Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Customised Applications for Mobile network Enhanced Logic (CAMEL) Phase X; CAMEL Application Part (CAP) specification (3GPP TS 29.078 version 12.0.0 Release 12)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
Contents

Intellectual Property Rights .................................................................................................................. 2
Foreword .................................................................................................................................................. 2
Modal verbs terminology ..................................................................................................................... 2
Foreword .................................................................................................................................................. 2

1 Scope .................................................................................................................................................. 15
2 References ......................................................................................................................................... 15
2.1 Specifications used for IMPORTS for CAP ................................................................................. 17
2.2 SMS contracts, packages and ACs ............................................................................................ 87
2.3 Object IDentifiers (IDs) .............................................................................................................. 55
2.4 Classes .......................................................................................................................................... 51
2.5 Error types .................................................................................................................................. 47
2.6 Common CAP Types .................................................................................................................... 29
2.7 Interface specification for telecommunication services ........................................................... 19
2.8 4.1 General .................................................................................................................................... 19
4.1.1 Definition methodology .......................................................................................................... 19
4.1.2 Example physical scenarios ..................................................................................................... 20
4.1.3 CAP protocol architecture ....................................................................................................... 26
4.1.4 Compatibility mechanisms used for CAP ............................................................................... 27
4.1.4.1 Introduction ......................................................................................................................... 27
4.1.4.2 Definition of CAP compatibility mechanisms .................................................................... 28
4.1.4.2.1 Compatibility mechanism for interworking of CAP with ETSI CS2 Core INAP and ITU-T Q.1228 INAP ................................................................. 28
4.1.4.2.2 Procedures for major additions to CAP ........................................................................... 28
4.1.4.2.3 Procedures for minor additions to CAP .......................................................................... 28
4.1.4.2.4 Procedures for inclusion of network specific additions to CAP ..................................... 28
4.1.5 Definition and usage of LegID .................................................................................................. 28
4.1.5.1 Definition of LegID ............................................................................................................. 28
4.1.5.2 Allocation of LegID ............................................................................................................. 29
4.2 SACF/MACF rules ....................................................................................................................... 29
4.2.1 Reflection of TC AC ................................................................................................................. 29
4.2.2 Sequential/parallel execution of operations ........................................................................... 29
5 Common CAP Types.......................................................................................................................... 29
5.1 Data types ...................................................................................................................................... 29
5.2 Error types .................................................................................................................................... 47
5.3 Operation codes ........................................................................................................................... 49
5.4 Error codes .................................................................................................................................. 51
5.5 Classes .......................................................................................................................................... 51
5.6 Object IDentifiers (IDs) .............................................................................................................. 55
5.7 User Abort Data ............................................................................................................................ 58
6 Circuit Switched Call Control ............................................................................................................ 59
6.1 gsmSSF/CCF - gsmSCF Interface .............................................................................................. 59
6.1.1 Operations and arguments ....................................................................................................... 59
6.1.2 gsmSSF/gsmSCF packages, contracts and ACs ..................................................................... 71
6.1.2.1 gsmSSF/gsmSCF ASN.1 module ....................................................................................... 71
6.2 gsmSCF/gsmSRF interface .......................................................................................................... 78
6.2.1 gsmSCF/gsmSRF operations and arguments ......................................................................... 78
6.2.2 gsmSRF/gsmSCF contracts, packages and ACs .................................................................. 81
6.2.2.1 gsmSRF/gsmSCF ASN.1 modules ...................................................................................... 81
7 SMS Control ..................................................................................................................................... 83
7.1 SMS operations and arguments ................................................................................................. 83
7.1.1 Operation timers ...................................................................................................................... 87
7.2 SMS contracts, packages and ACs ............................................................................................ 87
7.2.1 smsSSF/gsmSCF ASN.1 module ............................................................................................ 87
8 GPRS Control .................................................................................................................................... 90
8.1 gsmSCF/gprsSSF operations and arguments ........................................................................ 90
8.1.1 GPRS Reference Number ............................................................................................... 95
8.1.2 Operation timers .............................................................................................................. 96
8.2 gsmSCF/gprsSSF contracts, packages and ACs .................................................................. 96
8.2.1 gprsSSF/gsmSCF ASN.1 module ..................................................................................... 96
9 Application Entity procedures .............................................................................................. 100
10 Error procedures .................................................................................................................. 100
10.1 Operation related error procedures .................................................................................... 100
10.1.1 Canceled .......................................................................................................................... 100
10.1.1.1 General Description .................................................................................................. 100
10.1.1.1.1 Error description ................................................................................................. 100
10.1.1.2 Operations gsmSCF→gsmSRF .................................................................................. 100
10.1.2 CancelFailed .................................................................................................................. 101
10.1.2.1 General description .................................................................................................. 101
10.1.2.1.1 Error description ................................................................................................. 101
10.1.2.2 Operations gsmSCF→gsmSRF .................................................................................. 101
10.1.3 ETCFailed ..................................................................................................................... 102
10.1.3.1 General description .................................................................................................. 102
10.1.3.1.1 Error description ................................................................................................. 102
10.1.3.2 Operations gsmSCF→gsmSSF ................................................................................ 102
10.1.4 ImproperCallerResponse ............................................................................................... 102
10.1.4.1 General description .................................................................................................. 102
10.1.4.1.1 Error description ................................................................................................. 102
10.1.4.2 Operations gsmSCF→gsmSSF ................................................................................ 102
10.1.5 MissingCustomerRecord ............................................................................................... 102
10.1.5.1 General description .................................................................................................. 102
10.1.5.1.1 Error description ................................................................................................. 102
10.1.5.2 Operations gsmSSF→gsmSCF ................................................................................ 103
10.1.5.3 Operations gsmSRF→gsmSCF ................................................................................ 103
10.1.5.4 Operations smsSSF→gsmSCF ............................................................................... 103
10.1.5.5 Operations gprsSSF→gsmSCF ................................................................................ 103
10.1.6 MissingParameter ........................................................................................................... 104
10.1.6.1 General description .................................................................................................. 104
10.1.6.1.1 Error description ................................................................................................. 104
10.1.6.2 Operations gsmSCF→gsmSSF ................................................................................ 104
10.1.6.3 Operations gsmSSF→gsmSCF ................................................................................ 104
10.1.6.4 Operations gsmSCF→gsmSRF ................................................................................ 104
10.1.6.5 Operations gsmSRF→gsmSCF ................................................................................ 105
10.1.6.6 Operations smsSSF→gsmSCF ............................................................................... 105
10.1.6.7 Operations gsmSCF→smsSSF ............................................................................... 105
10.1.6.8 Operations gprsSSF→gsmSCF ................................................................................ 105
10.1.6.9 Operations gsmSCF→gprsSSF ................................................................................ 106
10.1.7 ParameterOutOfRange ..................................................................................................... 106
10.1.7.1 General description .................................................................................................. 106
10.1.7.1.1 Error description ................................................................................................. 106
10.1.7.2 Operations gsmSCF→gsmSSF ................................................................................ 106
10.1.7.3 Operations gsmSSF→gsmSCF ................................................................................ 106
10.1.7.4 Operations gsmSCF→gsmSRF ................................................................................ 106
10.1.7.5 Operations smsSSF→gsmSCF ............................................................................... 106
10.1.7.6 Operations gsmSCF→smsSSF ............................................................................... 106
10.1.7.7 Operations gprsSSF→gsmSCF ................................................................................ 107
10.1.7.8 Operations gsmSCF→gprsSSF ................................................................................ 107
10.1.8 RequestedInfoError ........................................................................................................ 107
10.1.8.1 General description .................................................................................................. 107
10.1.8.1.1 Error description ................................................................................................. 107
10.1.8.2 Operations gsmSCF→gsmSSF ................................................................................ 107
10.1.9 SystemFailure ................................................................................................................ 107
10.1.9.1 General description .................................................................................................. 107
10.1.9.1.1 Error description ................................................................................................. 107
10.1.9.2 Operations gsmSCF→gsmSSF ................................................................................ 107
10.1.12.10 UnexpectedComponentSequence .......................................................... 109
10.1.12.1 General description .................................................................................. 109
10.1.12.1.1 Error description .................................................................................. 109
10.1.12.2 Operations gsmSCF → gsmSSF ............................................................... 109
10.1.12.3 Operations gsmSSF → gsmSCF ............................................................... 109
10.1.12.4 Operations gsmSCF → gsmSRF (applicable for direct gsmSCF-gsmSRF case only) .......................................................... 109
10.1.12.5 Operations gsmSRF → gsmSCF ............................................................... 109
10.1.12.6 Operations smsSSF → gsmSCF ............................................................... 110
10.1.12.7 Operations gsmSCF → smsSSF ............................................................... 110
10.1.12.8 Operations gprsSSF → gsmSCF ............................................................... 110
10.1.12.9 Operations gsmSCF → gprsSSF ............................................................... 110
10.1.13 UnexpectedDataValue .................................................................................. 110
10.1.13.1 General description .................................................................................. 110
10.1.13.1.1 Error description .................................................................................. 110
10.1.13.2 Operations gsmSCF → gsmSSF ............................................................... 110
10.1.13.3 Operations gsmSSF → gsmSCF ............................................................... 110
10.1.13.4 Operations gsmSCF → gsmSRF ............................................................... 110
10.1.13.5 Operations gsmSRF → gsmSCF ............................................................... 110
10.1.13.6 Operations smsSSF → gsmSCF ............................................................... 111
10.1.13.7 Operations gsmSCF → smsSSF ............................................................... 111
10.1.13.8 Operations gprsSSF → gsmSCF ............................................................... 111
10.1.13.9 Operations gsmSCF → gprsSSF ............................................................... 111
10.1.14 UnexpectedParameter .................................................................................. 111
10.1.14.1 General description .................................................................................. 111
10.1.14.1.1 Error description .................................................................................. 111
10.1.14.2 Operations gsmSCF → gsmSSF ............................................................... 111
10.1.14.3 Operations gsmSSF → gsmSCF ............................................................... 111
10.1.14.4 Operations gsmSCF → gsmSRF ............................................................... 111
10.1.14.5 Operations gsmSRF → gsmSCF ............................................................... 111
10.1.14.6 Operations smsSSF → gsmSCF ............................................................... 111
10.1.14.7 Operations gsmSCF → smsSSF ............................................................... 111
10.1.14.8 Operations gprsSSF → gsmSCF ............................................................... 111
10.1.14.9 Operations gsmSCF → gprsSSF ............................................................... 112
10.1.15 UnknownLegID ......................................................................................... 112
10.1.15.1 General description .................................................................................. 112
10.1.15.1.1 Error description .................................................................................. 112
10.1.15.2 Operations gsmSCF → gsmSSF ............................................................... 112
10.1.16 UnknownCSID ......................................................................................... 112
10.1.16.1 General description .................................................................................. 112
10.1.16.1.1 Error description .................................................................................. 112
10.1.16.2 Operations gsmSCF → gsmSSF ................................................................. 12
10.1.17 UnknownPDPID ............................................................................................. 12
10.1.17.1 General description ...................................................................................... 12
10.1.17.1.1 Error description ...................................................................................... 12
10.1.17.2 Operations gprsSSF → gsmSCF ................................................................. 12
10.1.17.3 Operations gsmSCF → gprsSSF ................................................................. 12
10.2 Entity related error procedures ............................................................................. 12
10.2.1 Expiration of Tssf ......................................................................................... 112
10.2.1.1 General description ...................................................................................... 13
10.2.1.1.1 Error description ...................................................................................... 13
10.2.1.2 Procedures gsmSSF → gsmSCF ................................................................. 13
10.2.1.3 Procedures gprsSSF → gsmSCF ................................................................. 13
10.2.1.4 Procedures smsSSF → gsmSCF ................................................................. 13
10.2.2 Expiration of Tsrf ......................................................................................... 114
10.2.2.1 General Description .................................................................................... 14
10.2.2.1.1 Error description ...................................................................................... 14
10.2.2.2 Procedures description ............................................................................... 14
11 Detailed operation procedures for circuit switched call control ......................... 114
11.1 ActivityTest procedure ..................................................................................... 114
11.1.1 General description ....................................................................................... 14
11.1.1.1 Parameters ................................................................................................. 14
11.1.2 Responding entity (gsmSSF, gsmSRF or assist gsmSSF) .................................. 14
11.1.2.1 Normal procedure ..................................................................................... 14
11.1.2.2 Error handling ........................................................................................... 15
11.2 ApplyCharging procedure ................................................................................ 115
11.2.1 General description ....................................................................................... 15
11.2.1.1 Parameters ................................................................................................. 15
11.2.2 Responding entity (gsmSSF) ......................................................................... 16
11.2.2.1 Normal procedure ..................................................................................... 16
11.2.2.2 Error handling ........................................................................................... 17
11.3 ApplyChargingReport procedure .................................................................... 117
11.3.1 General description ....................................................................................... 17
11.3.1.1 Parameters ................................................................................................. 18
11.3.2 Invoking entity (gsmSSF) .............................................................................. 19
11.3.2.1 Normal procedure ..................................................................................... 19
11.3.2.2 Error handling ........................................................................................... 19
11.4 AssistRequestInstructions procedure ........................................................... 119
11.4.1 General description ....................................................................................... 19
11.4.1.1 Parameters ................................................................................................. 19
11.4.2 Invoking entity (gsmSSF/gsmSRF) ............................................................... 120
11.4.2.1 Normal procedure ..................................................................................... 120
11.4.2.2 Error handling ........................................................................................... 120
11.5 CallGap procedure ........................................................................................... 120
11.5.1 General description ....................................................................................... 120
11.5.1.1 Parameters ................................................................................................. 120
11.5.2 Responding entity (gsmSSF) ........................................................................ 122
11.5.2.1 Normal procedure ..................................................................................... 122
11.5.2.2 Error handling ........................................................................................... 124
11.6 CallInformationReport procedure ................................................................. 124
11.6.1 General description ....................................................................................... 124
11.6.1.1 Parameters ................................................................................................. 124
11.6.2 Invoking entity (gsmSSF) .............................................................................. 124
11.6.2.1 Normal procedure ..................................................................................... 124
11.6.2.2 Error handling ........................................................................................... 125
11.7 CallInformationRequest procedure ............................................................... 125
11.7.1 General description ....................................................................................... 125
11.7.1.1 Parameters ................................................................................................. 125
11.7.2 Responding entity (gsmSSF) ........................................................................ 125
11.7.2.1 Normal procedure ..................................................................................... 125
11.7.2.2 Error handling ........................................................................................... 126
11.8 Cancel procedure .............................................................................................. 126
12.6 ReleaseSMS procedure .................................................. 167
12.6.1 General description .................................................. 167
12.6.1.1 Parameters ......................................................... 167
12.6.2 Responding entity (smsSSF) ......................................... 167
12.6.2.1 Normal procedure .............................................. 167
12.6.2.2 Error handling .................................................... 167
12.7 RequestReportSMSEvent procedure .............................. 167
12.7.1 General description .................................................. 167
12.7.1.1 Parameters ......................................................... 168
12.7.2 Responding entity (smsSSF) ......................................... 168
12.7.2.1 Normal procedure .............................................. 168
12.7.2.2 Error handling .................................................... 168
12.8 ResetTimerSMS procedure ........................................... 168
12.8.1 General description .................................................. 168
12.8.1.1 Parameters ......................................................... 168
12.8.2 Responding entity (smsSSF) ......................................... 169
12.8.2.1 Normal procedure .............................................. 169
12.8.2.2 Error handling .................................................... 169

13 Detailed operation procedures for GPRS control .................. 169
13.1 ActivityTestGPRS procedure ........................................ 169
13.1.1 General description .................................................. 169
13.1.1.1 Parameters ......................................................... 169
13.1.2 Responding entity (gprsSSF) ......................................... 169
13.1.2.1 Normal procedure .............................................. 169
13.1.2.2 Error handling .................................................... 170
13.2 ApplyChargingGPRS procedure ..................................... 170
13.2.1 General description .................................................. 170
13.2.1.1 Parameters ......................................................... 170
13.2.2 Responding entity (gprsSSF) ......................................... 170
13.2.2.1 Normal procedure .............................................. 170
13.2.2.2 Error handling .................................................... 171
13.3 ApplyChargingReportGPRS procedure ........................... 171
13.3.1 General description .................................................. 171
13.3.1.1 Parameters ......................................................... 171
13.3.2 Invoking entity (gprsSSF) ........................................... 173
13.3.2.1 Normal procedure .............................................. 173
13.3.2.2 Error handling .................................................... 173
13.4 CancelGPRS procedure ............................................... 174
13.4.1 General description .................................................. 174
13.4.1.1 Parameters ......................................................... 174
13.4.2 Responding entity (gprsSSF) ......................................... 174
13.4.2.1 Normal procedure .............................................. 174
13.4.2.2 Error handling .................................................... 174
13.5 ConnectGPRS procedure ............................................... 174
13.5.1 General description .................................................. 174
13.5.1.1 Parameters ......................................................... 174
13.5.2 Responding entity (gprsSSF) ......................................... 175
13.5.2.1 Normal procedure .............................................. 175
13.5.2.2 Error handling .................................................... 175
13.6 ContinueGPRS procedure ............................................ 175
13.6.1 General description .................................................. 175
13.6.1.1 Parameters ......................................................... 175
13.6.2 Responding entity (gprsSSF) ......................................... 175
13.6.2.1 Normal procedure .............................................. 175
13.6.2.2 Error handling .................................................... 175
13.7 EntityReleasedGPRS procedure ..................................... 176
13.7.1 General description .................................................. 176
13.7.1.1 Parameters ......................................................... 176
13.7.2 Invoking entity (gprsSSF) ........................................... 176
13.7.2.1 Normal procedure .............................................. 176
13.7.2.2 Error handling .................................................... 176
13.8 EventReportGPRS procedure .............................................................................................................. 183
13.8.1 General description ......................................................................................................................... 183
13.8.1.1 Parameters ................................................................................................................................. 184
13.8.2 Invoking entity (gprsSSF) ................................................................................................................ 184
13.8.2.1 Normal procedure ....................................................................................................................... 184
13.8.2.2 Error handling ............................................................................................................................. 185
13.9 FurnishChargingInformationGPRS procedure .................................................................................... 185
13.9.1 General description ......................................................................................................................... 185
13.9.1.1 Parameters ................................................................................................................................. 186
13.9.2 Responding entity (gprsSSF) ............................................................................................................. 186
13.9.2.1 Normal procedure ....................................................................................................................... 186
13.9.2.2 Error handling ............................................................................................................................. 187
13.10 InitialDPGPRS procedure .................................................................................................................. 187
13.10.1 General description ......................................................................................................................... 187
13.10.1.1 Parameters ................................................................................................................................. 188
13.10.2 Invoking entity (gprsSSF) ................................................................................................................. 188
13.10.2.1 Normal procedure ....................................................................................................................... 188
13.10.2.2 Error handling ............................................................................................................................. 189
13.11 ReleaseGPRS procedure ..................................................................................................................... 189
13.11.1 General description ......................................................................................................................... 189
13.11.1.1 Parameters ................................................................................................................................. 190
13.11.2 Responding entity (gprsSSF) ............................................................................................................. 190
13.11.2.1 Normal procedure ....................................................................................................................... 190
13.11.2.2 Error handling ............................................................................................................................. 191
13.12 RequestReportGPRSEvent procedure ............................................................................................... 191
13.12.1 General description ......................................................................................................................... 191
13.12.1.1 Parameters ................................................................................................................................. 192
13.12.2 Responding entity (gprsSSF) ............................................................................................................. 192
13.12.2.1 Normal procedure ....................................................................................................................... 192
13.12.2.2 Error handling ............................................................................................................................. 193
13.13 ResetTimerGPRS procedure ............................................................................................................... 193
13.13.1 General description ......................................................................................................................... 193
13.13.1.1 Parameters ................................................................................................................................. 194
13.13.2 Responding entity (gprsSSF) ............................................................................................................. 194
13.13.2.1 Normal procedure ....................................................................................................................... 194
13.13.2.2 Error handling ............................................................................................................................. 195
13.14 SendChargingInformationGPRS Procedure ..................................................................................... 195
13.14.1 General description ......................................................................................................................... 195
13.14.1.1 Parameters ................................................................................................................................. 196
13.14.2 Responding Entity (gprsSSF) ............................................................................................................. 196
13.14.2.1 Normal Procedure ....................................................................................................................... 196
13.14.2.2 Error handling ............................................................................................................................. 197
14 Services assumed from lower layers ...................................................................................................... 197
14.1 Services assumed from TC .................................................................................................................. 197
14.1.1 Common procedures ......................................................................................................................... 197
14.1.1.1 Normal procedures ....................................................................................................................... 197
14.1.1.2 Abnormal procedures ................................................................................................................... 198
14.1.1.3 Dialogue handling ......................................................................................................................... 199
14.1.1.3.1 Dialogue establishment ................................................................................................................. 199
14.1.1.3.2 Dialogue continuation ................................................................................................................... 200
14.1.1.3.3 Dialogue termination ................................................................................................................... 200
14.1.1.3.4 User abort .................................................................................................................................. 201
14.1.1.3.5 Provider abort ............................................................................................................................ 202
14.1.1.3.6 Mapping to TC dialogue primitives .......................................................................................... 202
14.1.1.3.7 Default mapping to TC dialogue parameters ............................................................................... 203
14.1.1.3.8 Component handling .................................................................................................................. 203
14.1.1.3.9 Procedures for CAP Operations .................................................................................................. 204
14.1.1.3.10 Mapping to TC component primitives ..................................................................................... 204
14.1.1.3.11 Default mapping to TC component parameters ......................................................................... 205
14.1.2 gsmSSF-gsmSCF interfaces ............................................................................................................ 205
14.1.2.1 Normal procedures ....................................................................................................................... 205
A.2 ContinueWithArgument operation ................................................................. 211
A.3 Connect operation ................................................................................. 211
A.4 AssistRequestInstructions operation ....................................................... 214
A.5 ConnectToResource operation ................................................................. 214
A.6 EstablishTemporaryConnection operation .............................................. 215
A.7 ReleaseCall operation ............................................................................ 216
A.8 InitiateCallAttempt operation ............................................................... 216

Annex B (normative): Mapping between CAP and MAP and mapping between CAP and SM-CP ................................................................. 217

B.1 Mapping between CAP and MAP .......................................................... 217
B.1.1 MO-SMS ............................................................................................... 217
B.1.1.1 ConnectSMS operation ..................................................................... 217
B.1.1.2 EventReportSMS operation .............................................................. 217
B.1.2 MT-SMS ................................................................................................ 218
B.1.2.1 InitialDPSMS operation (MT-SMS) .................................................... 218
B.1.2.2 ReleaseSMS operation (MT-SMS) .................................................... 218

B.2 Mapping between CAP and SM-CP ....................................................... 218
B.2.1 MO-SMS ............................................................................................... 218
B.2.1.1 InitialDPSMS operation ..................................................................... 218
B.2.1.2 ReleaseSMS operation ..................................................................... 219
B.2.2 MT-SMS ................................................................................................ 219
B.2.2.1 ConnectSMS operation ..................................................................... 219
B.2.2.2 EventReportSMS operation .............................................................. 219

Annex C (informative): Change history ..................................................... 220

History ........................................................................................................... 222
Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The present document identifies the 3G system specifications for Rel-5.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x  the first digit:
   1  presented to TSG for information;
   2  presented to TSG for approval;
   3  or greater indicates TSG approved document under change control.

y  the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z  the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document specifies the CAMEL Application Part (CAP) supporting the fourth phase of the network feature Customized Applications for Mobile network Enhanced Logic. CAP is based on a sub-set of the ETSI Core INAP CS-2 as specified by ETSI EN 301 140-1 [26]. Descriptions and definitions provided by ETSI EN 301 140-1 [26] are directly referenced by this standard in the case no additions or clarifications are needed for the use in the CAP.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.


[2] 3GPP TS 22.024: "Description of Charge Advice Information (CAI)".

[3] 3GPP TS 22.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL); Service description, Stage 1".


[6] 3GPP TS 23.040: "Technical realization of the Short Message Service (SMS); Point-to-Point (PP)".


[8] 3GPP TS 23.079: "Support of Optimal Routeing (SOR); Technical realization".

[9] 3GPP TS 24.008: "Digital cellular telecommunications system (Phase 2+); Mobile radio interface layer 3 specification (3GPP TS 24.008)".

[10] 3GPP TS 24.011: "Point-to-Point (PP) Short Message Service (SMS); support on mobile radio interface".

[11] 3GPP TS 29.002: "Digital cellular telecommunications system (Phase 2+); Mobile Application Part (MAP) specification (3GPP TS 29.002)".

[12] 3GPP TS 29.060: "General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp Interface".

[13] 3GPP TS 32.250: "Telecommunication Management; Charging Circuit Switched (CS) domain".

[14] 3GPP TS 32.251: "Telecommunication Management; Charging Packet Switched (PS) domain".

[15] 3GPP TS 23.038: "Alphabets and language-specific information".

[16] 3GPP TS 23.172: "Technical realisation of Circuit Switched (CS) multimedia service UDI/RDI fallback and service modification; Stage 2".

[21] ETSI ES 201 296: "Integrated Services Digital Network (ISDN); Signalling System No.7; ISDN User Part (ISUP); Signalling aspects of charging”.

[22] ETSI ETS 300 287-1: "Integrated Services Digital Network (ISDN); Signalling System No.7; Transaction Capabilities (TC) version 2; Part 1: Protocol specification [ITU-T Recommendations Q.771 to Q.775 (1993), modified]”.

[23] ETSI EN 300 356-1: "Integrated Services Digital Network (ISDN); Signalling System No.7; ISDN User Part (ISUP) version 3 for the international interface; Part 1: Basic services [ITU-T Recommendations Q.761 to Q.764 (1997), modified]”.

[24] ETSI ETS 300 374-1: "Intelligent Network (IN); Intelligent Network Capability Set 1 (CS1); Core Intelligent Network Application Protocol (INAP); Part 1: Protocol specification”.

[25] ETSI EN 300 403-1: "Intelligent Network (IN); Intelligent Network Application Protocol (INAP); Capability Set 2 (CS2); Part 1: Protocol Specification”.

[26] – [40] (Void)

[41] ITU-T Recommendation Q.71: "ISDN circuit mode switched bearer services”.

[42] ITU-T Recommendation Q.713: "Specifications of Signalling System No.7; SCCP formats and codes”.


[44] ITU-T Recommendation Q.762: "General function of messages and signals of the ISDN user part of signalling system no.7”.

[45] ITU-T Recommendation Q.763: "Formats and codes of the ISDN user part of Signalling System No.7”.

[46] ITU-T Recommendation Q.773: "Specifications of Signalling System No.7; Transaction capabilities formats and encoding”.

[47] ITU-T Recommendation Q.850: "Usage of cause and location in the digital subscriber signalling system no.1 and the signalling system no.7 ISDN user part”.

[48] ITU-T Recommendation Q.932: "Digital subscriber Signalling System No.1 (DSS 1) - Generic procedures for the control of ISDN supplementary services”.


[50] ITU-T Recommendation Q.1224: "Distributed functional plane for intelligent network CS2”.


2.1 Specifications used for IMPORTS for CAP

The following table lists the modules from which CAP V4 imports. For each module, the table indicates in which formal specification this module can be found.

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Specification</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cs1-datatypes(2) version1(0)}</td>
<td>ETS 300 374-1</td>
<td>[24]</td>
</tr>
<tr>
<td>CS2-datatypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) in-cs2-datatypes(0) version1(0)}</td>
<td>EN 301 140-1</td>
<td>[26]</td>
</tr>
<tr>
<td>MAP-CommonDataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) gsm-Network(1) modules(3) map-CommonDataTypes(18) version12(12)}</td>
<td>3GPP TS 29.002</td>
<td>[11]</td>
</tr>
<tr>
<td>MAP-MS-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) gsm-Network(1) modules(3) map-MS-DataTypes(11) version12(12)}</td>
<td>3GPP TS 29.002</td>
<td>[11]</td>
</tr>
<tr>
<td>MAP-CH-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) gsm-Network(1) modules(3) map-CH-DataTypes(13) version12(12)}</td>
<td>3GPP TS 29.002</td>
<td>[11]</td>
</tr>
<tr>
<td>MAP-ExtensionDataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) gsm-Network(1) modules(3) map-ExtensionDataTypes(21) version12(12)}</td>
<td>3GPP TS 29.002</td>
<td>[11]</td>
</tr>
<tr>
<td>TCAPMessages {itu-t recommendation q 773 modules(2) messages(1) version3(3)}</td>
<td>ITU-T Q.773</td>
<td>[46]</td>
</tr>
<tr>
<td>Remote-Operations-Information-Objects {joint-iso-itu-t remote-operations(4) informationObjects(5) version1(0)}</td>
<td>ITU-T X.880</td>
<td>[58]</td>
</tr>
<tr>
<td>TC-Notation-Extensions {itu-t recommendation q 775 modules(2) notation-extension (4) version1(1)}</td>
<td>ETS 300 287-1</td>
<td>[22]</td>
</tr>
</tbody>
</table>
3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Application Context</td>
</tr>
<tr>
<td>AE</td>
<td>Application Entity</td>
</tr>
<tr>
<td>AEI</td>
<td>Application Entity Invocation</td>
</tr>
<tr>
<td>APDU</td>
<td>Application Protocol Data Unit</td>
</tr>
<tr>
<td>ASE</td>
<td>Application Service Element</td>
</tr>
<tr>
<td>ASN.1</td>
<td>Abstract Syntax Notation One</td>
</tr>
<tr>
<td>BCSM</td>
<td>Basic Call State Model</td>
</tr>
<tr>
<td>CAP</td>
<td>CAMEL Application Part</td>
</tr>
<tr>
<td>CCF</td>
<td>Call Control Function</td>
</tr>
<tr>
<td>CCITT</td>
<td>International Telegraph and Telephone Consultative Committee</td>
</tr>
<tr>
<td>CPH</td>
<td>Call Party Handling</td>
</tr>
<tr>
<td>CS1</td>
<td>Capability Set 1</td>
</tr>
<tr>
<td>CS2</td>
<td>Capability Set 2</td>
</tr>
<tr>
<td>CS</td>
<td>Call Segment</td>
</tr>
<tr>
<td>CSA</td>
<td>Circuit Switched</td>
</tr>
<tr>
<td>CSA</td>
<td>Call Segment Association</td>
</tr>
<tr>
<td>CSG</td>
<td>Closed Subscriber Group</td>
</tr>
<tr>
<td>CSG ID</td>
<td>Closed Subscriber Group Identity</td>
</tr>
<tr>
<td>CSI</td>
<td>CAMEL Subscription Information</td>
</tr>
<tr>
<td>CSID</td>
<td>Call Segment (followed by an identification Number e.g. CSID1)</td>
</tr>
<tr>
<td>DP</td>
<td>Detection Point</td>
</tr>
<tr>
<td>DSS1</td>
<td>Digital Subscriber Signalling System No. One</td>
</tr>
<tr>
<td>EDP</td>
<td>Event Detection Point</td>
</tr>
<tr>
<td>EDP-N</td>
<td>Event Detection Point - Notification</td>
</tr>
<tr>
<td>EDP-R</td>
<td>Event Detection Point - Request</td>
</tr>
<tr>
<td>EDS</td>
<td>Enhanced Dialled Services</td>
</tr>
<tr>
<td>FE</td>
<td>Functional Entity</td>
</tr>
<tr>
<td>FEAM</td>
<td>Functional Entity Access Manager</td>
</tr>
<tr>
<td>ffs</td>
<td>for further study</td>
</tr>
<tr>
<td>FSM</td>
<td>Finite State Model</td>
</tr>
<tr>
<td>gprsSSF</td>
<td>GPRS Service Switching Function</td>
</tr>
<tr>
<td>gsmSCF</td>
<td>GSM Service Control Function</td>
</tr>
<tr>
<td>gsmSRF</td>
<td>GSM Specialized Resource Function</td>
</tr>
<tr>
<td>gsmSSF</td>
<td>GSM Service Switching Function</td>
</tr>
<tr>
<td>GT</td>
<td>Global Title</td>
</tr>
<tr>
<td>ID</td>
<td>IDentifier</td>
</tr>
<tr>
<td>IN</td>
<td>Intelligent Network</td>
</tr>
<tr>
<td>INAP</td>
<td>Intelligent Network Application Protocol</td>
</tr>
<tr>
<td>IP</td>
<td>Intelligent Peripheral</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated Services Digital Network</td>
</tr>
<tr>
<td>ISUP</td>
<td>ISDN User Part</td>
</tr>
<tr>
<td>ITU-T</td>
<td>International Telecommunication Union – Telecommunication Standardization Sector</td>
</tr>
<tr>
<td>LE</td>
<td>Local Exchange</td>
</tr>
<tr>
<td>MACF</td>
<td>Multiple Association Control Function</td>
</tr>
<tr>
<td>MO</td>
<td>Mobile Originated</td>
</tr>
<tr>
<td>MS</td>
<td>Mobile Station</td>
</tr>
<tr>
<td>MSC</td>
<td>Mobile services Switching Centre</td>
</tr>
<tr>
<td>MT</td>
<td>Mobile Terminated</td>
</tr>
<tr>
<td>MTP</td>
<td>Message Transfer Part</td>
</tr>
<tr>
<td>NA</td>
<td>North American</td>
</tr>
<tr>
<td>O-BCSM</td>
<td>Originating BCSM</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Entity</td>
</tr>
<tr>
<td>PIA</td>
<td>Point In Association</td>
</tr>
<tr>
<td>PIC</td>
<td>Point In Call</td>
</tr>
<tr>
<td>PLMN</td>
<td>Public Land Mobile Network</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switched Telecommunication Network</td>
</tr>
</tbody>
</table>
4 Interface specification for telecommunication services

4.1 General

4.1.1 Definition methodology

The definition of the protocol can be split into three sections:

- the definition of the Single Association Control Function (SACF)/Multiple Association Control Function (MACF) rules for the protocol;
- the definition of the operations transferred between entities;
- the definition of the actions taken at each entity.

The SACF/MACF rules are defined in prose. The operation definitions are in Abstract Syntax Notation One (ASN.1). For details on ASN.1 refer to ITU-T Recommendation X.680 [53] and ITU-T Recommendation X.681 [54]. The actions are defined in terms of state transition diagrams. Further guidance on the actions to be performed on receipt of an operation can be gained from the description of the relevant information flow in ITU-T Recommendation Q.1224 [50].

The CAMEL Application Part (CAP) is a ROS Element (ROSE) user protocol. Refer to ITU-T Recommendation X.880 [58], ITU-T Recommendation X.881 [59] and ITU-T Recommendation X.882 [60] for Remote Operations. The ROSE protocol is contained within the component sublayer of Transaction Capabilities Application Part (TCAP) (see ETS 300 287-1 [22]) and Digital Subscriber Signalling System No One (DSS1) (see ITU-T Recommendation Q.932 [48]). At present, the ROSE Application Protocol Data Units (APDUs) are conveyed in transaction sublayer messages in Signalling System no. 7 (SS7) and in the EN 300 403-1 [25] REGISTER, FACILITY and call control messages in DSS1. Other supporting protocols may be added at a later date.
The CAP (as a ROSE user) and the ROSE protocol are specified in ASN.1, as defined in ITU-T Recommendation X.680 [53], ITU-T Recommendation X.681 [54], ITU-T Recommendation X.682 [55] and ITU-T Recommendation X.683 [56]. The encoding of the resulting Protocol Data Units (PDUs) shall be done in accordance with the Basic Encoding Rules as defined in ITU-T Recommendation X.690 [57].

4.1.2 Example physical scenarios

The reader is referred to Intelligent Network Capability Set 1 (CS1) Core INAP [24] for details of the example physical scenarios.
Scenario 2a, Connection to IP via an assisting gsmSSF with relay function; IP co-located with assisting gsmSSF (Ref. CS1 case c).

Figure 4-1/3: Scenarios

Scenario 2b, Connection to IP via an assisting gsmSSF with relay function; IP not co-located with assisting gsmSSF (Ref CS1 case c).

Figure 4-1/5: Scenarios
Scenario 3. Connection to IP with relay function; IP co-located with gsmSSF (Ref CS1 case a).

**Figure 4-1/6: Scenarios**

**Figure 4-1/7: Scenarios**

**Figure 4-1/8: Scenarios**
Scenario 4. Connection to IP with relay function; IP not co-located with gsmSSF (Ref CS1 case a).

Figure 4-1/9: Scenarios

Scenario 5. GPRS interworking. No connection to IP.

Figure 4-1/11: Scenarios

The following table summarises the scenarios and corresponding interface connections that shall be supported by the CAP protocol. The following terms used in the table are defined as follows:

- **Basic**: Fully defined in CAP and may be used between any two network operators supporting CAP.
Bilateral: Additional clarifications of CAP capabilities between network operators and/or equipment vendors are necessary in order for CAP to be used between any two network operators supporting CAP.

Direct: This refers to the case where CAP Operations are exchanged between the gsmSRF and the gsmSCF via a transaction-level relationship established directly between the gsmSRF and the gsmSCF.

Relay: This refers to the case where CAP Operations are exchanged between the gsmSRF and the gsmSCF via two transaction-layer relationships. These relationships are:

- gsmSCF to/from gsmSSF;
- gsmSSF to/from gsmSRF.

The gsmSSF sends operations it receives from the gsmSCF to the gsmSRF, and operations it receives from the gsmSRF to the gsmSCF. This is done without unpacking (and thus processing) of the relayed operations.

The gsmSSF function referred to in the table is always located in an MSC or GMSC.

The gprsSSF function referred to in the table is always located in an SGSN.
### Table 4-1

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Interface Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GsmSSF to/from gsmSCF</td>
</tr>
<tr>
<td>Scenario 1</td>
<td>See Note 1</td>
</tr>
<tr>
<td>gsmSRF in IP connected to gsmSSF in MSC or GMSC via ISUP and accessed by gsmSCF through direct Signalling System No.7 Connection</td>
<td></td>
</tr>
<tr>
<td>Scenario 2a</td>
<td>See Note 1</td>
</tr>
<tr>
<td>assisting gsmSSF in MSC or GMSC connected to gsmSSF in MSC or GMSC via ISUP. Assisting gsmSSF is accessed by gsmSCF through direct Signalling System No.7 Connection. gsmSRF is co-located with assisting gsmSSF and accessed (by gsmSCF) by relay via assisting gsmSSF over an internal nodal interface</td>
<td>For gsmSRF in VPLMN see Notes 4 and 6; For gsmSRF in HPLMN see note 5 and 6</td>
</tr>
<tr>
<td>Scenario 2b</td>
<td>See Note 1</td>
</tr>
<tr>
<td>assisting gsmSSF in MSC or GMSC connected to gsmSSF in MSC or GMSC via ISUP. Assisting gsmSSF is accessed by gsmSCF through direct Signalling System No.7 Connection gsmSRF is in IP connected to assisting gsmSSF and accessed (by gsmSCF) by relay through ISUP or DSS1 via assisting gsmSSF</td>
<td></td>
</tr>
<tr>
<td>Scenario 3</td>
<td>For gsmSRF in VPLMN see Notes 4; For gsmSRF in HPLMN see notes 5 and 6</td>
</tr>
<tr>
<td>gsmSRF is co-located with a gsmSSF in an MSC or GMSC and accessed by relay via gsmSSF over an internal nodal interface</td>
<td></td>
</tr>
<tr>
<td>Scenario 4</td>
<td>See Notes 4 and 6</td>
</tr>
<tr>
<td>gsmSRF in IP connected to gsmSSF and accessed by gsmSCF by relay through ISUP or DSS1 via gsmSSF</td>
<td></td>
</tr>
</tbody>
</table>

**NOTE 1**: Basic for establishment of interface when CorrelationID and SCFiD are transferred in the AssistingSSPIPRoutingAddress. Bilateral when CorrelationID and SCFiD are transferred by other means than in the AssistingSSPIPRoutingAddress.

**NOTE 2**: Basic for establishment of interface when CorrelationID and SCFiD are transferred in the Called Party Number. Bilateral when CorrelationID and SCFiD are transferred by other means than in the Called Party Number.

**NOTE 3**: Basic when the full Called Party Number received in VPLMN or HPLMN is transferred on its own in the AssistRequestInstructions operation CorrelationID parameter to a gsmSCF in HPLMN.
Bilateral when CorrelationID is extracted from Called Party Number in HPLMN or VPLMN and transferred on its own in AssistRequestInstructions CorrelationID field to a gsmSCF in HPLMN.

NOTE 4: Bilateral for the playing of announcements via elementaryMessageIDs and variableMessages, playing of tones and the collection of DTMF digits.

NOTE 5: Basic for the playing of announcements via elementaryMessageIDs and variableMessages, playing of tones and the collection of DTMF digits.

NOTE 6: Bilateral for the playing of announcements via text to speech translation, translation of DTMF digits via speech to caller and the translation of voice to digits.

4.1.3 CAP protocol architecture

Many of the terms used in the present subclause are based on the OSI application layer structure as defined in ISO 9545 (1989) [81].

The CAP protocol architecture is illustrated in figure 4-2.

A Physical Entity (PE) has either single interactions (case a) or multiple co-ordinated interactions (case b) with another PE.

In case (a), SACF provides a co-ordination function in using Application Service Elements (ASEs), which includes the ordering of operations supported by ASE(s), in the order of received primitives. The Single Association Object (SAO) represents the SACF plus a set of ASEs to be used over a single interaction between a pair of PEs.

In case (b), MACF provides a co-ordinating function among several SAO's, each of which interacts with an SAO in a remote PE.

Each ASE supports one or more operations. Description of each operation is tied with the action of corresponding Functional Entity (FE) modelling. For FE modelling, refer to ITU-T Recommendation Q.1224 [50] and clause 11 of the present document. Each operation is specified using the OPERATION macro described in figure 4-3.

NOTE: CAP is the collection of all specifications in ASEs.

Figure 4-2: CAP protocol architecture
### 4.1.4 Compatibility mechanisms used for CAP

#### 4.1.4.1 Introduction

The present subclause specifies the compatibility mechanisms that shall be used for CAP.

Two major categories of compatibility are handled by these mechanisms:

- compatibility with the ITU-T Recommendation Q.1228 [51] version of CS2 INAP and the specification EN 301 140-1 version of CS2 INAP [26];

- compatibility with future versions of CAP.

The second category has three subcategories of compatibility dealt with within the present subclause:

- Minor changes to CAP in future versions of CAP:
  A minor change can be defined as a change of a functionality which is not essential for the requested IN service. Where it is a modification of an existing function, it is acceptable that the addressed function is executed in either the older or the modified variant. If the change is purely additional, then it is acceptable that it is not executed at all and that the peer Application Entity (AE) need not know about the effects of the change. For minor changes, a new Application Context is not required.

- Major changes to CAP in future versions of CAP:
  A major change can be defined as a change of a functionality which is essential for the requested IN service. Where it is a modification of an existing function, both application entities shall have a shared knowledge about the addressed functional variant. If the change is purely additional and one of the application entities does not support the additional functionality, then the requested IN service will not be provided. For major changes, a new Application Context is required.
Network-specific changes to CAP:
These additions may be of either the major or minor type for a service. No new Application Context is expected to be defined for this type of change. At the time of definition of these network-specific changes to CAP, the additions would not be expected to be included in identical form in future versions of CAP.

4.1.4.2 Definition of CAP compatibility mechanisms

4.1.4.2.1 Compatibility mechanism for interworking of CAP with ETSI CS2 Core INAP and ITU-T Q.1228 INAP

On receipt of an operation according to ITU-T Recommendation Q.1228 [51] or an operation according to ETSI EN 301 140-1 [26], which is not part of the CAP or is part of the CAP but which contains parameters which are not part of the CAP:

- the gsmSSF, gsmSCF, assisting gsmSSF and gsmSRF shall apply the normal error handling for unknown operations or parameters, i.e. the normal error handling procedures as specified in clause 10 shall be followed.

Tagging of CAP additions to ITU-T Recommendation Q.1228 [51] and ETSI EN 301 140-1 [26] are specified from 50 to 59.

4.1.4.2.2 Procedures for major additions to CAP

In order to support the introduction of major functional changes, the protocol allows a synchronisation between the two applications with regard to which functionality is to be performed. This synchronisation takes place before the new function is invoked in either application entity, in order to avoid complicated fall-back procedures.

4.1.4.2.3 Procedures for minor additions to CAP

The extension mechanism marker shall be used for future standardised minor additions to CAP. This mechanism implements extensions by including an "extensions marker" in the type definition. The extensions are expressed by optional fields that are placed after the marker. When an entity receives unrecognised parameters that occur after the extension marker, they are ignored. Refer to ITU-T Recommendation X.680 [53] for further details on the extension mechanism.

4.1.4.2.4 Procedures for inclusion of network specific additions to CAP

This mechanism is based on the ability to explicitly declare fields of any type via the Macro facility in ASN.1 at the outermost level of a type definition. It works by defining an "ExtensionField" that is placed within the type definition. This extension field is defined as a set of extensions, where an extension can contain any type. Each extension is associated with an identification that unambiguously identifies the extension. Refer to ITU-T Recommendation Q.1400 [52] for a definition of this mechanism.

4.1.5 Definition and usage of LegID

4.1.5.1 Definition of LegID

In CAP V4, two types of LegID may be exchanged between the gsmSCF and the gsmSSF. These are:

- Sending Side LegID; and
- Receiving Side LegID.

Sending Side LegID is always used in operations sent from the gsmSCF to the gsmSSF, and Receiving Side LegID is always used in operations sent from the gsmSSF to the gsmSCF.
4.1.5.2 Allocation of LegID

For all operations containing a LegID:

- LegID = 1 shall always refer to the Calling Party, more specifically that party in the call present when InitialDP is sent to the gsmSCF;

- LegID = 2 shall always refer to a Called Party, more specifically a party in the call created as a result of the InitialDP operation, followed by the Connect, Continue or ContinueWithArgument operation.

- LegID > 2 shall always refer to a Called Party, more specifically a party in the call created as a result of the InitiateCallAttempt operation, followed by the ContinueWithArgument operation.

4.2 SACF/MACF rules

4.2.1 Reflection of TC AC

TC AC negotiation rules require that the proposed AC, if acceptable, is reflected in the first backwards message.

NOTE: If the gsmSSF, gprsSSF or smsSSF provides an AC which is not acceptable to the gsmSCF, then an alternate AC shall not be returned. If the AC presented to the gsmSCF is not acceptable, then this is most probably due to an error in subscriber data provisioning or an error at the gsmSSF, gprsSSF or smsSSF.

4.2.2 Sequential/parallel execution of operations

In some cases it may be necessary to distinguish whether operations should be performed sequentially or in parallel (synchronised). Operations which may be synchronised are:

- charging operations; may be synchronised with any other operation(s).

The method of indicating to the receiving entity that operations should be synchronised is to transmit these operations in a single TC message. If one of the operations identified above shall not be executed until the execution of another operation has progressed to a certain extent or has finished, then the sending PE shall control this by sending the operations in two separate TC messages.

This method does not imply that all operations sent in a single TC message shall be executed simultaneously, but that where it could make sense to do so (in the situations identified above) the operations should be synchronised.

In the case of inconsistency between the above-mentioned generic rules and the FE-specific rules, as specified in clause 9, the FE-specific rules take precedence over the generic rules.

5 Common CAP Types

5.1 Data types

CAP-datatypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-datatypes(52) version8(7)}

DEFINITIONS IMPLICIT TAGS ::= BEGIN

IMPORTS

Duration, Integer4, Interval, LegID, ServiceKey
FROM CS1-DataTypes {itu-t(0) identified-organization(4) etsi(0) inDomain(1) in-network(1) modules(0) cs1-datatypes(2) version1(0)}

BothwayThroughConnectionInd, CriticalityType, MiscCallInfo
FROM CS2-datatypes {itu-t(0) identified-organization(4) etsi(0) inDomain(1) in-network(1) cs2(20) modules(0) in-cs2-datatypes(0) version1(0)}
  AddressString,
  CellGlobalIdOrServiceAreaIdFixedLength,
  Ext-BasicServiceCode,
  IMSI,
  ISDN-AddressString,
  LAIFixedLength,
  NAEA-CIC
FROM MAP-CommonDataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) gsm-Network(1) modules(3) map-CommonDataTypes(18) version12(12)}
  Ext-QoS-Subscribed,
  Ext2-QoS-Subscribed,
  Ext3-QoS-Subscribed,
  GeographicalInformation,
  GSN-Address,
  LocationInformation,
  LSAIdentity,
  QoS-Subscribed,
  RAIdentity,
  SubscriberState,
  GPRSChargingID
FROM MAP-MS-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) gsm-Network(1) modules(3) map-MS-DataTypes(11) version12(12)}
  CallReferenceNumber,
  SuppressionOfAnnouncement
FROM MAP-CH-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) gsm-Network(1) modules(3) map-CH-DataTypes(13) version12(12)}
  tc-Messages,
  classes
FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}
  EXTENSION,
  PARAMETERS-BOUND,
  SupportedExtensions
FROM CAP-classes classes
  ExtensionContainer
FROM MAP-ExtensionDataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) gsm-Network(1) modules(3) map-ExtensionDataTypes(21) version12(12)}

; AccessPointName {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minAccessPointNameLength .. bound.&maxAccessPointNameLength))
-- Indicates the AccessPointName, refer to 3GPP TS 24.008 [9] for the encoding.
-- It shall be coded as in the value part defined in 3GPP TS 24.008,
-- i.e. the 3GPP TS 24.008 IEI and 3GPP TS 24.008 octet length indicator
-- shall not be included.
AChBillingChargingCharacteristics {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minAChBillingChargingLength .. bound.&maxAChBillingChargingLength))
  (CONSTRAINED BY {-- shall be the result of the BER-encoded value of the type --
    CAMEL-AChBillingChargingCharacteristics {bound}})
-- The AChBillingChargingCharacteristics parameter specifies the charging related information
-- to be provided by the gsmSSF and the conditions on which this information has to be reported
-- back to the gsmSCF with the ApplyChargingReport operation. The value of the
-- AChBillingChargingCharacteristics of type OCTET STRING carries a value of the ASN.1 data type:
-- CAMEL-AChBillingChargingCharacteristics. The normal encoding rules are used to encode this
-- value.
-- The violation of the UserDefinedConstraint shall be handled as an ASN.1 syntax error.
AChBillingAddress {PARAMETERS-BOUND : bound} ::= CHOICE {
  legID    [2] LegID,
  srfConnection  [50] CallSegmentID {bound}
}
AdditionalCallingPartyNumber {PARAMETERS-BOUND : bound} ::= Digits {bound}
-- Indicates the Additional Calling Party Number.
AlertingPattern ::= OCTET STRING (SIZE(3))
-- Indicates a specific pattern that is used to alert a subscriber
-- (e.g. distinctive ringing, tones, etc.).
-- The encoding of this parameter is as defined in 3GPP TS 29.002 [11].
-- Only the trailing OCTET is used, the remaining OCTETS shall be sent as NULL (zero)
-- The receiving side shall ignore the leading two OCTETS.
AOCBeforeAnswer ::= SEQUENCE {
  aOCInitial       [0] CAI-GSM0224,
  aOCSubsequent    [1] AOCSubsequent OPTIONAL
}
AOCGPRS ::= SEQUENCE {
    aOCInitial [0] CAI-GSM0224,
    aOCSubsequent [1] AOCSubsequent OPTIONAL
}

AOCSubsequent ::= SEQUENCE {
    cAI-GSM0224 [0] CAI-GSM0224,
    tariffSwitchInterval [1] INTEGER (1..86400) OPTIONAL
} -- tariffSwitchInterval is measured in 1 second units

AppendFreeFormatData ::= ENUMERATED {
    overwrite (0),
    append (1)
}

ApplicationTimer ::= INTEGER (0..2047)
-- Used by the gsmSCF to set a timer in the gsmSSF. The timer is in seconds.

AssistingSSPIPRoutingAddress {PARAMETERS-BOUND : bound} ::= Digits (bound)
-- Indicates the destination address of the gsmSRF for the assist procedure.

AudibleIndicator ::= CHOICE {
    tone BOOLEAN,
    burstList [1] BurstList
}

BackwardServiceInteractionInd ::= SEQUENCE {
    conferenceTreatmentIndicator [1] OCTET STRING (SIZE(1)) OPTIONAL,
    -- acceptConferenceRequest 'xxxx xx01'B
    -- rejectConferenceRequest 'xxxx xx10'B
    -- if absent from Connect or ContinueWithArgument,
    -- then CAMEL service does not affect conference treatment
    callCompletionTreatmentIndicator [2] OCTET STRING (SIZE(1)) OPTIONAL,
    -- acceptCallCompletionServiceRequest 'xxxx xx01'B,
    -- rejectCallCompletionServiceRequest 'xxxx xx10'B
    -- if absent from Connect or ContinueWithArgument,
    -- then CAMEL service does not affect call completion treatment
    ...
}

BasicGapCriteria {PARAMETERS-BOUND : bound} ::= CHOICE {
    calledAddressValue [0] Digits (bound),
    calledAddressAndService [29] SEQUENCE {
        calledAddressValue [0] Digits (bound),
        serviceKey [1] ServiceKey,
        ...
    },
    callingAddressAndService [30] SEQUENCE {
        callingAddressValue [0] Digits (bound),
        serviceKey [1] ServiceKey,
        ...
    }
} -- Both calledAddressValue and callingAddressValue can be
-- incomplete numbers, in the sense that a limited amount of digits can be given.
-- For the handling of numbers starting with the same digit string refer to the detailed
-- procedure of the CallGap operation

BCSMEvent{PARAMETERS-BOUND : bound} ::= SEQUENCE {
    eventTypeBCSM [0] EventTypeBCSM,
    monitorMode [1] MonitorMode,
    legID [2] LegID OPTIONAL,
    dpSpecificCriteria [30] DpSpecificCriteria (bound) OPTIONAL,
    automaticRearm [50] NULL OPTIONAL,
    ...
} -- Indicates the BCSM Event information for monitoring.

BCSM-Failure {PARAMETERS-BOUND : bound} ::= SEQUENCE {
    legID [0] LegID OPTIONAL,
    cause [2] Cause (bound) OPTIONAL,
    ...
}

BearerCapability {PARAMETERS-BOUND : bound} ::= CHOICE {
    bearerCap [0] OCTET STRING (SIZE(2..bound.&maxBearerCapabilityLength))
} -- Indicates the type of bearer capability connection to the user. For bearerCap, the ISUP User
-- Service Information, ETSI EN 300 356-1 [23]
-- encoding shall be used.

Burst ::= SEQUENCE {
    numberOfBursts [0] INTEGER (1..3) DEFAULT 1,
    burstInterval [1] INTEGER (1..1200) DEFAULT 2,
    numberOfTonesInBurst [2] INTEGER (1..3) DEFAULT 3,
-- burstInterval, toneDuration and toneInterval are measured in 100 millisecond units

BurstList ::= SEQUENCE {
  warningPeriod [0] INTEGER (1..1200) DEFAULT 30,
  bursts [1] Burst,
  ...
}

-- warningPeriod is measured in 1 second units.

CAI-GSM0224 ::= SEQUENCE {
  e1 [0] INTEGER (0..8191) OPTIONAL,
  e2 [1] INTEGER (0..8191) OPTIONAL,
  e3 [2] INTEGER (0..8191) OPTIONAL,
  e4 [3] INTEGER (0..8191) OPTIONAL,
  e5 [4] INTEGER (0..8191) OPTIONAL,
  e6 [5] INTEGER (0..8191) OPTIONAL,
  e7 [6] INTEGER (0..8191) OPTIONAL
}

-- Indicates Charge Advice Information to the Mobile Station. For information regarding
-- parameter usage, refer to 3GPP TS 22.024 [2].

CalledPartyBCDNumber {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minCalledPartyBCDNumberLength .. bound.&maxCalledPartyBCDNumberLength))

-- Indicates the Called Party Number, including service selection information.
-- Refer to 3GPP TS 24.008 [9] for encoding.
-- This data type carries only the 'type of number', 'numbering plan'
-- identification' and 'number digit' fields defined in 3GPP TS 24.008 [9];
-- it does not carry the 'called party BCD number IEI' or 'length of called
-- party BCD number contents'.
-- In the context of the DestinationSubscriberNumber field in ConnectSMSArg or
-- InitialDPSMSArg, a CalledPartyBCDNumber may also contain an alphanumeric
-- character string. In this case, type-of-number '101'B is used, in accordance
-- with 3GPP TS 23.040 [6]. The address is coded in accordance with the
-- GSM 7-bit default alphabet definition and the SMS packing rules

CalledPartyNumber {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minCalledPartyNumberLength .. bound.&maxCalledPartyNumberLength))

-- Indicates the Called Party Number. Refer to ETSI EN 300 356-1 [23] for encoding.
-- A CalledPartyNumber may contain national-specific values of the Nature Of Address
-- indicator. The filling-in of the national-specific Nature Of Address indicator
-- values shall be done in accordance with the national ISUP of the gsmSSF country, e.g.
-- ANSI T1.113-1995 [92].
-- In terms of ETS EN 300 356-1 [23], the Destination Address Field is not present if the
-- destination address length is set to zero. This is the case e.g. when the ANSI
-- ISUP Nature Of Address indicator indicates no number present, operator requested
-- (1110100) or no number present, cut-through call to carrier (1110101).
-- See also see 3GPP TS 23.078 [7].

