Universal Mobile Telecommunications System (UMTS);
LTE;
Evolved Packet System (EPS);
Mobility Management Entity (MME)
and Serving GPRS Support Node (SGSN)
related interfaces based on Diameter protocol
(3GPP TS 29.272 version 11.11.0 Release 11)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: “Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards”, which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
Contents

Intellectual Property Rights .. 2
Foreword ... 2
Modal verbs terminology .. 2

1 Scope .. 10
2 References .. 10

3 Definitions and abbreviations ... 12
3.1 Definitions ... 12
3.2 Abbreviations ... 12

4 General Description ... 12

5 MME – HSS (S6a) and SGSN – HSS (S6d) .. 13
5.1 Introduction .. 13
5.2 Mobility Services .. 13
5.2.1 Location Management Procedures .. 13
5.2.1.1 Update Location ... 13
5.2.1.1.1 General .. 13
5.2.1.1.2 Detailed behaviour of the MME and the SGSN .. 15
5.2.1.1.3 Detailed behaviour of the HSS ... 18
5.2.1.2 Cancel Location ... 20
5.2.1.2.1 General .. 20
5.2.1.2.2 Detailed behaviour of the MME and the SGSN .. 21
5.2.1.2.3 Detailed behaviour of the HSS ... 22
5.2.1.3 Purge UE .. 22
5.2.1.3.1 General ... 22
5.2.1.3.2 Detailed behaviour of the MME and the SGSN ... 22
5.2.1.3.3 Detailed behaviour of HSS .. 23
5.2.2 Subscriber Data Handling Procedures ... 23
5.2.2.1 Insert Subscriber Data .. 23
5.2.2.1.1 General ... 23
5.2.2.1.2 Detailed behaviour of the MME and the SGSN ... 25
5.2.2.1.3 Detailed behaviour of the HSS ... 27
5.2.2.2 Delete Subscriber Data .. 29
5.2.2.2.1 General ... 29
5.2.2.2.2 Detailed behaviour of the MME and the SGSN ... 30
5.2.2.2.3 Detailed behaviour of the HSS ... 31
5.2.3 Authentication Procedures .. 31
5.2.3.1 Authentication Information Retrieval ... 31
5.2.3.1.1 General ... 31
5.2.3.1.2 Detailed behaviour of the MME and the SGSN ... 32
5.2.3.1.3 Detailed behaviour of the HSS ... 33
5.2.4 Fault Recovery Procedures .. 34
5.2.4.1 Reset .. 34
5.2.4.1.1 General ... 34
5.2.4.1.2 Detailed behaviour of the MME and the SGSN ... 35
5.2.4.1.3 Detailed behaviour of the HSS ... 35
5.2.5 Notification Procedures ... 36
5.2.5.1 Notification ... 36
5.2.5.1.1 General ... 36
5.2.5.1.2 Detailed behaviour of the MME and the SGSN ... 38
5.2.5.1.3 Detailed behaviour of the HSS ... 38

5A MME – CSS (S7a) and SGSN – CSS (S7d) .. 39
5A.1 Introduction .. 39
5A.2 Mobility Services .. 40
5A.2.1 Location Management Procedures .. 40
5A.2.1.1 Update VCSG Location .. 40
5A.2.1.1.1 General .. 40
5A.2.1.1.2 Detailed behaviour of the MME and the SGSN .. 41
5A.2.1.1.3 Detailed behaviour of the CSS .. 42
5A.2.1.2 Cancel VCSG Location ... 42
5A.2.1.2.1 General .. 42
5A.2.1.2.2 Detailed behaviour of the MME and the SGSN .. 43
5A.2.1.2.3 Detailed behaviour of the CSS .. 43
5A.2.2 Subscriber Data Handling Procedures .. 43
5A.2.2.1 Insert VCSG Subscriber Data .. 43
5A.2.2.1.1 General .. 43
5A.2.2.1.2 Detailed behaviour of the MME and the SGSN .. 44
5A.2.2.1.3 Detailed behaviour of the CSS .. 44
5A.2.2.2 Delete VCSG Subscriber Data .. 45
5A.2.2.2.1 General .. 45
5A.2.2.2.2 Detailed behaviour of the MME and the SGSN .. 45
5A.2.2.2.3 Detailed behaviour of the CSS .. 46
5A.2.2.3 Fault Recovery Procedures ... 46
5A.2.2.3.1 VCSG Reset ... 46
5A.2.2.3.1.1 General .. 46
5A.2.2.3.1.2 Detailed behaviour of the MME and the SGSN .. 46
5A.2.2.3.1.3 Detailed behaviour of the CSS .. 47
6 MME – EIR (S13) and SGSN – EIR (S13') .. 48
6.1 Introduction ... 48
6.2 ME Identity Check Procedures ... 48
6.2.1 ME Identity Check ... 48
6.2.1.1 General .. 48
6.2.1.2 Detailed behaviour of the MME and the SGSN ... 49
6.2.1.3 Detailed behaviour of the EIR .. 49
7 Protocol Specification and Implementation .. 50
7.1 Introduction .. 50
7.1.1 Use of Diameter base protocol.. 50
7.1.2 Securing Diameter Messages .. 50
7.1.3 Accounting functionality .. 50
7.1.4 Use of sessions .. 50
7.1.5 Transport protocol ... 50
7.1.6 Routing considerations ... 50
7.1.7 Advertising Application Support .. 51
7.1.8 Diameter Application Identifier ... 51
7.1.9 Use of the Supported-Features AVP .. 52
7.2 Commands .. 52
7.2.1 Introduction ... 52
7.2.2 Command-Code values .. 52
7.2.3 Update-Location-Request (ULR) Command ... 53
7.2.4 Update-Location-Answer (ULA) Command ... 54
7.2.5 Authentication-Information-Request (AIR) Command 54
7.2.6 Authentication-Information-Answer (AIA) Command 55
7.2.7 Cancel-Location-Request (CLR) Command ... 55
7.2.8 Cancel-Location-Answer (CLA) Command ... 55
7.2.9 Insert-Subscriber-Data-Request (IDR) Command ... 56
7.2.10 Insert-Subscriber-Data-Answer (IDA) Command ... 56
7.2.11 Delete-Subscriber-Data-Request (DSR) Command ... 57
7.2.12 Delete-Subscriber-Data-Answer (DSA) Command ... 58
7.2.13 Purge-UE-Request (PUR) Command ... 58
7.2.14 Purge-UE-Answer (PUA) Command ... 59
7.2.15 Reset-Request (RRS) Command ... 59
7.2.16 Reset-Answer (RSA) Command ... 60
7.2.17 Notify-Request (NOR) Command .. 60
7.2.18 Notify-Answer (NOA) Command ... 61
7.2.19 ME-Identity-Check-Request (ECR) Command .. 61
7.2.20 ME-Identity-Check-Answer (ECA) Command 61
7.2.21 Update-VCSG-Location-Request (UVR) Command 62
7.2.22 Update-VCSG-Location-Answer (UVA) Command 62
7.2.23 Cancel-VCSG-Location-Request (CVR) Command 63
7.2.24 Cancel-VCSG-Location-Answer (CVA) Command 63
7.3 Information Elements .. 64
7.3.1 General .. 64
7.3.2 Subscription-Data .. 70
7.3.3 Terminal-Information ... 71
7.3.4 IMEI .. 71
7.3.5 Software-Version .. 71
7.3.6 3GPP2-MEID ... 71
7.3.7 ULR-Flags .. 71
7.3.8 ULA-Flags .. 72
7.3.9 Visited-PLMN-Id .. 73
7.3.10 Feature-List AVP .. 73
7.3.10.1 Feature-List AVP for the S6a/S6d application 73
7.3.10.2 Feature-List AVP for the S7a/S7d application 79
7.3.11 Requested-UTRAN-Authentication-Info .. 79
7.3.12 Requested-GERAN-Authentication-Info .. 80
7.3.13 RAT-Type .. 80
7.3.14 Number-Of-Requested-Vectors .. 80
7.3.15 Re-Synchronization-Info ... 80
7.3.16 Immediate-Response-Preferred ... 80
7.3.17 Authentication-Info ... 80
7.3.18 E-UTRAN-Vector .. 81
7.3.19 UTRAN-Vector .. 81
7.3.20 GERAN-Vector ... 81
7.3.21 Network-Access-Mode .. 81
7.3.22 HPLMN-ODB ... 82
7.3.23 Item-Number .. 82
7.3.24 Cancellation-Type ... 82
7.3.25 DSR-Flags ... 82
7.3.26DSA-Flags ... 84
7.3.27 Context-Identifier .. 84
7.3.28 Void .. 84
7.3.29 Subscriber-Status .. 84
7.3.30 Operator-Determined-Barring .. 84
7.3.31 Access-Restriction-Data ... 84
7.3.32 APN-OF-Replacement .. 85
7.3.33 All-APN-Configurations-Included-Indicator 85
7.3.34 APN-Configuration-Profile .. 85
7.3.35 APN-Configuration ... 85
7.3.36 Service-Selection .. 87
7.3.37 EPS-Subscribed-QoS-Profile ... 87
7.3.38 VPLMN-Dynamic-Address-Allowed ... 87
7.3.39 STN-SR ... 87
7.3.40 Allocation-Retention-Priority ... 87
7.3.41 AMBR .. 88
7.3.42 MIP-Home-Agent-Address ... 88
7.3.43 MIP-Home-Agent-Host ... 88
7.3.44 PDN-GW-Allocation-Type ... 88
7.3.45 MIP6-Agent-Info .. 88
7.3.46 RAT-Frequency-Selection-Priority-ID ... 89
7.3.47 IDA-Flags ... 89
7.3.48 PUA-Flags ... 89
7.3.49 NOR-Flags ... 89
7.3.50 User-Id .. 90
7.3.51 Equipment-Status .. 90
<p>| 7.3.52 | Regional-Subscription-Zone-Code | 91 |
| 7.3.53 | RAND | 91 |
| 7.3.54 | XRES | 91 |
| 7.3.55 | AUTN | 91 |
| 7.3.56 | KASME | 91 |
| 7.3.57 | Confidentiality-Key AVP | 91 |
| 7.3.58 | Integrity-Key AVP | 91 |
| 7.3.59 | Kc AVP | 91 |
| 7.3.60 | SRES | 91 |
| 7.3.61 | Void | 91 |
| 7.3.62 | PDP-Type | 91 |
| 7.3.63 | Trace-Data AVP | 92 |
| 7.3.64 | Trace-Reference AVP | 92 |
| 7.3.65 | Void | 93 |
| 7.3.66 | Void | 93 |
| 7.3.67 | Trace-Depth AVP | 93 |
| 7.3.68 | Trace-NE-Type-List AVP | 93 |
| 7.3.69 | Trace-Interface-List AVP | 93 |
| 7.3.70 | Trace-Event-List AVP | 93 |
| 7.3.71 | OMC-Id AVP | 93 |
| 7.3.72 | GPRS-Subscription-Data | 93 |
| 7.3.73 | Complete-Data-List-Included-Indicator | 94 |
| 7.3.74 | PDP-Context | 94 |
| 7.3.75 | PDP-Type | 94 |
| 7.3.75A | Ext-PDP-Type | 95 |
| 7.3.76 | Void | 95 |
| 7.3.77 | QoS-Subscribed | 95 |
| 7.3.78 | CSG-Subscription-Data | 95 |
| 7.3.79 | CSG-Id | 95 |
| 7.3.80 | Expiration-Date | 95 |
| 7.3.81 | Roaming-Restricted-Due-To-Unsupported-Feature | 95 |
| 7.3.82 | Specific-APN-Info AVP | 95 |
| 7.3.83 | Alert-Reason AVP | 96 |
| 7.3.84 | LCS-Info | 96 |
| 7.3.85 | GMLC-Number | 96 |
| 7.3.86 | LCS-PrivacyException | 96 |
| 7.3.87 | SS-Code | 97 |
| 7.3.88 | SS-Status | 97 |
| 7.3.89 | Notification-To-UE-User | 97 |
| 7.3.90 | External-Client | 97 |
| 7.3.91 | Client-Identity | 97 |
| 7.3.92 | GMLC-Restriction | 97 |
| 7.3.93 | PLMN-Client | 98 |
| 7.3.94 | Service-Type | 98 |
| 7.3.95 | ServiceTypeIdentity | 98 |
| 7.3.96 | MO-LR | 98 |
| 7.3.97 | Void | 98 |
| 7.3.98 | Trace-Collection-Entity AVP | 98 |
| 7.3.99 | Teleservice-List | 98 |
| 7.3.100 | TS-Code | 99 |
| 7.3.101 | Call-Barring-Info | 99 |
| 7.3.102 | SGSN-Number | 99 |
| 7.3.103 | IDR-Flags | 99 |
| 7.3.104 | ICS-Indicator | 100 |
| 7.3.105 | Visited-Network-Identifier | 100 |
| 7.3.107 | Homogeneous-Support-of-IMS-Voice-Over-PS-Sessions | 101 |
| 7.3.108 | Last-UE-Activity-Time | 101 |
| 7.3.109 | GMLC-Address | 101 |
| 7.3.110 | EPS-User-State | 101 |
| 7.3.111 | EPS-Location-Information | 101 |
| 7.3.112 | MME-User-State | 102 |
| 7.3.113 | SGSN-User-State | 102 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.114</td>
<td>User-State</td>
</tr>
<tr>
<td>7.3.115</td>
<td>MME-Location-Information</td>
</tr>
<tr>
<td>7.3.116</td>
<td>SGSN-Location-Information</td>
</tr>
<tr>
<td>7.3.117</td>
<td>E-UTRAN-Cell-Global-Identity</td>
</tr>
<tr>
<td>7.3.118</td>
<td>Tracking-Area-Identity</td>
</tr>
<tr>
<td>7.3.119</td>
<td>Cell-Global-Identity</td>
</tr>
<tr>
<td>7.3.120</td>
<td>Routing-Area-Identity</td>
</tr>
<tr>
<td>7.3.121</td>
<td>Location-Area-Identity</td>
</tr>
<tr>
<td>7.3.122</td>
<td>Service-Area-Identity</td>
</tr>
<tr>
<td>7.3.123</td>
<td>Geographical-Information</td>
</tr>
<tr>
<td>7.3.124</td>
<td>Geodetic-Information</td>
</tr>
<tr>
<td>7.3.125</td>
<td>Current-Location- Retrieved</td>
</tr>
<tr>
<td>7.3.126</td>
<td>Age-Of-Location-Information</td>
</tr>
<tr>
<td>7.3.127</td>
<td>Active-APN</td>
</tr>
<tr>
<td>7.3.128</td>
<td>Error-Diagnostic</td>
</tr>
<tr>
<td>7.3.129</td>
<td>Ext-PDP-Address AVP</td>
</tr>
<tr>
<td>7.3.130</td>
<td>UE-SRVCC-Capability</td>
</tr>
<tr>
<td>7.3.131</td>
<td>MPS-Priority</td>
</tr>
<tr>
<td>7.3.132</td>
<td>VPLMN-LIPA-Allowed</td>
</tr>
<tr>
<td>7.3.133</td>
<td>LIPA-Permission</td>
</tr>
<tr>
<td>7.3.134</td>
<td>Subscribed-Periodic-RAU-TAU-Timer</td>
</tr>
<tr>
<td>7.3.135</td>
<td>SIPTO-Permission</td>
</tr>
<tr>
<td>7.3.136</td>
<td>MDT-Configuration</td>
</tr>
<tr>
<td>7.3.137</td>
<td>Job-Type</td>
</tr>
<tr>
<td>7.3.138</td>
<td>Area-Scope</td>
</tr>
<tr>
<td>7.3.139</td>
<td>List-Of-Measurements</td>
</tr>
<tr>
<td>7.3.140</td>
<td>Reporting-Trigger</td>
</tr>
<tr>
<td>7.3.141</td>
<td>Report-Interval</td>
</tr>
<tr>
<td>7.3.142</td>
<td>Report-Amount</td>
</tr>
<tr>
<td>7.3.143</td>
<td>Event-Threshold-RSRP</td>
</tr>
<tr>
<td>7.3.144</td>
<td>Event-Threshold-RSRQ</td>
</tr>
<tr>
<td>7.3.145</td>
<td>Logging-Interval</td>
</tr>
<tr>
<td>7.3.146</td>
<td>Logging-Duration</td>
</tr>
<tr>
<td>7.3.147</td>
<td>Relay-Node-Indicator</td>
</tr>
<tr>
<td>7.3.148</td>
<td>MDT-User-Consent</td>
</tr>
<tr>
<td>7.3.149</td>
<td>PUR-Flags</td>
</tr>
<tr>
<td>7.3.150</td>
<td>Subscribed-VSRVCC</td>
</tr>
<tr>
<td>7.3.151</td>
<td>Equivalent-PLMN-List</td>
</tr>
<tr>
<td>7.3.152</td>
<td>CLR-Flags</td>
</tr>
<tr>
<td>7.3.153</td>
<td>UVR-Flags</td>
</tr>
<tr>
<td>7.3.154</td>
<td>UVA-Flags</td>
</tr>
<tr>
<td>7.3.155</td>
<td>VPLMN-CSG-Subscription-Data</td>
</tr>
<tr>
<td>7.3.156</td>
<td>Local-Time-Zone</td>
</tr>
<tr>
<td>7.3.157</td>
<td>A-MSISDN</td>
</tr>
<tr>
<td>7.3.158</td>
<td>Void</td>
</tr>
<tr>
<td>7.3.159</td>
<td>MME-Number-for-MT-SMS</td>
</tr>
<tr>
<td>7.3.160</td>
<td>Void</td>
</tr>
<tr>
<td>7.3.161</td>
<td>Void</td>
</tr>
<tr>
<td>7.3.162</td>
<td>SMS-Register-Request</td>
</tr>
<tr>
<td>7.3.163</td>
<td>Time-Zone</td>
</tr>
<tr>
<td>7.3.164</td>
<td>Daylight-Saving-Time</td>
</tr>
<tr>
<td>7.3.165</td>
<td>Subscription-Data-Flags</td>
</tr>
<tr>
<td>7.3.166</td>
<td>Measurement-Period-LTE</td>
</tr>
<tr>
<td>7.3.167</td>
<td>Measurement-Period-UMTS</td>
</tr>
<tr>
<td>7.3.168</td>
<td>Collection-Period-RRM-LTE</td>
</tr>
<tr>
<td>7.3.169</td>
<td>Collection-Period-RRM-UMTS</td>
</tr>
<tr>
<td>7.3.170</td>
<td>Positioning-Method</td>
</tr>
<tr>
<td>7.3.171</td>
<td>Measurement-Quantity</td>
</tr>
<tr>
<td>7.3.172</td>
<td>Event-Threshold-Event-IF</td>
</tr>
<tr>
<td>7.3.173</td>
<td>Event-Threshold-Event-II</td>
</tr>
<tr>
<td>7.3.174</td>
<td>Restoration-Priority</td>
</tr>
<tr>
<td>7.3.175</td>
<td>Void</td>
</tr>
</tbody>
</table>
7.3.176 Void .. 113
7.3.177 Void .. 113
7.3.178 Void .. 113
7.3.179 Void .. 113
7.3.180 Void .. 113
7.3.181 Void .. 113
7.3.182 Void .. 113
7.3.183 Void .. 113
7.3.184 Void .. 113
7.3.185 MDT-Allowed-PLMN-Id .. 113
7.4 Result-Code and Experimental-Result Values ... 114
7.4.1 General ... 114
7.4.2 Success .. 114
7.4.3 Permanent Failures .. 114
7.4.3.1 DIAMETER_ERROR_USER_UNKNOWN (5001) .. 114
7.4.3.2 DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION (5420) ... 114
7.4.3.3 DIAMETER_ERROR_RAT_NOT_ALLOWED (5421) .. 114
7.4.3.4 DIAMETER_ERROR_ROAMING_NOT_ALLOWED (5004) .. 114
7.4.3.5 DIAMETER_ERROR_EQUIPMENT_UNKNOWN (5422) .. 114
7.4.3.6 DIAMETER_ERROR_UNKNOWN_SERVING_NODE (5423) ... 114
7.4.4 Transient Failures .. 115
7.4.4.1 DIAMETER_AUTHENTICATION_DATA_UNAVAILABLE (4181) .. 115
8 User identity to HSS resolution .. 115

Annex A (normative): MME mapping table for S6a and NAS Cause Code values 116
Annex B (normative): SGSN mapping table for S6d and NAS Cause Code values 118
Annex C (informative): Change history ... 120
History .. 125
Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.

- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

- z the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document describes the Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related diameter-based interfaces towards the Home Subscriber Server (HSS) or the CSG Subscriber Server (CSS), and the MME and the SGSN related diameter-based interface towards the Equipment Identity Register (EIR).

This specification defines the Diameter application for the MME-HSS, S6a reference point, for the MME-CSS, S7a reference point, for the SGSN-HSS, S6d reference point, and for the SGSN-CSS, S7d reference point. The interactions between the HSS/CSS and the MME/SGSN are specified, including the signalling flows.

This specification defines the Diameter application for the MME-EIR, S13 reference point, and for the SGSN-EIR, S13' reference point. The interactions between the MME/SGSN and the EIR are specified, including the signalling flows.

In this specification, if there is no specific indication, the following principles apply:

- "SGSN" refers to an SGSN which at least supports the S4 interface and may support Gn and Gp interfaces.
- "S4-SGSN" refers to an SGSN which supports the S4 interface and does not support Gn and Gp interfaces.
- Gn/Gp-SGSN refers to an SGSN which supports the Gn and Gp interfaces and does not support S4 interface.
- "GPRS subscription data" refers to the parameters in the HLR column in Table 5.2. in 3GPP TS 23.008 [30].
- "EPS subscription data" refers to the parameters in the HSS column in Table 5.2A-1 in 3GPP TS 23.008 [30].

The Evolved Packet System stage 2 description (architecture and functional solutions) is specified in 3GPP TS 23.401 [2] and in 3GPP TS 23.060 [12].

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2] 3GPP TS 23.401: "GPRS enhancements for E-UTRAN access ".
[8] 3GPP TS 32.299: "Charging management; Diameter charging applications".
[9] 3GPP TS 29.229: "Cx and Dx interfaces based on the Diameter protocol".
[10] 3GPP TS 29.212: "Policy and Charging Control (PCC); Reference points".
[12] 3GPP TS 23.060: "General Packet Radio Service (GPRS); Service description; Stage 2".
[13] 3GPP TS 22.016: "International Mobile station Equipment Identities (IMEI)".
[15] Void
[17] 3GPP TS 29.228: "IP multimedia (IM) Subsystem Cx and Dx Interfaces; Signalling flows and Message Elements".
[18] 3GPP TS 33.102: "3G Security; Security Architecture".
[19] 3GPP TS 36.413: "Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application Protocol (S1AP)".
[21] 3GPP TS 29.061: "Interworking between the Public Land Mobile Network (PLMN) supporting packet based services and Packet Data Networks (PDN)".
[22] 3GPP TS 32.298: "Charging Management; CDR parameter description".
[23] 3GPP TS 32.422: "Telecommunication management; Subscriber and equipment trace; Trace control and configuration management".
[25] 3GPP TS 29.329: "Sh Interface based on the Diameter protocol".
[27] IETF RFC 4004: "Diameter Mobile IPv4 Application".
[28] 3GPP TS 23.011: "Technical realization of Supplementary Services - General Aspects".
[29] 3GPP TS 23.008: "Organization of subscriber data".
[30] 3GPP TS 24.008: "Mobile radio interface Layer 3 specification; Core network protocols; Stage 3".
[32] 3GPP TS 32.251: "Telecommunication management; Charging management; Packet Switched (PS) domain charging".
[33] 3GPP TS 23.292: "IP Multimedia Subsystem (IMS) centralized services".
[34] 3GPP TS 23.216: "Single Radio Voice Call Continuity (SRVCC)".
[36] 3GPP TS 29.173: "Diameter-based SLh interface for Control Plane LCS".
[37] 3GPP TS 29.303: "Domain Name System Procedures; Stage 3".
[38] 3GPP TS 29.060: "General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp Interface".
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

CSG subscription data from CSS: It identifies the CSG subscription data that a MME or a SGSN has received from a CSS for a subscriber identified by its IMSI.

CSG subscription data from HSS: It identifies the CSG subscription data that a MME or a SGSN has received from a HSS for a subscriber identified by its IMSI.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVP</td>
<td>Attribute Value Pair</td>
</tr>
<tr>
<td>C</td>
<td>Conditional</td>
</tr>
<tr>
<td>CSS</td>
<td>CSG Subscriber Server</td>
</tr>
<tr>
<td>EIR</td>
<td>Equipment Identity Register</td>
</tr>
<tr>
<td>ESM</td>
<td>EPS Session Management</td>
</tr>
<tr>
<td>HSS</td>
<td>Home Subscriber Server</td>
</tr>
<tr>
<td>IE</td>
<td>Information Element</td>
</tr>
<tr>
<td>M</td>
<td>Mandatory</td>
</tr>
<tr>
<td>MME</td>
<td>Mobility Management Entity</td>
</tr>
<tr>
<td>O</td>
<td>Optional</td>
</tr>
<tr>
<td>ODB</td>
<td>Operator Determined Barring</td>
</tr>
<tr>
<td>URRP-MME</td>
<td>User Reachability Request Parameter for MME</td>
</tr>
<tr>
<td>URPP-SGSN</td>
<td>User Reachability Request Parameter for SGSN</td>
</tr>
</tbody>
</table>

4 General Description

This document describes the S6a/S6d and S13/S13' interfaces related procedures, message parameters and protocol specifications.

The procedures, message parameters and protocol are similar between S6a and S6d. S6a is used for location changes of the MME, while S6d is for location changes of the SGSN. Refer to section 5 for the differences, especially section 5.2.1.

The procedures, message parameters and protocol are identical as for the S13 and S13'. See section 6 for details.

In the tables that describe the Information Elements transported by each Diameter command, each Information Element is marked as (M) Mandatory, (C) Conditional or (O) Optional in the “Cat.” column. For the correct handling of the
The S6a interface enables the transfer of subscriber related data between the MME and the HSS as described in the 3GPP TS 23.401 [2].

The S6d interface enables the transfer of subscriber related data between the SGSN and the HSS as described in 3GPP TS 23.060 [12].

5.2 Mobility Services

5.2.1 Location Management Procedures

5.2.1.1 Update Location

5.2.1.1.1 General

The Update Location Procedure shall be used between the MME and the HSS and between the SGSN and the HSS to update location information in the HSS. The procedure shall be invoked by the MME or SGSN and is used:

- to inform the HSS about the identity of the MME or SGSN currently serving the user, and optionally in addition;
- to update MME or SGSN with user subscription data;
- to provide the HSS with other user data, such as Terminal Information or UE SRVCC Capability.

This procedure is mapped to the commands Update-Location-Request/Answer (ULR/ULA) in the Diameter application specified in chapter 7.

Table 5.2.1.1.1/1 specifies the involved information elements for the request.

Table 5.2.1.1.1/2 specifies the involved information elements for the answer.
Table 5.2.1.1/1: Update Location Request

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Terminal Information</td>
<td>Terminal-Information</td>
<td>O</td>
<td>This information element shall contain information about the user’s mobile equipment. Within this Information Element, only the IMEI and the Software-Version AVPs shall be used on the S6a/S6d interface.</td>
</tr>
<tr>
<td>ULR Flags</td>
<td>ULR-Flags</td>
<td>M</td>
<td>This Information Element contains a bit mask. See 7.3.7 for the meaning of the bits.</td>
</tr>
<tr>
<td>Visited PLMN Id</td>
<td>Visited-PLMN-Id</td>
<td>M</td>
<td>This IE shall contain the MCC and the MNC, see 3GPP TS 23.003[3]. It may be used to apply roaming based features.</td>
</tr>
<tr>
<td>Equivalent PLMN List</td>
<td>Equivalent-PLMN-List</td>
<td>O</td>
<td>This Information Element shall contain the equivalent PLMN list of which the MME/SGSN requests the corresponding CSG Subscription data.</td>
</tr>
<tr>
<td>RAT Type</td>
<td>RAT-Type</td>
<td>M</td>
<td>This Information Element contains the radio access type the UE is using. See section 7.3.13 for details.</td>
</tr>
<tr>
<td>SGSN number</td>
<td>SGSN-Number</td>
<td>C</td>
<td>This Information Element contains the ISDN number of the SGSN, see 3GPP TS 23.003 [3]. It shall be present when the message is sent on the S6d interface and the SGSN supports LCS or SMS functionalities or the Gs interface. It may be present when the message is sent on the S6a interface and the requesting node is a combined MME/SGSN.</td>
</tr>
<tr>
<td>Homogeneous Support of IMS Voice Over PS Sessions</td>
<td>Homogeneous-Support-of-IMS-Voice-Over-PS-Sessions</td>
<td>O</td>
<td>This Information Element, if present, indicates whether or not “IMS Voice over PS Sessions” is supported homogeneously in all TAs or RAs in the serving node (MME or SGSN or combined MME/SGSN). The value "SUPPORTED" indicates that there is support for "IMS Voice over PS Sessions" in all TAs or RAs. The value "NOT_SUPPORTED" indicates that there is not support for "IMS Voice over PS Sessions" in any of the TAs or RAs.</td>
</tr>
<tr>
<td>V-GMLC address</td>
<td>GMLC-Address</td>
<td>C</td>
<td>This Information Element shall contain, if available, the IPv4 or IPv6 address of the V-GMLC associated with the serving node.</td>
</tr>
</tbody>
</table>
| Active APN | Active-APN | O | This Information Element, if present, contains the list of active APNs stored by the MME or SGSN, including the identity of the PDN GW assigned to each APN. For the case of explicitly subscribed APNs, the following information shall be present:
 - Context-Identifier: context id of subscribed APN in use
 - Service-Selection: name of subscribed APN in use
 - MIP6-Agent-Info: including PDN GW identity in use for subscribed APN
 - Visited-Network-Identifier: identifies the PLMN where the PDN GW was allocated
 For the case of the Wildcard APN, the following information shall be present:
 - Context-Identifier: context id of the Wildcard APN
 - Specific-APN-Info: list of APN-in use and related PDN GW identity when the subscribed APN is the wildcard APN
 It may be present when MME or SGSN needs to restore PDN GW data in HSS due to a Reset procedure. |
| UE SRVCC Capability | UE-SRVCC-Capability | C | This information element shall indicate if the UE supports or does not support the SRVCC capability and shall be present if the MME or the SGSN supports SRVCC and this information is available to the MME or the SGSN. |
| MME Number for MT SMS | MME-Number-for-MT-SMS | C | This Information Element contains the ISDN number of the MME to route SMS to the MME through the S6a interface, see 3GPP TS 23.003 [3]. It shall be present when the MME supports SMS in MME and wishes to provide SMS in MME. |
5.2.1.1.2 Detailed behaviour of the MME and the SGSN

The MME shall make use of this procedure to update the MME identity stored in the HSS (e.g. at initial attach, inter MME tracking area update or radio contact after HSS reset).

The SGSN shall make use of this procedure to update the SGSN identity stored in the HSS (e.g. at initial attach, inter SGSN routing area update or radio contact after HSS reset).

The MME shall make use of this procedure to request SMS data and and to become registered for SMS.

The SGSN shall make use of this procedure to request to become registered for SMS.

A combined MME/SGSN which uses different Diameter Identities for the MME and SGSN parts shall not send a second ULR when in a first ULA the ULA-Flag "Separation Indication" was not set.

For UEs receiving emergency services, in which the UE was not successfully authenticated, the MME or SGSN shall not make use of the Update Location procedure.

If the Update Location request is to be sent due to an inter node (SGSN to MME) update and the previous SGSN is a Gn/Gp SGSN, the MME shall set the "Single-Registration-Indication" flag in the ULR-Flags information element in the request.

Table 5.2.1.1.1/2: Update Location Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S6a/S6d errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable: - User Unknown - Unknown EPS Subscription - RAT Not Allowed - Roaming Not Allowed</td>
</tr>
<tr>
<td>Error-Diagnostic</td>
<td>Error-Diagnostic</td>
<td>O</td>
<td>If the Experimental Result indicates "Unknown EPS Subscription", Error Diagnostic may be present to indicate whether or not GPRS subscription data are subscribed (i.e. whether or not Network Access Mode stored in the HSS indicates that only circuit service is allowed). If the Experimental Result indicates "Roaming Not Allowed", and the Update Location is rejected due to ODB, Error Diagnostic may be present to indicate the specific type of ODB.</td>
</tr>
<tr>
<td>ULA-Flags (See 7.3.8)</td>
<td>ULA-Flags</td>
<td>C</td>
<td>This Information Element contains a bit mask. See 7.3.8 for the meaning of the bits. It shall be present only when the Result-Code AVP is DIAMETER_SUCCESS.</td>
</tr>
<tr>
<td>Subscription Data (See 7.3.2)</td>
<td>Subscription-Data</td>
<td>C</td>
<td>This Information Element shall contain the complete subscription profile of the user. It shall be present if success is reported, unless an explicit "skip subscriber data” indication was present in the request.</td>
</tr>
</tbody>
</table>
If the Update Location request is to be sent due to an initial attach, the MME or SGSN shall set the “Initial-Attach-Indicator” flag in the ULR-Flags information element in the request.

A combined MME/SGSN shall set the “Skip Subscriber Data” flag in the ULR-Flags if subscriber data are already available due to a previous location update.

A combined MME/SGSN that has chosen the option to include the SGSN Number within ULR sent over S6a shall be prepared to receive a single subscription data update message (IDR or DSR) from the HSS when the subscription data is modified.

If the MME or SGSN knows about the homogeneity of the support of IMS Voice over PS Sessions in all TAs or RAs associated to that serving node (i.e., it is supported in all the TA/RAs or it is not supported in any of the TA/RAs), it shall include this indication to the HSS in the “Homogeneous Support of IMS Voice over PS Sessions” IE.

The MME or SGSN may include dynamic APN and PGW ID data in the list of Active-APN AVPs, in order to restore this information in the HSS after a Reset procedure.

The MME/SGSN may include an equivalent PLMN list to request the CSG Subscription data of the equivalent PLMNs.

A standalone MME shall not indicate its support for any SGSN specific features, and it shall not request explicitly the download of GPRS data (via the GPRS-Subscription-Data-Indicator flag; see clause 7.3.7). A standalone MME that does not support the "SMS in MME" feature shall not provide its MME Number for SMS, "SMS only" indication or SMS Registraton Request and therefore not indicate its support for any SMS related features (such as ODB or barring services).

For a standalone MME or SGSN, if EPS or GPRS subscription data is received, the standalone MME or SGSN shall replace all of the EPS or GPRS subscription data of the user in the MME or SGSN. Any optional EPS or GPRS data not received, but stored in the standalone MME or SGSN, shall be deleted.

For a combined MME/SGSN, if EPS subscription data of the user is received, it shall replace all of the EPS subscription data of the user. Any optional EPS data not received by the combined MME/SGSN, but stored in the MME/SGSN, shall be deleted.

For a combined MME/SGSN, if GPRS subscription data of the user is received, it shall replace all of the GPRS subscription data of the user. Any optional GPRS data not received by the combined MME/SGSN, but stored in the MME/SGSN, shall be deleted.

When receiving an Update Location response from the HSS, the MME or SGSN shall check the result code. If it indicates success the MME or SGSN shall store the received subscription profile (if any), and it shall store the HSS identity as received in the Origin-Host AVP.

If an Additional MSISDN (A-MSISDN) is available in the subscription data and downloaded in the A-MSISDN AVP to the MME/SGSN in an Update Location and if the MME or SGSN supports the additional MSISDN feature, the MME or SGSN shall use the Additional MSISDN as C-MSISDN.

For UEs receiving emergency services (i.e. emergency attached UEs or normal attached UEs with a UE Requested PDN Connection for emergency services), and if the MME or SGSN supports emergency services for users in limited service state, the MME or SGSN shall proceed even if the Update Location procedure fails (e.g. authenticated users with roaming restrictions or RAT-Type restrictions in HSS).

When receiving GPRS-Subscription-Data AVP in the response, the SGSN or combined MME/SGSN shall delete all the stored PDP-Contexts, if there are any, and then store all the received PDP-Contexts.

When receiving the APN-Configuration-Profile AVP in a ULA, the MME or SGSN shall delete all the stored APN-Configurations, if there are any, and then store all the received APN-Configurations.

For each of the received APN-Configurations in the APN-Configuration-Profile, if both the MIP6-Agent-Info and the PDN-GW-Allocation-Type AVPs are absent in the APN-Configuration AVP, the MME or SGSN shall perform the PGW selection (static or dynamic) according to the local configuration. If MIP6-Agent-Info is present, and PDN-GW-Allocation-Type is not present, this means that the PDN GW address included in MIP6-Agent-Info has been statically allocated. If the MIP6-Agent-Info contains an FQDN of the PDN GW, the MME shall retrieve the PGW PLMN ID from the MIP-Home-Agent-Host AVP within the MIP6-Agent-Info AVP.

If the MME/SGSN supports interworking with Gn/Gp-SGSNs, it shall ensure that the context identifier sent over GTPv1 for each of the received APN-Configurations is within the range of 0 and 255.
NOTE 1: If the MME/SGSN receives from HSS a Context-Identifier value higher than 255, how this value is mapped to a value between 0 and 255 is implementation specific.

If the subscriber is not roaming and the SIPTO-Permission information for an APN is present, the MME or SGSN shall allow SIPTO for that APN only if the SIPTO-Permission information indicates so.

If the subscriber is not roaming and the SIPTO-Permission information for an APN is not present, the MME or SGSN may allow SIPTO for that APN.

If the subscriber is roaming and the SIPTO-Permission information for an APN is present, the MME or SGSN shall allow SIPTO for that APN only if the SIPTO-Permission information indicates so and the VPLMN Dynamic Address is allowed and the MME or SGSN selects a PDN GW in the VPLMN.

If the subscriber is roaming and the SIPTO-Permission information for an APN is not present, the MME or SGSN shall not allow SIPTO for that APN.

