

ETSI TS 129 198-3 V6.5.0 (2005-12)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA)

Application Programming Interface (API);
Part 3: Framework

(3GPP TS 29.198-03 version 6.5.0 Release 6)

�

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1 3GPP TS 29.198-03 version 6.5.0 Release 6

Reference
RTS/TSGC-0529198-03v650

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 2 3GPP TS 29.198-03 version 6.5.0 Release 6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under
http://webapp.etsi.org/key/queryform.asp .

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 3 3GPP TS 29.198-03 version 6.5.0 Release 6

Contents

Intellectual Property Rights ..2

Foreword...2

Foreword...12

Introduction ..12

1 Scope ..14

2 References ..14

3 Definitions, symbols and abbreviations ...15
3.1 Definitions..15
3.2 Abbreviations ...15

4 Overview of the Framework...15

5 The Base Interface Specification..16
5.1 Interface Specification Format ...16
5.1.1 Interface Class ..16
5.1.2 Method descriptions..17
5.1.3 Parameter descriptions ..17
5.1.4 State Model...17
5.2 Base Interface ...17
5.2.1 Interface Class IpInterface ..17
5.3 Service Interfaces ...17
5.3.1 Overview ..17
5.4 Generic Service Interface ...17
5.4.1 Interface Class IpService ..17
5.4.1.1 Method setCallback() ..18
5.4.1.2 Method setCallbackWithSessionID()..18

6 Framework Access Session API...19
6.1 Sequence Diagrams ..19
6.1.1 Trust and Security Management Sequence Diagrams ..19
6.1.1.1 Initial Access...19
6.1.1.2 Framework Terminates Access ...20
6.1.1.3 Application Terminates Access...21
6.1.1.4 Non-API level Authentication...21
6.1.1.5 API Level Authentication ...22
6.2 Class Diagrams...24
6.3 Interface Classes...24
6.3.1 Trust and Security Management Interface Classes ...24
6.3.1.1 Interface Class IpClientAPILevelAuthentication..25
6.3.1.1.1 Method <<deprecated>> authenticate()...25
6.3.1.1.2 Method abortAuthentication() ...25
6.3.1.1.3 Method authenticationSucceeded() ...26
6.3.1.1.4 Method challenge()..26
6.3.1.2 Interface Class IpClientAccess..27
6.3.1.2.1 Method terminateAccess()...27
6.3.1.3 Interface Class IpInitial ...28
6.3.1.3.1 Method <<deprecated>> initiateAuthentication() ...28
6.3.1.3.2 Method initiateAuthenticationWithVersion()..29
6.3.1.4 Interface Class IpAuthentication...31
6.3.1.4.1 Method requestAccess() ..31
6.3.1.5 Interface Class IpAPILevelAuthentication ...32
6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()...32
6.3.1.5.2 Method <<deprecated>> authenticate()...33
6.3.1.5.3 Method abortAuthentication() ...33

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 4 3GPP TS 29.198-03 version 6.5.0 Release 6

6.3.1.5.4 Method authenticationSucceeded() ...34
6.3.1.5.5 Method selectAuthenticationMechanism()..34
6.3.1.5.6 Method challenge()..34
6.3.1.6 Interface Class IpAccess ...36
6.3.1.6.1 Method obtainInterface() ...36
6.3.1.6.2 Method obtainInterfaceWithCallback()...37
6.3.1.6.3 Method <<deprecated>> endAccess()...37
6.3.1.6.4 Method listInterfaces() ..38
6.3.1.6.5 Method <<deprecated>> releaseInterface()...38
6.3.1.6.6 Method selectSigningAlgorithm() ...38
6.3.1.6.7 Method terminateAccess()...39
6.3.1.6.8 Method relinquishInterface() ...39
6.4 State Transition Diagrams ..40
6.4.1 Trust and Security Management State Transition Diagrams ..40
6.4.1.1 State Transition Diagrams for IpInitial ...40
6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication..40
6.4.1.2.1 Idle State..41
6.4.1.2.2 Authenticating Framework State ...41
6.4.1.2.3 Framework Authenticated State ..42
6.4.1.2.4 Authenticating Client State..42
6.4.1.2.5 Client Authenticated State ...42
6.4.1.2.6 Idle State..43
6.4.1.2.7 Authenticating Framework State ...43
6.4.1.2.8 Framework Authenticated State ..44
6.4.1.2.9 Authenticating Client State..44
6.4.1.2.10 Client Authenticated State ...44
6.4.1.2.11 Idle State..45
6.4.1.2.12 Authenticating Framework State ...45
6.4.1.2.13 Framework Authenticated State ..45
6.4.1.2.14 Authenticating Client State..46
6.4.1.2.15 Client Authenticated State ...46
6.4.1.2.16 Idle State..47
6.4.1.2.17 Authenticating Framework State ...47
6.4.1.2.18 Framework Authenticated State ..48
6.4.1.2.19 Authenticating Client State..48
6.4.1.2.20 Client Authenticated State ...48
6.4.1.3 State Transition Diagrams for IpAccess..48
6.4.1.3.1 Active State ...49

7 Framework-to-Application API ...49
7.1 Sequence Diagrams ..49
7.1.1 Event Notification Sequence Diagrams ..49
7.1.1.1 Enable Event Notification ...49
7.1.2 Integrity Management Sequence Diagrams ..51
7.1.2.1 Load Management: Suspend/resume notification from application..51
7.1.2.2 Load Management: Framework queries load statistics ...51
7.1.2.3 Load Management: Framework callback registration and Application load control52
7.1.2.4 Load Management: Application reports current load condition..53
7.1.2.5 Load Management: Application queries load statistics...54
7.1.2.6 Load Management: Application callback registration and load control..54
7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application55
7.1.2.8 Fault Management: Framework detects a Service failure ...56
7.1.2.9 Fault Management: Application requests a Framework activity test ..57
7.1.3 Service Discovery Sequence Diagrams ..57
7.1.3.1 Service Discovery ...57
7.1.4 Service Agreement Management Sequence Diagrams ...59
7.1.4.1 Service Selection...59
7.2 Class Diagrams...61
7.3 Interface Classes...64
7.3.1 Service Discovery Interface Classes ...64
7.3.1.1 Interface Class IpServiceDiscovery ..64
7.3.1.1.1 Method listServiceTypes() ..64

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 5 3GPP TS 29.198-03 version 6.5.0 Release 6

7.3.1.1.2 Method describeServiceType()..65
7.3.1.1.3 Method discoverService()..65
7.3.1.1.4 Method listSubscribedServices() ...66
7.3.2 Service Agreement Management Interface Classes ..66
7.3.2.1 Interface Class IpAppServiceAgreementManagement ...66
7.3.2.1.1 Method signServiceAgreement()...67
7.3.2.1.2 Method terminateServiceAgreement() ..68
7.3.2.2 Interface Class IpServiceAgreementManagement ..68
7.3.2.2.1 Method signServiceAgreement()...69
7.3.2.2.2 Method terminateServiceAgreement() ..70
7.3.2.2.3 Method selectService() ..71
7.3.2.2.4 Method initiateSignServiceAgreement() ...71
7.3.3 Integrity Management Interface Classes...71
7.3.3.1 Interface Class IpAppFaultManager ...71
7.3.3.1.1 Method activityTestRes() ..72
7.3.3.1.2 Method appActivityTestReq() ...72
7.3.3.1.3 Method <<deprecated>> fwFaultReportInd() ...73
7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd() ...73
7.3.3.1.5 Method <<deprecated>> svcUnavailableInd() ..73
7.3.3.1.6 Method <<deprecated>> genFaultStatsRecordRes()...74
7.3.3.1.7 Method <<deprecated>> fwUnavailableInd() ...74
7.3.3.1.8 Method activityTestErr() ...74
7.3.3.1.9 Method <<deprecated>> genFaultStatsRecordErr()..74
7.3.3.1.10 Method appUnavailableInd()...75
7.3.3.1.11 Method <<deprecated>> genFaultStatsRecordReq() ..75
7.3.3.1.12 Method svcAvailStatusInd()..75
7.3.3.1.13 Method <<new>> generateFaultStatisticsRecordRes() ...76
7.3.3.1.14 Method <<new>> generateFaultStatisticsRecordErr()..76
7.3.3.1.15 Method <<new>> generateFaultStatisticsRecordReq()...76
7.3.3.1.16 Method <<new>> fwAvailStatusInd() ..77
7.3.3.2 Interface Class IpFaultManager ..77
7.3.3.2.1 Method activityTestReq()..78
7.3.3.2.2 Method appActivityTestRes() ...79
7.3.3.2.3 Method svcUnavailableInd() ...79
7.3.3.2.4 Method <<deprecated>> genFaultStatsRecordReq() ..79
7.3.3.2.5 Method appActivityTestErr() ..80
7.3.3.2.6 Method <<deprecated>> appUnavailableInd()..80
7.3.3.2.7 Method <<deprecated>> genFaultStatsRecordRes()...80
7.3.3.2.8 Method <<deprecated>> genFaultStatsRecordErr()..81
7.3.3.2.9 Method appAvailStatusInd() ...81
7.3.3.2.10 Method <<new>> generateFaultStatisticsRecordReq()...81
7.3.3.2.11 Method <<new>> generateFaultStatisticsRecordRes() ...82
7.3.3.2.12 Method <<new>> generateFaultStatisticsRecordErr()..82
7.3.3.3 Interface Class IpAppHeartBeatMgmt..83
7.3.3.3.1 Method enableAppHeartBeat()..83
7.3.3.3.2 Method disableAppHeartBeat()...83
7.3.3.3.3 Method changeInterval() ...83
7.3.3.4 Interface Class IpAppHeartBeat..83
7.3.3.4.1 Method pulse() ..84
7.3.3.5 Interface Class IpHeartBeatMgmt...84
7.3.3.5.1 Method enableHeartBeat() ..84
7.3.3.5.2 Method disableHeartBeat()..85
7.3.3.5.3 Method changeInterval() ...85
7.3.3.6 Interface Class IpHeartBeat ..85
7.3.3.6.1 Method pulse() ..85
7.3.3.7 Interface Class IpAppLoadManager ...86
7.3.3.7.1 Method <<deprecated>> queryAppLoadReq() ...86
7.3.3.7.2 Method <<deprecated>> queryLoadRes()...87
7.3.3.7.3 Method <<deprecated>> queryLoadErr() ...87
7.3.3.7.4 Method loadLevelNotification()..87
7.3.3.7.5 Method resumeNotification() ..87
7.3.3.7.6 Method suspendNotification() ...88

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 6 3GPP TS 29.198-03 version 6.5.0 Release 6

7.3.3.7.7 Method createLoadLevelNotification() ...88
7.3.3.7.8 Method destroyLoadLevelNotification()...88
7.3.3.7.9 Method <<new>> queryAppLoadStatsReq() ..88
7.3.3.7.10 Method <<new>> queryLoadStatsRes() ...88
7.3.3.7.11 Method <<new>> queryLoadStatsErr() ..89
7.3.3.8 Interface Class IpLoadManager ..89
7.3.3.8.1 Method reportLoad() ...90
7.3.3.8.2 Method <<deprecated>> queryLoadReq() ..90
7.3.3.8.3 Method <<deprecated>> queryAppLoadRes()..91
7.3.3.8.4 Method <<deprecated>> queryAppLoadErr()...91
7.3.3.8.5 Method createLoadLevelNotification() ...92
7.3.3.8.6 Method destroyLoadLevelNotification()...92
7.3.3.8.7 Method resumeNotification() ..92
7.3.3.8.8 Method suspendNotification() ...93
7.3.3.8.9 Method <<new>> queryLoadStatsReq() ...93
7.3.3.8.10 Method <<new>> queryAppLoadStatsRes()...94
7.3.3.8.11 Method <<new>> queryAppLoadStatsErr()..94
7.3.3.9 Interface Class IpOAM ...94
7.3.3.9.1 Method systemDateTimeQuery() ..95
7.3.3.10 Interface Class IpAppOAM ..95
7.3.3.10.1 Method systemDateTimeQuery() ..95
7.3.4 Event Notification Interface Classes...96
7.3.4.1 Interface Class IpAppEventNotification ...96
7.3.4.1.1 Method reportNotification() ..96
7.3.4.1.2 Method notificationTerminated() ..96
7.3.4.2 Interface Class IpEventNotification ..97
7.3.4.2.1 Method createNotification() ..97
7.3.4.2.2 Method destroyNotification() ..97
7.4 State Transition Diagrams ..98
7.4.1 Service Discovery State Transition Diagrams ..98
7.4.1.1 State Transition Diagrams for IpServiceDiscovery...98
7.4.1.1.1 Active State ...98
7.4.2 Service Agreement Management State Transition Diagrams ...98
7.4.3 Integrity Management State Transition Diagrams ..98
7.4.3.1 State Transition Diagrams for IpLoadManager...98
7.4.3.1.1 Idle State..99
7.4.3.1.2 Notification Suspended State...99
7.4.3.1.3 Active State ...99
7.4.3.2 State Transition Diagrams for LoadManagerInternal..99
7.4.3.2.1 Normal load State ..100
7.4.3.2.2 Application Overload State ...100
7.4.3.2.3 Internal overload State...100
7.4.3.2.4 Internal and Application Overload State ...100
7.4.3.3 State Transition Diagrams for IpOAM..100
7.4.3.3.1 Active State ...101
7.4.3.4 State Transition Diagrams for IpFaultManager...101
7.4.3.4.1 Framework Active State ..102
7.4.3.4.2 Framework Faulty State...102
7.4.3.4.3 Framework Activity Test State..102
7.4.3.4.4 Service Activity Test State ..102
7.4.4 Event Notification State Transition Diagrams ..102
7.4.4.1 State Transition Diagrams for IpEventNotification ..102

8 Framework-to-Service API ..103
8.1 Sequence Diagrams ..103
8.1.1 Service Discovery Sequence Diagrams ..103
8.1.2 Service Registration Sequence Diagrams ...103
8.1.2.1 New SCF Sub Type Registration ..103
8.1.2.2 New SCF Registration...103
8.1.3 Service Instance Lifecycle Manager Sequence Diagrams ...105
8.1.3.1 Sign Service Agreement..105
8.1.4 Integrity Management Sequence Diagrams ..106

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 7 3GPP TS 29.198-03 version 6.5.0 Release 6

8.1.4.1 Load Management: Service callback registration and load control...106
8.1.4.2 Load Management: Framework callback registration and service load control107
8.1.4.3 Load Management: Client and Service Load Balancing ...108
8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service................................109
8.1.4.5 Fault Management: Service requests Framework activity test ..110
8.1.4.6 Fault Management: Service requests Application activity test ...111
8.1.4.7 Fault Management: Application requests Service activity test ...111
8.1.4.8 Fault Management: Application detects service is unavailable...112
8.1.5 Event Notification Sequence Diagrams ..113
8.2 Class Diagrams...113
8.3 Interface Classes...116
8.3.1 Service Registration Interface Classes..116
8.3.1.1 Interface Class IpFwServiceRegistration ..116
8.3.1.1.1 Method registerService() ...117
8.3.1.1.2 Method announceServiceAvailability()...118
8.3.1.1.3 Method unregisterService() ...119
8.3.1.1.4 Method describeService()..119
8.3.1.1.5 Method unannounceService()..120
8.3.1.1.6 Method <<new>> registerServiceSubType() ..120
8.3.2 Service Instance Lifecycle Manager Interface Classes ..121
8.3.2.1 Interface Class IpServiceInstanceLifecycleManager ..121
8.3.2.1.1 Method createServiceManager() ...121
8.3.2.1.2 Method destroyServiceManager() ...122
8.3.3 Service Discovery Interface Classes ...122
8.3.3.1 Interface Class IpFwServiceDiscovery ...123
8.3.3.1.1 Method listServiceTypes() ..123
8.3.3.1.2 Method describeServiceType()..123
8.3.3.1.3 Method discoverService()..124
8.3.3.1.4 Method listRegisteredServices()..125
8.3.4 Integrity Management Interface Classes...125
8.3.4.1 Interface Class IpFwFaultManager ...125
8.3.4.1.1 Method activityTestReq()..126
8.3.4.1.2 Method svcActivityTestRes()..127
8.3.4.1.3 Method appUnavailableInd()...127
8.3.4.1.4 Method <<deprecated>> genFaultStatsRecordReq() ..127
8.3.4.1.5 Method <<deprecated>> svcUnavailableInd() ..128
8.3.4.1.6 Method svcActivityTestErr()...128
8.3.4.1.7 Method <<deprecated>> genFaultStatsRecordRes()...128
8.3.4.1.8 Method <<deprecated>> genFaultStatsRecordErr()..129
8.3.4.1.9 Method <<deprecated>> generateFaultStatsRecordRes() ...129
8.3.4.1.10 Method <<deprecated>> generateFaultStatsRecordErr()..130
8.3.4.1.11 Method svcAvailStatusInd()..130
8.3.4.1.12 Method <<new>> generateFaultStatisticsRecordReq()...130
8.3.4.1.13 Method <<new>> generateFaultStatisticsRecordRes() ...131
8.3.4.1.14 Method <<new>> generateFaultStatisticsRecordErr()..131
8.3.4.2 Interface Class IpSvcFaultManager ..131
8.3.4.2.1 Method activityTestRes() ..132
8.3.4.2.2 Method svcActivityTestReq() ...133
8.3.4.2.3 Method <<deprecated>> fwFaultReportInd() ...133
8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd() ...133
8.3.4.2.5 Method <<deprecated>> fwUnavailableInd() ...134
8.3.4.2.6 Method svcUnavailableInd() ...134
8.3.4.2.7 Method <<deprecated>> appUnavailableInd()..135
8.3.4.2.8 Method <<deprecated>> genFaultStatsRecordRes()...135
8.3.4.2.9 Method activityTestErr() ...135
8.3.4.2.10 Method <<deprecated>> genFaultStatsRecordErr()..136
8.3.4.2.11 Method <<deprecated>> genFaultStatsRecordReq() ..136
8.3.4.2.12 Method <<deprecated>> generateFaultStatsRecordReq()...137
8.3.4.2.13 Method appAvailStatusInd() ...137
8.3.4.2.14 Method <<new>> generateFaultStatisticsRecordRes() ...137
8.3.4.2.15 Method <<new>> generateFaultStatisticsRecordErr()..138
8.3.4.2.16 Method <<new>> generateFaultStatisticsRecordReq()...138

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 8 3GPP TS 29.198-03 version 6.5.0 Release 6

8.3.4.2.17 Method <<new>> fwAvailStatusInd() ..139
8.3.4.3 Interface Class IpFwHeartBeatMgmt..139
8.3.4.3.1 Method enableHeartBeat() ..139
8.3.4.3.2 Method disableHeartBeat()..140
8.3.4.3.3 Method changeInterval() ...140
8.3.4.4 Interface Class IpFwHeartBeat ...140
8.3.4.4.1 Method pulse() ..141
8.3.4.5 Interface Class IpSvcHeartBeatMgmt...141
8.3.4.5.1 Method enableSvcHeartBeat() ..141
8.3.4.5.2 Method disableSvcHeartBeat()..142
8.3.4.5.3 Method changeInterval() ...142
8.3.4.6 Interface Class IpSvcHeartBeat ..142
8.3.4.6.1 Method pulse() ..142
8.3.4.7 Interface Class IpFwLoadManager ...143
8.3.4.7.1 Method reportLoad() ...144
8.3.4.7.2 Method <<deprecated>> queryLoadReq() ..144
8.3.4.7.3 Method <<deprecated>> querySvcLoadRes()...144
8.3.4.7.4 Method <<deprecated>> querySvcLoadErr()..145
8.3.4.7.5 Method createLoadLevelNotification() ...145
8.3.4.7.6 Method destroyLoadLevelNotification()...146
8.3.4.7.7 Method suspendNotification() ...146
8.3.4.7.8 Method resumeNotification() ..146
8.3.4.7.9 Method <<new>> queryLoadStatsReq() ...147
8.3.4.7.10 Method <<new>> querySvcLoadStatsRes()..147
8.3.4.7.11 Method <<new>> querySvcLoadStatsErr() ..147
8.3.4.8 Interface Class IpSvcLoadManager ..148
8.3.4.8.1 Method <<deprecated>> querySvcLoadReq() ..148
8.3.4.8.2 Method <<deprecated>> queryLoadRes()...149
8.3.4.8.3 Method <<deprecated>> queryLoadErr() ...149
8.3.4.8.4 Method loadLevelNotification()..149
8.3.4.8.5 Method suspendNotification() ...150
8.3.4.8.6 Method resumeNotification() ..150
8.3.4.8.7 Method createLoadLevelNotification() ...150
8.3.4.8.8 Method destroyLoadLevelNotification()...151
8.3.4.8.9 Method <<new>> querySvcLoadStatsReq() ...151
8.3.4.8.10 Method <<new>> queryLoadStatsRes() ...151
8.3.4.8.11 Method <<new>> queryLoadStatsErr() ..152
8.3.4.9 Interface Class IpFwOAM ..152
8.3.4.9.1 Method systemDateTimeQuery() ..152
8.3.4.10 Interface Class IpSvcOAM ...153
8.3.4.10.1 Method systemDateTimeQuery() ..153
8.3.5 Event Notification Interface Classes...153
8.3.5.1 Interface Class IpFwEventNotification ...153
8.3.5.1.1 Method createNotification() ..154
8.3.5.1.2 Method destroyNotification() ..154
8.3.5.2 Interface Class IpSvcEventNotification ..154
8.3.5.2.1 Method reportNotification() ..155
8.3.5.2.2 Method notificationTerminated() ..155
8.4 State Transition Diagrams ..155
8.4.1 Service Registration State Transition Diagrams ...156
8.4.1.1 State Transition Diagrams for IpFwServiceRegistration...156
8.4.1.1.1 SCF Registered State ...156
8.4.1.1.2 SCF Announced State..156
8.4.2 Service Instance Lifecycle Manager State Transition Diagrams ...156
8.4.3 Service Discovery State Transition Diagrams ..157
8.4.4 Integrity Management State Transition Diagrams ..157
8.4.4.1 State Transition Diagrams for IpFwLoadManager..157
8.4.4.1.1 Idle State..157
8.4.4.1.2 Notification Suspended State...157
8.4.4.1.3 Active State ...158
8.4.4.2 State Transition Diagrams for IpFwFaultManager..158
8.4.4.2.1 Framework Active State ..158

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 9 3GPP TS 29.198-03 version 6.5.0 Release 6

8.4.4.2.2 Framework Activity Test State..158
8.4.4.2.3 Application Activity Test State ...158
8.4.4.2.4 Framework Faulty State...158
8.4.5 Event Notification State Transition Diagrams ..159

9 Service Properties...159
9.1 Service Super and Sub Types ...159
9.2 Service Property Types ..159
9.3 General Service Properties ...161
9.3.1 Service Name..162
9.3.2 Service Version...162
9.3.3 Service ID ...162
9.3.4 Service Description...162
9.3.5 Product Name ...162
9.3.6 Product Version ..162
9.3.7 <<deprecated>> Supported Interfaces ..163
9.3.8 Operation Set ..163
9.3.9 Compatible Service...163
9.3.10 Backward Compatibility Level ...164
9.3.11 Migration Required...165
9.3.12 Data Migrated ...165
9.3.13 Migration Date And Time...166

10 Data Definitions ...166
10.1 Common Framework Data Definitions ..167
10.1.1 TpClientAppID ...167
10.1.2 TpClientAppIDList ...167
10.1.3 TpDomainID...167
10.1.4 TpDomainIDType...167
10.1.5 TpEntOpID ...167
10.1.6 TpPropertyName...167
10.1.7 TpPropertyValue...168
10.1.8 TpProperty ..168
10.1.9 TpPropertyList ..168
10.1.10 TpEntOpIDList ...168
10.1.11 TpFwID ..168
10.1.12 TpService..168
10.1.13 TpServiceList..168
10.1.14 TpServiceDescription ...168
10.1.15 TpServiceID..168
10.1.16 TpServiceIDList ...169
10.1.17 TpServiceInstanceID ..169
10.1.18 TpServiceTypeProperty ..169
10.1.19 TpServiceTypePropertyList ..169
10.1.20 TpServiceTypePropertyMode...169
10.1.21 TpServicePropertyTypeName...169
10.1.22 TpServicePropertyName...169
10.1.23 TpServicePropertyNameList...169
10.1.24 TpServicePropertyValue...170
10.1.25 TpServicePropertyValueList...170
10.1.26 TpServiceProperty ..170
10.1.27 TpServicePropertyList ..170
10.1.28 TpServiceSupplierID ..170
10.1.29 TpServiceTypeDescription ...170
10.1.30 TpServiceTypeName ..171
10.1.31 TpServiceTypeNameList ..171
10.1.32 TpSubjectType..171
10.1.33 TpServiceTypePropertyValue...172
10.1.34 TpServiceTypePropertyValueList ..172
10.2 Event Notification Data Definitions ...172
10.2.1 TpFwEventName ..172
10.2.2 TpFwEventCriteria ...173

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 103GPP TS 29.198-03 version 6.5.0 Release 6

10.2.3 TpFwEventInfo...173
10.2.4 TpFwMigrationServiceAvailableInfo...173
10.2.5 TpMigrationAdditionalInfo ..174
10.2.6 TpMigrationAdditionalInfoType ..174
10.2.7 TpMigrationAdditionalInfoSet ...175
10.2.8 TpFwAgreementInfo ..175
10.3 Trust and Security Management Data Definitions ...175
10.3.1 TpAccessType ..175
10.3.2 TpAuthType..175
10.3.3 TpEncryptionCapability..176
10.3.4 TpEncryptionCapabilityList ...176
10.3.5 TpEndAccessProperties ..176
10.3.6 TpAuthDomain ...176
10.3.7 TpInterfaceName ..177
10.3.8 TpInterfaceNameList ..177
10.3.9 TpServiceToken..177
10.3.10 TpSignatureAndServiceMgr ...177
10.3.11 TpSigningAlgorithm...178
10.3.12 TpSigningAlgorithmCapabilityList ..178
10.3.13 TpAuthMechanism ...178
10.3.14 TpAuthMechanismList ...178
10.4 Integrity Management Data Definitions ...178
10.4.1 TpActivityTestRes ..178
10.4.2 TpFaultStatsRecord ..179
10.4.3 TpFaultStats ..179
10.4.4 TpFaultStatisticsError...179
10.4.5 TpFaultStatsSet...179
10.4.6 TpActivityTestID..179
10.4.7 TpInterfaceFault ...179
10.4.8 TpSvcUnavailReason..180
10.4.9 TpFwUnavailReason ..180
10.4.10 TpLoadLevel...180
10.4.11 TpLoadThreshold ...180
10.4.12 TpLoadInitVal ..180
10.4.13 TpLoadPolicy ...181
10.4.14 TpLoadStatistic...181
10.4.15 TpLoadStatisticList...181
10.4.16 TpLoadStatisticData ...181
10.4.17 TpLoadStatisticEntityID...181
10.4.18 TpLoadStatisticEntityType ...182
10.4.19 TpLoadStatisticInfo ..182
10.4.20 TpLoadStatisticInfoType ..182
10.4.21 TpLoadStatisticError ..182
10.4.22 TpSvcAvailStatusReason..182
10.4.23 TpAppAvailStatusReason...183
10.4.24 TpLoadTestID...183
10.4.25 TpFaultStatsErrorList ...183
10.4.26 TpFaultReqID...183
10.4.27 TpFwAvailStatusReason ..184
10.5 Service Subscription Data Definitions ...184
10.5.1 TpPropertyName...184
10.5.2 TpPropertyValue...184
10.5.3 TpProperty ..184
10.5.4 TpPropertyList ..184
10.5.5 TpEntOpProperties ...184
10.5.6 TpEntOp ...185
10.5.7 TpServiceContractID ..185
10.5.8 TpServiceContractIDList..185
10.5.9 TpPersonName ...185
10.5.10 TpPostalAddress ...185
10.5.11 TpTelephoneNumber ..185
10.5.12 TpEmail ..185

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 113GPP TS 29.198-03 version 6.5.0 Release 6

10.5.13 TpHomePage ..185
10.5.14 TpPersonProperties...185
10.5.15 TpPerson...186
10.5.16 TpServiceStartDate...186
10.5.17 TpServiceEndDate ..186
10.5.18 TpServiceRequestor..186
10.5.19 TpBillingContact ..186
10.5.20 TpServiceSubscriptionProperties..186
10.5.21 TpServiceContract ..186
10.5.22 TpServiceContractDescription..187
10.5.23 TpClientAppProperties ...187
10.5.24 TpClientAppDescription...187
10.5.25 TpSagID..187
10.5.26 TpSagIDList ...187
10.5.27 TpSagDescription ...188
10.5.28 TpSag..188
10.5.29 TpServiceProfileID...188
10.5.30 TpServiceProfileIDList...188
10.5.31 TpServiceProfile ...188
10.5.32 TpServiceProfileDescription...188
10.5.33 TpSagProfilePair...189
10.5.34 TpAddSagMembersConflict ...189
10.5.35 TpAddSagMembersConflictList...189
10.5.36 TpAssignSagToServiceProfileConflict...189
10.5.37 TpAssignSagToServiceProfileConflictList ..190

11 Exception Classes...191

Annex A (normative): OMG IDL Description of Framework ...192

Annex B (informative): W3C WSDL Description of Framework..193

Annex C (informative): Java™ API Description of the Framework...194

Annex D (informative): Description of the Framework for 3GPP2 cdma2000 networks..............195

D.1 General Exceptions...195

D.2 Specific Exceptions ..195
D.2.1 Clause 1: Scope ..195
D.2.2 Clause 2: References ..195
D.2.3 Clause 3: Definitions and abbreviations ...195
D.2.4 Clause 4: Overview of the Framework...195
D.2.5 Clause 5: The Base Interface Specification ..195
D.2.6 Clause 6: Framework Access Session API...196
D.2.7 Clause 7 Framework-to-Application Sequence Diagrams..196
D.2.8 Clause 8: Framework-to-Service API...196
D.2.9 Clause 9: Service Properties...196
D.2.10 Clause 10: Data Definitions..196
D.2.11 Clause 11: Exception Classes...196
D.2.12 Annex A (normative): OMG IDL Description of the Framework..196
D.2.13 Annex B (informative): W3C WSDL Description of the Framework..196
D.2.14 Annex C (informative): Java™ API Description of the Framework ..196

Annex E (informative): Change history ...197

History ..200

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 123GPP TS 29.198-03 version 6.5.0 Release 6

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
The present document is part 3 of a multi-part TS covering the 3rd Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";
Part 2: "Common Data Definitions";
Part 3: "Framework";
Part 4: "Call Control";
 Sub-part 1: "Call Control Common Definitions";
 Sub-part 2: "Generic Call Control SCF";
 Sub-part 3: "Multi-Party Call Control SCF";
 Sub-part 4: "Multi-Media Call Control SCF";
 Sub-part 5: "Conference Call Control SCF"; (not part of 3GPP Release 6)
Part 5: "User Interaction SCF";
Part 6: "Mobility SCF";
Part 7: "Terminal Capabilities SCF";
Part 8: "Data Session Control SCF";
Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 6)
Part 10: "Connectivity Manager SCF"; (not part of 3GPP Release 6)
Part 11: "Account Management SCF";
Part 12: "Charging SCF".
Part 13: "Policy Management SCF";
Part 14: "Presence and Availability Management SCF";
Part 15: "Multi Media Messaging SCF".

