ETSITS 129 198-4 va4.10.0 2004-09)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA)

Application Programming Interface (API);

Part 4. Call control

(B3GPP TS 29.198-04 version 4.10.0 Release 4)

G

—

D

3GPP TS 29.198-04 version 4.10.0 Release 4 1 ETSITS 129 198-4 V4.10.0 (2004-09)

Reference
RTS/TSGN-0529198-04v4a0

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3GPP TS 29.198-04 version 4.10.0 Release 4 2 ETSITS 129 198-4 V4.10.0 (2004-09)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETS! identities can be found under
http://webapp.etsi.org/key/queryform.asp .

ETSI

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp

3GPP TS 29.198-04 version 4.10.0 Release 4 3 ETSITS 129 198-4 V4.10.0 (2004-09)

Contents

Intellectual Property RIGNES.........oo et 2
0 L= V1T (o S 2
0= Yo (o OSSR 7
L1000 Tox o] o 1SS 7
1 o0 o< PSPPSR 9
2 L= = 10 SR 9
3 Definitions and abDbreVIGtioNS.............coii ettt st e st s re e e e sreenaenreereas 10
31 DEfINITIONS.....ccee ettt et e et e et e e atesbeesbeesbeebesasesaeesaeesbeesbeenteeaseeseesbeesbeesbeensesnsesnnesnes 10
3.2 ADDIEVIBLIONS ...ttt ettt e e e te s hee s teesbeebeeaeeeaeesbe e beeabeeaeeeaeeabeesaeesaeeebeenbeenteenteentesaeesreas 10
4 Call CONEIOI SCIottt et s b e e st e s e s aee et e e be e beesbeesseeeseeesteeteesteenteenseesseesreesnnens 10
4.1 (0= 1LY Ko To = I I T=-'ox T)£ o] o [SS 10
4.2 General requirements on SUPPOIt Of MELNOUS............oouiiiiiii s 11
5 The Service Interface SPECITICAliONS.......c.ocieie e e e e ee e 11
51 Interface SPECITiCatiON FOIMELcc.ciiie ettt sb et b e bt ens 11
511 INEEITACE CIBSS ... ittt ettt ettt et e et e st e et e et e s aeesaeesaeesaeebeeaseeaseeaeesbeesbeesbaebeenseensesnrenans 11
512 VL= (T o U= o 1T oL (o g OO OO P TSP UT SR U T 12
513 PaArAMELES GESCITPIIONS. ...ttt ettt b e et b et b e et b e e st b e e et b e bt eb e b 12
514 S = (= 1Y, oo L= OO S S RSRRPRRPR 12
52 BaSE INEEITACE.ttt h ettt b e bbbt a e e e bRt b e Rt a e e e R et eh e bt ene e re e 12
521 LS g o O F= S T o] 11 o = o= P 12
53 SEIVICE INEEITACES ... ettt e et b bbbttt e e e e b e bt e h e eb e s aeehe e e e s e besbeebesneenee e ennes 12
531 OVEIVIBW ..ttt sttt sttt st s e st be s e e st et e s e e st et e s e e st ek e seeseebesees e eEene e st e bese e st e b e sbene et e sbe e ebenbeneesenbenennens 12
54 GENENIC SEIVICE INLEITACE ...ttt bbbt e s et se e eb e s bt eb e e e e s e besbeebesneenee e eneas 12
54.1 1S g o O F= S T 1= Y o= P 12
6 GENENIC Call CONLIOI SEIVICEveiivee ettt ettt s e s ee st et et e e s te e s re e saeeeate e teesteesaeesaeesneesseesneens 14
6.1 SEOUENCE DIBOIAITIS ...ttt st reete sttt sttt st et be et eb e se et b e s e e st e b e s e ebeeb e s e e bt e be s e e Rt eb e e ehe e b e ne e st ebene e st ebesbe e ebenneneees 14
6.1.1 Aditional CallDACKS..........oceeiieie et ettt ettt e et e s ae e s aeesaeesbeesbeeabeeabeeateereesreesaeas 14
6.1.2 F N =4 1 O S SSTR SRR PRSP 15
6.1.3 APPlCaioN TNITIALEA Call.......cceeeeeeeeee et e e e sae e s aeeaeenteenaeenaesneesneas 17
6.1.4 L@ I T o I 19
6.1.5 NUMDEr TFANSIBHION L ...t ettt b ettt se bbb e aeese e e e sb e besresb e e e enneneen 21
6.1.6 Number Translation 1 (With CBIIDACKS).........cccieiiieiice e 23
6.1.7 NUMDEN TFANSIBHION 2.ttt b ettt e bbb e aeeae e e e se e besbesb e e e enneneea 25
6.1.8 NUMDBEY TraNSIation 3ooiuiieie ettt et e et s e s s ae e saeesbeeaseeaseeaeeebaesbeesbeesbeensesnnesnresans 27
6.1.9 NUMBEY TraNSIAtioN 4ooviiieee ettt e b s e s e s ae e sae e beeareeaeeeaeaebaeste e beebeeaseennesnrenans 29
6.1.10 NUMDEY TraNSIation 5c..eiiieieee ettt et s s s sae e beeareeaeeeteesbeesteesbe e beenbeennesnneeans 31
6.1.11 L= o= T o TSSOSO TSP PRSP UT SR PSR 32
6.1.12 Pre-Paid with AdVICe Of Charge (AOC)ccciiieeeiiiie ettt sttt 34
6.2 ClaSS DIAOIAMS. ...ttt ettt ettt sttt sttt bt bt s a et bt b e e bt s b e e eh e s R e st eb e e A e st e bt e b e e e bt b e ne e b e e e neebene et eb e s be e ebenbe e 37
6.3 Generic Call Control Service INtErfate ClaSSES..........coiiirire et 38
6.3.1 Interface Class |PCall CONFOIM@NAGEYcccuieiieiiceesees et e e s et e e teeteeeesneeenes 39
6.3.2 Interface Class IPAPPCA I CONtTOIM@NAGESccuveuiiieriereeseeese e sre e e st et e e teeteseesneesnes 43
6.3.3 LS o =X O =SS 1 oL | P 45
6.34 Interface Class IPAPPCAL ...t st e et e e b e e e teste e be e teentesneesneesnes 50
6.4 Generic Call Control Service State Transition DIiagramsS.......ccveveeceieeieeie e se e see e eee e se e ee e seees 54
6.4.1 State Transition Diagrams for IpCallControlMaNnagercoeeiireerireerereee e eenens 54
6.4.11 ACHIVE SEBLE......c.eeeeeeeee ettt st e st e e te et e s ae e e ae e be e beeabeeateeaeesbeesbeebeentesaeesaeeeaeeateenteentaans 55
6.4.1.2 Notification terMiNAtEd SEALEccvi i et be e e e e aaeereesreesaees 55
6.4.2 State Transition Diagrams fOr IPCAlL........c.ooiieiiie bbb 55
6.4.2.1 NEWOIK REIEASEA SEALEvecvieieee ettt et st ste e be e ae e e ae e ebeesbeebeeneesaaesaeesreesanas 56
6.4.2.2 FINISNE SEALE.....ccve ettt sttt sttt s b e be s e ebeebese e b e s beseebe st e e et e sbe e ebesbeneesesbeseenens 56

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 4 ETSITS 129 198-4 V4.10.0 (2004-09)

6.4.2.3 ApPPlication REIEASEA SLALEociecieeiecece ettt e st e e teseesreesneesreeseenneens 57
6.4.24 F e Y RS = (= SRS 57
6.4.2.5 Pty 1N Call SEALEveiveieceeeieceese et sttt st et se e st beseese et e see e ebeseeneebesbeneenea 57
6.4.2.6 PartieSiN Call SEALE.......iiuiieictiee e bbbttt e e e b e b b e e et bbb e e nne e 57
6.5 Generic Call Control SErviCe PrOPEIMIESc.icviiiececte ettt ste e te e e e et e snaesnaesraesreas 58
6.5.1 RS oS AV Lo o o o= (- 58
6.5.2 Service Property values for the CAMEL Service ENVIrONMENL..........c..covvireererceneneeseseeieseesesieseeeeeens 59
6.6 Generic Call Control Data DefiNitiONS..........ciieieieee e sre e ne e eneas 60
6.6.1 Generic Call Control Event Notification Data Definitions...........ccocvoeiiieniene i 60
6.6.1.1 TPCAIEVENINGIME.ccuitieitit ittt b bbbt bbbt b e et b s ne e b nn e 60
6.6.1.2 TPCAINOLfICAT ONT YR ...ttt bbb bbbt b bt b et st nn et 61
6.6.1.3 IO Y0 (] - 61
6.6.1.4 QLI Y4 o T 61
6.6.2 Generic Call Control Data DEfiNitiONS.........ccveiieieieiee et et e b e e 61
6.6.2.1 oL SO S T S 61
6.6.2.2] oL@ = ST 61
6.6.2.3 F 7AYo o1 | SRR 62
6.6.24 IPAPPCAITRES ...ttt b et bt a e bbb et b e e ae bbb et b et 62
6.6.2.5 TPCAITABNEIFIEN ...ttt bbbt b et b bt et nn e 62
6.6.2.6 [PAPPCAI CONFOIM@NEGETc.eiveeeieitereeieete ettt ettt ettt b e et b e bbbt b e bt bese et b sn e 62
6.6.2.7 IPAPPCAl CONrOIMANBGEIRESottt 62
6.6.2.8 [PCAlCONFOIM@NEGETeoveeeeeete ettt ettt e et b et b e bbbt b e bt bt et b e et b e s 62
6.6.2.9 IPCall CONrOIMANEGEIRES ..ottt bbbttt sb e e 62
6.6.2.10 QLI 1 72N o o] 1 g (o 62
6.6.2.11 IO 7N o] o] g1 (0I5 = 63
6.6.2.12 QLI L= N o o] 101 = 63
6.6.2.13 QLI 1= 0 (= | o 63
6.6.2.14 B o1 1 O ST 63
6.6.2.15 QLI 10 oo o 64
6.6.2.16 TPCAIREIEASECAUSE ...ttt et b bbb st bt b e ne bt 64
6.6.2.17 TPCAIREPOIT........ceeeeeeeteeeete ettt bbbt bbb bbb et e bt b e et b e s ne st st 65
6.6.2.18 TpCall Additional REPOIINTO ... bbb 65
6.6.2.19 TPCAIREPOIMREGUESL ...ttt bbbttt b et b et s et b e e 65
6.6.2.20 TPCall AdditioNal REPOICIITEITALveiveiertireeiere ettt 66
6.6.2.21 TPCAlREPOIMREQUESESEL.......c.eeeeeiieiee sttt et e e see e sae e sreesaeeaeeesaesseesteesseesseeseeneesneennes 66
6.6.2.22 QLI L oo 1Y/ o 66
6.6.2.23 QLI I == 1 0= | 67
6.6.2.24 TPCAIEVENICIITENTARESUITSELecviieieeiirieeereee ettt st e 67
6.6.2.25 TPCAlEVENCHITErTARESUIL ... cocveeee ettt e e sre e re e aeeeeeneesneeenes 67
7 MultiParty Call CONtIOl SEIVICE.ciieieiieceeste ettt ettt st e e s re e e s besaeesresaeeteenaenbesreas 67
7.1 SEOUENCE DIBGIAITIS ...ttt sttt sttt sttt st et bt s e et bese et b e s e e st e b e s e ebeebe s e e bt e b e s e e bt e b e e e bt e b e seeneebene e st eb e st et ebenrene e 67
711 Application INItIAE CAll SEIUPc.viviieiieiee bbb 67
712 CAll BATING 2 ..ttt b et b bt b e h et b e e et bt s e e st eb e nEeae e bt seeaeeb e sb e e ebesb e e ebenbeneeneabennenea 69
7.1.3 Call fTorwarding 0N BUSY SEIVICE.......cccuieieiieieeiee st este ettt e st et e e e saesee s e e saeesseeeeesaeesaesseesseenseesesneennns 70
714 Call INfOrmMation COlECE SEIVICEoiuitiie ettt ettt et bbbt e bbb st ene e e ennas 72
7.15 (00 pp] o Lo O o IS o P 75
7.16 HOUINE SEIVICE ...ttt bbb st bbbt b e a e e s e e e e e se e eb e s he e s e e e e ebesbesbesbe e e ennenneas 78
717 UsSe Of the REAITECIEA BVENT ...ttt sb e bttt se et saesbe s e ennennen 81
7.2 L= S D= =0 1SS 8l
7.3 MultiParty Call Control Service INtErface ClASSES........cuiiiieirieirireerteei e 83
731 Interface Class |pMultiPartyCall CONtrolManagEScoceereererieinieiesie et s 83
732 Interface Class |pAppMultiPartyCall CONtrolManagerc..ceiereeerierenenereee et 87
733 Interface Class IPMUILIParYCallcociiiiiee bbb 20
734 Interface Class IPAPPMUIIPAIYCEll...........oooiiiiiiieeeee bbb 95
7.35 INtErfACE ClasS IPCAIILEY ...ttt et s b e et b e et et 97
7.3.6 Interface Class IPAPPCAILED.ciieiiei ettt te e aessaesreesreesaessnesaeesaeenseensenns 103
74 MultiParty Call Control Service State Transition DiagramsS........cccecceveeveecesieese e ee e 108
74.1 State Transition Diagrams for [pMultiPartyCall ControlManager..........cccvecveveereereeceseeseese e see e 108
74.11 ACHIVE SEAEE ...ttt ettt b et b et et R b et et b et et R et Rt b e bttt ene 108
74.1.2 L0 001 0 S = (TSR 108
7413 Overview oOf alloWed MELNOUS...........coi i 108

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 5 ETSITS 129 198-4 V4.10.0 (2004-09)

742
7421
7422
7423
7424
74.3
7431
74311
74312
74313
74314
74315
7432
74321
74322
74323
74324
7.5
751
752
7.6
76.1
76.2
7621
7.6.2.2
7.6.2.3
7624
7.6.2.5
7.6.2.6
7.6.2.7
7.6.2.8
7.6.2.9
7.6.2.10
7.6.211
7.6.2.12
7.6.2.13
7.6.2.14
7.6.2.15
7.6.2.16
7.6.2.17
7.6.2.18
7.6.2.19
7.6.2.20
76221
7.6.2.22
7.6.2.23
7.6.2.24
7.6.2.25
7.6.2.26
7.6.2.27
7.6.2.28
7.6.2.29
7.6.2.30
7.6.2.31
7.6.2.32
7.6.2.33
7.6.2.34
7.6.2.35
7.6.2.36
7.6.2.37
7.6.2.38
7.6.2.39

State Transition Diagrams for IPMUltiPartyCallcoeeeeeiie e 109
T T S = =SOSR 109
ACTIVE SEBEE......ecviieeeeetesieeete ettt sttt s b et et be b et s be b et st e s be e e st s be e enenbeneeneens 110
RELEASED SEBLEccvtiteueeterieeste st st sttt see e st se st s te st teste e ebeste e beste st ebestesesbessenesbessenestestenessessenenns 110
Overview Of alloWed MELNOUS...........coi i e 110

State Transition Diagrams fOr IPCallLEQ......c.vcviiiiiieieeee et ae e snees 110
OrigiNALiNG Call LEJecueitiieeiiiteieeieste ettt st eb e et b e et b e et b e se et b e s b e e ebesaennene s 111

INITIAETNG SEALE ...ttt bbbt b e bbbt b e e et b se et b et et b b 112
ANBIYSING SEALE. ...ttt ettt bbb bbbt bbb 113

F o L= (= RS 114

REIBASING SEALE ...ttt ettt et b e s et b e se et bese e e b e s b et ebeebe e eneas 116

Overview of alowed methods, Originating Call Leg STDcccoveiveiiceceeeeeee e e 117
TermMiNGNG Call LOJiciiiieiieciee ettt et s e st e s teenteeaesneesnteenaeenaennaesreesneas 118

[dle (1ErmMiNaLiNG) SEALE........cceeiieereeiieie et e e e ee e e st et e e te s e s reeste e seeneeensesseesreesneenseensenns 119

AcCtive (1ermiNating) SEALEccecieeieeieee ettt et te e s e re e reeneesaesneesneeseenreens 120

Releasing (terminNating) SEAEeevviieeee et e sr e ne e e eraesraesneas 122

Overview of allowed methods and trigger events, Terminating Call Leg STD.......c..cccevcvevvvenennne 124
Multi-Party Call CONtrol SErviCe PrOPEITIESceiiiiirieeeie ettt eb e ebesaeseeneas 124
LiSt Of SErVICE PrOPEITIES. ..ottt bbbt bbbt b 124
Service Property values for the CAMEL Service ENVIrONMENt..........cooovrererinenenieneeseseesie e 125
Multi-Party Call Control Data DEfiNitiONS...........cciirieeriiieerieeee et ebe e 127

Event Notification Data DefiNitiONScoviiiieieee e e 127

Multi-Party Call Control Data DEfiNitioNS..........cccoirieiiirerieree e 127
F oL@ = o PR SRS 127
L@ =0 | PSS 127
F N o101 = S 127
T o1z 1= | = USSR 127
IPMUILIPEIYCEILc.eeviieiieieiee et sttt st ne st et e e benbe e 127
IPMUIIPErtYCaIIRES ..ot sttt sttt 127
IPAPPMUITIPAITYCEL.......c.eouiiiieiiiee bbbt b et b e 127
IPAPPMUILIPArYCalIRES ...t bbb 128
IPM Ulti PartyCall CONtrOIMANAGESc.couiieiiriiieierieee ettt e 128
IpMultiPartyCall ControlManagerRES ..o e 128
IPAPPM Ulti PartyCall CONLrOIMANAJESciveeeiirieieiesieeeert ettt st 128
IpAppMultiPartyCall ControlManagerRESoo e 128
TPAPPCAILEIREFSEL.......cociieeeeee et esae e s ae e teenteenteeneesnaenraenneas 128
TPMUHIPartyCal lIAENLITIENveeeeeeee ettt eenaesnaesraesneas 128
TPAPPMUILIPArtYCallBACKcciueeiieeieeie ettt st sne e saeeneenneeneeenaennaesreesneas 128
TPAPPMUItiPartyCal IBaCKREF TYPEeceeiee ettt et esre et e sreenneas 129
TPAPPCAILEGCAIBACK........ccctieiieieee ettt et e e e sae e sse e se e teenaeeseesnaesreesneas 129
TPMUItiPartyCal lldentifIErSELceiveeiireertee e 129
TPCATAPPINTO ..ttt bt bbbt b e e bt a e st bbb n e ens 129
Ll 018 1N ol oL g ol Iy o= TSSO P U 130
TPCAIAPPINTOSEL ...ttt b et b et s ettt e s b s bt ne b e b e ens 130
TPCAIEVENIREGUESL ..ottt ettt ettt ettt b e bt e et e bt e bbbt nb b e s 130
TPCAIEVENTREQUESESELccveeiietiiteiet sttt b et n et eb e n e ens 130
IO Y i 1Y o= PSR 131
TPAAditioNal Call EVENECEEIA.eeieeeee ettt e s s esaeenaeeaeenaeenaesnaesraesneas 133
IO Y14 o T PSSR 133
TPCallAdditiONAIEVENLINFO.......ciieeeece ettt ereesraesraesneas 134
TPCallNOLIfiCalIONREQUESLeeveeieeeceeesie ettt e e sre e s e st e e eeeseesneesseesteesneeseessaesnaesnens 134
I 01O N (o) 1= o oo o= USSR 134
TPCAINOLfICATONINFO.c.eeieetiieiet bbb 135
TPCallNOLifiCati ONREPOITSCOPE.veveueetereeieetert ettt b bt se e s e sb e ens 135
TPNOLIfiCaIONREGUESLE ...ttt bbbt e e eb e ens 135
TPNOLIfi Cati ONREGUESIEASEL ...ttt e b e 135
TPREIEASECELISE ...ttt ettt b bbbt b et b et h et h e e bR e n bbbt n e ens 135
TPREIEASECAUSESELcceveeeeecieesiees et ee sttt ettt et e st e e te e teeteseesaeesaeesaeeseenseanaeensennaesseesneas 135
I L L= (= o= PSS 136
TPCAlLEGIAENIITIEISELccveeieeece et ste e tesseessteenaeenaesnaesraesneas 136
TpCallLegAttaChMEChANISIMoiieece et essaesraesreesneas 136
TPCallLegCoNNECti ONPIOPEITIES.ei e iee et este et ee sttt et e e e e e s e e s se e teenteesaesraesreesnees 136

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 6 ETSITS 129 198-4 V4.10.0 (2004-09)

7.6.2.40 TPCAlLEGINTOREPOITecee ettt e et s e et e e e e saessae s e e saeesaeesaeenseenseenseeneessaesraesnens 136
7.6.241 IO 1L I=o g o I8 o= PSS 137
7.6.2.42 TPCallLegSUPErVISETIEAMENTc.eeiieeee e see st este e et e et e e este e te et e eeesseesseasse e teenseeseessaesseesnens 137
8 CommOoN Call CONtrOl Dala TYPES.....ciuieeectiiieieseeie st ete e e e st e e s te s e s besreestesreeaesteeaseseesreebensenaens 137
8.1 TPCAIAIETINGMECHANISIM ...ttt ettt b et b e bt b e sn e e st b e et s b b 137
8.2 TPCAIIBEAIEI SEIVICE ...ttt b bt b e et b e et b e s e et b e s e e bt b e s e e aeeb e b eneeb et e e ebe b e 137
8.3 TPCAICNAIGEPIBN ...ttt b et b e et b e s e he b s e bt b e e et ebe e et b bt bt b 138
8.4 TpCallParty TOChargeAdditiONal INFO ..o 138
8.5 TPCA I PartY TOCNAIGET YR ...ttt ettt sttt ettt b et b e et se bt b e bt bt e bt s be e st b e st et b b 138
8.6 TPCallChargeOrUEIrCalEUOIYveiieieeieesteeteeteeteesteesteestesteseeseesaeesseaseasseaseasseesseesteessessenssessnessseesseensennsenns 139
8.7 QLI O T L= e oo S 139
8.8 LI L o 139
8.9 I o0 A (o TN Ta = = o 1 o o TS 139
8.10 QLI O T o g I8/ o= S 140
8.11 QLI 1o o o S 140
8.12 I 010 g1 o) Y o1 OO P SRS U TSR U TSR PPR 140
8.13 TPCallLoadCoNtrolMECHENISIM........oiiiirieieieitee et ettt b et b e et b b 141
8.14 TPCallLoadCONLIOHNENVEIRALE.c.ccuiiieeeiirteeie ettt ettt s b e et 141
8.15 TpCallLoadControlMeChaNI SMTYPE. ..ottt st b et et eb e bt se et s be b 141
8.16 TPCAIMONITONMOTE ...ttt b bbbt b e bt b e b e bt b et b e et b b e e b b 141
8.17 TPCAINEIWOIKACCESSTYPE ...ttt sttt sttt sttt ettt b e et b e et b e s bt b e s b et bt b et b e s e e st eb e s b et ebe b e 142
8.18 IO O 1o o] Y S 142
8.19 IO S Y= o o [S 142
8.20 TPCAISEIVICECOUESELcveieeiiiesieteire ettt bbbt e et b b e n et ne b b e e bt en s 142
8.21 IO S Y o= 0o [I/ o S 143
8.22 TPCaAll SUPEIVISEREDOIT ..ottt s e st e et e e e e e s e e eb e e te e te e teensesnaesneesneesseanseensenns 143
8.23 TPCAll SUPEIVISETIEAIMENL ...ttt sttt sttt sttt sttt sttt et b e et b e s e et b s b et b e b et eb e b e st ebe s b et be b e 143
8.24 TP A TR ESEIVICE. ...ttt bbbt b e et b e s b et e b e s e et b e s b et eb e b et e b e s b et e be b e 144
8.25 TPCAHITIEAIMENL ...ttt sttt b et b bt b e et b e et bt e e et e b e s b et b e s b e neeb e b et e b e s b e e ebe b e 144
8.26 TPC Al TrEAIMENETYIIE ...ttt sttt ettt b et e et b e e st bt e st b seeae e b e s e e bt b e ne e st eb e b et ebe s b e e et e b 145
8.27 TpCall Additional TreatMENTINFO ..o et 145
8.28 I 011V = o[- o= TSR U TSR UTOTR PR 145
Annex A (nor mative): OMG IDL Description of Call Control SCF ... 146
Annex B (informative): ChanNQE NISLONY ..o 147
(o 11 (TP 148

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 7 ETSITS 129 198-4 V4.10.0 (2004-09)

Foreword
This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x thefirst digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit isincremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z thethird digit isincremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 4 of a multi-part TS covering the 3" Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: Overview

Part 2: Common Data Definitions

Part 3: Framework

Part 4: Call Control SCF

Part 5: User Interaction SCF

Part 6: Mobility SCF

Part 7: Termina Capabilities SCF

Part 8: Data Session Control SCF

Part 9: Generic Messaging SCF (not part of 3GPP Release 4)
Part 10: Connectivity Manager SCF (not part of 3GPP Release 4)
Part 11: Account Management SCF

Part 12: Charging SCF

The M apping specification of the OSA APIsand network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocolsis however not applicable for all Parts, but the numbering of Partsis kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-1 Part 1: Overview 29.998-1 Part 1: Overview
29.198-2 Part 2: Common Data Definitions 29.998-2 Not Applicable
29.198-3 Part 3: Framework 29.998-3 Not Applicable
29.198-4 Part 4: Call Control SCF 29.998-4-1 Subpart 1. Generic Call Control — CAP mapping
29.998-4-2
29.198-5 Part 5: User Interaction SCF 29.998-5-1 Subpart 1: User Interaction — CAP mapping
29.998-5-2
29.998-5-3
29.998-5-4 Subpart 4: User Interaction — SM'S mapping
29.198-6 Part 6: Mobility SCF 29.998-6 User Status and User Location — MAP mapping
29.198-7 Part 7: Termina Capabilities SCF 29.998-7 Not Applicable
29.198-8 Part 8: Data Session Control SCF 29.998-8 Data Session Control — CAP mapping
29.198-9 Part 9: Generic Messaging SCF 29.998-9 Not Applicable
29.198-10 Part 10: Connectivity Manager SCF 29.998-10 Not Applicable

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 8 ETSI TS 129 198-4 V4.10.0 (2004-09)
29.198-11 Part 11: Account Management SCF 29.998-11 Not Applicable
29.198-12 Part 12: Charging SCF 29.998-12 Not Applicable

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 9 ETSITS 129 198-4 V4.10.0 (2004-09)

1 Scope

The present document is Part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are
contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects
of the Call Control SCF are defined here, these being:

e Sequence Diagrams

e ClassDiagrams

* Interface specification plus detailed method descriptions
e State Transition diagrams

o Datadefinitions

e IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI TISPAN and The Parlay Group, in co-
operation with a number of JAIN™ Community member companies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

« References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

¢ For aspecific reference, subsequent revisions do not apply.