NOTE 2: Based on local configuration, the MME or SGSN can determine not to allow SIPTO for an APN, regardless if the SIPTO-Permission information is present.

If MPS-Priority AVP is present and the UE is subscribed to the eMLPP or 1x RTT priority service in the CS domain as indicated by the MPS-CS-Priority bit of the AVP, the MME shall allow the UE to initiate the RRC connection with higher priority than other normal UEs during CS Fallback procedure. If the MPS-Priority AVP is present and the UE is subscribed to MPS in the EPS domain as indicated by the MPS-EPS-Priority bit of the AVP, the MME shall allow the UE to initiate the RRC connection with higher priority than other normal UEs.

If the subscriber is not roaming, the MME or SGSN may allow or prohibit the UE to use LIPA as indicated by LIPA-Permission for a specific APN.

If the subscriber is roaming and the VPLMN-LIPA-Allowed AVP indicates that the UE is not allowed to use LIPA in the VPLMN where the UE is attached, the MME or SGSN shall not provide LIPA for the UE and shall not consider the LIPA-Permission AVP. If the VPLMN-LIPA-Allowed AVP indicates that the UE is allowed to use LIPA in the VPLMN, the MME or SGSN may allow or prohibit the UE to use LIPA as indicated by LIPA-Permission for a specific APN. The VPLMN-Dynamic-Address-Allowed AVP shall not be considered if it is received when the MME or SGSN establishes a PDN connection with LIPA.

If the LIPA-Permission information for an APN indicates LIPA only, the MME or SGSN shall only allow LIPA for that APN via the authorized CSGs according to the CSG Subscription Data. If the LIPA-Permission information for an APN indicates LIPA prohibited, the MME or SGSN shall not allow LIPA for that APN. If the LIPA-Permission information for an APN indicates LIPA conditional, the MME or SGSN shall allow non LIPA, and LIPA for that APN via the authorized CSGs according to the CSG Subscription Data. If the LIPA-Permission AVP is not present for a specific APN, the APN shall not be allowed to use LIPA.

The LIPA-Permission information for the Wildcard APN shall apply to any APN that is not explicitly present in the subscription data.

The SIPTO-Permission information for the Wildcard APN shall apply to any APN that is not explicitly present in the subscription data.

If the subscription data received for a certain APN indicates that the APN was authorized as a consequence of having the Wildcard APN in the user subscription in HSS, then the MME shall not store this APN data beyond the lifetime of the UE session and the MME shall delete them upon disconnection of the UE.

If the MME supports the Relay Node functionality (see 3GPP TS 36.300 [40]) and the subscription data indicates that the subscriber is not a relay, the MME shall reject the attach request from a device attempting to attach to EPS as a Relay Node. If a device requests to be attached to EPS as an UE, the MME shall proceed with the attach procedure regardless of the content of the Relay Node Indicator.

If trace data are received in the subscriber data, the MME or SGSN shall start a Trace Session. For details, see 3GPP TS 32.422 [23].

If the Ext-PDP-Type AVP is present in the PDP-Context AVP, the SGSN or combined MME/SGSN shall ignore the value of the PDP-Type AVP.

If the subscriber is not roaming and the Subscribed-Periodic-RAU-BA-TAU-Timer information is present, the MME or SGSN shall allocate the subscribed value to the UE as periodic RAU or TAU timer. If the subscriber is roaming and the
Subscribed-Periodic-RAU-TAU-Timer information is present, the MME or SGSN may use the subscribed periodic RAU/TAU timer value as an indication to decide for allocating a locally configured periodic RAU/TAU timer value to the UE.

If the MME supports the "SMS in MME" feature and the UE has requested a combined EPS/IMSI attach or Combined TA/LA Update, as described in 3GPP TS 23.272 [44] and the MME is not currently registered for SMS, the MME requests to be registered for SMS by indicating its MME Number for SMS in the request, including SMS-Register-Request AVP and the SMS-Only-Indication flag set in the ULR-Flags AVP if UE indicates "SMS only".

If the HSS provides the MME with SMS data in the ULA and the ULA-Flags is received with "MME Registered for MT SMS" flag set, the MME shall store this data for providing SMS in MME service and consider itself registered for SMS.

If the SGSN supports the "SMS in SGSN" feature as specified in 3GPP TS 23.060 [12], clause 5.3.18, and wishes to provide SMS via SGSN it shall set the "SMS in SGSN" flag in the Feature-List AVP, and include SMS-Register-Request AVP. If the UE has indicated "SMS-Only" this shall be indicated to the HSS setting the SMS-Only-Indication flag in the ULR-Flags AVP.

NOTE: the setting of the "SMS in SGSN" feature bit reflects the "SMS in SGSN Offered" as described in stage 2 above.

If the SMS-In-SGSN-Allowed-Indication flag is set in the received Subscription-Data-Flags AVP, the SGSN shall store the subscription data for providing SMS in SGSN service.

If the subscriber is not roaming and the Restoration-Priority information for a certain APN is present, the MME or SGSN shall consider the subscribed value as the relative priority of the user's PDN connection among PDN connections to the same APN when restoring PDN connections affected by an SGW or PGW failure/restart (see 3GPP TS 23.007 [43]). If the subscriber is roaming and the Restoration-Priority information for a certain APN is present, the MME or SGSN may use the subscribed value as an indication of the relative priority of the user's PDN connection among PDN connections to the same APN based on service level agreements. The MME/SGSN may use a locally configured value as default restoration priority if the Restoration-Priority AVP for a certain APN is not present, or if it is not permitted by service level agreements for an in-bound roamer.

5.2.1.1.3 Detailed behaviour of the HSS

When receiving an Update Location request the HSS shall check whether subscription data exists for the IMSI.

If the HSS determines that there is not any type of subscription for the IMSI (including EPS, GPRS and CS subscription data), a Result Code of DIAMETER_ERROR_USER_UNKNOWN shall be returned.

If the Update Location Request is received over the S6a interface, and the subscriber has not any APN configuration, the HSS shall return a Result Code of DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION.

If the Update Location Request is received over the S6d interface, and the subscriber has neither an APN configuration profile nor GPRS subscription data, the HSS shall return a Result Code of DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION.

When sending DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION, an Error Diagnostic information may be added to indicate whether or not GPRS subscription data are subscribed (i.e. whether or not Network Access Mode stored in the HSS indicates that only circuit service is allowed).

The HSS shall check whether the RAT type the UE is using is allowed. If it is not, a Result Code of DIAMETER_ERROR_RAT_NOT_ALLOWED shall be returned.

The HSS shall check whether roaming is not allowed in the VPLMN due to ODB. If so a Result Code of DIAMETER_ERROR_ROAMING_NOT_ALLOWED shall be returned. When this error is sent due to the MME or SGSN not supporting a certain ODB category, an Error Diagnostic information element may be added to indicate the type of ODB; if this error is sent due to the ODB indicating "Barring of Roaming", Error Diagnostic shall not be included.

If the Update Location Request is received over the S6a interface, the HSS shall send a Cancel Location Request with a Cancellation-Type of MME_UPDATE_PROCEDURE (CLR; see chapter 7.2.7) to the previous MME (if any) and replace the stored MME-Identity with the received value (the MME-Identity is received within the Origin-Host AVP). The HSS shall reset the "UE purged in MME" flag. If the "Single-Registration-Indication" flag was set in the received request, the HSS shall send a Cancel Location Request with a Cancellation-Type of SGSN_UPDATE_PROCEDURE.
to the SGSN (MAP Cancel Location), and delete the stored SGSN address and SGSN number. If the "Initial-Attach-
Indicator" flag was set in the received request, and the "Single-Registration-Indication" flag was not set, the HSS shall
send a Cancel Location Request with a Cancellation-Type of INITIAL_ATTACH_PROCEDURE (CLR; see chapter
7.2.7, or MAP Cancel Location) to the SGSN if there is an SGSN registration.

If the Update Location Request is received over the S6d interface, the HSS shall send a Cancel Location Request with a
Cancellation-Type of SGSN_UPDATE_PROCEDURE (CLR; see chapter 7.2.7, or MAP Cancel Location) to the
previous SGSN (if any) and replace the stored SGSN-Identity with the received value (the SGSN-Identity is received
within the Origin-Host AVP). The HSS shall reset the "UE purged in SGSN" flag. If the "Initial-Attach-Indicator" flag
was set in the received request, the HSS shall send a Cancel Location Request with a Cancellation-Type of
INITIAL_ATTACH_PROCEDURE (CLR; see chapter 7.2.7) to the MME if there is an MME registration.

When the HSS receives the Update Location Request, if a 15th digit of the IMEI AVP is received, the HSS may discard
the digit.

If the Update Location Request includes the list of active APNs, the HSS shall delete all the stored dynamic PDN GW
information, if there are any, and then replace them by the PDN GW information received in the list of Active-APN
AVPs.

If the Update Location Request includes an equivalent PLMN list, the HSS shall return the CSG list (if any) for each
equivalent PLMN to the MME with the subscription data, and Visited-PLMN-Id AVP shall be present in the CSG-
Subscription-Data AVP to indicate the corresponding PLMN. If there is no equivalent PLMN list received, the HSS
may not include Visited-PLMN-Id AVP in the CSG-Subscription-Data AVP, and the CSG-Subscription-Data AVP
shall contain the CSG subscription data of the registered PLMN of the MME or the SGSN.

If the Update Location Request is received over the S6a interface for a user for which the URRP-MME parameter is set
in the HSS, the HSS shall clear the URRP-MME parameter and send an indication to the corresponding Service Related
Entities.

If the Update Location Request is received over the S6d interface for a user for which the URRP-SGSN parameter is set
in the HSS, the HSS shall clear the URRP-SGSN parameter and send an indication to the corresponding Service Related
Entities.

If no result code has been sent to the MME or SGSN so far, the HSS shall include the subscription data in the ULA
command according to the ULR-Flags and the supported/unsupported features of the MME or SGSN, unless an explicit
"skip subscriber data" indication has been received in the request, and shall return a Result Code of
DIAMETER_SUCCESS.

When the APN-Configuration-Profile AVP is present in the Subscription-Data AVP sent within a ULA, the AVP shall
contain at least the default APN Configuration and a Context-Identifier AVP that identifies the per subscriber’s default
APN configuration. The default APN Configuration shall not contain the Wildcard APN (see 3GPP TS 23.003 [3],
clause 9.2); the default APN shall always contain an explicit APN.

The GPRS Subscription data (if available in the HSS) shall only be present in the ULA command if it was indicated by
the serving node in the ULR-Flags AVP (see clause 7.3.7), or when the subscription data is returned by a Pre-Rel-8
HSS (via an IWF) or when the Update Location Request is received over the S6d interface and there is no APN
configuration profile stored for the subscriber.

The HSS shall use the indication received in the GPRS-Subscription-Data-Indicator for future use in the subscriber data
update procedures.

The HSS shall store the new terminal information and/or the new UE SRVCC capability, if they are present in the
request. If the UE SRVCC capability is not present, the HSS shall store that it has no knowledge of the UE SRVCC
capability.

If the MME/SGSN indicates support of the Additional-MSISDN feature and an additional MSISDN (A-MSISDN) is
available in the subscription data, the HSS shall send the provisioned additional MSISDN together with the MSISDN.

If the MME/SGSN does not support the Additional-MSISDN feature, the HSS shall populate the MSISDN AVP either
with the subscribed MSISDN or the subscribed additional MSISDN based on operator policy and availability.

NOTE: When the MME/SGSN does not support the Additional-MSISDN feature, the MME/SGSN will use the
MSISDN from the MSISDN AVP as C-MSISDN.
LCS-Info, Teleservice-List and Call-Barring-Info data shall be included according to the list of supported features indicated by the serving node (see clause 7.3.10).

If the HSS supports the "SMS in MME" feature and receives the indication that the MME supports the "SMS in MME" feature and requests to be registered for SMS by including the MME Number for SMS, SMS-Register-Request AVP and/or setting the SMS-Only-Indication flag in the ULR-Flags AVP if indicated from the UE, the HSS shall determine if SMS can be provided via the MME as described in 3GPP TS 23.272 [44]. If SMS in MME is accepted the HSS shall register the MME for MT SMS, store the "MME number for SMS" as the corresponding MSC number to be used for MT SMS and return an indication of MME registered for SMS in ULA-Flags AVP.

If the MME is successfully registered for SMS the HSS shall download the available SMS related subscription data that may comprise SMS teleservice, MSISDN, ODB and barring services for SMS according to supported features.

If the HSS supports the "SMS in SGSN" feature as described in 3GPP TS 23.060 [12], clause 5.3.18 and receives the indication from the SGSN that it supports "SMS in SGSN” feature, and SMS-Register-Request AVP and/or the SMS-Only-Indication flag in the ULR-Flags AVP if indicated from the UE, and the PS subscriber data allow for SMS services (e.g. the subscription information indicates "PS and SMS-Only"), the HSS shall determine if SMS can be provided via the SGSN as described in 3GPP TS 23.060 [12]. If “SMS in SGSN” is accepted the HSS shall indicate in the ULA that “SMS in SGSN” is allowed to the SGSN and shall handle MT SMS as described in 3GPP TS 23.060 [12], clause 5.3.18.

The HSS may use the indication received in the Node-Type-Indicator for future use in the subscriber data update procedures.

Subscriber-Status AVP shall be present in the Subscription-Data AVP when sent within a ULA. If the value "OPERATOR_DETERMINED_BARRING" is sent, the Operator-Determined-Barring AVP or HPLMN-ODB AVP shall also be present in the Subscription-Data AVP, or vice versa.

Access-Restriction-Data AVP shall be present within the Subscription-Data AVP sent within a ULA if at least one of the defined restrictions applies.

The AMBR AVP shall be present in the Subscription-Data AVP when the APN-Configuration-Profile AVP is sent within a ULA (as part of the Subscription-Data AVP) and may be present in the Subscription-Data AVP when the GPRS-Subscription-Data AVP is present.

The EPS-Subscribed-QoS-Profile AVP and the AMBR AVP shall be present in the APN-Configuration AVP when the APN-Configuration AVP is sent in the APN-Configuration-Profile AVP and when the APN-Configuration-Profile AVP is sent within a ULA (as part of the Subscription-Data AVP).

For those APNs that have been authorized as a consequence of having the Wildcard APN in the user subscription, the HSS shall include the specific APN name and associated PDN-GW identity inside the APN context of the Wildcard APN. This indicates to the MME that the particular APN shall not be cached in the MME and it shall be deleted when the UE session is terminated.

If a Result Code of DIAMETER_SUCCESS is returned, the HSS shall set the Separation Indication in the response.

If the HSS receives an indication in the ULR command about the homogeneous support of IMS Voice over PS Sessions in all TA/RAs associated to a serving node, it may use this information in the future in order to skip the T-ADS data retrieval, as described in clause 5.2.2.1 (IDR/IDA commands).

Subscribed-VRVCC AVP shall be present within the Subscription-Data AVP sent within a ULA only if the user is subscribed to the SRVCC and vSRVCC.

5.2.1.2 Cancel Location

5.2.1.2.1 General

The Cancel Location Procedure shall be used between the HSS and the MME and between the HSS and the SGSN to delete a subscriber record from the MME or SGSN. The procedure shall be invoked by the HSS and is used:

- to inform the MME or SGSN about the subscriber’s subscription withdrawal or
- to inform the MME or SGSN about an ongoing update procedure i.e. MME or SGSN change.
to inform the MME or SGSN about an initial attach procedure.

This procedure is mapped to the commands Cancel-Location-Request/Answer (CLR/CLA) in the Diameter application specified in chapter 7.

Table 5.2.1.2.1/1 specifies the involved information elements for the request.

Table 5.2.1.2.1/2 specifies the involved information elements for the answer.

Table 5.2.1.2.1/1: Cancel Location Request

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
</tbody>
</table>
| Cancellation Type | Cancellation-Type | M | Defined values that can be used are:
- MME-Update Procedure,
- SGSN-Update Procedure,
- Subscription Withdrawal,
- Update Procedure_IWF,
- Initial Attach Procedure. |
| CLR Flags | CLR-Flags | O | This Information Element contains a bit mask. See 7.3.152 for the meaning of the bits and the condition for each bit to be set or not. |

Table 5.2.1.2.1/2: Cancel Location Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Result</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>The result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol.</td>
</tr>
</tbody>
</table>

5.2.1.2.2 Detailed behaviour of the MME and the SGSN

When receiving a Cancel Location request the MME or SGSN shall check whether the IMSI is known.

If it is not known, a result code of DIAMETER_SUCCESS is returned.

If it is known, the MME or SGSN shall check the Cancellation Type and act accordingly. If a cancellation type of "Initial Attach Procedure" is received, the MME or SGSN shall not delete the subscription data. For details see 3GPP TS 23.401[2] and 3GPP TS 23.060[12]. If the MME receives this cancellation type, and it is registered for SMS, it shall consider itself as unregistered for SMS. Also in this case a result code of DIAMETER_SUCCESS is returned.

When a UE is served by a single combined MME/SGSN for both E-UTRAN and non-E-UTRAN access, the combined MME/SGSN shall check the Cancellation-Type. If it indicates Subscription Withdrawal or Update Procedure_IWF, the CLR is processed both in the MME part and in the SGSN part of the combined node. If it indicates Initial Attach Procedure, and if the CLR-Flags AVP is received and supported by the combined MME/SGSN, the CLR is processed only in the affected part of the combined node as indicated by the “S6a/S6d-Indicator” flag in the CLR-Flags AVP. Otherwise, the CLR is processed only in the affected part of the combined node and subscription data are kept for the not affected part.
5.2.1.2.3 Detailed behaviour of the HSS

The HSS shall make use of this procedure when the subscriber’s subscription is withdrawn by the HSS operator and when the HSS detects that the UE has moved to a new MME or SGSN area.

The HSS shall include a cancellation type of "Subscription Withdrawal” if the subscriber’s subscription is withdrawn by the operator and shall include a cancellation type of "MME Update Procedure” if the UE moved to a new MME area and shall include a cancellation type of "SGSN Update Procedure” if the UE moved to a new SGSN area, and shall include a cancellation type of "Initial Attach Procedure” if the cancel location is initiated due to an Initial Attach from the UE, and shall include a CLR-Flags with the "S6a/S6d-Indicator" flag indicating the affected part of the combined node if the cancel location is to be sent to a combined MME/SGSN during initial attach procedure.

5.2.1.3 Purge UE

5.2.1.3.1 General

The Purge UE Procedure shall be used between the MME and the HSS and between the SGSN and the HSS to indicate that the subscriber’s profile has been deleted from the MME or SGSN either by an MMI interaction or automatically, e.g. because the UE has been inactive for several days.

This procedure is mapped to the commands Purge-UE-Request/Answer (PUR/PUA) in the Diameter application specified in chapter 7.

Table 5.2.1.3.1/1 specifies the involved information elements for the request.

Table 5.2.1.3.1/2 specifies the involved information elements for the answer.

Table 5.2.1.3.1/1: Purge UE Request

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name</td>
<td>M</td>
<td>This information element shall contain user IMSI, formatted according to</td>
</tr>
<tr>
<td></td>
<td>(See IETF RFC 3588 [4])</td>
<td></td>
<td>3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features</td>
</tr>
<tr>
<td>29.229 [9])</td>
<td></td>
<td></td>
<td>supported by the origin host.</td>
</tr>
<tr>
<td>PUR-Flags (See 7.3.149)</td>
<td>PUR-Flags</td>
<td>O</td>
<td>If present, this Information Element shall contain a bitmask. See section</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.3.149 for the meaning of the bits.</td>
</tr>
</tbody>
</table>

Table 5.2.1.3.1/2: Purge UE Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features (See 3GPP TS</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features</td>
</tr>
<tr>
<td>29.229 [9])</td>
<td></td>
<td></td>
<td>supported by the origin host.</td>
</tr>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>be used to indication success / errors as defined in the Diameter Base</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protocol. The Experimental-Result AVP shall be used for S6a/S6d errors. This</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AVP, and the error code in the Experimental-Result-Code AVP. The following</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>errors are applicable:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- User Unknown</td>
</tr>
<tr>
<td>PUA-Flags (See 7.3.48)</td>
<td>PUA-Flags</td>
<td>C</td>
<td>This Information Element shall contain a bitmask. See section 7.3.48 for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the meaning of the bits. It shall be present only when the Result-Code AVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>is DIAMETER_SUCCESS.</td>
</tr>
</tbody>
</table>
5.2.1.3.2 Detailed behaviour of the MME and the SGSN

The MME shall make use of this procedure to set the “UE Purged in the MME” flag in the HSS when the subscription profile is deleted from the MME database due to MMI interaction or after long UE inactivity.

The SGSN shall make use of this procedure to set the “UE Purged in SGSN” flag in the HSS when the subscription profile is deleted from the SGSN database due to MMI interaction or after long UE inactivity.

The combined MME/SGSN shall make use of this procedure to set the “UE Purged in MME” and “UE Purged in SGSN” flags in the HSS when the subscription profile is deleted from the common MME/SGSN database due to MMI interaction or after long UE inactivity on all registered accesses. If the HSS has indicated support for the Partial Purge feature (see clause 7.3.10), the combined MME/SGSN may also indicate to the HSS a Purge of the UE in only one of the serving nodes in the combined node (either in the MME or in the SGSN).

When receiving a Purge UE response from the HSS the MME shall check the Result Code. If it indicates success, the MME shall check the PUA flag "freeze M-TMSI", and if set freeze the M-TMSI i.e. block it for immediate re-use.

When receiving a Purge UE response from the HSS the SGSN shall check the Result Code. If it indicates success, the SGSN shall check the PUA flag "freeze P-TMSI", and if set freeze the P-TMSI i.e. block it for immediate re-use.

When receiving a Purge UE response from the HSS the combined MME/SGSN shall check the Result Code. If it indicates success, the combined MME/SGSN shall check the PUA flag "freeze M-TMSI" and "freeze P-TMSI", and if set freeze the M-TMSI and/or the P-TMSI i.e. block it for immediate re-use.

5.2.1.3.3 Detailed behaviour of HSS

When receiving a Purge UE request the HSS shall check whether the IMSI is known.

If it is not known, a result code of DIAMETER_ERROR_USER_UNKNOWN shall be returned.

If it is known, the HSS shall set the result code to DIAMETER_SUCCESS and compare the received identity in the Origin-Host with the stored MME-Identity and with the stored SGSN-Identity.

If the received identity matches the stored MME-identity and the stored SGSN-Identity, then:

- if the HSS supports the Partial Purge feature (see clause 7.3.10), and the combined MME/SGSN indicated that the UE was purged in only one of the serving nodes, the HSS shall set the PUA flags according to the serving node where the purge was done (i.e., either "freeze M-TMSI" if the purge was done in the MME, or "freeze P-TMSI" if the purge was done in the SGSN); similarly, the HSS shall set either the "UE purged in MME" flag, or "UE purged in SGSN" flag, accordingly;

- if the HSS does not support the Partial Purge feature, or the combined MME/SGSN did not indicate that the UE was purged in only one of the serving nodes, the HSS shall set the PUA flags "freeze M-TMSI" and "freeze P-TMSI" in the answer message and set the flag "UE purged in MME" and "UE purged in SGSN";

If the received identity matches the stored MME-identity but not the stored SGSN-identity, the HSS shall set the PUA flag "freeze M-TMSI" and clear the PUA flag "freeze P-TMSI" in the answer message and set the flag "UE purged in MME";

If the received identity matches the stored SGSN-identity but not the stored MME-identity, the HSS shall set the PUA flag "freeze P-TMSI" and clear the PUA flag "freeze M-TMSI" in the answer message and set the flag "UE purged in SGSN";

If the received identity does not match the stored MME-identity and does not match the stored SGSN-identity, the HSS shall clear the PUA flags "freeze M-TMSI" and "freeze P-TMSI" in the answer message.

5.2.2 Subscriber Data Handling Procedures

5.2.2.1 Insert Subscriber Data

5.2.2.1.1 General

The Insert Subscriber Data Procedure shall be used between the HSS and the MME and between the HSS and the SGSN for updating and/or requesting certain user data in the MME or SGSN in the following situations:
- due to administrative changes of the user data in the HSS and the user is now located in an MME or SGSN, i.e. if the user was given a subscription and the subscription has changed;
- the operator has applied, changed or removed Operator Determined Barring for this user;
- activate subscriber tracing in the MME or the SGSN;
- to indicate to the MME or SGSN that the HSS has requested to be notified when the UE has become reachable;
- to request from the MME or SGSN the necessary data to support the T-ADS functionality;
- to retrieve location information and/or state information from the MME or the SGSN;
- to retrieve from the MME or the SGSN the Local Time Zone of the location in the visited network where the UE is attached;
- to update the STN-SR (e.g., as a result of an Sh interaction with an SCC-AS).
- to update the MME/SGSN with the identity of a dynamically allocated PDN GW as a result of the first PDN connection establishment associated with an APN over non 3GPP access.
- to indicate to the MME that the HSS has deregistered the MME for SMS.

If the HSS knows that the UE has attached to the same combined MME/SGSN via both the E-UTRAN and UTRAN/GERAN, i.e. the HSS has received the Update Location Request over both the S6a interface and S6d interface respectively with the same SGSN number, the HSS should invoke this procedure for a single time to update and/or request certain user data in the combined MME/SGSN, i.e. the HSS should not invoke this procedure for each of the MME and the SGSN registered respectively.

If the Node-Type-Indicator information has been previously received as cleared in the ULR-Flags and if the MME has not been registered for SMS during update location procedure for the MME, the HSS may skip any change of the SMS related subscription data and consequently does not have to make use of the Insert Subscriber Data procedure to update the SMS subscription data in the MME.

This procedure is mapped to the commands Insert Subscriber Data-Request/Answer (IDR/IDA) in the Diameter application specified in clause 7.

Table 5.2.2.1.1/1 specifies the involved information elements for the request.

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Subscription Data (See 7.3.2)</td>
<td>Subscription-Data</td>
<td>M</td>
<td>This Information Element shall contain the part of the subscription profile that either is to be added to the subscription profile stored in the MME or SGSN or is replacing a part of the subscription profile stored in the MME or SGSN.</td>
</tr>
<tr>
<td>IDR Flags (See 7.3.103)</td>
<td>IDR-Flags</td>
<td>C</td>
<td>This Information Element shall contain a bit mask. See 7.3.103 for the meaning of the bits.</td>
</tr>
</tbody>
</table>
Table 5.2.2.1.1/2: Insert Subscriber Data Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Result</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. Result-Code AVP shall be used to indicate success / errors defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S6a/S6d errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable in this case: - User Unknown</td>
</tr>
<tr>
<td>IMS Voice over PS Sessions Supported</td>
<td>IMS-Voice-Over-PS-Sessions-Supported</td>
<td>C</td>
<td>If available to the serving node, this information element shall indicate whether or not "IMS Voice over PS Sessions" is supported by the UE's most recently used TA or RA in the serving node (MME or SGSN or combined MME/SGSN). If the UE is in detached state, this information element shall not be included in the response.</td>
</tr>
<tr>
<td>Last UE Activity Time</td>
<td>Last-UE-Activity-Time</td>
<td>C</td>
<td>If available to the serving node, this information element shall contain the time of the last radio contact with the UE. If the UE is in detached state, this information element shall not be included in the response.</td>
</tr>
<tr>
<td>RAT Type</td>
<td>RAT-Type</td>
<td>C</td>
<td>If available to the serving node, this information element shall indicate the RAT Type of the access where the UE was present at the time of the last radio contact. If the UE is in detached state, this information element shall not be included in the response.</td>
</tr>
<tr>
<td>IDA-Flags</td>
<td>IDA-Flags</td>
<td>C</td>
<td>This Information Element shall contain a bit mask. See 7.3.47 for the meaning of the bits.</td>
</tr>
<tr>
<td>EPS-User-State</td>
<td>EPS-User-State</td>
<td>C</td>
<td>This Information Element shall contain the EPS-User State. It shall be present if EPS user state was requested within IDR.</td>
</tr>
<tr>
<td>EPS-Location-Information</td>
<td>EPS-Location-Information</td>
<td>C</td>
<td>This Information Element shall contain the EPS-Location Information. It shall be present if EPS location information was requested within IDR.</td>
</tr>
<tr>
<td>Local Time Zone</td>
<td>Local-Time-Zone</td>
<td>C</td>
<td>This Information Element shall contain information on the Local Time Zone of the location in the visited network where the UE is attached. It shall be present if the Local Time Zone was requested within IDR.</td>
</tr>
</tbody>
</table>

5.2.2.1.2 Detailed behaviour of the MME and the SGSN

When receiving an Insert Subscriber Data request the MME or SGSN shall check whether the IMSI is known.

If it is not known, a result code of DIAMETER_ERROR_USER_UNKNOWN shall be returned.

If it is known, the MME or SGSN shall replace the specific part of the stored subscription data with the received data, or shall add the received data to the stored data.

When receiving the APN-Configuration-Profile AVP within the Subscription-Data AVP, the MME or SGSN shall check the All-APN-Configurations-Included-Indicator value. If it indicates "All_APN_CONFIGURATIONS_INCLUDED", the MME or SGSN shall delete all stored APN-Configurations and then store all received APN-Configurations. Otherwise, the MME or SGSN shall check the Context-Identifier value of each received APN-Configuration. If the Context-Identifier of a received APN-Configuration matches a Context-Identifier of a stored APN-Configuration, the MME or SGSN shall replace the stored APN-Configuration with the received APN-Configuration. If the Context-Identifier of a received APN-Configuration does not match a Context-Identifier of a stored APN-Configuration, the MME or SGSN shall add the received APN-Configuration to the stored APN-Configurations. If the addition or update of the subscription data succeeds in the MME or SGSN, the Result-Code shall be set to DIAMETER_SUCCESS. The MME or SGSN shall then acknowledge the Insert Subscriber Data message by returning an Insert Subscriber Data Answer.

For each of the received APN-Configurations in the APN-Configuration-Profile, if both the MIP6-Agent-Info and the PDN-GW-Allocation-Type AVPs are absent in the APN-Configuration AVP, the MME or SGSN shall perform the
PGW selection (static or dynamic) according to the local configuration. If MIP6-Agent-Info is present, and PDN-GW- Allocation-Type is not present, this means that the PDN GW address included in MIP6-Agent-Info has been statically allocated.

If the MME/SGSN supports interworking with Gn/Gp-SSNs, it shall ensure that the context identifier sent over GTPv1 for each of the received APN-Configurations is within the range of 0 and 255.

NOTE: If the MME/SGSN receives from HSS a Context-Identifier value higher than 255, how this value is mapped to a value between 0 and 255 is implementation specific.

If the MME is requested to notify the HSS when the UE becomes reachable, the MME shall set the URRP-MME parameter to indicate the need to inform the HSS about UE reachability, e.g. when the next NAS activity from the UE is detected. If the SGSN is requested to notify the HSS when the UE becomes reachable, the SGSN shall set the URRP- SGSN parameter to indicate the need to inform the HSS about UE reachability, e.g. when the next NAS activity from the UE is detected.

When receiving GPRS-Subscription-Data AVP within the Subscription-Data AVP, the SGSN or combined MME/SGSN shall check the Complete-Data-List-Included-Indicator value. If it indicates “All_PDP_CONTEXTS_INCLUDED”, the SGSN or combined MME/SGSN shall delete all stored PDP-Contexts and then store all received PDP-Contexts. Otherwise, the SGSN or combined MME/SGSN shall check the Context-Identifier value of each received PDP-Context. If the Context-Identifier of a received PDP-Context matches a Context-Identifier of a stored PDP-Context, the SGSN or combined MME/SGSN shall replace the stored PDP-Context with the received PDP-Context. If the Context-Identifier of a received PDP-Context does not match a Context-Identifier of a stored PDP-Context, the SGSN or combined MME/SGSN shall add the received PDP-Context to the stored PDP-Contexts.

If the MME or SGSN receives an empty Subscription-Data AVP, it shall take no action with regard to the stored subscription data.

When receiving HPLMN-ODB AVP within the Subscription-Data AVP, the MME or SGSN shall replace stored HPLMN-ODB data (if any) with the received information rather than add the received information to the stored information. Unsupported Barring categories need not be stored.

When receiving Operator-Determined-Barring AVP within the Subscription-Data AVP, the MME or SGSN shall replace stored ODB subscription information (if any) with the received information rather than add the received information to the stored information. Unsupported Barring categories need not be stored.

When receiving Access-Restriction-Data AVP within the Subscription-Data AVP, the MME or SGSN shall replace stored information (if any) with received information rather than add received information to stored information.

When receiving APN-OI-Replacement AVP within the Subscription-Data AVP, the MME or SGSN shall replace the stored information (if any) with the received information.

When receiving Regional-Subscription-Zone-Code AVP within the Subscription-Data AVP, the MME or SGSN shall replace stored Zone Codes (if any) with the received information rather than add the received information to the stored information. MMEs and SGSNs that do not support regional subscription need not store zone codes. If due to regional subscription restrictions or access restrictions the entire SGSN area is restricted, SGSN shall report it to the HSS by returning the "SGSN Area Restricted" indication within the IDA flags.

When receiving CSG-Subscription-Data AVPs within the Subscription-Data AVP the MME or SGSN shall replace all stored information from previously received CSG-Subscription-Data AVPs (if any) with the received information rather than add the received information to the stored information.

When receiving Teleservice-List AVP, Call-Barring-Info, or LCS-Info AVP, the MME or SGSN shall replace stored information (if any) with the received information rather than add the received information to the stored information.

When receiving the IDR-Flags with the “T-ADS Data Request” bit set, and the UE is in attached state, the MME or SGSN or combined MME/SGSN shall return in the IDA message the time stamp of the UE's most recent radio contact and the associated RAT Type, and an indication of whether or not IMS Voice over PS is supported in the current (and most recently used) TA or RA. If the UE is in detached state, the MME or SGSN or combined MME/SGSN shall answer successfully to the T-ADS request from HSS, but it shall not include any of the T-ADS IEs in the response (IMS Voice over PS Sessions Supported, RAT Type and Last UE Activity Time).

When receiving the IDR-Flags with the "EPS User State Request" bit and/or "EPS Location Information Request" bits set the MME or SGSN shall return the corresponding user information to the HSS. If the serving node is a combined
MME/SGSN, and the UE is attached via both E-UTRAN and UTRAN/GERAN on the same node, the combined MME/SGSN shall provide the corresponding user information relevant for both MME and SGSN. If the Current Location Request bit was also set and the UE is in idle mode, then the MME or SGSN or combined MME/SGSN shall page the UE in order to return the most up-to-date corresponding user information. If the Current Location Request bit was also set and the UE (attached via E-UTRAN) is in connected mode, then the MME or combined MME/SGSN shall use SIAP Location Reporting Control procedure towards the eNB prior to reporting the E-UTRAN Cell Global Identification in order to return the UE’s most up-to-date cell information.

When receiving the IDR-Flags with only the “Current Location Request” bit set (i.e. the “EPS Location Information Request” bit is not set), the MME or SGSN or combined MME/SGSN shall set the Result-Code to DIAMETER_UNABLE_TO_COMPLY.

If the “Local Time Zone Request” bit was set the MME or SGSN if supported shall provide the Local Time Zone corresponding to the location (e.g. TAI or RAI) of the UE to the HSS.

If the MME or SGSN cannot fulfil the received request, e.g. due to a database error or any of the required actions cannot be performed, it shall set the Result-Code to DIAMETER_UNABLE_TO_COMPLY. If subscription data are received, the MME or SGSN shall mark the subscription record "Subscriber to be restored in HSS".

If trace data are received in the subscriber data, the MME or SGSN shall start a Trace Session. For details, see 3GPP TS 32.422 [23].

If the Ext-PDP-Type AVP is present in the PDP-Context AVP, the SGSN or combined MME/SGSN shall ignore the value of the PDP-Type AVP.

When receiving the IDR-Flags with the bit "Remove SMS Registration" set, the MME shall consider itself unregistered for SMS.

5.2.2.1.3 Detailed behaviour of HSS

The HSS shall make use of this procedure to replace a specific part of the user data stored in the MME or SGSN with the data sent, or to add a specific part of user data to the data stored in the MME or SGSN. The HSS shall also make use of this procedure to indicate to the MME that it is no longer registered for SMS.

NOTE: When a Cancel Location message is required for other reasons, the use of IDR to indicate that the MME is no longer registered for SMS is not needed (see clause 5.2.1.2).

Subscriber-Status AVP shall be present in the Subscription-Data AVP, sent within IDR, if the current value in the MME or SGSN needs to be changed. To remove all Operator Determined Barring Categories the Subscriber-Status shall be set to "SERVICE_GRANTED". If Subscriber-Status AVP is present and set to OPERATOR_DETERMINED_BARRING, the Operator-Determined-Barring AVP or HPLMN-ODB AVP shall also be present in the Subscription-Data AVP.

Access-Restriction-Data AVP shall be present within the Subscription-Data AVP send within an IDR if the information stored in the MME or SGSN needs to be modified.

APN-OI-Replacement AVP shall be present in the Subscription-Data AVP sent within an IDR, if the UE level APN-OI-Replacement has been added or modified in the HSS.

The APN-Configuration-Profile AVP shall be present in the Subscription-Data AVP sent within an IDR if the Context-Identifier associated with the default APN configuration is changed or at least one APN-Configuration is added or modified by the HSS. If the default APN is changed in the HSS, the APN-Configuration-Profile AVP shall contain the Context-Identifier associated with the default APN and the APN-Configuration AVP for the default APN. The default APN Configuration shall not contain the Wildcard APN (see 3GPP TS 23.003 [3], clause 9.2); the default APN shall always contain an explicit APN.

The EPS-Subscribed-QoS-Profile AVP and the AMBR AVP shall be present in the APN-Configuration AVP when the APN-Configuration AVP is sent in the APN-Configuration-Profile AVP and when the APN-Configuration-Profile AVP is sent within a IDR (as part of the Subscription-Data AVP).

