
ETSI TS 129 198-3 V4.0.0 (2001-03)
Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA);

Application Programming Interface (API);
Part 3: Framework

(3GPP TS 29.198-3 version 4.0.0 Release 4)

1

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)3GPP TS 29.198-3 version 4.0.0 Release 4

Reference
RTS/TSGN-0529198-3Uv4

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.

All rights reserved.

http://www.etsi.org/
http://www.etsi.org/tb/status
editor@etsi.fr

2

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)3GPP TS 29.198-3 version 4.0.0 Release 4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key .

http://www.etsi.org/ipr
http://www.etsi.org/key

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)33GPP TS 29.198-3 version 4.0.0 Release 4

Contents

Foreword.. 8

Introduction.. 8

1 Scope ... 9

2 References ... 9

3 Definitions, symbols and abbreviations... 10
3.1 Definitions..10
3.2 Abbreviations ...10

4 Overview of the Framework.. 10

5 The Base Interface Specification... 11
5.1 Interface Specification Format ...11
5.1.1 Interface Class ..11
5.1.2 Method descriptions ...11
5.1.3 Parameter descriptions..12
5.1.4 State Model...12
5.2 Base Interface...12
5.2.1 Interface Class IpInterface..12
5.3 Service Interfaces ...12
5.3.1 Overview ..12
5.4 Generic Service Interface ...12
5.4.1 Interface Class IpService ..12

6 Framework-to-Application Sequence Diagrams .. 14
6.1 Event Notification Sequence Diagrams ...14
6.1.1 Enable Event Notification ..14
6.2 Integrity Management Sequence Diagrams..15
6.2.1 Load Management: Suspend/Resume notification from application..15
6.2.2 Load Management: Framework queries load status ...16
6.2.3 Load Management: Application reports current load condition ...16
6.2.4 Load Management: Application queries load status...17
6.2.5 Load Management: Application call-back registration and load control..18
6.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of application...19
6.2.7 Fault Management: Framework detects a Service failure...20
6.2.8 Fault Management: Application requests a Framework activity test..21
6.3 Service Discovery Sequence Diagrams..21
6.3.1 Service Discovery...21
6.4 Trust and Security Management Sequence Diagrams..23
6.4.1 Service Selection ..23
6.4.2 Initial Access ..25
6.4.3 Authentication ..26
6.4.4 API Level Authentication...26

7 Framework-to-Application Class Diagrams.. 28

8 Framework-to-Application Interface Classes.. 30
8.1 Trust and Security Management Interface Classes ..30
8.1.1 Interface Class IpAppAPILevelAuthentication ..31
8.1.2 Interface Class IpAppAccess..32
8.1.3 Interface Class IpInitial ..34
8.1.4 Interface Class IpAuthentication ..35
8.1.5 Interface Class IpAPILevelAuthentication...36
8.1.6 Interface Class IpAccess...38
8.2 Service Discovery Interface Classes ..42
8.2.1 Interface Class IpServiceDiscovery..42
8.3 Integrity Management Interface Classes ..45

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)43GPP TS 29.198-3 version 4.0.0 Release 4

8.3.1 Interface Class IpAppFaultManager...45
8.3.2 Interface Class IpFaultManager..47
8.3.3 Interface Class IpAppHeartBeatMgmt ...49
8.3.4 Interface Class IpAppHeartBeat ...51
8.3.5 Interface Class IpHeartBeatMgmt ..52
8.3.6 Interface Class IpHeartBeat..53
8.3.7 Interface Class IpAppLoadManager...54
8.3.8 Interface Class IpLoadManager..56
8.3.9 Interface Class IpOAM...59
8.3.10 Interface Class IpAppOAM..60
8.4 Event Notification Interface Classes ..61
8.4.1 Interface Class IpAppEventNotification...61
8.4.2 Interface Class IpEventNotification ...62

9 Framework-to-Application State Transition Diagrams ... 63
9.1 Trust and Security Management State Transition Diagrams..63
9.1.1 State Transition Diagrams for IpInitial ...63
9.1.1.1 Active State ..64
9.1.2 State Transition Diagrams for IpAPILevelAuthentication ...64
9.1.2.1 Idle State...64
9.1.2.2 InitAuthentication State ..64
9.1.2.3 WaitForApplicationResult State...64
9.1.2.4 Application Authenticated State ...65
9.1.3 State Transition Diagrams for IpAccess ...65
9.1.3.1 Active State ..65
9.2 Service Discovery State Transition Diagrams..66
9.2.1 State Transition Diagrams for IpServiceDiscovery..66
9.2.1.1 Active State ..66
9.3 Integrity Management State Transition Diagrams..67
9.3.1 State Transition Diagrams for IpHeartBeatMgmt ..67
9.3.1.1 Application not supervised State ..67
9.3.1.2 Application supervised State ..67
9.3.2 State Transition Diagrams for IpHeartBeat ..68
9.3.2.1 FW supervised by Application State ..68
9.3.3 State Transition Diagrams for IpLoadManager ..69
9.3.3.1 Idle State...69
9.3.3.2 Notifying State ...69
9.3.3.3 Suspending Notification State ..69
9.3.3.4 Registered State ..69
9.3.4 State Transition Diagrams for IpLoadManagerInternal...70
9.3.4.1 Normal load State ...70
9.3.4.2 Application Overload State ..70
9.3.4.3 Internal overload State..70
9.3.4.4 Internal and Application Overload State ..71
9.3.5 State Transition Diagrams for IpOAM ...71
9.3.5.1 Active State ..71
9.3.6 State Transition Diagrams for IpFaultManager ..72
9.3.6.1 Framework Active State ...72
9.3.6.2 Framework Faulty State..72
9.3.6.3 Framework Activity Test State...72
9.3.6.4 Service Activity Test State ...72
9.4 Event Notification State Transition Diagrams ...73
9.4.1 State Transition Diagrams for IpEventNotification ..73
9.4.1.1 Idle State...73
9.4.1.2 Notification Active State ..73

10 Framework-to-Service Sequence Diagrams .. 74
10.1 Service Registration Sequence Diagrams ...74
10.1.1 New SCF Registration..74
10.2 Service Factory Sequence Diagrams ..75
10.2.1 Sign Service Agreement ...75

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)53GPP TS 29.198-3 version 4.0.0 Release 4

11 Framework-to-Service Class Diagrams... 77

12 Framework-to-Service Interface Classes... 77
12.1 Service Registration Interface Classes..77
12.1.1 Interface Class IpFwServiceRegistration ...77
12.2 Service Factory Interface Classes...81
12.2.1 Interface Class IpSvcFactory..81

13 Framework-to-Service State Transition Diagrams .. 82
13.1 Service Registration State Transition Diagrams...82
13.1.1 State Transition Diagrams for IpFwServiceRegistration...82
13.1.1.1 Registering SCF State ...82
13.1.1.2 SCF registered State..83
13.2 Service Factory State Transition Diagrams ..83

14 Service Properties.. 83
14.1 Service Property Types...83
14.2 General Service Properties ...84
14.2.1 Service Name ...84
14.2.2 Service Version ..84
14.2.3 Service Instance ID...84
14.2.4 Service Instance Description ..84
14.2.5 Product Name ...84
14.2.6 Product Version ..84
14.2.7 Supported Interfaces ...84
14.2.8 Operation Set ..84

15 Data Definitions... 85
15.1 Common Framework Data Definitions ..85
15.1.1 TpClientAppID...85
15.1.2 TpClientAppIDList...85
15.1.3 TpDomainID ..85
15.1.4 TpDomainIDType ..85
15.1.5 TpEntOpID...86
15.1.6 TpPropertyName ..86
15.1.7 TpPropertyValue ..86
15.1.8 TpProperty..86
15.1.9 TpPropertyList..86
15.1.10 TpEntOpIDList...86
15.1.11 TpFwID ..86
15.1.12 TpService..86
15.1.13 TpServiceList ...86
15.1.14 TpServiceDescription ...86
15.1.15 TpServiceID ...87
15.1.16 TpServiceIDList ...87
15.1.17 TpServiceIDRef..87
15.1.18 TpServiceSpecString ..87
15.1.19 TpUniqueServiceNumber...87
15.1.20 TpServiceTypeProperty..87
15.1.21 TpServiceTypePropertyList..87
15.1.22 TpServicePropertyMode...88
15.1.23 TpServicePropertyTypeName ..88
15.1.24 TpServicePropertyName ..88
15.1.25 TpServicePropertyNameList ..88
15.1.26 TpServicePropertyValue ..88
15.1.27 TpServicePropertyValueList ..88
15.1.28 TpServiceProperty..88
15.1.29 TpServicePropertyList..88
15.1.30 TpServiceSupplierID..88
15.1.31 TpServiceTypeDescription...88
15.1.32 TpServiceTypeName..89
15.1.33 TpServiceTypeNameList..89
15.2 Event Notification Data Definitions ...89

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)63GPP TS 29.198-3 version 4.0.0 Release 4

15.2.1 TpFwEventName..89
15.2.2 TpFwEventCriteria ...89
15.2.3 TpFwEventInfo...90
15.3 Trust and Security Management Data Definitions ...90
15.3.1 TpAccessType ..90
15.3.2 TpAuthType ...90
15.3.3 TpAuthCapability ...90
15.3.4 TpAuthCapabilityList...91
15.3.5 TpEndAccessProperties..91
15.3.6 TpAuthDomain...91
15.3.7 TpInterfaceName..91
15.3.8 TpServiceAccessControl ..91
15.3.9 TpSecurityContext..92
15.3.10 TpSecurityDomain ...92
15.3.11 TpSecurityGroup ..92
15.3.12 TpServiceAccessType ..92
15.3.13 TpServiceToken ...92
15.3.14 TpSignatureAndServiceMgr...92
15.3.15 TpSigningAlgorithm...92
15.4 Integrity Management Data Definitions ...93
15.4.1 TpActivityTestRes..93
15.4.2 TpFaultStatsRecord ..93
15.4.3 TpFaultStats..93
15.4.4 TpFaultStatsSet...93
15.4.5 TpActivityTestID ...93
15.4.6 TpInterfaceFault ...93
15.4.7 TpSvcUnavailReason ...94
15.4.8 TpFWUnavailReason ...94
15.4.9 TpLoadLevel ..94
15.4.10 TpLoadThreshold ...94
15.4.11 TpLoadInitVal ..94
15.4.12 TpTimeInterval...95
15.4.13 TpLoadPolicy ...95
15.4.14 TpLoadStatistic...95
15.4.15 TpLoadStatisticList ..95
15.4.16 TpLoadStatisticData ...95
15.4.17 TpLoadStatisticEntityID...95
15.4.18 TpLoadStatisticEntityType...96
15.4.19 TpLoadStatisticInfo..96
15.4.20 TpLoadStatisticInfoType..96
15.4.21 TpLoadStatisticError ..96
15.5 Service Subscription Data Definitions..96
15.5.1 TpPropertyName ..96
15.5.2 TpPropertyValue ..96
15.5.3 TpProperty..96
15.5.4 TpPropertyList..97
15.5.5 TpEntOpProperties ...97
15.5.6 TpEntOp ...97
15.5.7 TpServiceContractID..97
15.5.8 TpPersonName ...97
15.5.9 TpPostalAddress...97
15.5.10 TpTelephoneNumber..97
15.5.11 TpEmail ..97
15.5.12 TpHomePage ..97
15.5.13 TpPersonProperties...97
15.5.14 TpPerson...98
15.5.15 TpServiceStartDate...98
15.5.16 TpServiceEndDate..98
15.5.17 TpServiceRequestor ...98
15.5.18 TpBillingContact ..98
15.5.19 TpServiceSubscriptionProperties ...98
15.5.20 TpServiceContract ..98

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)73GPP TS 29.198-3 version 4.0.0 Release 4

15.5.21 TpPassword ..99
15.5.22 TpClientAppProperties...99
15.5.23 TpClientAppDescription ..99
15.5.24 TpSagID ...99
15.5.25 TpSagIDList ...99
15.5.26 TpSagDescription ...99
15.5.27 TpSag ...99
15.5.28 TpServiceProfileID...99
15.5.29 TpServiceProfileIDList ..99
15.5.30 TpServiceProfile...100

Annex A (normative): OMG IDL Description of Framework... 101

Annex B (informative): Differences between this draft and 3GPP TS 29.198 R99 102
B.1 IpService Registration..102
B.2 IDL Namespace..102
B.3 IpAccess ...102
B.4 IpAPILevelAuthentication, IpAppAPILevelAuthentication ..102
B.5 New IpAuthentication ..102
B.6 IpInitial...102
B.7 IpAppLoadManager ...102
B.8 Data Type Changes ..102

Annex C (informative): Change history .. 107

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)83GPP TS 29.198-3 version 4.0.0 Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
The present document is part 3 of a multi-part TS covering the 3rd Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: Overview
Part 2: Common Data Definitions
Part 3: Framework
Part 4: Call Control SCF
Part 5: User Interaction SCF
Part 6: Mobility SCF
Part 7: Terminal Capabilities SCF
Part 8: Data Session Control SCF
Part 9: Generic Messaging SCF (not part of 3GPP Release 4)
Part 10: Connectivity Manager SCF (not part of 3GPP Release 4)
Part 11: Account Management SCF
Part 12: Charging SCF

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-1 Part 1: Overview 29.998-1 Part 1: Overview
29.198-2 Part 2: Common Data Definitions 29.998-2 Not Applicable
29.198-3 Part 3: Framework 29.998-3 Not Applicable

29.998-4-1 Subpart 1: Generic Call Control – CAP mapping 29.198-4 Part 4: Call Control SCF
29.998-4-2
29.998-5-1 Subpart 1: User Interaction – CAP mapping
29.998-5-2
29.998-5-3

29.198-5 Part 5: User Interaction SCF

29.998-5-4 Subpart 4: User Interaction – SMS mapping
29.198-6 Part 6: Mobility SCF 29.998-6 User Status and User Location – MAP mapping
29.198-7 Part 7: Terminal Capabilities SCF 29.998-7 Not Applicable
29.198-8 Part 8: Data Session Control SCF 29.998-8 Data Session Control – CAP mapping
29.198-9 Part 9: Generic Messaging SCF 29.998-9 Not Applicable
29.198-10 Part 10: Connectivity Manager SCF 29.998-10 Not Applicable
29.198-11 Part 11: Account Management SCF 29.998-11 Not Applicable
29.198-12 Part 12: Charging SCF 29.998-12 Not Applicable

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)93GPP TS 29.198-3 version 4.0.0 Release 4

1 Scope
The present document is Part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA
are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

• Sequence Diagrams;

• Class Diagrams;

• Interface specification plus detailed method descriptions;

• State Transition diagrams;

• Data definitions;

• IDL Description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

[4] IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996].

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)103GPP TS 29.198-3 version 4.0.0 Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Overview of the Framework
This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, and between Network
Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circles in the figure
below). The description of the Framework in the present document separates the interfaces into two distinct sets:
Framework to Application interfaces and Framework to Service interfaces.

Figure:

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model. The application shall authenticate the
Framework and vice versa. The application shall be authenticated before it is allowed to use any other OSA
interface.

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication shall precede
authorisation. Once authenticated, an application is authorised to access certain SCFs.