« For anon-specific reference, the latest version applies. In the case of areference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPPTS29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtua Home Environment (Release 4)".

[4] 3GPP TS 22.002: "Circuit Bearer Services Supported by a PLMN".

[5] SO 4217 (1995): "Codes for the representation of currencies and funds .

[6] 3GPP TS 24.002: "GSM-UMTS Public Land Mobile Network (PLMN) Access Reference

Configuration”.

[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Maobile Network (PLMN)".

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 10 ETSITS 129 198-4 V4.10.0 (2004-09)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Call Control SCF

Two flavours of Call Control (CC) APIs have been included in 3GPP Release 4. These are the Generic Call Control
(GCC) and the Multi-Party Call Control (MPCC). The GCC isthe same API as was aready present in the Release 99
specification (TS 29.198 v3.3.0) and isin principle able to satisfy the requirements on CC APIsfor Release 4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay CC Working group with collaboration from
JAIN has been focussed on the MPCC API. A number of improvements on CC functionality have been made and are
reflected in this API. For thisit was necessary to break the inheritance that previously existed between GCC and

MPCC.

Thejoint CC group has furthermore decided that the MPCC is to be considered as the future base CC family and the
technical work will not be continued on GCC. Errors or technical flaws will of course be corrected.

The following clauses describe each aspect of the CC Service Capability Feature (SCF).
The order isas follows:

¢ The Sequence diagrams give the reader a practical idea of how each of the SCF isimplemented.

The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.
¢ The Interface specification clause describesin detail each of the interfaces shown within the Class diagram part.

¢ The State Transition Diagrams (STD) show transition between states in the SCF. The states and transitions are
well-defined; either methods specified in the Interface specification or events occurring in the underlying
networks cause state transitions.

¢ The Data definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification (29.198-2).

4.1 Call Model Description

The adopted call model has the following objects.

e acal object. A call isarelation between a number of parties. The call object relates to the entire call view from
the application. E.g., the entire call will be released when areleaseis called on the call. Note that different
applications can have different views on the same physical call, e.g., one application for the originating side and
another application for the terminating side. The applications will not be aware of each other, all
‘communication’ between the applications will be by means of network signalling. The API currently does not
specify any feature interaction mechanisms.

¢ acal leg object. The leg object represents alogical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the addressis only made when theleg is
routed. Before that the leg object is IDLE and not yet associated with the address.

e anaddress. The address logically represents a party in the call.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 11 ETSITS 129 198-4 V4.10.0 (2004-09)

e aterminal. A terminal isthe end-point of the signalling and/or media for a party. This object typeis currently not
addressed.

The call object is used to establish a relation between a number of parties by creating aleg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or anumber (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
cal. l.e., only legsthat are attached can 'speak’ to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually thereis alimit to the number of legs that
arein being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is alimit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg isreleased. All other legs are called passive legs. There can be at most one controlling leg per call.
However, thereis currently no way the application can influence whether aLeg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way isto create anew call from
the application.

4.2 General requirements on support of methods

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method.

Where a method is not supported by an implementation of a Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

Where a method is not supported by an implementation of an Application interface, acall to that method shall be
possible, and no exception shall be returned.

5 The Service Interface Specifications

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

511 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name | p<name>. The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
I pSve<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 12 ETSITS 129 198-4 V4.10.0 (2004-09)

5.1.2 Method descriptions

Each method (APl method ‘call’) is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res' or 'Er r ' suffix for method results and errors, respectively. To handle

responses and reports, the application or service developer must implement the relevant | pApp<name> or
| pSvc<nane> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

531 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

Theinterfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

54.1 Interface Class IpService
Inherits from: Iplnterface

All service interfacesinherit from the following interface.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 13 ETSITS 129 198-4 V4.10.0 (2004-09)

<<Interface>>

IpService

setCallback (applinterface : in IpinterfaceRef) : void

setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

Method
set Cal | back()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It isnot allowed to invoke this method on an interface that uses Sessionl Ds.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE_TYPE

Method
set Cal | backWt hSessi onl)

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or cal leg. Itisnot alowed to invoke this method on an
interface that does not use SessioniDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks

sessionlD : in TpSessionlD
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpCommonExcepti ons, P_I NVALI D SESSION | D, P_I NVALI D_| NTERFACE_TYPE

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 14 ETSITS 129 198-4 V4.10.0 (2004-09)

6 Generic Call Control Service

The Generic Call Control API of 3GPP Rel.4 relies on the CAMEL Service Environment (CSE) and thus some
restrictions exist to the use of the interface. The most significant oneis that there is no support for createCall method.
The detailed description of the supported methods and further restrictionsis given in the chapter 6.5.

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interfaceis
used instead.

first instance : (Logical : IpAppCallControlManager second instance : : IpAp pCallControlMan ager : IpCallControlManag er
View::I1pAppLogic) (Logic...
1: new()

5: callEventNotify(‘)
I

| |
T |
|
| !
| |
|

6: ‘forward event'

7: "call Notify resuIL: failure"

8: callEventNotify()

‘ ‘ 3: new() %
‘ L 4: enableCaIINotificPtion()
| |
|
| \

9: "forward event" ‘J
\

1. Thefirst instance of the application is started on node 1. The application creates a new |pAppCall ControlManager to
handle callbacks for this first instance of the logic.

2: The enableCalINotification is associated with an applicationID. The call control manager uses the applicationID to
decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 15 ETSITS 129 198-4 V4.10.0 (2004-09)

4. The same enableCalINotification request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g., dways first try the first registered or use some kind of round robin
scheme.

6: Theevent isforwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable thisis communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: Theevent isforwarded to the second instance of the logic.

6.1.2 Alarm Call

The following sequence diagram shows a 'reminder message, in the form of an alarm, being delivered to a customer as
aresult of atrigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 16 ETSITS 129 198-4 V4.10.0 (2004-09)

1

2

: (Logical : IpAppCall o

1: new() ‘

2: createCall()

| |
L 3 new)
| |
| |
| |

View::l Logic IpAppUICall IpCaIIConEoIManaqer | UlManager
\
\

4: routeReq()

4 —F —

5: routeRes()
6: ‘forward event'

7: createUlICall()

T T
L | 9: ﬁendlnfoReq()
| |

—

T
|
10: sendlnffLRes()

|

u: 'fonNaHF event' F

13:|release()

) | |

|
[
|
T
|
|
12: r%lease()

This message is used to create an object implementing the IpAppCall interface.

This message requests the object implementing the I pCall Control Manager interface to create an object

implementing the IpCall interface.

3

Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not

exceeded) ismet it is created.

4:

This message instructs the object implementing the IpCall interface to route the call to the customer destined to

receive the 'reminder message'

5
6
7
8
9

. This message passes the result of the call being answered to its callback object.

: This messageis used to forward the previous message to the IpAppLogic.

The application requests a new Ul Call object that is associated with the call object.

- Assuming all criteriaare met, anew UICall object is created by the service.

. This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends thisis reported to the call back interface.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 17 ETSITS 129 198-4 V4.10.0 (2004-09)

11: The event is forwarded to the application logic.

12: The application releases the Ul Call object, since no further announcements are required. Alternatively, the
application could haveindicated P_FINAL_REQUEST in the sendinfoReq in which case the Ul Call object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 18 ETSITS 129 198-4 V4.10.0 (2004-09)

: (Logical : IpAppCall o . IpCall
View :IpAppLo... IpCallControlManager
l 1: new() ‘

‘ 2: ‘createCaII()

|
|
|
Ju 3:new()

|
|
4:routeReq()
[
|
|
|

5:routeRes()

6: ‘forward event' H

|
|
|
9: forward event' ﬂ
|
|
|
|
\

7:routeReq()

— 3 — — 1 — — [— — — — —

10: deassignCall()

|
|
|
|
|
]
|
|
|
|
8: routeRes()
I
|
|
|
|
|
|
|
\

g g — — -

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 19 ETSITS 129 198-4 V4.10.0 (2004-09)

1: Thismessage is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the I pCall ControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) ismet, it is created.

4: This messageis used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.
6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case aresponse is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is
automatically established between them.

9: This messageis used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code is accepted and the call is routed to the original called party.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 20 ETSITS 129 198-4 V4.10.0 (2004-09)

| 4

‘ 11:release() J ‘

12:routeReq()
13:routeRes()
14:‘forward event'

\ H

\
16: “forward event” ‘
|

sendInfoAndColleciRes()

: (Logical : IpAppCallControlManager : IpAppCall - IpCall :IpUiCall
View::l Logic! UICa QCaIIComrolMangge QUIManager
1: new()
ﬁ 2: enableCaIINotificaJon() ‘ ‘ ‘ ‘ ‘
| 3:anIEventNot|fy()‘ |

‘ 4: forward event' ‘ ‘ ‘ ‘ ‘
5:new() ‘ ‘ ‘ ‘ ‘
T L E ‘ ‘ ‘ ‘
‘ ‘ 6: createUICaII({) ‘ 7: new() ‘

t t t t

8: sendlnfoAndCJoIIectReq(‘ ‘

t
11 ‘forward event'

I

17: dea53|gnCaII()

4:—;4441—4 4:—;{4:%

\
15: callEnded() ‘
|

1: Thismessage is used by the application to create an object implementing the IpAppCall ControlManager interface.

2: Thismessage is sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
acall barring service, it islikely that al new call events destined for a particular address or address range prompted for
apassword before the call is allowed to progress. When a new call, that matches the event criteria set, arrivesa
message (not shown) is directed to the object implementing the IpCall ControlManager. Assuming that the criteriafor
creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4: This messageis used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCall ControlManager using the return parameter of the
callEventNotify.

6: This messageis used to create a new UlCall object. The reference to the call object is given when creating the
UlcCal.

7: Provided dl the criteria are fulfilled, anew UICall object is created.

8: Thecall barring service dialogue isinvoked.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 21 ETSITS 129 198-4 V4.10.0 (2004-09)

9: Theresult of the dialogue, which in this case isthe PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the Ul Call object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will aways
be received when the call isterminated by the network in anormal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resourcesin the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as aresult of a prearranged event
being received by the call control service.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 22 ETSITS 129 198-4 V4.10.0 (2004-09)

: (Logical . IpAppCallControlManager : IpAppCall o : IpCall
View: :lpApplo... IpCallControlManager
‘ 1: new() ‘

2:en ableCaIINotificationl)

F—I

|
U
|
|
|

|
3: callEwventNotify() ‘

4: ‘forward event'

5: new()

—]

6: 'translate number'

P—

_ 7 — —

7: routeReq()

g

Res() ‘

|

o

[

9: ‘forwar
|

8: routt

|
I

10: deassignql,all()

|
|

|

|

|

|

|

foun i
|

|

| g
|

|

1: Thismessage is used by the application to create an object implementing the IpAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. As this sequence diagram depicts
anumber trandation service, it islikely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteria for creating an object implementing the I pCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the I|pAppCall ControlManager interface.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 23 ETSITS 129 198-4 V4.10.0 (2004-09)

4. Thismessage is used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

This message invokes the number tranglation function.
The returned translated number is used in message 7 to route the call towards the destination.

This message passes the result of the call being answered to its callback object

© © N o

This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control service.

For illustration, in this sequence the callback references are set explicitly. Thisisoptional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is aso the preferred method. The rest of the
sequences use that mechanism.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 24 ETSITS 129 198-4 V4.10.0 (2004-09)

: (Logical . IpAppCallControlManager . IpAppCall o : IpCall
View::IpAppLogic) IpCallControlManager
‘ 1: new() ‘

2: enableCaIINotificationJ)

-

|
| g
3: setCallback() ‘ >ﬁ
\

4: callEventNotify()

|

|

\
5: forward event' H

—— g — -

|
|
|
6: new() %

7: setCallbackWithSessionID()

8 ‘translate number'

|
I
|
|
. ‘
|
|
|

N

I

9: routeReq()

11: 'forwaﬂd event'

|
‘ ‘ 12: deassign&all()
] | |
| | |
| | |

|
|
|
|
|
|
|
10: routLRes()
|
|
|
|
|
|

A T N —

1. This messageis used by the application to create an object implementing the |pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber trangation service, it islikely that only new call events within a certain address range will be enabled. When
anew cal, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteriafor creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 25 ETSITS 129 198-4 V4.10.0 (2004-09)

3: This message sets the reference of the IpAppCallControlManager object in the Call ControlManager. The
CadllControlManager reports the callEventNotify to referenced object only for enableCallNatifications that do not have a
explicit IpAppCallControlManager reference specified in the enableCalINotification.

4: This messageis used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
5: This message is used to forward message 4 to the IpAppLogic.

6: Thismessage is used by the application to create an object implementing the IpAppCall interface.

7: Thismessage is used to set the reference to the IpAppCall for this call.

8: This message invokes the number trandation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2
The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being

received by the call control service. If the translated number being routed to does not answer or is busy then the call is
automatically released.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 26 ETSITS 129 198-4 V4.10.0 (2004-09)

: (Logical : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall
View::IpAppLogic)
1: new()

2: enableCall Notiﬁcatioq() m

‘ 3: callEventNotify()\

|
T
|

4: ‘forward event'

\
|
5: new() %ﬁ

‘ 6: 'translate number'

T
< ‘
|
|
\

7: routeReq()

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|]
9: ‘forwa ‘d event’' J e TOUte#ES() U
|

|

‘ 10: release(|)
\

_— T — 3 —

1. This messageis used by the application to create an object implementing the |pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber trandation service, it islikely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Thismessage is used to pass the new call event to the object implementing the I|pAppCall ControlManager interface.
4: This messageis used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCall ControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number trandlation function.
7: Thereturned trandlated number isused to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 27 ETSI TS 129 198-4 V4.10.0 (2004-09)

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

6.1.8 Number Translation 3
The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being

received by the call control service. If the transated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 28 ETSITS 129 198-4 V4.10.0 (2004-09)

: (Logical : IpAp pCaliC ontrolManager : IpAppCall : IpCallControlManager :IpCall
View::IpAppLogic)
‘ 1: new() ‘

IINotification()

LH 2: enableCa

|
|
]

4: ‘forward event'

|

3: callEvedtNotify()
1

5: new()
L]
‘6: ‘translate number' I ‘ T
<~ | | |
‘ 7: roLteReq() ‘
‘ ‘ ‘ 8: routeFJes() ‘
ﬁ< 9: 'forvvarq event' F

10:'ranslate number'

p—

—_—] 3 —

|

11 routLReq()
|
|

12: routelT?es()

\

13 'forvvarL ewent J
Il
|

e

14: deassign(Jall()
|

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. As this sequence diagram depicts
anumber tranglation service, it islikely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 29 ETSITS 129 198-4 V4.10.0 (2004-09)

3: Thismessage is used to pass the new call event to the object implementing the |pAppCall ControlManager interface.
4: This messageis used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCall ControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number trandation function.
7. Thereturned trandlated number isused to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This messageis used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.
12: This message passes the result of the call being answered to its callback object.
13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4
The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being

received by the call control service. Before the call is routed to the translated number, the application requests for all
call related information to be delivered back to the application on completion of the call.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 30 ETSITS 129 198-4 V4.10.0 (2004-09)

: (Logical : IpAppCall ControIManager : IpAppCall : IpCaliControlManager - IpCall
View::| Logic
‘ 1:new() ‘

l 2:‘ enableCallNotification()

| |
|) | |
| i
|

3: callEvent‘Noﬁfy()

T 4: ‘forward event'

?
|

:
|

6: 'translate number'

<

7: getCaIIInchReq()

8:routeReq()

|
|
|
|
|
|
|
|
|
I
|

—

10: 'forwan‘d event' J
T

|
|
|
Ef: routeRes()
|
|
|
i

11: callEnded()

13: getCalllnfoRes()

12: "forwar? event"

—_— —

L

—_ — — —— —— — [

|

14: 'forwaﬁd event'
I
I

|
|
15:deas sign#a"() !

1: Thismessage is used by the application to create an object implementing the IpAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber tranglation service, it islikely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 31 ETSITS 129 198-4 V4.10.0 (2004-09)

4. Thismessage is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the I pCall ControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number trand ation function.

7: The application instructs the object implementing the |pCall interface to return all call related information once the
call has been released.

8: Thereturned trandated number isused to route the call towards the destination.
9: This message passes the result of the call being answered to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the |pAppLogic

15: After the last information is received, the application deassigns the call. Thiswill free the resources related to this
call in the gateway.

6.1.10 Number Translation 5

The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as aresult of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 32 ETSITS 129 198-4 V4.10.0 (2004-09)

IpAppLogic : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

1: new() ‘

|
.

1

| 2: epableCaIl Notification()

3: cauEv#ntNotify() ‘
\
‘ U
U
|
\

‘ ‘ 7: appropriate re’ease cause
| |

4: ‘forward event'

. ne

{1 —
[$2]
<

6: ;Lheck status'

—

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber trandation service, it islikely that only new call events within a certain address range will be enabled.

When anew call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteria for creating an object implementing the I pCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4. Thismessage is used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is
busy.

6.1.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 33 ETSI TS 129 198-4 V4.10.0 (2004-09)

‘ Prepaid : (Logical H : IpAppCall ‘ ‘ : IpAppCallControlManager ‘ ‘:_ILAQ;M ‘ _ IpCall H:_I;wgg _ IpUIManager = IpulCall ‘
View::IpAppLogic)
‘ 1inew() ‘ ‘ ‘ ‘
/U 2: enableCallNotification()
l 4: "for%vard event" 3: callventNotify() | ‘ ‘ ‘
5: new() ‘ ‘ H
‘ ‘ 6:supervise4:allReq() ‘ ‘ ‘ ‘ ‘
|¥ i 7 rouTReq() i M ‘ ‘ ‘
| 8:guperviseCallRes() | |
9: "forward event"‘J ‘ ‘ H
‘ 10: supenviseCallReq() ‘ | ‘ ‘ ‘
1l's niseCallRes
12: “forward event"g Tpe 0 } U ‘ ‘ ‘
| | 13: superviseCallReq() | | ‘ ‘ ‘
U ! 14: ‘uperviseCaIIRes() ! LH
‘ 16: createUICall() ‘ ‘ ‘
U ‘ ‘ 17: sendinfoReq(‘) ‘ ‘ /I—H ‘
[[[[[[
| | 18:sendlpfoRes() | /u
‘ 19: "forward event"‘
| | | | |
‘ ‘ 20: release() ‘ ‘ ‘
‘ Zl:supervisJ‘CallReq() ‘ ‘ ‘
| 23: "forward event: Zz:lupervlseCallRes() L‘J ‘ ‘
| | o
‘ 24:releasq() ‘ ‘
\ \ \ \

o

1. This messageis used by the application to create an object implementing the |pAppCall ControlManager interface.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 34 ETSITS 129 198-4 V4.10.0 (2004-09)

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
apre-paid service, it islikely that only new call events within a certain address range will be enabled. When anew call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Theincoming call triggers the Pre-Paid Application (PPA).
4: The message is forwarded to the application.
5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period isrelated to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application isinformed and a new period is started.
9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) regquests to supervise the call for another call duration.

11: At the end of each supervision period the application isinformed and a new period is started.
12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) reguests to supervise the call for another call duration. When the timer expiresit
will indicate that the user is almost out of credit.

14: When the user is almost out of credit the application isinformed.
15: The message is forwarded to the application.

16: The application decides to play an announcement to the partiesin thiscall. A new UICall object is created and
associated with the call.

17: An announcement is played informing the user about the near-expiration of his credit limit.

18: When the announcement is completed the application isinformed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.
22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is aready explicitly terminated no
userlnteractionFaultDetected is sent to the application.

