resource

46.1.13.1 Usage of HTTP PUT

Procedures that allow a service consumer NF (client) to update information stored at the server by means of a complete
replacement shall be specified to use the HTTP PUT method to replace the current representation of aresource with a
new representation.

Figure 4.6.1.1.3.1-1 illustrates updating a resource using HTTP PUT.

NF service NF service
consumer producer
[

| |
————1. PUT .../resource (ResourceRepresentation)—A

|
2. 204 No Content () !
or 200 OK |

|

|

Figure 4.6.1.1.3.1-1: Updating a Resource using HTTP PUT

1. Theresource that isto be updated isidentified by the request URI. The payload body of the PUT request shall
contain the new representation of the resource. For forward compatibility, the NF service producer ignores
unknown attributes in the received resource representation unless specified otherwise by the particular
application.

2. On success, "204 No Content" or "200 OK" shall be returned.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional
error information should be returned in the PUT response body (see clause 4.8).

If the resource that isto be updated does not exist at the NF service producer, the following applies:

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 21 ETSI TS 129 501 V15.8.0 (2020-11)
1. If the creation of that resource by PUT is supported, the resource is created according to the procedure in clause
46.1.1.1.3.

2. If the creation of that resource by PUT is not supported, the "403 Forbidden" HTTP status code shall be returned
and appropriate additional error information should be returned in the PUT response body (see clause 4.8).

46.1.1.3.2 Usage of HTTP PATCH

Procedures that allow a service consumer NF (client) to update information stored at the server by means of a partial
replacement shall be specified to use the HTTP PATCH method (see IETF RFC 5789 [10]) to modify the current
representation of a resource according to given modification instructions. The format of the PATCH message body shall
be specified for each resource where the PATCH method is supported using one or several of the following encodings:

- If no modification of individual elements within an array needs to be supported, the "JSON Merge Patch"
encoding of changes defined in IETF RFC 7396 [7] should be used.

- If amodification of individua elements within an array needs to be supported, the "JSON Patch" encoding of
changes defined in IETF RFC 6902 [8] shall be used.

A single of the above encodings shall be specified for each resource where the PATCH method is supported unless
backward compatibility considerations necessitate the support of both encodings.

NOTE 1: InRel-15 asingle encoding will be selected for each resource as backward compatibility considerations
do not yet apply.

NOTE 2: "JSON Merge Patch” does not support the modification of individual elements within an array. However,
it supports the modification of individual elements within maps (see clause 5.2.4.2). Collections of
elements can be modelled as maps, instead of arrays, if a partial modification using PATCH is desired.

NOTE 3: The Open API description of the body of HTTP PATCH requestsis specified in clause 5.3.8.
Figure 4.6.1.1.3.2-1 illustrates updating a resource using HTTP PATCH.

NF service NF service

consumer producer
| |
:—1. PATCH .../resource (Modificationlnstructions)—»i

|
2. 204 No Content () [
or 200 OK i

|

|

|
|
gt
|
|
|

Figure 4.6.1.1.3.2-1: Updating a Resource using HTTP PATCH

1. Theresource that isto be updated isidentified by the request URI. The payload body of the PATCH request
shall contain a description of the requested modifications of the resource. For the "JSON Merge Patch" encoding
defined in IETF RFC 7396 [7] and the "Content-Type" header shall be set to "application/merge-patch+json”.
For the "JSON Patch" encoding of changes defined in IETF RFC 6902 [8] the " Content-Type" header shall be
set to "application/json-patch+json”. For forward compatibility, the NF service producer shall ignore received
modification instructions of unknown attributes in the resource unless specified otherwise by the particular
application.

2. On success, "204 No Content" or "200 OK" shall be returned.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional
error information should be returned in the PATCH response body (see clause 4.8).

46.1.1.4 Deleting a Resource

Procedures that allow a service consumer NF (client) to delete a resource from the server shall be specified to use the
HTTP DELETE method (see IETF RFC 7231 [6]).

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 22 ETSI TS 129 501 V15.8.0 (2020-11)

Figure 4.6.1.1.4-1 illustrates deleting a resource.

NF service NF service

consumer producer
I

1. DELETE .../resource ()

U R SR

|
|
i
|
:4 2. 204 No Content ()
|
|

Figure 4.6.1.1.4-1: Deleting aresource

The resource that isto be deleted is identified by the request URI.
The payload body of the DELETE request shall be empty.
On success, "204 No Content” should be returned and then the payload body of the DELETE response shall be empty.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error
information should be returned in the DELETE response body (see clause 4.8).

4.6.1.1.5 Query Parameters

46.1.15.1 General

The query component in the URI contains non-hierarchical data that, along with data in the path component, to filter the
resources identified within the scope of the URI's scheme to a subset of the resources matching the query parameters.
The query component isindicated by the first question mark ("?") character and terminated by a number sign ("#")
character or by the end of the URI. The syntax of the query component is specified in IETF RFC 3986 [9].

When a server receives a request with a query component, it shall parse the query string in order to identify filters. The
first question mark is used to be a separator and is not part of the query string. A query string is composed of a series of
"key=value" pairs, separated by "&". If one query parameter contains more than one value, i.e. an array of data
elements, different values shall be separated by comma (",").

The behaviour of the server, when receiving an HTTP/2 method with a query parameter which is of type array and only
some of the members in the array can be matched, depends on each API and the behaviour shall be clearly described.

If multiple query parameters are defined for a method on the resource, the default logical relationship of the query
parameters shall be clearly described.

46.1.1.5.2 Complex query expression

The complex query expression is used when there are multiple query parametersin the URI and the query condition
needs to be expressed by alogical combination of multiple query parameters which overrides the default logical
relationship of the query parameters. The complex query expression is either a Conjunctive Normal Form (CNF) or a
Digjunctive Normal Form (DNF) which is equivalent to the logical combination of query parameters reflecting the
query condition.

The "complex-query" query parameter may be used when a complex query expression is heeded to express a query
condition. The value of the "complex-query" query parameter is of type "ComplexQuery" which isaJSON object, the
corresponding CNF or DNF is encoded into that JSON object (see 3GPP TS 29.571 [5] for the details of the data type
"ComplexQuery"). The use of "complex-query" shall be negotiated using the feature negotiation procedure as defined in
3GPP TS 29.500[2].

If aquery parameter isincluded in the "complexQuery" then the same query parameter shall not be included outside the
"complexQuery" in the same request message.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 23 ETSI TS 129 501 V15.8.0 (2020-11)
NOTE 1: Itisnot assumed that all APIs support "complex-query”, the APl supports this feature only when it is
described in the corresponding specification.

NOTE 2: Thelogical relationship between " complex-query” and the other query parameters defined for a particular
AP isdescribed in the corresponding specification of that API.

NTOE 3: The"complex-query" is not an additional explanation of the other query parameters, the condition
expressed in the "complex-query" is evaluated along with the other queries.

4.6.1.2 Custom Operations

Custom Operations provide procedures that allow a service consumer NF (client) to interact with an NF service
producer in other ways than what is supported by the CRUD methods described in clause 4.6.1.1.

Custom Operation can be related to a resource or can be related to an entire service and be independent of a resource.

Figure 4.6.1.2-1 illustrates the use of a custom operation related to aresource.

NF service NF service
consumer producer

1. POST .../resource/custom-operation-name (Custom Operation Parmeters)

-

2. 200 OK (Data related to Custom Operation) or
204 No Content()

Figure 4.6.1.2-1: Custom Operation on a Resource using HTTP POST

1. Therequest URI identifies the custom operation to be executed and the resource the custom operation relates to
and is constructed by adding a verb as name for the custom operation at the end of the resource URI (see
clauses 4.4.2 and 5.1.3.2). Parameters for the custom operation are included in the request body.

2. On success, "204 No Content" or "200 OK" shall be returned. "200 OK" shall contain a body with data related to
the custom operation.

On failure, the appropriate HT TP status code indicating the error shall be returned and appropriate additional error
information should be returned in the POST response body (see clause 4.8).

Figure 4.6.1.2-2 illustrates the use of a custom operation related to a service.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 24 ETSI TS 129 501 V15.8.0 (2020-11)

NF service NF service
consumer producer

1. POST .../custom-operation-name (Custom Operation Parameters)

2. 200 OK (Data related to Custom Operation) or
204 No Content()

Figure 4.6.1.2-2: Custom Operation related to Service using HTTP POST

1. Therequest URI identifies the custom operation to be executed and is constructed by adding a verb as name for
the custom operation at the end of the service URI (see clauses 4.4.2 and 5.1.3.2). Parameters for the custom
operation are included in the request body.

2. On success, "204 No Content” or "200 OK" shall be returned. "200 OK" shall contain a body with data related to
the custom operation.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error
information should be returned in the POST response body (see clause 4.8).

4.6.1.3 Use of Asynchronous Operations

Certain service operations may be designed to allow the invocation of arequest so that the response can be received
asynchronoudly: if the NF service consumer when sending a request cannot expect to receive an immediate final
response, the service consumer may provide a callback reference for final result notification. The service provider,
when receiving areguest that contains a callback reference for final result notification, may then return an immediate
"202 Accepted", and notify the service consumer about the final result using the received callback reference at alater
point in time.

46.1.4 Special provisions to support the seamless change of AMF as NF service
producer

Services provided by the AMF can be transferred seamlessly to a new AMF when the corresponding UE context is
transferred to that AMF.

To support a seamless change of the AMF as NF service producer, the proceduresin clause 4.6.1 are applied with the
following special provisions:

1. When becoming aware that a new AMF is serving the resource, the NF service consumer shall exchange the
authority part of resource URIs with the address of a new NF service producer and shall use that URI in
subsequent communication.

NOTE: An NF service consumer can become aware of an AMF change via Namf_Communication service
AMFStatusChange Notifications, via Error response from old AMF, vialink level failures (e.g. no
response from the AMF), or via a notification from the NRF that the AMF has deregistered. and can then
determine the new AMF either viainformation received within those services or by selecting an AMF
from an earlier received AMF set or the backup AMF.

2. Each AMF within a set of AMFs supporting seamless changes shall be prepared to receive updates for resource
URIs constructed according to bullet 1 with the own IP address as authority part from the NF service consumer,
by either handling the updates, or by replying with an HTTP " 307 temporary redirect” error response pointing to
new NF service producer, or by replying with another HTTP error such as an "404 Not found".

3. For aservice that includes notifications from the AMF, the NF service consumer shall be prepared to receive
notifications for the that service from any NF service producer within a set of NF service producers supporting
seamless changes

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 25 ETSI TS 129 501 V15.8.0 (2020-11)

4.6.2 Use of Subscribe/Notify Communication

4621 General

Subscribe/Notify communication between 5GC NFs can be used to keep involved NFs (consumers of a service)
informed of data changes or events that occur at another NF (producer of the service). A notification is a message that
contains information about the event.

Service consumer NFs (clients) need to subscribe to notifications at the service provider NF (server). This either
happens explicitly by means of creating a new subscription resource (see clause 4.6.2.2), or implicitly by updating a
relevant resource.

When the change/event occurs at the service producer NF, notifications (see clause 4.6.2.3) are sent from the service
producer NF to the service consumer NFs. This communication initiated by the service producer to the service
consumers requires that the service consumer NF (client) takes the role of an HTTP server and the service producer NF
(server) takestherole of an HTTP client.

During the explicit subscription the service consumer NF (client) provides a callback URI and possibly additional filter
criteriato the service producer NF (server). When the data-change/event occurs that matches the filter criteriain the
subscription, the service producer NF (taking the role of an HTTP client) uses the provided callback URI to notify the
service consumer NF (taking the role of an HTTP server) about the change.

4.6.2.2 Management of Subscriptions

46.2.2.1 General

The HTTP method to create a subscription shall be POST. The HTTP method to modify a subscription shall be PUT or
PATCH. The HTTP method to delete a subscription (i.e. to unsubscribe) shall be DELETE (see IETF RFC 7231 [6]).

Subscriptions may be implicit, i.e. exist without being explicitly created by a dedicated subscribe operation.
Two types of implicit subscriptions exist:

1. The subscription isimplied by an explicit operation different from the subscribe operation, which does not use the
GET method. The subscription implied by the explicit operation and the corresponding notification shall be part of the
same service.

2. The subscription exists without any explicit operation.

As an example for thefirst type, at the UDM the registered AMF (aslong asit isregistered) isimplicitly subscribed to
notification about de-registration and (possibly) P-CSCF restoration as side effect of the registration.

As another example for the first type, at the SMF, the AMF that created a SM Context for a PDU session isimplicitly
subscribed for SM Context Status notification. At AMF change the new AMF updates the SMF with its callback URI
for receiving subsequent SM Context Status notification.

As an example for the second type, at the UDR any available UDM isimplicitly subscribed to notification about
changes of provisioned subscriber data. When provisioned subscriber data are modified at the UDR by means of
provisioning, the UDR selects one of the available UDMs (i.e. one of the implicitly subscribed UDMs) and notifiesit
about the subscriber data change.

In the OpenAPI specification file, notifications for the second type of implicit subscriptions shall be specified as part of
an explicit subscription.

4.6.2.2.2 Creation of a Subscription

Figure 4.6.2.2.2-1 illustrates explicit creation of a subscription.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 26 ETSI TS 129 501 V15.8.0 (2020-11)

NF service NF service

consumer producer
I I
| |
:—1. POST .../xyz-subscriptions (XyzSubscription)—>:

|
|
:4 2. 201 Created (XyzSubscription)
|
|

Figure 4.6.2.2.2-1: Creation of a subscription

The parent resource (collection of subscriptions) isidentified by the request URI.

The data structure in the payload body of the POST request shall contain a callback URI, and may contain additional
criteriato filter the set of eventsthat trigger a notification. The request may contain an expiry time, suggested by the NF
Service Consumer as a hint, representing the time upto which the subscription is desired to be kept active and the time
after which the subscribed event shall stop generating notifications.

On success, "201 Created" shall be returned, the payload body of the POST response shall contain a representation of
the created subscription, and the "Location” header shall contain the URI of the created resource.

The response based on operator policies and taking into account the expiry time included in the request, may contain an
expiry time (i.e afuture timestamp), as determined by the NF Service Producer, after which the subscription becomes
invalid. If an expiry time was included in the request, then the expiry time returned in the response should be less than
or equal to that value. Once the subscription expires, if the NF Service Consumer wants to keep receiving notifications,
it shall create a new subscription in the NF Service Producer. The NF Service Producer shall not provide the same
expiry time (i.e afuture timestamp) for many subscriptionsin order to avoid all of them expiring and recreating the
subscription at the same time. If the expiry timeis not included in the response, the NF Service Consumer shall consider
the subscription to be valid without an expiry time.

On failure, the appropriate HT TP status code indicating the error shall be returned and appropriate additional error
information should be returned in the POST response body (see clause 4.9).

4.6.2.2.3 Modify a subscription

46.2.2.3.1 Modification of a Subscription Using HTTP PUT

Procedures that allow a NF service consumer to update the subscription at the server by means of a complete
replacement shall use the HTTP PUT method to replace the current subscription with a new representation.

Figure 4.6.2.2.3.1-1 illustrates modification a subscription using HTTP PUT.

NF service NF service
consumer producer
[

| |
—— 1. PUT .../{subcriptionld} (XyzSubsription)4>:

|
2. 204 No Content () !

or 200 OK(XyzSubscription) i
|

|

Figure 4.6.2.2.3.1-1: Modification a subscription using HTTP PUT

1. The NF Service Consumer shall send a PUT request to the resource URI representing the individual subscription.
The payload body of the PUT request shall contain the subscription information to be replaced including the
criteriato filter the set of events that trigger a notification. The request may contain an updated expiry time,
suggested by the NF Service Consumer as a hint, to extend the subscription lifetime, representing the time upto

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 27 ETSI TS 129 501 V15.8.0 (2020-11)

which the subscription is desired to be kept active and the time after which the subscribed event shall stop
generating notifications.