Registered Services

Client Application

Framework
Call

Control
Mobility UI

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)113GPP TS 29.198-3 version 4.0.0 Release 4

- Discovery of Framework and network SCFs: After successful authentication, applications can obtain available
Framework interfaces and use the discovery interface to obtain information on authorised network SCFs.
The Discovery interface can be used at any time after successful authentication.

- Establishment of service agreement: Before any application can interact with a network SCF, a service
agreement shall be established. A service agreement may consist of an off-line (e.g. by physically exchanging
documents) and an on-line part. The application has to sign the on-line part of the service agreement before it is
allowed to access any network SCF.

- Access to network SCFs: The Framework shall provide access control functions to authorise the access to SCFs
or service data for any API method from an application, with the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server (SCS):

- Registering of network SCFs. SCFs offered by a SCS can be registered at the Framework. In this way the
Framework can inform the Applications upon request about available SCFs (Discovery). For example, this
mechanism is applied when installing or upgrading an SCS.

The following clauses describe each aspect of the Framework in the following order:

• The sequence diagrams give the reader a practical idea of how each of the Framework is implemented.

• The class diagrams clause shows how each of the interfaces applicable to the Framework relate to one another.

• The interface specification clause describes in detail each of the interfaces shown within the class diagram part.

• The State Transition Diagrams (STD) show the progression of internal processes, either in the application or in the
gateway.

• The data definitions clause shows a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
common data types part of the present document (29.198-2).

5 The Base Interface Specification

5.1 Interface Specification Format
This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name Ip<name>.
The call-back interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>,
while the Framework interfaces are denoted by classes with name IpFw<name>.

5.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
shall implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the call-back mechanism.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)123GPP TS 29.198-3 version 4.0.0 Release 4

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as ’in’ represent those that shall have
a value when the method is called. Those described as ’out’ are those that contain the return result of the method when
the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, Framework and Service Interfaces inherit from the following interface. This API Base Interface does
not provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as Call Control, User
Interaction, Messaging, Mobility and Connectivity Management.

The interfaces that are implemented by the services are denoted as ’Service Interface’. The corresponding interfaces that
shall be implemented by the application (e.g. for API call-backs) are denoted as ’Application Interface’.

5.4 Generic Service Interface

5.4.1 Interface Class IpService

Inherits from: IpInterface.

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)133GPP TS 29.198-3 version 4.0.0 Release 4

Method
setCallback()

This method specifies the reference address of the call-back interface that a service uses to invoke methods on the
application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for call-backs

Raises

TpGeneralException

Method
setCallbackWithSessionID()

This method specifies the reference address of the application’s call-back interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for call-backs.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application’s call-back interface.

Raises

TpGeneralException

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)143GPP TS 29.198-3 version 4.0.0 Release 4

6 Framework-to-Application Sequence Diagrams

6.1 Event Notification Sequence Diagrams

6.1.1 Enable Event Notification

AppLogic : IpAppEventNotification : IpAccess : IpEventNotification

1: obtainInterface ()

2: new()

3: new()

4: createNotification ()

5: rep ortNotificati on()

1: This message is used to receive a reference to the object implementing the IpEventNotification interface.

2: If there is currently no object implementing the IpEventNotification interface, then one is created using this
message.

3: This message is used to create an object implementing the IpAppEventNotification interface.

4: enableNotification(eventCriteria : in TpFwEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

This message is used to enable the notification mechanism so that subsequent Framework events can be sent to the
application. The Framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wants to
be notified: those specified in ServiceTypeNameList.

The result of this invocation has many similarities with the result of invoking listServiceTypes: in both cases the
application is informed of the availability of a list of SCFs. The differences are:

• in the case of invoking listServiceTypes, the application has to take the initiative, but it is informed of ALL SCFs
available;

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)153GPP TS 29.198-3 version 4.0.0 Release 4

• in the case of using the event notification mechanism, the application needs not take the initiative to ask about the
availability of SCFs, but it is only informed of the ones that are newly available.

5: The application is notified of the availability of new SCFs of the requested type(s).

6.2 Integrity Management Sequence Diagrams

6.2.1 Load Management: Suspend/Resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evaluation of the load balancing policy as a result of the detection of a change in load level of the Framework.

 : IpAppLoadManager : IpLoadManager

1: load change detection and policy evaluation

This is
implementation
detail

2: suspendNotification()

: resumeNot ification()

Load balancing service
makes a decision based
on pre-defined policy 3: load change detection and policy evaluat ion

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)163GPP TS 29.198-3 version 4.0.0 Release 4

6.2.2 Load Management: Framework queries load status

This sequence diagram shows how the Framework requests load statistics for an application.

 : IpLoadManager : IpAppLoadManager

1: queryAppLoadReq()

2: get load information

3: queryAppLoadRes()

This is the
implementation
detail

6.2.3 Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the Framework load manager.

 : IpAppLoadManager : IpLoadManager

2: evaluate policy

This is the implementation
detail

1: reportLoad()

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)173GPP TS 29.198-3 version 4.0.0 Release 4

6.2.4 Load Management: Application queries load status

This sequence diagram shows how an application requests load statistics for the Framework.

 : IpAppLoadManager : IpLoadManager

1: queryLoadReq()

3: queryLoadRes()

2: get load information

This is the
implementation
detail

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)183GPP TS 29.198-3 version 4.0.0 Release 4

6.2.5 Load Management: Application call-back registration and load
control

This sequence diagram shows how an application registers itself and the Framework invokes load management function
based on policy.

 : IpAppLoadManager : IpLoadManager

1: registerLoadController()

Framework detects its
load condition change
and initiates load control
action 3: loadLevelNotification()

2: load change detection & policy evaluation

This is the
implementation detail

5: loadLevelNotification()

6: unregisterLoadController()

4: load change detection & policy evaluation

This is the
implementation detail

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)193GPP TS 29.198-3 version 4.0.0 Release 4

6.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of
application

Application :
IpAppHeartBeat

 :
IpHeartBeatMgmt

1: enableHeartBeat()

2: send()

3: send()

4: disableHeartBeat()

At a certain point of
time the application
decides to stop
heartbeat supervision

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)203GPP TS 29.198-3 version 4.0.0 Release 4

6.2.7 Fault Management: Framework detects a Service failure

The Framework has detected that the service has failed (probably by the use of the heartbeat mechanism). The
Framework updates its own records and informs any client applications that are using the service to stop.

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect i f
a service fails, for example via
an unreturned heartbeat. The
framework informs all
applications that are using the
service.

The application must
cease the use of this
service instance.

: svcUnavailableInd()

1: The Framework informs each client application that is using the service instance that the service is unavailable. The
client application is then expected to abandon use of this service instance and access a different service instance via the
usual means (e.g. discovery, selectService etc.). The client application should not need to re-authenticate in order to
discover and use an alternative service instance. The Framework will also need to make the relevant updates to its
internal records to make sure the service instance is removed from service and no client applications are still recorded as
using it.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)213GPP TS 29.198-3 version 4.0.0 Release 4

6.2.8 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks
framework to carry out an
activity test. The framework is
denoted as the target by a NULL
svcId parameter value.

Framework carries out test and
returns result to client application.

2: activityTestRes()

1: activityTestReq()

1: The client application asks the Framework to do an activity test. The client identifies that it would like the activity
test done for the Framework, rather then a service, by supplying a NULL value for the svcId parameter.

2: The Framework does the requested activity test and sends the result to the client application.

6.3 Service Discovery Sequence Diagrams

6.3.1 Service Discovery

The following figure shows how Applications discover a new SCF in the network. Even applications that have already
used the OSA API of a certain network know that the operator may upgrade it any time; this is why they use the Service
Discovery interfaces.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)223GPP TS 29.198-3 version 4.0.0 Release 4

Before the discovery process can start, the Application needs a reference to the Framework’s Service Discovery
interface; this is done via an invocation the method obtainInterface on the Framework’s Access interface.

Discovery is a three-step process:

 : IpServiceDiscoveryApplication

: listServiceTypes()

3: describeServiceType()

4: discoverService()

 : IpAccess

1: obtainInterface()

2: Discovery: first step - list service types

In this first step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of this first discovery step:

· out listTypes

This is a list of service type names, i.e. a list of strings, each of them the name of a SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type

In this second step the application requests what are the properties that describe a certain service type that it is interested
in, among those listed in the first step.

The following input is necessary:

· in name

This is a service type name: a string that contains the name of the SCF whose description the Application is interested in
(e.g. "P_MPCC") .

And the output is:

· out serviceTypeDescription

The description of the specified SCF type. The description provides information about:

· the property names associated with the SCF,

· the corresponding property value types,

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)233GPP TS 29.198-3 version 4.0.0 Release 4

· the corresponding property mode (mandatory or read-only) associated with each SCF property,

· the names of the super types of this type, and

· whether the type is currently enabled or disabled.

4: Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i. e.,
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the serviceID that is the
identifier this network operator has assigned to the SCF version described in terms of those service properties. This is
the moment where the serviceID identifier is shared with the application that is interested on the corresponding service.

This is done for either one service or more (the application specifies the maximum number of responses it wishes to
accept).

Input parameters are:

· in serviceTypeName

This is a string that contains the name of the SCF whose description the Application is interested in (e.g. "P_MPCC").

· in desiredPropertyList

This is again a list like the one used for service registration, but where the value of the service properties have been fine
tuned by the Application to (they will be logically interpreted as "minimum", "maximum", etc. by the Framework).

The following parameter is necessary as input:

· in max

This parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result.

And the output is:

· out serviceList

This is a list of duplets: (serviceID, servicePropertyList). It provides a list of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (serviceID), and once again the
service property list.

6.4 Trust and Security Management Sequence Diagrams

6.4.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs
to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)243GPP TS 29.198-3 version 4.0.0 Release 4

 : IpAccess : IpAppAccess Applicat ion Framework

1: selectService()

2: accessCheck()

3: signServiceAgreement()

4: signServiceAgreement()

1: Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the
serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application a new identifier for the service chosen: a service token, that is a private identifier for this service
between this Application and this network, and is used for the process of signing the service agreement.

Input is:

· in serviceID

This identifies the SCF required.

And output:

· out serviceToken

This is a free format text token returned by the Framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement.

3: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this
contractual details have been agreed, then the Application can be given the means to actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the getServiceManager operation on the service factory the Framework retrieves this interface and returns it to
the Application. The service properties suitable for this application are also fed to the SCF (via the service factory
interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

Input:

· in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

· in agreementText

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)253GPP TS 29.198-3 version 4.0.0 Release 4

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

· in signingAlgorithm

This is the algorithm used to compute the digital signature.

Output:

· out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

6.4.2 Initial Access

The following figure shows an application accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the Application shall first of all authenticate itself with the Framework.
For this purpose the application needs a reference to the Initial Contact interfaces for the Framework; this may be
obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc.
At this stage, the Application has no guarantee that this is a Framework interface reference, but it to initiate the
authentication process with the Framework. The Initial Contact interface only supports the initiateAuthentication
method to allow the authentication process to take place.

Once the Application has authenticated with the Framework, it can gain access to other Framework interfaces and
SCFs. This is done by invoking the requestAccess method, by which the application requests a certain type of access
SCF.

Applicat ion : IpInitial : IpAPILevelAuthent icat ion Framework : IpAccess : IpAppAPILevelAuthentication

1: ini tiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

5: requestAccess()

4: authenticate()

6: obtainInterface()

1: Initiate Authentication

The Application invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the
authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Select Encryption Method

The Application invokes selectAuthMethod on the Framework's API Level Authentication interface, identifying the
authentication methods it supports. The Framework prescribes the method to be used.

3: Authenticate

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)263GPP TS 29.198-3 version 4.0.0 Release 4

4: The Application and Framework authenticate each other using the prescribed method. The sequence diagram
illustrates one of a series of one or more invocations of the authenticate method on the Framework’s API Level
Authentication interface. In each invocation, the Application supplies a challenge and the Framework returns the
correct response. Alternatively or additionally the Framework may issue its own challenges to the Application using
the authenticate method on the Application’s API Level Authentication interface.

5: Request Access

Upon successful (mutual) authentication, the Application invokes requestAccess on the Framework’s API Level
Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference
to its access interface.

6: The client invokes obtainInterface on the Framework’s Access interface to obtain a reference to its service discovery
interface.

6.4.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the Framework mutually authenticate
one another using an underlying distribution technology mechanism.

Applicat ion : IpInitial Framework : IpAuthentication : IpAccess

1: initiateAuthentication()

2: requestAccess()

3: obtainInterface()

Underlying Distribution
Technology Mechanism is used
for application identification and
authentication.

1: The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to
specify the type of authentication process. In this case, the application selects to use the underlying distribution
technology mechanism for identification and authentication.

2: The application invokes the requestAccess method on the Framework’s Authentication interface. The Framework
now uses the underlying distribution technology mechanism for identification and authentication of the application.

3: If the authentication was successful, the application can now invoke obtainInterface on the Framework’s Access
interface to obtain a reference to its service discovery interface.

6.4.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client application and the Framework mutually
authenticate one another.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)273GPP TS 29.198-3 version 4.0.0 Release 4

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The application shall authenticate with the Framework before it is able to use any of the other interfaces supported by
the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to
specify the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g.
CORBA security). OSA defines generic a authentication interface (API Level Authentication), which can be used to
perform the authentication process. The initiateAuthentication method allows the application to pass a reference to its
own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the
client, in return. In this case the API Level Authentication interface.

2) The application invokes the selectEncryptionMethod on the Framework’s API Level Authentication interface. This
includes the authentication capabilities of the application. The Framework then chooses an authentication method based
on the authentication capabilities of the application and the Framework. If the application is capable of handling more
than one authentication method, then the Framework chooses one option, defined in the prescribedMethod parameter. In
some instances, the authentication capability of the application may not fulfill the demands of the Framework, in which
case, the authentication will fail.

3) The application and Framework interact to authenticate each other. Depending on the method prescribed, this
procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol is
performed using the authenticate method on the API Level Authentication interface. Depending on the authentication
method selected, the protocol may require invocations on the API Level Authentication interface supported by the
Framework; or on the application counterpart; or on both.

 : IpAppAPILevelAuthent ication Application : IpInitial Framework : IpAPILevelAuthent ication

1: initiateAuthenticat ion()

2: selectEncryptionMethod()

3: authenticate()

: authenticate()

5: authenticate()

: authenticate()

IpAppAuthentication reference is
passed to framework and
IpAuthentication reference is
returned.

This is an example of the
sequence of
authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

IpAppAccess reference is
passed to Framework, and
IpAccess reference is
returned.

