
ETSI TS 129 198-4 V4.0.0 (2001-06)
Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA);

Application Programming Interface (API);
Part 4: Call control

(3GPP TS 29.198-4 version 4.0.0 Release 4)

�

1

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)3GPP TS 29.198-4 version 4.0.0 Release 4

Reference
RTS/TSGN-0529198-4Uv4

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.

All rights reserved.

http://www.etsi.org/
http://www.etsi.org/tb/status
editor@etsi.fr

2

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)3GPP TS 29.198-4 version 4.0.0 Release 4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key .

http://www.etsi.org/ipr
http://www.etsi.org/key

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)33GPP TS 29.198-4 version 4.0.0 Release 4

Contents

Foreword .. 5

Introduction.. 5

1 Scope.. 6

2 References.. 6

3 Definitions and abbreviations .. 7
3.1 Definitions ... 7
3.2 Abbreviations .. 7

4 Call Control SCF ... 7

5 The Service Interface Specifications ... 7
5.1 Interface Specification Format .. 7
5.1.1 Interface Class ... 7
5.1.2 Method descriptions... 8
5.1.3 Parameter descriptions... 8
5.1.4 State Model.. 8
5.2 Base Interface .. 8
5.2.1 Interface Class IpInterface ... 8
5.3 Service Interfaces .. 8
5.3.1 Overview.. 8
5.4 Generic Service Interface .. 8
5.4.1 Interface Class IpService ... 8

6 Generic Call Control Service... 10
6.1 Sequence Diagrams ... 10
6.1.1 Additional Callbacks.. 10
6.1.2 Alarm Call ... 11
6.1.3 Application Initiated Call... 13
6.1.4 Call Barring 1 .. 15
6.1.5 Number Translation 1 .. 17
6.1.6 Number Translation 1 (with callbacks).. 19
6.1.7 Number Translation 2 .. 21
6.1.8 Number Translation 3 .. 23
6.1.9 Number Translation 4 .. 25
6.1.10 Number Translation5 ... 27
6.1.11 Prepaid... 28
6.1.12 Pre-Paid with Advice of Charge (AoC) ... 30
6.2 Class Diagrams.. 33
6.3 Generic Call Control Service Interface Classes ... 35
6.3.1 Interface Class IpCallControlManager .. 36
6.3.2 Interface Class IpAppCallControlManager ... 40
6.3.3 Interface Class IpCall... 42
6.3.4 Interface Class IpAppCall.. 47
6.4 Generic Call Control Service State Transition Diagrams .. 52
6.4.1 State Transition Diagrams for IpCallControlManager .. 52
6.4.1.1 Active State.. 52
6.4.1.2 Notification terminated State ... 53
6.4.2 State Transition Diagrams for IpCall... 53
6.4.2.1 Network Released State ... 53
6.4.2.2 Finished State... 54
6.4.2.3 Application Released State .. 54
6.4.2.4 No Parties State.. 54
6.4.2.5 Active State.. 54
6.4.2.6 1 Party in Call State ... 54
6.4.2.7 2 Parties in Call State... 54
6.4.2.8 Routing to Destination(s) State.. 55

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)43GPP TS 29.198-4 version 4.0.0 Release 4

6.5 Generic Call Control Service Properties ... 56
6.5.1 List of Service Properties... 56
6.5.2 Service Property values for the CAMEL Service Environment... 56
6.6 Generic Call Control Data Definitions .. 58
6.6.1 Generic Call Control Event Notification Data Definitions .. 58
6.6.2 Generic Call Control Data Definitions... 60

7 MultiParty Call Control Service .. 68
7.1 Sequence Diagrams ... 68
7.1.1 Application initiated call setup .. 68
7.1.2 Call Barring 2 .. 69
7.1.3 Complex Card Service ... 71
7.2 Class Diagrams.. 74
7.3 MultiParty Call Control Service Interface Classes.. 76
7.3.1 Interface Class IpMultiPartyCallControlManager ... 76
7.3.2 Interface Class IpAppMultiPartyCallControlManager .. 80
7.3.3 Interface Class IpMultiPartyCall ... 82
7.3.4 Interface Class IpAppMultiPartyCall... 87
7.3.5 Interface Class IpCallLeg .. 90
7.3.6 Interface Class IpAppCallLeg.. 97
7.4 MultiParty Call Control Service State Transition Diagrams ... 101
7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager... 101
7.4.1.1 Active State.. 101
7.4.1.2 Interrupted State... 101
7.4.1.3 Overview of allowed methods ... 101
7.4.2 State Transition Diagrams for IpMultiPartyCall ... 102
7.4.2.1 IDLE State ... 102
7.4.2.2 ACTIVE State.. 102
7.4.2.3 FAULTY State... 102
7.4.2.4 RELEASED State .. 103
7.4.2.5 Overview of allowed methods ... 103
7.4.3 State Transition Diagrams for IpCallLeg .. 103
7.4.3.1 Idle State .. 104
7.4.3.2 Routing State ... 104
7.4.3.3 Connected State ... 104
7.4.3.4 Failed or Disconnected State ... 104
7.4.3.5 Incoming State ... 105
7.4.3.6 Progress State... 105
7.4.3.7 Alerting State ... 105
7.4.3.8 Redirected State ... 105
7.4.3.9 Attached State .. 105
7.4.3.10 Detached State.. 105
7.4.3.11 Overview of allowed methods.. 105
7.5 Multi-Party Call Control Service Properties.. 107
7.5.1 List of Service Properties... 107
7.5.2 Service Property values for the CAMEL Service Environment... 107
7.6 Multi-Party Call Control Data Definitions .. 109
7.6.1 Event Notification Data Definitions .. 109
7.6.2 Multi-Party Call Control Data Definitions... 109

8 Common Call Control Data Types .. 119

Annex A (normative): OMG IDL Description of Call Control SCF... 130

Annex B (informative): Differences between this draft and 3GPP TS 29.198 R99........................ 131
B.1 Interface IpCallControlManager.. 131
B.2 Interface IpAppCallControlManager... 131
B.3 Interface IpCall.. 131
B.4 Interface IpAppCall ... 131

Annex C (informative): Change history... 132

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)53GPP TS 29.198-4 version 4.0.0 Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
The present document is part 4 of a multi-part TS covering the 3rd Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: Overview
Part 2: Common Data Definitions
Part 3: Framework
Part 4: Call Control SCF
Part 5: User Interaction SCF
Part 6: Mobility SCF
Part 7: Terminal Capabilities SCF
Part 8: Data Session Control SCF
Part 9: Generic Messaging SCF (not part of 3GPP Release 4)
Part 10: Connectivity Manager SCF (not part of 3GPP Release 4)
Part 11: Account Management SCF
Part 12: Charging SCF

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-1 Part 1: Overview 29.998-1 Part 1: Overview
29.198-2 Part 2: Common Data Definitions 29.998-2 Not Applicable
29.198-3 Part 3: Framework 29.998-3 Not Applicable

29.998-4-1 Subpart 1: Generic Call Control – CAP mapping29.198-4 Part 4: Call Control SCF
29.998-4-2
29.998-5-1 Subpart 1: User Interaction – CAP mapping
29.998-5-2
29.998-5-3

29.198-5 Part 5: User Interaction SCF

29.998-5-4 Subpart 4: User Interaction – SMS mapping
29.198-6 Part 6: Mobility SCF 29.998-6 User Status and User Location – MAP mapping
29.198-7 Part 7: Terminal Capabilities SCF 29.998-7 Not Applicable
29.198-8 Part 8: Data Session Control SCF 29.998-8 Data Session Control – CAP mapping
29.198-9 Part 9: Generic Messaging SCF 29.998-9 Not Applicable
29.198-10 Part 10: Connectivity Manager SCF 29.998-10 Not Applicable
29.198-11 Part 11: Account Management SCF 29.998-11 Not Applicable
29.198-12 Part 12: Charging SCF 29.998-12 Not Applicable

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)63GPP TS 29.198-4 version 4.0.0 Release 4

1 Scope
The present document is Part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are
contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects
of the Call Control SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

[4] 3GPP TS 22.002: "Circuit Bearer Services Supported by a PLMN".

[5] ISO 4217 (1995): "Codes for the representation of currencies and funds ".

 [6] 3GPP TS 24.002: "GSM-UMTS Public Land Mobile Network (PLMN) Access Reference
Configuration".

[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)".

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)73GPP TS 29.198-4 version 4.0.0 Release 4

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Call Control SCF
Two flavours of Call Control (CC) APIs have been included in Rel.4. These are the Generic Call Control (GCC) and the
Multi-Party Call Control (MPCC). The GCC is the same API as was already present in the Release 99 specification
(TS 29.198 v3.3.0) and is in principle able to satisfy the requirements on CC APIs for Release 4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay CC Working group with collaboration from
JAIN has been focussed on the MPCC API. A number of improvements on CC functionality have been made and are
reflected in this API. For this it was necessary to break the inheritance that previously existed between GCC and
MPCC.

The joint CC group has furthermore decided that the MPCC is to be considered as the future base CC family and the
technical work will not be continued on GCC. Errors or technical flaws will of course be corrected.

The following clauses describe each aspect of the CC Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

• The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show transition between states in the SCF. The states and transitions are
well-defined; either methods specified in the Interface specification or events occurring in the underlying networks
cause state transitions.

• The Data definitions clause show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification (29.198-2).

5 The Service Interface Specifications

5.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)83GPP TS 29.198-4 version 4.0.0 Release 4

the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

5.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)93GPP TS 29.198-4 version 4.0.0 Release 4

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionID's.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpCommonExceptions

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not uses SessionID's.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)103GPP TS 29.198-4 version 4.0.0 Release 4

6 Generic Call Control Service

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is
used instead.

first insta nce :
(Logical View...

second instance :
(L ogical V iew::IpA ...

 : IpAppCallControlManager : IpAp pCal lCon trolMan ager : IpCallControlManager

: new()

2: enableCallNotificat ion()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to
handle callbacks for this first instance of the logic.

2: The enableCallNotfication is associated with an applicationID. The call control manager uses the applicationID to
decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotfication request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)113GPP TS 29.198-4 version 4.0.0 Release 4

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin
scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

6.1.2 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as
a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)123GPP TS 29.198-4 version 4.0.0 Release 4

 :
IpCallControlManager

 : IpAppCall : IpCall : IpUICall :
IpAppUIManager

 :
IpAppUICall

 : (Logical
View::IpA...

