Universal Mobile Telecommunications System (UMTS);
LTE;
Diameter based T4 Interface for communications
with packet data networks and applications
(3GPP TS 29.337 version 11.0.0 Release 11)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.
Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:
 1 presented to TSG for information;
 2 presented to TSG for approval;
 3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.
Scope

The present document describes the Diameter based interface between the Machine Type Communications-InterWorking Function (MTC-IWF) and the Short Message Service-Service Centre (SMS-SC) for communications with packet data networks and applications.

This specification defines the Diameter application for the T4 reference point between the MTC-IWF and the SMS-SC. The interactions between the MTC-IWF and the SMS-SC are specified.

The stage 2 description for communications with packet data networks and applications (architecture and functionality) is specified in the 3GPP TS 23.682 [2].

References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[6] 3GPP TS 29.229: "Cx and Dx interfaces based on the Diameter protocol".
[7] 3GPP TS 29.228: "IP multimedia (IM) Subsystem Cx and Dx Interfaces; Signalling flows and Message Elements".
[8] 3GPP TS 23.003: "Numbering, addressing and identification".
[9] 3GPP TS 23.040: "Technical realization of the Short Message Service (SMS)".
[12] 3GPP TS 29.336: "Home Subscriber Server (HSS) diameter interfaces for interworking with packet data networks and applications".
[13] 3GPP TS 29.338: "Diameter based protocols to support SMS capable MMEs".
[15] 3GPP TS 29.368: "Tsp interface protocol between the MTC Interworking Function (MTC-IWF) and Service Capability Server (SCS)".
3 Definitions and Abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Definition format (Normal)

<defined term>: <definition>.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABNF</td>
<td>Augmented Backus-Naur Form</td>
</tr>
<tr>
<td>AVP</td>
<td>Attribute-Value Pair</td>
</tr>
<tr>
<td>C</td>
<td>Conditional</td>
</tr>
<tr>
<td>IANA</td>
<td>Internet Assigned Numbers Authority</td>
</tr>
<tr>
<td>MTC</td>
<td>Machine-Type Communications</td>
</tr>
<tr>
<td>MTC-IWF</td>
<td>MTC Interworking Function</td>
</tr>
<tr>
<td>O</td>
<td>Optional</td>
</tr>
<tr>
<td>SCS</td>
<td>Service Capability Server</td>
</tr>
</tbody>
</table>

4 General Description

The T4 reference point between the MTC-IWF and the SMS-SC is an intra PLMN interface, as defined in the 3GPP TS 23.682 [7].

This document describes the T4 interface related procedures, message parameters and protocol specifications.

The T4 interface allows transfer of device trigger from MTC-IWF to SMS-SC inside HPLMN domain, along with the serving SGSN/MME/MSC identities, and allows SMS-SC to report to MTC-IWF the submission outcome of a device trigger and the success or failure of delivering the device trigger to the UE.

5 MTC-IWF – SMS-SC (T4)

5.1 Introduction

This section describes the Diameter-based T4 interface related procedures and information elements exchanged between the MTC-IWF and the SMS-SC.

In the tables that describe the Information Elements transported by each Diameter command, each Information Element is marked as (M) Mandatory, (C) Conditional or (O) Optional in the "Cat." column. For the correct handling of the Information Element according to the category type, see the description detailed in section 6 of the 3GPP TS 29.228 [7].
5.2 Procedure Descriptions

5.2.1 Device Trigger Procedure

5.2.1.1 General

This procedure shall be used between the MTC-IWF and the SMS-SC for device trigger. The procedure shall be invoked by the MTC-IWF and is used:

- to transfer device trigger to SMS-SC inside HPLMN domain;
- to transfer to the SMS-SC the serving SGSN/MME/MSC identities along with device trigger.

This procedure is mapped to the commands Device-Trigger-Request/Answer in the Diameter application specified in chapter 6. Tables 5.2.1.1/1 and 5.2.1.1/2 detail the involved information elements.

