

ETSI TS 129 198-1 V5.0.0 (2002-06)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA)

Application Programming Interface (API);
Part 1: Overview

(3GPP TS 29.198-01 version 5.0.0 Release 5)

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)13GPP TS 29.198-01 version 5.0.0 Release 5

Reference
RTS/TSGN-0529198-01v500

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)23GPP TS 29.198-01 version 5.0.0 Release 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key .

http://webapp.etsi.org/IPR/home.asp
http://www.etsi.org/key

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)33GPP TS 29.198-01 version 5.0.0 Release 5

Contents

Intellectual Property Rights ..2

Foreword...2

Foreword...4

Introduction ..4

1 Scope ..6

2 References ..6

3 Definitions and abbreviations...7
3.1 Definitions..7
3.2 Abbreviations ...8

4 Open Service Access APIs ...9

5 Structure of the OSA API (29.198) and Mapping (29.998) documents ...10

6 Methodology ..11
6.1 Tools and Languages..11
6.2 Packaging ...11
6.3 Colours ...11
6.4 Naming scheme ..11
6.5 State Transition Diagram text and text symbols...12
6.6 Exception handling and passing results..12
6.7 References ..12
6.8 Strings and Collections...12
6.9 Prefixes...13

Annex A (normative): OMG IDL ...14
A.1 Tools and Languages..14
A.2 Strings and Collections...14
A.3 Naming space across CORBA modules ...14

Annex B (informative): W3C WSDL..15
B.1 Tools and Languages..15
B.2 Proposed Namespaces for the OSA WSDL ...15
B.3 Object References...16
B.4 Mapping UML Data Types to XML Schema ...17
B.4.1 Data Types ..17
B.4.1.1 <<Constant>> ...17
B.4.1.2 <<NameValuePair>> ..17
B.4.1.3 <<SequenceOfDataElements>>..17
B.4.1.4 <<TypeDef>> ...18
B.4.1.5 <<NumberedSetOfDataElements>> ...18
B.4.1.6 <<TaggedChoiceOfDataElements>> ..19
B.5 Mapping of UML SCF to WSDL...19
B.5.1 Mapping of Operations to WSDL message element...19
B.5.2 Mapping of Exception to WSDL message element ..20
B.5.3 Mapping of CommonExceptions to WSDL message element..20
B.5.4 Mapping of Interface Class to WSDL portType and binding elements ..20
B.5.5 Mapping of UML SCF to WSDL service element..22

Annex C (informative): Java API ...23
C.1 Tools and Languages..23
C.2 JAIN SPA Overview ..23

Annex D (informative): Change history ...24

History ..25

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)43GPP TS 29.198-01 version 5.0.0 Release 5

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
The present document is part 1 of a multi-part TS covering the 3rd Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";
Part 2: "Common Data Definitions";
Part 3: "Framework";
Part 4: "Call Control";
 Sub-part 1: "Call Control Common Definitions"; (new in 3GPP Release 5)
 Sub-part 2: "Generic Call Control SCF"; (new in 3GPP Release 5)
 Sub-part 3: "Multi-Party Call Control SCF"; (new in 3GPP Release 5)
 Sub-part 4: "Multi-Media Call Control SCF"; (new in 3GPP Release 5)
 Sub-part 5: "Conference Call Control SCF"; (not part of 3GPP Release 5)
Part 5: "User Interaction SCF";
Part 6: "Mobility SCF";
Part 7: "Terminal Capabilities SCF";
Part 8: "Data Session Control SCF";
Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 5)
Part 10: "Connectivity Manager SCF"; (not part of 3GPP Release 5)
Part 11: "Account Management SCF";
Part 12: "Charging SCF".
Part 13: "Policy Management SCF"; (new in 3GPP Release 5)
Part 14: "Presence and Availability Management SCF"; (new in 3GPP Release 5)

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)53GPP TS 29.198-01 version 5.0.0 Release 5

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-01 Overview 29.998-01 Overview
29.198-02 Common Data Definitions 29.998-02 Not Applicable
29.198-03 Framework 29.998-03 Not Applicable

29.998-04-1 Generic Call Control – CAP mapping
29.998-04-2 Generic Call Control – INAP mapping
29.998-04-3 Generic Call Control – Megaco mapping

Call
Control
(CC)
SCF

29.198-
04-1
Common
CC data
definitions

29.198-
04-2
Generic
CC SCF

29.198-
04-3
Multi-
Party CC
SCF

29.198-
04-4
Multi-
media CC
SCF

29.998-04-4 Multiparty Call Control – SIP mapping

29.998-05-1 User Interaction – CAP mapping
29.998-05-2 User Interaction – INAP mapping
29.998-05-3 User Interaction – Megaco mapping