1: new()

2: createCall()

3: new()

4: routeReq()

5: routeRes()

9: sendInf oReq()

6: 'f orward ev ent'

7: createUICall()

8: new()

10: sendInf oRes()

11: 'f orward ev ent'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)133GPP TS 29.198-4 version 4.0.0 Release 4

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UICall object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)143GPP TS 29.198-4 version 4.0.0 Release 4

 :
IpCallControlManager

 : IpAppCall : IpCall : (Logical
View::IpA...

5: routeRes()

1: new()

2: createCall()
3: new()

4: routeReq()

7: routeReq()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)153GPP TS 29.198-4 version 4.0.0 Release 4

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is accepted and the call is routed to the original called party.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)163GPP TS 29.198-4 version 4.0.0 Release 4

 : (Logical
iew::Ip...

 : IpAppCallControlManager : IpAppCall : IpCall : IpUICall :
IpUIManager

 :
IpCallControlManager

 :
IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall() 7: new()

11: release()

15: callEnded()16: "forward event"

17: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a
message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for
creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)173GPP TS 29.198-4 version 4.0.0 Release 4

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)183GPP TS 29.198-4 version 4.0.0 Release 4

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpA...

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNot ify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)193GPP TS 29.198-4 version 4.0.0 Release 4

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

For illustation, in this sequence the callback references are set explictly. This is optional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)203GPP TS 29.198-4 version 4.0.0 Release 4

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpA...

10: routeRes()

4: callEventNot ify()

8: 'translate number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCallback()

7: setCallbackWithSessionID()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)213GPP TS 29.198-4 version 4.0.0 Release 4

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotification's that do not have
a explicit IpAppCallControlManager reference specified in the enableCallNotification.

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically released.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)223GPP TS 29.198-4 version 4.0.0 Release 4

 : (Logical
View::IpA...

 : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

6: 'translate number'

9: 'forward event'
8: routeRes()

: routeReq()

10: release()

1: new()

3: callEventNotify()

4: 'forward event '

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)233GPP TS 29.198-4 version 4.0.0 Release 4

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)243GPP TS 29.198-4 version 4.0.0 Release 4

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpA...

8: routeRes()

6: 'translate number'

7: routeReq()

9: 'forward event'

10: 'translate number'

11: routeReq()

12: rou teRes()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

14: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)253GPP TS 29.198-4 version 4.0.0 Release 4

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. Before the call is routed to the translated number, the application requests for all call related
information to be delivered back to the application on completion of the call.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)263GPP TS 29.198-4 version 4.0.0 Release 4

 : IpCallControlManager: IpAppCall : IpCall : IpAppCallControlManager: (Log ical
iew::IpA...

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()
14: 'forward event'

10 : 'forward event'

1: new()

3: callEventNotify()

: 'fo rward event'

5: new()

2: enableCallNotification()

5 : deas signCall()

11: callEnded()
12: "forward event"

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)273GPP TS 29.198-4 version 4.0.0 Release 4

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: After the last information is received, the application deassigns the call. This will free the resources related to this
call in the gateway.

6.1.10 Number Translation5

The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as a result of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)283GPP TS 29.198-4 version 4.0.0 Release 4

 : IpAppCall :
IpAppCallControlManager

: IpCallIpAppLogic :
IpCallControlManager

1: new()

2: enableCallNotification()

3: callEventNotify()

4: 'forward event '

5: new()

6: 'check status'

7: appropriate release cause

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is
busy.

6.1.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will received an announcement before his final timeslice.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)293GPP TS 29.198-4 version 4.0.0 Release 4

Prepaid :
(Logi cal View. ..

 : IpAppCallControlManager :
IpCallControlManager

: IpCal l : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: cal lEventNotify()4: "forward event"

5: new()

7: routeReq()

8: superviseCallRes()
9: "forward event"

10: superviseCallReq()

11: superviseCallRes()
12: "forward event"

13: superviseCallReq()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: sendInfoRes()
19: "forward event"

21: superviseCallReq()

22: superviseCallRes()23: "forward event:

24: release()

16: createUICall()

20: release()

1: This message is used by the application to create an object implementing the IpAppGenericCallControlManager
interface.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)303GPP TS 29.198-4 version 4.0.0 Release 4

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played
only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.

16: A new UICall object is created and associated with the controlling leg.

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit.
The B-subscriber will not hear the announcement.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)313GPP TS 29.198-4 version 4.0.0 Release 4

Prepaid :
(Logical Vie...

 : IpAppCallControlManager :
pCal lCon trolMana ger

 : IpCall : IpUICall : IpUIManager : IpAppUICal l : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCal lReq()

24: superviseCallReq()

27: release()

21: sendInfoReq()

18: new()

22: sendInfoRes()
23: "forward event"

5: new()

9: superviseCallRes()
10: "forward event"

12: superviseCallRes()
13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()
17: "forward event"

25: superviseCallRes()
26: "forward event:

6: setAdviceOfCharge()

19: createUICall() 20: new()

28: userInteractionFaultDetected()

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)323GPP TS 29.198-4 version 4.0.0 Release 4

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g.,
18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tarif switch time. Again,
at the tariff switch time,the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is
played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UICall object is terminated in the gateway and no further communication is possible between the UICall and the
application.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)333GPP TS 29.198-4 version 4.0.0 Release 4

6.2 Class Diagrams
The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g., the IpCallControlManager interface uses the IpAppGenericCallControlManager , by
means of calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)343GPP TS 29.198-4 version 4.0.0 Release 4

IpAppCall

routeRes()
routeErr()
getCallInfoRes()
getCallInfoErr()
superviseCallRes()
superviseCallErr()
callFaultDetected()
getMoreDialledDigitsRes()
getMoreDialledDigitsErr()
callEnded()

(from gccs)

<<Interface>>

IpCall
(from gccs)

<<Interface>>
IpCallControlManager

(from gccs)

<Interface>>

<<uses>>

IpInterface
<Interface>>

1 0..n

IpAppCallControlManager

callAborted()
callEventNotify()
callNotificationInterrupted()
callNotificationContinued()
callOverloadEncountered()
callOverloadCeased()

(from gccs)

<Interface>>

<<uses>>

1 0..n

Figure: Application Interfaces

This class diagram shows the interfaces of the generic call control service package.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)353GPP TS 29.198-4 version 4.0.0 Release 4

IpCallControlManager

createCall()
enableCallNotification()
disableCallNotification()
setCallLoadControl()
changeCallNotification()
getCriteria()

(from gccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

<<Interface>>

IpCall

routeReq()
release()
deassignCall()
getCallInfoReq()
setCallChargePlan()
setAdviceOfCharge()
getMoreDialledDigitsReq()
superviseCallReq()

(from gccs)

<<Interface>>

1 0..n

Figure: Service Interfaces

6.3 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

The adopted call model has the following objects. Note that not all of these concepts are used in the generic call.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can
have different views on the same physical call, e.g., one application for the originating side and another application for
the terminating side. The applications will not be aware of each other, all 'communication' between the applications will
be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed.
Before that the leg object is IDLE and not yet associated with the address.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)363GPP TS 29.198-4 version 4.0.0 Release 4

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

For the generic call control service, only a subset of the model is used; the API for generic call control does not give
explicit access to the legs and the media channels. This is provided by the Multi-Party Call Control Service.
Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given time. Active is
defined here as 'being routed' or connected.

The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network.
Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this
way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback
mechanism.

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

disableCallNotification (assignmentID : in TpAssignmentID) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) :

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)373GPP TS 29.198-4 version 4.0.0 Release 4

TpResult

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) :
TpResult

getCriteria (eventCriteria : out TpCallEventCriteriaResultSetRef) : TpResult

Method
createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a callAborted()

to the application (the application should invoke setCallback() if it wishes to ensure this).

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

callReference : out TpCallIdentifierRef

Specifies the interface reference and sessionID of the call created.

Raises

TpGCCSException,TpGeneralException

Method
enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA.The criteria are said to overlap if both originating and terminating ranges overlap
and the same number plan is used and the same CallNotificationType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallBack().

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)383GPP TS 29.198-4 version 4.0.0 Release 4

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Raises

TpGCCSException,TpGeneralException

Method
disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment ID both of
them will be disabled.

Raises

TpGCCSException,TpGeneralException

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)393GPP TS 29.198-4 version 4.0.0 Release 4

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

assignmentID : out TpAssignmentIDRef

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the
callOverlloadEncountered and callOverloadCeased methods with the request.

Raises

TpGeneralException,TpGCCSException

Method
changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpGeneralException,TpGCCSException

Method
getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.

Parameters

eventCriteria : out TpCallEventCriteriaResultSetRef

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)403GPP TS 29.198-4 version 4.0.0 Release 4

Raises

TpGeneralException,TpGCCSException

6.3.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : TpResult

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID, appCall : out IpAppCallRefRef) : TpResult

callNotificationInterrupted () : TpResult

callNotificationContinued () : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Raises

TpGCCSException,TpGeneralException

Method
callEventNotify()

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)413GPP TS 29.198-4 version 4.0.0 Release 4

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration
of which forms a part of the service level agreement), then the call in the network shall be released and callEnded()
shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPT, the application writer
should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through an
explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is in NOTIFY mode.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

appCall : out IpAppCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call. This
parameter will be null if the notification is in NOTIFY mode.

Raises

TpGCCSException,TpGeneralException

Method
callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Raises

TpGCCSException,TpGeneralException

Method
callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)423GPP TS 29.198-4 version 4.0.0 Release 4

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Raises

TpGeneralException,TpGCCSException

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

Raises

TpGeneralException,TpGCCSException

6.3.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)433GPP TS 29.198-4 version 4.0.0 Release 4

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLegSessionID : out
TpSessionIDRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
TpResult

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : TpResult

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)443GPP TS 29.198-4 version 4.0.0 Release 4

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

callLegSessionID : out TpSessionIDRef

Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID
will be returned in the routeRes or Err. This allows the application to correlate the request and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

Raises

TpGCCSException,TpGeneralException

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpGCCSException,TpGeneralException

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)453GPP TS 29.198-4 version 4.0.0 Release 4

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpGCCSException,TpGeneralException

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of
reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is
required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the
originating party is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpGCCSException,TpGeneralException

Method
setCallChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address.
Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)463GPP TS 29.198-4 version 4.0.0 Release 4

Raises

TpGCCSException,TpGeneralException

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpGeneralException,TpGCCSException

Method
getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpGeneralException, TpGCCSException

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)473GPP TS 29.198-4 version 4.0.0 Release 4

Method
superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpGCCSException,TpGeneralException

6.3.4 Interface Class IpAppCall

Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : TpResult

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in
TpSessionID) : TpResult

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : TpResult

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)483GPP TS 29.198-4 version 4.0.0 Release 4

Method
routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can
be used to correlate the response with the request.