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 35 ETSI TS 129 198-4 V4.10.0 (2004-09)

Prepaid : (Logical
View::IpAppLogic)

: IpCall ‘ ‘ : IpUIManager

_ Ipuicall ‘

‘ : IpAppCallControlManager H : IpAppCall H : IpAppUICall

1: new() % ‘ ‘
‘ 2: enableCPIINotmcanon()%

|

|

|
4: “forward event" 3 AHE"S“’NMW(b

5: new()

: oI

6: setAd\J\ceOfCharge(

7: supe*vlseCallReq(‘)
I I
8‘ routeReq(‘)

s N — R A——

| |
| | 9:superviseCa‘IIRes()
10: "forwargd event" ‘J ‘ ‘
11: superviseCallRef()
\ \
‘ lZ:superviseCa’IRes()
I I
14 setAdviceOfChar@e()

—_—

—o1I

15: superviseCaIIR%q()

I
|
|
1
\ \
| |
13: "forwar% event" l
\
|
1

|
) | |
L

17: "fonNarL event”

18:new()

\
k

19

createUICall() 20: new()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i
u

16: superviseCJIIRes()
21: sendinfoReq(‘

22:sendinfoRes()

=

T
24:supeniseCallReq() >E;

23: “forward e*/ent"

NN [N A | —

26: "forward event:

o R

27:release()
‘ 24: userlnteractionFaultDetected()

| 25:supeniseCallRes() | ‘

444:4;4:4—%\

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 36 ETSITS 129 198-4 V4.10.0 (2004-09)

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
apre-paid service, it islikely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Theincoming call triggers the Pre-Paid Application (PPA).
4. The message is forwarded to the application.
5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g.,
18:00 hours) switchesto tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period isrelated to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application isinformed and a new period is started.
10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) regquests to supervise the call for another call duration.

12: At the end of each supervision period the application isinformed and a new period is started.
13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again,
at the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expiresit
will indicate that the user is almost out of credit.

16: When the user is almost out of credit the application isinformed.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new Ul Call object that will handle playing of the announcement needs to be created
20: The Gateway creates anew Ul call object that will handle playing of the announcement.
21: With this message the announcement is played to the partiesin the call.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.
25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 37 ETSITS 129 198-4 V4.10.0 (2004-09)

28: Terminating the call which has still a Ul Call object associated will result in a userlnteractionFaultDetected. The
UlICall object isterminated in the gateway and no further communication is possible between the Ul Call and the
application.

6.2 Class Diagrams

This class diagram shows the interfaces of the generic call control service package.

<<Interface>>
IpSenvice

setCallback()
setCallbackWithSessionID()

8

<<Interface>>
IpCall

(from gccs)

<<lInterface>>
IpCallControlManager
(from gccs)

¥routeReq()

1 0. n [®release()
—— — — — —|MideassignCall()
getCallinfoReq()
%setCallChargePlan()
¥setAdviceOfCharge()
¥getMoreDialledDigitsReq|()
@supeniseCallReq()
S<<new>> continueProcessing()

WcreateCall()
SenableCallNotification()
%disableCallNotification()
WsetCallLoadControl()
SchangeCallNotification()
SgetCriteria()

Figure: Service Interfaces

The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagramsin the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g., the IpCallControlManager interface uses the |pAppCall ControlManager , by means of
calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 38 ETSITS 129 198-4 V4.10.0 (2004-09)

<<Interface>>
Ipinterface
//\\
/\
£
<<Interface>>
IpAppCall
<<Interface>> (from gccs)
IpAppCallControlManager
(from gccs) ‘routeRes()
ProuteEm()
BcallAborted() 1 0.n[&getcallinfoRes()
ScallEventNotify () ~ [®getCallinfoErr()
®callNotificationInterrupted () ¥supeniseCallRes()
ScallNotificationContinued() ®supeniseCallErr()
®callOwerloadEncountered() WcallFaultDetected()
®callOwerloadCeased() ¥getMoreDialledDigitsRes ()
i ¥getMoreDialledDigitsErr()
L callEnded ()
<uses>> 7y
‘ f<uses>>
| |
| |
<<Interface>> <<Interface>>
IpCallControlManager | 1 0.n IpCall
(from gccs) -~ (from gccs)
Figure: Application Interfaces
6.3 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It isbased around athird
party model, which alows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) servicesin the case of a switched telephony network, or equivalent for packet based networks.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 39 ETSITS 129 198-4 V4.10.0 (2004-09)

It isthe intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. Thisis provided by the Multi-Party Call
Control Service. Furthermore, the generic call isrestricted to two party cals, i.e., only two legs are active at any given
time. Active is defined here as 'being routed' or connected.

The GCCS s represented by the IpCall ControlManager and IpCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock athread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the devel oper must implement |pAppCallControlManager and |pAppCall to provide the callback
mechanism.

6.3.1 Interface Class IpCallControlManager
Inherits from: IpService

Thisinterface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
thisinterface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

Thisinterface shall be implemented by a Generic Call Control SCF. Asa minimum requirement either the
createCall() method shall be implemented, or the enableCallNotification() and disableCallNotification() methods shall
be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallldentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignment|D

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentlD

changeCallNatification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void
getCriteria () : TpCallEventCriteriaResultSet

Method
createCall ()

This method is used to create anew call object.

Call back reference:

An IpAppCallControlManager should aready have been passed to the IpCall ControlManager, otherwise the call control
will not be able to report a call Aborted() to the application. The application should invoke setCallback() prior to
createCall if it wishesto ensure this.

Returns cal|Reference: Specifies the interface reference and sessionlD of the call created.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 40 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters

appCall : in | pAppCal |l Ref
Specifies the application interface for callbacks from the call created.

Returns
TpCal |l I dentifier

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE TYPE

Method
enabl eCal | Notification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application has to do to get initia notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of aparticular call session it has to use the routeReq() method on the call object. The application will get accessto the
call object when it receives the callEventNotify(). (Note that the enableCalINatification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application aready requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS _INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationTypeis used.

If anotification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not alow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be registered either in &) enableCallNotification() or b) explicitly with a separate
setCallback() method depending on how the application provides its callback reference.

Casea

From an efficiency point of view the enableCallNotification() with explicit immediate registration (no "Null" value) of
call back reference may be the preferred method.

Case b:

The enableCallNotfication() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back referenceis provided subsequently in a setCallback().

In case the enableCallNotification() contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback(). See examplein 6.1.6

Set additional callback reference:

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
See examplesin 6.1.1.

Returns assignmentID: Specifiesthe ID assigned by the generic call control manager interface for this newly-enabled
event notification.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 41 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters

appCal | Control Manager : in | pAppCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria
Specifies the event specific criteria used by the application to define the event required. Only events that meet these

criteria are reported. Examples of events are "incoming call attempt reported by network”, "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssi gnnment | D

Raises

TpConmonExcept i ons, P_I NVALI D CRI TERI A, P_I NVALI D_| NTERFACE_TYPE
P I NVALI D_EVENT_TYPE

Method
di sabl eCal | Noti fication()

This method is used by the application to disable call notifications.

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignment ID given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

Method
set Cal | LoadControl ()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentI D: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the call Overl oadEncountered and call OverloadCeased methods with the request.

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 42 ETSITS 129 198-4 V4.10.0 (2004-09)

mechani sm: in TpCal | LoadControl Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatnment : in TpCall Treat nent

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssi gnnment | D

Raises

TpCommonExcepti ons, P_I NVALI D ADDRESS, P_UNSUPPORTED ADDRESS PLAN

Method
changeCal | Notification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria

Parameters

assignmentI D : in TpAssignnmentlD

Specifiesthe ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT_ | D, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

Method
getCriterial()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNatification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 43 ETSITS 129 198-4 V4.10.0 (2004-09)

Returns
TpCal | Event Criteri aResul t Set

Raises
TpComonExcept i ons

6.3.2 Interface Class IpAppCallControlManager
Inherits from: Iplinterface

The generic call control manager application interface provides the application call control management functionsto the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallldentifier, eventinfo : in TpCallEventinfo, assignmentID : in
TpAssignmentlD) : IpAppCallRef

callNotificationIinterrupted () : void
callNotificationContinued () : void
callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method

cal | Aborted()
This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

cal |l Reference : in TpSessionlD
Specifiesthe sessionlD of call that has aborted or terminated abnormally.

Method
cal | Event Noti fy()

This method notifies the application of the arrival of acall-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of 102 (Recovery on timer expiry).

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 44 ETSITS 129 198-4 V4.10.0 (2004-09)

Set of the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back referenceis only applicableif the notification isin INTERRUPT mode.

When callEventNotify() isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been
passed to the gateway, either through an explicit setCallbackWithSessionl D() invocation on the supplied IpCall, or via
the return of the callEventNotify() method.

The call back reference can be registered either in a) callEventNotify() or b) explicitly with a
setCallbackWithSessionl D() method e.g. depending on how the application providesits call reference.

Casea
From an efficiency point of view the callEventNotify() with explicit pass of registration may be the preferred method.
Caseb:

The callEventNotify() with no call back reference ("Null" value) is used where (e.g. due to distributed application logic)
the callback reference is provided subsequently in a setCallbackWithSessionl D().

In case the callEventNotify() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionlD(). See examplein 6.1.6

Returns appCall: Specifies areference to the application interface which implements the callback interface for the new
call. If the application has previously explicitly passed areference to the IpAppCall interface using a
setCallbackWithSessionl D() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionl D().

This parameter will be null if the notificationisin NOTIFY mode and in case b.

Parameters

call Reference : in TpCallldentifier

Specifies the reference to the cal interface to which the notification relates. If the notificationisin NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

eventinfo : in TpCall Eventlnfo
Specifies data associated with this event.

assignnmentI D : in TpAssignnmentlD

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteriaand to act accordingly.

Returns
| pAppCal | Ref

Method
cal | Notificationlnterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 45 ETSITS 129 198-4 V4.10.0 (2004-09)

Method
cal I NotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Method
cal | Over | oadEncount er ed()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignnmentI D : in TpAssignnmentlD

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the address range for
within which the overload has been encountered.

Method
cal | Over| oadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the address range for
within which the overload has been ceased

6.3.3 Interface Class IpCall
Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-mediacall. The cal islimited to two party calls, although it is possible to provide ‘follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

Thisinterface shall be implemented by a Generic Call Control SCF. As aminimum requirement, the routeReq (),
release() and deassignCall() methods shall be implemented.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 46 ETSITS 129 198-4 V4.10.0 (2004-09)

<<Interface>>
IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
. in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appinfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClinfo : in TpAoClinfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

<<new>> continueProcessing (callSessionID : in TpSessionID) : void

Method
rout eReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful’ (e.g. 'answer' event) and ‘failure’ events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

This operation continues processing of the call implicitly.

Returns callLegSessionl D: Specifiesthe sessionlD assigned by the gateway. Thisisthe sessionlD of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in paraldl, e.g., in the multi-party call
control service.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

responseRequested : in TpCal |l Report Request Set
Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 a7 ETSITS 129 198-4 V4.10.0 (2004-09)

If the application wants to control the call (in whatever sense) it shall enable event reports

target Address : in TpAddress
Specifies the destination party to which the call leg should be routed.

originati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

ori gi nal Desti nati onAddress : in TpAddress
Specifiesthe original destination address of the call.

redirecti ngAddress : in TpAddress
Specifies the address from which the call was last redirected.

applnfo : in TpCall Appl nf oSet
Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service

identities and interaction indicators).
Returns

TpSessi onl D

Raises

TpComonExceptions, P_INVALID SESSION | D, P_I NVALI D _ADDRESS,
P_UNSUPPORTED _ADDRESS PLAN, P_I NVALI D NETWORK_STATE, P_I NVALI D_CRI TERI A,
P_1I NVALI D_EVENT_TYPE

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCalllnfoReq) these
reports will still be sent to the application.

This operation continues processing of the call implicitly.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cause : in TpCall Rel easeCause
Specifies the cause of the release.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 48 ETSITS 129 198-4 V4.10.0 (2004-09)

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

Method
deassi gnCal | ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acal isde-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

This operation continues processing of the call implicitly.
The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
get Cal | I nf oReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cal | I nfoRequested : in TpCalllnfoType
Specifies the call information that is requested.

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
set Cal | Char gePl an()

Set an operator specific charge plan for the call.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 49 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cal | ChargePlan : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
set Advi ceOr Char ge()

This method alows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

aCClnfo : in TpAoClinfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
get MoreDi al | edDi gi t sReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only afew digits. The application then gets a new call event which contains no digits or only the few dialled
digitsin the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

length : in Tplnt32
Specifies the maximum number of digits to collect.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 50 ETSITS 129 198-4 V4.10.0 (2004-09)

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
supervi seCal | Req()

The application calls this method to supervise a cal. The application can set a granted connection time for this call. If
an application calls this function before it calls arouteReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnment : in TpCall SuperviseTreat nent
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
<<new>> conti nueProcessi ng()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed itsinterest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE
will be raised.

Parameters
call SessionlD : in TpSessionlD

Specifiesthe call session ID of the call.
Raises
TpComonExceptions, P_I NVALI D SESSI ON | D, P_I NVALI D_NETWORK _STATE

6.3.4 Interface Class IpAppCall
Inherits from: Iplinterface

The generic call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 51 ETSITS 129 198-4 V4.10.0 (2004-09)

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionlD, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorindication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void
getCallinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void
getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

callEnded (callSessionID : in TpSessionlID, report : in TpCallEndedReport) : void

Method
rout eRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

event Report : in TpCall Report

Specifies the result of the request to route the call to the destination party. It aso includes the network event, date and
time, monitoring mode and event specific information such as release cause.

cal |l LegSessionlD : in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionlD returned at the routeReq() and can
be used to correlate the response with the request.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 52 ETSITS 129 198-4 V4.10.0 (2004-09)

Method
rout eErr ()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

call LegSessionl D : in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionl D returned at the routeReq() and can
be used to correlate the error with the request.

Method
get Cal | I nf oRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCalllnfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or aleg of the call has
been disconnected or arouting failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifies the call information requested.

Method
getCal I I nfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 53 ETSITS 129 198-4 V4.10.0 (2004-09)

Method
supervi seCal | Res()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTine : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
supervi seCal |l Err ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Faul t Det ect ed()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call in which the fault has been detected.

fault : in TpCall Fault
Specifies the fault that has been detected.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 54 ETSITS 129 198-4 V4.10.0 (2004-09)

Method
get MoreDi al | edDi gi t sRes()

This asynchronous method returns the collected digits to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

digits : in TpString
Specifies the additional dialled digitsif the string length is greater than zero.

Method
get MoreDi al | edDi gi tsErr ()

This asynchronous method reports an error in collecting digits to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Ended()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallinfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

call SessionlD : in TpSessionlD
Specifies the call sessionID.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 55 ETSITS 129 198-4 V4.10.0 (2004-09)

"a call object hasterminated abnomally" NipAppCallContmoIM anager.call Abo ted

create a Call object “IpAppCallControlManager.callEventNotify

disableCal INotification "arrival of call related event"[notification active for this call event]/
enableCall Notification

createCall / create a Call obj...

"new" Active ‘

\)

- IpAccess.terminateServiceAgreement
Creation of

CallControlManager
by Service Instance
Lifecycle Manager

"notifications not possible"
IpAppCall Control Manager.cal INotifi cationinterrupted %

()

"notifications possible a\
~pAppCallControlManager.callNotificationContinued

IpAccess.tem|nateServiceAgreement

disableCallNotification

"a call object hasterminated abnormally"
~p App Call Control Man ager .cal IAborte d

Notification terminated

Figure : Application view on the Call Control Manager

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it isinterested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

6.4.1.2 Notification terminated State

When the Call Control Manager isin the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network due to e.g. alink failure. In this
state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

IpAppCallControlManager.callEv entNotify
"disconrect from called party "[monitor mode =

interrupt] youteRes, getCallinfoRes,
Superv 'SecﬂﬁeﬁlllnfOReq
routeReq

56

setCallCharge Plan

setAdviceOf Charge
superviseCallReq

=

ETSI TS 129 198-4 V4.10.0 (2004-09)

Acti

ive

youteRes

"connection to called party
unsuccessful"[monitor mode = interrupt]

"routing aborted or invalid address" “routeErr

2 Parties in
Call

"call ends : calling party disconnects” “callEnded
"call ends: cAlling party abandoned" “callEnded

“call ends : called party disconnects"[pfonitor for this event] “callEnded, routeRes(part:
"callends: calling party Alisconnects"[no monitor for this event] ~calEnded

Network Released
release

dea

disconnect)

issignCall

"network ev ent rec

"call supervisiomevent"superviseCallRes

iy ed for which was monitored|[routeRes]

Application

[no reports requested Aith get|
superyiseCallR

"réquested information ready "\"getCallinfoRes,
superviseCallRes

“fault in retrieval information” “getCallinf oErr,

uperviseCallErr

deassignCall
release

Finished

"fault detected"[fault cannot be comm

nicated with network event] “callFaultDetected

Released

"requested information ready"
“getCallinfoRep, superviseCallRes

[noreports requested with
getCallinfoReg”AND

“fault in retrieval of inforpiation" ~getCallinf oEm,
iseCallErr

timeout “callFaultDetected("timeout on release")

In state Finished, a timer should prevent the
object from occupuing resources.

Upon expiry of this timer, callFaultDetected()
shall be invoked as this is an abnormal
termination.

Figure : Application view on the IpCall object for 3GPP

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq()
and / or superviseCalReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately atransition is made to

state Finished.

6.4.2.2 Finished State

In this state the call has ended and no call related information isto be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 57 ETSITS 129 198-4 V4.10.0 (2004-09)

the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.
6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCalllnfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

6.4.2.4 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOf Charge() as well asto define the charging by invoking setCall ChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), routeReq(), release() or deassignCall() method.

6.4.2.5 Party in Call State

When the Call isin this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCalllnfoReg(). The
setCall ChargePlan() and getCalllnfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq|() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, atransition will be made to the 2 Partiesin Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.6 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking call Ended().
When the called party disconnects different situations apply:

1. theapplication is monitoring for this event in interrupt mode: atransition is made to the 1 Party in Call state, the
application isinformed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case atransition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application isinformed by the gateway invoking the
callEnded() operation and atransition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

6.5

6.5.1

58 ETSI TS 129 198-4 V4.10.0 (2004-09)

Generic Call Control Service Properties

List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation

P_TRIGGERING _EVENT_TYPES | INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by
which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of acall.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plans (defined in TpAddressPlan.) e.g.
{P_ADDRESS PLAN_E164, P ADDRESS PLAN_IP}). Note that more than one
address plan may be supported.

P_UI_CALL_BASED BOOLEAN_SET | Vaue=TRUE : User interaction can be performed on call level and areferenceto aCall
object can be used in the IpUIManager.createUICall () operation.
Value = FALSE: No User interaction on call level is supported.

P _UI_AT_ALL_STAGES BOOLEAN_SET | Value= TRUE: User Interaction can be performed at any stage during acall .
Value = FALSE: User Interaction can be performed in case thereis only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type

TpMediaType : P_AUDIO, P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCSitself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the

SCS.

Property

Type

Description

P_TRIGGERING_ADDRESSES
(Deprecated)

ADDRESSRANGE_SET

Indicates for which numbers the notification may be set. For
terminating notifications it applies to the terminating number, for
originating notificationsit gpplies only to the originating number.

P_NOTIFICATION_ADDRESS RANGES

XML_ADDRESS RANGE_SET

Indicates for which numbers notifications may be set. Morethan
one range may be present. For terminating notifications they
apply to the terminating number, for originating notifications
they apply only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating
and/or terminating triggersin the ECN. Set is:
P_ORIGINATING
P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in
interrupt and/or notify mode. Set is:
P_INTERRUPT
P_NOTIFY

P_NUMBERS TO BE _CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or
fill for legsin an incoming call. Allowed value set:
{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,
P TARGET NUMBER,
P_CALLING_PARTY_NUMBERY}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan

indicator. Allowed values:
{P_TRANSPARANT_CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING

INTEGER_INTEGER_MAP

Indicates the mapping of chargeplans (we assume they can be
indicated with integers) to alogical network chargeplan indicator.
When the chargeplan supportsindicates P CHARGE_PLAN
then only chargeplans in this mapping are allowed.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 59 ETSITS 129 198-4 V4.10.0 (2004-09)

6.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API relying on the CSE of CAMEL phase 3 shall have the Service
Properties outlined above set to the indicated values :

P_OPERATI ON_SET = {

pCal | Cont r ol Manager . enabl eCal | Noti fication',
pCal | Cont r ol Manager . di sabl eCal | Noti fication',
Cal | Contr ol Manager . changeCal | Notification',
Cal | Control Manager.getCriteria',

'l Cont rol Manager . set Cal | LoadControl ',

| .routeReq',

.rel ease',

.deassignCal | ',

.getCal I I nfoReq",

. set Cal | ChargePl an',

. set Advi ceOf Char ge' ,

T
"
"
"
"
"
"
"
"
"
"
" . supervi seCal | Req'

BERELREDEE

}

P_TRI GGERI NG_EVENT_TYPES = {
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GOCS_ADDRESS_ANALYSED EVENT,
P_EVENT_GOCS_CALLED PARTY_BUSY,
P_EVENT_GOCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GCCS_NO ANSVER FROM CALLED PARTY,
P_EVENT_GCCS_ROUTE_SELECT FAI LURE

}

P_DYNAM C_EVENT_TYPES = {
P_CALL_REPORT ANSWER
P_CALL_REPORT BUSY,
P_CALL_REPORT_NO ANSWER,
P_CALL_REPORT_DI SCONNECT,
P_CALL_REPORT_ROUTI NG _FAI LURE,
P_CALL_REPORT_NOT_REACHABLE

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN E164
}

P U _CALL_BASED = {
TRUE

}

P_U AT ALL_STAGES = {
FALSE

}

P_MEDI A TYPE = {
P_AUDI O

}

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 60 ETSITS 129 198-4 V4.10.0 (2004-09)

6.6 Generic Call Control Data Definitions

This clause provides the GCC data definitions necessary to support the API specification.
The general format of a Data Definition specification is described below.
 DataType
This shows the name of the data type.
o Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example
If relevant, an example is shown to illustrate the data type.
All data types referenced but not defined in this clause are either in the common call control data definitions clause of

the present document (clause 8) or in the common data definitions which may be found in 3GPP TS 29.198-2.

6.6.1 Generic Call Control Event Notification Data Definitions

6.6.1.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical "'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAVME_UNDEFI NED 0 Undefined
P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS - Offhook event

This can be used for hot-line features. In case this event is set
in the TpCallEventCriteria, only the originating address(es)
may be specified in the criteria

P_EVENT_GCCS_ADDRESS COLLECTED_EVENT 2 GCCS — Address information collected

The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might set notifications for this event
when part of the number analysis needs to be donein the
application (see also the getM oreDialledDigitsReq method on

the call class).
P_EVENT_GCCS_ADDRESS ANALYSED EVENT 4 GCCS— Address information is analysed
The dialled number isavalid and complete number in the
network.
P_EVENT_GOCS_CALLED PARTY_ BUSY 8 GCCS - Called party is busy
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS - Called party is unreachable (e.g. the called party has
amobile telephone that is currently switched off).
P_EVENT_GCCS_NO _ANSWER _FROM CALLED PARTY 32 GCCS - No answer from called party
P_EVENT_GOCS_ROUTE_SELECT FAI LURE 64 GCCS - Failurein routing the call
P_EVENT_GCCS_ANSWER FROM CALL_PARTY 128 GCCS — Party answered call.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 61 ETSITS 129 198-4 V4.10.0 (2004-09)

6.6.1.2 TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORI G NATI NG 0 Indicates that the notification is related to the originating user in the call.
P_TERM NATI NG 1 Indicates that the notification is related to the terminating user in the call.

6.6.1.3 TpCallEventCriteria
Definesthe Sequence of Data El enent s that specify the criteriafor a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria

Sequence Element Sequence Element Description
Name Type
Desti nati onAddr ess TpAddr essRange Defines the destination address or address range for which the notification is
requested.
Origi nati ngAddr ess TpAddr essRange Defines the origination address or a address range for which the notification is
requested.
Cal | Event Narre TpCal | Event Nare Name of the event(s)
Cal I NotificationType | TpCall NotificationType Indicates whether it is related to the originating or the terminating user in the
cal.
Moni t or Mode TpCal | Moni t or Mode Defines the mode that the call isin following the notification.
Monitor modeP_CALL_MONITOR_MODE_DO_NOT_MONITOR isnot a
legal value here.