If the GPRS-Subscription-Data-Indicator information has been previously received as set in the ULR-Flags during update location procedure for the SGSN or combined MME/SGSN, the HSS shall make use of this procedure to replace the GPRS Subscription Data stored in the SGSN or combined MME/SGSN with the data sent or to add a PDP-Context to the data stored in the SGSN or combined MME/SGSN.
If the HSS receives a message (e.g. via MAP ATM or Sh Sh-Subs-Notif) from a Service Related Entity (e.g. IP-SM-GW) indicating that the UE is unreachable,

- the HSS shall associate the subscription to UE reachability of the service-related entity to the URRP-MME and the URRP-SGSN parameters (if not already done)

- and if the URRP-MME and/or the URRP-SGSN parameters were not already set (i.e. at least one service-related entity already listed as subscribed), the HSS shall

 - set the URRP-MME and/or URRP-SGSN parameters and

 - send an IDR command to the registered MME and/or to the registered SGSN including the “UE Reachability Request flag” in the IDR Request Flags in order to request the MME and/or SGSN to notify the HSS when the UE becomes reachable again, unless the HSS knows from the previous ULR command that the registered MME and/or the registered SGSN do not support UE reachability notifications.

If the IDR is sent for the only purpose to request the MME and/or SGSN about the UE reachability status notification, the Subscription-Data AVP shall be included empty.

If the HSS has received a message from a service related entity requesting EPS User State and/or EPS Location Information without the Serving Node Indication IE, the HSS shall set the "EPS User State Request" bit and/or "EPS Location Information Request" bit respectively in the IDR-Flags. The HSS may optionally also set the "Current Location Request" bit along with the "EPS Location Information Request" bit in the IDR-Flags, if the most up-to-date set of information is needed, unless the HSS knows from the previous ULR command that the registered MME and/or the registered SGSN do not support State/Location Information retrieval. If the IDR is sent only for the purpose of requesting the MME or the SGSN User State or Location Information, the Subscription-Data AVP included shall be empty.

If the HSS has received a message from an AS requesting the current access network's support status of "IMS Voice over PS Sessions", and there is no indication about homogeneous support of IMS Voice over PS Sessions in all the serving nodes currently registered in HSS for the UE, the HSS shall set the "T-ADS Data Request flag" in the IDR Request Flags, unless the HSS knows from the previous ULR command that the registered MME and/or the registered SGSN do not support T-ADS data retrieval. If the IDR is sent for the only purpose to retrieve the "IMS Voice over PS Sessions Supported" indication from the MME or SGSN, the Subscription-Data AVP included shall be empty.

If the HSS has received a message from an AS requesting the Local Time Zone, the HSS shall set the "Local Time Zone Request" bit in the IDR-Flags, unless the HSS knows from the previous ULR command that the registered MME and/or the registered SGSN do not support Local Time Zone retrieval. If the IDR is sent only for the purpose of requesting the Local Time Zone, the Subscription-Data AVP included shall be empty.

If the HSS received an indication in a former ULR command from the MME or SGSN about homogeneous support of IMS Voice over PS Sessions in all TA/RAs associated to that serving node, it may use this information to skip the retrieval of T-ADS data. This can only be done if all the registered serving nodes in HSS for the UE indicated in ULR the same type of homogeneous support (i.e. both serving nodes indicated "SUPPORTED", or both serving nodes indicated "NOT_SUPPORTED"); otherwise, the retrieval of T-ADS data shall be done, to receive the time of the last radio contact with the UE.

All APN and PGW-ID pairs stored in the HSS not associated with an explicit APN subscription, (i.e. the access to that APN has been authorized as a consequence of having the Wildcard APN in the user subscription), shall be included by the HSS inside the APN context of the Wildcard APN, as multiple instances of the Specific-APN-Info AVP.

When receiving an Insert Subscriber Data answer with "SGSN Area Restricted" the HSS shall set the SGSN area restricted flag as "SGSN area restricted".

Subscribed-VSRVCC AVP may be present within the Subscription-Data AVP sent within an ISR only if the user is subscribed to the SRVCC and vSRVCC.

If the HSS determines that the MME shall be unregistered for SMS it shall set the "Remove SMS Registration" bit in the IDR-Flags. If the IDR is sent for the only purpose to indicate that the MME is no longer registered for SMS, the Subscription-Data AVP shall be included empty.
5.2.2.2 Delete Subscriber Data

5.2.2.2.1 General

This procedure shall be used between the MME and the HSS and between the SGSN and the HSS, to remove some data of the HSS user profile stored in the MME or SGSN. The procedure shall be invoked by the HSS and it corresponds to the functional level operation Delete Subscriber Data (see 3GPP TS 23.401[2]).

It shall be used to remove:

- all or a subset of the EPS subscription data (APN Configuration Profile) for the subscriber from the MME or SGSN;
- the regional subscription;
- the subscribed charging characteristics;
- Session Transfer Number for SRVCC;
- trace data.

If the HSS knows that the UE has attached to the same combined MME/SGSN via both E-UTRAN and UTRAN/GERAN, i.e. the HSS has received the Update Location Request over both the S6a interface and S6d interface respectively with the same SGSN number, the HSS should invoke this procedure for a single time to remove some or all data of the HSS user profile stored in the combined MME/SGSN, i.e. not invoke this procedure for each of the MME and the SGSN registered respectively.

If the Node-Type-Indicator information has been previously received as cleared in the ULR-Flags and if the MME has not been registered for SMS during update location procedure for the MME, the HSS may skip any removal of the SMS related subscription data and consequently does not have to make use of the Delete Subscriber Data procedure to update the SMS subscription data in the MME.

This procedure is mapped to the commands Delete-Subscriber-Data-Request/Answer (DSR/DSA) in the Diameter application specified in chapter 7.

Table 5.2.2.2.1/1 specifies the involved information elements for the request.

Table 5.2.2.2.1/2 specifies the involved information elements for the answer.
Table 5.2.2.2.1/1: Delete Subscriber Data Request

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>DSR Flags (See 7.3.25)</td>
<td>DSR-Flags</td>
<td>M</td>
<td>This Information Element shall contain a bit mask. See 7.3.25 for the meaning of the bits.</td>
</tr>
<tr>
<td>Trace Reference (See 7.3.64)</td>
<td>Trace-Reference</td>
<td>C</td>
<td>This parameter shall contain the same value as used for the activation of the Trace Session. This element shall be present only if the "Trace Data Withdrawal" bit is set in the DSR-Flags.</td>
</tr>
<tr>
<td>Context Identifier (See 7.3.27)</td>
<td>Context-Identifier</td>
<td>C</td>
<td>This parameter shall identify the PDN subscription context or GPRS-PDP context that shall be deleted. This element shall be present only if the "PDN subscription contexts Withdrawal" bit or the "PDP context withdrawal" bit is set in the DSR-Flags. In the "PDN subscription contexts Withdrawal" case, the Context-Identifier shall not be associated with the default APN configuration. For the compatibility with the MAP protocol as defined in the 3GPP TS 29.002 [24], this parameter shall not have a value of zero.</td>
</tr>
<tr>
<td>TS Code List (See 7.3.100)</td>
<td>TS-Code</td>
<td>C</td>
<td>This parameter shall contain the teleservice codes that are to be deleted from the subscription. This element shall be present only if the "SMS Withdrawal" bit is set in the DSR-Flags and the SMS related teleservice codes are to be deleted.</td>
</tr>
<tr>
<td>SS Code List (See 7.3.87)</td>
<td>SS-Code</td>
<td>C</td>
<td>This parameter shall contain the supplementary service codes that are to be deleted from the subscription. This element shall be present only if the "SMS Withdrawal" bit is set or the "LCS Withdrawal" bit is set in the DSR-Flags.</td>
</tr>
</tbody>
</table>

Table 5.2.2.2.1/2: Delete Subscriber Data Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S6a/S6d errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable in this case: - User Unknown</td>
</tr>
<tr>
<td>DSA Flags (See 7.3.26)</td>
<td>DSA-Flags</td>
<td>C</td>
<td>This Information Element shall contain a bit mask. See 7.3.26 for the meaning of the bits.</td>
</tr>
</tbody>
</table>

5.2.2.2.2 Detailed behaviour of the MME and the SGSN

When receiving a Delete Subscriber Data request, the MME or SGSN shall check whether the IMSI is known.

If it is not known, a result code of DIAMETER_ERROR_USER_UNKNOWN shall be returned.

If it is known, but the Context-Identifier is associated with the default APN configuration, the MME shall not delete the PDN subscription context, and return an error with a Result-Code set to DIAMETER_UNABLE_TO_COMPLY.

Otherwise, the MME or SGSN shall delete the corresponding data according to the indication as sent in the request, and acknowledge the Delete Subscriber Data message by returning a Delete Subscriber Data Answer.
If an MME receives a Delete Subscriber Data Request with the "Complete APN Configuration Profile Withdrawal" bit set in the DSR-Flags AVP, it shall return an error with a Result-Code set to DIAMETER_UNABLE_TO_COMPLY.

If the deletion of the subscription data succeeds in the MME or SGSN, the Result-Code shall be set to DIAMETER_SUCCESS.

If the Regional Subscription is deleted from the subscription data, the SGSN shall check for its routing areas whether they are allowed or not. If the entire SGSN area is restricted, SGSN shall report it to the HSS by returning the "SGSN Area Restricted" indication within the DSA flags.

If the EPS Subscription Data is deleted from the subscription data, the MME or SGSN shall check whether all EPS Subscription Data for the subscriber is deleted or if only a subset of the stored EPS Subscription Data for the subscriber is deleted, the MME or SGSN may then deactivate the associated affected active EPS bearers.

If the Subscribed Charging Characteristics are deleted from the subscription data, the Gn/Gp-SGSN shall maintain the existing Subscribed Charging Characteristics throughout the lifetime of the existing MM and PDP contexts, see 3GPP TS 32.251 [33].

If the Subscribed Charging Characteristics are deleted from the subscription data, the MME or S4-SGSN shall maintain the existing Subscribed Charging Characteristics throughout the lifetime of the existing IP CAN bearer, see 3GPP TS 32.251 [33].

If the MME or SGSN cannot fulfil the received request for other reasons, e.g. due to a database error, it shall set the Result-Code to DIAMETER_UNABLE_TO_COMPLY. In this case, the MME or SGSN shall mark the subscription record "Subscriber to be restored in HSS".

If trace data are deleted from the subscription data, the MME or SGSN shall deactivate the Trace Session identified by the trace reference. For details, see 3GPP TS 32.422 [23].

5.2.2.2.3 Detailed behaviour of the HSS

The HSS shall make use of this procedure to remove deleted subscription data from the MME or SGSN.

The HSS shall make use of this procedure to remove deleted GPRS Subscription Data from the SGSN or combined MME/SGSN if the GPRS-Subscription-Data-Indicator information has been previously received as set in the ULR-Flags during update location procedure for the MME.

The HSS shall not set the "Complete APN Configuration Profile Withdrawal" bit in the DSR-Flags AVP when sending a Delete Subscriber Data Request to an MME, since the default APN shall always be present in an MME.

When receiving a Delete Subscriber Data Answer with "SGSN Area Restricted" the HSS shall set the SGSN area restricted flag as "SGSN area restricted".

5.2.3 Authentication Procedures

5.2.3.1 Authentication Information Retrieval

5.2.3.1.1 General

The Authentication Information Retrieval Procedure shall be used by the MME and by the SGSN to request Authentication Information from the HSS.

This procedure is mapped to the commands Authentication-Information-Request/Answer (AIR/AIA) in the Diameter application specified in chapter 7.

Table 5.2.3.1.1/1 specifies the involved information elements for the request.

Table 5.2.3.1.1/2 specifies the involved information elements for the answer.
Table 5.2.3.1.1/1: Authentication Information Request

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Requested E-UTRAN Authentication Info (See 7.3.11)</td>
<td>Requested-EUTRAN-Authentication-Info</td>
<td>C</td>
<td>This information element shall contain the information related to authentication requests for E-UTRAN.</td>
</tr>
<tr>
<td>Requested UTRAN/GERAN Authentication Info (See 7.3.12)</td>
<td>Requested-UTRAN-GERAN Authentication-Info</td>
<td>C</td>
<td>This information element shall contain the information related to authentication requests for UTRAN or GERAN.</td>
</tr>
<tr>
<td>Visited PLMN ID (See 7.3.9)</td>
<td>Visited-PLMN-ID</td>
<td>M</td>
<td>This IE shall contain the MCC and the MNC of the visited PLMN, see 3GPP TS 23.003 [3].</td>
</tr>
</tbody>
</table>

Table 5.2.3.1.1/2: Authentication Information Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. This IE shall contain the Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S6a/S6d errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable in this case: - User Unknown - Unknown EPS Subscription - Authentication Data Unavailable</td>
</tr>
<tr>
<td>Error-Diagnostic</td>
<td>Error-Diagnostic</td>
<td>O</td>
<td>If the Experimental Result indicated "Unknown EPS Subscription", Error Diagnostic may be present to indicate whether or not GPRS subscription data are subscribed (i.e. whether or not Network Access Mode stored in the HSS indicates that only circuit service is allowed).</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Authentication Info (See 7.3.17)</td>
<td>Authentication-Info</td>
<td>C</td>
<td>This IE shall contain the Authentication Vectors.</td>
</tr>
</tbody>
</table>

5.2.3.1.2 Detailed behaviour of the MME and the SGSN

The MME or SGSN shall make use of this procedure in order to retrieve the Authentication Vectors from the HSS.

If the MME or SGSN supports Emergency services for users in limited service state, and the user's IMSI is not available from the UE, or the user's IMSI is marked as unauthenticated, the MME or SGSN shall not make use of the Authentication Information Retrieval procedure.

If the request is triggered by a synchronization failure during E-UTRAN authentication, the MME or combined MME/SGSN shall include the Re-Synchronization Information in the Requested-EUTRAN-Authentication-Info AVP in the request.
If the request is triggered by a synchronization failure during UTRAN or GERAN authentication, the SGSN or combined MME/SGSN shall include the Re-Synchronization Information in the Requested-UTRAN-GERAN-Authentication-Info AVP in the request.

Re-Synchronization Information shall not be present in both the Requested-EUTRAN-Authentication-Info AVP and the Requested-UTRAN-GERAN-Authentication-Info AVP.

A stand alone MME shall include the Requested-EUTRAN-Authentication-Info AVP and shall not include the Requested-UTRAN-GERAN-Authentication-Info AVP in the request. The Immediate-Response-Preferred AVP should be present if an EUTRAN-Vector is needed for immediate use.

A stand alone SGSN shall not include the Requested-EUTRAN-Authentication-Info AVP and shall include the Requested-UTRAN-GERAN-Authentication-Info AVP in the request. The Immediate-Response-Preferred AVP should be present if an UTRAN/GERAN-Vector is needed for immediate use.

A combined MME/SGSN may include both the Requested-EUTRAN-Authentication-Info AVP and the Requested-UTRAN-GERAN-Authentication-Info AVP in the request. If both the Requested-EUTRAN-Authentication-Info AVP and the Requested-UTRAN-GERAN-Authentication-Info AVP are present in the request, the Immediate-Response-Preferred AVP shall be present if the requested authentication vectors are needed for immediate use. The content of the Immediate-Response-Preferred AVP shall correspond to the access type which the UE is currently to be authenticated. The Immediate-Response-Preferred AVP shall not be present in both the Requested-EUTRAN-Authentication-Info AVP and the Requested-UTRAN-GERAN-Authentication-Info AVP. The presence of an Immediate-Response-Preferred AVP shall indicate that a vector is needed for immediate use.

When EUTRAN-AVs and UTRAN-AVs or GERAN-AVs are requested, presence of Immediate-Response-Preferred AVP within the Requested-EUTRAN-Authentication-Info AVP shall indicate that EUTRAN-AVs are requested for immediate use in the MME/SGSN; presence of Immediate-Response-Preferred AVP within the Requested-UTRAN-GERAN-Authentication-Info AVP shall indicate that UTRAN-AVs or GERAN-AVs are requested for immediate use in the MME/SGSN. It may be used by the HSS to determine the number of vectors to be obtained from the AuC and the number of vectors downloaded to the MME or SGSN.

When receiving an Authentication Information response from the HSS, the MME or SGSN shall check the Result Code. If it indicates success and Authentication Information is present in the result, the MME or SGSN shall use the received vectors. For details see 3GPP TS 33.401 [5].

If the MME or SGSN supports Emergency services for users in limited service state, the MME or SGSN shall proceed even if the Authentication Information Retrieval procedure has failed. In this case, the MME or SGSN shall mark the user’s IMSI as unauthenticated.

Vectors with lower Item Number should be used before Vectors with higher Item Number are used in the MME or SGSN. For Vectors received within different requests those received by the earlier request should be used before those received by the later request.

5.2.3.1.3 Detailed behaviour of the HSS

When receiving an Authentication Information request the HSS shall check whether subscription data exists for the IMSI.

If the HSS determines that there is not any type of subscription for the IMSI (including EPS, GPRS and CS subscription data), a result code of DIAMETER_ERROR_USERUNKNOWN shall be returned.

If the subscriber has neither EPS subscription data nor GPRS subscription data, the HSS shall return a result code of DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION.

When sending DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION, an Error Diagnostic information may be added to indicate whether or not GPRS subscription data are subscribed (i.e. whether or not Network Access Mode stored in the HSS indicates that only circuit service is allowed).

The HSS shall then request the AuC to generate the corresponding requested Authentication Vectors (AVs). Subject to load considerations and/or other implementation specific considerations which may be based on the presence of an Immediate-Response-Preferred AVP, less AVs than the requested number of AVs may be generated.

If EUTRAN-Authentication-Info is requested, when receiving AVs from the AuC, the HSS shall generate the KASME before sending the response to the MME or combined MME-SGSN.
If the AuC is unable to calculate any corresponding AVs due to unallowed attachment for the UE, e.g. the UE is attaching via E-UTRAN with a SIM card equipped, the HSS shall return an error DIAMETER_AUTHORIZATION_REJECTED, the HSS shall not return any AV to the requesting node in the response. Otherwise, if no corresponding pre-computed AV is available, and the AuC is unable to calculate any corresponding AVs due to unknown failures, such as the internal database error, the result code shall be set to DIAMETER_AUTHENTICATION_DATA_UNAVAILABLE. The MME or the SGSN may request authentication vectors again.

For details see 3GPP TS 33.401 [5]. KASME generation is not performed before sending the response to the SGSN.

If the Requested-EUTRAN-Authentication-Info AVP is present in the request, the HSS shall download E-UTRAN authentication vectors to the MME. If the Requested-UTRAN-GERAN-Authentication-Info AVP is present in the request, the HSS shall download UTRAN or GERAN authentication vectors to the SGSN.

If the Immediate Response Preferred parameter has been received, the HSS may use it together with the number of requested vectors and the number of vectors stored in the HSS that are pre-computed to determine the number of vectors to be obtained from the AuC. The HSS may return less number of vectors than requested to the MME or SGSN. If both the Requested-EUTRAN-Authentication-Info AVP and the Requested-UTRAN-GERAN-Authentication-Info AVP are in the request, and one of them includes the Immediate Response Preferred parameter, the HSS may omit the vectors request that are not for immediate use. If both the Requested-EUTRAN-Authentication-Info AVP and the Requested-UTRAN-GERAN-Authentication-Info AVP are in the request, and both of them includes the Immediate Response Preferred parameter, the HSS may return E-UTRAN authentication vectors and UTRAN or GERAN authentication vectors. KASME is always computed for each E-UTRAN vector due to the PLMN-binding before sending the response to the MME independent of the presence of the Immediate Response Preferred parameter.

If the Re-Synchronization-Info AVP has been received, the HSS shall check the AUTS parameter before sending new authentication vectors to the MME or the SGSN. For details see 3GPP TS 33.102 [18]. If both the Requested-EUTRAN-Authentication-Info AVP and the Requested-UTRAN-GERAN-Authentication-Info AVP are in the request, and both of them include the Re-Synchronization-Info AVP, the HSS shall not check the AUTS parameter and return the result code of DIAMETER_UNABLE_TO_COMPLY. Any authentication vectors shall not be sent by the HSS to the requesting node in the response.

If more than one EPS or UTRAN or GERAN Vector is to be included within one Authentication-Info AVP, the Item-Number AVP shall be present within each Vector.

The HSS shall then return the result code DIAMETER_SUCCESS and the generated AVs (if any) to the MME or SGSN.

5.2.4 Fault Recovery Procedures

5.2.4.1 Reset

5.2.4.1.1 General

The Reset Procedure shall be used by the HSS, after a restart, to indicate to the MME and to the SGSN that a failure has occurred.

This procedure is mapped to the commands Reset-Request/Answer (RSR/RSA) in the Diameter application specified in chapter 7.

Table 5.2.4.1.1/1 specifies the involved information elements for the request.

Table 5.2.4.1.1/2 specifies the involved information elements for the answer.
Table 5.2.4.1.1/1: Reset Request

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Id List</td>
<td>User-Id</td>
<td>O</td>
<td>This IE shall contain a list of User-Ids where a User-Id comprises the leading digits of an IMSI (i.e. MCC, MNC, leading digits of MSIN) and it shall identify the set of subscribers whose IMSIs begin with the User-Id. The HSS may include this information element if the occurred failure is limited to subscribers identified by one or more User-Ids.</td>
</tr>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
</tbody>
</table>

Table 5.2.4.1.1/2: Reset Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Result</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S6a/S6d errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. There are no Experimental-Result codes applicable for this command.</td>
</tr>
</tbody>
</table>

5.2.4.1.2 Detailed behaviour of the MME and the SGSN

When receiving a Reset message the MME or SGSN or combined MME/SGSN shall mark all impacted subscriber records "Location Information Confirmed in HSS" as "Not Confirmed". The MME or SGSN or combined MME/SGSN shall make use of the HSS Identity received in the Origin-Host AVP (by comparing it with the value stored after successful ULA) and may make use of the received User-Id-List (if any) in order to determine which subscriber records are impacted.

At the next authenticated radio contact with the UE concerned, if the subscriber record "Location Information Confirmed in HSS" is marked as "Not Confirmed", the restoration procedure shall be triggered.

5.2.4.1.3 Detailed behaviour of the HSS

The HSS shall make use of this procedure in order to indicate to all relevant MMEs, SGSNs, and combined MME/SGSNs that the HSS has restarted and may have lost the current MME-Identity and SGSN-Identity of some of its subscribers who may be currently roaming in the MME area and/or SGSN area, and that the HSS, therefore, cannot send a Cancel Location messages or Insert Subscriber Data messages when needed.

The HSS optionally may include a list of Ids identifying a subset of subscribers served by the HSS, if the occurred failure is limited to those subscribers.

The HSS should invoke this procedure towards a combined MME/SGSN only for a single time even if some of the impacted subscribers are attached to the combined MME/SGSN via UTRAN/GERAN and some of the impacted subscribers are attached to the combined MME/SGSN via E-UTRAN.
5.2.5 Notification Procedures

5.2.5.1 Notification

5.2.5.1.1 General

The Notification Procedure shall be used between the MME and the HSS and between the SGSN and the HSS when an inter MME or SGSN location update does not occur but the HSS needs to be notified about:

- an update of terminal information;
- an update of the UE SRVCC capability.

The Notification Procedure shall also be used between the MME and the HSS and between the SGSN and the HSS if the HSS needs to be notified about:

- an assignment/change of a dynamically allocated PDN GW for an APN, if such a notification is needed taking into account the access restrictions;

The Notification Procedure shall be used between the MME and the HSS when an inter MME location update does not occur but the HSS needs to be notified about:

- the need to send a Cancel Location to the current SGSN.

The Notification Procedure shall be used between the MME and the HSS when the "SMS in MME" feature is applied and between the SGSN and the HSS when an earlier short message delivery failed and the HSS needs to be notified about:

- the UE is reachable or the UE has memory capacity available to receive one or more short messages.

The Notification Procedure shall be used between the MME and the HSS and between the SGSN and the HSS when the HSS has requested to be notified about:

- the UE is reachable.

The Notification Procedure shall be used between the MME and the HSS and between the SGSN and the HSS to notify the HSS about:

The Notification Procedure shall be used between the MME and the HSS to notify the HSS about:

- removal of MME registration for SMS.

This procedure is mapped to the commands Notify-Request/Answer (NOR/NOA) in the Diameter application specified in chapter 7.

Table 5.2.5.1.1/1 specifies the involved information elements for the request.
Table 5.2.5.1.1/2 specifies the involved information elements for the answer.
<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Terminal Information</td>
<td>Terminal-Information</td>
<td>C</td>
<td>This information element shall contain information about the user’s mobile equipment. When notifying the HSS about any change of Terminal Information, the MME or SGSN shall include the new Terminal Information in the request. Within this Information Element, only the IMEI and the Software-Version AVPs shall be used on the S6a/S6d interface.</td>
</tr>
<tr>
<td>PDN GW Identity</td>
<td>MIP6-Agent-Info</td>
<td>C</td>
<td>This IE shall contain the identity of the selected and dynamically allocated PDN GW for an APN. It shall be present if a new PDN-GW has been selected and the subscriber is allowed handover to non 3GPP access. When notifying the HSS about a newly selected PDN GW, the MME or SGSN shall include the PDN-GW-Identity in the request.</td>
</tr>
<tr>
<td>PGW PLMN ID</td>
<td>Visited-Network-Identifier</td>
<td>C</td>
<td>This IE identifies the PLMN in which the PDN GW is located. It shall be present when the PDN GW Identity is present and does not contain an FQDN.</td>
</tr>
<tr>
<td>Context Identifier</td>
<td>Context-Identifier</td>
<td>O</td>
<td>This parameter shall identify the APN Configuration with which the selected PDN GW shall be correlated. It may be present if it is available and the PDN-GW is present and is particular for one specific APN and not common to all the APNs. For the compatibility with the MAP protocol as defined in the 3GPP TS 29.002 [24], this parameter shall not have a value of zero.</td>
</tr>
<tr>
<td>APN</td>
<td>Service-Selection (See IETF RFC 5778 [20])</td>
<td>C</td>
<td>This IE shall contain the APN for the selected and dynamically allocated PDN GW. It shall be present if the selected PDN-GW is present and is particular for one specific APN and not common to all the APNs.</td>
</tr>
<tr>
<td>Alert Reason</td>
<td>Alert-Reason</td>
<td>C</td>
<td>This parameter shall indicate if the mobile subscriber is present or the MS has memory available. It shall be present when notifying the HSS about the presence of the UE or the UE has memory capacity available to receive one or more short messages.</td>
</tr>
<tr>
<td>UE SRVCC Capability</td>
<td>UE-SRVCC-Capability</td>
<td>C</td>
<td>This information element shall indicate if the UE supports or does not support the SRVCC capability. When notifying the HSS about a change of the UE SRVCC Capability, the MME or SGSN shall include the new UE SRVCC Capability in the request.</td>
</tr>
<tr>
<td>NOR Flags</td>
<td>NOR-Flags</td>
<td>C</td>
<td>This Information Element shall contain a bit mask. See 7.3.49 for the meaning of the bits. Absence of this information element shall be interpreted as all bits set to 0. When notifying the HSS about the need to send cancel location to the current SGSN, the MME shall set the "Single-Registration-Indication" flag in the NOR-Flags. When notifying the HSS about the "restricted" status of the current SGSN area, the SGSN shall set the "SGSN area restricted" flag in the NOR-Flags. When notifying the HSS about the reachability of the UE or the UE has memory capacity available to receive one or more short messages, the MME, if the "SMS in MME" feature is applied, or SGSN shall set the "Ready for SM" flag correspondingly in the NOR-Flags. When notifying the HSS that the UE is reachable, the MME or SGSN shall set the "UE Reachable" flag correspondingly in the NOR-Flags. When notifying the HSS about update of the Homogeneous Support of IMS Voice Over PS Sessions, the MME or the SGSN shall set the "Homogeneous Support of IMS Voice Over PS Sessions" flag and S6a/S6d-Indicator flag for a combined MME/SGSN correspondingly in the NOR-Flags. When notifying the HSS about removal of MME registration for SMS, the MME shall set the "Removal of MME Registration for SMS" flag.</td>
</tr>
</tbody>
</table>
Correspondingly in the NOR-Flags.

<table>
<thead>
<tr>
<th>Homogeneous Support of IMS Voice Over PS Sessions (See 7.3.107)</th>
<th>Homogeneous Support of IMS Voice Over PS Sessions</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Information Element shall be present if Homogeneous Support of IMS Voice Over PS Sessions is modified to one of the values "SUPPORTED" or "NOT_SUPPORTED".</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The value "SUPPORTED" indicates that there is support for "IMS Voice over PS Sessions" in all TAs or RAs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The value "NOT_SUPPORTED" indicates that there is not support for "IMS Voice over PS Sessions" in any of the TAs or RAs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2.5.1.1/2: Notify Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S6a/S6d errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable in this case: - User Unknown</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
</tbody>
</table>

5.2.5.1.2 Detailed behaviour of the MME and the SGSN

If the MME or SGSN supports Emergency services, the MME or SGSN shall not make use of the Notification procedure for emergency attached UEs.

The MME or SGSN shall include conditional AVPs in NOR according to the description given in table 5.2.5.1.1/1.

If the MME sends a Notify Request to inform the HSS that the UE has become reachable again, the MME shall clear the corresponding URRP-MME for the UE.

If the SGSN sends a Notify Request to inform the HSS that the UE has become reachable again, the SGSN shall clear the corresponding URRP-SGSN for the UE.

If the MME sends a Notify Request to inform the HSS about the presence of the UE to receive one or more short messages, the MME shall clear the corresponding MNRF for the UE.

If the SGSN sends a Notify Request to inform the HSS about the presence of the UE to receive one or more short messages, the SGSN shall clear the corresponding MNRG for the UE.

If the MME or the SGSN determines that it needs to update the Homogeneous Support of IMS Voice Over PS Sessions in the HSS, the MME or the SGSN shall send a Notify Request with the updated Homogeneous Support of IMS Voice Over PS Sessions to the HSS.

If the MME needs to indicate to the HSS that it is no longer registered for SMS in the HSS, the MME shall send a Notify Request with "Removal of MME Registration for SMS" flag set in the NOR-Flags AVP.

When receiving a Notify response from the HSS, if the result code indicates DIAMETER_ERROR_UNKNOWN_SERVING_NODE, the MME or SGSN shall consider the Notification procedure as failed, and it shall mark the subscriber record as "Subscriber to be restored in HSS".

5.2.5.1.3 Detailed behaviour of the HSS

When receiving a Notify request the HSS shall check whether the IMSI is known.
If it is not known, a result code of DIAMETER_ERROR_USER_UNKNOWN shall be returned.

If the IMSI is known, and the source MME or SGSN originating the Notify message is not currently registered in HSS for that UE, a result code of DIAMETER_ERROR_UNKNOWN_SERVING_NODE shall be returned.

If the IMSI is known, and the source MME or SGSN is currently registered in HSS, the HSS shall set the result code to DIAMETER_SUCCESS, unless otherwise stated, and:

- store the new terminal information if present in the request;
- store the new UE SRVCC capability if present in the request;
- store the new PDN GW and PLMN ID for an APN if present in the request and the APN is present in the subscription and if PDN GW is dynamically allocated; otherwise the HSS shall not store the new PDN GW data and shall set the result code to DIAMETER_ERROR_UNABLE_TO_COMPLY;
- store the new PDN GW and PLMN ID, and the APN itself, if both are present in the request, and the APN is not present in the subscription but a wildcard APN is present in the subscription;
- mark the location area as "restricted" if so indicated in the request;
- send Cancel Location to the current SGSN if so indicated in the request;
- if the UE has become reachable again, and NOR is received on S6a from an MME or on S6d from an SGSN, the HSS shall respectively clear the URRF-MME or the URPF-SGSN parameter for the UE and send an indication of UE reachability from MME or SGSN to the Service Related Entities if there is any;
- when NOR is received on S6d from an SGSN (with the Alert Reason present), the HSS shall reset the MNRG flag and send a MAP-Alert-Service-Centre message, i.e. the behaviour in the HSS should be the same as when a MAP-Ready for SM is received from an SGSN;
- when NOR is received on S6a from an MME (with the Alert Reason present), the HSS shall reset the MNRF flag and send a MAP-Alert-Service-Centre message, i.e. the behaviour in the HSS should be the same as when a MAP-Ready for SM is received from an SGSN;
- when NOR is received on S6a from an MME or on S6d from an SGSN to update the Homogeneous Support of IMS Voice Over PS Sessions, the HSS shall store the updated Homogeneous Support of IMS Voice Over PS Sessions and may use this information in the future in order to skip the T-ADS data retrieval, as described in clause 5.2.2.1 (IDR/IDA commands). If the "Homogeneous Support of IMS Voice Over PS Sessions" bit is set in the NOR-Flags AVP received but without Homogeneous-Support-of-IMS-Voice-Over-PS-Sessions AVP present in the NOR message, the HSS shall take the Homogeneous Support of IMS Voice Over PS Sessions as unknown to the serving node.
- when NOR is received on S6a from an MME for removal of MME registration for SMS, the HSS shall remove the MME registration for SMS and the "MME number for SMS" as the corresponding MSC number to be used for MT SMS.

and then send the response to the MME or SGSN.

5A MME – CSS (S7a) and SGSN – CSS (S7d)

5A.1 Introduction

The S7a interface enables the transfer of subscriber related CSG data in the VPLMN between the MME and the CSS as described in 3GPP TS 23.401 [2].

The S7d interface enables the transfer of subscriber related CSG data in the VPLMN between the SGSN and the CSS as described in 3GPP TS 23.060 [12].
5A.2 Mobility Services

5A.2.1 Location Management Procedures

5A.2.1.1 Update VCSG Location

5A.2.1.1.1 General

The Update VCSG Location Procedure shall be used between the MME and the CSS or between the SGSN and the CSS to update location information in the CSS or retrieve the CSG subscription data of the UE from the CSS. The procedure allows:

- to inform the CSS about the identity of the MME or SGSN currently serving the user,
- to update MME or SGSN with user CSG subscription data received from the CSS.

This procedure is mapped to the commands Update-VCSG-Location-Request/Answer (UVR/UVA) in the Diameter application specified in chapter 7.

Table 5A.2.1.1.1/1 specifies the involved information elements for the request.

Table 5A.2.1.1.1/2 specifies the involved information elements for the answer.

Table 5A.2.1.1.1/1: Update VCSG Location Request

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>MSISDN</td>
<td>MSISDN</td>
<td>C</td>
<td>This information element shall contain the user MSISDN, formatted according to 3GPP TS 29.329 [25]. It shall be present if available.</td>
</tr>
<tr>
<td>UVR Flags (See 7.3.153)</td>
<td>UVR-Flags</td>
<td>M</td>
<td>This Information Element contains a bit mask. See 7.3.153 for the meaning of the bits.</td>
</tr>
<tr>
<td>SGSN number (See 7.3.102)</td>
<td>SGSN-Number</td>
<td>C</td>
<td>This Information Element contains the ISDN number of the SGSN, see 3GPP TS 23.003 [3]. It shall be present when the message is sent on the S7d interface. It may be present when the message on the S7a interface and the requesting node is a combined MME/SGSN.</td>
</tr>
</tbody>
</table>
Table 5A.2.1.1.2: Update VCSG Location Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S7a/S7d errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable: - User Unknown</td>
</tr>
<tr>
<td>VPLMN CSG Subscription Data (See 7.3.155)</td>
<td>VPLMN-CSG-Subscription-Data</td>
<td>C</td>
<td>This Information Element shall contain the list of CSG IDs and the associated expiry dates stored in the CSS. It shall be present if success is reported, unless an explicit "skip subscriber data" indication was present in the request or the Temporary Empty VPLMN CSG Subscription Data flag is set.</td>
</tr>
<tr>
<td>UVA Flags (See 7.3.154)</td>
<td>UVA-Flags</td>
<td>C</td>
<td>This Information Element contains a bit mask. See 7.3.X for the meaning of the bits.</td>
</tr>
</tbody>
</table>

5A.2.1.1.2 Detailed behaviour of the MME and the SGSN

The MME or SGSN shall make use of this procedure to register the UE in the CSS and to retrieve the "CSG subscription data from CSS" when:

- the VPLMN supports Autonomous CSG Roaming
- and the HPLMN has enabled Autonomous CSG Roaming in the VPLMN
- and the UE has requested an initial attach or a tracking area procedure or a routing area procedure to a CSG cell
- and the MME or SGSN have not yet registered the UE in the CSS.

If the Autonomous CSG Roaming in the VPLMN is not supported or is not allowed by the HPLMN of the subscriber, the MME or SGSN shall not make use of the Update CSG Location procedure.

For UEs receiving emergency services, in which the UE was not successfully authenticated, the MME or SGSN shall not make use of the Update VCSG Location procedure.

A combined MME/SGSN shall set the "Skip Subscriber Data" flag in the UVR-Flags if the "CSG subscription data from CSS" are already available due to a previously VCSG Location updating.

A combined MME/SGSN that has chosen the option to include the SGSN Number within an Update VCSG Request sent over S7a shall be prepared to receive a single CSG subscription data update message from the CSS when the CSG subscription data is modified in the CSS.

When receiving an Update VCSG Location Answer from the CSS, the MME or SGSN shall check the result code. If it indicates success the MME or SGSN shall delete all the stored "CSG subscription data from CSS" (if any) and then store the received "CSG subscription data from the CSS" (if any), and it shall store the CSS identity as received in the Origin-Host AVP.

If the same CSG Id exists in both "CSG subscription data from CSS" and "CSG subscription data from HSS", the "CSG subscription data from HSS" shall take precedence over the "CSG subscription data from CSS" in further use.

If an error response is received from the CSS, the MME or SGSN shall not reject the UE and shall end the procedure when the UE is attaching to a normal cell. If the UE is attaching to a CSG cell, in this case the MME or SGSN shall check if there is such CSG Id from the HSS. If there is no such CSG Id, the MME or SGSN shall reject the UE.
5A.2.1.1.3 Detailed behaviour of the CSS

When receiving an Update VCSG Location request the CSS shall check whether the user is known.