29.198-05 User Interaction SCF

29.998-05-4 User Interaction – SMS mapping
29.198-06 Mobility SCF 29.998-06 User Status and User Location – MAP mapping
29.198-07 Terminal Capabilities SCF 29.998-07 Not Applicable
29.198-08 Data Session Control SCF 29.998-08 Data Session Control – CAP mapping
29.198-09 Generic Messaging SCF 29.998-09 Not Applicable
29.198-10 Connectivity Manager SCF 29.998-10 Not Applicable
29.198-11 Account Management SCF 29.998-11 Not Applicable
29.198-12 Charging SCF 29.998-12 Not Applicable
29.198-13 Policy Management SCF 29.998-13 Not Applicable
29.198-14 Presence & Availability Management SCF 29.998-14 Not Applicable

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)63GPP TS 29.198-01 version 5.0.0 Release 5

1 Scope
The present document is the first part of the 3GPP Specification defining the Application Programming Interface (API)
for Open Service Access (OSA), and provides an overview of the content and structure of the various parts of this
specification, and of the relation to other standards documents .

The OSA-specifications define an architecture that enables service application developers to make use of network
functionality through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture
for the OSA are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

This specification has been defined jointly between ETSI SPAN12, 3GPP TSG CN WG5 and the Parlay consortium
[24], in co-operation with a number of JAIN™ Community [25] member companies. [25].

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2] 3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA)".

[3] 3GPP TS 23.127: "Virtual Home Environment / Open Service Access (OSA)".

[4] 3GPP TS 23.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL);
Stage 2".

[5] 3GPP TS 22.101: "Service Aspects; Service Principles".

[6] World Wide Web Consortium "Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation" (http://www.w3.org/TR/NOTE-CCPP/).

[7] 3GPP TS 29.002: "Mobile Application Part (MAP) specification".

[8] 3GPP TS 29.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL);
CAMEL Application Part (CAP) specification".

[9] Wireless Application Protocol (WAP), Version 2.0: "User Agent Profiling Specification"
(WAP-248) (http://www.wapforum.org/what/technical.htm).

[10] Wireless Application Protocol (WAP), Version 2.0: "WAP Service Indication Specification"
(WAP-167) (http://www.wapforum.org/what/technical.htm).

[11] Wireless Application Protocol (WAP), Version 2.0: "Push Architectural Overview"
(WAP-250) (http://www.wapforum.org/what/technical.htm).

[12] Wireless Application Protocol (WAP), Version 2.0: "Wireless Application Protocol Architecture
Specification" (WAP-210) (http://www.wapforum.org/what/technical.htm).

[13] IDL to Java Compiler (http://www.javasoft.com/products/jdk/idl/index.html).

[14] UML Unified Modelling Language (http://www.omg.org/uml).

http://www.w3.org/TR/NOTE-CCPP/
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)73GPP TS 29.198-01 version 5.0.0 Release 5

[15] Object Management Group (http://www.omg.org).

[16] 3GPP TS 22.002: "Circuit Bearer Services (BS) supported by a Public Land Mobile Network
(PLMN)".

[17] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)".

[18] 3GPP TS 24.002: "GSM - UMTS Public Land Mobile Network (PLMN) Access Reference
Configuration".

[19] ITU-T Q.763: "Signalling System No. 7 – ISDN user part formats and codes".

[20] ITU-T Q.931: "ISDN user-network interface layer 3 specification for basic call control".

[21] ISO 8601: "Data elements and interchange formats -- Information interchange -- Representation of
dates and times".

[22] ISO 4217: "Codes for the representation of currencies and funds".

[23] 3GPP TS 22.121: "Service aspects; The Virtual Home Environment; Stage 1".

[24] “The Parlay Group homepage” (http://www.parlay.org)

[25] “JAIN Community homepage” (http://www.java.sun.com/products/jain)

[26] 3GPP TS 23.057: "Mobile Execution Environment (MExE); Functional Description; Stage 2".

[27] “JSR Overview” (http://jcp.org/jsr/overview/index.en.jsp)

[28] “Java 2 SDK, Standard Edition” (http://java.sun.com/j2se/1.4/docs/relnotes/features.html)

[29] “Java Community Process” (http://jcp.org/)

[30] "World Wide Web Consortium homepage" (http://www.w3c.org)

[31] 3GPP TS 23.271 "Functional stage 2 description of location services (3GPP TS 23.271)"

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in 3GPP TS 22.101 [5] and the following
apply.

Applications: Services, which are designed using Service Capability Features (SCFs).

Gateway: Synonym for Service Capability Server (SCS). From the viewpoint of applications, an SCS can be seen as a
gateway to the core network.

HE-VASP: Home Environment Value Added Service Provider. This is a VASP that has an agreement with the Home
Environment to provide services.

Home Environment: responsible for overall provision of services to users.