<table>
<thead>
<tr>
<th>Information Element Name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Identifier</td>
<td>User-Identifier</td>
<td>M</td>
<td>This information element shall contain the IMSI of the UE the trigger is to be applied, formatted according to 3GPP TS 23.003 [8], clause 2.2. This Information Element may contain the international ISDN number of the UE the device trigger was delivered, formatted according to 3GPP TS 23.003 [8], clause 3.3. The ISDN number shall be present if it is available to the MTC-IWF. This Information Element may contain the external identifier of the UE the device trigger was delivered, formatted according to 3GPP TS 23.003 [8], clause 19.7.2. The external identifier shall be present if it is available to the MTC-IWF.</td>
</tr>
<tr>
<td>SM RP OA</td>
<td>SCS-Identity</td>
<td>M</td>
<td>This Information Element shall contain the identity of the Service Capability Server that is requesting a device trigger to the UE.</td>
</tr>
<tr>
<td>SM RP UI</td>
<td>SM-RP-UI</td>
<td>M</td>
<td>This information element shall contain short message transfer protocol data unit for device trigger.</td>
</tr>
<tr>
<td>Serving Node Identity</td>
<td>Serving-Node</td>
<td>C</td>
<td>This information element shall contain the serving node identity, i.e. SGSN/MME/MSC identity serving the UE. It shall be present if it is available to the MTC-IWF, e.g. the MTC-IWF retrieved this information from the HSS.</td>
</tr>
<tr>
<td>Additional Serving Node Identity</td>
<td>Additional-</td>
<td>C</td>
<td>This information element shall contain another serving node identity, e.g. SGSN/MME/MSC identity, if there is any serving the UE. There may be multiple instances of this information elements.</td>
</tr>
<tr>
<td>Trigger Reference Number</td>
<td>Reference-Number</td>
<td>C</td>
<td>This information element shall contain the Reference Number related to the device trigger request. It shall be present if it is available to the MTC-IWF, e.g. the MTC-IWF received this information over Tsp.</td>
</tr>
<tr>
<td>Validity Period</td>
<td>Validity-Period</td>
<td>C</td>
<td>This information element shall contain the validity period of the device trigger request. It shall be present if it is available to the MTC-IWF, e.g. the MTC-IWF received this information over Tsp.</td>
</tr>
<tr>
<td>Priority Indication</td>
<td>Priority-Indication</td>
<td>C</td>
<td>This information element shall contain the priority of the device trigger request. It shall be present if it is available to the MTC-IWF, e.g. the MTC-IWF received this information over Tsp.</td>
</tr>
<tr>
<td>SMS Application Port ID</td>
<td>SMS-Application-Port-ID</td>
<td>C</td>
<td>This information element shall contain the SMS Application Port ID of the device trigger request. It shall be present if it is available to the MTC-IWF, e.g. the MTC-IWF received this information over Tsp.</td>
</tr>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Information Element Name</td>
<td>Mapping to Diameter AVP</td>
<td>Cat.</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Result</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for T4 errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable: - Service Centre Congestion; - Invalid Short Message Entity Address; - Subscriber not Service Centre Subscriber; - SM Protocol Error.</td>
</tr>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
</tbody>
</table>

5.2.1.2 Detailed Behaviour of the MTC-IWF

The MTC-IWF shall make use of this procedure to transfer device trigger request received over Tsp interface from SCS to the SMS-SC.

If the MTC-IWF retrieved the IMSI and serving node identities of the UE from the HSS, the MTC-IWF shall include these identities in the request to the SMS-SC. The Serving-Node AVP should contain the serving node with a higher preference for device trigger delivery.

Editors’ note: It is FFS if MTC-IWF can indicate priority of the serving nodes to the SMS-SC.

The MTC-IWF shall include the External Identifier of the UE if received over Tsp interface from SCS.

5.2.1.3 Detailed Behaviour of the SMS-SC

When receiving a Device Trigger Request the SMS-SC shall check the identity of the UE received (i.e. IMSI or MSISDN) if it serves this UE. If not, a Result Code of DIAMETER_ERROR_USER_UNKNOWN shall be returned.

If the SCS-Identity AVP contains an invalid SME address, the SMS-SC shall return a Result Code of DIAMETER_ERROR_INVALID_SME_ADDRESS.

If the SMS-SC cannot fulfil the received request due to congestion, it shall return a Result Code of DIAMETER_ERROR_SC_CONGESTION.

If there is an error with the protocol contained in the short message transfer protocol data unit, the SMS-SC shall return a Result Code of DIAMETER_ERROR_SM_PROTOCOL.