CallingPartyNumber {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minCallingPartyNumberLength .. bound.&maxCallingPartyNumberLength))

-- Indicates the Calling Party Number. Refer to ETSI EN 300 356-1 [23] for encoding.

CallResult {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minCallResultLength .. bound.&maxCallResultLength))

(CONSTRAINED BY {-- shall be the result of the BER-encoded value of type -
  CAMEL-CallResult (bound)})

-- The violation of the UserDefinedConstraint shall be handled as an ASN.1 syntax error.
-- This parameter provides the gsmSCF with the charging related information previously requested
-- using the ApplyCharging operation. This shall include the partyToCharge parameter as
-- received in the related ApplyCharging operation to correlate the result to the request

CallSegmentFailure {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  callSegmentID [0] CallSegmentID (bound) OPTIONAL,
  cause [2] Cause (bound) OPTIONAL,
  ...
}

CallSegmentID {PARAMETERS-BOUND : bound} ::= INTEGER (1..bound.&numOfCSs)

CallSegmentToCancel {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  invokeID [0] InvokeID OPTIONAL,
  callSegmentID [1] CallSegmentID (bound) OPTIONAL,
  ...
}

CAMEL-AChBillingChargingCharacteristics {PARAMETERS-BOUND : bound} ::= CHOICE {
  timeDurationCharging [0] SEQUENCE {
    maxCallPeriodDuration [0] INTEGER (1..864000),
    releaseIfdurationExceeded [1] BOOLEAN DEFAULT FALSE,
  }
  ...
}
tariffSwitchInterval [2] INTEGER (1..86400) OPTIONAL,
audibleIndicator [3] AudibleIndicator DEFAULT tone: FALSE,
extensions [4] Extensions (bound) OPTIONAL,
...
}  
-- tariffSwitchInterval is measured in 1 second units.
-- maxCallPeriodDuration is measured in 100 millisecond units

CAMEL-CallResult (PARAMETERS-BOUND : bound) ::= CHOICE {
timeDurationChargingResult [0] SEQUENCE {
    partyToCharge [0] ReceivingSideID,
timeInformation [1] TimeInformation,
    legActive [2] BOOLEAN DEFAULT TRUE,
callLegReleasedAtTcpExpiry [3] NULL OPTIONAL,
extensions [4] Extensions (bound) OPTIONAL,
    achChargingAddress [5] AChChargingAddress (bound)
        DEFAULT legID:receivingSideID:leg1,
...

}}

CAMEL-FCIBillingChargingCharacteristics (PARAMETERS-BOUND : bound) ::= CHOICE{
    fCIBCCAMELsequence1 [0] SEQUENCE {
        freeFormatData [0] OCTET STRING (SIZE(bound.&minFCIBillingChargingDataLength .. bound.&maxFCIBillingChargingDataLength)),
        partyToCharge [1] SendingSideID DEFAULT sendingSideID: leg1,
        appendFreeFormatData [2] AppendFreeFormatData DEFAULT overwrite,
...

}}

CAMEL-FCIGPRSBillingChargingCharacteristics (PARAMETERS-BOUND : bound) ::= SEQUENCE{
    fCIBCCAMELsequence1 [0] SEQUENCE {
        freeFormatData [0] OCTET STRING (SIZE(bound.&minFCIBillingChargingDataLength .. bound.&maxFCIBillingChargingDataLength)),
pDPID [1] PDPID OPTIONAL,
        appendFreeFormatData [2] AppendFreeFormatData DEFAULT overwrite,
...

}}

CAMEL-FCISMSBillingChargingCharacteristics (PARAMETERS-BOUND : bound) ::= CHOICE{
    fCIBCCAMELsequence1 [0] SEQUENCE {
        freeFormatData [0] OCTET STRING (SIZE(bound.&minFCIBillingChargingDataLength .. bound.&maxFCIBillingChargingDataLength)),
        appendFreeFormatData [1] AppendFreeFormatData DEFAULT overwrite
...

}}

CAMEL-SCIBillingChargingCharacteristics ::= CHOICE {
aOCBeforeAnswer [0] AOCBeforeAnswer,
aOCAfterAnswer [1] AOCSuccess,
...

}

CAMEL-SCIBillingChargingCharacteristicsAlt ::= SEQUENCE {
...

}  
-- This datatype is for extension in future releases.

CAMEL-SCIGPRSBillingChargingCharacteristics ::= SEQUENCE {
aOCGPRS [0] AOCGPRS,
pDPID [1] PDPID OPTIONAL,
...

}}

Carrier (PARAMETERS-BOUND : bound) ::= OCTET STRING (SIZE(bound.&minCarrierLength .. bound.&maxCarrierLength))
-- This parameter is used for North America (na) only.
-- It contains the carrier selection field (first octet) followed by Carrier ID
-- information (North America (na)).
-- The Carrier selection is one octet and is encoded as:
-- 00000000  No indication
-- 00000001  Selected carrier identification code (CIC) pre subscribed and not
--           input by calling party
-- 00000010  Selected carrier identification code (CIC) pre subscribed and input by
--           calling party
-- 00000011  Selected carrier identification code (CIC) pre subscribed, no
--           indication of whether input by calling party (undetermined)
-- 00000100  Selected carrier identification code (CIC) not pre subscribed and
--           input by calling party
-- 00000101  to  Spare
-- 11111110  to  Reserved
-- Refer to ANSI T1.113-1995 [92] for encoding of na carrier ID information (3 octets).

Cause (PARAMETERS-BOUND : bound) ::= OCTET STRING (SIZE(
  bound.&minCauseLength .. bound.&maxCauseLength))
-- Indicates the cause for interface related information.
-- Refer to ETSI EN 300 356-1 [23] Cause parameter for encoding.
-- For the use of cause and location values refer to ITU-T Recommendation Q.850 [47]
-- Shall always include the cause value and shall also include the diagnostics field,
-- if available.

CGEncountered ::= ENUMERATED {
  noCGencountered      (0),
  manualCGencountered     (1),
  scpOverload       (2)
}
-- Indicates the type of automatic call gapping encountered, if any.

ChangeOfPositionControlInfo (PARAMETERS-BOUND : bound) ::= SEQUENCE SIZE (1..bound.&numOfChangeOfPositionControlInfo) OF ChangeOfLocation {bound}

ChangeOfLocation (PARAMETERS-BOUND : bound) ::= CHOICE {
  cellGlobalId      [0] CellGlobalIdOrServiceAreaIdFixedLength,
  serviceAreaId      [1] CellGlobalIdOrServiceAreaIdFixedLength,
  locationAreaId      [2] LAIFixedLength,
  inter-SystemHandOver    [3] NULL,
  inter-PLMNHandOver     [4] NULL,
  inter-MSCHandOver     [5] NULL,
  changeOfLocationAlt     [6] ChangeOfLocationAlt {bound}
}
-- The cellGlobalId shall contain a Cell Global Identification.
-- The serviceAreaId shall contain a Service Area Identification.

ChangeOfLocationAlt (PARAMETERS-BOUND : bound) ::= SEQUENCE {
  ...
}

ChargeIndicator ::= OCTET STRING (SIZE (1))
-- As specified in ITU-T Recommendation Q.763 as follows:
-- no indication 'xxxx xx00'B
-- no charge  'xxxx xx01'B
-- charge    'xxxx xx10'B
-- spare     'xxxx xx11'B
-- Sending entity shall fill the upper six bits with '0's.
-- Receiving entity shall ignore the upper six bits.

ChargeNumber (PARAMETERS-BOUND : bound) ::= LocationNumber {bound}
-- Information sent in either direction indicating the chargeable number for the call and
-- consisting of the odd/even indicator, nature of address indicator, numbering plan indicator,
-- and address signals.
-- Uses the LocationNumber format which is based on the Location Number format as defined
-- in ITU-T Recommendation Q.763 [45].
-- For example, the ChargeNumber may be a third party number to which a call is billed for
-- the 3rd party billing service. In this case, the calling party may request operator assistance
-- to charge the call to, for example, their home number.
-- For NA, this parameter uniquely identifies the chargeable number for a call sent into a North
-- American long distance carrier. It transports the ChargeNumber Parameter Field as defined in
-- ANSI T1.113-1995 [92]. This provides
-- - 1 octet for the nature of address indicator field, plus
-- - 1 octet for a numbering plan field, plus
-- - up to 5 octets for the address signal (up to 10 digits)
-- The Charge Number in ANSI T1.113-1995 [92] normally contains a 10 digit national number within
-- the North American Numbering Plan (NANP); longer (e.g. international) charge numbers are not
-- supported in ANSI T1.113-1995 [92].

ChargingCharacteristics ::= CHOICE {
  maxTransferredVolume    [0] INTEGER (1..4294967295),
  maxElapsedTime      [1] INTEGER (1..86400)
}
-- maxTransferredVolume is measured in number of bytes
-- maxElapsedTime is measured in seconds

ChargingResult ::= CHOICE {
  transferredVolume     [0] TransferredVolume,
  elapsedTime       [1] ElapsedTime
}

ChargingRollOver ::= CHOICE {
  transferredVolumeRollOver   [0] TransferredVolumeRollOver,
  elapsedTimeRollOver     [1] ElapsedTimeRollOver
}
-- transferredVolumeRollOver shall be reported if ApplyChargingReportGPRS reports volume and
-- a roll-over has occurred in one or more volume counters. Otherwise, it shall be absent.
-- elapsedTimeRollOver shall be reported if ApplyChargingReportGPRS reports duration and
-- a roll-over has occurred in one or more duration counters. Otherwise, it shall be absent.

CollectedDigits ::= SEQUENCE {
  ...
}
minimumNbOfDigits [0] INTEGER (1..30) DEFAULT 1,
maximumNbOfDigits [1] INTEGER (1..30),
endOfReplyDigit [2] OCTET STRING (SIZE (1..2)) OPTIONAL,
cancelDigit [3] OCTET STRING (SIZE (1..2)) OPTIONAL,
startDigit [4] OCTET STRING (SIZE (1..2)) OPTIONAL,
firstDigitTimeOut [5] INTEGER (1..127) OPTIONAL,
interDigitTimeOut [6] INTEGER (1..127) OPTIONAL,
errorTreatment [7] ErrorTreatment DEFAULT stdErrorAndInfo,
interruptableAnnInd [8] BOOLEAN DEFAULT TRUE,
voiceInformation [9] BOOLEAN DEFAULT FALSE,
voiceBack [10] BOOLEAN DEFAULT FALSE

-- The use of voiceBack and the support of voice recognition via voiceInformation
-- is network operator specific.
-- The endOfReplyDigit, cancelDigit, and startDigit parameters have been
-- designated as OCTET STRING, and are to be encoded as BCD, one digit per octet
-- only, contained in the four least significant bits of each OCTET. The following encoding shall
-- be applied for the non-decimal characters:
-- 1011 (*), 1100 (#).
-- The usage is service dependent.
-- firstDigitTimeOut and interDigitTimeOut are measured in seconds.

CollectedInfo ::= CHOICE {
  collectedDigits [0] CollectedDigits
}

ConnectedNumberTreatmentInd ::= ENUMERATED {
  noINImpact (0),
  presentationRestricted (1),
  presentCalledINNumber (2),
  presentCallINNumberRestricted (3)
}

-- This parameter is used to suppress or to display the connected number.

ControlType ::= ENUMERATED {
  sCPOverloaded (0),
  manuallyInitiated (1)
}

CompoundCriteria {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  basicGapCriteria [0] BasicGapCriteria {bound},
  scfID [1] ScfID {bound} OPTIONAL
}

CorrelationID {PARAMETERS-BOUND : bound} ::= Digits {bound}
-- used by gsmSCF for correlation with a previous operation.

DateAndTime ::= OCTET STRING (SIZE(7))
-- DateAndTime is BCD encoded. The year digit indicating millenium occupies bits
-- 0-3 of the first octet, and the year digit indicating century occupies bits
-- 4-7 of the first octet.
-- The year digit indicating decade occupies bits 0-3 of the second octet,
-- whilst the digit indicating the year within the decade occupies bits 4-7 of
-- the second octet.
-- The most significant month digit occupies bits 0-3 of the third octet,
-- and the least significant month digit occupies bits 4-7 of the third octet.
-- The most significant day digit occupies bits 0-3 of the fourth octet,
-- and the least significant day digit occupies bits 4-7 of the fourth octet.
-- The most significant hours digit occupies bits 0-3 of the fifth octet,
-- and the least significant hours digit occupies bits 4-7 of the fifth octet.
-- The most significant minutes digit occupies bits 0-3 of the sixth octet,
-- and the least significant minutes digit occupies bits 4-7 of the sixth octet.
-- The most significant seconds digit occupies bits 0-3 of the seventh octet,
-- and the least significant seconds digit occupies bits 4-7 of the seventh octet.
-- For the encoding of digits in an octet, refer to the timeAndtimezone parameter.

DestinationRoutingAddress {PARAMETERS-BOUND : bound} ::= SEQUENCE SIZE(1) OF
  CalledPartyNumber {bound}
-- Indicates the Called Party Number.

Digits {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE{
  bound.&minDigitsLength .. bound.&maxDigitsLength})
-- Indicates the address signalling digits.
-- Refer to ETSI EN 300 356-1 [23] Generic Number & Generic Digits parameters for encoding.
-- The coding of the subfields 'NumberQualifier' in Generic Number and 'TypeOfDigits' in
-- Generic Digits are irrelevant to the CAP;
-- the ASN.1 tags are sufficient to identify the parameter.
-- The ISUP format does not allow to exclude these subfields,
-- therefore the value is network operator specific.
-- The following parameters shall use Generic Number:
-- - AdditionalCallingPartyNumber for InitialDP
-- - AssistingSSIPRoutingAddress for EstablishTemporaryConnection
-- - CorrelationID for AssistRequestInstructions
-- - CalledAddressValue for all occurrences, CallingAddressValue for all occurrences.
-- The following parameters shall use Generic Digits:
-- - CorrelationID in EstablishTemporaryConnection
-- - number in VariablePart
(digitsResponse in ReceivedInformationArg
-- midCallEvents in oMidCallSpecificInfo and tMidCallSpecificInfo
-- In the digitsResponse and midCallEvents, the digits may also include the '*', '#',
-- a, b, c and d digits by using the IA5 character encoding scheme. If the BCD even or
-- BCD odd encoding scheme is used, then the following encoding shall be applied for the
-- non-decimal characters: 1011 (*), 1100 (#).
-- AssistingSSPIPRoutingAddress in EstablishTemporaryConnection and CorrelationID in
-- AssistRequestInstructions may contain a Hex B digit as address signal. Refer to
-- Annex A.6 for the usage of the Hex B digit.
-- Note that when CorrelationID is transported in Generic Digits, then the digits shall
-- always be BCD encoded.

DpSpecificCriteria {PARAMETERS-BOUND : bound} ::= CHOICE {
  applicationTimer     [1] ApplicationTimer,
  midCallControlInfo     [2] MidCallControlInfo,
  dpSpecificCriteriaAlt    [3] DpSpecificCriteriaAlt {bound}
}
-- Exception handling: reception of DpSpecificCriteriaAlt shall be treated like
-- reception of no DpSpecificCriteria.
-- The gsmSCF may set a timer in the gsmSSF for the No_Answer event.
-- If the user does not answer the call within the allotted time,
-- then the gsmSSF reports the event to the gsmSCF.
-- The gsmSCF may define a criterion for the detection of DTMF digits during a call.
-- The gsmSCF may define other criteria in the dpSpecificCriteriaAlt alternative
-- in future releases.

DpSpecificCriteriaAlt {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  changeOfPositionControlInfo   [0] ChangeOfPositionControlInfo {bound} OPTIONAL,
  numberOfDigits      [1] NumberOfDigits       OPTIONAL,
  interDigitTimeout     [2] INTEGER (1..127)      OPTIONAL
}
-- interDigitTimeout    duration in seconds.

DpSpecificInfoAlt {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  oServiceChangeSpecificInfo   [0] SEQUENCE {
    ext-basicServiceCode    [0] Ext-BasicServiceCode    OPTIONAL,
    ...,
    initiatorOfServiceChange   [1] InitiatorOfServiceChange   OPTIONAL,
  } OPTIONAL,
  tServiceChangeSpecificInfo   [1] SEQUENCE {
    ext-basicServiceCode    [0] Ext-BasicServiceCode    OPTIONAL,
    ...,
    initiatorOfServiceChange   [1] InitiatorOfServiceChange   OPTIONAL,
  } OPTIONAL,
  collectedInfoSpecificInfo   [2] SEQUENCE {
    calledPartyNumber     [0] CalledPartyNumber     OPTIONAL,
    ...,
  } OPTIONAL
}
-- This datatype is for extension in future releases.

ElapsedTime ::= CHOICE {
  timeGPRSIfNoTariffSwitch   [0] INTEGER (0..86400),
  timeGPRSIfTariffSwitch     [1] SEQUENCE {
    timeGPRSSinceLastTariffSwitch  [0] INTEGER (0..86400),
    timeGPRSTariffSwitchInterval  [1] INTEGER (0..86400)     OPTIONAL
  }
}
-- timeGPRSIfNoTariffSwitch is measured in seconds
-- timeGPRSSinceLastTariffSwitch and timeGPRSTariffSwitchInterval are measured in seconds

ElapsedTimeRollOver ::= CHOICE {
  rO-TimeGPRSIfNoTariffSwitch   [0] INTEGER (0..255),
  rO-TimeGPRSSinceLastTariffSwitch     [1] SEQUENCE {
    rO-TimeGPRSSinceLastTariffSwitch  [0] INTEGER (0..255),
    rO-TimeGPRSTariffSwitchInterval  [1] INTEGER (0..255)     OPTIONAL
  }
}
-- rO-TimeGPRSIfNoTariffSwitch, rO-TimeGPRSSinceLastTariffSwitch and
-- rO-TimeGPRSTariffSwitchInterval
-- present counters indicating the number of parameter range rollovers.

EndUserAddress {PARAMETERS-BOUND: bound} ::= SEQUENCE {
  pDPTypeOrganization     [0] OCTET STRING (SIZE(1)),
  pDPTypeNumber      [1] OCTET STRING (SIZE(1)),
  pDAddress       [2] OCTET STRING (SIZE(bound.&minPDPAddressLength .. bound.&maxPDPAddressLength))     OPTIONAL
}
--- Indicates the EndUserAddress, refer to 3GPP TS 29.060 [12] for the encoding.
--- The pDPTypeOrganization shall use the least significant 4 bits of the octet encoded.
--- The sender of this parameter shall set the most significant 4 bits of the octet to 1.
--- The receiver of this parameter shall ignore the most significant 4 bits of this octet.

ErrorTreatment ::= ENUMERATED {
  stdErrorAndInfo      (0),
  help        (1),
  repeatPrompt      (2)
}

-- stdErrorAndInfomeans returning the 'ImproperCallerResponse' error in the event of an error
-- condition during collection of user info.

EventSpecificInformationBCSM {PARAMETERS-BOUND : bound} ::= CHOICE {
  routeSelectFailureSpecificInfo   [2] SEQUENCE (failureCause [0] Cause {bound} OPTIONAL, .. ),
  oCalledPartyBusySpecificInfo     [3] SEQUENCE (busyCause [0] Cause {bound} OPTIONAL, .. ),
  oNoAnswerSpecificInfo            -- no specific info defined -- ...
  oDisconnectSpecificInfo          [7] SEQUENCE (releaseCause [0] Cause {bound} OPTIONAL, .. ),
  tNoAnswerSpecificInfo            [9] SEQUENCE (callForwarded [50] NULL OPTIONAL, forwardingDestinationNumber [52] CalledPartyNumber {bound} OPTIONAL, .. ),
  tDisconnectSpecificInfo          [12] SEQUENCE (releaseCause [0] Cause {bound} OPTIONAL, .. ),
  oTermSeizedSpecificInfo          [13] SEQUENCE (locationInformation [50] LocationInformation OPTIONAL, .. ),
  callAcceptedSpecificInfo         [20] SEQUENCE (locationInformation [50] LocationInformation OPTIONAL, .. )
}
EVENT_SpecificInformation

oAbandonSpecificInfo [21] SEQUENCE {
  routeNotAllowed [50] NULL OPTIONAL,,
},

oChangeOfPositionSpecificInfo [50] SEQUENCE {
  locationInformation [50] LocationInformation OPTIONAL,
  ..., metDPCriteriaList [51] MetDPCriteriaList {bound} OPTIONAL,
},
tChangeOfPositionSpecificInfo [51] SEQUENCE {
  locationInformation [50] LocationInformation OPTIONAL,
  ..., metDPCriteriaList [51] MetDPCriteriaList {bound} OPTIONAL,
},
dpSpecificInfoAlt [52] DpSpecificInfoAlt {bound}

-- Indicates the call related information specific to the event.

EventSpecificInformationSMS ::= CHOICE {
  o-smsFailureSpecificInfo [0] SEQUENCE {
    failureCause [0] MO-SMSCause OPTIONAL,
  },
  o-smsSubmissionSpecificInfo [1] SEQUENCE {
    -- no specific info defined--
  },
  t-smsFailureSpecificInfo [2] SEQUENCE {
    failureCause [0] MT-SMSCause OPTIONAL,
  },
  t-smsDeliverySpecificInfo [3] SEQUENCE {
    -- no specific info defined--
  }
}

EventTypeBCSM ::= ENUMERATED {
  collectedInfo (2),
  analyzedInformation (3),
  routeSelectFailure (4),
  oCalledPartyBusy (5),
  oNoAnswer (6),
  oAnswer (7),
  oMidCall (8),
  oDisconnect (9),
  oAbandon (10),
  termAttemptAuthorized (12),
  tBusy (13),
  tNoAnswer (14),
  tAnswer (15),
  tMidCall (16),
  tDisconnect (17),
  tAbandon (18),
  oTermSeized (19),
  callAccepted (27),
  oChangeOfPosition (50),
  tChangeOfPosition (51),
  ..., oServiceChange (52),
  tServiceChange (53)
}

-- Indicates the BCSM detection point event.
-- Values analyzedInformation and termAttemptAuthorized may be used
-- for TDPs only.
-- Exception handling: reception of an unrecognized value shall be treated
-- like reception of no detection point.

EventTypeSMS ::= ENUMERATED {
  sms-CollectedInfo (1),
  o-smsFailure (2),
  o-smsSubmission (3),
  sms-DeliveryRequested (11),
  t-smsFailure (12),
  t-smsDelivery (13)
}

-- Values sms-CollectedInfo and sms-DeliveryRequested may be used for TDPs only.

Extensions {PARAMETERS-BOUND : bound} ::= SEQUENCE SIZE (1..bound.&numOfExtensions) OF ExtensionField
ExtensionField ::= SEQUENCE {
  type EXTENSION.&id ({SupportedExtensions}),
  -- shall identify the value of an EXTENSION type
  criticality CriticalityType DEFAULT ignore,
  value [1] EXTENSION.&ExtensionType ({SupportedExtensions}{@type}),
  ...
-- This parameter indicates an extension of an argument data type.
-- Its content is network operator specific

FCIBillingChargingCharacteristics {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minFCIBillingChargingLength .. bound.&maxFCIBillingChargingLength))
(CONSTRAINED BY {-- shall be the result of the BER-encoded value of type --
  CAMEL-FCIBillingChargingCharacteristics {bound}})

-- This parameter indicates the billing and/or charging characteristics.
-- The violation of the UserDefinedConstraint shall be handled as an ASN.1 syntax error.

FCIGPRSBillingChargingCharacteristics {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minFCIBillingChargingLength .. bound.&maxFCIBillingChargingLength))
(CONSTRAINED BY {-- shall be the result of the BER-encoded value of type --
  CAMEL-FCIGPRSBillingChargingCharacteristics {bound}})

-- This parameter indicates the GPRS billing and/or charging characteristics.
-- The violation of the UserDefinedConstraint shall be handled as an ASN.1 syntax error.

FCISMSBillingChargingCharacteristics {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minFCIBillingChargingLength .. bound.&maxFCIBillingChargingLength))
(CONSTRAINED BY {-- shall be the result of the BER-encoded value of type --
  CAMEL-FCISMSBillingChargingCharacteristics {bound}})

-- This parameter indicates the SMS billing and/or charging characteristics.
-- The violation of the UserDefinedConstraint shall be handled as an ASN.1 syntax error.

ForwardServiceInteractionInd ::= SEQUENCE {
  conferenceTreatmentIndicator  [1] OCTET STRING (SIZE(1))     OPTIONAL,
    -- acceptConferenceRequest 'xxxx xx01'B
    -- rejectConferenceRequest 'xxxx xx10'B
    -- if absent from Connect or ContinueWithArgument,
    -- then CAMEL service does not affect conference treatment
  callDiversionTreatmentIndicator  [2] OCTET STRING (SIZE(1))     OPTIONAL,
    -- callDiversionAllowed 'xxxx xx01'B
    -- callDiversionNotAllowed 'xxxx xx10'B
    -- if absent from Connect or ContinueWithArgument,
    -- then CAMEL service does not affect call diversion treatment
  callingPartyRestrictionIndicator [4] OCTET STRING (SIZE(1))     OPTIONAL,
    -- noINImpact    'xxxx xx01'B
    -- presentationRestricted 'xxxx xx10'B
    -- if absent from Connect or ContinueWithArgument,
    -- then CAMEL service does not affect calling party restriction treatment
...
}

GapCriteria {PARAMETERS-BOUND : bound} ::= CHOICE {
  basicGapCriteria     BasicGapCriteria {bound},
  compoundGapCriteria     CompoundCriteria {bound}
}

GapIndicators ::= SEQUENCE {
  duration       [0] Duration,
  gapInterval       [1] Interval,
  ...
}  -- Indicates the call gapping characteristics.
-- No call gapping when gapInterval equals 0.

GapOnService ::= SEQUENCE {
  serviceKey       [0] ServiceKey,
  ...
}

GapTreatment {PARAMETERS-BOUND : bound} ::= CHOICE {
  informationToSend     [0] InformationToSend {bound},
  releaseCause      [1] Cause {bound}
}  -- The default value for Cause is the same as in ISUP.

GenericNumber {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minGenericNumberLength .. bound.&maxGenericNumberLength))
-- Indicates a generic number. Refer to ETSI EN 300 356-1 [23] Generic number for encoding.

GenericNumbers {PARAMETERS-BOUND : bound} ::= SET SIZE(1..bound.&numOfGenericNumbers) OF
  GenericNumber {bound}

GPRS-QoS ::= CHOICE {
  short-QoS-format     [0] QoS-Subscribed,
}  -- Short-QoS-format shall be sent for QoS in pre GSM release 99 format.
-- Long-QoS-format shall be sent for QoS in GSM release 99 (and beyond) format.
-- Which of the two QoS formats shall be sent is determined by which QoS
-- format is available in the SGSN at the time of sending.
-- Refer to 3GPP TS 29.002 [11] for encoding details of QoS-Subscribed and
-- Ext-QoS-Subscribed.

GPRS-QoS-Extension ::= SEQUENCE {
  supplement-to-long-QoS-format  [0] Ext2-QoS-Subscribed,
  ...
}
additionalSupplement [1] Ext3-QoS-Subscribed OPTIONAL

GPRSCause (PARAMETERS-BOUND : bound) ::= OCTET STRING (SIZE (bound.&minGPRSCauseLength .. bound.&maxGPRSCauseLength))
-- Shall only include the cause value.
-- 00000000 Unspecified
-- All other values shall be interpreted as 'Unspecified'.
-- This parameter indicates the cause for CAP interface related information.
-- The GPRSCause mapping to/from GTP cause values specified in the 3GPP TS 29.060 [12] and
-- to/from 3GPP TS 24.008 [9] GMSC cause and SM cause values are outside scope of this document.

GPRSEvent ::= SEQUENCE {
  gPRSEventType [0] GPRSEventType,
  monitorMode [1] MonitorMode
}
-- Indicates the GPRS event information for monitoring.

GPRSEventSpecificInformation (PARAMETERS-BOUND : bound) ::= CHOICE {
  attachChangeOfPositionSpecificInformation
    [0] SEQUENCE {
      locationInformationGPRS [0] LocationInformationGPRS OPTIONAL,
      ...,
      pdp-ContextchangeOfPositionSpecificInformation
        [1] SEQUENCE {
          accessPointName [0] AccessPointName {bound} OPTIONAL,
          chargingID [1] GPRSChargingID OPTIONAL,
          locationInformationGPRS [2] LocationInformationGPRS OPTIONAL,
          endUserAddress [3] EndUserAddress {bound} OPTIONAL,
          qualityOfService [4] QualityOfService OPTIONAL,
          timeAndTimezone [5] TimeAndTimezone {bound} OPTIONAL,
          ...,
          gGSNAddress [6] GSN-Address OPTIONAL
        },
    },
  detachSpecificInformation
    [2] SEQUENCE {
      initiatingEntity [0] InitiatingEntity OPTIONAL,
      ...,
      routeingAreaUpdate [1] NULL OPTIONAL
    },
  disconnectSpecificInformation
    [3] SEQUENCE {
      initiatingEntity [0] InitiatingEntity OPTIONAL,
      ...,
      routeingAreaUpdate [1] NULL OPTIONAL
    },
  pDPContextEstablishmentSpecificInformation
    [4] SEQUENCE {
      accessPointName [0] AccessPointName {bound} OPTIONAL,
      endUserAddress [1] EndUserAddress {bound} OPTIONAL,
      qualityOfService [2] QualityOfService OPTIONAL,
      locationInformationGPRS [3] LocationInformationGPRS OPTIONAL,
      timeAndTimezone [4] TimeAndTimezone {bound} OPTIONAL,
      pDPInitiationType [5] PDPInitiationType OPTIONAL,
      ...,
      secondaryPDP-context [6] NULL OPTIONAL
    },
  pDPContextEstablishmentAcknowledgementSpecificInformation
    [5] SEQUENCE {
      accessPointName [0] AccessPointName {bound} OPTIONAL,
      chargingID [1] GPRSChargingID OPTIONAL,
      endUserAddress [2] EndUserAddress {bound} OPTIONAL,
      qualityOfService [3] QualityOfService OPTIONAL,
      locationInformationGPRS [4] LocationInformationGPRS OPTIONAL,
      timeAndTimezone [5] TimeAndTimezone {bound} OPTIONAL,
      ...,
      gGSNAddress [6] GSN-Address OPTIONAL
    },
}

GPRSEventType ::= ENUMERATED {
  attach (1),
  attachChangeOfPosition (2),
  detached (3),
  pdp-ContextEstablishment (11),
  pdp-ContextEstablishmentAcknowledgement (12),
  disconnect (13),
  pdp-ContextChangeOfPosition (14)
}

InbandInfo (PARAMETERS-BOUND : bound) ::= SEQUENCE {
messageID [0] MessageID {bound},
numberOfRepetitions [1] INTEGER (1..127) OPTIONAL,
duration [2] INTEGER (0..32767) OPTIONAL,
interval [3] INTEGER (0..32767) OPTIONAL,
... }

-- Interval is the time in seconds between each repeated announcement. Duration is the total
-- amount of time in seconds, including repetitions and intervals.
-- The end of announcement is either the end of duration or numberOfRepetitions,
-- whatever comes first.
-- duration with value 0 indicates infinite duration

InformationToSend {PARAMETERS-BOUND : bound} ::= CHOICE {
  inbandInfo [0] InbandInfo {bound},
  tone [1] Tone
}

InitiatingEntity ::= ENUMERATED {
  mobileStation (0),
  sgsn (1),
  hlr (2),
  ggsn (3)
}

InitiatorOfServiceChange ::= ENUMERATED {
  a-side (0),
  b-side (1)
}

InvokeID ::= INTEGER (-128..127)

IPRoutingAddress {PARAMETERS-BOUND : bound} ::= CalledPartyNumber {bound}
-- Indicates the routeing address for the IP.

IPSSPCapabilities {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE( bound.&minIPSSPCapabilitiesLength .. bound.&maxIPSSPCapabilitiesLength ))
-- Indicates the gsmSRF resources available. The parameter has two parts, a standard and a
-- bilateral part. The standard part indicates capabilities defined as optional in CAP
-- that shall be recognised (but not necessarily supported) by a gsmSCF. The bilateral
-- part contains further information that is not specified in this standard, but which is set
-- according to bilateral agreements between network operators and/or equipment vendors.
-- The last octet of the standard part is indicated by bit 7 being set to 0, otherwise Bit 7 of
-- a standard part octet is set to 1 indicating that the standard part continues in the following
-- octet. Coding is as follows:
-- Octet 1     Standard Part for CAP
-- Bit Value   Meaning
--  0 0     IPRoutingAddress not supported
--  1     IPRoutingAddress supported
--  2       VoiceBack not supported
--  3       VoiceBack supported
--  4       VoiceInformation not supported, via speech recognition
--  5       VoiceInformation supported, via speech recognition
--  6       VoiceInformation not supported, via voice recognition
--  7       VoiceInformation supported, via voice recognition
--  8       Generation of voice announcements from Text not supported
--  9       Generation of voice announcements from Text supported
-- 10       Reserved
-- 11       End of standard part
-- 12       This value is reserved in CAP
-- Octets 2 to 4   Bilateral Part: Network operator/equipment vendor specific

LegOrCallSegment {PARAMETERS-BOUND : bound} ::= CHOICE {
  callSegmentID [0] CallSegmentID {bound},
  legID [1] LegID
}

LegType ::= OCTET STRING (SIZE(1))

leg1 LegType ::= '01'H

leg2 LegType ::= '02'H

LocationInformationGPRS ::= SEQUENCE {
  cellGlobalIdOrServiceAreaIdOrLAI [0] OCTET STRING (SIZE(5..7)) OPTIONAL,
  routingAreaIdentity [1] RAIdentity OPTIONAL,
  geographicalInformation [2] GeographicalInformation OPTIONAL,
  sgsn-Number [3] ISDN-AddressString OPTIONAL,
  selectedLAIIdentity [4] LSAIdentity OPTIONAL,
  extensionContainer [5] ExtensionContainer OPTIONAL,
  ...,
  sai-Present [6] NULL OPTIONAL,
  userCSGInformation [7] UserCSGInformation OPTIONAL
}

-- cellGlobalIdOrServiceAreaIdOrLAI shall contain the value part of the
-- CellGlobalIdOrServiceAreaIdFixedLength type or the LAIFixedLength type (i.e. excluding tags
-- and lengths) as defined in 3GPP TS 29.002 [13].
-- sai-Present indicates that the cellGlobalIdOrServiceAreaIdOrLAI parameter contains
LocationNumber {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE (bound.&minLocationNumberLength .. bound.&maxLocationNumberLength))
-- Indicates the Location Number for the calling party.
-- Refer to ETSI EN 300 356-1 [23] for encoding.

LowLayerCompatibility {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE (bound.&minLowLayerCompatibilityLength .. bound.&maxLowLayerCompatibilityLength))
-- Indicates the LowLayerCompatibility for the calling party.
-- Refer to 3GPP TS 24.008 [9] for encoding.
-- It shall be coded as in the value part defined in 3GPP TS 24.008.
-- i.e. the 3GPP TS 24.008 IEI and 3GPP TS 24.008 octet length indicator
-- shall not be included.

MessageID {PARAMETERS-BOUND : bound} ::= CHOICE {
  elementaryMessageID     [0] Integer4,
  text        [1] SEQUENCE {
    messageContent      [0] IA5String (SIZE(bound.&minMessageContentLength .. bound.&maxMessageContentLength)),
    attributes       [1] OCTET STRING (SIZE(bound.&minAttributesLength .. bound.&maxAttributesLength)) OPTIONAL
  },
  elementaryMessageIDs    [29] SEQUENCE SIZE (1..bound.&numOfMessageIDs) OF Integer4,
  variableMessage      [30] SEQUENCE {
    elementaryMessageID     [0] Integer4,
    variableParts      [1] SEQUENCE SIZE (1..5) OF VariablePart {bound}
  } }
-- Use of the text parameter is network operator/equipment vendor specific.

MetDPCriteriaList {PARAMETERS-BOUND : bound} ::= SEQUENCE SIZE (1..bound.&numOfMonthChangeOfPositionControInfo) OF MetDPCriterion {bound}

MetDPCriterion {PARAMETERS-BOUND : bound} ::= CHOICE {
  enteringCellGlobalId    [0] CellGlobalIdOrServiceAreaIdFixedLength,
  leavingCellGlobalId     [1] CellGlobalIdOrServiceAreaIdFixedLength,
  enteringServiceAreaId   [2] CellGlobalIdOrServiceAreaIdFixedLength,
  leavingServiceAreaId    [3] CellGlobalIdOrServiceAreaIdFixedLength,
  enteringLocationAreaId  [4] LAIFixedLength,
  leavingLocationAreaId   [5] LAIFixedLength,
  inter-SystemHandOverToUMTS   [6] NULL,
  inter-SystemHandOverToGSM   [7] NULL,
  inter-PLMNHandOver     [8] NULL,
  inter-MSCHandOver     [9] NULL,
  metDPCriterionAlt     [10] MetDPCriterionAlt {bound}
}  -- The enteringCellGlobalId and leavingCellGlobalId shall contain a Cell Global Identification.
-- The enteringServiceAreaId and leavingServiceAreaId shall contain a Service Area Identification.

MetDPCriterionAlt {PARAMETERS-BOUND : bound} ::= SEQUENCE {
...
}

MidCallControlInfo ::= SEQUENCE {
  minimumNumberOfDigits    [0] INTEGER (1..30) DEFAULT 1,
  maximumNumberOfDigits    [1] INTEGER (1..30) DEFAULT 30,
  endOfReplyDigit      [2] OCTET STRING (SIZE (1..2)) OPTIONAL,
  cancelDigit       [3] OCTET STRING (SIZE (1..2)) OPTIONAL,
  startDigit       [4] OCTET STRING (SIZE (1..2)) OPTIONAL,
  interDigitTimeout     [6] INTEGER (1..127) DEFAULT 10,
... }
-- minimumNumberOfDigits specifies the minumum number of digits that shall be collected
-- maximumNumberOfDigits specifies the maximum number of digits that shall be collected
-- endOfReplyDigit specifies the digit string that denotes the end of the digits
-- to be collected.
-- cancelDigit specifies the digit string that indicates that the input shall be erased and digit collection shall start afresh.
-- startDigit specifies the digit string that denotes the start of the digits to be collected.
-- interDigitTimeout specifies the maximum duration in seconds between successive digits.
-- endOfReplyDigit, cancelDigit and startDigit shall contain digits in the range 0..9, '*', and '#' only. The collected digits string, reported to the gsmSCF, shall include the endOfReplyDigit and
-- the startDigit, if present.
-- endOfReplyDigit, cancelDigit and startDigit shall be encoded as BCD digits. Each octet shall contain one BCD digit, in the 4 least significant bits of each octet.
-- The following encoding shall be used for the over-decadic digits: 1011 (*), 1100 (#).
MonitorMode ::= ENUMERATED {
  interrupted (0),
  notifyAndContinue (1),
  transparent (2)
}
-- Indicates the event is relayed and/or processed by the SSP.
-- Transparent means that the gsmSSF or gprsSSF does not notify the gsmSCF of the event.
-- For the use of this parameter refer to the procedure descriptions in clause 11.
-- For the RequestNotificationCharging operation, 'interrupted' shall not be used in MonitorMode.

MO-SMSCause ::= ENUMERATED {
  systemFailure (0),
  unexpectedDataValue (1),
  facilityNotSupported (2),
  sM-DeliveryFailure (3),
  releaseFromRadioInterface (4)
}
-- MO SMS error values which are reported to gsmSCF.
-- Most of these values are received from the SMSC as a response to
-- MO-ForwardSM operation.

MT-SMSCause ::= OCTET STRING (SIZE (1))
-- This variable is sent to the gsmSCF for a Short Message delivery failure
-- notification.
-- If the delivery failure is due to RP-ERROR RPDU received from the MS,
-- then MT-SMSCause shall be set to the RP-Cause component in the RP-ERROR RPDU.
-- Refer to 3GPP TS 24.011 [10] for the encoding of RP-Cause values.
-- Otherwise, if the delivery failure is due to internal failure in the MSC or SGSN
-- or time-out from the MS, then MT-SMSCause shall be set to 'Protocol error,'
-- 'unspecified', as defined in 3GPP TS 24.011 [10].

NAOlInfo ::= OCTET STRING (SIZE (3))
-- NA Ol information takes the same value as defined in ANSI T1.113-1995 [92]
-- e.g. '3D'H  – Decimal value 61 - Cellular Service (Type 1)
-- '3E'H  – Decimal value 62 - Cellular Service (Type 2)
-- '3F'H  – Decimal value 63 - Cellular Service (roaming)

NatureOfServiceChange ::= ENUMERATED {
  userInitiated (0),
  networkInitiated (1)
}

NumberOfDigits ::= INTEGER (1..255)
-- Indicates the number of digits to be collected.

OCSIApplicable ::= NULL
-- Indicates that the Originating CAMEL Subscription Information, if present, shall be
-- applied on the outgoing call leg created with a Connect operation. For the use of this
-- parameter see 3GPP TS 23.078 [7].

OriginalCalledPartyID {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minOriginalCalledPartyIDLength .. bound.&maxOriginalCalledPartyIDLength))
-- Indicates the original called number. Refer to ETSI EN 300 356-1 [23] Original Called Number
-- for encoding.

PDPID ::= OCTET STRING (SIZE (1))
-- PDP Identifier is a counter used to identify a specific PDP Context within a control
-- relationship between gprsSSF and gsmSCF.

PDPInitiationType ::= ENUMERATED {
  mSInitiated (0),
  networkInitiated (1)
}

QualityOfService ::= SEQUENCE {
  requested-QoS [0] GPRS-QoS OPTIONAL,
  subscribed-QoS [1] GPRS-QoS OPTIONAL,
  negotiated-QoS [2] GPRS-QoS OPTIONAL,
  ..., 
}

ReceivingSideID ::= CHOICE {
  receivingSideID [1] LegType
}
-- used to identify LegID in operations sent from gsmSSF to gsmSCF

RedirectingPartyID {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minRedirectingPartyIDLength .. bound.&maxRedirectingPartyIDLength))
-- Indicates redirecting number.
-- Refer to ETSI EN 300 356-1 [23] Redirecting number for encoding.
RequestedInformationList (PARAMETERS-BOUND : bound) ::= SEQUENCE SIZE (1.. numOfInfoItems) OF RequestedInformation (bound)

RequestedInformationTypeList ::= SEQUENCE SIZE (1.. numOfInfoItems) OF RequestedInformationType

RequestedInformation (PARAMETERS-BOUND : bound) ::= SEQUENCE {
  requestedInformationType   [0] RequestedInformationType,
  requestedInformationValue   [1] RequestedInformationValue (bound),
  ...                     
}

RequestedInformationType ::= ENUMERATED {
  callAttemptElapsedTime    (0),
  callStopTime      (1),
  callConnectedElapsedTime   (2),
  releaseCause      (30)
}

RequestedInformationValue (PARAMETERS-BOUND : bound) ::= CHOICE {
  callAttemptElapsedTimeValue   [0] INTEGER (0..255),
  callStopTimeValue     [1] DateAndTime,
  callConnectedElapsedTimeValue  [2] Integer4,
  releaseCauseValue     [30] Cause (bound)
}

-- The callAttemptElapsedTimeValue is specified in seconds. The unit for the
-- callConnectedElapsedTimeValue is 100 milliseconds

RPCause ::= OCTET STRING (SIZE (1))
-- GsmSCF shall send this cause in the ReleaseSMS operation.
-- For a MO-SMS service, the MSC or SGSN shall send the RP Cause to the originating MS.
-- It shall be used to overwrite the RP-Cause element in the RP-ERROR RPDU.
-- For a MT-SMS service, the MSC or SGSN shall send the RP Cause to the sending SMS-GMSC.
-- It shall be used to overwrite the RP-Cause element in the RP-ERROR RPDU.

ScfID (PARAMETERS-BOUND : bound) ::= OCTET STRING (SIZE( bound.&minScfIDLength .. bound.&maxScfIDLength))
-- format and length of ScfID is defined by the network operator.
-- Indicates the gsmSCF identity.

SCIBillingChargingCharacteristics {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE ( bound.&minSCIBillingChargingLength .. bound.&maxSCIBillingChargingLength))
(CONSTRAINED BY {-- shall be the result of the BER-encoded value of type --
CAMEL-SCIBillingChargingCharacteristics})
-- Indicates AOC information to be sent to a Mobile Station
-- The violation of the UserDefinedConstraint shall be handled as an ASN.1 syntax error.

SCIGPRSBillingChargingCharacteristics {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE ( bound.&minSCIBillingChargingLength .. bound.&maxSCIBillingChargingLength))
(CONSTRAINED BY {-- shall be the result of the BER-encoded value of type --
CAMEL-SCIGPRSBillingChargingCharacteristics})
-- Indicates AOC information to be sent to a Mobile Station
-- The violation of the UserDefinedConstraint shall be handled as an ASN.1 syntax error.

SendingSideID ::= CHOICE (sendingSideID [0] LegType)
-- used to identify LegId in operations sent from gsmSCF to gsmSSF

ServiceInteractionIndicatorsTwo ::= SEQUENCE {
  forwardServiceInteractionInd [0] ForwardServiceInteractionInd OPTIONAL,
  backwardServiceInteractionInd [1] BackwardServiceInteractionInd OPTIONAL,
  bothwayThroughConnectionInd [2] BothwayThroughConnectionInd OPTIONAL,
  connectedNumberTreatmentInd [4] ConnectedNumberTreatmentInd OPTIONAL,
  nonCUCall       [13] NULL OPTIONAL,
  holdTreatmentIndicator [50] OCTET STRING (SIZE(1)) OPTIONAL,
  cwTreatmentIndicator [51] OCTET STRING (SIZE(1)) OPTIONAL,
}

-- applicable to operations InitialDP, Connect and ContinueWithArgument.
-- indicates that no parameters for CUG shall be used for the call (i.e. the call shall
-- be a non-CUG call).
-- If not present, it indicates one of three things:
-- a) continue with modified CUG information (when one or more of either CUG Interlock Code
-- and Outgoing Access Indicator are present), or
-- b) continue with original CUG information (when neither CUG Interlock Code or Outgoing
-- Access Indicator are present), i.e. no IN impact.
-- c) continue with the original non-CUG call.

-- applicable to InitialDP, Connect and ContinueWithArgument
-- acceptHoldRequest 'xxxx x01'B
-- rejectHoldRequest 'xxxx x10'B
-- if absent from Connect or ContinueWithArgument,
-- then CAMEL service does not affect call hold treatment

-- applicable to InitialDP, Connect and ContinueWithArgument
-- acceptCw 'xxxx x01'B
-- rejectCw 'xxxx x10'B
-- if absent from Connect or ContinueWithArgument,
-- then CAMEL service does not affect call waiting treatment
ectTreatmentIndicator  [52] OCTET STRING (SIZE(1)) OPTIONAL,
-- applicable to InitialDP, Connect and ContinueWithArgument
-- acceptEctRequest 'xxxx xx01'B
-- rejectEctRequest 'xxxx xx10'B
-- if absent from Connect or ContinueWithArgument,
-- then CAMEL service does not affect explicit call transfer treatment
...

SGSNCapabilities ::= OCTET STRING (SIZE (1))
-- Indicates the SGSN capabilities. The coding of the parameter is as follows:
-- Bit Value Meaning
-- 0 0 AoC not supported by SGSN
-- 1  AoC supported by SGSN
-- 1  This bit is reserved in CAP V.3
-- 2  This bit is reserved in CAP V.3
-- 3 - This bit is reserved in CAP V.3
-- 4 - This bit is reserved in CAP V.3
-- 5 - This bit is reserved in CAP V.3
-- 6 - This bit is reserved in CAP V.3
-- 7 - This bit is reserved in CAP V.3

SMSSAddressString ::= AddressString (SIZE (1 .. maxSMSSAddressStringLength))
-- This data type is used to transport CallingPartyNumber for MT-SMS.
-- If this data type is used for MO-SMS, then the maximum number of digits shall be 16.
-- An SMSSAddressString may contain an alphanumeric character string. In this
-- case, a nature of address indicator '101'B is used, in accordance with
-- 3GPP TS 23.040 [6]. The address is coded in accordance with the GSM 7-bit
-- default alphabet definition and the SMS packing rules as specified in

maxSMSSAddressStringLength INTEGER ::= 11

SMSEvent ::= SEQUENCE {
  eventTypeSMS      [0] EventTypeSMS,
  monitorMode       [1] MonitorMode
}

TariffSwitchInterval ::= INTEGER (1 .. 86400)
-- TariffSwitchInterval is measured in 1 second units

TimeAndTimeZone {PARAMETERS-BOUND : bound} ::= OCTET STRING (SIZE(
  bound.&minTimeAndTimeZoneLength .. bound.&maxTimeAndTimeZoneLength))
-- Indicates the time and timezone, relative to GMT. This parameter is BCD encoded.
-- The year digit indicating millenium occupies bits 0-3 of the first octet, and the year
digit indicating century occupies bits 4-7 of the first octet.
-- The year digit indicating decade occupies bits 0-3 of the second octet, whilst the digit
-- indicating the year within the decade occupies bits 4-7 of the second octet.
-- The most significant month digit occupies bits 0-3 of the third octet, and the least
-- significant month digit occupies bits 4-7 of the third octet.
-- The most significant day digit occupies bits 0-3 of the fourth octet, and the least
-- significant day digit occupies bits 4-7 of the fourth octet.
-- The most significant hours digit occupies bits 0-3 of the fifth octet, and the least
-- significant hours digit occupies bits 4-7 of the fifth octet.
-- The most significant minutes digit occupies bits 0-3 of the sixth octet, and the least
-- significant minutes digit occupies bits 4-7 of the sixth octet.
-- The most significant seconds digit occupies bits 0-3 of the seventh octet, and the least
-- significant seconds digit occupies bits 4-7 of the seventh octet.
-- The timezone information occupies the eighth octet. For the encoding of Timezone refer to
-- 3GPP TS 23.040 [6].
-- The BCD digits are packed and encoded as follows:
-- Bit 7 6 5 4 | 3 2 1 0
-- 2nd digit 1st digit Octet 1
-- 3rd digit 4th digit Octet 2
-- ... ...
-- nth digit | n-th digit Octet m
-- 0000 digit 0
-- 0001 digit 1
-- 0010 digit 2
-- 0011 digit 3
-- 0100 digit 4
-- 0101 digit 5
-- 0110 digit 6
-- 0111 digit 7
-- 1000 digit 8
-- 1001 digit 9
-- 1010 digit 10
-- 1011 digit 11
-- 1100 digit 12
-- 1101 digit 13
-- 1110 digit 14
-- 1111 digit 15
-- where the leftmost bit of the digit is either bit 7 or bit 3 of the octet.
TimeIfNoTariffSwitch ::= INTEGER(0..864000)
-- TimeIfNoTariffSwitch is measured in 100 millisecond intervals

TimeIfTariffSwitch ::= SEQUENCE {
  timeSinceTariffSwitch [0] INTEGER(0..864000),
  tariffSwitchInterval [1] INTEGER(1..864000) OPTIONAL
}
-- timeSinceTariffSwitch and tariffSwitchInterval are measured in 100 millisecond intervals

TimeInformation ::= CHOICE {
  timeIfNoTariffSwitch [0] TimeIfNoTariffSwitch,
  timeIfTariffSwitch [1] TimeIfTariffSwitch
}
-- Indicates call duration information

TimerID ::= ENUMERATED {
  tssf (0)
}
-- Indicates the timer to be reset.

TimerValue ::= Integer4
-- Indicates the timer value (in seconds).

Tone ::= SEQUENCE {
  toneID [0] Integer4,
  duration [1] Integer4 OPTIONAL,
  ...
}
-- The duration specifies the length of the tone in seconds, value 0 indicates infinite duration.

TPDataCodingScheme ::= OCTET STRING (SIZE (1))
-- TP Data Coding Scheme according to 3GPP TS 23.040 [6]

TPProtocolIdentifier ::= OCTET STRING (SIZE (1))
-- indicates the protocol used above the SM-Transfer Layer as specified in 3GPP TS 23.040 [6].

TPShortMessageSpecificInfo ::= OCTET STRING (SIZE (1))
-- contains the 1st octect of the applicable TPDU or the SMS-COMMAND TPDU as specified in
-- 3GPP TS 23.040 [6].

TPValidityPeriod ::= OCTET STRING (SIZE (1..7))
-- indicates the length of the validity period or the absolute time of the validity
-- period termination as specified in 3GPP TS 23.040 [6].
-- the length of ValidityPeriod is either 1 octct or 7 octcts

TransferredVolume ::= CHOICE {
  volumeIfNoTariffSwitch [0] INTEGER (0..4294967295),
  volumeIfTariffSwitch [1] SEQUENCE {
    volumeSinceLastTariffSwitch [0] INTEGER (0..4294967295),
    volumeTariffSwitchInterval [1] INTEGER (0..4294967295) OPTIONAL
  }
}
-- volumeIfNoTariffSwitch, volumeSinceLastTariffSwitch and volumeTariffSwitchInterval
-- are measured in bytes.

TransferredVolumeRollOver ::= CHOICE {
  rO-VolumeIfNoTariffSwitch [0] INTEGER (0..255),
  rO-VolumeIfTariffSwitch [1] SEQUENCE {
    rO-VolumeSinceLastTariffSwitch [0] INTEGER (0..255) OPTIONAL,
    rO-VolumeTariffSwitchInterval [1] INTEGER (0..255) OPTIONAL
  }
}
-- rO-VolumeIfNoTariffSwitch, rO-VolumeSinceLastTariffSwitch and rO-VolumeTariffSwitchInterval
-- present counters indicating the number of parameter range rollovers.

UnavailableNetworkResource ::= ENUMERATED {
  unavailableResources (0),
  componentFailure (1),
  basicCallProcessingException (2),
  resourceStatusFailure (3),
  endUserFailure (4)
}
-- Indicates the network resource that failed.

VariablePart {PARAMETERS-BOUND : bound} ::= CHOICE {
  integer [0] Integer4,
  number [1] Digits {bound}, -- Generic digits
  time [2] OCTET STRING (SIZE(2)), -- HH: MM, BCD coded
  date [3] OCTET STRING (SIZE(4)), -- YYYYMMDD, BCD coded
  price [4] OCTET STRING (SIZE(4))
}
-- Indicates the variable part of the message. Time is BCD encoded.
-- The most significant hours digit occupies bits 0-3 of the first octet, and the least
-- significant digit occupies bits 4-7 of the first octet. The most significant minutes digit
-- occupies bits 0-3 of the second octet, and the least significant digit occupies bits 4-7
-- of the second octet.
5.2 Error types

CAP-errortypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-errortypes(51) version8(7)}

-- This module contains the type definitions for the CAP Error Types.
-- Where a parameter of type CHOICE is tagged with a specific tag value, the tag is automatically
-- replaced with an EXPLICIT tag of the same value.

DEFINITIONS IMPLICIT TAGS := BEGIN

IMPORTS
   ros-InformationObjects,
   datatypes,
   errorcodes
FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}

ERROR FROM Remote-Operations-Information-Objects ros-InformationObjects
   InvokeID,
   UnavailableNetworkResource
FROM CAP-datatypes datatypes
   errcode-canceled,
   errcode-cancelFailed,
   errcode-eTCFailed,
   errcode-improperCallerResponse,
   errcode-missingCustomerRecord,
   errcode-missingParameter,
   errcode-parameterOutOfRange,
   errcode-requestedInfoError,
   errcode-systemFailure,
   errcode-taskRefused,
   errcode-unavailableResource,
   errcode-unexpectedComponentSequence,
   errcode-unexpectedDataValue,
   errcode-unexpectedParameter,
   errcode-unknownLegID,
   errcode-unknownCSID,
   errcode-unknownPDPID
FROM CAP-errorcodes errorcodes

;

-- TYPE DEFINITION FOR CAP ERROR TYPES FOLLOWS

canceled ERROR ::= {
   CODE errcode-canceled
}

-- The operation has been canceled.
cancelFailed ERROR ::= {
  PARAMETER SEQUENCE {
    problem [0] ENUMERATED {
      unknownOperation  (0),
      tooLate     (1),
      operationNotCancellable (2)
    },
    operation [1] InvokeID,
    ...
  }
  CODE errcode-cancelFailed
}
-- The operation failed to be canceled.
eTCFailed ERROR ::= {
  CODE errcode-eTCFailed
}
-- The establish temporary connection failed.
improperCallerResponse ERROR ::= {
  CODE errcode-improperCallerResponse
}
-- The caller response was not as expected.
missingCustomerRecord ERROR ::= {
  CODE errcode-missingCustomerRecord
}
-- The Service Logic Program could not be found in the gsmSCF.
missingParameter ERROR ::= {
  CODE errcode-missingParameter
}
-- An expected optional parameter was not received.
parameterOutOfRange ERROR ::= {
  CODE errcode-parameterOutOfRange
}
-- The parameter was not as expected (e.g. missing or out of range).
requestedInfoError ERROR ::= {
  PARAMETER ENUMERATED {
    unknownRequestedInfo  (1),
    requestedInfoNotAvailable (2)
  }
  CODE errcode-requestedInfoError
}
-- The requested information cannot be found.
systemFailure ERROR ::= {
  PARAMETER UnavailableNetworkResource
  CODE errcode-systemFailure
}
-- The operation could not be completed due to a system failure at the serving physical entity.
taskRefused ERROR ::= {
  PARAMETER ENUMERATED {
    generic      (0),
    unobtainable    (1),
    congestion     (2)
  }
  CODE errcode-taskRefused
}
-- An entity normally capable of the task requested cannot or chooses not to perform the task at
-- this time. This includes error situations like congestion and unobtainable address as used in
-- e.g. the connect operation.)
unavailableResource ERROR ::= {
  CODE errcode-unavailableResource
}
-- A requested resource is not available at the serving entity.
unexpectedComponentSequence ERROR ::= {
  CODE errcode-unexpectedComponentSequence
}
-- An incorrect sequence of Components was received (e.g. 'DisconnectForwardConnection'
-- followed by 'PlayAnnouncement').
unexpectedDataValue ERROR ::= {

### 5.3 Operation codes

CAP-operationcodes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-operationcodes(53) version8(7)}

DEFINITIONS ::= BEGIN

IMPORTS

ros-InformationObjects
FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}

Code
FROM Remote-Operations-Information-Objects ros-InformationObjects ;

-- the operations are grouped by the identified operation packages.