Local Service: A service, which can be exclusively provided in the current serving network by a Value Added Service
Provider.

OSA Interface: Standardised Interface used by application to access service capability features.

Personal Service Environment (PSE): contains personalised information defining how subscribed services are
provided and presented towards the user. The Personal Service Environment is defined in terms of one or more User
Profiles.

http://www.parlay.org/
http://www.java.sun.com/products/jain
http://jcp.org/jsr/overview/index.en.jsp
http://java.sun.com/products/jdk/1.4/docs/relnotes/features.html
http://jcp.org/
http://www.w3c.org/

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)83GPP TS 29.198-01 version 5.0.0 Release 5

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within
networks and under network control.

Service Capability Feature (SCF): Functionality offered by service capabilities that are accessible via the standardised
OSA interface.

Service Capability Server (SCS): Functional Entity providing OSA interfaces towards an application.

Service: term used as an alternative for Service Capability Feature in this specification.

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the
terminal and serving network.

User Profile: This is a label identifying a combination of one user interface profile, and one user services profile.

User Services Profile: Contains identification of subscriber services, their status and reference to service preferences.

Value Added Service Provider: provides services other than basic telecommunications service for which additional
charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and
between terminals.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.

API Application Programming Interface
CAMEL Customised Application for Mobile network Enhanced Logic
CAP CAMEL Application Part
CSE CAMEL Service Environment
FW Framework
HE Home Environment
HE-VASP Home Environment - Value Added Service Provider
HLR Home Location Register
INAP Intelligent Networks Application Part
IDL Interface Description Language
JSR Java Specification Request
MAP Mobile Application Part
ME Mobile Equipment
MExE Mobile Station (Application) Execution Environment
MS Mobile Station
MSC Mobile Switching Centre
OSA Open Service Access
PLMN Public Land Mobile Network
PSE Personal Service Environment
RMI Java Remote Method Invocation
SAT SIM Application Tool-Kit
SCF Service Capability Feature
SCP Service Control Point
SCS Service Capability Server
SIM Subscriber Identity Module
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SPA Service Provider API
UE User Equipment
USIM Universal Subscriber Identity Module
VLR Visited Location Register
VASP Value Added Service Provider
VHE Virtual Home Environment
WAP Wireless Application Protocol
WGP Wireless Gateway Proxy

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)93GPP TS 29.198-01 version 5.0.0 Release 5

WPP Wireless Push Proxy
WSDL Web Services Definition Language
XML Extensible Markup Language

4 Open Service Access APIs
The OSA-specifications define an architecture that enables service application developers to make use of network
functionality through an open standardised interface, i.e. the OSA APIs. The network functionality is describes as
Service Capability Features (SCFs) or Services. The OSA Framework is a general component in support of Services
(Service Capabilities) and Applications. The concepts and the functional architecture for the OSA are contained in
3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The OSA API is split into three types of interface classes, Service and Framework (FW).

- Interface classes between the Applications and the Framework (FW), that provide applications with basic
mechanisms (e.g. Authentication) that enable them to make use of the service capabilities in the network.

- Interface classes between Applications and SCFs, which are individual services that may be required by the
client to enable the running of third party applications over the interface e.g. Messaging type service.

- Interface classes between the Framework (FW) and the SCFs, that provide the mechanisms necessary for a
multi-vendor environment.

These interfaces represent interfaces 1, 2 and 3 in Figure 1 below. The other interfaces are not yet part of the scope of
the work.

Framework
operator

admin

Enterprise
operator

admin tool

Service
supplier

admin tool

1144

33

55

Not in the scope
of the present API
version

Not in the scope
of the present API
version

Telecom Network

Not in the scope
of the present API
version

Not in the scope
of the present API
version22 66

Client
Application

Not in the scope
of the present API
version

Figure 1:

Within the OSA concept a set of Service Capability Features (SCFs) has been specified. The OSA documentation is
structured in parts. The first Part (the present document) contains an overview, the second Part contains common data
definitions, the third Part the Framework interfaces and the following Parts contain the description of the SCFs.

NOTE: The terms ‘Service’ and ‘Service Capability Feature’ are used as alternatives for the same concept in the
present document. In the OSA API itself the SCFs as identified in the 3GPP requirements and architecture
are reflected as ‘service’, in terms like service instance lifecycle manager, service Discovery.

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)103GPP TS 29.198-01 version 5.0.0 Release 5

5 Structure of the OSA API (29.198) and Mapping
(29.998) documents

The Open Service Access (OSA) Application Programming Interface (API) specifications consist of two sets of
documents:

API specification (3GPP TS 29.198)
The Parts of 29.198 - apart from Part 1 (the present document) and Part 2 - define the interfaces, parameters and
state models that belong to the API specification. UML (Unified Modelling Language) is used to specify the
interface classes.
As such it provides a UML interface class description of the methods (API calls) supported by that interface and the
relevant parameters and types. The interfaces are specified both in IDL (Interface Description Language) and in
WSDL (Web Services Definition Language). Reference is made to the Java API specification of the interfaces.

Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998)
The Parts of 29.998 contain a possible mapping from the APIs defined in 29.198 to various network protocols (i.e.
MAP [7], CAP [8], etc.). It is an informative document, since this mapping is considered as implementation- /
vendor-dependent. On the other hand this mapping will provide potential service designers with a better
understanding of the relationship of the OSA API interface classes and the behaviour of the network associated to
these interface classes.

The purpose of the OSA API is to shield the complexity of the network, its protocols and specific implementation from
the applications. This means that applications do not have to be aware of the network nodes, a Service Capability Server
interacts with, in order to provide the SCFs to the application. The specific underlying network and its protocols are
transparent to the application.

The API specification (3GPP TS 29.198) is structured in the following Parts:

29.198-1 Part 1: Overview

29.198-2 Part 2: Common Data Definitions

29.198-3 Part 3: Framework

29.198-4 Part 4: Call Control SCF

29.198-5 Part 5: User Interaction SCF

29.198-6 Part 6: Mobility SCF

29.198-7 Part 7: Terminal Capabilities SCF

29.198-8 Part 8: Data Session Control SCF

29.198-9 Part 9: Generic Messaging SCF

29.198-10 Part 10: Connectivity Manager SCF

29.198-11 Part 11: Account Management SCF

29.198-12 Part 12: Charging SCF

29.198-13 Part 13: Policy Management SCF

29.198-14 Part 14: Presence & Availability Management SCF

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)113GPP TS 29.198-01 version 5.0.0 Release 5

Structure of the Parts of 29.198

The Parts with API specification themselves are structured as follows:

- The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

- The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.

- The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

- The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

- The Data definitions clauses show a detailed expansion of each of the data types associated with the methods
within the classes. It is to be noted that some data types are used in other methods and classes and are therefore
defined within the Common Data types part of this specification.

The OSA API is defined using UML and as such is technology independent. OSA can be realised in a number of ways
and in addition to the UML defined OSA API, the OSA specification includes:

- A normative annex with the OSA API in IDL that specifies the CORBA distribution technology realisation

- An informative annex with the OSA API in WSDL that specifies the SOAP/HTTP distribution technology
realisation

- An informative annex that references the OSA API in Java (known as JAIN™ Service Provider API) that
specifies the Java local API technology realisation

6 Methodology
Following is a description of the methodology used for the establishment of API specification for OSA.

6.1 Tools and Languages
The Unified Modelling Language (UML) [14] is used as the means to specify class and state transition diagrams.

6.2 Packaging
A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.csapi

6.3 Colours
For clarity, class diagrams follow a certain colour scheme. Blue for application interface packages and yellow for all the
others.

6.4 Naming scheme
The following naming scheme is used for documentation.

packages

lowercase.

Using the domain-based naming (For example, org.csapi)

classes, structures and types. Start with T

TpCapitalizedWithInternalWordsAlsoCapitalized

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)123GPP TS 29.198-01 version 5.0.0 Release 5

Exception class:

TpClassNameEndsWithException and P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

Interface. Start with Ip:

IpThisIsAnInterface

constants:

P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

methods:

firstWordLowerCaseButInternalWordsCapitalized()

method’s parameters

firstWordLowerCaseButInternalWordsCapitalized

collections (set, array or list types)

TpCollectionEndsWithSet

class/structure members

FirstWordAndInternalWordsCapitalized

Spaces in-between words are not allowed.

6.5 State Transition Diagram text and text symbols
The descriptions of the State Transitions in the State Transition Diagrams follow the convention:

 when_this_event_is_received [guard condition is true] /do_this_action ^send_this_message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified
which one).

6.6 Exception handling and passing results
OSA methods communicate errors in the form of exceptions. OSA methods themselves always use the return
parameter to pass results. If no results are to be returned a void is used instead of the return parameter. In order to
support mapping to as many languages as possible, no method out parameters are allowed.

6.7 References
In the interface specification whenever Interface parameters are to be passed as an in parameter, they are done so by
reference, and the "Ref" suffix is appended to their corresponding type (e.g. IpAnInterfaceRef anInterface), a reference
can also be viewed as a logical indirection.

Table:

Original type IN parameter declaration
IpInterface parm : IN IpInterfaceRef

6.8 Strings and Collections
For character strings, the String data type is used without regard to the maximum length of the string.