: requestAccess()

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)283GPP TS 29.198-3 version 4.0.0 Release 4

Framework-to-Application Class Diagrams

IpAppEventNotification

reportNotification()
notificationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()
destroyNotification()

(from Framework Interfaces)

<Interface>>

<<uses>>

Figure: Event Notification Class Diagram

IpAppFaultManager

activityTestRes()
appActivityTestReq()
fwFaultReportInd()
fwFaultRecoveryInd()
svcUnavailableInd()
genFaultStatsRecordRes()
fwUnavailableInd()

<<Interface>>

IpFaultManager

activityTestReq()
appActivityTestRes()
svcUnavailableInd()
genFaultStatsRecordReq()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changeTimePeriod()

<<Interface>>

IpHeartBeat

send()

<<Interface>>

1 0..n1 0..n

IpAppHeartBeat

send()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()
disableAppHeartBeat()
changeTimePeriod()

<<Interface>>

<uses>>

0..n1 0..n1

IpAppLoadManager

queryAppLoadReq()
queryLoadRes()
queryLoadErr()
loadLevelNotificatio...
resumeNotification()
suspendNotification()

<<Interface>>

IpLoadManager

reportLoad()
queryLoadReq()
queryAppLoadRes()
queryAppLoadErr()
registerLoadController()
unregisterLoadController()
resumeNotification()
suspendNotification()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)293GPP TS 29.198-3 version 4.0.0 Release 4

IpServiceDiscovery

listServiceTypes()
describeServiceType()
discoverService()
listSubscribedServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)303GPP TS 29.198-3 version 4.0.0 Release 4

IpInitial

ini tiateAuthentication()

(from Framework interfaces)

<<Interface>>
IpAccess

obtainInterface()
obtainInterfaceWithCallback()
accessCheck()
selectService()
signServiceAgreement()
terminateServiceAgreement()
endAccess()

(from Framework interfaces)

<<Interface>>
IpAPILevelAuthentication

selectEncryptionMetho...
authenticate()
abortAuthentication()

(from Framework interfaces)

<<Interface>>

IpAppAccess

signServiceAgreement()
terminateServiceAgreement()
terminateAccess()

(from App interfaces)

<<Interface>>

IpAppAPILevelAuthentication

authenticate()
abortAuthentication()

(from App interfaces)

<<Interface>>

<<uses>> <<uses>>

IpAuthenticat ion

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview

8 Framework-to-Application Interface Classes

8.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

- the first point of contact for an application to access a Home Environment;

- the authentication methods for the application and Home Environment to perform an authentication protocol;

- the application with the ability to select a service capability feature to make use of;

- the application with a portal to access other Framework interfaces.

The process by which the application accesses the Home Environment has been separated into 3 stages, each supported
by a different Framework interface:

1) Initial Contact with the Framework;

2) Authentication to the Framework;

3) Access to Framework and Service Capability Features.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)313GPP TS 29.198-3 version 4.0.0 Release 4

8.1.1 Interface Class IpAppAPILevelAuthentication

Inherits from: IpInterface.

<<Interface>>

IpAppAPILevelAuthentication

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) :
TpResult

abortAuthentication () : TpResult

Method
authenticate()

This method is used by the Framework to authenticate the client application using the mechanism indicated in
prescribedMethod. The client application shall respond with the correct responses to the challenges presented by the
Framework. The number of exchanges and the order of the exchanges is dependent on the prescribedMethod. (These
may be interleaved with authenticate() calls by the client application on the IpAPILevelAuthentication interface. This is
defined by the prescribedMethod.)

Parameters

prescribedMethod : in TpAuthCapability

see selectEncryptionMethod() on the IpAPIlLevelAuthentication interface. This parameter contains the agreed method
for authentication. If this is not the same value as returned by selectEncryptionMethod(), then an error code
(P_INVALID_AUTH_CAPABILITY) is returned.

challenge : in TpString

The challenge presented by the Framework to be responded to by the client application. The challenge mechanism used
will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol
RFC 1994, August1996 [4]. The challenge will be encrypted with the mechanism prescribed by
selectEncryptionMethod().

response : out TpStringRef

This is the response of the client application to the challenge of the Framework in the current sequence. The response
will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Raises

TpGeneralException,TpFWException

Method
abortAuthentication()

The Framework uses this method to abort the authentication process. This method is invoked if the Framework wishes
to abort the authentication process, (e.g. if the client application responds incorrectly to a challenge.) If this method has

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)323GPP TS 29.198-3 version 4.0.0 Release 4

been invoked, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code
(P_ACCESS_DENIED), until the client application has been properly authenticated.

Parameters
No Parameters were identified for this method

Raises

TpGeneralException,TpFWException

8.1.2 Interface Class IpAppAccess

Inherits from: IpInterface.

The Access client application interface is used by the Framework to perform the steps that are necessary in order to
allow it to service access.

<<Interface>>

IpAppAccess

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpString) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpString) : TpResult

Method
signServiceAgreement()

This method is used by the Framework to request that the client application sign an agreement on the service. It is called
in response to the client application calling the selectService() method on the IpAccess interface of the Framework. The
Framework provides the service agreement text for the client application to sign. If the client application agrees, it signs
the service agreement, returning its digital signature to the Framework.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the Framework in a call to the selectService() method. This token is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token.) If the
serviceToken is invalid, or not known by the client application, then an error code (P_INVALID_SERVICE_TOKEN)
is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)333GPP TS 29.198-3 version 4.0.0 Release 4

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client
application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

digitalSignature : out TpStringRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the Framework.

Raises

TpGeneralException,TpFWException

Method
terminateServiceAgreement()

This method is used by the Framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the Framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, an
error code (P_INVALID_SERVICE_TOKEN) is returned.

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The Framework
uses this to confirm its identity to the client application. The client application can check that the terminationText has
been signed by the Framework. If a match is made, the service agreement is terminated, otherwise an error code
(P_INVALID_SIGNATURE) is returned.

Raises

TpGeneralException,TpFWException

Method
terminateAccess()

The terminateAccess operation is used to end the client application’s access session with the Framework. The
Framework is terminating the client application’s access session. (For example, this may be done if the Framework
believes the client application is masquerading as someone else. Using this operation will force the client application to
re-authenticate if it wishes to continue using the Framework’s services.)

After terminateAccess() is invoked, the client application will not longer be authenticated with the Framework. The
client application will not be able to use the references to any of the Framework interfaces gained during the access
session. Any calls to these interfaces will fail.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)343GPP TS 29.198-3 version 4.0.0 Release 4

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client
application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

digitalSignature : in TpString

This is a signed version of a hash of the termination text. The Framework uses this to confirm its identity to the client
application. The client application can check that the terminationText has been signed by the Framework. If a match is
made, the access session is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.

Raises

TpGeneralException,TpFWException

8.1.3 Interface Class IpInitial

Inherits from: IpInterface.

The Initial Framework interface is used by the client application to initiate the mutual authentication with the
Framework.

<<Interface>>

IpInitial

initiateAuthentication (appDomain : in TpAuthDomain, authType : in TpAuthType, fwDomain : out
TpAuthDomainRef) : TpResult

Method
initiateAuthentication()

This method is invoked by the client application to start the process of mutual authentication with the Framework, and
request the use of a specific authentication method.

Parameters

appDomain : in TpAuthDomain

This identifies the application domain to the Framework, and provides a reference to the domain’s authentication
interface.
 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 }; The
domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e.
TpEntOpID). It is used to identify the enterprise domain to the Framework, (see authenticate() on
IpAPILevelAuthentication). If the Framework does not recognise the domainID, the Framework returns an error code
(P_INVALID_DOMAIN_ID).

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)353GPP TS 29.198-3 version 4.0.0 Release 4

 The authInterface parameter is a reference to call the authentication interface of the client application. The type of
this interface is defined by the authType parameter. If the interface reference is not of the correct type, the Framework
returns an error code (P_INVALID_INTERFACE_TYPE).

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the Authentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the appDomain and fwDomain
authInterface parameters are references to interfaces of type Ip(App)APILevelAuthentication. If
P_AUTHENTICATION is selected, the authInterface parameters are references to interfaces of type
Ip(App)Authentication which is used when an underlying distribution technology authentication mechanism is used.

fwDomain : out TpAuthDomainRef

This provides the application domain with a Framework identifier, and a reference to call the authentication interface of
the Framework.
 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };
 The domainID parameter is an identifier for the Framework (i.e. TpFwID). It is used to identify the Framework to
the enterprise domain.
 The authInterface parameter is a reference to the authentication interface of the Framework. The type of this
interface is defined by the authType parameter. The application domain uses this interface to authenticate with the
Framework.

Raises

TpGeneralException,TpFWException

8.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.

The Authentication Framework interface is used by client application to request access to other interfaces supported by
the Framework. The mutual authentication process should in this case be done with some underlying distribution
technology authentication mechanism, e.g. CORBA Security.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, appAccessInterface : in IpInterfaceRef, fwAccessInterface :
out IpInterfaceRefRef) : TpResult

Method
requestAccess()

Once application and Framework are authenticated, the client application invokes the requestAccess operation on the
IpAuthentication or IpAPILevelAuthentication interface. This allows the client application to request the type of access
they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can
define their own access interfaces to satisfy client requirements for different types of access.)

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)363GPP TS 29.198-3 version 4.0.0 Release 4

If this method is called before the client application and Framework have successfully completed the authentication
process, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client application. If the Framework does not provide the
type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.

appAccessInterface : in IpInterfaceRef

This provides the reference for the Framework to call the access interface of the client application. If the interface
reference is not of the correct type, the Framework returns an error code (P_INVALID_INTERFACE_TYPE).

fwAccessInterface : out IpInterfaceRefRef

This provides the reference for the client application to call the access interface of the Framework.

Raises

TpGeneralException,TpFWException

8.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by client application to perform its part of the mutual
authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the
Framework.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out TpAuthCapabilityRef) :
TpResult

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) :
TpResult

abortAuthentication () : TpResult

Method
selectEncryptionMethod()

The client application uses this method to initiate the authentication process. The Framework returns its preferred
mechanism. This should be within capability of the client application. If a mechanism that is acceptable to the
Framework within the capability of the client application cannot be found, the Framework returns an error code
(P_NO_ACCEPTABLE_AUTH_CAPABILITY).

Parameters

authCaps : in TpAuthCapabilityList

This is the means by which the authentication mechanisms supported by the client application are conveyed to the
Framework.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)373GPP TS 29.198-3 version 4.0.0 Release 4

prescribedMethod : out TpAuthCapabilityRef

This is returned by the Framework to indicate the mechanism preferred by the Framework for the authentication
process. If the value of the prescribedMethod returned by the Framework is not understood by the client application, it
is considered a catastrophic error and the client application shall abort.

Raises

TpGeneralException,TpFWException

Method
authenticate()

This method is used by the client application to authenticate the Framework using the mechanism indicated in
prescribedMethod. The Framework shall respond with the correct responses to the challenges presented by the client
application. The clientAppID received in the initiateAuthentication() can be used by the Framework to reference the
correct public key for the client application (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges and the order of the exchanges is dependent on the prescribedMethod.

Parameters

prescribedMethod : in TpAuthCapability

see selectEncryptionMethod(). This parameter contains the method that the Framework has specified as acceptable for
authentication. If this is not the same value as returned by selectEncryptionMethod(), then the Framework returns an
error code (P_INVALID_AUTH_CAPABILITY).

challenge : in TpString

The challenge presented by the client application to be responded to by the Framework. The challenge mechanism used
will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol
RFC 1994, August1996 [4]. The challenge will be encrypted with the mechanism prescribed by
selectEncryptionMethod().

response : out TpStringRef

This is the response of the Framework to the challenge of the client application in the current sequence. The response
will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Raises

TpGeneralException,TpFWException

Method
abortAuthentication()

The client application uses this method to abort the authentication process. This method is invoked if the client
application no longer wishes to continue the authentication process (e.g. if the Framework responds incorrectly to a
challenge). If this method has been invoked, calls to the requestAccess operation on IpAPILevelAuthentication will
return an error code (P_ACCESS_DENIED), until the client application has been properly authenticated.

Parameters
No Parameters were identified for this method.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)383GPP TS 29.198-3 version 4.0.0 Release 4

Raises

TpGeneralException,TpFWException

8.1.6 Interface Class IpAccess

Inherits from: IpInterface.

<<Interface>>

IpAccess

obtainInterface (interfaceName : in TpInterfaceName, fwInterface : out IpInterfaceRefRef) : TpResult

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, appInterface : in IpInterfaceRef,
fwInterface : out IpInterfaceRefRef) : TpResult

accessCheck (serviceToken : in TpServiceToken, securityContext : in TpSecurityContext, securityDomain :
in TpSecurityDomain, group : in TpSecurityGroup, serviceAccessTypes : in TpServiceAccessType,
serviceAccessControl : out TpServiceAccessControlRef) : TpResult

selectService (serviceID : in TpServiceID, serviceToken : out TpServiceTokenRef) : TpResult

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm, signatureAndServiceMgr : out TpSignatureAndServiceMgrRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpString) : TpResult

endAccess (endAccessProperties : in TpEndAccessProperties) : TpResult

Method
obtainInterface()

This method is used to obtain other Framework interfaces. The client application uses this method to obtain interface
references to other Framework interfaces. (The obtainInterfacesWithCallback method should be used if the client
application is required to supply a call-back interface to the Framework.)

Parameters

interfaceName : in TpInterfaceName

The name of the Framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the Framework returns an error code (P_INVALID_INTERFACE_NAME).

fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.

Raises

TpGeneralException,TpFWException

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)393GPP TS 29.198-3 version 4.0.0 Release 4

Method
obtainInterfaceWithCallback()

This method is used to obtain other Framework interfaces. The client application uses this method to obtain interface
references to other Framework interfaces, when it is required to supply a call-back interface to the Framework. (The
obtainInterface method should be used when no call-back interface needs to be supplied.)

Parameters

interfaceName : in TpInterfaceName

The name of the Framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the Framework returns an error code (P_INVALID_INTERFACE_NAME).

appInterface : in IpInterfaceRef

This is the reference to the client application interface, which is used for call-backs. If an application interface is not
needed, then this method should not be used. (The obtainInterface method should be used when no call-back interface
needs to be supplied.) If the interface reference is not of the correct type, the Framework returns an error code
(P_INVALID_INTERFACE_TYPE).

fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.

Raises

TpGeneralException,TpFWException

Method
accessCheck()

This method may be used by the client application to check if it is authorised to access the specified service. The
response is used to indicate whether the request for access has been granted or denied and if granted the level of trust
that will be applied. The securityModelID and the relevant securityLevel are defined as part of the registration data for
the service, and the service agreement. They are specific to the service.

securityModelID:

The identity of the specific Security Model that is to be used to define a set of appropriate policies for the service that
can be used by the Framework to determine access rights. The model may include blanket permission, session
permission or one shot permission. A number of security models will be stored by the Framework, and referenced by
the access control module, according to the security model identifier of the service.

securityLevel:

The trust level required by the service for granting access. The Security Level is used by the Framework’s access control
module when it checks for access rights.

Parameters

serviceToken : in TpServiceToken

The serviceToken identifies the specific service that the client application wishes to access. The service Token identifies
the service type and service properties selected by the client application when it invoked selectService().

securityContext : in TpSecurityContext

A context is a group of security relevant attributes that may have an influence on the result of the accessCheck request.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)403GPP TS 29.198-3 version 4.0.0 Release 4

securityDomain : in TpSecurityDomain

The security domain in which the client application is operating may influence the access control decisions and the
specific set of features that the requestor is entitled to use.

group : in TpSecurityGroup

A group can be used to define the access rights associated with all client applications that belong to that group. This
simplifies the administration of access rights.

serviceAccessTypes : in TpServiceAccessType

These are defined by the specific Security Model in use but are expected to include: Create, Read, Update, Delete as
well as those specific to services.

serviceAccessControl : out TpServiceAccessControlRef

This contains the access control policy information that controls access to the service feature, and the trustLevel that the
service provider has assigned to the client application.
 structure TpServiceAccessControl {
 policy: TpString;
 trustLevel: TpString;
 };
 The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel
shall also have a value.
 The trustLevel parameter indicates the trust level that the service provider has assigned to the client application.