6.6.1.4 TpCallEventinfo

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type
Desti nati onAddress TpAddr ess
Origi nati ngAddr ess TpAddr ess
Origi nal Destinati onAddr ess TpAddr ess
Redi r ect i ngAddr ess TpAddr ess
Cal | Appl nfo TpCal | Appl nf oSet
Cal | Event Nane TpCal | Event Nare
Cal | NotificationType TpCal | Noti ficationType
Moni t or Mode TpCal | Moni t or Mode

6.6.2 Generic Call Control Data Definitions

6.6.2.1 IpCall

Definesthe addressof an | pCal | Interface.

6.6.2.2 IpCallRef

Defines aRef er ence to type IpCall.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 62 ETSITS 129 198-4 V4.10.0 (2004-09)

6.6.2.3 IpAppCall
Definesthe address of an | pAppCal | Interface.

6.6.2.4 IpAppCallRef

Defines aRef er ence to type IpAppCall

6.6.2.5 TpCallldentifier

Definesthe Sequence of Data El enent s that unambiguously specify the Generic Call object

Sequence Element Sequence Element Sequence Element Description
Name Type
Cal | Ref erence | pCal | Ref This element specifies the interface reference for the call object.
Cal | Sessi onl D TpSessi onl D This element specifies the call session ID of the call.

6.6.2.6 IpAppCallControlManager

Definesthe address of an | pAppCal | Cont r ol Manager Interface.

6.6.2.7 IpAppCallControlManagerRef

DefinesaRef er ence to type IpAppCallControlManager.

6.6.2.8 IpCallControlManager

Definesthe address of an | pCal | Cont r ol Manager Interface.

6.6.2.9 IpCallControIManagerRef

Defines aRef er ence to type IpCall Control Manager.

6.6.2.10 TpCallAppinfo

Definesthe Tagged Choi ce of Data El ement s that specify application-related call information.

Tag Element Type
TpCal | Appl nf oType
Tag Element Choice Element Choice Element Name
Value Type

P_CALL_APP_ALERTI NG_MECHANI SM TpCal | Al erti ngMechani sm Cal | AppAl ertingMechani sm
P_CALL_APP_NETWORK_ACCESS_TYPE TpCal | Net wor KAccessType Cal | AppNet wor kAccessType
P_CALL_APP_TELE SERVI CE TpCal | Tel eServi ce Cal | AppTel eServi ce
P_CALL_APP_BEARER_SERVI CE TpCal | Bear er Servi ce Cal | AppBear er Servi ce
P_CALL_APP_PARTY_CATEGORY TpCal | PartyCat egory Cal | AppPart yCat egory
P_CALL_APP_PRESENTATI ON_ADDRESS TpAddr ess Cal | AppPr esent at i onAddr ess
P_CALL_APP_CENERI C_I NFO TpString Cal | AppGeneri cl nfo
P_CALL_APP_ADDI TI ONAL_ADDRESS TpAddr ess Cal | AppAddi ti onal Address

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 63 ETSITS 129 198-4 V4.10.0 (2004-09)

6.6.2.11 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description

P_CALL_APP_UNDEFI NED 0 Undefined

P_CALL_APP_ALERTI NG_MECHANI SM The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVI CE Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER SERVI CE Indicates the bearer service (e.g. 64kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY The category of the calling party

P_CALL_APP_PRESENTATI ON_ADDRESS The address to be presented to other call parties

P_CALL_APP_CENERI C_|I NFO Carries unspecified service-service information

(N~ W]|IN]|E

P_CALL_APP_ADDI TI ONAL_ADDRESS Indicates an additional address

6.6.2.12 TpCallAppinfoSet

DefinesaNunbered Set of Data El enents of TpCallApplnfo.

6.6.2.13 TpCallEndedReport

Definesthe Sequence of Data El enment s that specify the reason for the call ending.

Sequence Element Sequence Element Description
Name Type
Cal | LegSessi onl D TpSessi onl D The leg that initiated the release of the call.
If the call release was not initiated by the leg, then thisvalueis set to—1.
Cause TpCal | Rel easeCause The cause of the call ending.

6.6.2.14 TpCallFault

Defines the cause of the call fault detected.

Name Value Description
P_CALL_FAULT_UNDEFI NED 0 Undefined
P_CALL_TI MEQUT_ON_RELEASE 1 This fault occurs when the final report has

been sent to the application, but the gpplication
did not explicitly release or deassign the call
object, within a specified time.

Thetimer value is operator specific.

P_CALL_TI MEQUT_ON | NTERRUPT 2 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway
reported an event that was requested by the
application in interrupt mode.

Thetimer value is operator specific.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 64 ETSITS 129 198-4 V4.10.0 (2004-09)

6.6.2.15 TpCallinfoReport

Definesthe Sequence of Data El enent s that specify the call information requested. Information that was not
requested isinvalid.

Sequence Element Sequence Element Description
Name Type
Cal | I nfoType TpCal | | nf oType Thetype of call report.
CalllnitiationStartTi me TpDat eAndTi ne The time and date when the call, or follow-on call, was
started as aresult of arouteReq.
Cal | Connect edToResour ceTi e TpDat eAndTi e The date and time when the call was connected to the
resource.

This data element is only valid when information on user
interaction is reported.

Cal | Connect edToDest i nati onTi me TpDat eAndTi ne The date and time when the call was connected to the
destination (i.e. when the destination answered the call).
If the destination did not answer, thetimeis set to an
empty string.

This data element isinvalid when information on user
interaction is reported.

Cal | EndTi e TpDat eAndTi e The date and time when the call or follow-on call or user
interaction was terminated.
Cause TpCal | Rel easeCause The cause of the termination.

A calllnfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

6.6.2.16 TpCallReleaseCause

Definesthe Sequence of Data El enent s that specify the cause of the release of acall.

Sequence Element Sequence Element
Name Type
Val ue Tpl nt 32
Locati on Tpl nt 32
NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by Cause Value from
Application Network
P_CALL_REPORT_BUSY 17 17
P_CALL_REPORT_NO ANSVER 19 18,19,21
P_CALL_REPORT_DI SCONNECT 16 16
P_CALL_REPORT_REDI RECTED 23 23
P_CALL_REPORT_SERVI CE_CODE 31 NA
P_CALL_REPORT_NOT_REACHABLE 20 20
P_CALL_REPORT_ROUTI NG_FAI LURE 3 Any other value

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

6.6.2.17 TpCallReport

65

ETSI TS 129 198-4 V4.10.0 (2004-09)

Definesthe Sequence of Data El enent s that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element
Type

Moni t or Mode

TpCal | Moni t or Mode

Cal | Event Ti ne

TpDat eAndTi e

Cal | Report Type

TpCal | Report Type

Addi ti onal ReportlInfo

TpCal | Addi ti onal Reportlnfo

6.6.2.18 TpcCallAdditionalReportinfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call report information for certain types

of reports.

Tag Element Type

TpCal | Report Type

Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFI NED Undefined
P_CALL_REPORT_PROGRESS Undefined
P_CALL_REPORT_ALERTI NG Undefined
P_CALL_REPORT_ANSVER Undefined
P_CALL_REPORT_BUSY TpCallReleaseCauise Busy
P_CALL_REPORT_NO ANSVER Undefined
P_CALL_REPORT_DI SCONNECT TpCallReleaseCause CallDisconnect
P_CALL_REPORT_REDI RECTED ForwardAddress
P_CALL_REPORT_SERVI CE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTI NG _FAI LURE TpCallReleaseCause RoutingFailure
P_CALL_REPORT_QUEUED QueueStatus
P_CALL_REPORT_NOT_REACHABLE TpCallReleaseCause NotReachable

6.6.2.19 TpCallReportRequest

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

Moni t or Mode

TpCalMonitorMode

Cal | Report Type

TpCallReportType

Addi tional ReportCriteria

TpCallAdditional ReportCriteria

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 66

ETSI TS 129 198-4 V4.10.0 (2004-09)

6.6.2.20 TpCallAdditionalReportCriteria

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria.

Tag Element Type
TpCallReportType
Tag Element Choice Element Choice Element
Value Type Name
P_CALL_REPORT_UNDEFI NED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTI NG NULL Undefined
P_CALL_REPORT_ANSVER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration
P_CALL_REPORT_DI SCONNECT NULL Undefined
P_CALL_REPORT_REDI RECTED NULL Undefined
P_CALL_REPORT_SERVI CE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTI NG_FAI LURE NULL Undefined
P_CALL_REPORT_QUEUED NULL Undefined
P_CALL_REPORT_NOT_REACHABLE NULL Undefined

6.6.2.21 TpCallReportRequestSet

DefinesaNunber ed Set of Data El enent s of TpCallReportRequest.

6.6.2.22 TpCallReportType

Defines a specific call event report type.

Name Value Description

P_CALL_REPORT_UNDEFI NED 0 Undefined.

P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that progress has been madein
routing the call to the requested call party. This message may be sent more than once, or

may not be sent at all by the gateway with respect to routing a given call leg to agiven
address.

P_CALL_REPORT_ALERII NG 2 Call isalerting at the call party.

P_CALL_REPORT_ANSVER 3 Call answered at address.

P_CALL_REPORT_BUSY 4 Called address refused call due to busy.

P_CALL_REPORT_NO_ANSVER 5 No answer at called address.

P_CALL_REPORT_DI SCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has
ended. When the call is ended, the callEnded method is called. This event can occur both
when the called party hangs up, or when the application explicitly releases the leg using
IpCallLeg.release() This cannot occur when the app explicitly releases the call leg and the

call.
P_CALL_REPORT_REDI RECTED 7 Call redirected to new address: an indication from the network that the call has been
redirected to anew address.

P_CALL_REPORT_SERVI CE_CODE 8 Mid-call service code received.

P_CALL_REPORT_ROUTI NG_FAI LURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call isbeing held in aqueue. This event may be sent more than once during the routing

of acall.
P_CALL_REPORT_NOT_REACHABLE 11 The called addressis not reachable; e.g., the phone has been switched off or the phoneis
outside the coverage area of the network.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 67 ETSITS 129 198-4 V4.10.0 (2004-09)

6.6.2.23 TpCallTreatment

Definesthe Sequence of Data El enent s that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Sequence Element
Name Type
Cal | Tr eat ment Type TpCal | Tr eat ment Type
Rel easeCause TpCal | Rel easeCause
Addi ti onal Treat ment | nfo TpCal | Addi ti onal Treat nent | nf o

6.6.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResullt.

6.6.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify arequested call event notification criteria with the associated
assignmentID.

Sequence Element Sequence Element Sequence Element
Name Type Description
Cal I EventCriteria TpCal | EventCriteria The event criteria that were specified by the application.
Assi gnment | D Tpl nt 32 The associated assignment|D. This can be used to disable the notification.
7 MultiParty Call Control Service

The Multi-Party Call Control API of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported
methods is given in the chapter 7.5.

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, acall is
created first. Then party A'scall leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as avariation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes thisto happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 68 ETSITS 129 198-4 V4.10.0 (2004-09)

: (Logical L AppPartyA : AppPartyB : o = = PartyA: PartyB : = - IpUiCall
View::IpAppLogic IpAppMultiPartyCall| | (IpAppMultiPartyCaliLeq) | |(IpAppMultiPartyCallLeq) | |lpAppUICall | |IpMultiPartyCallControlManager| | IpMultiPartyCall || IpCallLeg || IpCallLeg ||IpUIManager
n
2: createCall()
‘ ‘ ‘ - & ‘ ‘ ‘

] ‘ ‘ 4 senCaun‘ack() ‘ ‘)I_E ‘ ‘ ‘ ‘
u | | 5: createCalleg() | | |
| | | | ==t | |
1 ‘ ‘ 7 %venmepon?ea() ‘ ‘ ‘ ‘ ‘ ‘ ‘
H 8 outeRea()
| I I | I I I
u ‘ ‘ SRP— ‘ ‘ ﬁ] ‘ ‘ ‘
L
‘ ‘ 10 createL\CaH() ‘ ‘ é] ‘
‘ ‘ ‘ 11: sendinfoReq(‘ ‘ ‘
u ‘ ‘ é 12: sendinfoRes() /F
))) 13: createCallLeg()))
‘ ‘ ‘ 14: new() ‘
15: eventReportReq(|)
| | | e | _— o
T T T T T T
% ‘ ‘ ‘ 17 %ve tReportRes () ‘ ‘ ‘ ‘ ‘
‘ ‘ | | 18; abortActionReq() | | | | | >?
| | | # ‘ ‘ ‘ ‘

_

1: Thismessage is used to create an object implementing the | pAppMultiPartyCall interface.

2: This message requests the object implementing the IpMulti PartyCall Control M anager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteriafor creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interfaceis created it is used to pass the reference of the object
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6: Assuming that the criteriafor creating an object implementing the IpCallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answersthe call.
8: Thecall isthen routed to the originating call leg.

9: Assuming the call isanswered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.
11: This message is used to inform party A that the call is being routed to party B.

12: Anindication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object implementing the IpAppLogic interface.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 69 ETSITS 129 198-4 V4.10.0 (2004-09)

13: This message i nstructs the object implementing the IpMultiPartyCall interface to create acall leg for customer B.
14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.
15: This message requests the call leg for customer B to inform the application when the call leg answersthe call.
16: The call isthen routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party
A.

19: The application deassigns the call. Thiswill also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code isrejected and the call is cleared.

_ (Logical o o o : IpMultiPartyCallControlManager 2 2 : IpUICall
View:IpAppL... IpAppMultiPartyCallControlManager IpAppMultiPartyCall | | IpAppUICall IpMultiPartyCall IpUIManager
‘ 1: new() ‘ ‘ ‘
H—‘ ‘ 2: createNotification(|) ‘ ‘ ‘ ‘
I I I
3: ‘reponNonfcamn() ‘ ‘ ‘ ‘ ‘
4: 'forward event' ‘ ‘
L 5: new() ‘ ‘ ‘ ‘ ‘
‘ ‘ ﬂ: getCallLegs() ‘ ‘ ‘ ‘
u | | 7: createUlCall() | | /¢ ‘
‘ ‘ ‘ 8: sendinfoAndCollectReq()) | | >q
9: sendInfoAndCollectRes()
e:l< ‘ 10: ‘forward event' ‘ ! ‘ ‘ :
| | | 11: ngd\nfoReq() | | |
H ‘ ‘ ‘ 12: sendinfoRes() ‘ ‘ T
e]\ ‘ 13: 'forward event' ‘ ‘ ‘
‘ ‘ 14 release() ‘ ‘ ‘
=
‘ ‘15: release() ‘ ‘ ‘ /u

\
1: Thismessage is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager

interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
acall barring service, it islikely that all new call events destined for a particular address or address range prompted for
apassword before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 70 ETSITS 129 198-4 V4.10.0 (2004-09)

(not shown) is directed to the object implementing the IpMultiPartyCall ControlManager. Assuming that the criteriafor
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the
[pAppMuultiPartyCall Control Manager interface.

4. Thismessage is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the | pMulti PartyCall ControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7: Thismessage is used to create a UICall object that is associated with the incoming leg of the call.
8: Thecall barring service dialogue isinvoked.

9: Theresult of the dialogue, which in this caseisthe PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.
13: This message is used to forward the previous message to the IpAppLogic.
14: No more Ul is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.3 Call forwarding on Busy Service
The following sequence diagram shows an application establishing a call forwarding on busy.

When acall is made from A to B but the B-party is detected to be busy, then the application isinformed of thisand sets
up aconnection towards a C party. The C party can for instance be a voicemail system.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 71 ETSITS 129 198-4 V4.10.0 (2004-09)

AppLayic ADDLeCIC ADDLqu: App Call : AppCCM : CCM: Call: LegA: LegB: LegC: SCs
Calll allLe MultiPartyCall Multi IpMultiPartyCallC M ulti PartyC all IpCallLeg IpCallLeg bCdlLeg
‘ ‘ ‘ 1 'new ‘ ‘
‘ ‘ 2: createNotification() /U
U) 3:"armftrigger”)))
‘ ‘ ‘ ‘ ‘ 4:"trigger event: Busy" ‘ ‘ L‘J
5:'check I‘_éﬁ)llcan onintaested"
<6 mnewr
7 'new"
‘ ‘ ‘ ‘ ‘ slalﬁansl onto AClI\# ‘ ‘
‘ ‘ ‘ ‘ ‘ ‘ to ReleaslT ‘
12: "forward event" 11: reportNotification()
LH\ ‘ 13:"new' ‘ u\ H ‘ ‘ ‘ ‘
- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
15: "new"
/u ‘ ‘ 16: createCallLeg() ‘ ‘ “ ‘ J— ‘ ‘
| | | | | | [
‘ ‘ ‘ ‘ 19: eventReportReq() ‘ ‘ ‘ ‘
1]
‘ ‘ ‘ ‘ 20: routeReq() ‘ ‘ ‘ ‘
ransition to Acti
T ‘ ‘ ‘ ‘ ‘ ‘ 22| "inform Call ob;eL 7
‘ ‘ ‘ ‘ 23 commueProcessngcallLeg SessionlD) ‘ Lﬁ\ ‘ ‘ ‘
[| | | | | — !
‘ ‘ ‘ ‘ ‘ ‘ u 25: "continue 43“ processing" ‘ ‘
f f f U
‘ ‘ ‘ ‘ ‘ L HJ ‘ ‘ éﬁ e
27: eventReportRes()
L‘H\ 28: Yorde event ‘ ‘ ‘ ‘ ‘ \T‘

1: This message is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager
interface.

2: This messageis sent by the application to enable notifications on new call events.

4: When anew call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing
the IpMultiPartyCall Control M anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: Thenew Call Leg instance transits to state Initiating.

11: This message is used to pass the new call event to the object implementing the
I pAppMultiPartyCall ControlManager interface. Applied monitor mode is "interrupt”

12: This message is used to forward the message to the IpAppLogic.

13: This message is used by the application to create an object implementing the I pAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
15: A new AppCallLeg C is created to receive callbacks for another leg.

16: This message is used to create anew call leg object. The object is created in the idle state and not yet routed in the
network.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 72 ETSI TS 129 198-4 V4.10.0 (2004-09)

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.
20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplInfo in the request to route the call leg to the
remote party C.

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for exampleif it is not interested in possible
requested call leg information (getlnfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLeg B is notified and the event is forwarded to the application logic
(not shown).

25: The application requests to resume call processing for the originating call leg.
Asaresult call processing is resumed in the network that will try to reach the associated party B.
26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

7.1.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number trandation of the dialled number and
special charging (e.g. a premium rate service) .

Additional call leg related information is requested with the getlnfoReq and superviseReq methods.
The answer and call release events are in this service exampl e requested to be reported in notify mode and

additional call leg related information is requested with the getlnfoReq and superviseReq methods in order to illustrate
the information that can be collected and sent to the application at the end of the call.

Furthermore is shows the order in which information is sent to the application: network release event followed by
possible requested call leg information, then the destroy of the call leg object (callLegEnded) and finally the destroy of
the call object (callEnded).

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 73 ETSI TS 129 198-4 V4.10.0 (2004-09)

AmLogic ApplegB: Appleg A: App Call : AppCCM : coMm: Call : legA: LegB: scs
IpAppCall IpAppCaliLeg IpAppMultiPartyCall IpAppMultiPartyCallC IpMultiPartyCallCt IpMultiPartyCall IpCallLeq IpCallLeq
‘ 1: "new’
2:cr

3 "armtrigger”

| |

7‘ 4 "}rlgger event: Analysed Information” |

5 "checkiw)ﬁcanun interested” ‘
ZI 6: "new"

eateNotification() 1
|

9: reportN dific aion()

14 createCal leg() ‘

I
\ ;
\
\
|
|
\
|
I
\
\
x
\

17: %/eaneporlReq()
18: FupermseReq()

19 gethfcReq()
20: $etChargePlan()

2% raueReq()

22 "stanJ(ransitiun to Active’

23: “inform|Call object" «—1
| 24: eventReporfReq() (= |
25: getinoRéq () ’U T ‘
26: continueProcessing (¢allLeg SessionID) U
2J7: "inform Call objedf" ‘
T 28:['gontinuecal | pracessing”

|

31: "forward event’,

35 "Vorv»+rd ewent”

‘ 36: getinfoRes()

2:'D om A-party’

T 29: "B party amm:‘lj
|
\

|
\
|
\
i
\

| 30 ewntReportRes()

u
|
|

34: eventReportRes() <—

37 "VorvL?rd ewent”

38: callLegEnded()

39: "forward event”

]
|

I
AP: “inform Call object]

33: "state lﬁLﬂSlllOﬂ to Releasng“

41: "Pisconnect from B-party’

N e

43: eventReportRes()

45: getinfores()

44: “forward event”

‘46: ‘forward event'l

‘48: “forward event'|

. |
L‘-I\ -‘V 53: "forward even\

49: callLegEnded)

52 callEnded()

| |
‘ 47: spenviseRes() ‘
I I

i~
|

‘ \
\ |
1
| st momcal e u

' | i ‘
H | |

1: This message is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 74 ETSI TS 129 198-4 V4.10.0 (2004-09)

4. When anew call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMulti PartyCall Control M anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: Thenew Call Leg instance transits to state Active.

9: Thismessage is used to pass the new call event to the object implementing the
IpAppMuultiPartyCall Control Manager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the I pAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create anew call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the call and when the leg
to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party b for example to calculate charging.
20: The application requests a specific charge plan to be set for the call leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22: The Call Leg instance transits to state Active.

24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

25: The application requests information associated with the call leg to party A for example to calculate charging.
26: The application requests to resume call processing for the originating call leg.

Asaresult call processing isresumed in the network that will try to reach the associated party B.

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's |pCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY™").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state"

34: The application IpAppLeg A is notified, as the rel ease event has been requested to be reported in Notify mode.
35: The event is forwarded to the application logic
36: The call leg information is reported.

37: The event is forwarded to the application logic

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 75 ETSITS 129 198-4 V4.10.0 (2004-09)

38: The origination call leg is destroyed, the AppLeg A is notified.
39: The event is forwarded to the application logic

41: When the B-party releases the call or the call isreleased as aresult of the release request from party A, i.e. a
"originating release” indication, the terminating call leg is notified and makes atransition to "releasing state”.

43:1f anetwork release event is received being a "terminating release” indication from called party B, the application
IpAppLeg B isnotified, as the release event from party B has been requested to be reported in NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being a " originating release”
indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The cdll leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg information is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLeg B is notified.
50: The event is forwarded to the application logic.

52: Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is
notified that the call isended .

53: The event is forwarded to the application logic.

7.1.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID
and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is
then set on the controlling leg (the calling party'sleg) such that if the calling party enters a'#5' an event will be sent to
the application. The cal isthen routed to the destination party. Sometime during the call the calling party enters '#5'
which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination
party, to which it is then routed.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 76 ETSI TS 129 198-4 V4.10.0 (2004-09)

“AopParye’ 2 2 2 PartyA ParyB PartyB” = ipUICall
lAmoCallleg || jpAppUICall| | IpMultiParyCallControlManager | | lpMultiPartyCall| | IpCaliLeg || IpCallLeg | | lpCallLeg ||lpUiManager|

5w

14: new)

u
E
u
|
|
T
|
|
|
|
L
|
|

‘ ‘ | | : senintommdcotefines()
‘ ZZZZZ : ‘ i |]
| | e]| | |
| . :
\ \ \ \ \ \ il \ \
‘ ‘ ‘ ‘ D | e |
| | L o] L
\ \ \ I \ \ \ \
| T
| | e || | .