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 133GPP TS 29.198-03 version 6.5.0 Release 6

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-01 Overview 29.998-01 Overview
29.198-02 Common Data Definitions 29.998-02 Not Applicable
29.198-03 Framework 29.998-03 Not Applicable

29.998-04-1 Generic Call Control – CAP mapping
29.998-04-2 Generic Call Control – INAP mapping
29.998-04-3 Generic Call Control – Megaco mapping

Call
Control
(CC)
SCF

29.198-
04-1
Common
CC data
definitions

29.198-
04-2
Generic
CC SCF

29.198-
04-3
Multi-
Party CC
SCF

29.198-
04-4
Multi-
media CC
SCF

29.998-04-4 Multiparty Call Control – ISC mapping

29.998-05-1 User Interaction – CAP mapping
29.998-05-2 User Interaction – INAP mapping
29.998-05-3 User Interaction – Megaco mapping

29.198-05 User Interaction SCF

29.998-05-4 User Interaction – SMS mapping
29.198-06 Mobility SCF 29.998-06 User Status and User Location – MAP mapping
29.198-07 Terminal Capabilities SCF 29.998-07 Not Applicable
29.198-08 Data Session Control SCF 29.998-08 Data Session Control – CAP mapping
29.198-09 Generic Messaging SCF 29.998-09 Not Applicable
29.198-10 Connectivity Manager SCF 29.998-10 Not Applicable
29.198-11 Account Management SCF 29.998-11 Not Applicable
29.198-12 Charging SCF 29.998-12 Not Applicable
29.198-13 Policy Management SCF 29.998-13 Not Applicable
29.198-14 Presence & Availability Management SCF 29.998-14 Not Applicable
29.198-15 Multi Media Messaging SCF 29.998-15 Not Applicable

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 143GPP TS 29.198-03 version 6.5.0 Release 6

1 Scope
The present document is Part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA
are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

• Sequence Diagrams;

• Class Diagrams;

• Interface specification plus detailed method descriptions;

• State Transition diagrams;

• Data definitions;

• IDL Description of the interfaces.

• WSDL Description of the interfaces

• Reference to the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT WG5, ETSI TISPAN and The Parlay Group, in co-
operation with a number of JAIN™ Community member companies.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA); Stage 1".

[3] 3GPP TS 23.127: "Virtual Home Environment (VHE) / Open Service Access (OSA); Stage 2".

[4] IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996].

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 153GPP TS 29.198-03 version 6.5.0 Release 6

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Overview of the Framework
This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, and between Network
Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circles in the figure
below). The description of the Framework in the present document separates the interfaces into two distinct sets:
Framework to Application interfaces and Framework to Service interfaces.

Figure:

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. It is a policy
decision for the application whether it must authenticate the framework or not. It is a policy decision for the
framework whether it allows an application to authenticate it before it has completed its authentication of the
application.

Registered Services

Client Application

Framework
Call

Control
Mobility UI

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 163GPP TS 29.198-03 version 6.5.0 Release 6

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication shall precede
authorisation. Once authenticated, an application is authorised to access certain SCFs.

- Discovery of Framework and network SCFs: After successful authentication, applications can obtain available
Framework interfaces and use the discovery interface to obtain information on authorised network SCFs.
The Discovery interface can be used at any time after successful authentication.

- Establishment of service agreement: Before any application can interact with a network SCF, a service
agreement shall be established. A service agreement may consist of an off-line (e.g. by physically exchanging
documents) and an on-line part. The application has to sign the on-line part of the service agreement before it is
allowed to access any network SCF.

- Access to network SCFs: The Framework shall provide access control functions to authorise the access to SCFs
or service data for any API method from an application, with the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server (SCS):

- Registering of network SCFs:. SCFs offered by a SCS can be registered at the Framework. In this way the
Framework can inform the Applications upon request about available SCFs (Discovery). For example, this
mechanism is applied when installing or upgrading an SCS.

The following clauses describe each aspect of the Framework in the following order:

• The sequence diagrams give the reader a practical idea of how the Framework is implemented.

• The class diagrams clause shows how each of the interfaces applicable to the Framework relate to one another.

• The interface specification clause describes in detail each of the interfaces shown within the class diagram part.

• The State Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

• The data definitions clause shows a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
common data types part of the present document (29.198-2).

An implementation of this API which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Framework or Service interface, the
exception P_METHOD_NOT_SUPPORTED shall be returned to any call of that method. Where a method is not
supported by an implementation of an Application interface, a call to that method shall be possible, and no exception
shall be returned.

5 The Base Interface Specification

5.1 Interface Specification Format
This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name Ip<name>.
The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>,
while the Framework interfaces are denoted by classes with name IpFw<name>.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 173GPP TS 29.198-03 version 6.5.0 Release 6

5.1.2 Method descriptions

Each method (API method 'call') is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant IpApp<name> or
IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

5.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 183GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

5.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

5.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 193GPP TS 29.198-03 version 6.5.0 Release 6

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that this is a Framework interface reference, but it is to initiate the authentication process
with the Framework. The Initial Contact interface supports the initiateAuthenticationWithVersion and the deprecated
initiateAuthentication methods to allow the authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs.
This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces
provided by the Framework.

Cl ient : IpInitial : IpAPILevelAuthent ication Framework : IpAccess :
IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)

2: selectAuthenticationMechanism()

3: challenge()

5: challenge()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

7: requestAccess()

1: Initiate Authentication

The client invokes initiateAuthenticationWithVersion on the Framework's "public" (initial contact) interface to initiate
the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a
reference to its authentication interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 203GPP TS 29.198-03 version 6.5.0 Release 6

2: Select Authentication Mechanism

The client invokes selectAuthenticationMechanism on the Framework's API Level Authentication interface, identifying
the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be
used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be
supported. Note however that the framework need not accept this algorithm.

3: The client authenticates the Framework, issuing a challenge in the challenge() method.

4: The client provides an indication if authentication succeeded.

5: The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations
of the challenge method on the client's API Level Authentication interface. In each invocation, the Framework supplies
a challenge and the client returns the correct response. The Framework could authenticate the client before the client
authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the
client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any
challenge issued by the client until the Framework has successfully authenticated the client.

6: The Framework provides an indication if authentication succeeded.

7: Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the
Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The
Framework returns a reference to a framework Access interface that is unique for this client. The success or failure of
the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8: The client and framework negotiate the signing algorithm to be used for any signed exchanges.

9: The client invokes obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used
to obtain a reference to a framework interface that supports the required framework functionality, such as service
discovery, integrity management, service subscription etc.

6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of all service
instances. This type of termination is unusual, but possible with the terminateAccess method. Note that if at any point
the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication
failing, the framework should terminate all outstanding service agreements for that client, and should take steps to
terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally
accepted security model where the framework has decided that it can no longer trust the client and will therefore sever
ALL contact with it.

AppLogic :
IpC li en tAccess

 :
IpAppServiceAgreementManagement

 : IpAccess :
I pS erviceAg reem en tMa na ge m en t

 : IpMul tiPartyCal lContro lManager : IpUserLocationCamel

1: sig nS ervic eAg reem ent()

2: sig nS ervic eAg reem ent()

3: cre ateNoti fi catio n()

4: triggeredLocationReportingStartReq()

5: term inateAccess()

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 213GPP TS 29.198-03 version 6.5.0 Release 6

1: Following successful authentication and service discovery, the client initiates the service agreement signing process
(not shown). This is completed when the client invokes signServiceAgreement on the Framework's
IpServiceAgreementManagement interface, and a reference to an instance of a service manager interface is returned.

2: The client (application) had initiated service agreement signing process for a second service agreement (not shown),
and when the client signs this second service agreement, a reference to an instance of another service manager, for
another service type, is returned.

3: The application starts to use the new service manager interface.

4: The application starts to use the other new service manager interface.

5: The framework decides to terminate the application's access session, and to terminate all its service agreements.
This is an unusual and drastic step, but could be e.g. due to violation or expiry of the application's service agreements,
or some problem within the framework itself. The framework will also destroy each of the service managers the
application was using (not shown). The application is now no longer authenticated with the framework, and all
Framework and service interfaces it was using are destroyed.

6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of all service instances. This
type of termination is unusual, but possible with the terminateAccess method.

App Logic :
IpClientAccess

 : IpAc cess :
IpMultiPartyCallControlManager

 :
IpUserLocationCamel

1: destroyNotification()

2: triggeredLocationReportingStop()

3: terminateAccess()

1: The application terminates its use of the multi-party call control service manager in a controlled manner.

2: The application ceases to use the user location camel SCF.

3: The application decides to terminate its access session and all its service agreements in one go. The framework will
also destroy each of the service managers the application was using (not shown). The application is now no longer
authenticated with the framework, and all Framework and service interfaces it was using are destroyed. The
application could have terminated its service agreements one by one, by invoking terminateServiceAgreement on the
Framework's IpServiceAgreementManager interface, and then invoked terminateAccess on the Framework's IpAccess
interface, which would have been a more controlled shutdown.

6.1.1.4 Non-API level Authentication

The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have
mutually authenticated one another using an underlying distribution technology mechanism, or the client and the
framework recognise each other as a trusted party, not requiring authentication.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 223GPP TS 29.198-03 version 6.5.0 Release 6

Client : IpIni tial Framework : IpAuthentication : IpAccess

initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)

2: requestAccess()

4: obtainInterface()

Underlying Distribution Technology Mechanism is used for application
identification and authentication, or both the client and the Framework
recognise each other as trusted parties not requiring API level
authentication. There is no requirement as to when authentication should
take place using the Underlying Distribution Technology Mechanism:
before initiateAuthenticationWithVersion is invoked, after requestAccess is
invoked, or between the two.

3: selectSigningAlgorithm()

1: The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. In this case, the client selects to use the underlying distribution technology
mechanism for identification and authentication. What that mechanism is, if it even exists, is outside the scope of the
API.

2: The client invokes the requestAccess method on the Framework's Authentication interface. This returns a reference
to the framework Access interface that is unique for the client.

3: If the authentication was successful, the client and the framework can negotiate, on the framework's Access
interface, the signing algorithm to be used for any signed exchanges.

4: The client can now invoke obtainInterface or obtainInterfaceWithCallback on the framework's Access interface.
This is used to obtain a reference to a framework interface such as service discovery, integrity management, service
subscription etc.

6.1.1.5 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 233GPP TS 29.198-03 version 6.5.0 Release 6

1) The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthenticationWithVersion method can be used to specify the specific
process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can
be used to perform the authentication process. The initiateAuthenticationWithVersion method allows the client to pass a
reference to its own authentication interface to the Framework, and receive a reference to the authentication interface
preferred by the client, in return. In this case the API Level Authentication interface.

2) The client invokes the selectAuthenticationMechanism on the Framework's API Level Authentication interface. This
includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the
capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the
Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication
mechanism of the client may not fulfil the demands of the Framework, in which case, the authentication will fail, for
example CHAP prescribes the MD5 hashing algorithm as the minimum to be supported, however the framework need
not accept this algorithm.

3) The application and Framework interact to authenticate each other by using the challenge method. For an
authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response
exchanges. This authentication protocol is performed using the challenge method on the API Level Authentication
interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There are in fact
two authentication processes: authentication of the client performed by the Framework , and authentication of the
Framework performed by the client. Mutual authentication is achieved by both these processes terminating
successfully. Mutual authentication may not necessarily be required, i.e. it could be that a client may not need to
authenticate the Framework. There is also no required order for the execution of these two authentication processes,
however, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not
respond to any challenge issued by the client until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

 : IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

1: initiateAuthenticationWithVersion(cl ientDomain, authT ype, frameworkVersion)

2: selectAuthenticationMechanism()

3: challenge()

4: chal lenge()

5: challenge()

7: chal lenge()

IpC lientA PI Level Au the nti ca ti on
ref erence i s passed t o f rame work
and IpAP IL evel Auth entication
ref erence i s returned.

This is an example of the
sequence of
authentication
operations. Di fferent
authentication protocols
may have di fferent
requirements on the
order of operations.

IpCl ientA ccess reference is
passed to Fram ework, and
IpA ccess referen ce is
returned.

9: requestAccess()

6: authenticationSucceeded()

8: authenticationSucceeded()

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 243GPP TS 29.198-03 version 6.5.0 Release 6

6.2 Class Diagrams

IpInitial

<<deprec ated>> init iateAuthentication()
ini tiateAuthent icationWithVersion()

(from Framework interfaces)

<<Interface>> IpAccess

obtainInterface()
obtainInterfaceWithCal lback()
<<deprec ated>> endAccess()
listInterfaces()
<<deprec ated>> releaseInterface()
selectS igningAlgorit hm()
terminateAccess()
rel inquishInterface()

(from Fram ework interfaces)

<<Interface>>
IpAP ILevelAuthentication

<<deprecated>> selectEncryptionMethod()
<<deprecated>> authenticate()
abortAuthentication()
authenticationSucceeded()
selectAuthenticationMechanism()
challenge()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(f ro m Cl ie nt i nterfaces)

<<Interface>>
IpClientAPILevelAuthentication

<<deprecated>> authentic ate()
abortAuthentication()
authent icationS ucceeded()
challenge()

(from Cl ient interfaces)

<<Interface>>

<<uses>>

<<uses>>

IpAuthenticat ion

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes

The Trust and Security Management Interfaces provide:

- the first point of contact for a client to access a Framework provider;

- the authentication methods for the client and Framework provider to perform an authentication protocol;

- the client with the ability to select a service capability feature to make use of;

- the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;

2) Authentication;

3) Access to Framework and Service Capability Features.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 253GPP TS 29.198-03 version 6.5.0 Release 6

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: IpInterface.

If the IpClientAPILevelAuthentication interface is implemented by a client, authenticate(), challenge(),
abortAuthentication() and authenticationSucceeded() methods shall be implemented.

<<Interface>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.1 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the deprecated method
initiateAuthentication() is used on the IpInitial interface instead of initiateAuthenticationWithVersion(). This method
will be removed in a later release of the specification.

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The authentication of the client
is deemed successful when the authenticationSucceeded method is invoked by the Framework.

The invocation of this method may be interleaved with authenticate() calls by the client on the
IpAPILevelAuthentication interface. The client shall respond immediately to authentication challenges from the
Framework, and not wait until the Framework has responded to any challenge the client may issue.

Returns <response> : This is the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol in RFC 1994.
The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

Returns

TpOctetSet

6.3.1.1.2 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework.
This method is invoked if the framework wishes to abort the authentication process before it has been authenticated by
the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client
should occur.) Calls to this method after the Framework has been authenticated by the client shall not result in an

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 263GPP TS 29.198-03 version 6.5.0 Release 6

immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again,
however).

Parameters
No Parameters were identified for this method.

6.3.1.1.3 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may
invoke requestAccess on the Framework's APILevelAuthentication interface following invocation of this method.

Parameters
No Parameters were identified for this method.

6.3.1.1.4 Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to
the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The
authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the
Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevelAuthentication
interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the
Framework has responded to any challenge the client may issue.

This method shall only be used when the method initiateAuthenticationWithVersion() is used on the IpInitial interface.

Returns <response> : This is the response of the client application to the challenge of the framework in the current
sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete
CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the
designated hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an
octet set consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value.
The Name field of the CHAP Response packet must be present and contain a valid value in order for the CHAP
Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP
Challenge

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4. Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value

Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original
challenge value

3. Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4. Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP
Response. A match indicates successful authentication.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 273GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

Steps for constructing the challenge octet set:

1. Create a random challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in
the Value field within the CHAP Challenge.

Returns

TpOctetSet

6.3.1.2 Interface Class IpClientAccess

Inherits from: IpInterface.

IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access
session. This interface and the terminateAccess() method shall be implemented by a client.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpOctetSet) : void

6.3.1.2.1 Method terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. The framework shall also identify and terminate all remaining service instances that apply as a
result of the client access termination. If at any point the framework's level of confidence in the identity of the client
becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service
agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking
terminateAccess() on the client. This follows a generally accepted security model where the framework has decided
that it can no longer trust the client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 283GPP TS 29.198-03 version 6.5.0 Release 6

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown
to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The framework uses this to confirm its identity to the client. The client
can check that the terminationText has been signed by the framework. If a match is made, the access session is
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE

6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.

The Initial Framework interface is used by the client to initiate the authentication with the Framework. This interface
shall be implemented by a Framework. The initiateAuthentication() and the initiateAuthenticationWithVersion()
methods shall be implemented.

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) :
TpAuthDomain

initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType,
frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of the present
document.

This method is invoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication
interface of the framework.
 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 293GPP TS 29.198-03 version 6.5.0 Release 6

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is
defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the authentication interface.

 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator
(i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the
framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together as independent sessions under the same TpClientAppID.

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If
P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type
IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.

Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE

6.3.1.3.2 Method initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method using the new method with support for backward compatibility in the framework. The
returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework
response. If the Framework cannot work with the proposed framework version the framework returns an error code
(P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication
interface of the framework.
 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 303GPP TS 29.198-03 version 6.5.0 Release 6

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for each
requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to
authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the
authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the authentication interface.

 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator
(i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the
framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together as independent sessions under the same TpClientAppID.

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If
P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type
IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the
version number. Valid version numbers are defined in the respective framework specification.

Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE, P_INVALID_VERSION

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 313GPP TS 29.198-03 version 6.5.0 Release 6

6.3.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The authentication process should in this case be done with some underlying distribution technology
authentication mechanism, e.g. CORBA Security.
 At least one of IpAuthentication or IpAPILevelAuthentication interfaces shall be implemented by a Framework as a
minimum requirement. The requestAccess() method shall be implemented in each.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef

6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the
IpAuthentication or IpAPILevelAuthentication interface. This allows the client to request the type of access they
require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define
their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code
(P_ACCESS_DENIED) is returned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not
being used, since there is no indication to the client at API level that it is authenticated with the Framework.

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework.
The access reference provided is unique to the requesting client.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.

clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not
of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE,
P_INVALID_INTERFACE_TYPE

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 323GPP TS 29.198-03 version 6.5.0 Release 6

6.3.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used
to initiate the authentication process.
 If the IpAPILevelAuthentication interface is implemented by a Framework, then selectEncryptionMethod(),
selectAuthenticationMechanism(), authenticate(), challenge(), abortAuthentication() and authenticationSucceeded ()
shall be implemented. IpAPILevelAuthentication inherits the requirements of IpAuthentication, therefore
requestAccess() shall be implemented.

<<Interface>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) :
TpEncryptionCapability

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()

This method is deprecated and replaced by selectAuthenticationMechanism(). It shall only be used when the
IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of
initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This
should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the
client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework
for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the
client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the client are conveyed to the framework.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 333GPP TS 29.198-03 version 6.5.0 Release 6

Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P_ACCESS_DENIED,
P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

6.3.1.5.2 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevelAuthentication
interface is obtained by using the deprecated method initiateAuthentication() instead of
initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The domainID received in the initiateAuthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is
deemed successful when the authenticationSucceeded method is invoked by the client.

The invocation of this method may be interleaved with authenticate() calls by the framework on the client's
APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.5.3 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This
method is invoked if the client no longer wishes to continue the authentication process, (unless the framework
responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this
method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess
operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been
properly authenticated. If this method is invoked after the client has been authenticated by the Framework, it shall not
result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client
again, however).

Parameters
No Parameters were identified for this method.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 343GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.5.4 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method
have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful
authentication of the client.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.5.5 Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of
API level Authentication. The Framework will select one of the suggested authentication mechanisms and that
mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a
result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is
re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be
found, the framework throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using
initiateAuthenticationWithVersion() on the IpInitial interface.

Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism
shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList : in TpAuthMechanismList

The list of authentication mechanisms supported by the client.

Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS_DENIED,
P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM

6.3.1.5.6 Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct
responses to the challenges presented by the client. The domainID received in the initiateAuthenticationWithVersion()
can be used by the framework to reference the correct public key for the client (the key management system is currently
outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The
authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the
client.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 353GPP TS 29.198-03 version 6.5.0 Release 6

The invocation of this method may be interleaved with challenge() calls by the framework on the client's
APILevelAuthentication interface.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using
initiateAuthenticationWithVersion() on the IpInitial interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The
formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP
Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated
hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an octet set
consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value. The Name
field of the CHAP Response packet must be present and contain a valid value in order for the CHAP Response to be
valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP
Challenge

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4. Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value

Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original
challenge value

3. Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4. Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP
Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

Steps for constructing the challenge octet set:

1. Create a random challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in
the Value field within the CHAP Challenge.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 363GPP TS 29.198-03 version 6.5.0 Release 6

Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.6 Interface Class IpAccess

Inherits from: IpInterface.

This interface shall be implemented by a Framework. As a minimum requirement the obtainInterface() and
obtainInterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

<<Interface>>

IpAccess

obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) :
IpInterfaceRef

<<deprecated>> endAccess (endAccessProperties : in TpEndAccessProperties) : void

listInterfaces () : TpInterfaceNameList

<<deprecated>> releaseInterface (interfaceName : in TpInterfaceName) : void

selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : TpSigningAlgorithm

terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString, digitalSignature : in
TpOctetSet) : void

6.3.1.6.1 Method obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 373GPP TS 29.198-03 version 6.5.0 Release 6

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME

6.3.1.6.2 Method obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface
method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainInterface method should be used when no callback interface needs to be
supplied.) If the interface reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME,
P_INVALID_INTERFACE_TYPE

6.3.1.6.3 Method <<deprecated>> endAccess()

This method is deprecated and will be removed in a later release. It is replaced with terminateAccess. The endAccess
operation is used by the client to request that its access session with the framework is ended. After it is invoked, the
client will no longer be authenticated with the framework. The client will not be able to use the references to any of the
framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session
(e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 383GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_PROPERTY

6.3.1.6.4 Method listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework
makes available.

Parameters
No Parameters were identified for this method.

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.6.5 Method <<deprecated>> releaseInterface()

This method is deprecated and will be removed in a later release. It is replaced with relinquishInterface. The client
uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework
throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME

6.3.1.6.6 Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for use in all cases
where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall
be the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method
remains valid for an instance of IpAccess and until this method is re-invoked by the client.

Subsequent invocations of selectSigningAlgorithm() may change the signing algorithm used during the access session.
However, once signServiceAgreement() has been called on the client by the framework, the signing algorithm currently
selected must be used for the client's invocation of signServiceAgreement() on the Framework as well as for subsequent
calls to terminateServiceAgreement(). Other operations requiring digital signatures will use the latest algorithm
specified by selectSigningAlgorithm().

If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework
throws the P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 393GPP TS 29.198-03 version 6.5.0 Release 6

Returns: selectedAlgorithm. This is the signing algorithm chosen by the Framework. The chosen algorithm shall be
taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList

The list of signing algorithms supported by the client.

Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM

6.3.1.6.7 Method terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After
it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the
references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.
Also, all remaining service instances created by the framework either directly in this access session or on behalf of the
client during this access session shall be terminated.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm its identity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SIGNATURE

6.3.1.6.8 Method relinquishInterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework
throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

terminationText : in TpString

This is the termination text describes the reason for the release of the interface. This text is required simply because the
digitalSignature parameter requires a terminationText to sign.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 403GPP TS 29.198-03 version 6.5.0 Release 6

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm its identity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the interface is released, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME

6.4 State Transition Diagrams
This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitial

Active

initiateAuthentication / return new IpAuthe
ini tiat eAuthent ic ationWithVersion / return

IpAuthentication

Figure : State Transition Diagram for IpInitial

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 413GPP TS 29.198-03 version 6.5.0 Release 6

Idle

IpInitial.initiateAuthentication

Authent icating
Framework

selectEncryptionMethod

authenticate / Client
challenges FW

selectE ncryptionM ethod

FW Aborts
ÎpClientAPILevelA uthenticat ion.

abortAuthentication

Framework
Authenticated

authenticationSucceeded / Client satisfied
with FW response

selectEncryptionMethod

authenticate / Client
re-authenticates FW

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework using deprecated
initiateAuthentication() and authenticate() method combination

6.4.1.2.1 Idle State

When the client has invoked the IpInitial initiateAuthentication or the initiateAuthenticationWithVersion method, an
object implementing the IpAPILevelAuthentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used
initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using
selectAuthenticationMechanism.