Raises

TpGeneralException,TpFWException

Method
selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the Framework, an error code
(P_INVALID_SERVICE_ID) is returned.

serviceToken : out TpServiceTokenRef

This is a free format text token returned by the Framework, which can be signed as part of a service agreement. This
will contain operator specific information relating to the service level agreement. The serviceToken has a limited
lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code
(P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or Framework
invokes the endAccess method on the other’s corresponding access interface.

Raises

TpGeneralException,TpFWException

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)413GPP TS 29.198-3 version 4.0.0 Release 4

Method
signServiceAgreement()

This method is used by the client application to request that the Framework sign an agreement on the service, which
allows the client application to use the service. If the Framework agrees, both parties sign the service agreement, and a
reference to the service manager interface of the service is returned to the client application. If the client application is
not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the Framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the Framework using the private key of the Framework. If the
agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the
Framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

signatureAndServiceMgr : out TpSignatureAndServiceMgrRef

This contains the digital signature of the Framework for the service agreement, and a reference to the service manager
interface of the service.
 structure TpSignatureAndServiceMgr {
 digitalSignature: TpString;
 serviceMgrInterface: IpInterfaceRef;
 };
 The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.
 The serviceMgrInterface is a reference to the service manager interface for the selected service.

Raises

TpGeneralException,TpFWException

Method
terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the Framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

terminationText : in TpString

This is the termination text describes the reason for the termination of the service agreement.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)423GPP TS 29.198-3 version 4.0.0 Release 4

digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing algorithm given when the service agreement was signed using signServiceAgreement().The Framework
uses this to check that the terminationText has been signed by the client application. If a match is made, the service
agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.

Raises

TpGeneralException,TpFWException

Method
endAccess()

The endAccess operation is used to end the client application’s access session with the Framework. The client
application requests that its access session is ended. After it is invoked, the client application will no longer be
authenticated with the Framework. The client application will not be able to use the references to any of the Framework
interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

This is a list of properties that can be used to tell the Framework the actions to perform when ending the access session
(e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the Framework, an
error code (P_INVALID_PROPERTY) is returned.

Raises

TpGeneralException,TpFWException

8.2 Service Discovery Interface Classes

8.2.1 Interface Class IpServiceDiscovery

Inherits from: IpInterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) shall know what "types" of services are supported by the Framework and
what service "properties" are applicable to each service type. The "listServiceType() method returns a list of all "service
types" that are currently supported by the Framework and the "describeServiceType()" returns a description of each
service type. The description of service type includes the "service-specific properties" that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the Framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.

<<Interface>>

IpServiceDiscovery

listServiceTypes (listTypes : out TpServiceTypeNameListRef) : TpResult

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)433GPP TS 29.198-3 version 4.0.0 Release 4

describeServiceType (name : in TpServiceTypeName, serviceTypeDescription : out
TpServiceTypeDescriptionRef) : TpResult

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32, serviceList : out TpServiceListRef) : TpResult

listSubscribedServices (serviceList : out TpServiceListRef) : TpResult

Method
listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Parameters

listTypes : out TpServiceTypeNameListRef

The names of the requested service types.

Raises

TpGeneralException,TpFWException

Method
describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Parameters

name : in TpServiceTypeName

The name of the service type to be described.

· If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.

serviceTypeDescription : out TpServiceTypeDescriptionRef

The description of the specified service type. The description provides information about:
 · the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples,
 · the names of the super types of this service type, and
 · whether the service type is currently enabled or disabled.

Raises

TpGeneralException,TpFWException

Method
discoverService()

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)443GPP TS 29.198-3 version 4.0.0 Release 4

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passes in a list of desired service properties to describe the service it is
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responses it is willing to accept. The Framework shall not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match
the desired service property list that the client application provided.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading". It is the basis for type safe interactions between the service exporters (via registerService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

· If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TYPE exception is raised.

The Framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service property {name, mode and value list} tuples that the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property values in the desired property list shall be logically interpreted as "minimum",
"maximum", etc. by the Framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property value be specified as an
appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the
selection of desired services.

max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

serviceList : out TpServiceListRef

This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service
property {name, mode and value list} tuples associated with the service.

Raises

TpGeneralException,TpFWException

Method
listSubscribedServices()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Parameters

serviceList : out TpServiceListRef

The "serviceList" parameter returns a list of subscribed services. Each service is characterised by its service ID and a
list of service property {name, mode and value list} tuples associated with the service.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)453GPP TS 29.198-3 version 4.0.0 Release 4

Raises

TpGeneralException,TpFWException

8.3 Integrity Management Interface Classes

8.3.1 Interface Class IpAppFaultManager

Inherits from: IpInterface.

This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the
obtainInterfaceWithCallback operation on the IpAccess interface

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult

appActivityTestReq (activityTestID : in TpActivityTestID) : TpResult

fwFaultReportInd (fault : in TpInterfaceFault) : TpResult

fwFaultRecoveryInd (fault : in TpInterfaceFault) : TpResult

svcUnavailableInd (serviceId : in TpServiceID, reason : in TpSvcUnavailReason) : TpResult

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : TpResult

fwUnavailableInd (reason : in TpFwUnavailReason) : TpResult

Method
activityTestRes()

The Framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpGeneralException,TpFWException

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)463GPP TS 29.198-3 version 4.0.0 Release 4

Method
appActivityTestReq()

The Framework invokes this method to test that the client application is operational. On receipt of this request, the
application shall carry out a test on itself, to check that it is operating correctly. The application reports the test result
by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the Framework to correlate the response (when it arrives) with this request.

Raises

TpGeneralException,TpFWException

Method
fwFaultReportInd()

The Framework invokes this method to notify the client application of a failure within the Framework. The client
application shall not continue to use the Framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the Framework.

Raises

TpGeneralException,TpFWException

Method
fwFaultRecoveryInd()

The Framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the Framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the Framework has recovered.

Raises

TpGeneralException,TpFWException

Method
svcUnavailableInd()

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)473GPP TS 29.198-3 version 4.0.0 Release 4

The Framework invokes this method to inform the client application that it can no longer use the indicated service. On
receipt of this request, the client application shall act to reset its use of the specified service (using the normal
mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a
different service instance).

Parameters

serviceId : in TpServiceID

Identifies the affected service.

reason : in TpSvcUnavailReason

Identifies the reason why the service is no longer available

Raises

TpGeneralException,TpFWException

Method
genFaultStatsRecordRes()

This method is used by the Framework to provide fault statistics to a client application in response to a
genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

serviceIDs : in TpServiceIDList

Specifies the Framework and/or services that are included in the general fault statistics record. The Framework is
designated by a null value.

Raises

TpGeneralException,TpFWException

Method
fwUnavailableInd()

The Framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the Framework is no longer available

8.3.2 Interface Class IpFaultManager

Inherits from: IpInterface.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)483GPP TS 29.198-3 version 4.0.0 Release 4

This interface is used by the application to inform the Framework of events that affect the integrity of the Framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange call-back interfaces as it is assumed that the client application supplies its Fault Management call-back
interface at the time it obtains the Framework’s Fault Management interface, by use of the obtainInterfaceWithCallback
operation on the IpAccess interface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : TpResult

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) :
TpResult

svcUnavailableInd (serviceID : in TpServiceID) : TpResult

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : TpResult

Method
activityTestReq()

The application invokes this method to test that the Framework or a service is operational. On receipt of this request, the
Framework shall carry out a test on itself or on the specified service, to check that it is operating correctly. The
Framework reports the test result by invoking the activityTestRes method on the IpAppFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.

svcID : in TpServiceID

Identifies either the Framework or a service for testing. The Framework is designated by a null value.

Raises

TpGeneralException,TpFWException

Method
appActivityTestRes()

The client application uses this method to return the result of a Framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the Framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)493GPP TS 29.198-3 version 4.0.0 Release 4

Raises

TpGeneralException,TpFWException

Method
svcUnavailableInd()

This method is used by the client application to inform the Framework that it can no longer use the indicated service
(either due to a failure in the client application or in the service). On receipt of this request, the Framework should take
the appropriate corrective action. The Framework assumes that the session between this client application and service
instance is to be closed and updates its own records appropriately as well as attempting to inform the service instance
and/or its administrator. Attempts by the client application to continue using this session should be rejected.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.

Raises

TpGeneralException,TpFWException

Method
genFaultStatsRecordReq()

This method is used by the application to solicit fault statistics from the Framework. On receipt of this request the
Framework shall produce a fault statistics record, for the Framework and/or for specified services during the specified
time interval, which is returned to the client application using the genFaultStatsRecordRes operation on the
IpAppFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the
Framework.

serviceIDs : in TpServiceIDList

Specifies the Framework and/or services to be included in the general fault statistics record. The Framework is
designated by a null value.

Raises

TpGeneralException,TpFWException

8.3.3 Interface Class IpAppHeartBeatMgmt

Inherits from: IpInterface.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)503GPP TS 29.198-3 version 4.0.0 Release 4

This interface allows the initialisation of a heartbeat supervision of the Framework by the Client application. Since the
OSA APIs are inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of
the TpResult is interpreted as a heartbeat response.

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (duration : in TpDuration, fwInterface : in IpHeartBeatRef, session : in TpSessionID) :
TpResult

disableAppHeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

Method
enableAppHeartBeat()

With this method, the Framework registers at the client application for heartbeat supervision of itself.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.

fwInterface : in IpHeartBeatRef

This parameter refers to the call-back interface the heartbeat is calling.

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

Method
disableAppHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)513GPP TS 29.198-3 version 4.0.0 Release 4

Method
changeTimePeriod()

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

8.3.4 Interface Class IpAppHeartBeat

Inherits from: IpInterface.

The Heartbeat Application interface is used by the Framework to supervise the Application. The return of the TpResult
is interpreted as a heartbeat response.

<<Interface>>

IpAppHeartBeat

send (session : in TpSessionID) : TpResult

Method
send()

This is the method the Framework uses in case it supervises the client application. The sender shall raise an exception if
no result comes back after a certain, user-defined time..

Parameters

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)523GPP TS 29.198-3 version 4.0.0 Release 4

8.3.5 Interface Class IpHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the client application. Since the APIs are inherently
synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of the TpResult is interpreted
as a heartbeat response.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (duration : in TpDuration, appInterface : in IpAppHeartBeatRef, session : out
TpSessionIDRef) : TpResult

disableHeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

Method
enableHeartBeat()

With this method, the client application registers at the Framework for heartbeat supervision of itself.

Parameters

duration : in TpDuration

The duration in milliseconds between the heartbeats.

appInterface : in IpAppHeartBeatRef

This parameter refers to the call-back interface the heartbeat is calling.

session : out TpSessionIDRef

Identifies the heartbeat session. In general, the application has only one session. In case of Framework supervision by
the client application (see the application interfaces), the application may maintain more than one session.

Raises

TpGeneralException,TpFWException

Method
disableHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session : in TpSessionID

Identifies the heartbeat session.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)533GPP TS 29.198-3 version 4.0.0 Release 4

Raises

TpGeneralException,TpFWException

Method
changeTimePeriod()

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

8.3.6 Interface Class IpHeartBeat

Inherits from: IpInterface.

The Heartbeat Framework interface is used by the client application to supervise the Framework.

<<Interface>>

IpHeartBeat

send (session : in TpSessionID) : TpResult

Method
send()

This is the method the client application uses in case it supervises the Framework. The sender shall raise an exception if
no result comes back after a certain, user-defined time.

Parameters

session : in TpSessionID

Identifies the heartbeat session. In general, the application has only one session.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)543GPP TS 29.198-3 version 4.0.0 Release 4

Raises

TpGeneralException,TpFWException

8.3.7 Interface Class IpAppLoadManager

Inherits from: IpInterface.

The client application developer supplies the load manager application interface to handle requests, reports and other
responses from the Framework load manager function. The application supplies the identity of this call-back interface
at the time it obtains the Framework’s load manager interface, by use of the obtainInterfaceWithCallback() method on
the IpAccess interface.

<<Interface>>

IpAppLoadManager

queryAppLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : TpResult

resumeNotification () : TpResult

suspendNotification () : TpResult

Method
queryAppLoadReq()

The Framework uses this method to request the application to provide load statistic records for the application and/or
for individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the application and/or the services for which load statistic records should be reported. The application is
designated by a null value.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

Raises

TpGeneralException,TpFWException

Method
queryLoadRes()

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)553GPP TS 29.198-3 version 4.0.0 Release 4

The Framework uses this method to send load statistic records back to the application that requested the information;
i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the Framework-supplied load statistics

Raises

TpGeneralException,TpFWException

Method
queryLoadErr()

The Framework uses this method to return an error response to the application that requested the Framework’s load
statistics information, when the Framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the Framework’s load statistics.

Raises

TpGeneralException,TpFWException

Method
loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or Framework
which have been registered for load level notifications) this method is invoked on the application.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the Framework-supplied load statistics, which include the load level change(s).

Raises

TpGeneralException,TpFWException

Method
resumeNotification()

The Framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the Framework handled a temporary overload condition.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)563GPP TS 29.198-3 version 4.0.0 Release 4

Parameters
No Parameters were identified for this method.

Raises

TpGeneralException,TpFWException

Method
suspendNotification()

The Framework uses this method to request the application to suspend sending it any notifications: e.g. while the
Framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

Raises

TpGeneralException,TpFWException

8.3.8 Interface Class IpLoadManager

Inherits from: IpInterface.

The Framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to a load management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the Framework should follow for the specific client application. It might specify what
action the Framework should take as the congestion level changes. For example, some real-time critical applications
will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other
services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load
management policy is related to the QoS level to which the application is subscribed. The Framework load
management function is represented by the IpLoadManager interface. Most methods are asynchronous, in that they do
not lock a thread into waiting whilst a transaction performs. To handle responses and reports, the client application
developer shall implement the IpAppLoadManager interface to provide the call-back mechanism. The application
supplies the identity of this call-back interface at the time it obtains the Framework’s load manager interface, by use of
the obtainInterfaceWithCallback operation on the IpAccess interface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : TpResult

queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

registerLoadController (serviceIDs : in TpServiceIDList) : TpResult

unregisterLoadController (serviceIDs : in TpServiceIDList) : TpResult

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)573GPP TS 29.198-3 version 4.0.0 Release 4

resumeNotification (serviceIDs : in TpServiceIDList) : TpResult

suspendNotification (serviceIDs : in TpServiceIDList) : TpResult

Method
reportLoad()

The client application uses this method to report its current load level (0,1, or 2) to the Framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the application’s load level.

Raises

TpGeneralException,TpFWException

Method
queryLoadReq()

The client application uses this method to request the Framework to provide load statistic records for the Framework
and/or for individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the Framework and/or the services for which load statistic records should be reported. The Framework is
designated by a null value.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

Raises

TpGeneralException,TpFWException

Method
queryAppLoadRes()

The client application uses this method to send load statistic records back to the Framework that requested the
information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)583GPP TS 29.198-3 version 4.0.0 Release 4

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.

Raises

TpGeneralException,TpFWException

Method
queryAppLoadErr()

The client application uses this method to return an error response to the Framework that requested the application’s
load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response
to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application’s load statistics.

Raises

TpGeneralException,TpFWException

Method
registerLoadController()

The client application uses this method to register to receive notifications of load level changes associated with the
Framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the Framework and SCFs to be registered for load control. To register for Framework load control only, the
serviceIDs is null.