2. On success, "204 No Content” without any response body or "200 OK" with a response body providing current
resource representation shall be returned. When 200 OK" is returned, the response based on operator policies
and taking into account the expiry time included in the request, may contain an expiry time (i.e afuture
timestamp), as determined by the NF Service Producer, after which the subscription becomes invalid. If an
expiry time was included in the request, then the expiry time returned in the response should be less than or
equal to that value. Once the subscription expires, if the NF Service Consumer wants to keep receiving
notifications, it shall create a new subscription in the NF Service Producer, as specified in clause 4.6.2.2.2. The
NF Service Producer shall not provide the same expiry time (i.e a future timestamp) for many subscriptionsin
order to avoid all of them expiring and recreating the subscription at the same time. If the expiry timeis not
included in the response, the NF Service Consumer shall consider the subscription to be valid without an expiry
time.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error
information should be returned in the PUT response body (see clause 4.8).

If the NF Service Consumer is not allowed to update the subscription information, the "403 Forbidden" HTTP status
code shall be returned and appropriate additional error information should be returned in the PUT response body (see
clause 4.8).

If the resource that is to be updated does not exist at the NF service producer, the "404 Not Found" HTTP status code
shall be returned.

46.2.2.3.2 Modification of a Subscription Using HTTP PATCH

Procedures that allow a NF service consumer to update subscription at the server by means of a partia replacement
shall usethe HTTP PATCH method (see IETF RFC 5789 [10]) to modify the current subscription according to given
modification instructions.

Figure 4.6.2.2.3.2-1 illustrates updating a resource using HTTP PATCH.

NF service NF service

consumer producer
I I
| |

:—1. PATCH .../{subscriptionId}(ModificatioanzSubscription)—>:

|
I 2. 204 No Content () !
or 200 OK(ModifiedXyzSuscription) i
|
|

Figure 4.6.2.2.3.2-1: Modification a subscription using HTTP PATCH

1. The NF Service Consumer shall send a PATCH request to the resource URI representing the individual
subscription. The payload body of the PATCH request shall contain the modification instructions. The request
may contain an expiry time (i.e afuture timestamp), requested by the NF Service Consumer, representing the
time upto which the subscription is desired to be kept active and the time after which the subscribed event shall
stop generating notifications.

2. On success, "204 No Content" without any response body or "200 OK" with a response body containing the
modified subscription information shall be returned. When "204 No Content" is returned and if the request
included an expiry time, then the requested expiry time shall be accepted by the NF Service Producer. When
"200 OK" isreturned and if the request included an expiry time then the response based on operator policies and
taking into account the expiry time included in the request, shall contain an expiry time (i.e afuture timestamp),
as determined by the NF Service Producer, after which the subscription becomesinvalid. If an expiry time was
included in the request, then the expiry time returned in the response should be less than or equal to that value.
Once the subscription expires, if the NF Service Consumer wants to keep receiving notifications, it shall create a
new subscription in the NF Service Producer, as specified in clause 4.6.2.2.2. The NF Service Producer shall not
provide the same expiry time (i.e a future timestamp) for many subscriptionsin order to avoid all of them
expiring and recreating the subscription at the same time.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 28 ETSI TS 129 501 V15.8.0 (2020-11)

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error
information should be returned in the PATCH response body (see clause 4.8).

46.2.2.4 Delete a subscription

Figure 4.6.2.2.4-1 illustrates explicit deletion of a subscription.

NF service NF service
consumer pl’OdUCEf
| |
| 1. DELETE .../{subscriptionid} () >
| |
| |
|
|
|
|

- 2. 204 No Content ()
|
|

Figure 4.6.2.2.4-1: Deletion of a subscription

1. The NF Service Consumer shall send a DELETE request to the resource URI representing the individual
subscription. The request body shall be empty.

2. On success, "204 No Content” shall be returned. The response body shall be empty.

On failure, the appropriate HTTP status code indicating the error shall be returned in the DELETE response body (see
clause 4.8).

46.2.3 Notifications

The HTTP method for the notification that corresponds to an explicit subscription shall be POST (see
IETF RFC 7231 [6]).

NOTE: Clause 5.3.7 describes how to encode Notifications in OpenAPI specification files.

Figure 4.6.2.3-1 illustrates a notification.

NF service consumer NF service producer
(taking the role of a (taking the role of a
HTTP server) HTTP client)

I
1. POST {callback_ref} (Notification)

2. 200 OK or 204 No Content

e Gl

Y 1

Figure 4.6.2.3-1: Notification

1. The callback reference provided during creation of the subscription resource, or otherwise known from implicit
subscription, is used as the request URI. The callback reference for implicit subscriptions are obtained from the
NRF. When an NF / NF service registers with the NRF, the default notification subscriptions along with the
callback URI for receiving those notifications may be provided (see clause 6.1.6.2.3 of 3GPP TS 29.510 [18]).

The payload body of the POST request shall contain the notification payload.

2. On success, "200 OK" shall be returned if any information needs to be included in the payload body of the POST
response; otherwise, "204 No Content" shall be returned and the payload body of the POST response shall be
empty.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 29 ETSI TS 129 501 V15.8.0 (2020-11)

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional
error information should be returned in the PUT response body (see clause 4.8).

4.6.2.4 Special provisions to support the seamless change of AMF as NF service
consumer

Services consumed by an AMF can be transferred seamlessly to a new AMF when the corresponding UE context is
transferred to that AMF.

To support a seamless change of AMF as NF service consumer, the procedures in clause 4.6.2 are applied with the
following specia provisions:

1. When becoming aware that a new AMF is requiring notifications related to a subscription resource, the NF
service producer shall exchange the authority part of the corresponding Notification URI with the address of that
new NF service consumer and shall use that URI in subsequent communication.

NOTE: An NF service producer can become aware of an AMF change via Namf_Communication service
AMFStatusChange Notifications, via Error response from old AMF, vialink level failures (e.g no
response from the AMF), or via a notification from the NRF that the AMF has deregistered. and can then
determine the new AMF either viainformation received within those services or selecting an AMF from
an earlier received AMF set or the backup AMF.

2. Each AMF within a set of AMFs supporting seamless changes shall be prepared to receive notifications at the
Notification URI constructed according to bullet 1 with the own |P address as authority part from the NF service
producer, by either handling the notifications, or by replying with an HTTP " 307 temporary redirect” error
response pointing to new NF service consumer, or by replying with another HTTP error such as an "404 Not
found".

4.7 HATEOAS

4.7.1 General

Asdefined in [14], HATEOAS stands for Hypermedia As The Engine Of Application State. It means that the
hypermedia models application state transitions and describe application protocols.

As defined in [15] chapter 3 RESTful Domain Application Protocols, an application is a software implementation
defined to achieve a particular goal. It consists of a set of constrained interactions between NF Service Consumer and
Producer performed at run-time that are guided by an application specific set of rules. The application transits across
some intermediate states until the application's goal is achieved. The application has then reached its final state.

An application state is a snapshot of an application instance.

On each interaction, the NF Service Consumer and Producer exchange representations of resource state. According to
[14], "REST concentrates all of the control state into the representations received in response to interactions." and "The
model application is therefore an engine that moves from one state to the next by examining and choosing from among
the alternative state transitions in the current set of representations.” After each interaction the NF Service Consumer is
then presented with control state options to interact with additional resources. These control states are in the form of
hypermedia markups embedded in the returned resource representation. The application state changes when an NF
Service Consumer examines and chooses which control to operate and subsequently interacts with the resources
identified in the selected control state.

HATEOAS support is optional. If HATEOAS is supported, the procedure in the present clause 4.7 shall apply.

4.7.2 3GPP hypermedia format

NOTE 1: 3GPP hypermediaformat is derived from Hypertext Application Language (HAL). HAL is specified in an
expired internet draft available at "https://tools.ietf.org/html/draft-kelly-json-hal -08".

3GPP hypermedia format specifies the following optional reserved properties (see 3GPP TS 29.571 [5] for the complete
list and definition of objects and object members):

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 30 ETSI TS 129 501 V15.8.0 (2020-11)

- " _links": contains links to other resources and expresses valid state transitions.

A NF service producer shall construct a 3GPP hypermedia document by taking a 3GPP defined JSON object attribute
list and then adding a”_links" attribute.

Table 4.7.2-1: _links attribute

Attribute name Data type P Cardinality Description
_links map(LinksValueSch C |0.N _links attribute to be added into the JSON
ema) hypermedia object definition

The LinksVaueSchema data type shall be added to the list of re-used data types of the hypermedia enabled API (see
3GPP TS 29.509 [21] for an example of implementation of a hypermedia API).

NOTE 2: Depending of the applicable situation, the presence condition and the cardinality can be changed in
accordance. LinksValueSchema data type is defined in 3GPP TS 29.571 [5].

The"_links" member names are link relation types (as defined by IETF RFC 8288 [11]) and values are either a"link”
object or an array of "link" objects.

3GPP hypermedia format specifies the following "link" attribute:
"href": contains the URI of the linked resource.

A NF service producer shall set the Content-Type HT TP header to "application/3gppHal+json™ when returning an
HTTP payload with a hypermedia enabled document.

A NF service consumer supporting HATEOAS shall advertise it by adding an "Accept" HTTP header with
"application/3gppHal +json" as media type.

NOTE 3: The HATEOAS principle relies on NF Service Producer providing control state options (_links objects)
embedded in the returned resource representation to the NF Service Consumer. An NF Service Consumer
may decide to use the format of the _links attribute in HTTP requests to transfer URIs. Thisis beyond the
scope of HATEOASS and another content type than "3gppHal+json" such as " application/Json" can be
used.

4.7.3 Advertising legitimate application state transitions

When a NF service producer responds to a NF service consumer and there is one or more application state transition
possible, the NF service producer shall advertise them by adding a"_links" property in the returned resource
representation. When there are multiple state transitions with different relation types, then one member per relation type
shall be added to the"_links" object which name is equal to the relation type. If there is only one state transition for a
given relation type then the value of the member isa"link" object otherwise it isan array of "link" objects.

A NF service producer shall include alink into the returned resource representation with a registered relation type " self"
when it is expected further actions upon it (for instance reading it again or replacing the resource state).

NOTE 1: For ahypermedia application, areturned representation without any link denotes for the NF service
consumers the end of the interaction with the NF service producer. 3GPP APIs does not fulfil thisrule.

4.7.4 Inferring link relation semantic

When a NF service consumer receives aresponse with linked resources then it shall infer the link relation semantic
from the relation type. It shall not infer it from the linked resource URI format.

In 3GPP hypermedia, relation types are the name of "_links" object members.

4.7.5 Common Relation Types

4.75.1 Introduction

This clause contains the list of relation types supported in 3GPP Service Based Interface APIs.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 31 ETSI TS 129 501 V15.8.0 (2020-11)

Asdefined in IETF RFC 8288 [11] clause 2.1, alink relation type identifies the semantics of alink. It describes how
resources are related to each other. It may also be used to indicate that the target resource of alink has particular
attributes, or exhibits particular behaviours. Relation types shall not be confused with media types. It does not identify
the format of the representation that results when the link is dereferenced.

There are two kinds of relation types:
- Registered relation types,
- Extension relation types.

Registered relation types are identified by a token (for instance "self") and can be reused by other applications such as
3GPP SBI APIs. They are registered by IANA. Registered relation types shall be preferred against extension relation
types when expressing the link relation between two resources.

If there is a need to define arelation type that does not correspond to aregistered one but it is not wanted to register it
then an extension relation type shall be used instead.

4.75.2 Registered relation types

The"Link Relations' registry islocated at: https://www.iana.org/assignments/link-rel ations.

Table 4.7.5.2-1 specifies the list of registered relation types supported by all hypermedia enabled 3GPP APIs.

Table 4.7.5.2-2 specifies the list of registered relation types that can be used by some hypermedia enabled 3GPP APIs,
depending on the API design.

Table 4.7.5.2-1: mandatory registered relation types

Relation name
self

Table 4.7.5.2-2: optional registered relation types

Relation name
next
first
previous
last
item

4.75.3 Extension relation types

When no registered relation exists to express the relation between two resources, an extension relation type shall be
used instead. It may be defined as a string token or asa URI as defined in IETF RFC 8288 [11].

An API specification using extension relation types shall contain a clause "Relation types' in the clause "Simple data
types and enumerations' (see 3GPP TS 29.509 [21] for an example of implementation of a hypermedia API). The
clause shall contain atable listing the token or the URI of the created relation types. It shall also contain a detailed
specification of the semantic of the relation types defining the conditions that the NF Service Consumer shall match to
follow alink.

4.7.6 Negotiating the support of optional HATEOAS features
The supported feature mechanism in clause 6.6.2 of 3GPP TS 29.500 [2] should be used to negotiate the usage of

optional HATEOAS features in addition to negotiating the content type "3gppHal +json”. Separate supported features
can be defined for link relation types related to different use cases.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 32 ETSI TS 129 501 V15.8.0 (2020-11)

4.8 Error Responses

When an error occurs that prevents the NF/NF service acting as an HT TP server from successfully fulfilling the HTTP
request, the NF/NF service shall map an application error to the most similar 4xx/5xx HTTP status code as defined in
clause 5.2.7 of 3GPP TS 29.500 [2]. When the HT TP status code is not enough for the NF/NF service acting as an
HTTP client to determine the cause of the error, the NF/NF service acting as an HTTP server should provide additional
application related error information, by including in the response body a representation of a"ProblemDetails’ data
structure according to IETF RFC 7807 [19] that provides additional details of the error.

NOTE 1. The response body with the "ProblemDetails" data structure does not need to be sent on a 3GPP 5GC API
for aparticular HTTP status code if that HT TP status code itself provides enough information of the error,
or if there are security concerns disclosing detailed error information.

The definition of the general "ProblemDetails’ data structure from IETF RFC 7807 [19] is specified in clause 5.2.4.1 of
3GPP TS 29.571 [5]. The "ProblemDetails" data structure is a JSON object, as defined in IETF RFC 7807 [19], and
contains the following attributes:

a) "type" - aURI reference according to IETF RFC 3986 [9] that identifies the problem type;

b) "title" - a short, human-readable summary of the problem type that should not change from occurrence to
occurrence of the problem;

c) "status' - the HTTP status code for this occurrence of the problem;
d) "detail" - a human-readable explanation specific to this occurrence of the problem; and
€) "instance" - a URI reference that identifies the specific occurrence of the problem.
A particular APl may define additional attributes that provide more information about the error.
NOTE 2: |IETF RFC 7807 [19] alows adding of new propertiesin the "ProblemDetails" object.
The following additional attributes are generic extensions defined for the 3GPP 5GC APIs:
a) "cause'- amachine-readable application error cause specific to this occurrence of the problem; and
b) "invalidParams' - invalid parameters causing arequest to be rejected.

The "cause" attribute should be included and provide application-related error information, if available. Application
error causes should be defined in 5GC SBI APIs specifications, using the UPPER_WITH_UNDERSCORE case
convention specified in clause 5.1.1.

EXAMPLE 1. "OUT_OF LADN_SA".

The"invalidParams" attribute should be used to report invalid parameters when arequest is rejected dueto invalid
parameters.

All the application error causes supported by an API should be defined in a specific clause " Application Errors' under
the "Error Handling" clause specified for the API. The application error causes that a specific service operation may
respond should be further listed in the table defining the data structure supported by the response body, with the
associated HTTP error status code.

For service operations that reguire to provide additional, non-error related, application information in an error response
(e.g. SMF returning aNAS SM message to be sent to the UE within an error response to the AMF), an application-
specific data structure should be defined for the corresponding service operation's response, including one "error"
attribute defined with the "ProblemDetails" data structure, and the other application-specific attributes as required for
the API.

EXAMPLE 2: See"SmContextCreateError" datatypein 3GPP TS 29.502 [20].