If there are routing information (i.e. MME/SGSN/MSC identities serving the UE) present in the request, the SMS-SC shall transfer the short message transfer protocol data unit for device trigger request for the UE to the serving nodes. The SMS-SC shall return a Result Code of DIAMETER_SUCCESS to the MTC-IWF.

If there is no routing information (i.e. MME/SGSN/MSC identities serving the UE) present in the request, the SMS-SC shall follow the normal procedure for SMS delivery as defined in the 3GPP TS 23.040 [9].

If the SMS-SC cannot fulfil the received request, e.g. due to system failure, or congestion, it shall set Result-Code to DIAMETER_UNABLE_TO_COMPLY.

5.2.2 Delivery Report of Device Trigger

5.2.2.1 General

This procedure shall be used between the SMS-SC and the MTC-IWF for Delivery Report of Device Trigger. The procedure shall be invoked by the SMS-SC and is used:
to report the success or failure of delivering the device trigger to the UE.

This procedure is mapped to the commands Delivery-Report-Request/Answer in the Diameter application specified in chapter 6. Tables 5.2.2.1/1 and 5.2.2.1/2 detail the involved information elements.

Table 5.2.2.1/1: Delivery Report Request

<table>
<thead>
<tr>
<th>Information Element Name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Identifier</td>
<td>User-Identifier</td>
<td>M</td>
<td>This information element shall contain the IMSI of the UE the device trigger was delivered, formatted according to 3GPP TS 23.003 [8], clause 2.2. This Information Element may contain the international ISDN number of the UE the device trigger was delivered, formatted according to 3GPP TS 23.003 [8], clause 3.3. The ISDN number shall be present if it is available to the SMS-SC. This Information Element may contain the external identifier of the UE the device trigger was delivered, formatted according to 3GPP TS 23.003 [8], clause 19.7.2. The external identifier shall be present if it is available to the SMS-SC.</td>
</tr>
<tr>
<td>SM RP OA</td>
<td>SCS-Identity</td>
<td>M</td>
<td>This Information Element shall contain the identity of the Service Capability Server that is requesting a device trigger to the UE as received from the MTC-IWF.</td>
</tr>
<tr>
<td>SM Delivery Outcome</td>
<td>SM-Delivery-Outcome</td>
<td>M</td>
<td>This information element shall be present and indicate one of the following outcomes of the device trigger delivery: - Absent subscriber; - UE memory capacity exceeded; - Successful transfer.</td>
</tr>
<tr>
<td>Absent Subscriber Diagnostic SM</td>
<td>Absent-Subscriber-Diagnostic-SM</td>
<td>C</td>
<td>This information element shall indicate the reason why the subscriber is absent. It shall be present if the device trigger failed to be delivered due to absent subscriber.</td>
</tr>
<tr>
<td>Trigger Reference Number</td>
<td>Reference-Number</td>
<td>C</td>
<td>This information element shall contain the Trigger Reference Number as received from the MTC-IWF for the device trigger. This information element shall be present if it is available in the SMS-SC.</td>
</tr>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
</tbody>
</table>

Table 5.2.2.1/2: Delivery Report Answer

<table>
<thead>
<tr>
<th>Information Element Name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for T4 errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP.</td>
</tr>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
</tbody>
</table>

Editors’ note: IEs and AVPs defined in the above tables are to be further investigated.

5.2.2.2 Detailed Behaviour of the SMS-SC

The SMS-SC shall make use of this procedure to report the success or failure of delivering the device trigger to the UE to the MTC-IWF.

The SMS-SC shall include the identities of the UE, i.e. IMSI and/or MSISDN, the device trigger was delivered to.
The SMS-SC shall include the External Identifier of the UE if the SMS-SC received it from MTC-IWF in the device trigger request message.

The SMS-SC shall include an SCS-Identity AVP that contains the identity of the Service Capability Server that requested the device trigger to the UE as received from the MTC-IWF in the device trigger request message.

The SMS-SC shall include an SM-Delivery-Outcome-T4 AVP that contains the outcome of the success or failure of delivering the device trigger to the UE.

The SMS-SC shall include an Absent-Subscriber-Diagnostic-T4 AVP that contains the reason why the subscriber is absent if the device trigger failed to be delivered due to absent subscriber.