1: Thismessage is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
acall barring service, it islikely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is alowed to progress. When anew call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the

I pMulti PartyCall ControlManager. Assuming that the criteriafor creating an object implementing the I pMultiPartyCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This messageis used to pass the new call event to the object implementing the
IpAppMuultiPartyCall Control Manager interface.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 77 ETSITS 129 198-4 V4.10.0 (2004-09)

4. Thismessage is used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of message 3.

6: This message returnsthe call legs currently in the call. In principle areference to the call leg of the calling party is
aready obtained by the application when it was notified of the new call event.

7. This message is used to associate a user interaction object with the calling party.
8: Theinitial card service dialogue isinvoked using this message.

9: Theresult of the dialogue, which in this caseisthe ID and PIN code, isreturned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue isinvoked.

11: The result of the dialogue, which in this case is the destination address, isreturned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.
13: Thetrigger for follow-on callsis set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionl Ds of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As aresult the network will try to reach the associated party.
18: When the B-party answersthe call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the mediais not
connected to the other partiesin the call. In order to allow inband communication between the new party and the other
partiesin the call the media have to be explicitly attached.

21: At some time during the call the calling party enters'#5'". This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.
23: This message rel eases the called party.
24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.
27: The call isthen forward routed to the new destination party.
28: Asaresult anew Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 78 ETSITS 129 198-4 V4.10.0 (2004-09)

31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the Ul resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to congtitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any humber within a predefined time. In this case a pre-
defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination
party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
pUrpoOSeS.

Note that this service could be extended as follows:

Sometime during the call the calling party enters ‘#5' which causes the called leg to be released. The calling party is now
prompted to enter the address of a new destination party, to which it is then routed.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 79 ETSI TS 129 198-4 V4.10.0 (2004-09)

Applogic ApplegB: Appleg A: AppCall : ADPCCM ccM: call: LegA: LegB: scs
IpAppCallleg IpAppCallleg i all i allC. IpMultiPartyCallC IpMultiPatyCal IpCallleg. IpCdlLeg
1 "new"
3 "armtigger”

|
4 “wigger event: Originating Cal Atiempt Authorised”

|
5 "checkf:l[%phcamn interested"

createNotification() /U
|

B N

‘ 24:"continue call processing”

| 2 ewntaddess analysed

26: "S‘Jj transition to Active’| H

27: | Disconnect from B-party"

‘ |
6: "new’ U
7:"new"
—
‘ \; 8 "stateliansition to Initiating|
9: reportNoification() <—
‘ 10: "forward event"
‘ 11:"new’
13: new ‘
/IT‘ 14: createCallLeg() ‘ ‘
‘ ‘ 15:
‘ 16:"slale wansition o dle”
‘ 17: brentReportReq() ‘ ‘
‘ 1B:routeReq() ‘ ‘
19: Sﬂ{% transition to Active”
T [<—
‘ 20-"rform Cal object
| | ———— iy | |
1 1 1] L
‘ 22: continueProcessing callLeg SessionlD) ‘ ‘ ‘
‘ /I-‘H

28: "stateltrhnsition to Releasi

29: eventReportR es()

31 calLegEnded()

|
33: inform ClaH object”

34:"Disconnect from A-party’

36: callLegEnded()

38: “inform Call object]

—

39: callEnded()

40: "forward event|

T

‘ ‘ 23; inform Cal objectt
|
|

]

1. This messageis used by the application to create an object implementing the |pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events.

4. When anew call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMulti PartyCall Control M anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call |eg object

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 80 ETSITS 129 198-4 V4.10.0 (2004-09)

8: Thenew Call Leg instance transitsto state Initiating.

9: Thismessage is used to pass the new call event to the object implementing the
IpAppMuultiPartyCall Control Manager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create anew call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.
17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.
21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.
22: The application requests to resume call processing for the originating call leg.

Asaresult call processing isresumed in the network that will try to reach the associated party as specified by the
application (E.164 number provided by application).

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and
the originating call leg STD makes atransition to "active" state. The application is not notified asit has not requested
this event to be reported.

27:When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY™) and makes a
transition to "Releasing state”.

29: The application is notified, as the release event has been requested to be reported in Notify mode.
30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLeg B is notified.

32: This answer message is then forwarded.

34: When the call release ("terminating release” indication) is propagated in the network toward the party A, the
originating call leg is notified and makes atransition to "releasing state”. This release event (being propagated from
party B) is not reported to the application.

36: When the originating call leg is destroyed, the AppLeg A is notified.
37: The event is forwarded to the application logic
39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

40: The event is forwarded to the application logic.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 81 ETSITS 129 198-4 V4.10.0 (2004-09)

7.1.7 Use of the Redirected event

ApplLogic . IpAppCallLeg . IpCallLeg

1: eventRéportReq(,‘ANSWER, REDIRECTED - NOTIFY)
|
I
| /
| /
The Call and thé Leg

|

|

|
hawe already been LFF
created.

|

|

|

|

|

‘2: routeReq()

3: eventReportRes(REDIRECTED)

4: eventReportRes(ANSWER)

I T ST SR S

1. The application has already created the call and acall leg. It places an event report request for the ANSWER and
REDIRECTED eventsin NOTIFY mode.

2: The application routes the call leg.

3: Thecall isredirected within the network and the application isinformed. The new destination addressis passed
within the event. The event is not disarmed, so subsequent redirections will aso be reported. Also, the samecall legis
used so the application does not have to create a new one.

4. Thecal isanswered at its new destination.

7.2 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagramsin the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

82

<<Interface>>

Ipinterface
(from csapi)

7

ETSI TS 129 198-4 V4.10.0 (2004-09)

<<Interface>>
IpAppCallLeg
(from mpccs)
<<Interface>> <<Interface>>
IpAppMultiPartyCallControlManager Ip AppMultiPartyCall ["eventReportRes()
(from mpccs) (frommpccs) [®eventReportErm()
[®attachMediaRes()
[®reportNotification() 0..n I ¥getinfoRes() 1 (g.attachMediaErro
[®callAborted() [®getinfoErm() [®detachMediaRes()
[®managerinterrupted() [®superviseRes() [®detachMediaErr()
[®managerResumed|() [MsuperviseErm() [®getinfoRes()
[®calloverloadEncountered() [®callEnded() [®getinfoEm()
["®calloverloadCeased() ["®createAndRouteCallLegErm() [®routeEm()
A [®supenviseRes()
[®superviseErm()
c<Usess> [®callLegEnded()
<<uses>> ‘ A tHses>
‘ <<Interface>>
IpCallLeg
‘ <<Interface>> (from mpccs)
PR IpMultiPartyCall
IpMultiPartyCallControlManager Seee) MliouteReq()
[MeventReportReq()
(from mpccs)
[getcalllegs) [Srelease(
InfoReq()
| ®createCallLeg() i 0..H=get
| peaeElp — “>{[BcreateAndRouteCallLegReq() [—|L=getCall(
[createNotifi cati on() Pelease) [BattachMediaReq()
[®desroyNotification) Beassigncall) [®detachMediaReq()
[®changeNoti fication() Bgetinforeq() [getCunrentDestinationAddress()
- :)
E;i?;lggggzgtrol() [™®setChargePlan() [continueProcessing()
[®setadviceOfCharge() [®setChargePlan()
PEsupenviseReq) [MsetAdviceOfCharge()
[M®superviseReq()
[®deassign(

Figure: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 83 ETSITS 129 198-4 V4.10.0 (2004-09)

<<Interface>>
IpSenice
(from csapi)

WsetCallback()
WsetCallbackWithSessioniD()

<<Interface>>
IpCallLeg
<<Interface>> (from mpccs)
<<hteface>> IpMultiPartyCall
IpMultiParty CallControlManager (from mpces) FrouteReq()
(from mpccs) ®eventReportReq()
FgetCallLegs() Frelease()
1 0..r¥createCallLeg() 1 0..r ®¥getinfoReq()
:::Igﬁzltl'gcat'on — > [#®createAndRouteCallLegReq() —— —— = [¥¥getCall()
IEEUET) Frelease() ®attachMediaReq()
FdestroyNotification()
®changeNotification() SdeassignCall() FdetachMediaReq()
"gelNgliﬁcalion() FgetinfoReq() FgetCurrentDestinationAddress()
FsetCallLoadControl() SsetChargePlan() McontinueProcessing()
®setAdviceOfCharge() ®setChargePlan()
®supeniseReq() ®setAdviceOfCharge()
FsupeniseReq()
Fdeassign()
Figure: Service Interfaces
7.3 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party callsto be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Serviceis represented by the |pMultiPartyCall ControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock athread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement

I pAppMultiPartyCall Control Manager, | pAppM ultiPartyCall and |pAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager
Inherits from: IpService

Thisinterface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use thisinterface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
I pMuultiPartyCall ControlManager must be if a method can successfully complete. In other words, if the
I pMultiPartyCall ControlManager is in another state the method will throw an exception immediately.

Thisinterface shall be implemented by a Multi Party Call Control SCF. Asa minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 84 ETSITS 129 198-4 V4.10.0 (2004-09)

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallldentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
. in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNoatification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentlD

Method
createCall ()

This method is used to create anew call object. An IpAppM uultiPartyCall ControlManager should aready have been
passed to the | pMultiPartyCall Control M anager, otherwise the call control will not be able to report a call Aborted() to
the application. The application should invoke setCallback() prior to createCall() if it wishesto ensure this.

Returns callReference: Specifies the interface reference and sessionl D of the call created.

Parameters

appCall : in | pAppMiltiPartyCall Ref
Specifies the application interface for callbacks from the call created.

Returns
TpMul ti PartyCallldentifier

Raises
TpComonExcepti ons, P_I NVALI D | NTERFACE TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application isinterested in other events during the
context of aparticular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receivesthe
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 85 ETSITS 129 198-4 V4.10.0 (2004-09)

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteriaare said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

If anotification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteriafor overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be registered either in @) createNotication() or b) explicitly with a setCallback() method e.g.
depending on how the application provides its callback reference.

Casea
From an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Caseb:

The createNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallback().

In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Set additional Call back:

If the same application regquests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().

Returns assignmentI D: Specifiesthe ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCal | Cont rol Manager : in | pAppMilti PartyCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificati onRequest : in TpCall NotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_I NVALI D CRI TERI A, P_I NVALI D_| NTERFACE_TYPE
P_I NVALI D_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 86 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignment 1D given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment 1Ds, the exception
P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment 1D both of
them will be disabled.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT I D

Method

changeNoti fication()
This method is used by the application to change the event criteriaintroduced with createNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria

Parameters

assignnmentI D : in TpAssignnentlD

Specifiesthe ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assignment ID both of them will be changed.

notificati onRequest : in TpCall NotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

Method
get Notification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 87 ETSITS 129 198-4 V4.10.0 (2004-09)

Returns

TpNoti fi cati onRequest edSet
Raises

TpComonExcept i ons

Method
set Cal | LoadControl ()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanismis similar as defined for TpCallEventCriteria.

Returns assignmentI D: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the call OverloadEncountered and call OverloadCeased methods with the request.

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.

mechani sm: in TpCal | LoadControl Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatnment : in TpCall Treat nent

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssi gnnment | D

Raises

TpCommonExcepti ons, P_I NVALI D ADDRESS, P_UNSUPPORTED ADDRESS PLAN

7.3.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: Iplinterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 88 ETSITS 129 198-4 V4.10.0 (2004-09)

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallldentifier, callLegReferenceSet : in
TpCallLegldentifierSet, notificationinfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void
managerinterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of P_TIMER_EXPIRY.

Set of the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back referenceis only applicableif the notification isin INTERRUPT mode.

The call back reference can be registered either in @) reportNotification() or b) explicitly with a
setCallbackWithSessionl D() method depending on how the application provides its callback reference.

Casea
From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method.
Case b:

The reportNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallbackWithSessionl D().

In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionl D().

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. If the application has previously explicitly passed a reference to the callback interface
using a setCallbackWithSessionl D() invocation, this parameter may be set to P_ APP_CALLBACK_UNDEFINED, or
if supplied must be the same as that provided during the setCallbackWithSessionl D().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification isin NOTIFY mode and in case b.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 89 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters

call Reference : in TpMiltiPartyCallldentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being givenin
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter asit chooses.

cal |l LegReferenceSet : in TpCallLegldentifierSet

Specifiesthe set of all call leg references. First in the set isthe reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationl nfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter asit chooses.

notificationlinfo : in TpCall Notificationlnfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignnmentI D : in TpAssignnentlD

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns
TpAppMul ti PartyCal | Back

Method

cal | Aborted()
This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

cal | Reference : in TpSessionlD
Specifiesthe sessionlD of call that has aborted or terminated abnormally.

Method
manager | nt er r upt ed()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
manager Resuned()

This method indicates to the application that event notifications are possible and method invocations are enabled.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 90 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters
No Parameters were identified for this method

Method
cal | Over| oadEncount ered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentI D : in TpAssignnmentlD

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been encountered.

Method
cal | Over | oadCeased()
This method indicates that the network has detected that the overload has ceased and has automatically removed any

load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentI D : in TpAssignnmentlD

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been ceased

7.3.3 Interface Class IpMultiPartyCall
Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It aso gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

This interface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods,
and either the createCallLeg() or the createAndRouteCallLegReq(), shall be implemented as a minimum requirement.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 91 ETSITS 129 198-4 V4.10.0 (2004-09)

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegldentifierSet
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegldentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, applinfo : in
TpCallAppinfoSet, appLeglnterface : in IpAppCallLegRef) : TpCallLegldentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClinfo : in TpAoClinfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
get Cal | Legs()

This method requests the identification of the call leg objects associated with the call object. Returnsthe legsin the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionl Ds and the
interface references.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

Returns
TpCal | Legl denti fi er Set

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
createCall Leg()

This method requests the creation of anew call leg object.

Returns callLeg: Specifies the interface and sessionlD of the call leg created.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 92 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

appCal Il Leg : in | pAppCal | LegRef
Specifies the application interface for callbacks from the call leg created.

Returns

TpCal | Legl dentifier

Raises

TpCommonExcepti ons, P_INVALID SESSION | D, P_I NVALI D | NTERFACE TYPE

Method
cr eat eAndRout eCal | LegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachM ediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. Thisinterface the application must provide
through the appL egl nterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being aredirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

If this method isinvoked, and call reports have been requested, yet the IpAppCallLeg interface parameter isNULL, this
method shall throw the P_NO_CALLBACK_ADDRESS SET exception.

Returns call LegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

event sRequested : in TpCal | Event Request Set

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release’”.

target Address : in TpAddress
Specifies the destination party to which the call should be routed.

originati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

applnfo : in TpCall Appl nf 0Set

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 93 ETSITS 129 198-4 V4.10.0 (2004-09)

appLeglnterface : in | pAppCall LegRef

Specifies areference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on thisinterface.

Returns
TpCal | Legl dentifier
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_| NTERFACE_TYPE,
P | NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN, P_I NVALI D_NETWORK_STATE,
P_I NVALI D_EVENT_TYPE, P_I NVALI D_CRI TERI A

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getinfoReq) these reports
will still be sent to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cause : in TpRel easeCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_I NVALI D SESSION | D, P_I NVALI D NETWORK_STATE

Method
deassi gnCal | ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
get I nf oReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 94 ETSITS 129 198-4 V4.10.0 (2004-09)

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cal | I nfoRequested : in TpCalllnfoType
Specifies the call information that is requested.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
set Char gePl an()

Set an operator specific charge plan for the call.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cal |l ChargePl an : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
set Advi ceOF Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

aCClnfo : in TpAoCl nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 95

Raises

ETSI TS 129 198-4 V4.10.0 (2004-09)

TpConmonExcept i ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_CURRENCY,

P | NVALI D_AMOUNT

Method
supervi seReq()

The application calls this method to supervise a cal. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start

as soon asthe call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatment : in TpCall Supervi seTreat nent

Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: Iplinterface

The Multi-Party call application interface isimplemented by the client application developer and is used to handle call

request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void

getinfoErr (callSessionID : in TpSessionlD, errorindication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in

TpDuration) : void

superviseErr (callSessionID : in TpSessionlD, errorindication : in TpCallError) : void

callEnded (callSessionID : in TpSessionlID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegldentifier,

errorindication : in TpCallError) : void

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 96 ETSITS 129 198-4 V4.10.0 (2004-09)

Method
get | nf oRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getlnfoReq. Thisinformation may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of al cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifies the call information requested.

Method
get I nfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
super vi seRes()

This asynchronous method reports a call supervision event to the application when it has indicated itsinterest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTinme : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
supervi seErr ()

This asynchronous method reports a call supervision error to the application.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 97 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Ended()

This method indicates to the application that the call has terminated in the network.
Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call sessioniID.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

Method
creat eAndRout eCal | LegErr ()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cal |l LegReference : in TpCallLegldentifier
Specifies the reference to the CallLeg interface that was created.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

7.3.5 Interface Class IpCallLeg
Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 98 ETSITS 129 198-4 V4.10.0 (2004-09)

address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

Thisinterface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(),
release(), continueProcessing() and deassign() methods shall be implemented as a minimum requirement.

<<Interface>>

IpCaliLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, applinfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getinfoReq (callLegSessionID : in TpSessionID, callLeginfoRequested : in TpCallLeginfoType) : void
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallldentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOClinfo : in TpAoClnfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
rout eReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach M echanism val ues specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being aredirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

This operation continues processing of the call leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 99 ETSITS 129 198-4 V4.10.0 (2004-09)

target Address : in TpAddress
Specifies the destination party to which the call leg should be routed

ori gi nati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

applnfo : in TpCall Appl nf oSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCall LegConnecti onProperties
Specifies the properties of the connection.

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_| D, P_I NVALI D_NETWORK_STATE,
P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

Method
event Report Req()

This asynchronous method sets, clears or changes the criteriafor the events that the call leg object will be set to
observe.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

event sRequested : in TpCal | Event Request Set
Specifies the event specific criteria used by the application to define the events required. Only events that meet these

criteria are reported. Examples of events are "address analysed", "answer" and "release”.
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_| D, P_I NVALI D_EVENT_TYPE,
P_I NVALI D_CRI TERI A

Method
rel ease()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases rel easing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cause : in TpRel easeCause
Specifies the cause of the release.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 100 ETSITS 129 198-4 V4.10.0 (2004-09)

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

Method
get I nf oReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cal | Legl nf oRequested : in TpCall Legl nfoType
Specifiesthe call leg information that is requested.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
getCall ()

This method requests the call associated with this call leg.

Returns cal|Reference: Specifies the interface and sessionl D of the call associated with this call leg.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Returns

TpMul ti PartyCallldentifier

Raises

TpComonExceptions, P_I NVALI D SESSION | D

Method
at tachMedi aReq()

This method requests that the call leg be attached to its call object. Thiswill alow transmission on all associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the sessionl D of the call leg to attach to the call.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 101 ETSITS 129 198-4 V4.10.0 (2004-09)

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

Method
det achMedi aReq()

This method will detach the call leg fromitscall, i.e., thiswill prevent transmission on any associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the sessionl D of the call leg to detach from the call.

Raises
TpConmmonExceptions, P_INVALI D SESSI ON I D, P_I NVALI D NETWORK_ STATE

Method
get Current Desti nati onAddr ess()

Queries the current address of the destination the leg has been directed to.
Returns the address of the destination point towards which the call leg has been routed..

If this method isinvoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call session ID of the call leg.

Returns
TpAddr ess

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
conti nueProcessi ng()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 102 ETSITS 129 198-4 V4.10.0 (2004-09)

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

Method
set Char gePl an()

Set an operator specific charge plan for the call leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call party.

cal |l ChargePl an : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
set Advi ceOr Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call party.

aCClnfo : in TpAoClinfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpComonExceptions, P_INVALID SESSION | D, P_I NVALI D_CURRENCY,
P_1 NVALI D_AMOUNT

Method
super vi seReq()

The application calls this method to supervise acall leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call party.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 103 ETSITS 129 198-4 V4.10.0 (2004-09)

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnment : in TpCall LegSupervi seTreat ment
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
deassi gn()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leavesthe call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If acall leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters
call LegSessionl D : in TpSessionlD

Specifiesthe call leg session ID of the call leg.
Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

7.3.6 Interface Class IpAppCallLeg
Inherits from: Iplnterface

The application call leg interface isimplemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 104 ETSITS 129 198-4 V4.10.0 (2004-09)

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventinfo : in TpCallEventinfo) : void
eventReportErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionlD, errorindication : in TpCallError) : void
getinfoRes (callLegSessionID : in TpSessionID, callLeginfoReport : in TpCallLeglnfoReport) : void
getinfoErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

Method
event Report Res()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method isinvoked for a report with a monitor mode of P CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving arelease cause of P TIMER_EXPIRY.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg on which the event was detected.

eventinfo : in TpCall Eventlnfo
Specifies data associated with this event.

Method
event Report Err ()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 105 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
at tachMedi aRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connectionsto thisleg is now available.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg to which the information relates.

Method
attachMedi aErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
det achMedi aRes()

This asynchronous method reports the detachment of acall leg from a call has succeeded. The media channels or bearer
connections to thisleg isno longer available.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg to which the information relates.

Method
det achMedi aErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 106 ETSITS 129 198-4 V4.10.0 (2004-09)

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method

get | nf oRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg to which the information relates.

cal | Legl nfoReport : in TpCall Legl nfoReport
Specifies the call leg information requested.

Method
getI nfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
rout eErr ()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 107 ETSITS 129 198-4 V4.10.0 (2004-09)

Method
supervi seRes()

This asynchronous method reports a call leg supervision event to the application when it hasindicated itsinterest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call leg supervision response.

usedTine : in TpDuration
Specifies the used time for the call leg supervision (in milliseconds).

Method
supervi seErr ()

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | LegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g., getinfoRes) related to the call leg. The call leg will be destroyed after returning from this
method.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cause : in TpRel easeCause
Specifies the reason the connection is terminated.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

7.4

7.4.1

108

“managerinterrupted

Interrupted

IpAccess.terminateSeniceAgreement

/
(N
L)

W/

s.terminateSeniceAgreement

ETSI TS 129 198-4 V4.10.0 (2004-09)

MultiParty Call Control Service State Transition Diagrams

State Transition Diagrams for IpMultiPartyCallControlManager

‘new'

Figure : Application view and the Multi-Party Call Control Manager

74.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it isinterested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can also indicateit is no
longer interested in certain call related events by calling destroyNotification().

7.4.1.2 Interrupted State

When the Manager isin the Interrupted state it is temporarily unavailable for use. Events requested cannot be
forwarded to the application and methods in the API cannot successfully be executed. A number of reasons can cause
this: for instance the application receives more notifications from the network than defined in the Service Agreement.
Another example is that the Service has detected it receives no notifications from the network due to e.g. alink failure.

7.4.1.3 Overview of allowed methods

Call Control Manager State

Methods applicable

Active

createCall,
createNotification,
destroyNotification,
changeNotification,
getNotification,
setCallLoadControl

Interrupted

getNotification

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 109 ETSITS 129 198-4 V4.10.0 (2004-09)

7.4.2 State Transition Diagrams for IpMultiPartyCall
The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer isto invoke callEnded() on the IpAppMultiPartyCall with arelease cause of P_TIMER_EXPIRY. Inthe
case when no I pAppMultiPartyCall is available on which to invoke callEnded(), call Aborted() shall be invoked on the

I pAppMultiPartyCall ControlManager asthisis an abnormal termination.