For homogeneous collections of instances of a particular data type the following naming scheme is used: <datatype>Set

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)133GPP TS 29.198-01 version 5.0.0 Release 5

6.9 Prefixes
OSA constants and data types are defined in the global name space: org.csapi.

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)143GPP TS 29.198-01 version 5.0.0 Release 5

Annex A (normative):
OMG IDL

A.1 Tools and Languages
The Object Management Group’s (OMG) [15] Interface Definition Language (IDL) is used as a means to
programmatically define the interfaces. IDL files are either generated manually from class diagrams or by using a UML
tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified using a
CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. [13].

A.2 Strings and Collections
In IDL, the data type String is typedefed (see Note below) from the CORBA primitive string. This CORBA primitive is
made up of a length and a variable array of byte.

NOTE: A typedef is a type definition declaration in IDL.

In OMG IDL, this maps to a sequence of the data type. A CORBA sequence is implicitly made of a length and a
variable array of elements of the same type.

Example 1: typedef sequence<TpSessionID> TpSessionIDSet;

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part,
and an array for the data part.

Example 2: The TpAddressSet data type may be defined in C++ as:

typedef struct {
 short number;
 TpAddress address [];
} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on
"number".

A.3 Naming space across CORBA modules
The following shows the naming space used in this specification.

module org {
module csapi {
/* The fully qualified name of the following constant is
org::csapi::P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;
// Add other OSA global constants and types here
module fw {
/* no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_FW_CONST= P_THIS_IS_AN_OSA_GLOBAL_CONST;

};
module mm {
// scoping required to access P_FW_CONST
const long P_M_CONST= fw::P_FW_CONST;

};
};

};

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)153GPP TS 29.198-01 version 5.0.0 Release 5

Annex B (informative):
W3C WSDL

B.1 Tools and Languages
The W3C [30] WSDL (Web Services Definition Language) is an XML format for describing network services as a set
of endpoints operating on messages containing either document-oriented or procedure-oriented information. WSDL
files are generated from the UML model using scripts. The generated WSDL files are verified using WSDL compilers..
The WSDL is based on W3C WSDL 1.1

B.2 Proposed Namespaces for the OSA WSDL
Namespaces are an important part of an XML Schema. They are used to qualify the source of a particular XML
element.

There are several XML/SOAP/WSDL related Namespaces which are used within each of the WSDL documents. The
Namespace Prefix and the Namespace are noted below.

xmlns:wsdl = ‘http://http://schemas.xmlsoap.org/wsdl/’

xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’

xmlns:SOAP-ENC=’http://schemas.xmlsoap.org/soap/encoding/’

xmlns:xsd:=’http://www.w3c.org/2001/XMLSchema’

There are also OSA specific namespaces which are used within the OSA WSDL documents. The OSA related
namespaces present within each WSDL document depends on the WSDL document and which WSDL documents it
imports. The guidelines used to derive these namespaces are:

• The root namespace for the OSA WSDL and XML schemas is http://www.csapi.org/

• There is one document generated for each component (Module) within the Analysis UML model. The document
will have the name of the UML component with the extension ‘.wsdl’ For each wsdl document generated the
following additional namespaces will be included:

o xmlns:<component name>=’http://www.csapi.org/<component name>/wsdl’

o xmlns:<component name>xsd=’http://www.csapi.org/<component name>/schema’

o For each OSA wsdl document which is referenced by an import statement within the current wsdl
document then the following additional namespaces will be included.

� xmlns:<imported component name>=’http://www.csapi.org/<imported component name>/wsdl’

� xmlns:<imported component name>xsd=’http://www.csapi.org/<imported component
name>/schema’

• Attributes which require a QName value shall use the appropriate Namespace Prefix (as defined in the definitions
element of the wsdl file) to qualify the element being referenced.

The namespaces are defined within the ‘definitions’ element of a wsdl document. For example, the definitions element
of the am.wsdl document would look like:

<definitions
 name='am'
 targetNamespace='http://www.csapi.org/am/wsdl'
 xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)163GPP TS 29.198-01 version 5.0.0 Release 5

 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:am='http://www.csapi.org/am/wsdl'
 xmlns:amxsd='http://www.csapi.org/am/schema'
 xmlns:osa='http://www.csapi.org/osa/wsdl'
 xmlns:osaxsd='http://www.csapi.org/osa/schema'>

<import namespace='http://www.csapi.org/osa/wsdl'
 location='osa.wsdl' />

B.3 Object References
Object references are used to identify an particular remote object instance. Object references are used in two ways:

1. Passed as a parameter within a method to a remote object.

2. Included within a message to identify the object for which the message is intended.

Within the context of SOAP, an object reference can be represented as a URL appended with a String. The String suffix
identifies the particular remote object instance in the context of the URL.