The NF/NF service that generates the HT TP response shall include in the HTTP response a " Content-Type" header field
Set to:

"application/problem+json”, if the response includes a payload body containing the "ProblemDetails' data
structure; or

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 33 ETSI TS 129 501 V15.8.0 (2020-11)

"application/json", if the response includes a payload body containing an application-specific data structure.

4.9 Transferring multiple resources to a NF Service Consumer

49.1 General

This clause describes some possible options that an APl may implement when a NF Service Producer needsto return
the representations of multiple resources to a NF Service Consumer, e.g. during the query of alarge collection of
resources (see clause 4.6.1.1.2.2).

Which options an APl may support is defined in the respective stage 3 specification of the API.

4.9.2 Direct Delivery

A NF Service Producer may return the representations of the resources directly in the response body, i.e. the response
body contains an array of the resource representations.

4.9.3 Direct Delivery with Iterations

If alarge number of resource representations need to be returned, the NF Service Producer may return a representation
containing a partial list of the requested resources in the response body, with link(s) containing URI(s) alowing the
client to retrieve the remaining part(s) of the resources.

The returned representation containing a partial list of the requested resource is a " 3gppHal+json” document. The
document is a JSON object with two members whose names are below.

- _links.
- child: contains the resources of the partia list.

The member whose nameis™_links" shall contain a member whose nameis " self* and whose valueisa"link" object
that contains the URI of the returned representation. It shall also contain a member whose nameis "next" and whose
valueisa"link" object that contains the URI of the next partial list of the collection if the returned partial list is not the
last one.

The member whose name is"_links" should aso contain members whose names are "first", "previous' and "last" and
whose values contain a"link" object that contains the URIs of the first, previous and last partial lists of the collection if
such lists exist.

The returned representation shall have a member whose nameis " child" and whose value is an array of objects. Each of
the individual resource representations returned in the partial list shall be embedded in an object of that array. Each
object shall also have a member whose nameis"_links'. The later shall contain a member whose name is "self" and
whose valueisa"link" object that contains the URI of the embedded representation.

The table below provides a template to be added in the chapter describing the GET operation of a 3GPP API using the
direct delivery with iteration mechanism.

Table 4.9.3-1: Data structures supported by the GET Response Body on this resource

Data type P | Cardinality | Response Description
codes
PartialList M |1 200 OK This case represents a successful return of a partial list for the
corresponding request with direct delivery with iteration.

The following data types shall be added to the list of specific data types and described as below in the structured data
type chapter.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 34 ETSI TS 129 501 V15.8.0 (2020-11)

Table 4.7.2-1: PartialList

Attribute name Data type P Cardinality Description
_links map(LinksValueSch M |1..N contains the pagination links
ema)
child array(ApiSpecificHy M |1.N contains the individual resources with a self
permediaEnabledind link.
ividualResource) The data type in the array is specific to the API
and is a hypermedia enabled version of the
individual resource data type.

Table 4.7.2-1: ApiSpecificHypermediaEnabledIndividualResource

Attribute name Data type P Cardinality Description
attributel
attribute2
attribute N
_links selfLink M 1 contains the link to itself

NOTE 1: attributes 1 to N are the attributes of the original individual resource.
The LinksValueSchema and SelfLink data types shall be added to the list of re-used data types of the 3GPP API.

A NF Service Consumer that receives link(s) in the response body may retrieve the remaining part(s) of the resources
by sending GET reguests towards the URI(s) contained in the link(s).

494 Indirect Delivery

A NF Service Producer may not return any requested resource representation and instead may return a representation
containing only alist of linksto the requested resources in the response body.

The returned representation containing the list is a " 3gppHal+json” document. The document is a JSON object with one
member whose nameis:

- _links.

This member shall contain a member whose name is"item" and whose value is an array of "link™ objects. Each of the
link objects contains one requested resource URI. There shall be one link object per requested resource.

It shall also contain a member whose nameis "self" and whose valueisa"link" object that contains the URI of the
returned representation.

A NF Service Consumer that receives such aresponse may then send a GET request per resource URI to retrieve the
requested resources from the NF Service Producer.

4.9.5 Indirect Delivery with HTTP/2 Server Push
A NF Service Producer may use HTTP/2 Server Push, if HTTP/2 Server Push is supported in the PLMN.

To use HTTP/2 Server Push, the NF Service Producer shall send PUSH_PROMISE frames in the HT TP response, with
each PUSH_PROMI SE frame containing a GET request targeting the URI of one resource to be transferred and the
reserved stream identifier to be used for transferring the resource. Then the NF Service Producer shall send Push
Responses via the corresponding reserved streams, with each Push Response contai ning the representation of the
associated resource. The NF Service Producer shall also send links with the URIs of the resourcesin DATA frame(s) of

the response message.

A NF Service Consumer may disable HTTP/2 Server Push by sending SETTINGS ENABLE_PUSH parameter with
value"0" on HTTP level, as specified in IETF RFC 7540 [13].

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 35 ETSI TS 129 501 V15.8.0 (2020-11)

NF Service Consumer NF Service Producer

1. Ask for resources (HTTP GET /resource-path?query-parameters)

2. Detects of sending
multiple resources and

3. HTTP 200 OK choose to use Server
PUSH_PROMISE frame 1 Push
: =< 1> id=< >
PUSH_PROMISE frame 2
< (:path=<resourceUri2> stream id=<streamld2>)

PUSH_PROMISE frame N
(:path=<resourceUriN> stream id=<stream|dN>)

Response HEADERS frame & DATA frames
(List of URIs of the resources)

4.1 Push response

.« (body: data representation of <resourceUri1>) gtream: <streamld1>-

4.2 Push response

.« (body: data representation of <resourceUri2>) gtream: <streamld2>-

4.n Push response
(body: data representation of <resourceUriN>)

- Stream: <streamldN>-
5. Get Single Resource Request

| __ _(path=<resourceUriX>) . _ _ _ _ _ _ _ _ _ __ __ _ _ _p
5.a. Get Single Resource Response

<« _ (ody: data representation of <resourceUriX> |

Figure 4.9.5-1 Indirect Delivery with HTTP/2 Server Push

1. A NF Service Consumer sends a HT TP request to get resources(s) to the NF Service Producer, e.g. aquery of a
collection of resources.

2. The NF Service Producer detects that multiple resources are to be returned and choose to indirectly deliver the
resources with the Server Push mechanism.

3. The NF Service Producer returns multiple PUSH_PROMISE Requests before HEADERS frame and DATA
frames(s) to the NF Service Consumer. Each PUSH_PROMISE Reguest contains the URI of one resource to be
transferred and the identifier of the reserved stream used for transferring the resource. The NF Service Producer
shall also send links with the URIs of the resourcesin DATA frame(s) of the response message.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 36 ETSI TS 129 501 V15.8.0 (2020-11)
4.1-4.n. The NF Service Producer sends Push Reponses via corresponding reserved streams. Each Push Response
contains the representation of the associated resource.

5. If the NF Service Consumer does not successfully receive aresource in time, it may send arequest to get that
resource, using the resource URI previously received from the Push Request.

5.a The NF Service Producer returns the data of the requested resource in the response.

4.9.6 Criteria for choosing the transfer method

The following considerations may be used to determine which method to use transfer multiple resourcesto aNF
Service Consumer.

If the size of the representation of each resourceis small, direct delivery is preferred. If the number of resources to be
returned is large, the NF Service Producer may choose iterative delivery.

NOTE 1: For thisrelease of this specification, a JSON payload size less than 64000 octets is considered as not large
and a JSON payload size larger than 64000 octets is considered as large.

If the size of the representation of each resource islarge, indirect delivery is preferred. If the NF Service Producer
supports HTTP/2 Server Push, then:

- when SETTINGS ENABLE_PUSH parameter with value "1" has been received from the NF Service Consumer,
as specified in IETF RFC 7540 [13], it should choose HTTP/2 Server Push to deliver the resource.

- when SETTINGS _ENABLE_PUSH parameter with value "0" has been received from the NF Service Consumer,
as specified in IETF RFC 7540 [13], it must not choose HTTP/2 Server Push to deliver the resources.

- when SETTINGS _ENABLE_PUSH parameter has not been received from the NF Service Consumer, as
specified in IETF RFC 7540 [13], it may decide whether to use HTTP/2 Server push or not, depending on other
factors, e.g. operator policy, whether the client and server pertain to the same PLMN, etc.

An NF Service Producer shall use Indirect Delivery with HTTP/2 Server Push only if the NF Service Consumer (client)
indicated support for accepting server pushed resource representations, via the Supported Features negotiation as
specified in clause 6.6.2 of 3GPP TS 29.500 [2].

NOTE 2: Inthisrelease the Indirect Delivery with HTTP/2 Server Push is not used by 3GPP service based interface
APls.

5 Documenting 5GC SBI APIs

5.1 Naming Conventions

5.1.1 Case Conventions
The following case conventions for names and strings are used in the 5GC SBI service APIs.
1) UPPER_WITH_UNDERSCORE

All letters of astring are capital |etters. Digits are allowed. Word boundaries are represented by the underscore
"_" character. No other characters are allowed.

Example 1.
a) DATA_MANAGEMENT
b) CELL_CHANGE

2) lower_ with_underscore

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 37 ETSI TS 129 501 V15.8.0 (2020-11)

All letters of astring are lowercase |etters. Digits are allowed. Word boundaries are represented by the
underscore" " character. No other characters are allowed.

Example 2:
a) data_management;
b) cell_change.
3) UPPER-WITH-HYPHEN

All letters of astring are capital letters. Digits are allowed. Word boundaries are represented by the hyphen
character. No other characters are allowed.

Example 3:
a) DATA-MANAGEMENT
b) CELL-CHANGE
4) lower-with-hyphen

All letters of astring are lowercase |etters. Digits are allowed. Word boundaries are represented by the hyphen -
" character. No other characters are allowed.

Example 4:
a) data-management;
b) cell-change.
5) UpperCamel

A string is formed by concatenating words. Each word starts with aletter or adigit. The first letter of each word
shall be an uppercase letter; all other charactersin the word shall be lowercase letters or digits.

Abbreviations follow the same scheme (i.e. first letter uppercase, all other letters lowercase).
Example 5:
a) DataManagement.
b) CellChange
¢) 5QiPriorityLevel
d) Amf3GppAccessRegistration
6) lowerCamel

A string is formed by concatenating words.Each word starts with aletter or adigit. Thefirst letter of the first
word shall be alowercase letter; thefirst letter of the rest of the words shall be an uppercase letter. All other
characters in the words shall be lowercase letters or digits.

Abbreviations follow the same scheme.
Example 6:
a) dataManagement
b) cellChange
¢) 5SqiPrioritylLevel

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 38 ETSI TS 129 501 V15.8.0 (2020-11)

NOTE: These naming conventions are used as guidelines, to provide some uniformity in the specification of the
different 5GC APIs. However, for different reasons, sometimes exceptions can be made. In any case, the
OpenAPI specifications are mandatory, and the different network elements cannot determine that a
certain message, that otherwise compliesto the OpenAPI specification, isincorrect based only on the fact
that it does not follow a given naming convention in a certain data element.

5.1.2 API Naming Conventions

An API shall take the name of the corresponding service (e.g. Nudm_SubscriberDataM anagement). When used in URIs
the name shall be converted to lower-with-hyphen and may use an abbreviated form (e.g. nudm-sdm).

51.3 Conventions for URI Parts

5.13.1 Introduction
The parts of the URI syntax that are relevant in the context of the 5GC SBI service APIs are asfollows:
- Path, consisting of segments, separated by "/" (e.g. segment1/segment2/segment3).
- Query, consisting of pairs of parameter name and value (e.g., ?mcc=262& mnc=01, where two pairs are
presented).
5.1.3.2 URI Path Segment Naming Conventions

a) All path segments of aresource URI which represent a string constant shall use lower-with-hyphen (thisimplies
that a path cannot end with "/").

Example 1:
subscriber-data

b) If aresource represents a collection of entities and the last path segment of the resource URI is a string constant,
that last path segment shall be plural.

Example 2:
...Iprefix/api/vl/users

c) For resources where the last path segment of the resource URI is a string constant, that last path segment shall be
anoun or a composite noun.

Example 3:
...Iprefix/api/vl/users

Example 4:
...Iprefix/api/v1/user-session

d) For custom operations, the last path segment of the URI via which the operation isinvoked shall be averb, or
shall start with averb.

Example 5:

.../app_instances/{ applnstancel d} /instantiate
Example 6:
.../sessiong/terminate-all

€) All path segments of a URI which are variable names shall use lowerCamel, and shall be surrounded by curly
brackets.

Example 7:

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 39 ETSI TS 129 501 V15.8.0 (2020-11)

.../subscriber-data/{ supi}

f) Onceavariableisreplaced at runtime by an actual string, the string shall follow the rules for a path segment
defined in IETF RFC 3986 [9]. IETF RFC 3986 [9] disallows certain characters from use in a path segment.
Each actual 5GC SBI service API specification shall define this restriction to be followed when generating
values for path segment variables, or propose a suitable encoding (such as percent-encoding according to
IETF RFC 3986 [9]), to escape such characters if they can appear in input strings intended to be substituted for a
path segment variable.

5.1.3.3 URI Query Naming Conventions

a) URI query parameter names in queries shall use lower-with-hyphen.

Example 1:
nf-type=AMF

b) Variablesthat represent actual parameter valuesin queries shall use lowerCamel and shall be surrounded by
curly brackets.

Example 2:
nf-id={ chooseAVa ue}
¢) Whenavariableisreplaced at runtime by an actual string, the convention defined in clause 5.1.3.2 item f)
applies to that string.
5.1.4 Conventions for Names in Data Structures

The following syntax conventions apply when defining the names for attributes in the 5GC SBI service API data
structures, carried in the payload body of http requests and responses.

a) Names of attributes shall be represented using lowerCamel.
Example 1.
attributeName
b) Names of arrays (i.e. those with cardinality 1..N or 0..N) shall be plural rather than singular.
Example 2:
users
c) Each vaue of an enumeration type shall be represented using UPPER_WITH_UNDERSCORE.
Example 3:
BLACK_LISTED
d) The names of datatypes shall be represented using UpperCamel.
Example 4:

ResourceHandle

52 API Definition

521 Resource Structure

Resource structure shall define the structure of the resource URIs, the resources, the associated HT TP methods and
custom operations used for the service.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 40 ETSI TS 129 501 V15.8.0 (2020-11)

Figure 5.2.1-1 provides an example of the resource URI structure (i.e. resource tree) of an API. Table 5.2.1-1 provides
an example of an overview of the resources defined for the service, and their applicable HTTP methods and custom
operations.

{apiRoot}/nudm_sdm/{apiVersion} ’

L /resources

HAsupi} ’

— /nssai

— /amf_data

— /smf_data

4‘ /smsf_data ’

e

Figure 5.2.1-1: Resource URI structure of the <xyz > API
In figure 5.2.1-1 a child node with a solid-line frame represents a resource-URI that has at least one supported HTTP
method associated, and a child node with a dashed-line frame represents a sub-URI under a resource which supports
specific custom operation. All child node names are examples only.

Table 5.2.1-1: Resources and methods overview

HTTP method
Resource name Resource URI or custom Description
operation
GET <Operation executed by GET>
PUT <Operation executed by PUT>
<relative URI below root> PATCH <Operation executed by PATCH>
<Resource name> POST <Operation executed by POST>
DELETE <Operation executed by DELETE>
<relative URI below release <Operation executed by Custom
root>/release (POST) operation>

5.2.2 Resources and HTTP Methods

Resources and HT TP methods shall specify the resource URI, resource URI variables for the resource and the standard
HTTP methods supported by the resource.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 41 ETSI TS 129 501 V15.8.0 (2020-11)

Example:

Resource URI: {apiRoot}/<apiName>/{apiV er sion}/<api SpecificResour ceUriPart>

The resource URI variables supported by the resource shall be defined astable 5.2.2-1 illustrates.