Raises

TpGCCSException,TpGeneralException

Method
routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)493GPP TS 29.198-4 version 4.0.0 Release 4

Raises

TpGCCSException,TpGeneralException

Method
getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Raises

TpGCCSException,TpGeneralException

Method
getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGCCSException,TpGeneralException

Method
superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)503GPP TS 29.198-4 version 4.0.0 Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Raises

TpGCCSException,TpGeneralException

Method
superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGCCSException,TpGeneralException

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)513GPP TS 29.198-4 version 4.0.0 Release 4

Raises

TpGCCSException,TpGeneralException

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Raises

TpGeneralException,TpGCCSException

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGeneralException,TpGCCSException

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)523GPP TS 29.198-4 version 4.0.0 Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

Raises

TpGeneralException,TpGCCSException

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

Act ive

Creat ion of
CallControlManager
by Service Factory

Notification terminated

"new"

enableCallNoti ficat ion

disableCallNotification

"a call object has terminated abnormally" ÎpAppCallControlManager.callAborted

"arrival of call related event"[notification active for this call event] /
create a Call object ÎpAppCallControlManager.callEventNotify

disableCallNotification
"a call object has terminated abnormally"

ÎpAppCallControlManager.callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"
 ÎpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"
 IpAppCallControlManager.callNotificationInterrupted

createCall / create a Call object

Figure : Application view on the Call Control Manager

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the applicatoin to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)533GPP TS 29.198-4 version 4.0.0 Release 4

6.4.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this
state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object. This diagram shows only the part of the state
transition diagram valid for 3GPP (UMTS) release 99.

Network Released

Finished

Applicat ion
Released

release
deassignCall

timeout ĉallFaultDetected("timeout on release")

In state No Parties and Finished, a timer
should prevent the object from occupuing
resources.
Upon expiry of this timer, callEnded() should
be invoked with a release cause of 102
(Recovery on timer expiry). In case when no
IpAppCall is available on which to invoke
callEnded(), callAborted() shall be invoked
on the IpAppCallControlManager as this is
an abnormal termination

Active

2 Parties in
Call

1 Party in
Call

2 Parties in
Call

1 Party in
Call

etCal lChargePlan
superviseCallReq

getCallInfoReq

setAdviceOfCharge

IpAppCallControlManager.callEventNotify

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode =
nterrupt] ̂ routeRes, getCall InfoRes,

superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt] r̂outeRes

"routing aborted or invalid address" r̂outeErr

deassignCall

release

"call ends : calling party disconnects" ĉallEnded
"call ends: calling party abandoned" ^callEnded

"call ends : called party disconnects"[monitor for this event] ĉallEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected
"call ends: calling party disconnects"[no monitor for this event] ĉallEnded

"requested information ready"
ĝetCallInfoRes, superviseCallRes

[no reports requested with
getCallInfoReq AND
superviseCallReq]

"fault in retrieval of information" ĝetCallInfoErr, superviseCallErr

deassignCall

[no reports requested with getCallInfoReq AND
superviseCallReq]

"requested information ready" ^getCallInfoRes,
superviseCallRes

release

"fault in retrieval of information" ĝetCall InfoErr, superviseCallErr

"cal l supervision event" ŝuperviseCallRes

"network event received for which was monitored[routeRes]

Figure : 3GPP

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used.In case the application has not requested additional call related information immediately a transition is made to
state No Parties.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)543GPP TS 29.198-4 version 4.0.0 Release 4

6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

6.4.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCallChargePlan(). The application can request for charging related information by calling
getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is
also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().

6.4.2.5 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge().

6.4.2.6 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the calling party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not
be established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.7 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)553GPP TS 29.198-4 version 4.0.0 Release 4

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the
callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

6.4.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)563GPP TS 29.198-4 version 4.0.0 Release 4

6.5 Generic Call Control Service Properties

6.5.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by

which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g.
{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a reference to a Call
object can be used in the IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a call .

Value = FALSE: User Interaction can be performed in case there is only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type
TpMediaType : P_AUDIO, P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description
P_TRIGGERING_ADDRESSES ADDRESS_RANGE_SET Indicates for which numbers the notification may be set. For terminating

notifications it applies to the terminating number, for originating
notifications it applies only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating and/or
terminating triggers in the ECN. Set is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in interrupt and/or
notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or fill for
legs in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan indicator.
Allowed values:

{P_CHARGE_PER_TIME,

P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be indicated
with integers) to a logical network chargeplan indicator. When the
chargeplan supports indicates P_CHARGE_PLAN then only chargeplans
in this mapping are allowed.

6.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API relying on the CSE shall have the Service Properties outlined above
set to the indicated values :

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)573GPP TS 29.198-4 version 4.0.0 Release 4

P_OPERATION_SET = {
“IpCallControlManager.enableCallNotification”,
“IpCallControlManager.disableCallNotification”,
“IpCallControlManager.changeCallNotification”,
“IpCallControlManager.getCriteria”,
“IpCallControlManager.setCallLoadControl”,
“IpCall.routeReq”,
“IpCall.release”,
“IpCall.deassignCall”,
“IpCall.getCallInfoReq”,
“IpCall.setCallChargePlan”,
“IpCall.setAdviceOfCharge”,
“IpCall.superviseCallReq”,
}

P_TRIGGERING_EVENT_TYPES = {
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT,
P_EVENT_GCCS_CALLED_PARTY_BUSY,
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY,
P_EVENT_GCCS_ROUTE_SELECT_FAILURE,
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_REPORT_ANSWER,
P_CALL_REPORT_BUSY,
P_CALL_REPORT_NO_ANSWER,
P_CALL_REPORT_DISCONNECT,
P_CALL_REPORT_ROUTING_FAILURE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)583GPP TS 29.198-4 version 4.0.0 Release 4

6.6 Generic Call Control Data Definitions
The present document provides the GCC data definitions necessary to support the API specification.

The present document is written using Hypertext link, to aid navigation through the data structures. Underlined text
represents Hypertext links.

The general format of a Data Definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

6.6.1 Generic Call Control Event Notification Data Definitions

TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAME_UNDEFINED 0 Undefined

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event
This can be used for hot-line features. In case this event is set
in the TpCallEventCriteria, only the originating address(es)
may be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected
The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might set notifications for this event
when part of the number analysis needs to be done in the
application (see also the getMoreDialledDigits method on the
call class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed
The dialled number is a valid and complete number in the
network.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable (e.g. the called party has
a mobile telephone that is currently switched off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call.

TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORIGINATING 1 Indicates that the notification is related to the originating user in the call.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)593GPP TS 29.198-4 version 4.0.0 Release 4

P_TERMINATING 2 Indicates that the notification is related to the terminating user in the call.

TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or a address range for which the notification is
requested.

CallEventName TpCallEventName Name of the event(s)

CallNotificationType TpCallNotificationType Indicates whether it is related to the originating or the terminating user in the
call.

MonitorMode TpCallMonitorMode Defines the mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a

legal value here.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)603GPP TS 29.198-4 version 4.0.0 Release 4

TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress

OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress

RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet

CallEventName TpCallEventName

CallNotificationType TpCallNotificationType

MonitorMode TpCallMonitorMode

6.6.2 Generic Call Control Data Definitions

IpCall

Defines the address of an IpCall Interface.

IpCallRef

Defines a Reference to type IpCall.

IpAppCall

Defines the address of an IpAppCall Interface.

IpAppCallRef

Defines a Reference to type IpAppCall

IpAppCallRefRef

Defines a Reference to type IpAppCallRef.

TpCallIdentifierRef

Defines a Reference to type TpCallIdentifier.

TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

Sequence Element
Name

Sequence Element
Type

Sequence Element Description

CallReference IpCallRef This element specifies the interface reference for the call object.

CallSessionID TpSessionID This element specifies the call session ID of the call.

IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

IpCallControlManager

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)613GPP TS 29.198-4 version 4.0.0 Release 4

Defines the address of an IpCallControlManager Interface.

IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type
TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element Name

P_CALL_APP_ALERTING_MECHANISM TPCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)623GPP TS 29.198-4 version 4.0.0 Release 4

TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description
ChargeOrderType TpCallChargeOrderCategory Type of charging to be

performed: time based charging
or transparent charging or pre-

defined charge plan.

ChargePerTime TpChargePerTime Charge per time.

Only applicable when time based
charging is selected.

TransparentCharge TpOctetSet Operator specific charge plan
specification, e.g. charging
table name / charging table
entry. The associated charge

plan data will be send
transparently to the charging

records.

Only applicable when
transparent charging is

selected.

ChargePlan TpInt32 Pre-defined charge plan.
Example of the charge plan set
from which the application can
choose could be : (0 = normal
user, 1 = silver card user, 2 =

gold card user).

Only applicable when
transparent charging is

selected.

Currency TpString Currency unit according to ISO-
4217:1995

AdditionalInfo TpOctetSet Descriptive string which is
sent to the billing system

without prior evaluation. Could
be included in the ticket.

PartyToCharge TpCallPartyToCharge Party to be charged.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)633GPP TS 29.198-4 version 4.0.0 Release 4

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpCallPartyToCharge

Defines the party to be charged

Name Value Description
P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call.

For application initiated calls this indicates that
the first party requested to be in the call will be

charged.

P_CALL_PARTY_DESTINATION 1 Called party, i.e. destination party

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element
Name

Sequence Element
Type

CallLegSessionID TpSessionID The leg that initiated the release of the call.
If the call release was not initiated by the leg, then this value is set to –1.

Cause TpCallReleaseCause The cause of the call ending.

TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)643GPP TS 29.198-4 version 4.0.0 Release 4

Sequence Element
Name

Sequence Element
Type

Description

CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or follow-on call, was
started.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was connected to the
resource.

This data element is only valid when information on user
interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was connected to the
destination (i.e. when the destination answered the call).

If the destination did not answer, the time is set to an
empty string.

This data element is invalid when information on user
interaction is reported with an intermediate report.

CallEndTime TpDateAndTime The date and time when the call or follow-on call or user
interaction was terminated.

Cause TpCallReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element
Name

Sequence Element
Type

Value TpInt32
Location TpInt32

NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by
Application

Cause Value from
Network

P_CALL_REPORT_BUSY 17 17

P_CALL_REPORT_NO_ANSWER 19 18,19,21

P_CALL_REPORT_DISCONNECT 16 16

P_CALL_REPORT_REDIRECTED 23 23

P_CALL_REPORT_SERVICE_CODE 31 NA

P_CALL_REPORT_ROUTING_FAILURE 3 Any other value

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)653GPP TS 29.198-4 version 4.0.0 Release 4

TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element
Type

MonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime
CallReportType TpCallReportType

AdditionalReportInfo TpCallAdditionalReportInfo

TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types
of reports.