6.4.1.2.2 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationMechanism
followed by selectAuthenticationMechanism. The Framework may either buffer the requests and respond when the
client has been authenticated, or respond immediately, depending on policy. When the client has processed the
response from the authenticate request on the Framework, the response is analysed. If the response is valid but the
authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If
the response is valid and the authentication process has been completed, then a transition to the state Framework

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 423GPP TS 29.198-03 version 6.5.0 Release 6

Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time
the Framework may abort the authentication process by calling abortAuthentication on the client's
APILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.3 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the
initiateAuthentication method on IpInitial, or by calling the challenge method if it had previously used the
initiateAuthenticationWithVersion method on IpInitial, resulting in a transition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call
selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionMethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used
selectAuthenticationMechanism followed by selectAuthenticationMechanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the response is valid but the
authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the
response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is
made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's
IpAPILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.5 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateAuthenticationWithVersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 433GPP TS 29.198-03 version 6.5.0 Release 6

Idle

IpInitial.initiateAuthenticationWithVersion

Authenticating
Framework

FW Aborts
ÎpClientAP ILevelAuthentication.abortAuthentication

selectAuthenticationMec hanis m

challenge / Client
challenges FW

selectAuthenticationMechanism

Framework
Authenticated

FW Aborts
^IpClientAP ILevelAuthent ic ation.

abortAuthentication

authent icationS ucceeded / Client
satisfied with FW response

selectAuthenticationMechanism

challenge / Client
re-challenges Framework

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.6 Idle State

When the client has invoked the IpInitial initiateAuthentication or the initiateAuthenticationWithVersion method, an
object implementing the IpAPILevelAuthentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used
initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using
selectAuthenticationMechanism.

6.4.1.2.7 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationMechanism
followed by selectAuthenticationMechanism. The Framework may either buffer the requests and respond when the
client has been authenticated, or respond immediately, depending on policy. When the client has processed the
response from the authenticate request on the Framework, the response is analysed. If the response is valid but the
authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If
the response is valid and the authentication process has been completed, then a transition to the state Framework
Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time
the Framework may abort the authentication process by calling abortAuthentication on the client's

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 443GPP TS 29.198-03 version 6.5.0 Release 6

APILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.8 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the
initiateAuthentication method on IpInitial, or by calling the challenge method if it had previously used the
initiateAuthenticationWithVersion method on IpInitial, resulting in a transition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call
selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.9 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionMethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used
selectAuthenticationMechanism followed by selectAuthenticationMechanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the response is valid but the
authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the
response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is
made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's
IpAPILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.10 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateAuthenticationWithVersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 453GPP TS 29.198-03 version 6.5.0 Release 6

Idle

IpInitial.initiateAuthentication

requestA ccess
^P_ACCESS_DENIED

Authenticating
Client

se lectE ncryptionM ethod

requestAccess
^P_ACCESS_DENIED

selectEncryptionMethod

FW challenges Client
ÎpClientAPILevelAuthentication.authenticate

abortAuthentication /
Client Aborts

Invalid Client Response

Client
Authent icated

FW satisfied with Client response
ÎpClientAPILevelA uthenticat ion.authent icat ionSucceeded

requestAccess / new IpAccess

selectEncryptionMethod

FW re-authenticates Client
ÎpClientAPILevelAuthentication.authenticate

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client using deprecated
initiateAuthentication() and authenticate() method combination

6.4.1.2.11 Idle State

When the client has invoked the IpInitial initiateAuthentication or the initiateAuthenticationWithVersion method, an
object implementing the IpAPILevelAuthentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used
initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using
selectAuthenticationMechanism.

6.4.1.2.12 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationMechanism
followed by selectAuthenticationMechanism. The Framework may either buffer the requests and respond when the
client has been authenticated, or respond immediately, depending on policy. When the client has processed the
response from the authenticate request on the Framework, the response is analysed. If the response is valid but the
authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If
the response is valid and the authentication process has been completed, then a transition to the state Framework
Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time
the Framework may abort the authentication process by calling abortAuthentication on the client's
APILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.13 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the
initiateAuthentication method on IpInitial, or by calling the challenge method if it had previously used the

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 463GPP TS 29.198-03 version 6.5.0 Release 6

initiateAuthenticationWithVersion method on IpInitial, resulting in a transition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call
selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.14 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionMethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used
selectAuthenticationMechanism followed by selectAuthenticationMechanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the response is valid but the
authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the
response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is
made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's
IpAPILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.15 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateAuthenticationWithVersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 473GPP TS 29.198-03 version 6.5.0 Release 6

Idle

requestAccess
^P_ACCESS_DENIED

IpInitial.initiateA uthenticationWithVersion

Authenticating
Client

reques tA ccess
^P_ACCESS_DENIED

selectA uthenticationMechanism

selectAuthenticationMechanism

FW challenges Client
ÎpClientAPILevelAuthentication.challenge

Invalid Client Response

abortAuthentic ation
/ Client Aborts

Client
Authenticated

FW satisfied with Client response
ÎpClientAPILevelAuthentication.authenticationSucceeded

requestAccess / new IpAccess

selectAuthenticationMechanism
FW re-c hallenges Client

ÎpClientAPILevelAuthentication.challenge

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.16 Idle State

When the client has invoked the IpInitial initiateAuthentication or the initiateAuthenticationWithVersion method, an
object implementing the IpAPILevelAuthentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used
initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using
selectAuthenticationMechanism.

6.4.1.2.17 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationMechanism
followed by selectAuthenticationMechanism. The Framework may either buffer the requests and respond when the
client has been authenticated, or respond immediately, depending on policy. When the client has processed the
response from the authenticate request on the Framework, the response is analysed. If the response is valid but the
authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If
the response is valid and the authentication process has been completed, then a transition to the state Framework
Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time
the Framework may abort the authentication process by calling abortAuthentication on the client's
APILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 483GPP TS 29.198-03 version 6.5.0 Release 6

6.4.1.2.18 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the
initiateAuthentication method on IpInitial, or by calling the challenge method if it had previously used the
initiateAuthenticationWithVersion method on IpInitial, resulting in a transition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call
selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.19 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionMethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used
selectAuthenticationMechanism followed by selectAuthenticationMechanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the response is valid but the
authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the
response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is
made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's
IpAPILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.20 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateAuthenticationWithVersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.3 State Transition Diagrams for IpAccess

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 493GPP TS 29.198-03 version 6.5.0 Release 6

Active

IpAuthent ication.requestAcces s

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW in

application initiated access terminatio
terminateAccess / destroy all interface objects use

network operator initiated acces s term in
 / destroy all interface objects used by the

 ÎpClientAccess.terminateAccess

listInterfaces
selectS igningAlgorithm

rel inquishInterface

Figure : State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the IpAuthentication (IpAPILevelAuthentication) interface, an
object implementing the IpAccess interface is created. The client can now request other Framework interfaces,
including Service Discovery, Integrity Management, Service Subscription etc., and if at any point these framework
interfaces are no longer required, to relinquish these. In addition the client can select the signing algorithm that shall be
used during the access session in cases where a digital signature is required. When the client is no longer interested in
using the interfaces it calls the terminateAccess method. This results in the destruction of all interface objects used by
the client. In case the network operator decides that the client has no longer access to the interfaces the same will
happen.

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7.1.1.1 Enable Event Notification

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 503GPP TS 29.198-03 version 6.5.0 Release 6

AppLogic : IpAppEventNotification : IpAccess : IpEventNotification

2: ob tainInt erfac eWit hC al lback()

3: new()

1: new()

4: createNoti fication()

5: rep ortN oti fic ati on()

1: This message is used to create an object implementing the IpAppEventNotification interface.

2: This message is used to receive a reference to the object implementing the IpEventNotification interface and set the
callback interface for the framework.

3: If there is currently no object implementing the IpEventNotification interface, then one is created using this
message.

4: createNotification(eventCriteria : in TpFwEventCriteria) : TpAssignmentID.

This message is used to enable the notification mechanism so that subsequent framework events can be sent to the
application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wants to
be notified: those specified in ServiceTypeNameList.

The result of this invocation has many similarities with the result of invoking listServiceTypes: in both cases the
application is informed of the availability of a list of SCFs. The differences are:

· in the case of invoking listServiceTypes, the application has to take the initiative, but it is informed of ALL SCFs
available

· in the case of using the event notification mechanism, the application needs not take the initiative to ask about the
availability of SCFs, but it is only informed of the ones that are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

5: The application is notified of the availability of new SCFs of the requested type(s).

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 513GPP TS 29.198-03 version 6.5.0 Release 6

7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evaluation of the load balancing policy as a result of the detection of a change in load level of the framework.

 : IpAppLoadManager : IpLoadManager

1: load change detection and policy evaluation

2: suspendNot ification()

3: load change detection and policy evaluation

4: resumeNotification()

5: reportLoad()

This is
implementation
detai l

Load balancing service
makes a decision based
on pre-defined policy

Application provides
initial load report on
notification
resumption

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 523GPP TS 29.198-03 version 6.5.0 Release 6

 : IpLoadManager : IpAppLoadManager

1: queryAppLoadStats Req()

2: get load inform ation

3: queryAppLoadStatsRes()

This is the
implementation
detail

7.1.2.3 Load Management: Framework callback registration and Application load
control

This sequence diagram shows how the framework registers itself and the application invokes load management function
to inform the framework of application load.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 533GPP TS 29.198-03 version 6.5.0 Release 6

 :
IpAppLoadManager

 :
IpLoadManager

1: createLoadLevelNotification()

3: load change det ection

4: reportLoad()

5: load change detection

6: reportLoad()

7: destroyLoadLevelNoti fication()

Application detects a load
condition change and
reports to Framework.
The Framework may take
appropriate load control
action - implementation
detail.

This is implementation
detail. The Application
may take appropriate
load control action.

This is implementation
detail. The Application
may take appropriate
load control action.

2: reportLoad()

Application reports its
initial load condition on
notification creation

7.1.2.4 Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the framework load manager.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 543GPP TS 29.198-03 version 6.5.0 Release 6

 : IpAppLoadManager : IpLoadM anager

2: evaluate policy

This is the implementation
detail

1: reportLoad()

7.1.2.5 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

 : IpAppLoadManager : IpLoadManager

1: queryLoadStatsReq()

This is the
implementation
detail

2: get load information

3: queryLoadStatsRes()

7.1.2.6 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function
based on policy.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 553GPP TS 29.198-03 version 6.5.0 Release 6

 : IpAppLoadManager : IpLoadManager

1: createLoadLevelN otification()

Fram ework detects a load
condition change
and notifies the
application. The
application m ay take
appropriate load control
action - implementation
detail.

4: loadLevelNotification()

3: load change detection & policy evaluation

This is Fram ework
im plem entation detail.
The Framework m ay take
appropriate load control
action.

6: loadLevelNotification()

7: des troyLoadLevelNotification()

5: load ch ange detection & policy evaluation

This is Framew ork
implementation detai l. The
Fram e work may take
appropr ia te load control
ac tion.

2: loadLevelNotification()

Fram e work repor ts its
ini tial load condition on
notification creation

7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the
application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 563GPP TS 29.198-03 version 6.5.0 Release 6

Fram ework : IpHeart Beat : IpAppHeartBeatMgm t

1: enableAppHeartBeat()

2: pulse()

3: pulse()

4: disableAppHeartBeat()

At a certain point of
time the framework
decides to stop
heartbeat supervision

7.1.2.8 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework informs the client application.

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect if a service instance
fails, for example via an unreturned heartbeat. The
framework should inform the application that is
using that service instance, with the reason:
SVC_UNAVAILABLE_NO_RESPONSE.

1: svcA vailStatusInd()

The application may wait until
it receives SVC_AVAILABLE

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 573GPP TS 29.198-03 version 6.5.0 Release 6

1: The framework informs the client application that is using the service instance that the service is unavailable. The
client application may wait to receive a new call to the svcAvailStatusInd with the reason SVC_AVAILABLE when the
Service has become available again. The different Unavailability reasons used by the Framework
(TpSvcAvailStatusReason) guides the client application developers to make the decision.

7.1.2.9 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to
carry out an activity test. The
framework is denoted as the target by
an empty string value for svcId
parameter value.

Framework carries out test and
returns result to client application.

2: activityTestRes()

1: activityTestReq()

1: The client application asks the framework to do an activity test. The client identifies that it would like the activity
test done for the framework, rather then a service, by supplying an empty string value for the svcId parameter.

2: The framework does the requested activity test and sends the result to the client application.

7.1.3 Service Discovery Sequence Diagrams

7.1.3.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
this is why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; this is done via an invocation the method obtainInterface on the Framework's Access interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 583GPP TS 29.198-03 version 6.5.0 Release 6

Discovery can be a three-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/discoverServiceType methods).

 : IpServiceDiscoveryApplicat ion

2: listServiceTypes()

3: describeServiceType()

4: discoverServic e()

 : IpAccess

1: obtainInterface()

2: Discovery: first step - list service types.

In this first step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of this first discovery step:

· out listTypes.

This is a list of service type names, i.e., a list of strings, each of them the name of a SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type.

In this second step the application requests what are the properties that describe a certain service type that it is interested
in, among those listed in the first step.

The following input is necessary:

· in name.

This is a service type name: a string that contains the name of the SCF whose description the Application is interested in
(e.g. "P_MPCC") .

And the output is:

· out serviceTypeDescription.

The description of the specified SCF type. The description provides information about:

· the property names associated with the SCF;

· the corresponding property value types;

· the corresponding property mode (mandatory or read only) associated with each SCF property;

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 593GPP TS 29.198-03 version 6.5.0 Release 6

· the names of the super types of this type; and

· whether the type is currently enabled or disabled.

4: Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i.e.
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the serviceID that is the
identifier this network operator has assigned to the SCF version described in terms of those service properties. This is
the moment where the serviceID identifier is shared with the application that is interested on the corresponding service.

This is done for either one service or more (the application specifies the maximum number of responses it wishes to
accept).

Input parameters are:

· in serviceTypeName.

This is a string that contains the name of the SCF whose description the Application is interested in (e.g. "P_MPCC").

· in desiredPropertyList.

This is again a list like the one used for service registration, but where the value of the service properties have been fine
tuned by the Application to (they will be logically interpreted as "minimum", "maximum", etc. by the Framework).

The following parameter is necessary as input:

· in max.

This parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result.

And the output is:

· out serviceList.

This is a list of duplets: (serviceID, servicePropertyList). It provides a list of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (serviceID), and once again the
service property list.

7.1.4 Service Agreement Management Sequence Diagrams

7.1.4.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs
to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 603GPP TS 29.198-03 version 6.5.0 Release 6

 :
IpServiceAgreementManagement

 :
IpAppServiceAgreementManagement

Application Framework

1: selectS ervice()

3: signServiceAgreement()

4: signServic eA greement ()

2: ini tiateSignServic eAgreement ()

1: Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the
serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application an identifier for the service chosen: a service token, that is a private identifier for this service between
this Application and this network, and is used for the process of signing the service agreement.

Input is:

· in serviceID.

This identifies the SCF required.

And output:

· out serviceToken.

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement. An application (identifiable by a given
TpClientAppID) may select the same service on more than one occasion in which case the same serviceToken, that
identifies the relationship between the Application and the network, and the service agreement that applies, shall be
returned.

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once these
contractual details have been agreed, then the Application can be given the means to actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are also fed to the SCF (via the lifecycle
manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling
initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's
IpAppServiceAgreementManagement interface before the application calls signServiceAgreement on the frameworks's
IpServiceAgreementManagement, is the only sequence permitted.

Input:

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 613GPP TS 29.198-03 version 6.5.0 Release 6

· in serviceToken.

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

· in agreementText.

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

· in signingAlgorithm.

This is the algorithm used to compute the digital signature.

Output:

· out signatureAndServiceMgr.

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

There must be only one service instance per client application. Therefore, in case an application (identifiable by a given
TpClientAppID) attempts to select a service for which it has already signed a service agreement and this service
agreement has not been terminated, the Framework may return a reference to the already existing service, or may raise
an exception to the client indicating that this request is denied.

7.2 Class Diagrams

IpAppEventNot ification

reportNotification()
noti ficationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()
destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Class Diagram

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 623GPP TS 29.198-03 version 6.5.0 Release 6

IpAppFaultManager

activityTestRes()
appActivityTestReq()
<<deprecated>> fwFaultReportInd()
<<deprecated>> fwFaultRecoveryInd()
<<deprecated>> svcUnavailableInd()
<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> fwUnavailableInd()
activityTestErr()
<<deprecated>> genFaultStatsRecordErr()
appUnavailableInd()
<<deprecated>> genFaultStatsRecordReq()
svcAvailStatusInd()
<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()
<<new>> generateFaultStatisticsRecordReq()
<<new>> fwAvailStatusInd()

<<Interface>>

IpFaultManager

activityTestReq()
appActivityTestRes()
svcUnavailableInd()
<<deprecated>> genFaultStatsRecordReq()
appActivityTestErr()
<<deprecated>> appUnavailableInd()
<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> genFaultStatsRecordErr()
appAvailStatusInd()
<<new>> generateFaultStatisticsRecordReq()
<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()
d isableHeartBeat()
c hangeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1 0..n1 0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()
disableAppHeartBeat()
changeInterval()

<<Interface>>

<<uses>>

0..n1 0..n1

IpAppLoadManager

<<deprecated>> queryAppLoadReq()
<<deprecated>> queryLoadRes()
<<deprecated>> queryLoadErr()
loadLevelNotification()
resumeNotification()
suspendNotification()
createLoadLevelNotification()
destroyLoadLevelNotification()
<<new>> queryAppLoadStatsReq()
<<new>> queryLoadStatsRes()
<<new>> queryLoadStatsErr()

<<Interface>>

IpLoadManager

reportLoad()
<<deprecated>> queryLoadReq()
<<deprecated>> queryAppLoadRes()
<<deprecated>> queryAppLoadErr()
createLoadLevelNotification()
destroyLoadLevelNotification()
resumeNotification()
suspendNotification()
<<new>> queryLoadStatsReq()
<<new>> queryAppLoadStatsRes()
<<new>> queryAppLoadStatsErr()

<<Interface>>
IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>><<uses>>

Figure: Integrity Management Package Overview

IpS erviceDiscovery

lis tServiceTy pes()
desc ribeServiceType()
discoverService()
lis tSubscribedServices()

(f ro m Framework in terf aces)

<<Interface>>

Figure: Service Discovery Package Overview

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 633GPP TS 29.198-03 version 6.5.0 Release 6

IpClientAccess

terminateAccess ()

(f rom Client interf aces)

<<Interface>>
IpClientAPILevelAuthentication

<<deprecated>> authenticate()
abortAuthenti cation ()
authenticationS ucceeded()
challenge()

(f rom Client interf aces)

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication()
initiateAuthenticationWithVers ion()

(f rom Framework interf aces)

<<Interface>>

IpAccess

obtainInterface ()
obtainInterface With Callback()
<<deprecated>> endAccess ()
lis tInter fa ces()
<<deprecated>> releaseInterface()
selectSigningAlgorithm()
term inateAccess ()
relinquishInterface()

(f rom Framework interf aces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod()
<<deprecated>> authenticate()
abortAuthentication()
authenticationSucceeded()
selectAuthenticationMechanism ()
challenge()

(f rom Framework interf aces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess ()

(f rom Framework interf aces)

<<Interface>>

Figure: Trust and Security Management Package Overview

IpAppServiceAgreementManagement

signServiceAgreement()
terminateServiceAgreement()

(from App Interfaces)

<<Interface>>

IpServiceAgreementM anagement

signServiceAgreement()
terminateServiceAgreement()
selectService()
initiateSignServiceAgreement()

(from Fram ework Interfaces)

<<Interface>>

<<uses>>

Figure: Service Agreement Management Package Overview

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 643GPP TS 29.198-03 version 6.5.0 Release 6

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery

Inherits from: IpInterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and
what service "properties" are applicable to each service type. The listServiceTypes() method returns a list of all "service
types" that are currently supported by the framework and the "describeServiceType()" returns a description of each
service type. The description of service type includes the "service-specific properties" that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.
 This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

7.3.1.1.1 Method listServiceTypes()

This operation returns the names of all service super and sub types that are in the repository. The details of the service
types can then be obtained using the describeServiceType() method. If a sub type of a service is registered, this method
returns, besides the sub type, also the super type.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 653GPP TS 29.198-03 version 6.5.0 Release 6

7.3.1.1.2 Method describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about:
 · the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples;
 · the names of the super types of this service type; and
 · whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described.

· If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.

Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_ILLEGAL_SERVICE_TYPE,
P_UNKNOWN_SERVICE_TYPE

7.3.1.1.3 Method discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passes in a list of desired service properties to describe the service it is
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responses it is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned form a complete
view of what the client application can do with the service, as per the service level agreement. If the framework
supports service subscription, the service level agreement will be encapsulated in the subscription properties contained
in the contract/profile for the client application, which will be a restriction of the registered properties.

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID
and a list of service properties {name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading". It is the basis for type safe interactions between the service exporters (via registerService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

· If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TYPE exception is raised.

The framework may return a service of a subtype of the "type" requested. The requestor may also request for a service
of a specific subtype. The framework will not return the corresponding supertype(s) in this case.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 663GPP TS 29.198-03 version 6.5.0 Release 6

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service property {name, mode and value list} tuples that the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property values in the desired property list must be logically interpreted as "minimum",
"maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property value be specified as an
appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the
selection of desired services.

The desiredPropertyList only contains service properties that are relevant for the application. If an application is not
interested in the value of a certain service property, this service property shall not be included in the
desiredPropertyList.

P_INVALID_PROPERTY is raised when an application includes an unknown service property name or invalid service
property value.

max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

Returns

TpServiceList

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_ILLEGAL_SERVICE_TYPE,
P_UNKNOWN_SERVICE_TYPE, P_INVALID_PROPERTY

7.3.1.1.4 Method listSubscribedServices()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Returns <serviceList> : The "serviceList" parameter returns a list of subscribed services. Each service is characterised
by its service ID and a list of service properties {name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServiceList

Raises

TpCommonExceptions, P_ACCESS_DENIED

7.3.2 Service Agreement Management Interface Classes

7.3.2.1 Interface Class IpAppServiceAgreementManagement

Inherits from: IpInterface.

This interface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an
application.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 673GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

7.3.2.1.1 Method signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be a restriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digitalSignature> : This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630)
with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the
agreement text given by the framework. The "external signature" construct shall not be used (i.e. the eContent field in
the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the
serviceToken will be expired immediately.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token). If the
serviceToken is invalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is
thrown.

agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown
to the client application, the P_INVALID_SIGNING_ALGORITHM exception is thrown. The list of possible
algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 683GPP TS 29.198-03 version 6.5.0 Release 6

Returns

TpOctetSet

Raises

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN,
P_INVALID_SIGNING_ALGORITHM

7.3.2.1.2 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The
client application can check that the terminationText has been signed by the framework. If a match is made, the service
agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.

This interface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and
initiateSignServiceAgreement() methods shall be implemented by a Framework.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 693GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's IpAppServiceAgreementManagement
interface, this method is used by the client application to request that the framework sign the service agreement, which
allows the client application to use the service. A reference to the service manager interface of the service is returned to
the client application. The service manager returned will be configured as per the service level agreement. If the
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties
contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is
returned. If the client application invokes this method before the processing (i.e. digital signature verification) of the
response of signServiceAgreement() on the application's IpAppServiceAgreementManagement interface has completed,
a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is
currently unable to complete the method due to a race condition. In this case, the TpCommonExceptions with
ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount
of time has passed.

There must be only one service instance per client application. Therefore, in case the client attempts to select a service
for which it has already signed a service agreement and this service agreement has not been terminated, a reference to
the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
 structure TpSignatureAndServiceMgr {
 digitalSignature: TpOctetSet;
 serviceMgrInterface: IpServiceRef;
 };

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 703GPP TS 29.198-03 version 6.5.0 Release 6

agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one used by the framework when
invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, is invalid, or unknown to
the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms is
as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_AGREEMENT_TEXT,
P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM,
P_SERVICE_ACCESS_DENIED

7.3.2.2.2 Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by
the client application. If a match is made, the service agreement is terminated, otherwise an error code
(P_INVALID_SIGNATURE) is returned.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN,
P_INVALID_SIGNATURE

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 713GPP TS 29.198-03 version 6.5.0 Release 6

7.3.2.2.3 Method selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown.

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a
service agreement. This will contain operator specific information relating to the service level agreement. The
serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client
application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) is returned.

Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID,
P_SERVICE_ACCESS_DENIED

7.3.2.2.4 Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. This method shall be
invoked following the application's call to selectService(), and before the signing of the service agreement can take
place. If the client application is not allowed to initiate the sign service agreement process, the exception
(P_SERVICE_ACCESS_DENIED) is thrown.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) is thrown.

Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_SERVICE_ACCESS_DENIED

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager

Inherits from: IpInterface.

This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the
obtainInterfaceWithCallback operation on the IpAccess interface

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 723GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> svcUnavailableInd (serviceID : in TpServiceID, reason : in TpSvcUnavailReason) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in
TpServiceIDList) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in
TpServiceIDList) : void

appUnavailableInd (serviceID : in TpServiceID) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void

svcAvailStatusInd (serviceID : in TpServiceID, reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsErrorList, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimeInterval) : void

<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

7.3.3.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

7.3.3.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out a test on itself, to check that it is operating correctly. The application reports the test result
by invoking the appActivityTestRes method on the IpFaultManager interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 733GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of a failure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.

7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.

7.3.3.1.5 Method <<deprecated>> svcUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method svcAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Service is unavailable and also when the Service becomes available again.

The framework invokes this method to inform the client application that it may experience difficulties using its instance
of the indicated service.

Parameters

serviceID : in TpServiceID

Identifies the affected service.

reason : in TpSvcUnavailReason

Identifies the reason why the service is no longer available.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 743GPP TS 29.198-03 version 6.5.0 Release 6

7.3.3.1.6 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to provide fault statistics to a client application in response to a
genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is
an empty list, then the fault statistics are for the framework.

7.3.3.1.7 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.

7.3.3.1.8 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.

7.3.3.1.9 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 753GPP TS 29.198-03 version 6.5.0 Release 6

serviceIDs : in TpServiceIDList

Specifies the framework or services that were included in the general fault statistics record request. If the serviceIDs
parameter is an empty list, then the fault statistics were requested for the framework.

7.3.3.1.10 Method appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding.

Parameters

serviceID : in TpServiceID

Specifies the service for which the indication of unavailability was received.

7.3.3.1.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the
IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for
the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes
operation on the IpFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.1.12 Method svcAvailStatusInd()

The framework invokes this method to inform the client application about the Service instance availability status, i.e.
that it can no longer use its instance of the indicated service according to the reason parameter but as well information
when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset
its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to
stop use of this service instance and begin use of a different service instance). The client application can also wait for
the problem to be solved and just stop the usage of the service instance until the svcAvailStatusInd() is called again with
the reason SVC_AVAILABLE.

Parameters

serviceID : in TpServiceID

Identifies the affected service.

reason : in TpSvcAvailStatusReason

Identifies the reason why the service is no longer available or that it has become available again.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 763GPP TS 29.198-03 version 6.5.0 Release 6

7.3.3.1.13 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a
generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this response (when it arrives) with the original request.

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is
an empty list, then the fault statistics are for the framework.

In the case where a list of services is present, this is an ordered list in which the location of the service in this list
corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.