Raises

TpGeneralException,TpFWException

Method
unregisterLoadController()

The client application uses this method to unregister for notifications of load level changes associated with the
Framework and/or with individual services used by the application.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)593GPP TS 29.198-3 version 4.0.0 Release 4

Parameters

serviceIDs : in TpServiceIDList

Specifies the Framework and/or the services for which load level changes should no longer be reported. The Framework
is designated by a null value.

Raises

TpGeneralException,TpFWException

Method
resumeNotification()

The client application uses this method to request the Framework to resume sending it load management notifications
associated with the Framework and/or with individual services used by the application; e.g. after a period of suspension
during which the application handled a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the Framework and/or the services for which the sending of notifications of load level changes by the
Framework should be resumed. The Framework is designated by a null value.

Raises

TpGeneralException,TpFWException

Method
suspendNotification()

The client application uses this method to request the Framework to suspend sending it load management notifications
associated with the Framework and/or with individual services used by the application; e.g. while the application
handles a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the Framework and/or the services for which the sending of notifications by the Framework should be
suspended. The Framework is designated by a null value.

Raises

TpGeneralException,TpFWException

8.3.9 Interface Class IpOAM

Inherits from: IpInterface.

The OAM interface is used to query the system date and time. The application and the Framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)603GPP TS 29.198-3 version 4.0.0 Release 4

<<Interface>>

IpOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime, systemDateAndTime : out
TpDateAndTimeRef) : TpResult

Method
systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the
Framework. The Framework responds with the system date and time.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if
the format of the parameter is invalid.

systemDateAndTime : out TpDateAndTimeRef

This is the system date and time of the Framework.

Raises

TpGeneralException,TpFWException

8.3.10 Interface Class IpAppOAM

Inherits from: IpInterface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronization purposes. This method is invoked by the Framework to interchange the Framework and client
application date and time.

<<Interface>>

IpAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime, clientDateAndTime : out
TpDateAndTimeRef) : TpResult

Method
systemDateTimeQuery()

This method is used to query the system date and time. The Framework passes in its own date and time to the
application. The application responds with its own date and time.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)613GPP TS 29.198-3 version 4.0.0 Release 4

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the Framework.

clientDateAndTime : out TpDateAndTimeRef

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if
the format of the parameter is invalid.

Raises

TpGeneralException,TpFWException

8.4 Event Notification Interface Classes

8.4.1 Interface Class IpAppEventNotification

Inherits from: IpInterface.

This interface is used by the services to inform the application of a generic service-related event. The Event
Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the
Event Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : TpResult

notificationTerminated () : TpResult

Method
reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the Framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteria and to act accordingly.

Raises

TpGeneralException,TpFWException

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)623GPP TS 29.198-3 version 4.0.0 Release 4

Method
notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters
No Parameters were identified for this method.

Raises

TpGeneralException,TpFWException

8.4.2 Interface Class IpEventNotification

Inherits from: IpInterface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

Method
createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the application to define the event required.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the Framework for this newly installed notification.

Raises

TpGeneralException,TpFWException

Method
destroyNotification()

This method is used by the application to delete generic notifications from the Framework.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)633GPP TS 29.198-3 version 4.0.0 Release 4

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the Framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the Framework will return the error code
P_INVALID_ASSIGNMENTID.

Raises

TpGeneralException,TpFWException

9 Framework-to-Application State Transition Diagrams
This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

9.1 Trust and Security Management State Transition Diagrams

9.1.1 State Transition Diagrams for IpInitial

Act ive

initiateAuthentication / return new IpAuthent ication

Figure : State Transition Diagram for IpInitial

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)643GPP TS 29.198-3 version 4.0.0 Release 4

9.1.1.1 Active State

9.1.2 State Transition Diagrams for IpAPILevelAuthentication

Idle

IpInitial.ini tiateAuthentication

InitAuthentication

entry/ find auth. mechanism

selectEncryptionMethod

WaitForApplicationResult

entry/ ^IpAppAPILevelAuthentication.Authenticate

Application Authenticated

ALL
STATES

authenticate ^result
Authenticate(response)

authenticate ^result Authenticate(response)

"no mechanism found" ^result
selectEncryptionMethod(P_INVALID_AUTH_CAPABILITY)

"mechanism found"[[two way authentication] ^result
selectEncryptionMethod(prescribedMethod)

"mechanism found"[one way authentication]

abortAuthenti cation

IpAccess.endAccess

requestAccess / return
P_ACCESS_DENIED

requestAccess / return
P_ACCESS_DENIED

requestAccess / return
P_ACCESS_DENIED

requestAccess / return new IpAccess

result Authenticate[response val id]

result Authenticate[response invalid]

Figure : State Transition Diagram for IpAPILevelAuthentication

9.1.2.1 Idle State

When the application has requested the IpInitial interface for initiateAuthentication, an object implementing the
IpAPILevelAuthentication interface is created. The application now has to provide its authentication capabilities by
invoking the SelectEncryptionMethod method.

9.1.2.2 InitAuthentication State

In this state the Framework selects the preferred authentication mechanism within the capability of the application.
When a proper mechanism is found, the Framework can decide that the application doesn’t have to be authenticated
(one way authentication) or that the application has to be authenticated. In case no mechanism can be found the error
code P_INVALID_AUTH_CAPABILITY is returned and the Authentication object is destroyed. This implies that the
application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial
interface.

9.1.2.3 WaitForApplicationResult State

When entering this state, the Framework requests the application to authenticate itself by invoking the Authenticate
method on the application. In case the application requests the Framework to authenticate itself by invoking
Authenticate on the IpAPILevelAuthentication interface, the Framework provides the correct response to the challenge
of the application. When the Framework responds to the Authenticate request, the response is analysed and in case the
response is valid a transition to the state Application Authenticated is made. In case the response is not valid, the
Authentication object is destroyed. This implicates that the application has to re-initiate the authentication by calling
once more the initiateAuthentication method on the IpInitial interface.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)653GPP TS 29.198-3 version 4.0.0 Release 4

9.1.2.4 Application Authenticated State

In this state the application is considered authenticated and is now allowed to request access to the IpAccess interface.
In case the application requests the Framework to authenticate itself by invoking Authenticate on the
IpAPILevelAuthentication interface, the Framework provides the correct response to the challenge of the application.

9.1.3 State Transition Diagrams for IpAccess

Active

IpInitial.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

accessCheck / return whether application has access to requested service

selectService ^signServiceAgreement

signServiceAgreement[correc t service selected] / get Service manager from Service Factory and return to application

terminateServiceAgreement / destroy Service manager object

endAccess / destroy all interface objects used by the application

network operator initiated endAccess / destroy all interface objects used by the application

Figure : State Transition Diagram for IpAccess

9.1.3.1 Active State

When the application requests access to the Framework on the IpInitial interface, an object implementing the IpAccess
interface is created. The application can now request other Framework interfaces, including Service Discovery. When
the application is no longer interested in using the interfaces it calls the endAccess method. This results in the
destruction of all interface objects used by the application. In case the network operator decides that the application has
no longer access to the interfaces the same will happen.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)663GPP TS 29.198-3 version 4.0.0 Release 4

Service Discovery State Transition Diagrams

9.2.1 State Transition Diagrams for IpServiceDiscovery

Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure : State Transition Diagram for IpServiceDiscovery

9.2.1.1 Active State

When the application requests Service Discovery by invoking the obtainInterface or the obtainInterfaceWithCallback
methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is
allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)673GPP TS 29.198-3 version 4.0.0 Release 4

9.3 Integrity Management State Transition Diagrams

9.3.1 State Transition Diagrams for IpHeartBeatMgmt

Application not
supervised

Application supervised

do/ periodically request Application for heartbeat by invoking send() method on IpAppHeartBeat

enableHeartBeat

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

disableHeartBeat

IpAccess.endAccess changeTimePeriod

Figure : State Transition Diagram for IpHeartBeatMgmg

9.3.1.1 Application not supervised State

In this state the application has not registered for heartbeat supervision by the Framework.

9.3.1.2 Application supervised State

In this state the application has registered for heartbeat supervision by the Framework. Periodically the Framework will
request for the application heartbeat by calling the send method on the IpAppHeartBeat interface.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)683GPP TS 29.198-3 version 4.0.0 Release 4

9.3.2 State Transition Diagrams for IpHeartBeat

FW supervised by
Application

IpAppHeartBeatMgmt.enableAppHeartBeat

send / return heartbeat

IpAppHeartBeatMgmt.disableAppHeartBeat

IpAccess.endAccess

Figure : State Transition Diagram for IpHeatBeat

9.3.2.1 FW supervised by Application State

In this state the Framework has requested the application for heartbeat supervision on itself. Periodically the application
calls the send() method and the Framework returns its heartbeat result.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)693GPP TS 29.198-3 version 4.0.0 Release 4

9.3.3 State Transition Diagrams for IpLoadManager

Idle Notifying

do/ obtain load statist ics and report them at spec ified interval with queryLoadRes

Suspending
Notification

reportLoad

Registered

IpAccess.obtainInterface queryAppLoadRes[load s tat istics requested by LoadManager]
queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

reportLoad
queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]
queryAppLoadErr[load statistics requested by LoadManager]

queryLoadRequnregisterLoadController

registerLoadController

suspendNotification[all notifications suspendend]

unregisterLoadController

queryLoadRes[final load statistics report]
queryLoadErr[final load statistics report]

IpAccess.obtainInterfaceWithCallback

resumeNotification

unregisterLoadController

Al l States

IpAccess.endAccess

Figure : State Transition Diagram for IpLoadManager

9.3.3.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

9.3.3.2 Notifying State

In the Notifying state the application has requested for load statistics. The LoadManager gathers the requested
information and (periodically) reports them to the application.

9.3.3.3 Suspending Notification State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load
statistics information.

9.3.3.4 Registered State

In this state the application has registered for load control with the method RegisterLoadController(). The LoadManager
can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore
the LoadManager can request the application to control its load (by invoking loadLevelNotification() or
suspendNotification() on the application side of interface). In case the application detects a change in load level, it
reports this to the LoadManager by calling the method reportLoad().

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)703GPP TS 29.198-3 version 4.0.0 Release 4

When entering this state, an object called LoadManagerInternal is created that has an internal state machine
encapsulating the internal behaviour of the LoadManager. The State Transition Diagram of LoadManagerInternal is
shown in Figure .

9.3.4 State Transition Diagrams for IpLoadManagerInternal

Normal load Application Overload

entry/ evaluate policy and perform necessary actions
exit/ cancel performed actions

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain services.

Internal overload

entry/ evaluate policy and perform necessary actions
exit/ cancel performed actions

A necessary action can be
suspending the load
notifictions from the
application by invoking
suspendNotification or
enabling load control
mechanisms on the
application by invoking
enableLoadControl.

Internal and Application Overload

entry/ evaluate policy and perform necessary actions
exit/ cancel performed actions

ALL
STATES

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"
"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

regis terLoadController

unregisterLoadController

Figure : State Transition Diagram for IpLoadManagerInternal

9.3.4.1 Normal load State

In this state the none of the entities defined in the load balancing policy between the application and the Framework /
SCFs is overloaded.

9.3.4.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

9.3.4.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)713GPP TS 29.198-3 version 4.0.0 Release 4

9.3.4.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

9.3.5 State Transition Diagrams for IpOAM

Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure : State Transition Diagram for IpOAM

9.3.5.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)723GPP TS 29.198-3 version 4.0.0 Release 4

9.3.6 State Transition Diagrams for IpFaultManager

Framework
Active

Framework Faulty

entry/ ^fwFaultReportInd to al l applicati ons with cal lback
exit / ^fwFaultRecoveryInd to al l applica tions with cal lback

Framework Activi ty Test

entry/ test activi ty of framework
exit / ^IpAppFaultMan ager.activ i tyTestRes

Service Activi ty Test

entry/ test activity of service
exit/ ^IpAppFaultManager.activi tyTestRes

genFaultStatsRecordReq ^app.genFaultStatsRecordRes

srvUnavai lableInd / test the service, inform service that ap pl ication is not using it

’service fault’ ^svcUnavailableInd to all appl ications using the service

IpAccess.endAccess / remove
application from load management

IpAccess.obtainInterfaceWithCallback("FaultManagement") /
add application to fault management

fault detected in fw

no fault detected

IpAccess.endAccess / Abort
pending test req uest

fault resolved

fault detected in fw

activi tyTestReq[null
service list]

activi tyTestReq[scfID]

IpAccess.endAccess

ervice fault ^srvUnavailableInd to all appl ica tions u sing the service

no fault detected

IpAccess.endAccess /
Abort pending test request

Figure : State Transition Diagram for IpFaultManager

9.3.6.1 Framework Active State

This is the normal state of the Framework, which is fully functional and able to handle requests from both applications
and services capability features.

9.3.6.2 Framework Faulty State

In this state, the Framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
Framework return an error. If the Framework ever recovers, applications with fault management call-backs will be
notified via a fwFaultRecoveryInd message.

9.3.6.3 Framework Activity Test State

In this state, the Framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault
management call-backs are notified through a fwFaultReportInd message.

9.3.6.4 Service Activity Test State

In this state, the Framework is performing a test on one service capability feature. If the SCF is faulty, applications with
fault management call-backs are notified accordingly through a svcUnavailableInd message.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)733GPP TS 29.198-3 version 4.0.0 Release 4

9.4 Event Notification State Transition Diagrams

9.4.1 State Transition Diagrams for IpEventNotification

Idle

IpAccess.obtainInterface

Notificat ion
Active

createNotification

destroyNotification

destroyNotification[no more notifications installed]

IpAccess.endAccess

IpAccess.obtainInterfaceWithCallback
createNotification

IpAccess.endAccess

Figure : State Transition Diagram for IpEventNotification

9.4.1.1 Idle State

9.4.1.2 Notification Active State

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)743GPP TS 29.198-3 version 4.0.0 Release 4

10 Framework-to-Service Sequence Diagrams

10.1 Service Registration Sequence Diagrams

10.1.1 New SCF Registration

The following figure shows the process of registering a new SCF in the Framework. Service Registration is a two step
process:

SCS :
IpFwServiceRegistration

1: registerService()

2: announceServiceAvailability()

1: Registration: first step - register service

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal is to make an association between the new SCF version, as characterized by a list of
properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network’s Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

· in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").

· in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a triplet (ServicePropertyName,
ServicePropertyValueList, ServicePropertyMode).

· ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the
SCF data definition).

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)753GPP TS 29.198-3 version 4.0.0 Release 4

· ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string
that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

· ServicePropertyMode is the value of the property modes (e.g. "mandatory", meaning that all properties of this SCF
shall be given values at service registration time).

The following output parameter results from service registration:

· out serviceID

This is a string, automatically generated by the Framework of this network, based on the following:

· a string that contains a unique number, generated by the Framework;

· a string that identifies the SCF name (e.g. "P_MPCC");

· a concatenation of strings that identify the SCF specialization, if any.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2: Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available.
In CORBA an "entry point", called service factory, is used. The role of the service factory is to control the life cycle of
a CORBA interface, or set of interfaces, and provide clients with the references that are necessary to invoke the
methods offered by these interfaces. Some times service factories instantiate new interfaces for different clients,
sometime they give the same interface reference to more than one client. But the starting point for a client to use an SCF
is to obtain an interface reference to a factory of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a factory for it that will allow client to use it. Then it will inform the Framework of the value of
the interface associated to the new SCF. After the receipt of this information, the Framework makes the new SCF
(identified by the pair [serviceID, serviceFactoryRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

· in serviceID

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to
include the serviceID, to know which SCF it is.