If the user is not known, and if the Update VCSG Location Request is received over the S7a/S7d interface, the CSS may:

- store the MME or SGSN identity received within the Origin-Host AVP, and include the UVA-Flags AVP with "Temporary Empty VPLMN CSG Subscription Data" flag set, and return a Result Code of DIAMETER_SUCCESS, or
- return a Result Code of DIAMETER_ERROR_USER_UNKNOWN.

NOTE: A mechanism is needed in the CSS to associate the CSG subscription data of the user with the received IMSI.

If the Update VCSG Location Request is received over the S7a/S7d interface, the CSS shall replace the stored MME or SGSN identity with the received value (the identity is received within the Origin-Host AVP).

If no result code indicating an error is sent to the MME or SGSN, the CSS shall include the VPLMN CSG subscription data in the Update VCSG Location Answer unless an explicit "skip subscriber data" indication has been received in the request, and shall return a Result Code of DIAMETER_SUCCESS.

5A.2.1.2 Cancel VCSG Location

5A.2.1.2.1 General

The Cancel VCSG Location Procedure shall be used between the CSS and the MME and between the CSS and the SGSN. The procedure shall be invoked by the CSS and is used:

- to inform the MME or SGSN about the subscriber’s VCSG subscription withdrawal by the CSS operator and the removal of their registration in the CSS.

This procedure is mapped to the commands Cancel-VCSG-Location-Request/Answer (CVR/CVA) in the Diameter application specified in chapter 7.

Table 5A.2.1.2.1/1 specifies the involved information elements for the request.
Table 5A.2.1.2.1/2 specifies the involved information elements for the answer.

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Cancellation Type (See 7.3.24)</td>
<td>Cancellation-Type</td>
<td>M</td>
<td>Defined values that can be used are: - Subscription Withdrawal, applied to the VPLMN CSG subscription.</td>
</tr>
</tbody>
</table>
Table 5A.2.1.2.1/2: Cancel VCSG Location Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>The result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol.</td>
</tr>
</tbody>
</table>

5A.2.1.2.2 Detailed behaviour of the MME and the SGSN

When receiving a Cancel VCSG Location request the MME or SGSN shall check whether the IMSI is known.

If it is not known, a result code of DIAMETER_SUCCESS is returned.

If it is known, the MME or SGSN shall check if the Cancellation Type is Subscription Withdrawal. In this case, the MME or SGSN shall remove the information of their registration in the CSS and the stored VPLMN CSG subscription if any. Also in this case a result code of DIAMETER_SUCCESS is returned.

When a UE is served by a single combined MME/SGSN for both E-UTRAN and non-E-UTRAN access, the combined MME/SGSN shall check if the Cancellation Type is Subscription Withdrawal. In this case, the Cancel VCSG Location request is processed both in the MME part and in the SGSN part of the combined node.

5A.2.1.2.3 Detailed behaviour of the CSS

The CSS shall make use of this procedure when the user’s VPLMN CSG subscription is withdrawn by the CSS operator and shall include a cancellation type of “Subscription Withdrawal.

5A.2.2 Subscriber Data Handling Procedures

5A.2.2.1 Insert VCSG Subscriber Data

5A.2.2.1.1 General

The Insert VCSG Subscriber Data Procedure shall be used between the CSS and the MME and between the CSS and the SGSN for updating CSG subscription data in the MME or SGSN in the following situations:

- due to administrative changes of the user data in the CSS and the user is now located in an MME or SGSN, i.e. if the user was given a CSG subscription and the CSG subscription has changed;

If the CSS knows that the UE has attached to the same combined MME/SGSN via both the E-UTRAN and UTRAN/GERAN, i.e. the CSS has received the Update VCSG Location Request over both the S7a interface and S7d interface respectively with the same SGSN number, the CSS should invoke this procedure for a single time to update CSG subscription data in the combined MME/SGSN, i.e. the CSS should not invoke this procedure for each of the MME and the SGSN registered respectively.

This procedure is mapped to the commands Insert-Subscriber Data-Request/Answer (IDR/IDA) in the Diameter application specified in clause 7.

Table 5A.2.2.1.1/1 specifies the involved information elements for the request.

Table 5A.2.2.1.1/2 specifies the involved information elements for the answer.
5A.2.2.1.1 Detailed behaviour of the MME and the SGSN

When receiving an Insert VCSG Subscriber Data request, the MME or SGSN shall check whether the IMSI is known.

If it is not known, a result code of DIAMETER_ERROR_USER_UNKNOWN shall be returned.

If the request does not contain any CSG-Subscription-Data AVP, Experimental-Result shall be set to DIAMETER_ERROR_SUBS_DATA_ABSENT.

If the request contains at least one CSG-Subscription-Data AVPs, the MME or SGSN shall delete all the stored "CSG subscription data from CSS" (if any), and then store the received "CSG subscription data from CSS".

If the MME or SGSN cannot fulfil the received request, e.g. due to a database error, it shall set the Result-Code to DIAMETER_UNABLE_TO_COMPLY.

If the same CSG Id exists in both "CSG subscription data from CSS" and "CSG subscription data from HSS", the "CSG subscription data from HSS" shall take precedence over the "CSG subscription data from CSS" in further use.

5A.2.2.1.3 Detailed behaviour of CSS

The CSS shall make use of this procedure to delete the "CSG subscription data from CSS" stored in the MME or SGSN and replace them with the CSG subscription data sent.

If the CSS receives a Insert VCSG Subscriber Data answer with the Result Code DIAMETER_ERROR_USER_UNKNOWN, the CSS shall clear the stored MME or SGSN identity.

Table 5A.2.2.1.1/1: Insert VCSG Subscriber Data Request

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>VPLMN CSG Subscription Data (See 7.3.2)</td>
<td>VPLMN-CSG-Subscription-Data</td>
<td>M</td>
<td>This Information Element shall contain the list of CSG Ids and the associated expiry dates stored in the VPLMN CSS.</td>
</tr>
</tbody>
</table>

Table 5A.2.2.1.1/2: Insert VCSG Subscriber Data Answer

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. Result-Code AVP shall be used to indicate success / errors defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S7a/S7d errors. This is a grouped AVP which shall contain the 3GPP Vendor Id in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable in this case: - User Unknown.</td>
</tr>
</tbody>
</table>
5A.2.2.2 Delete VCSG Subscriber Data

5A.2.2.2.1 General

This procedure shall be used between the CSS and the MME or between the CSS and the SGSN, to remove all the "CSG subscription data from CSS" stored in the MME or SGSN. The procedure shall be invoked by the CSS.

If the CSS knows that the UE has attached to the same combined MME/SGSN via both E-UTRAN and UTRAN/GERAN, i.e. the CSS has received the Update VCSG Location Request over both the S7a interface and S7d interface respectively with the same SGSN number, the CSS should invoke this procedure for a single time to remove all the "CSG subscription data from CSS" stored in the combined MME/SGSN, i.e. not invoke this procedure for each of the MME and the SGSN registered respectively.

This procedure is mapped to the commands Delete-Subscriber-Data-Request/Answer (DSR/DSA) in the S7a/S7d Diameter application specified in clause 7.

Table 5A.2.2.2.1/1 specifies the involved information elements for the request.

Table 5A.2.2.2.1/2 specifies the involved information elements for the answer.

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>M</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>DSR Flags (See 7.3.25)</td>
<td>DSR-Flags</td>
<td>M</td>
<td>This Information Element shall contain a bit mask. See 7.3.25 for the meaning of the bits.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S7a/S7d errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable in this case: - User Unknown</td>
</tr>
</tbody>
</table>

5A.2.2.2.2 Detailed behaviour of the MME and the SGSN

When receiving a Delete VCSG Subscriber Data request, the MME or SGSN shall check whether the IMSI is known.

If it is not known, a result code of DIAMETER_ERROR_USER_UNKNOWN shall be returned.

If it is known, the MME or SGSN shall delete all the stored "CSG subscription data from CSS".

If the deletion of the subscription data succeeds in the MME or SGSN, the Result-Code shall be set to DIAMETER_SUCCESS.
If the MME or SGSN cannot fulfil the received request for other reasons, e.g. due to a database error, it shall set the Result-Code to DIAMETER_UNABLE_TO_COMPLY.

5A.2.2.2.3 Detailed behaviour of the CSS

The CSS shall make use of this procedure to remove all the CSG subscription data associated to CSS from the MME or SGSN.

NOTE: When a Delete VCSG Subscriber Data procedure occurs, the MME or SGSN remains registered in the CSS

If the CSS receives a Delete VCSG Subscriber Data answer with the Result Code DIAMETER_ERROR_USER_UNKNOWN from the MME or SGSN, the CSS shall clear the stored MME or SGSN identity.

5A.2.3 Fault Recovery Procedures

5A.2.3.1 VCSG Reset

5A.2.3.1.1 General

The VCSG Reset Procedure shall be used by the CSS, after a restart, to indicate to the MME and to the SGSN that a failure has occurred.

This procedure is mapped to the commands Reset-Request/Answer (RSR/RSA) in the S7a/S7d Diameter application specified in chapter 7.

Table 5A.2.3.1.1/1 specifies the involved information elements for the request.
Table 5A.2.3.1.1/2 specifies the involved information elements for the answer.

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S7a/S7d errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. There are no Experimental-Result codes applicable for this command.</td>
</tr>
<tr>
<td>Supported Features (See 3GPP TS 29.229 [9])</td>
<td>Supported-Features</td>
<td>O</td>
<td>If present, this information element shall contain the list of features supported by the origin host.</td>
</tr>
</tbody>
</table>

5A.2.3.1.2 Detailed behaviour of the MME and the SGSN

When receiving a VCSG Reset message, the MME or SGSN or combined MME/SGSN, for all roaming users for which they have a registration in CSS, shall mark "Location Information Confirmed in CSS" record as "Not Confirmed". The
MME or SGSN or combined MME/SGSN shall make use of the CSS Identity received in the Origin-Host AVP (by comparing it with the value stored after successful ULA) in order to determine which user records are impacted.

When, as described in 3GPP TS 23.007 [43], an event requiring the MME or SGSN to check the "CSG subscription data from CSS" occurs, and if the user record "Location Information Confirmed in CSS" is marked as "Not Confirmed", the restoration procedure shall be triggered.

5A.2.3.1.3 Detailed behaviour of the CSS

The CSS shall make use of this procedure in order to indicate to all relevant MMEs, SGSNs, and combined MME/SGSNs that the CSS has restarted and may have lost the current MME-Identity and SGSN-Identity of some of its users who may be currently roaming in the MME area and/or SGSN area, and to which the CSS, therefore, cannot send e.g. Insert VCSG Subscriber Data messages when needed.

The CSS should invoke this procedure towards a combined MME/SGSN only for a single time even if some of the impacted subscribers are attached to the combined MME/SGSN via UTRAN/GERAN and some of the impacted subscribers are attached to the combined MME/SGSN via E-UTRAN.
6 MME – EIR (S13) and SGSN – EIR (S13')

6.1 Introduction

The S13 interface shall enable the ME Identity check procedure between the MME and the EIR as described in the 3GPP TS 23.401 [2].

The S13' interface shall enable the ME Identity check procedure between the SGSN and the EIR as described in the 3GPP TS 23.060 [12].

6.2 ME Identity Check Procedures

6.2.1 ME Identity Check

6.2.1.1 General

This Mobile Equipment Identity Check Procedure shall be used between the MME and the EIR and between the SGSN and the EIR to check the Mobile Equipment's identity status (e.g. to check that it has not been stolen, or, to verify that it does not have faults).

This procedure is mapped to the commands ME-Identity-Check-Request/Answer (ECR/ECA) in the Diameter application specified in chapter 6.

Table 6.2.1.1/1 specifies the involved information elements for the request.

Table 6.2.1.1/2 specifies the involved information elements for the answer.

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Information (See 7.3.3)</td>
<td>Terminal-Information</td>
<td>M</td>
<td>This information element shall contain the information about the used mobile equipment i.e. the IMEI.</td>
</tr>
<tr>
<td>IMSI</td>
<td>User-Name (See IETF RFC 3588 [4])</td>
<td>O</td>
<td>This information element shall contain the user IMSI, formatted according to 3GPP TS 23.003 [3], clause 2.2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information element name</th>
<th>Mapping to Diameter AVP</th>
<th>Cat.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result (See 7.4)</td>
<td>Result-Code / Experimental-Result</td>
<td>M</td>
<td>This IE shall contain the result of the operation. The Result-Code AVP shall be used to indicate success / errors as defined in the Diameter Base Protocol. The Experimental-Result AVP shall be used for S13/S13' errors. This is a grouped AVP which shall contain the 3GPP Vendor ID in the Vendor-Id AVP, and the error code in the Experimental-Result-Code AVP. The following errors are applicable in this case: - Unknown equipment</td>
</tr>
<tr>
<td>Equipment Status (See 7.3.51)</td>
<td>Equipment-Status</td>
<td>C</td>
<td>This information element shall contain the status of the requested mobile equipment as defined in 3GPP TS 22.016 [13]. It shall be present if the result of the ME Identity Check is DIAMETER_SUCCESS.</td>
</tr>
</tbody>
</table>
6.2.1.2 Detailed behaviour of the MME and the SGSN

The MME or the SGSN shall make use of this procedure to check the ME identity, if the MME or the SGSN is configured to check the IMEI with the EIR.

IMSI may be sent together with Terminal Information to the EIR for operator-determined purposes.

When receiving the ME Identity Check answer from the EIR, the MME or the SGSN shall check the result code and the equipment status. Dependent upon the result, the MME or the SGSN will decide its subsequent actions (e.g. sending an Attach Reject if the EIR indicates that the Mobile Equipment is unknown or blacklisted).

6.2.1.3 Detailed behaviour of the EIR

When receiving an ME Identity Check request, the EIR shall check whether the mobile equipment is known. The EIR shall identify the mobile equipment based on the first 14 digits of the IMEI AVP.

If it is not known, a result code of DIAMETER_ERROR_EQUIPMENT_UNKNOWN is returned.

If it is known, the EIR shall return DIAMETER_SUCCESS with the equipment status.
7 Protocol Specification and Implementation

7.1 Introduction

7.1.1 Use of Diameter base protocol

The Diameter Base Protocol as specified in IETF RFC 3588 [4] shall apply except as modified by the defined support of the methods and the defined support of the commands and AVPs, result and error codes as specified in this specification. Unless otherwise specified, the procedures (including error handling and unrecognised information handling) shall be used unmodified.

7.1.2 Securing Diameter Messages

For secure transport of Diameter messages, see 3GPP TS 33.210 [16].

7.1.3 Accounting functionality

Accounting functionality (Accounting Session State Machine, related command codes and AVPs) shall not be used on the S6a, S6d, S13 and S13’ interfaces.

7.1.4 Use of sessions

Between the MME and the HSS and between the SGSN and the HSS and between the MME and the EIR, Diameter sessions shall be implicitly terminated. An implicitly terminated session is one for which the server does not maintain state information. The client shall not send any re-authorization or session termination requests to the server.

The Diameter base protocol includes the Auth-Session-State AVP as the mechanism for the implementation of implicitly terminated sessions.

The client (server) shall include in its requests (responses) the Auth-Session-State AVP set to the value NO_STATE_MAINTAINED (1), as described in IETF RFC 3588 [4]. As a consequence, the server shall not maintain any state information about this session and the client shall not send any session termination request. Neither the Authorization-Lifetime AVP nor the Session-Timeout AVP shall be present in requests or responses.

7.1.5 Transport protocol

Diameter messages over the S6a, S6d, S13 and S13’ interfaces shall make use of SCTP IETF RFC 4960 [14].

7.1.6 Routing considerations

This clause specifies the use of the Diameter routing AVPs Destination-Realm and Destination-Host.

If an MME or SGSN knows the address/name of the HSS for a certain user, and the associated home network domain name, both the Destination-Realm and Destination-Host AVPs shall be present in the request.

If an MME or SGSN knows only the home network domain name for a certain user, the Destination-Realm AVP shall be present and the command shall be routed to the next Diameter node.

If an MME or SGSN knows only the identity of the user, the home network domain name shall be derived from the user's IMSI (MNC and MCC values) to construct the EPC Home Network Realm/Domain, as indicated in 3GPP TS 23.003 [3], clause 19.2, and use it as Destination-Realm.

Consequently, the Destination-Host AVP is declared as optional in the ABNF for all requests initiated by an MME or SGSN.

The address/name of the EIR shall be locally configured in the MME.

Requests initiated by the HSS towards an MME or SGSN shall include both Destination-Host and Destination-Realm AVPs.
The HSS obtains the Destination-Host AVP to use in requests towards an MME or SGSN, from the Origin-Host AVP received in previous requests from the MME or SGSN.

The HSS obtains the Destination-Realm AVP to use in requests towards an MME or SGSN, from the Origin-Realm AVP received in previous requests from the MME or SGSN.

Destination-Realm AVP is declared as mandatory in the ABNF for all requests.

If the Vendor-Specific-Application-ID AVP is received in any of the commands, it may be ignored by the receiving node, and it shall not be used for routing purposes.

7.1.7 Advertising Application Support

The HSS, MME, SGSN and EIR shall advertise support of the Diameter S6a/S6d and/or S13/S13' Application by including the value of the application identifier in the Auth-Application-Id AVP within the Vendor-Specific-Application-Id grouped AVP of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands.

The vendor identifier value of 3GPP (10415) shall be included in the Supported-Vendor-Id AVP of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands, and in the Vendor-Id AVP within the Vendor-Specific-Application-Id grouped AVP of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands.

The Vendor-Id AVP included in Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands that is not included in the Vendor-Specific-Application-Id AVPs as described above shall indicate the manufacturer of the Diameter node as per RFC 3588 [4].

7.1.8 Diameter Application Identifier

This clause specifies three Diameter applications: The S6a/S6d interface application, the S13/S13' interface application, and the S7a/S7d interface application.

The S6a/S6d interface application allows a Diameter server and a Diameter client:

- to exchange location information;
- to authorize a user to access the EPS;
- to exchange authentication information;
- to download and handle changes in the subscriber data stored in the server.

The S6a/S6d interface protocol shall be defined as an IETF vendor specific Diameter application, where the vendor is 3GPP. The vendor identifier assigned by IANA to 3GPP (http://www.iana.org/assignments/enterprise-numbers) is 10415.

The Diameter application identifier assigned to the S6a/S6d interface application is 16777251 (allocated by IANA).

The S13/S13' interface application allows a Diameter server and a Diameter client:

- to check the validity of the ME Identity.

The S13/S13' interface protocol shall be defined as an IETF vendor specific Diameter application, where the vendor is 3GPP. The vendor identifier assigned by IANA to 3GPP (http://www.iana.org/assignments/enterprise-numbers) is 10415.

The Diameter application identifier assigned to the S13/S13' interface application is 16777252 (allocated by IANA).

The S7a/S7d interface application allows a Diameter server and a Diameter client:

- to authorize a user to access CSGs identified in the CSS while roaming;
- to download and handle changes in CSG subscriber data stored in the CSS.

The S7a/S7d interface protocol shall be defined as an IETF vendor specific Diameter application, where the vendor is 3GPP. The vendor identifier assigned by IANA to 3GPP (http://www.iana.org/assignments/enterprise-numbers) is 10415.
The Diameter application identifier assigned to the S7a/S7d interface application is 16777308 (allocated by IANA).

7.1.9 Use of the Supported-Features AVP

When new functionality is introduced on the S6a/S6d interfaces, it should be defined as optional. If backwards incompatible changes can not be avoided, the new functionality shall be introduced as a new feature and support advertised with the Supported-Features AVP. The usage of the Supported-Features AVP on the S6a/S6d interfaces is consistent with the procedures for the dynamic discovery of supported features as defined in clause 7.2 of 3GPP TS 29.229 [9].

When extending the application by adding new AVPs for a feature, the new AVPs shall have the M bit cleared and the AVP shall not be defined mandatory in the command ABNF.

As defined in 3GPP TS 29.229 [9], the Supported-Features AVP is of type grouped and contains the Vendor-Id, Feature-List-ID and Feature-List AVPs. On the all reference points as specified in this specificiaion, the Supported-Features AVP is used to identify features that have been defined by 3GPP and hence, for features defined in this document, the Vendor-Id AVP shall contain the vendor ID of 3GPP (10415). If there are multiple feature lists defined for the reference point, the Feature-List-ID AVP shall differentiate those lists from one another.

The Table 7.3.10/1 defines the features applicable to the S6a/S6d interfaces for the feature list with a Feature-List-ID of 1. The Table 7.3.10/2 defines the features applicable to the S6a/S6d interfaces for the feature list with a Feature-List-ID of 2.

7.2 Commands

7.2.1 Introduction

This section defines the Command code values and related ABNF for each command described in this specification.

7.2.2 Command-Code values

This section defines Command-Code values for the S6a/S6d interface application and S13/S13' interface application as allocated by IANA in the IETF RFC 5516 [32].

Every command is defined by means of the ABNF syntax IETF RFC 2234 [7], according to the rules in IETF RFC 3588 [4]. In the case, the definition and use of an AVP is not specified in this document, the guidelines in IETF RFC 3588 [4] shall apply.

NOTE: For this release, the Vendor-Specific-Application-ID is included as an optional AVP in all commands in order to ensure interoperability with diameter agents following a strict implementation of IETF RFC 3588 [4], by which messages not including this AVP will be rejected. IETF RFC 3588 [4] indicates that the AVP shall be present in all proxiable commands, such as those specified here, despite that the contents of this AVP are redundant since the Application ID is already present in the command header. This AVP may be removed in subsequent revisions of this specification, once the diameter base protocol is updated accordingly.

The following Command Codes are defined in this specification:
Table 7.2.2/1: Command-Code values for S6a/S6d

<table>
<thead>
<tr>
<th>Command-Name</th>
<th>Abbreviation</th>
<th>Code</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update-Location-Request</td>
<td>ULR</td>
<td>316</td>
<td>7.2.3</td>
</tr>
<tr>
<td>Update-Location-Answer</td>
<td>ULA</td>
<td>316</td>
<td>7.2.4</td>
</tr>
<tr>
<td>Cancel-Location-Request</td>
<td>CLR</td>
<td>317</td>
<td>7.2.7</td>
</tr>
<tr>
<td>Cancel-Location-Answer</td>
<td>CLA</td>
<td>317</td>
<td>7.2.8</td>
</tr>
<tr>
<td>Authentication-Information-Request</td>
<td>AIA</td>
<td>318</td>
<td>7.2.5</td>
</tr>
<tr>
<td>Authentication-Information-Answer</td>
<td>AIA</td>
<td>318</td>
<td>7.2.6</td>
</tr>
<tr>
<td>Insert-Subscriber-Data-Request</td>
<td>IDR</td>
<td>319</td>
<td>7.2.9</td>
</tr>
<tr>
<td>Insert-Subscriber-Data-Answer</td>
<td>IDA</td>
<td>319</td>
<td>7.2.10</td>
</tr>
<tr>
<td>Delete-Subscriber-Data-Request</td>
<td>DSR</td>
<td>320</td>
<td>7.2.11</td>
</tr>
<tr>
<td>Delete-Subscriber-Data-Answer</td>
<td>DSA</td>
<td>320</td>
<td>7.2.12</td>
</tr>
<tr>
<td>Purge-UE-Request</td>
<td>PUR</td>
<td>321</td>
<td>7.2.13</td>
</tr>
<tr>
<td>Purge-UE-Answer</td>
<td>PUA</td>
<td>321</td>
<td>7.2.14</td>
</tr>
<tr>
<td>Reset-Request</td>
<td>RSR</td>
<td>322</td>
<td>7.2.15</td>
</tr>
<tr>
<td>Reset-Answer</td>
<td>RSA</td>
<td>322</td>
<td>7.2.16</td>
</tr>
<tr>
<td>Notify-Request</td>
<td>NOR</td>
<td>323</td>
<td>7.2.17</td>
</tr>
<tr>
<td>Notify-Answer</td>
<td>NOA</td>
<td>323</td>
<td>7.2.18</td>
</tr>
</tbody>
</table>

For these commands, the Application-ID field shall be set to 16777251 (application identifier of the S6a/S6d interface application, allocated by IANA).

Table 7.2.2/2: Command-Code values for S13/S13'

<table>
<thead>
<tr>
<th>Command-Name</th>
<th>Abbreviation</th>
<th>Code</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-Identity-Check-Request</td>
<td>ECR</td>
<td>324</td>
<td>7.2.19</td>
</tr>
<tr>
<td>ME-Identity-Check-Answer</td>
<td>ECA</td>
<td>324</td>
<td>7.2.20</td>
</tr>
</tbody>
</table>

For these commands, the Application-ID field shall be set to 16777252 (application identifier of the S13/S13' interface application, allocated by IANA).

Table 7.2.2/3: Command-Code values for S7a/S7d

<table>
<thead>
<tr>
<th>Command-Name</th>
<th>Abbreviation</th>
<th>Code</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update-VCSG-Location-Request</td>
<td>UVR</td>
<td>8388638</td>
<td>7.2.21</td>
</tr>
<tr>
<td>Update-VCSG-Location-Answer</td>
<td>UVA</td>
<td>8388638</td>
<td>7.2.22</td>
</tr>
<tr>
<td>Insert-Subscription-Data-Request</td>
<td>IDR</td>
<td>319</td>
<td>7.2.9</td>
</tr>
<tr>
<td>Insert-Subscription-Data-Answer</td>
<td>IDA</td>
<td>319</td>
<td>7.2.10</td>
</tr>
<tr>
<td>Delete-Subscriber-Data-Request</td>
<td>DSR</td>
<td>320</td>
<td>7.2.11</td>
</tr>
<tr>
<td>Delete-Subscriber-Data-Answer</td>
<td>DSA</td>
<td>320</td>
<td>7.2.12</td>
</tr>
<tr>
<td>Reset-Request</td>
<td>RSR</td>
<td>322</td>
<td>7.2.15</td>
</tr>
<tr>
<td>Reset-Answer</td>
<td>RSA</td>
<td>322</td>
<td>7.2.16</td>
</tr>
<tr>
<td>Cancel-VCSG-Location-Request</td>
<td>CVR</td>
<td>8388642</td>
<td>7.2.23</td>
</tr>
<tr>
<td>Cancel-VCSG-Location-Answer</td>
<td>CVA</td>
<td>8388642</td>
<td>7.2.24</td>
</tr>
</tbody>
</table>

For these commands, the Application-ID field shall be set to 16777308 (application identifier of the S7a/S7d interface application, allocated by IANA).

7.2.3 Update-Location-Request (ULR) Command

The Update-Location-Request (ULR) command, indicated by the Command-Code field set to 316 and the "R" bit set in the Command Flags field, is sent from MME or SGSN to HSS.

Message Format

< Update-Location-Request> ::= < Diameter Header: 316, REQ, PXY, 16777251 >
< Session-Id >
[Vendor-Specific-Application-Id]
7.2.4 Update-Location-Answer (ULA) Command

The Update-Location-Answer (ULA) command, indicated by the Command-Code field set to 316 and the 'R' bit cleared in the Command Flags field, is sent from HSS to MME or SGSN.

Message Format

```
< Update-Location-Answer> ::= < Diameter Header: 316, PXY, 16777251 >
   < Session-Id >
   [ Vendor-Specific-Application-Id ]
   [ Result-Code ]
   [ Experimental-Result ]
   [ Error-Diagnostic ]
   [ Auth-Session-State ]
   [ Origin-Host ]
   [ Origin-Realm ]
   *[ Supported-Features ]
   [ ULA-Flags ]
   [ Subscription-Data ]
   *[ AVP ]
   *[ Failed-AVP ]
   *[ Proxy-Info ]
   *[ Route-Record ]
```

7.2.5 Authentication-Information-Request (AIR) Command

The Authentication-Information-Request (AIR) command, indicated by the Command-Code field set to 318 and the 'R' bit set in the Command Flags field, is sent from MME or SGSN to HSS.

Message Format

```
< Authentication-Information-Request> ::= < Diameter Header: 318, REQ, PXY, 16777251 >
   < Session-Id >
   [ Vendor-Specific-Application-Id ]
   { Auth-Session-State }
   { Origin-Host }
   { Origin-Realm }
   [ Destination-Host ]
```

7.2.6 Authentication-Information-Answer (AIA) Command

The Authentication-Information-Answer (AIA) command, indicated by the Command-Code field set to 318 and the 'R' bit cleared in the Command Flags field, is sent from HSS to MME or SGSN.

Message Format

\[
\langle \text{Authentication-Information-Answer} \rangle ::= \langle \text{Diameter Header: 318, PXY, 16777251} \rangle
\]

\[
\langle \text{Session-Id} \rangle
\]

\[
\langle \text{Vendor-Specific-Application-Id} \rangle
\]

\[
\langle \text{Result-Code} \rangle
\]

\[
\langle \text{Experimental-Result} \rangle
\]

\[
\langle \text{Error-Diagnostic} \rangle
\]

\[
\langle \text{Auth-Session-State} \rangle
\]

\[
\langle \text{Origin-Host} \rangle
\]

\[
\langle \text{Origin-Realm} \rangle
\]

\[
\langle \text{Supported-Features} \rangle
\]

\[
\langle \text{Authentication-Info} \rangle
\]

\[
\langle \text{AVP} \rangle
\]

\[
\langle \text{Failed-AVP} \rangle
\]

\[
\langle \text{Proxy-Info} \rangle
\]

\[
\langle \text{Route-Record} \rangle
\]

7.2.7 Cancel-Location-Request (CLR) Command

The Cancel-Location-Request (CLR) command, indicated by the Command-Code field set to 317 and the 'R' bit set in the Command Flags field, is sent from HSS to MME or SGSN.

Message Format

\[
\langle \text{Cancel-Location-Request} \rangle ::= \langle \text{Diameter Header: 317, REQ, PXY, 16777251} \rangle
\]

\[
\langle \text{Session-Id} \rangle
\]

\[
\langle \text{Vendor-Specific-Application-Id} \rangle
\]

\[
\langle \text{Auth-Session-State} \rangle
\]

\[
\langle \text{Origin-Host} \rangle
\]

\[
\langle \text{Origin-Realm} \rangle
\]

\[
\langle \text{Destination-Host} \rangle
\]

\[
\langle \text{Destination-Realm} \rangle
\]

\[
\langle \text{User-Name} \rangle
\]

\[
\langle \text{Supported-Features} \rangle
\]

\[
\langle \text{Cancellation-Type} \rangle
\]

\[
\langle \text{CLR-Flags} \rangle
\]

\[
\langle \text{AVP} \rangle
\]

\[
\langle \text{Proxy-Info} \rangle
\]

\[
\langle \text{Route-Record} \rangle
\]

7.2.8 Cancel-Location-Answer (CLA) Command

The Cancel-Location-Answer (CLA) command, indicated by the Command-Code field set to 317 and the 'R' bit cleared in the Command Flags field, is sent from MME or SGSN to HSS.

Message Format
7.2.9 Insert-Subscriber-Data-Request (IDR) Command

The Insert-Subscriber-Data-Request (IDR) command, indicated by the Command-Code field set to 319 and the ‘R’ bit set in the Command Flags field, is sent from HSS or CSS to MME or SGSN.

Message Format when used over the S6a or S6d application:

< Insert-Subscriber-Data-Request> ::= < Diameter Header: 319, REQ, PXY, 16777308 >
 < Session-Id >
 [Vendor-Specific-Application-Id]
 [Auth-Session-State]
 [Origin-Host]
 [Origin-Realm]
 [Destination-Host]
 [Destination-Realm]
 [User-Name]
 *[Supported-Features]
 [Subscription-Data]
 [IDR-Flags]
 *[AVP]
 *[Proxy-Info]
 *[Route-Record]

Message Format when used over the S7a or S7d application:

< Insert-Subscriber-Data-Request> ::= < Diameter Header: 319, REQ, PXY, 16777308 >
 < Session-Id >
 [Vendor-Specific-Application-Id]
 [Auth-Session-State]
 [Origin-Host]
 [Origin-Realm]
 [Destination-Host]
 [Destination-Realm]
 [User-Name]
 *[Supported-Features]
 *[VPLMN-CSG-Subscription-Data]
 *[AVP]
 *[Proxy-Info]
 *[Route-Record]

7.2.10 Insert-Subscriber-Data-Answer (IDA) Command

The Insert-Subscriber-Data-Answer (IDA) command, indicated by the Command-Code field set to 319 and the ‘R’ bit cleared in the Command Flags field, is sent from MME or SGSN to HSS or CSS.

Message Format when used over the S6a or S6d application:

< Insert-Subscriber-Data-Answer> ::= < Diameter Header: 319, PXY, 16777251 >
 < Session-Id >
7.2.11 Delete-Subscriber-Data-Request (DSR) Command

The Delete-Subscriber Data-Request (DSR) command, indicated by the Command-Code field set to 320 and the 'R' bit set in the Command Flags field, is sent from HSS or CSS to MME or SGSN.

Message Format when used over the S6a/S6d application:

< Delete-Subscriber-Data-Request > ::= < Diameter Header: 320, REQ, PXY, 16777251 >
< Session-Id >
[Vendor-Specific-Application-Id]
*{ Supported-Features]
[Result-Code]
[Experimental-Result]
{ Auth-Session-State]
{ Origin-Host]
{ Origin-Realm]
[IMS-Voice-Over-PS-Sessions-Supported]
[Last-UE-Activity-Time]
[RAT-Type]
[IDA-Flags]
[EPS-User-State]
[EPS-Location-Information]
[Local-Time-Zone]
*{ AVP]
*{ Failed-AVP]
*{ Proxy-Info]
*{ Route-Record]

Message Format when used over the S7a/S7d application:

< Insert-Subscriber-Data-Answer> ::= < Diameter Header: 319, PXY, 16777308 >
< Session-Id >
[Vendor-Specific-Application-Id]
*{ Supported-Features]
[Result-Code]
[Experimental-Result]
{ Auth-Session-State]
{ Origin-Host]
{ Origin-Realm]
*{ AVP]
*{ Failed-AVP]
*{ Proxy-Info]
*{ Route-Record]

Message Format when used over the S7a/S7d application:
< Delete-Subscriber-Data-Request > ::= < Diameter Header: 320, REQ, PXY, 16777308 >
< Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
{ Destination-Host }
{ Destination-Realm }
{ User-Name }
*{ Supported-Features }
{ DSR-Flags }
*{ AVP }
*{ Proxy-Info }
*{ Route-Record }

7.2.12 Delete-Subscriber-Data-Answer (DSA) Command

The Delete-Subscriber Data-Answer (DSA) command, indicated by the Command-Code field set to 320 and the 'R' bit cleared in the Command Flags field, is sent from MME or SGSN to HSS or CSS.

Message Format when used over the S6a/S6d application:

< Delete-Subscriber-Data-Answer> ::= < Diameter Header: 320, PXY, 16777251 >
< Session-Id >
[Vendor-Specific-Application-Id]
*{ Supported-Features }
{ Result-Code }
{ Experimental-Result }
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
{ DSA-Flags }
*{ AVP }
*{ Failed-AVP }
*{ Proxy-Info }
*{ Route-Record }

Message Format when used over the S7a/S7d application:

< Delete-Subscriber-Data-Answer> ::= < Diameter Header: 320, PXY, 16777308 >
< Session-Id >
[Vendor-Specific-Application-Id]
*{ Supported-Features }
{ Result-Code }
{ Experimental-Result }
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
*{ AVP }
*{ Failed-AVP }
*{ Proxy-Info }
*{ Route-Record }

7.2.13 Purge-UE-Request (PUR) Command

The Purge-UE-Request (PUR) command, indicated by the Command-Code field set to 321 and the 'R' bit set in the Command Flags field, is sent from MME or SGSN to HSS.

Message Format

< Purge-UE-Request> ::= < Diameter Header: 321, REQ, PXY, 16777251 >
7.2.14 Purge-UE-Answer (PUA) Command

The Purge-UE-Answer (PUA) command, indicated by the Command-Code field set to 321 and the 'R' bit cleared in the Command Flags field, is sent from HSS to MME or SGSN.

Message Format

\[
\text{< Purge-UE-Answer> ::= < Diameter Header: 321, PXY, I6777251 >}
\]

\[
\text{< Session-Id >}
\]

\[
\text{[Vendor-Specific-Application-Id]}
\]

\[
\text{*[Supported-Features]}
\]

\[
\text{[Result-Code]}
\]

\[
\text{[Experimental-Result]}
\]

\[
\text{[Auth-Session-State]}
\]

\[
\text{[Origin-Host]}
\]

\[
\text{[Origin-Realm]}
\]

\[
\text{[PUA-Flags]}
\]

\[
\text{*[AVP]}
\]

\[
\text{*[Failed-AVP]}
\]

\[
\text{*[Proxy-Info]}
\]

\[
\text{*[Route-Record]}
\]

7.2.15 Reset-Request (RSR) Command

The Reset-Request (RSR) command, indicated by the Command-Code field set to 322 and the 'R' bit set in the Command Flags field, is sent from HSS to MME or SGSN.

Message Format when used over the S6a/S6d application:

\[
\text{< Reset-Request> ::= < Diameter Header: 322, REQ, PXY, I6777251 >}
\]

\[
\text{< Session-Id >}
\]

\[
\text{[Vendor-Specific-Application-Id]}
\]

\[
\text{*[Supported-Features]}
\]

\[
\text{[User-Id]}
\]

\[
\text{[AVP]}
\]

\[
\text{[Proxy-Info]}
\]

\[
\text{[Route-Record]}
\]

Message Format when used over the S7a /S7d application:

\[
\text{< Reset-Request> ::= < Diameter Header: 322, REQ, PXY, I6777308 >}
\]

\[
\text{< Session-Id >}
\]
7.2.16 Reset-Answer (RSA) Command

The Reset-Answer (RSA) command, indicated by the Command-Code field set to 322 and the 'R' bit cleared in the Command Flags field, is sent from MME or SGSN to HSS.