7.3.3.1.14 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this error (when it arrives) with the original request.

faultStatistics : in TpFaultStatsErrorList

The list of fault statistics errors returned.

serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the list of fault statistics errors returned. If the serviceIDs
parameter is an empty list, then the fault statistics error relates to the framework.

In the case where a list of services is present, this is an ordered list in which the location of the service in this list
corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.

7.3.3.1.15 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation
on the IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics
record, for the application during the specified time interval, which is returned to the framework using the
generateFaultStatisticsRecordRes operation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 773GPP TS 29.198-03 version 6.5.0 Release 6

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.1.16 Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The client application may wait for the problem to be solved and just stop the usage of the Framework until the
fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.

7.3.3.2 Interface Class IpFaultManager

Inherits from: IpInterface.

This interface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback
operation on the IpAccess interface.
 If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be
implemented. If the Framework is capable of invoking the IpAppFaultManager.appActivityTestReq() method, it shall
implement appActivityTestRes() and appActivityTestErr() in this interface. If the Framework is capable of invoking
IpAppFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStatisticsRecordErr() in this interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 783GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcUnavailableInd (serviceID : in TpServiceID) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList)
: void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> appUnavailableInd (serviceID : in TpServiceID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimeInterval, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

7.3.3.2.1 Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of
this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the
IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID,
the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the
exception shall contain the corresponding serviceID.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance ID
from the service ID.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.

svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by an empty string.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 793GPP TS 29.198-03 version 6.5.0 Release 6

7.3.3.2.2 Method appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

7.3.3.2.3 Method svcUnavailableInd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.2.4 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes
operation on the IpAppFaultManager interface. If the application does not have access to a service instance with the
specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 803GPP TS 29.198-03 version 6.5.0 Release 6

serviceIDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.2.5 Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

7.3.3.2.6 Method <<deprecated>> appUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. Applications can indicate they no longer use a particular service instance using
IpServiceAgreementManagement.terminateServiceAgreement(). Applications can indicate a fault with a particular
service instance using IpFaultManager.svcUnavailableInd().

This method is used by the application to inform the framework that it is ceasing its use of the service instance. This
may a result of the application detecting a failure. The framework assumes that the session between this client
application and service instance is to be closed and updates its own records appropriately as well as attempting to
inform the service instance and/or its administrator.

Parameters

serviceID : in TpServiceID

Identifies the affected application.

Raises

TpCommonExceptions

7.3.3.2.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the client application to provide fault statistics to the framework in response to a
genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 813GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

Raises

TpCommonExceptions

7.3.3.2.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

Raises

TpCommonExceptions

7.3.3.2.9 Method appAvailStatusInd()

This method is used by the application to inform the framework of its availability status. If the Application has detected
a failure it uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its use of
all of its subscribed service instances. When the Application is working again it shall call this method again with the
APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall also
attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Framework
and the Service that the Application is available again.

Raises

TpCommonExceptions

7.3.3.2.10 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the
generateFaultStatisticsRecordRes operation on the IpAppFaultManager interface. If the application does not have
access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 823GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the application to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

serviceIDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.2.11 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a
generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

Raises

TpCommonExceptions

7.3.3.2.12 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 833GPP TS 29.198-03 version 6.5.0 Release 6

7.3.3.3 Interface Class IpAppHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the client application by the framework.

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwInterface : in IpHeartBeatRef) : void

disableAppHeartBeat () : void

changeInterval (interval : in TpInt32) : void

7.3.3.3.1 Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

fwInterface : in IpHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

7.3.3.3.2 Method disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

7.3.3.3.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

7.3.3.4 Interface Class IpAppHeartBeat

Inherits from: IpInterface.

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 843GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpAppHeartBeat

pulse () : void

7.3.3.4.1 Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the IpHeartBeatMgmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

7.3.3.5 Interface Class IpHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the framework by a client application. If the
IpHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBeat()
shall be implemented.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, appInterface : in IpAppHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

7.3.3.5.1 Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

appInterface : in IpAppHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 853GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions

7.3.3.5.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.5.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

7.3.3.6 Interface Class IpHeartBeat

Inherits from: IpInterface.

The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of
invoking IpAppHeartBeatMgmt.enableHeartBeat(), it shall implement IpHeartBeat and the pulse() method.

<<Interface>>

IpHeartBeat

pulse () : void

7.3.3.6.1 Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the IpAppHeartBeatMgmt.enableAppHeartbeat() method. If

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 863GPP TS 29.198-03 version 6.5.0 Release 6

the pulse() is not received within the specified interval, then the client application can be deemed to have failed the
heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.7 Interface Class IpAppLoadManager

Inherits from: IpInterface.

The client application developer supplies the load manager application interface to handle requests, reports and other
responses from the framework load manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

<<deprecated>> queryAppLoadReq (timeInterval : in TpTimeInterval) : void

<<deprecated>> queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) :
void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) :
void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in
TpLoadStatisticError) : void

7.3.3.7.1 Method <<deprecated>> queryAppLoadReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method queryAppLoadStatsReq shall be used instead, using the new identifier to correlate requests
and responses.

The framework uses this method to request the application to provide load statistics records for the application.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 873GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

7.3.3.7.2 Method <<deprecated>> queryLoadRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method queryLoadStatsRes shall be used instead, using the new identifier to correlate requests and
responses.

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.

7.3.3.7.3 Method <<deprecated>> queryLoadErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method queryLoadStatsErr shall be used instead, using the new identifier to correlate requests and
errors.

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

7.3.3.7.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework
which have been registered for load level notifications) this method is invoked on the application. In addition this
method shall be invoked on the application in order to provide a notification of current load status, when load
notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).

7.3.3.7.5 Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the
client application shall inform the framework of the current load using the reportLoad method on the corresponding
IpLoadManager.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 883GPP TS 29.198-03 version 6.5.0 Release 6

Parameters
No Parameters were identified for this method.

7.3.3.7.6 Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

7.3.3.7.7 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the
application. Upon receipt of this method the client application shall inform the framework of the current load using the
reportLoad method on the corresponding IpLoadManager.

Parameters
No Parameters were identified for this method.

7.3.3.7.8 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters
No Parameters were identified for this method.

7.3.3.7.9 Method <<new>> queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

7.3.3.7.10 Method <<new>> queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this response (when it arrives) with the original request.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 893GPP TS 29.198-03 version 6.5.0 Release 6

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.

7.3.3.7.11 Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

7.3.3.8 Interface Class IpLoadManager

Inherits from: IpInterface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to a load management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy is related to the QoS level to which the application is subscribed. The framework load management function is
represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into
waiting whilst a transaction performs. To handle responses and reports, the client application developer must
implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity
of this callback interface at the time it obtains the framework's load manager interface, by use of the
obtainInterfaceWithCallback operation on the IpAccess interface.
 If the IpLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented
as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and
destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
IpAppLoadManager.queryAppLoadStatsReq() method, then it shall implement queryAppLoadStatsRes() and
queryAppLoadStatsErr() methods in this interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 903GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

<<deprecated>> queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void

<<deprecated>> queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

createLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

destroyLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

resumeNotification (serviceIDs : in TpServiceIDList) : void

suspendNotification (serviceIDs : in TpServiceIDList) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, serviceIDs : in TpServiceIDList,
timeInterval : in TpTimeInterval) : void

<<new>> queryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in
TpLoadStatisticList) : void

<<new>> queryAppLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in
TpLoadStatisticError) : void

7.3.3.8.1 Method reportLoad()

The client application uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded. In addition this
method shall be called by the application in order to report current load status, when load notifications are first
requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.

Raises

TpCommonExceptions

7.3.3.8.2 Method <<deprecated>> queryLoadReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method queryLoadStatsReq shall be used instead, using the new identifier to correlate requests and
responses.

The client application uses this method to request the framework to provide load statistic records for the framework or
for its instances of the individual services. If the application does not have access to a service instance with the

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 913GPP TS 29.198-03 version 6.5.0 Release 6

specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.3 Method <<deprecated>> queryAppLoadRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method queryAppLoadStatsRes shall be used instead, using the new identifier to correlate requests
and responses.

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.

Raises

TpCommonExceptions

7.3.3.8.4 Method <<deprecated>> queryAppLoadErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method queryAppLoadStatsErr shall be used instead, using the new identifier to correlate requests
and errors.

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 923GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions

7.3.3.8.5 Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with its instances of the individual services used by the application. If the application does not have
access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt
of this method the framework shall inform the client application of the current framework or service instance load using
the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFs to be registered for load control. To register for framework load control, the
serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.6 Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with its instances of the individual services used by the application. If the application does not have
access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.7 Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE
exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.
Upon receipt of this method the framework shall inform the client application of the current framework or service
instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 933GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.8 Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles a temporary overload condition. If the application does not have access to a service instance
with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended.
To suspend notifications for the framework, the serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.9 Method <<new>> queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for its instances of the individual services. If the application does not have access to a service instance with the
specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the application to correlate the response (when it arrives) with this request.

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 943GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.10 Method <<new>> queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager
interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.

Raises

TpCommonExceptions

7.3.3.8.11 Method <<new>> queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises

TpCommonExceptions

7.3.3.9 Interface Class IpOAM

Inherits from: IpInterface.

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. This interface
and the systemDateTimeQuery() method are optional.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 953GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if
the format of the parameter is invalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT

7.3.3.10 Interface Class IpAppOAM

Inherits from: IpInterface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method is invoked by the Framework to interchange the framework and client
application date and time.

<<Interface>>

IpAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.10.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (application).

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 963GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework.

Returns

TpDateAndTime

7.3.4 Event Notification Interface Classes

7.3.4.1 Interface Class IpAppEventNotification

Inherits from: IpInterface.

This interface is used by the framework to inform the application of a generic service-related event. The Event
Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the
Event Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

7.3.4.1.1 Method reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteria and to act accordingly.

7.3.4.1.2 Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters
No Parameters were identified for this method.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 973GPP TS 29.198-03 version 6.5.0 Release 6

7.3.4.2 Interface Class IpEventNotification

Inherits from: IpInterface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.
If Event Notifications are supported by a Framework, this interface and the createNotification() and
destroyNotification() methods shall be supported.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

7.3.4.2.1 Method createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

7.3.4.2.2 Method destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENTID.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ASSIGNMENT_ID

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 983GPP TS 29.198-03 version 6.5.0 Release 6

7.4 State Transition Diagrams
This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

Active

obtainFrameworkInterfac e(disc overyService)

obtainInterfaceWithCallback(dis coveryService)

listServiceTypes

describeServiceType

listSubscribedS ervices

discoverService

IpAccess.endAccess

Figure : State Transition Diagram for IpServiceDiscovery

7.4.1.1.1 Active State

When the application requests Service Discovery by invoking the obtainInterface or the obtainInterfaceWithCallback
methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is
allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management

7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 993GPP TS 29.198-03 version 6.5.0 Release 6

Idle

Notification
Suspended

Active

IpAccess .obtainInterface

reportLoad
querySvcLoadRes[load s tatis tics reques ted by LoadMa

querySvcLoadErr[load s tatis ti cs reques ted by LoadM

reportLoad

querySvcLoadRes[load s tatis tics reques ted by LoadMana
querySvcLoadErr[load s tatis tics reques ted by LoadMan

IpAccess .obtainInterfaceWithCallback

All States

IpAccess .endAccess

createLoadLevelNotification ^loadLevelNotification

des troyLoadLevelN otificati on

suspendNoti fication[all notificati ons
suspended]

queryLoadReq

queryLoadReq

"load change" ^loadLevelNotification

des troyLoadLevelNotification

resumeNotification
^loadLevelNotification

Figure : State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a createLoadLevelNotification()
invocation on the IpLoadManager. The load manager can now request the application to supply load statistics
information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its
load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the application side of
interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportLoad().

7.4.3.2 State Transition Diagrams for LoadManagerInternal

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1003GPP TS 29.198-03 version 6.5.0 Release 6

Normal load Application Overload

. ..

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain services.

Internal overload

...

A necessary action can be
sus pending the load
noti fictions from the
applicat ion by invoking
sus pendNot ific ation or
enabling load control
mechanisms on the
applicat ion by invoking
enableLoadCont rol.

In ternal and Applicat ion Overload

...

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

" internal load c hange to non overloaded"
"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

registerLoadController

ALL
STATES

unregisterLoadControler

Figure : State Transition Diagram for LoadManagerInternal

7.4.3.2.1 Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs
is overloaded.

7.4.3.2.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.3 State Transition Diagrams for IpOAM

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1013GPP TS 29.198-03 version 6.5.0 Release 6

Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obt ainInterfaceWithCal lback

Figure : State Transition Diagram for IpOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

7.4.3.4 State Transition Diagrams for IpFaultManager

Framework
Active

Framework Faul ty

entry/ ^fwAvailStatusInd to all appl ications wi th cal lback
exit/ ^fwAvai lStatusInd to al l appl ications wi th cal lback

Fram ework A ctiv i ty T est

entry/ test activi ty of framework
exi t/ ^IpAppFaul tManager.activi tyT estRes
exi t/ ^IpAppFaul tManager.activi tyT estErr

Service Activi ty T est

entry/ test activi ty of service
exi t/ ^IpAppFaul tM anager.activi tyT estRes
exi t/ ^IpAppFaul tM anager.activi tyT estErr

genFaul tStatsRecordReq ^app.genFaul tStatsRecordRes/Err

svcUnavai lableInd / test the service, inform service that appl ication is not using it

'change in service avai labil i ty' ^svcAvailStatusInd to all appl ications using the service

IpAccess.endAccess / remove
application from load m anagement

IpAccess.obtainInterfaceWithCal lback("Faul tM anagem ent") /
add appl i cation to fau lt managem ent

fault detected in fw

no faul t d etected

IpAccess.endAccess / Abort
pending test request

faul t resolved

faul t detected in fw

acti vityT estReq[
empty string]

activi tyTestReq[scfID]

IpAccess.endAccess

service faul t ^svcAvailStatusInd to all appl ications using the service

no faul t detected

IpAccess.endAccess /
A bort pending te st req uest

'change in fram ework avai labi l i l ty (non faul t)' ^fwAvai lStatusInd to al l appl ications with cal lback

Figure : State Transition Diagram for IpFaultManager

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1023GPP TS 29.198-03 version 6.5.0 Release 6

7.4.3.4.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified via a fwAvailStatusInd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault
management callbacks are notified through a fwAvailStatusInd message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcAvailStatusInd message.

7.4.4 Event Notification State Transition Diagrams

7.4.4.1 State Transition Diagrams for IpEventNotification

Idle

IpAccess.obtainInterface

Notification
Active

createNotification

destroyNotification

destroyNot ification[no more noti ficat ions installed]

IpAccess.endAccess

IpAccess.obtainInterfaceWithCallback

createNotification

IpAccess.endAccess

Figure : State Transition Diagram for IpEventNotification

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1033GPP TS 29.198-03 version 6.5.0 Release 6

8 Framework-to-Service API

8.1 Sequence Diagrams

8.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery

8.1.2 Service Registration Sequence Diagrams

8.1.2.1 New SCF Sub Type Registration

The following figure shows the process of registering a new proprietary Service Capability Feature in the Framework.
This SCF is a sub type of the standard SCF.

 :
IpFwS erviceRegistration

SCS

1: regist erS erviceSubType()

2: announceServiceAvailability()

1: Registration: first step - register service sub type. For sub type registration, besides the values for the standard
service properties, the modes, types, and values for the additional service properties must be provided by the SCF.

2: Registration: second step - announce service availability. This is identical to announcing availability of super types.

8.1.2.2 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is a two step process:

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1043GPP TS 29.198-03 version 6.5.0 Release 6

SCS :
IpFwServiceRegistration

1: registerService()

2: announceServiceAvailability()

1: Registration: first step - register service.

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal is to make an association between the new SCF version, as characterized by a list of
properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

· in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").

· in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a pair of (ServicePropertyName,
ServicePropertyValueList).

· ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the
SCF data definition).

· ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string
that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

The following output parameter results from service registration:

· out serviceID

This is a string, automatically generated by the Framework and unique within the Framework.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2: Registration: second step - announce service availability.

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point", called lifecycle manager, is used. The role of the lifecycle manager
is to control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1053GPP TS 29.198-03 version 6.5.0 Release 6

to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface
reference to a lifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a lifecycle manager for it that will allow client to use it. Then it will inform the Framework of
the value of the interface associated to the new SCF. After the receipt of this information, the Framework makes the
new SCF (identified by the pair [serviceID, serviceInstanceLifecycleManagerRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

· in serviceID.

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to
include the serviceID, to know which SCF it is.

· in serviceInstanceLifecycleManagerRef.

This is the interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will
have to invoke the method createServiceManager() in this interface when a client application signs an agreement to use
the SCF so that it can get the service manager interface necessary for applications as an entry point to any SCF.

8.1.3 Service Instance Lifecycle Manager Sequence Diagrams

8.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

 : IpAp pCallCont rolManag erAppLogic : IpInit ial :
IpServ iceAgreementManagement

 : IpCallControlManager :
IpAp pServ iceAgr eem ent Managem ent

GenericCallControlServ ice :
IpServ iceInstanceLif ecy cleManager

1: selectServ ice()

3: signServ ic eAgre eme nt()
4 : crea teSer v iceManager() 5: new()

6: new()

7: setCallback()

W e assum e that t he appl ication is alre ady a uthe nticat ed and dis cov er ed t he serv ice i t wants t o us e

2: s ignServ iceAgreement()

1: The application selects the service, using a serviceID for the generic call control service. The serviceID could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: The client application signs the service agreement.

3: The framework signs the service agreement. As a result a service manager interface reference (in this case of type
IpCallControlManager) is returned to the application.

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the serviceID to return a service manager interface reference. The service manager is the initial
point of contact to the service.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1063GPP TS 29.198-03 version 6.5.0 Release 6

5: The lifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that this is an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the
application client results. This service instance is assigned a serviceInstanceID by the Framework, which is provided to
the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Framework
Integrity Management functionality and operations are to be supported between the Framework and the service instance
identified by the defined serviceInstanceID, it is then necessary for the new service instance to establish an access
session with the Framework. This provides the Framework with the ability to manage and monitor the operation of the
service instance that relates to a particular application client. The steps required to establish a Framework access
session are outlined in clause 6 of the present document.

6: The application creates a new IpAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

An application (identifiable by a given TpClientAppID may carry out the sequence, as exemplified above, multiple
times.

8.1.4 Integrity Management Sequence Diagrams

8.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the framework invokes load management function
based on policy.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1073GPP TS 29.198-03 version 6.5.0 Release 6

 : IpSvcLoadManager : IpFwLoadManager

1: createLoadLevelNotification()

3: load change detection & policy evaluation

4: loadLevelNotification()

5: load change detect ion & policy evaluation

6: loadLevelNotification()

7: destroyLoadLevelNoti ficat ion()

This is Framework
implementation detail . The
Framework may tak e
appropriate load control action.Fram ework detects a load

condition change and notifies
the servic e. The service m ay
take appropriate load control
action - im plementation
detai l.

This is Framework
implementation detail. The
Framework may take
appropriate load control action.

2: loadLevelNotification()

Framework reports its
initial load condition on
notification creation

8.1.4.2 Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registers itself and the service invokes load management function to
inform the framework of service load.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1083GPP TS 29.198-03 version 6.5.0 Release 6

 :
IpFwLoadManager

 :
IpSvcLoadManager

1: createLoadLevelNotification()

3: load change detect ion

4: reportLoad()

5: load change detect ion

6: reportLoad()

7: destroyLoadLevelNotification()

Service detects a load c ondition
change and reports to
Framework. The Fram ework
may take appropriat e load
contro l action - implementation
detai l.

This is Service implementation
detail. The Service may take
appropriate load control action.

This is Service implementation
detail. The Service may take
appropriate load control action.

2: reportLoad()

Service reports its
initial load condition on
notification creation

8.1.4.3 Load Management: Client and Service Load Balancing

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1093GPP TS 29.198-03 version 6.5.0 Release 6

Application :
IpAppLoadManager

Service :
IpSvcLoadManager

Framew ork :
IpLoadManager

 :
IpFwLoadManager

Fram ework checks
application load.

D epending on the load, the
framework may choose to s top
sending noti fications to the
appli cation, to al low its load to
reduce.

The fram ework may then check
the load on the service, and take
action if (according to the load
balancing policy) if required.

1: queryAppLoadStatsReq()

2: queryAp pLoadStatsRes()

3: querySvcLoadStatsReq()

4: querySvcLoadStatsRes()

8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the
service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1103GPP TS 29.198-03 version 6.5.0 Release 6

Fram ework :
IpFwHeartBeat

 :
IpSvcHeartBeatM gmt

1: enableSvcHeartBeat()

2: pulse()

3: pulse()

4: disableSvcHeartBeat()

At a certain point of
time the framework
decides to stop
heartbeat supervision

8.1.4.5 Fault Management: Service requests Framework activity test

Framework :
IpFwFaultManager

Service :
IpSvcFaultManager

The Service requests that the
Framework does an activity test.

1: activityTestReq()

2: activityTestRes()

1: The service asks the framework to carry out its activity test. The service denotes that it requires the activity test done
for the framework, rather than an application, by supplying an appropriate parameter.

2: The framework carries out the test and returns the result to the service.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1113GPP TS 29.198-03 version 6.5.0 Release 6

8.1.4.6 Fault Management: Service requests Application activity test

Service :
IpSvc FaultManager

Application :
IpAppFaultManager

Framework :
IpFaultManager

 :
IpFwFaul tManager

The Framework identifies the service
instance to conclude which
Application the test is directed at, and
comunicates internally to Framework
interface to the Application.

The application
carries out the
activity test and
returns the result to
the Framework.

Int ernal Fram ework
Comm unications.

1: activi tyTestReq()

2: appActivityTestReq()

3: appAc tivityTestRes()

4: activityTestRes()

1: The service instance asks the framework to invoke an activity test on the client application.

2: The framework asks the application to do the activity test. It is assumed that there is internal communication
between the service facing part of the framework (i.e. IpFwFaultManager interface) and the part that faces the client
application.

3: The application does the activity test and returns the result to the framework.

4: The framework internally passes the result from its application facing interface (IpFaultManager) to its service
facing side, and sends the result to the service.

8.1.4.7 Fault Management: Application requests Service activity test

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1123GPP TS 29.198-03 version 6.5.0 Release 6

Client Application :
IpAppFaultManager

Service :
IpSvcFaultManager

 :
IpFwFaultManager

Framework :
IpFaultManager

The client application asks the
framework to carry out the
activity test on a service.

The Framework identifies which
service the tes t is direct ed at by the
svcID parameter, and
comm unicates internal ly with the
appropriate framework interface.
W hich invokes the call on the
service.

Service does test and
returns the result.

Framework passes result
internally from service facing
part to application facing part,
and sends the result to the
application.

1: activityTestReq()

2: svcActivityTestReq()

3: svcActivityTestRes()

4: activi tyTestRes()

1: The client application asks the framework to invoke an activity test on a service, the service is identified by the
svcId parameter.

2: The framework asks the service to do the activity test. It is assumed that there is internal communication between
the application facing part of the framework (i.e. IpFaultManager interface) and the part that faces the service.

3: The service does the activity test and returns the result to the framework.

4: The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application
facing side, and sends the result to the client application.

8.1.4.8 Fault Management: Application detects service is unavailable

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1133GPP TS 29.198-03 version 6.5.0 Release 6

Client Application :
IpAppFault Manager

Service :
IpSvcFaultManager

Framework :
IpFaultManager

 :
IpFwFaultManager

The applicat ion det ects that
the service is not responding,
so i t informs the framework via
the svcUnavailableInd method.

The framework inform s
the service.

1: svcUnavailableInd()

2: svcUnavailableInd()

1: The client application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework.

2: The framework informs the service instance that the client application was unable to get a response from it and can
no longer use the service instance. The service or framework may then decide to carry out an activity test to see whether
there is a general problem with the service instance that requires further action.

8.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

8.2 Class Diagrams

IpFwServiceDiscovery

listServic eTypes()
describeS erviceType()
discoverService()
listRegisteredServices()

(from Framework interfaces)

<<Interface>>

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1143GPP TS 29.198-03 version 6.5.0 Release 6

Figure: Service Discovery Package Overview

IpFwServiceRegistration

registerService()
announceS erviceAvailabi lit y()
unregisterService()
describeS ervice()
unannounceService()
<<new>> registerS erviceSubType()

(from Fram ework interfaces)

<<Interface>>

Figure: Service Registration Package Overview

IpInitial

<<deprecated>> initiateAuthentication()
initiateAuthenticationWithVersion()

(from Fram ework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Cl ient interfaces)

<<Interface>>

IpAccess

obtainInterface()
obtainInterfaceW ithCallback()
<<deprecated>> endAccess()
listInterfaces()
<<deprecated>> releaseInterface()
selectSigningAlgorithm()
terminateAccess()
relinquishInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate()
abortAuthentication()
authenticationSucceeded()
challenge()

(f rom Cl ien t i nte rface s)

<<Int erface>>

IpAP ILevelAuthentication

<<deprecated>> selectEncryptionMethod()
<<deprecated>> authenticate()
abortAuthentication()
authenticationSucceeded()
selectAuthenticationMechanism()
challenge()

(from Framework interfaces)

<<Int erface>>

<<uses>>

IpAut hent icat ion

requestAccess()

(from Framework interfaces)

<<Int erface>>

Figure: Trust and Security Management Package Overview

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1153GPP TS 29.198-03 version 6.5.0 Release 6

IpServiceInstanceLifecycleManager

createServiceManager()
destroyServiceManager()

(from Service Interfaces)

<<Interface>>

Figure: Service Instance Lifecycle Manager Package Overview

IpSvcHeartBeatMgmt

enableSvcHeartBeat()
disableSvcHeartBeat()
changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1 0..n1 0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changeInterval()

<<Interface>>

<<uses>>

0..n1 0..n1

IpFwLoadManager

reportLoad()
<<deprecated>> queryLoadReq()
<<deprecated>> querySvc LoadRes()
<<deprecated>> querySvc LoadErr()
createLoadLevelNotification()
destroyLoadLevelNotification()
suspendNotification()
resumeNot ification()
<<new>> queryLoadStatsReq()
<<new>> queryS vcLoadStatsRes()
<<new>> queryS vcLoadStatsErr()

<<Int erface>>

IpSvcLoadM anager

<<deprecated>> querySvc LoadReq()
<<deprecated>> queryLoadRes()
<<deprecated>> queryLoadErr()
loadLevelNotification()
suspendNotification()
resumeNot ification()
createLoadLevelNotification()
destroyLoadLevelNotification()
<<new>> queryS vcLoadStatsReq()
<<new>> queryLoadStatsRes()
<<new>> queryLoadStatsErr()

<<Int erface>>

<<uses>>

IpSvcFaultManager

activityTestRes()
svcActivityTestReq()
<<deprecated>> fwFaultReportInd()
<<deprecated>> fwFaultRecoveryInd()
<<deprecated>> fwUnavailableInd()
svcUnavailableInd()
<<deprecated>> appUnavailableInd()
<<deprecated>> genFaultStatsRecordRes()
activityTestErr()
<<deprecated>> genFaultStatsRecordErr()
<<deprecated>> genFaultStatsRecordReq()
<<deprecated>> generateFaultStatsRecordReq()
appAvailStatusInd()
<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()
<<new>> generateFaultStatisticsRecordReq()
<<new>> fwAvailStatusInd()

<<Int erface>>

IpFwFaultManager

activityTestReq()
svcActivityTestRes()
appUnavailableInd()
<<deprecated>> genFaultStatsRecordReq()
<<deprecated>> svcUnavailableInd()
svcActivityTestErr()
<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> genFaultStatsRecordErr()
<<deprecated>> generateFaultStatsRecordRes()
<<deprecated>> generateFaultStatsRecordErr()
svcAvailStatusInd()
<<new>> generateFaultStatisticsRecordReq()
<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()

<<Int erface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1163GPP TS 29.198-03 version 6.5.0 Release 6

IpFwE ventNoti ficat ion

createNotification()
destroyNotification()

(from Fram ework Interfaces)

<<Interface>>

IpSvc EventNot ification

reportNotification()
notificationTerminated()

(f rom Se rvice I nt erfac es)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview

8.3 Interface Classes

8.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property
values" for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

8.3.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
This interface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and
unannounceService() shall be implemented by a Framework.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1173GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in
service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

<<new>> registerServiceSubType (serviceTypeName : in TpServiceTypeName, servicePropertyList : in
TpServicePropertyList, extendedServicePropertyList : in TpServiceTypePropertyValueList) : TpServiceID

8.3.1.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known
to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is
registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a
P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

This method should be used for registration of service super types only. For registering service sub types, the
registerServiceSubType() method should be used.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to access it via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of this type.