· in serviceFactoryRef

This is the interface reference at which the service factory of the new SCF is available. Note that the Framework will
have to invoke the method getServiceManager() in this interface, any time between now and when it accepts the first
application requests for discovery, so that it can get the service manager interface necessary for applications as an entry
point to any SCF.

Service Factory Sequence Diagrams

10.2.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the Framework, authentication and discovery of services, see the corresponding clauses.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)763GPP TS 29.198-3 version 4.0.0 Release 4

 : IpAppCallControlManagerAppLogic : IpInitial : IpAccess : IpCallControlManager : IpAppAccess GenericC allControlServ ice :
IpSv cFactory

1: selectServ ice()

3: signServ iceAgreement()
4: getServ iceManager() 5: new()

6: new()

7: setCallbac k()

e assum e that t he appl ic ation is al ready authenticat ed and d isc ov ered t he s erv ice it wants to use

2: s ignServ iceAgreement ()

1: The application selects the service, using a serviceID for the generic call control service. The serviceID could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: The Framework signs the service agreement.

3: The client application signs the service agreement. As a result a service manager interface reference (in this case of
type IpCallControlManager) is returned to the application.

4: Provided the signature information is correct and all conditions have been fulfilled, the Framework will request the
service identified by the serviceID to return a service manager interface reference. The service manager is the initial
point of contact to the service.

5: The service factory creates a new manager interface instance (a call control manager) for the specified application. It
should be noted that this is an implementation detail. The service implementation may use other mechanism to get a
service manager interface instance.

6: The application creates a new IpAppCallControlManager interface to be used for call-backs.

7: The Application sets the call-back interface to the interface created with the previous message.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)773GPP TS 29.198-3 version 4.0.0 Release 4

11 Framework-to-Service Class Diagrams

IpFwServiceRegistration

registerService()
announceServiceAvailability()
unregisterService()
describeService()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview

IpSvcFactory

getServiceManager()

from Service Interfaces)

<<Interface>>

Figure: Service Factory Package Overview

Framework-to-Service Interface Classes

12.1 Service Registration Interface Classes

12.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the Framework.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)783GPP TS 29.198-3 version 4.0.0 Release 4

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList,
serviceID : out TpServiceIDRef) : TpResult

announceServiceAvailability (serviceID : in TpServiceID, serviceFactoryRef : in IpServiceRef) : TpResult

unregisterService (serviceID : in TpServiceID) : TpResult

describeService (serviceID : in TpServiceID, serviceDescription : out TpServiceDescriptionRef) : TpResult

Method
registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications . A service-ID is returned to the service supplier when a service is registered in
the Framework. The service-ID is the handle with which the service supplier can identify the registered service when
needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type and a set of named property types that may be used in
further describing this service (i.e., it restricts what is acceptable in the servicePropertyList parameter). If the string
representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is
raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a
recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "read-only". These property mode attributes have the following
semantics: a. mandatory - a service associated with this service type shall provide an appropriate value for this
property when registering.
 b. read-only - this modifier indicates that the property is optional, but that once given a value,
subsequently it may not be modified.
 Specifying both modifiers indicates that a value shall be provided and that subsequently it may not
be modified. An example of such properties are those which form part of a service agreement and hence cannot be
modified by service suppliers during the life time of service.
 If the type of any of the property values is not the same as the declared type (declared in the
service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If an attempt is made to assign a
dynamic property value to a read-only property, then the P_READONLY_DYNAMIC_PROPERTY exception is
raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of
mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the
same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.

serviceID : out TpServiceIDRef

This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier
can identify the registered service when attempting to access it via other operations such as unregisterService(), etc.
Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)793GPP TS 29.198-3 version 4.0.0 Release 4

Raises

TpGeneralException,TpFWException

Method
announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method is invoked after the service is authenticated and its service factory is instantiated
at a particular interface. This method informs the Framework of the availability of "service factory" of the previously
registered service, identified by its service ID, at a specific interface. After the receipt of this method, the Framework
makes the corresponding service discoverable.

There exists a "service manager" instance per service instance. Each service implements the IpSvcFactory interface.
The IpSvcFactory interface supports a method called the getServiceManager(application: in TpClientAppID,
serviceManager: out IpServiceRefRef). When the service agreement is signed for some serviceID (using
signServiceAgreement()), the Framework calls the getServiceManager() for this service, gets a serviceManager and
returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but
there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

serviceFactoryRef : in IpServiceRef

The interface reference at which the service factory of the previously registered service is available.

Raises

TpGeneralException,TpFWException

Method
unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework.
The service is identified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. After the unregisterService(), the service can no longer be discovered by the enterprise
client application.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the
registerService() operation. If the string representation of the "serviceID" does not obey the rules for service
identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service
offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)803GPP TS 29.198-3 version 4.0.0 Release 4

Raises

TpGeneralException,TpFWException

Method
describeService()

The describeService() operation returns the information about a service that is registered in the Framework. It
comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the
"service-ID" parameter which was originally returned by the registerService() operation.

This operation is intended to be used between a certain Framework and the SCS that registered the SCF, since it is only
between them that the serviceID is valid. The SCS may register various versions of the same SCF, each with a different
description (more or less restrictive, for example), and each getting a different serviceID assigned. Getting the
description of these SCFs from the Framework where they have been registered helps the SCS internal maintenance.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the
registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers,
then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within
the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

serviceDescription : out TpServiceDescriptionRef

This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the
service , and the properties that describe this service.

Raises

TpGeneralException,TpFWException

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)813GPP TS 29.198-3 version 4.0.0 Release 4

12.2 Service Factory Interface Classes

12.2.1 Interface Class IpSvcFactory

Inherits from: IpInterface.

The IpSvcFactory interface allows the Framework to get access to a service manager interface of a service. It is used
during the signServiceAgreement, in order to return a service manager interface reference to the application. Each
service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control
service uses the IpCallControlManager interface.

<<Interface>>

IpSvcFactory

getServiceManager (application : in TpDomainID, serviceProperties : in TpServicePropertyList,
serviceManager : out IpServiceRefRef) : TpResult

Method
getServiceManager()

This method returns a service manager interface reference for the specified application. Usually, but not necessarily,
this involves the instantiation of a new service manager interface.

Parameters

application : in TpDomainID

Specifies the application for which the service manager interface is requested.

serviceProperties : in TpServicePropertyList

serviceManager : out IpServiceRefRef

Specifies the service manager interface reference for the specified application ID.

Raises

TpGeneralException,TpFWException

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)823GPP TS 29.198-3 version 4.0.0 Release 4

13 Framework-to-Service State Transition Diagrams

13.1 Service Registration State Transition Diagrams

13.1.1 State Transition Diagrams for IpFwServiceRegistration

Registering
SCF

registerService

SCF
registered

announceServiceAvailability

describeService

unregisterService

Figure : State Transition Diagram for IpFwServiceRegistration

13.1.1.1 Registering SCF State

This is the state entered when a Service Capability Server (SCS) starts the registration of its SCF in the Framework, by
informing it of the existence of an SCF characterised by a service type and a set of service properties. As a result the
Framework associates a service ID to this SCF, that will be used to identify it by both sides. When receiving this ID, the
SCS instantiates a manager interface for this SCF, which will be the entry point for applications that want to use it.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)833GPP TS 29.198-3 version 4.0.0 Release 4

13.1.1.2 SCF registered State

This is the state entered when, the service manager interface having been instantiated, the SCS informs the Framework
of the availability of the SCF, and makes it actually available by providing the Framework with the manager interfaces
to be used by applications. Anytime the SCF availability may be withdrawn by un-registering it.

13.2 Service Factory State Transition Diagrams
There are no State Transition Diagrams defined for Service Factory.

14 Service Properties

14.1 Service Property Types
The service type defines which properties the supplier of an SCF supplier shall provide when he registers an SCF.

At Service Registration the properties of a type shall be interpreted as the set of values that can be supported by the
service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property value
of {"true", "false"}. This means that the SCS is able to support Service instances where this property is used or
allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a
sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE: This is achieved through the getServiceManager() operation in the Service Factory interface.

All property values are represented by an array of strings. The following table shows all supported property types.

Property type name Description Example value (array of
strings)

Interpretation of example
value

BOOLEAN_SET set of Booleans {"FALSE"} The set of Booleans consisting
of the Boolean "false".

INTEGER_SET set of integers {"1", "2", "5", "7"} The set of integers consisting of
the integers 1, 2, 5 and 7.

STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of
the string “Sophia" and the
string "Rijen"

ADDRESSRANGE_SET set of address ranges {"123??*", "*.ericsson.se"} The set of address ranges
consisting of ranges 123??* and
*.ericsson.se.

INTEGER_INTERVAL interval of integers {"5", "100"} The integers that are between
or equal to 5 and 100.

STRING_INTERVAL interval of strings {"Rijen", "Sophia"} The strings that are between or
equal to the strings "Rijen" and
"Sophia", in lexicographical
order.

INTEGER_INTEGER_MAP map from integers to
integers

{"1", "10", "2", "20", "3",
"30"}

The map that maps 1 to 10, 2 to
20 and 3 to 30.

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the left
bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is the smallest value supported
by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval is the
largest value supported by the type.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)843GPP TS 29.198-3 version 4.0.0 Release 4

14.2 General Service Properties
Each service instance has the following general properties:

• Service Name

• Service Version

• Service Instance ID

• Service Instance Description

• Product Name

• Product Version

• Supported Interfaces

14.2.1 Service Name

This property contains the name of the service, e.g. “UserLocation”, “UserLocationCamel”, “UserLocationEmergency”
or “UserStatus”.

14.2.2 Service Version

This property contains the version of the APIs, to which the service is compliant, e.g. “2.1".

14.2.3 Service Instance ID

This property uniquely identifies a specific instance of the service. The Framework generates this property.

14.2.4 Service Instance Description

This property contains a textual description of the service.

14.2.5 Product Name

This property contains the name of the product that provides the service, e.g. “Find It”, “Locate.com”.

14.2.6 Product Version

This property contains the version of the product that provides the service, e.g. “3.1.11”.

14.2.7 Supported Interfaces

This property contains a list of strings with interface names that the service supports, e.g. “IpUserLocation”,
“IpUserStatus”.

14.2.8 Operation Set

Property Type Description
P_OPERATION_SET STRING_SET Specifies set of the operations the SCS supports.

The notation to be used is :
{“Interface1.operation1”,”Interface1.operation2”,
“Interface2.operation1”}, e.g.:
{“IpCall.createCall”,”IpCall.routeReq”}.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)853GPP TS 29.198-3 version 4.0.0 Release 4

15 Data Definitions
This clause provides the Framework specific data definitions necessary to support the OSA interface specification.

The general format of a data definition specification is the following:

− Data type, that shows the name of the data type;

− Description, that describes the data type;

− Tabular specification, that specifies the data types and values of the data type;

− Example, if relevant, shown to illustrate the data type.

15.1 Common Framework Data Definitions

15.1.1 TpClientAppID

This is an identifier for the client application. It is used to identify the client to the Framework. This data type is
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique
identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

15.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

15.1.3 TpDomainID

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity
attempting to access the Framework.

 Tag Element Type
 TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFwID FwID

P_CLIENT_APPLICATION TpClientAppID ClientAppID

P_ENT_OP TpEntOpID EntOpID

P_REGISTERED_SERVICE TpServiceID ServiceID

P_SERVICE_SUPPLIER TpServiceSupplierID ServiceSupplierID

15.1.4 TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P_FW 0 The Framework

P_CLIENT_APPLICATION 1 A client application

P_ENT_OP 2 An enterprise operator

P_REGISTERED_SERVICE 3 A registered service

P_SERVICE_SUPPLIER 4 A service supplier

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)863GPP TS 29.198-3 version 4.0.0 Release 4

15.1.5 TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

15.1.6 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

15.1.7 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

15.1.8 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data
type consisting of the following {name,value} pair:

Sequence Element
Name

Sequence Element
Type

PropertyName TpPropertyName
PropertyValue TpPropertyValue

15.1.9 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

15.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

15.1.11 TpFwID

This data type is identical to TpString and identifies the Framework to a client application (or Service Capability
Feature)

15.1.12 TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceID TpServiceID

ServicePropertyList TpServicePropertyList

15.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

15.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes a registered SCF. It is a structured data type which
consists of:

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)873GPP TS 29.198-3 version 4.0.0 Release 4

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceTypeName TpServiceTypeName

ServicePropertyList TpServicePropertyList

15.1.15 TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
SCF interface. The string is automatically generated by the Framework, and comprises a TpUniqueServiceNumber,
TpServiceTypeName, and a number of relevant TpServiceSpecString, which are concatenated using a forward separator
(/) as the separation character.

15.1.16 TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

15.1.17 TpServiceIDRef

Defines a Reference to type TpServiceId.

15.1.18 TpServiceSpecString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF specialization interface. Other network operator specific capabilities may also be used, but should be preceded by
the string "SP_".The following values are defined.

Character String Value Description
NULL An empty (NULL) string indicates no SCF specialization

P_CALL The Call specialization of the of the User Interaction SCF

15.1.19 TpUniqueServiceNumber

This data type is identical to a TpString, and is defined as a string of characters that represents a unique number that is
used to build the service ID (refer to TpServiceID).

15.1.20 TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
It is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the
service property’s name and mode, but also defines the list of values assigned to it.

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyMode TpServicePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

15.1.21 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)883GPP TS 29.198-3 version 4.0.0 Release 4

15.1.22 TpServicePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided

MANDATORY 1 The value of the corresponding SCF property type shall be provided at service registration time

READONLY 2 The value of the corresponding SCF property type is optional, but once given a value it may not be modified

MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided and subsequently it may not be
modified.

15.1.23 TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property name. The valid SCF property names are
listed in the SCF data definition.

15.1.24 TpServicePropertyName

This data type is identical to TpString. It defines a valid SCF property name.