Message Format when used over the S6a/S6d application:

\[\text{< Reset-Answer> ::= < Diameter Header: 322, PXY, 16777251 >} \]
\[\text{< Session-Id >} \]
\[\text{[Vendor-Specific-Application-Id]} \]
\[\text{[* Supported-Features]} \]
\[\text{[Result-Code]} \]
\[\text{[Experimental-Result]} \]
\[\text{[Auth-Session-State]} \]
\[\text{[Origin-Host]} \]
\[\text{[Origin-Realm]} \]
\[\text{[AVP]} \]
\[\text{[* Failed-AVP]} \]
\[\text{[Proxy-Info]} \]
\[\text{[* Route-Record]} \]

Message Format when used over the S7a/S7d application:

\[\text{< Reset-Answer> ::= < Diameter Header: 322, PXY, 16777308 >} \]
\[\text{< Session-Id >} \]
\[\text{[Vendor-Specific-Application-Id]} \]
\[\text{[* Supported-Features]} \]
\[\text{[Result-Code]} \]
\[\text{[Experimental-Result]} \]
\[\text{[Auth-Session-State]} \]
\[\text{[Origin-Host]} \]
\[\text{[Origin-Realm]} \]
\[\text{[AVP]} \]
\[\text{[* Failed-AVP]} \]
\[\text{[Proxy-Info]} \]
\[\text{[* Route-Record]} \]

7.2.17 Notify-Request (NOR) Command

The Notify-Request (NOR) command, indicated by the Command-Code field set to 323 and the 'R' bit set in the Command Flags field, is sent from MME or SGSN to HSS.

Message Format

\[\text{< Notify-Request> ::= < Diameter Header: 323, REQ, PXY, 16777251 >} \]
\[\text{< Session-Id >} \]
\[\text{[Vendor-Specific-Application-Id]} \]
\[\text{[Auth-Session-State]} \]
\[\text{[Origin-Host]} \]
7.2.18 Notify-Answer (NOA) Command

The Notify-Answer (NOA) command, indicated by the Command-Code field set to 323 and the ‘R’ bit cleared in the Command Flags field, is sent from HSS to MME or SGSN.

Message Format

```
< Notify-Answer> ::=  < Diameter Header: 323, PXY, 16777251 >
< Session-Id >
[ Vendor-Specific-Application-Id ]
[ Result-Code ]
[ Experimental-Result ]
[ Auth-Session-State ]
[ Origin-Host ]
[ Origin-Realm ]
*[ Supported-Features ]
*[ AVP ]
*[ Failed-AVP ]
*[ Proxy-Info ]
*[ Route-Record ]
```

7.2.19 ME-Identity-Check-Request (ECR) Command

The ME-Identity-Check-Request (ECR) command, indicated by the Command-Code field set to 324 and the ‘R’ bit set in the Command Flags field, is sent from MME or SGSN to EIR.

Message Format

```
< ME-Identity-Check-Request > ::=  < Diameter Header: 324, REQ, PXY, 16777252 >
< Session-Id >
[ Vendor-Specific-Application-Id ]
[ Auth-Session-State ]
[ Origin-Host ]
[ Origin-Realm ]
[ Destination-Host ]
[ Destination-Realm ]
[ Terminal-Information ]
[ User-Name ]
*[ AVP ]
*[ Proxy-Info ]
*[ Route-Record ]
```
7.2.20 ME-Identity-Check-Answer (ECA) Command

The ME-Identity-Check-Answer (ECA) command, indicated by the Command-Code field set to 324 and the 'R' bit cleared in the Command Flags field, is sent from EIR to MME or SGSN.

Message Format

```
< ME-Identity-Check-Answer> ::=  < Diameter Header: 324, PXY, 16777252 >
          < Session-Id >
          [ Vendor-Specific-Application-Id ]
          [ Result-Code ]
          [ Experimental-Result ]
          [ Auth-Session-State ]
          [ Origin-Host ]
          [ Origin-Realm ]
          [ Equipment-Status ]
          *[ AVP ]
          *[ Failed-AVP ]
          *[ Proxy-Info ]
          *[ Route-Record ]
```

7.2.21 Update-VCSG-Location-Request (UVR) Command

The Update-VCSG-Location-Request (UVR) command, indicated by the Command-Code field set to 8388638 and the "R" bit set in the Command Flags field, is sent from MME or SGSN to CSS.

Message Format

```
< Update-VCSG-Location-Request> ::=  < Diameter Header: 8388638, REQ, PXY, 167777308 >
          < Session-Id >
          [ Vendor-Specific-Application-Id ]
          [ Auth-Session-State ]
          [ Origin-Host ]
          [ Origin-Realm ]
          [ Destination-Host ]
          [ Destination-Realm ]
          [ User-Name ]
          [ MSISDN ]
          [ SGSN-Number ]
          *[ Supported-Features ]
          [ UVR-Flags ]
          *[ AVP ]
          *[ Proxy-Info ]
          *[ Route-Record ]
```

7.2.22 Update-VCSG-Location-Answer (UVA) Command

The Update-VCSG-Location-Answer (UVA) command, indicated by the Command-Code field set to 8388638 and the 'R' bit cleared in the Command Flags field, is sent from CSS to MME or SGSN.

Message Format

```
< Update-VCSG-Location-Answer> ::=  < Diameter Header: 8388638, PXY, 167777308 >
          < Session-Id >
          [ Vendor-Specific-Application-Id ]
          [ Result-Code ]
          [ Experimental-Result ]
          [ Error-Diagnostic ]
          [ Auth-Session-State ]
          [ Origin-Host ]
          [ Origin-Realm ]
          *[ Supported-Features ]
```
7.2.23 Cancel-VCSG-Location-Request (CVR) Command

The Cancel-VCSG-Location-Request (CVR) command, indicated by the Command-Code field set to 8388642 and the 'R' bit set in the Command Flags field, is sent from CSS to MME or SGSN.

Message Format

\[
<\text{Cancel-VCSG-Location-Request}> ::= <\text{Diameter Header}: 8388642, \text{REQ}, \text{PXY}, 167777308 >
\]

\[
<\text{Session-Id} >
\]

\[
[\text{Vendor-Specific-Application-Id}]
\]

\[
[\text{Auth-Session-State}]
\]

\[
[\text{Origin-Host}]
\]

\[
[\text{Origin-Realm}]
\]

\[
[\text{Destination-Host}]
\]

\[
[\text{Destination-Realm}]
\]

\[
[\text{User-Name}]
\]

\[
*[\text{Supported-Features}]
\]

\[
[\text{Cancellation-Type}]
\]

\[
*[\text{AVP}]
\]

\[
*[\text{Failed-AVP}]
\]

\[
*[\text{Proxy-Info}]
\]

\[
*[\text{Route-Record}]
\]

7.2.24 Cancel-VCSG-Location-Answer (CVA) Command

The Cancel-VCSG-Location-Answer (CVA) command, indicated by the Command-Code field set to 8388642 and the 'R' bit cleared in the Command Flags field, is sent from MME or SGSN to CSS.

Message Format

\[
<\text{Cancel-VCSG-Location-Answer}> ::= <\text{Diameter Header}: 8388642, \text{PXY}, 167777308 >
\]

\[
<\text{Session-Id} >
\]

\[
[\text{Vendor-Specific-Application-Id}]
\]

\[
*[\text{Supported-Features}]
\]

\[
[\text{Result-Code}]
\]

\[
[\text{Experimental-Result}]
\]

\[
[\text{Auth-Session-State}]
\]

\[
[\text{Origin-Host}]
\]

\[
[\text{Origin-Realm}]
\]

\[
*[\text{AVP}]
\]

\[
*[\text{Failed-AVP}]
\]

\[
*[\text{Proxy-Info}]
\]

\[
*[\text{Route-Record}]
\]
7.3 Information Elements

7.3.1 General

The following table specifies the Diameter AVPs defined for the S6a/S6d interface protocol, the S7a/S7d interface protocol and the S13/S13’ interface protocol, their AVP Code values, types, possible flag values and whether or not the AVP may be encrypted. The Vendor-ID header of all AVPs defined in this specification shall be set to 3GPP (10415).

For all AVPs which contain bit masks and are of the type Unsigned32, e.g., ULR-Flags, DSR-Flags, PUA-Flags, etc., bit 0 shall be the least significant bit. For example, to get the value of bit 0, a bit mask of 0x0001 should be used.
Table 7.3.1/1: S6a/S6d, S7a/S7d and S13/S13' specific Diameter AVPs

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>AVP Code</th>
<th>Section defined</th>
<th>Value Type</th>
<th>Must</th>
<th>May</th>
<th>Should not</th>
<th>Must not</th>
<th>May Encr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription-Data</td>
<td>1400</td>
<td>7.3.2</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal-Information</td>
<td>1401</td>
<td>7.3.3</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMEI</td>
<td>1402</td>
<td>7.3.4</td>
<td>UTF8String</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software-Version</td>
<td>1403</td>
<td>7.3.5</td>
<td>UTF8String</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QoS-Subscribed</td>
<td>1404</td>
<td>7.3.77</td>
<td>OctetString</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULR-Flags</td>
<td>1405</td>
<td>7.3.7</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULA-Flags</td>
<td>1406</td>
<td>7.3.8</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visited-PLMN-Id</td>
<td>1407</td>
<td>7.3.9</td>
<td>OctetString</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requested-EUTRAN-Authentication-Info</td>
<td>1408</td>
<td>7.3.11</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requested-UTRAN-GERAN-Authentication-Info</td>
<td>1409</td>
<td>7.3.12</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Number-Of-Requested-Vectors</td>
<td>1410</td>
<td>7.3.14</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Re-Synchronization-Info</td>
<td>1411</td>
<td>7.3.15</td>
<td>OctetString</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Immediate-Response-Preferred</td>
<td>1412</td>
<td>7.3.16</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Authentication-Info</td>
<td>1413</td>
<td>7.3.17</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>E-UTRAN-Vector</td>
<td>1414</td>
<td>7.3.18</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>UTRAN-Vector</td>
<td>1415</td>
<td>7.3.19</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>GERAN-Vector</td>
<td>1416</td>
<td>7.3.20</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Network-Access-Mode</td>
<td>1417</td>
<td>7.3.21</td>
<td>Enumerated</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>HPLMN-ODB</td>
<td>1418</td>
<td>7.3.22</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Item-Number</td>
<td>1419</td>
<td>7.3.23</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Cancellation-Type</td>
<td>1420</td>
<td>7.3.24</td>
<td>Enumerated</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>DSR-Flags</td>
<td>1421</td>
<td>7.3.25</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>DSA-Flags</td>
<td>1422</td>
<td>7.3.26</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Context-Identifier</td>
<td>1423</td>
<td>7.3.27</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Subscriber-Status</td>
<td>1424</td>
<td>7.3.29</td>
<td>Enumerated</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Operator-Determined-Barring</td>
<td>1425</td>
<td>7.3.30</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Access-Restriction-Data</td>
<td>1426</td>
<td>7.3.31</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>APN-OI-Replacement</td>
<td>1427</td>
<td>7.3.32</td>
<td>UTF8String</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>All-APN-Configurations-Included-Indicator</td>
<td>1428</td>
<td>7.3.33</td>
<td>Enumerated</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>APN-Configuration-Profile</td>
<td>1429</td>
<td>7.3.34</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>APN-Configuration</td>
<td>1430</td>
<td>7.3.35</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>EPS-Subscribed-QoS-Profile</td>
<td>1431</td>
<td>7.3.37</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>VPLMN-Dynamic-Address-Allowed</td>
<td>1432</td>
<td>7.3.38</td>
<td>Enumerated</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>STN-SR</td>
<td>1433</td>
<td>7.3.39</td>
<td>OctetString</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Alert-Reason</td>
<td>1434</td>
<td>7.3.83</td>
<td>Enumerate</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>AMBR</td>
<td>1435</td>
<td>7.3.41</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>CSG-Subscription-Data</td>
<td>1436</td>
<td>7.3.78</td>
<td>Grouped</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>CSG-Id</td>
<td>1437</td>
<td>7.3.79</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>PDN-GW-Allocation-Type</td>
<td>1438</td>
<td>7.3.44</td>
<td>Enumerated</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Expiration-Date</td>
<td>1439</td>
<td>7.3.80</td>
<td>Time</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>RAT-Frequency-Selection-Priority-ID</td>
<td>1440</td>
<td>7.3.46</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>IDA-Flags</td>
<td>1441</td>
<td>7.3.47</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>PUA-Flags</td>
<td>1442</td>
<td>7.3.48</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>NOR-Flags</td>
<td>1443</td>
<td>7.3.49</td>
<td>Unsigned32</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>User-Id</td>
<td>1444</td>
<td>7.3.50</td>
<td>UTF8String</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Equipment-Status</td>
<td>1445</td>
<td>7.3.51</td>
<td>Enumerated</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Regional-Subscription-Zone-Code</td>
<td>1446</td>
<td>7.3.52</td>
<td>OctetString</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>RAND</td>
<td>1447</td>
<td>7.3.53</td>
<td>OctetString</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>XRES</td>
<td>1448</td>
<td>7.3.54</td>
<td>OctetString</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>AUTN</td>
<td>1449</td>
<td>7.3.55</td>
<td>OctetString</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>KASME</td>
<td>1450</td>
<td>7.3.56</td>
<td>OctetString</td>
<td>M, V</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Object Name</td>
<td>Offset</td>
<td>Type</td>
<td>Description</td>
<td>Mandatory</td>
<td>Access</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>-----------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace-Collection-Entity</td>
<td>1452</td>
<td>7.3.98</td>
<td>Address</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kc</td>
<td>1453</td>
<td>7.3.59</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRES</td>
<td>1454</td>
<td>7.3.60</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDN-Type</td>
<td>1456</td>
<td>7.3.62</td>
<td>Enumerated</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roaming-Restricted-Due-To-Unsupported-Feature</td>
<td>1457</td>
<td>7.3.81</td>
<td>Enumerated</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace-Data</td>
<td>1458</td>
<td>7.3.63</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace-Reference</td>
<td>1459</td>
<td>7.3.64</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace-Depth</td>
<td>1462</td>
<td>7.3.67</td>
<td>Enumerated</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace-NE-Type-List</td>
<td>1463</td>
<td>7.3.68</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace-Interface-List</td>
<td>1464</td>
<td>7.3.69</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace-Event-List</td>
<td>1465</td>
<td>7.3.70</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMC-Id</td>
<td>1466</td>
<td>7.3.71</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPRS-Subscription-Data</td>
<td>1467</td>
<td>7.3.72</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete-Data-List-Included-Indicator</td>
<td>1468</td>
<td>7.3.73</td>
<td>Enumerated</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDP-Context</td>
<td>1469</td>
<td>7.3.74</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDP-Type</td>
<td>1470</td>
<td>7.3.75</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3GPP2-MEID</td>
<td>1471</td>
<td>7.3.6</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific-APN-Info</td>
<td>1472</td>
<td>7.3.82</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS-Info</td>
<td>1473</td>
<td>7.3.84</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMLC-Number</td>
<td>1474</td>
<td>7.3.85</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS-PrivacyException</td>
<td>1475</td>
<td>7.3.86</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS-Code</td>
<td>1476</td>
<td>7.3.87</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS-Status</td>
<td>1477</td>
<td>7.3.88</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notification-To-UE-User</td>
<td>1478</td>
<td>7.3.89</td>
<td>Enumerated</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External-Client</td>
<td>1479</td>
<td>7.3.90</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client-Identity</td>
<td>1480</td>
<td>7.3.91</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMLC-Restriction</td>
<td>1481</td>
<td>7.3.92</td>
<td>Enumerated</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLMN-Client</td>
<td>1482</td>
<td>7.3.93</td>
<td>Enumerated</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service-Type</td>
<td>1483</td>
<td>7.3.94</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServiceTypeIdentity</td>
<td>1484</td>
<td>7.3.95</td>
<td>Unsigned32</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO-LR</td>
<td>1485</td>
<td>7.3.96</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teleservice-List</td>
<td>1486</td>
<td>7.3.99</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS-Code</td>
<td>1487</td>
<td>7.3.100</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call-Barring-Info</td>
<td>1488</td>
<td>7.3.101</td>
<td>Grouped</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGSN-Number</td>
<td>1489</td>
<td>7.3.102</td>
<td>OctetString</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR-Flags</td>
<td>1490</td>
<td>7.3.103</td>
<td>Unsigned32</td>
<td>M, V</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS-Indicator</td>
<td>1491</td>
<td>7.3.104</td>
<td>Enumerated</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS-Voice-Over-PS-Sessions-Supported</td>
<td>1492</td>
<td>7.3.106</td>
<td>Enumerated</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneous-Support-of-IMS-Voice-Over-PS-Sessions</td>
<td>1493</td>
<td>7.3.107</td>
<td>Enumerated</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last-UE-Activity-Time</td>
<td>1494</td>
<td>7.3.108</td>
<td>Time</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS-User-State</td>
<td>1495</td>
<td>7.3.110</td>
<td>Grouped</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS-Location-Information</td>
<td>1496</td>
<td>7.3.111</td>
<td>Grouped</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MME-User-State</td>
<td>1497</td>
<td>7.3.112</td>
<td>Grouped</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGSN-User-State</td>
<td>1498</td>
<td>7.3.113</td>
<td>Grouped</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User-State</td>
<td>1499</td>
<td>7.3.114</td>
<td>Enumerated</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MME-Location Information</td>
<td>1600</td>
<td>7.3.115</td>
<td>Grouped</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGSN-Location-Information</td>
<td>1601</td>
<td>7.3.116</td>
<td>Grouped</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-UTRAN-Cell-Global-Identity</td>
<td>1602</td>
<td>7.3.117</td>
<td>OctetString</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracking-Area-Identity</td>
<td>1603</td>
<td>7.3.118</td>
<td>OctetString</td>
<td>V</td>
<td>M No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>OctetString</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell-Global-Identity</td>
<td></td>
<td></td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing-Area-Identity</td>
<td></td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location-Area-Identity</td>
<td></td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service-Area-Identity</td>
<td></td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographical-Information</td>
<td>OctetString</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geodetic-Information</td>
<td>OctetString</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current-Location-Retrieved</td>
<td>Enumerated</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-Of-Location-Information</td>
<td>Unsigned32</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active-APN</td>
<td>Grouped</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error-Diagnostic</td>
<td>Enumerated</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext-PDP-Address</td>
<td>Address</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE-SRVCC-Capability</td>
<td>Enumerated</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPS-Priority</td>
<td>Unsigned32</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPLMN-LIPA-Allowed</td>
<td>Enumerated</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIPA-Permission</td>
<td>Enumerated</td>
<td>V</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVP Name</td>
<td>RFC Section</td>
<td>Type</td>
<td>M</td>
<td>V</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subscribed-Periodic-RAU-TAU-Timer</td>
<td>7.3.134</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext-PDP-Type</td>
<td>7.3.75A</td>
<td>OctetString</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIPTO-Permission</td>
<td>7.3.135</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDT-Configuration</td>
<td>7.3.136</td>
<td>Grouped</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job-Type</td>
<td>7.3.137</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area-Scope</td>
<td>7.3.138</td>
<td>Grouped</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List-Of-Measurements</td>
<td>7.3.139</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting-Trigger</td>
<td>7.3.140</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report-Interval</td>
<td>7.3.141</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report-Amount</td>
<td>7.3.142</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event-Threshold-RSRP</td>
<td>7.3.143</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event-Threshold-RSRQ</td>
<td>7.3.144</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logging-Interval</td>
<td>7.3.145</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logging-Duration</td>
<td>7.3.146</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay-Node-Indicator</td>
<td>7.3.147</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDT-User-Consent</td>
<td>7.3.148</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUR-Flags</td>
<td>7.3.149</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subscribed-VSRVCC</td>
<td>7.3.150</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent-PLMN-List</td>
<td>7.3.151</td>
<td>Grouped</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLR-Flags</td>
<td>7.3.152</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVR-Flags</td>
<td>7.3.153</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVA-Flags</td>
<td>7.3.154</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPLMN-CSG-Subscription-Data</td>
<td>7.3.155</td>
<td>Grouped</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-Zone</td>
<td>7.3.163</td>
<td>UTF8String</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-MSISDN</td>
<td>7.3.157</td>
<td>OctetString</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MME-Number-for-MT-SMS</td>
<td>7.3.159</td>
<td>OctetString</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMS-Register-Request</td>
<td>7.3.162</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local-Time-Zone</td>
<td>7.3.156</td>
<td>Grouped</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daylight-Saving-Time</td>
<td>7.3.164</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subscription-Data-Flags</td>
<td>7.3.165</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement-Period-UMTS</td>
<td>7.3.166</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement-Period-LTE</td>
<td>7.3.167</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection-Period-RRM-LTE</td>
<td>7.3.168</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection-Period-RRM-UMTS</td>
<td>7.3.169</td>
<td>Enumerated</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positioning-Method</td>
<td>7.3.170</td>
<td>OctetString</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement-Quantity</td>
<td>7.3.171</td>
<td>OctetString</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event-Threshold-Event-1F</td>
<td>7.3.172</td>
<td>Integer32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event-Threshold-Event-1I</td>
<td>7.3.173</td>
<td>Integer32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restoration-Priority</td>
<td>7.3.174</td>
<td>Unsigned32</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>1664</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>1665</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>1666</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>1667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>1668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>1669</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>1670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDT-Allowed-PLMN-Id</td>
<td>1671</td>
<td>OctetString</td>
<td>M</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: The AVP header bit denoted as "M", indicates whether support of the AVP is required. The AVP header bit denoted as "V", indicates whether the optional Vendor-ID field is present in the AVP header. For further details, see IETF RFC 3588 [4].

NOTE 2: If the M-bit is set for an AVP and the receiver does not understand the AVP, it shall return a rejection. If the M-bit is not set for an AVP, the receiver shall not return a rejection, whether or not it understands the AVP. If the receiver understands the AVP but the M-bit value does not match with the definition in this table, the receiver shall ignore the M-bit.

The following table specifies the Diameter AVPs re-used by the S6a/S6d interface protocol from existing Diameter Applications, including a reference to their respective specifications and when needed, a short description of their use within S6a and S6d.

Any other AVPs from existing Diameter Applications, except for the AVPs from Diameter Base Protocol, do not need to be supported. The AVPs from Diameter Base Protocol are not included in table 7.3.1/2, but they may be re-used for the S6a/S6d protocol, the S7a/S7protocol and the S13/S13’ protocol.
Table 7.3.1/2: S6a/S6d, S7a/S7d and S13/S13' re-used Diameter AVPs

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Reference</th>
<th>Comments</th>
<th>M-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service-Selection</td>
<td>IETF RFC 5778 [20]</td>
<td>See section 7.3.36</td>
<td></td>
</tr>
<tr>
<td>3GPP-Charging-Characteristics</td>
<td>3GPP TS 29.061 [21]</td>
<td>See 3GPP TS 32.251 [33] Annex A and 3GPP TS 32.298 [22] section 5.1.2.2.7 This attribute holds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the EPS PDN Connection Charging Characteristics data for an EPS APN Configuration, or the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDP context Charging Characteristics for GPRS PDP context, or the Subscribed Charging</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Characteristics data for the subscriber level 3GPP Charging Characteristics; refer to 3GPP TS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.008 [30].</td>
<td></td>
</tr>
<tr>
<td>Supported-Features</td>
<td>3GPP TS 29.229 [9]</td>
<td>See section 7.3.10</td>
<td></td>
</tr>
<tr>
<td>Feature-List-ID</td>
<td>3GPP TS 29.229 [9]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature-List</td>
<td>3GPP TS 29.229 [9]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Served-Party-IP-Address</td>
<td>3GPP TS 32.299 [8]</td>
<td>holds the PDN IP Address of the user</td>
<td></td>
</tr>
<tr>
<td>QoS-Class-Identifier</td>
<td>3GPP TS 29.212 [10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocation-Retention-Priority</td>
<td>3GPP TS 29.212 [10]</td>
<td>See section 7.3.40</td>
<td></td>
</tr>
<tr>
<td>Priority-Level</td>
<td>3GPP TS 29.212 [10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-emption-Capability</td>
<td>3GPP TS 29.212 [10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-emption-Vulnerability</td>
<td>3GPP TS 29.212 [10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAT-Type</td>
<td>3GPP TS 29.212 [10]</td>
<td>See section 7.3.13</td>
<td>Must set</td>
</tr>
<tr>
<td>MSISDN</td>
<td>3GPP TS 29.329 [25]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP6-Agent-Info</td>
<td>IETF RFC 5447 [26]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP-Home-Agent-Address</td>
<td>IETF RFC 4004 [27]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP-Home-Agent-Host</td>
<td>IETF RFC 4004 [27]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDP-Address</td>
<td>3GPP TS 32.299 [8]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidentiality-Key</td>
<td>3GPP TS 29.229 [9]</td>
<td>See section 7.3.57</td>
<td></td>
</tr>
<tr>
<td>Integrity-Key</td>
<td>3GPP TS 29.229 [9]</td>
<td>See section 7.3.58</td>
<td></td>
</tr>
<tr>
<td>Visited-Network-Identifier</td>
<td>3GPP TS 29.229 [9]</td>
<td>See section 7.3.105</td>
<td>Must not set</td>
</tr>
<tr>
<td>GMLC-Address</td>
<td>3GPP TS 29.173 [37]</td>
<td>See section 7.3.105</td>
<td>Must not set</td>
</tr>
</tbody>
</table>

NOTE 1: The M-bit settings for re-used AVPs override those of the defining specifications that are referenced. Values include: “Must set”, “Must not set”. If the M-bit setting is blank, then the defining specification applies.

NOTE 2: If the M-bit is set for an AVP and the receiver does not understand the AVP, it shall return a rejection. If the M-bit is not set for an AVP, the receiver shall not return a rejection, whether or not it understands the AVP. If the receiver understands the AVP but the M-bit value does not match with the definition in this table, the receiver shall ignore the M-bit.
7.3.2 Subscription-Data

The Subscription-Data AVP is of type Grouped. It shall contain the information related to the user profile relevant for EPS and GERAN/UTRAN.

AVP format:

Subscription-Data ::= <AVP header: 1400 10415>

[Subscriber-Status]
[MSISDN]
[A-MSISDN]
[STN-SR]
[ICS-Indicator]
[Network-Access-Mode]
[Operator-Determined-Barring]
[HPLMN-ODB]
*10[Regional-Subscription-Zone-Code]
[Access-Restriction-Data]
[APN-0I-Replacement]
[LCS-Info]
[Teleservice-List]
*[Call-Barring-Info]
[3GPP-Charging-Characteristics]
[AMBR]
[APN-Configuration-Profile]
[RAT-Frequency-Selection-Priority-ID]
[Trace-Data]
[GPRS-Subscription-Data]
*[CSG-Subscription-Data]
[Roaming-Restricted-Due-To-Unsupported-Feature]
[Subscribed-Periodic-RAU-TAU-Timer]
[MPS-Priority]
[VPLMN-LIPA-Allowed]
[Relay-Node-Indicator]
[MDT-User-Consent]
[Subscribed-VSRVCC]
[Subscription-Data-Flags]
*[AVP]
The AMBR included in this grouped AVP shall include the AMBR associated to the user’s subscription (UE-AMBR); Max-Requested-Bandwidth-UL and Max-Requested-Bandwidth-DL within this AVP shall not both be set to “0”.

The APN-OI-Replacement included in this grouped AVP shall include the UE level APN-OI-Replacement associated to the user’s subscription.

7.3.3 Terminal-Information

The Terminal-Information AVP is of type Grouped. This AVP shall contain the information about the user’s terminal.

AVP format

\[
\text{Terminal Information ::= <AVP header: 1401 10415>}
\]

[IMEI]
[3GPP2-MEID]
[Software-Version]
*[AVP]

7.3.4 IMEI

The IMEI AVP is of type UTF8String. This AVP shall contain the International Mobile Equipment Identity, as specified in 3GPP TS 23.003 [3]. It should consist of 14 digits, including the 8-digit Type Allocation Code (TAC) and the 6-digit Serial Number (SNR). It may also include a 15th digit.

7.3.5 Software-Version

The Software-Version AVP is of type UTF8String. This AVP shall contain the 2-digit Software Version Number (SVN) of the International Mobile Equipment Identity, as specified in 3GPP TS 23.003 [3].

7.3.6 3GPP2-MEID

This AVP is of type OctetString. This AVP contains the Mobile Equipment Identifier of the user’s terminal. For further details on the encoding of the AVP data, refer to the encoding of the Mobile Identity (MEID) octets 3 to 10 in 3GPP2 A.S0022 [28] Annex A.

7.3.7 ULR-Flags

The ULR-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits shall be as defined in table 7.3.7/1:
Table 7.3.7/1: ULR-Flags

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Single-Registration-Indication</td>
<td>This bit, when set, indicates that the HSS shall send Cancel Location to the SGSN. An SGSN shall not set this bit when sending ULR.</td>
</tr>
<tr>
<td>1</td>
<td>S6a/S6d-Indicator</td>
<td>This bit, when set, indicates that the ULR message is sent on the S6a interface, i.e. the source node is an MME (or a combined MME/SGSN to which the UE is attached via E-UTRAN). This bit, when cleared, indicates that the ULR message is sent on the S6d interface, i.e. the source node is an SGSN (or a combined MME/SGSN to which the UE is attached via UTRAN or GERAN).</td>
</tr>
<tr>
<td>2</td>
<td>Skip Subscriber Data</td>
<td>This bit, when set, indicates that the HSS may skip subscription data in ULA. If the subscription data has changed in the HSS after the last successful update of the MME/SGSN, the HSS shall ignore this bit and send the updated subscription data. If the HSS effectively skips the sending of subscription data, the GPRS-Subscription-Data-Indicator flag can be ignored.</td>
</tr>
<tr>
<td>3</td>
<td>GPRS-Subscription-Data-Indicator</td>
<td>This bit, when set, indicates that the HSS shall include in the ULA command the GPRS subscription data, if available in the HSS; it shall be included in the GPRS-Subscription-Data AVP inside the Subscription-Data AVP (see 7.3.2). Otherwise, the HSS shall not include the GPRS-Subscription-Data AVP in the response, unless the Update Location Request is received over the S6d interface and there is no APN configuration profile stored for the subscriber, or when the subscription data is returned by a Pre-Rel-8 HSS (via an IWF). A standalone MME shall not set this bit when sending a ULR.</td>
</tr>
<tr>
<td>4</td>
<td>Node-Type-Indicator</td>
<td>This bit, when set, indicates that the requesting node is a combined MME/SGSN. This bit, when cleared, indicates that the requesting node is a single MME or SGSN; in this case, if the S6a/S6d-Indicator is set, the HSS may skip the check of those supported features only applicable to the SGSN, and if, in addition the MME does not request to be registered for SMS, the HSS may consequently skip the download of the SMS related subscription data to a standalone MME. NOTE2</td>
</tr>
<tr>
<td>5</td>
<td>Initial-Attach-Indicator</td>
<td>This bit, when set, indicates that the HSS shall send Cancel Location to the MME or SGSN if there is the MME or SGSN registration.</td>
</tr>
<tr>
<td>6</td>
<td>PS-LCS-Not-Supported-By-UE</td>
<td>This bit, when set, indicates to the HSS that the UE does not support neither UE Based nor UE Assisted positioning methods for Packet Switched Location Services. The MME shall set this bit on the basis of the UE capability information. The SGSN shall set this bit on the basis of the UE capability information and the access technology supported by the SGSN.</td>
</tr>
<tr>
<td>7</td>
<td>SMS-Only-Indication</td>
<td>This bit, when set, indicates that the UE indicated “SMS only” when requesting a combined IMSI attach or combined RA/LU.</td>
</tr>
</tbody>
</table>

NOTE1: Bits not defined in this table shall be cleared by the sending MME or SGSN and discarded by the receiving HSS.

NOTE2: If the MME is registered for SMS then the HSS will download the SMS related data also for the standalone MME.

7.3.8 ULA-Flags

The ULA-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits shall be as defined in table 7.3.8/1:
Table 7.3.8/1: ULA-Flags

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Separation Indication</td>
<td>This bit, when set, indicates that the HSS stores SGSN number and MME number in separate memory. A Rel-8 HSS shall set the bit. An IWF interworking with a pre Rel-8 HSS/HLR shall clear the bit.</td>
</tr>
<tr>
<td>1</td>
<td>MME Registered for MT SMS</td>
<td>This bit, when set, indicates that the HSS has registered the MME for SMS.</td>
</tr>
</tbody>
</table>

NOTE: Bits not defined in this table shall be cleared by the sending HSS and discarded by the receiving MME or SGSN.

7.3.9 Visited-PLMN-Id

The Visited-PLMN-Id AVP is of type OctetString. This AVP shall contain the concatenation of MCC and MNC. See 3GPP TS 23.003 [3]. The content of this AVP shall be encoded as an octet string according to table 7.3.9-1.

See 3GPP TS 24.008 [31], clause 10.5.1.13, PLMN list, for the coding of MCC and MNC. If MNC is 2 digits long, bits 5 to 8 of octet 2 are coded as “1111”.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>McC digit 2</td>
<td>Octet 1</td>
</tr>
<tr>
<td>1</td>
<td>MNC digit 3</td>
<td>Octet 2</td>
</tr>
<tr>
<td>2</td>
<td>MNC digit 2</td>
<td>Octet 3</td>
</tr>
</tbody>
</table>

7.3.10 Feature-List AVP

7.3.10.1 Feature-List AVP for the S6a/S6d application

The syntax of this AVP is defined in 3GPP TS 29.229 [9].