‘ IpMultiPartyCallManager.createCall (IDLE }

trcoming call]
ApAppMultiPartyCallControlManager.reportNotification

creatéCallLeg

ACTIVE

deassign
'last leg released'
deassignCall
RELEASED “callEnded /
: @~
N\
A timer mechanisem preventsthatthe object AN

kee ps occupying resources. In case the timer
expires, callEnded()isinwlked on the

IpAppM ul tiP artyCal | with a release cause of
P_TIMER_EXPIRY. Inthe case when no

IpAppM ultiP artyCall isavailable on which to invoke
callEnded(), callAborted () shall be invoked on the
IpAppM ultiP artyCal IControIManagerasthisis an
abnormal termination.

Figure : Application view on the MultiParty Call object

7.4.2.1 IDLE State
In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
State.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 110 ETSITS 129 198-4 V4.10.0 (2004-09)

74272 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicatorsin this state prior to call establishment.

7.4.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call isin this state, the
requested call information will be collected and returned through getinfoRes() and / or superviseRes(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
State.

7.4.2.4 Overview of allowed methods

Methods applicable Call Control Call Call Control
State Manager State

getCallLegs, Idle, Active, Released | -

createCallLeg, Idle, Active Active

createAndRouteCallL

egReq,

setAdviceOfCharge,

superviseReq,

release Active Active

deassignCall Idle, Active -

setChargePlan, Idle, Active Active

getinfoReq

7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Cadll Leg State Model General Objectives:
1) Eventsin backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2) Eventsin forwards direction (downstream), coming from originating leg, are not visible in terminating leg
model.

3) States are as seen from the application: if thereis no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or aerting events on
terminating leg do not change state. NOTE 2

4) The applicationisto send arequest to continue processing (using an appropriate method like
continueProcessing) for each leg and event reported in monitor mode "interrupt”.

5) In case on aleg more than one network event (for example mid-call event "service _code") isto be reported to the
application at quasi the same time, then the events are to be reported one by one to the application in the order
received from the network. When for aleg an event is reported in interrupt mode, a next pending event is not to
be reported to the application until arequest to resume call processing for the current reported event has been
received on the leg.

NOTEZ2: Call processing is suspended if for aleg a network event is met, which was requested to be monitored in
theP_CALL_MONITOR_MODE_INTERRUPT.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 111 ETSI TS 129 198-4 V4.10.0 (2004-09)

NOTEZ2: Even though there in the Originating Call Leg STD is no change in the methods the applicationis

7431

All States ‘release’
"timer expiry ‘

permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore from an application viewpoint appear as just one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

Originating Call Leg

Originating Call Leg. ﬁ
‘originating call attempt authorizﬂ
IpAppMultiPartyCallControlManager.
attachMedia Initiging ‘ reportNotification(originating CallAttempt)
detachMedia
‘ IpAppMultiPartyCallControlManager |

reportNotification(originating CallAtemptAuthorized)

'Address Collected'
'networkRelease'

'Address_Cdlected'

Analysing

attachMedia

| MultiPartyCallControlManager
detachMedia

reportNotification(address_collected)

‘networkr elease’

'Address Analysed'

‘originating service_code'

Active IpAppMultiPartyCallControlManager.
reportNotification(address_analysed)

attachMedia

detachMedia
| pAppMul tiPartyCallControlManager.

reportNoti fication(or igi naing ser\ice cade)

'networkrelease'

\

‘ Rel easing

do/ send reports if requested, or error reports if required Manager.

reportNotification(originating
release)

deasign

°

NpAppCallLeg.callLegEnded

Transitions/events not shown:

All states:

continueProcessing, getLastRedirectedAddress, getCall: no state change
All states except Releasing:

ewentReportReq, setAdviceOfCharge, getinfoReq, superviseReq,
setChargePlan

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 112 ETSITS 129 198-4 V4.10.0 (2004-09)
Figure : Originating Leg

7.4.3.1.1 Initiating State
Entry events:

- Sending of areportNotification() method by the I pMultiPartyCall ControlManager for an
'Originating_Call_Attempt' initial notification criterion.

- Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an
'Originating_Call_Attempt_Authorised' initial notification criterion.

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party"s identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

Initiating See OREL
State Note2

__ 4 ocA | _,locAA ||| AC

See Notel

Note 1: Event oCA only applicable as an initial notification .

Note 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

oCA: originating Call Attempt; oCAA originating Call Attempt Authorized; AC: Address Collected, oREL originating
RELease.

Figure : Application view on event reporting order in Initiating State

In this state the following functions are applicable;
- Thedetection of a'Originating_Call_Attempt' initial notification criterion.

- Thedetection of an 'Originating_Call_Attempt_Authorised' initial notification criterion as aresult that the call
attempt authorisation is successful.

- Thereport of the 'Originating_Call_Attempt_Authorised' event indication whereby the following functions are
performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg processing is
suspended.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 113 ETSITS 129 198-4 V4.10.0 (2004-09)

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

The receipt of destination address information, i.e. initial information package/dialling string as received from
caling party.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

Availability of destination address information, i.e. the initial information package/dialling string received from

the calling party.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period.

Receipt of adeassign() method.
Receipt of arelease() method.

Detection of a'originating release’ indication as aresult of a premature disconnect from the calling party.

7.4.3.1.2 Analysing State

Entry events:

Availability of an 'Address _Collected' event indication as aresult of the receipt of the (complete) initial
information package/dialling string from the calling party.

Sending of areportNotification() method by the IpMultiPartyCallControlManager for an 'Address_Collected'
initial notification criterion.

Functions:

In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialing plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The reguest (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method)) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteriais met) is done in this state. This action
isrecursive, e.g. the application could ask for 3 digitsto be collected and when report request can be done repeatedly,
e.g. the application may for example request first for 3 digits to be collected and when reported request further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 114 ETSITS 129 198-4 V4.10.0 (2004-09)

OREL

Analysing Notel >
State

oCAA

Note 1: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

0CAA: originating Call Attempt Authorized; AC: Address Collected; AA: Address Analysed; oREL: originating
RELease.

Figure : Application view on event reporting order in Analysing State

In this state the following functions are applicable;
- Thedetection of a'Address_Collected' initial notification criterion.
- On receipt of the 'Address_Collected' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event is reported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED thenthe event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then no monitoring is performed.

- Receipt of aeventReportReq() method defining the criteriafor the events the call leg object isto observe.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

- Detection of an 'Address_Analysed' indication as aresult of the availability of the routing address and nature of
address.

- Receipt of adeassign() method.
- Receipt of arelease() method.

- Detection of a'originating release’ indication as aresult of a premature disconnect from the calling party.

7.4.3.1.3 Active State
Entry events:

- Receipt of an 'Address_Anaysed' indication as a result of the availability of the routing address and nature of
address.

- Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an 'Address Analysed
initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 115 ETSITS 129 198-4 V4.10.0 (2004-09)

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

See Notel
See
ﬂ Note2
0SC AN
AC ? oREL
> AA
Active
State

Note 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

Note 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

AC: Address Collected; AA: Address Analysed; oSC: originating Service Code; oREL: originating RELease.

Figure : Application view on event reporting order Active State

In this state the following functions are applicable:
- Thedetection of a Address_Analysed initial indication criterion.
- On receipt of the 'Address_Analysed' indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS _ANALY SED then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- Inthis state the routing information is interpreted, the authority of the calling party to establish this connectionis
verified and the call leg connection is set up to the remote party.

- Inthis state a connection to the call party is established.

- Detection of a'terminating release’ indication (not visible to the application) from remote party caused by a
network release event propagated from a terminating party, possibly resulting in an 'originating release’
indication and causing the originating call leg STD to transit to Releasing state:

- Detection of adisconnect from the calling party.
- Receipt of adeassign() method.
- Receipt of arelease() method.

- On receipt of the 'originating_service code' indication the following functions are performed:

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 116 ETSITS 129 198-4 V4.10.0 (2004-09)

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

i) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing
continues..

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.
Exit events:

- Detection of an 'originating release’ indication as aresult of a disconnect from the calling party and a
'terminating release’ indication as aresult of a disconnect from called party.

- Receipt of adeassign() method.

- Receipt of arelease() method from the application.

7.4.3.1.4 Releasing State
Entry events:

- Detection of an 'Originating_Release' indication as a result of the network release initiated by calling party or
caled party.

- Reception of the release() method from the application.

- A transition due to fault detection to this state is made when the Call leg object isin a state and no requests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actionsto be performed is as follows:
i) the network release event handling is performed.

ii) the possible call leg information requested with getlnfoReq() and/ or superviseReq() is collected and send to
the application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

In this state the following functions are applicable:
- Thedetection of a'originating_release' initial indication criterion..
- Onreceipt of the ‘originating_release' indication the following functions are performed:
- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 117 ETSITS 129 198-4 V4.10.0 (2004-09)

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call 1eg information requested with the getinfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

In case of abnormal termination due to afault and the application requested for call leg related information
previoudly, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded).

Note: the call in the network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request from the application
to release the leg isignored in this case because release of the leg is already ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call eg connection has ended, by sending the call LegEnded()
method.

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 118

State

Methods allowed

Initiating

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall ,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing

attachMediaRe(q (as a request),
detachMediaReq, (as a request)
getCall ,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall ,
continueProcessing,
release

deassign

7.4.3.2

Terminating Call Leg

ETSI

ETSI TS 129 198-4 V4.10.0 (2004-09)

3GPP TS 29.198-04 version 4.10.0 Release 4 119 ETSI TS 129 198-4 V4.10.0 (2004-09)

Terminating Call Leg. ﬁ

Idle '
terminatin
(o IpMultiPartyCall.createCallLeg

routeReq

IpAppM ulti Party CallControlManager.r
‘terminating call attempt authorized' eportNotification(“terminating call
‘alerting’, 'answer, ‘terminating senyce attempt", "terminating call attempt
code', ‘redirected’, ‘queued’ authorised”, "alerting”, "answer",
“terminating senice code",

Active “redirected", "queued")
(terminating)

attachMedia

detachMedi .
etachiedia IpMultiPartyCall.createAndRouteCallLegReq
‘network release’
All States release ‘ Releasing (terminating)
(terminating) 6 - 5 A 5 IpAppMultiParty CallControlManager.
imer expiry’ ‘ do/ send reports if requested, or eror reports if require. reportNot fication(terminating

release)

NpAppCallLeg.callLegEnded

()

deasign

Transitions/events not shown: N
All states:

continueProcessing, getLastRedirectedAddress, getCall, sending getinfoRes,
supeniseRes: no state change,

All states except Releasing:

ewventReportReq, setAdviceOfCharge, getinfoReq, supeniseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

Figure : Terminating Leg

7.4.3.2.1 Idle (terminating) State
Entry events:
- Receipt of acreateCallLeg() method to start an application initiated call leg connection.
Functions:
In this state the call leg object is created and the interface connection isidled.

The application activity timer is being provided.

In this state the following functions are applicable;
- Invoking routeReq will result in arequest to actually route the call leg object.
- Resumption of call leg processing occurs on receipt of arouteReq() method.

Exit events:

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 120

Receipt of arouteReq() method from the application.

ETSI TS 129 198-4 V4.10.0 (2004-09)

Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

Receipt of adeassign() method.

Receipt of arelease() method.

- Detection of a network release event being an ‘originating release’ indication as aresult of a premature disconnect
from the calling party.

7.4.3.2.2 Active (terminating) State

Entry events:

Receipt of an routeReq will result in actually routing the call leg object.

Receipt of a createAndRouteCallLegReq() method to start an application initiated call leg connection.

Sending of areportNotification() method by the IpMulti PartyCall ControlManager for the following trigger
criteriac 'Terminating_Call_Attempt', 'Terminating_Call_Attempt_Authorised’, 'Alerting', 'Answer’,
‘Terminating service code', 'Redirected' and '‘Queued'.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

>
‘_
it

Active

State [
tCA 4+—»| tCAA

Note 1

Note3 N

™

tREL

Note2 >

tSC

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 121 ETSITS 129 198-4 V4.10.0 (2004-09)

Note 1: Event tCA applicable as initial notification

Note 2: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

Note 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

tCA: Terminating Call Attempt; tCAA: terminating Call Attempt Authorized; AL: Alerting; ANS: Answer; tREL:
terminating RELease; Q: Queued; RD: ReDirected; tSC: terminating Service Code.

Figure : Application view on event reporting order in Active State

In this state the following functions are applicable:

- The detection and report of the ‘Terminating_Call_Attempt_Authorised' event indication whereby the following
functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported and call
leg processing is suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING _CALL_ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_TERMINATING _ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection of an 'Queued’ indication as aresult of the terminating call being queued.
- On receipt of the '‘Queued' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

- Onreceipt of the ‘Alerting' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

- Detection of an 'Answer' indication as a result of the remote party being connected (answered).
- Onreceipt of the 'Answer' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event isreported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

- Thedetection of a'service_code' trigger criterion suspends call leg processing.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 122 ETSITS 129 198-4 V4.10.0 (2004-09)

On receipt of the 'service code' indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then thisis not avalid event (that event is not
notified) and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

On receipt of the 'redirected' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

Detection of a network release event being an ‘terminating release’ indication as aresult of the following events:

i) Unable to select aroute or indication from the remote party of the call leg connection cannot be presented
(thisisthe network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

Detection of a network release event being an ‘originating release’ indication as a result of the following events:
vi) Detection of a premature disconnect from the calling party.

Receipt of adeassign() method.

Receipt of arelease() method from the application.

Detection of a network release event being an 'originating release’ indication as aresult of a disconnect from the
calling party or a 'terminating release’ indication as aresult of a disconnect from the called party.

7.4.3.2.3 Releasing (terminating) State

Entry events:

Detection of a network release event being an ‘originating release’ indication as aresult of the network release
initiated by calling party or a‘terminating release’ indication as a result of the network release initiated by called

party..
Sending of the release() method by the application.

A transition due to fault detection to this state is made when the Call leg object awaits a request from the
application and thisis not received within a certain time period.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 123 ETSITS 129 198-4 V4.10.0 (2004-09)

- Detection of a network event being a ‘terminating release’ indication as a result of the following events:

i) Unable to select aroute or indication from the remote party of the call leg connection cannot be presented
(thisisthe network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.
iv) Detection of a no-answer condition received from the remote call leg connection portion.
v) Detection that the remote party was not reachable.
- Detection of a network release event being an 'originating release’ indication as aresult of the following events:
vi) Detection of a premature disconnect from the calling party.
Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:
i) therelease event handling is performed.

ii) the possible call leg information requested with getinfoReq() and/ or superviseReq() is collected and send to the
application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or afault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable;
- Thedetection of a Terminating Release' trigger criterion.

- On receipt of the network release event being a 'Terminating Release' indication the following functions are
performed:

- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event isreported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- Thepossible call leg information requested with the getinfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

- ThecallLegended() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 124 ETSITS 129 198-4 V4.10.0 (2004-09)

- Incase of abnormal termination due to afault and the application requested for call leg related information
previoudly, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded).

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg isignored in this case because release of the leg is aready ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

- After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the call LegEnded()
method.

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

State Methods allowed

Idle routeReq,

getCall ,
getCurrentDestinationAddress,
release,

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMediaReq
detachMediaReq
getCall ,
getCurrentDestinationAddress,
continueProcessing,
release,

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall ,
getCurrentDestinationAddress,
continueProcessing,

release,

deassign

7.5 Multi-Party Call Control Service Properties
7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 125 ETSI TS 129 198-4 V4.10.0 (2004-09)
Property Type Description

P_MAX_CALLLEGS PER _CALL INTEGER_SET Indicates how many parties can bein one call.

P_UI_CALLLEG BASED BOOLEAN_SET | Vaue= TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall () operation.
Value = FALSE : No user interaction on leg level is supported.

P_ROUTING _WITH_CALLLEG _OPERATIONS | BOOLEAN_SET | Value= TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.routeReq(), IpCallLeg.attachM ediaReq()}
Value = FALSE : the convenience function has to be used for routing a
CalllLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET | Vaue= TRUE : the CallLeg shall be explicitly attached to a Call.

Value = FALSE : the CallLeg is automatically attached to a Call, no
IpCallLeg.attachM ediaReq|() is needed when a party answers.

7.5.2

Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 3 shall have the Service
Properties outlined above set to the indicated values :

P_OPERATI ON_SET = {

"I pMil tiPartyCal |l Control Manager.
"I pMil tiPartyCal |l Control Manager.
"I pMil ti PartyCal | Control Manager.
"I pMil ti PartyCal | Control Manager.
"I pMil tiPartyCal | Control Manager.
"IpMulti PartyCall.getCall Legs',
"IpMul ti PartyCall.createCall Leg',
"IpMul ti PartyCall.
"IpMul ti PartyCall.
"IpMul ti PartyCall.
"IpMul ti PartyCall.
"IpMul ti PartyCall.
"IpMul ti PartyCall.set Advi ceOr Char ge',
"IpMul tiPartyCall.superviseReq',

"I pCal |l Leg. routeReq',

.event Report Req',

.rel ease',

.get I nfoReq',

.getCall",

. conti nueProcessi ng'

rel ease',
deassignCal | ',
get I nf oReq' ,
set Char gePl an' ,

}

P_TRI GGER NG_EVENT_TYPES = {
P_CALL_EVENT ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,
P_CALL_EVENT ORI G NATI NG_RELEASE,

creat eAndRout eCal | LegReq' ,

P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT_AUTHORI SED,

P_CALL_EVENT_TERM NATI NG_RELEASE
}

createNotification',
destroyNotification',
changeNot i fication',
get Notification',
set Cal | LoadControl '

Note: P CALL_EVENT_ORIGINATING_RELEASE only for the routing failure case, TpReleaseCause =

P_ROUTI NG_FAI LURE

P_DYNAM C_EVENT_TYPES = {
P_CALL_EVENT_ ANSVER
P_CALL_EVENT ORI G NATI NG _RELEASE,
P_CALL_EVENT_TERM NATI NG_RELEASE

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN E164
}

P_U _CALL_BASED = {
TRUE
}

P_U AT ALL_STAGES = {
FALSE
}

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 126
P_MEDI A TYPE = {

P_AUDI O

}

P_MAX_CALLLEGS_PER CALL = {

0
2
}

P_U _CALLLEG BASED = {
FALSE

}
P_MEDI A ATTACH EXPLICIT = {

FALSE
}

ETSI

ETSI TS 129 198-4 V4.10.0 (2004-09)

3GPP TS 29.198-04 version 4.10.0 Release 4 127 ETSITS 129 198-4 V4.10.0 (2004-09)

7.6 Multi-Party Call Control Data Definitions

This clause provides the MPCC data definitions necessary to support the API specification.
The general format of a data definition specification is described below.
 DataType
This shows the name of the data type.
o Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 8) or in the common data definitions which may be found in 3GPP TS 29.198-2.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.

7.6.2 Multi-Party Call Control Data Definitions

7.6.2.1 IpCallLeg

Definesthe address of an | pCal | Leg Interface.

7.6.2.2 IpCallLegRef

DefinesaRef er ence to type IpCallLeg.

7.6.2.3 IpAppCallLeg

Definesthe address of an | pAppCal | Leg Interface.

7.6.2.4 IpAppCallLegRef

DefinesaRef er ence to type IpAppCallLeg.

7.6.2.5 IpMultiPartyCall
Definesthe addressof an| pMul ti PartyCal | Interface.

7.6.2.6 IpMultiPartyCallRef

DefinesaRef er ence to type IpMultiPartyCall.

7.6.2.7 IpAppMultiPartyCall

Definesthe address of an | pAppMul ti PartyCal | Interface.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 128 ETSITS 129 198-4 V4.10.0 (2004-09)

7.6.2.8 IpAppMultiPartyCallRef

DefinesaRef er ence to type IpAppMultiPartyCall.

7.6.2.9 IpMultiPartyCallControlManager
Definesthe addressof an| pMul ti Part yCal | Cont r ol Manager Interface.

7.6.2.10 IpMultiPartyCallControlManagerRef

DefinesaRef er ence to type IpMultiPartyCall Control M anager.

7.6.2.11 IpAppMultiPartyCallControlManager

Definesthe address of an | pAppMul ti PartyCal | Cont r ol Manager Interface.

7.6.2.12 IpAppMultiPartyCallControlManagerRef

DefinesaRef er ence to type IpAppMultiPartyCall ControlManager..

7.6.2.13 TpAppCallLegRefSet

Definesa Nunbered Set of Data El ements of IpAppCalLegRef.

7.6.2.14 TpMultiPartyCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object

Sequence Element Sequence Element Sequence Element
Name Type Description
Cal | Ref erence I pMul tiPartyCal | Ref This element specifies theinterface reference for the Multi-party call object.
Cal | Sessi onl D TpSessi onl D This element specifies the call session ID.

7.6.2.15 TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type

TpAppMul ti PartyCal | BackRef Type

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFI NED NULL Undef i ned
P_APP_MULTI PARTY_CALL_CALLBACK IpAppMultiPartyCallRef AppMul ti PartyCal |
P_APP_CALL_LEG CALLBACK IpAppCallLegRef AppCal | Leg
P_APP_CALL_AND_CALL_LEG CALLBACK TpAppCallLegCallBack AppMul ti PartyCal | AndCal | Leg

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

129

7.6.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

ETSI TS 129 198-4 V4.10.0 (2004-09)

Name

Value

Description

P_APP_CALLBACK_UNDEFI NED

Application Call back interface undefined

P_APP_MULTI PARTY_CALL_CALLBACK

Application Multi-Party Call interface
referenced

P_APP_CALL_LEG CALLBACK

Application CallLeg interface referenced

P_APP_CALL_AND CALL_LEG CALLBACK

Application Multi-Party Call and CallLeg
interface referenced

7.6.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that referencesacall and acall leg application interface.

Sequence Element Name

Sequence Element Type

AppMul ti PartyCal |

I pAppMul ti PartyCal | Ref

AppCal | LegSet

TpAppCallLegRef Set

Specifiesthe set of all call leg call back
references. First in the set isthe reference
to the call back of the originating callLeg.
In case thereis a call back to a destination

call leg thiswill be second in the set.

7.6.2.18 TpMultiPartyCallldentifierSet

DefinesaNunbered Set of Data El enents of TpMultiPartyCallldentifier.

7.6.2.19 TpCallAppinfo

Definesthe Tagged Choi ce of Data El ement s that specify application-related call information.

Tag Element Type

TpCal | Appl nf oType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_APP_ALERTI NG_VECHANI SM

TpCal I Al erti ngMechani sm

Cal | AppAl erti ngMechani sm

P_CALL_APP_NETWORK_ACCESS_TYPE

TpCal | Net wor kAccessType

Cal | AppNet wor kAccessType

P_CALL_APP_TELE_SERVI CE

TpCal | Tel eServi ce

Cal | AppTel eServi ce

P_CALL_APP_BEARER SERVI CE

TpCal | Bear er Ser vi ce

Cal | AppBear er Servi ce

P_CALL_APP_PARTY_CATEGORY

TpCal | Part yCat egory

Cal | AppPart yCat egory

P_CALL_APP_PRESENTATI ON_ADDRESS

TpAddr ess

Cal | AppPr esent at i onAddr ess

P_CALL_APP_CENERI C_I NFO TpString Cal | AppGeneri clnfo
P_CALL_APP_ADDI TI ONAL_ADDRESS TpAddr ess Cal | AppAddi ti onal Addr ess
P_CALL_APP_ORI G NAL_DESTI NATI ON_ADDRESS | TpAddr ess Cal I AppOri gi nal Desti nat i onAddr ess
P_CALL_APP_REDI RECTI NG_ADDRESS TpAddr ess Cal | AppRedi recti ngAddr ess

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

7.6.2.20 TpCallAppinfoType

130

ETSI TS 129 198-4 V4.10.0 (2004-09)

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFI NED 0 Undefined
P_CALL_APP_ALERTI NG_MECHANI SM 1 The aerting mechanism or pattern to use
P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)
P_CALL_APP_TELE_SERVI CE 3 Indicates the tele-service (e.g. telephony)
P_CALL_APP_BEARER_SERVI CE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).
P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party
P_CALL_APP_PRESENTATI ON_ADDRESS 6 The address to be presented to other call parties
P_CALL_APP_CGENERI C_|I NFO 7 Carries unspecified service-service information
P_CALL_APP_ADDI Tl ONAL_ADDRESS 8 Indicates an additional address
P_CALL_APP_ORI G NAL_DESTI NATI ON_ADDRESS 9 Contains the original address specified by the originating user when

launching the call.