Table 5.2.2-1: Resource URI variables for the resource

Name Definition
apiRoot See clause xxx
apiVersion See clause xxy
< Name of resource URI variables for resource> |< Definition of resource URI variables for resource >

The {apiRoot} and { apiVersion} URI variables should be defined in clauses and this definition should be referenced to
ease a possible update of the apiVersion value.

Each method supported by the resource shall be described including the URI query parameters supported by the
method, data structures supported by the request body, and the data structures supported by the response body.

URI query parameters supported by the method shall be defined as table 5.2.2-2 illustrates.

Table 5.2.2-2: URI query parameters supported by a method on the resource

Name Data type P Cardinality Description Applicability
<name> or |[<type> or <M, C |0..1orlor
n/a <leave empty> |or O> |0..N or 1..N . .
or <leave <only if applicable>
empty>

Name: Name of query parameter in URI. If no query parameters are defined for the URI, the name should be marked as
"n/a".

Data type: Datatype of URI query parameters, i.e. a data type defined in the specification. If no query parameter is
defined for the URI, the column isleft empty.

P: Presence condition of URI query parameters. It shall be one of "M" (for Mandatory), "C" (for Conditional) and "O"
(for Optional). If no query parameter is defined for the URI, the column is left empty.

Cardinality: Definesthe allowed number of occurrence. It shall be "0..1", "1", "0..N", "1..N" . If no query parameter is
defined for the URI, the column isleft empty.

Description: Additional information for URI query parameter, i.e. describes the use of the parameter or the presence
condition of the parameter and so on.

Applicability: If the URI query parameter is only applicable for optional feature(s) negotiated using the mechanism
defined in clause 6.6.2 of 3GPP TS 29.500 [2], the name of the corresponding feature(s) shall be indicated in this
column. If no feature is indicated. the attribute can be used with any feature.

NOTE 1: If no optional features are defined for an API, the applicability column can be omitted for that API.
Data structures supported by the request body of the method shall be specified as table 5.2.2-3 illustrates.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 42 ETSI TS 129 501 V15.8.0 (2020-11)

Table 5.2.2-3: Data structures supported by the request body on the resource

Data type P Cardinality Description
"<type>"or "M, "C"or ["0..1","1", or <only if applicable>
"array(<type>)" or "0" "M..N", or <leave
"map(<type>)" or empty>
n/a

Data type: Datatype of the data structure in the request body. If the datatype isindicated as"<type>", the request
body shall be of datatype <type>. If the datatypeisindicated as"array(<type>)", the request body shall be an array
(see IETF RFC 8259 [3]) that contains elements of datatype <type>. If the datatype isindicated as "map(<type>)", the
request body shall be an object (see IETF RFC 8259 [3]) encoding a map (see clause 5.2.4.2) that contains as values
elements of datatype <type>. <type> can either be "integer”, "number”, "string" or "boolean” (as defined in the
OpenAPI specification [4]), or adata type defined in a 3GPP specification. If no request body is alowed, the Data type
shall be marked as"n/a’.

P: Presence condition of a data structure in request body. It shall be one of "M" (for Mandatory), "C" (for Conditional)
and "O" (for Optional).

Cardinality: Defines the allowed number of occurrence of datatype <type>. A cardinaity of "M..N", isonly allowed
for data types "array(<type>)" and "map(<type>)" and indicates the number of elements within the array or map; the
values M and N can either be the characters "M" and "N", respectively, or integer numbers with M being greater than or
equal 0, and N being greater than 0 and M. For datatype "<type>", the cardinality shall be set to "0..1" if the Presence
conditionis"C" or "O", and to "1" if the Presence condition is"M". The Cardinality shall be left empty if no request
body is allowed.

Description: Additional information for a data structure, i.e. describes the use of the data structure or the presence
condition of the data structure and so on.

NOTE 2: The cardinality of "0..N" does not imply that the presence condition of the array or map is optional or
conditional, i.e. the presence condition can be "M" while the cardinality is"0..N", the presence condition
canbe"O" or "C" whilethe cardinality is"1..N".

Data structures supported by the response body of the method shall be specified astable 5.2.2-4 illustrates.

Table 5.2.2-4: Data structures supported by the response body on the resource

Data type P Cardinality Response Description
codes
"<type>" or "M, "C" ["0..1", "1", or |<list applicable |<Meaning of the success case>
"array(<type>)"or | or"O" |"M..N", or codes with or
"map(<type>)" or <leave name from the |<Meaning of the error case with additional statement
n/a empty> applicable regarding error handling>
RFCs>

Data type: Datatype of the data structure in the response body. If the datatypeisindicated as "<type>", the response
body shall be of data type <type>. If the data type isindicated as "array(<type>)", the response body shall be an array
(see IETF RFC 8259 [3]) that contains elements of datatype <type>. If the datatype isindicated as "map(<type>)", the
response body shall be an object (see IETF RFC 8259 [3]) encoding a map (see clause 5.2.4.2) that contains as values
elements of data type <type>. <type> can either be "integer", "number", "string" or "boolean" (as defined in the
OpenAPI specification [4]), or adata type defined in a 3GPP specification. If no response body is allowed, the Data
type shall be marked as"n/a".

P: Presence condition of a data structure in response body. It shall be one of "M" (for Mandatory), "C" (for Conditional)
and "O" (for Optional).

Cardinality: Defines the allowed number of occurrence of datatype <type>. A cardinality of "M..N", isonly allowed
for datatypes "array(<type>)" and "map(<type>)" and indicates the number of elements within the array or map; the
values M and N can either be the characters"M" and "N", respectively, or integer numbers with M being greater than or
equal 0, and N being greater than 0 and M. For data type "<type>", the cardinality shall be set to "0..1" if the Presence
conditionis"C" or "O", and to "1" if the Presence condition is"M". The Cardinality shall be left empty if no response
body is allowed.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 43 ETSI TS 129 501 V15.8.0 (2020-11)

Response codes: Lists applicable response codes with name from HTTP Status Code Registry at IANA [12].
Mandatory HT TP status codes listed in Table 5.2.7.1-1 of 3GPP TS 29.500 [2] for the corresponding HT TP method
shall only be included if specific clarifications in the description part or special datatypes of the response body are
required. Applicable HTTP status codes in addition to the mandatory HT TP status codes listed in Table 5.2.7.1-1 of
3GPP TS 29.500 [2] for the corresponding HT TP method shall be included.

Description: Additional information for aresponse, i.e. describes the meaning of the success case or meaning of the
error case with additional statement regarding error handling.

NOTE 3: The cardinality of "0..N" does not imply that the presence condition of the array or map is optional or
conditional, i.e. the presence condition can be "M" while the cardinality is"0..N", the presence condition
canbe"O" or "C" while the cardinality is"1..N".

5.2.3 Representing RPC as Custom Operations on Resources

Custom operations (RPC-style interaction) may be used on aresource. The description of each custom operation
contains the custom operation URI, the HT TP method on which the operation is mapped (typically POST), data
structures supported by the request body and the data structures supported by the response body.

An overview of the custom operations on aresourceisillustrated in table 5.2.3- 1.

Table 5.2.3-1: Custom operation

Mapped HTTP
method
<custom operation URI> e.g. POST <Operation executed by custom operation>

Custom operation URI Description

Data structures supported by the request body of the method shall be specified astable 5.2.3-2 illustrates.

Table 5.2.3-2: Data structures supported by the mapped HTTP method request body on the resource

Data type P Cardinality Description
"<type>" or "M, "C" |"0..1", "1", or <only if applicable>
"array(<type>)"or | or"O" |"M..N", or <leave
"map(<type>)" empty>

Data type: Datatype of the data structure in the request body. If the data type isindicated as "<type>", the request
body shall be of data type <type>. If the datatype isindicated as "array(<type>)", the request body shall be an array
(see IETF RFC 8259 [3]) that contains elements of datatype <type>. If the datatype isindicated as "map(<type>)", the
request body shall be an object (see IETF RFC 8259 [3]) encoding a map (see clause 5.2.4.2) that contains as values
elements of datatype <type>. <type> can either be "integer”, "number", "string" or "boolean” (as defined in the
OpenAPI specification [4]), or adatatype defined in a 3GPP specification. If no request body is allowed, the Data type

shall be marked as"n/a".

P: Presence condition of a data structure in request body. It shall be one of "M" (for Mandatory), "C" (for Conditional)
and "O" (for Optional).

Cardinality: Defines the allowed number of occurrence of datatype <type>. A cardinality of "M..N", isonly allowed
for data types "array(<type>)" and "map(<type>)" and indicates the number of elements within the array or map; the
values M and N can either be the characters"M" and "N", respectively, or integer numbers with M being greater than or
equal 0, and N being greater than 0 and M. For datatype "<type>", the cardinality shall be set to "0..1" if the Presence
conditionis"C" or "O", and to "1" if the Presence condition is"M". The Cardinality shall be left empty if no request
body is allowed.

Description: Additional information for a data structure, i.e. describes the use of the data structure or the presence
condition of the data structure and so on.

NOTE 1: The cardinality of "0..N" does not imply that the presence condition of the array or map is optional or
conditiond, i.e. the presence condition can be "M" while the cardinality is"0..N", the presence condition
canbe"O" or "C" while the cardinality is"1..N".

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 44 ETSI TS 129 501 V15.8.0 (2020-11)

Data structures supported by the response body of the method shall be specified astable 5.2.3-3 illustrates.

Table 5.2.3-3: Data structures supported by the mapped HTTP method response body on the

resource
Data type P Cardinality Response Description
codes
"<type>" or "M, "C" O ["0..1", "1" or [<list applicable [<Meaning of the success case>
"array(<type>)"or | or"O" ['M..N", or codes with or
"map(<type>)" <leave name from the |<Meaning of the error case with additional statement
empty> applicable regarding error handling>
RFCs>

Data type: Datatype of the data structure in the response body. If the datatype isindicated as "<type>", the response
body shall be of datatype <type>. If the datatypeisindicated as "array(<type>)", the response body shall be an array
(see IETF RFC 8259 [3]) that contains elements of datatype <type>. If the datatype isindicated as "map(<type>)", the
response body shall be an object (see IETF RFC 8259 [3]) encoding a map (see clause 5.2.4.2) that contains as values
elements of datatype <type>. <type> can either be "integer”, "number", "string" or "boolean” (as defined in the
OpenAPI specification [4]), or a data type defined in a 3GPP specification. If no response body is allowed, the Data
type shall be marked as"n/a".

P: Presence condition of a data structure in response body. It shall be one of "M" (for Mandatory), "C" (for Conditional)
and "O" (for Optiona).

Cardinality: Defines the allowed number of occurrence of datatype <type>. A cardinaity of "M..N", isonly allowed
for data types "array(<type>)" and "map(<type>)" and indicates the number of elements within the array or map; the
values M and N can either be the characters "M" and "N", respectively, or integer numbers with M being greater than or
equal 0, and N being greater than 0 and M. For datatype "<type>", the cardinality shall be set to "0..1" if the Presence
conditionis"C" or "O", and to "1" if the Presence condition is"M". The Cardinality shall be left empty if no response
body is allowed.

Response codes: Lists applicable response codes with name from HTTP Status Code Registry at IANA [12].
Mandatory HT TP status codes listed in Table 5.2.7.1-1 of 3GPP TS 29.500 [2] for the corresponding HT TP method
shall only be included if specific clarifications in the description part or special datatypes of the response body are
required. Applicable HTTP status codes in addition to the mandatory HT TP status codes listed in Table 5.2.7.1-1 of
3GPP TS 29.500 [2] for the corresponding HT TP method shall be included.

Description: Additional information for aresponse, i.e. describes the meaning of the success case or meaning of the
error case with additional statement regarding error handling.

NOTE 2: The cardinality of "0..N" does not imply that the presence condition of the array or map is optional or
conditional, i.e. the presence condition can be "M" while the cardinality is'0..N", the presence condition
canbe"O" or "C" whilethe cardinality is"1..N".

524 Data Models

5.24.1 General
The application data model supported by the API shall be specified with the following data types:
1. Structured datatypes
. Simple data types

. Enumerations

2
3
4. Binary data
5. Datatypes describing alternative data types
6

. Datatypes describing combinations of datatypes

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 45 ETSI TS 129 501 V15.8.0 (2020-11)

Each data type can be specific for the APl or common to multiple APIs (offered by the same or different NFs). The
common data types shall be specified in 3GPP TS 29.571 [5].

5.24.2 Structured data types

The structured data types shall represent an object (see IETF RFC 8259 [3]). The structured data types shall contain
attributes that are simple data types, structured data types, arrays (see below), maps (as defined below), enumerations,
data types describing alternative data types, data types describing combinations of data types or "Any Type" (as
described below).

An array (see IETF RFC 8259 [3]) shall represent alist of values without keys and with significance in the order of
sequence. All values shall be of the same type.

A map shall represent an object (see IETF RFC 8259 [3]) with alist of key-value pairs (with no significance in the
order of sequence), where all keys are of type string and shall be unique identifiers assigned by the application rather
than by the schema, and where all values shall be of the same type.

NOTE 1: Maps are supported by the OpenAPI specification [4] as described at
https://swagger.io/docs/specification/data-model s/dictionaries. Maps can enable a faster lookup of
elementsidentified by some key in huge data structures compared to arrays that contain the key within the
elements. Maps can also be used instead of arraysto modify individual elements when modification
instructions of the PATCH method are compliant to IETF RFC 7396 [7].

Each structured data type shall be specified in a separate clause asillustrated in table 5.2.4.2-1.

Table 5.2.4.2-1: Definition of type <Data type>

Attribute name Data type P Cardinality Description Applicability

<attribute name> "<type>" or "M, "cto"0..1", "1" or <only if applicable>
"array(<type>)" or"O" ["M..N"
or

"map(<type>)"
or "Any Type"

Attribute name: Name of attributes that belong to the specified data type. The attribute names within a structured data
type shall be unique, and their relative order inside the structured data type shall not imply any specific ordering of the
corresponding JSON elementsin a JSON object.

NOTE 2: The JSON specification (IETF RFC 8259 [3]) allows duplicate keysin a JSON object, but itsusage is
discouraged, since it makes interoperability more difficult, and makes the behavior of the JSON parsing
software unpredictable. Similarly, that RFC encourages to make implementations not dependent on
attribute ordering.

Data type: Datatype of the attribute. If the datatypeisindicated as"<type>", the attribute shall be of data type
<type>. If the datatype isindicated as "array(<type>)", the attribute shall be an array (see IETF RFC 8259 [3]) that
contains elements of data type <type>. If the data typeisindicated as"map(<type>)", the attribute shall be an object
(see IETF RFC 8259 [3]) encoding a map that contains as values elements of data type <type>. <type> can either be
"integer”, "number", "string" or "boolean” (as defined in the OpenAPI specification [4]), or a data type defined in a
3GPP specification. If the datatype isindicated as"Any Type", the attribute can either be "integer”, "number", "string",
"boolean”, "array" or "object" (as defined in the OpenAPI specification [4]), or a data type defined in a 3GPP
specification.

P: Presence condition of a data structure in request body. It shall be one of "M" (for Mandatory), "C" (for Conditional)
and "O" (for Optional).

Cardinality: Defines the allowed number of occurrence of data type <type>. A cardinality of "M..N", isonly alowed
for data types "array(<type>)" and "map(<type>)" and indicates the number of elements within the array or map; the
values M and N can either be the characters"M" and "N", respectively, or integer numbers; with M being greater than
or equal 0, and N being greater than 0 and M. For datatype "<type>" and "Any Type", the cardinality shall be set to
"0..1" if the Presence conditionis"C" or "O", and to "1" if the Presence conditionis"M".

Description: Describes the meaning and use of the attribute and may contain normative statements.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 46 ETSI TS 129 501 V15.8.0 (2020-11)

Applicability: If the attribute is only applicable for optional feature(s) negotiated using the mechanism defined in
clause 6.6 of 3GPP TS 29.500 [2], the name of the corresponding feature(s) shall be indicated in this column. If no
feature isindicated. the attribute can be used with any feature.