15.1.25 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

15.1.26 TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property.

15.1.27 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue

15.1.28 TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which
consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServicePropertyName
ServicePropertyValueList TpServicePropertyValueList
ServicePropertyMode TpServicePropertyMode

15.1.29 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

15.1.30 TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the Framework. This data type is
identical to TpString.

15.1.31 TpServiceTypeDescription

This data type is a Sequence_of_Data_Elements which describes an SCF type. It is a structured data type. It consists of:

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)893GPP TS 29.198-3 version 4.0.0 Release 4

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceTypePropertyList TpServiceTypePropertyList a sequence of property name and property mode tuples associated with the
SCF type

ServiceTypeNameList TpServiceTypeNameList the names of the super types of the associated SCF type

EnabledOrDisabled TpBoolean an indication whether the SCF type is enabled (true) or disabled (false)

15.1.32 TpServiceTypeName

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

Character String Value Description
NULL An empty (NULL) string indicates no SCF name

P_CALL_CONTROL The name of the Call Control SCF

P_USER_INTERACTION The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities SCF

P_USER_LOCATION_CAMEL The name of the Network User Location SCF

P_USER_STATUS The name of the User Status SCF

P_DATA_SESSION_CONTROL The name of the Data Session Control SCF

15.1.33 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

15.2 Event Notification Data Definitions

15.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description
P_EVENT_FW_NAME_UNDEFINED 0 Undefined

P_EVENT_FW_NEW_SERVICE_AVAILABLE 1 Notification of a new SCS available

15.2.2 TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be
generated.

 Tag Element Type
 TpFwEventName

Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

P_EVENT_FW_NEW_SERVICE_AVAILABLE TpServiceTypeNameList ServiceTypeNameList

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)903GPP TS 29.198-3 version 4.0.0 Release 4

15.2.3 TpFwEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an
event notification.

 Tag Element Type
 TpFwEventName

Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

15.3 Trust and Security Management Data Definitions

15.3.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined:

String Value Description
P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpAppAccess

15.3.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and client’s with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string “SP_”. The following values are defined:

String Value Description
P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and

IpAppAPILevelAuthentication
P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

15.3.3 TpAuthCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the authentication
capabilities that could be supported by the OSA. Other Network operator specific capabilities may also be used, but
should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation
character. The following values are defined.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.
P_DES_56 A simple transfer of secret information that is shared between the client application and the Framework with protection

against interception on the link provided by the DES algorithm with a 56-bit shared secret key.
P_DES_128 A simple transfer of secret information that is shared between the client entity and the Framework with protection against

interception on the link provided by the DES algorithm with a 128-bit shared secret key.
P_RSA_512 A public-key cryptography system providing authentication without prior exchange of secrets using 512-bit keys.
P_RSA_1024 A public-key cryptography system providing authentication without prior exchange of secrets using 1024-bit keys.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)913GPP TS 29.198-3 version 4.0.0 Release 4

15.3.4 TpAuthCapabilityList

This data type is identical to a TpString. It is a string of multiple TpAuthCapability concatenated using a comma (,)as
the separation character.

15.3.5 TpEndAccessProperties

This data type is of type TpPropertyList. It identifies the actions that the Framework should perform when an
application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or left running).

15.3.6 TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain

Sequence Element
Name

Sequence Element
Type

Description

DomainID TpDomainID Identifies the domain for authentication. This identifier is assigned to the domain during
the initial contractual agreements, and is valid during the lifetime of the contract.

AuthInterface IpInterfaceRef Identifies the authentication interface of the specific entity. This data element has the same
lifetime as the domain authentication process, i.e. in principle a new interface reference

can be provided each time a domain intents to access another.

15.3.7 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "SP_". The following values are defined.

Character String Value Description
P_DISCOVERY The name for the Discovery interface.
P_EVENT_NOTIFICATION The name for the Event Notification interface.
P_OAM The name for the OA&M interface.
P_LOAD_MANAGER The name for the Load Manager interface.
P_FAULT_MANAGER The name for the Fault Manager interface.
P_HEARTBEAT_MANAGEMENT The name for the Heartbeat Management interface.
P_REGISTRATION The name for the Service Registration interface.
P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator Account Management interface.
P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription: Enterprise Operator Account Information Query

interface.
P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service Contract Management interface.
P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service Contract Information Query interface.
P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client Application Management interface.
P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client Application Information Query interface.
P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service Profile Management interface.
P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service Profile Information Query interface.

15.3.8 TpServiceAccessControl

This is Sequence of Data Elements containing the access control policy information controlling access to the service
capability feature, and the trustLevel that the Network operator has assigned to the client application.

Sequence Element
Name

Sequence Element
Type

Policy TpString

TrustLevel TpString

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)923GPP TS 29.198-3 version 4.0.0 Release 4

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel
shall also have a value.

The trustLevel parameter indicates the trust level that the Network operator has assigned to the client application.

15.3.9 TpSecurityContext

This data type is identical to a TpString and contains a group of security relevant attributes.

15.3.10 TpSecurityDomain

This data type is identical to a TpString and contains the security domain in which the client application is operating.

15.3.11 TpSecurityGroup

This data type is identical to a TpString and contains a definition of the access rights associated with all clients that
belong to that group.

15.3.12 TpServiceAccessType

This data type is identical to a TpString and contains a definition of the specific security model in use.

15.3.13 TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will
automatically expire if the client or Framework invokes the endAccess method on the other’s corresponding access
interface.

15.3.14 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element
Name

Sequence Element
Type

DigitalSignature TpString

ServiceMgrInterface IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

15.3.15 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)933GPP TS 29.198-3 version 4.0.0 Release 4

P_MD5_RSA_512 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input.
This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit key.

P_MD5_RSA_1024 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input.
This is then encrypted with the private key under the RSA public- key cryptography system using a 1024-bit key

15.4 Integrity Management Data Definitions

15.4.1 TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are “Available”
or “Unavailable”.

15.4.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element
Name

Sequence Element
Type

Period TpTimeInterval

FaultStatsSet TpFaultStatsSet

15.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element
Name

Sequence Element
Type

Description

Fault TpInterfaceFault

Occurrences TpInt32 The number of separate instances of this fault

MaxDuration TpInt32 The number of seconds duration of the longest fault

TotalDuration TpInt32 The cumulative duration (all occurrences)

NumberOfClientsAffected TpInt32 The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the
number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is
the number of clients informed of the fault by the Framework.

15.4.4 TpFaultStatsSet

This data type defines a Numbered Set of Data Elements of type TpFaultStats

15.4.5 TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

15.4.6 TpInterfaceFault

Defines the cause of the interface fault detected.

Name Value Description
INTERFACE_FAULT_UNDEFINED 0 Undefined

INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware has been detected

INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or hardware has been detected

INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-gateway link has been detected

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)943GPP TS 29.198-3 version 4.0.0 Release 4

15.4.7 TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

Name Value Description
SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined

SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

SERVICE_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed

SERVICE_UNAVAILABLE_OVERLOADED 3 The SCF is fully overloaded

SERVICE_UNAVAILABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from fraud or malicious attack)

15.4.8 TpFWUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description
FW_UNAVAILABLE_UNDEFINED 0 Undefined

FW_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

FW_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed

FW_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded

FW_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect from fraud or malicious attack)

FW_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link has failed

15.4.9 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD_LEVEL_NORMAL 0 Normal load

LOAD_LEVEL_OVERLOAD 1 Overload

LOAD_LEVEL_SEVERE_OVERLOAD 2 Severe Overload

15.4.10 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is
application and SCF dependent, so is their relationship with load level.

Sequence Element
Name

Sequence Element
Type

LoadThreshold TpFloat

15.4.11 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element
Name

Sequence Element
Type

LoadLevel TpLoadLevel

LoadThreshold TpLoadThreshold

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)953GPP TS 29.198-3 version 4.0.0 Release 4

15.4.12 TpTimeInterval

Defines the Sequence of Data Elements that specify a time interval.

Sequence Element Name Sequence Element Type
StartTime TpDateAndTime

StopTime TpDateAndTime

15.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name Sequence Element Type
LoadPolicy TpString

15.4.14 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e.
Framework, service or application) at a specific date and time.

Sequence Element Name Sequence Element Type
LoadStatisticEntityID TpLoadStatisticEntityID

TimeStamp TpDateAndTime

LoadStatisticInfo TpLoadStatisticInfo

15.4.15 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

15.4.16 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information

Sequence Element Name Sequence Element Type
LoadValue (see Note) TpFloat

LoadLevel TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

15.4.17 TpLoadStatisticEntityID

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or
Framework) providing load statistics.

 Tag Element Type
 TpLoadStatisticEntityType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS_FW_TYPE TpFwID FrameworkID

P_LOAD_STATISTICS_SVC_TYPE TpServiceID ServiceID

P_LOAD_STATISTICS_APP_TYPE TpClientAppID ClientAppID

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)963GPP TS 29.198-3 version 4.0.0 Release 4

15.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description
P_LOAD_STATISTICS_FW_TYPE 0 Framework-type load statistics

P_LOAD_STATISTICS_SVC_TYPE 1 Service-type load statistics

P_LOAD_STATISTICS_APP_TYPE 2 Application-type load statistics

15.4.19 TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or
invalid).

 Tag Element Type
 TpLoadStatisticInfoType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS_VALID TpLoadStatisticData LoadStatisticData

P_LOAD_STATISTICS_INVALID TpLoadStatisticError LoadStatisticError

15.4.20 TpLoadStatisticInfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P_LOAD_STATISTICS_VALID 0 Valid load statistics

P_LOAD_STATISTICS_INVALID 1 Invalid load statistics

15.4.21 TpLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load statistics information.

Name Value Description
P_LOAD_INFO_ERROR_UNDEFINED 0 Undefined error

P_LOAD_INFO_UNAVAILABLE 1 Load statistics unavailable

15.5 Service Subscription Data Definitions

15.5.1 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

15.5.2 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

15.5.3 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data
type consisting of the following {name,value} pair:

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)973GPP TS 29.198-3 version 4.0.0 Release 4

Sequence Element
Name

Sequence Element
Type

PropertyName TpPropertyName

PropertyValue TpPropertyValue

15.5.4 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

15.5.5 TpEntOpProperties

This data type is of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

15.5.6 TpEntOp

This data type is a Sequence of Data Elements which describes an enterprise operator. It is a structured data
type, consisting of a unique “enterprise operator ID” and a list of “enterprise operator properties”, as follows:

Sequence Element
Name

Sequence Element
Type

EntOpID TpEntOpID

EntOpProperties TpEntOpProperties

15.5.7 TpServiceContractID

This data type is identical to TpString. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of a Parlay service by the enterprise.

15.5.8 TpPersonName

This data type is identical to TpString. It is the name of a generic “person”.

15.5.9 TpPostalAddress

This data type is identical to TpString. It is the mailing address of a generic “person”.

15.5.10 TpTelephoneNumber

This data type is identical to TpString. It is the telephone number of a generic “person”.

15.5.11 TpEmail

This data type is identical to TpString. It is the email address of a generic “person”.

15.5.12 TpHomePage

This data type is identical to TpString. It is the web address of a generic “person”.

15.5.13 TpPersonProperties

This data type is of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic “person”.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)983GPP TS 29.198-3 version 4.0.0 Release 4

15.5.14 TpPerson

This data type is a Sequence of Data Elements which describes a generic “person”: e.g. a billing contact, a
service requestor. It is a structured data type which consists of:

Sequence Element
Name

Sequence Element
Type

PersonName TpPersonName

PostalAddress TpPostalAddress

TelephoneNumber TpTelephoneNumber

Email TpEmail

HomePage TpHomePage

PersonProperties TpPersonProperties

15.5.15 TpServiceStartDate

This is of type TpDateAndTime. It identifies the contractual start date and time for the use of a Parlay service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

15.5.16 TpServiceEndDate

This is of type TpDateAndTime. It identifies the contractual end date and time for the use of a Parlay service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

15.5.17 TpServiceRequestor

This is of type TpPerson. It identifies the enterprise person requesting use of a Parlay service: e.g. the enterprise
operator.

15.5.18 TpBillingContact

This is of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’s
use of a Parlay service.

15.5.19 TpServiceSubscriptionProperties

This is of type TpPropertyList. It specifies a subset of all available service properties and service property values that
apply to an enterprise’s use of a Parlay service.

15.5.20 TpServiceContract

This data type is a Sequence of Data Elements which describes a service contract. This contract should
conform to a previously negotiated high-level agreement (regarding Parlay services, their usage and the price, etc.), if
any, between the enterprise operator and the Framework operator. It is a structured data type which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceContractID TpServiceContractID

ServiceRequestor TpServiceRequestor

BillingContact TpBillingContact

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName

ServiceID TpServiceID

ServiceSubscriptionProperties TpServiceSubscriptionProperties

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)993GPP TS 29.198-3 version 4.0.0 Release 4

15.5.21 TpPassword

This data type is identical to TpString. It is a password assigned to a client application for authentication purposes.

15.5.22 TpClientAppProperties

This is of type TpPropertyList. The client application properties is a list of {name,value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

15.5.23 TpClientAppDescription

This data type is a Sequence of Data Elements which describes an enterprise client application. It is a
structured data type, consisting of a unique “client application ID”, password and a list of “client application properties:

Sequence Element
Name

Sequence Element
Type

ClientAppID TpClientAppID

Password TpPassword

ClientAppProperties TpClientAppProperties

15.5.24 TpSagID

This data type is identical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

15.5.25 TpSagIDList

This data type defines a Numbered List of Data Elements of type TpSagID.

15.5.26 TpSagDescription

This data type is identical to TpString. It describes a SAG: e.g. a list of identifiers of the constituent client
applications, the purpose of the “grouping”.

15.5.27 TpSag

This data type is a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element
Name

Sequence Element
Type

SagID TpSagID

SagDescription TpSagDescription

15.5.28 TpServiceProfileID

This data type is identical to TpString. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses a Parlay service.

15.5.29 TpServiceProfileIDList

This data type defines a Numbered List of Data Elements of type TpServiceProfileID.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)1003GPP TS 29.198-3 version 4.0.0 Release 4

15.5.30 TpServiceProfile

This data type is a Sequence of Data Elements which describes a Service Profile. A service contract contains
one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is a restriction of
the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists
of:

Sequence Element
Name

Sequence Element
Type

ServiceProfileID TpServiceProfileID

ServiceContractID TpServiceContractID

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName

ServiceSubscriptionProperties TpServiceSubscriptionProperties

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)1013GPP TS 29.198-3 version 4.0.0 Release 4

Annex A (normative):
OMG IDL Description of Framework
The OMG IDL representation of this interface specification is contained in a text file (fw.idl contained in
archive2919803IDL.ZIP) which accompanies the present document.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)1023GPP TS 29.198-3 version 4.0.0 Release 4

Annex B (informative):
Differences between this draft and 3GPP TS 29.198 R99
The following is a list of the differences between the present document and 3GPP TS 29.198 R99, for those items which
are common to both documents. Any new interfaces/methods with respect to Release 99 are not listed.

B.1 IpService Registration
Interface Class IpServiceRegistration in R99 renamed IpFwServiceRegistration

B.2 IDL Namespace
IDL namespace has been extended. Instead of all interfaces being under org::open-service-access::fw, now all
interfaces except IpFwServiceRegistratin and IpSvcFactory are under fw::fw_client, and IpFwServiceRegistration and
IpSvcFactory are under fw::fw_service

B.3 IpAccess
accessCheck(serviceToken: in TpServiceToken,securityContext: in TpStringTpSecurityContext, securityDomain: in
TpStringTpSecurityDomain, group : in TpStringTpSecurityGroup, serviceAccessTypes: in
TpStringTpServiceAccessType, serviceAccessControl: out TpServiceAccessControlRef): TpResult

B.4 IpAPILevelAuthentication, IpAppAPILevelAuthentication
Interfaces IpAuthentication and IpAppAuthentication renamed as IpAPILevelAuthentication and
IpAppAPILevelAuthentication. New interface IpAuthentication added. IpAPILevelAuthentication inherits from
IpAuthentication.

selectEncryptionMethodselectAuthMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out
TpAuthCapabilityRef) : TpResult

B.5 New IpAuthentication
requestAccess (accessType : in TpAccessType, appAccessInterface : in IpInterfaceRef, fwAccessInterface : out
IpInterfaceRefRef) : TpResult added.