Tag Element Type
TpCallReportType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY TpCallReleaseCause Busy

P_CALL_REPORT_NO_ANSWER NULL Undefined

P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect

P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure

TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallReportType TpCallReportType
AdditionalReportCriteria TpCallAdditionalReportCriteria

TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type
TpCallReportType

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)663GPP TS 29.198-4 version 4.0.0 Release 4

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_REPORT_UNDEFINED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTING NULL Undefined
P_CALL_REPORT_ANSWER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration
P_CALL_REPORT_DISCONNECT NULL Undefined
P_CALL_REPORT_REDIRECTED NULL Undefined
P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTING_FAILURE NULL Undefined

TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

TpCallReportType

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFINED 0 Undefined.
P_CALL_REPORT_PROGRESS 1 Call routing progress event:an indication from the network that progress has been made in

routing the call to the requested call party. This message may be sent more than once, or
may not be sent at all by the gateway with respect to routing a given call leg to a given

address.
P_CALL_REPORT_ALERTING 2 Call is alerting at the call party.
P_CALL_REPORT_ANSWER 3 Call answered at address.
P_CALL_REPORT_BUSY 4 Called address refused call due to busy.
P_CALL_REPORT_NO_ANSWER 5 No answer at called address.
P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has

ended. When the call is ended, the callEnded method is called. This event can occur both
when the called party hangs up, or when the application explicitly releases the leg using

IpCallLeg::release() This cannot occur when the app explicitly releases the call leg and the
call.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network that the call has been
redirected to a new address.

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received.
P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more than once during the routing
of a call.

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element
Name

Sequence Element
Type

ReleaseCause TpCallReleaseCause
AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

TpCallEventCriteriaResultSetRef

Defines a refernce to TpCallEventCriteriaResultSet.

TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)673GPP TS 29.198-4 version 4.0.0 Release 4

TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

EventCriteria TpCallEventCriteria The event criteria that were specified by the application.
AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)683GPP TS 29.198-4 version 4.0.0 Release 4

7 MultiParty Call Control Service
The Multi-Party Call Control API of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported
methods is given in the chapter 7.5.

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is
created first. Then party A's call leg is created before triggers are set on it for answer and then routed to the call. On
answer, an announcement is played indicating that the call is being set up to party B. While the announcement is being
played, party B's call leg is created and then triggers are set on it for answer. On answer the announcement is cancelled
and party B is routed to the call.

PartyB :
IpCallLeg

 : IpMultiPartyCallControlManager :
IpAppMultiPartyCall

:
IpMultiPartyCall

PartyA :
IpCal lLeg

 : (Logical
View::Ip...

4: setCallback()

1: new()

2: createCall(in IpAppMultiParty CallRef)

3: new()

7: ev entReportReq()

 :
IpAppUICall

 : IpUICall

1: sendI nf oReq()

15: ev entReportReq()

18: abortActionReq()

5: createCallLeg(in TpSessionID, in IpAppCallLegRef , in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInf oSet, out TpCallLegIdentif ierRef , in TpCallLegConnectionProperties)
6: new()

13: createCallLeg(in TpSessionID, in IpAppCallLegRef , in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInf oSet, out TpCallLegIdentif ierRef , in TpCallLegConnectionProperties)

14: new()

AppPartyA :
(IpAppMultiPartyCallLeg)

AppPartyB :
IpAppMultiPartyCal lLeg)

9: ev entReportRes ()

7: ev ent ReportR es ()

8: routeReq()

16: routeReq()

12: sendInf oRes()

 :
IpUIManager

10: createUICall()

19: deassignCall()

1: This message is used to create an object implementing the IpAppMultiPartyCall interface.

2: This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)693GPP TS 29.198-4 version 4.0.0 Release 4

IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.

8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.

11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object implementing the IpAppLogic interface.

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15: This message requests the call leg for customer B to inform the application when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party
A.

19: The application deassigns the call. This will also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is rejected and the call is cleared.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)703GPP TS 29.198-4 version 4.0.0 Release 4

 : (Logical
View::IpA...

 :
IpAppMultiPartyCal lControlManager

:
IpAppMultiPartyCal l

 :
IpMultiPartyCall

 : IpUICall :
IpUIManager

 : IpMultiPartyCallControlManager :
IpAppUICall

8: sendInf oAndCollectReq()

9: s endInf oAndCollectRes()

11: sendInf oReq()

12: sendInf oRes()

5: release()

1: new()

3: reportNotif ication ()

4: 'f orward ev ent'

5: new()

10: 'f orward ev ent'

13: 'f orward ev ent'

2: c reateN otif ic ation ()

7: c reateU ICal l()

14: release()

6: getCallLegs()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message
(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7: This message is used to create a UICall object that is associated with the incoming leg of the call.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)713GPP TS 29.198-4 version 4.0.0 Release 4

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more UI is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.3 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN
code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set
on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the
application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which
causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to
which it is then routed.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)723GPP TS 29.198-4 version 4.0.0 Release 4

 : (Logical
View::IpAppLogic)

 :
IpAppMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

 : IpUICallPartyB' :
IpCallLeg

AppParty B' :
IpAppCallLeg

AppPartyB :
IpAppCallLeg

 :
IpUIManager

AppPartyA :
IpAppCallLeg

PartyB :
IpCallLeg

:
IpMultiPartyCallControlManager

PartyA :
IpCallLeg

 :
IpAppUICall

27: createAndRouteCall()

8: sendInf oAndCollectReq()

10: sendInf oAndCollectReq()

9: sendInf oAndC ollectRes()

11: sendInf oAndCollectRes()

13: ev entReportReq()

1: new()

3: reportNotif ication ()

4: 'f orward ev ent'

5: new()

23: release()

21: ev entReportRes(in TpSessionID)

24: sendInf oAndCollectReq()

25: sendInf oAndCollectRes()

12: setCallbackWithSessionID()

: createNotif icat ion ()

7: createUICall()

6: getCallLegsf ()

15: createCallLeg(in TpSessionID, in IpAppCallLegRef , in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInf oSet, out TpCallLegIdentif ierRef , in TpCallLegConnectionPropert ies)

17: routeReq()

16: ev entReportReq()

14: new()

20: attachMedia()

18: ev entReportRes(in TpSessionID)
19: "f orward ev ent"

22: "f orward ev ent"

30: ev entReport Res(in TpSessionID)
31: "f orward ev ent"

32: callEnded()
33: "f orward ev ent"

34: userInteractionFaultDetected()
35: "f orward ev ent"

36: deassignCall()

26: new ()

28: new ()

29: ev entReportRes()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)733GPP TS 29.198-4 version 4.0.0 Release 4

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of message 3.

6: This message retuns the call legs currently in the call. In principle a reference to the call leg of the calling party is
already obtained by the application when it was notified of the new call event.

7: This message is used to associate a user interaction object with the calling party.

8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.

13: The trigger for follow-on calls is set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As a result the network will try to reach the associated party.

18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the media is not
connected to the other parties in the call. In order to allow inband communication between the new party and the other
parties in the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.

23: This message releases the called party.

24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.

27: The call is then forward routed to the new destination party.

28: As a result a new Callleg object is created.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)743GPP TS 29.198-4 version 4.0.0 Release 4

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the UI resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.2 Class Diagrams
The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)753GPP TS 29.198-4 version 4.0.0 Release 4

IpAppMultiPartyCallControlManager

reportNotification()
callAborted()
managerInterrupted()
managerResumed()
callOverloadEncountered()
callOverloadCeased()

(from mpccs)

<<Interface>>
IpAppMultiPartyCall

getInfoRes()
getInfoErr()
superviseRes()
superviseErr()
cal lFaultDetected()
callEnded()
createAndRouteCallLegErr()

(f rom mpccs)

<<Interface>>

pM ulti PartyCall Cont rolM anager

createCall()
createNotification()
destroyNotification()
changeNotification()
getNotification()
setCallLoadControl()

(from mpccs)

<<Interface>>
IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

IpCallLeg

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMedia()
detachMedia()
getLastRedirectedAddress()
continueProcessing()
getMoreDialledDigitsReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>

1 ..n

<<uses>>

1 0..n

IpAppCallLeg

eventReportRes()
eventReportErr()
getInfoRes()
getInfoErr()
routeErr()
getMoreDialledDigitsRes()
getMoreDialledDigitsErr()
superviseRes()
superviseErr()
connectionEnded()

(from mpccs)

<<Interface>>

1 0..n

<<uses>>

1 0..n

<<uses>>

pInte rface

(from csapi)

<<Interface>>

1 0..n

Figure: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)763GPP TS 29.198-4 version 4.0.0 Release 4

IpMultiPartyCallContro
lManager

createCall()
createNotification()
destroyNotificatio...
changeNotificatio...
getNotification()
setCallLoadContro...

(from mpccs)

<<Interface>> IpAppCallLeg

eventReportRes()
eventReportErr()
getInfoRes()
getInfoErr()
routeErr()
getMoreDialledDigitsR...
getMoreDialledDigitsErr()
superviseRes()
superviseErr()
connectionEnded()

(from mpccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessio...

(from csapi)

<<Interface>>

IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegRe...
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

1 ..n 1 0..n

Figure: Service Interfaces

7.3 MultiParty Call Control Service Interface Classes
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)773GPP TS 29.198-4 version 4.0.0 Release 4

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef, callReference : out TpMultiPartyCallIdentifierRef) : TpResult

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest, assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
TpResult

getNotification (notificationsRequested : out TpNotificationRequestedSetRef) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) :
TpResult

Method
createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke
setCallback() if it wishes to ensure this).

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

callReference : out TpMultiPartyCallIdentifierRef

Specifies the interface reference and sessionID of the call created.

Raises

TpCommonExceptions

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives thye
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)783GPP TS 29.198-4 version 4.0.0 Release 4

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same NotificationCallType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as

callback the callback that has been registered by setCallback().

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment ID both of
them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)793GPP TS 29.198-4 version 4.0.0 Release 4

Method
changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assigment ID both of them will be disabled.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Parameters

notificationsRequested : out TpNotificationRequestedSetRef

Specifies the nofications that have been requested by the application.

Raises

TpCommonExceptions

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)803GPP TS 29.198-4 version 4.0.0 Release 4

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

assignmentID : out TpAssignmentIDRef

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the
callOverlloadEncountered and callOverloadCeased methods with the request.