NOTE 3: The cardinality of "0..N" does not imply that the presence condition of the array or map is optional or
conditional, i.e. the presence condition can be "M" while the cardinality is"0..N", the presence condition
canbe"O" or "C" while the cardinality is"1..N".

NOTE 4: If no optional features are defined for an API, the applicability column can be omitted for that API.

5.24.3 Simple data types and enumerations

The simple data types and enumerations can be referenced from data structures. All simple data types and enumerations
should map to base types supported by IDL. Simple data types shall be specified asillustrated in table 5.2.4.3-1.

Table 5.2.4.3-1: Simple data types

Type Name Type Definition Description Applicability
<one simple data
type, i.e. boolean,
integer, number, or
string>

Type Name: The name of the simple data type.
Type Definition: Base types supported by IDL, i.e. Boolean, integer, string and so on.
Description: Additional descriptions for simple data types like range, string length and so on.

Applicability: If the typeisonly applicable for optional feature(s) negotiated using the mechanism defined in clause 6.6
of 3GPP TS 29.500 [2], the name of the corresponding feature(s) shall be indicated in this column. If no featureis
indicated. the type can be used with any feature.

NOTE 1: If no optional features are defined for an API, the applicability column can be omitted for that API.

Each enumeration type shall be respectively specified for their elements sets asillustrated in table 5.2.4.3-2.

Table 5.2.4.3-2: Enumeration < EnumType>

Enumeration value Description Applicability
Enumeration value 1 The description of this enum value
Enumeration value 2 The description of this other enum value

Enumeration value: Defines the valid values, which can be integer, string or boolean, it is suggested to keep the same
value style in one API specification.
Description: Additional descriptions for enumeration attributes, like the meaning and usage of enumeration elements.

Applicability: If the enumeration value is only applicable for optional feature(s) negotiated using the mechanism
defined in clause 6.6 of 3GPP TS 29.500 [2], the name of the corresponding feature(s) shall be indicated in this column.
If no feature isindicated. the enumeration value can be used with any feature.

NOTE 2: If no optional features are defined for an API, the applicability column can be omitted for that API.
5.24.4 Binary Data

5.245 Data types describing alternative data types or combinations of data types

The data types describing alternative data types or combinations of data types shall represent an OpenAPI schema
object using the "oneOf" , "anyOf" or "allOf" keyword to list alternative or to be combined data types (see the
OpenAPI specification [4] and https.//swagger.io/docs/specification/data-model Soneof -anyof -al | of -not/).

ETSI

https://swagger.io/docs/specification/data-models/oneof-anyof-allof-not/

3GPP TS 29.501 version 15.8.0 Release 15 a7 ETSI TS 129 501 V15.8.0 (2020-11)

An instance (i.e. a corresponding part of a JSON file to be evaluated against the schema) matches alist of mutually
exclusive aternative datatypes, as described using the OpenAPI "oneOf" keyword, if the instance matches against one
and only one of the alternative data types.

NOTE 1. Datatypes with the same simple data type but different format and/or pattern attributes are mutually
exclusive if the corresponding formats and/or patterns are mutually exclusive.

Aninstance (i.e. acorresponding part of a JSON file to be evaluated against the schema) matches alist of non-exclusive
alternative data types, as described using the OpenAPI "anyOf" keyword, if the instance matches against one or more of
the alternative data types.

Aninstance (i.e. a corresponding part of a JSON file to be evaluated against the schema) matches alist of to be
combined data types, as described using the OpenAPI "alOf" keyword, if the instance matches againgt all of the to be
combined data types.

The alternative or to be combined data types shall be simple data types, structured data types, arrays (see
clause 5.2.4.2), maps (see clause 5.2.4.2), enumerations, data types describing alternative data types, or data types
describing combinations of data types.

Each structured data type shall be specified in a separate clause asillustrated in table 5.2.4.2-1.

Table 5.2.4.2-1: Definition of type <Data type> as a list of <"mutually exclusive alternatives" / "non-
exclusive alternatives" / "to be combined data types">

Data type Cardinality Description Applicability
"<type>" or "1" or "M..N" |<only if applicable>
"array(<type>)" or
"map(<type>)"

Data type: Datatype of the alternative or to be combined data type. If the datatypeisindicated as"<type>", the
aternative or to be combined data type shall be of datatype <type>. If the data type isindicated as "array(<type>)", the
aternative or to be combined data type shall be an array (see IETF RFC 8259 [3]) that contains elements of data type
<type>. If the datatypeisindicated as " map(<type>)", the alternative or to be combined data type shall be an object
(see IETF RFC 8259 [3]) encoding a map (see clause 5.2.4.2) that contains as values elements of datatype <type>.
<type> can either be "integer”, "number", "string” or "boolean” (as defined in the OpenAPI specification [4]), or adata
type defined in a 3GPP specification.

Cardinality: Defines the allowed number of occurrence of datatype <type>. A cardinality of "M..N", isonly allowed
for data types "array(<type>)" and "map(<type>)" and indicates the number of elements within the array or map; the
values M and N can either be the characters "M" and "N", respectively, or integer numbers; with M being greater than
or equal 0, and N being greater than 0. For data type "<type>", the cardinality shall be set to "1".

Description: Describes the meaning and use of the attribute and may contain normative statements.

Applicability: If the typeis only applicable for optional feature(s) negotiated using the mechanism defined in clause 6.6
of 3GPP TS 29.500 [2], the name of the corresponding feature(s) shall be indicated in this column. If no featureis
indicated. the type can be used with any feature.

NOTE 2: If no optional features are defined for an API, the applicability column can be omitted for that API.

NOTE 3: Datatypes describing alternative data types or combinations of data types can only be extended with
additional datatypesin a backward compatible manner if the new data types are associated with an
optional feature and the mechanism defined in clause 6.6 of 3GPP TS 29.500 [2] is used to negotiate the
support of that optional feature before that new data typeis used.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 48 ETSI TS 129 501 V15.8.0 (2020-11)

5.2.5 Relation types

5.3 OpenAPI specification files

531 General

5GC SBI APIS OpenAPI specification files shall comply with the OpenAPI specification [4] and with the present
clause 5.3.

Each API shall be described in one OpenAPI specification file contained in an Annex of the 3GPP specification that
describes the corresponding API. In addition, 3GPP specifications may contain OpenAPI specification file with
common data types.

Informative copies of al OpenAPI specification files contained in 3GPP Technical Specifications are available on a
Git-based repository hosted in 3GPP Forge, that uses the GitLab software version control system.

The repository isnamed "5G APIs' and is publicly accessible via the following URI:
https.//forge.3gpp.org/rep/al/5G_APIs

5.3.2 Formatting of OpenAPI specification files
The following guidelines shall be used when documenting OpenAPI specification files:

- OpenAPI specification files shall be documented using YAML format (see YAML 1.2[16]). For specific
restrictions on the usage of YAML in OpenAPI, see OpenAPI 3.0.0 Specification [4].

- The style used for the specification shall be"PL" (Programming Language).

- Thedifferent scopesin the YAML data structures representing collections (objects, arrays...) shall use an
indentation of two white spaces.

- Comments may be added by following the standard YAML syntax ("#").

5.3.3 Info

The OpenAPI specification file of an API shall contain an "info" object with the title that should be set to the same
value as chosen for the APl name in the heading of Annex A.x of the corresponding 3GPP TS, and with the version set
as described in clause 4.3.

The "info" object shall also include a"description” field, containing the name of the service that the APl implements,
and the same copyright notice as included in the front page of the corresponding 3GPP TS that specifiesthe API. The
content of the "description” field shall be formatted using the Y AML block notation for scalars (i.e. using the "|"
character).

EXAMPLE: "info" object with the title, version and description of the API.

i nfo:
title: Nsnf PDUSession
version: 1.0.0
description: |
SMF PDUSessi on Servi ce.
© 2019, 3GPP Organizational Partners (ARI B, ATIS, CCSA, ETSI, TSDSI, TTA, TTO).
Al rights reserved.

5.34 externalDocs

Each OpenAPI specification file shall provide an "externalDocs" object asillustrated in the example below that shall
contain:

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 49 ETSI TS 129 501 V15.8.0 (2020-11)

- within the "description” field the 3GPP TS number, the version number and the name of the 3GPP TS describing
the API, and

- withinthe "url” field areference to the folder of that TS within the specification archive of the public 3GPP
fileserver (i.e. "https.//www.3gpp.org/ftp/Specs/archive/<specSeries>/<SpecNumber>/").

The version number in the "externalDocs" object shall be updated each time when the TS version contains new changes
to the OpenAPI specification file.

NOTE 1: If anew TSversionis provided without any changes to the OpenAPI specification file, the TS version
number included in the "url" field of the "externalDocs" field in the OpenAPI specification fileis not
updated.

NOTE 2: If anew TSversion is provided with changes to the OpenAPI specification file, the TS version number
included in the "url" field of the "externalDocs' object is updated. However, if the API version in agiven
releaseis still the same asin aprevious release, the first TS version in the first release that contains that
API version is provided as TS version within the "externalDocs' object also in the TS versions of the
subsequent releases.

EXAMPLE: "externalDocs" object.

ext er nal Docs:
description: 3GPP TS 29.503 V15.1.0; 5G System Unified Data Managenment Services
url: http://ww. 3gpp. org/ftp/ Specs/archive/ 29_series/29. 503/

535 Servers

As defined in clause 4.4, the base URI of an API consists of {apiRoot}/{apiName}/{apiVersion}. It shall be encoded in
the corresponding OpenAPI specification file as "servers' field with {apiRoot} as variable.

Example:

servers:
- url: '{api Root}/ nxxx-yyyy/vl'
vari abl es:
api Root :
default: https://exanple.com
description: api Root as defined in clause clause 4.4 of 3GPP TS 29.501

5.3.6 References to other 3GPP-defined OpenAPI specification files
Open API specification files may contain references to fragments of other 3GPP-defined Open API specification files.
Such references shall be formatted to refer to local files stored on the same folder.

NOTE 1: For the purpose of referencing, it is assumed that each OpenAPI specification file contained in a 3GPP
specification is stored as separate physical file and that all OpenAPI specification files are stored in the
same directory on the local server.

The referenced file names for other 3GPP-defined Open API specification filesshall comply with the following
convention, unless a specific file name isindicated in the Annex of a 3GPP specification defining an OpenAPI
specification file. The file name shall consist of (in the order below):

- the 3GPP specification number in the format " T Sxxyyy";

- an character;

- if the OpenAPI specification file contains an API definition: the API name which shall be taken from the
heading of the relevant annex A.x as defined in the corresponding 3GPP TS of that API.

- if the OpenAPI specification file contains a definition of CommonData: the string "CommonData”; and

- thestring ".yaml".

ETSI

https://www.3gpp.org/ftp/Specs/archive/%3cspecSeries%3e/%3cSpecNumber%3e/

3GPP TS 29.501 version 15.8.0 Release 15 50 ETSI TS 129 501 V15.8.0 (2020-11)

NOTE 2: Theinformative copies of OpenAPI specification files contained in 3GPP Technical Specifications at the
public 3GPP file server (see clause 5.3.1) follow the above conventions and can be copied into alocal
folder in order to resolve references.

Such areference to another OpenAPI specification file shall be interpreted as refering to the related OpenAPI
specification file contained in the version of the corresponding 3GPP TS indicated in the reference clause of the
specification, i.e. for a non-specific reference the latest version of that 3GPP TS in the same Release as the
specification.

EXAMPLE: Reference to Data Type "Xxx" defined in the same file

$ref: ' #/ conponent s/ schemas/ Xxx

EXAMPLE: Reference to Data Type "Xxx" defined as Common Datain 3GPP TS 29.571:

$ref: ' TS29571_CommonDat a. yanl #/ conponent s/ schenmas/ Xxx

EXAMPLE: Reference to Data Type "Xxx" defined within APl "Nudm_UEAU" in 3GPP "TS 29.503":

$ref: ' TS29503_Nudm UEAU. yani #/ conponent s/ schemas/ Xxx

5.3.7 Server-initiated communication

If an API contains server-initiated communication (see clause 6.2 of 3GPP TS 29.500 [2]), e.g. for notifications as
described in clause 4.6.2.3, it should be described as " callbacks' in OpenAPI specification files.

Example;

pat hs:
/ subscri ptions
post :
request Body:
required: true
content:
application/json
schema
type: object
properties:
cal | backUrl: # Callback URL
type: string

format: wuri
responses
‘201
description: Success
cal | backs

nyNotification: # arbitrary nane
" {$request . body#/ cal | backUr1}': # refers The callback URL in the POST
post :
request Body: # Contents of the callback nmessage
required: true
content:
appl i cation/json
schema:
$ref: ' #/ conponents/schemas/ Noti ficati onBody
responses: # Expected responses to the call back message
' 200
description: xxx

5.3.8 Describing the body of HTTP PATCH requests

5381 General

Asdescribed in clause 4.6.1.1.3.2, the bodies of HTTP PATCH requests either use a"JSON Merge Patch" encoding as
defined in IETF RFC 7396 [7], or a"JSON Patch" encoding as defined IETF RFC 6902 [8].

It ispossible to alow both encodings in a OpenAPI Specification [4] offering both schemas as alternative contents.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 51 ETSI TS 129 501 V15.8.0 (2020-11)

NOTE: InRel-15 asingle encoding will be selected for each resource as backward compatibility considerations
do not yet apply.

An example OpenAPI specification file offering both PATCH encodingsisincluded in Annex D.

5.3.8.2 JSON Merge Patch

In the OpenAPI Specification [4] file, the content field key of the Request Body Object shall contain
"application/merge-patch+json”. The content field value is a Media Type Object identifying the applicable patch body
Schema Object. The patch body Schema Object may contain structured data types derived from the data types used in
the schemato describe a complete representation of the resource in such a manner that attributes that are allowed to be
modified are listed in the "properties” validation keyword.

NOTE 1: A derived structured data type is beneficial if the data types used to describe a complete representation of
the resource contains mandatory attributes, if attributes are allowed to be removed by the PATCH
operation, or if a checking by the OpenAPI tooling that only allowed modifications are done viathe
"additional Properties: false" keyword is desired. It also provides a clear description in the OpenAPI
specification file to devel opers which modifications need to be supported.

Asan dternative, the data types used in the schema to describe a complete representation of the resource may be used if
any attributes that are allowed to be removed are marked as "nullable: true" in that schema.

Any attributes that are allowed to be removed shall be marked as "nullable: true" in the patch body Schema Object.
The "additional Properties: false" keyword may be set.

NOTE 2: The"additional Properties: false" keyword enables the OpenAPI tooling to check that only allowed
modifications are done. Extensions of the object in future releases are still possible under the assumption
that the supported features mechanism is used to negotiate the usage of any new attribute prior to the
PATCH invocation. If new optional attributes are expected to be introduced without corresponding
supported feature or if PATCH can be used asfirst operation in an API, the usage of the
"additional Properties: false" keyword is not appropriate.

5.3.8.3 JSON PATCH

In the OpenAPI Specification [4] file, the content field of the key Request Body Object shall contain "application/json-
patch+json”. The content field value is a Media Type Object identifying the applicable patch body. It may contain a
mutually exclusive list (using the "oneOf" keyword) of all allowed modifications as <path, op, value> tuples, where
"path" isastring containing a JSON Pointer value referring to a JSON object that is allowed to be modified, "op" isan
enumeration of allowed JSON PATCH operations on the JSON object identified by "path” and "value" representing the
schemaltype of the value that will be updated or added at the JSON object identified by "path”. In addition, an open
aternative containing an object with no properties may be added using the "anyOf" keyword.