-- gsmSCF activation Package
opcode-initialDP Code ::= local: 0

-- gsmSCF/gsmSRF activation of assist Package
opcode-assistRequestInstructions Code ::= local: 16

-- Connect Package (elementary gsmSSF function)
opcode-connect Code ::= local: 20

-- Call handling Package (elementary gsmSSF function)
opcode-releaseCall Code ::= local: 22

-- BCSM Event handling Package
opcode-requestReportBCSMEvent Code ::= local: 23

-- gsmSSF call processing Package
opcode-collectInformation Code ::= local: 27

-- gsmSCF call initiation Package
opcode-initiateCallAttempt Code ::= local: 32

-- Billing Package
opcode-furnishChargingInformation Code ::= local: 34

END
opcode-applyCharging
opcode-applyChargingReport

-- Traffic management Package
opcode-callGap

-- Call report Package
opcode-callInformationReport
opcode-callInformationRequest

-- Signalling control Package
opcode-sendChargingInformation

-- Specialized resource control Package
opcode-playAnnouncement
opcode-promptAndCollectUserInformation
opcode-specializedResourceInformation

-- Cancel Package
opcode-cancel

-- Activity Test Package
opcode-activityTest

-- CPH Response Package
opcode-continueWithArgument
opcode-disconnectLeg
opcode-moveLeg
opcode-splitLeg

-- Exception Inform Package
opcode-entityReleased

-- Play Tone Package
opcode-playTone

-- Sms Activation Package
opcode-initialDPSMS

-- Sms Billing Package
opcode-furnishChargingInformationSMS

-- Sms Connect Package
opcode-connectSMS

-- Sms Event Handling Package
opcode-requestReportSMSEvent
opcode-eventReportSMS

-- Sms Processing Package
opcode-continueSMS

-- Sms Release Package
opcode-releaseSMS

-- Sms Timer Package
opcode-resetTimerSMS

-- Gprs Activity Test Package
opcode-activityTestGPRS

-- Gprs Charging Package
opcode-applyChargingGPRS
opcode-applyChargingReportGPRS

-- Gprs Cancel Package
opcode-cancelGPRS

-- Gprs Connect Package
opcode-connectGPRS

-- Gprs Event Handling Package
opcode-eventReportGPRSEvent

-- Gprs Exception Information Package
opcode-entityReleasedGPRS

-- Gprs Billing Package
opcode-furnishChargingInformationGPRS

-- Gprs Scf Activation Package
opcode-initialDPGPRS

-- Gprs Release Package
opcode-releaseGPRS

-- Gprs Event Handling Package
opcode-eventReportGPRS
opcode-requestReportGPRSEvent

-- Gprs Timer Package
opcode-resetTimerGPRS

-- Gprs Charge Advice Package
opcode-sendChargingInformationGPRS

END
5.4 Error codes

CAP-errorcodes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-errorcodes(57) version8(7)}

DEFINITIONS ::= BEGIN
IMPORTS
ros-InformationObjects
FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}

Code
FROM Remote-Operations-Information-Objects ros-InformationObjects

; errcode-canceled Code ::= local: 0
errcode-cancelFailed Code ::= local: 1
eretcode-eTCFailed Code ::= local: 3
eretcode-improperCallerResponse Code ::= local: 4
eretcode-missingCustomerRecord Code ::= local: 6
eretcode-missingParameter Code ::= local: 7
eretcode-parameterOutOfRange Code ::= local: 8
eretcode-requestedInfoError Code ::= local: 10
eretcode-systemFailure Code ::= local: 11
eretcode-taskRefused Code ::= local: 12
eretcode-unavailableResource Code ::= local: 13
eretcode-unexpectedComponentSequence Code ::= local: 14
eretcode-unexpectedDataValue Code ::= local: 15
eretcode-unexpectedParameter Code ::= local: 16
eretcode-unknownLegID Code ::= local: 17
eretcode-unknownPDPID Code ::= local: 50
eretcode-unknownCSID Code ::= local: 51
END

5.5 Classes

CAP-classes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-classes(54) version8(7)}

DEFINITIONS ::= BEGIN
IMPORTS
ROS-OBJECT-CLASS,
Code
FROM Remote-Operations-Information-Objects ros-InformationObjects

    id-rosObject-gprsSSF,
    id-rosObject-gsmSRF,
    id-rosObject-gsmSSF,
    id-rosObject-smsSSF-V3,
    id-rosObject-smsSSF-V4,
    ros-InformationObjects,
    gsmSSF-gsmSCF-Protocol,
    gsmSCF-gsmSRF-Protocol,
    gsmSSF-gsmSCF-Protocol,
    gprsSSF-gsmSCF-Protocol
FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}

capSsfToScfGeneric,
capAssistHandoffssfToScf,
capScfToSsfGeneric
FROM CAP-gsmSSF-gsmSCF-pkgs-contracts-acs gsmSSF-gsmSCF-Protocol
gsmSRF-gsmSCF-contract
FROM CAP-gsmSCF-gsmSRF-pkgs-contracts-acs gsmSCF-gsmSRF-Protocol
cap3SMS,
cap4SMS
FROM CAP-smsSSF-gsmSCF-pkgs-contracts-acs smsSSF-gsmSCF-Protocol
  capGprsSsfToScf,
capGsmScfToGprsSsf
FROM CAP-gprsSSF-gsmSCF-pkgs-contracts-acs gprsSSF-gsmSCF-Protocol

CriticalityType
FROM CS2-datatypes {itu-t(0) identified-organization(4) etsi(0) inDomain(1) in-network(1) cs2(20)
modules(0) in-cs2-datatypes(0) version1(0)}

;

gsmSSF ROS-OBJECT-CLASS ::= 
  INITIATES {capSsfToScfGeneric|
capAssistHandoffssfToScf}
  RESPONDS {capScfToSsfGeneric}
  ID   id-rosObject-gsmSSF
-- The Rel-6 'gsmSSF' definition uses the Rel-6 capSsfToScfGeneric, capAssistHandoffssfToScf
-- and capScfToSsfGeneric CONTRACT definitions.

gsmSRF ROS-OBJECT-CLASS ::= 
  INITIATES {gsmSRF-gsmSCF-contract}
  ID   id-rosObject-gsmSRF
-- The Rel-6 'gsmSRF' definition uses the Rel-6 gsmSRF-gsmSCF-contract CONTRACT definition.

smsSSF-V3 ROS-OBJECT-CLASS ::= 
  INITIATES {cap3SMS}
  ID   id-rosObject-smsSSF-V3
-- The Rel-6 'smsSSF-V3' definition uses the Rel-6 cap3SMS CONTRACT definition. The smsSSF-V3
-- ROS-OBJECT-CLASS is used for MO SMS control.

smsSSF-V4 ROS-OBJECT-CLASS ::= 
  INITIATES {cap4SMS}
  ID   id-rosObject-smsSSF-V4
-- The Rel-6 'smsSSF-V4' definition uses the Rel-6 cap4SMS CONTRACT definition. The smsSSF-V4
-- ROS-OBJECT-CLASS is used for MT SMS control.

gprsSSF ROS-OBJECT-CLASS ::= 
  INITIATES {capGprsSsfToScf}
  RESPONSES {capGsmScfToGprsSsf}
  ID   id-rosObject-gprsSSF
-- The Rel-6 'gprsSSF' definition uses the Rel-6 capGprsSsfToScf and capGsmScfToGprsSsf
-- CONTRACT definitions.

EXTENSION ::= CLASS {
  &ExtensionType,
  &criticality  CriticalityType DEFAULT ignore,
  &id         Code}
WITH SYNTAX {
  EXTENSION-SYNTAX &ExtensionType
  CRITICALITY   &criticality
  IDENTIFIED BY  &id
}
-- Only value Global OBJECT IDENTIFIER is used for &id;
-- Only the value ignore (0) is used for &criticality.

-- Example of addition of an extension named 'Some Network Specific Indicator' of type
-- BOOLEAN, with criticality 'ignore' and identified by global Object Identifier.
--
-- Example of definition using the above information object class:

firstExtension EXTENSION ::= {

-- Example of transfer syntax, using the ExtensionField datatype as specified in clause 5.
-- Assuming the value of the extension is set to TRUE, the extensions parameter becomes
-- a Sequence of type {itu-t(0) identified-organization(4) organisation(0) gsm(1)
capextension(2)}, criticality ENUMERATED ::= ignore(0) and value [1] EXPLICIT BOOLEAN
-- ::= TRUE.
--
-- Use of ITU-T Recommendation Q.1400 [52] defined Extension is for further study.
-- In addition the extension mechanism marker is used to identify the future minor additions
-- to CAP.

firstExtension EXTENSION ::= {


EXTENSION-SYNTAX NULL
CRITICALITY ignore
IDENTIFIED BY global : {itu-t(0) identified-organization(4) organisation(0) gsm(1) capextension(2)}

-- firstExtension is just an example.

SupportedExtensions EXTENSION ::= {firstExtension, ...
-- full set of network operator extensions --
}
-- SupportedExtension is the full set of the network operator extensions.

PARAMETERS-BOUND ::= CLASS {
&minAccessPointNameLength INTEGER,
&maxAccessPointNameLength INTEGER,
&minAChBillingChargingLength INTEGER,
&maxAChBillingChargingLength INTEGER,
&minAttributesLength INTEGER,
&maxAttributesLength INTEGER,
&maxBearerCapabilityLength INTEGER,
&minCalledPartyBCDNumberLength INTEGER,
&maxCalledPartyBCDNumberLength INTEGER,
&minCalledPartyNumberLength INTEGER,
&maxCalledPartyNumberLength INTEGER,
&minCarrierLength INTEGER,
&maxCarrierLength INTEGER,
&minCauseLength INTEGER,
&maxCauseLength INTEGER,
&minDigitsLength INTEGER,
&maxDigitsLength INTEGER,
&minFCIBillingChargingDataLength INTEGER,
&maxFCIBillingChargingDataLength INTEGER,
&minFCIBillingChargingLength INTEGER,
&maxFCIBillingChargingLength INTEGER,
&minGenericNumberLength INTEGER,
&maxGenericNumberLength INTEGER,
&minGPRSCauseLength INTEGER,
&maxGPRSCauseLength INTEGER,
&minIPSSPCapabilitiesLength INTEGER,
&maxIPSSPCapabilitiesLength INTEGER,
&minLocationNumberLength INTEGER,
&maxLocationNumberLength INTEGER,
&minLowLayerCompatibilityLength INTEGER,
&maxLowLayerCompatibilityLength INTEGER,
&minMessageContentLength INTEGER,
&maxMessageContentLength INTEGER,
&minOriginalCalledPartyIDLength INTEGER,
&maxOriginalCalledPartyIDLength INTEGER,
&minPDPAddressLength INTEGER,
&maxPDPAddressLength INTEGER,
&minRedirectingPartyIDLength INTEGER,
&maxRedirectingPartyIDLength INTEGER,
&minScfIDLength INTEGER,
&maxScfIDLength INTEGER,
&minSCIBillingChargingLength INTEGER,
&maxSCIBillingChargingLength INTEGER,
&minTimeAndTimezoneLength INTEGER,
&maxTimeAndTimezoneLength INTEGER,
&numOfBCSMEvents INTEGER,
&numOfChangeOfPositionControlInfo INTEGER,
&numOfCSSs INTEGER,
&numOfSMSEvents INTEGER,
&numOfGPRSEvents INTEGER,
&numOfExtensions INTEGER,
&numOfGenericNumbers INTEGER,
&numOfMessageIDs INTEGER}

WITH SYNTAX {
MINIMUM-FOR-ACCESS-POINT-NAME &minAccessPointNameLength
MAXIMUM-FOR-ACCESS-POINT-NAME &maxAccessPointNameLength
MINIMUM-FOR-ACh-BILLING-CHARGING &minAChBillingChargingLength
MAXIMUM-FOR-ACh-BILLING-CHARGING &maxAChBillingChargingLength
MINIMUM-FOR-ATTRIBUTES &minAttributesLength
MAXIMUM-FOR-ATTRIBUTES &maxAttributesLength
MAXIMUM-FOR-BEARER-CAPABILITY \&maxBearerCapabilityLength
MINIMUM-FOR-CALLED-PARTY-BCD-NUMBER \&minCallerBCDNumberLength
MAXIMUM-FOR-CALLED-PARTY-BCD-NUMBER \&maxCallerBCDNumberLength
MINIMUM-FOR-CALLED-PARTY-NUMBER \&minCallerNumberLength
MAXIMUM-FOR-CALLED-PARTY-NUMBER \&maxCallerNumberLength
MINIMUM-FOR-CALLING-PARTY-NUMBER \&minCallingNumberLength
MAXIMUM-FOR-CALLING-PARTY-NUMBER \&maxCallingNumberLength
MINIMUM-FOR-CARRIER \&minCarrierLength
MAXIMUM-FOR-CARRIER \&maxCarrierLength
MINIMUM-FOR-CAUSE \&minCauseLength
MAXIMUM-FOR-CAUSE \&maxCauseLength
MINIMUM-FOR-DIGITS \&minDigitsLength
MAXIMUM-FOR-DIGITS \&maxDigitsLength
MINIMUM-FOR-FCI-BILLING-CHARGING-DATA \&minFCIBillingChargingDataLength
MAXIMUM-FOR-FCI-BILLING-CHARGING-DATA \&maxFCIBillingChargingDataLength
MINIMUM-FOR-FCI-BILLING-CHARGING \&minFCIBillingChargingLength
MAXIMUM-FOR-FCI-BILLING-CHARGING \&maxFCIBillingChargingLength
MINIMUM-FOR-GENERIC-NUMBER \&minGenericNumberLength
MAXIMUM-FOR-GENERIC-NUMBER \&maxGenericNumberLength
MINIMUM-FOR-GPRS-CAUSE-LENGTH \&minGPRSCauseLength
MAXIMUM-FOR-GPRS-CAUSE-LENGTH \&maxGPRSCauseLength
MINIMUM-FOR-IP-SSP-CAPABILITIES \&minIPSSPCapabilitiesLength
MAXIMUM-FOR-IP-SSP-CAPABILITIES \&maxIPSSPCapabilitiesLength
MINIMUM-FOR-LOCATION-NUMBER \&minLocationNumberLength
MAXIMUM-FOR-LOCATION-NUMBER \&maxLocationNumberLength
MINIMUM-FOR-LOW-LAYER-COMPATIBILITY \&minLowLayerCompatibilityLength
MAXIMUM-FOR-LOW-LAYER-COMPATIBILITY \&maxLowLayerCompatibilityLength
MINIMUM-FOR-MESSAGE-CONTENT \&minMessageContentLength
MAXIMUM-FOR-MESSAGE-CONTENT \&maxMessageContentLength
MINIMUM-FOR-ORIGINAL-CALLED-PARTY-ID \&minOriginalCalledPartyIDLength
MAXIMUM-FOR-ORIGINAL-CALLED-PARTY-ID \&maxOriginalCalledPartyIDLength
MINIMUM-FOR-PDP-ADDRESS-LENGTH \&minPDPAddressLength
MAXIMUM-FOR-PDP-ADDRESS-LENGTH \&maxPDPAddressLength
MINIMUM-FOR-REDIRECTING-ID \&minRedirectingPartyIDLength
MAXIMUM-FOR-REDIRECTING-ID \&maxRedirectingPartyIDLength
MINIMUM-FOR-GSMSCF-ID \&minGsmscfIDLength
MAXIMUM-FOR-GSMSCF-ID \&maxGsmscfIDLength
MINIMUM-FOR-SCI-BILLING-CHARGING \&minScriBillingChargingLength
MAXIMUM-FOR-SCI-BILLING-CHARGING \&maxScriBillingChargingLength
MINIMUM-FOR-TIME-AND-TIMEZONE \&minTimeAndTimeZoneLength
MAXIMUM-FOR-TIME-AND-TIMEZONE \&maxTimeAndTimeZoneLength
NUM-OF-BCSM-EVENT \&numOfBCSMEvents
NUM-OF-CSS \&numOfCSSs
NUM-OF-SMS-EVENTS \&numOfSMSEvents
NUM-OF-GPRS-EVENTS \&numOfGPRSEvents
NUM-OF-EXTENSIONS \&numOfExtensions
NUM-OF-GENERIC-NUMBERS \&numOfGenericNumbers
NUM-OF-MESSAGE-IDS \&numOfMessageIds

cAPSpecificBoundSet PARAMETERS-BOUND ::= {
MINIMUM-FOR-ACCESS-POINT-NAME 1
MAXIMUM-FOR-ACCESS-POINT-NAME 100
MINIMUM-FOR-ACH-BILLING-CHARGING 5
MAXIMUM-FOR-ACH-BILLING-CHARGING 177
MINIMUM-FOR-ATTRIBUTES 2
MAXIMUM-FOR-ATTRIBUTES 10
MINIMUM-FOR-BEARER-CAPABILITY 11
MAXIMUM-FOR-BEARER-CAPABILITY 41
MINIMUM-FOR-CALLED-PARTY-BCD-NUMBER 1
MAXIMUM-FOR-CALLED-PARTY-BCD-NUMBER 41
MINIMUM-FOR-CALLED-PARTY-NUMBER 2
MAXIMUM-FOR-CALLED-PARTY-NUMBER 18
MINIMUM-FOR-CALLING-PARTY-NUMBER 2
MAXIMUM-FOR-CALLING-PARTY-NUMBER 10
MINIMUM-FOR-CALL-RESULT 1
MAXIMUM-FOR-CALL-RESULT 193
MINIMUM-FOR-CARRIER 4
MAXIMUM-FOR-CARRIER 4
MINIMUM-FOR-CAUSE 2
MAXIMUM-FOR-CAUSE 32
MINIMUM-FOR-DIGITS 2
MAXIMUM-FOR-DIGITS 16
MINIMUM-FOR-FCI-BILLING-CHARGING-DATA 1
MAXIMUM-FOR-FCI-BILLING-CHARGING-DATA 160
MINIMUM-FOR-FCI-BILLING-CHARGING 5
MAXIMUM-FOR-FCI-BILLING-CHARGING 225
MINIMUM-FOR-GENERIC-NUMBER 3

ETSI
5.6 Object IDentifiers (IDs)

CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}

DEFINITIONS ::= BEGIN

-- This module assigns object identifiers for Modules, Packages, Contracts and ACs
-- used by CAP

-- For Modules from TC, ROS,
tc-Messages OBJECT IDENTIFIER ::= {itu-t recommendation q 773 modules(2) messages(1) version3(3)}
tc-NotationExtensions OBJECT IDENTIFIER ::= {itu-t recommendation q 775 modules(2) notation-extension (4) version1(1)}
ros-InformationObjects OBJECT IDENTIFIER ::= {joint-iso-itu-t remote-operations(4) informationObjects(5) version1(0)}

-- For CAP Modules
datatypes OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-datatypes(52) version8(7)}
errortypes OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-errortypes(51) version8(7)}
operationcodes OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-operationcodes(53) version8(7)}
errorcodes OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-errorcodes(57) version8(7)}
classes OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-classes(54) version8(7)}

-- maximum length of the ScfID shall be 10 unless the operator defined format
-- of the ScfID requires a higher maximum length
MINIMUM-FOR-SCI-BILLING-CHARGING 4
MAXIMUM-FOR-SCI-BILLING-CHARGING 225
MINIMUM-FOR-TIME-AND-TIMEZONE 8
MAXIMUM-FOR-TIME-AND-TIMEZONE 8
NUM-OF-BCSM-EVENT 30
NUM-OF-CHANGE-OF-POSITION-CONTROL-INFO 10
NUM-OF-CSS 127
NUM-OF-SMS-EVENTS 10
NUM-OF-GPRS-EVENTS 10
NUM-OF-EXTENSIONS 10
NUM-OF-GENERIC-NUMBERS 5
NUM-OF-MESSAGE-IDS 16

END
cap-classes(54) version8(7)

gsmSSF-gsmSCF-Operations OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3)
cap-gsmSSF-gsmSCF-ops-args(101) version8(7)}
-- The Object Identifier 'gsmSSF-gsmSCF-Operations' is updated to version8(7) in Rel-6, so
-- other modules can IMPORT Rel-6 Operation definitions related to call control.

gsmSSF-gsmSCF-Protocol OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3)
cap-gsmSSF-gsmSCF-pkgs-contracts-acs(102) version8(7)}
-- The Object Identifier 'gsmSSF-gsmSCF-Protocol' is updated to version8(7) in Rel-6, so
-- other modules can IMPORT Rel-6 Protocol definitions related to call control.

gsmSCF-gsmSRF-Operations OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3)
cap-gsmSCF-gsmSRF-ops-args(103) version8(7)}
-- The Object Identifier 'gsmSCF-gsmSRF-Operations' is updated to version8(7) in Rel-6, so
-- other modules can IMPORT Rel-6 Operation definitions related to gsmSRF control.

gsmSCF-gsmSRF-Protocol OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3)
cap-gsmSCF-gsmSRF-pkgs-contracts-acs(104) version8(7)}
-- The Object Identifier 'gsmSCF-gsmSRF-Protocol' is updated to version8(7) in Rel-6, so
-- other modules can IMPORT Rel-6 Protocol definitions related to gsmSRF control.

sms-Operations OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3)
cap-SMS-ops-args(105) version8(7)}
-- The Object Identifier 'sms-Operations' is updated to version8(7) in Rel-6, so other
-- modules can IMPORT Rel-6 Operation definitions related to SMS control.

smsSSF-gsmSCF-Protocol OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3)
cap-smsSSF-gsmSCF-pkgs-contracts-acs(106) version8(7)}
-- The Object Identifier 'smsSSF-gsmSCF-Protocol' is updated to version8(7) in Rel-6, so
-- other modules can IMPORT Rel-6 Protocol definitions related to SMS control.

gprsSSF-gsmSCF-Operations OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3)
cap-GPRS-ops-args(107) version8(7)}
-- The Object Identifier 'gprsSSF-gsmSCF-Operations' is updated to version8(7) in Rel-6, so
-- other modules can IMPORT Rel-6 Operation definitions related to GPRS control.

gprsSSF-gsmSCF-Protocol OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3)
cap-gprsSSF-gsmSCF-pkgs-contracts-acs(108) version8(7)}
-- The Object Identifier 'gprsSSF-gsmSCF-Protocol' is updated to version8(7) in Rel-6, so
-- other modules can IMPORT Rel-6 Protocol definitions related to GPRS control.

id-CAP OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
  umts-network(1) cap4(22)}

id-CAP3 OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
  umts-network(1) cap3(20)}

id-CAPOE OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
  umts-network(1) cap4OE(23)}

id-CAP3OE OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
  umts-network(1) cap3OE(21)}

id-ac OBJECT IDENTIFIER ::= {id-CAP ac(3)}

id-acE OBJECT IDENTIFIER ::= {id-CAP ac3E ac(3)}

id-as OBJECT IDENTIFIER ::= {id-CAP as(5)}

id-asE OBJECT IDENTIFIER ::= {id-CAP as(5)}

id-rosObject OBJECT IDENTIFIER ::= {id-CAP rosObject(25)}

id-contract OBJECT IDENTIFIER ::= {id-CAP contract(26)}

id-contract3 OBJECT IDENTIFIER ::= {id-CAP contract3 (26)}

id-contractE OBJECT IDENTIFIER ::= {id-CAP contract(26)}

id-package OBJECT IDENTIFIER ::= {id-CAP package(27)}

id-packageE OBJECT IDENTIFIER ::= {id-CAP package(27)}
3GPP TS 29.078 version 12.0.0 Release 12

-- for ac, as, rosObject, contract and package, the values are identical to ITU-T Recommendation
-- Q.1218 [49]

-- ROS Objects
id-rosObject-gsmSCF OBJECT IDENTIFIER ::= {id-rosObject 4}
id-rosObject-gsmSSF OBJECT IDENTIFIER ::= {id-rosObject 5}
id-rosObject-gprsSSF OBJECT IDENTIFIER ::= {id-rosObject 7}
id-rosObject-smsSSF-V3 OBJECT IDENTIFIER ::= {id-rosObject 8}
id-rosObject-smsSSF-V4 OBJECT IDENTIFIER ::= {id-rosObject 9}

-- Application Contexts
-- gsmSSF/gsmSCF AC
id-ac-CAP-gsmSSF-scfGenericAC OBJECT IDENTIFIER ::= {id-acE 4}
id-ac-CAP-gsmSSF-scfAssistHandoffAC OBJECT IDENTIFIER ::= {id-acE 6}
id-ac-CAP-scf-gsmSSFGenericAC OBJECT IDENTIFIER ::= {id-acE 8}

-- gsmSRF/gsmSCF AC
id-ac-gsmSRF-gsmSCF OBJECT IDENTIFIER ::= {id-ac 14}

-- gprsSSF/gsmSCF AC
id-ac-CAP-gprsSSF-gsmSCF-AC OBJECT IDENTIFIER ::= {id-ac3E 50}
id-ac-CAP-gsmSCF-gprsSSF-AC OBJECT IDENTIFIER ::= {id-ac3E 51}

-- gprsSSF/gsmSCF or gsmSSF/gsmSCF AC
id-ac-cap3-sms-AC OBJECT IDENTIFIER ::= {id-ac3E 61}
id-ac-cap4-sms-AC OBJECT IDENTIFIER ::= {id-ac3E 61}

-- Contracts
-- gsmSSF/gsmSCF Contracts
id-CAPSsfToScfGeneric OBJECT IDENTIFIER ::= {id-contractE 3}
id-CAPAssistHandoffssfToScf OBJECT IDENTIFIER ::= {id-contractE 5}
id-CAPScfTossfGeneric OBJECT IDENTIFIER ::= {id-contractE 6}

-- gsmSRF/gsmSCF Contracts
id-contract-gsmSRF-gsmSCF OBJECT IDENTIFIER ::= {id-contract 13}

-- gprsSSF/gsmSCF Contracts
id-capGprsSsfToGsmScf OBJECT IDENTIFIER ::= {id-contract 14}
id-capGsmScfToGprsSsf OBJECT IDENTIFIER ::= {id-contract 15}

-- gprsSSF/gsmSCF or gsmSSF/gsmSCF Contracts
id-cap3SmsSsfToGsmScf OBJECT IDENTIFIER ::= {id-contract3 16}
id-cap4SmsSsfToGsmScf OBJECT IDENTIFIER ::= {id-contract 16}

-- Operation Packages
-- gsmSSF/gsmSCF Operation Packages
id-package-scfActivation OBJECT IDENTIFIER ::= {id-package 11}
id-package-gsmSRF-scfActivationOfAssist OBJECT IDENTIFIER ::= {id-package 15}
id-package-assistConnectionEstablishment OBJECT IDENTIFIER ::= {id-package 16}
id-package-genericDisconnectResource OBJECT IDENTIFIER ::= {id-package 17}
id-package-nonAssistedConnectionEstablishment OBJECT IDENTIFIER ::= {id-package 18}
id-package-connect OBJECT IDENTIFIER ::= {id-package 19}
id-package-callHandling OBJECT IDENTIFIER ::= {id-packageE 20}
id-package-bcsmEventHandling OBJECT IDENTIFIER ::= {id-package 21}
id-package-ssfCallProcessing OBJECT IDENTIFIER ::= {id-packageE 24}
id-package-scfCallInitiation OBJECT IDENTIFIER ::= {id-package 25}
id-package-timer OBJECT IDENTIFIER ::= {id-package 26}
id-package-billing OBJECT IDENTIFIER ::= {id-package 27}
id-package-charging OBJECT IDENTIFIER ::= {id-package 28}
id-package-trafficManagement OBJECT IDENTIFIER ::= {id-package 29}
id-package-callReport OBJECT IDENTIFIER ::= {id-package 32}
id-package-signallingControl OBJECT IDENTIFIER ::= {id-package 33}
id-package-activityTest OBJECT IDENTIFIER ::= {id-package 34}
id-package-cancel OBJECT IDENTIFIER ::= {id-packageE 36}
id-package-cphResponse OBJECT IDENTIFIER ::= {id-package 37}
id-package-exceptionInform OBJECT IDENTIFIER ::= {id-package 38}
id-package-playTone OBJECT IDENTIFIER ::= {id-package 39}

-- gsmSRF/gsmSCF Operation Packages
-- gprsSSF/gsmSCF Operation Packages

id-package-gprsContinue OBJECT IDENTIFIER ::= {id-package 49}
id-package-gprsScfActivation OBJECT IDENTIFIER ::= {id-package 51}
id-package-gprsConnect OBJECT IDENTIFIER ::= {id-package 52}
id-package-gprsRelease OBJECT IDENTIFIER ::= {id-package 53}
id-package-gprsEventHandling OBJECT IDENTIFIER ::= {id-package 54}
id-package-gprsTimer OBJECT IDENTIFIER ::= {id-package 55}
id-package-gprsBilling OBJECT IDENTIFIER ::= {id-package 56}
id-package-gprsCharging OBJECT IDENTIFIER ::= {id-package 57}
id-package-gprsActivityTest OBJECT IDENTIFIER ::= {id-package 58}
id-package-gprsCancel OBJECT IDENTIFIER ::= {id-package 59}
id-package-gprsChargeAdvice OBJECT IDENTIFIER ::= {id-package 60}

-- gsmSSF/gsmSCF or gsmSSF/gsmSCF Operation Packages

id-package-smsActivation OBJECT IDENTIFIER ::= {id-package 61}
id-package-smsConnect OBJECT IDENTIFIER ::= {id-package 62}
id-package-smsContinue OBJECT IDENTIFIER ::= {id-package 63}
id-package-smsRelease OBJECT IDENTIFIER ::= {id-package 64}
id-package-smsEventHandling OBJECT IDENTIFIER ::= {id-package 65}
id-package-smsBilling OBJECT IDENTIFIER ::= {id-package 66}
id-package-smsTimer OBJECT IDENTIFIER ::= {id-package 67}

-- Abstract Syntaxes

-- gsmSSF/gsmSCF Abstract Syntaxes

id-as-assistHandoff-gsmSSF-scfAS OBJECT IDENTIFIER ::= {id-asE 6}

-- gsmSRF/gsmSCF Abstract Syntaxes

id-as-basic-gsmSRF-gsmSCF OBJECT IDENTIFIER ::= {id-as 14}

-- gprsSSF/gsmSCF Abstract Syntaxes

id-as-gprsSSF-gsmSCF-AS OBJECT IDENTIFIER ::= {id-as 50}
id-as-gsmSCF-gprsSSF-AS OBJECT IDENTIFIER ::= {id-as 51}

-- gprsSSF/gsmSCF or gsmSSF/gsmSCF Abstract Syntaxes

id-as-smsSSF-gsmSCF-AS OBJECT IDENTIFIER ::= {id-as 61}

END

5.7 User Abort Data

CAP-U-ABORT-Data {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-u-abort-data(l10) version8(7)}

DEFINITIONS ::= BEGIN

id-CAP-U-ABORT-Reason OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-Network(1) as(1) cap-u-abort-reason(2) version3(2)}
cAP-U-ABORT-Reason-Abstract-Syntax ABSTRACT-SYNTAX ::= {CAP-U-ABORT-REASON IDENTIFIED BY id-CAP-U-ABORT-Reason}

CAP-U-ABORT-REASON ::= ENUMERATED {
  no-reason-given (1),
  application-timer-expired (2),
  not-allowed-procedures (3),
  abnormal-processing (4),
  congestion (5),
  invalid-reference (6),
  missing-reference (7),
  overlapping-dialogue (8)
}

-- application-timer-expired shall be set when application timer (e.g. Tssf) is expired.
-- not-allowed-procedures shall be set when received signal is not allowed in CAP
-- procedures.
-- For example, when a class 4 operation is received from the
-- gsmSCF and the operation is not allowed in gsmSSF FSM.
-- (gsmSSF FSM cannot continue state transition). (e.g. ReleaseCall
-- operation received in Waiting for End of Temporary Connection
-- state.)
-- abnormal-processing shall be set when abnormal procedures occur at entity action.
-- shall be set when requested resource is unavailable due to
6 Circuit Switched Call Control

6.1 gsmSSF/CCF - gsmSCF Interface

6.1.1 Operations and arguments

DEFINITIONS IMPLICIT TAGS ::= BEGIN
   ..
END -- of CAP-U-ABORT-Data

IMPORTS
   ..
FROM CAP-object-identifiers
   ..
FROM Remote-Operations-Information-Objects
   ..
FROM CS1-DataTypes
   ..
FROM CS2-datatypes
   ..
FROM MAP-CommonDataTypes
   ..
FROM ..

OPERATION
FROM ..

IMPORTS
   ..
FROM ..
FROM ..
FROM ..

OPERATION
FROM ..
OfferedCamel4Functionalities
FROM MAP-MS-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
gsm-Network(1) modules(3) map-MS-DataTypes(11) version12(12)}

CallReferenceNumber,
SuppressionOfAnnouncement,
UU-Data
FROM MAP-CH-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
gsm-Network(1) modules(3) map-CH-DataTypes(13) version12(12)}

PARAMETERS-BOUND
FROM CAP-classes classes

opcode-activityTest,
opcode-applyCharging,
opcode-applyChargingReport,
opcode-assistRequestInstructions,
opcode-callGap,
opcode-callInformationReport,
opcode-callInformationRequest,
opcode-cancel,
opcode-collectInformation,
opcode-connect,
opcode-connectToResource,
opcode-continue,
opcode-continueWithArgument,
opcode-disconnectForwardConnection,
opcode-dFCWithArgument,
opcode-disconnectLeg,
opcode-entityReleased,
opcode-establishTemporaryConnection,
opcode-eventReportBCSM,
opcode-furnishChargingInformation,
opcode-initialDP,
opcode-initiateCallAttempt,
opcode-moveLeg,
opcode-playTone,
opcode-releaseCall,
opcode-requestReportBCSMEvent,
opcode-resetTimer,
opcode-sendChargingInformation,
opcode-splitLeg
FROM CAP-operationcodes operationcodes
-- The CAP Operation identifiers for CAP V4 in Rel-6 are the same as the CAP Operation
-- identifiers for CAP V4 in Rel-5.

AChBillingChargingCharacteristics {},
AdditionalCallingPartyNumber {},
AlertingPattern,
AChChargingAddress {},
AssistingSSIPRoutingAddress {},
BCSMEvent {},
BCSM-Failure,
BearerCapability {},
Burst,
CalledPartyNumber {},
CalledPartyBCDNumber {},
CallingPartyNumber {},
CallResult {},
CallSegmentID {},
CallSegmentToCancel {},
CallSegmentFailure {},
Carrier,
Cause {},
CGEncountered,
ChargeNumber {},
ControlType,
CorrelationID {},
DestinationRoutingAddress {},
EventTypeSpecificInformationBCSM {},
EventSpecificBCSM,
Extensions {},
FCIBillingChargingCharacteristics {},
GapCriteria {},
GapIndicators,
GapTreatment,
GenericNumbers {},
InvokeID,
IPRoutingAddress {},
IPSSPCapabilities {},
leg1,
leg2,
LegOrCallSegment {},
LocationNumber {},
LowLayerCompatibility {},
MonitorMode,
NAOlIInfo,
OCSIApplicable,
OriginalCalledPartyID {},
ReceivingSideID,
RedirectingPartyID {},
RequestedInformationList {},
RequestedInformationTypeList,
Scf ID {},
SCIBillingChargingCharacteristics {},
SendingSideID,
ServiceInteractionIndicatorsTwo,
TimeAndTimeZone {},
TimerID,
TimerValue
FROM CAP-datatypes datatypes
-- For Rel-6, the CAP-datatypes module is updated to version8(7); Object Identifier 'datatypes'
-- is also updated to version8(7). As a result, the present module uses Rel-6 data type definitions.
cancelFailed,
etCFFailed,
missingCustomerRecord,
missingParameter,
parameterOutOfRange,
requestedInfoError,
systemFailure,
taskRefused,
unexpectedComponentSequence,
unexpectedDataValue,
unexpectedParameter,
unknownLegID,
unknownCSID
FROM CAP-errortypes errortypes
-- For Rel-6, the CAP-errortypes module is updated to version8(7); Object Identifier
-- 'errortypes' is also updated to version8(7). As a result, the present module uses Rel-6
-- error type definitions.
;
activityTest OPERATION ::= {
  RETURN RESULT TRUE
  CODE opcode-activityTest}
-- Direction: gsmSCF -> gsmSSF, Timer: Tat
-- This operation is used to check for the continued existence of a relationship
-- between the gsmSCF and gsmSSF, assist gsmSSF or gsmSRF. If the relationship is
-- still in existence, then the gsmSSF will respond. If no reply is received,
-- then the gsmSCF will assume that the gsmSSF, assist gsmSSF or gsmSRF has failed
-- in some way.
applyCharging {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT ApplyChargingArg {bound}
  RETURN RESULT FALSE
  ERRORS {missingParameter |
               unexpectedComponentSequence |
               unexpectedParameter |
               unexpectedDataValue |
               parameterOutOfRange |
               systemFailure |
               taskRefused |
               unknownLegID |
               unknownCSID}
  CODE opcode-applyCharging}
-- Direction: gsmSCF -> gsmSSF, Timer: Tac
-- This operation is used for interacting from the gsmSCF with the gsmSSF charging mechanisms.
-- The ApplyChargingReport operation provides the feedback from the gsmSSF to the gsmSCF.
ApplyChargingArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  aChBillingChargingCharacteristics [0] AChBillingChargingCharacteristics {bound},
  partyToCharge [2] SendingSideID DEFAULT sendingSideID : leg1,
  extensions [3] Extensions {bound} OPTIONAL,
  aChChargingAddress [50] AChChargingAddress {bound}
-- The partyToCharge parameter indicates the party in the call to which the ApplyCharging operation shall be applied.

applyChargingReport {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT ApplyChargingReportArg {bound}
  RETURN RESULT FALSE
  ERRORS {missingParameter |
            unexpectedComponentSequence |
            unexpectedParameter |
            unknownSSID |
            unknownLegID |
            parameterOutOfRange |
            systemFailure |
            taskRefused}
  CODE opcode-applyChargingReport}
  -- Direction: gsmSSF -> gsmSCF, Timer: Tacr
  -- This operation is used by the gsmSSF to report to the gsmSCF the occurrence of a specific charging event as requested by the gsmSCF using the ApplyCharging operation.

ApplyChargingReportArg {PARAMETERS-BOUND : bound} ::= CallResult {bound}

assistRequestInstructions {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT AssistRequestInstructionsArg {bound}
  RETURN RESULT FALSE
  ERRORS {missingCustomerRecord |
            missingParameter |
            systemFailure |
            taskRefused |
            unexpectedComponentSequence |
            unexpectedDataValue |
            unexpectedParameter}
  CODE opcode-assistRequestInstructions}
  -- Direction: gsmSSF -> gsmSCF or gsmSRF -> gsmSCF, Timer: Tari
  -- This operation is used when there is an assist procedure and may be sent by the gsmSSF or gsmSRF to the gsmSCF. This operation is sent by the assisting gsmSSF to gsmSCF as a result of receiving an EstablishTemporaryConnection from the gsmSrF or to the assisting gsmSSF as a result of receiving an AssistRequest from the gsmSCF.
  -- Refer to clause 11 for a description of the procedures associated with this operation.

AssistRequestInstructionsArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  correlationID      [0] CorrelationID {bound},
  iPSSPCapabilities     [2] IPSSPCapabilities {bound},
  extensions       [3] Extensions {bound}      OPTIONAL,
  ...
}
  -- OPTIONAL denotes network operator specific use. The value of the correlationID may be the Called Party Number supplied by the initiating gsmSSF.

callGap {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT CallGapArg {bound}
  RETURN RESULT FALSE
  ALWAYS Responds FALSE
  CODE opcode-callGap}
  -- Direction: gsmSCF -> gsmSSF, Timer: Tcg
  -- This operation is used to request the gsmSSF to reduce the rate at which specific service requests are sent to the gsmSCF.

callGapArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  gapCriteria       [0] GapCriteria {bound},
  gapIndicators      [1] GapIndicators,
  controlType       [2] ControlType        OPTIONAL,
  gapTreatment      [3] GapTreatment {bound}     OPTIONAL,
  extensions       [4] Extensions {bound}      OPTIONAL,
  ...
}
  -- OPTIONAL denotes network operator optional. If gapTreatment is not present, then the gsmSSF will use a default treatment depending on network operator implementation.

callInformationReport {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT CallInformationReportArg {bound}
  RETURN RESULT FALSE
ALWAYS RESPONDS FALSE

--- Direction: gsmSSF -> gsmSCF, Timer: Tcirp
--- This operation is used to send specific call information for a single call party to the gsmSCF as
--- requested by the gsmSCF in a previous CallInformationRequest.

CallInformationReportArg (PARAMETERS-BOUND : bound) ::= SEQUENCE {
  requestedInformationList [0] RequestedInformationList {bound},
  extensions [2] Extensions {bound} OPTIONAL,
  legID [3] ReceivingSideID DEFAULT receivingSideID:leg2,
  ...
}

callInformationRequest (PARAMETERS-BOUND : bound) OPERATION ::= {
  ARGUMENT CallInformationRequestArg {bound}
  RETURN RESULT FALSE
  ERRORS [missingParameter |
           parameterOutOfRange |
           requestedInfoError |
           systemFailure |
           taskRefused |
           unexpectedComponentSequence |
           unexpectedDataValue |
           unexpectedParameter |
           unknownLegID]
  CODE opcode-callInformationRequest]
  -- Direction: gsmSCF -> gsmSSF, Timer: Tcirq
  -- This operation is used to request the gsmSSF to record specific information about a single
  -- call party and report it to the gsmSCF (with a CallInformationReport operation).

CallInformationRequestArg (PARAMETERS-BOUND : bound) ::= SEQUENCE {
  requestedInformationTypeList [0] RequestedInformationTypeList,
  extensions [2] Extensions {bound} OPTIONAL,
  legID [3] SendingSideID DEFAULT sendingSideID:leg2,
  ...
}

-- OPTIONAL denotes network operator optional.

cancel (PARAMETERS-BOUND : bound) OPERATION ::= {
  ARGUMENT CancelArg {bound}
  RETURN RESULT FALSE
  ERRORS [cancelFailed |
           missingParameter |
           taskRefused |
           unknownCSID]
  CODE opcode-cancel]
  -- Direction: gsmSCF -> gsmSSF, or gsmSCF -> gsmSRF, Timer: Tcan
  -- This operation cancels the correlated previous operation or all previous requests. The following
  -- operations can be canceled: PlayAnnouncement, PromptAndCollectUserInformation.

CollectInformationArg (PARAMETERS-BOUND : bound) ::= SEQUENCE{
  extensions [0] Extensions {bound} OPTIONAL,
  ...
}

-- The InvokeID has the same value as that which was used for the operation to be cancelled.

connect (PARAMETERS-BOUND : bound) OPERATION ::= {

ARGUMENT ConnectArg {bound}
RETURN RESULT FALSE
ERRORS {missingParameter | parameterOutOfRange | systemFailure | taskRefused | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter | unknown LegID}

CODE opcode-connect

-- Direction: gsmSCF -> gsmSSF, Timer: Tcon
-- This operation is used to request the gsmSSF to perform the call processing actions
-- to route or forward a call to a specified destination.

ConnectArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  destinationRoutingAddress [0] DestinationRoutingAddress {bound},
  alertingPattern [1] AlertingPattern OPTIONAL,
  originalCalledPartyID [6] OriginalCalledPartyID {bound} OPTIONAL,
  extensions [10] Extensions {bound} OPTIONAL,
  carrier [11] Carrier {bound} OPTIONAL,
  callingPartysCategory [28] CallingPartysCategory OPTIONAL,
  redirectingPartyID [29] RedirectingPartyID {bound} OPTIONAL,
  redirectionInformation [30] RedirectionInformation OPTIONAL,
  genericNumbers [14] GenericNumbers {bound} OPTIONAL,
  serviceInteractionIndicatorsTwo [15] ServiceInteractionIndicatorsTwo OPTIONAL,
  chargeNumber [19] ChargeNumber {bound} OPTIONAL,
  legToBeConnected [21] LegID OPTIONAL,
  cug-Interlock [31] CUG-Interlock OPTIONAL,
  cug-OutgoingAccess [32] NULL OPTIONAL,
  suppressionOfAnnouncement [55] SuppressionOfAnnouncement OPTIONAL,
  cCSIApplicable [56] CCSIApplicable OPTIONAL,
  naOliInfo [57] NAOliInfo OPTIONAL,
  bor-InterrogationRequested [58] NULL OPTIONAL,
  ...
}
connectToResource {PARAMETERS-BOUND : bound} OPERATION ::= {
  ADDRESS ConnectToResourceArg {bound},
  RETURN RESULT FALSE
ERRORS {missingParameter | systemFailure | taskRefused | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter | unknown CSID}

CODE opcode-connectToResource

-- Direction: gsmSCF -> gsmSSF, Timer: Tctr
-- This operation is used to connect a call segment from the gsmSSF to the
gsmSRF.

ConnectToResourceArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  resourceAddress CHOICE {
    ipRoutingAddress [0] IPRoutingAddress {bound},
    none [3] NULL
  },
  extensions [4] Extensions {bound} OPTIONAL,
  serviceInteractionIndicatorsTwo [7] ServiceInteractionIndicatorsTwo OPTIONAL,
  callSegmentID [50] CallSegmentID {bound} OPTIONAL,
  ...
}

continue OPERATION ::= {
  RETURN RESULT FALSE
  ALWAYS RESPONDS FALSE
  CODE opcode-continue
}

continueWithArgument {PARAMETERS-BOUND : bound} OPERATION ::= {
  ADDRESS ContinueWithArgumentArg {bound},
  RETURN RESULT FALSE
}
Errors: {missingParameter | parameterOutOfRange | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter | unknownLegID | unknownCSID}

Code: opcode-continueWithArgument

-- Direction: gsmSCF -> gsmSSF, Timer: Tcwa
-- This operation is used to request the gsmSSF to proceed with call processing at the
-- DP at which it previously suspended call processing to await gsmSCF instructions
-- (i.e. proceed to the next point in call in the BCSM). The gsmSSF continues call
-- processing with the modified call setup information as received from the gsmSCF.

ContinueWithArgumentArg [PARAMETERS-BOUND : bound] ::= SEQUENCE {
  alertingPattern      [1] AlertingPattern       OPTIONAL,
  extensions       [6] Extensions {bound}      OPTIONAL,
  serviceInteractionIndicatorsTwo [7] ServiceInteractionIndicatorsTwo OPTIONAL,
  callingPartysCategory    [12] CallingPartysCategory     OPTIONAL,
  genericNumbers      [16] GenericNumbers {bound}     OPTIONAL,
  cug-Interlock      [17] CUG-Interlock       OPTIONAL,
  cug-OutgoingAccess     [18] NULL         OPTIONAL,
  chargeNumber      [50] ChargeNumber {bound}     OPTIONAL,
  carrier        [52] Carrier (bound)         OPTIONAL,
  suppressionOfAnnouncement [55] SuppressionOfAnnouncement OPTIONAL,
  naOliInfo       [56] NAOliInfo        OPTIONAL,
  bor-InterrogationRequested   [57] NULL         OPTIONAL,
  suppress-O-CSI      [58] NULL         OPTIONAL,
  continueWithArgumentArgExtension [59] ContinueWithArgumentArgExtension {bound} OPTIONAL,
  ...
}

ContinueWithArgumentArgExtension {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  suppress-D-CSI      [0] NULL         OPTIONAL,
  suppress-N-CSI      [1] NULL         OPTIONAL,
  suppressOutgoingCallBarring   [2] NULL         OPTIONAL,
  legOrCallSegment     [3] LegOrCallSegment {bound}    OPTIONAL,
  ...
}

disconnectForwardConnection OPERATION ::= {
  RETURN RESULT FALSE
  Errors: {systemFailure | taskRefused | unexpectedComponentSequence}
  Code: opcode-disconnectForwardConnection
  -- Direction: gsmSCF -> gsmSSF, Timer: Tdfe
  -- This operation is used to disconnect a forward temporary connection or a connection to a
  -- resource. Refer to clause 11 for a description of the procedures associated with this operation.

disconnectForwardConnectionWithArgumentArg [PARAMETERS-BOUND : bound] ::= SEQUENCE {
  callSegmentID      [1] CallSegmentID {bound}     OPTIONAL,
  extensions       [2] Extensions {bound}      OPTIONAL,
  ...
}

disconnectLeg [PARAMETERS-BOUND : bound] OPERATION ::= {
  Argument: DisconnectLegArg (bound)
  Return Result: TRUE
  Errors: {missingParameter | systemFailure | taskRefused | unexpectedComponentSequence |}
unexpectedDataValue | unexpectedParameter | unknownLegID)
CODE      opcode-disconnectLeg)
-- Direction: gsmSCF -> gsmSSF, Timer Tdl
-- This operation is used by the gsmSCF to release a specific leg associated with the call and
-- retain any other legs not specified in the DisconnectLeg. Refer to clause 11 for a description
-- of the procedures associated with this operation.

DisconnectedLegArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  legToBeReleased      [0] LegID,
  releaseCause      [1] Cause {bound} OPTIONAL,
  extensions       [2] Extensions {bound} OPTIONAL,
  ...
}

entityReleased {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT EntityReleasedArg {bound}
  RETURN RESULT FALSE
  ALWAYS RESPONDS FALSE
  CODE      opcode-entityReleased)
-- Direction: gsmSSF -> gsmSCF, Timer: Ter
-- This operation is used by the gsmSSF to inform the gsmSCF of an error or exception

EntityReleasedArg {PARAMETERS-BOUND : bound} ::= CHOICE {
  callSegmentFailure     [0] CallSegmentFailure {bound},
  bCSM-Failure      [1] BCSM-Failure {bound}
}

establishTemporaryConnection {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT EstablishTemporaryConnectionArg {bound}
  RETURN RESULT FALSE
  ERRORS   {eTCFailed | missingParameter | systemFailure | taskRefused | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter | unknownCSID}
  CODE      opcode-establishTemporaryConnection}
-- Direction: gsmSCF -> gsmSSF, Timer: Tetc
-- This operation is used to create a connection to a resource for a limited period
-- of time (e.g. to play an announcement, to collect user information); it implies
-- the use of the assist procedure. Refer to clause 11 for a description of the
-- procedures associated with this operation.

EstablishTemporaryConnectionArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  assistingSSPIPRoutingAddress  [0] AssistingSSPIPRoutingAddress {bound},
  correlationID      [1] CorrelationID {bound} OPTIONAL,
  scfID        [3] ScfID {bound} OPTIONAL,
  extensions       [4] Extensions {bound} OPTIONAL,
  carrier        [5] Carrier {bound} OPTIONAL,
  serviceInteractionIndicatorsTwo  [6] ServiceInteractionIndicatorsTwo OPTIONAL,
  callSegmentID      [7] CallSegmentID {bound} OPTIONAL,
  naOliInfo       [50] NAOliInfo OPTIONAL,
  chargeNumber      [51] ChargeNumber {bound} OPTIONAL,
  originalCalledPartyID    [52] OriginalCalledPartyID {bound} OPTIONAL,
  callingPartyNumber     [53] CallingPartyNumber {bound} OPTIONAL,
  ...,
originalCalledPartyID    [52] OriginalCalledPartyID {bound} OPTIONAL,
chargingPartyNumber     [53] ChargingPartyNumber {bound} OPTIONAL
}

eventReportBCSM {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT EventReportBCSMArg {bound}
  RETURN RESULT FALSE
  ALWAYS RESPONDS FALSE
  CODE      opcode-eventReportBCSM}
-- Direction: gsmSSF -> gsmSCF, Timer: Terb
-- This operation is used to notify the gsmSCF of a call-related event (e.g. BCSM
-- events such as O_Busy or O_No_Answer) previously requested by the gsmSCF in a
-- RequestReportBCSMEvent operation.

EventReportBCSMArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  eventTypeBCSM     [0] EventTypeBCSM,
  eventSpecificInformationBCSM  [2] EventSpecificInformationBCSM {bound} OPTIONAL,
  legID        [3] ReceivingSideID OPTIONAL,
  miscCallInfo     [4] MiscCallInfo DEFAULT {messageType request},
Extension {PARAMETERS-BOUND : bound} OPTIONAL,

...}

furnishChargingInformation {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT  FurnishChargingInformationArg [bound]
  RETURN RESULT FALSE
  ERRORS   [missingParameter |
            taskRefused |}
            unexpectedComponentSequence |
            unexpectedDataValue |
            unexpectedParameter |
            unknownLegID]
  CODE     opcode-furnishChargingInformation}
-- Direction: gsmSCF -> gsmSSF, Timer: T_fci
-- This operation is used to request the gsmSSF to generate, register a call record
-- or to include some information in the default call record.
-- The registered call record is intended for off line charging of the call.

FurnishChargingInformationArg {PARAMETERS-BOUND : bound} ::= FCBillingChargingCharacteristics{bound}

initialDP {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT  InitialDPArg [bound]
  RETURN RESULT FALSE
  ERRORS   [missingCustomerRecord |
            missingParameter |
            parameterOutOfRange |
            systemFailure |
            taskRefused |
            unexpectedComponentSequence |
            unexpectedDataValue |
            unexpectedParameter]
  CODE     opcode-initialDP}
-- Direction: gsmSSF -> gsmSCF, Timer: T_idp
-- This operation is used after a TDP to indicate request for service.

InitialDPArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  serviceKey       [0] ServiceKey ,
  calledPartyNumber     [2] CalledPartyNumber [bound] OPTIONAL,
  callingPartyNumber     [3] CallingPartyNumber [bound] OPTIONAL,
  callingPartysCategory    [5] CallingPartysCategory OPTIONAL,
  cGEncountered       [7] CGEncountered OPTIONAL,
  ipSSPCapabilities     [8] IPSSPCapabilities [bound] OPTIONAL,
  locationNumber      [10] LocationNumber [bound] OPTIONAL,
  originalCalledPartyID    [12] OriginalCalledPartyID [bound] OPTIONAL,
  extensions       [15] Extensions [bound] OPTIONAL,
  highLayerCompatibility    [23] HighLayerCompatibility OPTIONAL,
  additionalCallingPartyNumber  [25] AdditionalCallingPartyNumber [bound] OPTIONAL,
  bearerCapability     [27] BearerCapability [bound] OPTIONAL,
  eventTypeBCSM       [28] EventTypeBCSM OPTIONAL,
  redirectingPartyID     [29] RedirectingPartyID [bound] OPTIONAL,
  redirectionInformation    [30] RedirectionInformation OPTIONAL,
  cause        [17] Cause [bound] OPTIONAL,
  serviceInteractionIndicatorsTwo  [32] ServiceInteractionIndicatorsTwo OPTIONAL,
  carrier        [37] Carrier [bound] OPTIONAL,
  cug-Index       [45] CUG-Index OPTIONAL,
  cug-Interlock      [46] CUG-Interlock OPTIONAL,
  cug-OutgoingAccess        [47] NULL OPTIONAL,
  imSI       [50] IMEI OPTIONAL,
  subscriberState      [51] SubscriberState OPTIONAL,
  locationInformation     [52] LocationInformation OPTIONAL,
  ext-basicServiceCode     [53] Ext-BasicServiceCode OPTIONAL,
  callReferenceNumber     [54] CallReferenceNumber OPTIONAL,
  msAddress       [55] ISDN-AddressString OPTIONAL,
  calledPartyBCDNumber    [56] CalledPartyBCDNumber [bound] OPTIONAL,
  timeAndTimeZone      [57] TimeAndTimeZone [bound] OPTIONAL,
  callForwardingSS-Pending   [58] NULL OPTIONAL,
  initialDPArgExtension    [59] InitialDPArgExtension [bound] OPTIONAL,
  ...}

InitialDPArgExtension {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  gmscAddress        [0] ISDN-AddressString OPTIONAL,
  forwardingDestinationNumber     [1] CalledPartyNumber [bound] OPTIONAL,
  ms-Classmark2      [2] MS-Classmark2 OPTIONAL,
  imei       [3] IMEI OPTIONAL,
  supportedCamelPhases        [4] SupportedCamelPhases OPTIONAL,
offeredCamel4Functionalities [5] OfferedCamel4Functionalities OPTIONAL,
bearerCapability2 [6] BearerCapability {bound} OPTIONAL,
ext-basicServiceCode2 [7] Ext-BasicServiceCode OPTIONAL,
highLayerCompatibility2 [8] HighLayerCompatibility OPTIONAL,
lowLayerCompatibility2 [9] LowLayerCompatibility {bound} OPTIONAL,
lowLayerCompatibility2 [10] LowLayerCompatibility {bound} OPTIONAL,

...,

enhancedDialledServicesAllowed [11] NULL OPTIONAL,
uu-Data [12] UU-Data OPTIONAL,
collectInformationAllowed [13] NULL OPTIONAL,
releaseCallArgExtensionAllowed [14] NULL OPTIONAL,

-- If iPSSPCapabilities is not present then this denotes that a colocated gsmSRF is not
-- supported by the gsmSSF. If present, then the gsmSSF supports a colocated gsmSRF capable
-- of playing announcements via elementaryMessageIDs and variableMessages, the playing of
-- tones and the collection of DTMF digits. Other supported capabilities are explicitly
-- detailed in the iPSSPCapabilities parameter itself.
-- Carrier is included at the discretion of the gsmSSF operator.
-- The UserCGSInformation is conveyed in the LocationInformation. The encoding of the parameter is

initiateCallAttempt [PARAMETERS-BOUND : bound] OPERATION ::= {
ARGUMENT InitiateCallAttemptArg {bound}
RESULT InitiateCallAttemptRes {bound}
ERRORS {missingParameter |
      parameterOutOfRange |
      systemFailure |
      taskRefused |
      unexpectedComponentSequence |
      unexpectedDataValue |
      unexpectedParameter |
}
CODE opcode-initiateCallAttempt)

-- Direction: gsmSCF -> gsmSSF, Timer Tica
-- This operation is used to instruct the gsmSSF to create a new call to a call party using the
-- address information provided by the gsmSCF.

InitiateCallAttemptArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
destinationRoutingAddress [0] DestinationRoutingAddress {bound},
    extensions [4] Extensions {bound} OPTIONAL,
    legToBeCreated [5] LegID OPTIONAL,
    newCallSegment [6] CallSegmentID {bound} OPTIONAL,
    callingPartyNumber [30] CallingPartyNumber {bound} OPTIONAL,
    callReferenceNumber [51] CallReferenceNumber OPTIONAL,
    gsmSCFAddress [52] ISDN-AddressString OPTIONAL,
    suppress-T-CSI [53] NULL OPTIONAL,
    ...
}

InitiateCallAttemptRes {PARAMETERS-BOUND : bound} ::= SEQUENCE {
supportedCamelPhases [0] SupportedCamelPhases OPTIONAL,
    offeredCamel4Functionalities [1] OfferedCamel4Functionalities OPTIONAL,
    extensions [2] Extensions {bound} OPTIONAL,
    ...
    releaseCallArgExtensionAllowed [3] NULL OPTIONAL
}

moveLeg [PARAMETERS-BOUND : bound] OPERATION ::= {
ARGUMENT MoveLegArg {bound}
RETURN RESULT TRUE
ERRORS {missingParameter |
      systemFailure |
      taskRefused |
      unexpectedComponentSequence |
      unexpectedDataValue |
      unexpectedParameter |
      unknownLegID)
CODE opcode-moveLeg)

-- Direction: gsmSCF -> gsmSSF, Timer: Taul
-- This operation is used by the gsmSCF to move a leg from one call segment to another call segment
-- within the same call segment association.

MoveLegArg {PARAMETERS-BOUND : bound} ::= SEQUENCE{
    legIDToMove [0] LegID,
    extensions [2] Extensions {bound} OPTIONAL,
    ...
}
playTone \{PARAMETERS-BOUND : bound\} OPERATION ::= {
  ARGUMENT  PlayToneArg \{bound\}
  RETURN RESULT FALSE
  ERRORS   \{missingParameter | parameterOutOfRange | systemFailure | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter | unknownLegID | unknownCSID\}
  CODE     opcode-playTone
-- Direction: gsmSCF -> gsmSSF, Timer: \(T_{pt}\)
-- This operation is used to play tones to either a leg or a call segment using
-- the MSC’s tone generator.

PlayToneArg \{PARAMETERS-BOUND : bound\} ::= SEQUENCE {
  legOrCallSegment     \[0\] LegOrCallSegment \{bound\},
  bursts        \[1\] Burst,
  extensions       \[2\] Extensions \{bound\} OPTIONAL,
  ...
}

releaseCall \{PARAMETERS-BOUND : bound\} OPERATION ::= {
  ARGUMENT  ReleaseCallArg \{bound\}
  RETURN RESULT FALSE
  ALWAYS RESPONDS FALSE
  CODE     opcode-releaseCall
-- Direction: gsmSCF -> gsmSSF, Timer: \(T_{rc}\)
-- This operation is used to tear down an existing call at any phase of the call for all parties
-- involved in the call.

ReleaseCallArg \{PARAMETERS-BOUND : bound\} ::= CHOICE {
  allCallSegments     AllCallSegments,
  allCallSegmentsWithExtension \[2\] AllCallSegmentsWithExtension
}

AllCallSegments ::= Cause \{bound\}
-- A default value of decimal 31 (normal unspecified) shall be given.

AllCallSegmentsWithExtension ::= SEQUENCE {
  allCallSegments    \[0\] AllCallSegments,
  extensions     \[1\] Extensions \{bound\} OPTIONAL
}

requestReportBCSMEvent \{PARAMETERS-BOUND : bound\} OPERATION ::= {
  ARGUMENT  RequestReportBCSMEventArg \{bound\}
  RETURN RESULT FALSE
  ERRORS   \{missingParameter | parameterOutOfRange | systemFailure | taskRefused | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter | unknownLegID\}
  CODE     opcode-requestReportBCSMEvent
-- Direction: gsmSCF -> gsmSSF, Timer: \(T_{rrb}\)
-- This operation is used to request the gsmSSF to monitor for a call-related event
-- (e.g. BCSM events such as O_Busy or O_No_Answer) and to send a notification
-- to the gsmSCF when the event is detected.
--
-- NOTE:
-- Every EDP must be explicitly armed by the gsmSCF via a RequestReportBCSMEvent operation.
-- No implicit arming of EDPs at the gsmSSF after reception of any operation (different
-- from RequestReportBCSMEvent) from the gsmSCF is allowed.

RequestReportBCSMEventArg \{PARAMETERS-BOUND : bound\} ::= SEQUENCE {
  bcsmevents       \[0\] SEQUENCE SIZE(1..bound & \#numOfBCSMEvents) OF
                    BCSMEvent \{bound\},
  extensions       \[2\] Extensions \{bound\} OPTIONAL,
  ...
}
-- Indicates the BCSM related events for notification.

resetTimer \{PARAMETERS-BOUND : bound\} OPERATION ::= {
  ARGUMENT  ResetTimerArg \{bound\}
RESET RESULT FALSE
ERRORS {missingParameter | parameterOutOfRange | taskRefused | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter | unknownCSID}
CODE opcode-resetTimer
-- Direction: gsmSCF -> gsmSSF, Timer: T_{rt}
-- This operation is used to request the gsmSSF to refresh an application timer in the gsmSSF.

ResetTimerArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  timerID        [0] TimerID DEFAULT tssf,
  timervalue       [1] TimerValue,
  extensions       [2] Extensions {bound}      OPTIONAL,
  callSegmentID      [3] CallSegmentID {bound}     OPTIONAL,
  ...
}

sendChargingInformation {PARAMETERS-BOUND : bound} OPERATION ::= {
ARGUMENT  SendChargingInformationArg {bound}
RETURN RESULT FALSE
ERRORS {missingParameter | unexpectedComponentSequence | unexpectedParameter | parameterOutOfRange | systemFailure | taskRefused | unexpectedDataValue | unknownLegID}
CODE opcode-sendChargingInformation
-- Direction: gsmSCF -> gsmSSF, Timer: T_{sci}
-- This operation is used to instruct the gsmSSF on the charging information to send by the gsmSSF.
-- The charging information can either be sent back by means of signalling or internal
-- if the gsmSSF is located in the local exchange. In the local exchange
-- this information may be used to update the charge meter or to create a standard call record.

SendChargingInformationArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  scIBillingChargingCharacteristics 
    [0] SCIBillingChargingCharacteristics {bound},
  partyToCharge      [1] SendingSideID,
  extensions       [2] Extensions {bound}      OPTIONAL,
  ...
}

splitLeg {PARAMETERS-BOUND : bound} OPERATION ::= {
ARGUMENT  SplitLegArg {bound}
RETURN RESULT TRUE
ERRORS {missingParameter | unexpectedComponentSequence | unexpectedParameter | unexpectedDataValue | systemFailure | taskRefused | unknownLegID}
CODE opcode-splitLeg
-- Direction: gsmSCF -> gsmSSF, Timer T_{sl}
-- This operation is used by the gsmSCF to separate a leg from its source call segment and
-- place it in a new call segment within the same call segment association.

SplitLegArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  legToBeSplit      [0] LegID,
  newCallSegment      [1] CallSegmentID {bound}     OPTIONAL,
  extensions       [2] Extensions {bound}      OPTIONAL,
  ...
}

END

The following value ranges apply for operation specific timers in CAP:

short: 1 s - 10 s
medium: 1 s - 60 s
long: 1 s - 30 minutes
Table 6-1 lists all operation timers and the value range for each timer. The definitive value for each operation timer may be network specific and has to be defined by the network operator.

<table>
<thead>
<tr>
<th>Operation Name</th>
<th>Timer</th>
<th>value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActivityTest</td>
<td>Tat</td>
<td>Short</td>
</tr>
<tr>
<td>ApplyCharging</td>
<td>Tac</td>
<td>Short</td>
</tr>
<tr>
<td>ApplyChargingReport</td>
<td>Tacr</td>
<td>Short</td>
</tr>
<tr>
<td>AssistRequestInstructions</td>
<td>Tari</td>
<td>Short</td>
</tr>
<tr>
<td>CollectInformation</td>
<td>Tci</td>
<td>Short</td>
</tr>
<tr>
<td>CallInformationReport</td>
<td>Tcirp</td>
<td>Short</td>
</tr>
<tr>
<td>CallInformationRequest</td>
<td>Tcirq</td>
<td>Short</td>
</tr>
<tr>
<td>Cancel</td>
<td>Tcan</td>
<td>Short</td>
</tr>
<tr>
<td>CallGap</td>
<td>Tcg</td>
<td>Short</td>
</tr>
<tr>
<td>Connect</td>
<td>Tcon</td>
<td>Short</td>
</tr>
<tr>
<td>ConnectToResource</td>
<td>Tctr</td>
<td>Short</td>
</tr>
<tr>
<td>Continue</td>
<td>Tcue</td>
<td>Short</td>
</tr>
<tr>
<td>ContinueWithArgument</td>
<td>Tcwa</td>
<td>Short</td>
</tr>
<tr>
<td>DisconnectForwardConnectionWithArgument</td>
<td>Tdfcwa</td>
<td>Short</td>
</tr>
<tr>
<td>DisconnectLeg</td>
<td>Tdl</td>
<td>Short</td>
</tr>
<tr>
<td>EntityReleased</td>
<td>Ter</td>
<td>Short</td>
</tr>
<tr>
<td>DisconnectForwardConnection</td>
<td>Tdfc</td>
<td>Short</td>
</tr>
<tr>
<td>EstablishTemporaryConnection</td>
<td>Tetc</td>
<td>Medium</td>
</tr>
<tr>
<td>EventReportBCSM</td>
<td>Terb</td>
<td>Short</td>
</tr>
<tr>
<td>FurnishChargingInformation</td>
<td>Tfci</td>
<td>Short</td>
</tr>
<tr>
<td>InitialDP</td>
<td>Tidp</td>
<td>Short</td>
</tr>
<tr>
<td>InitiateCallAttempt</td>
<td>Tica</td>
<td>Short</td>
</tr>
<tr>
<td>MoveLeg</td>
<td>Tml</td>
<td>Short</td>
</tr>
<tr>
<td>PlayTone</td>
<td>Tpt</td>
<td>Short</td>
</tr>
<tr>
<td>ReleaseCall</td>
<td>Trc</td>
<td>Short</td>
</tr>
<tr>
<td>RequestReportBCSMEvent</td>
<td>Trrb</td>
<td>Short</td>
</tr>
<tr>
<td>ResetTimer</td>
<td>Trt</td>
<td>Short</td>
</tr>
<tr>
<td>SendChargingInformation</td>
<td>Tscl</td>
<td>Short</td>
</tr>
<tr>
<td>SplitLeg</td>
<td>Tsl</td>
<td>Short</td>
</tr>
</tbody>
</table>

6.1.2 gsmSSF/gsmSCF packages, contracts and ACs

6.1.2.1 gsmSSF/gsmSCF ASN.1 module

DEFINITIONS ::= BEGIN
   -- This module specifies the Operation Packages, Contracts, Application Contexts
   -- and Abstract Syntaxes used for the gsmSSF – gsmSCF interface, for the control of
   -- circuit switched calls.

   -- The table in subclause 2.1 lists the specifications that contain the modules
   -- that are used by CAP.