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID,
appCallBack : out TpAppMultiPartyCallBackRef) : TpResult

callAborted (callReference : in TpSessionID) : TpResult

managerInterrupted () : TpResult

managerResumed () : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

Method
reportNotification()

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)813GPP TS 29.198-4 version 4.0.0 Release 4

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration
of which forms a part of the service level agreement), then the call in the network shall be released and callEnded()
shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is being given in NOTIFY mode.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on who's behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

appCallBack : out TpAppMultiPartyCallBackRef

Specifies references to the application interface which implements the callback interface for the new call and/or new
call leg. This parameter may be null if the notification is being given in NOTIFY mode.

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporary
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)823GPP TS 29.198-4 version 4.0.0 Release 4

Parameters
No Parameters were identified for this method

Method
managerResumed()

This method indicates to the application that event notifications possibleand method invocations are enabled.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)833GPP TS 29.198-4 version 4.0.0 Release 4

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, callLeg : out
TpCallLegIdentifierRef) : TpResult

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef)
: TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
TpResult

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : TpResult

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
createCallLeg()

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)843GPP TS 29.198-4 version 4.0.0 Release 4

This method requests the creation of a new call leg object.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit setMedia() operation is needed.
Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through
the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)853GPP TS 29.198-4 version 4.0.0 Release 4

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports
will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)863GPP TS 29.198-4 version 4.0.0 Release 4

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of
reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is
required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address.
Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)873GPP TS 29.198-4 version 4.0.0 Release 4

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: IpInterface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)883GPP TS 29.198-4 version 4.0.0 Release 4

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : TpResult

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,
errorIndication : in TpCallError) : TpResult

Method
getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these
kind of events.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)893GPP TS 29.198-4 version 4.0.0 Release 4

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

Method
callEnded()

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)903GPP TS 29.198-4 version 4.0.0 Release 4

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

Method
createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an
unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this
operation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

7.3.5 Interface Class IpCallLeg

Inherits from: The call leg interface represents the logical call leg associating a call with an address. The call leg tracks
its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the
call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by
defining leg specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)913GPP TS 29.198-4 version 4.0.0 Release 4

TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
TpResult

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) :
TpResult

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult

getCall (callLegSessionID : in TpSessionID, callReference : out TpMultiPartyCallIdentifierRef) : TpResult

attachMedia (callLegSessionID : in TpSessionID) : TpResult

detachMedia (callLegSessionID : in TpSessionID) : TpResult

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectedAddress : out TpAddressRef) :
TpResult

continueProcessing (callLegSessionID : in TpSessionID) : TpResult

getMoreDialledDigitsReq (callLegSessionID : in TpSessionID, length : in TpInt32) : TpResult

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in
TpDuration) : TpResult

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : TpResult

deassign (callLegSessionID : in TpSessionID) : TpResult

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddess : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)923GPP TS 29.198-4 version 4.0.0 Release 4

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer", "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)933GPP TS 29.198-4 version 4.0.0 Release 4

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are
deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callReference : out TpMultiPartyCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media channels to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)943GPP TS 29.198-4 version 4.0.0 Release 4

Method
detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media channels to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

redirectedAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed it's interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)953GPP TS 29.198-4 version 4.0.0 Release 4

Method
getMoreDialledDigitsReq()

This asynchronous method requests to collect further digits and return them to the application. Depending on the
administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few
digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event
data. The application should then use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the cal leg. The charge plan must be set before the call leg is routed to a target
address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)963GPP TS 29.198-4 version 4.0.0 Release 4

tarrifSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call leg when it is finished with the call, leg unless
callFaultDetected is received by the application.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)973GPP TS 29.198-4 version 4.0.0 Release 4

7.3.6 Interface Class IpAppCallLeg

Inherits from: IpInterface

IpService

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : TpResult

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : TpResult

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : TpResult

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

connectionEnded (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

Method
eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of

the event type.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration
which forms a part of the service level agreement), then the call in the network shall be released and callEnded() shall
be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)983GPP TS 29.198-4 version 4.0.0 Release 4

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

Method
eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)993GPP TS 29.198-4 version 4.0.0 Release 4

Method
routeErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1003GPP TS 29.198-4 version 4.0.0 Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

Method
superviseErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
connectionEnded()

This method indicates to the application that the connection has terminated in the network. However, the application
may still receive some results (e.g., getInfoRes) related to the call leg. The application is expected to deassign the call
leg object after having received the connectionEnded.

Note that the event that caused the connection to end might also be received separately if the application was
monitoring for it.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpCallReleaseCause

Specifies the reason the connection is terminated.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1013GPP TS 29.198-4 version 4.0.0 Release 4

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager

ActiveInterrupted

'new'

 ^managerResumed

IpAccess.terminateServiceAgreement

 ^managerInterrupted

IpAccess.terminateServiceAgreement

Figure : Application view and the Multi-Party Call Control Manager

7.4.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no
longer interested in certain call related events by calling destroyNotification().

7.4.1.2 Interrupted State

When the Manager is in the Interrupted state it is temporarily unavailable for use. Events requested cannot be
forwarded to the application and methods in the API cannot successfully be executed. A number of reasons can cause
this: for instance the application receives more notifications from the network than defined in the Service Agreement.
Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure.

7.4.1.3 Overview of allowed methods

Call Control Manager State Methods applicable

Active createCall,

createNotification,

destroyNotification,

changeNotification,

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1023GPP TS 29.198-4 version 4.0.0 Release 4

getNotification,

setCallLoadControl

Interrupted getNotification

7.4.2 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

IDLE

ACTIVE

FA ULTYRELEASED

IpMultiPartyCallManager.createCall

'faul t detected'

[incoming call]
^IpAppMultiPartyCallControlManager.reportNotification

release
'l ast leg re leased'

 ^call e nd ed

deassign

 ^callFaultDetected

createCal lLeg

createAndRouteCallLeg

'timer expires'

deassign

A ti mer mechanisem prevents that the object
keeps occupying resources. In case the tim er
expires, callEnded() is invoked on the
IpAppMultiPartyCal l with a release cause of
P_TIMER_EXPIRY. In the case when no
IpAppMultiPartyCal l is a va ilable on which to invoke
callEnded(), callAborted () shall be invoked on the
IpAppMultiPartyCal lCon trolManage r as this is an
abnormal termination.

Figure : Application view on the MultiParty Call object

7.4.2.1 IDLE State

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
state.

7.4.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicators in this state prior to call establishment.

7.4.2.3 FAULTY State

A transition to this state is made when the Call object is in state IDLE and no requests from the application have been
received during a certain period or when a non-recoverable fault was detected during the ACTIVE state.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1033GPP TS 29.198-4 version 4.0.0 Release 4

In case the application requested for call related information previously, the application will be informed that this
information is not available through getInfoError or SuperviseError and additionally the application is informed that the
call object is transitioning to end state.

7.4.2.4 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the
requested call information will be collected and returned through getInfoReq() and / or superviseReq(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
state.

7.4.2.5 Overview of allowed methods

Methods applicable Call Control Call
State

Call Control
Manager State

Call Control Call
Leg state

getCallLegs, Idle, Active,
Released

-

createCallLegs,

createAndRouteCall
LegReq,
setAdviceOfCharge,
superviseReq,

Idle, Active Active

Release Active Active

Deassign Idle, Active -

GetInfoReq Idle Active

SetChargePlan Idle, Active Active Alerting, Connected

7.4.3 State Transition Diagrams for IpCallLeg

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1043GPP TS 29.198-4 version 4.0.0 Release 4

Idle

Routing

Progress

Alerting

Redirected

Connected

Attached

Detached

Fai led or
Disconnected

All States

Attached

Detached

EventReportReq

getInfoReq

"call progress event"
^EventReportRes

"answer"
^EventReportRes

"midcall event" ^EventReportRes

"inval id address"
^EventReportErr

"disconnect" ^EventReportRes

"routing fai led, refused busy or
no answer" ^EventReportRes

"last report"

"call object is destructed"

releasege tCal l

detachMedia
a ttachMedia

[when routed with createAndRouteCallLeg]

[when routed with route()]

ncom ing

"answer from other party"

Progress

Alerting

Redirected

route

only send result
when m oni to r fo r
thi s even t was
requested

getLastRedirectedAddress

eventReportReq

getInfoReq

IpMultiPartyCall.createAndRouteCallLeg

IpMultiPartyCall.createCal lLeg

"incoming cal l event" ^IpAppMultiPartyCallControlManager.cal lEventNotify

Figure : Application view on the CallLeg object

7.4.3.1 Idle State

In this state a new CallLeg object has been created and the application has not yet issued a routing request.

7.4.3.2 Routing State

In this state a connection to the call party is being established.

7.4.3.3 Connected State

In this state a connection to the call party is established.

In case the request for the connection was made by createAndRouteCallLeg on the Call object, the call party is also
attached to the Call.

In case the request was made by route() the call party still needs to be attached to the Call.

7.4.3.4 Failed or Disconnected State

In this state no connection to the call party could be established or the call party has disconnected.

The reason that no connection could be established can be that an invalid address was specified, the network aborted
routing or the call party was busy.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1053GPP TS 29.198-4 version 4.0.0 Release 4

7.4.3.5 Incoming State

This state is only valid for an incoming Call Leg in case and there is no call established to another party.

7.4.3.6 Progress State

In this sub-state the network has indicated there is progress in routing the CallLeg.

7.4.3.7 Alerting State

In this sub-state the network has indicated there the terminal of the party is alerting.

7.4.3.8 Redirected State

In this sub-state the network has indicated the call party has redirected calls to another address.

7.4.3.9 Attached State

In this sub-state the media of the Call Leg object is attached to a Call object.

7.4.3.10 Detached State

In this sub-state the media of the Call Leg object is not attached to a Call object.

7.4.3.11 Overview of allowed methods

State methods applicable

Idle routeReq,

eventReportReq,

release,

getInfoReq,

getCall,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Collect_Address eventReportReq,

release,

getInfoReq,

getCall,

continueProcessing,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1063GPP TS 29.198-4 version 4.0.0 Release 4

Analyse_Address eventReportReq,

release,

getInfoReq,

getCall,

continueProcessing,

getMoreDialledDigitsReq,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Progressing eventReportReq,

release,

getInfoReq,

getCall,

continueProcessing,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Alerting eventReportReq,

release,

getInfoReq,

getCall,

continueProcessing,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Active eventReportReq,

release,

getInfoReq,

getCall,

attachMedia,

detachMedia,

getLastRedirectedAddress,

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1073GPP TS 29.198-4 version 4.0.0 Release 4

continueProcessing,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Released getCall,

deassign,

Faulty deassign

7.5 Multi-Party Call Control Service Properties

7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property Type Description
P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG_OPERATIONS BOOLEAN_SET Value = TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.route(), IpCallLeg.attachMedia()}
Value = FALSE : the convenience function has to be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg shall be explicitly attached to a Call.
Value = FALSE : the CallLeg is automatically attached to a Call, no
IpCallLeg.attachMedia() is needed when a party answers.