NOTE 1: A mutually exclusive list provides aclear description in the OpenAPI specification file to developers
which modifications need to be supported. Thisis of particular interest if only alimited number of
modifications need to be supported. If no open alternative is included, the OpenAPI tooling will also
check that only allowed modifications are done.

NOTE 2: The open aternative allows for extensions of the PATCH in scenarios where new optional attributes are
expected to be introduced without corresponding supported feature or if PATCH can be used asfirst
operationinan API.

5.3.9 Structured data types

For a structured data type, as defined in clause 5.2.4.2, the OpenAPI specification [4] file shall contain adefinition in
the components/schemas clause defining a schema with the name of the structured data type as key.

The schema shall contain:
- "type: object”;

- if any attributesin the structured data type are marked as mandatory, a"required" keyword listing those
attributes; and

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 52 ETSI TS 129 501 V15.8.0 (2020-11)

- a"properties' keyword containing for each attribute in the structured data type an entry with the attribute name
as key and:

1. if thedatatypeis"<type>":

a. if the datatype of the attribute is "string", "number", "integer", or "boolean";

i) atype definition using that datatype as value ("type: <data type>"); and

ii) optionally "description: <description>", where <description> is the description of the attribute in the
table defining the structured data type; or

otherwise areference to the data type schema for the data type <data type> of the attribute, i.e. "$ref:
‘#/components/schemas/< data type>"' if that data type schemais contained in the same

OpenAPI specification file and "$ref: '<filename>#/components/schemas/< data type>"' if that data type
schemais contained in file <filename> in the same directory on the same server;

2. if thedatatypeis"array(<type>)":

a

atype definition "type: array”;

b. an"items:" definition containing:

i). if the datatype of the attribute is"string", "number", "integer", or "boolean”, atype definition using
that datatype as value ("type: <data type>"); or

ii). otherwise areference to the data type schema for the data type <data type> of the attribute, i.e. "$ref:
‘#/components/schemas/<data type>™ if that data type schemais contained in the same
OpenAPI specification file and "$ref: '<filename>#/components/schemas/< data type>"' if that data
type schemais contained in file <filename> in the same directory on the same server;

if the cardinality contained an integer value <m> aslower boundary, "minitems: <m>"; and
if the cardinality contained an integer value <n> as upper boundary, "maxltems:. <n>"; and

optionally "description: <description>", where <description> is the description of the attribute in the
table defining the structured data type;

3. if the datatypeis"map(<type>)":

a

b.

NOTE:

atype definition "type: object”; and

an "additional Properties:" definition containing:

i). if the datatype of the attribute is "string”, "number”, "integer", or "boolean”, atype definition using
that datatype as value ("type: <data type>"); or

ii). otherwise areference to the data type schema for the data type <data type> of the attribute, i.e. "$ref:
‘#/components/schemas/<data type>" if that data type schemais contained in the same
OpenAPI specification file and "$ref: '<filename>#/components/schemas/< data type>"' if that data
type schemais contained in file <filename> in the same directory on the same server;

if the cardinality contained an integer value <m> aslower boundary, "minProperties: <m>"; and
if the cardinality contained an integer value <n> as upper boundary, "maxProperties. <n>"; and

"description: <description>", where <description> is the description of the attribute in the table defining
the structured data type.

An omission of the "minProperties’, and "maxProperties' keywords indicates that no lower or upper
boundaries respectively, for the number of propertiesin an object are defined. An omission of the
"minltems’, and "maxltems"’ keywords indicates that no lower or upper boundaries, respectively, for the
number of itemsin an array are defined.

4. if the datatypeis"Any Type":

ETSI

3GPP TS 29.501 version 15.8.0 Release 15

53

ETSI TS 129 501 V15.8.0 (2020-11)

a. if no propertiesto be defined, a pair of curly braces after the attribute name key "<attribute name>: {}",
which is shorthand syntax for an arbitrary-type schema; or

b. at least one of the following properties:

i) if null valueisallowed, "nullable: true"; or

ii). "description: <description>", where <description> is the description of the attribute in the table
defining the structured data type.

Example;

Table 5.3.9-1: Definition of type ExampleStructuredType

Attribute name Data type P | Cardinality Description Applicability
exSimple ExSimple M |1 exSimple attribute description
exArrayElements |array(string) 0O |0..10 exArrayElements attribute description
exMapElements map(ExStructure) |M |1..N exMapElements attribute description
exAnyTypeNullabl |Any Type O (0.1 exAnyTypeNullableElement attribute
eElement description
exAnyTypeNoDes |Any Type O (0.1 n/a
cription

The data structure in table 5.3.9-1 is described in an OpenAPI specification file as follows:

conponents:
schenas:
Exanpl eSt ruct ur edType:
type: object
required:
- exSinple
- exMapEl enent s
properties:
exSi mpl e:
$ref: '#/ conponents/schemas/ ExSi npl €'
exArrayEl enent s:
type: array
items:
type: string
mnltems: O
maxltens: 10
descri ption:
exMapEl enent s:
type: object
addi ti onal Properties:
$ref: '#/ component s/ schemas/ ExStructure'
m nProperties: 1
description: exMapEl enents attribute description
exAnyTypeNul | abl eEl erment :
nul | abl e: true
description: exAnyTypeNul | abl eEl ement attribute description
exAnyTypeNoDescription: {}

exArrayEl enents attribute description

5.3.10 Data types describing alternative data types or combinations of data
types

For a data type describing alternatives, as defined in clause 5.2.4.5, the OpenAPI specification [4] file shall contain a
definition in the components/schemas clause defining a schema with the name of the data type describing alternatives as

key.
The schema shall contain:
- the"oneOf", "anyOf" or "alOf" keyword selected as follows:

1. for table caption "Definition of type <Datatype> asalist of mutually exclusive alternatives’, the "oneOf"
keyword,;

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 54 ETSI TS 129 501 V15.8.0 (2020-11)
2. for table caption "Definition of type <Datatype> as alist of non-exclusive alternatives', the "anyOf"
keyword;
3. for table caption "Definition of type <Datatype> as alist of to be combined datatypes’, the "allOf" keyword;
- alist of alternatives, containing for each line in the table describing the data type a separate line starting with "-":
1. if thedatatypeis"<type>":
a. if the datatype of the attribute is"string", "number", "integer", or "boolean";

i) atype definition using that data type as value ("type: <data type>"); and

ii) optionally "description: <description>", where <description> is the description of the attribute in the
table defining the structured data type; or

b. otherwise areference to the data type schema for the data type <data type> of the attribute, i.e. "$ref:
‘#/components/schemas/<data type>™ if that data type schema s contained in the same
OpenAPI specification file and "$ref: '<filename>#/components/schemas/< data type>"' if that data type
schemais contained in file <filename> in the same directory on the same server;

2. if thedatatypeis"array(<type>)":
a. atype definition "type: array”;
b. an"items:" definition containing:

i). if the datatype of the attribute is"string”, "number", "integer”, or "boolean”, a type definition using
that data type as value ("type: <data type>"); or

ii). otherwise areference to the data type schema for the data type <data type> of the attribute, i.e. "$ref:
‘#/components/schemas/<data type>" if that data type schemais contained in the same
OpenAPI specification file and "$ref: '<filename>#/components/schemas/< data type>"' if that data
type schemais contained in file <filename> in the same directory on the same server;

c. if the cardinality contained an integer value <m> as lower boundary, "minltems: <m>"; and
d. if the cardinality contained an integer value <n> as upper boundary, "maxItems: <n>"; and

e. optionaly "description: <description>", where <description> is the description of the attribute in the
table defining the structured data type;

3. if the datatypeis"map(<type>)":
a. atype definition "type: object”; and
b. an "additional Properties:" definition containing:

i). if the datatype of the attribute is"string", "number", "integer”, or "boolean”, a type definition using
that data type as value ("type: <data type>"); or

ii). otherwise areference to the data type schema for the data type <data type> of the attribute, i.e. "$ref:
‘#/components/schemas/<data type>™ if that data type schemais contained in the same
OpenAPI specification file and "$ref: '<filename>#/components/schemas/< data type>"' if that data
type schemais contained in file <filename> in the same directory on the same server;

c. if the cardinality contained an integer value <m> as lower boundary, "minProperties. <m>"; and
d. if the cardinality contained an integer value <n> as upper boundary, "maxProperties: <n>"; and

e. optionally "description: <description>", where <description> is the description of the attribute in the
table defining the structured data type.

NOTE: Anomission of the "minProperties’, and "maxProperties" keywords indicates that no lower or upper
boundaries respectively, for the number of propertiesin an object are defined. An omission of the
"minltems’, and "maxltems"’ keywords indicates that no lower or upper boundaries, respectively, for the
number of itemsin an array are defined.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 55 ETSI TS 129 501 V15.8.0 (2020-11)

Example:

Table 5.3.10-1: Definition of type ExampleAlternativesType as a list of mutually exclusive alternatives

Data type Cardinality Description Applicability
ExSimple 1 exSimple attribute description
array(string) 0..10 exArrayElements attribute description
map(ExStructure) 1..N exMapElements attribute description

The data structure in table 5.3.10-1 is described in an OpenAPI specification file as follows:

conponents:
schenas:
Exanpl eAl t er nati vesType:
oneC :
- $ref: '#/ conmponent s/ schemas/ ExSi npl e’
- type: array
items:

type: string
mnltems: O
mex! tems: 10
description: exArrayEl ements attribute description
- type: object
addi ti onal Properties:
$ref: '#/ conponents/schenas/ExStructure'
m nProperties: 1
description: exMapEl enents attribute description

5.3.11 Error Responses

Asdescribed in clause 4.8 of the present specification and clause 5.2.7 of 3GPP TS 29.500 [2], 5GC SBI APIsuse valid
HTTP response codes as error codesin HTTP responses and may include a "ProblemDetails" data structure specified in
clause 5.2.4.1 of 3GPP TS 29.571 [5] or an application-specific data structure.

Table5.2.7.1-1 of 3GPP TS 29.500 [2] specifies HT TP status code per HTTP method. For each HTTP method of an
API, HTTP status codes shall be specified using response code tables as described in clauses 5.2.2 and 5.2.3. OpenAPI
specification files shall include in the description of an HTTP method in the "paths' segment the mandatory HTTP
status codesin Table 5.2.7.1-1 of 3GPP TS 29.500 [2] and the HTTP status codes listed in response codes table of that
HTTP method.

For the purpose of referencing, HTTP error responses with "ProblemDetails' data structure are specified as part of the
CommonData OpenAPI specification filein Annex A of 3GPP TS 29.571 [5].

Example;

In the example below, the 400, 500 and default error response descriptions defined in 3GPP TS 29.571 [5] are
referenced.

pat hs:
[users:
get:
responses:
'200':
content:
application/json
schema:
$ref: '#/ conponents/schenas/ Exanpl eGet Body'

' 400" :

$ref: ' TS29571_CommonDat a. yani #/ conponent s/ r esponses/ 400
' 500" :

$ref: ' TS29571_CommonDat a. yam #/ conponent s/ r esponses/ 500
defaul t:

$ref: ' TS29571_CommonDat a. yani #/ conponent s/ r esponses/ def aul t'

The following definitions provided in Annex A of 3GPP TS 29.571 [5] are used in that example:
conponents:

responses:
' 400" :

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 56 ETSI TS 129 501 V15.8.0 (2020-11)

description: Bad request

content:
appl i cati on/ probl emtj son:
schena:
$ref: ' #/ conponents/schenas/ Probl enDet ai | s'
' 500" :
description: Internal Server Error
content:
appl i cati on/ pr obl em+j son:
schema:
$ref: '#/ conponents/schenas/ Probl enDet ai | s'
defaul t:

description: Generic Error

5.3.12 Enumerations

For enumerations, as defined in clause 5.2.4.3, the OpenAPI specification [4] file shall contain adefinition in the
components/schemas clause defining a schema with the name of the enumeration as key.

The schema
- shall contain the "anyOf" keyword listing as aternatives:
1. the"type: string" keyword and the "enum" keyword with alist of all defined values for the enumeration; and

2. the"type: string" keyword and the "description” keyword with a description stating that the string is only
provided for extensibility and is not used to encode contents defined in the present version of the
specification. and

- may contain adescription listing the defined val ues of the enumeration together with explanations of those
values.

NOTE: The"enum" keyword restricts the permissible values of the string to the enumerated ones. This can lead
to extensibility problems when new values need to be introduced.

Example:
Table 5.3.12-1: Enumeration ExampleEnumeration
Enumeration value Description Applicability
One Value One description
Two Value Two description

The data structure in table 5.3.12-1 is described in an OpenAPI specification file as follows:

conponents:
schenas:
Exanpl eEnuner at i on:
anyCf :
- type: string
enum
- One
- Two
- type: string
description: >
This string provides forward-conpatibility with future
extensions to the enuneration but is not used to encode
content defined in the present version of this API.
description: >
Possi bl e val ues are
- One: Value One description
- Two: Value Two description

5.3.13 Formatting of structured data types in query parameters
Structured data types shall represent JSON objects or arrays.
When used in query parameters of a URI, the following formatting shall be used:

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 57 ETSI TS 129 501 V15.8.0 (2020-11)

- JSON objects and arrays of JSON objects: they shall be formatted using the JISON syntax, which is specified in
OpenAPI [4] by including a"content:" block, and specifying the "application/json" mediatype, followed by the
OpenAPI definition of the object.

EXAMPLE:

- name: plm-id
in: query
content:
application/json
schena
type: object
properties:
ncce:
type: string
mc:
type: string

Thisresultsin the following formatting:

...lresource?pl m-id={"ntc":"123", "mc": " 456"}

- Arraysof simpletypes: they shall be formatted using the OpenAPI "style" keyword set to "form" and the
"explode" keyword set to "false".

EXAMPLE:

- name: service-names
in: query
style: form
expl ode: false
schenma
type: array
itens:
type: string

Thisresultsin the following formatting:

...l resource?servi ce- nanes=servi cel, service2, servi ce3
5.3.14 Attribute Presence Conditions

In an OpenAPI specification [4], presence conditions for attributesin a JISON schema definition shall be expressed by
using the "required" keyword, indicating alist (array) of attributes that shall always be present in an object conforming
to such schema.

The "required” keyword may be used as part of any of the expressions defined by OpenAPI to combine schemas
("oneOf", "anyOf", "alOf", "not").

EXAMPLES:

- JSON object defining attributes "a" and "b", of type integer, where attribute "a" shall always be present:

conponent s:
schenas:
Exanpl eTypel:
type: object
required: [a]
properties:
a
type: integer

'type: i nt eger
- JSON object defining attributes "a" and "b", of type integer, where at least one of them, or both, shall be present:
conponent s:
schemas:

Exanpl eType2:
type: object

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 58 ETSI TS 129 501 V15.8.0 (2020-11)

anyCf :
- required: [a]
- required: [b]
properties:
a:
type: integer

. type: integer

- JSON object defining attributes "a" and "b", of type integer, where at least one of them shall be present, but not
both:

conponent s:
schenas:
Exanpl eType3:
type: object
one(Xf:
- required: [a]
- required: [b]
properties:
a:
type: integer

'type: i nt eger

- JSON object defining attributes "a" and "b", of type integer, where "a" and "b" can be both absent but, if one of
them is present, the other shall be absent:

conponent s:

schenas:
Exanpl eType4:
type: object
not :
required: [a, b]
properties:
a:

.type: i nt eger
- type: integer

- JSON object defining attributes "a" and "b", of type integer, where "b" shall be present if "a" takes a given value
(e.g., vaue 1), but may be absent otherwise:

conmponent s:
schemas:
Exanpl eType5:
type: object
properties:
a:
type: integer

- type: integer

anyOf :
- not:
required: [a]
properties:
a:
type: integer
enum [1]
- required: [b]

- JSON object defining attributes "a"* and "b", of type integer, where "b" shall be present if and only if "a" takesa
given value (e.g., value 1):

conmponent s:
schemas:
Exanpl eType6:
type: object
properties:
a:
type: integer

type: integer
one(f :
- required: [a]
properties:

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 59 ETSI TS 129 501 V15.8.0 (2020-11)

a:
type: integer
enum [1]
- not:

required: [b]

5.3.15 Usage of the "tags" field

In an OpenAPI specification, all HTTP operations belonging to the same resource should include a "tags” field
containing a same value, briefly describing that resource (e.g. using the name of the resource and its archetype). This
resultsin all operations being grouped by the User Interface of OpenAPI tools, which helps with readibility of the API
documentation.