An object reference will be represented by the new type ObjectRef. The ObjectRef type is defined within osa.wsdl as:

<xsd:simpleType name=’Objectref’>
 <xsd:restriction base=’xsd:anyURI’ />
</xsd:simpleType>

When an object reference is passed as a parameter, the parameter type is defined as a reference to an interface. Each
interface will have a corresponding reference type associated with it. The interface reference will be defined as:

<xsd:simpleType name=’InterfaceNameRef’>
 <xsd:restriction base=’osaxsd:ObjectRef’ />
</xsd:simpleType>
where InterfaceName is the name of the particular interface.

When an object reference is used to identify the intended recipient of a message, then the object reference is included in
the SOAP Header element as an ObjectRefHeader. The ObjectRefHeader is defined in the osa.wsdl document as
follows:

<message name='ObjectRefHeader'>
 <part name='header' element='osaxsd:ObjectRef' />
</message>

Within each method, the ObjectRefHeader is bound to the message within the wsdl soap:header element of the input
message of the binding element. For example:

<binding name='IpAccountManagerBinding' type='am:IpAccountManager'>
 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />
 <operation name='createNotification'>
 <soap:operation
soapAction='http://www.csapi.org/am/IpAccountManager#createNotification' />
 <input>
 <soap:body
 encodingStyle='http://schemas/xmlsoap.org/soap/encoding/'
 namespace = 'http://www.csapi.org/am.wsdl'
 use='encoded' />
 <soap:header
 message='osaxsd:ObjectRefHeader' part='header' />

 </input>

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)173GPP TS 29.198-01 version 5.0.0 Release 5

B.4 Mapping UML Data Types to XML Schema

B.4.1 Data Types

B.4.1.1 <<Constant>>

The UML Constant data type contains the following attributes:

• Name

• Constant Value

This type would then map to the following XML Schema construct:

This mapping assumes that all constants are of type TpInt32

<xsd:simpletype name=”Name”>
 <xsd:restriction base=”osaxsd:TpInt32”>
 <xsd:minInclusive value=”Constant Value” />
 <xsd:maxInclusive value=”Constant Value” />
 </xsd:restriction>
</xs:simpleType>

B.4.1.2 <<NameValuePair>>

The UML NameValuePair data type contains the following attributes:

• Name

• Attributes

• Name

This type would then map to the following XML Schema construct:

<xsd:simpleType base=”xsd:string” name=”Name”>
 <xsd:restriction base=”xsd:String”>
 <xsd:enumeration value=”Attribute-Name” />
 <xsd:enumeration value=”Attribute-Name” />
 …
 <xsd:enumeration value=”Attribute-Name” />
 </xsd:restriction>
</xsd:simpleType>

B.4.1.3 <<SequenceOfDataElements>>

The UML SequenceOfDataElements data type contains the following attributes:

• Name

• Roles

• Name

• Type

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)183GPP TS 29.198-01 version 5.0.0 Release 5

This type would then map to the following XML Schema construct:

<xsd:complexType name=”Name”
 <xsd:sequence>
 <xsd:element
 Name=”Role-Name”
 type=”Role–Type” />
 <xsd:element
 Name=”Role-Name”
 type=”Role–Type” />
 …
 <xsd:element
 Name=”Role-Name”
 type=”Role–Type” />
 </xsd:sequence>
</xsd:complexType>

B.4.1.4 <<TypeDef>>

The UML TypeDef data type contains the following attributes:

• Name

• ImplementationType

If the Implementation type is a technology specific type, then the following mappings have been made:

TpBoolean – xsd:boolean

TpInt32 – xsd:float

TpFloat – xsd:float

TpLongString – xsd:string

TpString – xsd:string

TpOctet – xsd:hexBinary

This type would then map to the following XML Schema construct:

<complexType name=”Name” base=”ImplementationType” />

B.4.1.5 <<NumberedSetOfDataElements>>

The UML NumberedSetOfDataElements data type for sequences types contains the following attributes:

• Name

• ImplementationType

This type would then map to the following XML Schema construct:

<xsd:complexType name=”Name”>
 <xsd:sequence>
 <xsd:element
 name=”Name”
 type=”ImplementationType”
 minOccurs=”0”
 maxOccurs=”unbounded” />
 </xsd:sequence>

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)193GPP TS 29.198-01 version 5.0.0 Release 5

</xsd:complexType>

B.4.1.6 <<TaggedChoiceOfDataElements>>

The UML TaggedChoiceOfDataElements data type contains the following attributes:

• Name

• SwitchType

• Roles

• Name

• Type

This type would then map to the following XML Schema construct:

<xsd:complexType name=”Name”>
 <xsd:element name=”SwitchName” type=”SwitchType” />
 <xsd:choice>
 <xsd:element name=”Role-Name” type=”Role-Type” />
 <xsd:element name=”Role-Name” type=”Role-Type” />
 …
 <xsd:element name=”Role-Name” type=”Role-Type” />
 </xsd:choice>
</complexType>

B.5 Mapping of UML SCF to WSDL

B.5.1 Mapping of Operations to WSDL message element

A UML Operation contains the following attributes:

• Name

• Module Name

• Return Type

• Parameter

• Name

• Type

This type would then map to the following XML Schema construct:

<message name="Name">
 <part
 name="Parameter-Name"
 type="Parameter-Type"/>
 …
 <part
 name="Parameter-Name"
 type="Parameter-Type"/>
</message>

<message name="NameResponse">

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)203GPP TS 29.198-01 version 5.0.0 Release 5

 <part name="return" type="ReturnType"/>
</message>

Note: If the ReturnType is void, then no ‘type’ attribute would be included in
the Response message.