If a service is registered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyList, then the
Framework shall notify all applications using instances of services identified by this property, using the
P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such a notification. If an
incorrect combination of properties is included in conjunction with P_COMPATIBLE_WITH_SERVICE, a
P_MISSING_MANDATORY_PROPERTY exception is raised.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
the rules for identifiers, then a P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
 a. mandatory - a service associated with this service type must provide an appropriate value for this property when

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1183GPP TS 29.198-03 version 6.5.0 Release 6

registering.
 b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.
 Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.
 If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in
the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name
are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.

Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME,
P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,
P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE

8.3.1.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle
manager is instantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager" instance per service instance. Each service implements the
IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method
called the createServiceManager(application: in TpClientAppID, serviceProperties : in TpServicePropertyList,
serviceInstanceID : in TpServiceInstanceID) : IpServiceRef. When the service agreement is signed for some serviceID
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a
serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the
rules for service identifiers, then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there
is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

serviceInstanceLifecycleManagerRef : in
service_lifecycle::IpServiceInstanceLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID,
P_INVALID_INTERFACE_TYPE

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1193GPP TS 29.198-03 version 6.5.0 Release 6

8.3.1.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework.
The service is identified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be
deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the
registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers,
then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the
Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID

8.3.1.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It
comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the
"service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for
example), and each getting a different serviceID assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service , and the properties that describe this service.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the
registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers,
then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within
the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

Returns

TpServiceDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1203GPP TS 29.198-03 version 6.5.0 Release 6

8.3.1.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. This will prevent anyone who has already performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey
the rules for service identifiers, then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but
there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID

8.3.1.1.6 Method <<new>> registerServiceSubType()

The registerServiceSubType() operation is the means by which an extended service is registered in the Framework, for
subsequent discovery by the enterprise applications. Registration only succeeds if the service type is known to the
Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is registered in
the Framework. When the service is not registered because the ServiceType is 'unavailable', a
P_SERVICE_TYPE_UNAVAILABLE exception is raised. The service-ID is the handle with which the service
supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in
the context of the Framework that generated it.

This method should be used for registration of service sub types only. For registering service super types, the
registerService () method should be used.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to access it via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
the rules for identifiers, then a P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs corresponding to the service
properties applicable to the standard service. They describe the service being registered.

If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the
service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised.

If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1213GPP TS 29.198-03 version 6.5.0 Release 6

extendedServicePropertyList : in TpServiceTypePropertyValueList

The "extendedServicePropertyList" parameter is a list of property name, mode, type, and property value tuples
corresponding to the service properties applicable to the extended standard service. They describe the service being
registered.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME,
P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,
P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE

8.3.2 Service Instance Lifecycle Manager Interface Classes

The IpServiceInstanceLifecycleManager interface allows the framework to get access to a service manager interface of
a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that is the initial point of contact for the service. E.g. the
generic call control service uses the IpCallControlManager interface.

8.3.2.1 Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.

The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager
Instances. This interface and the createServiceManager() and destroyServiceManager() methods shall be implemented
by a Service.

<<Interface>>

IpServiceInstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void

8.3.2.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

In case there is already a service manager available for the specified application and serviceInstanceID this reference is
returned and no new service manager is created.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1223GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.

serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form a part of the service level agreement. An example of these properties is a list of methods that the client application
is allowed to invoke on the service interfaces.

serviceInstanceID : in TpServiceInstanceID

Specifies the Service Instance ID that the new Service Manager is to be identified by.

Returns

IpServiceRef

Raises

TpCommonExceptions, P_INVALID_PROPERTY

8.3.2.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being
unable to use the service manager any more.

Parameters

serviceInstance : in TpServiceInstanceID

Identifies the Service Instance to be destroyed.

Raises

TpCommonExceptions

8.3.3 Service Discovery Interface Classes

This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of services the
Framework supports and what service "properties" are applicable to each service type. The "listServiceType()" method
returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()"
method returns a description of each service type. The description of service type includes the "service-specific
properties" that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values", by using the
"discoverService()" method.

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve a list of services that the service supplier has
previously registered.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1233GPP TS 29.198-03 version 6.5.0 Release 6

8.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: IpInterface.

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

8.3.3.1.1 Method listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions

8.3.3.1.2 Method describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. a list of service property {name, mode and type}
tuples, the names of the super types of this service type, and whether the service type is currently available or
unavailable.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1243GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE
exception is raised. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE
exception is raised.

Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE

8.3.3.1.3 Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values". The service supplier passes in
a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responses it is willing to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a serviceID/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID
and a list of service properties {name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service properties {name and value list} that the required services
should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The
property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property values can specify an "enclosing" range of values to help in the selection of desired services.

max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1253GPP TS 29.198-03 version 6.5.0 Release 6

Returns

TpServiceList

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,
P_INVALID_PROPERTY

8.3.3.1.4 Method listRegisteredServices()

Returns a list of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns a list of registered services. Each service is characterised
by its service ID and a list of service properties {name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServiceList

Raises

TpCommonExceptions

8.3.4 Integrity Management Interface Classes

8.3.4.1 Interface Class IpFwFaultManager

Inherits from: IpInterface.

This interface is used by the service instance to inform the framework of events which affect the integrity of the API,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on
the IpAccess interface.
 If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be
implemented. If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall
implement svcActivityTestRes() and svcActivityTestErr() in this interface. If the Framework is capable of invoking
IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStatisticsRecordErr() in this interface. If the Framework is capable of invoking
IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStatisticsRecordErr() in this interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1263GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in
TpSubjectType) : void

<<deprecated>> svcUnavailableInd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in
TpServiceIDList) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in
TpServiceIDList) : void

<<deprecated>> generateFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

<<deprecated>> generateFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

svcAvailStatusInd (reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimeInterval, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

8.3.4.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.

testSubject : in TpSubjectType

Identifies the subject for testing (framework or client application).

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1273GPP TS 29.198-03 version 6.5.0 Release 6

8.3.4.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

8.3.4.1.3 Method appUnavailableInd()

This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of this indication, the framework must act to inform the client application.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.1.4 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the
IpSvcFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject : in TpSubjectType

Specifies the subject to be included in the general fault statistics record (framework or application).

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1283GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions

8.3.4.1.5 Method <<deprecated>> svcUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method svcAvailStatusInd() shall be used instead, using the new and updated reason parameter to
inform the Framework the reason why the Service has become unavailable and also when the Service instance becomes
available again.

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The
framework should inform the client application that is currently using this service instance that it is unavailable for use
(via the svcUnavailableInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcUnavailReason

Identifies the reason for the service instance's unavailability.

Raises

TpCommonExceptions

8.3.4.1.6 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

8.3.4.1.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs
parameter has no meaning. It is replaced with generateFaultStatsRecordRes().

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the IpSvcFaultManager interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1293GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

serviceIDs : in TpServiceIDList

Specifies the services that are included in the general fault statistics record. The serviceIDs parameter is not allowed to
be an empty list.

Raises

TpCommonExceptions

8.3.4.1.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs
parameter has no meaning. It is replaced with generateFaultStatsRecordErr().

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a
genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

serviceIDs : in TpServiceIDList

Specifies the services that were included in the general fault statistics record request. The serviceIDs parameter is not
allowed to be an empty list.

Raises

TpCommonExceptions

8.3.4.1.9 Method <<deprecated>> generateFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the IpSvcFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1303GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions

8.3.4.1.10 Method <<deprecated>> generateFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a
genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

Raises

TpCommonExceptions

8.3.4.1.11 Method svcAvailStatusInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use
according to the provided reason and as well to inform the Framework when the Service instance becomes available
again. The framework should inform the client applications that are currently using this service instance that it is
unavailable and as well when it becomes available again for use (via the svcAvailStatusInd method on the
IpAppFaultManager interface).

Parameters

reason : in TpSvcAvailStatusReason

Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to
inform the Framework when the Service instance becomes available again.

Raises

TpCommonExceptions

8.3.4.1.12 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the
IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1313GPP TS 29.198-03 version 6.5.0 Release 6

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject : in TpSubjectType

Specifies the subject to be included in the general fault statistics record (framework or application).

Raises

TpCommonExceptions

8.3.4.1.13 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a
generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

Raises

TpCommonExceptions

8.3.4.1.14 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a
generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

Raises

TpCommonExceptions

8.3.4.2 Interface Class IpSvcFaultManager

Inherits from: IpInterface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1323GPP TS 29.198-03 version 6.5.0 Release 6

This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the
obtainInterfaceWithCallback operation on the IpAccess interface.
 If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented.
If the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement
activityTestRes() and activityTestErr() in this interface. If the Service is capable of invoking
IpFwFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStatisticsRecordErr() in this interface.

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

<<deprecated>> appUnavailableInd () : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in
TpSubjectType) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in
TpSubjectType) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList)
: void

<<deprecated>> generateFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimeInterval) : void

<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

8.3.4.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1333GPP TS 29.198-03 version 6.5.0 Release 6

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

8.3.4.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

Raises

TpCommonExceptions

8.3.4.2.3 Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of a failure within the framework. The service
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.

Raises

TpCommonExceptions

8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Service when the Framework becomes available again.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1343GPP TS 29.198-03 version 6.5.0 Release 6

The framework invokes this method to notify the service instance that a previously reported fault has been rectified.
The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.

Raises

TpCommonExceptions

8.3.4.2.5 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.

Raises

TpCommonExceptions

8.3.4.2.6 Method svcUnavailableInd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1353GPP TS 29.198-03 version 6.5.0 Release 6

8.3.4.2.7 Method <<deprecated>> appUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method appAvailStatusInd shall be used instead, using the new reason parameter to inform the
Service the reason why the Application is unavailable and also when the application becomes available again.

The framework invokes this method to inform the service instance that the framework may have detected that the
application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.2.8 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to provide fault statistics to a service instance in response to a
genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises

TpCommonExceptions

8.3.4.2.9 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1363GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

8.3.4.2.10 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.

Raises

TpCommonExceptions

8.3.4.2.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs
parameter has no meaning. It is replaced with generateFaultStatsRecordReq().

This method is used by the framework to solicit fault statistics from the service, for example when the framework was
asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager
interface. On receipt of this request the service must produce a fault statistics record, for either the framework or for the
client's instances of the specified services during the specified time interval, which is returned to the framework using
the genFaultStatsRecordRes operation on the IpFwFaultManager interface. If the framework does not have access to a
service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be
thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

serviceIDs : in TpServiceIDList

Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty
list.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1373GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

8.3.4.2.12 Method <<deprecated>> generateFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to solicit fault statistics from the service instance, for example when the
framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the
IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the
specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the
IpFwFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

Raises

TpCommonExceptions

8.3.4.2.13 Method appAvailStatusInd()

The framework invokes this method to inform the service instance that the client application is no longer available
using different reasons for the unavailability. This may be a result of the application reporting a failure. Alternatively,
the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return
heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again
the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Service that
the Application is available again.

Raises

TpCommonExceptions

8.3.4.2.14 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a
generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1383GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this response (when it arrives) with the original request.

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises

TpCommonExceptions

8.3.4.2.15 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.

Raises

TpCommonExceptions

8.3.4.2.16 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the
framework was asked for these statistics by the client application using the generateFaultStatisticsRecordReq operation
on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record
during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes
operation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1393GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions

8.3.4.2.17 Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The service instance may wait for the problem to be solved and just stop the usage of the Framework until the
fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.

8.3.4.3 Interface Class IpFwHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the
IpFwHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and
disableHeartBeat() shall be implemented.

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcInterface : in IpSvcHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.4.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

svcInterface : in IpSvcHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1403GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

8.3.4.3.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.3.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.3.4.4 Interface Class IpFwHeartBeat

Inherits from: IpInterface.

 The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a
Framework is capable of invoking IpSvcHeartBeatMgmt.enableHeartBeat(), it shall implement IpFwHeartBeat and the
pulse() method.

<<Interface>>

IpFwHeartBeat

pulse () : void

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1413GPP TS 29.198-03 version 6.5.0 Release 6

8.3.4.4.1 Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the IpSvcHeartBeatMgmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.5 Interface Class IpSvcHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the
IpSvcHeartBeatMgmt interface is implemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat()
shall be implemented.

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.4.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

fwInterface : in IpFwHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1423GPP TS 29.198-03 version 6.5.0 Release 6

8.3.4.5.2 Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.5.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.3.4.6 Interface Class IpSvcHeartBeat

Inherits from: IpInterface.

The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Service is
capable of invoking IpFwHeartBeatMgmt.enableHeartBeat(), it shall implement IpSvcHeartBeat and the pulse()
method.

<<Interface>>

IpSvcHeartBeat

pulse () : void

8.3.4.6.1 Method pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at
the end of every interval specified in the parameter to the IpFwHeartBeatMgmt.enableHeartbeat() method. If the
pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1433GPP TS 29.198-03 version 6.5.0 Release 6

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.7 Interface Class IpFwLoadManager

Inherits from: IpInterface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to a load management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the
IpSvcLoadManager interface to provide the callback mechanism.
 If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be
implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification()
and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
IpSvcLoadManager.querySvcLoadStatsReq() method, then it shall implement querySvcLoadStatsRes() and
querySvcLoadStatsErr() methods in this interface.

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

<<deprecated>> queryLoadReq (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

<<deprecated>> querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubject : in TpSubjectType,
timeInterval : in TpTimeInterval) : void

<<new>> querySvcLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in
TpLoadStatisticList) : void

<<new>> querySvcLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in
TpLoadStatisticError) : void

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1443GPP TS 29.198-03 version 6.5.0 Release 6

8.3.4.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In
addition this method shall be called by the service instance in order to report current load status, when load notifications
are first requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance's load level.

Raises

TpCommonExceptions

8.3.4.7.2 Method <<deprecated>> queryLoadReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method queryLoadStatsReq shall be used instead, using the new identifier to correlate requests and
responses.

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

8.3.4.7.3 Method <<deprecated>> querySvcLoadRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method querySvcLoadStatsRes shall be used instead, using the new identifier to correlate requests
and responses.

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1453GPP TS 29.198-03 version 6.5.0 Release 6

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.

Raises

TpCommonExceptions

8.3.4.7.4 Method <<deprecated>> querySvcLoadErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method querySvcLoadStatsErr shall be used instead, using the new identifier to correlate requests and
errors.

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises

TpCommonExceptions

8.3.4.7.5 Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance. Upon receipt of this method the framework shall
inform the service instance of the current framework or application load using the loadLevelNotification method on the
corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1463GPP TS 29.198-03 version 6.5.0 Release 6

8.3.4.7.6 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises

TpCommonExceptions

8.3.4.7.7 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

Raises

TpCommonExceptions

8.3.4.7.8 Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the
service instance of the current framework or application load using the loadLevelNotification method on the
corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the
framework should be resumed.

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1473GPP TS 29.198-03 version 6.5.0 Release 6

8.3.4.7.9 Method <<new>> queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.

querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

8.3.4.7.10 Method <<new>> querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager
interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.

Raises

TpCommonExceptions

8.3.4.7.11 Method <<new>> querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1483GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions

8.3.4.8 Interface Class IpSvcLoadManager

Inherits from: IpInterface.

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess
interface.
 If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as
a minimum requirement. If load level notifications are supported, then loadLevelNotification() shall be implemented. If
a Service is capable of invoking the IpFwLoadManager.queryLoadStatsReq() method, then it shall implement
queryLoadStatsRes() and queryLoadStatsErr() methods in this interface.

<<Interface>>

IpSvcLoadManager

<<deprecated>> querySvcLoadReq (timeInterval : in TpTimeInterval) : void

<<deprecated>> queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> querySvcLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) :
void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) :
void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in
TpLoadStatisticError) : void

8.3.4.8.1 Method <<deprecated>> querySvcLoadReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method querySvcLoadStatsReq shall be used instead, using the new identifier to correlate requests
and responses.

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1493GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions

8.3.4.8.2 Method <<deprecated>> queryLoadRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method queryLoadStatsRes shall be used instead, using the new identifier to correlate requests and
responses.

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.

Raises

TpCommonExceptions

8.3.4.8.3 Method <<deprecated>> queryLoadErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method queryLoadStatsErr shall be used instead, using the new identifier to correlate requests and
errors.

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

8.3.4.8.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or
framework which has been registered for load level notifications) this method is invoked on the SCF. In addition this

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1503GPP TS 29.198-03 version 6.5.0 Release 6

method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are
first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).

Raises

TpCommonExceptions

8.3.4.8.5 Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.6 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the
service instance shall inform the framework of the current load using the reportLoad method on the corresponding
IpFwLoadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.7 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service
instance. Upon receipt of this method the service instance shall inform the framework of the current load using the
reportLoad method on the corresponding IpFwLoadManager.

Parameters
No Parameters were identified for this method.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1513GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions

8.3.4.8.8 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service
instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.9 Method <<new>> querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

Raises

TpCommonExceptions

8.3.4.8.10 Method <<new>> queryLoadStatsRes()

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this response (when it arrives) with the original request.

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1523GPP TS 29.198-03 version 6.5.0 Release 6

Raises

TpCommonExceptions

8.3.4.8.11 Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

8.3.4.9 Interface Class IpFwOAM

Inherits from: IpInterface.

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API. This interface and the
systemDateTimeQuery() method are optional.

<<Interface>>

IpFwOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passes in its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT is returned if the
format of the parameter is invalid.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1533GPP TS 29.198-03 version 6.5.0 Release 6

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT

8.3.4.10 Interface Class IpSvcOAM

Inherits from: IpInterface.

This interface and the systemDateTimeQuery() method are optional.

<<Interface>>

IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (service).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework. The error code P_INVALID_DATE_TIME_FORMAT is returned
if the format of the parameter is invalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT

8.3.5 Event Notification Interface Classes

8.3.5.1 Interface Class IpFwEventNotification

Inherits from: IpInterface.

The event notification mechanism is used to notify the service of generic events that have occurred. If Event
Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification()
methods shall be supported.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1543GPP TS 29.198-03 version 6.5.0 Release 6

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8.3.5.1.1 Method createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the service to define the event required.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

8.3.5.1.2 Method destroyNotification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT_ID.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

8.3.5.2 Interface Class IpSvcEventNotification

Inherits from: IpInterface.

This interface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1553GPP TS 29.198-03 version 6.5.0 Release 6

is obtained. If Event Notifications are supported by a Service, this interface and the reportNotification() and
notificationTerminated() methods shall be supported.

<<Interface>>

IpSvcEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

8.3.5.2.1 Method reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteria and to act accordingly.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

8.3.5.2.2 Method notificationTerminated()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.4 State Transition Diagrams
This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1563GPP TS 29.198-03 version 6.5.0 Release 6

network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

8.4.1 Service Registration State Transition Diagrams

8.4.1.1 State Transition Diagrams for IpFwServiceRegistration

SCF
Regis tered

regis terService

SCF
Announced

describeService

unannounceService announceServiceAvailability

unregis terService

Figure : State Transition Diagram for IpFwServiceRegistration

8.4.1.1.1 SCF Registered State

This is the state entered when a Service Capability Server (SCS) registers its SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

8.4.1.1.2 SCF Announced State

This is the state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it is no
longer available for discovery.

8.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1573GPP TS 29.198-03 version 6.5.0 Release 6

8.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery

8.4.4 Integrity Management State Transition Diagrams

8.4.4.1 State Transition Diagrams for IpFwLoadManager

Idle

Notification
Suspended

Active

Al l S tates

reportLoad
queryAppLoadRes[load statistics requested by LoadM

queryAppLoadErr[load statistics requested by Load

destroyLoadLevelNotification

queryLoadReq

reportLoad

queryAppLoadRes[load statistics requested by LoadManag
queryAppLoadErr[load statistics requested by LoadMana

createLoadLevelNotification l̂oadLevelNotification

destroyLoadLevelNotification

suspendNotification
[a ll noti ficat ions suspended]

resumeNotification
l̂oadLevelNot ification

queryLoadReq

"load change" l̂oadLevelNotification

pAccess.obtainInterface
IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

Figure : State Transition Diagram for IpFwLoadManager

8.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

8.4.4.1.2 Notification Suspended State

Due to e.g. a temporary load condition, the service has requested the LoadManager to suspend sending the load level
notification information.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1583GPP TS 29.198-03 version 6.5.0 Release 6

8.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification()
invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics
information (by invoking querySvcLoadReq()). Furthermore the LoadManager can request the service to control its
load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the service side of
interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method
reportLoad().

8.4.4.2 State Transition Diagrams for IpFwFaultManager

Framework
Activ e

Framework Activity Test

entry/ test activity of framework
exit/ ^IpSvcFaultManager.activi tyTestRes
exit/ ^IpSvcFaultManager.activi tyTestErr

Application Activity Test

entry/ test activi ty of application
exi t/ ^IpSvcFaultManager.activityTestRes
exi t/ ^IpSvcFaultManager.activityTestErr

Fram ework Faul ty

entry/ ^fwAvai lStatusInd to al l services with cal lback
exi t/ ^fwAvai lStatusInd to al l services wi th cal lback

IpA cc ess.obtainIn terfaceWithCallback("FaultM anagement")
/ add service to faul t man agem ent

genFaultS tatsRecordReq ^svc.genFau ltStatsRecordRes/Err

appUnavailableInd / test the application, inform application that service is not using i t

'change in appl ication availabi l i ty' ^appAvai l StatusInd to a ll services used by appl ication
'change in framework ava i labi l i ty (non faul t)' ^fwAvailStatusInd to al l services with cal lback

no faul t detected

fault detected in fw

IpAccess.endAccess / Abort
pending test request

activi tyTestReq[framework]

IpAccess.endA cc ess

faul t detected in fw

activi tyTestReq[cl ient]

fault resolved

IpAccess.endAccess / remove service
from load management

application faul t ^appAv ailStatusInd to al l
servic es used by the applic ation

no fault detected

IpAccess.endAccess / Abort
pending test request

Figure : State Transition Diagram for IpFwFaultManager

8.4.4.2.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications
and service capability features.

8.4.4.2.2 Framework Activity Test State

In this state, the framework is performing a self-diagnostic test. If a problem is diagnosed, all services with fault
management callbacks are notified through an fwAvailStatusInd message.

8.4.4.2.3 Application Activity Test State

In this state, the framework is performing a test on one client application. If the application is faulty, services that are
used by the application and that have provided fault management callbacks are notified accordingly through an
appAvailStatusInd message.

8.4.4.2.4 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and service capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, services with fault management callbacks will be notified
via a fwAvailStatusInd message.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1593GPP TS 29.198-03 version 6.5.0 Release 6

8.4.5 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification

9 Service Properties

9.1 Service Super and Sub Types
Service Properties are used at service registration to indicate the capabilities of an SCF. They are normally used as an
indication for limitations an SCF has. These limitations can come from the way an SCF is implemented or from
limitations in the network. The service type of an SCF defines which properties the supplier shall provide at
registration of the SCF.

An application uses Service Properties at service discovery to find services that have the required capabilities. The
Framework validates the requested properties with the registered properties and provides the application with a list of
SCFs that comply to the application's request.

The capabilities of an SCF can be extended by providing service properties in addition to the ones defined in this
standard. For this extended SCF, a dedicated sub-type of a service is defined. A sub-type of an SCF shall be fully
compatible with the standard SCF, that is, an application shall be able to use the sub type as if it was the standard type.
This implies that the interface to the SCF remains unchanged. Also SCF sub types can be further extended. This way a
hierarchy of service types can be built with the standard type being the root.

An example of a sub type is a Multy Party Call Control service that allows the application to request a certain quality-
of-service level. An additional service property is added for this.

9.2 Service Property Types
At Service Registration the properties of a type shall be interpreted as the set of values that can be supported by the
service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property value
of {"true", "false"}. This means that the SCS is able to support Service instances where this property is used or
allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a
sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE: This is achieved through the createServiceManager() operation in the Service Instance Lifecycle Manager
interface.

All property values are represented by an array of strings. The following table shows all supported service property
types.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1603GPP TS 29.198-03 version 6.5.0 Release 6

Service Property type
name

Description Example value (array of
strings)

Interpretation of example
value

BOOLEAN_SET set of Booleans {"FALSE"} The set of Booleans consisting
of the Boolean "false".

INTEGER_SET set of integers {"1", "2", "5", "7"} The set of integers consisting
of the integers 1, 2, 5 and 7.

STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of
the string 'Sophia" and the
string "Rijen"

INTEGER_INTERVAL interval of integers {"5", "100"} The integers that are between
or equal to 5 and 100.

STRING_INTERVAL interval of strings {"Rijen", "Sophia"} The strings that are between
or equal to the strings "Rijen"
and "Sophia", in
lexicographical order.

INTEGER_INTEGER_MAP map from integers to
integers

{"1", "10", "2", "20", "3",
"30"}

The map that maps 1 to 10, 2
to 20 and 3 to 30.

XML_ADDRESS_RANGE_
SET

set of values of
TpAddressRange.
Values of
TpAddressRange are
described using XML.
An XML schema is
provided below for this
purpose.

{"<AddressRangeSet>
<AddressRange>
 <Plan>P_ADDRESS_P
LAN_E164</Plan>
 <AddrString>123*</Add
rString>
</AddressRange>
<AddressRange>
 <Plan>P_ADDRESS_P
LAN_E164</Plan>
 <AddrString>234*</Add
rString>
</AddressRange>
</AddressRangeSet>"}

Any addresses starting with
123 or starting with 456 in the
E.164 Address Plan

FLOAT_SET set of values of
TpFloat.

{"0.1", '.2', '0.1e+3}

The set of floats containing
floating point numbers 0.1, 0.2
and 100

FLOAT_INTERVAL interval of TpFloat
values

{'-1.1', '5.0'} The floating point numbers
that are between or equal to –
1.1 and 5.0

The bounds of the string interval, integer interval and float interval types may hold the reserved value
"UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is
the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper
bound of the interval is the largest value supported by the type.

When an SCF is registerd by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an
empty set. When a service is discovered by an application, this application shall specify either {TRUE} or {FALSE} as
value for service properties of type BOOLEAN_SET.

The value of XML_ADDRESS_RANGE_SET should comply with the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="AddressRangeSet">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AddressRange" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Plan" type="xs:string" default="P_ADDRESS_PLAN_ANY"/>
 <xs:element name="AddrString" type="xs:string"/>
 <xs:element name="Name" type="xs:string" minOccurs="0"/>
 <xs:element name="SubAddressString" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1613GPP TS 29.198-03 version 6.5.0 Release 6

 </xs:complexType>
 </xs:element>
</xs:schema>

An example usage could be:

{"<?xml version="1.0" encoding="UTF-8"?>
<AddressRangeSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="xml_address_range_set.xsd">
 <AddressRange>
 <Plan>P_ADDRESS_PLAN_E164</Plan>
 <AddrString>789*</AddrString>
 </AddressRange>
 <AddressRange>
 <Plan>P_ADDRESS_PLAN_ANY</Plan>
 <AddrString>123*</AddrString>
 </AddressRange>
 <AddressRange>
 <Plan>P_ADDRESS_PLAN_SIP</Plan>
 <AddrString><sip:*@parlay.org></AddrString>
 <Name/>
 </AddressRange>
</AddressRangeSet>"}

Note that the final address range corresponds to any sip address @parlay.org, i.e. <sip:*@parlay.org>.