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE shall have the Service Properties outlined
above set to the indicated values :

P_OPERATION_SET = {
“IpMultiPartyCallControlManager.createNotification”,
“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,
“IpMultiPartyCallControlManager.getNotification”,
“IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCallLegs”,
“IpMultiPartyCall.createCallLeg”,
“IpMultiPartyCall.createAndRouteCallLegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,
“IpMultiPartyCall.setAdviceOfCharge”,
“IpMultiPartyCall.superviseReq”,
“IpCallLeg.routeReq”,
“IpCallLeg.eventReportReq”,

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1083GPP TS 29.198-4 version 4.0.0 Release 4

“IpCallLeg.release”,
“IpCallLeg.getInfoReq”,
“IpCallLeg.getCall”,
“IpCallLeg.continueProcessing”
}

P_TRIGGERING_EVENT_TYPES = {
P_CALL_EVENT_CALL_ATTEMPT,
P_CALL_EVENT_ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,
P_CALL_EVENT_RELEASE,
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_EVENT_ANSWER,
P_CALL_EVENT_RELEASE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

P_MAX_CALLLEGS_PER_CALL = {
0,
2
}

P_UI_CALLLEG_BASED = {
FALSE
}

P_MEDIA_ATTACH_EXPLICIT = {
FALSE
}

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1093GPP TS 29.198-4 version 4.0.0 Release 4

7.6 Multi-Party Call Control Data Definitions
The present document provides the GCC data definitions necessary to support the API specification.

The general format of a data definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.

7.6.2 Multi-Party Call Control Data Definitions

IpCallLeg

Defines the address of an IpCallLeg Interface.

IpCallLegRef

Defines a Reference to type IpCallLeg.

IpCallLegRefRef

Defines a Reference to type IpCallLegRef.

IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

IpMultiPartyCall

Defines the address of an IpMultiPartyCall Interface.

IpMultiPartyCallRef

Defines a Reference to type IpMultiPartyCall.

IpAppMultiPartyCall

Defines the address of an IpAppMultiPartyCall Interface.

IpAppMultiPartyCallRef

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1103GPP TS 29.198-4 version 4.0.0 Release 4

Defines a Reference to type IpAppMultiPartyCall.

IpMultiPartyCallControlManager

Defines the address of an IpMultiPartyCallControlManager Interface.

IpMultiPartyCallControlManagerRef

Defines a Reference to type IpMultiPartyCallControlManager.

IpAppMultiPartyCallControlManager

Defines the address of an IpAppMultiPartyCallControlManager Interface.

IpAppMultiPartyCallControlManagerRef

Defines a Reference to type IpAppMultiPartyCall ControlManager..

TpAppCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppCallLegRef.

IpAppCallLegRef

Defines a Reference to type IpAppCallLegRef.

IpAppMultiPartyCallRef

Defines a Reference to type IpAppMultiPartyCallRef.

TpMultiPartyCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallReference IpMultiPartyCallRef This element specifies the interface reference for the Multi-party call object.
CallSessionID TpSessionID This element specifies the call session ID.

TpMultiPartyCallIdentifierRef

Defines a Reference to type TpMultiPartyCallIdentifier.

TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type

TpAppMultiPartyCallBackRefType

Tag Element Value Choice Element Type Choice Element Name

P_APP_CALLBACK_UNDEFINED NULL Undefined

P_APP MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef appMultiPartyCall

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1113GPP TS 29.198-4 version 4.0.0 Release 4

P_APP_CALL_LEG_CALLBACK IpAppCallLegRef appCallLeg

P_APP_CALL_AND_CALL_LEG_CALLBACK TpAppCallLegCallBack appMultiPartyCallAndCallLeg

TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description

P_APP_CALLBACK_UNDEFINED 0 Application Call back interface undefined

P_APP MULTIPARTY-CALL_CALLBACK 1 Application Multi-Party Call interface
referenced

P_APP_CALL_LEG_CALLBACK 2 Application CallLeg interface referenced

P_APP_CALL_AND_CALL_LEG_CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type

appMultiPartyCall IpAppMultiPartyCallRef

appCallLegSet TpAppCallLegRefSet Specifies the set of all call leg call back
references. First in the set is the reference
to the call back of the originating callLeg.
In case there is a call back to a destination

call leg this will be second in the set.

TpMultiPartyCallIdentifierSet

Defines a Numbered Set of Data Elements of TpMultiPartyCallIdentifier.

TpMultiPartyCallIdentifierSetRef

Defines a Reference to type TpMultiPartyCallIdentifierSet.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type
TpCallAppInfoType

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1123GPP TS 29.198-4 version 4.0.0 Release 4

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_APP_ALERTING_MECHANISM TPCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddress

P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1133GPP TS 29.198-4 version 4.0.0 Release 4

TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the originating user when
launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is diverting.

TpCallEventRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
CallEventType TpCallEventType

AdditionalCallEventCriteria TpAdditionalCallEventCriteria
CallMonitorMode TpCallMonitorMode

TpCallEventRequestSet

Defines a Numbered Set of Data Elements of TpCallEventRequest.

TpCallEventType

Defines a specific call event report type.

Name Value Description
P_CALL_EVENT_UNDEFINED 0 Undefined
P_CALL_EVENT_CALL_ATTEMPT 1 A Call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT_ADDRESS_COLLECTED 2 The destination address has been collected.
P_CALL_EVENT_ADDRESS_ANALYSED 3 The destination address has been analysed.

P_CALL_EVENT_ALERTING 5 Call is alerting at the call party.
P_CALL_EVENT_ANSWER 6 Call answered at address.
P_CALL_EVENT_RELEASE 7 A Call has been released or the call could not be routed.
P_CALL_EVENT_REDIRECTED 8 Call redirected to new address: an indication from the network that the call has been

redirected to a new address.
P_CALL_EVENT_SERVICE_CODE 9 Mid-call service code received.

P_CALL_EVENT_QUEUED 10 The Call Event has been queued. (no events are disarmed as a result of this)

The table below defines the disarming rules for dynamic events. In case such an event occurs the table shows which
events are disarmed (are not monitored anymore) and should be re-armed by eventReportReq() in case the application is
still interested in these events.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1143GPP TS 29.198-4 version 4.0.0 Release 4

Event Occurred Events Disarmed
P_CALL_EVENT_UNDEFINED Not Applicable

P_CALL_EVENT_CALL_ATTEMPT Not applicable, can only be armed as trigger

P_CALL_EVENT_ADDRESS_COLLECTED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS

P_CALL_EVENT_ALERTING P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS

P_CALL_EVENT_ALERTING

P_CALL_EVENT_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSWER P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS P_CALL_EVENT_ALERTING

P_CALL_EVENT_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_PREMATURE_DISCONNECT

P_CALL_EVENT_ANSWER

P_CALL_EVENT_RELEASE All pending events are disarmed

P_CALL_EVENT_REDIRECTED P_CALL_EVENT_REDIRECTED

P_CALL_EVENT_SERVICE_CODE P_CALL_EVENT_SERVICE_CODE

TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type
TpCallEventType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined
P_CALL_EVENT_CALL_ATTEMPT NULL Undefined
P_CALL_EVENT_ADDRESS_COLLECTED TpInt32 MinAddressLength
P_CALL_EVENT_ADDRESS_ANALYSED NULL Undefined
P_CALL_EVENT_PROGRESS NULL Undefined
P_CALL_EVENT_ALERTING NULL Undefined
P_CALL_EVENT_ANSWER NULL Undefined
P_CALL_EVENT_RELEASE TpCallReleaseCauseSet ReleaseCauseSet

P_CALL_EVENT_REDIRECTED NULL Undefined

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1153GPP TS 29.198-4 version 4.0.0 Release 4

P_CALL_EVENT_SERVICE_CODE TpCallServiceCode ServiceCode

TpCallReleaseCauseSet

Defines a Numbered Set of Data Elements of TpCallReleaseCause.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1163GPP TS 29.198-4 version 4.0.0 Release 4

TpCallEventInfo

Defines the Sequence of Data Elements that specify the event report specific information.

Sequence Element
Name

Sequence Element
Type

CallEventType TpCallEventType
AdditionalCallEventInfo TpCallAdditionalEventInfo

CallMonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime

TpCallAdditionalEventInfo

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types
of events.

Tag Element Type
TpCallEventType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined

P_CALL_EVENT_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress

P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress

P_CALL_EVENT_PROGRESS NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined

P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_RELEASE TpCallReleaseCause ReleaseCause

P_CALL_EVENT_REDIRECTED TpAddress ForwardAddress

P_CALL_EVENT_SERVICE_CODE TpCallServiceCode ServiceCode

TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification

Sequence Element Name Sequence Element Type Description
CallNotificationScope TpCallNotificationScope Defines the scope of the notification request.
CallEventsRequested TpCallEventRequestSet Defines the events which are requested

TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or address range for which the notification is
requested.

NotificationCallType TpNotificationCallType Defines wheter the notification is requested for a originating or terminating
call.

TpNotificationCallType

Defines the type of call for which the notification is requested or reported.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1173GPP TS 29.198-4 version 4.0.0 Release 4

Name Value Description
P_ORIGINATING 1 Indicates that the notification is related to the originating user in the call.

P_TERMINATING 2 Indicates that the notification is related to the terminating user in the call.

TpCallNotificationInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call
notification report.

Sequence Element
Name

Sequence Element
Type

Description

CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the notification report.
CallAppInfo TpCallAppInfoSet Contains additonal call info.
CallEventInfo TpCallEventInfo Contains the event which is reported.

TpCallNotificationReportScope

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddress Contains the destination address of the call.
OriginatingAddress TpAddress Contains the origination address of the call
NotificationCallType TpNotificationCallType Indicates if the notification was reported for an originating or terminating call.

TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element
Name

Sequence Element
Type

AppCallNotificationRequest TpCallNotificationRequest
AssignmentID TpInt32

TpNotificationsRequestedSet

Defines a numbered Set of Data Elements of TpNotificationRequested.

TpNotificationsRequestedSetRef

Defines a reference to the type TpNotificationsRequestSet.