For the S6a/S6d application, the meaning of the bits shall be as defined in table 7.3.10/1 for the Feature-List-ID 1 and in table 7.3.10/2 for the Feature-List-ID 2.
Table 7.3.10/1: Features of Feature-List-ID 1 used in S6a/S6d

<table>
<thead>
<tr>
<th>Feature bit</th>
<th>Feature</th>
<th>M/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ODB-all-APN</td>
<td>O</td>
<td>Operator Determined Barring of all Packet Oriented Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send this ODB barring category to the MME or SGSN within ULA. Instead the HSS may reject location update by sending DIAMETER_ERROR_ROAMING_NOT_ALLOWED and, optionally, including the type of ODB in the Error-Diagnostic AVP. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent this ODB category within IDR, the HSS may apply barring of roaming and send CLR.</td>
</tr>
<tr>
<td>1</td>
<td>ODB-HPLMN-APN</td>
<td>O</td>
<td>Operator Determined Barring of Packet Oriented Services from access points that are within the HPLMN whilst the subscriber is roaming in a VPLMN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send this ODB barring category to the MME or SGSN within ULA. Instead the HSS may reject location update by sending DIAMETER_ERROR_ROAMING_NOT_ALLOWED and, optionally, including the type of ODB in the Error-Diagnostic AVP. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent this ODB category within IDR, the HSS may apply barring of roaming and send CLR.</td>
</tr>
<tr>
<td>2</td>
<td>ODB-VPLMN-APN</td>
<td>O</td>
<td>Operator Determined Barring of Packet Oriented Services from access points that are within the roamed to VPLMN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send this ODB barring category to the MME or SGSN within ULA. Instead the HSS may reject location update by sending DIAMETER_ERROR_ROAMING_NOT_ALLOWED and, optionally, including the type of ODB in the Error-Diagnostic AVP. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent this ODB category within IDR, the HSS may apply barring of roaming and send CLR.</td>
</tr>
<tr>
<td>3</td>
<td>ODB-all-OG</td>
<td>O</td>
<td>Operator Determined Barring of all outgoing calls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send this ODB barring category to the MME or SGSN within ULA. Instead the HSS may reject location update. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent this ODB category within IDR, the HSS may apply barring of roaming and send CLR.</td>
</tr>
<tr>
<td>4</td>
<td>ODB-all-InternationalOG</td>
<td>O</td>
<td>Operator Determined Barring of all outgoing international calls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send this ODB barring category to the MME or SGSN within ULA. Instead the HSS may reject location update. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent this ODB category within IDR, the HSS may apply barring of roaming and send CLR.</td>
</tr>
<tr>
<td>5</td>
<td>ODB-all-InternationalOGNotToHPLMN-Country</td>
<td>O</td>
<td>Operator Determined Barring of all outgoing international calls except those directed to the home PLMN country</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send this ODB barring category to the MME or SGSN within ULA. Instead the HSS may reject location update. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent this ODB category within IDR, the HSS may apply barring of roaming and send CLR.</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODB-all-Interzonal OG</td>
<td>Operator Determined Barring of all outgoing inter-zonal calls. This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send this ODB barring category to the MME or SGSN within ULA. Instead, the HSS may reject location update. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent this ODB category within IDR, the HSS may apply barring of roaming and send CLR.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODB-all-Interzonal OGNotToHPLMN-Country</td>
<td>Operator Determined Barring of all outgoing inter-zonal calls except those directed to the home PLMN country. This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send this ODB barring category to the MME or SGSN within ULA. Instead, the HSS may reject location update. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent this ODB category within IDR, the HSS may apply barring of roaming and send CLR.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODB-all-Interzonal OGAAndIntnational OGNotToHPLMN-Country</td>
<td>Operator Determined Barring of all outgoing international calls except those directed to the home PLMN country and Barring of all outgoing inter-zonal calls. This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send this ODB barring category to the MME or SGSN within ULA. Instead, the HSS may reject location update. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent this ODB category within IDR, the HSS may apply barring of roaming and send CLR.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RegSub</td>
<td>Regional Subscription. This feature is applicable for the ULR/ULA, IDR/IDA and DSR/DSA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send Regional Subscription Zone Codes to the MME or SGSN within ULA. Instead, the HSS may reject location update. If the MME or SGSN does not indicate support of this feature in IDA and the HSS has sent Regional Subscription Zone Codes within IDR, the HSS may apply barring of roaming and send CLR.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td>Trace Function. This feature is applicable for the ULR/ULA, IDR/IDA and DSR/DSA command pairs. If the MME or SGSN does not indicate support of this feature in ULR, the HSS shall not send Trace Data to the MME or SGSN within ULA. If the MME or SGSN does not indicate support of this feature in IDR, and the HSS has sent Trace Data within IDR, the HSS may store this indication, and not send any further Trace Data to that MME or SGSN. If the MME or SGSN does not indicate support of this feature in DSA, and the HSS has sent Trace Data within DSR, the HSS may store this indication, and not send any further Trace Data to that MME or SGSN.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS-all-PrivExcep</td>
<td>All LCS Privacy Exception Classes. This feature is applicable for the ULR/ULA and IDR/IDA command pairs over the S6d interface. If the SGSN does not support this feature, the HSS shall not send the related LCS information to the SGSN within ULA. If the SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that SGSN.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feature Code</td>
<td>Feature Name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>12</td>
<td>LCS-Universal</td>
<td>Allow location by any LCS client</td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs over the S6d interface. If the SGSN does not support this feature, the HSS shall not send the related LCS information to the SGSN within ULA. If the SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that SGSN.</td>
</tr>
<tr>
<td>13</td>
<td>LCS-CalSessi onRelated</td>
<td>Allow location by any value added LCS client to which a call/session is established from the target UE</td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs over the S6d interface. If the SGSN does not support this feature, the HSS shall not send the related LCS information to the SGSN within ULA. If the SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that SGSN.</td>
</tr>
<tr>
<td>14</td>
<td>LCS-CalSessi onUnrelat ed</td>
<td>Allow location by designated external value added LCS clients</td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs over the S6d interface. If the SGSN does not support this feature, the HSS shall not send the related LCS information to the SGSN within ULA. If the SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that SGSN.</td>
</tr>
<tr>
<td>15</td>
<td>LCS-PLMNOpe rator</td>
<td>Allow location by designated PLMN operator LCS clients</td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs over the S6d interface. If the SGSN does not support this feature, the HSS shall not send the related LCS information to the SGSN within ULA. If the SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that SGSN.</td>
</tr>
<tr>
<td>16</td>
<td>LCS-ServiceTy pe</td>
<td>Allow location by LCS clients of a designated LCS service type</td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs over the S6d interface. If the SGSN does not support this feature, the HSS shall not send the related LCS information to the SGSN within ULA. If the SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that SGSN.</td>
</tr>
<tr>
<td>17</td>
<td>LCS-all- MOLR-SS</td>
<td>All Mobile Originating Location Request Classes</td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send the related LCS information to the MME or SGSN within ULA. If the MME or SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that MME or SGSN.</td>
</tr>
<tr>
<td></td>
<td>LCS-</td>
<td></td>
<td>Allow an MS to request its own location</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>BasicSelf</td>
<td>O</td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send the related LCS information to the MME or SGSN within ULA.</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td></td>
<td>If the MME or SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that MME or SGSN.</td>
</tr>
<tr>
<td></td>
<td>AutonomoussSelfLocation</td>
<td>O</td>
<td>Allow an MS to perform self location without interaction with the PLMN</td>
</tr>
<tr>
<td></td>
<td>LCS-</td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send the related LCS information to the MME or SGSN within ULA.</td>
</tr>
<tr>
<td></td>
<td>AutonomoussSelfLocation</td>
<td></td>
<td>If the MME or SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that MME or SGSN.</td>
</tr>
<tr>
<td></td>
<td>LCS-</td>
<td>O</td>
<td>Allow an MS to request transfer of its location to another LCS client</td>
</tr>
<tr>
<td></td>
<td>TransferToThirdParty</td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send the related LCS information to the MME or SGSN within ULA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the MME or SGSN does not indicate support of this feature in IDA, and the HSS has sent the related LCS information within IDR, the HSS may store this indication, and not send any further LCS information to that MME or SGSN.</td>
</tr>
<tr>
<td></td>
<td>SM-MO-PP</td>
<td>O</td>
<td>Short Message MO-PP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send the related SMS information to the MME or SGSN within ULA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the MME or SGSN does not indicate support of this feature in IDA, and the HSS has sent the related SMS information within IDR, the HSS may store this indication, and not send any further SMS information to that MME or SGSN.</td>
</tr>
<tr>
<td></td>
<td>Barring-</td>
<td>O</td>
<td>Barring of Outgoing Calls</td>
</tr>
<tr>
<td></td>
<td>Outgoing</td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send the related SMS information to the MME or SGSN within ULA.</td>
</tr>
<tr>
<td></td>
<td>Calls</td>
<td></td>
<td>If the MME or SGSN does not indicate support of this feature in IDA, and the HSS has sent the related SMS information within IDR, the HSS may store this indication, and not send any further SMS information to that MME or SGSN.</td>
</tr>
<tr>
<td></td>
<td>BAOC</td>
<td>O</td>
<td>Barring of all outgoing calls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the MME or SGSN does not support this feature, the HSS shall not send the related SMS information to the MME or SGSN within ULA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the MME or SGSN does not indicate support of this feature in IDA, and the HSS has sent the related SMS information within IDR, the HSS may store this indication, and not send any further SMS information to that MME or SGSN.</td>
</tr>
<tr>
<td></td>
<td>BOIC</td>
<td>O</td>
<td>Barring of outgoing international calls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs. If the SGSN does not support this feature, the HSS shall not send the related SMS information to the MME or SGSN within ULA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the MME or SGSN does not indicate support of this feature in IDA, and the HSS has sent the related SMS information within IDR, the HSS may store this indication, and not send any further SMS information to that MME or SGSN.</td>
</tr>
<tr>
<td></td>
<td>Feature Description</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>BOICExHC</td>
<td>Barring of outgoing international calls except those directed to the home PLMN Country</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the MME or SGSN does not support this feature, the HSS shall not send the related SMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>information to the MME or SGSN within ULA.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the MME or SGSN does not indicate support of this feature in IDA, and the HSS has sent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the related SMS information within IDR, the HSS may store this indication, and not send any</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>further SMS information to that MME or SGSN.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>UE Reachability Notification</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs, over S6a and S6d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the MME or SGSN indicates in the ULR command that it does not support the UE-Reachability-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notifications, the HSS shall not set the “UE-Reachability-Request” bit in IDR-Flags in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>subsequent IDR commands towards that MME or SGSN.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>T-ADS Data Retrieval</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs, over S6a and S6d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the MME or SGSN indicates in the ULR command that it does not support the retrieval of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T-ADS data via IDR/IDA commands, the HSS shall not set the "T-ADS Data Request" bit in IDR-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flags in subsequent IDR commands towards that MME or SGSN.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>State/Location Information Retrieval</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs, over S6a and S6d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the MME or SGSN indicates in the ULR command that it does not support State/Location</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information Retrieval, the HSS shall not set the "EPS User State Request", "EPS Location</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information Request" or "Current Location Request" bits in IDR-Flags in subsequent IDR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>commands towards that MME or SGSN.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Partial Purge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and PUR/PUA command pairs, over S6a and S6d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the HSS indicates in the ULA command that it does not support Partial Purge, the combined</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MME/SGSN shall not include in the PUR command the indication of the specific serving node</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>where the Purge has been done.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Local Time Zone Retrieval</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA and IDR/IDA command pairs, over S6a and S6d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the MME or SGSN indicates in the ULR command that it does not support the retrieval of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local Time Zone via IDR/IDA commands, the HSS shall not set the "Local Time Zone Request"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bit in IDR-Flags in subsequent IDR commands towards that MME or SGSN.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Additional MSISDN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature is applicable for the ULR/ULA, IDR/IDA and DSR/DSA command pairs, over S6a and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S6d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the MME or SGSN indicates in the ULR command that it does not support A-MSISDN, the HSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>shall populate the MSISDN AVP either with the subscribed MSISDN or the subscribed additional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSISDN based on operator policy and availability and the HSS shall not send IDR with the A-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSISDN AVP or DSR with the “A-MSISDN Withdrawal” bit to the serving nodes when the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>subscription data is changed.</td>
<td></td>
</tr>
</tbody>
</table>

"BOICExHC" stands for "Barring of outgoing international calls except those directed to the home PLMN Country.

"UE-Reachability-Notification" stands for "UE Reachability Notification".

"T-ADS Data Retrieval" stands for "Terminating Access Domain Selection Data Retrieval".

"State/Location Information Retrieval" stands for "State/Location Information Retrieval".

"Partial Purge from a Combined MME/SGSN" stands for "Partial Purge from a Combined MME/SGSN".

"Local Time Zone Retrieval" stands for "UE Time Zone Retrieval".

"Additional MSISDN" stands for "Additional MSISDN".
Table 7.3.10/2: Features of Feature-List-ID 2 used in S6a/S6d

<table>
<thead>
<tr>
<th>Feature bit</th>
<th>Feature</th>
<th>M/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SMS in MME</td>
<td>O</td>
<td>This feature is applicable for the ULR/ULA, IDR/IDA, DSR/DSA, NOR/NOA command pairs, over S6a. It is used by the MME to notify the HSS it is capable of SMS transfer without the need of establishing an SGs association with an MSC. If the MME does not support this feature, the HSS shall not send the related SMS information to the MME within ULA. If the MME does not indicate support of this feature in IDA, and the HSS has sent the related SMS information within IDR, the HSS may store this indication, and not send any further SMS information to that MME. If the HSS does not support this feature, the HSS shall ignore any request for a registration for MT SMS; the MME may store this feature indication, and not send any further request for a registration for MT SMS to the HSS.</td>
</tr>
<tr>
<td>1</td>
<td>SMS in SGSN</td>
<td>O</td>
<td>This feature is applicable for the ULR/ULA command pair, over S6d. If the SGSN indicates in the ULR command that it does not support this feature, the HSS shall not indicate “SMS in SGSN Allowed” to the SGSN.</td>
</tr>
</tbody>
</table>

Features that are not indicated in the Supported-Features AVPs within a given application message shall not be used to construct that message.

7.3.10.2 Feature-List AVP for the S7a/S7d application

For the S7a/S7d application, the feature list does not contain any feature in this release.

7.3.11 Requested-EUTRAN-Authentication-Info

The Requested-EUTRAN-Authentication-Info is of type Grouped. It shall contain the information related to the authentication requests for E-UTRAN.

AVP format

\[
\text{Requested- EUTRAN-Authentication-Info} := \langle \text{AVP header: 1408 10415}\rangle \\
[\text{Number-Of-Requested-Vectors}] \\
[\text{Immediate-Response-Preferred}] \\
[\text{Re-synchronization-Info}] \\
*[\text{AVP}]
\]
7.3.12 Requested-UTRAN-GERAN-Authentication-Info

The Requested-UTRAN-GERAN-Authentication-Info is of type Grouped. It shall contain the information related to the authentication requests for UTRAN or GERAN.

AVP format

\[
\text{Requested-UTRAN-GERAN-Authentication-Info} ::= \langle \text{AVP header: 1409 10415} \rangle
\]

- \[\text{Number-Of-Requested-Vectors} \]
- \[\text{Immediate-Response-Preferred} \]
- \[\text{Re-synchronization-Info} \]

*AVP

7.3.13 RAT-Type

The RAT-Type AVP is of type Enumerated and is used to identify the radio access technology that is serving the UE. See 3GPP TS 29.212 [10] for the defined values.

7.3.14 Number-Of-Requested-Vectors

The Number-Of-Requested-Vectors AVP is of type Unsigned32. This AVP shall contain the number of AVs the MME or SGSN is prepared to receive.

7.3.15 Re-Synchronization-Info

The Re-Synchronization-Info AVP is of type OctetString. It shall contain the concatenation of RAND and AUTS.

7.3.16 Immediate-Response-Preferred

The Immediate-Response-Preferred AVP is of type Unsigned32. This optional AVP indicates by its presence that immediate response is preferred, and by its absence that immediate response is not preferred. If present, the value of this AVP is not significant.

When EUTRAN-AVs and UTRAN-AVs or GERAN-AVs are requested, presence of this AVP within the Requested-EUTRAN-Authentication-Info AVP shall indicate that EUTRAN-AVs are requested for immediate use in the MME/SGSN; presence of this AVP within the Requested-UTRAN-GERAN-Authentication-Info AVP shall indicate that UTRAN-AVs or GERAN-AVs are requested for immediate use in the MME/SGSN. It may be used by the HSS to determine the number of vectors to be obtained from the AuC and the number of vectors downloaded to the MME or SGSN.

7.3.17 Authentication-Info

The Authentication-Info AVP is of type Grouped. This AVP contains Authentication Vectors.

AVP format:

\[
\text{Authentication-Info} ::= \langle \text{AVP header: 1413 10415} \rangle
\]

- *[E-UTRAN-Vector]*
- *[UTRAN-Vector]*
- *[GERAN-Vector]*
- *[AVP]*
7.3.18 E-UTRAN-Vector

The E-UTRAN-Vector AVP is of type Grouped. This AVP shall contain an E-UTRAN Vector.

AVP format:

```
E-UTRAN-Vector ::= <AVP header: 1414 10415>
  [ Item-Number ]
  [ RAND ]
  [ XRES ]
  [ AUTN ]
  [ KASME ]
  *[AVP]
```

7.3.19 UTRAN-Vector

The UTRAN-Vector AVP is of type Grouped. This AVP shall contain an UTRAN Vector.

AVP format:

```
UTRAN-Vector ::= <AVP header: 1415 10415>
  [ Item-Number ]
  [ RAND ]
  [ XRES ]
  [ AUTN ]
  [ Confidentiality-Key ]
  [ Integrity-Key ]
  *[AVP]
```

7.3.20 GERAN-Vector

The GERAN-Vector AVP is of type Grouped. This AVP shall contain a GERAN Vector.

AVP format:

```
GERAN-Vector ::= <AVP header: 1416 10415>
  [ Item-Number ]
  [ RAND ]
  [ SRES ]
  [ Kc ]
  *[AVP]
```

7.3.21 Network-Access-Mode

The Network-Access-Mode AVP is of type Enumerated. The following values are defined:

```
PACKET_AND_CIRCUIT (0)
```
Reserved (1)

ONLY_PACKET (2)

7.3.22 HPLMN-ODB

The HPLMN-ODB AVP is of type Unsigned32 and it shall contain a bit mask indicating the HPLMN specific services of a subscriber that are barred by the operator. The meaning of the bits is HPLMN specific:

<table>
<thead>
<tr>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

The meaning of the bits is HPLMN specific:

Table 7.3.22/1: HPLMN-ODB

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>HPLMN specific barring type 1</td>
</tr>
<tr>
<td>1</td>
<td>HPLMN specific barring type 2</td>
</tr>
<tr>
<td>2</td>
<td>HPLMN specific barring type 3</td>
</tr>
<tr>
<td>3</td>
<td>HPLMN specific barring type 4</td>
</tr>
</tbody>
</table>

HPLMN-ODB may apply to mobile originated short messages; See 3GPP TS 23.015 [36].

7.3.23 Item-Number

The Item-Number AVP is of type Unsigned32. The Item Number is used to order Vectors received within one request.

7.3.24 Cancellation-Type

The Cancellation-Type AVP is of type Enumerated and indicates the type of cancellation. The following values are defined:

MME_UPDATE_PROCEDURE (0)

This value is used when the Cancel Location is sent to the previous MME due to a received Update Location message from a new MME.

SGSN_UPDATE_PROCEDURE (1)

This value is used when the Cancel Location is sent to the previous SGSN due to a received Update Location message from a new SGSN.

SUBSCRIPTION_WITHDRAWAL (2)

This value is used:

- when the Cancel Location is sent by the HSS to the current MME or SGSN due to withdrawal of the user’s subscription by the HSS operator;
- when the Cancel VCSG Location is sent by the CSS to the current MME or SGSN due to withdrawal of the user’s VPLMN CSG subscription by the CSS operator.

UPDATE_PROCEDURE_IWF (3)

This value is used by an IWF when interworking with a pre-Rel-8 HSS.

INITIAL_ATTACH_PROCEDURE (4)

This value is used when the Cancel Location is sent to the MME or SGSN due to a received Update Location message during initial attach procedure from an SGSN or MME respectively.

7.3.25 DSR-Flags

The DSR-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits is defined in table 7.3.25/1:
Table 7.3.25/1: DSR-Flags

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Regional Subscription Withdrawal</td>
<td>This bit, when set, indicates that Regional Subscription shall be deleted from the subscriber data.</td>
</tr>
<tr>
<td>1</td>
<td>Complete APN Configuration Profile Withdrawal</td>
<td>This bit, when set, indicates that all EPS APN configuration data for the subscriber shall be deleted from the subscriber data. This flag only applies to the S6d interface.</td>
</tr>
<tr>
<td>2</td>
<td>Subscribed Charging Characteristics Withdrawal</td>
<td>This bit, when set, indicates that the Subscribed Charging Characteristics have been deleted from the subscription data.</td>
</tr>
<tr>
<td>3</td>
<td>PDN subscription contexts Withdrawal</td>
<td>This bit, when set, indicates that the PDN subscription contexts whose identifier is included in the Context-Identifier AVP shall be deleted. (Note 1)</td>
</tr>
<tr>
<td>4</td>
<td>STN-SR</td>
<td>This bit, when set, indicates that the Session Transfer Number for SRVCC shall be deleted from the subscriber data.</td>
</tr>
<tr>
<td>5</td>
<td>Complete PDP context list Withdrawal</td>
<td>This bit, when set, indicates that all PDP contexts for the subscriber shall be deleted from the subscriber data.</td>
</tr>
<tr>
<td>6</td>
<td>PDP contexts Withdrawal</td>
<td>This bit, when set, indicates that the PDP contexts whose identifier is included in the Context-Identifier AVP shall be deleted. (Note 2)</td>
</tr>
<tr>
<td>7</td>
<td>Roaming Restricted due to unsupported feature</td>
<td>This bit, when set, indicates that the roaming restriction shall be deleted from the subscriber data in the MME or SGSN.</td>
</tr>
<tr>
<td>8</td>
<td>Trace Data Withdrawal</td>
<td>This bit, when set, indicates that the Trace Data shall be deleted from the subscriber data.</td>
</tr>
<tr>
<td>9</td>
<td>CSG Deleted</td>
<td>This bit, when set, indicates that - the 'CSG-Subscription-Data from HSS' shall be deleted in the MME or SGSN when received over the S6a or S6d interface - the 'CSG-Subscription-Data from CSS' shall be deleted in the MME or SGSN when received over the S7a or S7d interface.</td>
</tr>
<tr>
<td>10</td>
<td>APN-OI-Replacement</td>
<td>This bit, when set, indicates that the UE level APN-OI-Replacement shall be deleted from the subscriber data.</td>
</tr>
<tr>
<td>11</td>
<td>GMLC List Withdrawal</td>
<td>This bit, when set, indicates that the subscriber's LCS GMLC List shall be deleted from the MME or SGSN.</td>
</tr>
<tr>
<td>12</td>
<td>LCS Withdrawal</td>
<td>This bit, when set, indicates that the LCS service whose code is included in the SS-Code AVP shall be deleted from the MME or SGSN.</td>
</tr>
<tr>
<td>13</td>
<td>SMS Withdrawal</td>
<td>This bit, when set, indicates that the SMS service whose code is included in the SS-Code AVP or TS-Code AVP shall be deleted from the MME or SGSN.</td>
</tr>
<tr>
<td>14</td>
<td>Subscribed periodic RAU-TAU Timer Withdrawal</td>
<td>This bit, when set, indicates that the subscribed periodic RAU TAU Timer value shall be deleted from the subscriber data.</td>
</tr>
<tr>
<td>15</td>
<td>Subscribed VSRVCC Withdrawal</td>
<td>This bit, when set, indicates that the Subscribed VSRVCC shall be deleted from the subscriber data.</td>
</tr>
<tr>
<td>16</td>
<td>A-MSISDN Withdrawal</td>
<td>This bit, when set, indicates that the additional MSISDN, if present, shall be deleted from the subscriber data.</td>
</tr>
</tbody>
</table>

Note 1: If the Complete APN Configuration Profile Withdrawal bit is set, this bit should not be set.
Note 2: If the Complete PDP context list Withdrawal bit is set, this bit should not be set.
Note 3: Bits not defined in this table shall be cleared by the sending HSS and discarded by the receiving MME or SGSN.
Note 4: Bits 3 and 6 are excluding alternatives and shall not both be set.
Note 5: When this AVP is transferred over the S7a/S7d interface, only the bit 9 (CSG Deleted) is meaningful, other bits shall be cleared.
7.3.26 DSA-Flags

The DSA-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits is defined in table 7.3.26/1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Network Node area restricted</td>
<td>This bit, when set, shall indicate that the complete Network Node area (SGSN area) is restricted due to regional subscription.</td>
</tr>
</tbody>
</table>

Note: Bits not defined in this table shall be cleared by the sending SGSN and discarded by the receiving HSS.

7.3.27 Context-Identifier

The Context-Identifier AVP is of type Unsigned32.

7.3.28 Void

7.3.29 Subscriber-Status

The 3GPP Subscriber Status AVP is of type Enumerated. It shall indicate if the service is barred or granted. The following values are defined:

- SERVICE_GRANTED (0)
- OPERATOR_DETERMINED_BARRING (1)

7.3.30 Operator-Determined-Barring

The Operator-Determined-Barring AVP is of type Unsigned32 and it shall contain a bit mask indicating the services of a subscriber that are barred by the operator. The meaning of the bits is the following:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All Packet Oriented Services Barred</td>
</tr>
<tr>
<td>1</td>
<td>Roamer Access HPLMN-AP Barred</td>
</tr>
<tr>
<td>2</td>
<td>Roamer Access to VPLMN-AP Barred</td>
</tr>
<tr>
<td>3</td>
<td>Barring of all outgoing calls</td>
</tr>
<tr>
<td>4</td>
<td>Barring of all outgoing international calls</td>
</tr>
<tr>
<td>5</td>
<td>Barring of all outgoing international calls except those directed to the home PLMN country</td>
</tr>
<tr>
<td>6</td>
<td>Barring of all outgoing inter-zonal calls</td>
</tr>
<tr>
<td>7</td>
<td>Barring of all outgoing inter-zonal calls except those directed to the home PLMN country</td>
</tr>
<tr>
<td>8</td>
<td>Barring of all outgoing international calls except those directed to the home PLMN country and Barring of all outgoing inter-zonal calls</td>
</tr>
</tbody>
</table>

7.3.31 Access-Restriction-Data

The Access-Restriction-Data AVP is of type Unsigned32 and it shall contain a bit mask where each bit when set to 1 indicates a restriction. The meaning of the bits is the following:
Table 7.3.31/1: Access-Restriction-Data

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UTRAN Not Allowed</td>
</tr>
<tr>
<td>1</td>
<td>GERAN Not Allowed</td>
</tr>
<tr>
<td>2</td>
<td>GAN Not Allowed</td>
</tr>
<tr>
<td>3</td>
<td>I-HSPA-Evolution Not Allowed</td>
</tr>
<tr>
<td>4</td>
<td>E-UTRAN Not Allowed</td>
</tr>
<tr>
<td>5</td>
<td>HO-To-Non-3GPP-Access Not Allowed</td>
</tr>
</tbody>
</table>

7.3.32 APN-OI-Replacement

The APN-OI-Replacement AVP is of type UTF8String. This AVP shall indicate the domain name to replace the APN OI for the non-roaming case and the home routed roaming case when constructing the APN, and the APN-FQDN upon which to perform a DNS resolution. See 3GPP TS 23.003 [3] and 3GPP TS 29.303 [38].

The contents of the APN-OI-Replacement AVP shall be formatted as a character string composed of one or more labels separated by dots (".").

7.3.33 All-APN-Configurations-Included-Indicator

The All-APN-Configurations-Included-Indicator AVP is of type Enumerated. The following values are defined:

- All_APN_CONFIGURATIONS_INCLUDED (0)
- MODIFIED/ADDED_APN_CONFIGURATIONS_INCLUDED (1)

7.3.34 APN-Configuration-Profile

The APN-Configuration-Profile AVP is of type Grouped. It shall contain the information related to the user’s subscribed APN configurations for EPS. The Context-Identifier AVP within it shall identify the per subscriber’s default APN configuration.

The AVP format shall conform to:

```
APN-Configuration-Profile ::= <AVP header: 1429 10415>
  { Context-Identifier }
  { All-APN-Configurations-Included-Indicator }
  1*{APN-Configuration}
  *[AVP]
```

The Subscription-Data AVP associated with an IMSI contains one APN-Configuration-Profile AVP.

Each APN-Configuration-Profile AVP contains one or more APN-Configuration AVPs.

Therefore, the cardinality of the relationship between IMSI and APN is one-to-many.

7.3.35 APN-Configuration

The APN-Configuration AVP is of type Grouped. It shall contain the information related to the user’s subscribed APN configurations. The Context-Identifier in the APN-Configuration AVP shall identify that APN configuration, and it shall not have a value of zero. Furthermore, the Context-Identifier in the APN-Configuration AVP shall uniquely
identify the EPS APN configuration per subscription. For a particular EPS user having multiple APN configurations, the Service-Selection AVP values shall be unique across APN-Configuration AVPs.

The AVP format shall conform to:

```
APN-Configuration ::= <AVP header: 1430 10415>
  [ Context-Identifier ]
  * 2 [ Served-Party-IP-Address ]
  [ PDN-Type ]
  [ Service-Selection]
  [ EPS-Subscribed-QoS Profile ]
  [ VPLMN-Dynamic-Address-Allowed ]
  [MIP6-Agent-Info ]
  [ Visited-Network-Identifier ]
  [ PDN-GW-Allocation-Type ]
  [ 3GPP-Charging-Characteristics ]
  [ AMBR ]
  *[ Specific-APN-Info ]
  [ APN-OI-Replacement ]
  [ SIPTO-Permission ]
  [ LIPA-Permission ]
  [ Restoration-Priority ]
  *[ AVP ]
```

The AMBR included in this grouped AVP shall include the AMBR associated to this specific APN configuration (APN-AMBR).

The Served-Party-IP-Address AVP may be present 0, 1 or 2 times. These AVPs shall be present if static IP address allocation is used for the UE, and they shall contain either of:

- an IPv4 address, or
- an IPv6 address/prefix, or
- both, an IPv4 address and an IPv6 address/prefix.

For the IPv6 prefix, the lower 64 bits of the address shall be set to zero.

The PDN-GW-Allocation-Type AVP applies to the MIP6-Agent-Info AVP. Therefore, it shall not be present if MIP6-Agent-Info is not present.

The APN-OI-Replacement included in this grouped AVP shall include the APN-OI-Replacement associated with this APN configuration. This APN-OI-Replacement has higher priority than UE level APN-OI-Replacement.

The Visited-Network-Identifier AVP indicates the PLMN where the PGW was allocated, in case of dynamic PGW assignment.

NOTE: If interworking with MAP is needed, the Context-Identifier will be in the range of 1 and 50.
7.3.36 Service-Selection

The Service-Selection AVP is of type of UTF8String. This AVP shall contain either the APN Network Identifier (i.e. an APN without the Operator Identifier) per 3GPP TS 23.003 [3], clauses 9.1 & 9.1.1, or this AVP shall contain the wild card value per 3GPP TS 23.003 [3], clause 9.1.2, and 3GPP TS 23.008 [30], clause 2.13.6).

The contents of the Service-Selection AVP shall be formatted as a character string composed of one or more labels separated by dots ("."), or as the wild card APN, i.e., consisting of only one ASCII label, "*".

This AVP is defined in IETF RFC 5778[20].

7.3.37 EPS-Subscribed-QoS-Profile

The EPS-Subscribed-QoS-Profile AVP is of type Grouped. It shall contain the bearer-level QoS parameters (QoS Class Identifier and Allocation Retention Priority) associated to the default bearer for an APN (see 3GPP TS 23.401 [2], clause 4.7.3).

AVP format

EPS-Subscribed-QoS-Profile ::= <AVP header: 1431 10415>

{ QoS-Class-Identifier }

{ Allocation-Retention-Priority }

*[AVP]

NOTE: QoS-Class-Identifier is defined in 3GPP TS 29.212 [10] as an Enumerated AVP. The values allowed for this AVP over the S6a/S6d interface are only those associated to non-GBR bearers, as indicated in 3GPP TS 23.008 [30]; e.g., values QCI_1, QCI_2, QCI_3 and QCI_4, which are associated to GBR bearers, cannot be sent over S6a/S6d.

7.3.38 VPLMN-Dynamic-Address-Allowed

The VPLMN Dynamic Address Allowed AVP is of type Enumerated. It shall indicate whether for this APN, the UE is allowed to use the PDN GW in the domain of the HPLMN only, or additionally, the PDN GW in the domain of the VPLMN. If this AVP is not present, this means that the UE is not allowed to use PDN GWs in the domain of the VPLMN. The following values are defined:

NOTALLOWED (0)

ALLOWED (1)

7.3.39 STN-SR

The STN-SR AVP is of type OctetString and shall contain the Session Transfer Number for SRVCC. See 3GPP TS 23.003 [3] for the definition of STN-SR. This AVP contains an STN-SR, in international number format as described in ITU-T Rec E.164 [41], encoded as a TBCD-string. See 3GPP TS 29.002 [24] for encoding of TBCD-strings. This AVP shall not include leading indicators for the nature of address and the numbering plan; it shall contain only the TBCD-encoded digits of the address.

7.3.40 Allocation-Retention-Priority

The Allocation-Retention-Priority AVP is of typeGrouped and is defined in 3GPP TS 29.212 [10]. It shall indicate the Priority of Allocation and Retention for the corresponding APN configuration.

AVP format

Allocation-Retention-Priority ::= <AVP header: 1034 10415>

{ Priority-Level }

{ Pre-emption-Capability }
[Pre-emption-Vulnerability]

If the Pre-emption-Capability AVP is not present in the Allocation-Retention-Priority AVP, the default value shall be PRE-EMPTION_CAPABILITY_DISABLED (1).

If the Pre-emption-Vulnerability AVP is not present in the Allocation-Retention-Priority AVP, the default value shall be PRE-EMPTION_VULNERABILITY_ENABLED (0).

7.3.41 AMBR

The AMBR AVP is of type Grouped.

AVP format

```
AMBR ::= <AVP header: 1435 10415>
  { Max-Requested-Bandwidth-UL }
  { Max-Requested-Bandwidth-DL }
 *[AVP]
```

7.3.42 MIP-Home-Agent-Address

The MIP-Home-Agent-Address AVP is of type Address and is defined in IETF RFC 4004 [27]. This AVP shall contain either IPv4 or IPv6 address of the PDN-GW and this IP address shall be used as the PDN-GW IP address.

7.3.43 MIP-Home-Agent-Host

The MIP-Home-Agent-Host is of type Grouped and is defined in IETF RFC 4004 [27]. This AVP shall contain a FQDN of the PDN-GW which shall be used to resolve the PDN-GW IP address using the Domain Name Service function.

MIP-Home-Agent-Host grouped AVP is composed by Destination-Host and Destination-Realm AVPs.

Destination-Host shall contain the hostname of the PDN-GW, formatted as described in 3GPP TS 29.303 [38], clause 4.3.2.

Destination-Realm shall be formatted as:

```
epc.mnc<MNC>.mcc<MCC>.3gppnetwork.org
```

where MNC and MCC values indicate the PLMN where the PDN-GW is located.

7.3.44 PDN-GW-Allocation-Type

The PDN-GW-Allocation-Type AVP is of type Enumerated. It shall indicate whether the PDN GW address included in MIP6-Agent-Info has been statically allocated (i.e. provisioned in the HSS by the operator), or dynamically selected by other nodes. The following values are defined:

```
STATIC (0)
DYNAMIC (1)
```

7.3.45 MIP6-Agent-Info

The MIP6-Agent-Info AVP is of type Grouped and is defined in IETF RFC 5447 [26]. This AVP shall contain the identity of the PDN-GW. This AVP is used to convey the identity of the PDN-GW between the MME/SGSN and the HSS regardless of the specific mobility protocol used (GTP or PMIPv6). The identity of PDN-GW is either an IP address transported in MIP-Home-Agent-Address or an FQDN transported in MIP-Home-Agent-Host. FQDN shall be used if known to the MME/SGSN/HSS.
7.3.46 RAT-Frequency-Selection-Priority-ID

The RAT-Frequency-Selection-Priority-ID AVP is of type Unsigned32 and shall contain the subscribed value of Subscriber Profile ID for RAT/Frequency Priority. For details, see 3GPP TS 23.401 [2] and 3GPP TS 23.060 [12]. The coding is defined in 3GPP TS 36.413 [19]. Values shall be in the range of 1 to 256.

7.3.47 IDA-Flags

The IDA-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meanings of the bits are defined in table 7.3.47/1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Network Node area restricted</td>
<td>This bit, when set, shall indicate that the complete Network Node area (SGSN area) is restricted due to regional subscription.</td>
</tr>
</tbody>
</table>

Note: Bits not defined in this table shall be cleared by the sending SGSN and discarded by the receiving HSS.

7.3.48 PUA-Flags

The PUA-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meanings of the bits are defined in table 7.3.48/1:

<table>
<thead>
<tr>
<th>bit</th>
<th>name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Freeze M-TMSI</td>
<td>This bit, when set, shall indicate to the MME that the M-TMSI needs to be frozen, i.e. shall not be immediately re-used.</td>
</tr>
<tr>
<td>1</td>
<td>Freeze P-TMSI</td>
<td>This bit, when set, shall indicate to the SGSN that the P-TMSI needs to be frozen, i.e. shall not be immediately re-used.</td>
</tr>
</tbody>
</table>

Note: Bits not defined in this table shall be cleared by the sending HSS and discarded by the receiving MME or SGSN.

7.3.49 NOR-Flags

The NOR-Flags AVP is of type Unsigned32 and it contains a bit mask. The meaning of the bits is defined in table 7.3.49/1:
Table 7.3.49/1: NOR-Flags

<table>
<thead>
<tr>
<th>bit</th>
<th>name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Single-Registration-Indication</td>
<td>This bit, when set, indicates that the HSS shall send Cancel Location to the SGSN. An SGSN shall not set this bit when sending NOR.</td>
</tr>
<tr>
<td>1</td>
<td>SGSN area restricted</td>
<td>This bit, when set, shall indicate that the complete SGSN area is restricted due to regional subscription.</td>
</tr>
<tr>
<td>2</td>
<td>Ready for SM from SGSN</td>
<td>This bit, when set, shall indicate that the UE is present or the UE has memory capacity available to receive one or more short messages via SGSN.</td>
</tr>
<tr>
<td>3</td>
<td>UE Reachable from MME</td>
<td>This bit, when set, shall indicate that the UE has become reachable again from MME.</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>The use of this bit is deprecated. This bit shall be discarded by the receiving HSS.</td>
</tr>
<tr>
<td>5</td>
<td>UE Reachable from SGSN</td>
<td>This bit, when set, shall indicate that the UE has become reachable again from SGSN.</td>
</tr>
<tr>
<td>6</td>
<td>Ready for SM from MME</td>
<td>This bit, when set, shall indicate that the UE is present or the UE has memory capacity available to receive one or more short messages via MME.</td>
</tr>
<tr>
<td>7</td>
<td>Homogeneous Support of IMS Voice Over PS Sessions</td>
<td>This bit, when set, shall indicate that the Homogeneous Support of IMS Voice Over PS Sessions is updated.</td>
</tr>
<tr>
<td>8</td>
<td>S6a/S6d-Indicator</td>
<td>This bit, when set, shall indicate that the NOR message is sent on the S6a interface, i.e. the message is from the MME or the MME part on the combined MME/SGSN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This bit, when cleared, indicates that the NOR message is sent on the S6d interface, i.e. the message is from the SGSN or the SGSN part on the combined MME/SGSN.</td>
</tr>
<tr>
<td>9</td>
<td>Removal of MME Registration for SMS</td>
<td>This bit, when set, shall indicate that the MME requests to remove its registration for SMS.</td>
</tr>
</tbody>
</table>

NOTE 1: The S6a/S6d-Indicator flag shall be used together with Homogeneous Support of IMS Voice Over PS Sessions flag, i.e. if the Homogeneous Support of IMS Voice Over PS Sessions bit is set, the S6a/S6d-Indicator bit shall be set if the message is sent from the MME or the MME part on the combined MME/SGSN. This S6a/S6d-Indicator bit shall be discarded by the receiving HSS if the Homogeneous Support of IMS Voice Over PS Sessions bit is not set.

NOTE 2: Bits not defined in this table shall be cleared by the sending MME or SGSN and discarded by the receiving HSS.

7.3.50 User-Id

The User-Id AVP shall be of type UTF8String. It shall contain the leading digits of an IMSI (i.e. MCC, MNC, leading digits of MSIN, see 3GPP TS 23.003 [3], clause 2.2) formatted as a character string. Within a HSS, a User-Id identifies a set of subscribers, each with identical leading IMSI digits.

7.3.51 Equipment-Status

The Equipment-Status AVP is of type Enumerated, and shall contain the status of the mobile equipment. The following values are defined:

WHITELISTED (0)
BLACKLISTED (1)
GREYLISTED (2)
7.3.52 Regional-Subscription-Zone-Code

The Regional-Subscription-Zone-Code AVP is of type OctetString. It shall contain a Zone Code (ZC) as defined in 3GPP TS 23.003 [3], clause 4.4. Up to 10 Zone Codes per VPLMN can be defined as part of the users's subscription data.

NOTE 1: Each zone code represents a collection of tracking area or routing areas (defined by the operator of the VPLMN) where the user is allowed, or disallowed, to roam. The determination of which areas are actually allowed, and which ones are not allowed, is done by the serving node (MME/SGSN) in an implementation-dependent manner.

NOTE 2: The description of RSZI in 3GPP TS 23.003 [3] is applicable, in the context of this specification, not only to location areas, but also to routing and tracking areas.

7.3.53 RAND

The RAND AVP is of type OctetString. This AVP shall contain the RAND. See 3GPP TS 33.401 [5].

7.3.54 XRES

The XRES AVP is of type OctetString. This AVP shall contain the XRES. See 3GPP TS 33.401 [5].

7.3.55 AUTN

The AUTN AVP is of type OctetString. This AVP shall contain the AUTN. See 3GPP TS 33.401 [5].