9.3 General Service Properties
Each service instance has the following general properties:

• Service Name

• Service Version

• Service ID

• Service Description

• Product Name

• Product Version

• Supported Interfaces

• Operation Set

• Compatible Service

• Backward Compatibility Level

• Migration Required

• Data Migrated

• Migration Date and Time

The following sections describe these general service properties in more detail. The values for the mode are defined in
the type TpServiceTypePropertyMode.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1623GPP TS 29.198-03 version 6.5.0 Release 6

9.3.1 Service Name

Property Type Mode Description
P_SERVICE_NAME STRING_SET MANDATORY_

READONLY
This property contains the name of the
service, e.g. 'UserLocation',
'UserLocationCamel',
'UserLocationEmergency' or 'UserStatus'.

9.3.2 Service Version

Property Type Mode Description
P_SERVICE_VERSION STRING_SET MANDATORY This property contains the version of the

APIs, to which the service is compliant. It is
a set of strings as specified in the TpVersion
type.

9.3.3 Service ID

Property Type Mode Description
P_SERVICE_ID STRING_INTERVAL READONLY This property uniquely identifies a specific

service. Note that the Framework generates
this property value when the Service
Supplier registers the service. This property
should not be confused with the
serviceInstanceID generated by the
Framework when a Client Application signs
a Service Agreement to obtain the Service
Manager

9.3.4 Service Description

Property Type Mode Description
P_SERVICE_DESCRIPTION STRING_SET MANDATORY_

READONLY
This property contains a textual description
of the service. It should not be interpreted
as a description of a Service Instance (as
identified by a serviceInstanceID generated
by the Framework when a Client Application
signs a Service Agreement to obtain the
Service Manager).

9.3.5 Product Name

Property Type Mode Description
P_PRODUCT_NAME STRING_SET READONLY This property contains the name of the

product that provides the service, e.g. 'Find
It', 'Locate.com'.

9.3.6 Product Version

Property Type Mode Description
P_PRODUCT_VERSION STRING_SET READONLY This property contains the version of the

product that provides the service, e.g.
'3.1.11'.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1633GPP TS 29.198-03 version 6.5.0 Release 6

9.3.7 <<deprecated>> Supported Interfaces

This property contains a list of strings with interface names that the service supports, e.g. 'IpUserLocation',
'IpUserStatus'. This property is deprecated and will be removed in a future version of the specification.

9.3.8 Operation Set

Property Type Mode Description
P_OPERATION_SET STRING_SET MANDATORY Specifies set of the operations the SCS

supports.
The notation to be used is :
{'Interface1.operation1','Interface1.operation
2', 'Interface2.operation1'}, e.g.:
{'IpCall.createCall','IpCall.routeReq'}.

9.3.9 Compatible Service

Property Type Mode Description
P_COMPATIBLE_WITH_SERVICE STRING_SET READONLY Specifies the Set of Services, identified by

their ServiceIDs, with which this new service
is compatible.
This property should at least be
accompanied with the properties
P_BACKWARD_COMPATIBILITY_LEVEL,
P_MIGRATION_REQUIRED.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties like Migration Required, Data
Migrated, etc.
For all these properties the order of the
Services shall be identical.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1643GPP TS 29.198-03 version 6.5.0 Release 6

9.3.10 Backward Compatibility Level

Property Type Mode Description
P_BACKWARD_COMPATIBILITY_
LEVEL

BOOLEAN_SET READONLY Specifies if the new service is completely
backwards compatible with each service
identified in the
P_COMPATIBLE_WITH_SERVICE
property:
Value = TRUE: Service is completely
backwards compatible
Value = FALSE: SCS is not completely
backwards compatible.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE
property.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.
For all these properties the order of the
Services shall be identical.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1653GPP TS 29.198-03 version 6.5.0 Release 6

9.3.11 Migration Required

Property Type Mode Description
P_MIGRATION_REQUIRED BOOLEAN_SET READONLY Specifies if the new service is replacing the

service identified in the
P_COMPATIBLE_WITH_SERVICE property:
Value = TRUE: new service is replacing the
existing one – migration is required before
the date/time indicated in
P_MIGRATION_DATE_AND_TIME property.
Value = FALSE: new service is not replacing
the existing one – migration not required, the
existing service is retained.
This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property.
If the value set of
P_MIGRATION_REQUIRED contains
TRUE, P_DATA_MIGRATED and
P_MIGRATION_DATE_AND_TIME
properties shall also to be present.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.
For all these properties the order of the
Services shall be identical.

9.3.12 Data Migrated

Property Type Mode Description
P_DATA_MIGRATED BOOLEAN_SET READONLY Indicates if the data (e.g. notifications) from

the existing service identified in the
P_COMPATIBLE_WITH_SERVICE property
is also available in this Service.
Value = TRUE: all data is migrated
Value = FALSE: no data is migrated

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE and the
P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.
For all these properties the order of the
Services shall be identical.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1663GPP TS 29.198-03 version 6.5.0 Release 6

9.3.13 Migration Date And Time

Property Type Mode Description
P_MIGRATION_DATE_AND_TIME STRING_SET READONLY This property contains the date and time, in

the format described in TpDateAndTime, by
which point applications shall have migrated
from existing services to this new service.
Migration to the new service requires the
application to terminate the existing service
agreement, and sign a new one.
Failure to do this by the migration date and
time indicated in this property may result in
the service agreement being terminated by
the Framework, since the service supplier
may choose to unregister the service
following this date and time.
Only one value of TpDateAndTime is
permitted to be present in this property at
service registration.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE,
P_MIGRATION_REQUIRED and
P_DATA_MIGRATED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.
For all these properties the order of the
Services shall be identical. For those
services for which migration is not required
(P_MIGRATION_REQUIRED set to FALSE),
the corresponding value of this property shall
be ignored.

10 Data Definitions
This clause provides the Framework specific data definitions necessary to support the OSA interface specification.

The general format of a data definition specification is the following:

− Data type, that shows the name of the data type;

− Description, that describes the data type;

− Tabular specification, that specifies the data types and values of the data type;

− Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in
3GPP TS 29.198-2.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1673GPP TS 29.198-03 version 6.5.0 Release 6

10.1 Common Framework Data Definitions

10.1.1 TpClientAppID

This is an identifier for the client application. It is used to identify the client to the Framework. This data type is
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator"s domain). This unique
identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

10.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

10.1.3 TpDomainID

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity
attempting to access the Framework.

 Tag Element Type
 TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFwID FwID

P_CLIENT_APPLICATION TpClientAppID ClientAppID

P_ENT_OP TpEntOpID EntOpID

P_SERVICE_INSTANCE TpServiceInstanceID ServiceID (See Note)

P_SERVICE_SUPPLIER TpServiceSupplierID ServiceSupplierID

Note: The Choice Element Name ServiceID of TpDomainID refers to a service instance.

10.1.4 TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P_FW 0 The Framework

P_CLIENT_APPLICATION 1 A client application

P_ENT_OP 2 An enterprise operator

P_SERVICE_INSTANCE 3 A service instance

P_SERVICE_SUPPLIER 4 A service supplier

10.1.5 TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

10.1.6 TpPropertyName

This data type is identical to TpString. It is the name of a generic 'property'.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1683GPP TS 29.198-03 version 6.5.0 Release 6

10.1.7 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic 'property'.

10.1.8 TpProperty

This data type is a Sequence of Data Elements which describes a generic 'property'. It is a structured data type
consisting of the following {name,value} pair:

Sequence Element
Name

Sequence Element
Type

PropertyName TpPropertyName
PropertyValue TpPropertyValue

10.1.9 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

10.1.11 TpFwID

This data type is identical to TpString and identifies the Framework.

10.1.12 TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceID TpServiceID

ServiceDescription TpServiceDescription This field contains the description of the service

10.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

10.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes a registered SCF. It is a structured data type which
consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceTypeName TpServiceTypeName

ServicePropertyList TpServicePropertyList

10.1.15 TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1693GPP TS 29.198-03 version 6.5.0 Release 6

10.1.16 TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

10.1.17 TpServiceInstanceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework.

10.1.18 TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
It is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the
service property"s name and mode, but also defines the list of values assigned to it.

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServicePropertyName

ServiceTypePropertyMode TpServiceTypePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

10.1.19 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

10.1.20 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided

MANDATORY 1 The value of the corresponding SCF property type shall be provided at service registration time

READONLY 2 The value of the corresponding SCF property type is optional, but once given a value it can not be
modified/restricted by a service level agreement

MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided but can not subsequently be
modified/restricted by a service level agreement.

10.1.21 TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property type name. Valid service property type names
are detailed in 10.1.

10.1.22 TpServicePropertyName

This data type is identical to TpString. It defines a valid SCF property name. The valid service property names are
detailed in 10.3 and in the SCF data definitions. Additionally, service property names for proprietary service properties
(used for service sub types) are possible.

10.1.23 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1703GPP TS 29.198-03 version 6.5.0 Release 6

10.1.24 TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property.

10.1.25 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue.

10.1.26 TpServiceProperty

This data type is a Sequence of Data Elements which describes an 'SCF property'. It is a structured data type which
consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyValueList TpServicePropertyValueList

10.1.27 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

10.1.28 TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the Framework. This data type is
identical to TpString.

10.1.29 TpServiceTypeDescription

This data type is a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceTypePropertyList TpServiceTypePropertyList a sequence of property name and property mode tuples associated with the
SCF type

ServiceTypeNameList TpServiceTypeNameList the names of the super types of the associated SCF type

AvailableOrUnavailable TpBoolean an indication whether the SCF type is available (true) or unavailable (false)

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1713GPP TS 29.198-03 version 6.5.0 Release 6

10.1.30 TpServiceTypeName

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

Character String Value Description
NULL An empty (NULL) string indicates no SCF name

P_GENERIC_CALL_CONTROL The name of the Generic Call Control SCF

P_MULTI_PARTY_CALL_CONTROL The name of the MultiParty Call Control SCF

P_MULTI_MEDIA_CALL_CONTROL The name of the MultiMedia Call Control SCF

P_CONFERENCE_CALL_CONTROL The name of the Conference Call Control SCF

P_USER_INTERACTION The name of the User Interaction SCFs

P_USER_INTERACTION_ADMIN The name of the User Interaction Administration SCF

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities SCF

P_USER_BINDING The name of the User Binding SCF

P_USER_LOCATION The name of the User Location SCF

P_USER_LOCATION_CAMEL The name of the Network User Location SCF

P_USER_LOCATION_EMERGENCY The name of the User Location Emergency SCF

P_USER_STATUS The name of the User Status SCF

P_EXTENDED_USER_STATUS The name of Extended User Status SCF

P_DATA_SESSION_CONTROL The name of the Data Session Control SCF

P_GENERIC_MESSAGING The name of the Generic Messaging SCF

P_CONNECTIVITY_MANAGER The name of the Connectivity Manager SCF

P_CHARGING The name of the Charging SCF

P_ACCOUNT_MANAGEMENT The name of the Account Management SCF

P_POLICY_PROVISIONING The name of the Policy Management provisioning SCF

P_POLICY_EVALUATION The name of the Policy Management policy evaluation SCF

P_PAM_ACCESS The name of PAM presentity SCF

P_PAM_EVENT_MANAGEMENT The name of PAM watcher SCF

P_PAM_PROVISIONING The name of PAM provisioning SCF

P_MULTI_MEDIA_MESSAGING The name of the Multimedia Messaging SCF

10.1.31 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

10.1.32 TpSubjectType

Defines the subject of a query/notification request/result.

Name Value Description
P_SUBJECT_UNDEFINED 0 The subject is neither the framework nor the

client application

P_SUBJECT_CLIENT_APP 1 The subject is the client application

P_SUBJECT_FW 2 The subject is the framework

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1723GPP TS 29.198-03 version 6.5.0 Release 6

10.1.33 TpServiceTypePropertyValue

This data type is a Sequence of Data Elements which describes a service property associated with a service. It
defines the name and mode of the service property, the service property type (e.g. Boolean, integer), and also value. It
is similar to, but distinct from, TpServiceProperty. The latter does not define the modes and types and is used to
register values for known service properties only.

Sequence ElementName Sequence ElementType Documentation
ServicePropertyName TpServicePropertyName The name of the service property.

ServiceTypePropertyMode TpServiceTypePropertyMode The mode of the service property.

ServicePropertyTypeName TpServicePropertyTypeName The type of the service property.

ServicePropertyValueList TpServicePropertyValueList The Value-list of the service property.

10.1.34 TpServiceTypePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServiceTypePropertyValue.

10.2 Event Notification Data Definitions

10.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description
P_EVENT_FW_NAME_UNDEFINED 0 Undefined

P_EVENT_FW_SERVICE_AVAILABLE 1 Notification of SCS(s) available

P_EVENT_FW_SERVICE_UNAVAILABLE 2 Notification of SCS(s) becoming unavailable

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE 3 Notification of a backwards compatible SCS
becoming available, to which the application

can migrate.

P_EVENT_FW_APP_SESSION_CREATED 4 Notification of an application<->FW access
session created. (See note 1)

P_EVENT_FW_APP_SESSION_TERMINATED 5 Notification of an application<->FW access
session terminated. (See note 1)

P_EVENT_FW_APP_AGREEMENT_SIGNED 6 Notification that a service agreement has been
signed. (See note 1)

P_EVENT_FW_APP_AGREEMENT_ENDED 7 Notification that a service agreement has been
ended/terminated. (See note 1)

NOTE: These events can only be requested by enterprise operators. If requested by any other entity then
the method will throw the P_INVALID_CRITERIA exception.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1733GPP TS 29.198-03 version 6.5.0 Release 6

10.2.2 TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specifies the criteria for an event notification to be
generated.

 Tag Element Type
 TpFwEventName

Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE TpServiceTypeNameList ServiceTypeNameList

P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceTypeNameList UnavailableServiceTypeNameList

P_EVENT_FW_MIGRATION_SERVICE_AVAILAB
LE

TpServiceTypeNameList CompatibleServiceTypeNameList

P_EVENT_FW_APP_SESSION_CREATED TpClientAppIDList SessionCreatedList

P_EVENT_FW_APP_SESSION_TERMINATED TpClientAppIDList SessionTerminatedList

P_EVENT_FW_APP_AGREEMENT_SIGNED TpClientAppIDList AgreementSignedList

P_EVENT_FW_APP_AGREEMENT_ENDED TpClientAppIDList AgreementEndedList

10.2.3 TpFwEventInfo

Defines the Tagged Choice of Data Elements that specifies the information returned to the client in an event
notification.

 Tag Element Type
 TpFwEventName

Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE TpServiceIDList ServiceIDList

P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceIDList UnavailableServiceIDList

P_EVENT_FW_MIGRATION_SERVICE_AVAILAB
LE

TpFWMigrationServiceAvailableInfo MigrationServiceAvailable

P_EVENT_FW_APP_SESSION_CREATED TpClientAppID AppSessionCreated

P_EVENT_FW_APP_SESSION_TERMINATED TpClientAppID AppSessionTerminated

P_EVENT_FW_APP_AGREEMENT_SIGNED TpFwAgreementInfo AppAgreementSigned

P_EVENT_FW_APP_AGREEMENT_ENDED TpFwAgreementInfo AppAgreementEnded

10.2.4 TpFwMigrationServiceAvailableInfo

Defines the information to be supplied when an SCS becomes available.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1743GPP TS 29.198-03 version 6.5.0 Release 6

Sequence ElementName Sequence ElementType Documentation
ServiceType TpServiceTypeName Type of SCS that has become available

ServiceID TpServiceID ID of the SCS that has become available

CompatibleServiceID TpServiceID ID of the SCS with which this new SCS is compatible with.

BackwardCompatibilityLevel TpBoolean Specifies if the new SCS is completely backwards compatible
with the currently used SCS.

Value = TRUE: SCS is completely backwards compatible

Value = FALSE: SCS is not completely backwards compatible.
Contact the Framework operator for more information.on how
to migrate.

MigrationRequired TpBoolean Specifies if the new SCS is replacing the existing SCS

Value = TRUE: new SCS is replacing the existing one -
migration is required before the date/time indicated in
MigrationDateAndTime field

Value = FALSE: new SCS is not replacing the existing one, but
is provided in addition.

All migration to the new SCS, whether required or not, shall
involve the application terminating the existing service
agreement and signing a new one.

DataMigrated TpBoolean Indicates whether all the data the application set in the previous
SCS (e.g. notifications) is also available in the new SCS.

Value = FALSE : the new SCS has not obtained all data (e.g.
notifications) related to the old SCS and the application needs
to reset all the previous data.

Value = TRUE: the new SCS has obtained data (e.g.
notifications) related to the old SCS, the application can use the
new SCS without resetting data.

MigrationDataAndTime TpDateAndTime Indicates the date and time before which applications shall have
migrated from existing the existing SCS to this new SCS.

Migration to the new SCS requires the application to terminate
the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in
this field may result in the service agreement being terminated
by the Framework, since the service supplier may choose to
unregister the service following this date and time.

The value of this parameter, if present, shall be ignored if
MigrationRequired is set to FALSE

MigrationAdditionalInfo TpMigrationAdditionalInfoSet Contains additional migration information. This is initially
provided to permit addition of information in later releases
without impacting backwards compatibility.

10.2.5 TpMigrationAdditionalInfo

Defines the Tagged Choice of Data Elements that specify additional migration-related information.

 Tag Element Type
 TpMigrationAdditionalInfoType

Tag Element Value Choice Element Type Choice Element Name
P_MIGRATION_INFO_UNDEFINED NULL Undefined

10.2.6 TpMigrationAdditionalInfoType

Defines the type of migration-related additional information.

Name Value Description
P_MIGRATION_INFO_UNDEFINED 0 Undefined

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1753GPP TS 29.198-03 version 6.5.0 Release 6

10.2.7 TpMigrationAdditionalInfoSet

Defines a Numbered Set of Data Elements of TpMigrationAdditionalInfo.

10.2.8 TpFwAgreementInfo

Defines the Sequence of Data Elements that specifies the information returned to the enterprise operator
application in an event notification.

Sequence Element Name Sequence Element Type Description
ClientApplicationID TpClientAppID The ID of the client application

ServiceID TpServiceID The ID of the service for whom the agreement was
signed/terminated

ServiceContractID TpServiceContractID The ID of the service contract related to the
agreement if available, an empty string otherwise.

ServiceProfileID TpServiceProfileID The ID of the service profile related to the
agreement if available, an empty string otherwise.

10.3 Trust and Security Management Data Definitions

10.3.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined:

String Value Description
P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess

10.3.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string 'SP_'. The following values are defined:

String Value Description
P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and

IpClientAPILevelAuthentication
P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1763GPP TS 29.198-03 version 6.5.0 Release 6

10.3.3 TpEncryptionCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the encryption capabilities
that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be
preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The
following values are defined.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.
P_DES_56 A simple transfer of secret information that is shared between the client application and the Framework with protection

against interception on the link provided by the DES algorithm with a 56-bit shared secret key. The ECB mode of DES is to
be used.

P_DES_128 A simple transfer of secret information that is shared between the client entity and the Framework with protection against
interception on the link provided by the DES algorithm with a 128-bit shared secret key. Use of the P_DES_128 value of
TpEncryptionCapability is deprecated, as DES cannot be used with a 128-bit key.

P_RSA_512 A public-key cryptography system providing authentication without prior exchange of secrets using 512-bit keys.
P_RSA_1024 A public-key cryptography system providing authentication without prior exchange of secrets using 1024-bit keys.
P_TDEA The Triple-DES or TDEA algorithm with three 56-bit secret keys. The key exchange is handled separately, and may permit

use of three, two or only one unique key. The TECB mode of Triple-DES is to be used.

10.3.4 TpEncryptionCapabilityList

This data type is identical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma
(,) as the separation character.

10.3.5 TpEndAccessProperties

This data type is of type TpPropertyList. It identifies the actions that the Framework should perform when an
application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or left running).

10.3.6 TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain.

Sequence Element
Name

Sequence Element
Type

Description

DomainID TpDomainID Identifies the domain for authentication. This identifier is assigned to the domain during
the initial contractual agreements, and is valid during the lifetime of the contract.

AuthInterface IpInterfaceRef Identifies the authentication interface of the specific entity. This data element has the same
lifetime as the domain authentication process, i.e. in principle a new interface reference

can be provided each time a domain intends to access another.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1773GPP TS 29.198-03 version 6.5.0 Release 6

10.3.7 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "SP_". The following values are defined.

Character String Value Description
P_DISCOVERY The name for the Discovery interface.
P_EVENT_NOTIFICATION The name for the Event Notification interface.
P_OAM The name for the OA&M interface.
P_LOAD_MANAGER The name for the Load Manager interface.
P_FAULT_MANAGER The name for the Fault Manager interface.
P_HEARTBEAT_MANAGEMENT The name for the Heartbeat Management interface.
P_SERVICE_AGREEMENT_MANAGEMENT The name of the Service Agreement Management interface.
P_REGISTRATION The name for the Service Registration interface.
P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator Account Management

interface.
P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription: Enterprise Operator Account Information Query

interface.
P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service Contract Management interface.
P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service Contract Information Query interface.
P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client Application Management interface.
P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client Application Information Query interface.
P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service Profile Management interface.
P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service Profile Information Query interface.

10.3.8 TpInterfaceNameList

This data type defines a Numbered Set of Data Elements of type TpInterfaceName.

10.3.9 TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will
automatically expire if the client or Framework invokes the endAccess method on the other's corresponding access
interface.

10.3.10 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element
Name

Sequence Element
Type

DigitalSignature TpOctetSet

ServiceMgrInterface IpServiceRef

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1783GPP TS 29.198-03 version 6.5.0 Release 6

10.3.11 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required
P_MD5_RSA_512 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the

input. This is then encrypted with the private key under the RSA public-key cryptography system
using a 512-bit modulus. The signature generation follows the process and format defined in RFC

2313 (PKCS#1 v1.5). The use of this signing method is deprecated.
P_MD5_RSA_1024 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the

input. This is then encrypted with the private key under the RSA public- key cryptography system
using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC

2313 (PKCS#1 v1.5). The use of this signing method is deprecated.
P_RSASSA_PKCS1_v1_5_SH
A1_1024

SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is
then used to generate the signature value, following the process defined in section 8 of RFC 2437 and
format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024-bit
modulus.

P_SHA1_DSA SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is
then used to generate the signature value. The signature generation follows the process and format
defined in section 7.2.2 of RFC 2459.

10.3.12 TpSigningAlgorithmCapabilityList

This data type is identical to a TpString. It is a string of multiple TpSigningAlgorithm concatenated using a comma (,)
as the separation character.

10.3.13 TpAuthMechanism

This data type is identical to a TpString. It identifies an authentication mechanism to be used for API Level
Authentication. The following values are defined:

String Value Description
P_OSA_MD5 Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to generate a response based on a

shared secret and a challenge received via challenge() method. The capability to use this algorithm is required
to be supported when using CHAP (RFC 1994) but its use is not recommended.

P_OSA_HMAC_SHA1_96 Authentication is based on the use of HMAC-SHA1 (RFC 2404) hashing algorithm to generate a response
based on a shared secret and a challenge received via challenge() method.

P_OSA_HMAC_MD5_96 Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm to generate a response
based on a shared secret and a challenge received via challenge() method.

10.3.14 TpAuthMechanismList

This data type is identical to a TpString. It is a string of multiple TpAuthMechanism concatenated using a comma (,) as
the separation character.

10.4 Integrity Management Data Definitions

10.4.1 TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are 'Available' or
'Unavailable'.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1793GPP TS 29.198-03 version 6.5.0 Release 6

10.4.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element
Name

Sequence Element
Type

Period TpTimeInterval

FaultStatsSet TpFaultStatsSet

10.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element
Name

Sequence Element
Type

Description

Fault TpInterfaceFault

Occurrences TpInt32 The number of separate instances of this fault

MaxDuration TpInt32 The number of seconds duration of the longest fault

TotalDuration TpInt32 The cumulative duration (all occurrences)

NumberOfClientsAffected TpInt32 The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the
number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is
the number of clients informed of the fault by the Framework.

10.4.4 TpFaultStatisticsError

Defines the error code associated with a failed attempt to retrieve any fault
statistics information.

Name Value Description
P_FAULT_INFO_ERROR_UNDEFINED 0 Undefined error

P_FAULT_INFO_UNAVAILABLE 1 Fault statistics unavailable

10.4.5 TpFaultStatsSet

This data type defines a Numbered Set of Data Elements of type TpFaultStats

10.4.6 TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

10.4.7 TpInterfaceFault

Defines the cause of the interface fault detected.

Name Value Description
INTERFACE_FAULT_UNDEFINED 0 Undefined

INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware has been detected

INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or hardware has been detected

INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-gateway link has been detected

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1803GPP TS 29.198-03 version 6.5.0 Release 6

10.4.8 TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

Name Value Description
SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined

SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

SERVICE_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed

SERVICE_UNAVAILABLE_OVERLOADED 3 The SCF is fully overloaded

SERVICE_UNAVAILABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from fraud or malicious attack)

10.4.9 TpFwUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description
FW_UNAVAILABLE_UNDEFINED 0 Undefined

FW_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

FW_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed

FW_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded

FW_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect from fraud or malicious attack)

FW_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link has failed

10.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD_LEVEL_NORMAL 0 Normal load

LOAD_LEVEL_OVERLOAD 1 Overload

LOAD_LEVEL_SEVERE_OVERLOAD 2 Severe Overload

10.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is
application and SCF dependent, so is their relationship with load level.

Sequence Element
Name

Sequence Element
Type

LoadThreshold TpFloat

10.4.12 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element
Name

Sequence Element
Type

LoadLevel TpLoadLevel

LoadThreshold TpLoadThreshold

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1813GPP TS 29.198-03 version 6.5.0 Release 6

10.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name Sequence Element Type
LoadPolicy TpString

10.4.14 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e.
Framework, service or application) at a specific date and time.

Sequence Element Name Sequence Element Type
LoadStatisticEntityID TpLoadStatisticEntityID

TimeStamp TpDateAndTime

LoadStatisticInfo TpLoadStatisticInfo

10.4.15 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

10.4.16 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information.

Sequence Element Name Sequence Element Type
LoadValue (see Note) TpFloat

LoadLevel TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

10.4.17 TpLoadStatisticEntityID

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or
Framework) providing load statistics.

 Tag Element Type
 TpLoadStatisticEntityType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS_FW_TYPE TpFwID FrameworkID

P_LOAD_STATISTICS_SVC_TYPE TpServiceID ServiceID

P_LOAD_STATISTICS_APP_TYPE TpClientAppID ClientAppID

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1823GPP TS 29.198-03 version 6.5.0 Release 6

10.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description
P_LOAD_STATISTICS_FW_TYPE 0 Framework-type load statistics

P_LOAD_STATISTICS_SVC_TYPE 1 Service-type load statistics

P_LOAD_STATISTICS_APP_TYPE 2 Application-type load statistics

10.4.19 TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or
invalid).

 Tag Element Type
 TpLoadStatisticInfoType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS_VALID TpLoadStatisticData LoadStatisticData

P_LOAD_STATISTICS_INVALID TpLoadStatisticError LoadStatisticError

10.4.20 TpLoadStatisticInfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P_LOAD_STATISTICS_VALID 0 Valid load statistics

P_LOAD_STATISTICS_INVALID 1 Invalid load statistics

10.4.21 TpLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load statistics information.

Name Value Description
P_LOAD_INFO_ERROR_UNDEFINED 0 Undefined error

P_LOAD_INFO_UNAVAILABLE 1 Load statistics unavailable

10.4.22 TpSvcAvailStatusReason

Defines the reason detailing the change in status of Service Instance availability.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1833GPP TS 29.198-03 version 6.5.0 Release 6

Name Value Description
SVC_UNAVAILABLE_UNDEFINED 0 Undefined. A permanent failure. See Note 1.