B.5.2 Mapping of Exception to WSDL message element

A UML Exception has the following attributes:

• Name

All exceptions (except for CommonException), contain a parameter called ExtraInformation which is of type TpString.

This type would then map to the following XML Schema Construct:

<message name=”Name”>
 <part
 name=”ExtraInformation”
 type=”osaxsd:TpString”/>
</message>

B.5.3 Mapping of CommonExceptions to WSDL message element

The UML CommonExceptions type has the following attributes:

• Name (“CommonExceptions”)

The UML CommonException contains two parameters; ExceptionType which is of type osaxsd:TpInt32 and
ExtraInformation which is of type osaxsd:TpString.

This type would then map to the following XML Schema Construct:

<message name=”CommonExceptions”>
 <part
 name=”ExceptionType”
 type=”osaxsd:TpInt32” />
 <part
 name=”ExtraInformation”
 type=”osaxsd:TpString” />
</message>

B.5.4 Mapping of Interface Class to WSDL portType and binding elements

A UML Interface Class contains the following attributes:

• Name

• Associated module (i.e. component)

• Operations

• Name

• Parameters

• Name

• Exceptions

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)213GPP TS 29.198-01 version 5.0.0 Release 5

• Name

This type would then map to the following WSDL portType element:

<portType name="Name">
 <operation
 name="Operation-Name"
 <input message="Operation-Name"/>
 <output message="Operation-NameResponse"/>
 <fault message=”Operation–Exception– Name” />
 …
 <fault message=”Operation–Exception–Name” />
 </operation>
 …
 <operation
 name="Operation-Name"
 <input message="Operation-Name"/>
 <output message="Operation-NameResponse"/>
 <fault name=”Operation-Exception-Name” message=”Operation–Exception–Name”
/>
 …
 <fault message=”Operation–Exception–Name” />
 </operation>
</portType>

This type would also then map into the following WSDL binding element:

<binding
 name="Interface-NameBinding"
 type="Interface-Name">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Operation-Name">
 <soap:operation soapAction="http://www.csapi.org/am/Name#Operation-Name"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.csapi.org/Module-Name.wsdl"
 use="encoded"/>
 <soap:header message=”osaxsd:ObjRefHeader” part=”header” />
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace=" http://www.csapi.org/Module-Name.wsdl "
 use="encoded"/>
 </output>
 <fault>
 <soap:fault name=”Operation-Exception-Name”
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.csapi.org/Module-Name.wsdl"
 use="encoded"/>
 </fault>

 … additional fault elements

 </operation>

 … additional operation elements

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)223GPP TS 29.198-01 version 5.0.0 Release 5

</binding>

B.5.5 Mapping of UML SCF to WSDL service element

A UML Module contains the following attributes:

• Name

• Interfaces

• Name

This type would then map to the following WSDL service element:

<service name="Name">

 <port binding="Interface-NameBinding" name="Interface-Name">
 <soap:address location="http://{Service Address}"/>
 </port>

 … additional port elements
</service>

</definitions>

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)233GPP TS 29.198-01 version 5.0.0 Release 5

Annex C (informative):
Java API

C.1 Tools and Languages
The Java language is used as a means to programmatically define the interfaces. Java files are either generated manually
from class diagrams or by using a UML tool and editing scripts. Either way, the Java files are generated by the JAIN
Community [25] in accordance with the Parlay UML to Java API Rulebook [24], which define a set of rules that are
used to rapidly generate the Java APIs from the OSA/Parlay UML.

The generated Java files are verified using Java compilers such as javac [28]. The Java API specifications are designed
to be compatible with the Java 2 SDK, Standard Edition, version 1.4.0 [28] or later. The Java API Realizations of the
OSA/Parlay APIs are known as the JAIN Service Provider APIs (JAIN SPA).

C.2 JAIN SPA Overview
JAIN SPA is a local Java API realization of the OSA/Parlay specifications. The benefits of providing a local API (in
addition to a distribution or remote API, such as the OSA/Parlay OMG-IDL or the OSA/Parlay W3C WSDL) is that the
API is tailored to a particular programming language (in this case it's Java), which is distribution mechanism
independent, meaning that, providing the necessary adapters are put in place, Java applications can be written to this
local API that use any form of technology (e.g. CORBA, SOAP, RMI) for the purpose of distributing this API. With
remote APIs, although the programmer may be free to write in multiple programming languages, he needs knowledge
of, and is committed to, the particular distribution mechanism (e.g. CORBA, SOAP, RMI).