   IMPORTS
      PARAMETERS-BOUND,
      cAPSpecificBoundSet
      FROM CAP-classes classes
Elements that exist in capSpecificBoundSet in Rel-5 are not changed in Rel-6. As a result, the value range of data type definitions in Rel-5 are not changed in Rel-6.

```
CONTRACT,
    OPERATION-Package,
    OPERATION
FROM Remote-Operations-Information-Objects ros-InformationObjects
    TCMessage {}
FROM TCAPMessages tc-Messages
    APPLICATION-CONTEXT,
    dialogue-abstract-syntax
FROM TC-Notation-Extensions tc-NotationExtensions
    activityTest,
    applyCharging {},
    applyChargingReport {},
    assistRequestInstructions {},
    callGap {},
    callInformationReport {},
    callInformationRequest {},
    cancel {},
    collectInformation {},
    connect {},
    connectToResource {},
    continue,
    continueWithArgument {},
    disconnectForwardConnection,
    disconnectForwardConnectionWithArgument {},
    disconnectLeg {},
    entityReleased {},
    establishTemporaryConnection {},
    eventReportBCSM {},
    furnishChargingInformation {},
    initialDP {},
    initiateCallAttempt {},
    moveLeg {},
    playTone {},
    releaseCall {},
    requestReportBCSMEvent {},
    resetTimer {},
    sendChargingInformation {},
    splitLeg {}
FROM CAP-gsmSSF-gsmSCF-ops-args gsmSSF-gsmSCF-Operations
-- Object Identifier 'gsmSSF-gsmSCF-Operations' is updated to version8(7) in Rel-6. As a result, the present module, 'CAP-gsmSSF-gsmSCF-pkgs-contracts-acs', IMPORTS CAP Operation definitions from CAP-gsmSSF-gsmSCF-ops-args version8(7). Operation definitions are used in the ABSTRACT SYNTAX definitions and in the OPERATION PACKAGE definitions.
    playAnnouncement {},
    promptAndCollectUserInformation {},
    specializedResourceReport
FROM CAP-gsmSSF-gsmSCF-ops-args gsmSSF-gsmSCF-Operations-- Object Identifier 'gsmSSF-gsmSCF-Operations' is updated to version8(7) in Rel-6. As a result, the present module, 'CAP-gsmSSF-gsmSCF-pkgs-contracts-acs', IMPORTS CAP Operation definitions from CAP-gsmSSF-gsmSCF-ops-args version8(7). Operation definitions are used in the ABSTRACT SYNTAX definitions and in the OPERATION PACKAGE definitions.
    specializedResourceControlPackage {}
id-as-scf-gsmSSFGenericAS,
id-as-assistHandoff-gsmSSF-scfAS,
-- The ABSTRACT-SYNTAX Identifiers for CAP V4 in Rel-6 are the same as for CAP V4 in Rel-5.

id-package-scfActivation,
id-package-gsmSRF-scfActivationOfAssist,
id-package-assistConnectionEstablishment,
id-package-genericDisconnectResource,
id-package-nonAssistedConnectionEstablishment,
id-package-connect,
id-package-callHandling,
id-package-bcsmEventHandling,
id-package-ssfCallProcessing,
id-package-scfCallInitiation,
id-package-timer,
id-package-billing,
id-package-charging,
id-package-trafficManagement,
id-package-callReport,
id-package-signallingControl,
id-package-activityTest,
id-package-cancel,
id-package-cphResponse,
id-package-exceptionInform,
id-package-playTone,
-- The OPERATION-PACKAGE Identifiers for CAP V4 in Rel-6 are the same as for CAP V4 in Rel-5.

classes,
ros-InformationObjects,
tc-Messages,
tc-NotationExtensions,
gsmSSF-gsmSCF-Operations,
gsmSCF-gsmSRF-Operations,
-- Object Identifiers gsmSSF-gsmSCF-Operations and gsmSCF-gsmSRF-Operations are updated
-- to version8(7) in Rel-6. As a result, the present module, 'CAP-gsmSSF-gsmSCF-pkgs-
-- contracts-acs', IMPORTS Rel-6 versions of the CAP Operation definitions.

gsmSCF-gsmSRF-Protocol
-- Object Identifier gsmSCF-gsmSRF-Protocol is updated to version8(7) in Rel-6. As a result,
-- the present module IMPORTS Rel-6 versions of the CAP Operation Package definitions.

FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
umts-network(1) modules(3) cap-object-identifiers(100) version8(7)};

-- Application Contexts

-- CAP V4 Rel-5 and CAP V4 Rel-6 use the same Application Context version. The CONTRACT
-- and ABSTRACT SYNTAXES for the call control related Application Contexts, however, are
-- defined in Rel-6. This is needed to use parameter definitions that are defined in Rel-6.

-- Refer to ITU-T Recommendation Q.775 for the formal definition of APPLICATION-CONTEXT.
-- The structured DIALOGUE MODE is defined in ITU-T Recommendation Q.771; the
-- dialogue-abstract-syntax ABSTRACT SYNTAX is defined in ITU-T Recommendation Q.775.

capssf-scfGenericAC APPLICATION-CONTEXT ::= { 
CONTRACT capSsfToScfGeneric
DIALOGUE MODE structured
ABSTRACT SYNTAXES {[dialogue-abstract-syntax | gsmSSF-scfGenericAbstractSyntax]}
APPLICATION CONTEXT NAME id-ac-CAP-gsmSSF-scfGenericAC}
-- 'capSsfToScfGeneric' and 'gsmSSF-scfGenericAbstractSyntax' are defined in the present
-- module.

capssf-assistHandoffAC APPLICATION-CONTEXT ::= { 
CONTRACT capAssistHandoffssfToScf
DIALOGUE MODE structured
ABSTRACT SYNTAXES {[dialogue-abstract-syntax | assistHandoff-gsmSSF-scfAbstractSyntax]}
APPLICATION CONTEXT NAME id-ac-CAP-gsmSSF-scfAssistHandoffAC}
-- 'capAssistHandoffssfToScf' and 'assistHandoff-gsmSSF-scfAbstractSyntax' are defined in
-- the present module.

capssf-scfGenericAC APPLICATION-CONTEXT ::= { 
CONTRACT capSffToSsfGeneric
DIALOGUE MODE structured
ABSTRACT SYNTAXES {[dialogue-abstract-syntax | scf-gsmSSFGenericAbstractSyntax]}

ETSII
APPLICATION CONTEXT NAME  id-ac-CAP-scf-gsmSSFGenericAC
-- 'capSsfToSscfGeneric' and 'scf-gsmSSFGenericAbstractSyntax' are defined in the present
-- module.

-- Contracts
-- The CONTRACT definitions are updated for Rel-6, due to the fact that the individual
-- OPERATION-PACKAGE definitions are updated in Rel-6.

capSsfToScfGeneric CONTRACT ::= {
  -- dialogue initiated by gsmSSF with InitialDP Operation
  INITIATOR CONSUMER OF  {exceptionInformPackage {cAPSpecificBoundSet} |
    scfActivationPackage {cAPSpecificBoundSet}} |
  activityTestPackage |
  assistConnectionEstablishmentPackage {cAPSpecificBoundSet} |
  bcsmEventHandlingPackage {cAPSpecificBoundSet} |
  billingPackage {cAPSpecificBoundSet} |
  callHandlingPackage {cAPSpecificBoundSet} |
  callReportPackage {cAPSpecificBoundSet} |
  cancelPackage {cAPspecificBoundSet} |
  chargingPackage {cAPSpecificBoundSet} |
  connectPackage {cAPSpecificBoundSet} |
  cphResponsePackage {cAPspecificBoundSet} |
  genericDisconnectResourcePackage {cAPspecificBoundSet} |
  nonAssistedConnectionEstablishmentPackage {cAPspecificBoundSet} |
  playTonePackage {cAPspecificBoundSet} |
  signallingControlPackage {cAPspecificBoundSet} |
  specializedResourceControlPackage {cAPspecificBoundSet} |
  ssfCallProcessingPackage {cAPspecificBoundSet} |
  timerPackage {cAPspecificBoundSet} |
  trafficManagementPackage {cAPspecificBoundSet} |
  scfCallInitiationPackage {cAPspecificBoundSet} |
  ID       id-CAPSsfToScfGeneric}
-- The OPERATION-PACKAGEs are defined in the present module, except for
-- specializedResourceControlPackage, which is defined in CAP-gsmSCF-gsmSRF-pkgs-contracts-acs.

capAssistHandoffSsfToScf CONTRACT ::= {
  -- dialogue initiated by gsmSSF with AssistRequestInstructions
  INITIATOR CONSUMER OF  {gsmSRF-scfActivationOfAssistPackage {cAPspecificBoundSet}} |
  activityTestPackage |
  cancelPackage {cAPspecificBoundSet} |
  genericDisconnectResourcePackage {cAPspecificBoundSet} |
  nonAssistedConnectionEstablishmentPackage {cAPspecificBoundSet} |
  specializedResourceControlPackage {cAPspecificBoundSet} |
  timerPackage {cAPspecificBoundSet} |
  ID       id-CAPAssistHandoffSsfToScf}
-- The OPERATION-PACKAGEs are defined in the present module, except for
-- specializedResourceControlPackage, which is defined in CAP-gsmSCF-gsmSRF-pkgs-contracts-acs.

capScfToSsfGeneric CONTRACT ::= {
  -- dialogue initiated by gsmSCF with InitiateCallAttempt, Generic Case
  INITIATOR CONSUMER OF  {activityTestPackage |
    assistConnectionEstablishmentPackage {cAPspecificBoundSet} |
    bcsmEventHandlingPackage {cAPspecificBoundSet} |
    billingPackage {cAPspecificBoundSet} |
    callHandlingPackage {cAPspecificBoundSet} |
    callReportPackage {cAPspecificBoundSet} |
    cancelPackage {cAPspecificBoundSet} |
    chargingPackage {cAPspecificBoundSet} |
    connectPackage {cAPspecificBoundSet} |
    cphResponsePackage {cAPspecificBoundSet} |
    genericDisconnectResourcePackage {cAPspecificBoundSet} |
    nonAssistedConnectionEstablishmentPackage {cAPspecificBoundSet} |
    playTonePackage {cAPspecificBoundSet} |
    scfCallInitiationPackage {cAPspecificBoundSet} |
    ssfCallProcessingPackage {cAPspecificBoundSet} |
    timerPackage {cAPspecificBoundSet} |
    trafficManagementPackage {cAPspecificBoundSet} |
    ID       id-CAPScfToSsfGeneric}
-- The OPERATION-PACKAGEs are defined in the present module, except for
-- specializedResourceControlPackage, which is defined in CAP-gsmSCF-gsmSRF-pkgs-contracts-acs.

-- Operation Packages
-- The OPERATION-PACKAGE definitions are updated for Rel-6, due to the fact that the individual
-- OPERATION definitions are updated in Rel-6. The OPERATION definitions are IMPORTED from
-- CAP-gsmSSF-gsmSCF-ops-args and from CAP-gsmSCF-gsmSRF-ops-args.
ETSI TS 129 078 V12.0.0 (2014-10)

3GPP TS 29.078 version 12.0.0 Release 12

scfActivationPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {initialDP (bound)}
  ID id-package-scfActivation
}
gsmSRF-scfActivationOfAssistPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {assistRequestInstructions (bound)}
  ID id-package-gsmSRF-scfActivationOfAssist
}
assistConnectionEstablishmentPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {establishTemporaryConnection (bound)}
  ID id-package-assistConnectionEstablishment
}
genericDisconnectResourcePackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {
    disconnectForwardConnection |
    disconnectForwardConnectionWithArgument (bound)
  }
  ID id-package-genericDisconnectResource
}
nonAssistedConnectionEstablishmentPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {connectToResource (bound)}
  ID id-package-nonAssistedConnectionEstablishment
}
connectPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {connect (bound)}
  ID id-package-connect
}
callHandlingPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {releaseCall (bound)}
  ID id-package-callHandling
}
bcsmEventHandlingPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {
    requestReportBCSMEvent (bound)
  }
  SUPPLIER INVOKES {eventReportBCSM (bound)}
  ID id-package-bcsmEventHandling
}
ssfCallProcessingPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {
    collectInformation |
    continueWithArgument (bound) |
    continue
  }
  ID id-package-ssfCallProcessing
}
scfCallInitiationPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {initiateCallAttempt (bound)}
  ID id-package-scfCallInitiation
}
timerPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {resetTimer (bound)}
  ID id-package-timer
}
billingPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {furnishChargingInformation (bound)}
  ID id-package-billing
}
chargingPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {applyCharging (bound)}
  SUPPLIER INVOKES {applyChargingReport (bound)}
  ID id-package-charging
}
trafficManagementPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {callGap (bound)}
  ID id-package-trafficManagement
}
callReportPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {callInformationRequest (bound)}
  SUPPLIER INVOKES {callInformationReport (bound)}
  ID id-package-callReport
}
signallingControlPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {sendChargingInformation (bound)}
  ID id-package-signallingControl
}
activityTestPackage OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {activityTest}
  ID id-package-activityTest
}
cancelPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {cancel (bound)}
  ID id-package-cancel
}
cphResponsePackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
  CONSUMER INVOKES {
    continueWithArgument (bound)
  }
  ID id-package-cphResponse
}
disconnectLeg {bound} |
moveLeg {bound} |
splitLeg {bound})
ID id-package-cphResponse)

exceptionInformPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
CONSUMER INVOKES {entityReleased {bound}}
ID id-package-exceptionInform

playTonePackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
CONSUMER INVOKES {playTone {bound}}
ID id-package-playTone

-- Abstract Syntaxes
-- SsfToScfGenericInvokable and SsfToScfGenericReturnable use OPERATION definitions with
-- version8(7). As a result, GenericSSF-gsmSCF-PDUs uses version8(7) OPERATION definitions.
-- As a subsequent result, gsmSSF-scfGenericAbstractSyntax uses version8(7) OPERATION
-- definitions. That ABSTRACT-SYNTAX is used in the capssf-scfGenericAC APPLICATION-CONTEXT
-- definition (CAP from gsmSSF to gsmSCF).

gsmSSF-scfGenericAbstractSyntax ABSTRACT-SYNTAX ::= {
GenericSSF-gsmSCF-PDUs IDENTIFIED BY id-as-gsmSSF-scfGenericAS
-- 'GenericSSF-gsmSCF-PDUs' is defined in the present module.
GenericSSF-gsmSCF-PDUs ::= TCMessage {{SsfToScfGenericInvokable},
{SsfToScfGenericReturnable}}
-- 'SsfToScfGenericInvokable' and 'SsfToScfGenericReturnable' are defined in the present module.

SsfToScfGenericInvokable OPERATION ::= {
activityTest |
applyCharging {cAPSpecificBoundSet} |
applyChargingReport {cAPSpecificBoundSet} |
callInformationReport {cAPSpecificBoundSet} |
callInformationRequest {cAPSpecificBoundSet} |
cancel {cAPSpecificBoundSet} |
connect {cAPSpecificBoundSet} |
continueWithArgument {cAPSpecificBoundSet} |
connectToResource {cAPSpecificBoundSet} |
collectInformation |
disconnectForwardConnection |
disconnectForwardConnectionWithArgument {cAPSpecificBoundSet} |
disconnectLeg {cAPSpecificBoundSet} |
entityReleased {cAPSpecificBoundSet} |
establishTemporaryConnection {cAPSpecificBoundSet} |
eventReportBCSM {cAPSpecificBoundSet} |
finishChargingInformation {cAPSpecificBoundSet} |
initialDP {cAPSpecificBoundSet} |
initiateCallAttempt {cAPSpecificBoundSet} |
moveLeg {cAPSpecificBoundSet} |
releaseCall {cAPSpecificBoundSet} |
requestReportBCSMEvent {cAPSpecificBoundSet} |
resetTimer {cAPSpecificBoundSet} |
sendChargingInformation {cAPSpecificBoundSet} |
splitLeg {cAPSpecificBoundSet} |
playAnnouncement {cAPSpecificBoundSet} |
playTone {cAPSpecificBoundSet} |
promptAndCollectUserInformation {cAPSpecificBoundSet} |
specializedResourceReport |
-- The OPERATION definitions are IMPORTED from CAP-gsmSSF-gsmSCF-ops-args and from
-- CAP-gsmSCF-gsmSRF-ops-args.

SsfToScfGenericReturnable OPERATION ::= {
activityTest |
applyCharging {cAPSpecificBoundSet} |
applyChargingReport {cAPSpecificBoundSet} |
callGap {cAPSpecificBoundSet} |
callInformationRequest {cAPSpecificBoundSet} |
cancel {cAPSpecificBoundSet} |
connect {cAPSpecificBoundSet} |
connectToResource {cAPSpecificBoundSet} |
collectInformation |
continue |
continueWithArgument {cAPSpecificBoundSet} |
disconnectForwardConnection |
disconnectForwardConnectionWithArgument {cAPSpecificBoundSet} |
disconnectLeg {cAPSpecificBoundSet} |
entityReleased {cAPSpecificBoundSet} |
establishTemporaryConnection {cAPSpecificBoundSet} |
furnishChargingInformation {cAPSpecificBoundSet} |
initialDP {cAPSpecificBoundSet} |
initiateCallAttempt {cAPSpecificBoundSet} |
moveLeg {cAPSpecificBoundSet} |
releaseCall {cAPSpecificBoundSet} |
requestReportBCSMEvent {cAPSpecificBoundSet} |
resetTimer {cAPSpecificBoundSet} |
sendChargingInformation {cAPSpecificBoundSet} |
splitLeg {cAPSpecificBoundSet} |
playAnnouncement {cAPSpecificBoundSet} |
playTone {cAPSpecificBoundSet} |
promptAndCollectUserInformation {cAPSpecificBoundSet} |
-- The OPERATION definitions are IMPORTED from CAP-gsmSSF-gsmSCF-ops-args and from
-- CAP-gsmSCF-gsmSRF-ops-args.

-- AssistHandoffssfToScfInvokable and AssistHandoffssfToScfReturnable use OPERATION definitions
-- with version8(7). As a result, AssistHandoffssf-gsmSCF-PDUs uses version8(7) OPERATION
-- definitions. As a subsequent result, assistHandoff-gsmSSF-scfAbstractSyntax uses version8(7)
-- OPERATION definitions. That ABSTRACT-SYNTAX is used in the capssf-scfAssistHandoffAC
-- APPLICATION-CONTEXT definition (CAP from assist gsmSSF to gsmSCF).

assistHandoff-gsmSSF-scfAbstractSyntax ABSTRACT-SYNTAX ::= { 
AssistHandoffsSF-gsmSCF-PDUs IDENTIFIED BY id-as-assistHandoff-gsmSSF-scfAS}
-- 'AssistHandoffsSF-gsmSCF-PDUs' is defined in the present module.

AssistHandoffsSF-gsmSCF-PDUs ::= TCMessage {{AssistHandoffssfToScfInvokable},
{AssistHandoffssfToScfReturnable}}
-- 'AssistHandoffssfToScfInvokable' and 'AssistHandoffssfToScfReturnable' are defined in the
-- present module.
AssistHandoffssfToScfInvokable OPERATION ::= {
activityTest |
askRequestInstructions {cAPSpecificBoundSet} |
cancel {cAPSpecificBoundSet} |
connectToResource {cAPSpecificBoundSet} |
disconnectForwardConnection |
-- The OPERATION definitions are IMPORTED from CAP-gsmSSF-gsmSCF-ops-args and from
-- CAP-gsmSCF-gsmSRF-ops-args.

-- SctoSsfGenericInvokable and SctoSsfGenericReturnable use OPERATION definitions
-- with version8(7). As a result, GenericSCT-gsmSSF-PDUs uses version8(7) OPERATION
-- definitions. As a subsequent result, scto-gsmSSFGenericAbstractSyntax uses version8(7)
-- OPERATION definitions. That ABSTRACT-SYNTAX is used in the capscto-ssfGenericAC
-- APPLICATION-CONTEXT definition (CAP from gsmSCF to gsmSSF).

genericSCF-gsmSSF-gsmSCF-PDUs IDENTIFIED BY id-as-scto-gsmSSFGenericAS}
-- 'GenericSCF-gsmSSF-PDUs' is defined in the present module.

GenericSCF-gsmSSF-PDUs ::= TCMessage {{SctoSsfGenericInvokable},
{SctoSsfGenericReturnable}}
-- 'SctoSsfGenericInvokable' and 'SctoSsfGenericReturnable' are defined in the
-- present module.
6.2 gsmSCF/gsmSRF interface

6.2.1 gsmSCF/gsmSRF operations and arguments

CAP-gsmSCF-gsmSRF-ops-args {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-gsmSCF-gsmSRF-ops-args(103) version8(7)}

DEFINITIONS IMPLICIT TAGS ::= BEGIN

-- This module contains the operations and operation arguments used for the
-- gsmSRF - gsmSCF interface, for the control of circuit switched calls.
-- The table in subclause 2.1 lists the specifications that contain the modules
-- that are used by CAP.

IMPORTS

OPERATION
FROM Remote-Operations-Information-Objects ros-InformationObjects
    opcode-playAnnouncement,
    opcode-promptAndCollectUserInformation,
    opcode-specializedResourceReport
FROM CAP-operationcodes operationcodes
-- The CAP Operation identifiers for CAP V4 in Rel-6 are the same as the CAP Operation
-- identifiers for CAP V4 in Rel-5.
    CallSegmentID {},
    CollectedInfo,
    Digits {},
    Extensions {},
    InformationToSend {}
FROM CAP-datatypes datatypes
-- For Rel-6, the CAP-datatypes module is updated to version8(7); Object Identifier 'datatypes'
-- is also updated to version8(7). As a result, the present module uses Rel-6 data type definitions.
    canceled,
    improperCallerResponse,
    missingParameter,
    parameterOutOfRange,
    systemFailure,
    taskRefused,
    unavailableResource,
    unexpectedComponentSequence,
    unexpectedDataValue,
    unexpectedParameter,
    unknownCSID
FROM CAP-errortypes errortypes
-- For Rel-6, the CAP-errortypes module is updated to version8(7); Object Identifier
-- 'errortypes' is also updated to version8(7). As a result, the present module uses Rel-6
-- error type definitions.
PARAMETERS-BOUND
FROM CAP-classes classes
    ros-InformationObjects,
    operationcodes,
    datatypes,
    errortypes,
    classes
FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
    umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}

playAnnouncement {PARAMETERS-BOUND : bound} OPERATION ::= {
ARGUMENT  PlayAnnouncementArg {bound}
RETURN RESULT FALSE
ERRORS   {canceled |
    missingParameter | parameterOutOfRange |
    systemFailure |
    taskRefused |
    unexpectedComponentSequence |
    unexpectedDataValue |
    unexpectedParameter |
    unavailableResource |
    unknownCSID}
LINKED   {specializedResourceReport}
CODE     opcode-playAnnouncement}
-- Direction: gsmSCF -> gsmSRF, Timer: T_pa
-- This operation is to be used after Establish Temporary Connection (assist procedure
-- with a second gsmSSF) or a Connect to Resource (no assist) operation. It may be used
-- for inbound interaction with a mobile station, or for interaction with an ISDN user.
-- In the former case, the gsmSRF is usually collocated with the gsmSSF for standard
-- tones (congestion tone...) or standard announcements.
-- In the latter case, the gsmSRF is always collocated with the gsmSSF in the switch.
-- Any error is returned to the gsmSCF. The timer associated with this operation must
-- be of a sufficient duration to allow its linked operation to be correctly correlated.
The following value ranges apply for operation specific timers in CAP:

- **short**: 1 s - 10 s
- **medium**: 1 s - 60 s
- **long**: 1 s - 30 minutes

Table 6-2 lists all operation timers and the value range for each timer. The definitive value for each operation timer may be network specific and has to be defined by the network operator.
Table 6-2: Operation timers and their value range

<table>
<thead>
<tr>
<th>Operation Name</th>
<th>Timer</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlayAnnouncement T pa</td>
<td>Tpa</td>
<td>Long</td>
</tr>
<tr>
<td>PromptAndCollectUserInformation T pc</td>
<td>Tpc</td>
<td>Long</td>
</tr>
<tr>
<td>SpecializedResourceReport T srr</td>
<td>Tsr</td>
<td>Short</td>
</tr>
</tbody>
</table>

6.2.2 gsmSRF/gsmSCF contracts, packages and ACs

6.2.2.1 gsmSRF/gsmSCF ASN.1 modules

CAP-gsmSCF-gsmSRF-pkgs-contracts-acs {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-gsmSCF-gsmSRF-pkgs-contracts-acs(104) version8(7)}

DEFINITIONS ::= BEGIN
-- This module specifies the Operation Packages, Contracts, Application Contexts
-- and Abstract Syntaxes used for the gsmSRF – gsmSCF interface, for the control of
-- circuit switched calls.
-- The table in subclause 2.1 lists the specifications that contain the modules
-- that are used by CAP.
IMPORTS
PARAMETERS-BOUND,
cAPSpecificBoundSet
FROM CAP-classes classes
-- Elements that exist in cAPSpecificBoundSet in Rel-5 are not changed in Rel-6. As a
-- result, the value range of data type definitions in Rel-5 are not changed in Rel-6.
CONTRACT,
OPERATION-PACKAGE,
OPERATION
FROM Remote-Operations-Information-Objects ros-InformationObjects
TCMessage {}
FROM TCAPMessages tc-Messages
APPLICATION-CONTEXT,
dialogue-abstract-syntax
FROM TC-Notation-Extensions tc-NotationExtensions
FROM CAP-gsmSCF-gsmSRF-ops-args gsmSCF-gsmSRF-Operations
-- Object Identifier 'gsmSCF-gsmSRF-Operations' is updated to version8(7) in Rel-6. As a
-- result, the present module, 'CAP-gsmSCF-gsmSRF-pkgs-contracts-acs', IMPORTS CAP
-- Operation definitions from CAP-gsmSCF-gsmSRF-ops-args version8(7). Operation
-- definitions are used in the ABSTRACT SYNTAX definitions and in the OPERATION PACKAGE
-- definitions.
activityTest,
cancel {}
FROM CAP-gsmSSF-gsmSCF-ops-args gsmSSF-gsmSCF-Operations
-- Object Identifier 'gsmSSF-gsmSCF-Operations' is updated to version8(7) in Rel-6. As a
-- result, the present module, 'CAP-gsmSSF-gsmSCF-pkgs-contracts-acs', IMPORTS CAP
-- Operation definitions from CAP-gsmSSF-gsmSCF-ops-args version8(7). Operation
-- definitions are used in the ABSTRACT SYNTAX definitions and in the OPERATION PACKAGE
-- definitions.
gsmSRF-scfcCancel {}
FROM CAP-gsmSSS-gsmSCF-pkgs-contracts-acs gsmSSF-gsmSCF-Protocol
-- Object Identifier 'gsmSSF-gsmSCF-Protocol' is updated to version8(7) in Rel-6. As a
-- result, the present module, 'CAP-gsmSSS-gsmSCF-pkgs-contracts-acs', IMPORTS CAP Operation
-- Package definitions from CAP-gsmSSS-gsmSCF-pkgs-contracts-acs version8(7). Operation
-- Package definitions are used in the CONTRACT definitions.
id-package-activityTest,
id-package-specializedResourceControl
FROM CAP-gsmSSF-gsmSCF-Protocol
-- The OPERATION-PACKAGE Identifiers for CAP V4 in Rel-6 are the same as for CAP V4 in Rel-5.
id-ac-gsmSRF-gsmSCF,
-- The APPLICATION-CONTEXT Identifiers for CAP V4 in Rel-6 are the same as for CAP V4 in Rel-5.
id-contract-gsmSRF-gsmSCF,
-- The CONTRACT Identifiers for CAP V4 in Rel-6 are the same as for CAP V4 in Rel-5.

id-as-basic-gsmSRF-gsmSCF,
-- The ABSTRACT-SYNTAX Identifiers for CAP V4 in Rel-6 are the same as for CAP V4 in Rel-5.

classes,
cos-InformationObjects,
tc-Messages,
tc-NotationExtensions,
gsmSCF-gsmSCP-Operations,
gsmSSF-gsmSCP-Operations,

-- Object Identifiers gsmSSF-gsmSCP-Operations and gsmSCP-gsmSRF-Operations are updated
-- to version 8(7) in Rel-6. As a result, the present module, 'CAP-gsmSCP-gsmSRF-pkgs-
-- contracts-acs', IMPORTS Rel-6 versions of the CAP Operation definitions.

gsmSSF-gsmSCP-Protocol

-- Object Identifier gsmSSF-gsmSCP-Protocol is updated to version 8(7) in Rel-6. As a result,
-- the present module IMPORTS Rel-6 versions of the CAP Operation Package definitions.

FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
   umts-network(1) modules(3) cap-object-identifiers(100) version8(7)};

-- Application Contexts
-- CAP V4 Rel-5 and CAP V4 Rel-6 use the same Application Context version. The CONTRACT
-- and ABSTRACT SYNTAXES for the call control related Application Contexts, however, are
-- defined in Rel-6. This is needed to use parameter definitions that are defined in Rel-6.

-- Refer to ITU-T Recommendation Q.775 for the formal definition of APPLICATION-CONTEXT.
-- The structured DIALOGUE MODE is defined in ITU-T Recommendation Q.771; the
-- dialogue-abstract-syntax ABSTRACT SYNTAX is defined in ITU-T Recommendation Q.775.

gsmSRF-gsmSCF-ac APPLICATION-CONTEXT ::= {

CONTRACT gsmSRF-gsmSCP-contract
DIALOGUE MODE structured
TERMINATION basic
ABSTRACT SYNTAXES {dialogue-abstract-syntax |
gsmSRF-gsmSCP-abstract-syntax}
APPLICATION CONTEXT NAME id-ac-gsmSRF-gsmSCF

'gsmSRF-gsmSCP-contract' and 'gsmSRF-gsmSCP-abstract-syntax' are defined in the present
module.

-- Contracts
-- The CONTRACT definitions are updated for Rel-6, due to the fact that the individual
-- OPERATION-PACKAGE definitions are updated in Rel-6.

gsmSRF-gsmSCP-contract CONTRACT ::= {

INITIATOR CONSUMER OF {gsmSRF-scfActivationOfAssistPackage {cAPSpecificBoundSet}}
RESPONDER CONSUMER OF {specializedResourceControlPackage {cAPSpecificBoundSet} |
   activityTestPackage |
   gsmSRF-scfCancelPackage {cAPSpecificBoundSet} }

ID id-contract-gsmSRF-gsmSCF

-- The OPERATION-PACKAGEs are defined in the present module, except for
-- gsmSRF-scfActivationOfAssistPackage, which is defined in CAP-gsmSSF-gsmSCF-pkgs-contracts-acs.

-- Operation Packages
-- The OPERATION-PACKAGE definitions are updated for Rel-6, due to the fact that the individual
-- OPERATION definitions are updated in Rel-6. The OPERATION definitions are IMPORTED from

specializedResourceControlPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {

CONSUMER INVOKES {playAnnouncement (bound) |
promptAndCollectUserInfo nformation (bound)}
SUPPLIER INVOKES {specializedResourceReport}

ID id-package-specializedResourceControl

gsmSRF-scfCancelPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {

CONSUMER INVOKES {cancel (bound)}

ID id-package-gsmSRF-scfCancel

activityTestPackage OPERATION-PACKAGE ::= {

CONSUMER INVOKES {activityTest}

ID id-package-activityTest

-- Abstract Syntaxes
-- GsmSRFgsmSCFInvokable and GsmSRFgsmSCFReturnable use OPERATION definitions with
-- version 8(7), As a result, BASIC-gsmSRF-gsmSCP-PDUs uses version 8(7) OPERATION definitions.
-- As a subsequent result, gsmSRF-gsmSCP-abstract-syntax uses version 8(7) OPERATION
-- definitions. That ABSTRACT-SYNTAX is used in the gsmSRF-gsmSCP-ac APPLICATION-CONTEXT
-- definition (CAP from gsmSRF to gsmSCP).

gsmSRF-gsmSCP-abstract-syntax ABSTRACT-SYNTAX ::= {

--
BASIC-gsmSRF-gsmSCF-PDUs IDENTIFIED BY id-as-basic-gsmSRF-gsmSCF
-- 'BASIC-gsmSRF-gsmSCF-PDUs' is defined in the present module.
BASIC-gsmSRF-gsmSCF-PDUs ::= TCMessage {{GsmSRFgsmSCFInvokable},
{GsmSRFgsmSCFReturnable}}
-- 'GsmSRFgsmSCFInvokable' and 'GsmSRFgsmSCFReturnable' are defined in the present module.
GsmSRFgsmSCFInvokable OPERATION ::= {activityTest |
assistRequestInstructions {cAPSpecificBoundSet} |
cancel {cAPSpecificBoundSet} |
playAnnouncement {cAPSpecificBoundSet} |
promptAndCollectUserInformation {cAPSpecificBoundSet} |
specializedResourceReport |
-- The OPERATION definitions are IMPORTED from CAP-gsmSSF-gsmSCF-ops-args and from
-- CAP-gsmSCF-gsmSRF-ops-args.
GsmSRFgsmSCFReturnable OPERATION ::= {activityTest |
assistRequestInstructions {cAPSpecificBoundSet} |
cancel {cAPSpecificBoundSet} |
playAnnouncement {cAPSpecificBoundSet} |
promptAndCollectUserInformation {cAPSpecificBoundSet} |
-- The OPERATION definitions are IMPORTED from CAP-gsmSSF-gsmSCF-ops-args and from
-- CAP-gsmSCF-gsmSRF-ops-args.
END

7 SMS Control

This clause defines the protocol used for CAMEL control of MO SMS and MT SMS. CAMEL control of MO SMS uses version 3 of the application context, and CAMEL control of MT SMS uses version 4 of the application context.

7.1 SMS operations and arguments

CAP-SMS-ops-args (itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1)
modules(3) cap-SMS-ops-args(105) version8(7))
-- The module CAP-SMS-ops-args is updated to version8(7) for Rel-6. The OPERATION definitions
-- are not modified.

DEFINITIONS IMPLICIT TAGS::= BEGIN
-- This module contains the operations and operation arguments used for the
-- smsSSF- gsmSCF interface, for the control of MO-SMS and MT-SMS.
-- The table in subclause 2.1 lists the specifications that contain the modules
-- that are used by CAP.

IMPORTS

errortypes,
datatypes,
operationcodes,
classes,
ros-InformationObjects,
tc-Messages
FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}

OPERATION
FROM Remote-Operations-Information-Objects ros-InformationObjects

ServiceKey
FROM CS1-DataTypes {itu-t(0) identified-organization(4) etsi(0) inDomain(1) in-network(1)
modules(0) cs1-datatypes(2) version1(0)}

MiscCallInfo
FROM CS2-datatypes {itu-t(0) identified-organization(4) etsi(0) inDomain(1) in-network(1)
cs2(20) modules(0) in-cs2-datatypes (0) version1(0)}

IMEI,
IMSI,
ISDN-AddressString
FROM MAP-CommonDataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
gsm-Network(1) modules(3) map-CommonDataTypes(18) version12(12)}
GPRSMSClass,
LocationInformation,
MS-Classmark2
FROM MAP-MS-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
gsm-Network(1) modules(3) map-MS-DataTypes(11) version12(12)}
PARAMETERS-BOUND
FROM CAP-classes classes
opcode-connectSMS,
opcode-continueSMS,
opcode-eventReportSMS,
opcode-furnishChargingInformationSMS,
opcode-initialDPSMS,
opcode-releaseSMS,
opcode-requestReportSMSEvent,
opcode-resetTimerSMS
FROM CAP-operationcodes operationcodes
-- The CAP Operation identifiers for CAP V3 and CAP V4 for SMS in Rel-6 are the same as in Rel-5.
CalledPartyBCDNumber {},
EventSpecificInformationSMS,
EventTypeSMS,
Extensions {},
FCISMSBillingChargingCharacteristics,
LocationInformationGPRS,
RPCause,
SMS-AddressString,
SMSEvent,
TimeAndTimeZone {},
TimerID,
TimerValue,
TPDataCodingScheme,
TPProtocolIdentifier,
TPShortMessageSpecificInfo,
TPValidityPeriod
FROM CAP-datatypes datatypes
-- For Rel-6, the CAP-datatypes module is updated to version8(7); Object Identifier 'datatypes'
-- is also updated to version8(7). As a result, the present module uses Rel-6 data type definitions.
missingCustomerRecord,
missingParameter,
parameterOutOfRange,
systemFailure,
taskRefused,
unexpectedComponentSequence,
unexpectedDataValue,
unexpectedParameter
FROM CAP-errortypes errortypes
-- For Rel-6, the CAP-errortypes module is updated to version8(7); Object Identifier
-- 'errortypes' is also updated to version8(7). As a result, the present module uses Rel-6
-- error type definitions.
CallReferenceNumber
FROM MAP-CH-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
gsm-Network(1) modules(3) map-CH-DataTypes(13) version12(12)}
;
connectSMS {PARAMETERS-BOUND : bound} OPERATION ::= {
ARGUMENT  ConnectSMSArg {bound}
RETURN RESULT FALSE
ERRORS   {missingParameter |
parameterOutOfRange |
systemFailure |
taskRefused |
unexpectedComponentSequence |
unexpectedDataValue |
unexpectedParameter}
CODE   opcode-connectSMS
-- Direction: gsmSCF -> gsmSSF or gprsSSF, Timer: Tconsms
-- This operation is used to request the smsSSF to perform the SMS processing
-- actions to route or forward a short message to a specified destination.
ConnectSMSArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
    callingPartysNumber [0] SMS-AddressString OPTIONAL,
    destinationSubscriberNumber [1] CalledPartyBCDNumber {bound} OPTIONAL,
    sMSCAddress [2] ISDN-AddressString OPTIONAL,
    extensions [10] Extensions {bound} OPTIONAL,
    ...
}

continueSMS OPERATION ::= {
    RETURN RESULT FALSE
    ALWAYS RESPONDS FALSE
    CODE opcode-continueSMS
}
-- Direction: gsmSCF -> smsSSF, Timer: Tcuesms
-- This operation is used to request the smsSSF to proceed with
-- Short Message processing at the DP at which it previously suspended
-- Short Message processing to await gsmSCF instructions (i.e. proceed
-- to the next Point in Association in the SMS FSM). The smsSSF
-- continues SMS processing without substituting new data from the gsmSCF.

eventReportSMS {PARAMETERS-BOUND : bound} OPERATION ::= {
    ARGUMENT EventReportSMSArg {bound}
    RETURN RESULT FALSE
    ALWAYS RESPONDS FALSE
    CODE opcode-eventReportSMS
}
-- Direction: gsmSSF or gprsSSF -> gsmSCF, Timer: Terbsms
-- This operation is used to notify the gsmSCF of a Short Message related event (FSM events
-- such as submission, delivery or failure) previously requested by the gsmSCF in a
-- RequestReportSMSEvent operation.

EventReportSMSArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
    eventTypeSMS [0] EventTypeSMS,
    eventSpecificInformationSMS [1] EventSpecificInformationSMS OPTIONAL,
    miscCallInfo [2] MiscCallInfo DEFAULT {messageType request},
    extensions [10] Extensions {bound} OPTIONAL,
    ...
}

furnishChargingInformationSMS {PARAMETERS-BOUND : bound} OPERATION ::= {
    ARGUMENT FurnishChargingInformationSMSArg {bound}
    RETURN RESULT FALSE
    ERRORS {missingParameter |
        taskRefused |
        unexpectedComponentSequence |
        unexpectedDataValue |
        unexpectedParameter}
    CODE opcode-furnishChargingInformationSMS
}
-- Direction: gsmSCF -> gsmSSF or gprsSSF, Timer: Tfcisms
-- This operation is used to request the smsSSF to generate, register a charging record
-- or to include some information in the default SM record. The registered charging record is
-- intended for off line charging of the Short Message.

FurnishChargingInformationSMSArg {PARAMETERS-BOUND : bound} ::= 
    FCISMSBillingChargingCharacteristics {bound}

initialDPSMS {PARAMETERS-BOUND : bound} OPERATION ::= {
    ARGUMENT InitialDPSMSArg {bound}
    RETURN RESULT FALSE
    ERRORS {missingCustomerRecord |
        missingParameter |
        parameterOutOfRange |
        systemFailure |
        taskRefused |
        unexpectedComponentSequence |
        unexpectedDataValue |
        unexpectedParameter}
    CODE opcode-initialDPSMS
}
-- Direction: gsmSSF or gprsSSF -> gsmSCF, Timer: Tidpms
-- This operation is used after a TDP to indicate request for service.

InitialDPSMSArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
    serviceKey [0] ServiceKey,
    destinationSubscriberNumber [1] CalledPartyBCDNumber {bound} OPTIONAL,
    callingPartyNumber [2] SMS-AddressString OPTIONAL,
    eventTypeSMS [3] EventTypeSMS OPTIONAL,
    IMSI [4] IMSI OPTIONAL,
    locationInformationMSC [5] LocationInformation OPTIONAL,
LocationInformationGPRS [6] LocationInformationGPRS OPTIONAL,
smSCAddress [7] ISDN-AddressString OPTIONAL,
timeAndTimeZone [8] TimeAndTimeZone (bound) OPTIONAL,
tPShortMessageSpecificInfo [9] TPShortMessageSpecificInfo OPTIONAL,
tPProtocolIdentifier [10] TPProtocolIdentifier OPTIONAL,
tpDataCodingScheme [11] TPDataCodingScheme OPTIONAL,
tPValidityPeriod [12] TPValidityPeriod OPTIONAL,
extensions [13] Extensions {bound} OPTIONAL,
...,
ms_referenceNumber [14] CallReferenceNumber OPTIONAL,
mscAddress [15] ISDN-AddressString OPTIONAL,
sngn_number [16] ISDN-AddressString OPTIONAL,
ms-Classmark2 [17] MS-Classmark2 OPTIONAL,
gPRSMSCClass [18] GPRSMSCClass OPTIONAL,
iMEI [19] IMEI OPTIONAL,
calledPartyNumber [20] ISDN-AddressString OPTIONAL
}
-- The UserCSGInformation is conveyed in the LocationInformation for CS and LocationInformationGPRS for GPRS. The encoding of the parameter is as defined in 3GPP TS 29.002 [11].

releaseSMS OPERATION ::= {
  ARGUMENT ReleaseSMSArg
  RETURN RESULT FALSE
  ALWAYS RESPONDS FALSE
  CODE opcode-releaseSMS}
-- Direction: gsmSCF -> gsmSSF or gprsSSF, Timer: Trelsms
-- This operation is used to prevent an attempt to submit or deliver a short message.
ReleaseSMSArg ::= RPCause

requestReportSMSEvent {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT RequestReportSMSEventArg {bound}
  RETURN RESULT FALSE
  ERRORS {missingParameter | parameterOutOfRange | systemFailure | taskRefused | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter}
  CODE opcode-requestReportSMSEvent}
-- Direction: gsmSCF -> gsmSSF or gprsSSF, Timer: Trrbsms
-- This operation is used to request the gsmSSF or gprsSSF to monitor for a Short Message related event (FSM events such as submission, delivery or failure) and to send a notification to the gsmSCF when the event is detected.
RequestReportSMSEventArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  sMSEvents [0] SEQUENCE SIZE (1..bound.&numOfSMSEvents) OF SMSEvent,
extensions [10] Extensions {bound} OPTIONAL,
  ...
}
-- Indicates the Short Message related events(s) for notification.

resetTimerSMS {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT ResetTimerSMSArg {bound}
  RETURN RESULT FALSE
  ERRORS {missingParameter | parameterOutOfRange | taskRefused | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter}
  CODE opcode-resetTimerSMS}
-- Direction: gsmSCF -> smsSSF, Timer: Trtsms
-- This operation is used to request the smsSSF to refresh an application timer in the smsSSF.
ResetTimerSMSArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  timerID [0] TimerID DEFAULT tssf,
timervalue [1] TimerValue,
extensions [2] Extensions {bound} OPTIONAL,
  ...
}
7.1.1 Operation timers

The following value ranges apply for operation specific timers in CAP:

- short: 1 to 20 seconds;
- medium: 1 to 60 seconds;
- long: 1 second to 30 minutes.

Table 7-1 lists all operation timers and the value range for each timer. The definitive value for each operation timer may be network specific and has to be defined by the network operator.

<table>
<thead>
<tr>
<th>Operation Name</th>
<th>Timer</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConnectSMS</td>
<td>T_consms</td>
<td>Short</td>
</tr>
<tr>
<td>ContinueSMS</td>
<td>T_cuesms</td>
<td>Short</td>
</tr>
<tr>
<td>EventReportSMS</td>
<td>T_erbsms</td>
<td>Short</td>
</tr>
<tr>
<td>FurnishChargingInformationSMS</td>
<td>T_rcisms</td>
<td>Short</td>
</tr>
<tr>
<td>InitialDPSMS</td>
<td>T_idpsms</td>
<td>Short</td>
</tr>
<tr>
<td>ReleaseSMS</td>
<td>T_relms</td>
<td>Short</td>
</tr>
<tr>
<td>RequestReportSMSEvent</td>
<td>T_rrbsms</td>
<td>Short</td>
</tr>
<tr>
<td>ResetTimerSMS</td>
<td>T_rtsms</td>
<td>Short</td>
</tr>
</tbody>
</table>

7.2 SMS contracts, packages and ACs

7.2.1 smsSSF/gsmSCF ASN.1 module

CAP-smsSSF-gsmSCF-pkgs-contracts-acs {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-smsSSF-gsmSCF-pkgs-contracts-acs(106) version8(7)}

DEFINITIONS ::= BEGIN

-- This module specifies the Operation Packages, Contracts, Application Contexts
-- and Abstract Syntaxes used for the smsSSF - gsmSCF interface, for the
-- control of MO-SMS and MT-SMS.

-- The table in subclause 2.1 lists the specifications that contain the modules
-- that are used by CAP.

IMPORTS

PARAMETERS-BOUND,
cAPSpecificBoundSet
FROM CAP-classes classes

-- Elements that exist in cAPSpecificBoundSet in Rel-5 are not changed in Rel-6. As a
-- result, the value range of data type definitions in Rel-5 are not changed in Rel-6.

CONTRACT,
OPERATION-PACKAGE,
OPERATION
FROM Remote-Operations-Information-Objects ros-InformationObjects

TCMessage {}
FROM TCAPMessages tc-Messages

APPLICATION-CONTEXT,
dialogue-abstract-syntax
FROM TC-Notation-Extensions tc-NotationExtensions

connectSMS{},
continueSMS,
eventReportSMS{},
furnishChargingInformationSMS{},
initialDPSMS{},
releaseSMS,
FROM CAP-SMS-ops-args sms-Operations
-- Object Identifier 'sms-Operations' is updated to version8(7) in Rel-6. As a result,
-- the present module, 'CAP-smsSSF-gsmSCF-pkgs-contracts-acs', IMPORTS CAP Operation
-- definitions from CAP-SMS-ops-args version8(7). Operation definitions are used in the
-- ABSTRACT SYNTAX definitions and in the OPERATION PACKAGE definitions.

id-ac-cap3-sms-AC,
id-ac-cap4-sms-AC,
-- The APPLICATION-CONTEXT Identifiers for CAP V3 and CAP V4 for SMS in Rel-6 are the same as
-- in Rel-5.

id-cap3SmsSsfTogsmScf,
id-cap4SmsSsfTogsmScf,
-- The CONTRACT Identifiers for CAP V3 and CAP V4 for SMS in Rel-6 are the same as in Rel-5.

id-package-smsActivation,
id-package-smsConnect,
id-package-smsContinue,
id-package-smsRelease,
id-package-smsEventHandling,
id-package-smsBilling,
id-package-smsTimer,
-- The OPERATION-PACKAGE Identifiers for CAP V3 and CAP V4 for SMS in Rel-6 are the same as
-- in Rel-5.

sms-Operations,
-- Object Identifier sms-Operations is updated to version8(7) in Rel-6. As a result, the present
-- module, 'CAP-smsSSF-gsmSCF-pkgs-contracts-acs', IMPORTS Rel-6 versions of the CAP Operation
-- definitions.

tc-NotationExtensions,
tc-Messages,
ros-InformationObjects,
classes,

id-as-smsSSF-gsmSCF-AS
-- The ABSTRACT-SYNTAX Identifiers for CAP V3 and CAP V4 for SMS in Rel-6 are the same as
-- in Rel-5.

FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}
}

-- Application Contexts

-- Rel-6 uses the same Application Context versions for SMS as Rel-5. The CONTRACT and ABSTRACT
-- SYNTAXES for SMS are defined in Rel-6.

-- Refer to ITU-T Recommendation Q.775 for the formal definition of APPLICATION-CONTEXT.
-- The structured DIALOGUE MODE is defined in ITU-T Recommendation Q.771; the
-- dialogue-abstract-syntax ABSTRACT SYNTAX is defined in ITU-T Recommendation Q.775.

cap3-sms-AC APPLICATION-CONTEXT ::= {
  CONTRACT cap3SMS
  DIALOGUE MODE structured
  ABSTRACT SYNTAXES [dialogue-abstract-syntax |
  sms-AbstractSyntax]

  APPLICATION CONTEXT NAME id-ac-cap3-sms-AC

-- This application context shall be used for CAMEL support of MO-SMS.
-- 'cap3SMS' and 'sms-AbstractSyntax' are defined in the present module.

cap4-sms-AC APPLICATION-CONTEXT ::= {
  CONTRACT cap4SMS
  DIALOGUE MODE structured
  ABSTRACT SYNTAXES [dialogue-abstract-syntax |
  sms-AbstractSyntax]

  APPLICATION CONTEXT NAME id-ac-cap4-sms-AC

-- This application context shall be used for CAMEL support of MT-SMS.
-- 'cap4SMS' and 'sms-AbstractSyntax' are defined in the present module.

-- Contracts
-- The CONTRACT definitions for SMS in Rel-6 use OPERATION-PACKAGE definitions which are
-- defined in Rel-6.

cap3SMS CONTRACT ::= /
-- dialogues initiated by gprsSSF or gsmSSF with InitialDPSMS Operation
INITIATOR CONSUMER OF  {smsActivationPackage {cAPSpecificBoundSet}}
RESPONDER CONSUMER OF  
| smsConnectPackage {cAPSpecificBoundSet} |
| smsReleasePackage |
| smsEventHandlingPackage {cAPSpecificBoundSet} |
| smsTimerPackage {cAPSpecificBoundSet} |
| smsBillingPackage {cAPSpecificBoundSet} |
| smsProcessingPackage |
ID
-- The OPERATION-PACKAGEs are defined in the present module.

cap4SMS CONTRACT ::= /
-- dialogue initiated by gprsSSF or gsmSSF with InitialDPSMS Operation
INITIATOR CONSUMER OF  {smsActivationPackage {cAPSpecificBoundSet}}
RESPONDER CONSUMER OF  
| smsConnectPackage {cAPSpecificBoundSet} |
| smsReleasePackage |
| smsEventHandlingPackage {cAPSpecificBoundSet} |
| smsBillingPackage {cAPSpecificBoundSet} |
| smsProcessingPackage |
ID
-- The OPERATION-PACKAGEs are defined in the present module.

-- Operation Packages
-- The OPERATION-PACKAGE definitions for SMS in Rel-6 use Operation definitions from Rel-6. The
-- OPERATION definitions are IMPORTED from CAP-SMS-ops-args.
smsActivationPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
CONSUMER INVOKES  {initialDPSMS {bound}}
ID     id-package-smsActivation}
smsConnectPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
CONSUMER INVOKES  {connectSMS {bound}}
ID     id-package-smsConnect}
smsProcessingPackage OPERATION-PACKAGE ::= {
CONSUMER INVOKES  {continueSMS}
ID     id-package-smsContinue}
smsReleasePackage OPERATION-PACKAGE ::= {
CONSUMER INVOKES  {releaseSMS}
ID     id-package-smsRelease}
smsEventHandlingPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
CONSUMER INVOKES  {requestReportSMSEvent {bound}}
SUPPLIER INVOKES  {eventReportSMS {bound}}
ID     id-package-smsEventHandling}
smsBillingPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
CONSUMER INVOKES  {furnishChargingInformationSMS {bound}}
ID     id-package-smsBilling}
smsTimerPackage {PARAMETERS-BOUND : bound} OPERATION-PACKAGE ::= {
CONSUMER INVOKES  {resetTimerSMS {bound}}
ID     id-package-smsTimer}

-- Abstract Syntaxes
-- SmsInvokable and SmsReturnable use OPERATION definitions with version8(7). As a result,
-- Generic-sms-PDUs uses version8(7) OPERATION definitions. As a subsequent result,
-- sms-AbstractSyntax uses version8(7) OPERATION definitions. That ABSTRACT-SYNTAX is used
-- in the cap3-sms-AC APPLICATION-CONTEXT definition and in the and cap4-sms-AC APPLICATION-
-- CONTEXT definition (CAP from smsSSF to gsmSCF).
sms-AbstractSyntax ABSTRACT-SYNTAX ::= {
Generic-sms-PDUs
IDENTIFIED BY id-as-smsSSF-gsmSCF-AS }
-- 'Generic-sms-PDUs' is defined in the present module.
Generic-sms-PDUs ::= TCMessage {
| SmsInvokable,
| SmsReturnable}
-- 'SmsInvokable' and 'SmsReturnable' are defined in the present module.
SmsInvokable OPERATION ::= {
| connectSMS {cAPSpecificBoundSet} |
| eventReportSMS {cAPSpecificBoundSet} |
| furnishChargingInformationSMS {cAPSpecificBoundSet} |
| initialDPSMS {cAPSpecificBoundSet} |
requestReportSMSEvent {cAPSpecificBoundSet} |
resetTimerSMS {cAPSpecificBoundSet})
-- The OPERATION definitions are IMPORTED from CAP-SMS-ops-args version8(7).

SmsReturnable OPERATION ::= {
  connectSMS {cAPSpecificBoundSet} |
  continueSMS |
  furnishChargingInformationSMS {cAPSpecificBoundSet} |
  initialDPSMS {cAPSpecificBoundSet} |
  releaseSMS |
  requestReportSMSEvent {cAPSpecificBoundSet} |
  resetTimerSMS {cAPSpecificBoundSet})
-- The OPERATION definitions are IMPORTED from CAP-SMS-ops-args version8(7).

END

8  GPRS Control

8.1  gsmSCF/gprsSSF operations and arguments

CAP-gprsSSF-gsmSCF-ops-args {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
umts-network(1) modules(3) cap-GPRS-ops-args(107) version8(7).vaadin(1) module version8(7).vaadin(1) module}
-- Module CAP-gprsSSF-gsmSCF-ops-args is updated to version8(7) for Rel-6. The OPERATION
-- definitions in this module are not modified, compared to Rel-5.

DEFINITIONS IMPLICIT TAGS ::= BEGIN
-- This module contains the operations and operation arguments used for the
-- gprsSSF - gsmSCF interface, for the control of GPRS.
-- The table in subclause 2.1 lists the specifications that contain the modules
-- that are used by CAP.

IMPORTS
  errortypes,  
datatypes,  
operationcodes,  
classes,  
ros-InformationObjects
FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
umts-network(1) modules(3) cap-object-identifiers(100) version8(7).vaadin(1) module version8(7).vaadin(1) module}

OPERATION
FROM Remote-Operations-Information-Objects ros-InformationObjects

ServiceKey
FROM CS1-DataTypes {itu-t(0) identified-organization(4) etsi(0) inDomain(1) in-network(1)
modules(0) cs1-datatypes(2) version1(0).vaadin(1) module version1(0).vaadin(1) module}

MiscCallInfo
FROM CS2-datatypes {itu-t(0) identified-organization(4) etsi(0) inDomain(1) in-network(1)
cs2(20) modules(0) in-cs2-datatypes (0) version1(0).vaadin(1) module version1(0).vaadin(1) module}

IMEI, 
IMSI, 
ISDN-AddressString
FROM MAP-CommonDataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
gsm-Network(1) modules(3) map-CommonDataTypes(18) version12(12).vaadin(1) module version12(12).vaadin(1) module}

GPRSChargingID,  
GPRSMSClass,  
GSN-Address,  
RAIdentity
FROM MAP-MS-DataTypes {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
gsm-Network(1) modules(3) map-MS-DataTypes(11) version12(12).vaadin(1) module version12(12).vaadin(1) module}

PARAMETERS-BOUND
FROM CAP-classes classes

  opcode-activityTestGPRS, 
  opcode-applyChargingGPRS, 
  opcode-applyChargingReportGPRS,
ETSI TS 129 078 V12.0.0 (2014-10)

opcode-cancelGPRS,
opcode-connectGPRS,
opcode-continueGPRS,
opcode-entityReleaseGPRS,
opcode-eventReportGPRS,
opcode-furnishChargingInformationGPRS,
opcode-initialDPGPRS,
opcode-releaseGPRS,
opcode-requestReportGPRSEvent,
opcode-resetTimerGPRS,
opcode-sendChargingInformationGPRS

FROM CAP-operationcodes operationcodes
-- The CAP Operation identifiers for CAP V3 for GPRS in Rel-6 are the same as the CAP Operation
-- identifiers for CAP V3 for GPRS in Rel-5.

AccessPointName {},
GPRSCause {},
ChargingCharacteristics,
ChargingResult,
ChargingRollOver,
EndUserAddress,
Extensions,
FCIGPRSBillingChargingCharacteristics,
GPRSEventSpecificInformation {},
GPRSEvent,
GPRSEventType,
LocationInformationGPRS,
PDPID,
PDPInitiationType,
QualityOfService,
SCIGPRSBillingChargingCharacteristics {},
SGSNCapabilities,
TimeAndTimeZone {},
TimerID,
TimerValue

FROM CAP-datatypes datatypes
-- For Rel-6, the CAP-datatypes module is updated to version8(7); Object Identifier 'datatypes'
-- is also updated to version8(7). As a result, the present module uses Rel-6 data type definitions.

missingCustomerRecord,
missingParameter,
parameterOutOfRange,
systemFailure,
taskRefused,
unexpectedComponentSequence,
unexpectedDataValue,
unexpectedParameter,
unknownPDPID

FROM CAP-errortypes errortypes
-- For Rel-6, the CAP-errortypes module is updated to version8(7); Object Identifier
-- 'errortypes' is also updated to version8(7). As a result, the present module uses Rel-6
-- error type definitions.

activityTestGPRS OPERATION ::= {
  RETURN RESULT TRUE
  CODE  opcode-activityTestGPRS}
-- Direction: gsmSCF -> gprsSSF, Timer: Tatg
-- This operation is used to check for the continued existence of a relationship between the gsmSCF
-- and gprsSSF. If the relationship is still in existence, then the gprsSSF will respond. If no
-- reply is received, then the gsmSCF will assume that the gprsSSF has failed in some way
-- and will take the appropriate action.

applyChargingGPRS OPERATION ::= {
  ARGUMENT ApplyChargingGPRSAng
  RETURN RESULT FALSE
  ERRORS  {missingParameter |
             unexpectedComponentSequence |
             unexpectedParameter |
             unexpectedDataValue |
             parameterOutOfRange |
             systemFailure |
             taskRefused |
             unknownPDPID}
  CODE  opcode-applyChargingGPRS)
-- Direction gsmSCF -> gprsSSF, Timer \*acg
-- This operation is used for interacting from the gsmSCF with the gprsSSF CSE-controlled


--- GPRS session or PDP Context charging mechanism.

ApplyChargingGPRSArg ::= SEQUENCE {
    chargingCharacteristics [0] ChargingCharacteristics,
    tariffSwitchInterval [1] INTEGER (1..86400) OPTIONAL,
    pDPI [2] PDPID OPTIONAL,
    ...
}

--- tariffSwitchInterval is measured in 1 second units.

applyChargingReportGPRS OPERATION ::= {
    ARGUMENT ApplyChargingReportGPRSArg
    RETURN RESULT TRUE
    ERRORS {missingParameter |
             unexpectedComponentSequence |
             unexpectedParameter |
             unexpectedDataValue |
             parameterOutOfRange |
             systemFailure |
             taskRefused |
             unknownPDPID}
    CODE opcode-applyChargingReportGPRS

-- Direction gprsSSF -> gsmSCF, Timer Tacrg
-- The ApplyChargingReportGPRS operation provides the feedback from the gprsSCF to the gsmSCF
-- CSE-controlled GPRS session charging mechanism.

ApplyChargingReportGPRSArg ::= SEQUENCE {
    chargingResult [0] ChargingResult,
    qualityOfService [1] QualityOfService OPTIONAL,
    active [2] BOOLEAN DEFAULT TRUE,
    pDPI [3] PDPID OPTIONAL,
    ...
    chargingRollOver [4] ChargingRollOver OPTIONAL
}

cancelGPRS OPERATION ::= {
    ARGUMENT CancelGPRSArg
    RETURN RESULT FALSE
    ERRORS {missingParameter |
             taskRefused |
             unknownPDPID}
    CODE opcode-cancelGPRS

-- Direction: gsmSCF -> gprsSSF, Timer: Tcag
-- This generic operation cancels all previous requests,
-- i.e. all EDPs and reports can be cancelled by the gsmSCF.

CancelGPRSArg ::= SEQUENCE {
    pDPI [0] PDPID OPTIONAL,
    ...
}

connectGPRS {PARAMETERS-BOUND: bound} OPERATION ::= {
    ARGUMENT ConnectGPRSArg {bound}
    RETURN RESULT FALSE
    ERRORS {missingParameter |
             parameterOutOfRange |
             unknownPDPID |
             systemFailure |
             taskRefused |
             unexpectedComponentSequence |
             unexpectedDataValue |
             unexpectedParameter}
    CODE opcode-connectGPRS

-- Direction: gsmSCF -> gprsSSF, Timer: Tcong
-- This operation is used to modify the Access Point Name used when establishing a PDP Context.

ConnectGPRSArg {PARAMETERS-BOUND: bound} ::= SEQUENCE {
    accessPointName [0] AccessPointName {bound},
    pDPID [1] PDPID OPTIONAL,
    ...
}

continueGPRS OPERATION ::= {
    ARGUMENT ContinueGPRSArg
    RETURN RESULT FALSE
    ERRORS {missingParameter |
             unknownPDPID |
             ...}
}
ContinueGPRSArg ::= SEQUENCE {
  pDPID        [0] PDPID         OPTIONAL,
  ...
}

entityReleasedGPRS {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT  EntityReleasedGPRSArg {bound}
  RETURN RESULT TRUE
  ERRORS   {missingParameter |
  taskRefused |
  unknownPDPID}
  CODE   opcode-entityReleasedGPRS}
-- Direction: gprsSSF -> gsmSCF, Timer: Terg
-- This operation is used when the GPRS Session is detached or a PDP Context is disconnected and
-- the associated event is not armed for reporting.
-- The usage of this operation is independent of the functional entity that initiates the Detach
-- or PDP Context Disconnection and is independent of the cause of the Detach or PDP Context
-- Disconnect.

EventReportGPRSArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  gPRSEventType      [0] GPRSEventType,
  miscGPRSInfo      [1] MiscCallInfo DEFAULT {messageType request},
  gPRSEventSpecificInformation  [2] GPRSEventSpecificInformation {bound} OPTIONAL,
  pDPID        [3] PDPID OPTIONAL,
  ...
}

furnishChargingInformationGPRS {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT  FurnishChargingInformationGPRSArg {bound}
  RETURN RESULT FALSE
  ERRORS   {missingParameter |
  taskRefused |
  unexpectedComponentSequence |
  unexpectedDataValue |
  unexpectedParameter |
  unknownPDPID}
  CODE   opcode-furnishChargingInformationGPRS}
-- Direction: gsmSCF -> gprsSSF, Timer: Tfcig
-- This operation is used to request the gprsSSF to generate, register a logical record or to
-- include some information in the default logical GPRS record.
-- The registered logical record is intended for off line charging of the GPRS session
-- or PDP Context.

initialDPGPRS {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT  InitialDPGPRSArg {bound}
  RETURN RESULT FALSE
  ERRORS   {missingCustomerRecord |
  missingParameter |
  parameterOutOfRange |
  systemFailure |
taskRefused | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter |

CODE
opcode-initialDPGPRS)

-- Direction gprsSSF -> gsmSCF, Timer $T_{idpg}$

-- This operation is used by the gprsSSF when a trigger is detected at a DP in the GPRS state
-- machines to request instructions from the gsmSCF

InitialDPGPRSArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  serviceKey       [0] ServiceKey,  
gPRSEventType      [1] GPRSEventType,  
mSISDN        [2] ISDN-AddressString,  
iMSI        [3] IMSI,  
timeAndTimeZone      [4] TimeAndTimezone {bound},  
gPRSMClass       [5] GPRSMClass OPTIONAL,  
endUserAddress      [6] EndUserAddress {bound} OPTIONAL,  
qualityOfService     [7] QualityOfService OPTIONAL,  
accessPointName      [8] AccessPointName{bound} OPTIONAL,  
routingAreaIdentity    [9] RAIdentity OPTIONAL,  
chargingID       [10] GPRSChargingID OPTIONAL,  
locationInformationGPRS    [12] LocationInformationGPRS OPTIONAL,  
pDPInitiationType     [13] PDPInitiationType OPTIONAL,  
extensions       [14] Extensions {bound} OPTIONAL,  
...  
gGSNAddress       [15] GSN-Address OPTIONAL,  
secondaryPDP-context    [16] NULL OPTIONAL,  
iMEI        [17] IMEI OPTIONAL
}

-- The RoutingAreaIdentity parameter is not used.
-- The receiving entity shall ignore RoutingAreaIdentity if received.
-- The RoutingAreaIdentity is conveyed in the LocationInformationGPRS parameter.
-- The CSGInformation is conveyed in the LocationInformationGPRS parameter. The encoding of the
-- parameter is as defined in 3GPP TS 29.002 [11].

releaseGPRS {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT ReleaseGPRSArg {bound}
  RETURN RESULT FALSE
  ERRORS {missingParameter | taskRefused | unknownPDPID}

  CODE
opcode-releaseGPRS

-- Direction: gsmSCF -> gprsSSF, Timer: $T_{rg}$
-- This operation is used to tear down an existing GPRS session or PDP Context at any phase.

ReleaseGPRSArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  gprsCause       [0] GPRSCause {bound},  
pDPID        [1] PDPID OPTIONAL,
...  
}

requestReportGPRSEvent {PARAMETERS-BOUND : bound} OPERATION ::= {
  ARGUMENT RequestReportGPRSEventArg {bound}
  RETURN RESULT FALSE
  ERRORS {missingParameter | parameterOutOfRange | systemFailure | taskRefused | unexpectedComponentSequence | unexpectedDataValue | unexpectedParameter | unknownPDPID}

  CODE
opcode-requestReportGPRSEvent

-- Direction: gsmSCF -> gprsSSF, Timer: $T_{rge}$
-- This operation is used to request the gprsSSF to monitor for an event (e.g., GPRS events
-- such as attach or PDP Context activation), then send a notification back to the
-- gsmSCF when the event is detected.

RequestReportGPRSEventArg {PARAMETERS-BOUND : bound} ::= SEQUENCE {
  gPRSEvent       [0] SEQUENCE SIZE (1..bound.&numOfGPRSEvents) OF GPRSEvent,  
pDPID        [1] PDPID OPTIONAL,
...  
}

-- Indicates the GPRS related events for notification.
resetTimerGPRS OPERATION ::= {
  ARGUMENT      ResetTimerGPRSArg
  RETURN RESULT FALSE
  ERRORS        {missingParameter | parameterOutOfRange |
                                      taskRefused |
                                      unexpectedComponentSequence |
                                      unexpectedDataValue |
                                      unexpectedParameter |
                                      unknownPDPID|
                                      opcode-resetTimerGPRS}
-- Direction: gsmSCF -> gprsSSF, Timer: Ttgt
-- This operation is used to request the gprsSSF to refresh an application timer in the gprsSSF.
ResetTimerGPRSArg ::= SEQUENCE {
  timerID        [0] TimerID     DEFAULT tssf,
  timervalue       [1] TimerValue,
  ...
}
sendChargingInformationGPRS {PARAMETERS-BOUND: bound} OPERATION ::= {
  ARGUMENT      SendChargingInformationGPRSArg { bound}
  RETURN RESULT FALSE
  ERRORS        {missingParameter |
                                      unexpectedComponentSequence |
                                      unexpectedParameter |
                                      parameterOutOfRange |
                                      systemFailure |
                                      taskRefused |
                                      unexpectedDataValue |
                                      unknownPDPID|
                                      opcode-sendChargingInformationGPRS}
-- Direction: gsmSCF -> gprsSSF, Timer: Tscig
-- This operation is used to instruct the gprsSSF on the charging information which the
gprsSSF shall send to the Mobile Station by means of GSM access signalling.
SendChargingInformationGPRSArg {PARAMETERS-BOUND: bound} ::= SEQUENCE {
  sCIGPRSBillingChargingCharacteristics [0] SCIGPRSBillingChargingCharacteristics {bound},
  ...
}
END

8.1.1 GPRS Reference Number

CAP-GPRS-ReferenceNumber {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
umts-network(1) modules(3) cap-dialogueInformation(111) version8(7)}
-- Module CAP-GPRS-ReferenceNumber is updated to version8(7) for Rel-6. The definitions
-- in this module are not modified, compared to Rel-5.
DEFINITIONS ::= BEGIN
EXPORTS
  id-CAP-GPRS-ReferenceNumber,
  cAP-GPRS-ReferenceNumber-Abstract-Syntax;
IMPORTS
  Integer4
FROM CS1-DataTypes {itu-t(0) identified-organization(4) etsi(0) inDomain(1) in-network(1)
modules(0) cs1-datatypes(2) version1(0)} ;

id-CAP-GPRS-ReferenceNumber OBJECT IDENTIFIER ::= {itu-t(0) identified-organization(4) etsi(0)
mobileDomain(0) umts-network(1) as(1) cap-GPRS-ReferenceNumber(5) version3(2)}
cAP-GPRS-ReferenceNumber-Abstract-Syntax ABSTRACT-SYNTAX ::= (CAP-GPRS-ReferenceNumber IDENTIFIED BY
id-CAP-GPRS-ReferenceNumber)
CAP-GPRS-ReferenceNumber ::= SEQUENCE {
  destinationReference    [0] Integer4        OPTIONAL,
  originationReference    [1] Integer4        OPTIONAL
}
-- This parameter is used to identify the relationship between SGSN and the gsmSCF.
END -- of CAP-GPRS-ReferenceNumber
8.1.2 Operation timers

The following value ranges apply for operation specific timers in CAP:

- short: 1 to 20 seconds;
- medium: 1 to 60 seconds;
- long: 1 second to 30 minutes

Table 8-1 lists all operation timers and the value range for each timer. The definitive value for each operation timer may be network specific and has to be defined by the network operator.

<table>
<thead>
<tr>
<th>Operation Name</th>
<th>Timer</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActivityTestGPRS</td>
<td>T_atg</td>
<td>Short</td>
</tr>
<tr>
<td>ApplyChargingGPRS</td>
<td>T_acg</td>
<td>Short</td>
</tr>
<tr>
<td>ApplyChargingReportGPRS</td>
<td>T_acrg</td>
<td>Short</td>
</tr>
<tr>
<td>CancelGPRS</td>
<td>T_cag</td>
<td>Short</td>
</tr>
<tr>
<td>ConnectGPRS</td>
<td>T_cong</td>
<td>Short</td>
</tr>
<tr>
<td>ContinueGPRS</td>
<td>T_cueg</td>
<td>Short</td>
</tr>
<tr>
<td>EntityReleasedGPRS</td>
<td>T_erg</td>
<td>Short</td>
</tr>
<tr>
<td>EventReportGPRS</td>
<td>T_ereg</td>
<td>Short</td>
</tr>
<tr>
<td>FurnishChargingInformationGPRS</td>
<td>T_fcig</td>
<td>Short</td>
</tr>
<tr>
<td>InitialDPGPRS</td>
<td>T_idpg</td>
<td>Short</td>
</tr>
<tr>
<td>ReleaseGPRS</td>
<td>T_rg</td>
<td>Short</td>
</tr>
<tr>
<td>RequestReportGPRSEvent</td>
<td>T_rqge</td>
<td>Short</td>
</tr>
<tr>
<td>ResetTimerGPRS</td>
<td>T_rtg</td>
<td>Short</td>
</tr>
<tr>
<td>SendChargingInformationGPRS</td>
<td>T_scig</td>
<td>Short</td>
</tr>
</tbody>
</table>

8.2 gsmSCF/gprsSSF contracts, packages and ACs

8.2.1 gprsSSF/gsmSCF ASN.1 module

CAP-gprsSSF-gsmSCF-pkgs-contracts-acs {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0) umts-network(1) modules(3) cap-gprsSSF-gsmSCF-pkgs-contracts-acs(108) version8(7)}

DEFINITIONS ::= BEGIN
-- This module specifies the Operation Packages, Contracts, Application Contexts
-- and Abstract Syntaxes used for the gprsSSF – gsmSCF interface, for the
-- control of GPRS.

-- The table in subclause 2.1 lists the specifications that contain the modules
-- that are used by CAP.

IMPORTS
PARAMETERS-BOUND,
cAPSpecificBoundSet
FROM CAP-classes classes
-- Elements that exist in cAPSpecificBoundSet in Rel-5 are not changed in Rel-6. As a
-- result, the value range of data type definitions in Rel-5 are not changed in Rel-6.

CONTRACT,
OPERATION-PACKAGE,
OPERATION
FROM Remote-Operations-Information-Objects ros-InformationObjects

TCMessage {} FROM TCAPMessages tc-Messages
APPLICATION-CONTEXT,
dialogue-abstract-syntax
FROM TC-Notation-Extensions tc-NotationExtensions

   activityTestGPRS,
   applyChargingGPRS,
   applyChargingReportGPRS,
   cancelGPRS,
   connectGPRS {},
   continueGPRS,
   entityReleasedGPRS {},
   furnishChargingInformationGPRS {},
   initialiseIDPGPRS {},
   releaseGPRS {},
   eventReportGPRS {},
   requestReportGPRSEvent {},
   resetTimerGPRS,
   sendChargingInformationGPRS {}

FROM CAP-gprsSSF-gsmSCF-ops-args gprsSSF-gsmSCF-Operations

   id-ac-CAP-gprsSSF-gsmSCF-AC,
   id-ac-CAP-gsmSCF-gprsSSF-AC,
   -- The APPLICATION-CONTEXT Object Identifiers for CAP V3 for GPRS in Rel-6 are the same as for
   -- GPRS in Rel-5.
   id-capGprsSsfToGsmScf,
   id-capGsmScfToGprsSsf,
   -- The CONTRACT Object Identifiers for CAP V3 for GPRS are updated in Rel-6.
   id-as-gprsSSF-gsmSCF-AS,
   id-as-gsmSCF-gprsSSF-AS,
   -- The ABSTRACT-SYNTAX Object Identifiers for CAP V3 for GPRS are updated in Rel-6.
   id-package-gprsScfActivation,
   id-package-gprsConnect,
   id-package-gprsContinue,
   id-package-gprsRelease,
   id-package-gprsEventHandling,
   id-package-gprsExceptionInformation,
   id-package-gprstimer,
   id-package-gprsBilling,
   id-package-gprsCharging,
   id-package-gprsChargeAdvice,
   id-package-gprsActivityTest,
   id-package-gprsCancel,
   -- The OPERATION-PACKAGE Object Identifiers for CAP V3 for GPRS are updated in Rel-6.
   classes,
   ros-InformationObjects,
   tc-Messages,
   tc-NotationExtensions,
   gprsSSF-gsmSCF-Operations
   -- Object Identifier 'gprsSSF-gsmSCF-Operations' is updated for Rel-6.

FROM CAP-object-identifiers {itu-t(0) identified-organization(4) etsi(0) mobileDomain(0)
   umts-network(1) modules(3) cap-object-identifiers(100) version8(7)}

};

-- Application Contexts

-- The APPLICATION-CONTEXT definitions for CAP V3 for GPRS are updated in Rel-6.
-- However, the APPLICATION-CONTEXT definitions for CAP V3 for GPRS in Rel-6 use the same
-- Object Identifier for APPLICATION CONTEXT NAME as CAP V3 for GPRS in Rel-5.
-- Refer to ITU-T Recommendation Q.775 for the formal definition of APPLICATION-CONTEXT.
-- The structured DIALOGUE MODE is defined in ITU-T Recommendation Q.771; the
-- dialogue-abstract-syntax ABSTRACT SYNTAX is defined in ITU-T Recommendation Q.775.

cap-gprsSsf-scfAC APPLICATION-CONTEXT ::= {
   CONTRACT   capGprsSsfToScf
   DIALOGUE MODE structured
   ABSTRACT SYNTAXES   {dialogue-abstract-syntax |
                          gprsSSF-gsmSCFAbstractSyntax}
   APPLICATION CONTEXT NAME   id-ac-CAP-gprsSSF-gsmSCF-AC
   -- 'capGprsSsfToScf' and 'gprsSSF-gsmSCFAbstractSyntax' are defined in the present
-- module.
cap-gsmscf-gprsssfAC APPLICATION-CONTEXT ::= |
  CONTRACT capGsmScfToGprsSsf 
  DIALOGUE MODE structured 
  ABSTRACT SYNTAXES {dialogue-abstract-syntax |
  gsmSCF-gprsSSFAbstractSyntax} 
  APPLICATION CONTEXT NAME id-ac-CAP-gsmSCF-gprsSSF-AC
-- 'capGsmScfToGprsSsf' and 'gsmSCF-gprsSSFAbstractSyntax' are defined in the present
-- module.

-- Contracts
-- The CONTRACT definitions for CAP V3 for GPRS are updated in Rel-6.
capGprsSsfToScf CONTRACT ::= |
  -- dialogue initiated by gprsSSF with InitialDPGPRS, ApplyChargingReportGPRS,
  -- EntityReleasedGPRS and EventReportGPRSEvent Operations
  INITIATOR CONSUMER OF {gprsScfActivationPackage {cAPSpecificBoundSet} |
    gprsChargingPackage |
    gprsEventHandlingPackage {cAPSpecificBoundSet} |
    gprsExceptionInformationPackage {cAPSpecificBoundSet}} |
  RESPONDER CONSUMER OF {gprsConnectPackage {cAPSpecificBoundSet} |
    gprsProcessingPackage |
    gprsReleasePackage {cAPSpecificBoundSet} |
    gprsChargingPackage |
    gprsEventHandlingPackage {cAPSpecificBoundSet} |
    gprsTimerPackage |
    gprsBillingPackage {cAPSpecificBoundSet} |
    gprsChargeAdvicePackage {cAPSpecificBoundSet} |
  ID id-capGprsSsfToGsmScf}
-- The OPERATION-PACKAGEs are defined in the present module.
capGsmScfToGprsSsf CONTRACT ::= |
  -- dialogue initiated by gsmSCF with ApplyChargingGPRS, ActivityTestGPRS, 
  -- CancelGPRS, FurnishChargingInformationGPRS, ReleaseGPRS, 
  -- RequestReportGPRSEvent and SendChargingInformationGPRS Operations
  INITIATOR CONSUMER OF {gprsReleasePackage {cAPSpecificBoundSet} |
    gprsChargingPackage |
    gprsActivityTestPackage |
    gprsCancelPackage |
    gprsChargeAdvicePackage {cAPSpecificBoundSet}} |
  ID id-capGsmScfToGprsSsf}
-- The OPERATION-PACKAGEs are defined in the present module.

-- Operation Packages
-- The OPERATION-PACKAGE definitions for CAP V3 for GPRS are updated in Rel-6.
gprsScfActivationPackage (PARAMETERS-BOUND : bound) OPERATION-PACKAGE ::= | 
  CONSUMER INVOICES (initialDPGPRS {bound}) |
  ID id-package-gprsScfActivation)
gprsConnectPackage (PARAMETERS-BOUND : bound) OPERATION-PACKAGE ::= |
  CONSUMER INVOICES (connectGPRS {bound}) |
  ID id-package-gprsConnect)
gprsProcessingPackage OPERATION-PACKAGE ::= |
  CONSUMER INVOICES (continueGPRS ) |
  ID id-package-gprsContinue)
gprsReleasePackage (PARAMETERS-BOUND : bound) OPERATION-PACKAGE ::= |
  CONSUMER INVOICES (releaseGPRS {bound}) |
  ID id-package-gprsRelease)
gprsEventHandlingPackage (PARAMETERS-BOUND : bound) OPERATION-PACKAGE ::= |
  CONSUMER INVOICES (requestReportGPRSEvent {bound}) |
  SUPPLIER INVOICES (eventReportGPRS {bound}) |
  ID id-package-gprsEventHandling)
gprsExceptionInformationPackage (PARAMETERS-BOUND : bound) OPERATION-PACKAGE ::= |
  CONSUMER INVOICES (entityReleasedGPRS {bound}) |
  ID id-package-gprsExceptionInformation)
gprsTimerPackage OPERATION-PACKAGE ::= {
    CONSUMER INVOKES  {resetTimerGPRS}
    ID                 id-package-gprsTimer
}

gprsBillingPackage [PARAMETERS-BOUND : bound] OPERATION-PACKAGE ::= {
    CONSUMER INVOKES  {furnishChargingInformationGPRS (bound)}
    ID                 id-package-gprsBilling
}

gprsChargingPackage OPERATION-PACKAGE ::= {
    CONSUMER INVOKES  {applyChargingGPRS}
    SUPPLIER INVOKES  {applyChargingReportGPRS}
    ID                 id-package-gprsCharging
}

gprsChargeAdvicePackage [PARAMETERS-BOUND : bound] OPERATION-PACKAGE ::= {
    CONSUMER INVOKES  {sendChargingInformationGPRS (bound)}
    ID                 id-package-gprsChargeAdvice
}

gprsActivityTestPackage OPERATION-PACKAGE ::= {
    CONSUMER INVOKES  {activityTestGPRS}
    ID                 id-package-gprsActivityTest
}

gprsCancelPackage OPERATION-PACKAGE ::= {
    CONSUMER INVOKES  {cancelGPRS}
    ID                 id-package-gprsCancel
}

-- Abstract Syntaxes

-- The ABSTRACT-SYNTAX definitions for CAP V3 for GPRS are updated in Rel-6.

GprsSSF-gsmSCFAbstractSyntax ABSTRACT-SYNTAX ::= {
    GenericGprsSSF-gsmSCF-PDUs
    IDENTIFIED BY id-as-gprsSSF-gsmSCF-AS
} -- 'GenericGprsSSF-gsmSCF-PDUs' is defined in the present module.

GprsSSF-gsmSCF-PDUs ::= TCMessage {{GprsSsfToGsmScfInvokable},
{GprsSsfToGsmScfReturnable}}
-- 'GprsSsfToGsmScfInvokable' and 'GprsSsfToGsmScfReturnable' are defined in the present module.

GprsSsfToGsmScfInvokable OPERATION ::= {
    activityTestGPRS |
    applyChargingGPRS |
    applyChargingReportGPRS |
    cancelGPRS |
    connectGPRS {cAPSpecificBoundSet} |
    entityReleasedGPRS {cAPSpecificBoundSet} |
    eventReportGPRS {cAPSpecificBoundSet} |
    furnishChargingInformationGPRS {cAPSpecificBoundSet} |
    initialDPGPRS {cAPSpecificBoundSet} |
    releaseGPRS {cAPSpecificBoundSet} |
    requestReportGPRSEvent {cAPSpecificBoundSet} |
    resetTimerGPRS |
    sendChargingInformationGPRS {cAPSpecificBoundSet}}

GprsSsfToGsmScfReturnable OPERATION ::= {
    activityTestGPRS |
    applyChargingGPRS |
    applyChargingReportGPRS |
    cancelGPRS |
    connectGPRS {cAPSpecificBoundSet} |
    continueGPRS |
    entityReleasedGPRS {cAPSpecificBoundSet} |
    furnishChargingInformationGPRS {cAPSpecificBoundSet} |
    initialDPGPRS {cAPSpecificBoundSet} |
    releaseGPRS {cAPSpecificBoundSet} |
    requestReportGPRSEvent {cAPSpecificBoundSet} |
    resetTimerGPRS |
    sendChargingInformationGPRS {cAPSpecificBoundSet}}