P_CALL_APP_REDI RECTI NG_ADDRESS 10 Contains the address of the user from which the call is diverting.

7.6.2.21 TpCallAppinfoSet

DefinesaNunber ed Set of Data El enment s of TpCallApplnfo.

7.6.2.22 TpCallEventRequest

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

Cal | Event Type

TpCallEventType

Additional Cal | EventCriteria

TpAdditional CallEventCriteria

Cal | Moni t or Mode

TpCallMonitorMode

7.6.2.23 TpCallEventRequestSet

DefinesaNunbered Set of Data El enent s of TpCallEventRequest.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 131 ETSI TS 129 198-4 V4.10.0 (2004-09)
7.6.2.24 TpCallEventType
Defines a specific call event report type.
Name Value Description
P_CALL_EVENT_UNDEFI NED 0 Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT_AUTHORI SED 2 An originating call attempt is authorised
P_CALL_EVENT_ADDRESS COLLECTED 3 The destination address has been collected.
P_CALL_EVENT_ADDRESS ANALYSED 4 The destination address has been analysed.
P_CALL_EVENT_ORI G NATI NG_SERVI CE_CODE 5 Mid-call originating service code received.
P_CALL_EVENT_ORI G NATI NG_RELEASE 6 A originating call/call leg isreleased
P_CALL_EVENT _TERM NATI NG CALL_ATTENPT 7 A terminating call attempt takes place
P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT_AUTHORI SED 8 A terminating call is authorized
P_CALL_EVENT_ALERTI NG 9 Call isaerting at the call party.
P_CALL_EVENT_ANSVEER 10 Call answered at address.
P_CALL_EVENT_TERM NATI NG_RELEASE 11 A terminating call leg has been released or the call could not
be routed.
P_CALL_EVENT_REDI RECTED 12 Call redirected to new address: an indication from the network
that the call has been redirected to a new address (no events
disarmed as aresult of this).
P_CALL_EVENT_TERM NATI NG_SERVI CE_CCDE 13 Mid call terminating service code received.
P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no events are disarmed asa
result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg;

¢ When the monitor modeissetto P CALL_MONITOR_MODE_DO NOT_MONITOR al events armed for that
eventtype are disarmed. The additional EventCriteria are not taken into account.

* When requesting two events for the same event type with different criteria and/or different monitor mode the last

used criteria and monitor mode apply.

« Eventsthat are not applicable to aleg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,
E.g., requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with

exception P_INVALID_CRITERIA.

When P_CALL_EVENT_ORIGINATING_RELEASE isrequested with P_BUSY in the criteriathe request is

refused with the same exception.

When receiving events:

e If anarmed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.

If an event is met that causes the release of the related leg, then all events related to that leg are disarmed .

¢ When an event is met on acall leg irrespective of the event monitor mode, then only events belonging to that call

leg may become disarmed (see table below) .

If acall isreleased, then all events related to that call are disarmed.

NOTE 1. Event disarmed means monitor modeis set to DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY ..

The table below defines the disarming rules for dynamic events. In case such an event occurs on acal leg the table
shows which events are disarmed (are hot monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 132 ETSI TS 129 198-4 V4.10.0 (2004-09)
Event Occurred Events Disarmed
P_CALL_EVENT_UNDEFI NED Not Applicable

P _CALL_EVENT_OR G NATI NG CALL_ATTENPT

Not applicable, can only be armed astrigger

P_CALL_EVENT_ ORI Gl NATI NG CALL_ATTEMPT_AUTHORI SED

P_CALL_EVENT_ ORI Gl NATI NG CALL_ATTEMPT_AUTHORI SED

P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P CALL_EVENT ADDRESS COLLECTED
P_CALL_EVENT_ADDRESS ANALYSED

P_CALL_EVENT_ALERTI NG

P CALL_EVENT ALERTING
P_CALL_EVENT_TERMINATING_RELEASE with criteria:
P_USER_NOT_AVAILABLE

P BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSVER

P CALL_EVENT ALERTING

P_CALL_EVENT ANSWER
P_CALL_EVENT_TERMINATING_RELEASE with criteria:
P_USER NOT_AVAILABLE

P BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_CALL_EVENT_OR G NATI NG_RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT_TERM NATI NG_RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT_OR G NATI NG_SERVI CE_CODE

P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) see NOTE 2

P_CALL_EVENT TERM NATI NG SERVI CE_CODE

P_CALL_EVENT _TERMINATING_SERVICE_CODE *) see NOTE 2

NOTE 2: Only the detected service code or_the range to which the service code belongs is disarmed.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 133 ETSITS 129 198-4 V4.10.0 (2004-09)

7.6.2.25 TpAdditionalCallEventCriteria

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria.

Tag Element Type

TpCal | Event Type

Tag Element

Choice Element

Choice Element

Value Type Name
P_CALL_EVENT UNDEFT NED NULL Undefined
P _CALL_EVENT OR G NATI NG CALL_ATTENPT NULL Undefined
P_CALL_EVENT ORI Gl NATI NG CALL_ATTEMPT AUTHO NULL Undefined
R SED
P _CALL_EVENT ADDRESS_COLLECTED Tpint 32 MinAddressLength
P _CALL_EVENT ADDRESS_ANALYSED NULL Undefined

P_CALL_EVENT ORI G NATI NG_SERVI CE_CODE

TpCal | Ser vi ceCodeSet

OriginatingServiceCode

P_CALL_EVENT_ ORI Gl NATI NG_RELEASE

TpRel easeCauseSet

OriginatingRel easeCauseSet

NULL

P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT Undefined
P_CALL_EVENT TERM NATI NG CALL_ATTEMPT AUTHO NULL Undefined

Rl SED

P_CALL_EVENT_ALERIT NG NULL Undefined
P_CALL_EVENT_ANSVER NULL Undefined
P_CALL_EVENT_TERM NATI NG_RELEASE TpRel easeCauseSet TerminatingRel easeCauseSet
P_CALL_EVENT REDI RECTED NULL Undef i ned
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE TpCal I Servi ceCodeSet Ter ni nat i ngSer vi ceCode
P_CALL_EVENT_QUEUED NULL Undef i ned

7.6.2.26 TpCallEventinfo

Definesthe Sequence of Data El enment s that specify the event report specific information.

Sequence Element
Name

Sequence Element
Type

CallEventType

TpCallEventType

Additional CallEventInfo

TpCallAdditional Eventinfo

CallMonitorMode

TpCallMonitorMode

CallEventTime

TpDateAndTime

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

7.6.2.27 TpCallAdditionalEventinfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call event information for certain types

of events.

134

ETSI TS 129 198-4 V4.10.0 (2004-09)

Tag Element Type

TpCal | Event Type

Tag Element

Choice Element

Choice Element

Value Type Name
P_CALL_EVENT_UNDEFI NED NULL Undefined
P _CALL_EVENT_OR Gi NATI NG CALL_ATTENPT NOLL Undefined
P_CALL_EVENT ORI G NATI NG CALL_ATTEMPT AUTHORI SED NULL Undefined
P_CALL_EVENT_ADDRESS_COLLECTED TpAddr ess CollectedAddress
P _CALL_EVENT _ADDRESS ANALYSED TpAddr ess CalledAddress

P_CALL_EVENT_OR G NATI NG_SERVI CE_CODE

TpCal | Servi ceCode

OriginatingServiceCode

P_CALL_EVENT_ ORI Gl NATI NG_RELEASE

TpRel easeCause

OriginatingRel easeCause

NULL

P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT Undefined
P _CALL_EVENT TERM NATI NG CALL_ATTEMPT AUTHORI SED NULL Undefined
P_CALL_EVENT_ALERTI NG NOLL Undefined
P_CALL_EVENT_ANSVER NOLL Undefined
P_CALL_EVENT_TERM NATI NG_RELEASE TpRel easeCause TerminatingRel easeCause
P_CALL_EVENT_REDI RECTED TpAddr ess ForwardAddress
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE TpCal | Servi ceCode TerminatingServiceCode
P_CALL_EVENT_QUEUED NOLL Undefined
7.6.2.28 TpCallNotificationRequest
Defines the Sequence of Data Elements that specify the criteriafor an event notification

Sequence Element Name Sequence Element Type Description

Cal I Noti ficati onScope TpCallNatificationScope

Defines the scope of the notification request.

Cal | Event sRequest ed TpCallEventReguestSet

Defines the events which are requested

7.6.2.29 TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.
Sequence Element Sequence Element Description
Name Type
Desti nati onAddress TpAddr essRange Defines the destination address or address range for which the notification is
requested.
Origi nati ngAddress TpAddr essRange Defines the origination address or address range for which the notification is
requested.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

135 ETSI TS 129 198-4 V4.10.0 (2004-09)

7.6.2.30 TpCallNotificationInfo

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Call

notification report.

Sequence Element
Name

Sequence Element
Type

Description

Cal | Noti fi cati onReport Scope

TpCal | Noti fi cati onReport Scope Defines the scope of the notification report.

Cal I Appl nfo

TpCal | Appl nf oSet Contains additional call info.

Cal I EventInfo

TpCal | Event I nfo Contains the event which is reported.

7.6.2.31 TpCallNotificationReportScope

Definesthe Sequence of Data El enent s that specify the scope for which a notification report was sent.

Sequence Element Sequence Element Description

Name Type
Desti nati onAddr ess TpAddr ess Contains the destination address of the call.
Ori gi nati ngAddr ess TpAddr ess Contains the origination address of the call

7.6.2.32 TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element Sequence Element
Name Type
AppCal | Noti fi cati onRequest TpCal | Noti fi cati onRequest
Assi gnment | D Tpl nt 32
7.6.2.33 TpNotificationRequestedSet
Defines anumbered Set of Data Elements of TpNotificationRequested.
7.6.2.34 TpReleaseCause
Defines the reason for which a cal is released.
Name Value Description
P_UNDEFI NED 0 The reason of releaseis not known, because no info was received from the network.
P_USER_NOT_AVAI LABLE 1 The user is not available in the network. This means that the number is not alocated or that the user is
not registered.
P_BUSY 2 The user is busy.
P_NO_ANSWER 3 No answer was received
P_NOT_REACHABLE 4 The user terminal is not reachable
P_ROUTI NG_FAI LURE 5 A routing failure occurred. For example an invalid address was received
P_PREMATURE_DI SCONNECT 6 The user disconnected the call / call leg during the setup phase.
P_DI SCONNECTED 7 A disconnect was received.
P_CALL_RESTRI CTED 8 The call was subject of restrictions
P_UNAVAI LABLE_RESOURCE 9 The request could not be carried out as no resources were available.
P_GENERAL_FAI LURE 10 A general network failure occurred.
P_TI MER_EXPI RY 11 Thecall / call leg was released because an activity timer expired.

7.6.2.35 TpReleaseCauseSet
Defines a Numbered Set of Data Elements of TpReleaseCause.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

7.6.2.36 TpCallLegldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

136

ETSI TS 129 198-4 V4.10.0 (2004-09)

Sequence Element Sequence Element Sequence Element

Name Type Description
Cal | LegRef erence | pCal | LegRef This element specifies the interface reference for the callLeg object.
Cal | LegSessi onl D TpSessi onl D This element specifies the callLeg session ID.

7.6.2.37 TpCallLegldentifierSet

DefinesaNunmber ed Set of Data El ement s of TpCallLegldentifier.

7.6.2.38 TpCallLegAttachMechanism
Defines how a CallLeg should be attached to the call.

Name

Value

Description

P_CALLLEG ATTACH | MPLICITLY

0 CallLeg should be attached implicitly to the call.

P_CALLLEG ATTACH EXPLI CI TLY

call.

1 CallLeg should be attached explicitly to the call by using the attachM ediaReq() operation. This
allows e.g. the application to do first user interaction to the party before he/sheis placed in the

7.6.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

At t achMechani sm

TpCal | LegAt t achMechani sm Defines how a CallLeg should be attached to the call.

7.6.2.40 TpCallLegIinfoReport

Definesthe Sequence of Data El enent s that specify the call leg information requested.

Sequence Element
Name

Sequence Element
Type

Description

Cal | Legl nf oType

TpCal | Legl nf oType

The type of call leg information.

Cal | LegStart Ti me

TpDat eAndTi e

The time and date when the call leg was started (i.e. the leg was routed).

Cal | LegConnect edToResour ceTi nme TpDat eAndTi e

The date and time when the call leg was connected to the resource. If no
resource was connected the time is set to an empty string.
Either this element isvalid or the CallConnectedToAddressTime isvalid,
depending on whether the report is sent as a result of user interaction.

Cal | LegConnect edToAddr essTi

me TpDat eAndTi e

The date and time when the call leg was connected to the destination (i.e.
when the destination answered the call). If the destination did not
answer, thetimeis set to an empty string.

Either this element isvalid or the Call ConnectedToResourceTimeis
valid, depending on whether the report is sent as aresult of user
interaction.

Cal | LegEndTi me

TpDat eAndTi e

The date and time when the call leg was released.

Connect edAddr ess

TpAddr ess

The address of the party associated with the leg. If during the call the
connected address was received from the party then thisis returned,
otherwise the destination address (for legs connected to a destination) or
the originating address (for legs connected to the origination) is returned.

Cal | LegRel easeCause

TpRel easeCause

The cause of the termination. May be present with
P CALL LEG INFO RELEASE_CAUSE was specified.

Cal I Appl nfo

TpCal | Appl nf oSet

Additional information for the leg. May be present with
P CALL_LEG INFO_APPINFO was specified.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 137 ETSITS 129 198-4 V4.10.0 (2004-09)

7.6.2.41 TpCallLegIinfoType

Defines the type of call leg information requested and reported. The values may be combined by alogica 'OR' function.

Name Value Description
P_CALL_LEG | NFO_UNDEFI NED 00h Undefined
P_CALL_LEG I NFO_TI MES 01h Relevant call times
P_CALL_LEG | NFO_RELEASE_CAUSE 02h Call leg release cause
P_CALL_LEG | NFO_ADDRESS 04h Call leg connected address
P_CALL_LEG | NFO_APPI NFO 08h Call leg application related information

7.6.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values
may be combined by alogical 'OR' function.

Name Value Description
P_CALL_LEG SUPERVI SE_RELEASE 01h Release the call leg when the call leg supervision timer expires
P_CALL_LEG SUPERVI SE_RESPOND 02h Notify the application when the call leg supervision timer expires
P_CALL_LEG SUPERVI SE_APPLY_TONE 04h Send awarning tone on the call leg when the call leg supervision timer
expires. If call leg release is requested, then the call leg will be
rel eased following the tone after an administered time period

8 Common Call Control Data Types

The following data types referenced in this clause are defined in 3GPP TS 29.198-5:
TpUl I nfo

All other data types referenced but not defined in this clause are common data definitions which may be found in
3GPP TS 29.198-2.

8.1 TpCallAlertingMechanism

Thisdatatypeisidentical toaTpl nt 32, and defines the mechanism that will be used to aert acall party. The values
of this data type are operator specific.

8.2 TpCallBearerService

This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,
and 3G TS 22.002)

Name Value Description
P_CALL_BEARER SERVI CE_UNKNOMN 0 Bearer capability information unknown at thistime
P_CALL_BEARER SERVI CE_SPEECH 1 Speech
P_CALL_BEARER SERVI CE_DI G TALUNRESTRI CTED 2 Unrestricted digital information
P_CALL_BEARER SERVI CE_DI G TALRESTRI CTED 3 Restricted digital information
P_CALL_BEARER SERVI CE_AUDI O 4 3,1 kHz audio
?(_)\IOEEL_BEARER_SERVI CE_DI G TALUNRESTRI CTED 5 Unrestricted digital information with tones/announcements
P_CALL_BEARER SERVI CE_VI DEO 6 Video

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 138 ETSITS 129 198-4 V4.10.0 (2004-09)

8.3 TpCallChargePlan

Definesthe Sequence of Data El enent s that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description
Char geOr der Type TpCal | Char geOr der Cat egory Charge order
Transpar ent Char ge TpCct et Set Operator specific charge plan specification,

e.g. charging table name/ charging table entry.
The associated charge plan datawill be send
transparently to the charging records.

Only applicable when transparent charging is
selected.

Char gePl an Tpl nt 32 Pre-defined charge plan. Example of the

charge plan set from which the application can

choose could be : (0 = normal user, 1 = silver
card user, 2 = gold card user).

Only applicable when predefined charge plan
is selected.

Addi tional I nfo TpCct et Set Descriptive string which is sent to the billing
system without prior evaluation. Could be
included in the ticket.

Part yToChar ge TpCal | Part yToChar geType Identifies the entity or party to be charged for
the call or call leg.
Part yToChar geAddi tional Info | TpCal | PartyToChar geAdditional I nfo | Containsadditional information regarding the
charged party.

8.4 TpCallPartyToChargeAdditionalinfo

Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

Tag Element Type

TpCallPartyToChargeType

Tag Element Value Choice Element Choice Element Name
Type
P_CALL_PARTY_ORIGINATING NULL Undef i ned
P_CALL_PARTY_DESTINATION NULL Undef i ned
P_CALL_PARTY_SPECIAL TpAddress Cal | Part ySpeci al

8.5 TpCallPartyToChargeType

Defines the type of call party to charge

Name Value Description
P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call. For application initiated calls this
indicates thefirst party of the call
P_CALL_PARTY_DESTINATION 1 Cal l ed party
P_CALL_PARTY_SPECIAL 2 An address identifying e.g. athird party, a service provider

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 139 ETSITS 129 198-4 V4.10.0 (2004-09)

8.6 TpCallChargeOrderCategory

Defines the type of charging to be applied

Name Value Description

P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name/
charging table entry. The associated charge plan data will be send
transparently to the charging records

P_CALL_CHARGE_PREDEFI NED_SET 1 Pre-defined charge plan. Example of the charge plan set from which the
application can choose could be : (0 = normal user, 1 = silver card user, 2 =
gold card user).

8.7 TpCallEndedReport

Definesthe Sequence of Data El enent s that specify the reason for the call ending.

Sequence Element Name Sequence Element Type Description

Cal | LegSessi onl D TpSessi onl D Theleg that initiated the release of the call.

If the call release was not initiated by the leg,
then thisvalueis set to—1.

Cause TpRel easeCause The cause of the call ending.

8.8 TpCallError

Definesthe Sequence of Data El enent s that specify the additional information relating to acall error.

Sequence Element Name Sequence Element Type
ErrorTi me TpDat eAndTi e
Error Type TpCal | Error Type
Addi tional Errorlnfo TpCal | Addi tional Errorlnfo

8.9 TpCallAdditionalErrorinfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call error and call error specific
information. Thisis also used to specify call leg errors and information errors.

Tag Element Type

TpCallErrorType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_ERROR_UNDEFI NED NULL Undef i ned
P_CALL_ERROR | NVALI D_ADDRESS TpAddressError Cal | Errorlnval i dAddr ess
P_CALL_ERRCR | NVALI D_STATE NULL Undef i ned
P_CALL_ERROR_RESOURCE_UNAVAI LABLE NULL Undef i ned

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 140

8.10

Defines a specific call error.

TpCallErrorType

ETSI TS 129 198-4 V4.10.0 (2004-09)

Name Value Description
P_CALL_ERROR_UNDEFI NED 0 Undefined; the method failed or was refused,
but no specific reason can be given.
P_CALL_ERROR_| NVALI D_ADDRESS 1 The operation failed because an invalid address
was given

P_CALL_ERRCOR | NVALI D_STATE 2 The call was not in avalid state for the
requested operation

P_CALL_ERROR_RESOURCE_UNAVAI LABLE 3 There are not enough resources to complete the
request successfully

8.11

TpCallinfoReport

Definesthe Sequence of Data El enent s that specify the call information requested. |nformation that was not

requested isinvalid.

Sequence Element Name

Sequence Element Type

Description

Cal I I nf oType

TpCallinfoType

Thetype of call report.

CalllnitiationStartTi nme

TpDat eAndTi e

The time and date when the call, or
follow-on call, was started.

Cal | Connect edToResour ceTi ne

TpDat eAndTi ne

The date and time when the call was
connected to the resource.

This data element is only valid when
information on user interaction isreported.

Cal | Connect edToDest i nati onTi ne

TpDat eAndTi ne

The date and time when the call was
connected to the destination (i.e., when the
destination answered the call). If the
destination did not answer, thetimeis set
to an empty string.

This data element isinvalid when
information on user interaction is reported
with an intermediate report.

Cal | EndTi me TpDat eAndTi ne The date and time when the call or follow-
on call or user interaction was terminated.
Cause TpRel easeCause The cause of the termination.

A calllnfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not

both.

8.12

TpCallinfoType

Defines the type of call information requested and reported. The values may be combined by alogical 'OR’ function.

Name Value Description
P_CALL_| NFO_UNDEFI NED 00h Undefined
P_CALL_I NFO_TI MES 01h Relevant call times
P_CALL_| NFO RELEASE CAUSE 02h Call release cause

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 141 ETSITS 129 198-4 V4.10.0 (2004-09)

8.13 TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type

TpCallLoadControlM echanismType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_LOAD CONTROL_PER | NTERVAL TpCal | LoadControl I nterval Rate Cal | LoadCont r ol Perl nterval

8.14 TpCallLoadControlintervalRate

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in
milliseconds) between calls that are admitted.

Name Value Description
P_CALL_LOAD CONTROL_ADM T_NO CALLS 0 Infinite interval
(do not admit any calls)
1- Duration in milliseconds
6000!