TpCallReleaseCause

Defines the reason for which a call is released.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1183GPP TS 29.198-4 version 4.0.0 Release 4

Name Value Description
P_UNDEFINED 0 The reason of release isn’t known, because no info was received from the network.

P_USER_NOT_AVAILBLE 1 The user isn’t available in the network. This means that the number isn’t allocated or that the user
isn’t registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received

P_NOT_REACHABLE 4 The user terminal isn’t reachable

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received

P_PREMATURE_DISCONNECT 6 The user disconnected the call during setup phase.

P_DISCONNECTED 7 Call disconnect by the end user.

P_CALL_RESTRICTED 8 The call was subject of restrictions

P_UNAVAILABLE_RESOURCE 9 No resources where available to establisch the call.

P_GENERAL_FAILURE 10 A general network failure occurred.

P_TIMER_EXPIRY 11 The call was released because an activity timer expired.

TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallLegReference IpCallLegRef This element specifies the interface reference for the callLeg object.
CallLegSessionID TpSessionID This element specifies the callLeg session ID.

TpCallLegIdentifierRef

Defines a Reference to type TpCallLegIdentifier.

TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.

TpCallLegIdentifierSetRef

Defines a Reference to type TpCallLegIdentifierSet.

TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name Value Description
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call.
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachMedia() operation. This

allows e.g. the application to do first user interaction to the party before he/she is placed in the
call.

TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached to the call.

TpCallLegInfoReport

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1193GPP TS 29.198-4 version 4.0.0 Release 4

Defines the Sequence of Data Elements that specify the call leg information requested.

Sequence Element
Name

Sequence Element
Type

Description

CallLegInfoType TpCallLegInfoType The type of the call leg.
CallLegStartTime TpDateAndTime The time and date when the call leg was started (i.e. the leg was routed).

CallLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to the resource. If no
resource was connected the time is set to an empty string.

Either this element is valid or the CallConnectedToAddressTime is valid,
depending on whether the report is sent as a result of user interaction.

CallLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to the destination (i.e.
when the destination answered the call). If the destination did not answer,

the time is set to an empty string.
Either this element is valid or the CallConnectedToResourceTime is

valid, depending on whether the report is sent as a result of user
interaction.

CallLegEndTime TpDateAndTime The date and time when the call leg was released.
ConnectedAddress TpAddress The address of the party associated with the leg. If during the call the

connected address was received from the party then this is returned,
otherwise the destination address (for legs connected to a destination) or
the originating address (for legs connected to the origination) is returned.

CallLegReleaseCause TpCallReleaseCause The cause of the termination. May be present with
P_CALL_LEG_INFO_RELEASE_CAUSE was specified.

CallAppInfo TpCallAppInfoSet Additional information for the leg. May be present with
P_CALL_LEG_INFO_APPINFO was specified.

TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL_LEG_INFO_UNDEFINED 00h Undefined
P_CALL_LEG_INFO_TIMES 01h Relevant call times
P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause
P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address
P_CALL_LEG_INFO_APPINFO 08h Call leg application related information

8 Common Call Control Data Types

TpCallAlertingMechanism
This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values
of this data type are operator specific.

TpCallBearerService
This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,
and 3G TS 22.002).

Name Value Description

P_CALL_BEARER_SERVICE_UNKNOWN 0 Bearer capability information unknown at
this time

P_CALL_BEARER_SERVICE_SPEECH 1 Speech

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1203GPP TS 29.198-4 version 4.0.0 Release 4

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED 2 Unrestricted digital information

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED 3 Restricted digital information

P_CALL_BEARER_SERVICE_AUDIO 4 3.1 kHz audio

P_CALL_BEARER_SERVICE_
DIGITALUNRESTRICTEDTONES

5 Unrestricted digital information with
tomes/announcements

P_CALL_BEARER_SERVICE_VIDEO 6 Video

TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description

ChargeOrderType TpCallChargeOrderCategory Charge order

ChargePerTime TpChargePerTime Charge per time.

Only applicable when time
based charging is selected.

TransparentCharge TpOctetSet Operator specific charge plan
specification, e.g. charging
table name / charging table
entry. The associated charge

plan data will be send
transparently to the charging

records.

Only applicable when
transparent charging is

selected.

ChargePlan TpInt32 Pre-defined charge plan.
Example of the charge plan set
from which the application can
choose could be : (0 = normal
user, 1 = silver card user, 2

= gold card user).

Only applicable when
transparent charging is

selected.

Currency TpString Currency unit according to
ISO-4217:1995

AdditionalInfo TpOctetSet Descriptive string which is
sent to the billing system
without prior evaluation.
Could be included in the

ticket.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1213GPP TS 29.198-4 version 4.0.0 Release 4

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpCallChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpCallChargeOrderCategory

Tag Element Value Choice Element Type Choice Element Name

P_CALL_CHARGE_PER_TIME TpChargePerTime ChargePerTime

P_CALL_CHARGE_TRANSPARENT TpOctetSet TransparentCharge

P_CALL_CHARGE_PREDEFINED_SET TpInt32 ChargePlan

TpCallChargeOrderCategory

Defines the type of charging to be applied

Name Value Description

P_CALL_CHARGE_PER_TIME 0 Charge per time

P_CALL_CHARGE_TRANSPARENT 1 Operator specific charge plan specification, e.g.
charging table name / charging table entry. The

associated charge plan data will be send
transparently to the charging records

P_CALL_CHARGE_PREDEFINED_SET 2 Pre-defined charge plan. Example of the charge plan
set from which the application can choose could be :
(0 = normal user, 1 = silver card user, 2 = gold

card user).

TpCallAdditionalChargePlanInfo

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpCallChargeOrderCategory

Tag Element Value Choice Element
Type

Choice Element
Name

Description

P_CALL_CHARGE_PER_TIME TpOctetSet TimeAdditionalInfo Descriptive string which is sent to
the billing system without prior
evaluation. Could be included in

the ticket.

P_CALL_CHARGE_TRANSPARENT NULL Undefined

P_CALL_CHARGE_PREDEFINED_SET TpOctetSet SetAdditionalInfo Descriptive string which is sent to
the billing system without prior
evaluation. Could be included in

the ticket.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1223GPP TS 29.198-4 version 4.0.0 Release 4

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element Name Sequence Element Type

CallLegSessionID TpSessionID The leg that initiated the
release of the call.

If the call release was not
initiated by the leg, then this

value is set to –1.

Cause TpCallReleaseCause The cause of the call ending.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1233GPP TS 29.198-4 version 4.0.0 Release 4

TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

Sequence Element Name Sequence Element Type

ErrorTime TpDateAndTime

ErrorType TpCallErrorType

AdditionalErrorInfo TpCallAdditionalErrorInfo

TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific
information. This is also used to specify call leg errors and information errors.

Tag Element Type

TpCallErrorType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_ERROR_UNDEFINED NULL Undefined

P_CALL_ERROR_INVALID_ADDRESS TpAddressError CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE NULL Undefined

TpCallErrorType

Defines a specific call error.

Name Value Description

P_CALL_ERROR_UNDEFINED 0 Undefined; the method failed or
was refused, but no specific

reason can be given.

P_CALL_ERROR_INVALID_ADDRESS 1 The operation failed because an
invalid address was given

P_CALL_ERROR_INVALID_STATE 2 The call was not in a valid
state for the requested

operation

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1243GPP TS 29.198-4 version 4.0.0 Release 4

TpCallFault

Defines the cause of the call fault detected.

Name Value Description

P_CALL_FAULT_UNDEFINED 0 Undefined

P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has
been sent to the application, but the application

did not explicitly release or deassign the call
object, within a specified time.

The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway

reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

 TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element Name Sequence Element Type Description

CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the
call, or follow-on call, was

started.

CallConnectedToResourceTime TpDateAndTime The date and time when the
call was connected to the

resource.

This data element is only
valid when information on

user interaction is
reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the
call was connected to the
destination (i.e., when the
destination answered the
call). If the destination
did not answer, the time is
set to an empty string.

This data element is invalid
when information on user

interaction is reported with
an intermediate report.

CallEndTime TpDateAndTime The date and time when the
call or follow-on call or

user interaction was
terminated.

Cause TpCallReleaseCause The cause of the
termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1253GPP TS 29.198-4 version 4.0.0 Release 4

Name Value Description

P_CALL_INFO_UNDEFINED 00h Undefined

P_CALL_INFO_TIMES 01h Relevant call times

P_CALL_INFO_RELEASE_CAUSE 02h Call release cause

P_CALL_INFO_INTERMEDIATE 04h Send only intermediate reports. When this is
not specified the information report will only

be sent when the call has ended. When
intermediate reports are requested a report will

be generated between follow-on calls, i.e.,
when a party leaves the call.

TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type

TpCallLoadControlMechanismType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_LOAD_CONTROL_PER_INTERVAL TpCallLoadControlIntervalRate CallLoadControlPerInterval

TpCallLoadControlIntervalRate

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in
milliseconds) between calls that are admitted.

Name Value Description

P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS 0 Infinite interval

(do not admit any calls)

1 -
60000

Duration in milliseconds

TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name Value Description

P_CALL_LOAD_CONTROL_PER_INTERVAL 1 admit one call per interval

TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name Value Description

P_CALL_MONITOR_MODE_INTERRUPT 0 The call event is intercepted by the call control
service and call processing is interrupted. The

application is notified of the event and call
processing resumes following an appropriate

API call or network event (such as a call
release)

P_CALL_MONITOR_MODE_NOTIFY 1 The call event is detected by the call control
service but not intercepted. The application is
notified of the event and call processing

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1263GPP TS 29.198-4 version 4.0.0 Release 4

continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event

TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN 0 Network type information unknown at this
time

P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS

P_CALL_NETWORK_ACCESS_TYPE_ISDN 2 ISDN

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET 3 Dial-up Internet

P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDLS

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS 5 Wireless

TpCallPartyCategory
This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

Name Value Description

P_CALL_PARTY_CATEGORY_UNKNOWN 0 calling party's category unknown at this time

P_CALL_PARTY_CATEGORY_OPERATOR_F 1 operator, language French

P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English

P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German

P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian

P_CALL_PARTY_CATEGORY_OPERATOR_S 5 operator, language Spanish

P_CALL_PARTY_CATEGORY_ORDINARY_SUB 6 ordinary calling subscriber

P_CALL_PARTY_CATEGORY_PRIORITY_SUB 7 calling subscriber with priority

P_CALL_PARTY_CATEGORY_DATA_CALL 8 data call (voice band data)

P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call

P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone

TpCallServiceCode
Defines the Sequence of Data Elements that specify the service code and type of service code received during
a call. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type

CallServiceCodeType TpCallServiceCodeType

ServiceCodeValue TpString

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1273GPP TS 29.198-4 version 4.0.0 Release 4

TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description

P_CALL_SERVICE_CODE_UNDEFINED 0 The type of service code is unknown. The
corresponding string is operator specific.