EXAMPLE:

openapi: 3.0.0
(.-.)
pat hs:
/ nf-instances/ {nflnstancel D}:
get:
summary: Read the profile of a given NF Instance
operationld: GetNFlnstance
tags:
- NF Instance | D (Docunent)
(...)
put :
sunmary: Regi ster a new NF I nstance
operationld: RegisterNFlnstance
tags:
- NF Instance I D (Docunent)
(...)
pat ch:
summary: Update NF | nstance profile
operationld: UpdateNFl nstance
tags:
- NF Instance | D (Docunent)
(...)

5.3.16 Security

Asindicated in 3GPP TS 33.501 [22] and 3GPP TS 29.500 [2], the access to an 5GC APl may be authorized by means
of the OAuth2 protocol (see IETF RFC 6749 [n3]), based on local configuration. 5GC APIs thus need to support the
OAUuth2 protocol.

To reflect this, the OpenAPI specification file of an API shall contain:
- a"security" field listing as alternatives:
i) "{}" toindicate that usage of security isoptional; and

ii) the name of the security schema for oAuth2, as defined in the subsequent bullet, and in the subsequent array
the name of the API as only scope; and

- a"securitySchemes' field in the "components' clause defining a security schemafor oAuth2 as follows:
i) to beof type"oauth2"; and
ii) witha"flows" field containing a"clientCredentials’ field that contains:

1) a"tokenUri" field pointing to the Access Token Request service provided by the NRF (see
3GPP TS 29.510[18]); and

2) a"scopes' field defining the name of the corresponding API (using the format used within URIs of that
API) as only scope since the same security applies to the entire API.

Example:

security:

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 60

- {1

- OAuth2dientCredential s:

- nnrf-nfm

conponent s:
securitySchemnes:

oAut h2d i ent Credenti al s:

type: oauth2
flows:

clientCredentials:
tokenUrl: ' {nrfApi Root}/oaut h2/token'

scopes:
nnrf-nfm

Access to the Nnrf_NFManagenent API

5.3.17 Reuse of Structured Data Types

ETSI TS 129 501 V15.8.0 (2020-11)

Asindicated in clause 5.2.4.1, common data types can be defined in 3GPP TS 29.571 [5], in order to avoid the
duplication of datatype definitions across multiple APIs.

When such data types are of type object, agiven APl may require that the common data type is extended with
additional attributes, on top of those from the original definition in 3GPP TS 29.571 [5].

In such case, the new datatype in that APl should not re-define entirely the common data type, and instead, it should
use appropriate constructs in OpenAPI (i.e. the "allOf" keyword) to indicate that the new data type contains all the
attributes form the common data type, by referencing to it, and indicate the additional attributes needed in the new data

type.
EXAMPLE:

The ProblemDetails data type is defined in 3GPP TS 29.571 [5] as:

Pr obl enDet ai

I's:

type: object
properties:

type:
$ref:
title:
type:
st at us:
type:
detail:

type:

' #/ component s/ schemas/ Uri '
string
i nt eger

string

i nstance:

$ref:
cause:

type:

' #/ component s/ schemas/ Uri '

string

i nval i dPar ans:

type:
itens:

array

$ref: '#/ conmponents/schemas/ | nval i dPar am
mnltens: 1

Then, if agiven API needs to extend ProblemDetails with an additional attribute, e.g. "action" of type string, it
should define, e.g. an ExtendedProblemDetail s data type as follows:

Ext endedPr obl emDet ai | s:

all O :
- Sref:
- Sref:

Pr obl enDet ai

' TS29571_CommonDat a. yan #/ conponent s/ schemas/ Probl enDet ai | s’

' #/ component s/ schemas/ Pr obl enDet ai | sExt ensi on'

| sExt ensi on:

type: object
properties:

action:
type:

string

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 61 ETSI TS 129 501 V15.8.0 (2020-11)

6

6.1

Requirements for secure API design

Introduction

This clause contains a list of security requirements for API design provided by SA3.

6.2

General

The following regquirements are intended as general guidance for 3GPP Stage 3 work in order to specify secure
protocols and APIs. As such, these guidelines are independent of the specific technology and shall be followed at al

times.

The valid format and range of values (when applicable) for each | E shall be defined unambiguously.

NOTE 1: Explicitly defining format and range of values not only helps to improve the security of a certain

implementation, but also allows for reliable interoperability between different protocol implementations.
Example: Defining a"lowercase string variable of length 10 and range [a..Z]" is much more explicit that
just defining a"string of length 10". There are known vulnerabilities such as a denia of service (resulting
in the parser converting from a string representing an integer — an attacker can passin an arbitrarily large
integer and trigger an unhandled exception) and such leading to a heap corruption and crash (proof-of -
concept available), or potentially remote code execution (no proof-of-concept known). Unicode literals
aso require special treatment when doing string comparisons to ensure that equivalent strings return true
when compared.

For each message the number of leaf | Es shall not exceed 16K.

The maximum size of the JSON body of any HT TP request/response shall not exceed 2 million octets.

NOTE 2: APIs need to be designed taking care to avoid atoo large HT TP payload size for performance reasons.

The maximum nesting depth of leaves shall not exceed 32.

NOTE 3: There are resource exhaustion attacks on JSON parsers. Defined maximum numbers of |Es, sizes and

nesting depths allow implementations to know an upper bound of required ressources. It also allows
validation of incoming messages. Recursively processing nested objects leads to stack exhaustion and a
denial of service bug.

For data structures where values are accessible using names (sometimes referred to as keys), e.g. a JSON object,
the name shall be unique. The occurrence of the same name (or key) twice within such a structure shall be an
error and the message shall be rejected.

NOTE 4: Seridization schemes (e.g. JSON) can leave the handling of repeated names (keys) up to the

6.3

implementer's discretion. For example, for arepeated name an error can be raised, the pair can be
ignored, or the first or last value read can be used, though there is no canonical order in which a parser
should treat the data it receives. Failure to adhere to consistent handling rules can lead to vulnerabilities.
From a security perspective rejecting objects with repeated names, rather than accepting according to
some rule, isthe more robust solution, and aids in identification of potentially malicious activity. There
are known attacks with specially crafted malicious messages that are designed to confuse
implementations of NFsto get fraudulent messagesinto a PLMN.

SBA-specific requirements

The following reguirements shall be considered for every network function that implements a service-based interface.

OpenAPI specifications are machine-readable JISON objects and can be used as the basis for re-configuring an
NFs action when an API or message structure changes. Therefore, each OpenAPI specifications shall contain all
necessary information to correctly and unambiguously parse the contents of the message body.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 62 ETSI TS 129 501 V15.8.0 (2020-11)

NOTE: Attacks often exploit corner cases and unspecified behavior in order to exploit a system. Traffic
normalization counters this by either dropping traffic that is malformed or by forcing certain information
elementsto a"normal” value. Typically, thisrelates to inconsistent fields.

- 3GPP TS 33.501 [22] documents which type of information shall be confidentiality protected on the N32
interface. The fields where these types of information (e.g. SUPI) is contained may have different names. Even if
the field names are different, the mechanism specified in clause 5.2.3.3 of 3GPP TS 29.573 [24] shall clearly
identify the type of information carried in each |E and which information types shall be confidentiality protected.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 63 ETSI TS 129 501 V15.8.0 (2020-11)

Annex A (informative):
TS Skeleton Template

A TS Skeleton Template to be used as a starting point of drafting a 5G System SBI Stage 3 specification is available at
the following location:

https.//www.3gpp.org/ftp/information/All_Templates/29.xxx-SBI-Stage3-Template.zip

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 64 ETSI TS 129 501 V15.8.0 (2020-11)

Annex B (informative):
Backward Incompatible Changes

This Annex provides information about the changesin the API that are considered as backwards compatible and those
that are considered as backwards incompatible. Thislist isto be considered informative and it may be expanded in
future releases, when necessary.

Backward compatible changes are additions or changes in the API that do not bresk the existing Service Consumer
behaviour. Examples of backward compatible changesinclude:

- Adding anew, optional child resource/URI;

- Supporting a new HT TP method;

- Adding new elements to a resource representation;

- Changing the order of fieldsin aresource representation;
- Addition of anew status code:

NOTE 1. When aNF/ NF Service receivesaHTTP status code that it cannot recognize it will treat it asthe
corresponding x00 status code as specified in clause 5.2.7.3 of 3GPP TS 29.500 [2].

- Corrections of obvious errorsin an OpenAPI file required to enable a correct parsing of the file such as
misspelled references,

- Correctionsthat only relate to smaller and optional parts of the functionality (e.g. a supported feature, see
3GPP TS 29.500 [2] clause 6.6.2), even if the changes are backward incompatible with respect to that part of the
functionality; and

NOTE 2: It isrecommended to only apply corrections which are also backward compatible with respect to such
smaller and optional parts of the functionality. If thisis not possible a new supported feature can be
introduced to enable a negotiation of the support of the correction, and the old corresponding supported
feature can be marked as "withdrawn" in the table defining the supported features of an API.

- Backward-compatible changes related to the semantics (i.e. functional behaviour) specified for an API.

Backward incompatible changes are additions or changes in the API that break the existing Service Consumer
behaviour. Hereis alist of backward incompatible changes that shall require incrementing the 1% field (MAJOR) of the
API version number unless they only relate to smaller and optional parts of the functionality (see above):

- Removing aresource/URI:

- Removing support for an HTTP method;

- Renaming afield in aresource representation;

- Adding mandatory parameters to aresource URI or resource representation;
- Attribute data type changes,

- Cardinality changes (NOTE 3); and

NOTE 3: Whether attribute cardinality changes are backward compatible depend on the type of change. Examples
of non-backward compatibility changes include decreasing the upper bound of a cardinality range for
attributes sent by the NF service consumer, changing the meaning of the default behavior associated to
the absence of an attribute of cardinality O..N, etc.

- Backward incompatible changes related to the semantics (i.e. functional behaviour) specified for an API.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 65 ETSI TS 129 501 V15.8.0 (2020-11)

Annex C (Informative):
Resource modelling

C.0 General

When designing an API, one shall first think of defining the set of resources consumed. Resources represent objects that
are modified by standard HTTP methods and that can be modelled with one of 4 archetypes detailed below. Resource
archetypes help API designers to structure the resources. In this process the designer should refer to the appropriate
archetype when the resource definition perfectly matches the archetype one. Referring to an archetype immediately
defines what operations and HT TP methods are supported by the resource.

The archetypes provided hereafter don't preclude the existence of resources of different types.

C1l Document

The document archetype is the conceptual base archetype of the other ones. Any resource that is not identified with one
of the other resource archetypesis a document.

A document may have child resources that represent its specific subordinate concepts.
The archetype does not place any restriction on HT TP methods when acting on a document.

Only CRUD operations are performed directly on a document resource, i.e. by sending an HTTP request to the URI of
that resource. Custom methods are not performed directly on the resource, but by sending an HTTP request to a URI
that is associated by a convention (see clause X.4) with the URI of the resource.

C.2 Collection

The collection archetype can be used to model aresource that serves as a directory of resources. A collectionis NF
Service Provider-managed so the NF Service Provider decides the URIs of each resource that is created in the
collection.

NOTE: Eventhough a collection resource typically contains child resources, it is allowed that a particular
collection resource does not contain any child resource at a particular point in time ("empty collection”).

The Create and Read operations are performed on a collection directly.

More specificaly:
- A collection child resource is created by sending a POST with the collection URI if accepted by the collection;
- A collectionisread by sending a GET with the collection URI;
- ThePUT and PATCH methods with the collection URI are not allowed;

- The DELETE method with the collection URI is only allowed if the collection resource has been created
dynamically based on a request from the NF Service Consumer.

- The authorized operations on a collection child resource depend on that resource's archetype.

C.3 Store

The store archetype can also be used to model aresource that serves as a directory of resources but a store is NF Service
Consumer-managed. The NF Service Consumer solely decides what resource shall be added to / deleted from a store.
The NF Service Consumer decides what the URI of the added resource is.

NOTE: Eventhough astore resource typically contains child resources, it is allowed that a particular store
resource does not contain any child resource at a particular point in time ("empty store").

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 66 ETSI TS 129 501 V15.8.0 (2020-11)

The Read operation is performed on a store directly, and the Create operation is performed on store child resources.
More specifically:

- A storechild resource is created by sending a PUT with the URI of the child resource to be created.

- A storeisread by sending a GET with the store URI;

- ThePOST, PUT and PATCH methods with the store URI are not allowed;

- The DELETE method with the store URI isonly allowed if the store resource has been created dynamically
based on arequest from the NF Service Consumer.

- Apart from Create (PUT), the authorized operations on a store child resource depend on that resource's
archetype.

C4a Custom operation

The custom operation archetype can be used to model an unsafe and non-idempotent operation that is not a Create on a
collection.

A custom operation does not operate directly on the resource that would be identified by the custom operation URI.
Instead, when the custom operation is associated with aresource, the operation is performed on this associated resource.
For instance, a custom operation may modify the associated resource in a special way. This associated resource is
identified by stripping the suffix string "/{ custOpName} " from the custom operation URI template in clause 4.4.2.

When the custom operation is not associated with any resource but with the service, it acts as an executable function
with input parameters and returns the result of the executed function in the response body, not modifying any resource.

POST isthe only method allowed with a custom operation URI.

The semantic of the custom operation is encoded in the last segment of the URI template in chapter 4.4.2:
/{ custOpName}.

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 67 ETSI TS 129 501 V15.8.0 (2020-11)

Annex D (informative):
Example of an OpenAPI specification file for Patch

Asdescribed in clause 4.6.1.1.3.2, the bodies of HTTP PATCH requests will either use a"JSON Merge Patch"
encoding as defined in IETF RFC 7396 [7], or a"JSON Patch" encoding as defined IETF RFC 6902 [8]. This annex
provides an example OpenAPI Specification [4] alowing both encodings.