SVC_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed. A
permanent failure. See Note 1.

SVC_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed. A
permanent failure. See Note 1.

SVC_UNAVAILABLE_OVERLOADED 3 The Service Instance is fully overloaded. A temporary
problem. See Note 2.

SVC_UNAVAILABLE_CLOSED 4 The Service Instance has closed itself (e.g. to protect from
fraud or malicious attack). A permanent failure. See Note

1.

SVC_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that a Service Instance has
failed: e.g. non-response from an activity test, failure to

return heartbeats. A permanent failure. See Note 1.

SVC_UNAVAILABLE_SW_UPGRADE 6 The Service Instance is unavailable due to software upgrade
or other similar maintenance. A permanent failure. See

Note 1.

SVC_AVAILABLE 7 The Service has become available again

Note 1: The client application must act to reset its use of the specified service instance (using the normal
mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance
and begin use of a different service instance).

Note 2: The "expected" recovery time could be defined within the SLA.

10.4.23 TpAppAvailStatusReason

Defines the reason detailing the change in status of Application availability.

Name Value Description
APP_UNAVAILABLE_UNDEFINED 0 Undefined. A permanent failure. See Note 1.

APP_UNAVAILABLE_LOCAL_FAILURE 1 A local failure in the Application has been detected. A
permanent failure. See Note 1.

APP_UNAVAILABLE_REMOTE_FAILURE 2 A remote failure to the application has been detected, e.g. a
database is not working. A permanent failure. See Note 1.

APP_UNAVAILABLE_OVERLOADED 3 The Application is fully overloaded. A temporary problem.
See Note 2.

APP_UNAVAILABLE_CLOSED 4 The Application has closed itself (e.g. to protect from fraud
or malicious attack) . A permanent failure. See Note 1.

APP_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that the application has failed:
e.g. non-response from an activity test, failure to return

heartbeats. A permanent failure. See Note 1.

APP_UNAVAILABLE_SW_UPGRADE 6 The Application is unavailable due to SW upgrade or other
similar maintenance. A permanent failure. See Note 1.

APP_AVAILABLE 7 The Application has become available

Note 1: The client application is unable (or does not wish) to continue using the service instance.
Note 2: The "expected" recovery time could be defined within the SLA.

10.4.24 TpLoadTestID

This data type is identical to a TpInt32, and is used as a token to match load statistics requests with their results.

10.4.25 TpFaultStatsErrorList

Defines a Numbered List of Data Elements of type TpFaultStatisticsError.

10.4.26 TpFaultReqID

This data type is identical to a TpInt32, and is used as a token to match fault statistics requests with their results.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1843GPP TS 29.198-03 version 6.5.0 Release 6

10.4.27 TpFwAvailStatusReason

Defines the reason detailing the change in status of Framework availability.

Name Value Description
FRAMEWORK_UNAVAILABLE_UNDEFINED 0 Undefined. A permanent failure. See Note 1.

FRAMEWORK_UNAVAILABLE_LOCAL_FAILURE 1 A local failure in the Framework has been detected. A
permanent failure. See Note 1.

FRAMEWORK_UNAVAILABLE_REMOTE_FAILURE 2 A remote failure to the Framework has been detected, e.g. a
database is not working. A permanent failure. See Note 1.

FRAMEWORK_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded. A temporary problem.
See Note 2.

FRAMEWORK_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect from fraud
or malicious attack) . A permanent failure. See Note 1.

FRAMEWORK_UNAVAILABLE_PROTOCOL_FAILURE 5 The Framework has detected that the protocol used
between client and framework has failed. A permanent

failure. See Note 1.

FRAMEWORK_UNAVAILABLE_SW_UPGRADE 6 The Framework is unavailable due to SW upgrade or other
similar maintenance. A permanent failure. See Note 1.

FRAMEWORK_AVAILABLE 7 The Framework has become available

Note 1: The Framework is unable (or does not wish) to continue using the client or service instance.
Note 2: The 'expected' recovery time could be part of the Framework's local policies.

10.5 Service Subscription Data Definitions

10.5.1 TpPropertyName

This data type is identical to TpString. It is the name of a generic 'property'.

10.5.2 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic 'property'.

10.5.3 TpProperty

This data type is a Sequence of Data Elements which describes a generic 'property'. It is a structured data type
consisting of the following {name,value} pair:

Sequence Element
Name

Sequence Element
Type

PropertyName TpPropertyName

PropertyValue TpPropertyValue

10.5.4 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.5.5 TpEntOpProperties

This data type is of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1853GPP TS 29.198-03 version 6.5.0 Release 6

10.5.6 TpEntOp

This data type is a Sequence of Data Elements which describes an enterprise operator. It is a structured data
type, consisting of a unique 'enterprise operator ID' and a list of 'enterprise operator properties', as follows:

Sequence Element
Name

Sequence Element
Type

EntOpID TpEntOpID

EntOpProperties TpEntOpProperties

10.5.7 TpServiceContractID

This data type is identical to TpString. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSAservice by the enterprise.

10.5.8 TpServiceContractIDList

This data type defines a Numbered List of Data Elements of type TpServiceContractID.

10.5.9 TpPersonName

This data type is identical to TpString. It is the name of a generic 'person'.

10.5.10 TpPostalAddress

This data type is identical to TpString. It is the mailing address of a generic 'person'.

10.5.11 TpTelephoneNumber

This data type is identical to TpString. It is the telephone number of a generic 'person'.

10.5.12 TpEmail

This data type is identical to TpString. It is the email address of a generic 'person'.

10.5.13 TpHomePage

This data type is identical to TpString. It is the web address of a generic 'person'.

10.5.14 TpPersonProperties

This data type is of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic 'person'.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1863GPP TS 29.198-03 version 6.5.0 Release 6

10.5.15 TpPerson

This data type is a Sequence of Data Elements which describes a generic 'person': e.g. a billing contact, a
service requestor. It is a structured data type which consists of:

Sequence Element
Name

Sequence Element
Type

PersonName TpPersonName

PostalAddress TpPostalAddress

TelephoneNumber TpTelephoneNumber

Email TpEmail

HomePage TpHomePage

PersonProperties TpPersonProperties

10.5.16 TpServiceStartDate

This is of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.17 TpServiceEndDate

This is of type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.18 TpServiceRequestor

This is of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

10.5.19 TpBillingContact

This is of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise"s
use of an OSA service.

10.5.20 TpServiceSubscriptionProperties

This is of type TpServicePropertyList. It specifies a subset of all available service properties and service property
values that apply to an enterprise"s use of an OSA service.

10.5.21 TpServiceContract

This data type is a Sequence of Data Elements which represents a service contract. It is a structured data type
which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceContractID TpServiceContractID

ServiceContractDescription TpServiceContractDescription

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1873GPP TS 29.198-03 version 6.5.0 Release 6

10.5.22 TpServiceContractDescription

This data type is a Sequence of Data Elements which describes a service contract. This contract should
conform to a previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if
any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceRequestor TpServiceRequestor

BillingContact TpBillingContact

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName

ServiceID TpServiceID

ServiceSubscriptionProperties TpServiceSubscriptionProperties

InUse TpBoolean (See note)

Note: The InUse flag indicates if the contract, or one of its associated profiles, is currently in
use by a service instance and will be returned in describeServiceContract(). This flag
will be ignored if it is passed in to createServiceContract().

10.5.23 TpClientAppProperties

This is of type TpPropertyList. The client application properties is a list of {name,value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

10.5.24 TpClientAppDescription

This data type is a Sequence of Data Elements which describes an enterprise client application. It is a
structured data type, consisting of a unique 'client application ID', password and a list of 'client application properties:

Sequence Element
Name

Sequence Element
Type

ClientAppID TpClientAppID

ClientAppProperties TpClientAppProperties

HasAccessSession TpBoolean (See note 1)

HasServiceInstances TpBoolean(See note 2)

Note 1: The HasAccessSession flag indicates if the client application currently has an access
session active with the framework and will be returned in describeClientApp(). This flag
will be ignored if it is passed in to createClientApp().

Note 2: The HasServiceInstances flag indicates if the client application currently has service
instances active and will be returned in describeClientApp(). This flag will be ignored if
it is passed in to createClientApp(). This flag must be false if hasAccessSession is
false.

10.5.25 TpSagID

This data type is identical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

10.5.26 TpSagIDList

This data type defines a Numbered List of Data Elements of type TpSagID.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1883GPP TS 29.198-03 version 6.5.0 Release 6

10.5.27 TpSagDescription

This data type is identical to TpString. It describes a SAG: e.g. a list of identifiers of the constituent client
applications, the purpose of the 'grouping'.

10.5.28 TpSag

This data type is a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element
Name

Sequence Element
Type

SagID TpSagID

SagDescription TpSagDescription

10.5.29 TpServiceProfileID

This data type is identical to TpString. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses an OSA service.

10.5.30 TpServiceProfileIDList

This data type defines a Numbered List of Data Elements of type TpServiceProfileID.

10.5.31 TpServiceProfile

This data type is a Sequence of Data Elements which represents a Service Profile. It is a structured data type
which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceProfileID TpServiceProfileID

ServiceProfileDescription TpServiceProfileDescription

10.5.32 TpServiceProfileDescription

This data type is a Sequence of Data Elements which describes a Service Profile. A service contract contains
one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is a restriction of
the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists
of:

Sequence Element
Name

Sequence Element
Type

ServiceContractID TpServiceContractID

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName (See note 1)

ServiceSubscriptionProperties TpServiceSubscriptionProperties

InUse TpBoolean (See note 2)

ServiceID TpServiceID (See note 3)

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1893GPP TS 29.198-03 version 6.5.0 Release 6

Note 1: When the Framework returns a TpServiceProfileDescription to the enterprise operator, it should
set the ServiceTypeName field to the same value as the corresponding field of the service
contract; When the enterprise operator passes a TpServiceProfileDescription to the
Framework, the Framework should ignore the value sent in the ServiceTypeName field to
ensure interoperability; The enterprise operator should be required to set the
ServiceTypeName field to the correct value when passing a TpServiceProfileDescription to the
Framework.

Note 2: The InUse flag indicates if the profile is currently in use by a service instance and will be
returned in describeServiceProfile(). This flag will be ignored if it is passed in to
createServiceProfile().

Note 3: The ServiceID field is used to restrict a service type-based service contract to a specific
service. When the TpServiceProfileDescription is passed to the Framework by an enterprise
operator, the Framework should ensure that the ServiceID field, if not empty, contains a service
which is of the service type specified in the service contract. If the corresponding contract is for
a service ID then the Framework should ignore this field.
When a TpServiceProfileDescription is returned to the enterprise operator, the contents of this
field will depend on the associated service contract. If the contract is for a service ID, then this
field should be populated with the correct value. If the contract is for a service type, and the
profile is restricted to a specific service ID then this field should be populated with the correct
value. Otherwise, it should contain an empty string.

10.5.33 TpSagProfilePair

This data type is a Sequence of Data Elements which describes a pair of aSAG and a Service Profile. It is a structured
data type which consists of:

Sequence Element Name Sequence Element Type
Sag TpSagID

ServiceProfile TpServiceProfileID

10.5.34 TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applications are
added to a SAG - see method addSagMembers(). This happens, when a client application is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
already assigned to the service. It includes the current service profile. The ConflictGeneratingSagProfilePair describes
another SAG, to which the client application should be added, and the corresponding service profile, through which the
client application is also connected to this service. This creates a conflict, as there may exist only a single service profile
for each service.

The TpAddSagMembersConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ClientApplication TpClientAppID

ConflictGeneratingSagProfilePair TpSagProfilePair

AlreadyAssignedSagProfilePair TpSagProfilePair

Service TpServiceID

10.5.35 TpAddSagMembersConflictList

This data type defines a Numbered List of Data Elements of type TpAddSagMembersConflict.

10.5.36 TpAssignSagToServiceProfileConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when a SAG is assigned to a
Service Profile - see method assign().

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1903GPP TS 29.198-03 version 6.5.0 Release 6

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
already assigned to the service.

The TpAssignSagToServiceProfileConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ClientApplication TpClientAppID

AlreadyAssignedSagProfilePair TpSagProfilePair

Service TpServiceID

10.5.37 TpAssignSagToServiceProfileConflictList

This data type defines a Numbered List of Data Elements of type TpAssignSagToServiceProfileConflict.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1913GPP TS 29.198-03 version 6.5.0 Release 6

11 Exception Classes
The following are the list of exception classes which are used in this interface of the API.

Name Description
P_ACCESS_DENIED The client is not currently authenticated with the framework

P_DUPLICATE_PROPERTY_NAME A duplicate property name has been received

P_ILLEGAL_SERVICE_ID Illegal Service ID

P_ILLEGAL_SERVICE_TYPE Illegal Service Type

P_INVALID_ACCESS_TYPE The framework does not support the type of access interface requested
by the client.

P_INVALID_ACTIVITY_TEST_ID ID does not correspond to a valid activity test request

P_INVALID_ADDITION_TO_SAG A client application cannot be added to the SAG because this would
imply that the client application has two concurrent service profiles at

a particular moment in time for a particular service.

P_INVALID_AGREEMENT_TEXT Invalid agreement text

P_INVALID_ENCRYPTION_CAPABILITY Invalid encryption capability

P_INVALID_AUTH_TYPE Invalid type of authentication mechanism

P_INVALID_CLIENT_APP_ID Invalid Client Application ID

P_INVALID_DOMAIN_ID Invalid client ID

P_INVALID_ENT_OP_ID Invalid Enterprise Operator ID

P_INVALID_PROPERTY The framework does not recognise the property supplied by the client

P_INVALID_SAG_ID Invalid Subscription Assignment Group ID

P_INVALID_SAG_TO_SERVICE_PROFILE_ASS
IGNMENT

A SAG cannot be assigned to the service profile because this would
imply that a client application has two concurrent service profiles at a

particular moment in time for a particular service.

P_INVALID_SERVICE_CONTRACT_ID Invalid Service Contract ID

P_INVALID_SERVICE_ID Invalid service ID

P_INVALID_SERVICE_PROFILE_ID Invalid service profile ID

P_INVALID_SERVICE_TOKEN The service token has not been issued, or it has expired.

P_INVALID_SERVICE_TYPE Invalid Service Type

P_INVALID_SIGNATURE Invalid digital signature

P_INVALID_SIGNING_ALGORITHM Invalid signing algorithm

P_MISSING_MANDATORY_PROPERTY Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILIT
Y

No encryption mechanism, which is acceptable to the framework, is
supported by the client

P_NO_ACCEPTABLE_AUTHENTICATION_MECHA
NISM

No authentication mechanism, which is acceptable to the framework,
is supported by the client

P_NO_ACCEPTABLE_SIGNING_ALGORITHM No signing algorithm, which is acceptable to the framework, is
supported by the client

P_PROPERTY_TYPE_MISMATCH Property Type Mismatch

P_SERVICE_ACCESS_DENIED The client application is not allowed to access this service.

P_SERVICE_NOT_ENABLED The service ID does not correspond to a service that has been enabled

P_SERVICE_TYPE_UNAVAILABLE The service type is not available according to the Framework.

P_UNKNOWN_SERVICE_ID Unknown Service ID

P_UNKNOWN_SERVICE_TYPE Unknown Service Type

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description
ExtraInformation TpString Carries extra information to help identify the source of the

exception, e.g. a parameter name

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1923GPP TS 29.198-03 version 6.5.0 Release 6

Annex A (normative):
OMG IDL Description of Framework
The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if_service.idl contained in archive 2919803V650IDL.ZIP) which accompany the present document.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1933GPP TS 29.198-03 version 6.5.0 Release 6

Annex B (informative):
W3C WSDL Description of Framework
Significant changes have occurred in Web Services technologies and understanding of how to best apply Web Services
as a realisation of OSA. These changes are not reflected and therefore this realisation is removed. A future activity may
provide a replacement for the content of this annex, reflective of current technology and usage expected.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1943GPP TS 29.198-03 version 6.5.0 Release 6

Annex C (informative):
Java™ API Description of the Framework
The Java™ API realisation of this interface specification is produced in accordance with the Java™ Realisation rules
defined in Part 1 of this specification series. These rules aim to deliver for Java™, a developer API, provided as a
realisation, supporting a Java™ API that represents the UML specifications. The rules support the production of both
J2SE™ and J2EE™ versions of the API from the common UML specifications.

The J2SE™ representation of this interface specification is provided as Java™, contained in archive
2919803V650J2SE.ZIP that accompanies the present document.

The J2EE™ representation of this interface specification is provided as Java™, contained in archive
2919803V650J2EE.ZIP that accompanies the present document.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1953GPP TS 29.198-03 version 6.5.0 Release 6

Annex D (informative):
Description of the Framework for 3GPP2 cdma2000
networks
This annex is intended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications for cdma2000-based systems. It is an extension of OSA API specifications capabilities to enable
operation in cdma2000 systems environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2
architecture defined in

[1] 3GPP2 P.S0001-B: "Wireless IP Network Standard", Version 1.0, September 2000;

[2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems",
Version 2.0, May 14, 2002;

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain", December 2003.

These requirements are expressed as additions to and/or exclusions from the 3GPP Release 6 specification. The
information given here is to be used by developers in 3GPP2 cdma2000 network architecture to interpret the 3GPP
OSA specifications.

D.1 General Exceptions
The term UMTS is not applicable for the cdma2000 family of standards. Nevertheless the term UMTS is used in 3GPP
TR 21.905 (Vocabulary for 3GPP Specifications) mostly in the broader sense of "3G Wireless System". If not stated
otherwise there are no additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope
There are no additions or exclusions.

D.2.2 Clause 2: References
Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 systems.

D.2.3 Clause 3: Definitions and abbreviations
There are no additions or exclusions.

D.2.4 Clause 4: Overview of the Framework
There are no additions or exclusions.

D.2.5 Clause 5: The Base Interface Specification
There are no additions or exclusions.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1963GPP TS 29.198-03 version 6.5.0 Release 6

D.2.6 Clause 6: Framework Access Session API
There are no additions or exclusions.

D.2.7 Clause 7 Framework-to-Application Sequence Diagrams
There are no additions or exclusions.

D.2.8 Clause 8: Framework-to-Service API
There are no additions or exclusions.

D.2.9 Clause 9: Service Properties
Since CAMEL protocol is not applicable for cdma2000 systems, an SCS shall indicate support for the CAMEL feature
through service properties. For cdma2000 systems the CAMEL service properties shall be disabled (CAMEL shall be
turned always off in the case of the 3GPP2 networks; e.g.: UserLocationCamel shall be set to false).

D.2.10 Clause 10: Data Definitions
There are no additions. P_USER_LOCATION_CAMELvalue of TpServiceTypeName is not required to be supported
in the 3GPP2 networks.

D.2.11 Clause 11: Exception Classes
There are no additions or exclusions.

D.2.12 Annex A (normative): OMG IDL Description of the
Framework

There are no additions or exclusions.

D.2.13 Annex B (informative): W3C WSDL Description of the
Framework

There are no additions or exclusions.

D.2.14 Annex C (informative): Java™ API Description of the
Framework

There are no additions or exclusions.

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1973GPP TS 29.198-03 version 6.5.0 Release 6

Annex E (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 -- CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 4.0.0
Jun 2001 CN_12 NP-010330 001 -- Corrections to OSA API Rel4 4.0.0 4.0.1
Sep 2001 CN_13 NP-010466 002 -- Changing references to JAIN 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 003 -- Update to the definitions of method svcUnavailableInd 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 004 -- Only one subject per method invocation for fault and load

management
4.1.0 4.2.0

Sep 2001 CN_13 NP-010466 005 -- Fault management is missing some *Err methods 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 006 -- Method balance on Fault management interfaces 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 007 -- Change "TpString" into "TpOctetSets" in authentication and access 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 008 -- Replacement of register/unregisterLoadController 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 009 -- Redundant Framework Heartbeat Mechanism 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 010 -- Add a releaseInterface() method to IpAccess 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 011 -- Removal of serviceID from queryAppLoadReq() 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 012 -- Addition of listInterfaces() method 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 013 -- Introduction and use of new Service Instance ID 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 014 -- P_UNAUTHORISED_PARAMETER_VALUE thrown if non-accessible

serviceID is provided
4.1.0 4.2.0

Sep 2001 CN_13 NP-010466 015 -- Introduction of Service Instance Lifecycle Management 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 016 -- Add support for multi-vendorship 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 017 -- Removal of P_SERVICE_ACCESS_TYPE 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 018 -- Confusing meaning of prescribedMethod 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 019 -- A client should only have one instance of a given service 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 020 -- Some methods on the IpApp interfaces should throw exceptions 4.1.0 4.2.0
Dec 2001 CN_14 NP-010596 021 -- Replace Out Parameters with Return Types 4.2.0 4.3.0
Dec 2001 CN_14 NP-010596 022 -- Correctionto Framework (FW) 4.2.0 4.3.0
Mar 2002 CN_15 NP-020105 023 -- Add P_INVALID_INTERFACE_TYPE exception to

IpService.setCallback() and IpService.setCallbackWithSessionID()
4.3.0 4.4.0

Mar 2002 CN_15 NP-020105 024 -- Replace erroneous mention of P_OSA_ACCESS by the correct value
P_OSA_AUTHENTICATION

4.3.0 4.4.0

Mar 2002 CN_15 NP-020105 025 -- Add missing inheritance in service agreement management interfaces 4.3.0 4.4.0
Mar 2002 CN_15 NP-020105 026 -- Include Operation Set as part of General Service Properties 4.3.0 4.4.0
Mar 2002 CN_15 NP-020105 027 -- Improved description of activityTestReq with respect to

ServiceInstanceID
4.3.0 4.4.0

Mar 2002 CN_15 NP-020105 028 -- OSA Framework - Generate statistics records on behalf of another
entity using genFaultStatsRecordReq

4.3.0 4.4.0

Mar 2002 CN_15 NP-020105 029 -- Update the interface names for alignment between 3GPP and
ETSI/Parlay

4.3.0 4.4.0

Jun 2002 CN_16 NP-020179 030 -- Solving the problem in the OSA Framework with method
appUnavailableInd() in a scenario with multiple service sessions per
access session

4.4.0 4.5.0

Jun 2002 CN_16 NP-020179 031 -- Adding missing mandatory method (authenticationSucceeded) to
sequence flow

4.4.0 4.5.0

Jun 2002 CN_16 NP-020186 032 -- Remove redundant data type definition TpServiceSpecString 4.5.0 5.0.0
Jun 2002 CN_16 NP-020181 033 -- Addition of support for Java API technology realisation 4.5.0 5.0.0
Jun 2002 CN_16 NP-020182 035 -- Addition of support for WSDL realisation 4.5.0 5.0.0
Jun 2002 CN_16 NP-020186 036 -- Clarify semantics of service properties of type BOOLEAN_SET 4.5.0 5.0.0
Jun 2002 CN_16 NP-020186 037 -- Addition of version management support to the Framework (29.198-

03) in run-time
4.5.0 5.0.0

Jun 2002 CN_16 NP-020186 038 -- Enhancements on subscription management error information 4.5.0 5.0.0
Jun 2002 CN_16 NP-020186 039 -- Delete conflicting description of P_APPLICATION_NOT_ACTIVATED 4.5.0 5.0.0
Jun 2002 CN_16 NP-020186 040 -- Note added for P_SERVICE_INSTANCE Choice Element Name 4.5.0 5.0.0
Jun 2002 CN_16 NP-020186 041 -- Correcting the method descriptions for abortAuthentication and for

initiateAuthentication
4.5.0 5.0.0

Jun 2002 CN_16 NP-020186 042 -- Correcting the description of heartbeat failure 4.5.0 5.0.0
Jun 2002 CN_16 NP-020186 043 -- Correcting erroneous FW<->Service instance sequence diagrams 4.5.0 5.0.0
Jun 2002 CN_16 NP-020186 044 -- Correcting the scope of TpFwID, which currently is giving it false

limitations
4.5.0 5.0.0

Sep 2002 CN_17 NP-020428 046 Correction to description of TpServicePropertyTypeName 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 047 Remove undefined exception in registerService 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 048 Remove ServiceIDs from

IpFwFaultManager.genFaultStatsRecordReq()
5.0.0 5.1.0

Sep 2002 CN_17 NP-020428 049 Correct appUnavailableInd and related methods 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 050 Remove unusable exception from

IpFaultManager.appActivityTestRes()
5.0.0 5.1.0

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1983GPP TS 29.198-03 version 6.5.0 Release 6

Sep 2002 CN_17 NP-020428 051 Clarify the sequence of events in signing the service agreement 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 052 Correct use of electronic signatures 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 053 Addition of Sequence Diagrams for terminateAccess 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 054 Add indication what part of service agreement must be signed 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 055 Add text to clarify requirements on support of methods 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 056 Introduce types and modes for generic properties 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 057 Correction on use of NULL in Framework API 5.0.0 5.1.0
Sep 2002 CN_17 NP-020428 058 Add Negotiation of Authentication Mechanism for OSA level

Authentication
5.0.0 5.1.0

Sep 2002 CN_17 NP-020395 058 Add text to clarify relationship between 3GPP and ETSI/Parlay OSA
specifications

5.0.0 5.1.0

Mar 2003 CN_19 NP-030019 063 - Correction to Initial Access Sequence Diagram 5.1.0 5.2.0
Mar 2003 CN_19 NP-030019 065 - Enable creation/destruction of load level notifications at the request of

Framework
5.1.0 5.2.0

Mar 2003 CN_19 NP-030019 067 - Correction of Sequence for Framework – Service load management 5.1.0 5.2.0
Mar 2003 CN_19 NP-030019 074 - Add Initial Load Notification report for Framework Integrity

Management Load Notification model
5.1.0 5.2.0

Mar 2003 CN_19 NP-030028 068 -- Correction to Application's requirements for supporting methods 5.1.0 5.2.0
Mar 2003 CN_19 NP-030028 069 -- Correction of status of methods to interfaces in clause 7.3 5.1.0 5.2.0
Mar 2003 CN_19 NP-030028 070 -- Correction of status of methods to interfaces in clause 8.3 5.1.0 5.2.0
Mar 2003 CN_19 NP-030028 071 -- Correction of status of methods to interfaces in clause 6.3 5.1.0 5.2.0
Mar 2003 CN_19 NP-030028 075 -- Adding the appAvailStatusInd() and svcAvailStatusInd() methods 5.1.0 5.2.0
Mar 2003 CN_19 NP-030028 076 -- Remove race condition in signServiceAgreement 5.1.0 5.2.0
Mar 2003 CN_19 NP-030028 077 -- Change reference to deprecated method "authenticate" in

TpAuthMechanism to "challenge"
5.1.0 5.2.0

Jun 2003 CN_20 NP-030237 079 -- Correction to TpEncryptionCapability to correct support for Triple-DES 5.2.0 5.3.0
Jun 2003 CN_20 NP-030237 081 -- Correction of the Framework Service Instance Lifecycle Manager

Sequence Diagram
5.2.0 5.3.0

Jun 2003 CN_20 NP-030237 083 -- Correction of the use of TpDomainID in Framework
initiateAuthentication method