7.3.56 KASME

The KASME AVP is of type OctetString. This AVP shall contain the K_ASME. See 3GPP TS 33.401 [5].

7.3.57 Confidentiality-Key AVP

The Confidentiality-Key is of type OctetString, and shall contain the Confidentiality Key (CK).

7.3.58 Integrity-Key AVP

The Integrity-Key is of type OctetString, and shall contain the Integrity Key (IK).

7.3.59 Kc AVP

The Kc-Key is of type OctetString, and shall contain the Ciphering Key (Kc).

7.3.60 SRES

The SRES AVP is of type OctetString. This AVP shall contain the SRES. See 3GPP TS 33.102 [18].

7.3.61 Void

7.3.62 PDN-Type

The PDN-Type AVP is of type Enumerated and indicates the address type of PDN. The following values are defined:

IPv4 (0)

This value shall be used to indicate that the PDN can be accessed only in IPv4 mode.

IPv6 (1)
This value shall be used to indicate that the PDN can be accessed only in IPv6 mode.

IPv4v6 (2)

This value shall be used to indicate that the PDN can be accessed both in IPv4 mode, in IPv6 mode, and also from UEs supporting dualstack IPv4v6.

IPv4 OR IPv6 (3)

This value shall be used to indicate that the PDN can be accessed either in IPv4 mode, or in IPv6 mode, but not from UEs supporting dualstack IPv4v6. It should be noted that this value will never be used as a requested PDN Type from the UE, since UEs will only use one of their supported PDN Types, i.e., IPv4 only, IPv6 only or IPv4v6 (dualstack). This value is only used as part of the APN subscription context, as an authorization mechanism between HSS and MME.

7.3.63 Trace-Data AVP

The Trace-Data AVP is of type Grouped. This AVP shall contain the information related to trace function.

AVP format

```
Trace-Data ::= <AVP header: 1458 10415>
   {Trace-Reference}
   {Trace-Depth}
   {Trace-NE-Type-List}
   [Trace-Interface-List]
   {Trace-Event-List}
   [OMC-Id]
   {Trace-Collection-Entity}
   [MDT-Configuration]
* [AVP]
```

7.3.64 Trace-Reference AVP

The Trace-Reference AVP is of type OctetString. This AVP shall contain the concatenation of MCC, MNC and Trace ID, where the Trace ID is a 3 byte Octet String. See 3GPP TS 32.422 [23].

The content of this AVP shall be encoded as octet strings according to table 7.3.64/1.

See 3GPP TS 24.008 [31], clause 10.5.1.13, PLMN list, for the coding of MCC and MNC. If MNC is 2 digits long, bits 5 to 8 of octet 2 are coded as "1111".
Table 7.3.64/1: Encoding format for Trace-Reference AVP

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC digit 2</td>
<td>MCC digit 1</td>
<td>octet 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNC digit 3</td>
<td>MCC digit 3</td>
<td>octet 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNC digit 2</td>
<td>MNC digit 1</td>
<td>octet 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace ID</td>
<td>octet 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>octet 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>octet 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.3.65 Void

7.3.66 Void

7.3.67 Trace-Depth AVP

The Trace-Depth AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Trace Depth.

7.3.68 Trace-NE-Type-List AVP

The Trace-NE-Type-List AVP is of type OctetString. Octets are coded according to 3GPP TS 32.422 [23].

7.3.69 Trace-Interface-List AVP

The Trace-Interface-List AVP is of type OctetString. Octets are coded according to 3GPP TS 32.422 [23].

7.3.70 Trace-Event-List AVP

The Trace-Event-List AVP is of type OctetString. Octets are coded according to 3GPP TS 32.422 [23].

7.3.71 OMC-Id AVP

The OMC-Id AVP is of type OctetString. Octets are coded according to 3GPP TS 29.002 [24].

7.3.72 GPRS-Subscription-Data

The GPRS-Subscription-Data AVP is of type Grouped. It shall contain the information related to the user profile relevant for GPRS.

AVP format:

```
GPRS-Subscription-Data ::= <AVP header: 1467 10415>
  { Complete-Data-List-Included-Indicator }
  1*50{PDP-Context}
  *[AVP]
```
NOTE: The max number of PDP-Context AVP aligns with the value of maxNumOfPDP-Contexts as defined in
3GPP TS 29.002[24].

7.3.73 Complete-Data-List-Included-Indicator

The Complete-Data-List-Included-Indicator AVP is of type Enumerated. The following values are defined:

All_PDP_CONTEXTS_INCLUDED (0)
MODIFIED/ADDED_PDP CONTEXTS_INCLUDED (1)

7.3.74 PDP-Context

The PDP-Context AVP is of type Grouped. For a particular GPRS user having multiple PDP Context configurations, the Service-Selection AVP values may be the same for different PDP-Context AVPs.

AVP format

PDP-Context ::= <AVP header: 1469 10415>
 { Context-Identifier }
 { PDP-Type }
 [PDP-Address]
 { QoS-Subscribed }
 [VPLMN-Dynamic-Address-Allowed]
 { Service-Selection }
 [3GPP-Charging-Characteristics]
 [Ext-PDP-Type]
 [Ext-PDP-Address]
 [AMBR]
 [APN-OI-Replacement]
 [SIPTO-Permission]
 [LIPA-Permission]
 [Restoration-Priority]
 *[AVP]

The Ext-PDP-Address AVP may be present only if the PDP-Address AVP is present. If the Ext-PDP-Address AVP is present, then it shall not contain the same address type (IPv4 or IPv6) as the PDP-Address AVP.

The AMBR included in this grouped AVP shall include the AMBR associated to the APN included in the PDP-Context AVP (APN-AMBR).

The APN-OI-Replacement included in this grouped AVP shall include the APN-OI-Replacement associated to the APN included in the PDP-Context. This APN-OI-Replacement has higher priority than UE level APN-OI-Replacement.

7.3.75 PDP-Type

The PDP-Type AVP is of type OctetString. Octets are coded according to 3GPP TS 29.002 [24].
7.3.75A Ext-PDP-Type

The Ext-PDP-Type AVP is of type OctetString. Octets are coded according to 3GPP TS 29.002 [24] and 3GPP TS 29.060 [39] and shall contain the value of IPv4v6.

7.3.76 Void

7.3.77 QoS-Subscribed

7.3.78 CSG-Subscription-Data

The CSG-Subscription-Data AVP is of type Grouped. This AVP shall contain the CSG-Id, and may contain the associated Visited-PLMN-Id, an associated expiration date and the APNs which are allowed to be accessed via Local IP Access from the CSG.

If the Visited-PLMN-Id is not present, the CSG-Subscription-Data corresponds to the registered PLMN (i.e. the visited PLMN) of the MME or the SGSN.

AVP format

```
CSG-Subscription-Data ::= <AVP header: 1436 10415>
                [ CSG-Id ]
                [ Expiration-Date ]
                *[ Service-Selection ]
                [ Visited-PLMN-Id ]
                *[AVP]
```

7.3.79 CSG-Id

The CSG-Id-Data AVP is of type Unsigned32. Values are coded according to 3GPP TS 23.003 [3]. Unused bits (least significant) shall be padded with zeros.

7.3.80 Expiration-Date

The Expiration-Date AVP is of type Time (see IETF RFC 3588 [4]) and contains the point in time when subscription to the CSG-Id expires.

7.3.81 Roaming-Restricted-Due-To-Unsupported-Feature

The Roaming-Restricted-Due-To-Unsupported-Feature AVP is of type Enumerated and indicates that roaming is restricted due to unsupported feature. The following value is defined:

```
Roaming-Restricted-Due-To-Unsupported-Feature (0)
```

7.3.82 Specific-APN-Info AVP

The Specific-APN-Info AVP is of type Grouped. It shall only be present in the APN configuration when the APN is a wildcard APN. It shall contain the APN which is not present in the subscription context but the UE is authorized to connect to and the identity of the registered PDN-GW.

The AVP format shall conform to:
Specific-APN-Info ::= <AVP header: 1472 10415>
 [Service-Selection]
 [MIP6-Agent-Info]
 [Visited-Network-Identifier]
 *[AVP]

7.3.83 Alert-Reason AVP

The Alert-Reason AVP is of type Enumerated. The following values are defined:

 UE_PRESENT (0)
 UE_MEMORY_AVAILABLE (1)

7.3.84 LCS-Info

The LCS-Info AVP is of type Grouped. This AVP shall contain the following LCS related information for a subscriber:

- list of GMLCs in the HPLMN that are permitted to issue a call/session unrelated or call/session related MT-LR location request for this UE;
- privacy exception list that is applicable only over the S6d interface;
- MO-LR list.

AVP format

LCS-Info ::= <AVP header: 1473 10415>
 *[GMLC-Number]
 *[LCS-PrivacyException]
 *[MO-LR]
 *[AVP]

7.3.85 GMLC-Number

The GMLC-Number AVP is of type OctetString. This AVP shall contain the ISDN number of the GMLC in international number format as described in ITU-T Rec E.164 [41] and shall be encoded as a TBCD-string. See 3GPP TS 29.002 [24] for encoding of TBCD-strings. This AVP shall not include leading indicators for the nature of address and the numbering plan; it shall contain only the TBCD-encoded digits of the address.

7.3.86 LCS-PrivacyException

The LCS-PrivacyException AVP is of type Grouped. This AVP shall contain the classes of LCS Client that are allowed to locate any target UE.

AVP format

LCS-PrivacyException ::= <AVP header: 1475 10415>
 [SS-Code]
 [SS-Status]
 [Notification-To-UE-User]
 *[External-Client]
7.3.87 SS-Code
The SS-Code AVP is of type OctetString. Octets are coded according to 3GPP TS 29.002 [24].

7.3.88 SS-Status
The SS-Status AVP is of type OctetString. Octets are coded according to 3GPP TS 29.002 [24]. For details, see 3GPP TS 23.011 [29].

7.3.89 Notification-To-UE-User
The Privacy-Notification-UE-User AVP is of type Enumerated. The following values are defined:

- NOTIFY_LOCATION_ALLOWED (0)
- NOTIFYANDVERIFY_LOCATION_ALLOWED_IF_NO_RESPONSE (1)
- NOTIFYANDVERIFY_LOCATION_NOT_ALLOWED_IF_NO_RESPONSE (2)
- LOCATION_NOT_ALLOWED (3)

7.3.90 External-Client
The External-Client AVP is of type Grouped. This AVP shall contain the identities of the external clients that are allowed to locate a target UE for a MT-LR.

AVP format

```
External-Client ::= <AVP header: 1479 10415>

{ Client-Identity }
{ GMLC-Restriction }
{ Notification-To-UE-User }
*[AVP]
```

7.3.91 Client-Identity
The Client-Identity AVP is of type OctetString and it shall contain the ISDN number of the external client in international number format as described in ITU-T Rec. E.164 [41] and shall be encoded as a TBCD-string. See 3GPP TS 29.002 [24] for encoding of TBCD-strings. This AVP shall not include leading indicators for the nature of address and the numbering plan; it shall contain only the TBCD-encoded digits of the address.

7.3.92 GMLC-Restriction
The GMLC-Restriction AVP is of type Enumerated. The following values are defined:

- GMLC_LIST (0)
- HOME_COUNTRY (1)
7.3.93 PLMN-Client

The PLMN-Client AVP is of type Enumerated. The following values are defined:

- BROADCAST_SERVICE (0)
- O_AND_M_HPLMN (1)
- O_AND_M_VPLMN (2)
- ANONYMOUS_LOCATION (3)
- TARGET_UE_SUBSCRIBED_SERVICE (4)

7.3.94 Service-Type

The Service-Type AVP is of type Grouped. This AVP shall contain the identities of the service type of the clients that are allowed to locate a target UE for an MT-LR.

AVP format

```
Service-Type ::= <AVP header: 1483 10415>
  { ServiceTypeIdentity }
  [ GMLC-Restriction ]
  [ Notification-To-UE-User ]
  *[AVP]
```

7.3.95 ServiceTypeIdentity

The ServiceTypeIdentity AVP is of type Unsigned32. For details on the values of this AVP, see 3GPP TS 29.002 [24].

7.3.96 MO-LR

The MO-LR AVP is of type Grouped. This AVP shall contain the classes of MO-LR for which a subscription exists for a particular UE.

AVP format

```
MO-LR ::= <AVP header: 1485 10415>
  { SS-Code }
  { SS-Status }
  *[AVP]
```

7.3.97 Void

7.3.98 Trace-Collection-Entity AVP

The Trace-collection-Entity AVP is of type Address and contains the IPv4 or IPv6 address of the Trace Collection Entity, as defined in 3GPP TS 32.422 [23], clause 5.9.

7.3.99 Teleservice-List

The Teleservice-List AVP is of type Grouped. This AVP shall contain the service codes for the short message related teleservice for a subscriber:
AVP format

Teleservice-List ::= <AVP header: 1486 10415>

1 * [TS-Code] [AVP]

7.3.100 TS-Code
The TS-Code AVP is of type OctetString. Octets are coded according to 3GPP TS 29.002 [24].

7.3.101 Call-Barring-Info
The Call-Barring-Info AVP is of type Grouped. This AVP shall contain the service codes for the short message related

call barring services for a subscriber:

AVP format

Call-Barring-Info ::= <AVP header: 1488 10415>

[SS-Code]

[SS-Status]

* [AVP]

7.3.102 SGSN-Number
The SGSN-Number AVP is of type OctetString and it shall contain the ISDN number of the SGSN. For further details

on the definition of this AVP, see 3GPP TS 23.003[3]. This AVP contains an SGSN-Number in international number

format as described in ITU-T Rec E.164 [41] and shall be encoded as a TBCD-string. See 3GPP TS 29.002 [24] for

encoding of TBCD-strings. This AVP shall not include leading indicators for the nature of address and the numbering

plan; it shall contain only the TBCD-encoded digits of the address.

7.3.103 IDR-Flags
The IDR-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits shall be as defined

in table 7.3.103/1:
Table 7.3.103/1: IDR-Flags

<table>
<thead>
<tr>
<th>bit</th>
<th>name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UE Reachability Request</td>
<td>This bit when set shall indicate to the MME or the SGSN that the HSS is awaiting a Notification of UE Reachability.</td>
</tr>
<tr>
<td>1</td>
<td>T-ADS Data Request</td>
<td>This bit, when set, shall indicate to the MME or SGSN that the HSS requests the support status of "IMS Voice over PS Sessions", and the RAT Type and timestamp of the last radio contact with the UE.</td>
</tr>
<tr>
<td>2</td>
<td>EPS User State Request</td>
<td>This bit, when set, shall indicate to the MME or the SGSN that the HSS requests the MME or the SGSN for the current user state.</td>
</tr>
<tr>
<td>3</td>
<td>EPS Location Information Request</td>
<td>This bit, when set, shall indicate to the MME or the SGSN that the HSS requests the MME or SGSN for location information.</td>
</tr>
<tr>
<td>4</td>
<td>Current Location Request</td>
<td>This bit when set shall indicate to the MME or the SGSN that the HSS requests the MME or SGSN to provide the most current location information by paging the UE if the UE is in idle mode. If this bit is used only in combination with the "EPS Location Information Request" bit.</td>
</tr>
<tr>
<td>5</td>
<td>Local Time Zone Request</td>
<td>This bit when set shall indicate to the MME or the SGSN that the HSS requests the MME or SGSN to provide information on the time zone of the location in the visited network where the UE is attached.</td>
</tr>
<tr>
<td>6</td>
<td>Remove SMS Registration</td>
<td>This bit when set shall indicate to the MME that it shall consider itself unregistered for SMS.</td>
</tr>
<tr>
<td>7</td>
<td>RAT-Type Requested</td>
<td>This bit when set shall indicate to the MME or the SGSN that the HSS requests the MME or SGSN to provide the RAT Type that corresponds to the requested EPS Location Information. This bit is used only in combination with the "EPS Location Information Request" bit.</td>
</tr>
</tbody>
</table>

NOTE: Bits not defined in this table shall be cleared by the sending HSS and discarded by the receiving MME.

7.3.104 ICS-Indicator

The ICS-Indicator AVP is of type Enumerated. The meaning of the values is defined in 3GPP TS 23.292 [34] and 3GPP TS 23.216 [35]. The following values are defined:

- **FALSE (0)**
- **TRUE (1)**

7.3.105 Visited-Network-Identifier

The Visited-Network-Identifier AVP contains the identity of the network where the PDN-GW was allocated, in the case of dynamic PDN-GW assignment.

The AVP shall be encoded as:

mnc<MNC>.mcc<MCC>.3gppnetwork.org

7.3.106 IMS-Voice-Over-PS-Sessions-Supported

The IMS-Voice-Over-PS-Sessions-Supported AVP is of type Enumerated. The following values are defined:
NOT_SUPPORTED (0)

This value indicates that "IMS Voice over PS Sessions" is not supported by the UE’s most recently used TA or RA in the serving node.

SUPPORTED (1)

This value indicates that "IMS Voice over PS Sessions" is supported by the UE’s most recently used TA or RA in the serving node.

7.3.107 Homogeneous-Support-of-IMS-Voice-Over-PS-Sessions

The Homogeneous-Support-of-IMS-Voice-Over-PS-Sessions AVP is of type Enumerated. The following values are defined:

NOT_SUPPORTED (0)

This value indicates that "IMS Voice over PS Sessions" is not supported, homogeneously, in any of the TAs or RAs associated to the serving node.

SUPPORTED (1)

This value indicates that "IMS Voice over PS Sessions" is supported, homogeneously, in all of the TAs or RAs associated to the serving node.

If this AVP is not present in the command, it indicates that there is no homogeneous support of IMS Voice Over PS Sessions on all the TA/RAs of the serving node, or that the homogeneity of this support is unknown to the serving node.

7.3.108 Last-UE-Activity-Time

The Last-UE-Activity-Time AVP is of type Time (see IETF RFC 3588 [4]), and contains the point of time of the last radio contact of the serving node (MME or SGSN) with the UE.

7.3.109 GMLC-Address

The GMLC-Address AVP is of type Address and shall contain the IPv4 or IPv6 address of the V-GMLC associated with the serving node.

7.3.110 EPS-User-State

The EPS-User-State AVP is of type Grouped. It shall contain the information related to the user state in the MME and/or the SGSN.

AVP format

```
EPS-User-State ::= <AVP header:1495 10415>
  [MME-User-State]
  [SGSN-User-State]
  *[AVP]
```

7.3.111 EPS-Location-Information

The EPS-Location Information AVP is of type Grouped. It shall contain the information related to the user location relevant for EPS.

AVP format

```
EPS-Location-Information ::= <AVP header: 1496 10415>
  [MME-Location-Information]
```
7.3.112 MME-User-State

The MME-User-State AVP is of type Grouped. It shall contain the information related to the user state in the MME.

AVP format

MME-User-State ::= <AVP header: 1497 10415>

[User-State]

* [AVP]

7.3.113 SGSN-User-State

The SGSN-User-State AVP is of type Grouped. It shall contain the information related to the user state in the SGSN.

AVP format

SGSN-User-State ::= <AVP header: 1498 10415>

[User-State]

* [AVP]

7.3.114 User-State

The User-State AVP is of type Enumerated and indicates the user state in EPS. The following values are defined:

- DETACHED (0)
- ATTACHED_NOT_REACHABLE_FOR_PAGING (1)
- ATTACHED_REACHABLE_FOR_PAGING (2)
- CONNECTED_NOT_REACHABLE_FOR_PAGING (3)
- CONNECTED_REACHABLE_FOR_PAGING (4)
- NETWORK_DETERMINED_NOT_REACHABLE (5)

7.3.115 MME-Location-Information

The MME-Location-Information AVP is of type Grouped. It shall contain the information related to the user location relevant for the MME.

AVP format

MME-Location-Information ::= <AVP header: 1600 10415>

[E-UTRAN-Cell-Global-Identity]

[Tracking-Area-Identity]

[Geographical-Information]

[Geodetic-Information]

[Current-Location-Retrieved]

[Age-Of-Location-Information]
7.3.116 SGSN-Location-Information

The SGSN-Location-Information AVP is of type Grouped. It shall contain the information related to the user location relevant for the SGSN.

AVP format

SGSN-Location-Information ::= <AVP header: 1601 10415>
 [Cell-Global-Identity]
 [Location-Area-Identity]
 [Service-Area-Identity]
 [Routing-Area-Identity]
 [Geographical-Information]
 [Geodetic-Information]
 [Current-Location-Retrieved]
 [Age-Of-Location-Information]
 [User-CSG-Information]
 *[AVP]
7.3.122 Service-Area-Identity

The Service-Area-Identity AVP is of type OctetString and shall contain the Service Area Identifier of the user where the user is located, as specified in 3GPP TS 23.003 [3]. Octets are coded as described in 3GPP TS 29.002 [24].

7.3.123 Geographical-Information

The Geographical-Information AVP is of type OctetString and shall contain the geographical Information of the user. For details and octet encoding, see 3GPP TS 29.002 [24].

7.3.124 Geodetic-Information

The Geodetic-Information AVP is of type OctetString and shall contain the Geodetic Location of the user. For details and octet encoding, see 3GPP TS 29.002 [24].

7.3.125 Current-Location-Retrieved

The Current-Location-Retrieved AVP is of type Enumerated. The following values are defined:

 ACTIVE-LOCATION-RETRIEVAL (0)

This value is used when location information was obtained after a successful paging procedure for Active Location Retrieval.

7.3.126 Age-Of-Location-Information

The Age-Of-Location-Information AVP is of type Unsigned32 and shall contain the the elapsed time in minutes since the last network contact of the user equipment. For details, see 3GPP TS 29.002 [24].

7.3.127 Active-APN

The Active-APNs AVP is of type Grouped. It shall contain information about a dynamically established APN on a serving node, so the HSS can restore it, if it is eventually lost after a node restart.

The AVP format shall conform to:

 Active-APN ::= <AVP header: 1612 10415>

 [Context-Identifier]
 [Service-Selection]
 [MIP6-Agent-Info]
 [Visited-Network-Identifier]

 *[Specific-APN-Info]
 *[AVP]

7.3.128 Error-Diagnostic

The Error-Diagnostic AVP is of type Enumerated. The following values are defined:

 - GPRS_DATA_SUBSCRIBED (0)

 This value shall be used when Experimental-Error is DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION and there is GPRS Subscription Data for the user.

 - NO_GPRS_DATA_SUBSCRIBED (1)
This value shall be used when Experimental-Error is
DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION and there is not GPRS Subscription Data for
the user.

- ODB-ALL-APN (2)

This value shall be used when Experimental-Error is DIAMETER_ERROR_ROAMING_NOT_ALLOWED
and the Operator Determined Barring indicates "All Packet Oriented Services Barred" (see clause 7.3.30).

- ODB-HPLMN-APN (3)

This value shall be used when Experimental-Error is DIAMETER_ERROR_ROAMING_NOT_ALLOWED
and the Operator Determined Barring indicates "Roamer Access HPLMN-AP Barred" (see clause 7.3.30).

- ODB-VPLMN-APN (4)

This value shall be used when Experimental-Error is DIAMETER_ERROR_ROAMING_NOT_ALLOWED
and the Operator Determined Barring indicates "Roamer Access to VPLMN-AP Barred" (see clause 7.3.30).

7.3.129 Ext-PDP-Address AVP

The Ext-PDP-Address AVP is of type Address and indicates an additional address of the data protocol, and it may be
included when the PDP supports dual-stack (IPv4v6).

7.3.130 UE-SRVCC-Capability

The UE-SRVCC-Capability AVP is of type Enumerated. It shall indicate if the UE supports or does not support the
SRVCC capability. The following values are defined:

- UE-SRVCC-NOT-SUPPORTED (0)
- UE-SRVCC-SUPPORTED (1)

7.3.131 MPS-Priority

The MPS-Priority AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits shall be as
defined in table 7.3.131/1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MPS-CS-Priority</td>
<td>This bit, when set, indicates that the UE is subscribed to the eMLPP or 1x RTT priority service in the CS domain.</td>
</tr>
<tr>
<td>1</td>
<td>MPS-EPS-Priority</td>
<td>This bit, when set, indicates that the UE is subscribed to the MPS in the EPS domain.</td>
</tr>
</tbody>
</table>

Note: Bits not defined in this table shall be cleared by the sending HSS and discarded by the receiving MME or SGSN.

Note: The HSS derives the information for MPS-CS-Priority from the eMLPP Subscription Data as defined in
the 3GPP TS 29.002 [24] or 1x RTT priority service which is out of the scope of 3GPP.

7.3.132 VPLMN-LIPA-Allowed

The VPLMN-LIPA-Allowed AVP is of type Enumerated. It shall indicate whether the UE is allowed to use LIPA in the
VPLMN where the UE is roaming. The following values are defined:

- LIPA-NOTALLOWED (0)
 This value indicates that the UE is not allowed to use LIPA in the VPLMN where the UE is roaming.
- LIPA-ALLOWED (1)
This value indicates that the UE is allowed to use LIPA in the VPLMN where the UE is roaming.

7.3.133 LIPA-Permission

The LIPA-Permission AVP is of type Enumerated. It shall indicate whether the APN can be accessed via Local IP Access. The following values are defined:

- **LIPA-PROHIBITED (0)**

 This value indicates that this APN is prohibited to be accessed via LIPA.

- **LIPA-ONLY (1)**

 This value indicates that this APN can be accessed only via LIPA.

- **LIPA-CONDITIONAL (2)**

 This value indicates that this APN can be accessed via both non LIPA and LIPA.

7.3.134 Subscribed-Periodic-RAU-RAU-Timer

The Subscribed-Periodic-RAU-RAU-Timer AVP is of type Unsigned32 and it shall contain the subscribed periodic TAU/RAU timer value in seconds.

7.3.135 SIPTO-Permission

The SIPTO-Permission AVP is of type Enumerated. It shall indicate whether the traffic associated with this particular APN is allowed or not for SIPTO.

The following values are defined:

- **SIPTO_ALLOWED (0)**

- **SIPTO_NOTALLOWED (1)**

7.3.136 MDT-Configuration

The MDT-Configuration AVP is of type Grouped. It shall contain MDT related information as specified in 3GPP TS 32.422 [23].

The AVP format shall conform to:

```
MDT-Configuration ::= <AVP header: 1622 10415>
  [ Job-Type ]
  [ Area-Scope ]
  [ List-Of-Measurements ]
  [ Reporting-Trigger ]
  [ Report-Interval ]
  [ Report-Amount ]
  [ Event-Threshold-RSRP ]
  [ Event-Threshold-RSRQ ]
  [ Logging-Interval ]
  [ Logging-Duration ]
```
7.3.137 Job-Type

The Job-Type AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Job-Type.

7.3.138 Area-Scope

The Area-Scope AVP is of type Grouped. See 3GPP TS 32.422 [23].

The AVP format shall conform to:

Area-Scope ::= <AVP header: 1623 10415>

*[Cell-Global-Identity]
 *[E-UTRAN-Cell-Global-Identity]
 *[Routing-Area-Identity]
 *[Location-Area-Identity]
 *[Tracking-Area-Identity]
 *[AVP]

7.3.139 List-Of-Measurements

The List-Of-Measurements AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits is defined in 3GPP TS 32.422 [23]. The most significant bit is bit 8 of the first octet.

7.3.140 Reporting-Trigger

The Reporting-Trigger AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits is defined in 3GPP TS 32.422 [23]. The most significant bit is bit 8 of the first octet.

7.3.141 Report-Interval

The Report-Interval AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Report Interval
7.3.142 Report-Amount

The Report-Amount AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Report Amount.

7.3.143 Event-Threshold-RSRP

The Event-Threshold-RSRP AVP is of type Unsigned32. See 3GPP TS 32.422 for allowed values

7.3.144 Event-Threshold-RSRQ

The Event-Threshold-RSRQ AVP is of type Unsigned32. See 3GPP TS 32.422 for allowed values

7.3.145 Logging-Interval

The Logging-Interval AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Logging Interval

7.3.146 Logging-Duration

The Logging-Duration AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Logging Duration

7.3.147 Relay-Node-Indicator

The Relay-Node-Indicator AVP is of type Enumerated. It shall indicate whether the subscription data belongs to a Relay Node or not (see 3GPP TS 36.300 [40]). The following values are defined:

- NOT_RELAY_NODE (0)
 - This value indicates that the subscription data does not belong to a Relay Node.
- RELAY_NODE (1)
 - This value indicates that the subscription data belongs to a Relay Node.

The default value when this AVP is not present is NOT_RELAY_NODE (0).

7.3.148 MDT-User-Consent

The MDT-User-Consent AVP is of type Enumerated. It shall indicate whether the user has given his consent for MDT activation or not (see 3GPP TS 32.422 [23]). The following values are defined:

- CONSENT_NOT_GIVEN (0)
- CONSENT_GIVEN (1)

The default value when this AVP is not present in ULA is CONSENT_NOT_GIVEN (0). Absence of this AVP in IDR shall be interpreted as the MDT-User-Consent has not been modified.

7.3.149 PUR-Flags

The PUR-Flags AVP is of type Unsigned32 and it shall contain a bitmask. The meaning of the bits is defined in table 7.3.149/1:
7.3.149 PUR-Flags

<table>
<thead>
<tr>
<th>bit</th>
<th>name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UE Purged in MME</td>
<td>This bit, when set, indicates that the combined MME/SGSN has purged the UE in the MME part of the node. This bit shall not be set by a standalone SGSN.</td>
</tr>
<tr>
<td>1</td>
<td>UE Purged in SGSN</td>
<td>This bit, when set, shall indicate that the combined MME/SGSN has purged the UE in the SGSN part of the node. This bit shall not be set by a standalone MME.</td>
</tr>
</tbody>
</table>

NOTE: Bits not defined in this table shall be cleared by the sending MME or SGSN and discarded by the receiving HSS.

7.3.150 Subscribed-VSRVCC

The Subscribed-VSRVCC AVP is of type Enumerated. It shall indicate that the user is subscribed to the vSRVCC. The following value is defined:

VSRVCC_SUBSCRIBED (0)

Absence of this AVP in IDR shall be interpreted as the Subscribed-VSRVCC has not been modified.

Absence of this AVP in ULA shall be interpreted as the user is not subscribed to the vSRVCC.

7.3.151 Equivalent-PLMN-List

The Equivalent-PLMN-List AVP is of type Grouped. This AVP shall contain the equivalent PLMN IDs of the registered PLMN (i.e. the visited PLMN) of the MME or the SGSN.

AVP format

```
Equivalent-PLMN-List ::= <AVP header: 1637 10415>
  1*{ Visited-PLMN-Id }
  *[AVP]
```

7.3.152 CLR-Flags

The CLR-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits shall be as defined in table 7.3.152/1:

Table 7.3.152/1: CLR-Flags

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S6a/S6d-Indicator (Note 1)</td>
<td>This bit, when set, indicates that the CLR message is sent on the S6a interface, i.e. the message is to the MME or the MME part on the combined MME/SGSN. This bit, when cleared, indicates that the CLR message is sent on the S6d interface, i.e. the message is to the SGSN or the SGSN part on the combined MME/SGSN.</td>
</tr>
</tbody>
</table>

NOTE 1: The S6a/S6d-Indicator flag shall be used during initial attach procedure for a combined MME/SGSN. The S6a/S6d-Indicator flag may also be sent to a standalone node.

NOTE 2: Bits not defined in this table shall be cleared by the sending HSS and discarded by the receiving MME or SGSN.

7.3.153 UVR-Flags

The UVR-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits shall be as defined in table 7.3.154/1:
7.3.154 UVA-Flags

The UVA-Flags AVP is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits shall be as defined in table 7.3.156/1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Skip Subscriber Data</td>
<td>This bit, when set, indicates that the CSS may skip subscription data in UVA. If the CSG subscription data has changed in the CSS after the last successful update of the MME/SGSN, the CSS shall ignore this bit and send the updated CSG subscription data.</td>
</tr>
</tbody>
</table>

Bits not defined in this table shall be cleared by the sending MME or SGSN and discarded by the receiving CSS.

7.3.155 VPLMN-CSG-Subscription-Data

The VPLMN-CSG-Subscription-Data AVP is of type Grouped. This AVP shall contain the CSG-Id, and optionally an associated expiration date.

AVP format

\[
\text{VPLMN-CSG-Subscription-Data ::= <AVP header: 1641 10415>}
\]

\[
\text{[CSG-Id]}
\]

\[
\text{[Expiration-Date]}
\]

*[AVP]

7.3.156 Local-Time-Zone

The Local-Time-Zone AVP is of type Grouped and shall contain the Time Zone and the Daylight Saving Time (DST) adjustment of the location in the visited network where the UE is attached.

The AVP format shall conform to:

\[
\text{Local-Time-Zone ::= <AVP header: 1649 10415>}
\]

\[
\text{[Time-Zone]}
\]

\[
\text{[Daylight-Saving-Time]}
\]

*[AVP]

7.3.157 A-MSISDN

The A-MSISDN AVP is of type OctetString. See 3GPP TS 23.003 [3] for the definition of the Additional MSISDN. This AVP contains an A-MSISDN, in international number format as described in ITU-T Rec E.164 [41], encoded as a
TBCD-string. See 3GPP TS 29.002 [24] for encoding of TBCD-strings. This AVP shall not include leading indicators for the nature of address and the numbering plan; it shall contain only the TBCD-encoded digits of the address.

This AVP may be present in the Subscription-Data AVP when sent within ULA.

It may also be present in the Subscription-Data AVP, sent within an IDR, if the current value in the MME or SGSN needs to be changed.

7.3.158 Void

7.3.159 MME-Number-for-MT-SMS

The MME-Number-for-MT-SMS AVP is of type OctetString and it shall contain the ISDN number corresponding to the MME for MT SMS. For further details on the definition of this AVP, see 3GPP TS 23.003[3]. This AVP contains an international number with the format as described in ITU-T Rec E.164 [41] and shall be encoded as a TBCD-string. See 3GPP TS 29.002 [24] for encoding of TBCD-strings. This AVP shall not include leading indicators for the nature of address and the numbering plan; it shall contain only the TBCD-encoded digits of the address.

7.3.160 Void

7.3.161 Void

7.3.162 SMS-Register-Request

The SMS-Register-Request AVP is of type Enumerated and it shall indicate whether the MME or the SGSN requires to be registered for SMS (e.g. SGs interface not supported) or if the MME or the SGSN prefers not to be registered for SMS or if the MME or the SGSN has no preference.

The following values are defined:

- SMS_REGISTRATION_REQUIRED (0)
- SMS_REGISTRATION_NOT_PREFERRED (1)
- NO_PREFERENCE (2)

The criteria for setting these values are defined in 3GPP TS 23.272 [44] and 3GPP TS 23.060 [12].

7.3.163 Time-Zone

The Time-Zone AVP is of type UTF8String and shall contain the time zone of the location in the visited network where the UE is attached.

It contains the offset from UTC (Coordinated Universal Time) in units of 15 minutes, as defined in 3GPP TS 22.042 [42]. It shall be expressed as positive (i.e. with the leading plus sign [+] if the local time is ahead of or equal to UTC of day and as negative (i.e. with the leading minus sign [-]) if it is behind UTC of day.

The value contained in the Time-Zone AVP shall take into account daylight saving time, such that when the sending entity changes from regular (winter) time to daylight saving (summer) time, there is a change to the value in the Time-Zone AVP.

The contents of the Time-Zone AVP shall be formatted as a character string with the following format:

Basic format: ±n, with "n" being the number of units of 15 minutes from UTC.

For example, if the offset is +2h=+8x15mn, the value of the Time-Zone AVP will be: "+8".
7.3.164 Daylight-Saving-Time

The Daylight-Saving-Time AVP is of type Enumerated and shall contain the Daylight Saving Time (in steps of 1 hour) used to adjust for summertime the time zone of the location where the UE is attached in the visited network.

The following values are defined:

- NO_ADJUSTMENT (0)
- PLUS_ONE_HOUR_ADJUSTMENT (1)
- PLUS_TWO_HOURS_ADJUSTMENT (2)

7.3.165 Subscription-Data-Flags

The Subscription-Data-Flags is of type Unsigned32 and it shall contain a bit mask. The meaning of the bits shall be as defined in table 7.3.165/1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PS-And-SMS-Only-Service-Provision-Indication</td>
<td>This bit, when set, indicates that the subscription is for PS Only and permits CS service access only for SMS.</td>
</tr>
<tr>
<td>1</td>
<td>SMS-In-SGSN-Allowed-Indication</td>
<td>This bit, when set, indicates that SMS in SGSN for the user is allowed.</td>
</tr>
</tbody>
</table>

NOTE: Bits not defined in this table shall be cleared by the sender and discarded by the receiver of the command.

7.3.166 Measurement-Period-LTE

The Measurement-Period-LTE AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Measurement period LTE.

7.3.167 Measurement-Period-UMTS

The Measurement-Period-UMTS AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Measurement period UMTS.

7.3.168 Collection-Period-RRM-LTE

The Collection-Period-RRM-LTE AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Collection period for RRM measurements LTE.

7.3.169 Collection-Period-RRM-UMTS

The Collection-Period-RRM-UMTS AVP is of type Enumerated. The possible values are those defined in 3GPP TS 32.422 [23] for Collection period for RRM measurements UMTS.

7.3.170 Positioning-Method

The Positioning-Method AVP is of type OctetString. It contains one octet carrying a bit map of 8 bits. The possible values are those defined in 3GPP TS 32.422 [23] for Positioning Method.

7.3.171 Measurement-Quantity

The Measurement-Quantity AVP is of type OctetString. It contains one octet carrying a bit map of 8 bits. The possible values are those defined in 3GPP TS 32.422 [23] for Measurement quantity.
7.3.172 Event-Threshold-Event-1F

The Event-Threshold-Event-1F AVP is of type Integer32. See 3GPP TS 32.422 [23] for allowed values.

7.3.173 Event-Threshold-Event-1I

The Event-Threshold-Event-1I AVP is of type Integer32. See 3GPP TS 32.422 [23] for allowed values.