B.6 IpInitial
requestAccess (accessType : in TpAccessType, appAccessInterface : in IpInterfaceRef, fwAccessInterface : out
IpInterfaceRefRef) : TpResult deleted from interface.

B.7 IpAppLoadManager

disableLoadControl (serviceIDs : in TpServiceIDList) : TpResult

enableLoadControl (loadStatistics : in TpLoadStatisticList) : TpResult

loadLevelNotification(loadStatistics : in TpLoadStatisticList) : TpResult

B.8 Data Type Changes
TpServiceID

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)1033GPP TS 29.198-3 version 4.0.0 Release 4

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
SCF interface. The string is automatically generated by the Framework, and comprises a TpUniqueServiceNumber,
TpServiceNameString TpServiceTypeName, and a number of relevant TpServiceSpecString, which are concatenated
using a forward separator (/) as the separation character.

TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

TpServiceIDRef

Defines a Reference to type TpServiceId.

TpServiceNameString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_".The following values are defined for OSA release 99.

Character String Value Description

NULL An empty (NULL) string indicates no SCF name

P_CALL_CONTROL The name of the Call Control SCF

P_USER_INTERACTION The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities SCF

P_USER_LOCATION_CAMEL The name of the Network User Location SCF

P_USER_STATUS The name of the User Status SCF

P_DATA_SESSION_CONTROL The name of the Data Session Control SCF

TpServiceSpecString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF specialization interface. Other network operator specific capabilities may also be used, but should be preceded by
the string "SP_".The following values are defined for OSA release 99.

Character String Value Description

NULL An empty (NULL) string indicates no SCF specialization

P_CALL The Call specialization of the of the User Interaction SCF

TpUniqueServiceNumber

This data type is identical to a TpString, and is defined as a string of characters that represents a unique number that is
used to build the service ID (refer to TpServiceID).

TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer. It
is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property’s name and mode, but also defines the list of values assigned to it.

Sequence Element

Name

Sequence Element

Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyMode TpServicePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)1043GPP TS 29.198-3 version 4.0.0 Release 4

TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

TpServicePropertyMode

This type is left as a placeholder but is not used in release 99.This defines SCF property modes.

Name Value Documentation

NORMAL 0 The value of the corresponding SCF property type may optionally be
provided

MANDATORY 1 The value of the corresponding SCF property type shall be provided at
service registration time

READONLY 2 The value of the corresponding SCF property type is optional, but once
given a value it may not be modified

MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided
and subsequently it may not be modified.

TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property name. The valid SCF property names are
listed in the SCF data definition.

TpServicePropertyName

This data type is identical to TpString. It defines a valid SFCF property name. Valid SCF property names are listed in
the SCF data definition.

TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property. The valid SCF property values are
given in the SCF data definition.

TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue

TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which
consists of:

Sequence Element

Name

Sequence Element

Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyValueLis
t

TpServicePropertyValueList

ServicePropertyMode TpServicePropertyMode

TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the Framework. This data type is
identical to TpString.

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)1053GPP TS 29.198-3 version 4.0.0 Release 4

TpServiceTypeDescription

This type is left as a placeholder but is not used in release 99.

This data type is a Sequence_of_Data_Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element

Name

Sequence Element

Type

Documentation

ServiceTypeProperty
List

TpServiceTypePropertyList a sequence of property name and property mode
tuples associated with the SCF type

ServiceTypeNameList TpServiceTypeNameList the names of the super types of the associated SCF
type

EnabledOrDisabled TpBoolean an indication whether the SCF type is enabled or
disabled

TpServiceTypeName

This data type is identical to TpString and describes a valid SCF type name.This data type is identical
to a TpString, and is defined as a string of characters that uniquely identifies the type of an SCF interface. Other
Network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following
values are defined for OSA release 99.

Character String Value Description

NULL An empty (NULL) string indicates no SCF name

P_CALL_CONTROL The name of the Call Control SCF

P_USER_INTERACTION The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities SCF

P_USER_LOCATION_CAMEL The name of the Network User Location SCF

P_USER_STATUS The name of the User Status SCF

P_DATA_SESSION_CONTROL The name of the Data Session Control SCF

TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

TpSecurityContext

This data type is identical to a TpString and contains a group of security relevant attributes.

TpSecurityDomain

This data type is identical to a TpString and contains the security domain in which the client application is operating.

TpSecurityGroup

This data type is identical to a TpString and contains a definition of the access rights associated with all clients that
belong to that group.

TpServiceAccessType

This data type is identical to a TpString and contains a definition of the specific security model in use.

TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined :

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)1063GPP TS 29.198-3 version 4.0.0 Release 4

String Value Description

P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and
IpAppAccess

TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and client’s with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string “SP_”. The following values are defined :

String Value Description

P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication
Interfaces: IpAPILevelAuthentication and

IpAppAPILevelAuthentication

P_AUTHENTICATION Authenticate using the implementation specific
authentication mechanism, e.g. CORBA Security.

TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element Name Sequence Element Type

Period TpTimeInterval

FaultStatsSetFaultRecords TpFaultStatsSet

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)1073GPP TS 29.198-3 version 4.0.0 Release 4

Annex C (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
16 Mar 2001 CN_11 NP-010134 047 - CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 4.0.0

108

ETSI

ETSI TS 129 198-3 V4.0.0 (2001-03)3GPP TS 29.198-3 version 4.0.0 Release 4

History

Document history

V4.0.0 March 2001 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Framework-to-Application Sequence Diagrams
	6.1 Event Notification Sequence Diagrams
	6.1.1 Enable Event Notification

	6.2 Integrity Management Sequence Diagrams
	6.2.1 Load Management: Suspend Resume notification from appl
	6.2.2 Load Management: Framework queries load status
	6.2.3 Load Management: Application reports current load cond
	6.2.4 Load Management: Application queries load status
	6.2.5 Load Management: Application call-back registration a
	6.2.6 Heartbeat Management: Start perform end heartbeat sup
	6.2.7 Fault Management: Framework detects a Service failure
	6.2.8 Fault Management: Application requests a Framework ac

	6.3 Service Discovery Sequence Diagrams
	6.3.1 Service Discovery

	6.4 Trust and Security Management Sequence Diagrams
	6.4.1 Service Selection
	6.4.2 Initial Access
	6.4.3 Authentication
	6.4.4 API Level Authentication

	7 Framework-to-Application Class Diagrams
	8 Framework-to-Application Interface Classes
	8.1 Trust and Security Management Interface Classes
	8.1.1 Interface Class IpAppAPILevelAuthentication
	8.1.2 Interface Class IpAppAccess
	8.1.3 Interface Class IpInitial
	8.1.4 Interface Class IpAuthentication
	8.1.5 Interface Class IpAPILevelAuthentication
	8.1.6 Interface Class IpAccess

	8.2 Service Discovery Interface Classes
	8.2.1 Interface Class IpServiceDiscovery

	8.3 Integrity Management Interface Classes
	8.3.1 Interface Class IpAppFaultManager
	8.3.2 Interface Class IpFaultManager
	8.3.3 Interface Class IpAppHeartBeatMgmt
	8.3.4 Interface Class IpAppHeartBeat
	8.3.5 Interface Class IpHeartBeatMgmt
	8.3.6 Interface Class IpHeartBeat
	8.3.7 Interface Class IpAppLoadManager
	8.3.8 Interface Class IpLoadManager
	8.3.9 Interface Class IpOAM
	8.3.10 Interface Class IpAppOAM

	8.4 Event Notification Interface Classes
	8.4.1 Interface Class IpAppEventNotification
	8.4.2 Interface Class IpEventNotification

	9 Framework-to-Application State Transition Diagrams
	9.1 Trust and Security Management State Transition Diagrams
	9.1.1 State Transition Diagrams for IpInitial
	9.1.1.1 Active State

	9.1.2 State Transition Diagrams for IpAPILevelAuthentication
	9.1.2.1 Idle State
	9.1.2.2 InitAuthentication State
	9.1.2.3 WaitForApplicationResult State
	9.1.2.4 Application Authenticated State

	9.1.3 State Transition Diagrams for IpAccess
	9.1.3.1 Active State

	9.2 Service Discovery State Transition Diagrams
	9.2.1 State Transition Diagrams for IpServiceDiscovery
	9.2.1.1 Active State

	9.3 Integrity Management State Transition Diagrams
	9.3.1 State Transition Diagrams for IpHeartBeatMgmt
	9.3.1.1 Application not supervised State
	9.3.1.2 Application supervised State

	9.3.2 State Transition Diagrams for IpHeartBeat
	9.3.2.1 FW supervised by Application State

	9.3.3 State Transition Diagrams for IpLoadManager
	9.3.3.1 Idle State
	9.3.3.2 Notifying State
	9.3.3.3 Suspending Notification State
	9.3.3.4 Registered State

	9.3.4 State Transition Diagrams for IpLoadManagerInternal
	9.3.4.1 Normal load State
	9.3.4.2 Application Overload State
	9.3.4.3 Internal overload State
	9.3.4.4 Internal and Application Overload State

	9.3.5 State Transition Diagrams for IpOAM
	9.3.5.1 Active State

	9.3.6 State Transition Diagrams for IpFaultManager
	9.3.6.1 Framework Active State
	9.3.6.2 Framework Faulty State
	9.3.6.3 Framework Activity Test State
	9.3.6.4 Service Activity Test State

	9.4 Event Notification State Transition Diagrams
	9.4.1 State Transition Diagrams for IpEventNotification
	9.4.1.1 Idle State
	9.4.1.2 Notification Active State

	10 Framework-to-Service Sequence Diagrams
	10.1 Service Registration Sequence Diagrams
	10.1.1 New SCF Registration

	10.2 Service Factory Sequence Diagrams
	10.2.1 Sign Service Agreement

	11 Framework-to-Service Class Diagrams
	12 Framework-to-Service Interface Classes
	12.1 Service Registration Interface Classes
	12.1.1 Interface Class IpFwServiceRegistration

	12.2 Service Factory Interface Classes
	12.2.1 Interface Class IpSvcFactory

	13 Framework-to-Service State Transition Diagrams
	13.1 Service Registration State Transition Diagrams
	13.1.1 State Transition Diagrams for IpFwServiceRegistration
	13.1.1.1 Registering SCF State
	13.1.1.2 SCF registered State

	13.2 Service Factory State Transition Diagrams

	14 Service Properties
	14.1 Service Property Types
	14.2 General Service Properties
	14.2.1 Service Name
	14.2.2 Service Version
	14.2.3 Service Instance ID
	14.2.4 Service Instance Description
	14.2.5 Product Name
	14.2.6 Product Version
	14.2.7 Supported Interfaces
	14.2.8 Operation Set

	15 Data Definitions
	15.1 Common Framework Data Definitions
	15.1.1 TpClientAppID
	15.1.2 TpClientAppIDList
	15.1.3 TpDomainID
	15.1.4 TpDomainIDType
	15.1.5 TpEntOpID
	15.1.6 TpPropertyName
	15.1.7 TpPropertyValue
	15.1.8 TpProperty
	15.1.9 TpPropertyList
	15.1.10 TpEntOpIDList
	15.1.11 TpFwID
	15.1.12 TpService
	15.1.13 TpServiceList
	15.1.14 TpServiceDescription
	15.1.15 TpServiceID
	15.1.16 TpServiceIDList
	15.1.17 TpServiceIDRef
	15.1.18 TpServiceSpecString
	15.1.19 TpUniqueServiceNumber
	15.1.20 TpServiceTypeProperty
	15.1.21 TpServiceTypePropertyList
	15.1.22 TpServicePropertyMode
	15.1.23 TpServicePropertyTypeName
	15.1.24 TpServicePropertyName
	15.1.25 TpServicePropertyNameList
	15.1.26 TpServicePropertyValue
	15.1.27 TpServicePropertyValueList
	15.1.28 TpServiceProperty
	15.1.29 TpServicePropertyList
	15.1.30 TpServiceSupplierID
	15.1.31 TpServiceTypeDescription
	15.1.32 TpServiceTypeName
	15.1.33 TpServiceTypeNameList

	15.2 Event Notification Data Definitions
	15.2.1 TpFwEventName
	15.2.2 TpFwEventCriteria
	15.2.3 TpFwEventInfo

	15.3 Trust and Security Management Data Definitions
	15.3.1 TpAccessType
	15.3.2 TpAuthType
	15.3.3 TpAuthCapability
	15.3.4 TpAuthCapabilityList
	15.3.5 TpEndAccessProperties
	15.3.6 TpAuthDomain
	15.3.7 TpInterfaceName
	15.3.8 TpServiceAccessControl
	15.3.9 TpSecurityContext
	15.3.10 TpSecurityDomain
	15.3.11 TpSecurityGroup
	15.3.12 TpServiceAccessType
	15.3.13 TpServiceToken
	15.3.14 TpSignatureAndServiceMgr
	15.3.15 TpSigningAlgorithm

	15.4 Integrity Management Data Definitions
	15.4.1 TpActivityTestRes
	15.4.2 TpFaultStatsRecord
	15.4.3 TpFaultStats
	15.4.4 TpFaultStatsSet
	15.4.5 TpActivityTestID
	15.4.6 TpInterfaceFault
	15.4.7 TpSvcUnavailReason
	15.4.8 TpFWUnavailReason
	15.4.9 TpLoadLevel
	15.4.10 TpLoadThreshold
	15.4.11 TpLoadInitVal
	15.4.12 TpTimeInterval
	15.4.13 TpLoadPolicy
	15.4.14 TpLoadStatistic
	15.4.15 TpLoadStatisticList
	15.4.16 TpLoadStatisticData
	15.4.17 TpLoadStatisticEntityID
	15.4.18 TpLoadStatisticEntityType
	15.4.19 TpLoadStatisticInfo
	15.4.20 TpLoadStatisticInfoType
	15.4.21 TpLoadStatisticError

	15.5 Service Subscription Data Definitions
	15.5.1 TpPropertyName
	15.5.2 TpPropertyValue
	15.5.3 TpProperty
	15.5.4 TpPropertyList
	15.5.5 TpEntOpProperties
	15.5.6 TpEntOp
	15.5.7 TpServiceContractID
	15.5.8 TpPersonName
	15.5.9 TpPostalAddress
	15.5.10 TpTelephoneNumber
	15.5.11 TpEmail
	15.5.12 TpHomePage
	15.5.13 TpPersonProperties
	15.5.14 TpPerson
	15.5.15 TpServiceStartDate
	15.5.16 TpServiceEndDate
	15.5.17 TpServiceRequestor
	15.5.18 TpBillingContact
	15.5.19 TpServiceSubscriptionProperties
	15.5.20 TpServiceContract
	15.5.21 TpPassword
	15.5.22 TpClientAppProperties
	15.5.23 TpClientAppDescription
	15.5.24 TpSagID
	15.5.25 TpSagIDList
	15.5.26 TpSagDescription
	15.5.27 TpSag
	15.5.28 TpServiceProfileID
	15.5.29 TpServiceProfileIDList
	15.5.30 TpServiceProfile

	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): Differences between this draft and 3G
	B.1 IpService Registration
	B.2 IDL Namespace
	B.3 IpAccess
	B.4 IpAPILevelAuthentication, IpAppAPILevelAuthentication
	B.5 New IpAuthentication
	B.6 IpInitial
	B.7 IpAppLoadManager
	B.8 Data Type Changes

	Annex C (informative): Change history
	History