Detailed Behaviour of the MTC-IWF

The MTC-IWF shall return a Result Code of DIAMETER_SUCCESS to the SMS-SC.

6 Protocol Specification and Implementation

6.1 General

6.1.1 Use of Diameter Base Protocol

The Diameter Base Protocol as specified in IETF RFC 3588 [3] shall apply except as modified by the defined support of the methods and the defined support of the commands and AVPs, result and error codes as specified in this specification. Unless otherwise specified, the procedures (including error handling and unrecognised information handling) shall be used unmodified.

6.1.2 Securing Diameter Messages

For secure transport of Diameter messages, see 3GPP TS 33.210 [4]

6.1.3 Accounting Functionality

Accounting functionality (Accounting Session State Machine, related command codes and AVPs) shall not be used on the T4 interface.

6.1.4 Use of Sessions

Between the MTC-IWF and the SMS-SC, Diameter sessions shall be implicitly terminated. An implicitly terminated session is one for which the server does not maintain state information. The client shall not send any re-authorization or session termination requests to the server.

The Diameter base protocol includes the Auth-Session-State AVP as the mechanism for the implementation of implicitly terminated sessions.

The client (server) shall include in its requests (responses) the Auth-Session-State AVP set to the value NO_STATE_MAINTAINED (1), as described in IETF RFC 3588 [3]. As a consequence, the server shall not maintain any state information about this session and the client shall not send any session termination request. Neither the Authorization-Lifetime AVP nor the Session-Timeout AVP shall be present in requests or responses.

6.1.5 Transport Protocol

Diameter messages over the T4 interface shall make use of SCTP, see IETF RFC 4960 [5].

6.1.6 Routing Considerations

This clause specifies the use of the Diameter routing AVPs Destination-Realm and Destination-Host.

The T4 reference point is defined as an intra-operator interface, and both MTC-IWF and the SMS-SC are located in the same network domain. If the MTC-IWF knows the address/name of the SMS-SC for a certain user, both the
Destination-Realm and Destination-Host AVPs shall be present in the request. Otherwise, the Destination-Realm AVP shall be present and the command shall be routed to the next Diameter node. Consequently, the Destination-Host AVP is declared as optional in the ABNF for all requests initiated by the MTC-IWF.

The SMS-SC obtains the Destination-Host AVP to use in requests towards the MTC-IWF, from the Origin-Host AVP received in previous requests from the MTC-IWF. Consequently, the Destination-Host AVP is declared as mandatory in the ABNF for all requests initiated by the SMS-SC.

If the Vendor-Specific-Application-ID AVP is received in any of the commands, it may be ignored by the receiving node, and it shall not be used for routing purposes.

NOTE: The Vendor-Specific-Application-ID can be included as an optional AVP in all commands in order to ensure interoperability with diameter agents following a strict implementation of IETF RFC 3588 [3], by which messages not including this AVP will be rejected. IETF RFC 3588 [3] indicates that the AVP shall be present in all proxiable commands, such as those defined in this specification, despite the fact that the contents of this AVP are redundant since the Application ID is already present in the command header. This AVP may be removed in subsequent revisions of this specification, once the diameter base protocol is updated accordingly.

6.1.7 Advertising Application Support

The MTC-IWF and SMS-SC shall advertise support of the Diameter T4 Application by including the value of the application identifier in the Auth-Application-Id AVP within the Vendor-Specific-Application-Id grouped AVP of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands.

The vendor identifier value of 3GPP (10415) shall be included in the Supported-Vendor-Id AVP of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands, and in the Vendor-Id AVP within the Vendor-Specific-Application-Id grouped AVP of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands.

The Vendor-Id AVP included in Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands that is not included in the Vendor-Specific-Application-Id AVPs as described above shall indicate the manufacturer of the Diameter node as per IETF RFC 3588 [3].

6.1.8 Diameter Application Identifier

The T4 interface protocol shall be defined as an IETF vendor specific Diameter application, where the vendor is 3GPP. The vendor identifier assigned by IANA to 3GPP (http://www.iana.org/assignments/enterprise-numbers) is 10415.

The Diameter application identifier assigned to the T4 interface application is xxxxxxx (allocated by IANA).