gsmSCF-gprsSSFAbstractSyntax ABSTRACT-SYNTAX ::= {
    GenericGsmSCF-gprsSSF-PDUs
    IDENTIFIED BY id-as-gsmSCF-gprsSSF-AS
} -- 'GenericGsmSCF-gprsSSF-PDUs' is defined in the present module.

GenericGsmSCF-gprsSSF-PDUs ::= TCMessage {{GsmScfToGprsSsfInvokable},
{GsmScfToGprsSsfReturnable}}
-- 'GsmScfToGprsSsfInvokable' and 'GsmScfToGprsSsfReturnable' are defined in the present module.
GsmScfToGprsSsfInvokable OPERATION ::= {
    activityTestGPRS |
    applyChargingGPRS |
    cancelGPRS |
    furnishChargingInformationGPRS {cAPSpecificBoundSet} |
    releaseGPRS {cAPSpecificBoundSet} |
    requestReportGPRSEvent {cAPSpecificBoundSet} |
    sendChargingInformationGPRS {cAPSpecificBoundSet}}

GsmScfToGprsSsfReturnable OPERATION ::= {
    activityTestGPRS |
    applyChargingGPRS |
    cancelGPRS |
    furnishChargingInformationGPRS {cAPSpecificBoundSet} |
    releaseGPRS {cAPSpecificBoundSet} |
    requestReportGPRSEvent {cAPSpecificBoundSet} |
    sendChargingInformationGPRS {cAPSpecificBoundSet}}

END

9 Application Entity procedures

The description of the application entity procedures for CAMEL Phase 3 can be found in 3GPP TS 23.078 [7].

10 Error procedures

The present clause specifies the generic error procedures for CAP. The error procedure descriptions are divided in two subclauses, subclause 10.1 listing the errors related to CAP Operations and subclause 10.2 listing the errors related to error conditions in the different FEs which are not directly related to the CAP Operations.

The gsmSSF FSM states, smsSSF FSM states and gprsSSF FSM states which are referred to in the present clause are described in 3GPP TS 23.078 [7]. The CAP Operations PlayAnnouncement, PromptAndCollectUserInformation and SpecializedResourceReport refer to states in the gsmSRF SRSM which are described in ETSI ETS 300 374-1 [24] as well as to states in 3GPP TS 23.078 [7].

10.1 Operation related error procedures

The following subclauses specify the generic error handling for the CAP Operation related errors. The errors are defined as Operation Errors in clauses 6, 7 and 8. Errors which have a specific procedure for a CAP Operation are described in clause 11 with the detailed procedure of the related CAP Operation.

The TC services which are used for reporting CAP Operation Errors are described in subclause 14.1. All Errors which can be detected by the ASN.1 decoder, already may have been detected during the decoding of the TC message and indicated by the TC error indication "MistypedParameter" in the TC-U-Reject.

10.1.1 Canceled

10.1.1.1 General Description

10.1.1.1.1 Error description

The gsmSRF uses this Error to indicate" to the gsmSCF that the cancellation of a specific CAP Operation, as requested by the gsmSCF, has been successful. The only CAP Operations which may be cancelled are PlayAnnouncement and PromptAndCollectUserInformation.

10.1.1.2 Operations gsmSCF→gsmSRF

Procedures at responding entity (gsmSRF)
A) Receiving Cancel

Precondition:  SRSM FSM state  "User Interaction".
Postcondition: SRSM FSM state  "User Interaction".

If execution of the indicated CAP Operation has not yet started, then the indicated CAP Operation shall be removed from the buffer. If execution of the indicated CAP Operation is in progress, then the execution of that CAP Operation shall be terminated. If the indicated CAP Operation was already executed, then this causes a failure ("CancelFailed").

B) Sending Error "Canceled"

Precondition:  SRSM FSM state  "User Interaction".
Postcondition: SRSM FSM state  "User Interaction".

After returning the Error "Canceled", the gsmSRF FSM remains in the same state. The execution of the indicated PlayAnnouncement or PromptAndCollectUserInformation CAP Operation is aborted. The gsmSRF shall remain connected and the next PlayAnnouncement or PromptAndCollectUserInformation CAP Operation, if available, shall be executed.

10.1.2 CancelFailed

10.1.2.1 General description

10.1.2.1.1 Error description

The gsmSRF uses this Error to indicate to the gsmSCF that the cancellation of a specific CAP Operation, as requested by the gsmSCF, was not successful. Possible failure reasons are:

0  "unknownOperation", when the InvokeID of the CAP Operation to cancel is not known to the gsmSRF (this may also happen when the CAP Operation has already been completed);

1  "tooLate", when the invokeID is known but the execution of the CAP Operation is in a state in which it cannot be canceled anymore. For instance the announcement is finished but the SpecializedResourceReport has not been sent to the gsmSCF yet. The conditions for the occurrence of failure reason "tooLate" are implementation dependent;

2  "operationNotCancellable", when the invokeID points to a CAP Operation that the gsmSCF is not allowed to cancel.

10.1.2.2 Operations gsmSCF→gsmSRF

Procedures at responding entity (gsmSRF)

A) Receiving Cancel. However, the indicated CAP Operation is not known, or has already been executed or may not be cancelled. This causes a failure, "CancelFailed".

Precondition:  SRSM FSM state  "User Interaction".
Postcondition: SRSM FSM state  "User Interaction" or SRSM FSM state  "Idle".

B) Sending Error "CancelFailed"

Precondition:  SRSM FSM state  "User Interaction" or SRSM FSM state  "Idle".
Postcondition: SRSM FSM state  "User Interaction" or SRSM FSM state  "Idle".

After returning the Error "CancelFailed" the gsmSRF FSM remains in the same state.
10.1.3 ETCFailed

10.1.3.1 General description

10.1.3.1.1 Error description

The gsmSSF uses this Error to indicate to the gsmSCF that the establishment of a temporary connection to an assisting gsmSSF or gsmSRF was not successful (e.g., receiving a "Backwards Release" after sending an ISUP IAM).

10.1.3.2 Operations gsmSCF→gsmSSF

Procedures at responding entity (gsmSSF)

A gsmSSF receives EstablishTemporaryConnection from a gsmSCF but the establishment of the connection fails, which results in returning the Error "ETCFailed" to the gsmSCF.

Precondition: gsmSSF FSM state "Waiting_for_Instructions".
Postcondition: gsmSSF FSM state "Waiting_for_Instructions".

No further error treatment.

10.1.4 ImproperCallerResponse

10.1.4.1 General description

10.1.4.1.1 Error description

The gsmSRF uses this Error to indicate to the gsmSCF that the format of the user input has been checked by the gsmSRF, but does not correspond to the required format as it was defined in the initiating CAP Operation.

10.1.4.2 Operations gsmSCF→gsmSRF

Procedures at responding entity (gsmSRF)

A) gsmSRF receives PromptAndCollectUserInformation

Precondition: SRSM FSM state "Connected"; or SRSM FSM state "User Interaction".
Postcondition: SRSM FSM state "User Interaction".

B) format of the user input is not correct, gsmSRF returns ImproperCallerResponse to gsmSCF

Precondition: SRSM FSM state "User Interaction".
Postcondition: SRSM FSM state "User Interaction".

The gsmSRF shall wait for a new CAP Operation from the gsmSCF. This may be a new PromptAndCollectUserInformation or a PlayAnnouncement.

10.1.5 MissingCustomerRecord

10.1.5.1 General description

10.1.5.1.1 Error description

The gsmSCF uses this Error to indicate to the gsmSSF, gprsSSF, smsSSF or gsmSRF, that the SLP could not be found in the gsmSCF, because the required customer record does not exist, or the requested SLPI, indicated by the correlationID in "AssistRequestInstructions" does not exist anymore.
10.1.5.2 Operations gsmSSF → gsmSCF

Procedures at invoking entity (gsmSSF)

A) Sending CAP Operation

Precondition: gsmSSF FSM state = "Trigger processing" or gsmSSF FSM state = "Waiting_for_Instructions"; in the assisting gsmSSF case.

Postcondition: gsmSSF FSM state = "Waiting_for_Instructions", gsmSSF FSM state = "Waiting_for_Instructions"; in the assisting gsmSSF case.

B) gsmSSF receives Error "MissingCustomerRecord"

Precondition: gsmSSF FSM state = "Waiting_for_Instructions" or gsmSSF FSM state = "Waiting_for_Instructions"; in the assisting gsmSSF case.

Postcondition: gsmSSF FSM state = "Idle" or gsmSSF FSM state = "Idle"; in the assisting gsmSSF case.

The GMSC or VMSC shall handle the call in accordance with the Default Call Handling parameter of the valid CSI.

10.1.5.3 Operations gsmSRF → gsmSCF

Procedures at invoking entity (gsmSRF)

A) Sending CAP Operation

Precondition: SRSM FSM state = "Connected".

Postcondition: SRSM FSM state = "Connected".

B) gsmSRF receives Error "MissingCustomerRecord"

Precondition: SRSM FSM state = "Connected".

Postcondition: SRSM FSM state = "Idle".

The gsmSRF shall initiate a Disconnect.

10.1.5.4 Operations smsSSF → gsmSCF

Procedures at invoking entity (smsSSF)

A) Sending CAP Operation

Precondition: smsSSF FSM state = "Waiting_for_Instructions".

Postcondition: smsSSF FSM state = "Waiting_for_Instructions".

B) smsSSF receives Error "MissingCustomerRecord"

Precondition: smsSSF FSM state = "Waiting_for_Instructions".

Postcondition: smsSSF FSM state = "Idle".

The VMSC or SGSN shall handle the Short Message in accordance with the Default SMS Handling parameter of the valid CSI.

10.1.5.5 Operations gprsSSF → gsmSCF

Procedures at invoking entity (gprsSSF)

A) Sending CAP Operation

Precondition: gprsSSF FSM state = "Waiting_for_Instructions".
Postcondition: gprsSSF FSM state "Waiting_for_Instructions".

B) gprsSSF receives Error "MissingCustomerRecord"

Precondition: gprsSSF FSM state "Waiting_for_Instructions".
Postcondition: gprsSSF FSM state "Idle".

The SGSN shall handle the GPRS Session or PDP Context in accordance with the Default GPRS Handling parameter of the valid CSI.

10.1.6 MissingParameter

10.1.6.1 General description

10.1.6.1.1 Error description

The gsmSCF, gsmSSF, gsmSRF, smsSSF or gprsSSF uses this Error to indicate that there is an error in the received CAP Operation argument. The responding entity cannot start the execution of the requested CAP Operation because the argument is incorrect: an expected optional parameter which is essential for the application is not included in the CAP Operation argument.

10.1.6.2 Operations gsmSCF->gsmSSF

Procedures at responding entity (gsmSSF)

Precondition: (1) gsmSSF FSM appropriate state
(2) gsmSSF FSM Call associated CAP Operation received, appropriate event occurred
(3) gsmSSME FSM appropriate state
(4) gsmSSME FSM Non call associated CAP Operation received, appropriate event

Postcondition: (1) No gsmSSF FSM transition
(2) gsmSSME FSM transition to the initial state (i.e., before receiving the erroneous CAP Operation)

The gsmSSF detects the error in the received CAP Operation. The Error parameter "MissingParameter" is returned to inform the gsmSCF of this situation.

10.1.6.3 Operations gsmSSF->gsmSCF

Procedures at invoking entity (gsmSSF)

A) Sending CAP Operation

Precondition: gsmSSF FSM appropriate state

Postcondition: gsmSSF FSM appropriate state as result of the transfer of the CAP Operation

B) gsmSSF receives Error "MissingParameter"

Precondition: gsmSSF FSM appropriate state as result of the transfer of any of the CAP Operation

Postcondition: gsmSSF FSM state "Idle"

After receiving this Error, the gsmSSF FSM shall return to the state "Idle". The GMSC or VMSC shall handle the call in accordance with the Default Call Handling parameter, valid for this CAMEL dialogue. In the case of an assisting gsmSSF, the temporary connection shall be released by the assisting gsmSSF.

10.1.6.4 Operations gsmSCF->gsmSRF

Procedures at responding entity (gsmSRF)

Precondition: SRSM FSM state "Connected"; or
SRSM FSM state "User Interaction".
The SRSM detects that a required parameter is not present in the CAP Operation argument. The Error parameter "MissingParameter" is returned to inform the gsmSCF of this situation.

10.1.6.5 Operations gsmSRF → gsmSCF

Procedures at invoking entity (gsmSRF)

A) Sending CAP Operation

Precondition: SRSM FSM state "Connected".
Postcondition: SRSM FSM state "Connected".

B) Receiving Error

Precondition: SRSM FSM state "Connected".
Postcondition: SRSM FSM state "Idle".

The gsmSCF detects the error in the received CAP Operation. The Error parameter "MissingParameter" is used to inform the gsmSRF of this situation. The SL and maintenance functions are informed. The gsmSCF might try another gsmSRF, route the call or release the call (SL dependent).

10.1.6.6 Operations smsSSF → gsmSCF

Procedures at invoking entity (smsSSF)

A) Sending CAP Operation

Precondition: smsSSF FSM state "WaitingForInstructions".
Postcondition: smsSSF FSM state "WaitingForInstructions".

B) Receiving Error

Precondition: smsSSF FSM state "WaitingForInstructions".
Postcondition: smsSSF FSM state "Idle".

After receiving this error, the smsSSF FSM shall transit to the state "Idle". The SGSN or VMSC shall handle the Short Message in accordance with the Default SMS Handling parameter of the valid CSI.

10.1.6.7 Operations gsmSCF → smsSSF

Procedures at responding entity (smsSSF)

precondition:

(1) smsSSF appropriate state.
(2) smsSSF SMS associated CAP Operation received, appropriate event occurred.

postcondition:

(1) smsSSF transition to the same state.

The smsSSF detects the error in the received CAP Operation. The Error parameter "MissingParameter" is returned to inform the gsmSCF of this situation.

10.1.6.8 Operations gprsSSF → gsmSCF

Procedures at invoking entity (gprsSSF)
A) Sending CAP Operation
Precondition: gprsSSF FSM state "Waiting_for_Instructions".
Postcondition: gprsSSF FSM state "Waiting_for_Instructions".

B) Receiving Error
Precondition: gprsSSF FSM state "Waiting_for_Instructions".
Postcondition: gprsSSF FSM state "Idle".
After receiving this error, the gprsSSF FSM shall transit to the state "Idle". The SGSN shall handle the GPRS Session or PDP Context in accordance with the Default GPRS Handling parameter of the valid CSI.

10.1.6.9 Operations gsmSCF → gprsSSF

Procedures at responding entity (gprsSSF)

precondition:
(1) gprsSSF appropriate state.
(2) gprsSSF CAP Operation received, appropriate event occurred.

postcondition:
(1) gprsSSF transition to the same state.

The gprsSSF detects the error in the received CAP Operation. The Error parameter "MissingParameter" is returned to inform the gsmSCF of this situation.

10.1.7 ParameterOutOfRange

10.1.7.1 General description

10.1.7.1.1 Error description
The gsmSCF, gsmSSF, gsmSRF, smsSSF or gprsSSF uses this Error to indicate that it cannot start the execution of the requested CAP Operation because an error in a parameter of the CAP Operation argument is detected: a parameter value is out of range.

10.1.7.2 Operations gsmSCF → gsmSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.7.3 Operations gsmSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.7.4 Operations gsmSCF → gsmSRF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.7.5 Operations smsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.7.6 Operations gsmSCF → smsSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.
10.1.7.7 Operations gprsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.7.8 Operations gsmSCF → gprsSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.8 RequestedInfoError

10.1.8.1 General description

10.1.8.1.1 Error description
The gsmSSF uses this Error to indicate to the gsmSCF that the information requested in the CallInformationRequest CAP Operation is not known to the gsmSSF or is not available.

10.1.8.2 Operations gsmSCF → gsmSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.9 SystemFailure

10.1.9.1 General description

10.1.9.1.1 Error description
The gsmSCF, gsmSSF, gsmSRF, smsSSF or gprsSSF uses this error to indicate that it is not able to execute a specific task as requested by a CAP Operation, and recovery is not expected to be completed within the current call instance.

10.1.9.2 Operations gsmSCF → gsmSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.9.3 Operations gsmSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.9.4 Operations gsmSCF → gsmSRF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.9.5 Operations gsmSRF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.9.6 Operations smsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.9.7 Operations gsmSCF → smsSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.
10.1.9.8 Operations gprsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.9.9 Operations gsmSCF → gprsSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.10 TaskRefused

10.1.10.1 General description

10.1.10.1.1 Error description
The gsmSCF, gsmSSF, gsmSRF, smsSSF or gprsSSF uses this Error to indicate that it is not able to execute a specific task as requested by a CAP Operation, and recovery is expected to be completed within the current call instance.

If the gsmSSF requests MoveLeg or SplitLeg operations in the gsmSSF while user interaction is in progress in an affected Call Sement, then CAP_Error (task refused) is returned.

10.1.10.2 Operations gsmSCF → gsmSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.10.3 Operations gsmSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.10.4 Operations gsmSCF → gsmSRF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.10.5 Operations gsmSRF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.10.6 Operations smsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.10.7 Operations gsmSCF → smsSSF
SMS Related
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.10.8 Operations gprsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.10.9 Operations gsmSCF → gprsSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.
10.1.11 UnavailableResource

10.1.11.1 General description

10.1.11.1.1 Error description

The gsmSRF uses this Error to indicate to the gsmSCF that it is not able to perform its function (i.e., play a certain announcement and/or collect specific user information), and cannot be replaced. A reattempt is not possible.

10.1.11.2 Operations gsmSCF→gsmSRF

Procedures at responding entity (gsmSRF)

A) gsmSRF receiving PlayAnnouncement or PromptAndCollectUserInformation

Precondition: SRSM FSM state "Connected"; if initial PlayAnnouncement or PromptAndCollectUserInformation; or SRSM FSM state "User Interaction"; if not initial PlayAnnouncement or PromptAndCollectUserInformation.

B) gsmSRF is not able to perform its function (and cannot be replaced). The gsmSRF sends the Error "UnavailableResource".

Precondition: SRSM FSM state "User Interaction".

Postcondition: SRSM FSM state "User Interaction".

10.1.12 UnexpectedComponentSequence

10.1.12.1 General description

10.1.12.1.1 Error description

The gsmSCF, gsmSSF, gsmSRF, smsSSF or gprsSSF uses this Error to indicate that it cannot start the execution of the requested CAP Operation because a SACF or MACF rule is violated, or the CAP Operation cannot be executed in the current state of the FSM.

10.1.12.2 Operations gsmSCF→gsmSSF

In this case the gsmSSF detects the erroneous situation, sends the Error "UnexpectedComponentSequence" and remains in the same state.

10.1.12.3 Operations gsmSSF→gsmSCF

If the CAP Operation is sent by an "initiating" gsmSSF in the context of an existing relationship, then the gsmSCF returns the Error parameter. On receiving the error the gsmSSF FSM shall transit to the state "Idle". The VMSC or GMSC shall handle the call in accordance with the Default Call Handling parameter, valid for this CAMEL dialogue.

10.1.12.4 Operations gsmSCF→gsmSRF (applicable for direct gsmSCF-gsmSRF case only)

In this case the gsmSRF detects the erroneous situation, sends the Error "UnexpectedComponentSequence" and remains in the same state.

10.1.12.5 Operations gsmSRF→gsmSCF

In this case, an error occurs if the gsmSRF has already an established relationship with the gsmSCF and sends the CAP Operation AssistRequestInstructions. The gsmSCF detects the erroneous situation, informs SL and maintenance
functions and returns the error parameter. On receiving the Error parameter, the gsmSRF FSM shall transit to the state "Idle" and releases the temporary connection.

10.1.12.6 Operations smsSSF → gsmSCF

If the CAP Operation is sent by the smsSSF in the context of an existing relationship, then the gsmSCF returns the Error parameter. On receiving the error, the smsSSF FSM shall transit to the state "Idle". The SGSN or VMSC shall handle the Short Message in accordance with the Default SMS Handling parameter of the valid CSI.

10.1.12.7 Operations gsmSCF → smsSSF

In this case the smsSSF detects the erroneous situation, sends the Error "UnexpectedComponentSequence" and remains in the same state.

10.1.12.8 Operations gprsSSF → gsmSCF

If the CAP Operation is sent by the gprsSSF in the context of an existing relationship, then the gsmSCF returns the Error parameter. On receiving the error, the gprsSSF FSM shall transit to the state "Idle". The SGSN shall handle the GPRS Session or PDP Context in accordance with the Default GPRS Handling parameter of the valid CSI.

10.1.12.9 Operations gsmSCF → gprsSSF

In this case the gprsSSF detects the erroneous situation, sends the Error "UnexpectedComponentSequence" and remains in the same state.

10.1.13 UnexpectedDataValue

10.1.13.1 General description

10.1.13.1.1 Error description

The gsmSCF, gsmSSF, gsmSRF, smsSSF or gprsSSF uses this Error to indicate that it cannot execute the requested CAP Operation because a parameter has an unexpected data value.

Note that this error does not overlap with "ParameterOutOfRange".

EXAMPLE: startTime DateAndTime ::= -- value indicating January 32 1993, 12:15:01

The responding entity does not expect this value and responds with Error "UnexpectedDataValue".

10.1.13.2 Operations gsmSCF → gsmSSF

Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.13.3 Operations gsmSSF → gsmSCF

Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.13.4 Operations gsmSCF → gsmSRF

Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.13.5 Operations gsmSRF → gsmSCF

Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.
10.1.13.6 Operations smsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.13.7 Operations gsmSCF → smsSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.13.8 Operations gprsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.13.9 Operations gsmSCF → gprsSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.14 UnexpectedParameter

10.1.14.1 General description

10.1.14.1.1 Error description
The gsmSCF, gsmSSF, gsmSRF, smsSSF or gprsSSF uses this Error to indicate that there is an error in the received CAP Operation argument. A valid but unexpected parameter was present in the CAP Operation argument. The presence of this parameter is not consistent with the presence of the other parameters. The responding entity cannot start the execution of the CAP Operation.

10.1.14.2 Operations gsmSCF → gsmSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.14.3 Operations gsmSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.14.4 Operations gsmSCF → gsmSRF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.14.5 Operations gsmSRF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.14.6 Operations smsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.14.7 Operations gsmSCF → smsSSF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.14.8 Operations gprsSSF → gsmSCF
Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.
10.1.14.9 Operations gsmSCF→gprsSSF

Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.15 UnknownLegID

10.1.15.1 General description

10.1.15.1.1 Error description

The gsmSSF uses this error to indicate to the gsmSCF that a specific leg, indicated by the LegID parameter value in the CAP Operation, is unknown to the gsmSSF.

10.1.15.2 Operations gsmSCF→gsmSSF

Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.16 UnknownCSID

10.1.16.1 General description

10.1.16.1.1 Error description

The gsmSSF uses this error to indicate to the gsmSCF that a specific Call Segment, indicated by the callSegmentID parameter value in the CAP Operation, is unknown to the gsmSSF.

10.1.16.2 Operations gsmSCF→gsmSSF

Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.17 UnknownPDPID

10.1.17.1 General description

10.1.17.1.1 Error description

The gsmSCF or gprsSSF uses this error to indicate that a specific PDP Context, indicated by the PDPId parameter value in the CAP Operation argument, is unknown to the receiving entity.

10.1.17.2 Operations gprsSSF→gsmSCF

Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.1.17.3 Operations gsmSCF→gprsSSF

Refer to subclause 10.1.6 MissingParameter for the appropriate error procedures.

10.2 Entity related error procedures

The following subclauses specify the error handling procedures for the Functional Entity related errors. Since the error situations are not originated by the reception of a CAP Operation, the invoking entity is denoted here as the entity at which the error situation is detected. The responding entity is the entity which receives the error report.

The TC services used for reporting errors are described in clause 14.
10.2.1 Expiration of Tssf

10.2.1.1 General description

10.2.1.1.1 Error description

A timeout has occurred in the gsmSSF, gprsSSF, smsSSF or assisting gsmSSF on the response from the gsmSCF.

10.2.1.2 Procedures gsmSSF→gsmSCF

Procedure at the invoking entity (gsmSSF or assisting gsmSSF)

Timeout occurs in gsmSSF on Tssf.

Precondition: gsmSSF FSM state "Waiting_for_Instructions"; or
gsmSSF FSM state "Waiting_for_end_of_User_Interaction"; or
gsmSSF FSM state "Waiting_for_end_of_Temporary_Connection".

Postcondition: gsmSSF FSM state "Idle".

The gsmSSF shall abort the TC dialogue and shall transit to the state "Idle". The GMSC or VMSC shall handle the call in accordance with the Default Call Handling parameter, valid for this CAMEL dialogue. For CAMEL dialogues that are established as a result of a CSI, the Default Call Handling parameter is obtained from the CSI. For gsmSCF initiated CAMEL dialogues, the Default Call Handling parameter shall be 'ReleaseCall'.

The assisting gsmSSF shall abort the TC dialogue and shall transit to the state "Idle". The assisting gsmSSF shall release the temporary connection.

10.2.1.3 Procedures gprsSSF→gsmSCF

Procedure at the invoking entity (gprsSSF)

Timeout occurs in gprsSSF on Tssf.

Precondition: gprsSSF FSM state "Waiting_for_Instructions".

Postcondition: gprsSSF FSM state "Idle".

The gprsSSF shall abort the TC dialogue and the GPRS dialogue and shall transit to the state "Idle". The SGSN shall handle the PDP Context in accordance with the Default GPRS Handling parameter of the valid CSI.

10.2.1.4 Procedures smsSSF→gsmSCF

Procedure at the invoking entity (smsSSF)

Timeout occurs in smsSSF on Tssf.

Precondition: smsSSF FSM state "Waiting_for_Instructions".

Postcondition: smsSSF FSM state "Idle".

The smsSSF shall abort the TC dialogue and shall transit to the state "Idle". The MSC or SGSN shall handle the Short Message in accordance with the Default SMS Handling parameter of the valid CSI.
10.2.2  Expiration of Tsrf

10.2.2.1  General Description

10.2.2.1.1  Error description

A timeout has occurred in the gsmSRF on the response from the gsmSCF. The procedures for handling this error are described in ETSI ETS 300 374-1 [24].

10.2.2.2  Procedures description

The procedures for handling this error are described in ETSI ETS 300 374-1 [24].

11  Detailed operation procedures for circuit switched call control

NOTE:  The detailed operation procedures in the present clause which cross reference the gsmSCF FSMs for the pre- and postconditions are for information only.

NOTE:  Where a parameter for a circuit switched call control Operation is marked OPTIONAL in ASN.1, the reader is referred to the conditions for presence for this parameter, specified in the respective Information Flow in 3GPP TS 23.078 [7].

11.1  ActivityTest procedure

11.1.1  General description

The gsmSCF uses this operation to check for the continued existence of a relationship between the gsmSCF and the gsmSSF, between the gsmSCF and the gsmSRF or between the gsmSCF and the assist gsmSSF. If the relationship is still in existence, then the receiving entity will respond If the ActivityTest operation timer expires, then the gsmSCF will assume that the receiving entity has failed in some way and will take appropriate action.

11.1.1.1  Parameters

None.

11.1.2  Responding entity (gsmSSF, gsmSRF or assist gsmSSF)

11.1.2.1  Normal procedure

gsmSSF preconditions:

(1) A relationship exists between the gsmSCF and the gsmSSF.

(2) The gsmSSME FSM is in the state "Idle Management" or in the state "Non-call Associated Treatment".

gsmSRF or assist gsmSSF preconditions:

(1) A relationship exists between the gsmSCF and the gsmSRF or assist gsmSSF.

(2) The gsmSSME FSM is in the state "Idle Management".

gsmSSF postconditions:

(1) The gsmSSME FSM stays in, or transits to the state "Non-call Associated Treatment".
(2) If the TC Dialogue ID is active and there is a gsmSSF using the dialogue, then the gsmSSME FSM shall send a Return Result "ActivityTest" to the gsmSCF. If there are no other management activities (e.g. Call Gapping), then the gsmSSME FSM shall transit to the state "Idle Management". Otherwise, the gsmSSME FSM remains in the state "Non-call Associated Treatment".

If the TC Dialogue ID is not active, then the TC in the gsmSSF will issue a P-Abort. The gsmSSME FSM will in that case not receive the "ActivityTest" indication and thus will not be able to reply.

gsmSRF or assist gsmSSF postconditions:

(1) The gsmSSME FSM transits to the state "Non-call Associated Treatment".

(2) If the TC Dialogue ID is active and there is a gsmSRF or assist gsmSSF using the dialogue, then the gsmSSME FSM shall send a Return Result "ActivityTest" to the gsmSCF. The gsmSSME FSM then returns to the state "Idle Management".

If the TC Dialogue ID is not active, then the TC in the gsmSRF or assist gsmSSF will issue a P-Abort. The gsmSSME FSM will in that case not receive the ActivityTest indication and thus will not be able to reply.

11.1.2.2 Error handling
Operation related error handling is not applicable, due to class 3 operation.

11.2 ApplyCharging procedure

11.2.1 General description
The gsmSCF uses this operation for interacting with the gsmSSF function: "CSE control of call duration". The ApplyChargingReport operation provides the feedback from the gsmSSF to the gsmSCF.

The charging scenarios supported by this operation are those given in 3GPP TS 22.078 [3] for "CSE control of call duration".

11.2.1.1 Parameters
- aChBillingChargingCharacteristics:
  This parameter specifies a list of parameters required for "CSE control of call duration":

  The list may contain the following parameters:

  - timeDurationCharging:
    This list contains the following parameters:

    - maxCallPeriodDuration:
      This parameter specifies the period of time for which a call may progress before an ApplyChargingReport shall be sent to the gsmSCF.

    - releaseIfdurationExceeded:
      This parameter specifies the action to be taken at the gsmSSF when the duration specified above has been reached.

    - audibleIndicator:
      This parameter indicates to the gsmSSF that an audible indicator may be played to the served subscriber. This audible indicator may either be a predefined sequence of tones or a sequence defined by the gsmSCF. This parameter shall consist of either tone or burstlist as described below:

      - tone:
        This parameter indicates that a warning tone shall be played when the pre-defined warning tone timer expires.
- **burstlist:**
  This parameter indicates that a variable sequence of tones shall be played when the gsmSCF-defined warning tone timer expires. This parameter may consist of the following parameters:

- **warningPeriod:**
  This parameter indicates the time, before the Max Call Period Duration timer expires when the playing of the burstlist shall start.

  - **burst:**
    This parameter indicates the number of bursts that form the burstlist.

  - **burstInterval:**
    This parameter indicates the time interval between the successive burst in the burstlist.

  - **toneInBurst:**
    This parameter indicates the number of tones to be played in each burst.

  - **toneDuration:**
    This parameter indicates the time duration that the tone shall be played for.

  - **toneInterval:**
    This parameter indicates the time interval between successive tones in a burst

- **tariffSwitchInterval (for the CSE control of call duration):**
  This parameter indicates the time duration until the next tariff switch for the CSE control of call duration. The measurement of the elapsed tariff switch period shall start immediately after successful execution of this operation.

- **partyToCharge:**
  This parameter indicates the party in the call.

- **aChChargingAddress:**
  This parameter identifies the call party to which the ApplyCharging operation applies. That is the leg or srfConnection.

  This parameter is a choice of one of the following parameters:

  - **legID:**
    This parameter indicates that the "CSE control of call duration" is associated to the specified leg.

  or

  - **srfConnection:**
    This parameter indicates that the "CSE control of call duration" is associated to the Temporary Connection or to the connection to a gsmSRF.

### 11.2.2 Responding entity (gsmSSF)

#### 11.2.2.1 Normal procedure

**gsmSSF preconditions:**

1. A control relationship exists between the gsmSCF and the gsmSSF.
2. The gsmSSF FSM is in one of the following states:

   "Waiting_for_Instructions"; or
   "Waiting_for_end_of_User_Interaction"; or
   "Waiting_for_end_of_Temporary_Connection"; or
   "Monitoring".
gsmSSF postconditions:

(1) No gsmSSF FSM state transition.

On receipt of this operation, the gsmSSF sets the charging data using the information elements included in the operation and acts accordingly.

If the aChChargingAddress indicates a legID, then:

The "CSE control of call duration" is associated to the specified leg. If Answer has not already been received on the incoming or outgoing connection (leg) to the Call Party, then the gsmSSF shall start monitoring for the Answer event upon receipt of the ApplyCharging operation. Upon subsequent detection of the Answer event on the outgoing connection charging is started. If the Answer event has occurred on the incoming or outgoing connection already when the ApplyCharging operation is received, then charging starts immediately.

A precautionary started DELTA measurement shall be taken into account when charging is started.

For a change in the connection configuration of the legs - on CPH - the particular point in time when the new connection configuration is established shall be taken as Answer time.

Upon release of the incoming or outgoing connection to the Call Party any indication of Answer event occurred on the incoming or outgoing connection shall be cleared, i.e. set to "Answer event not occurred".

If the aChChargingAddress indicates a srfConnection, then:

The "CSE control of call duration" is associated to the Temporary Connection or to the connection to a gsmSRF. If Answer has not already been received on the Temporary Connection, then the gsmSSF will start monitoring for the Answer event upon receipt of the ApplyCharging operation; or, if the gsmSRF is not yet connected, then the gsmSSF will start monitoring for a connection to a gsmSRF. Upon subsequent detection of the Answer event on the Temporary Connection or the subsequent connection to a gsmSRF, charging shall be started. If the Answer event has been received from a Temporary Connection already or if the gsmSRF is already connected when the ApplyCharging operation is received, then charging shall start immediately.

Upon release of the Temporary Connection any indication of Answer event receipt on the outgoing connection shall be cleared i.e. set to "Answer event not received". Upon end of the connection to a gsmSRF, any indication of the connection to the gsmSRF shall be cleared.

11.2.2.2 Error handling

"TaskRefused": In addition to the generic error handling noted below, this error shall be indicated when:

- a previously received call period duration is pending for this leg or srfConnection;
- a tariffSwitchInterval for the "CSE control of call duration" is indicated when a previously received tariffSwitchInterval for the "CSE control of call duration" is pending for the Called Party, the Temporary Connection or the connection to a gsmSRF.

Generic error handling for the operation related errors is described in clause 10 and the TC services used for reporting operation errors are described in clause 14.

11.3 ApplyChargingReport procedure

11.3.1 General description

The gsmSSF uses this operation to report charging related information to the gsmSCF as requested by the gsmSCF using the "ApplyCharging" operation.

For a change in a connection configuration of the legs – on CPH – this operation shall be sent as an indication towards the gsmSCF that the supervision of that part of the connection is finished; i.e.

(i) the gsmSCF shall settle the account using the reported duration and
(ii) the durations reported for subsequent AC/ACR cycles will not be accumulated to the reported duration.
If Answer is detected by the gsmSSF, then timing of duration shall be started as requested by the ApplyCharging operation. It shall be started independently for a connection to a Called Party, a Temporary Connection and a gsmSRF connection.

The charging report shall be generated as specified in the 3GPP TS 23.078 [7].

The tariff switch mentioned in the following subclause is the tariff switch for "CSE control of call duration" for the connection to which the ApplyChargingReport procedure applies.

### 11.3.1.1 Parameters

- **callResult:**
  This parameter provides the gsmSCF with the charging related information previously requested using the ApplyCharging operation. The "CallResult" is a list and may contain the following parameters:

  - **timeDurationChargingResult:**
    This parameter is a list, and can contain the following parameters:

    - **timeInformation:**
      This parameter is a choice of the following parameters:

        - **timeIfNoTariffSwitch:**
          This parameter shall be present if no tariff switch has occurred since the reception of the first ApplyCharging operation for the connection to the Called Party, Temporary Connection or gsmSRF connection, otherwise it shall be absent.
          If Answer was detected for the connection to the Called Party, the Temporary Connection or the gsmSRF connection, then the elapsed time since detection of Answer shall be reported. If answer was not detected, then it shall be set to "0".
          For a change in the connection configuration of the legs - on CPH - the particular point in time when the new connection configuration is established shall be taken as Answer time.

        - **timeIfTariffSwitch:**
          This parameter shall be present if a tariff switch has occurred since the reception of the first ApplyCharging operation for the connection to the Called Party, Temporary Connection or gsmSRF connection, otherwise it shall be absent.
          The parameter may contain the following information:

            - **timeSinceLastTariffSwitch:**
              If Answer was detected for the connection to the Called Party, the Temporary Connection or the gsmSRF connection, then the elapsed time since detection of Answer or the last tariff switch (whichever of these events was last detected) shall be reported. If Answer was not detected, then it shall be set to "0".
              For a change in the connection configuration of the legs - on CPH - the particular point in time when the new connection configuration is established shall be taken as Answer time.

      - **TariffSwitchInterval (for the "CSE control of call duration"):**
        This parameter is present only if a tariff switch has occurred since the detection of Answer for the connection to the Called Party, the temporary connection or the gsmSRF connection in the reported call period.
        The time interval between either the detection of the Answer event or the previous tariff switch (whichever of these events was last detected) and the last tariff switch is reported.
        For a change in the connection configuration of the legs - on CPH - the particular point in time when the new connection configuration is established shall be taken as Answer time.

- **partyToCharge:**
  The "partyToCharge" parameter as received in the related ApplyCharging operation or deduced from the default value. This parameter is used by the gsmSCF, to correlate the result to the request.

- **aChChargingAddress:**
  The "aChChargingAddress" parameter as received in the related ApplyCharging operation or deduced from the default value. This parameter is used by the gsmSCF, to correlate the result to the request.
- **legActive**: This parameter indicates whether the leg, the Temporary Connection or the connection to a gsmSRF is still active or has been released.

- **callLegReleasedAtTcpExpiry**: This parameter indicates that the gsmSSF has released the call leg or the Temporary Connection or SRF connection

### 11.3.2 Invoking entity (gsmSSF)

#### 11.3.2.1 Normal procedure

gsmSSF preconditions:

(1) A relationship exists between the gsmSSF and the gsmSCF.

(2) A charging event has been detected that was requested by the gsmSCF via an ApplyCharging operation or a Called Party, Temporary Connection or gsmSRF disconnection event has occurred.

gsmSSF postconditions:

(1) If release of the call has occurred because the allowed call duration has been reached, then:
   - All armed EDPs shall be disarmed;
   - ApplyChargingReport shall be sent to gsmSCF followed by any pending CallInformationReports;
   - The gsmSSF FSM shall transit to the state "Idle".

(2) If release of the call has occurred but not because the allowed call duration has been reached, then:
   - If there are any armed EDPs or pending reports, then the gsmSSF FSM shall remain in the same state, else;
   - The gsmSSF FSM shall transit to the state "Idle".

(3) else:
   - no gsmSSF FSM state transition.

#### 11.3.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services used for reporting operation errors are described in clause 14.

### 11.4 AssistRequestInstructions procedure

#### 11.4.1 General description

This operation may be used by an assist gsmSSF or by a gsmSRF. The operation is sent to the gsmSCF when the assisting gsmSSF or gsmSRF receives an indication from an initiating gsmSSF indicating an assist procedure.

#### 11.4.1.1 Parameters

- **correlationID**: This parameter is used by the gsmSCF to associate the "AssistRequestInstructions" from the assisting gsmSSF or by a gsmSRF with the request from the initiating gsmSSF. The value of the "correlationID" may be extracted from the digits received from the initiating gsmSSF.

- **iPSSPCapabilities**: Indicates which gsmSRF resources are attached, available and supported within:
   - the MSC where the assisting gsmSSF resides; or
- the IP where the gsmSRF resides.

11.4.2 Invoking entity (gsmSSF/gsmSRF)

11.4.2.1 Normal procedure

assisting gsmSSF or gsmSRF preconditions:

(1) An assist indication is detected by the assisting gsmSSF or gsmSRF.

assisting gsmSSF or gsmSRF postconditions:

(1) The assisting gsmSSF FSM is in the state "Waiting_for_Instructions" or the gsmSRF FSM is in the state 'Connected'.

On receipt of an assist indication from the initiating gsmSSF, the assisting gsmSSF or gsmSRF shall ensure that the required resources are available to invoke an "AssistRequestInstructions" operation in the assist gsmSSF or gsmSRF and shall indicate to the initiating gsmSSF that the call is accepted. The "AssistRequestInstructions" operation is invoked by the assist gsmSSF or gsmSRF after the call, which initiated the assist indication, is accepted.

11.4.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.5 CallGap procedure

11.5.1 General description

The gsmSCF uses this operation to request the gsmSSF to reduce the rate at which specific service requests are sent to the gsmSCF. This operation may be sent only within a dialogue that has been opened by the gsmSSF by an InitialDP operation.

11.5.1.1 Parameters

- gapCriteria:
  This parameter identifies the criteria for a call to be subject to call gapping. It is a choice of the following parameters: "basicGapCriteria" or "compoundGapCriteria":

  - basicGapCriteria:
    This parameter consists of the following parameters:

    - calledAddressValue:
      This parameter indicates that call gapping shall be applied when the leading digits of the dialled number of a call attempt match those specified in "calledAddressValue". The called address is the one received from the current call control.

    - gapOnService:
      This parameter indicates that call gapping shall be applied when the Service Key of a Service initiation attempt matches the Service Key specified in "gapOnService".

    - calledAddressAndService:
      This parameter indicates that call gapping shall be applied when the Service Key of a Service initiation attempt matches the Service Key defined in "calledAddressAndService" and the leading digits of the dialled number of a that call attempt match the dialled digits defined in "calledAddressAndService". The called address is the one received from the current call control.

    - callingAddressAndService:
      This parameter indicates that call gapping shall be applied when the Service Key of a Service initiation attempt matches the Service Key defined in "callingAddressAndService" and the leading digits of the calling
party number of that call attempt match the calling party number defined in "callingAddressAndService". In the case of call forwarding the calling address to be gapped shall the redirecting number which is placed in the Initial DP operation.

- `compoundGapCriteria`
  This parameter consists of the following parameters:

  - `basicGapCriteria`
    This parameter is as described above.

  - `scfID`
    This parameter identifies a gsmSCF. The scfID shall convey the necessary gsmSCF address information (e.g. Global Title) in the network to the requesting gsmSSF. Refer to ITU-T Recommendation Q.713 [42] “calling party address” parameter. The network operator shall decide about the actual mapping of this parameter on the used signalling system.
    This parameter indicates the address of the gsmSCF which requests the call gapping.
    If scfID is used in an operation that crosses an inter-network boundary, then its encoding must be understood in both networks and if the length is extended beyond 10 bytes this must be supported by both entities; this requires bilateral agreement on the encoding. If this parameter is not available, then the call gapping is not dedicated to a specific gsmSCF.
    This parameter is restricted to include a fixed GT address string.

    **NOTE:** In the case where the GT addresses more than one SCP (e.g. a mated pair), then if one of these physical SCPs enters an overload conditions and issues a CallGap instruction, then the CallGap is applied to all these SCPs.

  - `gapIndicators`
    This parameter indicates the call gapping characteristics.

  - `duration`
    This parameter specifies the total time interval during which call gapping for the specified gap criteria will be active.
    A duration of 0 indicates that call gapping shall be removed.
    A duration of -2 indicates a network specific duration.
    Other values indicate duration in seconds. A duration of -1 shall not be used.

  - `gapInterval`
    This parameter specifies the minimum time between calls being allowed through.
    An interval of 0 indicates that calls meeting the gap criteria shall not be rejected.
    An interval of -1 indicates that all calls meeting the gap criteria shall be rejected.
    Other values indicate the gap interval in milliseconds.

  - `controlType`
    This parameter indicates the reason for activating call gapping.
    The "controlType" value "sCPOverloaded" indicates that an automatic congestion detection and control mechanism in the SCP has detected a congestion situation.
    The "controlType" value "manuallyInitiated" indicates that the service, the network management centre or service management centre, or both has detected a congestion situation, or any other situation that requires manually initiated controls.

    **NOTE:** The controlType "manuallyInitiated" shall have priority over "sCPOverloaded" call gap. Also non-CAMEL controlled traffic control mechanism may apply to an exchange with the gsmSSF functionality. The non-CAMEL controlled traffic control may also have some influence to the CAMEL call. It is therefore recommended to take measures to co-ordinate several traffic control mechanisms. The non-CAMEL controlled traffic control and co-ordination of several traffic control mechanisms are out of the scope of CAP.
- gapTreatment:
  This parameter indicates how calls that were stopped by the call gapping mechanism shall be treated.

- informationToSend:
  This parameter indicates an announcement or a tone to be sent to the calling party. At the end of information
  sending, the call shall be released.

- inbandInfo:
  This parameter specifies the inband information to be sent.
  - messageID:
    This parameter indicates the message(s) to be sent, it can be one of the following:
    - elementaryMessageID:
      This parameter indicates a single announcement.

  - duration:
    This parameter indicates the maximum time duration in seconds that the message shall be played or
    repeated. A value of "0" indicates endless repetition.

  - tone:
    This parameter specifies a tone to be sent to the end-user.
  - toneID:
    This parameter indicates the tone to be sent.

  - duration:
    This parameter indicates the time duration in seconds of the tone. A value of "0" indicates infinite
duration.

- releaseCause:
  If the call shall be released, then this parameter indicates a specific cause value to be sent in the release
  message. See ETSI EN 300 356-1 [23].

11.5.2 Responding entity (gsmSSF)

11.5.2.1 Normal procedure

gsmSSF preconditions:
  (1) Call gapping for gapCriteria is not active; or
      Call gapping for gapCriteria is active.

  (2) The gsmSSF FSM is in any state except "Idle" and except "Wait_For_Request".

gsmSSF postconditions:
  (1) The gsmSSME FSM is in the state "Active".

  (2) Call gapping for gapCriteria is activated; or
      Call gapping for gapCriteria is renewed; or
      Call gapping for gapCriteria is removed.

  (3) No gsmSSF FSM state transition.

If there is not already an existing gsmSSME FSM for the gap criteria and gsmSCFAddress provided, then a new
gsmSSME FSM shall be created. If no gsmSCFAddress is provided, then this refers in general to the gsmSSME FSM
without a gsmSCFAddress. This gsmSSME FSM enters the state "Active" and initialises call gapping for the specified
CAMEL calls. The parameters "gapIndicators", "controlType", "gapTreatment" and "gsmSCFAddress" for the indicated
gap criteria shall be set as provided by the "CallGap" operation.

In the case that both "manuallyInitiated" and "sCPOverloaded" call gapping are active for the same "gapCriteria", the
manuallyInitiated call gapping shall prevail over the "sCPOverloaded" call gapping. More specifically, the following
rules shall be applied in the gsmSSF to manage the priority of different control Types associated with the same "gapCriteria":

- If a gsmSSME FSM already exists for the "gapCriteria" and the gsmSCFAddress provided, then:
  
  (1) If the (new) "controlType" equals an existing "controlType", then the new parameters (i.e., "gapIndicators" and "gapTreatment") shall overwrite the existing parameters.
  
  (2) If the (new) "controlType" is different from the existing "controlType", then the new parameters (i.e., "controlType", "gapIndicators" and "gapTreatment") shall be appended to the appropriate gsmSSME FSM (in addition to the existing parameters). The gsmSSME FSM remains in the state "Active".

If the gsmSSF meets a TDP, then it shall check if call gapping was initiated for the same gsmSCF as the one currently assigned to this TDP or if call gapping exists with no provided gsmSCFAddress. If neither call gapping was initiated nor exists, then an "InitialDP" operation may be sent.

The gsmSSF shall check if call gapping was initiated either for the "serviceKey" or for the "calledAddressValue" assigned to this TDP. If this is not the case, then an "InitialDP" operation may be sent. If call gapping was initiated for "calledAddressAndService" or "callingAddressAndService" and the "serviceKey" matches, then a check on the "calledAddressValue" and "callingAddressValue" for call gapping shall be performed. Otherwise, an "InitialDP" operation may be sent.

If a call to a controlled number matches one "gapCriteria" only, then the corresponding control is applied. If both "manuallyInitiated" call gapping and "sCPOverload" call gapping controls are active, then only the "manuallyInitiated" call gapping shall be applied.

If a call matches several active "basicGapCriteria", then the treatment as specified in the CallGap associated with the gapCriteria with the highest priority shall be applied, with the priority being from high to low:

1. calledAddressAndService or calledAddressValue;

2. callingAddressAndService;

3. gapOnService.

For example, a call with called number 123456 and ServiceKey = NP matches two CallGaps, one with gapCriteria "CalledAddressValue=123" and another one with gapCriteria "gapOnService=NP". Then the call shall be subject to the control of the service request CallGap with "CalledAddressValue=123".

In the case that multiple call gapping procedures are active with the same gap criteria, the "manuallyInitiated" call gapping shall prevail over the "sCPOverload" call gapping.

If a call to a controlled called number matches calledAddressAndService and calledAddressValue with the same number length, then calledAddressAndService has priority. Furthermore, if both "manuallyInitiated" and "sCPOverload" controlTypes are active for this gapCriteria, then the "manuallyInitiated" control shall be applied.

If call gapping is performed on a call for a particular service and triggering of this service is allowed, then no other gap criteria shall be applied this service instance.

Active GapCriteria with assigned scfID shall have higher priority than the other GapCriteria. In the case that an entry with scfID matching the current call exists, all other criteria without scfID shall not be evaluated.

The matching entries with scfID shall be evaluated in accordance with the priority rules for the basic criteria listed above.

If call gapping shall be applied and there is no gap interval active, then an "InitialDP" operation may be sent including the "cGEncountered" parameter in accordance with the specified controlType. A new gap interval shall be initiated as indicated by "gapInterval".
If a gap interval is active, then no "InitialDP" operation shall be sent and the call shall be treated as defined by Default Call Handling of the valid CSI and "gapTreatment".

If the indicated duration equals "0", then the call gap process shall be stopped.

If call gapping proceeds, then the gsmSSME FSM remains in the state "Active". Otherwise, the gsmSSME FSM transits to the state "idle".

### 11.5.2.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

### 11.6 CallInformationReport procedure

#### 11.6.1 General description

The gsmSSF uses this operation to send specific call information for a single call party to the gsmSCF as requested by the gsmSCF in previous "CallInformationRequest" operation. The report shall be sent at the end of a call party connection which is indicated by one of the events specified below.

#### 11.6.1.1 Parameters

- requestedInformationList:
  The gsmSSF sends the appropriate types and values to the gsmSCF in accordance with the requested information.

- legID:
  This parameter indicates the party in the call for which the information has been collected.

#### 11.6.2 Invoking entity (gsmSSF)

#### 11.6.2.1 Normal procedure

**gsmSSF preconditions:**

1. The indicated or default party is released from the call or call setup towards the indicated or default party is terminated prematurely.
2. Requested call information has been collected.
3. "CallInformationReport" is pending due to a previously received "CallInformationRequest" operation.
4. A control or a monitor relationship exists between the gsmSCF and the gsmSSF.

**gsmSSF postconditions:**

1. If there are no armed EDPs or pending reports, then the gsmSSF FSM shall transit to the state "Idle"; otherwise, the gsmSSF FSM shall remain in the same state.

If the gsmSSF FSM executes a state transition caused by one of the following events:

- release for the indicated or default leg;
- abandon for the indicated or default leg;
- Called party Busy or Not Reachable for the indicated or default leg;
- gsmSSF No_Answer timer expiration for the indicated or default leg;
- route select failure for the indicated or default leg;
- release of call initiated by the gsmSCF (ReleaseCall),
and "CallInformationRequest" is pending for the indicated or default leg, then one "CallInformationReport" operation shall be sent to the gsmSCF, containing all information requested for that leg.

If a "CallInformationReport" has been sent to the gsmSCF, then no "CallInformationReport" is pending on that leg, i.e. if a further "CallInformationReport" on that leg is required, for example in the case of follow-on call, then this has to be explicitly requested by the gsmSCF.

11.6.2.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

11.7 CallInformationRequest procedure

11.7.1 General description

The gsmSCF uses this operation to request the gsmSSF to record specific information about a single call party and report it to the gsmSCF using the "CallInformationReport" operation.

11.7.1.1 Parameters

- **requestedInformationTypeList:**
  This parameter specifies a list of specific items of information which is requested. The list may contain the following parameters:
  - **callAttemptElapsedTime:**
    This parameter indicates the duration between the end of CAP processing of operations initiating call setup ("Connect","Continue" or "ContinueWithArgument") and the received answer indication from the called party. If the callAttemptElapsedTime is requested for the calling party, then a value of "0" shall be reported by the gsmSSF.
    
    In the case of unsuccessful call setup, the network event indicating the unsuccessful call setup stops the measurement of "callAttemptElapsedTime".
  
  - **callStopTime:**
    This parameter indicates the time stamp when the connection is released.
  
  - **callConnectedElapsedTime:**
    This parameter indicates the duration between the received answer indication from the called party and the release of that connection. For the calling party it indicates the duration between the sending of InitialDP and the release of that party.
  
  - **releaseCause:**
    This parameter indicates the release cause for the call.
  
  - **legID:**
    This parameter indicates the party in the call for which the information shall be collected.

11.7.2 Responding entity (gsmSSF)

11.7.2.1 Normal procedure

**gsmSSF preconditions:**

1. A control relationship exists between gsmSSF and gsmSCF.
2. The gsmSSF FSM is in the state "Waiting_for_Instructions".

**gsmSSF postconditions:**

1. Requested call information is retained by the gsmSSF.
2. No gsmSSF FSM state transition.

The gsmSSF allocates a record for the indicated or default party and stores the requested information if already available and prepares the recording of information items, that will become available later like for example "callStopTimeValue".

Call information may be requested for any call party (identified by a legID).

11.7.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.8 Cancel procedure

11.8.1 General description

The gsmSCF uses this operation to request the gsmSRF or gsmSSF to cancel a correlated previous operation.

The Cancel operation may be used for the following purposes:

1. Cancel may be sent to the gsmSRF to cancel the "PlayAnnouncement" or the "PromptAndCollectUserInformation" operation. The cancellation of the operation is indicated via a respective error indication, "Canceled", to the invoking entity of the cancelled "PlayAnnouncement" or "PromptAndCollectUserInformation" operation.

2. Cancel may be sent to the gsmSSF to disarm all armed EDPs and cancel all pending reports. This enables the gsmSSF FSM to transit to the state "Idle". If Cancel is used for this purpose, then the Cancel operation does not specify any specific operation to be cancelled.

11.8.1.1 Parameters

- invokeID:
  This parameter specifies which operation invocation shall be cancelled, i.e. PromptAndCollectUserInformation or PlayAnnouncement.

- callSegmentID:
  This parameter specifies the Call Segment to which the cancellation of the user interaction operation shall apply.

- allRequests:
  This parameter indicates that all armed EDP shall be disarmed and that any pending "ApplyChargingReport" and "CallInformationReport" shall be cancelled.

11.8.2 Responding entity (gsmSRF)

In the case of Cancel(invokeID), the gsmSRF is the responding entity. In this case, the Cancel operation may also contain the callSegmentID parameter.

11.8.2.1 Normal procedure

gsmSRF preconditions:

1. A PlayAnnouncement or PromptAndCollectUserInformation operation has been received and the gsmSRF FSM is in the state "User Interaction".
**11.8.2.2 Error handling**

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

**11.8.3 Responding entity (gsmSSF)**

In the case of Cancel(allRequests), the gsmSSF is the responding entity.

**11.8.3.1 Normal procedure**

**gsmSSF preconditions:**

(1) The gsmSSF FSM is in the state "Waiting_for_Instructions" or in the state "Monitoring".

**gsmSSF postconditions:**

(1) All armed EDPs are disarmed and all pending reports are cancelled.

(2) If the gsmSSF FSM was in the state "Monitoring", then it shall transit to the state "Idle"; or

If the gsmSSF FSM was in the state "Waiting_for_Instructions", then it shall remain in that state.

A subsequent call-processing operation will result in a gsmSSF FSM state transition to the state "Idle". If the call is in the active state, then the gsmSSF shall treat it autonomously as a normal (non-CAMEL) call.

**11.8.3.2 Error handling**

Sending of return error on cancel is not applicable in the cancel "allRequests" case. Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

**11.8A CollectInformation Procedure**

**11.8A.1 General description**

The gsmSCF uses this operation to request the gsmSSF to perform the call processing actions to collect additional digits from the calling party and report it to the gsmSCF. The CollectInformation operation may be used for TO calls in the gsmSSF. The gsmSCF shall arm the Collected_Info DP as EDP-R before sending this operation.

**11.8A.1.1 Parameters**

None

Note: An operation argument is supported for future extensibility.

**11.8A.2 Responding entity (gsmSSF)**

**11.8A.2.1 Normal procedure**

**gsmSSF preconditions:**

(1) A control relationship exists between the gsmSCF and the gsmSSF;

(2) Basic call processing has been suspended at CollectedInfo DP or AnalysedInfo DP;
(3) CollectedInfo DP has been armed as EDP-R;

(4) The gsmSSF FSM is in the state "Waiting_for_Instructions".

gsmSSF postconditions:

(1) The gsmSSF performs the call processing actions to collect additional dialled digits from the calling party;

(2) The gsmSSF FSM transits to the state 'Monitoring';

(3) In the O-BCSM, call processing resumes at PIC Collect_Info or PIC Analyze_Information.

11.8A.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.9 Connect procedure

11.9.1 General description

The gsmSCF uses this operation to request the gsmSSF to perform the call processing actions to route a call to a specific destination.

In general all parameters which are provided in a Connect operation to the gsmSSF shall replace the corresponding signalling parameter in the CCF in O-BCSM, in accordance with ETSI ES 201 296 [21] and shall be used for subsequent call processing. The CCF of the T-BCSM shall send corresponding signalling parameters to new call leg without using them in subsequent call processing. Parameters which are not provided by the Connect operation shall retain their value (if already assigned) in the CCF for subsequent call processing.

11.9.1.1 Parameters

- destinationRoutingAddress:
  This parameter contains the called party numbers towards which the call shall be routed.

- alertingPattern:
  This parameter indicates the type of alerting to be applied. It is defined in 3GPP TS 29.002 [11].

- serviceInteractionIndicatorsTwo:
  This parameter contains indicators to resolve interactions between CAMEL based services and network based services.

- callingPartysCategory:
  This parameter indicates the type of calling party (e.g., operator, pay phone, ordinary subscriber).

- originalCalledPartyID:
  If the call is forwarded by the gsmSCF, then this parameter carries the dialled digits.

- redirectingPartyID:
  This parameter indicates the last directory number the call was redirected from.

- redirectionInformation:
  This parameter contains forwarding related information, such as redirecting counter.

- genericNumbers:
  This parameter allows the gsmSCF to set the Generic Number parameter used in the network. It is used for transfer of Additional Calling Party Number.

- suppressionOfAnnouncement:
  This parameter indicates that announcements and tones which are played in the exchange at non-successful call set-up attempts shall be suppressed.
- oCSIApplicable:
  This parameter indicates to the GMSC/gsmSSF or VMSC/gsmSSF that the Originating CAMEL Subscription Information, if present, shall be applied on the outgoing call leg created with the Connect operation. For the use of this parameter see 3GPP TS 23.078 [7].

- Carrier:
  This parameter indicates carrier information. It consists of the carrier selection field followed by the Carrier ID information to be used by gsmSSF for routeing a call to a carrier.

  It contains the following embedded parameters:

  - carrierSelectionField:
    This parameter indicates how the selected carrier is provided (e.g. pre-subscribed).

  - carrierID:
    This parameter indicates the carrier to use for the call. It contains the digits of the carrier identification code.

- naOliInfo:
  This parameter contains originating line information which identifies the charged party number type to the carrier.

- ChargeNumber:
  This parameter contains the number that identifies the entity to be charged for the call. It identifies the chargeable number for the usage of a carrier (applicable on a call sent into a North American long distance carrier). For a definition of this parameter refer to ANSI T1.113-1995 [92].

- cug-Interlock:
  This parameter uniquely identifies a CUG within a network.

- cug-OutgoingAccess:
  This parameter indicates if the calling user has subscribed to the outgoing access inter-CUG accessibility subscription option.

- bor-InterrogationRequested:
  This parameter indicates that Basic Optimal Routeing is requested for the call.

- legToBeConnected:
  This parameter indicates the leg to be connected.

- suppress-N-CSI:
  This parameter indicates that N-CSI shall be suppressed

11.9.2 Responding entity (gsmSSF)

11.9.2.1 Normal procedure

gsmSSF preconditions:

  (1) A control relationship exists between the gsmSSF and the gsmSCF.

  (2) Basic call processing has been suspended at a DP.

  (3) The gsmSSF FSM is in the state "Waiting_for_Instructions".

gsmSSF postconditions:

  (1) The gsmSSF performs the call processing actions to route the call to the specified destination.

  (2) In the O-BCSM, call processing resumes at PIC Analyze_Information.

On receipt of this operation, the gsmSSF performs the following actions:

- If no EDPs have been armed and neither a CallInformationReport nor an ApplyChargingReport has been requested, then the gsmSSF FSM transits to the state "Idle". Otherwise, the gsmSSF FSM transits to the state "Monitoring".
The gsmSSF shall not perform any implicit arming or disarming of DPs.
Statistic counter(s) are not affected.

11.9.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.10 ConnectToResource procedure

11.10.1 General description

The gsmSCF uses this operation to connect a call segment from the gsmSSF to a specialized resource. After successful connection to the gsmSRF, the interaction with the parties in the call segment can take place. The gsmSSF relays all operations for the gsmSRF and all responses from the gsmSRF.

11.10.1.1 Parameters

- resourceAddress:
  This parameter identifies the physical location of the gsmSRF. It may be one of the following parameters.

- iPRoutingAddress:
  This parameter indicates the routeing address to set up a connection towards the gsmSRF.

- none:
  This parameter indicates that the call segment shall be connected to a predefined gsmSRF.

- serviceInteractionIndicatorsTwo:
  This parameter contains an indicator that is used for the control of the through connection to the Calling Party.

  NOTE The call segment to which the ConnectToResource applies does not have to contain a leg to the calling party.

  The assisting gsmSSF shall always assume that Bothway Throughconnection is required, and hence will ignore this parameter if received.

- callSegmentId:
  This parameter indicates the call segment to which the Connect To Resource procedure applies.

11.10.2 Responding entity (gsmSSF)

11.10.2.1 Normal procedure

gsmSSF preconditions:
(1) A control relationship exists between the gsmSCF and the gsmSSF.
(2) The gsmSSF FSM is in the state "Waiting_for_Instructions".

gsmSSF postconditions:
(1) The call segment is connected to the gsmSRF.
(2) A control relationship between the gsmSCF and the gsmSRF is established.
(3) The gsmSSF FSM transits to the state "Waiting_for_end_of_User_Interaction".

NOTE: The successful connection to the gsmSRF causes a gsmSRF FSM state transition from the state "Idle" to the state "Connected".
11.10.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.11 Continue procedure

11.11.1 General description

The gsmSCF uses this operation to request the gsmSSF to proceed with call processing at the DP at which it previously suspended call processing to await gsmSCF instructions. The gsmSSF continues call processing without substituting new data from the gsmSCF.

11.11.1.1 Parameters

None.

11.11.2 Responding entity (gsmSSF)

11.11.2.1 Normal procedure

gsmSSF preconditions:

(1) A control relationship exists between the gsmSSF and the gsmSCF.

(2) Basic call processing has been suspended at any DP.

(3) The gsmSSF FSM is in the state "Waiting_for_Instructions".

11.11.2.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

11.12 ContinueWithArgument Procedure

11.12.1 General description