8.15 TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name Value Description

P_CALL_LOAD_CONTROL_PER | NTERVAL 0 admit one call per interval

8.16 TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call isin following a detected event.

Name Value Description

P_CALL_MONI TOR_MODE_| NTERRUPT 0 The call event isintercepted by the call control
service and call processing isinterrupted. The
application is notified of the event and call
processing resumes following an appropriate
API call or network event (such asacall
release)

P_CALL_MONI TOR_MODE_NOTI FY 1 The call event is detected by the call control
service but not intercepted. The application is
notified of the event and call processing
continues

P_CALL_MONI TOR_MODE_DO_NOT_MONI TOR 2 Do not monitor for the event

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 142 ETSITS 129 198-4 V4.10.0 (2004-09)

8.17 TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3G TS 24.002) Thisinformation is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description
P_CALL_NETWORK_ACCESS_TYPE_UNKNOMN 0 Network type information unknown at thistime
P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS
P_CALL_NETWORK_ACCESS_TYPE_| SDN 2 ISDN
P_CALL_NETWORK_ACCESS_TYPE_DI ALUPI NTERNET 3 Dial-up Internet
P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDSL
P_CALL_NETWORK_ACCESS_TYPE_W RELESS 5 Wireless

8.18 TpCallPartyCategory

This data type defines the category of acalling party. (Q.763: Calling Party Category / Called Party Category)

Name Value Description
P_CALL_PARTY_CATEGORY_UNKNOMN 0 calling party's category unknown at thistime
P_CALL_PARTY_CATEGORY_OPERATOR _F 1 operator, language French
P_CALL_PARTY_ CATEGORY_ OPERATOR E 2 operator, language English
P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German
P_CALL_PARTY_CATEGORY_OPERATOR R 4 operator, language Russian
P_CALL_PARTY_CATEGORY_OPERATCOR_S 5 operator, language Spanish
P_CALL_PARTY_CATEGORY_ORDI NARY_SUB 6 ordinary calling subscriber
P_CALL_PARTY_CATEGORY_PRI ORI TY_SUB 7 calling subscriber with priority
P_CALL_PARTY_CATEGORY_DATA CALL 8 data call (voice band data)
P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call
P_CALL_PARTY_CATEGORY_ PAYPHONE 10 payphone

8.19 TpCallServiceCode

Definesthe Sequence of Data El enent s that specify the service code and type of service code received during
acall. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type
Cal | Servi ceCodeType TpCal | Servi ceCodeType
Servi ceCodeVal ue TpString

8.20 TpCallServiceCodeSet

Defines a Numbered Set of Data Elements of TpCallServiceCode.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4

8.21

143

TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description
P_CALL_SERVI CE_CODE_UNDEFI NED 0 The type of service code is unknown. The corresponding string is
operator specific.
P_CALL_SERVI CE_CCDE_DI G TS 1 The user entered a digit sequence during the call. The corresponding
string isan ASCI| representation of the received digits.
P_CALL_SERVI CE_CODE_FACI LI TY 2 A facility information element is received. The corresponding string
contains the facility information element as defined in ITU Q.932
P_CALL_SERVI CE_CODE_U2U 3 A user-to-user message was received. The associated string contains
the content of the user-to-user information element.
P_CALL_SERVI CE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.
The corresponding string is an ASCI| representation of the entered
digits.
P_CALL_SERVI CE_CODE_RECALL 5 The user pressed the register recall button, optionally followed by
some digits. The corresponding string is an ASCI| representation of
the entered digits.

8.22 TpCallSuperviseReport

Defines the responses from the call control service for cals that are supervised. The values may be combined by a

logical 'OR' function.

Name Value Description
P_CALL_SUPERVI SE_TI MEOQUT 01h The call supervision timer has expired
P_CALL_SUPERVI SE_CALL_ENDED 02h The call has ended, either due to timer expiry
or call party release. In case the called party
disconnects but a follow-on call can still be
made also this indication is used.
P_CALL_SUPERVI SE_TONE_APPLI ED 04h A warning tone has been applied. Thisisonly
sent in combination with
P_CALL_SUPERVISE_TIMEOUT
P_CALL_SUPERVI SE_U _FI NI SHED 08h The user interaction has finished.

8.23

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be

combined by alogical 'OR' function.

TpCallSuperviseTreatment

Name Value Description
P_CALL_SUPERVI SE_RELEASE 01h Release the call when the call supervision
timer expires
P_CALL_SUPERVI SE_RESPOND 02h Notify the application when the call
supervision timer expires
P_CALL_SUPERVI SE_APPLY_TONE 04h Send awarning tone to the originating party

when the call supervision timer expires. If call
release is requested, then the call will be
rel eased following the tone after an
administered time period

ETSI

ETSI TS 129 198-4 V4.10.0 (2004-09)

3GPP TS 29.198-04 version 4.10.0 Release 4

8.24 TpCallTeleService

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High

Layer Compatibility Information, and 3G TS 22.003)

144 ETSITS 129 198-4 V4.10.0 (2004-09)

Name Value Description
P_CALL_TELE_SERVI CE_UNKNOMN 0 Teleservice information unknown at thistime
P_CALL_TELE SERVI CE_TELEPHONY 1 Telephony
P_CALL_TELE SERVICE FAX 2 3 2 Facsimile Group 2/3
P_CALL_TELE SERVI CE_FAX 4 | 3 Facsimile Group 4, Class |
P_CALL_TELE SERVI CE_FAX 4_I1_I11I 4 Facsimile Group 4, Classes || and |11
P_CALL_TELE_SERVI CE_VI DEOTEX_SYN 5 Syntax based Videotex
P_CALL_TELE_SERVI CE_VI DEOTEX_| NT 6 International Videotex interworki_ng via gateways or interworking

units

P_CALL_TELE SERVI CE_TELEX 7 Telex service
P_CALL_TELE SERVI CE_MHS Message Handling Systems
P_CALL_TELE_ SERVI CE_Osl OSl application
P_CALL_TELE SERVI CE_FTAM 10 FTAM application
P_CALL_TELE_SERVI CE_VI DEO 11 Videotelephony
P_CALL_TELE SERVI CE_VI DEO CONF 12 Videoconferencing
P_CALL_TELE SERVI CE_AUDI OGRAPH CONF 13 Audiographic conferencing
P_CALL_TELE SERVI CE_MJLTI MEDI A 14 Multimedia services
P_CALL_TELE SERVI CE_CS_I NI _H221 15 Capability set of initial channel of H.221
P_CALL_TELE SERVI CE_CS SUB H221 16 Capability set of subsequent channel of H.221
P_CALL_TELE SERVICE_CS I NI _CALL 17 Capability set of initial channel associated with an active 3,1 kHz

audio or speech call.
P_CALL_TELE SERVI CE_DATATRAFFI C 18 Datatraffic.
P_CALL_TELE SERVI CE_EMERGENCY CALLS 19 Emergency Calls
P_CALL_TELE SERVI CE_SM5_MI_PP 20 Short message MT/PP
P_CALL_TELE_SERVI CE_SM5_MO_PP 21 Short message MO/PP
P_CALL_TELE SERVI CE_CELL_BROADCAST 22 Cell Broadcast Service
P_CALL_TELE SERVI CE_ALT_SPEECH FAX_ 3 23 Alternate speech and facsimile group 3
P_CALL_TELE SERVI CE_AUTOVATI C_FAX_3 24 Automatic Facsimile group 3
P_CALL_TELE SERVI CE_VO CE_GROUP_CALL 25 Voice Group Call Service
P_CALL_TELE SERVI CE_VO CE_BROADCAST 26 Voice Broadcast Service

8.25 TpCallTreatment

Definesthe Sequence of Data El enent s that specify the treatment for calls that will be handled only by the

network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name

Sequence Element Type

Cal | Tr eat ment Type

TpCal | Tr eat ment Type

Rel easeCause

TpRel easeCause

Addi ti onal Treat nent | nfo

TpCal | Addi ti onal Treat nent | nfo

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 145 ETSITS 129 198-4 V4.10.0 (2004-09)

8.26 TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.

Name Value Description
P_CALL_TREATMENT_DEFAULT 0 Default treatment
P_CALL_TREATMENT_RELEASE 1 Release the call
P_CALL_TREATMENT_SI AR 2 Send information to the user, and release the

call (Send Info & Release)

8.27 TpCallAdditionalTreatmentinfo

Definesthe Tagged Choi ce of Data El enent s that specify the information to be sent to acall party.

Tag Element Type

TpCall TreatmentType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_TREATMENT_DEFAULT NULL Undef i ned
P_CALL_TREATMENT_RELEASE NULL Undef i ned
P_CALL_TREATMENT_SI AR TpU I nfo I nf or mat i onToSend

8.28 TpMediaType

Defines the media type of a media stream. The values may be combined by alogical 'OR' function.

Name Value Description
P_AUDI O 1 Audio stream
P_VI DEO 2 Video stream
P_DATA 4 Data stream (e.g., T.120)

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 146 ETSITS 129 198-4 V4.10.0 (2004-09)

Annex A (normative):
OMG IDL Description of Call Control SCF

The OMG IDL representation of this interface specification is contained in text files (contained in archive
2919804V 4a0IDL.Z1P) which accompany the present document.

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 147 ETSITS 129 198-4 V4.10.0 (2004-09)

Annex B (informative):
Change history

Change history

Date TSG# |TSG Doc. |CR [Rev |Subject/Comment Old New
Mar 2001 CN_11 [NP-010134 |047 |- CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0]1.0.0
June 2001 |CN_12 |NP-010327 |-- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 [4.0.0
Sep 2001 CN_13 [NP-010467 (001 |[-- Changing references to JAIN 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |002 |-- Correction of text descriptions for methods enableCallNotification and [4.0.0 |4.1.0
createNotification
Sep 2001 CN_13 [NP-010467 |003 |-- Specify the behaviour when a call leg times out 4.0.0 (4.1.0
Sep 2001 CN_13 |NP-010467 |004 |-- Removal of Faulty state in MPCCS Call State Transition Diagram and |4.0.0 [4.1.0
method callFaultDetected in MPCCS in OSA R4
Sep 2001 CN_13 [NP-010467 |005 |-- Missing TpCallAppInfoSet description in OSA R4 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 |006 |-- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |007 |-- Introduction of MPCC Originating and Terminating Call Leg STDs for |4.0.0 |4.1.0
IpCallLeg
Sep 2001 CN_13 [NP-010467 |008 |-- Corrections to SetChargePlan() Addition of PartyToCharge parmeter [4.0.0]4.1.0
Sep 2001 CN_13 [NP-010467 |009 |-- Corrections to SetChargePlan() 4.0.0 (4.1.0
Sep 2001 CN_13 [NP-010467 (010 |-- Remove distinction between final- and intermediate-report 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |011 |-- Inclusion of TpMediaType 4.0.0 (4.1.0
Sep 2001 CN_13 |NP-010467 |012 |-- Corrections to GCC STD 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 |013 |-- Introduction of sequence diagrams for MPCC services 4.0.0 (4.1.0
Sep 2001 CN_13 [NP-010467 (014 |-- The use of the REDIRECT event needs to be illustrated 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |015 |-- Corrections to SetCallChargePlan() 4.0.0 (4.1.0
Sep 2001 CN_13 [NP-010467 (016 |-- Add one additional error indication 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |017 |-- Corrections to Call Control — GCCS Exception handling 4.0.0 (4.1.0
Sep 2001 CN_13 [NP-010467 (018 |[-- Corrections to Call Control — Errors in Exceptions 4.0.0 |4.1.0
Dec 2001 CN_14 [NP-010597 [019 |-- Replace Out Parameters with Return Types 4.1.0 |4.2.0
Dec 2001 CN_14 [NP-010597 |020 |-- Removal of time based charging property 4.1.0 [(4.2.0
Dec 2001 CN_14 [NP-010597 |021 |-- Make attachMedia() and detachMedia() asynchronous 4.1.0 [4.2.0
Dec 2001 CN_14 [NP-010597 |022 |-- Correction of treatment datatype in superviseReq on call leg 4.1.0 [(4.2.0
Dec 2001 CN_14 [NP-010597 |023 |-- Corrections to Call Control Data Types 4.1.0 |4.2.0
Dec 2001 CN_14 [NP-010597 |024 |-- Correction to Call Control (CC) 4.1.0 [(4.2.0
Dec 2001 CN_14 [NP-010597 |025 |-- Amend the Generic Call Control introductory part 4.1.0 |4.2.0
Dec 2001 CN_14 [NP-010597 |026 |-- Correction in TpCallEventType 4.1.0 [(4.2.0
Dec 2001 CN_14 [NP-010597 |027 |-- Addition of missing description of RouteErr() 4.1.0 |4.2.0
Dec 2001 CN_14 [NP-010597 |028 |-- Misleading description of createAndRouteCallLegErr() 4.1.0 [(4.2.0
Dec 2001 CN_14 |NP-010597 |029 |-- Correction to values of TpCallNotificationType, 41.0 |4.20
TpCallLoadControlMechanismType
Dec 2001 CN_14 [NP-010695 |030 |-- Correction of method getLastRedirectionAddress 4.1.0 [(4.2.0
Mar 2002 CN_15 [NP-020106 (031 |-- Add P_INVALID_INTERFACE_TYPE exception to 420 |43.0
IpService.setCallback() and IpService.setCallbackWithSessionID()
Mar 2002 CN_15 [NP-020106 (032 |[-- Correction of Event Subscription/Notification Data Type 4.2.0 |4.3.0
Mar 2002 CN_15 [NP-020106 |033 |-- Correction of parameter name in IpCallLeg.routeReq() and in 420 (4.3.0
IpCallLeg.setAdviceOfCharge()
Mar 2002 CN_15 [NP-020106 [034 |-- Clarification of ambiguous Event handling rules 4.2.0 14.3.0
Jun 2002 CN_16 [NP-020180 |035 |-- Correction to TpCallChargePlan 4.3.0 (4.4.0
Jun 2002 CN_16 |[NP-020180 [036 |-- Correction to CAMEL Service Property values 4.3.0 1440
Sep 2002 CN_17 [NP-020424 |057 |-- Correction on use of NULL in Call Control API 4.40 |[4.5.0
Mar 2003 CN_19 |[NP-030020 |058 |-- Correction of status of methods to interfaces in clause 6.3 45.0 |4.6.0
Mar 2003 CN_19 [NP-030020 |059 |-- Correction to TpReleaseCauseSet in Multi Party Call Control 450 [4.6.0
Mar 2003 CN_19 [NP-030020 (060 |-- Correction to Sequence Diagrams to remove incorrect Framework 450 |46.0
references
Mar 2003 CN_19 [NP-030020 |061 |-- Correction to User Interaction Prepaid Sequence Diagrams 450 [4.6.0
Mar 2003 CN_19 |[NP-030020 |062 |-- Correction to remove unused TpCallChargeOrder 45.0 |4.6.0
Mar 2003 CN_19 [NP-030020 |063 |-- Correction to TpCallEventCriteriaResult in Generic Call Control 450 [4.6.0
Mar 2003 CN_19 |[NP-030020 |064 |-- Correction of status of methods to interfaces in clause 7.3 45.0 |4.6.0
Jun 2003 CN_20 [NP-030238 |065 |-- Correction of the description for callEventNotify & reportNotification 4.6.0 (4.7.0
Dec 2003 CN_22 [NP-030544 |066 |-- Correction of description in superviseRes and superviseCallRes 4.7.0 [4.8.0
Jun 2004 CN_24 [NP-040255 |067 |-- Correction of continueProcessing method for Generic Call Control 48.0 (4.9.0
Service (GCCS)
Jun 2004 CN_24 |[NP-040256 |068 |-- Correct the P_TRIGGERING_ADDRESSES service property 4.8.0 14.9.0
Jun 2004 CN_24 [NP-040257 |069 |-- Correction of callbacks sequence and timing conditions in GCCS and [4.8.0 |4.9.0
MPCCS
Sep 2004 CN_25 [NP-040352 |070 |-- Correct State Transition Diagram for IpCall 4.9.0 [4.10.0

ETSI

3GPP TS 29.198-04 version 4.10.0 Release 4 148 ETSI TS 129 198-4 V4.10.0 (2004-09)
History
Document history

V4.0.0 June 2001 Publication

V4.1.0 September 2001 | Publication

V4.2.0 December 2001 | Publication

V4.3.0 March 2002 Publication

V4.4.0 June 2002 Publication

V4.5.0 September 2002 | Publication

V4.6.0 March 2003 Publication

V4.7.0 June 2003 Publication

V4.8.0 December 2003 | Publication

V4.9.0 June 2004 Publication

V4.10.0 September 2004 | Publication

ETSI

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Call Control SCF
	4.1 Call Model Description
	4.2 General requirements on support of methods

	5 The Service Interface Specifications
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Generic Call Control Service
	6.1 Sequence Diagrams
	6.1.1 Additional Callbacks
	6.1.2 Alarm Call
	6.1.3 Application Initiated Call
	6.1.4 Call Barring 1
	6.1.5 Number Translation 1
	6.1.6 Number Translation 1 (with callbacks)
	6.1.7 Number Translation 2
	6.1.8 Number Translation 3
	6.1.9 Number Translation 4
	6.1.10 Number Translation 5
	6.1.11 Prepaid
	6.1.12 Pre-Paid with Advice of Charge (AoC)

	6.2 Class Diagrams
	6.3 Generic Call Control Service Interface Classes
	6.3.1 Interface Class IpCallControlManager
	6.3.2 Interface Class IpAppCallControlManager
	6.3.3 Interface Class IpCall
	6.3.4 Interface Class IpAppCall

	6.4 Generic Call Control Service State Transition Diagrams
	6.4.1 State Transition Diagrams for IpCallControlManager
	6.4.1.1 Active State
	6.4.1.2 Notification terminated State

	6.4.2 State Transition Diagrams for IpCall
	6.4.2.1 Network Released State
	6.4.2.2 Finished State
	6.4.2.3 Application Released State
	6.4.2.4 Active State
	6.4.2.5 Party in Call State
	6.4.2.6 Parties in Call State

	6.5 Generic Call Control Service Properties
	6.5.1 List of Service Properties
	6.5.2 Service Property values for the CAMEL Service Environment.

	6.6 Generic Call Control Data Definitions
	6.6.1 Generic Call Control Event Notification Data Definitions
	6.6.1.1 TpCallEventName
	6.6.1.2 TpCallNotificationType
	6.6.1.3 TpCallEventCriteria
	6.6.1.4 TpCallEventInfo

	6.6.2 Generic Call Control Data Definitions
	6.6.2.1 IpCall
	6.6.2.2 IpCallRef
	6.6.2.3 IpAppCall
	6.6.2.4 IpAppCallRef
	6.6.2.5 TpCallIdentifier
	6.6.2.6 IpAppCallControlManager
	6.6.2.7 IpAppCallControlManagerRef
	6.6.2.8 IpCallControlManager
	6.6.2.9 IpCallControlManagerRef
	6.6.2.10 TpCallAppInfo
	6.6.2.11 TpCallAppInfoType
	6.6.2.12 TpCallAppInfoSet
	6.6.2.13 TpCallEndedReport
	6.6.2.14 TpCallFault
	6.6.2.15 TpCallInfoReport
	6.6.2.16 TpCallReleaseCause
	6.6.2.17 TpCallReport
	6.6.2.18 TpCallAdditionalReportInfo
	6.6.2.19 TpCallReportRequest
	6.6.2.20 TpCallAdditionalReportCriteria
	6.6.2.21 TpCallReportRequestSet
	6.6.2.22 TpCallReportType
	6.6.2.23 TpCallTreatment
	6.6.2.24 TpCallEventCriteriaResultSet
	6.6.2.25 TpCallEventCriteriaResult

	7 MultiParty Call Control Service
	7.1 Sequence Diagrams
	7.1.1 Application initiated call setup
	7.1.2 Call Barring 2
	7.1.3 Call forwarding on Busy Service
	7.1.4 Call Information Collect Service
	7.1.5 Complex Card Service
	7.1.6 Hotline Service
	7.1.7 Use of the Redirected event

	7.2 Class Diagrams
	7.3 MultiParty Call Control Service Interface Classes
	7.3.1 Interface Class IpMultiPartyCallControlManager
	7.3.2 Interface Class IpAppMultiPartyCallControlManager
	7.3.3 Interface Class IpMultiPartyCall
	7.3.4 Interface Class IpAppMultiPartyCall
	7.3.5 Interface Class IpCallLeg
	7.3.6 Interface Class IpAppCallLeg

	7.4 MultiParty Call Control Service State Transition Diagrams
	7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.4.1.1 Active State
	7.4.1.2 Interrupted State
	7.4.1.3 Overview of allowed methods

	7.4.2 State Transition Diagrams for IpMultiPartyCall
	7.4.2.1 IDLE State
	7.4.2.2 ACTIVE State
	7.4.2.3 RELEASED State
	7.4.2.4 Overview of allowed methods

	7.4.3 State Transition Diagrams for IpCallLeg
	7.4.3.1 Originating Call Leg
	7.4.3.1.1 Initiating State
	7.4.3.1.2 Analysing State
	7.4.3.1.3 Active State
	7.4.3.1.4 Releasing State
	7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.4.3.2 Terminating Call Leg
	7.4.3.2.1 Idle (terminating) State
	7.4.3.2.2 Active (terminating) State
	7.4.3.2.3 Releasing (terminating) State
	7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	7.5 Multi-Party Call Control Service Properties
	7.5.1 List of Service Properties
	7.5.2 Service Property values for the CAMEL Service Environment.

	7.6 Multi-Party Call Control Data Definitions
	7.6.1 Event Notification Data Definitions
	7.6.2 Multi-Party Call Control Data Definitions
	7.6.2.1 IpCallLeg
	7.6.2.2 IpCallLegRef
	7.6.2.3 IpAppCallLeg
	7.6.2.4 IpAppCallLegRef
	7.6.2.5 IpMultiPartyCall
	7.6.2.6 IpMultiPartyCallRef
	7.6.2.7 IpAppMultiPartyCall
	7.6.2.8 IpAppMultiPartyCallRef
	7.6.2.9 IpMultiPartyCallControlManager
	7.6.2.10 IpMultiPartyCallControlManagerRef
	7.6.2.11 IpAppMultiPartyCallControlManager
	7.6.2.12 IpAppMultiPartyCallControlManagerRef
	7.6.2.13 TpAppCallLegRefSet
	7.6.2.14 TpMultiPartyCallIdentifier
	7.6.2.15 TpAppMultiPartyCallBack
	7.6.2.16 TpAppMultiPartyCallBackRefType
	7.6.2.17 TpAppCallLegCallBack
	7.6.2.18 TpMultiPartyCallIdentifierSet
	7.6.2.19 TpCallAppInfo
	7.6.2.20 TpCallAppInfoType
	7.6.2.21 TpCallAppInfoSet
	7.6.2.22 TpCallEventRequest
	7.6.2.23 TpCallEventRequestSet
	7.6.2.24 TpCallEventType
	7.6.2.25 TpAdditionalCallEventCriteria
	7.6.2.26 TpCallEventInfo
	7.6.2.27 TpCallAdditionalEventInfo
	7.6.2.28 TpCallNotificationRequest
	7.6.2.29 TpCallNotificationScope
	7.6.2.30 TpCallNotificationInfo
	7.6.2.31 TpCallNotificationReportScope
	7.6.2.32 TpNotificationRequested
	7.6.2.33 TpNotificationRequestedSet
	7.6.2.34 TpReleaseCause
	7.6.2.35 TpReleaseCauseSet
	7.6.2.36 TpCallLegIdentifier
	7.6.2.37 TpCallLegIdentifierSet
	7.6.2.38 TpCallLegAttachMechanism
	7.6.2.39 TpCallLegConnectionProperties
	7.6.2.40 TpCallLegInfoReport
	7.6.2.41 TpCallLegInfoType
	7.6.2.42 TpCallLegSuperviseTreatment

	8 Common Call Control Data Types
	8.1 TpCallAlertingMechanism
	8.2 TpCallBearerService
	8.3 TpCallChargePlan
	8.4 TpCallPartyToChargeAdditionalInfo
	8.5 TpCallPartyToChargeType
	8.6 TpCallChargeOrderCategory
	8.7 TpCallEndedReport
	8.8 TpCallError
	8.9 TpCallAdditionalErrorInfo
	8.10 TpCallErrorType
	8.11 TpCallInfoReport
	8.12 TpCallInfoType
	8.13 TpCallLoadControlMechanism
	8.14 TpCallLoadControlIntervalRate
	8.15 TpCallLoadControlMechanismType
	8.16 TpCallMonitorMode
	8.17 TpCallNetworkAccessType
	8.18 TpCallPartyCategory
	8.19 TpCallServiceCode
	8.20 TpCallServiceCodeSet
	8.21 TpCallServiceCodeType
	8.22 TpCallSuperviseReport
	8.23 TpCallSuperviseTreatment
	8.24 TpCallTeleService
	8.25 TpCallTreatment
	8.26 TpCallTreatmentType
	8.27 TpCallAdditionalTreatmentInfo
	8.28 TpMediaType

	Annex A (normative): OMG IDL Description of Call Control SCF
	Annex B (informative): Change history
	History