6.1.9 Use of the Supported-Features AVP

When new functionality is introduced on the T4 interface, it should be defined as optional. If backwards incompatible changes cannot be avoided, the new functionality shall be introduced as a new feature and support advertised with the Supported-Features AVP. The usage of the Supported-Features AVP on the T4 interface is consistent with the procedures for the dynamic discovery of supported features as defined in clause 7.2 of 3GPP TS 29.229 [6].

When extending the application by adding new AVPs for a feature, the new AVPs shall have the M bit cleared and the AVP shall not be defined mandatory in the command ABNF.

As defined in 3GPP TS 29.229 [6], the Supported-Features AVP is of type grouped and contains the Vendor-Id, Feature-List-ID and Feature-List AVPs. On all reference points as specified in this specification, the Supported-Features AVP is used to identify features that have been defined by 3GPP and hence, for features defined in this document, the Vendor-Id AVP shall contain the vendor ID of 3GPP (10415). If there are multiple feature lists defined for the reference point, the Feature-List-ID AVP shall differentiate those lists from one another.
6.2 Commands

6.2.1 Introduction

This section defines the Command code values and related ABNF for each command described in this specification.

6.2.2 Command-Code Values

This section defines Command-Code values for the T4 interface application as allocated by IANA.

Every command is defined by means of the ABNF syntax IETF RFC 5234 [10], according to the rules in IETF RFC 3588 [3]. In the case, the definition and use of an AVP is not specified in this document, the guidelines in IETF RFC 3588 [3] shall apply.

The following Command Codes are defined in this specification:

<table>
<thead>
<tr>
<th>Command-Name</th>
<th>Abbreviation</th>
<th>Code</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device-Trigger-Request</td>
<td>DTR</td>
<td>xxx</td>
<td>6.2.3</td>
</tr>
<tr>
<td>Device-Trigger-Answer</td>
<td>DTA</td>
<td>xxx</td>
<td>6.2.4</td>
</tr>
<tr>
<td>Delivery-Report-Request</td>
<td>DRR</td>
<td>xxx</td>
<td>6.2.5</td>
</tr>
<tr>
<td>Delivery-Report-Answer</td>
<td>DRA</td>
<td>xxx</td>
<td>6.2.6</td>
</tr>
</tbody>
</table>

For these commands, the Application-ID field shall be set to xxxxxxxx (application identifier of the T4 interface application, allocated by IANA).

6.2.3 Device-Trigger-Request (DTR) Command

The Device-Trigger-Request (DTR) command, indicated by the Command-Code field set to xxx and the "R" bit set in the Command Flags field, is sent from the MTC-IWF to the SMS-SC.

Message Format

\[
\text{< Device-Trigger-Request > ::= < Diameter Header: xxx, REQ, PXY, xxxxxxxx >}
\]

\[
\quad \langle \text{Session-Id} \rangle
\]

\[
\quad \langle \text{Auth-Session-State} \rangle
\]

\[
\quad \langle \text{Origin-Host} \rangle
\]

\[
\quad \langle \text{Origin-Realm} \rangle
\]

\[
\quad \langle \text{Destination-Host} \rangle
\]

\[
\quad \langle \text{Destination-Realm} \rangle
\]

\[
\quad \langle \text{User-Identifier} \rangle
\]

\[
\quad \langle \text{SCS-Identity} \rangle
\]

\[
\quad \langle \text{SM-RP-UI} \rangle
\]

\[
\quad \langle \text{Serving-Node} \rangle
\]

\[
\quad \langle \text{Additional-Serving-Node} \rangle
\]

\[
\quad \langle \text{Reference-Number} \rangle
\]

\[
\quad \langle \text{Validity-Period} \rangle
\]

\[
\quad \langle \text{Priority-Indication} \rangle
\]

\[
\quad \langle \text{SMS-Application-Port-ID} \rangle
\]

\[
\quad * \langle \text{Supported-Features} \rangle
\]

\[
\quad * \langle \text{AVP} \rangle
\]

\[
\quad * \langle \text{Proxy-Info} \rangle
\]

\[
\quad * \langle \text{Route-Record} \rangle
\]

6.2.4 Device-Trigger-Answer (DTA) Command

The Device-Trigger-Answer (DTA) command, indicated by the Command-Code field set to xxx and the "R" bit cleared in the Command Flags field, is sent from the SMS-SC to the MTC-IWF.