The gsmSCF uses this operation to request the gsmSSF to proceed with call processing at the DP at which it previously suspended call processing to await gsmSCF instructions. It is also used to provide additional service related information to a User (Called Party or Calling Party) whilst the call processing proceeds.

In general all parameters which are provided in a ContinueWithArgument operation to the gsmSSF shall replace the corresponding signalling parameter in the CCF, in accordance with ETSI ES 201 296 [21], and shall be used for subsequent call processing. Parameters which are not provided by the ContinueWithArgument operation shall retain their value (if already assigned) in the CCF for subsequent call processing.
11.12.1.1 Parameters

- legOrCallSegment:
  This parameter indicates the leg or Call Segment to which the ContinueWithArgument operation shall apply.

- alertingPattern:
  This parameter indicates the type of alerting to be applied. It is defined in 3GPP TS 29.002 [11].

- serviceInteractionIndicatorsTwo:
  This parameter contains indicators that are used to resolve interactions between CAMEL based services and network based services.

- callingPartysCategory:
  This parameter indicates the type of calling party (e.g., operator, pay phone, ordinary subscriber).

- genericNumbers:
  This parameter allows the gsmSCF to set the Generic Number parameter used in the network. It is used for transfer of Additional Calling Party Number.

- suppressionOfAnnouncement:
  This parameter indicates that announcements and tones which are played in the exchange at non-successful call set-up attempts shall be suppressed.

- carrier:
  This parameter indicates carrier information. It consists of the carrier selection field followed by the Carrier ID information to be used by gsmSSF for routing a call to a carrier.

  It contains the following embedded parameter:

  - carrierSelectionField:
    This parameter indicates how the selected carrier is provided (e.g. pre-subscribed).

  - carrierID:
    This parameter indicates the carrier to use for the call. It contains the digits of the carrier identification code.

- naOliInfo:
  This parameter contains originating line information which identifies the charged party number type to the carrier.

- chargeNumber:
  This parameter contains the number that identifies the entity to be charged for the call. It identifies the chargeable number for the usage of a carrier (applicable on a call sent into a North American long distance carrier). For a definition of this parameter refer to ANSI T1.113-1995 [92].

- cug-Interlock:
  This parameter uniquely identifies a CUG within a network.

- cug-OutgoingAccess:
  This parameter indicates if the calling user has subscribed to the outgoing access inter-CUG accessibility subscription option.

- bor-InterrogationRequested:
  This parameter indicates that Basic Optimal Routeing is requested for the call.

- suppress-O-CSI:
  This parameter indicates that O-CSI shall be suppressed for the forwarding leg or deflecting leg.

- suppress-D-CSI:
  This parameter indicates that D-CSI shall be suppressed for the leg.

- suppress-N-CSI:
  This parameter indicates that N-CSI shall be suppressed for the leg or trunk originated call.

- suppressOutgoingCallBarring:
  This parameter indicates that outgoing call barrings shall be suppressed for the leg.
11.12.2 Responding entity (gsmSSF)

11.12.2.1 Normal procedure

gsmSSF preconditions:

1. A control relationship exists between the gsmSSF and the gsmSCF.
2. Basic call processing has been suspended at a DP.
3. The gsmSSF FSM is in the state "Waiting_for_Instructions".


gsmSSF postconditions:

1. BCSM: If the Call Segment has received all the required resumptions then basic call processing continues with modified information.
2. The gsmSSF FSM remains in the same state unless all resumptions have been received.

   If all resumptions have been received, then:
   - If there are armed EDPs or pending reports and no user interaction is ongoing, then the gsmSSF FSM transits to the state "Monitoring"; or
   - If there are no armed EDPs neither pending reports, then the gsmSSF FSM transits to the state "Idle".

11.12.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.13 DisconnectForwardConnection procedure

11.13.1 General Description

The gsmSCF uses this operation for the following two purposes:

1. To clear a connection to a gsmSRF:

   The operation is used to explicitly disconnect a connection to a resource (gsmSRF) established previously with a "ConnectToResource" or an "EstablishTemporaryConnection" operation. It is used for a forward disconnection from the gsmSSF.
   An alternative solution is the backward disconnect from the gsmSRF, controlled by the "DisconnectFromIPForbidden" parameter in the "PlayAnnouncement" and "PromptAndCollectUserInformation" operations.

2. To clear a connection to an assisting gsmSSF:

   The operation is sent to the non-assisting gsmSSF of a pair of gsmSSFs involved in an assist procedure. It is used to disconnect the temporary connection between the initiating gsmSSF and the assisting gsmSSF and the connection between the assisting gsmSSF and its associated gsmSRF.

The DisconnectForwardConnection operation shall not be used when the CallSegmentID is required.

11.13.1.1 Parameters

None.
11.13.2 Responding entity (gsmSSF)

11.13.2.1 Normal procedure

gsmSSF preconditions:

(1) The basic call processing has been suspended at a DP. The gsmSSF FSM in the initiating gsmSSF is in the state "Waiting_for_end_of_User_Interaction" or in the state "Waiting_for_end_of_Temporary_Connection".

gsmSSF postconditions:

(1) The connection to the gsmSRF or assisting gsmSSF is released.

(2) The gsmSSF FSM is in the state "Waiting_for_Instructions".

The receipt of "DisconnectForwardConnection" results in a disconnection of the assisting gsmSSF or the PE containing the gsmSRF from the call. It does not result in a release of the connection between the gsmSSF and the end-user.

On receipt of this operation, the gsmSSF shall perform the following actions:

- The initiating gsmSSF releases the connection to the assisting gsmSSF or the gsmSRF.
- The gsmSSF FSM transits to the state "Waiting_for_Instructions".

NOTE: The successful disconnection to the gsmSRF causes a gsmSRF FSM state transition to the state "Idle". A current order (e.g. "PlayAnnouncement" or "PromptAndCollectUserInformation") is cancelled and any queued order (e.g. "PlayAnnouncement" or "PromptAndCollectUserInformation") is discarded.

11.13.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.14 DisconnectForwardConnectionWithArgument procedure

11.14.1 General Description

The gsmSCF uses this operation to disconnect a connection to a resource (gsmSRF) established previously with a "ConnectToResource" or an "EstablishTemporaryConnection" operation.

11.14.1.1 Parameters

- callSegmentID:
  This parameter indicates the Call Segment to be disconnected from the resource.

11.14.2 Responding entity (gsmSSF)

11.14.2.1 Normal procedure

gsmSSF preconditions:

(1) The basic call processing has been suspended at a DP. The CS_gsmSSF FSM in the initiating gsmSSF is in the state "Waiting_for_end_of_User_Interaction" or in the state "Waiting_for_end_of_Temporary_Connection".

gsmSSF postconditions:

(1) The connection to the gsmSRF or assisting gsmSSF is released.

(2) The CS_gsmSSF FSM transits to the state "Waiting_for_Instructions".
The receipt of "DisconnectForwardConnectionWithArgument" results in disconnecting the PE containing the gsmSRF from the specified Call Segment. It does not result in a release of the connection between the gsmSSF and the end-user.

On receipt of this operation, the gsmSSF shall perform the following actions:

- The gsmSSF releases the connection to the assisting gsmSSF or the gsmSRF.
- The gsmSSF FSM transits to the state "Waiting_for_Instructions".

NOTE: The successful disconnection from the gsmSRF causes the gsmSRF to transit to the state "Idle". A current order (e.g. "PlayAnnouncement" or "PromptAndCollectUserInformation") is cancelled and any queued order (e.g. "PlayAnnouncement" or "PromptAndCollectUserInformation") is discarded.

11.14.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.15 DisconnectLeg procedure

11.15.1 General Description

The gsmSCF uses this operation to request the gsmSSF to release a specific leg associated with the call. Any other leg(s) not specified in the Disconnect Leg operation are retained.

11.15.1.1 Parameters

- legToBeReleased:
  This parameter indicates the call leg to be released.

- releaseCause:
  This parameter may be used by the MSC for generating specific tones to the party to be released or to fill in the "cause" parameter in the release message.

11.15.2 Responding entity (gsmSSF)

11.15.2.1 Normal procedure

gsmSSF preconditions:

1) A control relationship exists between the gsmSCF and the gsmSSF;
2) User interaction is not in progress in the Call Segment containing the leg to be disconnected.

gsmSSF postconditions:

1) The gsmSSF performs the call processing actions to release the indicated party.
2) Any armed EDPs on that leg shall be disarmed; any pending reports for that leg shall be sent to the gsmSCF.
3) If the released leg was the last leg within the Call Segment, then the CS_gsmSSF FSM for that Call Segment returns to the state "Idle".
4) If the leg was the last leg within the call, then the CSA_gsmSSF FSM returns to the state "Idle".
5) If the CS_gsmSSF FSM for the Call Segment concerned has not returned to the state "Idle", then it transits to the state "Waiting_for_Instructions". The remaining BCSM instances within the Call Segment shall transit to the O_Mid_Call DP or to the T_Mid_Call DP, unless already suspended at a DP. The Mid_Call EDP shall not be reported for this case.
6) A Return Result shall be sent to the gsmSCF immediately after successful execution of this operation.
11.15.2.2 Error handling

Generic error handling for the operation related errors is describer in clause 10, and the TC services which are used for reporting operation errors are described in clause 14.

11.16 EntityReleased procedure

11.16.1 General Description

The CSA uses this operation to inform the gsmSCF about the release of a logical entity (Call Segment or BCSM) caused by exception or errors. The CSA shall use this operation if this information can not be conveyed in a TC_ABORT or TC_END TC message because the TC dialogue has to be maintained for other logical entities (Call Segment or BCSM) in this CSA which are not affected by this error or exception. The CSA shall not use this operation if the last Call Segment in the CSA was released.

11.16.1.1 Parameters

This operation consists of a choice of the following parameters:

- CSFailure:
  Indicates that a Call Segment was released. It contains of the following parameters:
  - callSegmentID:
    This parameter identifies the released Call Segment.
  - cause:
    This parameter indicates the cause for releasing this Call Segment. The cause may be used by the gsmSCF to decide the further handling of the call.

- BCSMFailure:
  This parameter indicates that a leg was released. It consists of the following parameters:
  - legID:
    This parameter identifies the released leg.
  - cause:
    This parameter indicates the cause for releasing this BCSM. The cause may be used by the gsmSCF to decide the further handling of the call.

11.16.2 Invoking entity (gsmSSF)

11.16.2.1 Normal procedure

CSA_gsmSSF preconditions:

(1) Any CSA_gsmSSF FSM state except "Idle".

CSA_gsmSSF postconditions:

- gsmSSF postconditions:

  (1) If the released entity was a BCSM (leg), then only the appropriate resources are released. If the released entity was a Call Segment, then the related CS_gsmSSF FSM returns to the state "Idle".

11.16.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10, and the TC services which are used for reporting operation errors are described in clause 14.
11.17 EstablishTemporaryConnection procedure

11.17.1 General Description

The gsmSCF uses this operation to create a connection between an initiating gsmSSF and an assisting gsmSSF as part of a service assist procedure. It can also be used to create a connection between a gsmSSF and a gsmSRF, for the case where the gsmSRF exists in a separately addressable PE.

The assistingSSPIPRoutingAddress shall contain routeing digits, a correlationID and a scfID when a temporary connection shall be established between PLMNs and no bilateral agreement exists between the involved network operators to transfer correlationID and SCFid as separate parameters.

11.17.1.1 Parameters

- assistingSSPIPRoutingAddress:
  This parameter indicates the destination address of the gsmSRF for assist procedure. The "assistingSSPIPRoutingAddress" may contain embedded within it, a "correlationID" and "scfID", but only if "correlationID" and "scfID" are not specified separately.

- correlationID:
  This parameter is used by the gsmSCF to associate the "AssistRequestInstructions" from the assisting gsmSSF (or the gsmSRF) with the Request from the initiating gsmSSF. The "correlationID" shall be used only if the correlation id is not embedded in the "assistingSSPIPRoutingAddress". The network operator has to decide about the actual mapping of this parameter on the used signalling system.

- scfID:
  This parameter contains the gsmSCF identifier and enables the assisting gsmSSF to identify which gsmSCF the AssistRequestInstructions shall be sent to.
  The "scfID" shall be used only if the gsmSCF id is not embedded in the "assistingSSPIPRoutingAddress". The network operator has to decide about the actual mapping of this parameter on the used signalling system.
  When ScfID is used in an operation which crosses an internetwork boundary, its encoding must be understood in both networks and if the length is extended beyond 10 bytes this must be supported by both entities; this requires bilateral agreement on the encoding.

- serviceInteractionIndicatorsTwo:
  This parameter contains an indicator that is used for the control of the through connection to the Calling Party.

- Carrier:
  This parameter contains carrier information. It consists of the carrier selection field followed by the Carrier ID information to be used by gsmSSF for routeing a call to a carrier.
  It contains the following embedded parameter:

  - carrierSelectionField:
    This parameter indicates how the selected carrier is provided (e.g. pre-subscribed).

  - carrierID:
    This parameter indicates the carrier to use for the call. It contains the digits of the carrier identification code.

- naOliInfo:
  This parameter contains originating line information which identifies the charged party number type to the carrier.

- chargeNumber:
  This parameter contains the number that identifies the entity to be charged for the call. It identifies the chargeable number for the usage of a carrier (applicable on a call sent into a North American long distance carrier). For a definition of this parameter refer to ANSI T1.113-1995 [92].

- callSegmentID:
  This parameter indicates the Call Segment to which the temporary connection shall be established.

- originalCalledPartyID:
  This parameter identifies the original called party.
- callingPartyNumber:
  This parameter identifies the calling party.

11.17.2 Responding entity (gsmSSF)

11.17.2.1 Normal procedure

gsmSSF preconditions:

(1) The gsmSSF FSM is in the state "Waiting_for_Instructions".

(2) The gsmSSF is not an assisting gsmSSF.

gsmSSF postconditions:

(1) The gsmSSF performs the call processing actions to route the call to the assisting gsmSSF or gsmSRF in accordance with the "assistingSSIPRoutingAddress" requested by the gsmSCF.

(2) The gsmSSF FSM transits to the state "Waiting_for_end_of_Temporary_Connection".

On receipt of this operation, the gsmSSF shall perform the following actions:

- Route the call to assisting gsmSSF or gsmSRF using "assistingSSIPRoutingAddress";

11.17.2.2 Error handling

Until the connection setup has been accepted (refer to ITU-T Recommendation Q.71 [41]) by the assisting gsmSSF or the gsmSRF, all received failure indications from the network on the ETC establishment shall be reported to the gsmSCF as EstablishTemporaryConnection error ETCFailed (e.g., busy, congestion).

**NOTE** The operation timer for EstablishTemporaryConnection shall be longer than the maximum allowed time for the signalling procedures to accept the connection.

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.18 EventReportBCSM procedure

11.18.1 General description

The gsmSSF uses this operation to notify the gsmSCF of a call related event previously requested by the gsmSCF in a "RequestReportBCSMEvent" operation.

11.18.1.1 Parameters

- eventTypeBCSM:
  This parameter specifies the type of event that is reported.

- eventSpecificInformationBCSM:
  This parameter indicates the call related information specific to the event.

  For Collected_Info it shall contain the CalledPartyNumber parameter.

  For Route_Select_Failure it shall contain the "FailureCause", if available.

  For O_Busy it shall contain the "BusyCause", if available.

  - If the busy event is triggered by an ISUP release message, then the BusyCause is a copy of the ISUP release cause, for example: Subscriber absent, 20 or User busy, 17.

  - If the busy event is triggered by a MAP error, for example: Absent subscriber, received from the HLR, then the MAP cause is mapped to the corresponding ISUP release cause.
NOTE 1: If no BusyCause is received, then the gsmSCF shall assume busy.

For T.Busy it may contain the following parameters, if available.

- CallForwarded:
  This parameter indicates that the busy event is triggered by call forwarding at the GMSC or VMSC.

- ForwardingDestinationNumber:
  This parameter indicates the forwarding destination.

- RouteNotPermitted:
  This parameter indicates that the busy event is triggered because call forwarding was not invoked in this GMSC due to the rules of Basic Optimal Routeing.

- BusyCause:
  - If the busy event is triggered by an ISUP release message, then the BusyCause is a copy of the ISUP release cause, for example: Subscriber absent, 20 or User busy, 17.
  - If the busy event is triggered by a MAP error, for example: Absent subscriber, received from the HLR, then the MAP cause is mapped to the corresponding ISUP release cause.
  - If the busy event is triggered by call forwarding or call deflection invocation in the GMSC or VMSC, then the BusyCause will refer to the release cause in accordance with the mapping table in 3GPP TS 23.078 [7].
  - If the busy event is triggered by call forwarding at the GMSC, then the BusyCause reflects the forwarding reason (Subscriber Absent, 20 or User busy, 17). The eventSpecificInformationBCSM shall in that case also contain the CallForwarded indication.

NOTE 2: If no BusyCause is received, then the gsmSCF shall assume busy.

For O.No.Answer it shall be empty.

For T.No.Answer it may contain the CallForwarded indication and the ForwardingDestinationNumber.

- If the No.Answer event is triggered by an ISUP release message or expiry of the CAMEL timer TNRy, then the eventSpecificInformationBCSM shall be empty.

- If the No.Answer event is triggered by call forwarding at the GMSC or VMSC, then the eventSpecificInformationBCSM shall contain the CallForwarded indication and the ForwardingDestinationNumber.

For O.Answer or T.Answer it shall contain the following information, if available:

- The destination address for the call;
- The OR indicator, in the case that the call was subject to Basic Optimal Routeing, as specified in 3GPP TS 23.079 [8];
- The forwarding indicator, in the case that the Call Forwarding Supplementary Service was invoked;
- The charge indicator;
- The Extended Basic Service Code, for SCUDIF calls (see 3GPP TS 23.172 [16]);
- The Extended Basic Service Code 2, for SCUDIF calls (see 3GPP TS 23.172 [16]).

For O.Mid.Call and T.Mid.Call it shall contain the detected digit string, in accordance with the criterion defined in the RequestReportBCSMEvent operation.

For Call_Accepted, O.Term.Seized, O.Change_Of_Position and T.Change_Of_Position it shall contain the following information:

- locationInformation:
  This parameter indicates the location of the MS.
For O_Disconnect and T_Disconnect it shall contain the "releaseCause", if available.

For O_Abandon" it may contain the following parameter, if available.

-  routeNotPermitted:
   This parameter indicates that the O-Abandon event is triggered because call set up shall not be invoked in
   this MSC due to the rules of Basic Optimal Routeing.

For O_Service_Change or T_Service_Change it may contain the following information:

-  The Extended Basic Service Code, for SCUDIF calls (see 3GPP TS 23.172\[16\]);
-  The initiator of the Service Change;
-  The nature of Service Change.

-  legID:
   This parameter indicates the party in the call for which the event is reported. The gsmSSF shall use the option
   "receivingSideID" only.

-  receivingSideID:
   If not included, then the default values for LegID are assumed according to the tables 11-1 and 11-2.

The "legID" parameter shall always be included for the events O_Disconnect and T_Disconnect.

-  miscCallInfo:
   This parameter indicates Detection Point (DP) related information.

-  messageType:
   This parameter indicates whether the message is a request, i.e. resulting from a "RequestReportBCSMEvent"
   with monitorMode = interrupted, or a notification, i.e. resulting from a "RequestReportBCSMEvent" with
   "monitorMode" = "notifyAndContinue".

### 11.18.2 Invoking entity (gsmSSF)

#### 11.18.2.1 Normal procedure

**gsmSSF preconditions:**

1. A control relationship or a monitoring relationship exists between the gsmSSF and the gsmSCF.
2. For the O_Abandon DP and T_Abandon DP, the gsmSSF FSM is in any state, except "Idle". For other DPs, refer
   to 3GPP TS 23.078\[7\].
3. The BCSM proceeds to an EDP that is armed.

**gsmSSF postconditions:**

1. If the message type was notification and there are still armed EDPs or pending reports, then the gsmSSF FSM
   stays in the state "Monitoring".
2. If the message type was notification and there are neither any armed EDPs nor pending reports, then the gsmSSF
   FSM transits to the state "Idle".
3. If the message type was request, then the gsmSSF FSM transits to the state "Waiting_for_Instructions". Call
   processing is interrupted.

#### 11.18.2.2 Error handling

If the message type is "request" and the Tssf timer expires, then the gsmSSF shall abort the TC dialogue and shall
instruct the MSC to treat the call in accordance with the Default Call Handling, valid for this CAMEL dialogue.

Operation related error handling is not applicable, due to class 4 operation.
11.19 FurnishChargingInformation procedure

11.19.1 General description

The gsmSCF uses this operation to send charging related information to a logical call record. This logical call record is CAMEL specific. The first FurnishChargingInformation operation of a call leg leads to the generation of a logical call record. The handling of subsequent FurnishChargingInformation operations for a call leg depends on the presence and value of the append free format data parameter in the FurnishChargingInformation operation. For details see 3GPP TS 23.078 [7].

If a FurnishChargingInformation operation is received for the called party when the gsmSSF FSM is in the state "Monitoring", or is suspended in one of the following DPs, then the charging information shall be included in the logical call record for the leg that has been or is to be established:

- Collected_Info;
- Analysed_Information;
- O_Answer;
- Terminating_Attempt_Authorised; or
- T_Answer.

If a FurnishChargingInformation operation is received for the called party when the gsmSSF is suspended in any other DP, then the charging information shall be included in the logical call record created for the last failed or disconnected called party.

11.19.1.1 Parameters

- fCIBillingChargingCharacteristics:
  This parameter contains the following parameters;
  - fCIBCCCAMELsequence1:
    This parameter contains the following parameters;
    - freeFormatData:
      This parameter contains free-format billing and/or charging characteristics;
    - partyToCharge:
      This parameter indicates the party to bill and/or charge;
    - appendFreeFormatData:
      This parameter indicates whether previous FurnishChargingInformation free format data is appended or overwritten. Refer to 3GPP TS 23.078 [7] for details on the usage of this parameter.

11.19.2 Responding entity (gsmSSF)

11.19.2.1 Normal procedure

gsmSSF preconditions:

(1) The gsmSSF FSM is in the state
    "Waiting_for_Instructions"; or
    "Waiting_for_end_of_User_Interaction"; or
    "Waiting_for_end_of_Temporary_Connection"; or
    "Monitoring".

gsmSSF postconditions:

(1) No gsmSSF FSM state transition.
On receipt of this operation the gsmSSF performs actions to create the Logical call record if necessary, and writes the free-format information carried in the operation into the Logical call record. A FurnishChargingInformation operation will create a Logical Call Data Record (CDR) if such a record does not already exist for the indicated leg. Refer to sect. 11.26.1 for the handling in the case of successive FurnishChargingInformation operations for a call leg.

The Logical CDRs will be associated for a given call into one or more physical CDRs, as specified in 3GPP TS 32.250 [13].

A logical call record is output to a physical CDR when a disconnection event is propagated to the call leg associated with it, or when a Connect operation to create a connection to a Follow-on Called Party is received. Successive FurnishChargingInformation operations indicating the calling leg (leg1) may overwrite data from previously received FurnishChargingInformation operation(s) indicating that leg during the entire call or call attempt. Successive FurnishChargingInformation operations indicating a called leg (leg2 or higher) may overwrite any previously received data from FurnishChargingInformation operation(s) indicating that called leg until the called leg representing that particular called party number is released from the call. When a new called party is created as a result of a follow-on call, and a FurnishChargingInformation operation indicating the called leg is received, then a new Logical call record shall be created for that call leg, for that portion of the call. From then on, any subsequent FurnishChargingInformation operations for that called party may overwrite the data from any previous FurnishChargingInformation operation(s) for the called leg presenting that particular called party number. Logical call records that have been output already are not affected.

No Logical call record is output at the end of a user interaction.

11.19.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.20 InitialDP procedure

11.20.1 General description

The gsmSSF uses this operation after detection of a TDP-R in the BCSM, to request the gsmSCF for instructions to complete the call.

11.20.1.1 Parameters

- serviceKey:
  This parameter indicates to the gsmSCF the requested IN service. It is used to address the required application/SLP within the gsmSCF; this parameter is not for SCP addressing.

- calledPartyNumber:
  This parameter contains the number used to identify the called party in the forward direction, i.e. see ETSI EN 300 356-1 [23]. This parameter shall be sent only in the Mobile Terminating, Mobile Forwarding, mobile originating on unsuccessful TDP and trunk originating cases. For the trunk originating case the end of pulsing signal (ST) is included in the calledPartyNumber address signals if it has been received or the MSC has determined that the called number information is complete.

- callingPartyNumber:
  This parameter carries the calling party number to identify the calling party or the origin of the call. See ETSI EN 300 356-1 [23] Calling Party Number signalling information.

- callingPartyCategory:
  Indicates the type of calling party (e.g. operator, pay phone, ordinary subscriber). See ETSI EN 300 356-1 [23] Calling Party Category signalling information.
- **locationNumber:**
  This parameter is used to convey the geographical area address for mobility services, see ITU-T Recommendation Q.762 [44]. It is used when "callingPartyNumber" does not contain any information about the geographical location of the calling party (e.g., origin dependent routeing when the calling party is a mobile subscriber).

- **originalCalledPartyID:**
  If the call has met call forwarding on the route to the gsmSSF, then this parameter carries the dialled digits. Refer to EN 300 356-1 [23] Original Called Number signalling information.

- **highLayerCompatibility:**
  This parameter indicates the type of the high layer compatibility, which will be used to determine the ISDN - teleservice of a connected ISDN terminal. The highlayerCompatibility can also be transported by ISUP (e.g. within the ATP (see ITU-T Recommendation Q.763 [45]) parameter).

- **additionalCallingPartyNumber:**
  The calling party number provided by the access signalling system of the calling user, e.g. provided by a PBX.

- **bearerCapability:**
  This parameter indicates the type of the bearer capability connection or the transmission medium requirements to the user. It is a network option to select which of the two parameters to be used:
  
  - **bearerCap:**
    This parameter contains the value of the ISUP User Service Information parameter.
    
    The parameter "bearerCapability" shall be included in the "InitialDP" operation only in the case the ISUP User Service Information parameter is available at the gsmSSF.
    
    If User Service Information and User Service Information Prime are available at the gsmSSF, then the "bearerCap" shall contain the value of the User Service Information Prime parameter.

- **eventTypeBCSM:**
  This parameter indicates the armed BCSM DP event, resulting in the "InitialDP" operation.

- **redirectingPartyID:**
  This parameter indicates the last directory number the call was redirected from.

- **redirectionInformation:**
  This parameter contains forwarding related information, such as redirecting counter. See ITU-T Recommendation Q.763 [45] Redirection Information signalling information.

- **iPSSPCapabilities:**
  This parameter indicates which gsmSRF resources supported within the VMSC or GMSC the gsmSSF resides in are attached and available.

- **serviceInteractionIndicatorsTwo:**
  This parameter contains indicators that are used to resolve interactions between CAMEL based services and network based services.

- **iMSI:**
  This parameter contains the IMSI of the mobile subscriber for which the service is invoked.

- **subscriberState:**
  This parameter indicates the state of the mobile subscriber for which the service is invoked. The possible states are "busy", "idle" and "not reachable".

- **locationInformation:**
  This parameter indicates the location of the MS and the age of the information defining the location.

- **ext-BasicServiceCode:**
  This parameter indicates the Basic Service Code.

- **callReferenceNumber:**
  This parameter contains the call reference number assigned to the call by the CCF.
- mscAddress:
  This parameter contains the mscId assigned to the MSC.

- gmscAddress:
  This parameter contains the gmscId assigned to the GMSC.

- calledPartyBCDNumber:
  This parameter contains the number used to identify the called party in the forward direction. It may also include service selection information, including * and # characters.

- time&Timezone:
  This parameter contains the time that the gsmSSF was triggered, and the time zone that the invoking gsmSSF resides in.

- callForwardingSS-Pending:
  This parameter indicates that a forwarded-to-number was received and that the call will be forwarded due to the Call Forwarding supplementary service in the GMSC or in the VMSC, unless otherwise instructed by the gsmSCF.

- carrier:
  This parameter contains carrier information. It consists of the carrier selection field followed by the Carrier ID information associated with the calling subscriber of a mobile originating call or trunk originating call, the called subscriber of a mobile terminating call or the forwarding subscriber of a mobile forwarded call.

  It contains the following embedded parameter:

  - carrierSelectionField:
    This parameter indicates how the selected carrier is provided (e.g. pre-subscribed).

  - carrierID:
    This parameter indicates the carrier to use for the call. It contains the digits of the carrier identification code.

- cug-Index:
  This parameter is used to select a CUG for an outgoing call at the user, or to indicate an incoming CUG call to the user.

- cug-Interlock:
  This parameter uniquely identifies a CUG within a network.

- cug-OutgoingAccess:
  This parameter indicates if the calling user has subscribed to the outgoing access inter-CUG accessibility subscription option.

- cGEncountered:
  This parameter indicates the type of call gapping the related call has been subjected to, if any.

- cause:
  This parameter indicates the release cause which triggered the event:

  For Route_Select_Failure" it shall contain the "FailureCause", if available.

  For T_Busy it may contain the following parameters, if available.

  - If the busy event is triggered by an ISUP release message, then the BusyCause shall a copy of the ISUP release cause, for example: Subscriber absent, 20 or User busy, 17.

  - If the busy event is triggered by a MAP error, for example: Absent subscriber, received from the HLR, then the MAP cause is mapped to the corresponding ISUP release cause.

  - If the busy event is triggered by call forwarding invocation in the GMSC or VMSC, then the BusyCause shall refer to the type of the call forwarding service in accordance with the mapping table in 3GPP TS 23.078 [7].

- forwardingDestinationNumber:
  This parameter contains the forwarding destination.

- ms-Classmark2:
  This parameter contains the MS Classmark 2 of the mobile subscriber for which the service is invoked.
- iMEI:
  This parameter contains the IMEI (with software version) of the mobile subscriber for which the service is invoked.
- supportedCAMELPhases:
  This parameter indicates the CAMEL Phases supported in the GMSC or VMSC which sends this operation.
- offeredCAMEL4Functionalities:
  This parameter contains the offered CAMEL phase 4 functionalities.
- bearerCapability2:
  This parameter indicates the type of the bearer capability connection or the transmission medium requirements to
  the user.
- ext-BasicServiceCode2:
  This parameter indicates the Basic Service Code2.
- highLayerCompatibility2:
  This parameter indicates the high layer compatibility2 for a SCUDIF call.
- lowLayerCompatibility:
  This parameter indicates the low layer compatibility.
- lowLayerCompatibility2:
  This parameter indicates the low layer compatibility2 for a SCUDIF call.
- enhancedDialledServicesAllowed:
  This parameter indicates that the gsmSCF may use the Enhanced Dialed Services (EDS) for this call.
- UU-Data:
  This parameter contains user-to-user signalling service related information.
- collectInformationAllowed:
  This parameter indicates that the gsmSCF may use Collect Information for this call.
- releaseCallArgExtensionAllowed:
  This parameter indicates that the gsmSCF may use Extensions in Release Call operation for this call.

11.20.2 Invoking entity (gsmSSF)

11.20.2.1 Normal procedure

gsmSSF preconditions:

(1) An event fulfilling the criteria for the DP being executed has been detected.

(2) Call gapping and SS7 overload are not in effect for the call.

gsmSSF postconditions:

(1) If the DP was armed as a TDP-R and trigger conditions, if present, are fulfilled, then a control relationship
    between the gsmSCF and the gsmSSF is established. The gsmSSF FSM transits to the state
    "Waiting_for_Instructions".

The address of the gsmSCF shall be fetched from the valid CSI. The gsmSSF shall provide all available parameters to
the gsmSCF.

If no triggering takes place, because trigger conditions were not fulfilled, then the gsmSSF shall proceed with call
handling without CAMEL Service.

The gsmSSF application timer Tssf is loaded and started when the gsmSSF sends "InitialDP" for requesting instructions
from the gsmSCF. It is used to prevent excessive call suspension time.
11.20.2.2 Error handling

If the gsmSCF is not accessible, then the call proceeds in accordance with the Default Call Handling parameter in the CSI.

When Tssf expires, then the gsmSSF shall abort the interaction with the gsmSCF by means of an abort to TC and shall call continue the call in accordance with the Default Call Handling parameter in the valid CSI.

If the calling party abandons after the sending of "InitialDP" and before the TC dialogue is established, then the gsmSSF shall abort the interaction with the gsmSCF by means of an abort to TC.

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.21 InitiateCallAttempt procedure

11.21.1 General Description

The gsmSCF uses this operation to request the gsmSSF to create a new call leg to one call party using the address information provided by the gsmSCF (e.g. wake-up call). InitiateCallAttempt can also be used to create an additional call party in a new Call Segment within an existing Call Segment Association. In both use cases the gsmSCF shall subsequently arm O_Answer as an EDP-R and the call failure events (Route_Select_Failure, O_Busy and O_No_Answer) as EDP-Rs and/or EDP-Ns, in order to enable the gsmSCF to treat this call appropriately when any of these events is encountered.

11.21.1.1 Parameters

11.21.1.1.1 Argument Parameters

- destinationRouteingAddress:
  This parameter contains the called party number towards which the call shall be routed.

- callingPartyNumber:
  This parameter identifies which number shall be regarded as the calling party for the created call.

- legToBeCreated:
  This parameter indicates the LegID to be assigned to the newly created party.

- newCallSegment:
  This parameter indicates the Call Segment ID to be assigned to the newly created Call Segment.

- callReferenceNumber:
  This parameter contains the call reference number assigned to the call by the gsmSCF.

- gsmSCFAddress:
  This parameter indicates the address of the gsmSCF initiating the operation.

- suppress-T-CSI:
  This parameter indicates that the T-CSI for the served subscriber shall be suppressed for this call leg.

11.21.1.1.2 Result Parameters

- supportedCamelPhases:
  This parameter indicates the CAMEL Phases supported in the gsmSSF which receives this operation.

- offeredCamel4Functionalities:
  This parameter contains the offered CAMEL phase 4 functionalities.

- releaseCallArgExtensionAllowed:
  This parameter indicates that the gsmSCF may use Extensions in Release Call operation for this call.
11.21.2 Responding entity (gsmSSF)

11.21.2.1 Normal procedure

   gsmSSF preconditions:
   None.

   gsmSSF postconditions:
   1) A new O-BCSM has been created; call processing is suspended.
   2) A Return Result is sent to the gsmSCF.
   3) The CS_gsmSSF FSM transits from the state "Idle" to the state "Waiting_for_Instructions".
      All subsequent operations are treated in accordance with their normal procedures.

11.21.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10, and the TC services which are used for reporting operation errors are described in clause 14.

11.22 MoveLeg procedure

11.22.1 General Description

The gsmSCF uses this operation to request the gsmSSF to move the leg from its current Call Segment to CSID1.

11.22.1.1 Parameters

- legIDToMove:
  This parameter indicates the leg that shall be moved.

11.22.2 Responding entity (gsmSSF)

11.22.2.1 Normal procedure

   gsmSSF preconditions:
   1) A control relationship exists between the gsmSCF and the gsmSSF.
   2) The source BCSM is in the alerting phase or in the active phase.
   3) The target Call Segment fulfills the following preconditions:
      - At least one leg in the target Call Segment has reached the active phase, or
      - The original BCSM in the target Call Segment is at Terminating_Amount_Authorised, Analysed_Information
        (for EDS only) or Collected_Info detection point, and the outgoing leg of that BCSM has been disconnected by
        the gsmSCF, or
      - The call was created by the gsmSCF.
   4) The CS_gsmSSF FSM for each Call Segment involved is in the state "Waiting_for_Instructions" or in the state
      "Monitoring".
   5) User Interaction is not in progress in either Call Segment.

   gsmSSF postconditions:
1) The gsmSSF performs the appropriate call processing actions.

2) The CS_gsmSSF FSM for CSID1 transits to the state "Waiting_for_Instructions". The BCSM instances within CSID1 transist to the O_Mid_Call DP or to the T_Mid_Call DP, if not already suspended. The Mid_Call EDP shall not be reported for this case.

3) The CS_gsmSSF process for the source Call Segment is terminated.

4) A Return Result is sent to the gsmSCF immediately after successful execution of this operation.

5) A Pending ApplyChargingReport for the source call segment shall be sent to the gsmSCF.

11.22.2 Error handling

Generic error handling for the operation related errors is described in clause 10, and the TC services which are used for reporting operation errors are described in clause 14.

11.23 PlayAnnouncement procedure

11.23.1 General description

The gsmSCF uses this operation for inband interaction with a CS user.

11.23.1.1 Parameters

- informationToSend:
  This parameter indicates an announcement a tone to be sent to the end-user by the gsmSRF.

- inbandInfo:
  This parameter specifies the inband information to be sent.

- messageID:
  This parameter indicates the message(s) to be sent; this may be one of the following:

  - elementaryMessageID:
    This parameter indicates a single announcement.

  - text:
    This parameter indicates a text to be sent. The text shall be transformed to inband information (speech) by the gsmSRF. This parameter consists of two parameters; messageContent and attributes. The attributes of the text parameter may consist of items such as language.

  - elementaryMessageIDs:
    This parameter specifies a sequence of announcements.

  - variableMessage:
    This parameter specifies an announcement with one or more variable parts.

  - numberOfRepetitions:
    This parameter indicates the maximum number of times the message shall be sent to the end-user.

  - duration:
    This parameter indicates the maximum time duration in seconds that the message shall be played or repeated. A value of "0" indicates endless repetition.

  - interval:
    This parameter indicates the time interval in seconds between successive messages, i.e. the time between the end of the announcement and the start of the repetition of this announcement. This parameter may be used only when "numberOfRepetitions" is > 1.

- tone:
  This parameter specifies a tone to be sent to the end-user.
- **toneID:**
  This parameter indicates the tone to be sent.

- **duration:**
  This parameter indicates the time duration in seconds of the tone to be sent. A value of "0" indicates infinite duration.

- **disconnectFromIPForbidden:**
  This parameter indicates whether the gsmSRF may initiate a disconnection from the gsmSSF after the interaction has been completed.
  
  If this parameter is TRUE, then the gsmSRF shall not initiate a disconnection. If this parameter is FALSE, then the gsmSRF may initiate a disconnection.

- **requestAnnouncementCompleteNotification:**
  This parameter indicates whether or not a "SpecializedResourceReport" shall be sent to the gsmSCF when all information has been sent.

- **requestAnnouncementStartedNotification:**
  This parameter indicates whether or not a "SpecializedResourceReport" shall be sent to the gsmSCF when the first announcement or tone has started.

- **callSegmentID:**
  This parameter indicates the Call Segment to which the user interaction shall apply.

### 11.23.2 Responding entity (gsmSRF)

#### 11.23.2.1 Normal procedure

**gsmSRF preconditions:**

1. The SRSM-FSM is in the state "Connected"; if the gsmSRF received previously an operation from the gsmSCF, then the SRSM-FSM is in the state "User Interaction".

2. When the first announcement or tone has started and "RequestAnnouncementStartedNotification" is TRUE, then the SRSM shall send a "SpecializedResourceReport" operation, containing the "FirstAnnouncementStarted" parameter, to the gsmSCF.

**gsmSRF postconditions:**

1. The gsmSRF sends the information to the user as indicated by "informationToSend".

2. The SRSM-FSM transits to the state "User Interaction", or remains in the same state.

3. If all information has been sent and "RequestAnnouncementCompleteNotification" is TRUE, then the SRSM shall send a "SpecializedResourceReport" operation, containing the "AllAnnouncementsComplete" parameter, to the gsmSCF.

4. If all information has been sent and "disconnectFromIPForbidden" is FALSE, then the SRSM disconnects the gsmSRF from the user.

The announcement sent to the end-user is ended in the following conditions:

- if neither "duration" nor "numberOfRepetitions" is specified, then the network specific announcement ending conditions shall apply; or

- if "numberOfRepetitions" is specified, when all repetitions have been sent; or

- if duration is specified, when the duration has expired. The announcement is repeated until this condition is met; or

- if "duration" and "numberOfRepetitions" is specified, when one of both conditions is satisfied (whichever comes first).
11.23.2.2 Error handling

If a Cancel operation is received before or during the processing of the operation, then that operation shall be cancelled immediately and the error "Canceled" shall be reported to the gsmSCF.

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.24 PlayTone procedure

11.24.1 General description

The gsmSCF uses this operation to instruct the gsmSSF to play tones to a leg or a Call Segment using the MSC’s tone generator.

If a Call Segment is indicated, then the tones shall be played to all active legs in that Call Segment. If a leg is indicated, then the tones shall be played to that leg only.

11.24.1.1 Parameters

- legOrCallSegment:
  This parameter indicates the leg or Call Segment to which the PlayTone operation shall apply.

- bursts:
  This parameter indicates the variable sequence of tones to be played and consists of the following parameters:
  - numberOfBursts:
    This parameter indicates the number of bursts that form the burstlist.
  - burstInterval:
    This parameter indicates the time interval between successive bursts in a sequence of bursts.
  - numberOfTonesInBurst:
    This parameter indicates the number of tones to be played in each burst.
  - toneDuration:
    This parameter indicates the time duration of a single tone in a burst.
  - toneInterval:
    This parameter indicates the time interval between successive tones in a burst.

11.24.2 Responding entity (gsmSSF)

11.24.2.1 Normal procedure

gsmSSF preconditions:

The gsmSSF FSM is in one of the following states:

"Monitoring"; or
"Waiting_for_Instructions".

If a Call Segment is indicated, then at least one of the legs in that Call Segment is in the active phase.

gsmSSF postconditions:

(1) No gsmSSF FSM state transition.
11.24.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services used for reporting operation errors are described in clause 14.

11.25 PromptAndCollectUserInformation procedure

11.25.1 General description

The gsmSCF uses this operation to interact with a call party in order to collect information.

11.25.1.1 Parameters

- collectedInfo:

  - collectedDigits:

    - minimumNbOfDigits:
      This parameter specifies the minimum number of valid digits to be collected.

    - maximumNbOfDigits:
      This parameter specifies the maximum number of valid digits to be collected. The following applies:
      "maximumNbOfDigits" ≥ "minimumNbOfDigits".

    - endOfReplyDigit:
      This parameter indicates the digit string used to signal the end of input.

      In the case that the "maximumNbOfDigits" > "minimumNbOfDigits" the following applies:

      If "endOfReplyDigit" is not present, then the end of input is indicated:

      - when the inter-digit timer expires; or

      - when the number of valid digits received equals the "maximumNbOfDigits".

      If "endOfReplyDigit" is present, then the end of input is indicated:

      - when the inter-digit timer expires; or

      - when the end of reply digit is received; or

      - when the number of valid digits received equals the "maximumNbOfDigits".

      When the end of input is reached, the collected digits are sent from gsmSRF to the gsmSCF, including the "endOfReplyDigit" if received by the gsmSRF. In the case the number of valid digits received is less than the "minimumNbOfDigits" when the inter-digit timer expires or when the end of reply digit is received, the input is considered to be erroneous.

    - cancelDigit:
      This parameter indicates the cancel digit string that may be entered by the user to request a retry. All digits already received by the gsmSRF are discarded and the PromptAndCollectUserInformation procedure is performed again, thus e.g. the same announcement to request user information is given to the user and information is collected. If this parameter is not present, then the user is not able to request a retry.

    - startDigit:
      This parameter indicates the start digit string that indicates the start of the valid digits to be collected. The digits that are received by the gsmSRF before this start digit is received, are discarded and are not considered to be valid. The start digit string itself is considered to be valid digits.

      If this parameter is not present, then all received digits are considered to be valid.
When the end of input is reached, the collected digits are sent from gsmSRF to the gsmSCF, including the "startDigit" if received by the gsmSRF.

- **firstDigitTimeOut:**
  If this parameter is present, then the first digit shall be received by the gsmSRF before first-digit timer expiration. If the first digit is not received before first-digit timer expiration, then the input is considered to be erroneous.

  If this parameter is not present, then the gsmSRF shall use a default value for the first-digit timer.

  If "startDigit" is present, then the first-digit timer shall be stopped after the start digit is received. If "startDigit" is not present, then the first-digit timer shall be stopped when any digit is received, except when the digit matches the 'cancelDigit', if present.

- **interDigitTimeOut:**
  If this parameter is present, then any subsequent valid or invalid digit shall be received by the gsmSRF before the inter-digit timer expires. As a result of receiving a digit, the inter-digit timer is reset and restarted.

  If a subsequent valid or invalid digit is not received before the inter-digit timer expires and the number of received valid digits is less than "minimumNbOfDigits", then the input is considered to be unsuccessful.

  If a subsequent valid or invalid digit is not received before the inter-digit timer expires and the number of received valid digits is greater than "minimumNbOfDigits" and smaller than or equal to "maximumNbOfDigits", then the input is considered to be successful.

  If the "interDigitTimeOut" is not present, then the gsmSRF shall use a default value for the inter-digit timer.

- **errorTreatment:**
  This parameter defines what specific action shall be taken by the gsmSRF in the event of error conditions occurring.

- **interruptableAnnInd:**
  If this parameter is TRUE, then the announcement shall interrupted after the first valid or invalid digit is received by the gsmSRF. If the announcement is interrupted, then a first-digit timer shall not apply anymore. However, if the announcement has not been interrupted, then the first-digit timer shall be started after the announcement has been finished.

  If this parameter is FALSE, then the announcement shall not be interrupted after the first digit is received by the gsmSRF. The received digits during the announcement are discarded and considered to be invalid. All other specified parameters ("minimumNbOfDigits", "maximumNbOfDigits", "endOfReplyDigit", etc.) do not apply before the announcement has been finished. The first-digit timer shall be started after the announcement has been finished.

- **voiceInformation:**
  If this parameter is FALSE, then all valid or invalid digits shall be entered by DTMF.

  If this parameter is TRUE, then the calling user is required to provide all valid or invalid information by speech. The gsmSRF shall perform voice recognition and shall translate the provided information into digits. The end of reply digit(s), if required, shall be provided by speech.

- **voiceBack:**
  If this parameter is FALSE, then no voice back information shall be given by the gsmSRF.

  If this parameter is TRUE, then the valid input digits received by the gsmSRF shall be announced back to the calling user immediately after the end of input is received. The invalid input digits will not be announced back to the calling user. The end of reply digit(s) shall not be voiced back to the calling user.

- **disconnectFromIPForbidden:**
  This parameter indicates whether the gsmSRF may initiate a disconnection from the gsmSSF after the interaction has been completed.
If this parameter is TRUE, then the gsmSRF shall not initiate a disconnection. If this parameter is FALSE, then the gsmSRF may initiate a disconnection.

- informationToSend:
  This parameter indicates an announcement or tone to be sent to the end-user by the gsmSRF.
  - inbandInfo:
    This parameter specifies the inband information to be sent.
    - messageID:
      This parameter indicates the message(s) to be sent; this may be one of the following:
      - elementaryMessageID:
        This parameter indicates a single announcement.
      - text:
        This parameter indicates a text to be sent. The text shall be transformed to inband information (speech) by the gsmSRF. The attributes of text may consist of items such as language.
      - elementaryMessageIDs:
        This parameter specifies a sequence of announcements.
      - variableMessage:
        This parameter specifies an announcement with one or more variable parts.
    - numberOfRepetitions:
      This parameter indicates the maximum number of times the message shall be sent to the end-user.
    - duration:
      This parameter indicates the maximum time duration in seconds that the message shall be played or repeated. A value of "0" indicates endless repetition.
    - interval:
      This parameter indicates the time interval between successive messages, i.e. the time between the end of the announcement and the start of the repetition of this announcement. This parameter may be used only when "numberOfRepetitions" > 1.
    - tone:
      This parameter specifies a tone to be sent to the end-user.
      - toneID:
        This parameter indicates the tone to be sent.
      - duration:
        This parameter indicates the time duration in seconds of the tone. A value of "0" indicates infinite duration.
    - requestAnnouncementStartedNotification:
      This parameter indicate whether or not a "SpecializedResourceReport" shall be sent to the gsmSCF when the first announcement or tone has started.
    - callSegmentID:
      This parameter indicates the Call Segment to which the user interaction shall apply.

Result Parameter:

- digitsResponse:
  This parameter contains the information collected from the end-user.
11.25.2 Responding entity (gsmSRF)

11.25.2.1 Normal procedure

gsmSRF preconditions:

(1) The SRSM-FSM is in the state "Connected"; if the gsmSRF received previously an operation from the gsmSCF, then the SRSM-FSM is in the state "User Interaction".

(2) If the first announcement or tone has started and "RequestAnnouncementStartedNotification" is TRUE, then the SRSM sends a "SpecializedResourceReport" operation, containing the "FirstAnnouncementStarted" parameter, to the gsmSCF.

gsmSRF postconditions:

(1) The gsmSRF has sent the information to the end-user as indicated by "informationToSend".

(2) The collected information from the end-user is sent to the gsmSCF as RETURN RESULT of the "PromptAndCollectUserInformation".

(3) If the "disconnectFromIPForbidden" is FALSE, then the gsmSRF initiates a bearer channel disconnect to the gsmSSF and the SRSM FSM transits to the state "Idle".

(4) Otherwise, the SRSM FSM transits to the state "User Interaction" or remains in the same state.

The announcement sent to the end-user is ended in the following conditions:

- if neither "duration" nor "numberOfRepetitions" is specified, then the network specific announcement ending conditions shall apply; or

- if "numberOfRepetitions" is specified, when all repetitions have been sent; or

- if duration is specified, when the duration has expired. The announcement is repeated until this condition is met; or

- if "duration" and "numberOfRepetitions" is specified, when one of both conditions is satisfied (whichever comes first).

If the parameter "interruptableAnnInd" is not FALSE and the end-user has responded with a digit during the sending of the announcement, then the above conditions are overruled. In that case, the announcement shall be ended immediately.

The parameter "errorTreatment" specifies how the gsmSRF shall treat an error. The value "reportErrorToSCF" means that the error shall be reported to the gsmSCF by means of Return Error with "ImproperCallerResponse". The value "help" indicates that no error shall be reported to gsmSCF but assistance shall be given to the end-user in the form of a network dependent default announcement (which may be dependent on the context, i.e. the sent message). The value "repeatPrompt" indicates that no error shall be reported to the gsmSCF but the prompt shall be repeated to the end-user. The error handling procedures related to "help" and "repeatPrompt" shall be done only once per "PromptAndCollectUserInformation" operation.

**NOTE** Note on processing "endOfInput"

The receipt of any "endOfInput" condition (e.g. endOfReplyDigit, cancelDigit, firstDigitTimeout, interDigitTimeout) terminates immediately the ongoing input. In other words when e.g. an endOfReplyDigit is received, then the receipt of a subsequent cancelDigit will not be processed anymore.

11.25.2.2 Error handling

If a Cancel operation is received before or during the processing of the operation, then the operation shall be cancelled immediately and the error "Canceled" shall be reported to the gsmSCF.

Generic error handling for the operation related errors are described in clause 10, the TC services which are used for reporting operation errors are described in clause 14.

If any of the parameter restrictions are violated (e.g. "minimumNbOfDigits" > "maximumNbOfDigits"), then an operation error has occurred.
11.26 ReleaseCall procedure

11.26.1 General description

The gsmSCF uses this operation to tear down a call at any phase.

11.26.1.1 Parameters

- allCallSegments:
  This parameter gives an indication to the gsmSSF about the reason of releasing this specific call. This may be used by gsmSSF for generating specific tones to the different parties in the call or to fill in the "cause" in the release message.

- allCallSegmentsWithExtension:
  This parameter gives an indication to the gsmSSF about the reason of releasing this specific call. This may be used by gsmSSF for generating specific tones to the different parties in the call or to fill in the "cause" in the release message. It additionally allows for the sending of the extensions parameter to the gsmSSF.

11.26.2 Responding entity (gsmSSF)

11.26.2.1 Normal procedure

gsmSSF preconditions:

(1) A control relationship exists between gsmSCF and gsmSSF.

(2) The gsmSSF FSM is in the state "Waiting_for_Instructions" or in the state "Monitoring".

gsmSSF postconditions:

(1) The gsmSSF FSM transits to the state "Idle" after sending any pending "CallInformationReport" or "ApplyChargingReport". All armed EDPs shall be disarmed. All connections and resources related to the call shall be released.

11.26.2.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

11.27 RequestReportBCSMEvent procedure

11.27.1 General description

The gsmSCF uses this operation to request the gsmSSF to monitor for a call-related event (e.g., BCSM events such as O_Busy or O_No_Answer) and to send a notification to the gsmSCF when the event is detected.

The monitoring of more than one event may be requested with a single "RequestReportBCSMEvent" operation, but each of these requested events will be reported in a separate "EventReportBCSM" operation.

NOTE: If the RequestReportBCSMEvent requests arming of the current DP from which the call processing was suspended, then the next occurrence of the DP encountered during BCSM processing will be detected (i.e. not the current one from which the call was suspended).

The DP arming principle is as follows:

- The DPs O_Disconnect and T_Disconnect can be armed for any or all legs depending on the direction for which events have to be captured. As an example, the O_Disconnect DP can be armed for leg1 and leg2; in this case, if
a release request is received from the A-party, then it will be detected by the O_Disconnect DP armed for leg1, while a release request from the B-party will be detected by the O_Disconnect DP armed for leg2.

- The O_Abandon DP can be armed only for leg1 in the O-BCSM and the T_Abandon DP can be armed only for leg1 in the T-BCSM.

- The Collected_Info DP can be armed only for leg1 in the O-BCSM for TO calls.

**Table 11-1: DP Arming Table for O-BCSM:**

<table>
<thead>
<tr>
<th>O-BCSM</th>
<th>leg1</th>
<th>Not leg 1</th>
<th>Default leg ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_Term_Seized DP</td>
<td></td>
<td>X 2</td>
<td></td>
</tr>
<tr>
<td>Route_Select_Failure DP</td>
<td></td>
<td>X 2</td>
<td></td>
</tr>
<tr>
<td>O_Busy DP</td>
<td></td>
<td>X 2</td>
<td></td>
</tr>
<tr>
<td>O_No_Answer DP</td>
<td></td>
<td>X 2</td>
<td></td>
</tr>
<tr>
<td>O_Answer DP</td>
<td></td>
<td>X 2</td>
<td></td>
</tr>
<tr>
<td>O_Disconnect DP</td>
<td>X</td>
<td>X</td>
<td>X (note 1)</td>
</tr>
<tr>
<td>O_Abandon DP</td>
<td>X</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>O_Mid_Call</td>
<td>X</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>O_Change_Of_Position</td>
<td>X</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>O_Service_Change</td>
<td>X</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Collected_Info DP</td>
<td>X</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

**Note 1:** The "legID" parameter shall be included

**Nomenclature:**
- X = Arming Applicable
- X = Arming not Applicable

**Table 11-2: DP Arming Table for T-BCSM:**

<table>
<thead>
<tr>
<th>T-BCSM</th>
<th>leg2</th>
<th>leg1</th>
<th>Default Leg ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call_Accepted DP</td>
<td>X</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>T_Busy DP</td>
<td>X</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>T_No_Answer DP</td>
<td>X</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>T_Answer DP</td>
<td>X</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>T_Disconnect DP</td>
<td>X</td>
<td>X</td>
<td>(note 1)</td>
</tr>
<tr>
<td>T_Abandon DP</td>
<td>-</td>
<td>X (note 2)</td>
<td>1</td>
</tr>
<tr>
<td>T_Mid_Call</td>
<td>X</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>T_Change_Of_Position</td>
<td>X</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>T_Service_Change</td>
<td>X</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

**Note 1:** The "legID" parameter shall be included

**Note 2:** T_Abandon can be armed for leg1 only.

**Nomenclature:**
- X = Arming Applicable
- X = Arming not Applicable

### 11.27.1.1 Parameters

- **bcsmEvents:**
  This parameter specifies the event or events of which a report is requested.

- **eventTypeBCSM:**
  This parameter specifies the type of event of which a report is requested.

- **monitorMode:**
  This parameter indicates how the event shall be reported. If the "monitorMode" is "interrupted", then the event shall be reported as a request; if the "monitorMode" is "notifyAndContinue", then the event shall be reported as a notification; if the "monitorMode" is "transparent", then the event shall not be reported.

- **legID:**
  This parameter indicates the party in the call for which the event shall be reported. The gsmSCF shall use the option "sendingSideID" only.

- **sendingSideID:**
If not included, then the default values for LegID are assumed according to the tables 11-1 and 11-2.

The "legID" parameter shall always be included for the events O_Disconnect and T_Disconnect.

- dPSpecificCriteria:
  This parameter contains information specific to the EDP that shall be armed.

- numberOfDigits:
  This parameter indicates the number of digits requested for the CollectedInfo event.

- interDigitTimeout:
  This parameter indicates the inter-digit timer value for the CollectedInfo event.

- applicationTimer:
  This parameter indicates the No_Answer timer value for the No_Answer event. If the called party does not answer the call within the allotted time, then the gsmSSF shall report the event to the gsmSCF. This timer shall be shorter than the network No_Answer timer.

- midCallControlInfo:
  This parameter defines the criterion for the detection and reporting of mid-call digits. If this parameter is absent, then the first digit entered shall be reported.

- changeOfPositionControlInfo:
  This parameter defines the criterion for the reporting of change of location. If this parameter is absent, then any change of position shall be reported.

- automaticRearm:
  This parameter indicates that the gsmSSF shall rearm the DP whenever it is encountered.

11.27.2 Responding entity (gsmSSF)

11.27.2.1 Normal procedure

gsmSSF preconditions:

(1) A control relationship exists between the gsmSSF and the gsmSCF.

(2) The gsmSSF FSM is in the state "Waiting_for_Instructions" or in the state "Monitoring".

NOTE: In the state "monitoring" only requests to disarm detection points (with MonitorMode set to "Transparent") or to send notifications of events (with MonitorMode set to "NotifyAndContinue") shall be accepted by the gsmSSF.

gsmSSF postconditions:

(1) The requested EDPs are armed or disarmed as indicated.

(2) Previously requested events are monitored until ended by a transparent monitor mode, until the end of the call, until the EDPs are detected or until the corresponding leg is released.

(3) The gsmSSF FSM remains in the same state, unless all EDPs have been disarmed and no CallInformationReport or ApplyChargingReport has been requested; in the latter case, the gsmSSF FSM transits to the state "Idle".

11.27.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.
11.28  ResetTimer procedure

11.28.1  General description

The gsmSCF uses this operation to refresh the Tssf application timer, in order to avoid the Tssf time-out at the gsmSSF.

11.28.1.1  Parameters

- timerID:
  This parameter indicates which timer shall be reset. The only permissible value of this parameter is "tssf".

- timerValue:
  This parameter specifies the value to which the timer shall be set.

- callSegmentID:
  This parameter indicates the Call Segment in the gsmSSF for which the timer shall be reset.

11.28.2  Responding entity (gsmSSF)

11.28.2.1  Normal procedure

gsmSSF preconditions:

(1) Basic call processing has been suspended at a DP.

(2) The gsmSSF FSM is in the state "Waiting_for_Instructions", the state "Waiting_for_end_of_User_Interaction" or in the state "Waiting_for_end_of_Temporary_Connection".

gsmSSF postconditions:

(1) The Tssf timer is loaded with the value received from the gsmSCF and is restarted.

(2) No gsmSSF FSM state transition.

11.28.2.2  Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.29  SendChargingInformation procedure

11.29.1  General description

The gsmSCF uses this operation to instruct the gsmSSF on the Advice of Charge information to be sent by the gsmSSF. The SendChargingInformation operation may be invoked on multiple occasions.

The SendChargingInformation operation may be used for MO and MT calls in the VMSC. In the case of an MT call, the CSE provided e-parameters are not used by Mobile Station if a call forwarding or follow-on call occurs.

11.29.1.1  Parameters

- sCIBillingChargingCharacteristics:
  This parameter is a choice between two lists of information.
  
  The first list shall be sent only if there is neither an active call leg, nor a Temporary Connection, nor a connection to a gsmSRF. It contains the following parameters:

  - aOCBeforeAnswer:
    This is a list of the following information:
This is a set of Charge Advice Information (CAI) elements, as defined in 3GPP TS 22.024 [2]. These CAI elements shall be sent by the gsmSSF to the MS when Answer is detected and a tariff switch for the "CSE control of e-parameters" has not yet occurred.

- **aOCSubsequent:**
  This list may contain the following information:

  - **cAIElements:**
    This is a set of Charge Advice Information (CAI) elements, as defined in 3GPP TS 22.024 [2]. These CAI elements shall be sent to the MS when Answer is detected and a tariff switch for the "CSE control of e-parameters" has occurred previously, or when Answer has previously been detected and a tariff switch for the "CSE control of e-parameters" occurs.

  - **tariffSwitchInterval (for the "CSE control of e-parameters"):**
    This parameter indicates the time duration until the next tariff switch for the "CSE control of e-parameters". The measurement of the elapsed tariff switch period shall start immediately after successful execution of this operation.

The second list in the choice shall be sent only if there is an active call leg or a Temporary Connection or a connection to a gsmSRF. It contains the following parameters:

- **aOCAfterAnswer:**
  This list may contain the following information:

  - **cAIElements:**
    This is a set of Charge Advice Information (CAI) elements, as defined in 3GPP TS 22.024 [2]. These CAI elements shall be sent to the MS by the gsmSSF when Answer is detected and a tariff switch for the "CSE control of e-parameters" has occurred previously, or when Answer has previously been detected and a tariff switch for the "CSE control of e-parameters" occurs.

  - **tariffSwitchInterval (for the "CSE control of e-parameters"):**
    This parameter indicates the time duration until the next tariff switch for the "CSE control of e-parameters". The measurement of the elapsed tariff switch period shall start immediately after successful execution of this operation.

- **legID:**