7.3.174 Restoration-Priority

The Restoration-Priority AVP is of type Unsigned32. It shall indicate the relative priority of a user's PDN connection among PDN connections to the same APN when restoring PDN connections affected by an SGW or PGW failure/restart (see 3GPP TS 23.007 [43]).

Values 1 to 16 are defined, with value 1 as the highest level of priority.

7.3.175 Void

7.3.176 Void

7.3.177 Void

7.3.178 Void

7.3.179 Void

7.3.180 Void

7.3.181 Void

7.3.182 Void

7.3.183 Void

7.3.184 Void

7.3.185 MDT-Allowed-PLMN-Id

The MDT-Allowed-PLMN-Id AVP is of type OctetString. This AVP shall contain the concatenation of MCC and MNC. See 3GPP TS 23.003 [3]. The content of this AVP shall be encoded as an octet string according to table 7.3.185/1.

This AVP identifies the PLMN in which the MDT data collection shall take place.

See 3GPP TS 24.008 [31], clause 10.5.1.13, PLMN list, for the coding of MCC and MNC. If MNC is 2 digits long, bits 5 to 8 of octet 2 are coded as "1111".
Table 7.3.185/1: Encoding format for MDT-Allowed-PLMN-Id AVP

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC digit 2</td>
<td>MCC digit 1</td>
<td>octet 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNC digit 3</td>
<td>MCC digit 3</td>
<td>octet 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNC digit 2</td>
<td>MNC digit 1</td>
<td>octet 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.4 Result-Code and Experimental-Result Values

7.4.1 General

This section defines result code values that shall be supported by all Diameter implementations that conform to this specification.

7.4.2 Success

Result codes that fall within the Success category shall be used to inform a peer that a request has been successfully completed. The Result-Code AVP values defined in Diameter Base Protocol RFC 3588 [4] shall be applied.

7.4.3 Permanent Failures

Errors that fall within the Permanent Failures category shall be used to inform the peer that the request has failed, and should not be attempted again. The Result-Code AVP values defined in Diameter Base Protocol RFC 3588 [4] shall be applied. When one of the result codes defined here is included in a response, it shall be inside an Experimental-Result AVP and the Result-Code AVP shall be absent.

7.4.3.1 DIAMETER_ERROR_USER_UNKNOWN (5001)

This result code shall be sent by the HSS to indicate that the user identified by the IMSI is unknown.

7.4.3.2 DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION (5420)

This result code shall be sent by the HSS to indicate that no EPS subscription is associated with the IMSI.

7.4.3.3 DIAMETER_ERROR_RAT_NOT_ALLOWED (5421)

This result code shall be sent by the HSS to indicate that the RAT type the UE is using is not allowed for the IMSI.

7.4.3.4 DIAMETER_ERROR_ROAMING_NOT_ALLOWED (5004)

This result code shall be sent by the HSS to indicate that the subscriber is not allowed to roam within the MME or SGSN area.

7.4.3.5 DIAMETER_ERROR_EQUIPMENT_UNKNOWN (5422)

This result code shall be sent by the EIR to indicate that the mobile equipment is not known in the EIR.

7.4.3.6 DIAMETER_ERROR_UNKNOWN_SERVING_NODE (5423)

This result code shall be sent by the HSS to indicate that a Notify command has been received from a serving node which is not registered in HSS as the node currently serving the user.
7.4.4 Transient Failures

Result codes that fall within the transient failures category shall be used to inform a peer that the request could not be satisfied at the time it was received, but may be able to satisfy the request in the future. The Result-Code AVP values defined in Diameter Base Protocol RFC 3588 [4] shall be applied. When one of the result codes defined here is included in a response, it shall be inside an Experimental-Result AVP and the Result-Code AVP shall be absent.

7.4.4.1 DIAMETER_AUTHENTICATION_DATA_UNAVAILABLE (4181)

This result code shall be sent by the HSS to indicate that an unexpectedly transient failure occurs. The requesting node can try the request again in the future.

8 User identity to HSS resolution

The User identity to HSS resolution mechanism enables the MME, SGSN (for non-roaming case) or Diameter Relay/proxy agents in the home network (for roaming case) to find the identity of the HSS that holds the subscriber data for a given user identity when multiple and separately addressable HSSs have been deployed in the home network. The resolution mechanism is not required in networks that utilise a single HSS.

This User identity to HSS resolution mechanism may rely on routing capabilities provided by Diameter and be implemented in the home operator network within dedicated Diameter Agents (Redirect Agents or Proxy Agents) responsible for determining the HSS identity based on the provided user identity. If this Diameter based implementation is selected by the Home network operator, the principles described below shall apply.

In non-roaming case, in networks where more than one independently addressable HSS are deployed in the home network, each MME and SGSN shall be configured with the address/identity of a Diameter Agent (Redirect Agent or Proxy Agent) implementing this resolution mechanism.

For support of roaming case, Diameter Relay agents and/or Diameter Proxy agents in the home network receiving the Diameter signalling from visited networks shall be configured with the address/identity of a Diameter Agent (Redirect Agent or Proxy Agent) implementing this resolution mechanism.

To get the HSS identity that holds the subscriber data for a given user identity in the home network, the Diameter request normally destined to the HSS shall be sent to a pre-configured address/identity of a Diameter agent supporting the User identity to HSS resolution mechanism.

- If this Diameter request is received by a Diameter Redirect Agent, the Diameter Redirect Agent shall determine the HSS identity based on the provided user identity and shall return a notification of redirection towards the HSS identity, in response to the Diameter request. Multiple HSS identities may be included in the response, as specified in IETF RFC 3588 [4]. In such a case, the requesting Diameter entity shall send the Diameter request to the first HSS identity in the ordered list received in the Diameter response from the Diameter Redirect Agent. If no successful response to the Diameter request is received, the requesting Diameter entity shall send a Diameter request to the next HSS identity in the ordered list. This procedure shall be repeated until a successful response from an HSS is received. After the user identity to HSS resolution, the MME or the SGSN shall store the determined HSS identity/name/Realm and shall use it in further Diameter requests to the same user identity.

- If this Diameter request is received by a Diameter Proxy Agent, the Diameter Proxy Agent shall determine the HSS identity based on the provided user identity and shall forward the Diameter request directly to the HSS. In this case, the user identity to HSS resolution decision is communicated to the MME/SGSN in the Origin-Host/Origin-Realm AVPs of the response. The MME or the SGSN may store the determined HSS identity/name/Realm and may use it in further Diameter requests to the same user identity.

In roaming case, whereas a Diameter Relay Agent is stateless, a stateful Diameter Proxy Agent in the home network may store the determined HSS identity/name/Realm and use it in further Diameter requests associated to the same user identity.

NOTE: Alternatives to the user identity to HSS resolution Diameter based implementation are outside the scope of this specification.
Annex A (normative):
MME mapping table for S6a and NAS Cause Code values

When the UE initiates Attach, Tracking Area Update or Service Request, there may be the need for the MME to communicate with the HSS via S6a to retrieve authentication data and/or subscription data. If this retrieval is rejected by the HSS, the received Diameter-Result-Code values or Experimental-Result values need to be mapped to appropriate cause codes over NAS to the UE.

This mapping shall be as shown in Table A.1.

If the retrieval is successful, not needed (e.g. because data are already available) or not possible (e.g. because HSS is unavailable), detected error conditions need to be mapped to appropriate cause codes over NAS to the UE.

This mapping shall be as shown in Table A.2.

Table A.1: Mapping from S6a error code to NAS Cause Code values

<table>
<thead>
<tr>
<th>Reject indication received at MME over S6a</th>
<th>NAS Cause Code sent to UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETER_ERROR_USER_UNKNOWN (5001)</td>
<td>#8 "EPS services and non-EPS services not allowed"</td>
</tr>
<tr>
<td>DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION (5420) without Error Diagnostic, or with Error Diagnostic of GPRS_DATA_SUBSCRIBED</td>
<td>#15 "No suitable cells in tracking area"</td>
</tr>
<tr>
<td>DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION (5420) with Error Diagnostic of NO_GPRS_DATA_SUBSCRIBED</td>
<td>#15 "No suitable cells in tracking area", or</td>
</tr>
<tr>
<td>DIAMETER_ERROR_RAT_NOT_ALLOWED (5421)</td>
<td>#15 "No suitable cells in tracking area", or</td>
</tr>
<tr>
<td>DIAMETER_ERROR_ROAMING_NOT_ALLOWED (5004), without Error Diagnostic</td>
<td>#11 "PLMN not allowed"</td>
</tr>
<tr>
<td>DIAMETER_ERROR_ROAMING_NOT_ALLOWED (5004), with Error Diagnostic of ODB_HPLMN_APN or ODB_VPLMN_APN</td>
<td>#14 "EPS services not allowed in this PLMN"</td>
</tr>
<tr>
<td>DIAMETER_ERROR_ROAMING_NOT_ALLOWED (5004), with Error Diagnostic of ODB_ALL_APN</td>
<td>#19 "ESM failure"</td>
</tr>
<tr>
<td>DIAMETER_AUTHORIZATION_REJECTED (5003)</td>
<td>#15 "No suitable cells in tracking area"</td>
</tr>
<tr>
<td>DIAMETER_UNABLE_TO_DELIVER (3002)</td>
<td></td>
</tr>
<tr>
<td>DIAMETER_REALM_NOT_SERVED (3003)</td>
<td></td>
</tr>
<tr>
<td>DIAMETER_UNABLE_TO_COMPLY (5012), DIAMETER_INVALID_AVValuePair (5004), DIAMETER_AVPair_UNSUPPORTED (5001), DIAMETER_MISSING_AVValuePair (5005), DIAMETER_RESOURCES_EXCEEDED (5006), DIAMETER_AVPair_OCCURS_TOO_MANY_TIMES (5009), DIAMETER_AUTHENTICATION_DATA_UNAVAILABLE (4181) (NOTE 2)</td>
<td>#17 "Network failure" or #42 "Severe network failure" (NOTE 1)</td>
</tr>
</tbody>
</table>

NOTE 1: Any of those NAS Cause Code values may be sent to the UE, depending on operator’s choice.

NOTE 2: Any other permanent errors from the diameter base protocol, not listed here, should be mapped to NAS Cause Code #17 “Network failure”.

Table A.2: Mapping from detected error condition to NAS Cause Code values

<table>
<thead>
<tr>
<th>Condition</th>
<th>NAS cause code sent to UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The MME receives a SGSAP-LOCATION-UPDATE-REJECT message from the VLR indicating in the</td>
<td>#2 "IMSI Unknown in HSS"</td>
</tr>
<tr>
<td>Scenario</td>
<td>NAS Cause Code</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Reject cause "IMSI unknown in HLR" or if the UE has packet only subscription. Only used in the Combined Tracking and Location Area Update procedure.</td>
<td></td>
</tr>
<tr>
<td>The MME receives in Update-Location-Answer message an indication of Roaming restricted in MME due to unsupported feature</td>
<td>#14 "EPS services not allowed in this PLMN"</td>
</tr>
<tr>
<td>The MME cannot service an UE generated request because CS domain is not available and SMS in MME is not supported.</td>
<td>#18 "CS domain not available"</td>
</tr>
<tr>
<td>The value OPERATOR_DETERMINED_BARRING is received in the Subscriber-Status AVP</td>
<td>#19 "ESM failure"</td>
</tr>
<tr>
<td>The HSS indicates that due to subscription to a "regionally restricted service" the UE is not allowed to operate in the tracking area.</td>
<td>#12 "Tracking area not allowed"</td>
</tr>
<tr>
<td>The CSG ID of the cell from where the UE has sent the TRACKING AREA UPDATE REQUEST message is not contained in the Allowed CSG list.</td>
<td>#25 "Not authorized for this CSG"</td>
</tr>
<tr>
<td>The MME detects that it cannot communicate with the HSS in the HPLMN of the subscriber. How the MME detect this is implementation specific.</td>
<td>#15 "No suitable cells in tracking area"</td>
</tr>
<tr>
<td></td>
<td>#14 "EPS services not allowed in this PLMN"</td>
</tr>
<tr>
<td>NOTE: Any of those NAS Cause Code values may be sent to the UE, depending on operator's choice / configuration, e.g. NAS Cause Code #14 is to be sent to the UE if the network is an LTE only network.</td>
<td></td>
</tr>
<tr>
<td>The MME detects by internal configuration that roaming is not allowed.</td>
<td>#11 "PLMN not allowed"</td>
</tr>
</tbody>
</table>
Annex B(normative):
SGSN mapping table for S6d and NAS Cause Code values

When the UE initiates Attach, Routing Area Update or Service Request, there may be the need for the SGSN to communicate with the HSS via S6d to retrieve authentication data and/or subscription data. If this retrieval is rejected by the HSS, the received Diameter-Result-Code values or Experimental-Result values need to be mapped to appropriate cause codes over NAS to the UE.

NOTE: Mapping from MAP Gr error codes to NAS Cause Code values is described in the 3GPP TS 29.010 [45]. This mapping shall be as shown in Table B.1.

If the retrieval is successful, not needed (e.g. because data are already available) or not possible (e.g. because HSS is unavailable), detected error conditions need to be mapped to appropriate cause codes over NAS to the UE.

This mapping shall be as shown in Table B.2.

Table B.1: Mapping from S6d error code to NAS Cause Code values

<table>
<thead>
<tr>
<th>Reject indication received at SGSN over S6d</th>
<th>NAS Cause Code sent to UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETER_ERROR_USER_UNKNOWN (5001)</td>
<td>#8 "GPRS services and non-GPRS services not allowed"</td>
</tr>
<tr>
<td>DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION (5420)</td>
<td>#7 "GPRS services not allowed"</td>
</tr>
<tr>
<td>DIAMETER_ERROR_RAT_NOT_ALLOWED (5421)</td>
<td>#15 "No suitable cells in location area", or #13 "Roaming not allowed in this location area", or #12 "Location area not allowed" (NOTE 1)</td>
</tr>
<tr>
<td>DIAMETER_ERROR_ROAMING_NOT_ALLOWED (5004)</td>
<td>#11 "PLMN not allowed"</td>
</tr>
<tr>
<td>DIAMETER_ERROR_ROAMING_NOT_ALLOWED (5004), with Error Diagnostic of ODB_HPLMN_APN or ODB_VPLMN_APN</td>
<td>#14 "GPRS services not allowed in this PLMN"</td>
</tr>
<tr>
<td>DIAMETER_AUTHORIZATION_REJECTED (5003)</td>
<td>#15 "No suitable cells in location area"</td>
</tr>
<tr>
<td>DIAMETER_UNABLE_TO_DELIVER (3002)</td>
<td>#17 "Network failure"</td>
</tr>
<tr>
<td>DIAMETER_UNABLE_TO_COMPLY (5012), DIAMETER_INVALID_AVP_VALUE (5004), DIAMETER_AUTHENTICATION_DATA_UNAVAILABLE (4181) and no retry takes place (NOTE 2)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Any of those NAS Cause Code values may be sent to the UE, depending on operator's choice.
NOTE 2: Any other permanent errors from the diameter base protocol, not listed here, should be also mapped to NAS Cause Code #17 "Network failure".

Table B.2: Mapping from detected error condition to NAS Cause Code values

<table>
<thead>
<tr>
<th>Condition</th>
<th>NAS cause code to UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The SGSN receives a BSSAP+-LOCATION-UPDATE-REJECT message from the VLR indicating in the reject cause "IMSI unknown in HLR" or if the UE has packet only subscription. Only used in the Combined Routing and Location Area Update procedure.</td>
<td>#2 "IMSI Unknown in HLR"</td>
</tr>
<tr>
<td>Description</td>
<td>NAS Cause Code</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>The SGSN receives in Update-Location-Answer message an indication of Roaming restricted in</td>
<td>#14 "GPRS services not allowed in this PLMN"</td>
</tr>
<tr>
<td>SGSN due to unsupported feature</td>
<td></td>
</tr>
<tr>
<td>The HLR indicates that due to subscription to a "regionally restricted service" the MS is</td>
<td>#12 "Location area not allowed"</td>
</tr>
<tr>
<td>is not allowed to operate in the location area.</td>
<td></td>
</tr>
<tr>
<td>The CSG ID of the cell from where the UE has sent the ROUTING AREA UPDATE REQUEST message is</td>
<td>#25 "Not authorized for this CSG"</td>
</tr>
<tr>
<td>not contained in the Allowed CSG list.</td>
<td></td>
</tr>
<tr>
<td>The SGSN indicates that the MS has requested "SMS-only services" and the SMS services are</td>
<td>#28 "SMS provided via GPRS in this routing area"</td>
</tr>
<tr>
<td>provided by the SGSN in the PS domain.</td>
<td></td>
</tr>
<tr>
<td>The SGSN detects that it cannot communicate with the HLR in the HPLMN of the subscriber.</td>
<td>#15 "No suitable cells in routing area"</td>
</tr>
<tr>
<td>How the SGSN detect this is implementation specific.</td>
<td>#14 "GPRS services not allowed in this PLMN"</td>
</tr>
<tr>
<td>NOTE: Any of those NAS Cause Code values may be sent to the UE, depending on operator's choice</td>
<td></td>
</tr>
<tr>
<td>/ configuration, e.g. NAS Cause Code #14 is to be sent to the UE if the network is an LTE only</td>
<td></td>
</tr>
<tr>
<td>network.</td>
<td></td>
</tr>
<tr>
<td>The SGSN detects by internal configuration that roaming is not allowed.</td>
<td>#11 "PLMN not allowed"</td>
</tr>
</tbody>
</table>
Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG #</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Rev</th>
<th>Subject/Comment</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-09</td>
<td>CT#41</td>
<td>CP-080475</td>
<td></td>
<td></td>
<td>V2.0.0 approved in CT#41</td>
<td>2.0.0</td>
<td>8.0.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>CT#42</td>
<td>CP-080691</td>
<td>0001</td>
<td>1</td>
<td>Sb6a Vendor-Specific-Application-Id AVP</td>
<td>8.0.0</td>
<td>8.1.0</td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0002</td>
<td>1</td>
<td>ReqSub feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0005</td>
<td></td>
<td>Clarification on Immediate-Response-Preferred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0006</td>
<td>1</td>
<td>Correction of the Reference of Supported Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0007</td>
<td></td>
<td>Definition of RAT-Frequency-Selection-Priority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0008</td>
<td>2</td>
<td>ME Identity Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080703</td>
<td></td>
<td></td>
<td>0009</td>
<td>2</td>
<td>Gr alignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080703</td>
<td></td>
<td></td>
<td>0010</td>
<td>3</td>
<td>Closed Subscriber Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0011</td>
<td></td>
<td>AVP codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0012</td>
<td>1</td>
<td>MSISDN AVP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0013</td>
<td></td>
<td>Result codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0014</td>
<td></td>
<td>Removal of Editor's note in ULA Flag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0015</td>
<td>2</td>
<td>Duplicated AMBR AVP and Use of Called-Station-Id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0017</td>
<td></td>
<td>Change of AVP to carry the APN information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0018</td>
<td>1</td>
<td>Reference to 3GPP-Charging-Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0019</td>
<td></td>
<td>Access Restriction Data Definition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0020</td>
<td></td>
<td>AMBR Definition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0021</td>
<td>1</td>
<td>AVPs Encoding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0022</td>
<td>1</td>
<td>PDN-GW Delete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0023</td>
<td>1</td>
<td>Requesting Node Type Clarification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0024</td>
<td></td>
<td>Authn Session State AVP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0026</td>
<td>2</td>
<td>Trace Session Activation and Deactivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0027</td>
<td>1</td>
<td>Context-Identifier in APN-Configuration-Profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0029</td>
<td></td>
<td>APN-OIReplacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080703</td>
<td></td>
<td></td>
<td>0032</td>
<td></td>
<td>Access Restriction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0033</td>
<td>1</td>
<td>Context Identifier clarification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0034</td>
<td>1</td>
<td>APN-Configuration correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0037</td>
<td></td>
<td>Removal of Supported RAT Types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0039</td>
<td>1</td>
<td>Extension of the Terminal-Information AVP for non-3GPP accesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0040</td>
<td></td>
<td>Conditionality of ULA-Flags and PUA-Flags AVPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0042</td>
<td></td>
<td>Wrong Description for Complete APN Configuration Profile Withdrawal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0043</td>
<td></td>
<td>Purge UE Detailed Behaviour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-080691</td>
<td></td>
<td></td>
<td>0044</td>
<td>1</td>
<td>MME/SGSN area restricted flag cleanup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-03</td>
<td>CT#43</td>
<td>CP-090056</td>
<td>0048</td>
<td>2</td>
<td>Context Identifier for Update or Removal of PDN GW</td>
<td>8.1.0</td>
<td>8.1.1</td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0049</td>
<td></td>
<td>Clarification of the relationship between Subscriber-Status and ODB</td>
<td>8.1.1</td>
<td>8.2.0</td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0051</td>
<td>2</td>
<td>Context-Identifier in APN-Configuration-Profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090024</td>
<td></td>
<td></td>
<td>0052</td>
<td></td>
<td>Update of the AVP Codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090236</td>
<td></td>
<td></td>
<td>0053</td>
<td>2</td>
<td>PDN GW update for Wildcard APN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090044</td>
<td></td>
<td></td>
<td>0054</td>
<td>1</td>
<td>Ready for SM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0055</td>
<td></td>
<td>ODB for SM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090044</td>
<td></td>
<td></td>
<td>0056</td>
<td>2</td>
<td>Handling LCS Subscription Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0057</td>
<td>2</td>
<td>Charging Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0058</td>
<td>2</td>
<td>Regional-Subscription-Zone-Code AVP Correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0059</td>
<td>2</td>
<td>Trace Depth corrections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0060</td>
<td>2</td>
<td>Delete Subscriber Data Request procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0063</td>
<td>1</td>
<td>Coding definition for STN-SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0064</td>
<td></td>
<td>Trace Reference in DSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0065</td>
<td>1</td>
<td>DSR-Flags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0066</td>
<td>2</td>
<td>Clarification on All-APN-Configurations-Included-Indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0069</td>
<td></td>
<td>User-Name AVP contains only the IMSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0070</td>
<td>1</td>
<td>MIP6-Agent-Info Definition and Usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0075</td>
<td>1</td>
<td>Allocation Retention Priority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0076</td>
<td>1</td>
<td>APN includes only the Network Identifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0077</td>
<td></td>
<td>Error Codes and ABNF Corrections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090039</td>
<td></td>
<td></td>
<td>0078</td>
<td>4</td>
<td>User to HSS resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0079</td>
<td>1</td>
<td>Introducing the Trace-Collection-Entity AVP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0081</td>
<td>4</td>
<td>Usage of Immediate-Response-Preferred AVP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090044</td>
<td></td>
<td></td>
<td>0082</td>
<td>3</td>
<td>Handling SMS Subscription Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-090046</td>
<td></td>
<td></td>
<td>0083</td>
<td></td>
<td>SCTP version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>CT#</td>
<td>Issue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-06</td>
<td>CT#44</td>
<td>CP-090046 0084 - RFC 5447 References</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090287 0086 1 Notification of SMS over IP Non-Delivery for E-UTRAN and UE Reachability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090287 0087 1 Coding of Immediate Response Preferred AVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090287 0088 - Trace Event List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090287 0089 - Removal of Requesting Node Type from AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090287 0091 - Regional-Subscription-Zone-Code clarification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090287 0092 - Clarification of PLMN encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090287 0093 - Diameter Command Codes for S6a/S6d/S13/S13*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090287 0094 - Update of Diameter Codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090287 0095 1 Formatting of APN in Service-Selection AVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090378 0096 3 User Data Download Indication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090315 0097 - Usage of Single-Registration-Indication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090495 0098 3 ULR processing enhancement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-09</td>
<td>CT#45</td>
<td>CP-090531 0100 2 Correction on APN-OI-Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090726 0101 3 GPRS subscription data over S6d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0102 1 Usage of DIAMETER_ERROR_UNKNOWN_EPS_SUBSCRIPTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0103 6 Cancel Location for Initial Attach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0104 4 Subscriber Data Update</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0105 1 Usage of Single Registration Indication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0106 2 Charging Characteristics Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0107 1 Alerting Reason Behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0108 1 Wildcard APN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0109 - Subscriber's NAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0111 - Trace ID length correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0112 1 Subscription-Data AVP in Update Location Answer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0113 1 Default values for Allocation Retention Priority AVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0114 - Default APN and Wildcard APN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0115 2 Correction in behavior of DSR-Flags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0116 1 PDN Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090531 0118 1 Clarification on the process of skip subscriber data flag in the HSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0119 9 Corrections on IDR ABNF and Service Type AVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0120 1 TS-Code AVP is missing in DSR command</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0123 1 Cleanup of the TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0124 1 Format of User-id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0125 1 GPRS Subscription Data Update</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0126 2 APN-Configuration-Profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0128 1 3GPP2-MEID AVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0129 1 MIP6-Agent-Info AVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0130 - Alignment of Supported Feature concept with 29.229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0133 1 EPS Subscribed QoS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0137 1 Restriction of the TS 29.272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0138 1 Trace Depth per session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0140 - Clarification of Unsigned32bit flag AVPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0141 1 Extra Regional-Subscription-Zone-Codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0142 1 Clarification of Service-Selection AVP encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0143 1 User to HSS identity resolution for Diameter Proxy Agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090532 0144 - RFSP coding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-09</td>
<td>CT#45</td>
<td>CP-090566 0122 3 Optimization of Subscriber Data Update</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090562 0131 - Emergency Support in S6a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-12</td>
<td>CT#46</td>
<td>CP-091030 0148 4 Clarification on Some Subscription Data List Handling in MME/SGW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090793 0149 1 APN level APN-OI-Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090800 0150 2 ICS-Flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090767 0152 2 RFSP alignment in 29.272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090801 0153 1 Notify Request for Emergency Attached UEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090767 0155 2 Wildcard APN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090767 0157 1 Lifetime of Charging Characteristics after Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-091030 0159 2 Correction on the UE initiated detach procedure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090767 0163 2 FQDN for S6a NOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090767 0165 - HPLMN-ODB AVP correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-091032 0167 From GMLC-Address to GMLC-Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-091030 0171 1 Static PDN GW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-091030 0177 1 Clarification on Usage of Re-Synchronization-Info AVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-091030 0179 1 Clarification on the Number of PDP-Contexts in the GPRS-Subscription-Data AVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090767 0185 - APN-Configuration-Profile usage in IDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-091030 0187 2 IMEI encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-091030 0189 1 APN-Configuration Service-Selection values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-091030 0191 1 QoS attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-090789 0196 1 Subscription-Data clarification for UE Reachability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-091030 0198 2 Vendor Specific Application ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ETSI
3GPP TS 29.272 version 11.11.0 Release 11

<table>
<thead>
<tr>
<th>2010-03 CT#47</th>
<th>2010-06 CT#48</th>
<th>2010-09 CT#49</th>
<th>2010-09 CT#49</th>
<th>2010-10 CT#50</th>
<th>2011-03 CT#51</th>
<th>2011-06 CT#52</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-090776 0200 1 Destination Realm</td>
<td>CP-090767 0202 1 Correction to fault recovery procedure and ME identity check procedure</td>
<td>CP-090767 0204 1 Reference to 3GPP-Charging-Characteristics</td>
<td>CP-090767 0206 1 Reset procedure MME/SGSN behavior</td>
<td>CP-090020 0181 2 Correction to Purge UE Detailed Behaviour</td>
<td>CP-100020 0210 HPLMN ODB</td>
<td>CP-110351 0362 SGSN-Number AVP correction</td>
</tr>
<tr>
<td>CP-100046 0222 1 Addition of V-GMLC address for S6a</td>
<td>CP-100020 0223 3 Handling of UE Reachability MME Parameter</td>
<td>CP-100020 0227 Indication of PLMN ID of the selected PGW</td>
<td>CP-100040 0228 Context-Identifier in NOR</td>
<td>CP-1000235 0230 5 EPS Subscriber State and Location Information Request</td>
<td>CP-100040 0233 1 Reset to Combined MME/SGSN</td>
<td>CP-100040 0236 2 Indication of LCS Capabilities support over S6a/S6d</td>
</tr>
<tr>
<td>CP-100040 0221 Static PDN GW</td>
<td>CP-100046 0222 1 Addition of V-GMLC address for S6a</td>
<td>CP-100040 0226 2 Correction on PGW PLMN ID</td>
<td>CP-100040 0228 1 Fix ambiguity on context id AVP</td>
<td>CP-100264 0241 1 Service-Selection values</td>
<td>CP-100264 0243 1 MIP6-Agent-Info</td>
<td>CP-100264 0245 2 Fix ambiguity on usage of the Supported-Features AVP</td>
</tr>
<tr>
<td>CP-100227 0247 1 Dynamic information update after a Reset procedure</td>
<td>CP-100277 0248 1 Notify command from unknown MME</td>
<td>CP-100416 0249 4 S6a Error Codes</td>
<td>CP-100279 0258 3 URRP for SGSN</td>
<td>CP-100265 0262 3 MME mapping between Diameter error codes and NAS Cause Code values</td>
<td>CP-100265 0268 1 Restoration of the SGSN Number in the VLR</td>
<td>CP-100265 0268 1 Restoration of the SGSN Number in the VLR</td>
</tr>
<tr>
<td>CP-100456 0268 1 Restoration of the SGSN Number in the VLR</td>
<td>CP-100457 0272 QoS-Subscribed</td>
<td>CP-100457 0273 Trace-Reference AVP encoding</td>
<td>CP-100457 0284 Usage of MIP-Home-Agent-Host AVP</td>
<td>CP-100457 0285 Correction on HSS behaviour over IMEI</td>
<td>CP-100457 0285 Correction on HSS behaviour over IMEI</td>
<td></td>
</tr>
<tr>
<td>CP-100457 0284 Usage of MIP-Home-Agent-Host AVP</td>
<td>CP-100577 0275 2 NAS Cause Code values</td>
<td>CP-100463 0276 LCS Privacy Features for MME</td>
<td>CP-100463 0276 RCS Privacy Features for MME</td>
<td>CP-100443 0281 2 Correction to Delete Subscriber Data for SGSN</td>
<td>CP-100443 0283 1 Unclear Cancel-Type Setting for Single Registration and Initial Attach</td>
<td></td>
</tr>
<tr>
<td>CP-100465 0267 1 Addition of SIPTO permissions in PS subscription data</td>
<td>CP-100468 0324 1 HSS Error Returned due to ODB</td>
<td>CP-100468 0316 1 Clarification on Access Restriction Data</td>
<td>CP-100468 0316 1 Clarification on Access Restriction Data</td>
<td>CP-100468 0324 1 HSS Error Returned due to ODB</td>
<td>CP-100468 0324 1 HSS Error Returned due to ODB</td>
<td></td>
</tr>
<tr>
<td>CP-100679 0303 1 Usage of Served Party IP Address AVP inside the APN Configuration</td>
<td>CP-100679 0305 1 Usage of APN-0I-Replacement AVP</td>
<td></td>
</tr>
<tr>
<td>CP-100679 0307 AMBR clarification</td>
<td>CP-100679 0308 Store HSS Identity in MME/SGSN after successful ULA</td>
<td>CP-100679 0315 3 Fix ambiguity in the LCS related indication</td>
<td>CP-100679 0315 3 Fix ambiguity in the LCS related indication</td>
<td>CP-100679 0315 3 Fix ambiguity in the LCS related indication</td>
<td>CP-100679 0315 3 Fix ambiguity in the LCS related indication</td>
<td></td>
</tr>
<tr>
<td>CP-100688 0325 1 Periodic TAU/RAU timer in HSS subscription</td>
<td>CP-100707 0313 1 Correction of Restoration flag</td>
<td></td>
</tr>
<tr>
<td>CP-110087 0329 2 Minimization of Drive Tests (MDT)</td>
<td>CP-110042 0330 2 Feature Flags for UE Reachability Notification and State/Location Info Retrieval</td>
<td>CP-110042 0330 2 Feature Flags for UE Reachability Notification and State/Location Info Retrieval</td>
<td>CP-110042 0330 2 Feature Flags for UE Reachability Notification and State/Location Info Retrieval</td>
<td>CP-110042 0330 2 Feature Flags for UE Reachability Notification and State/Location Info Retrieval</td>
<td>CP-110042 0330 2 Feature Flags for UE Reachability Notification and State/Location Info Retrieval</td>
<td></td>
</tr>
<tr>
<td>CP-110042 0337 3 Correction of error cause handling</td>
<td>CP-110042 0339 2 Setting of M bit AVP flag</td>
<td>CP-110042 0339 2 Setting of M bit AVP flag</td>
<td>CP-110042 0339 2 Setting of M bit AVP flag</td>
<td>CP-110042 0339 2 Setting of M bit AVP flag</td>
<td>CP-110042 0339 2 Setting of M bit AVP flag</td>
<td></td>
</tr>
<tr>
<td>CP-110073 0332 2 Correction on PGW PLMN ID</td>
<td>CP-110088 0334 2 Relay Node Indicator</td>
<td></td>
</tr>
<tr>
<td>CP-110051 0346 1 PDP Address correction</td>
<td>CP-110051 0351 2 Ambiguity in IDR flags</td>
<td></td>
</tr>
<tr>
<td>CP-110051 0353 Homogeneous Support for IMS Voice over PS AVP missing</td>
<td>CP-110351 0362 SGSN-Number AVP correction</td>
<td></td>
</tr>
</tbody>
</table>

ETSI
Correction to the restoration priority levels during SGW and PGW
features over S6a/S6d
Mechanism to allow advertisement of support of Restoration Priority during SGW and PGW restoration procedures
HSS handling of T-ADS for detached subscriber
MDT parameters
Registration for SMS Request for SMS in SGSN
Cause Code Mapping
Values not allowed for QCI over S6a/S6d
Update to Subscription-Data-Flags
Corrections to wrong references and command/AVP name
Use of Flag instead of Enumerated AVPs
Correction on Update Location Request
MME de-registration for “SMS in MME”
SGSN network condition to NAS cause code mapping
A-MSISDN Correction
Wrong implementation of the Daylight-Saving-Time AVP
DSR-Flags
Correction of General Description of Delete Subscriber Data
Clarification on IDR-Flags
Corrections to Local Time Zone
UE Time Zone
Correction in the chapter of Reset-Answer (RSA) command
Inclusion of APN-OI Replacement in PDP Context
GMLC-Number format
M-bit Handling
Equivalent PLMN CSG Subscription Request
Unknown EPS Subscription over S6d/S6a
Add vSRVCC updates to the S6a interface
Preferred AVP
Behaviour of HSS in abnormal case of Immediate-Response-Preferred AVP
Removal of Subscribed Periodic TAU/RAU timer in HSS subscription
Clarification on UE-SRVCC-Capability AVP in ULR
ODB clarification
Update of PGW ID
Ready for SM in MME
ULR handling for combined MME/SGSN
Clarification on Update of PGW ID
Single Registration Indication
Zone Codes
Clariﬁcation on Notiﬁcation of UE Reachability
Empty VCSG Subscription Data
Notiﬁcation Procedure clariﬁcation for UE with Emergency Bearer Services
Inclusion of APN-OI Replacement in PDP Context
Mapping S6a and NAS cause code
SMS in MME
PS additional number over S6a/S6d
User-CSG-Information
SGSN-Number AVP
Application ID for S7a/S7d
Delete CSG subscription Data over S7a/S7d
Delete SGs procedures over S7a/S7d
Clarification on Notification of UE Reachability
CSG-Subscription-Data replacement
Update of Homogeneous Support of IMS Over PS Sessions
Mapping S6a and NAS cause code
SMS in MME
Additional number over S6a/S6d
Local Time Zone
Wrong implementation of the Daylight-Saving-Time AVP
A-MSISDN Correction
MME network condition to NAS cause code mapping
SGSN network condition to NAS cause code mapping
MME de-registration for “SMS in MME”
Correction on Update Location Request
Alignment of stage 3 SMS in MME with stage 2
Use of Flag instead of Enumerated AVPs
Values not allowed for QCI over S6a/S6d
Registration for SMS Request for SMS in SGSN
Cause Code Mapping
Registration for SMS Request for SMS in SGSN
MDT parameters
Definition of QCI Status for Call Barring
<table>
<thead>
<tr>
<th>Date</th>
<th>CT#</th>
<th>CP-ID</th>
<th>Issue</th>
<th>Description</th>
<th>起点版本</th>
<th>结束版本</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-12</td>
<td>CT#62</td>
<td>CP-130450</td>
<td>0516</td>
<td>HPLMN-ODB Correction</td>
<td>11.8.0</td>
<td>11.9.0</td>
</tr>
<tr>
<td>2013-06</td>
<td>CT#64</td>
<td>CP-130611</td>
<td>0527</td>
<td>Addition of S6aS6d-Indicator in NOR</td>
<td>11.8.0</td>
<td>11.9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-130617</td>
<td>0532</td>
<td>MME Initiated Removal of MME Registration for SMS</td>
<td>11.8.0</td>
<td>11.9.0</td>
</tr>
<tr>
<td>2014-06</td>
<td>CT#64</td>
<td>CP-140257</td>
<td>0554</td>
<td>SS-Status AVP Definition</td>
<td>11.9.0</td>
<td>11.10.0</td>
</tr>
<tr>
<td>2014-12</td>
<td>CT#66</td>
<td>CP-140764</td>
<td>0570</td>
<td>MDT PLMN List</td>
<td>11.10.0</td>
<td>11.11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-140764</td>
<td>0579</td>
<td>S6a/S6d-Indicator in NOR</td>
<td>11.10.0</td>
<td>11.11.0</td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V11.4.0</td>
</tr>
<tr>
<td>V11.5.0</td>
</tr>
<tr>
<td>V11.6.0</td>
</tr>
<tr>
<td>V11.7.0</td>
</tr>
<tr>
<td>V11.8.0</td>
</tr>
<tr>
<td>V11.9.0</td>
</tr>
<tr>
<td>V11.10.0</td>
</tr>
<tr>
<td>V11.11.0</td>
</tr>
</tbody>
</table>