5.2.0 5.3.0

Sep 2003 CN_21 NP-030352 085 -- Correction to Java Realisation Annex 5.3.0 5.4.0
Dec 2003 CN_22 NP-030549 086 -- Correction of the sequence diagram for Fault Management 5.4.0 5.5.0
Dec 2003 CN_22 NP-030549 087 -- Correction of State Transition Diagram for IpAccess 5.4.0 5.5.0
Dec 2003 CN_22 NP-030549 088 -- Correction of Correlation Behaviour in Load Management 5.4.0 5.5.0
Dec 2003 CN_22 NP-030549 089 -- Correction of Correlation Behaviour in Fault Management 5.4.0 5.5.0
Dec 2003 CN_22 NP-030549 090 -- Correction and Clarification of Framework Access Session Behaviour 5.4.0 5.5.0
Dec 2003 CN_22 NP-030553 091 -- Add OSA API support for 3GPP2 networks 5.5.0 6.0.0
Dec 2003 CN_22 NP-030554 092 -- Add description for service super and sub types 5.5.0 6.0.0
Dec 2003 CN_22 NP-030554 093 -- Add support for registration of additional service property types and

modes
5.5.0 6.0.0

Dec 2003 CN_22 NP-030554 094 -- Improve User Interaction message management functions 5.5.0 6.0.0
Dec 2003 CN_22 NP-030554 095 -- Add new values for TpServiceTypeName for Policy Management 5.5.0 6.0.0
Dec 2003 CN_22 NP-030554 096 -- Allow for applications to re-obtain the reference to the service

manager
5.5.0 6.0.0

Dec 2003 CN_22 NP-030554 097 -- Add support in OSA to inform applications about new SCSs and their
level of Backward compatibility – Align with SA1's 22.127

5.5.0 6.0.0

Dec 2003 CN_22 NP-030554 098 -- Add 'Extended User Status' as service type name - Align with 29.198-
06

5.5.0 6.0.0

Dec 2003 CN_22 NP-030554 099 -- Add P_USER_BINDING to TpServiceTypeName 5.5.0 6.0.0
Dec 2003 CN_22 NP-030554 100 -- Modify Framework Availability Indication in Fault Management 5.5.0 6.0.0
Feb 2004 -- -- -- -- Added Java code attachment 2919803J2EE.zip which was delivered

late by outside developers. See Annex C.
6.0.0 6.0.1

Jun 2004 CN_24 NP-040261 103 -- Add ability to identify when a client app/service contract/service profile
is being used - Align between ETSI/Parlay and 3GPP

6.0.1 6.1.0

Jun 2004 CN_24 NP-040265 104 -- Add events to allow an entop to identify when a client app/service
contract/service profile is being used

6.0.1 6.1.0

Jun 2004 CN_24 NP-040253 106 -- Correct alignment between ETSI/Parlay version of OSA and the
3GPP OSA, by clarifying erroneous field in
TpServiceProfileDescription

6.0.1 6.1.0

Jun 2004 CN_24 NP-040261 108 -- Introduce a ServiceID field to TpServiceProfileDescription 6.0.1 6.1.0
Jun 2004 CN_24 NP-040254 112 -- Correct the service property type used for address ranges 6.0.1 6.1.0
Jun 2004 CN_24 NP-040273 113 -- Remove the <> stereotype from methods which are no longer new 6.0.1 6.1.0
Jun 2004 CN_24 NP-040261 115 -- Correct description of availStatusReason codes 6.0.1 6.1.0
Jun 2004 CN_24 NP-040261 117 -- Correct description for the use of selectSigningAlgorithm 6.0.1 6.1.0
Jun 2004 CN_24 NP-040261 119 -- Correct the description of the usage of CHAP within authentication 6.0.1 6.1.0
Jun 2004 CN_24 NP-040261 121 -- Correct TpSignatureAndServiceMgr to align with description in

signServiceAgreement
6.0.1 6.1.0

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 1993GPP TS 29.198-03 version 6.5.0 Release 6

Sep 2004 CN_25 NP-040355 124 -- Correct J2EE source 6.1.0 6.2.0
Sep 2004 CN_25 NP-040356 125 -- Remove unused Deprecated items 6.1.0 6.2.0
Sep 2004 CN_25 NP-040358 126 -- Support High Availability at API Level 6.1.0 6.2.0
Dec 2004 CN_26 NP-040485 128 -- Removal of OSA API SCFs description in W3C WSDL 6.2.0 6.3.0

Dec 2004 -- -- -- -- Added missing code attachments 6.3.0 6.3.1
Mar 2005 CN_27 NP-050020 129 -- Add TpServiceTypeName for Multimedia Messaging SCF 6.3.1 6.4.0
Dec 2005 CT-30 CP-050564 0130 -- Definition of floating point service property types 6.4.0 6.5.0

ETSI

ETSI TS 129 198-3 V6.5.0 (2005-12) 2003GPP TS 29.198-03 version 6.5.0 Release 6

History

Document history

V6.3.0 December 2004 Publication (Withdrawn)

V6.3.1 December 2004 Publication

V6.4.0 March 2005 Publication

V6.5.0 December 2005 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService
	5.4.1.1 Method setCallback()
	5.4.1.2 Method setCallbackWithSessionID()

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access
	6.1.1.2 Framework Terminates Access
	6.1.1.3 Application Terminates Access
	6.1.1.4 Non-API level Authentication
	6.1.1.5 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.1.1 Method <<deprecated>> authenticate()
	6.3.1.1.2 Method abortAuthentication()
	6.3.1.1.3 Method authenticationSucceeded()
	6.3.1.1.4 Method challenge()

	6.3.1.2 Interface Class IpClientAccess
	6.3.1.2.1 Method terminateAccess()

	6.3.1.3 Interface Class IpInitial
	6.3.1.3.1 Method <<deprecated>> initiateAuthentication()
	6.3.1.3.2 Method initiateAuthenticationWithVersion()

	6.3.1.4 Interface Class IpAuthentication
	6.3.1.4.1 Method requestAccess()

	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()
	6.3.1.5.2 Method <<deprecated>> authenticate()
	6.3.1.5.3 Method abortAuthentication()
	6.3.1.5.4 Method authenticationSucceeded()
	6.3.1.5.5 Method selectAuthenticationMechanism()
	6.3.1.5.6 Method challenge()

	6.3.1.6 Interface Class IpAccess
	6.3.1.6.1 Method obtainInterface()
	6.3.1.6.2 Method obtainInterfaceWithCallback()
	6.3.1.6.3 Method <<deprecated>> endAccess()
	6.3.1.6.4 Method listInterfaces()
	6.3.1.6.5 Method <<deprecated>> releaseInterface()
	6.3.1.6.6 Method selectSigningAlgorithm()
	6.3.1.6.7 Method terminateAccess()
	6.3.1.6.8 Method relinquishInterface()

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Authenticating Framework State
	6.4.1.2.3 Framework Authenticated State
	6.4.1.2.4 Authenticating Client State
	6.4.1.2.5 Client Authenticated State
	6.4.1.2.6 Idle State
	6.4.1.2.7 Authenticating Framework State
	6.4.1.2.8 Framework Authenticated State
	6.4.1.2.9 Authenticating Client State
	6.4.1.2.10 Client Authenticated State
	6.4.1.2.11 Idle State
	6.4.1.2.12 Authenticating Framework State
	6.4.1.2.13 Framework Authenticated State
	6.4.1.2.14 Authenticating Client State
	6.4.1.2.15 Client Authenticated State
	6.4.1.2.16 Idle State
	6.4.1.2.17 Authenticating Framework State
	6.4.1.2.18 Framework Authenticated State
	6.4.1.2.19 Authenticating Client State
	6.4.1.2.20 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Framework callback registration and Application load control
	7.1.2.4 Load Management: Application reports current load condition
	7.1.2.5 Load Management: Application queries load statistics
	7.1.2.6 Load Management: Application callback registration and load control
	7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.8 Fault Management: Framework detects a Service failure
	7.1.2.9 Fault Management: Application requests a Framework activity test

	7.1.3 Service Discovery Sequence Diagrams
	7.1.3.1 Service Discovery

	7.1.4 Service Agreement Management Sequence Diagrams
	7.1.4.1 Service Selection

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery
	7.3.1.1.1 Method listServiceTypes()
	7.3.1.1.2 Method describeServiceType()
	7.3.1.1.3 Method discoverService()
	7.3.1.1.4 Method listSubscribedServices()

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.1.1 Method signServiceAgreement()
	7.3.2.1.2 Method terminateServiceAgreement()

	7.3.2.2 Interface Class IpServiceAgreementManagement
	7.3.2.2.1 Method signServiceAgreement()
	7.3.2.2.2 Method terminateServiceAgreement()
	7.3.2.2.3 Method selectService()
	7.3.2.2.4 Method initiateSignServiceAgreement()

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.1.1 Method activityTestRes()
	7.3.3.1.2 Method appActivityTestReq()
	7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()
	7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()
	7.3.3.1.5 Method <<deprecated>> svcUnavailableInd()
	7.3.3.1.6 Method <<deprecated>> genFaultStatsRecordRes()
	7.3.3.1.7 Method <<deprecated>> fwUnavailableInd()
	7.3.3.1.8 Method activityTestErr()
	7.3.3.1.9 Method <<deprecated>> genFaultStatsRecordErr()
	7.3.3.1.10 Method appUnavailableInd()
	7.3.3.1.11 Method <<deprecated>> genFaultStatsRecordReq()
	7.3.3.1.12 Method svcAvailStatusInd()
	7.3.3.1.13 Method <<new>> generateFaultStatisticsRecordRes()
	7.3.3.1.14 Method <<new>> generateFaultStatisticsRecordErr()
	7.3.3.1.15 Method <<new>> generateFaultStatisticsRecordReq()
	7.3.3.1.16 Method <<new>> fwAvailStatusInd()

	7.3.3.2 Interface Class IpFaultManager
	7.3.3.2.1 Method activityTestReq()
	7.3.3.2.2 Method appActivityTestRes()
	7.3.3.2.3 Method svcUnavailableInd()
	7.3.3.2.4 Method <<deprecated>> genFaultStatsRecordReq()
	7.3.3.2.5 Method appActivityTestErr()
	7.3.3.2.6 Method <<deprecated>> appUnavailableInd()
	7.3.3.2.7 Method <<deprecated>> genFaultStatsRecordRes()
	7.3.3.2.8 Method <<deprecated>> genFaultStatsRecordErr()
	7.3.3.2.9 Method appAvailStatusInd()
	7.3.3.2.10 Method <<new>> generateFaultStatisticsRecordReq()
	7.3.3.2.11 Method <<new>> generateFaultStatisticsRecordRes()
	7.3.3.2.12 Method <<new>> generateFaultStatisticsRecordErr()

	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.3.1 Method enableAppHeartBeat()
	7.3.3.3.2 Method disableAppHeartBeat()
	7.3.3.3.3 Method changeInterval()

	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.4.1 Method pulse()

	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.5.1 Method enableHeartBeat()
	7.3.3.5.2 Method disableHeartBeat()
	7.3.3.5.3 Method changeInterval()

	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.6.1 Method pulse()

	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.7.1 Method <<deprecated>> queryAppLoadReq()
	7.3.3.7.2 Method <<deprecated>> queryLoadRes()
	7.3.3.7.3 Method <<deprecated>> queryLoadErr()
	7.3.3.7.4 Method loadLevelNotification()
	7.3.3.7.5 Method resumeNotification()
	7.3.3.7.6 Method suspendNotification()
	7.3.3.7.7 Method createLoadLevelNotification()
	7.3.3.7.8 Method destroyLoadLevelNotification()
	7.3.3.7.9 Method <<new>> queryAppLoadStatsReq()
	7.3.3.7.10 Method <<new>> queryLoadStatsRes()
	7.3.3.7.11 Method <<new>> queryLoadStatsErr()

	7.3.3.8 Interface Class IpLoadManager
	7.3.3.8.1 Method reportLoad()
	7.3.3.8.2 Method <<deprecated>> queryLoadReq()
	7.3.3.8.3 Method <<deprecated>> queryAppLoadRes()
	7.3.3.8.4 Method <<deprecated>> queryAppLoadErr()
	7.3.3.8.5 Method createLoadLevelNotification()
	7.3.3.8.6 Method destroyLoadLevelNotification()
	7.3.3.8.7 Method resumeNotification()
	7.3.3.8.8 Method suspendNotification()
	7.3.3.8.9 Method <<new>> queryLoadStatsReq()
	7.3.3.8.10 Method <<new>> queryAppLoadStatsRes()
	7.3.3.8.11 Method <<new>> queryAppLoadStatsErr()

	7.3.3.9 Interface Class IpOAM
	7.3.3.9.1 Method systemDateTimeQuery()

	7.3.3.10 Interface Class IpAppOAM
	7.3.3.10.1 Method systemDateTimeQuery()

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.1.1 Method reportNotification()
	7.3.4.1.2 Method notificationTerminated()

	7.3.4.2 Interface Class IpEventNotification
	7.3.4.2.1 Method createNotification()
	7.3.4.2.2 Method destroyNotification()

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification

	8 Framework-to-Service API
	8.1 Sequence Diagrams
	8.1.1 Service Discovery Sequence Diagrams
	8.1.2 Service Registration Sequence Diagrams
	8.1.2.1 New SCF Sub Type Registration
	8.1.2.2 New SCF Registration

	8.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	8.1.3.1 Sign Service Agreement

	8.1.4 Integrity Management Sequence Diagrams
	8.1.4.1 Load Management: Service callback registration and load control
	8.1.4.2 Load Management: Framework callback registration and service load control
	8.1.4.3 Load Management: Client and Service Load Balancing
	8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	8.1.4.5 Fault Management: Service requests Framework activity test
	8.1.4.6 Fault Management: Service requests Application activity test
	8.1.4.7 Fault Management: Application requests Service activity test
	8.1.4.8 Fault Management: Application detects service is unavailable

	8.1.5 Event Notification Sequence Diagrams

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Service Registration Interface Classes
	8.3.1.1 Interface Class IpFwServiceRegistration
	8.3.1.1.1 Method registerService()
	8.3.1.1.2 Method announceServiceAvailability()
	8.3.1.1.3 Method unregisterService()
	8.3.1.1.4 Method describeService()
	8.3.1.1.5 Method unannounceService()
	8.3.1.1.6 Method <<new>> registerServiceSubType()

	8.3.2 Service Instance Lifecycle Manager Interface Classes
	8.3.2.1 Interface Class IpServiceInstanceLifecycleManager
	8.3.2.1.1 Method createServiceManager()
	8.3.2.1.2 Method destroyServiceManager()

	8.3.3 Service Discovery Interface Classes
	8.3.3.1 Interface Class IpFwServiceDiscovery
	8.3.3.1.1 Method listServiceTypes()
	8.3.3.1.2 Method describeServiceType()
	8.3.3.1.3 Method discoverService()
	8.3.3.1.4 Method listRegisteredServices()

	8.3.4 Integrity Management Interface Classes
	8.3.4.1 Interface Class IpFwFaultManager
	8.3.4.1.1 Method activityTestReq()
	8.3.4.1.2 Method svcActivityTestRes()
	8.3.4.1.3 Method appUnavailableInd()
	8.3.4.1.4 Method <<deprecated>> genFaultStatsRecordReq()
	8.3.4.1.5 Method <<deprecated>> svcUnavailableInd()
	8.3.4.1.6 Method svcActivityTestErr()
	8.3.4.1.7 Method <<deprecated>> genFaultStatsRecordRes()
	8.3.4.1.8 Method <<deprecated>> genFaultStatsRecordErr()
	8.3.4.1.9 Method <<deprecated>> generateFaultStatsRecordRes()
	8.3.4.1.10 Method <<deprecated>> generateFaultStatsRecordErr()
	8.3.4.1.11 Method svcAvailStatusInd()
	8.3.4.1.12 Method <<new>> generateFaultStatisticsRecordReq()
	8.3.4.1.13 Method <<new>> generateFaultStatisticsRecordRes()
	8.3.4.1.14 Method <<new>> generateFaultStatisticsRecordErr()

	8.3.4.2 Interface Class IpSvcFaultManager
	8.3.4.2.1 Method activityTestRes()
	8.3.4.2.2 Method svcActivityTestReq()
	8.3.4.2.3 Method <<deprecated>> fwFaultReportInd()
	8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()
	8.3.4.2.5 Method <<deprecated>> fwUnavailableInd()
	8.3.4.2.6 Method svcUnavailableInd()
	8.3.4.2.7 Method <<deprecated>> appUnavailableInd()
	8.3.4.2.8 Method <<deprecated>> genFaultStatsRecordRes()
	8.3.4.2.9 Method activityTestErr()
	8.3.4.2.10 Method <<deprecated>> genFaultStatsRecordErr()
	8.3.4.2.11 Method <<deprecated>> genFaultStatsRecordReq()
	8.3.4.2.12 Method <<deprecated>> generateFaultStatsRecordReq()
	8.3.4.2.13 Method appAvailStatusInd()
	8.3.4.2.14 Method <<new>> generateFaultStatisticsRecordRes()
	8.3.4.2.15 Method <<new>> generateFaultStatisticsRecordErr()
	8.3.4.2.16 Method <<new>> generateFaultStatisticsRecordReq()
	8.3.4.2.17 Method <<new>> fwAvailStatusInd()

	8.3.4.3 Interface Class IpFwHeartBeatMgmt
	8.3.4.3.1 Method enableHeartBeat()
	8.3.4.3.2 Method disableHeartBeat()
	8.3.4.3.3 Method changeInterval()

	8.3.4.4 Interface Class IpFwHeartBeat
	8.3.4.4.1 Method pulse()

	8.3.4.5 Interface Class IpSvcHeartBeatMgmt
	8.3.4.5.1 Method enableSvcHeartBeat()
	8.3.4.5.2 Method disableSvcHeartBeat()
	8.3.4.5.3 Method changeInterval()

	8.3.4.6 Interface Class IpSvcHeartBeat
	8.3.4.6.1 Method pulse()

	8.3.4.7 Interface Class IpFwLoadManager
	8.3.4.7.1 Method reportLoad()
	8.3.4.7.2 Method <<deprecated>> queryLoadReq()
	8.3.4.7.3 Method <<deprecated>> querySvcLoadRes()
	8.3.4.7.4 Method <<deprecated>> querySvcLoadErr()
	8.3.4.7.5 Method createLoadLevelNotification()
	8.3.4.7.6 Method destroyLoadLevelNotification()
	8.3.4.7.7 Method suspendNotification()
	8.3.4.7.8 Method resumeNotification()
	8.3.4.7.9 Method <<new>> queryLoadStatsReq()
	8.3.4.7.10 Method <<new>> querySvcLoadStatsRes()
	8.3.4.7.11 Method <<new>> querySvcLoadStatsErr()

	8.3.4.8 Interface Class IpSvcLoadManager
	8.3.4.8.1 Method <<deprecated>> querySvcLoadReq()
	8.3.4.8.2 Method <<deprecated>> queryLoadRes()
	8.3.4.8.3 Method <<deprecated>> queryLoadErr()
	8.3.4.8.4 Method loadLevelNotification()
	8.3.4.8.5 Method suspendNotification()
	8.3.4.8.6 Method resumeNotification()
	8.3.4.8.7 Method createLoadLevelNotification()
	8.3.4.8.8 Method destroyLoadLevelNotification()
	8.3.4.8.9 Method <<new>> querySvcLoadStatsReq()
	8.3.4.8.10 Method <<new>> queryLoadStatsRes()
	8.3.4.8.11 Method <<new>> queryLoadStatsErr()

	8.3.4.9 Interface Class IpFwOAM
	8.3.4.9.1 Method systemDateTimeQuery()

	8.3.4.10 Interface Class IpSvcOAM
	8.3.4.10.1 Method systemDateTimeQuery()

	8.3.5 Event Notification Interface Classes
	8.3.5.1 Interface Class IpFwEventNotification
	8.3.5.1.1 Method createNotification()
	8.3.5.1.2 Method destroyNotification()

	8.3.5.2 Interface Class IpSvcEventNotification
	8.3.5.2.1 Method reportNotification()
	8.3.5.2.2 Method notificationTerminated()

	8.4 State Transition Diagrams
	8.4.1 Service Registration State Transition Diagrams
	8.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	8.4.1.1.1 SCF Registered State
	8.4.1.1.2 SCF Announced State

	8.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	8.4.3 Service Discovery State Transition Diagrams
	8.4.4 Integrity Management State Transition Diagrams
	8.4.4.1 State Transition Diagrams for IpFwLoadManager
	8.4.4.1.1 Idle State
	8.4.4.1.2 Notification Suspended State
	8.4.4.1.3 Active State

	8.4.4.2 State Transition Diagrams for IpFwFaultManager
	8.4.4.2.1 Framework Active State
	8.4.4.2.2 Framework Activity Test State
	8.4.4.2.3 Application Activity Test State
	8.4.4.2.4 Framework Faulty State

	8.4.5 Event Notification State Transition Diagrams

	9 Service Properties
	9.1 Service Super and Sub Types
	9.2 Service Property Types
	9.3 General Service Properties
	9.3.1 Service Name
	9.3.2 Service Version
	9.3.3 Service ID
	9.3.4 Service Description
	9.3.5 Product Name
	9.3.6 Product Version
	9.3.7 <<deprecated>> Supported Interfaces
	9.3.8 Operation Set
	9.3.9 Compatible Service
	9.3.10 Backward Compatibility Level
	9.3.11 Migration Required
	9.3.12 Data Migrated
	9.3.13 Migration Date And Time

	10 Data Definitions
	10.1 Common Framework Data Definitions
	10.1.1 TpClientAppID
	10.1.2 TpClientAppIDList
	10.1.3 TpDomainID
	10.1.4 TpDomainIDType
	10.1.5 TpEntOpID
	10.1.6 TpPropertyName
	10.1.7 TpPropertyValue
	10.1.8 TpProperty
	10.1.9 TpPropertyList
	10.1.10 TpEntOpIDList
	10.1.11 TpFwID
	10.1.12 TpService
	10.1.13 TpServiceList
	10.1.14 TpServiceDescription
	10.1.15 TpServiceID
	10.1.16 TpServiceIDList
	10.1.17 TpServiceInstanceID
	10.1.18 TpServiceTypeProperty
	10.1.19 TpServiceTypePropertyList
	10.1.20 TpServiceTypePropertyMode
	10.1.21 TpServicePropertyTypeName
	10.1.22 TpServicePropertyName
	10.1.23 TpServicePropertyNameList
	10.1.24 TpServicePropertyValue
	10.1.25 TpServicePropertyValueList
	10.1.26 TpServiceProperty
	10.1.27 TpServicePropertyList
	10.1.28 TpServiceSupplierID
	10.1.29 TpServiceTypeDescription
	10.1.30 TpServiceTypeName
	10.1.31 TpServiceTypeNameList
	10.1.32 TpSubjectType
	10.1.33 TpServiceTypePropertyValue
	10.1.34 TpServiceTypePropertyValueList

	10.2 Event Notification Data Definitions
	10.2.1 TpFwEventName
	10.2.2 TpFwEventCriteria
	10.2.3 TpFwEventInfo
	10.2.4 TpFwMigrationServiceAvailableInfo
	10.2.5 TpMigrationAdditionalInfo
	10.2.6 TpMigrationAdditionalInfoType
	10.2.7 TpMigrationAdditionalInfoSet
	10.2.8 TpFwAgreementInfo

	10.3 Trust and Security Management Data Definitions
	10.3.1 TpAccessType
	10.3.2 TpAuthType
	10.3.3 TpEncryptionCapability
	10.3.4 TpEncryptionCapabilityList
	10.3.5 TpEndAccessProperties
	10.3.6 TpAuthDomain
	10.3.7 TpInterfaceName
	10.3.8 TpInterfaceNameList
	10.3.9 TpServiceToken
	10.3.10 TpSignatureAndServiceMgr
	10.3.11 TpSigningAlgorithm
	10.3.12 TpSigningAlgorithmCapabilityList
	10.3.13 TpAuthMechanism
	10.3.14 TpAuthMechanismList

	10.4 Integrity Management Data Definitions
	10.4.1 TpActivityTestRes
	10.4.2 TpFaultStatsRecord
	10.4.3 TpFaultStats
	10.4.4 TpFaultStatisticsError
	10.4.5 TpFaultStatsSet
	10.4.6 TpActivityTestID
	10.4.7 TpInterfaceFault
	10.4.8 TpSvcUnavailReason
	10.4.9 TpFwUnavailReason
	10.4.10 TpLoadLevel
	10.4.11 TpLoadThreshold
	10.4.12 TpLoadInitVal
	10.4.13 TpLoadPolicy
	10.4.14 TpLoadStatistic
	10.4.15 TpLoadStatisticList
	10.4.16 TpLoadStatisticData
	10.4.17 TpLoadStatisticEntityID
	10.4.18 TpLoadStatisticEntityType
	10.4.19 TpLoadStatisticInfo
	10.4.20 TpLoadStatisticInfoType
	10.4.21 TpLoadStatisticError
	10.4.22 TpSvcAvailStatusReason
	10.4.23 TpAppAvailStatusReason
	10.4.24 TpLoadTestID
	10.4.25 TpFaultStatsErrorList
	10.4.26 TpFaultReqID
	10.4.27 TpFwAvailStatusReason

	10.5 Service Subscription Data Definitions
	10.5.1 TpPropertyName
	10.5.2 TpPropertyValue
	10.5.3 TpProperty
	10.5.4 TpPropertyList
	10.5.5 TpEntOpProperties
	10.5.6 TpEntOp
	10.5.7 TpServiceContractID
	10.5.8 TpServiceContractIDList
	10.5.9 TpPersonName
	10.5.10 TpPostalAddress
	10.5.11 TpTelephoneNumber
	10.5.12 TpEmail
	10.5.13 TpHomePage
	10.5.14 TpPersonProperties
	10.5.15 TpPerson
	10.5.16 TpServiceStartDate
	10.5.17 TpServiceEndDate
	10.5.18 TpServiceRequestor
	10.5.19 TpBillingContact
	10.5.20 TpServiceSubscriptionProperties
	10.5.21 TpServiceContract
	10.5.22 TpServiceContractDescription
	10.5.23 TpClientAppProperties
	10.5.24 TpClientAppDescription
	10.5.25 TpSagID
	10.5.26 TpSagIDList
	10.5.27 TpSagDescription
	10.5.28 TpSag
	10.5.29 TpServiceProfileID
	10.5.30 TpServiceProfileIDList
	10.5.31 TpServiceProfile
	10.5.32 TpServiceProfileDescription
	10.5.33 TpSagProfilePair
	10.5.34 TpAddSagMembersConflict
	10.5.35 TpAddSagMembersConflictList
	10.5.36 TpAssignSagToServiceProfileConflict
	10.5.37 TpAssignSagToServiceProfileConflictList

	11 Exception Classes
	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): W3C WSDL Description of Framework
	Annex C (informative): JavaŽ API Description of the Framework
	Annex D (informative): Description of the Framework for 3GPP2 cdma2000 networks
	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: Overview of the Framework
	D.2.5 Clause 5: The Base Interface Specification
	D.2.6 Clause 6: Framework Access Session API
	D.2.7 Clause 7 Framework-to-Application Sequence Diagrams
	D.2.8 Clause 8: Framework-to-Service API
	D.2.9 Clause 9: Service Properties
	D.2.10 Clause 10: Data Definitions
	D.2.11 Clause 11: Exception Classes
	D.2.12 Annex A (normative): OMG IDL Description of the Framework
	D.2.13 Annex B (informative): W3C WSDL Description of the Framework
	D.2.14 Annex C (informative): JavaŽ API Description of the Framework

	Annex E (informative): Change history
	History