NOTE: Both encoding possibilities are shown in this example for illustrative purposes. However, only a single of
the above encodings will be specified for each resource where the PATCH method is supported unless
backward compatibility considerations necessitate the support of both encodings.

openapi: 3.0.0
info
version: "1.0.0"
title: PATCH Exanple
pat hs:
/inventory:
post :
summary: adds an inventory item
operationld: addlnventory
description: Adds an itemto the system
responses
‘201
description: itemcreated
' 400
description: 'invalid input, object invalid
' 409'
description: an existing itemalready exists
request Body:
content:
application/json
schena:
$ref: '#/ conponents/schemas/ | nventoryltent
description: Inventory itemto add
/inventory/{id}:
get:
sunmary: read inventory item
par ameters:

- name: id
in: path
required: true
schena
type: integer
responses
' 200
description: search results matching criteria
content:
application/json
schena:

$ref: '#/ conponents/schemas/|nventoryltent
' 400'
description: bad input paraneter
pat ch:
summary: patch inventory item
parameters:
- name: id
in: path
required: true
schena
type: integer
request Body:
required: true
content:
appl i cation/j son-pat ch+j son
schema
$ref: '#/ conponents/schenas/ Pat chl nventoryltent
appl i cati on/ mer ge- pat ch+j son

schema:
$ref: '#/ conponents/schenas/ MergePat chl nventorylten
responses
' 200’
description: Patch was succesfull and updated Inventory Itemis returned
content:

application/json

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 68 ETSI TS 129 501 V15.8.0 (2020-11)

schena:
$ref: '#/ conponents/schenas/|nventoryltemn
1204 :
description: Patch was succesfull
'400' :

description: bad input paraneter
conponents:
schemas:
Inventoryltem
type: object
required:
- nane
- manuf acturer
properties:
id:
type: integer
nane:
type: string
manuf act urer:
$ref: ' #/ conmponent s/ schemas/ Manuf acturer'
cust omers:
type: array
itens:
type: string
Manuf act urer:
type: object
required:
- name
properties:
nane:
type: string
homePage:
type: string
format: url
phone:
type: string
Pat chl nventoryl tem
type: array
description: A JSON PATCH body schema to Patch sel ected parts of an Inventory Item
items:
anyCf :
- onef:
- type: object
description: Mdifies the URL of a Manufacturer
properties:
op:
type: string
enum
- "add"
"renove"
- "repl ace"
pat h:
type: string
pattern: '~\/manufacturer\/homePage$'
val ue:
type: string
format: url
required:
" op”
"pat h"
- type: object
description: Mdifies a Manufacturer

properties:
op:
type: string
enum
- "repl ace"
pat h:

type: string
pattern: '~\/manufacturer$'
val ue:
$ref: ' #/ conponent s/ schemas/ Manuf act urer'
required:
- “op“
- "path"
- "val ue"
- type: object
description: Mdifies a Custoner

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 69

properties:
op:
type: string
enum
- "add"
- "renove"
- "repl ace"
pat h:
type: string
pattern: '~\/custonmers\/(-|\d+)$
val ue:
type: string
required:
- "Op"
- "path"
- type: object
description: Open Alternative
mnltems: 1
Mer gePat chl nventoryltem

ETSI TS 129 501 V15.8.0 (2020-11)

description: A JSON Merge PATCH body schenma to Patch selected parts of an Inventory Item

type: object
properties:
manuf act urer:
$ref: ' #/ component s/ schemas/ Manuf acturer'
nul | abl e: true
cust omers:
type: array

description: Allows to replace the entire array,

items:
type: string

ETSI

but not to nodify individual elenents.

3GPP TS 29.501 version 15.8.0 Release 15 70 ETSI TS 129 501 V15.8.0 (2020-11)

Annex E (informative):
Change history

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 71 ETSI TS 129 501 V15.8.0 (2020-11)

Change history

Date Meeting |TDoc CR R |Cat [Subject/Comment New
ev version

2017-10 | CT4#80 [C4-175250 TS skeleton 0.1.0

2017-10 | CT4#80 | C4-175358 Inclusion of pCRs agreed at CT4#80 0.2.0
C4-175252
C4-175253
C4-175254
C4-175255
C4-175331
C4-175332
C4-175333
C4-175334
C4-175359
C4-175327
C4-175328
C4-175360
C4-175330
C4-175336
C4-175337

2017-12 | CT4#81 | C4-176414 Inclusion of pCRs agreed at CT4#81 0.3.0
C4-176372
C4-176447
C4-176415
C4-176416
C4-176417
C4-176418
C4-176250
C4-176419
C4-176422

2018-01 | CT4#82 | C4-181179 Inclusion of pCRs agreed at CT4#82 0.4.0
C4-181384

2018-03 | CT4#83 | C4-182396 Inclusion of pCRs agreed at CT4#83 0.5.0
C4-182397
C4-182394
C4-182395
C4-182399
C4-182261
C4-182184
C4-182330
C4-182398
C4-182332

2018-03 | CT#79 CP-180029 Presented for information 1.0.0

2018-04 | CT4#84 | C4-183238 Inclusion of pCRs agreed at CT4#84 1.1.0
C4-183288
C4-183289
C4-183291
C4-183292
C4-183385
C4-183387
C4-183388
C4-183477
C4-183478

2018-05 29.xxx-SBI-Stage3 Template added in zip-file. 11.1

2018-05 | CT4#85 | C4-184492 Inclusion of pCRs agreed at CT4#85 1.2.0
C4-184493
C4-184494
C4-184495
C4-184496
C4-184544
C4-184614
C4-184503
C4-184497
C4-184592

2018-06 [CT#80 CP-181099 Presented for approval 2.0.0

2018-06 [CT#80 Approved in CT#80. 15.0.0

2018-07 TS template added in zip-file 15.0.1

2018-09 | CT#81 CP-182054 |0001 4 Security requirements for API design 15.1.0

2018-09 | CT#81 CP-182054 |0002 Example URIs in figures 15.1.0

2018-09 | CT#81 CP-182054 |0003 Clarification on the use of API version number 15.1.0

2018-09 | CT#81 CP-182054 |0004 External Docs Clause in OpenAPI file 15.1.0

2018-09 | CT#81 CP-182054 |0006 JSON Structures in Query Parameters 15.1.0

RN

2018-09 | CT#81 CP-182054 |0008 Servers Selection in OpenAPI 15.1.0

2018-09 | CT#81 CP-182054 [0009 Query Parameter 15.1.0

mmm|@(Tm|T|T|(@

2018-09 | CT#81 CP-182054 0010 yaml file names 15.1.0

ETSI

3GPP TS 29.501 version 15.8.0 Release 15 72 ETSI TS 129 501 V15.8.0 (2020-11)

2018-09 | CT#81 CP-182054 |0011 F | OpenAPI servers field 15.1.0
2018-09 | CT#81 CP-182054 |0012 1| F |Query parameter 15.1.0
2018-09 | CT#81 CP-182054 |0013 1{ F |presence condition and cardinality 15.1.0
2018-09 | CT#81 CP-182054 0014 1{ F |Clarification on Naming Conventions and Digits 15.1.0
2018-09 | CT#81 CP-182054 0015 1| F |URIs of created resources 15.1.0
2018-09 | CT#81 CP-182054 |0016 1{ F |Custom operation in resource structure presentation 15.1.0
2018-12 | CT#82 CP-183012 |0018 2| F [Attribute Presence Conditions 15.2.0
2018-12 | CT#82 CP-183012 |0019 1[F |Version addressed by references within OpenAPI files 15.2.0
2018-12 | CT#82 CP-183012 |0020 2| F [Resolve Editor's Note 15.2.0
2018-12 | CT#82 CP-183012 |0021 F | Attribute with Any Type 15.2.0
2018-12 | CT#82 CP-183012 |0022 F |Incorrect resource URI structure presentation 15.2.0
2018-12 | CT#82 CP-183012 |0023 1{ F |Storage of OpenAPI files within a central directory 15.2.0
2018-12 | CT#82 CP-183012 0025 3] F [Complex query expression 15.2.0
2018-12 | CT#82 CP-183012 |0031 1{ F |Correction and Clarification on Security Requirements 15.2.0
2018-12 | CT#82 CP-183012 |0032 2| R [Subscription Lifetime for Subscribe / Notify operations 15.2.0
2018-12 | CT#82 CP-183012 [0033 F |Usage of the "tags" field in OpenAPI 15.2.0
2018-12 | CT#82 CP-183012 0035 2| F [Corrections to API versioning 15.2.0
2018-12 | CT#82 CP-183012 |0036 1{ F |Security in Open API specification files 15.2.0
2018-12 | CT#82 CP-183012 |0037 1[{ F |Custom Operations 15.2.0
2019-03 | CT#83 CP-190017 |0039 2| F [Address Editor's Note on implicit subscriptions 15.3.0
2019-03 | CT#83 CP-190017 0040 F |Address Editor's Note on partial representation in POST response 15.3.0
2019-03 | CT#83 CP-190017 |0041 1{ F |Maximum HTTP payload size 15.3.0
2019-03 | CT#83 CP-190017 [0042 1| F |HTTP Scheme 15.3.0
2019-03 | CT#83 CP-190017 |0043 2| F [Resolve Editor's Notes 15.3.0
2019-03 | CT#83 CP-190017 |0044 F | Correction to Minor Field Increment Rules in API Versioning 15.3.0
2019-03 | CT#83 CP-190017 |0045 1 F |Handling of unknown attributes during resource creation and 15.3.0
modification
2019-03 | CT#83 CP-190017 |0046 1{ F |Correct use of "OpenAPI" name 15.3.0
2019-03 | CT#83 CP-190017 |0047 1| F |Resolution of Editor's Notes in Annex C 15.3.0
2019-03 | CT#83 CP-190017 |0048 2| F [IANA registration of "3gppHal+json" media type 15.3.0
2019-03 | CT#83 CP-190017 |0049 1{ F |Addition of applicability column to query parameters table 15.3.0
2019-03 | CT#83 CP-190017 |0050 1 F |Removing multiple redundant appearances of major version number | 15.3.0
in TS template to ease update of that number
2019-03 | CT#83 CP-190017 |0051 2| F [Storage of OpenAPI specification files 15.3.0
2019-03 | CT#83 CP-190017 |0052 -| F |Use of Relative URI in Location Header 15.3.0
2019-06 | CT#84 CP-191028 |0053 2| F _[Criteria for non-backward compatible changes 15.4.0
2019-06 | CT#84 CP-191028 |0056 1{ F |Reuse of Structured Data Types 15.4.0
2019-06 | CT#84 CP-191028 |0057 1{ F |Delete editor's note on complex query 15.4.0
2019-06 | CT#84 CP-191028 |0059 -| F _|Correction on Notifications 15.4.0
2019-06 | CT#84 CP-191028 |0060 1{ F |Copyright Note in YAML files 15.4.0
2019-06 | CT#84 CP-191028 |0055 2| F [Precedence of OpenAPI file 15.4.0
2019-06 | CT#84 CP-191028 |0054 4] F [Withdrawing API versions 15.4.0
2019-09 | CT#85 CP-192101 |0062 3| F [Externaldoc version number change 15.5.0
2019-12 | CT#86 CP-193025 |0068 2| F [Fourth field of API versions 15.6.0
2020-03 | CT#87e CP-200054 |0071 1| F |Storage of YAML files in ETSI Forge 15.7.0
2020-09 | CT#89e | CP-202043 |0092 -] F |Storage of YAML files in 3GPP Forge 15.8.0

ETSI

3GPP TS 29.501 version 15.8.0 Release 15

73

ETSI TS 129 501 V15.8.0 (2020-11)

History
Document history

V15.0.1 July 2018 Publication
V15.1.0 October 2018 Publication
V15.2.0 April 2019 Publication
V15.3.0 July 2019 Publication
V15.4.0 July 2019 Publication
V15.5.0 September 2019 | Publication
V15.6.0 January 2020 Publication
V15.7.0 April 2020 Publication
V15.8.0 November 2020 | Publication

ETSI

	Intellectual Property Rights
	Legal Notice
	Modal verbs terminology
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Design Principles for 5GC SBI APIs
	4.1 General Principles
	4.2 API Design Style and REST Implementation Levels
	4.2.1 General
	4.2.2 API Design Principles for Query Operation
	4.2.3 API Design Principles for Delete Operation

	4.3 Version Control
	4.3.0 General
	4.3.1 Structure of API version numbers
	4.3.1.1 API version number format
	4.3.1.2 Rules for incrementing field values
	4.3.1.3 Visibility of the API version number fields
	4.3.1.4 Relation to the Technical Specification version number
	4.3.1.5 Discovery of the supported versions
	4.3.1.6 Withdrawing API versions

	4.4 URI Structure
	4.4.1 Resource URI structure
	4.4.2 Custom operations URI structure
	4.4.3 Callback URI structure

	4.5 Resource Representation and Content Format Negotiation
	4.5.1 Resource Representation
	4.5.2 Content Format Negotiation

	4.6 Use of HTTP Methods
	4.6.1 Use of Request/Response Communication
	4.6.1.1 CRUD
	4.6.1.1.1 Creating a Resource
	4.6.1.1.1.1 General
	4.6.1.1.1.2 Creating a Resource using POST
	4.6.1.1.1.3 Creating a Resource using PUT

	4.6.1.1.2 Reading a Resource
	4.6.1.1.2.1 Reading a Single Resource
	4.6.1.1.2.2 Querying a Set of Resources

	4.6.1.1.3 Updating a Resource
	4.6.1.1.3.1 Usage of HTTP PUT
	4.6.1.1.3.2 Usage of HTTP PATCH

	4.6.1.1.4 Deleting a Resource
	4.6.1.1.5 Query Parameters
	4.6.1.1.5.1 General
	4.6.1.1.5.2 Complex query expression

	4.6.1.2 Custom Operations
	4.6.1.3 Use of Asynchronous Operations
	4.6.1.4 Special provisions to support the seamless change of AMF as NF service producer

	4.6.2 Use of Subscribe/Notify Communication
	4.6.2.1 General
	4.6.2.2 Management of Subscriptions
	4.6.2.2.1 General
	4.6.2.2.2 Creation of a Subscription
	4.6.2.2.3 Modify a subscription
	4.6.2.2.3.1 Modification of a Subscription Using HTTP PUT
	4.6.2.2.3.2 Modification of a Subscription Using HTTP PATCH

	4.6.2.2.4 Delete a subscription

	4.6.2.3 Notifications
	4.6.2.4 Special provisions to support the seamless change of AMF as NF service consumer

	4.7 HATEOAS
	4.7.1 General
	4.7.2 3GPP hypermedia format
	4.7.3 Advertising legitimate application state transitions
	4.7.4 Inferring link relation semantic
	4.7.5 Common Relation Types
	4.7.5.1 Introduction
	4.7.5.2 Registered relation types
	4.7.5.3 Extension relation types

	4.7.6 Negotiating the support of optional HATEOAS features

	4.8 Error Responses
	4.9 Transferring multiple resources to a NF Service Consumer
	4.9.1 General
	4.9.2 Direct Delivery
	4.9.3 Direct Delivery with Iterations
	4.9.4 Indirect Delivery
	4.9.5 Indirect Delivery with HTTP/2 Server Push
	4.9.6 Criteria for choosing the transfer method

	5 Documenting 5GC SBI APIs
	5.1 Naming Conventions
	5.1.1 Case Conventions
	5.1.2 API Naming Conventions
	5.1.3 Conventions for URI Parts
	5.1.3.1 Introduction
	5.1.3.2 URI Path Segment Naming Conventions
	5.1.3.3 URI Query Naming Conventions

	5.1.4 Conventions for Names in Data Structures

	5.2 API Definition
	5.2.1 Resource Structure
	5.2.2 Resources and HTTP Methods
	5.2.3 Representing RPC as Custom Operations on Resources
	5.2.4 Data Models
	5.2.4.1 General
	5.2.4.2 Structured data types
	5.2.4.3 Simple data types and enumerations
	5.2.4.4 Binary Data
	5.2.4.5 Data types describing alternative data types or combinations of data types

	5.2.5 Relation types

	5.3 OpenAPI specification files
	5.3.1 General
	5.3.2 Formatting of OpenAPI specification files
	5.3.3 Info
	5.3.4 externalDocs
	5.3.5 Servers
	5.3.6 References to other 3GPP-defined OpenAPI specification files
	5.3.7 Server-initiated communication
	5.3.8 Describing the body of HTTP PATCH requests
	5.3.8.1 General
	5.3.8.2 JSON Merge Patch
	5.3.8.3 JSON PATCH

	5.3.9 Structured data types
	5.3.10 Data types describing alternative data types or combinations of data types
	5.3.11 Error Responses
	5.3.12 Enumerations
	5.3.13 Formatting of structured data types in query parameters
	5.3.14 Attribute Presence Conditions
	5.3.15 Usage of the "tags" field
	5.3.16 Security
	5.3.17 Reuse of Structured Data Types

	6 Requirements for secure API design
	6.1 Introduction
	6.2 General
	6.3 SBA-specific requirements

	Annex A (informative): TS Skeleton Template
	Annex B (informative): Backward Incompatible Changes
	Annex C (Informative): Resource modelling
	C.0 General
	C.1 Document
	C.2 Collection
	C.3 Store
	C.4 Custom operation

	Annex D (informative): Example of an OpenAPI specification file for Patch
	Annex E (informative): Change history
	History