Message Format
< Device-Trigger-Answer > ::= < Diameter Header: xxx, PXY, xxxxxxxx >
< Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
[Auth-Session-State]
[Origin-Host]
[Origin-Realm]
*[Supported-Features]
*[AVP]
*[Failed-AVP]
*[Proxy-Info]
*[Route-Record]

6.2.5 Delivery-Report-Request (DRR) Command

The Delivery-Report-Request (DRR) command, indicated by the Command-Code field set to xxx and the "R" bit set in the Command Flags field, is sent from the MTC-IWF to the SMS-SC.

Message Format

< Delivery-Report-Request > ::= < Diameter Header: xxx, REQ, PXY, xxxxxxxx >
< Session-Id >
[Auth-Session-State]
[Origin-Host]
[Origin-Realm]
[Destination-Host]
[Destination-Realm]
[User-Identifier]
[SCS-Identity]
[SM-Delivery-Outcome-T4]
[Absent-Subscriber-Diagnostic-T4]
[Reference-Number]
*[Supported-Features]
*[AVP]
*[Proxy-Info]
*[Route-Record]

6.2.6 Delivery-Report-Answer (DRA) Command

The Delivery-Report-Answer (DRA) command, indicated by the Command-Code field set to xxx and the "R" bit cleared in the Command Flags field, is sent from the SMS-SC to the MTC-IWF.

Message Format

< Delivery-Report-Answer > ::= < Diameter Header: xxx, PXY, xxxxxxxx >
< Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
[Auth-Session-State]
[Origin-Host]
[Origin-Realm]
*[Supported-Features]
*[AVP]
*[Failed-AVP]
*[Proxy-Info]
*[Route-Record]
6.3 AVPs

The following table specifies the Diameter AVPs defined for the T4 interface protocol, their AVP Code values, types, possible flag values and whether or not the AVP may be encrypted. The Vendor-ID header of all AVPs defined in this specification shall be set to 3GPP (10415).

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>AVP Code</th>
<th>Section defined</th>
<th>Value Type</th>
<th>AVP Flag rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-Delivery-Outcome-T4</td>
<td>xxxx</td>
<td>6.3.1</td>
<td>Enumerated</td>
<td>M, V</td>
</tr>
<tr>
<td>Absent-Subscriber-Diagnostic-T4</td>
<td>xxxx</td>
<td>6.3.2</td>
<td>Enumerated</td>
<td>M, V</td>
</tr>
</tbody>
</table>

NOTE 1: The AVP header bit denoted as "M", indicates whether support of the AVP is required. The AVP header bit denoted as "V", indicates whether the optional Vendor-ID field is present in the AVP header. For further details, see IETF RFC 3588 [3].

NOTE 2: If the M-bit is set for an AVP and the receiver does not understand the AVP, it shall return a rejection. If the M-bit is not set for an AVP, the receiver shall not return a rejection, whether or not it understands the AVP. If the receiver understands the AVP but the M-bit value does not match with the definition in this table, the receiver shall ignore the M-bit.

The following table specifies the Diameter AVPs re-used by the T4 interface protocol from existing Diameter Applications, including a reference to their respective specifications and when needed, a short description of their use within T4.

Any other AVPs from existing Diameter Applications, except for the AVPs from Diameter Base Protocol, do not need to be supported. The AVPs from Diameter Base Protocol are not included in table 6.3.1/2, but they may be re-used for the T4 protocol.
Table 6.3.1/2: T4 re-used Diameter AVPs