P_CALL_SERVICE_CODE_DIGITS 1 The user entered a digit sequence during the
call. The corresponding string is an ascii
representation of the received digits.

P_CALL_SERVICE_CODE_FACILITY 2 A facility information element is received.
The corresponding string contains the facility
information element as defined in ITU Q.932

P_CALL_SERVICE_CODE_U2U 3 A user-to-user message was received. The
associated string contains the content of the
user-to-user information element.

P_CALL_SERVICE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally
followed by some digits. The corresponding
string is an ascii representation of the
entered digits.

P_CALL_SERVICE_CODE_RECALL 5 The user pressed the register recall button,
optionally followed by some digits. The
corresponding string is an ascii
representation of the entered digits.

TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a
logical 'OR' function.

Name Value Description

P_CALL_SUPERVISE_TIMEOUT 01h The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED 02h The call has ended, either due to timer expiry
or call party release. In case the called
party disconnects but a follow-
on call can still be made also

this indication is used.

P_CALL_SUPERVISE_TONE_APPLIED 04h A warning tone has been applied. This is only
sent in combination with

P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_UI_FINISHED 0 The user interaction
has

finished.

TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be
combined by a logical 'OR' function.

Name Value Description

P_CALL_SUPERVISE_RELEASE 01h Release the call when the call supervision
timer expires

P_CALL_SUPERVISE_RESPOND 02h Notify the application when the call
supervision timer expires

P_CALL_SUPERVISE_APPLY_TONE 04h Send a warning tone to the originating party
when the call supervision timer expires. If call

release is requested, then the call will be
released following the tone after an

administered time period

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1283GPP TS 29.198-4 version 4.0.0 Release 4

TpCallTeleService
This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High
Layer Compatitibility Information, and 3G TS 22.003)

Name Valu
e

Description

P_CALL_TELE_SERVICE_UNKNOWN 0 Teleservice information unknown at this time

P_CALL_TELE_SERVICE_TELEPHONY 1 Telephony

P_CALL_TELE_SERVICE_FAX_2_3 2 Facsimile Group 2/3

P_CALL_TELE_SERVICE_FAX_4_I 3 Facsimile Group 4, Class I

P_CALL_TELE_SERVICE_FAX_4_II_III 4 Facsimile Group 4, Classes II and III

P_CALL_TELE_SERVICE_VIDEOTEX_SYN 5 Syntax based Videotex

P_CALL_TELE_SERVICE_VIDEOTEX_INT 6 International Videotex interworking via
gateways or interworking units

P_CALL_TELE_SERVICE_TELEX 7 Telex service

P_CALL_TELE_SERVICE_MHS 8 Message Handling Systems

P_CALL_TELE_SERVICE_OSI 9 OSI application

P_CALL_TELE_SERVICE_FTAM 10 FTAM application

P_CALL_TELE_SERVICE_VIDEO 11 Videotelephony

P_CALL_TELE_SERVICE_VIDEO_CONF 12 Videoconferencing

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF 13 Audiographic conferencing

P_CALL_TELE_SERVICE_MULTIMEDIA 14 Multimedia services

P_CALL_TELE_SERVICE_CS_INI_H221 15 Capability set of initial channel of H.221

P_CALL_TELE_SERVICE_CS_SUB_H221 16 Capability set of subsequent channel of H.221

P_CALL_TELE_SERVICE_CS_INI_CALL 17 Capability set of initial channel associated
with an active 3.1 kHz audio or speech call.

P_CALL_TELE_SERVICE_DATATRAFFIC 18 Data traffic.

P_CALL_TELE_SERVICE_EMERGE
NCY_CALLS

1 Emergency Calls

P_CALL_TELE_SERVICE_SMS_MT
_PP

2 Short message MT/PP

P_CALL_TELE_SERVICE_SMS_MO
_PP

2 Short message MO/PP

P_CALL_TELE_SERVICE_CELL_B
ROADCAST

2 Cell Broadcast Service

P_CALL_TELE_SERVICE_ALT_SP
EECH_FAX_3

2 Alternate speech and facsimile group 3

P_CALL_TELE_SERVICE_AUTOMA
TIC_FAX_3

2 Automatic Facsimile group 3

P_CALL_TELE_SERVICE_VOICE_
GROUP_CALL

2 Voice Group Call Service

P_CALL_TELE_SERVICE_VOICE_
BROADCAST

2 Voice Broadcast Service

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1293GPP TS 29.198-4 version 4.0.0 Release 4

Sequence Element Name Sequence Element Type

ReleaseCause TpCallReleaseCause

AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.

Name Value Description

P_CALL_TREATMENT_DEFAULT 0 Default treatment

P_CALL_TREATMENT_RELEASE 1 Release the call

P_CALL_TREATMENT_SIAR 2 Send information to the user, and release the
call (Send Info & Release)

TpCallAdditionalTreatmentInfo

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party.

Tag Element Type

TpCallTreatmentType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_TREATMENT_DEFAULT NULL Undefined

P_CALL_TREATMENT_RELEASE NULL Undefined

P_CALL_TREATMENT_SIAR TpUIInfo InformationToSend

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1303GPP TS 29.198-4 version 4.0.0 Release 4

Annex A (normative):
OMG IDL Description of Call Control SCF
The OMG IDL representation of this interface specification is contained in files contained in archive 2919804IDL.ZIP
which accompanies the present document.

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1313GPP TS 29.198-4 version 4.0.0 Release 4

Annex B (informative):
Differences between this draft and 3GPP TS 29.198 R99
The following is a list of the differences between the present document and 3GPP TS 29.198 R99, for those interfaces
which are common to both documents. Any new interfaces with respect to Release 99 are not listed.

B.1 Interface IpCallControlManager
enableCallNotification (appCallControlManagerInterface : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : TpResult

B.2 Interface IpAppCallControlManager
callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID, appCallInterface : out IpAppCallRefRef) : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

B.3 Interface IpCall
getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

B.4 Interface IpAppCall
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)1323GPP TS 29.198-4 version 4.0.0 Release 4

Annex C (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 -- CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0
Jun 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0

133

ETSI

ETSI TS 129 198-4 V4.0.0 (2001-06)3GPP TS 29.198-4 version 4.0.0 Release 4

History

Document history

V4.0.0 June 2001 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Call Control SCF
	5 The Service Interface Specifications
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Generic Call Control Service
	6.1 Sequence Diagrams
	6.1.1 Additional Callbacks
	6.1.2 Alarm Call
	6.1.3 Application Initiated Call
	6.1.4 Call Barring 1
	6.1.5 Number Translation 1
	6.1.6 Number Translation 1 (with callbacks)
	6.1.7 Number Translation 2
	6.1.8 Number Translation 3
	6.1.9 Number Translation 4
	6.1.10 Number Translation5
	6.1.11 Prepaid
	6.1.12 Pre-Paid with Advice of Charge (AoC)

	6.2 Class Diagrams
	6.3 Generic Call Control Service Interface Classes
	6.3.1 Interface Class IpCallControlManager
	6.3.2 Interface Class IpAppCallControlManager
	6.3.3 Interface Class IpCall
	6.3.4 Interface Class IpAppCall

	6.4 Generic Call Control Service State Transition Diagrams
	6.4.1 State Transition Diagrams for IpCallControlManager
	6.4.1.1 Active State
	6.4.1.2 Notification terminated State

	6.4.2 State Transition Diagrams for IpCall
	6.4.2.1 Network Released State
	6.4.2.2 Finished State
	6.4.2.3 Application Released State
	6.4.2.4 No Parties State
	6.4.2.5 Active State
	6.4.2.6 1 Party in Call State
	6.4.2.7 2 Parties in Call State
	6.4.2.8 Routing to Destination(s) State

	6.5 Generic Call Control Service Properties
	6.5.1 List of Service Properties
	6.5.2 Service Property values for the CAMEL Service Environm

	6.6 Generic Call Control Data Definitions
	6.6.1 Generic Call Control Event Notification Data Definitio
	6.6.2 Generic Call Control Data Definitions

	7 MultiParty Call Control Service
	7.1 Sequence Diagrams
	7.1.1 Application initiated call setup
	7.1.2 Call Barring 2
	7.1.3 Complex Card Service

	7.2 Class Diagrams
	7.3 MultiParty Call Control Service Interface Classes
	7.3.1 Interface Class IpMultiPartyCallControlManager
	7.3.2 Interface Class IpAppMultiPartyCallControlManager
	7.3.3 Interface Class IpMultiPartyCall
	7.3.4 Interface Class IpAppMultiPartyCall
	7.3.5 Interface Class IpCallLeg
	7.3.6 Interface Class IpAppCallLeg

	7.4 MultiParty Call Control Service State Transition Diagram
	7.4.1 State Transition Diagrams for IpMultiPartyCallControlM
	7.4.1.1 Active State
	7.4.1.2 Interrupted State
	7.4.1.3 Overview of allowed methods

	7.4.2 State Transition Diagrams for IpMultiPartyCall
	7.4.2.1 IDLE State
	7.4.2.2 ACTIVE State
	7.4.2.3 FAULTY State
	7.4.2.4 RELEASED State
	7.4.2.5 Overview of allowed methods

	7.4.3 State Transition Diagrams for IpCallLeg
	7.4.3.1 Idle State
	7.4.3.2 Routing State
	7.4.3.3 Connected State
	7.4.3.4 Failed or Disconnected State
	7.4.3.5 Incoming State
	7.4.3.6 Progress State
	7.4.3.7 Alerting State
	7.4.3.8 Redirected State
	7.4.3.9 Attached State
	7.4.3.10 Detached State
	7.4.3.11 Overview of allowed methods

	7.5 Multi-Party Call Control Service Properties
	7.5.1 List of Service Properties
	7.5.2 Service Property values for the CAMEL Service Environm

	7.6 Multi-Party Call Control Data Definitions
	7.6.1 Event Notification Data Definitions
	7.6.2 Multi-Party Call Control Data Definitions

	8 Common Call Control Data Types
	Annex A (normative): OMG IDL Description of Call Control SCF
	Annex B (informative): Differences between this draft and 3G
	B.1 Interface IpCallControlManager
	B.2 Interface IpAppCallControlManager
	B.3 Interface IpCall
	B.4 Interface IpAppCall

	Annex C (informative): Change history
	History