As the OSA/Parlay UML assumes a remote API, many optimizations have been made to the specifications, which,
although acceptable to a "specialist" programmer taking distribution into account, would appear alien to the large
community of "regular" Java programmers. As such, the JAIN SPA specifications are tailored to the Java language by
following Java language naming conventions, design patterns and object oriented practices for a local Java API, while
reusing as much Java codebase as possible. JAIN Service Provider APIs are developed by the JAIN Community [25]
under the Java Community Process (JCP) [29]. Within the JCP, each JAIN Service Provider API is developed by
submitting a Java Specification Request (JSR) [27]. Each JAIN Service Provider API is assigned a JSR number, and an
associated webpage, that can be used to identify it.

Each JSR webpage contains a table identifying the relationships between the different versions of the Parlay,
ETSI/OSA, 3GPP/OSA and JAIN SPA specifications. In addition, each JAIN SPA specification version indicates to
which Parlay, ETSI/OSA and 3GPP/OSA specification versions it corresponds to.

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)243GPP TS 29.198-01 version 5.0.0 Release 5

Annex D (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 -- CR 29.198: for moving TS 29.198 from R99 to Rel-4 (N5-010158) 3.2.0 4.0.0
Jun 2001 CN_12 NP-010330 001 -- Corrections to OSA API Rel4 (Correction to IDL namespace to align

with that of ETSI and Parlay equivalent APIs: Change
org.open_service_access root namespace to org.csapi) (N5-010267)

4.0.0 4.1.0

Sep 2001 CN_13 NP-010464 002 -- Changing references to JAIN 4.1.0 4.2.0
Dec 2001 CN_14 NP-010594 003 -- Replace Out Parameters with Return Types 4.2.0 4.3.0
Dec 2001 CN_14 NP-010594 004 -- Remove the perception that the OSA API only uses CORBA for its

transport mechanism
4.2.0 4.3.0

Mar 2002 -- -- -- -- Editorial update (no CR) following Hong Kong CN5#16 4.3.0 4.3.1
Jun 2002 CN_16 NP-020181 005 -- Addition of support for Java API technology realisation 4.3.1 5.0.0
Jun 2002 CN_16 NP-020182 006 -- Addition of support for WSDL realisation 4.3.1 5.0.0
Jun 2002 CN_16 NP-020184 007 -- Adding the full naming convention for exceptions 4.3.1 5.0.0
Jun 2002 CN_16 NP-020184 008 -- Correction of References in OSA specifications 4.3.1 5.0.0
Jun 2002 CN_16 NP-020184 009 -- Addition of text describing the technology realisations of the

Parlay/OSA specification
4.3.1 5.0.0

ETSI

ETSI TS 129 198-1 V5.0.0 (2002-06)253GPP TS 29.198-01 version 5.0.0 Release 5

History

Document history

V5.0.0 June 2002 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Open Service Access APIs
	5 Structure of the OSA API (29.198) and Mapping (29.998) documents
	6 Methodology
	6.1 Tools and Languages
	6.2 Packaging
	6.3 Colours
	6.4 Naming scheme
	6.5 State Transition Diagram text and text symbols
	6.6 Exception handling and passing results
	6.7 References
	6.8 Strings and Collections
	6.9 Prefixes

	Annex A (normative): OMG IDL
	A.1 Tools and Languages
	A.2 Strings and Collections
	A.3 Naming space across CORBA modules

	Annex B (informative): W3C WSDL
	B.1 Tools and Languages
	B.2 Proposed Namespaces for the OSA WSDL
	B.3 Object References
	B.4 Mapping UML Data Types to XML Schema
	B.4.1 Data Types
	B.4.1.1 <<Constant>>
	B.4.1.2 <<NameValuePair>>
	B.4.1.3 <<SequenceOfDataElements>>
	B.4.1.4 <<TypeDef>>
	B.4.1.5 <<NumberedSetOfDataElements>>
	B.4.1.6 <<TaggedChoiceOfDataElements>>

	B.5 Mapping of UML SCF to WSDL
	B.5.1 Mapping of Operations to WSDL message element
	B.5.2 Mapping of Exception to WSDL message element
	B.5.3 Mapping of CommonExceptions to WSDL message element
	B.5.4 Mapping of Interface Class to WSDL portType and binding elements
	B.5.5 Mapping of UML SCF to WSDL service element

	Annex C (informative): Java API
	C.1 Tools and Languages
	C.2 JAIN SPA Overview

	Annex D (informative): Change history
	History