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Reference</th>
<th>Comments</th>
<th>M-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name</td>
<td>IETF RFC 3588 [3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External-Identifier</td>
<td>3GPP TS 29.336 [12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCS-Identity</td>
<td>3GPP TS 29.336 [12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serving-Node</td>
<td>3GPP TS 29.173 [14]</td>
<td>Only SGSN-Number AVP, MME-Name AVP and MSC-Number AVP may be included in the Serving-Node AVP in this specification.</td>
<td></td>
</tr>
<tr>
<td>Additional-Serving-Node</td>
<td>3GPP TS 29.173 [14]</td>
<td>Only SGSN-Number AVP, MME-Name AVP and MSC-Number AVP may be included in the Additional-Serving-Node AVP in this specification.</td>
<td></td>
</tr>
<tr>
<td>Reference-Number</td>
<td>3GPP TS 29.368 [15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity-Period</td>
<td>3GPP TS 29.368 [15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priority-Indication</td>
<td>3GPP TS 29.368 [15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMS-Application-Port-ID</td>
<td>3GPP TS 29.368 [15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported-Features</td>
<td>3GPP TS 29.229 [6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature-List</td>
<td>3GPP TS 29.229 [6]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: The M-bit settings for re-used AVPs override those of the defining specifications that are referenced. Values include: “Must set”, “Must not set”. If the M-bit setting is blank, then the defining specification applies.

NOTE 2: If the M-bit is set for an AVP and the receiver does not understand the AVP, it shall return a rejection. If the M-bit is not set for an AVP, the receiver shall not return a rejection, whether or not it understands the AVP. If the receiver understands the AVP but the M-bit value does not match with the definition in this table, the receiver shall ignore the M-bit.

6.3.1 SM-Delivery-Outcome-T4

The SM-Delivery-Outcome-T4 AVP is of type Enumerated and indicates the outcomes of the device trigger delivery. The following values are defined:

ABSENT_SUBSCRIBER (0)

This value is used when the device trigger delivery failed due to absent subscriber.

UE_MEMORTY_CAPACITY_EXCEEDED (1)

This value is used when the device trigger delivery failed due to UE memory capacity exceeded.

SUCCESSFUL_TRANSFER (2)

This value is used when the device trigger delivery is successfully transferred to the UE.

6.3.2 Absent-Subscriber-Diagnostic-T4

The Absent-Subscriber-Diagnostic-T4 AVP is of type Enumerated and indicates the reason why the subscriber is absent if the device trigger failed to be delivered due to absent subscriber. The following values are defined:

NO_PAGING_RESPONSE (0)

This value is used when there is no paging response via some of the serving nodes.
UE_DETACHED (1)
This value is used when the UE is detached from all of the serving nodes.

UE_DEREGISTERED (2)
This value is used when the UE is deregistered in the network.

UE_PURGED (3)
This value is used when the UE is purged by some of the serving nodes.

ROAMING_RESTRICTION (4)
This value is used when the UE is roaming restricted.

UNIDENTIFIED_SUBSCRIBER (5)
This value is used when the user is unidentified in all of the serving nodes.

7 Result-Code and Experimental-Result Values

7.1 General

This section defines result code values that shall be supported by all Diameter implementations that conform to this specification.

7.2 Success

Result codes that fall within the Success category shall be used to inform a peer that a request has been successfully completed. The Result-Code AVP values defined in Diameter Base Protocol IETF RFC 3588 [3] shall be applied.

7.3 Permanent Failures

Errors that fall within the Permanent Failures category shall be used to inform the peer that the request has failed, and should not be attempted again. The Result-Code AVP values defined in Diameter Base Protocol IETF RFC 3588 [3] shall be applied. When one of the result codes defined here is included in a response, it shall be inside an Experimental-Result AVP and the Result-Code AVP shall be absent.

7.3.1 DIAMETER_ERROR_USER_UNKNOWN (5001)
This result code shall be sent by the SMS-SC to indicate that the user identified by the IMSI or the MSISDN is unknown.

7.3.2 DIAMETER_ERROR_INVALID_SME_ADDRESS (xxxx)
This result code shall be sent by the SMS-SC to indicate that the SME address is invalid.

7.3.3 DIAMETER_ERROR_SC_CONGESTION (xxxx)
This result code shall be sent by the SMS-SC to indicate that SC is congested and unable to deliver the device trigger request.

7.3.4 DIAMETER_ERROR_SM_PROTOCOL (xxxx)
This result code shall be sent by the SMS-SC to indicate that there is an error with the protocol contained in the short message transfer protocol data unit.
Annex A (informative):
Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG #</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Rev</th>
<th>Subject/Comment</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-09</td>
<td>CT#57</td>
<td>CP-120486</td>
<td></td>
<td></td>
<td>TS presented for information and approval 1.0.0</td>
<td>11.0.0</td>
<td></td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>V11.0.0</th>
<th>October 2012</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>