  This parameter indicates where the charging information shall be sent. For Mobile Originated calls, only leg 1 shall be used. For Mobile Terminated calls in the VMSC, only the leg of the CAMEL subscriber shall be used.

### 11.29.2 Responding entity (gsmSSF)

#### 11.29.2.1 Normal procedure

**gsmSSF preconditions:**

(1) The gsmSSF FSM is in one of the following states:

   "Waiting_for_Instructions"; or
   "Waiting_for_end_of_User_Interaction"; or
   "Waiting_for_end_of_Temporary_Connection"; or
   "Monitoring".

**gsmSSF postconditions:**

(1) No gsmSSF FSM state transition.

On receipt of this operation the gsmSSF performs actions to send the Advice of Charge information to the indicated Call Party's MS.

If Advice of Charge shall be provided to a MS in conjunction with "CSE control of call duration", then the following sequence of operations may be sent by the gsmSCF to the gsmSSF in the following order, in the same TC-CONTINUE TC message:
one or more ApplyCharging operations; SendChargingInformation operation.

These operations shall be processed sequentially by the gsmSSF, in the order that they are sent by the gsmSCF. In this case, the parameters TariffSwitchInterval (for the "CSE control of call duration") may be present in any of the ApplyCharging operations and the parameter TariffSwitchInterval (for the "CSE control of e-parameters") may be present in the SendChargingInformation operation.

The TariffSwitchInterval information received with the ApplyCharging operation shall set or overwrite the tariff switch timer for the "CSE control of call duration" in the gsmSSF and this duration timer shall run from the time of successful operation execution.

The TariffSwitchInterval information received in the SendChargingInformation operation shall set or overwrite the tariff switch timer for the "CSE control of e-parameters" in the gsmSSF and this duration timer shall run from the time of successful operation execution.

11.29.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

11.30 SpecializedResourceReport procedure

11.30.1 General description

The gsmSRF uses this operation as a response to a "PlayAnnouncement" operation or a "PromptAndCollectUserInformation" operation. This operation shall be used only when the "requestAnnouncementCompleteNotification" parameter is TRUE or the "requestAnnouncementStartedNotification" parameter is TRUE in the "PlayAnnouncement" operation or the "PromptAndCollectUserInformation".

11.30.1.1 Parameters

- allAnnouncementsComplete:
  This parameter indicates that all the announcements and tones are complete.

- firstAnnouncementStarted:
  This parameter indicates that the first announcement or tone has started.

11.30.2 Invoking entity (gsmSRF)

11.30.2.1 Normal procedure

gsmSRF preconditions:

(1) The gsmSRF FSM is in the state "User_Interaction".

(2) Either:
   (i) The sending of announcements and tones as defined in the "PlayAnnouncement" operation or the "PromptAndCollectUserInformation" operation has started and the parameter "RequestAnnouncementStartedNotification" in the "PlayAnnouncement" or "PromptAndCollectUserInformation" operation is TRUE; or
   (ii) A "PlayAnnouncement" operation has been executed, all announcements and tones have been sent and the parameter "RequestAnnouncementCompleteNotification" in the PlayAnnouncement operation is TRUE.

gsmSRF postconditions:

(1) No gsmSRF FSM state transition.
(2) If the "DisconnectFromIPForbidden" parameter is FALSE, then the gsmSRF initiates a bearer channel disconnect sequence to the gsmSSF using the applicable bearer channel signalling system after sending the "SpecializedResourceReport" operation to the gsmSCF. The gsmSRF transits to the state "Idle".

11.30.2.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

11.31 SplitLeg Procedure

11.31.1 General Description

The gsmSCF uses this operation to request the gsmSSF to separate one party from the source Call Segment and place it in a new target Call Segment.

11.31.1.1 Parameters

- legToBeSplit:
  This parameter indicates the party in the call to be split from the source Call Segment.

- newCallSegment:
  This parameter indicates the CSID to be assigned to the newly-created Call Segment.

11.31.2 Responding entity (gsmSSF)

11.31.2.1 Normal procedure

gsmSSF preconditions:

1) A control relationship exists between the gsmSCF and the gsmSSF.

2) The CSID1 is either the source Call Segment or the target Call Segment.

3) When SplitLeg is used to move a leg into CSID1 (when CSID1 does not exist), then the BCSM for the leg to be split shall be in the alerting phase or in the active phase.

   When SplitLeg is used to split a leg off from CSID1 into a new Call Segment, then the BCSM for the leg to be split shall be in the active phase.

4) User interaction is not in progress in the source Call Segment.

gsmSSF postconditions:

1) The gsmSSF performs the necessary actions to separate the specified leg from its original Call Segment and place it in a new target Call Segment.

2) The CS_gsmSSF FSM for the new Call Segment transits to the state "Waiting_for_Instructions".

3) The CS_gsmSSF FSM for the source Call Segment transits to the state "Waiting_for_Instructions".

4) The remaining BCSM instances within the source Call Segment transit to the O_Mid_Call DP or to the T_Mid_Call DP, unless already suspended at a DP. The Mid_Call EDP shall not be reported for this case.

5) A Return Result shall be sent to the gsmSCF immediately after successful execution of this operation.

6) A pending ApplyChargingReport for the source call segment shall be sent to the gsmSCF.

11.31.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10, and the TC services which are used for reporting operation errors are described in clause 14.
12 Detailed operation procedures for SMS control

NOTE: For Short Message processing in a Circuit Switched network, the CAMEL interaction with SMS is done through the MSC/smsSSF.
For Short Message processing in a Packet Switched network, the CAMEL interaction with SMS is done through the SGSN/smsSSF.

Any reference to the smsSSF applies to both the smsSSF co-located with the MSC and the smsSSF co-located with the SGSN.

NOTE Where a parameter for an SMS control Operation is marked OPTIONAL in ASN.1, the reader is referred to the conditions for presence for this parameter, specified in the respective Information Flow in 3GPP TS 23.078 [7].

12.1 ConnectSMS procedure

12.1.1 General description

The gsmSCF uses this operation to request the smsSSF to continue Short Message processing, such as routeing a Short Message to a specific destination or delivering a Short Message to the served subscriber, with modified information.

12.1.1.1 Parameters

- callingPartysNumber:
  This parameter allows the gsmSCF to set the Calling Party Number parameter used in the network. It is used for showing the sending party's id (i.e. the originating address) to the receiving party.

- destinationSubscriberNumber:
  This parameter contains the destination address to which the Short Message shall be routed by the SMSC.

- smscAddress:
  This parameter contains the Short Message Service Centre address towards which the Short Message shall be routed.

12.1.2 Responding entity (smsSSF)

12.1.2.1 Normal procedure

smsSSF preconditions:

(1) Mobile originating Short Message submission or Mobile terminating Short Message delivery attempt has been initiated.

(2) Short Message processing has been suspended at the DP SMS_Collected_Info or at DP SMS_Delivery_Requested.

(3) The smsSSF FSM is in the state "Waiting_for_Instructions".

smsSSF postconditions:

(1) The smsSSF performs the Short Message processing actions to route the Short Message to the specified destination or to deliver the Short Message to the served subscriber.

On receipt of this operation, the smsSSF performs the following actions:

- if the callingPartysNumber, destinationSubscriberNumber or smscAddress are supplied, then these values shall be used for subsequent processing;

- if no EDPs have been armed, then the smsSSF FSM transits to the state "Idle". Otherwise, the smsSSF FSM transits to the state "Monitoring".
The smsSSF shall not perform any implicit arming or disarming of DPs. Statistic counter(s) are not affected.

12.1.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

12.2 ContinueSMS procedure

12.2.1 General description

The gsmSCF uses this operation to request the smsSSF to proceed with processing at the DP at which it previously suspended processing to await gsmSCF instructions. The smsSSF continues processing without substituting new data from the gsmSCF.

12.2.1.1 Parameters

None.

12.2.2 Responding entity (smsSSF)

12.2.2.1 Normal procedure

smsSSF preconditions:

(1) processing has been suspended at any DP.

(2) The smsSSF FSM is in the state "Waiting_for_Instructions".

smsSSF postconditions:

(1) processing continues.

(2) The smsSSF FSM is in one of the following states:

- State "Monitoring" because at least one EDP was armed; or
- State "Idle" because no EDPs were armed.

12.2.2.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

12.3 EventReportSMS procedure

12.3.1 General description

The smsSSF uses this operation to notify the gsmSCF of a short message related event previously requested by the gsmSCF in a RequestReporSMSEvent operation.

12.3.1.1 Parameters

- eventTypeSMS:
  This parameter identifies the type of event that is reported.
- **eventSpecificInformationSMS:**
  This parameter contains the Short Message related information specific to the event.
  - For O_SMS_Failure it shall contain the O-SMSCause, if available.
  - For T_SMS_Failure it shall contain the T-SMSCause, if available.
  - For O_SMS_Submitted and for T_SMS_Delivery it shall be empty.

- **miscCallInfo:**
  This parameter contains DP related information.

- **messageType:**
  This parameter indicates whether the message is a request, i.e. resulting from a RequestReportSMSEvent with "monitorMode" = "interrupted", or a notification, i.e. resulting from a RequestReportSMSEvent with "monitorMode" = "notifyAndContinue".

12.3.2 Invoking entity (smsSSF)

12.3.2.1 Normal procedure

**smsSSF preconditions:**

1. The smsSSF FSM is in the state "Monitoring";
2. The smsSSF FSM proceeds to an EDP that is armed.

**smsSSF postconditions:**

1. The smsSSF has applied implicit disarming of EDPs.
2. If message type was notification and there are no more EDPs armed, then the smsSSF FSM transits to the state "Idle". Otherwise, the smsSSF FSM transits to the state "Waiting_for_Instructions".

12.3.2.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

12.4 FurnishChargingInformationSMS procedure

12.4.1 General description

The gsmSCF uses this operation to send charging related information to a Logical SMS record. This Logical SMS record is CAMEL specific. The first FurnishChargingInformationSMS operation leads to the generation of a Logical SMS record. Receipt of subsequent FurnishChargingInformationSMS operations shall overwrite or append the contents of the Logical SMS record.

12.4.1.1 Parameters

- **fCISMSBillingChargingCharacteristics:**
  This parameter contains the following parameters;

  - **fCIBCCAMELsequence1:**
    This parameter contains the following parameters;

    - **freeFormatData:**
      This parameter contains free-format billing and/or charging characteristics.

    - **appendFreeFormatData:**
      This parameter indicates whether previous free-format data shall be appended or overwritten. See 3GPP TS 23.078 [7] for details.
12.4.2 Responding entity (smsSSF)

12.4.2.1 Normal procedure

smsSSF preconditions:

(1) The smsSSF FSM is in the state "Waiting_for_Instructions".

smsSSF postconditions:

(1) No smsSSF FSM state transition.

On receipt of this operation, the smsSSF performs actions to create the Logical SMS record, if a Logical SMS record does not already exist, and writes the free-format information carried in the operation into the Logical SMS record. Subsequent FurnishChargingInformationSMS operations received, by default, will overwrite the free-format data previously written in the Logical SMS record, as specified in 3GPP TS 23.078 [7]. It is also possible to append free format data with subsequent FurnishChargingInformationSMS operations.

The Logical SMS records will be associated for a given Short Message submission or Short Message delivery with one or more physical CDRs, as specified in 3GPP TS 32.250 [13], 3GPP TS 32.251 [14] and 3GPP TS 22.115 [4].

12.4.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

12.5 InitialDPSMS procedure

12.5.1 General description

The smsSSF uses this operation after detection of a TDP-R in the smsSF FSM, to request the gsmSCF for instructions to complete the Short Message submission to the SMSC or the Short Message delivery to the served subscriber.

12.5.1.1 Parameters

- destinationSubscriberNumber:
  This parameter carries the ISDN number of the entity receiving the short message or the destination address of the destination subscriber, in an MO-SMS procedure.

- callingPartyNumber:
  In an MO-SMS procedure, this parameter carries the MSISDN of the subscriber. In an MT-SMS procedure, this parameter carries the address of the submitter of the short message (i.e. the originating address).

- eventType:
  This parameter indicates the armed smSSF FSM DP, resulting in the InitialDPSMS operation.

- iMSI:
  IMSI of the mobile subscriber for whom the CAMEL service is invoked.

- locationInformationInMSC:
  This parameter indicates the location of the MSC of the served subscriber. This parameter shall be included only if the InitialDP operation is sent from the MSC.

- locationInformationInSGSN:
  This parameter indicates the location of the SGSN of the served subscriber. This parameter shall be included only if the InitialDPSMS operation is sent from the SGSN.

- serviceKey:
  This parameter indicates to the gsmSCF the requested IN service. It is used to address the required application/SLP within the gsmSCF; it is not for gsmSCF addressing.
- **timeAndTimeZone:**
  This parameter contains the time that the smsSSF was triggered, and the time zone that the invoking smsSSF resides in.

- **tPDataCodingScheme:**
  This parameter indicates the data coding scheme of the TP-User-Data element within the TPDU. It may indicate a message class. The message class may indicate e.g. the originator of the Short Message.

- **tPSShortMessageSpecificInfo:**
  This parameter contains the 1st octet of the TPDU. Refer to 3GPP TS 23.040 [6] for a description of the various TPDUs.

- **tPProtocolIdentifier:**
  This parameter indicates the protocol used above the SM-Transfer Layer.

- **tPValidityPeriod:**
  This parameter indicates the length of the validity period or the absolute time of the validity period termination.

- **sMSCAddress:**
  This parameter defines the address of the SMSC to which the Short Message is intended to be submitted.

- **smsReferenceNumber:**
  This parameter contains the SMS Reference Number assigned to the Short Message by the MSC or SGSN.

- **mscAddress:**
  This parameter contains the E.164 address of the MSC. It shall be present if the SMS processing takes place in the MSC; otherwise shall be absent.

- **sgsn-Number:**
  This parameter contains the Global Title of the SGSN. It shall be present if the SMS processing takes place in the SGSN; otherwise it shall be absent.

- **ms-Classmark2:**
  This parameter contains the MS Classmark 2 of the mobile subscriber for which the service is invoked.

- **gPRSMSClass:**
  This parameter contains the GPRS MS capabilities of the mobile subscriber for which the CAMEL service is invoked.

- **iMEI:**
  This parameter contains the IMEI (with software version) of the mobile subscriber for which the service is invoked.

- **calledPartyNumber:**
  This parameter indicates the served subscriber in an MT-SMS procedure.

### 12.5.2 Invoking entity (smsSSF)

#### 12.5.2.1 Normal procedure

**smsSSF preconditions:**

1. A Short Message submission attempt or a Short Message delivery attempt has been initiated.
2. An event has been detected at a DP.
3. For MT-SMS, the event fulfilled the criteria for the DP being executed.

**smsSSF postconditions:**

1. A control relationship has been established and the smsSSF waits for instructions from the gsmSCF.

The address of the gsmSCF the InitialDPSMS operation shall be sent to, shall be fetched from the MO-SMS-CSI or the MT-SMS-CSI. The smsSSF shall provide all available parameters to the gsmSCF.
A control relationship is established with the gsmSCF. The smsSSF application timer Tssf is laded with the default value and is started. It is used to prevent excessive Short Message submission or delivery suspension time.

12.5.2.2 Error handling

If the gsmSCF is not accessible, then the smsSSF instructs the MSC or SGSN to proceed with the Short Message processing in accordance with the Default SMS Handling parameter of the MO-SMSCSI or MT-SMSCSI.

If Tssf expires, then the smsSSF aborts the interaction with the gsmSCF by means of an abort to TC and shall instruct the MSC or SGSN to proceed with the Short Message processing in accordance with the Default SMS Handling parameter of the MO-SMSCSI or MT-SMSCSI.

In the case of an MO-SMS Service, if the sending mobile party abandons after the sending of InitialDPSMS and before the TC dialogue is established, then the smsSSF shall abort the interaction with the gsmSCF by means of an abort to TC.

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

12.6 ReleaseSMS procedure

12.6.1 General description

The gsmSCF uses this operation to tear down a Short Message submission attempt or Short Message delivery attempt. The operation may be sent within a control relationship only; it is not allowed in a monitor relationship.

12.6.1.1 Parameters

- rPCause:
  This parameter gives an indication to the smsSSF about the reason of releasing this specific Short Message. For a MO-SMS Service, the rPCause shall be sent to the served subscriber in the RP-ERROR RPDU. For a MT-SMS Service, the rPCause shall be sent to the SMS-GMSC in the RP-ERROR RPDU.

12.6.2 Responding entity (smsSSF)

12.6.2.1 Normal procedure

smsSSF preconditions:

(1) The smsSSF FSM is in the state "Waiting_for_Instructions".

(2) The FSM is in DP SMS_Collected_Info or in DP SMS_Delivery_Requested.

smsSSF postconditions:

(1) The smsSSF FSM transits to the state "Idle". All armed EDPs shall be disarmed. All resources in the MSC or SGSN related to the Short Message shall be released.

12.6.2.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

12.7 RequestReportSMSEvent procedure

12.7.1 General description

The gsmSCF uses this operation to request the smsSSF to monitor for a Short Message related event (FSM events such as failure, delivery or submission) and to send a notification to the gsmSCF when the event is detected.
The monitoring of more than one event may be requested with a single RequestReportSMSEvent operation, but each of these requested events will be reported in a separate EventReportSMS operation.

12.7.1.1 Parameters
- smsEvents:
  This parameter indicates the event or events of which a report is requested.
- eventTypeSMS:
  This parameter indicates the type of event of which a report is requested. Values SMSCollectedInfo and SMSDeliveryRequested are not valid for the RequestReportSMSEvent operation.
- monitorMode:
  This parameter indicates how the event shall be reported. When the "monitorMode" is "interrupted", the event shall be reported as a request, if the "monitorMode" is "notifyAndContinue", the event shall be reported as a notification, if the "monitorMode" is "transparent", then the event shall not be reported.

12.7.2 Responding entity (smsSSF)
12.7.2.1 Normal procedure
smsSSF preconditions:
  (1) A control relationship exists between the smsSSF and the gsmSCF.
  (2) The smsSSF FSM is in the state "Waiting_for_Instructions".

smsSSF postconditions:
  (1) The requested EDPs have been armed or disarmed as indicated.
  (2) Armed events are monitored until ended by a transparent monitor mode, until the occurrence of the event or until the implicit disarming of the event.
  (3) No smsSSF FSM state transition.

12.7.2.2 Error handling
Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

12.8 ResetTimerSMS procedure
12.8.1 General description
The gsmSCF uses this operation to refresh the Tssf application timer, in order to prevent Tssf expiry at the smsSSF.

12.8.1.1 Parameters
- timerID:
  This parameter indicates which timer shall be reset. The only permissible value of this parameter is "tssf".
- timerValue:
  This parameter defines the value to which the timer shall be set.
12.8.2 Responding entity (smsSSF)

12.8.2.1 Normal procedure

smsSSF preconditions:

(1) Short Message processing has been suspended at a DP.
(2) The smsSSF FSM is in the state "Waiting_for_Instructions".

smsSSF postconditions:

(1) The Tssf timer is loaded with the value received from the gsmSCF and is restarted.
(2) No smsSSF FSM state transition.

12.8.2.2 Error handling

Generic error handling for the operation related errors are described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13 Detailed operation procedures for GPRS control

NOTE Where a parameter for a GPRS control Operation is marked OPTIONAL in ASN.1, the reader is referred to the conditions for presence for this parameter, specified in the respective Information Flow in 3GPP TS 23.078 [7].

13.1 ActivityTestGPRS procedure

13.1.1 General description

The gsmSCF uses this operation to check for the continued existence of a relationship between the gsmSCF and the gprsSSF. If the relationship is still in existence, then the identified instance of gprsSSF will respond. If the ActivityTestGPRS operation timer expires, then the gsmSCF will assume that the receiving entity has failed in some way and will take appropriate action. This operation opens a new SS7 dialogue between gsmSCF and gprsSSF.

13.1.1.1 Parameters

None.

13.1.2 Responding entity (gprsSSF)

13.1.2.1 Normal procedure

gprsSSF preconditions:

(1) A relationship exists between the gsmSCF and the gprsSSF.
(2) The gprsSSME FSM is in the state "Idle Management".
(3) No active TC dialogue exists at the moment of receiving ActivityTestGPRS.

gprsSSF postconditions:

(1) The gprsSSME FSM transits to the state "Non-call Associated Treatment".
(2) If there is a gprsSSF using the GPRS-Reference Number, then the gprsSSME FSM sends a Return Result "ActivityTestGPRS" to the gsmSCF. The gprsSSME FSM then returns to the state "Idle Management".
If there is no gprsSSF using the GPRS-ReferenceNumber, then the gprsSSME FSM will issue a U-Abort. The gprsSSME FSM then returns to the state "Idle Management".

(3) The temporary TC dialogue is closed.

If at the time of receiving ActivityTestGPRS there is an active TC dialogue for this GPRS Dialogue, then the gprsSSME FSM issues a U-Abort with Abort reason "overlapping-dialogue".

13.1.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services used for reporting operation errors are described in clause 14.

13.2 ApplyChargingGPRS procedure

13.2.1 General description

The gsmSCF uses this operation for interacting with the gprsSSF function "CSE control of GPRS session or PDP Context duration and volume". The ApplyChargingGPRSReport operation provides the feedback from the gprsSSF to the gsmSCF. The charging scenarios supported by this operation are those given in 3GPP TS 22.078 [3] for "CSE control of GPRS session and PDP Context duration and volume".

If this procedure is used within a PDP Context dialogue, then the charging instruction shall pertain to the PDP Context only. Data volume threshold and duration threshold may be defined separately.

If this procedure is used within a GPRS Session dialogue, then the charging instruction may pertain to the GPRS Session or to a single PDP Context. Charging for a PDP Context may be on duration and/or volume. Charging for a GPRS Session may be on duration only.

NOTE: Charging for a PDP Context on duration and volume requires two ApplyChargingGPRS operations.

13.2.1.1 Parameters

- chargingCharacteristics:
  This parameter is a choice between parameters required for "CSE control of a GPRS session or a PDP Context duration or volume":
    - maxTransferredVolume:
      This parameter specifies the maximum volume that may be transferred before a ApplyChargingReportGPRS shall be sent to the gsmSCF.
    - maxElapsedTime:
      This parameter specifies the maximum period of time before a ApplyChargingReportGPRS shall be sent to the gsmSCF.
    - tariffSwitchInterval:
      This parameter indicates the time duration until the next tariff switch. The measurement of the elapsed tariff switch period shall start immediately after successful execution of this operation.
    - PDPID:
      This parameter identifies the PDP Context, within the GPRS Session dialogue, to which the charging instruction applies.

13.2.2 Responding entity (gprsSSF)

13.2.2.1 Normal procedure

gprsSSF preconditions:
(1) A control relationship exists between the gsmSCF and the GPRS Session or PDP Context to which the operation applies.

(2) The gprsSSF FSM is in one of the following states: “Waiting_for_Instructions” or “Monitoring.”

gprsSSF postconditions:

(1) No gprsSSF FSM state transition.

On receipt of this operation, the gprsSSF shall set the charging data using the information elements included in the operation.

13.2.2.2 Error handling

"TaskRefused": In addition to the generic error handling noted below, this error shall be indicated when:

- a previously received GPRS Session or PDP Context period or volume duration is pending;
- a tariffSwitchInterval is indicated when a previously received tariffSwitchInterval is pending;
- the gprsSSF has received an ApplyChargingGPRS operation for a PDP Context that is already disconnected;
- the gprsSSF has received an ApplyChargingGPRS operation for the GPRS Session when the subscriber is already detached.

Generic error handling for the operation related errors is described in clause 10 and the TC services used for reporting operation errors are described in clause 14.

13.3 ApplyChargingReportGPRS procedure

13.3.1 General description

The gprsSSF uses this operation to report charging related information to the gsmSCF as requested by the gsmSCF using the ApplyChargingGPRS operation.

Timing of duration and measuring of transferred data (if applicable) shall be started when either an Attach, PDP Context Establishment Acknowledgement or an Inter SGSN Routeing Area Update acceptance is detected by the gprsSSF.

A report shall be made when a PDP Context Disconnect, a Detach or a Change in QoS is detected by the gprsSSF or when the gprsSSF detects that the transferred volume or elapsed time duration indicated in the parameter "transferredVolume" or "elapsedTime" (received in ApplyChargingGPRS operation) has been reached. ApplyChargingReportGPRS shall be sent only on chargeable QoS changes.

13.3.1.1 Parameters

- chargingResult:
  This parameter provides the gsmSCF with the charging related information previously requested using the ApplyChargingGPRS operation. The "ChargingResult" is a choice, and can contain either of the following parameters:
  - transferredVolume:
    This is a choice of the following parameters:
    - volumeIfNoTariffSwitch:
      This parameter shall be present if no tariff switch has occurred for the PDP Context, otherwise it shall be absent. If present, then the volume transferred since the detection of the event that triggered volume count shall be reported.
    - volumeIfTariffSwitch:
      This parameter shall be present if a tariff switch has occurred for the PDP Context, otherwise it shall be absent. This parameter may contain the following information:
- **volumeSinceLastTariffSwitch:**
  The volume since the detection of the event that triggered volume count or the last tariffSwitch (whichever of these events was last detected) shall be reported.

- **VolumeTariffSwitchInterval:**
  This parameter shall be present only if a tariff switch was detected after the event that triggered volume count for the PDP Context in the current volume count period. If present, the volume between either the detection the event that triggered volume count or the previous tariff switch (whichever of these events was last detected) and the last tariff switch shall be reported.

- **elapsedTime:**
  This parameter is a choice of the following parameters:
  - **timeGPRSIfNoTariffSwitch:**
    This parameter shall be present if no tariff switch has occurred for the GPRS Session or the PDP Context, otherwise it shall be absent. If present, then the elapsed time since the detection of the event that triggered time count shall be reported.
  - **timeGPRSIfTariffSwitch:**
    This parameter shall be present if a tariff switch has occurred for the GPRS Session or the PDP Context, otherwise it shall be absent. This parameter may contain the following information:
      - **timeGPRSSinceLastTariffSwitch:**
        The time since the event that triggered time count or the last tariffSwitch shall be reported.
      - **timeGPRSTariffSwitchInterval:**
        This parameter shall be present only if a tariff switch was detected after the event that triggered time count for the GPRS Session or PDP Context in the current time count period. If present, then the time between either the detection the event that triggered time count or the previous tariff switch (whichever of these events was last detected) and the last tariff switch shall be reported.

- **qualityOfService:**
  This parameter identifies the QoS which was negotiated between the user, the SGSN and the GGSN. This parameter shall be present only if the sending of the ApplyChargingReportGPRS operation was triggered by a change in Quality of Service. The "negotiated-QoS-Extension" may be present as a supplement to the "negotiated-QoS".

- **active:**
  This parameter indicates whether the GPRS Session or PDP Context is still active

- **pDPID:**
  This parameter identifies the PDP Context, within the GPRS Session dialogue, for which the charging report is valid.

- **chargingRollOver:**
  This parameter indicates possible rollovers of the "ChargingResult" parameter due to the limited value ranges of the associated charging parameters. The "chargingRollOver" parameter is a choice and may contain either of the following parameters:
  - **transferredVolumeRollOver:**
    This parameter is a choice of the following parameters:
      - **rO-VolumeIfNoTariffSwitch:**
        This parameter indicates how many times the volumeIfNoTariffSwitch parameter of the chargingResult has rolled over. If no rollover has happened, then rO-VolumeIfNoTariffSwitch may be absent.
      - **rO-VolumeIfTariffSwitch:**
        This parameter is present if at least one of the parameters below is present. It may contain the following information:
          - **rO-VolumeSinceLastTariffSwitch:**
            This parameter indicates how many times the volumeSinceLastTariffSwitch parameter of the chargingResult has rolled over. If no rollover has happened, then rO-VolumeSinceLastTariffSwitch may be absent.
- rO-VolumeTariffSwitchInterval:
  This parameter indicates how many times the VolumeTariffSwitchInterval parameter of the 
  chargingResult has rolled over. If no rollover has happened, then rO-VolumeTariffSwitchInterval may 
  be absent.

- elapsedTimeRollOver:
  This parameter is a choice of the following parameters:

  - rO-TimeGPRSIfNoTariffSwitch:
    This parameter indicates how many times the timeGPRSIfNoTariffSwitch parameter of the 
    chargingResult has rolled over. If no rollover has happened, then rO-TimeGPRSIfNoTariffSwitch may be 
    absent.

  - rO-TimeGPRSIfTariffSwitch:
    This parameter shall be present if at least one of the parameters below is present. If It may contain the 
    following information:

    - rO-TimeGPRSSinceLastTariffSwitch:
      This parameter indicates how many times the timeGPRSSinceLastTariffSwitch parameter of the 
      chargingResult has rolled over. If no rollover has happened, then rO-TimeGPRSSinceLastTariffSwitch may be 
      absent.

    - rO-TimeGPRSTariffSwitchInterval:
      This parameter indicates how many times the timeGPRSTariffSwitchInterval parameter of the 
      chargingResult has rolled over. If no rollover has happened, then rO-TimeGPRSTariffSwitchInterval 
      may be absent.

13.3.2 Invoking entity (gprsSSF)

13.3.2.1 Normal procedure

gprsSSF preconditions:
(1) A relationship exists between the gsmSCF and the GPRS Session or PDP Context.
(2) A charging event has been detected that was requested by the gsmSCF via an ApplyChargingGPRS operation.

gprsSSF postconditions:
(1) If termination of the GPRS Session or a PDP Context has occurred, then:
  - If the sending of ApplyChargingReportGPRS is directly followed by the reporting of an EDP-R, then the 
    gprsSSF FSM shall transit to the state "Waiting_for_Instructions"; else
  - If there are any armed EDPs or pending reports, then the gprsSSF FSM shall remain in the same state; else
  - If there are no armed EDPs or pending reports, then the gprsSSF FSM shall transit to the state "Idle".
(2) If the sending of ApplyChargingReportGPRS is due to a timer or counter expiry, then:
  - If there are any armed EDPs or pending reports, then the gprsSSF FSM shall remain in the same state; else
  - If there are no armed EDPs or pending reports, then the gprsSSF FSM shall transit to the state "Idle".
(3) If the sending of ApplyChargingReportGPRS is due to a change in QoS of a PDP Context, then:
  - The gprsSSF FSM shall remain in the same state.

13.3.2.2 Error handling

If the operation timer expires, then the gprsSSF shall abort the TC dialogue, terminate the GPRS dialogue and instruct 
the SGSN to handle the GPRS session or PDP context in accordance with the default GPRS handling parameter of the 
valid CSI.
Generic error handling for the operation related errors is described in clause 10 and the TC services used for reporting operation errors are described in clause 14.

13.4 CancelGPRS procedure

13.4.1 General description

The gsmSCF uses this operation to request the gprsSSF to disarm all pending EDPs and to cancel all pending reports for a GPRS Session or for a specific PDP Context. This enables the gprsSSF FSM to transit to the state "Idle". This procedure can not be used to cancel a previous operation.

13.4.1.1 Parameters

- pDPID:
  This parameter identifies the PDP Context, within the GPRS Session dialogue, for which the armed EDPs shall be disarmed and the pending reports shall be cancelled.

13.4.2 Responding entity (gprsSSF)

13.4.2.1 Normal procedure

gprsSSF preconditions:

(1) The gprsSSF FSM is in the state "Waiting_for_Instructions" or in the state "Monitoring".

gprsSSF postconditions:

(1) All pending ApplyChargingReportGPRS are cancelled and all pending EDPs are disarmed. If a PDPID is included in the operation, then the cancelling of the pending reports and the disarming of the armed events applies to the indicated PDP Context only.

(2) If the gprsSSF FSM was in the state "Monitoring" and there are no more armed EDPs or pending ApplyChargingReportsGPRS, then the gprsSSF FSM shall transit to the state "Idle".

   If the gprsSSF FSM was in the state "Waiting_for_Instructions", it shall remain in that state. If there are no more armed EDPs or pending ApplyChargingReportsGPRS, then subsequent GPRS Session or PDP Context processing operation will result in the gprsSSF FSM to transit the state "Idle".

   The GPRS Session or PDP Context to which the CancelGPRS operation applies, if in active state, shall further be treated by the gprsSSF autonomously as a normal (non-CAMEL) GPRS Session or PDP Context.

13.4.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13.5 ConnectGPRS procedure

13.5.1 General description

The gsmSCF uses this operation to provide an APN to the gprsSSF, to be used for establishing a PDP Context.

13.5.1.1 Parameters

- accessPointName:
  This parameter contains the Access Point Name towards which the PDP Context shall be established. Refer to 3GPP TS 29.060 [12] for details on the Access Point Name.
13.5.2 Responding entity (gprsSSF)

13.5.2.1 Normal procedure

gprsSSF preconditions:

(1) A control relationship exists between the gsmSCF and the PDP Context.

(2) The GPRS PDP Context FSM is suspended at DP PDP_Context_Establishment.

(3) The gprsSSF FSM is in the state "Waiting_for_Instructions".

gprsSSF postconditions:

(1) The gprsSSF performs the actions to establish the PDP Context using the given Access Point Name.

(2) The gprsSSF stops Tssf.

(3) If no EDPs are armed, then the gprsSSF FSM transits to the state "Idle". Otherwise the gprsSSF FSM transits to the state "Monitoring".

The gsmSSF shall not perform any implicit arming or disarming of DPs.

13.5.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13.6 ContinueGPRS procedure

13.6.1 General description

The gsmSCF uses this operation to request the gprsSSF to proceed with GPRS Session or PDP Context processing at the DP at which it previously suspended processing to await gsmSCF instructions. The gprsSSF continues processing without substituting new data from the gsmSCF.

13.6.1.1 Parameters

- pDPID:
  This parameter identifies the PDP Context within the control relationship for which the processing shall continue.

13.6.2 Responding entity (gprsSSF)

13.6.2.1 Normal procedure

gprsSSF preconditions:

(1) A control relationship exists between the gsmSCF and the GPRS Session or PDP Context.

(2) The GPRS Session or PDP Context processing has been suspended at any DP.

(3) The gprsSSF FSM is in the state "Waiting_for_Instructions".
gsmSSF postconditions:

(1) GPRS Session or PDP Context processing continues.

(2) The gprsSSF FSM is in one of the following states:

- "Monitoring" because at least one EDP was armed or an ApplyChargingReportGPRS was requested; or
- "Idle" because no EDPs were armed and no ApplyChargingReportGPRS was requested.

13.6.2.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

13.7 EntityReleasedGPRS procedure

13.7.1 General description

The gprsSSF uses this operation to inform the gsmSCF that the GPRS Session is detached or a PDP Context is disconnected. It shall be used only when the associated event detection point (ie. for GPRS Session Detach: DP "Detach" and for PDP Context Disconnect: DP "PDP Context Disconnection") is at that moment not armed for reporting.

This operation shall be used irrespectively of the functional entity that initiated the Detach or PDP Context Disconnect and irrespectively of the cause for the Detach or PDP Context Disconnect.

When a PDP Context is terminated, then the gprsSSF shall send all pending reports of that PDP Context to the gsmSCF. When a GPRS Session is terminated, then the gprsSSF shall send all outstanding reports of the GPRS Session to the gsmSCF.

13.7.1.1 Parameters

- gPRSCause: This parameter gives an indication to the gsmSCF about the reason for discontinuing the PDP Context or GPRS Session. This may be used by gsmSCF if a FurnishChargingInformationGPRS operation needs to be sent to the gprsSSF.

- pDPID: This parameter identifies the PDP Context within the GPRS Session dialogue, which has terminated.

13.7.2 Invoking entity (gprsSSF)

13.7.2.1 Normal procedure

gprsSSF preconditions:

(1) The gprsSSF FSM is in the state "Waiting_for_Instructions" or in the state "Monitoring".

gprsSSF postconditions:

(1) All armed EDPs for the indicated PDP Context or GPRS Session shall be disarmed. All connections and resources related to the indicated PDP Context or GPRS Session shall be released. If there are no more armed EDPs or pending reports, then the gprsSSF FSM transits to the state "Idle"; otherwise the gprsSSF FSM remains in the same state.

13.7.2.2 Error handling

If the operation timer expires, then the gprsSSF shall abort the TC dialogue, terminate the GPRS dialogue and instruct the SGSN to handle the GPRS session or PDP context in accordance with the default GPRS handling parameter of the valid CSI.
Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13.8 EventReportGPRS procedure

13.8.1 General description

The gprsSSF uses this operation to notify the gsmSCF of a GPRS Session or PDP Context event previously requested by the gsmSCF in a RequestReportGPRSEvent operation.

13.8.1.1 Parameters

- gPRSEventType:
  This parameter specifies the type of event that is reported.

- gPRSEventSpecificInformation:
  This parameter indicates the GPRS Session or PDP Context related information specific to the event.
  
  For Change of Position GPRS Session it shall contain the "locationInformationGPRS", if available.
  
  For Change of Position PDP Context it shall contain the "accessPointName", "chargingID", "locationInformationGPRS", "endUserAddress", Quality of Service, "timeAndTimeZone" and "gGSNAddress" and "secondaryPDP-context", if available.
  
  For Detach and PDP Context Disconnect it shall contain the "initiatingEntity" and, conditionally, "routeingAreaUpdate". The "initiatingEntity" indicates the entity that initiated the Detach or PDP Context Disconnect. The "routeingAreaUpdate" indicates that the Detach or PDP Context Disconnect is due to inter-SGSN routeing area update.
  
  In the case of inter-SGSN routeing area update, the gsmSCF may ignore the "initiatingEntity".
  
  For PDP Context Establishment it shall contain the "accessPointName", "endUserAddress", "pDPInitiationType", Quality of Service, "locationInformationGPRS", "timeAndTimeZone" and "secondaryPDP-context", if available.
  
  The Quality of Service shall contain the Requested QoS and the Subscribed QoS. The 'requested-QoS-Extension' and the 'subscribed-QoS-Extension' may be present as supplements to the "requested-QoS" and the "subscribed-QoS" respectively.
  
  For PDP Context Establishment Acknowledgement it shall contain the "accessPointName", "chargingID" "endUserAddress", Quality of Service, "locationInformationGPRS", "timeAndTimeZone" and "gGSNAddress", if available.
  
  The Quality of Service shall contain the Requested QoS, the Subscribed QoS and the Negotiated QoS. The "requested-QoS-Extension", the "subscribed-QoS-Extension" and the "negotiated-QoS-Extension" may be present as supplements to the "requested-QoS", the "subscribed-QoS" and the "negotiated-QoS" respectively.
  
  All optional gPRSEventSpecificInformation parameters shall be sent in accordance with 3GPP TS 23.078 [7] subclause 6.6.1.4 and 3GPP TS 22.078 [3] annex "GPRS Information provided to the CSE".

- miscGPRSInfo:
  This parameter contains DP related information.

- messageType:
  This parameter indicates whether the message is a request, i.e. resulting from a RequestReportGPRSEvent with "monitorMode" = "interrupted", or a notification, i.e. resulting from a RequestReportGPRSEvent with "monitorMode" = "notifyAndContinue".

- pDPID:
  This parameter identifies the PDP Context, within the GPRS Session dialogue, for which the event is reported.
13.8.2 Invoking entity (gprsSSF)

13.8.2.1 Normal procedure

gprsSSF preconditions:

(1) The gprsSSF FSM is in the state "Monitoring" or in the state "WaitingForInstructions".

(2) The GPRS Session or PDP Context FSM proceeds to an EDP that is armed.

gprsSSF postconditions:

(1) If the message type was notification and there are still armed EDPs that can be met or there any pending reports, then the gprsSSF FSM shall remain in the state "Monitoring".

(2) If the message type was notification and there no more EDPs armed that can be met and there are no pending reports, then the gprsSSF FSM shall transit to the state "Idle".

(3) If the message type was request, then the gprsSSF FSM shall transit to the state "Waiting_for_Instructions". GPRS Session or PDP Context processing is interrupted.

If an EDP-R is met that causes the release of a GPRS Session or PDP Context, then all EDPs related to the GPRS Session or PDP Context shall be disarmed.

13.8.2.2 Error handling

If the operation timer expires, then the gprsSSF shall abort the TC dialogue, terminate the GPRS dialogue and instruct the SGSN to handle the GPRS session or PDP context in accordance with the default GPRS handling parameter of the valid CSI.

If the message type is "request" and the Tssf timer expires, then the gprsSSF shall abort the TC dialogue and shall instruct the SGSN to treat the GPRS Session or PDP Context in accordance with the default GPRS handling of the valid CSI.

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13.9 FurnishChargingInformationGPRS procedure

13.9.1 General description

The gsmSCF uses this operation to send charging related information to a Logical GPRS record. This Logical GPRS record is CAMEL specific. The first FurnishChargingInformationGPRS operation results in the generation of a Logical GPRS record. Receipt of subsequent FurnishChargingInformationGPRS operations shall overwrite or append the contents of the Logical GPRS record.

13.9.1.1 Parameters

- fCIGPRSBillingChargingCharacteristics:
  This parameter contains the following parameters;

  - fCIBCCCAMELsequence1:
    This parameter contains the following parameters;

    - freeFormatData:
      This parameter contains free-format billing and/or charging characteristics.

    - appendFreeFormatData:
      This parameter indicates whether previous FCI free format data is appended or overwritten. Refer to 3GPP TS 23.078 [7] for details of this mechanism.
13.9.2 Responding entity (gprsSSF)

13.9.2.1 Normal procedure

gprsSSF preconditions:

(1) The gprsSSF FSM is in the state "Waiting_for_Instructions" or in the state "Monitoring".

gprsSSF postconditions:

(1) No gprsSSF FSM state transition.

On receipt of this operation the gprsSSF performs actions to create the Logical GPRS record, if necessary, and writes the free-format information carried in the operation into the GPRS record. A FurnishChargingInformationGPRS operation will create a Logical GPRS Data Record (CDR) if such a record does not already exist. Subsequent FurnishChargingInformationGPRS operations, will either overwrite or append the data previously written in the free-format CDR field depending on the presence and value of the parameter "appendFreeFormatData".

The Logical GPRS records will be associated for a given GPRS Session or PDP Context with one or more physical CDRs, as specified in 3GPP TS 32.250 [14] and 3GPP TS 22.115 [4].

13.9.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13.10 InitialDPGPRS procedure

13.10.1 General description

The gprsSSF uses this operation after detection of a TDP-R in the GPRS Session or PDP Context state machine, to request the gsmSCF for instructions to complete the GPRS Session or PDP Context.

For a GPRS Session, the "Attach" and "Change of Position Session" TDPs may result in the InitialDPGPRS Procedure. For a PDP Context, the "PDP Context Establishment", the "PDP Context Establishment Acknowledgement" and the "Change of Position Context" TDPs may result in the InitialDPGPRS Procedure.

If a PDP Context related TDP is met and there is at that moment a GPRS dialogue for the GPRS Session, then the gprsSSF shall not initiate the InitialDPGPRS Procedure for that PDP Context.

If the "PDP Context Establishment Acknowledgement" event occurs and this event is armed as a TDP, and there is at that moment a GPRS dialogue for the PDP Context, then the gprsSSF shall not initiate a new InitialDPGPRS Procedure for that PDP Context.

13.10.1.1 Parameters

- serviceKey:
  This parameter indicates to the gsmSCF the requested IN service. It is used to address the required application/SLP within the gsmSCF; it is not used for SCP addressing.

- gPRSEventType:
  This parameter indicates the armed GPRS Attach/Detach FSM or PDP Context FSM DP event, resulting in the InitialDPGPRS operation.

- mSISDN:
  This parameter contains the MSISDN of the mobile subscriber for which the CAMEL service is invoked.
- **iMSI:**
  This parameter contains the IMSI of the mobile subscriber for which the CAMEL service is invoked.

- **timeAndTimeZone:**
  This parameter contains the time that the gprsSSF is triggered, and the time zone that the invoking gprsSSF resides in.

- **gPRSSMSClass:**
  This parameter contains the MS capabilities of the mobile subscriber for which the CAMEL service is invoked.

- **endUserAddress:**
  This parameter identifies the PDP type, PDP type organisation and the actual PDP address.

- **qualityOfService:**
  This parameter contains the Quality of Service.
  If the InitialDPGPRS operation is sent as a result of the "PDP Context Establishment" TDP, then the Quality of Service parameter shall contain the Requested QoS and the Subscribed QoS. The "requested-QoS-Extension" and the "subscribed-QoS-Extension" may be present as supplements to the "requested-QoS" and the "subscribed-QoS" respectively.
  If the InitialDPGPRS operation is sent as a result of the "PDP Context Establishment Acknowledgement" TDP or the Change of Position Context TDP, then the Quality of Service parameter shall contain the Requested QoS, the Subscribed QoS and the Negotiated QoS. The "requested-QoS-Extension", the "subscribed-QoS-Extension" and the "negotiated-QoS-Extension" may be present as supplements to the "requested-QoS", the "subscribed-QoS" and the "negotiated-QoS" respectively.

- **accessPointName:**
  This parameter contains the requested address that the MS for which the CAMEL service is invoked for wants to connect to.

- **routingAreaIdentity:**
  This parameter contains the location information of the MS for which the CAMEL service is invoked.

- **chargingID:**
  This parameter contains the charging ID that, together with the gGSNAddress, uniquely identifies the PDP Context for the MS for which the CAMEL service is invoked.

- **sGSNcapabilities:**
  This parameter specifies the capabilities which the SGSN node can provide for the CAMEL service control.

- **locationInformationInSGSN:**
  This parameter indicates the location of the sending MS.

- **pDPInitiationType:**
  This parameter indicates whether a PDP Context was established as a result of a network-initiated request or as a result of a subscriber request.

- **gGSNAddress:**
  This parameter refers to the IP address of the GGSN where the PDP Context terminates. It is used together with the chargingID for uniquely identification of the PDP Context for which the CAMEL service is invoked from.

- **secondaryPDP-context:**
  This parameter indicates that the PDP Context is requested as a secondary PDP Context.

- **iMEI:**
  This parameter contains the IMEI (with software version) of the mobile subscriber for which the service is invoked.

### 13.10.2 Invoking entity (gprsSSF)

#### 13.10.2.1 Normal procedure

**gprsSSF preconditions:**

(1) An event has been met that is armed as TDP.
There is no GPRS dialogue active for that PDP Context or for the GPRS Session.

gprsSSF postconditions:

(1) A control relationship is established between the gsmSCF and the GPRS Session or the PDP Context.
(2) The gprsSSF FSM is in the state "Waiting_for_Instructions".

The address of the gsmSCF that the InitialDPGPRS operation shall be sent to, shall be fetched from the valid CSI. The gprsSSF shall provide all available parameters to the gsmSCF.

The gprsSSF application timer Tssf shall be loaded and started when the gprsSSF sends InitialDPGPRS for requesting instructions from the gsmSCF. It is used to prevent excessive GPRS Session or PDP Context duration or volume usage.

13.10.2.2 Error handling

If the gsmSCF is not accessible, then the gprsSSF instructs the SGSN to handle the GPRS Session or PDP Context in accordance with the Default GPRS Handling parameter of the valid CSI.

If Tssf expires, then the gprsSSF shall abort the interaction with the gsmSCF by means of an abort to TC and shall instruct the SGSN to handle the GPRS Session or PDP Context in accordance with the Default GPRS Handling parameter of the valid CSI.

If the MS abandons the establishment of a GPRS Session or PDP Context after the sending of InitialDPGPRS and before the TC dialogue is established, then the gprsSSF shall abort the interaction with the gsmSCF by means of an abort to TC.

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13.11 ReleaseGPRS procedure

13.11.1 General description

The gsmSCF uses this operation to tear down by the gsmSCF an existing GPRS Session or PDP Context at any phase.

13.11.1.1 Parameters

- gPRSCause:
  This parameter gives an indication to the gprsSSF about the reason of releasing the GPRS Session or a specific PDP Context. This may be used by gprsSSF for generating specific indications to the MS or to fill in the "cause" in the release message.

- pDPID:
  This parameter identifies the PDP Context, within the GPRS Session dialogue, which shall be released.

13.11.2 Responding entity (gprsSSF)

13.11.2.1 Normal procedure

gprsSSF preconditions:

(1) A control relationship exists between gsmSCF and the GPRS Session or PDP Context. More specifically, in order to tear down an individual PDP Context, an EDP-R must be armed for that PDP Context. In order to make a SCP controlled detach an EDP-R must be armed for the GPRS Session.
(2) The gprsSSF FSM is in the state "Waiting_for_Instructions" or in the state "Monitoring".

gprsSSF postconditions:

(1) All pending reports for the GPRS Session or the PDP Context shall be reported to the gsmSCF.
(2) All connections and resources related to the GPRS Session or the PDP Context shall be released.

(3) All armed EDPs for the GPRS Session or the PDP Context shall be disarmed.

(4) If there are no more pending reports or armed events, then the gprsSSF FSM transits to the state "Idle".

If there are any pending reports or armed events, then the gprsSSF FSM remains in the same state.

13.11.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13.12 RequestReportGPRSEvent procedure

13.12.1 General description

The gsmSCF uses this operation to request the gprsSSF to monitor for a GPRS Session or PDP Context related event (e.g., events such as PDP Context establishment or detach) and to send a notification to the gsmSCF when the event is detected.

The monitoring of more than one event may be requested with a single RequestReportGPRSEvent operation, but each of these requested events will be reported in a separate EventReportGPRS operation.

13.12.1.1 Parameters
- gPRSEvent:
  This parameter specifies the event or events of which a report is requested.
- gPRSEventType:
  This parameter specifies the type of event of which a report is requested.
- monitorMode:
  This parameter indicates how the event shall be reported. If the "monitorMode" is "interrupted", then the event shall be reported as a request; if the "monitorMode" is "notifyAndContinue", then the event shall be reported as a notification; if the "monitorMode" is "transparent", then the event shall not be reported.
- pDPID:
  This parameter identifies the PDP Context, within the GPRS Session dialogue, for which the event reporting is requested.

13.12.2 Responding entity (gprsSSF)

13.12.2.1 Normal procedure

gprsSSF preconditions:

(1) A control relationship exists between the gsmSCF and the GPRS Session or PDP Context.

(2) The gprsSSF FSM is in the state "Waiting_for_Instructions" or the state "Monitoring".

In the state "monitoring" only requests to disarm detection points (with MonitorMode set to "Transparent") or send notifications of events (with MonitorMode set to "NotifyAndContinue") shall be accepted.

gprsSSF postconditions:

(1) The requested EDPs have been armed or disarmed as indicated.

(2) Previously requested events are monitored until ended by a transparent monitor mode, until the end of the GPRS Session or PDP Context or until the EDPs are detected.
(3) If there are no armed events or pending reports, then the gsmSSF FSM shall transit to the state "Idle". Otherwise it shall remain in the same state.

13.12.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13.13 ResetTimerGPRS procedure

13.13.1 General description

The gsmSCF uses this operation to refresh the Tssf application timer, in order to avoid the Tssf time-out at the gprsSSF.

13.13.1.1 Parameters

- timerID:
  This parameter indicates which timer shall be reset. The only permissible value for this parameter is "Tssf".

- timerValue:
  This parameter specifies the value to which the timer shall be set.

13.13.2 Responding entity (gprsSSF)

13.13.2.1 Normal procedure

gprsSSF preconditions:

(1) GPRS Session or PDP Context processing has been suspended at a DP.

(2) The gprsSSF FSM is in the state "Waiting_for_Instructions".

gprsSSF postconditions:

(1) The Tssf timer is loaded with the value received from the gsmSCF and is restarted.

(2) No gprsSSF FSM state transition.

13.13.2.2 Error handling

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.

13.14 SendChargingInformationGPRS Procedure

13.14.1 General description

The gsmSCF uses this operation to instruct the gprsSSF on the Advice of Charge information to be sent to the MS, provided that the SGSN supports Advice of Charge. The operation may be invoked on multiple occasions.

13.14.1.1 Parameters

- sCIGPRSBillingChargingCharacteristics:
  This parameter contains the Advice of Charge information:

  - aOCGPRS:
    This parameter specifies the Advice of Charge information that shall be sent to the MS. It may contain one or more of the following parameters:
This is a set of Charge Advice Information elements, as defined in 3GPP TS 22.024 [2]. These CAI elements shall be sent by the gprsSSF to the MS when an Activate PDP Context Accept or Attach Accept is sent to MS and a tariff switch has not yet occurred. It may also be sent at any other time e.g. upon change of QoS or RAI.

This parameter may contain the following information:

- cAIElements:
  This is a set of Charge Advice Information (CAI) elements, as defined in 3GPP TS 22.024 [2]. These CAI elements shall be sent to the MS when an Activate PDP Context Accept or Attach Accept is detected and a tariff switch has occurred previously, or when Activate PDP Context Accept or Attach Accept has previously been detected and a tariff switch occurs.

- tariffSwitchInterval:
  This parameter indicates to the gprsSSF the time duration until the next tariff switch. The measurement of the elapsed tariff switch period shall start immediately after successful execution of this operation.

- pDPID:
  This parameter identifies the PDP Context, within the GPRS Session dialogue, for which the Advice-of-Charge instruction applies.

13.14.2 Responding Entity (gprsSSF)

13.14.2.1 Normal Procedure

gprsSSF preconditions:

(1) A relationship exists between the gsmSCF and the GPRS Session or PDP Context.

(2) The gprsSSF FSM is in the state "Waiting_for_Instructions" or in the state "Monitoring".

gprsSSF postconditions:

(1) No gprsSSF FSM state transition.

On receipt of this operation, the gprsSSF performs actions to send the Advice of Charge information to the MS, provided that the SGSN supports Advice of Charge.

If Advice of Charge is to be provided to an MS in conjunction with "CSE control of GPRS Session or PDP Context duration or volume", then the following sequence of operations shall be sent from the gsmSCF to the gprsSSF in the following order and in the same TC TC-CONTINUE or TC-BEGIN component:

ApplyChargingGPRS; SendChargingInformationGPRS.

These operations shall be processed sequentially by the gprsSSF, in the order that they are sent by the gsmSCF. In this case parameter TariffSwitchInterval may be present either in the ApplyChargingGPRS operation or in the SendChargingInformationGPRS operation, but not in both operations. It is recommended that this parameter be transported in the ApplyGPRSCarging operation.

The TariffSwitchInterval information received with either one of these operations shall set the same tariff switch timer in the gprsSSF. This duration timer shall run from the time of successful operation execution.

13.14.2.2 Error handling

"TaskRefused": In addition to the generic error handling noted below, this error shall be indicated when:

- a tariffSwitchInterval is indicated when a previously received tariffSwitchInterval is pending.

Generic error handling for the operation related errors is described in clause 10 and the TC services which are used for reporting operation errors are described in clause 14.
14 Services assumed from lower layers

14.1 Services assumed from TC

The SS7 application layer protocol defined in this 3GPP TS, is a protocol to provide communication between a pair of application processes. In the SS7 environment this is represented as communication between a pair of application-entities (AEs) using the TC. The function of an AE is provided by a set of application-service-elements (ASEs). The interaction between AEs is described in terms of their use of the services provided by the ASEs.

If AC are to be used for FE differentiation within a physical node, then the version of TC used must support the dialogue portion of TC (i.e. ETSI ETS 300 287-1 [22]).

This requirement applies to all interfaces, not just those used for internetworking.

Table 14-1 defines which versions of TC are the minimum versions required to support the defined CAP interfaces:

<table>
<thead>
<tr>
<th>Interface</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>gsmSSF - gsmSCF</td>
<td>White Book</td>
</tr>
<tr>
<td>gsmSRF - gsmSCF</td>
<td>White Book</td>
</tr>
<tr>
<td>assist gsmSSF - gsmSCF</td>
<td>White Book</td>
</tr>
<tr>
<td>smsSSF - gsmSCF</td>
<td>White Book</td>
</tr>
<tr>
<td>gprsSSF - gsmSCF</td>
<td>White Book</td>
</tr>
</tbody>
</table>

14.1.1 Common procedures

The present subclause defines the procedures and mapping which apply between CAP and TC to be used in the absence of specific procedures and mapping instructions for the specific CAP interfaces as defined in subsequent subclauses.

14.1.1.1 Normal procedures

The present subclause describes the procedures and TC primitives that shall be used for transmitting messages between AEs under normal operation.

The CAP, as TC-user, uses only the structured dialogue facility provided by TC. The following situations can occur when a message is sent between two PE:

- a dialogue shall be established: the TC-user issues a TC-BEGIN request primitive.
- a dialogue shall be maintained: the TC-user issues a TC-CONTINUE request primitive.
- a dialogue shall no longer be maintained: the TC-user issues a TC-END request primitive with either basic end or with pre-arranged end depending on the following conditions:
  - Basic End
    - In the case the dialogue is established, operations, leading to a termination of the relationship, can be transmitted by the FE with a TC-END request primitive (basic) in the case the FE is not interested in the reception of any ERROR or REJECT components for these sent operations. Once the FE dialogue resources have been released, any ERROR or REJECT components received for these operations will be discarded by TC as described in ETSI ETS 300 287-1 [22].
    - In the case that the dialogue is established and the FE has received an operation, leading to the termination of the relationship, does not wish to continue dialogue and there is no operation to be sent, a TC-END request primitive (basic) with zero components can be sent from the FE.
- Pre-arranged End

- Where an entity is interested in possible ERROR or REJECT messages on response to sent operations leading to a termination of the relationship, the dialogue is ended with a TC-END request primitive (pre-arranged end) after the last associated operation timer expires. The receiving entity can end the dialogue with a TC-END request primitive (pre-arranged end) after successful processing of these operations (i.e. the relationship is terminated).

- in general, the use of prearranged end shall be limited to the case for both communicating entities clearly recognizable that peer entity applies prearranged end. In all other cases, basic end shall be used.

14.1.1.2 Abnormal procedures

The present subclause describes the procedures and TC primitives that shall be used for reporting abnormal situations between AEs. The error cases are defined in clause 10.

The following primitives shall be used to report abnormal situations:

- operation errors, as defined in the CAP, are reported with TC-U-ERROR request primitive.
- rejection of a TC component by the TC-user shall be reported with TC-U-REJECT request primitive.
- when the FE detecting error or rejecting operation decides the termination of TC dialogue, TC-END request primitive (basic) with error or reject can be used for the termination of TC dialogue.
- when the gsmSSF or the gsmSRF detecting error or rejecting operation recognizes the possibility to continue dialogue, TC-CONTINUE request primitive with error or reject can be used for the continuation of TC dialogue.
- a dialogue shall be aborted by the TC-user with a TC-U-ABORT request primitive.

- on expiration of application timer Tssf or Tsrf, dialogue shall be terminated by means of by TC-U-ABORT primitive with an Abort reason, regardless of TC dialogue is established or not.

For abnormal situations detected by TC the same rules shall apply for reception of TC-R-REJECT indication as for transmission of TC-U-REJECT request and for transmission of TC-P-ABORT indication as for transmission of TC-U-ABORT request primitive.

The following rules shall be applied to terminate the TC dialogue under abnormal situations:

- in the case that abort condition is detected and TC dialogue is established, TC dialogue is terminated by TC-U-ABORT primitive with an Abort reason.
- in the case that abort condition is detected and TC dialogue is not established, TC dialogue is locally terminated by TC-U-ABORT primitive. (in the case such as application time out).

In error situations prearranged end shall not be used to terminate the TC dialogue. In the case any AE encounters an error situation the peer entity shall be explicitly notified of the error, if possible. If from any entity’s point of view the error encountered requires the relationship to be ended, then it shall close the dialogue via a TC-END request primitive with basic end or via a TC-U-ABORT request primitive, depending on whether any pending ERROR or REJECT component is to be sent or not.

In the case an entity receives a TC-END indication primitive and after all components have been considered, the FSM is not in a state to terminate the relationship, an appropriate internal error should be provided.

In cases when a dialogue needs to be closed by the initiating entity before its establishment has been completed (before the first TC indication primitive to the TC-BEGIN request primitive has been received from the responding entity), the TC-user shall issue a TC-END request primitive with prearranged end or a TC-U-ABORT request primitive. The result of these primitives will be only local, any subsequent TC indication received for this dialogue will be handled in accordance with the abnormal procedures as specified in ETSI ETS 300 287-1 [22]).

When the gsmSSF, gprsSSF or smsSSF receives multiple Operation components in a single TC Message and there is an error in the processing of one of these Operations, then the gsmSSF FSM, gprsSSF FSM or smsSSF FSM shall process the error and shall discard all Operation components in that TC Message of which the processing has not yet started.
14.1.1.3 Dialogue handling

14.1.1.3.1 Dialogue establishment

The establishment of a CAP dialogue involves two application processes as described in clause 1, one that is the dialogue-initiator and one that is the dialogue-responder.

This procedure is driven by the following signals:

- A TC-BEGIN request primitive from the dialogue-initiator.
- A TC-BEGIN indication primitive occurring at the responding side
- The first TC-CONTINUE indication primitive occurring at the initiating side or under specific conditions:
  - A TC-END indication primitive occurring at the initiating side
  - A TC-U-ABORT indication primitive occurring at the initiating side
  - A TC-P-ABORT indication primitive occurring at the initiating side

Sending of a TC-BEGIN request

Before issuing a TC-BEGIN request primitive, TC-USER shall store the AC-name and if present the user-information parameter.

TC-USER shall request the invocation of the associated operations using the TC-INVOKE service. See subclause 14.1.1.4.1 for a description of the invocation procedure.

After processing of the last invocation request, TC-USER shall issue a TC-BEGIN request primitive.

The initiator TC-USER then waits for a TC indication primitive and will not issue any other requests, except a TC-U-ABORT request or a TC-END request with the release method parameter set to "pre-arranged release".

Receipt of a TC-BEGIN indication

On receipt of a TC-BEGIN indication primitive, responder TC-USER shall:

- Analyse the application-context-name included in the primitive. If it is supported, then process any other indication primitives received from TC as described in subclause 14.1.1.4.1.
- If the application-context-name included in the primitive is not supported, then issue a TC-U-ABORT request primitive.

Receipt of the first TC-CONTINUE indication

On receipt of the first TC-CONTINUE indication primitive for a dialogue, TC-USER shall check the value of the application-context-name parameter. If this value matches the one used in the TC-BEGIN request primitive, then TC-USER shall process the following TC component handling indication primitives as described in subclause 14.1.1.4.1, otherwise it shall issue a TC-U-ABORT request primitive.

Receipt of a TC-END indication

On receipt of a TC-END indication primitive in the dialogue initiated state, TC-USER shall check the value of the application-context-name parameter. If this value match the one used in the TC-BEGIN request primitive, then the TC-USER shall process the following TC component handling indication primitives as described in subclause 14.1.1.4.1.

Receipt of a TC-U-ABORT indication

Receipt of a TC-U-ABORT indication primitive is described as part of user abort procedure (see 14.1.1.3.4.).

Receipt of a TC-P-ABORT indication

Receipt of a TC-P-ABORT indication primitive is described as part of provider abort procedure (see 14.1.1.3.5.).
14.1.1.3.2 Dialogue continuation

Once established the dialogue is said to be in a continuation phase.

Both application processes can request the transfer of CAP APDUs until one of them requests the termination of the dialogue.

Sending entity

TC-USER shall process any component handling request primitives as described in subclause 14.1.1.4.1.

After processing the last component handling request primitive, TC-USER shall issue a TC-CONTINUE request primitive.

Receiving entity

On receipt of a TC-CONTINUE indication primitive TC-USER shall accept zero, one or several TC component handling indication primitives and process them as described in subclause 14.1.1.4.1.

14.1.1.3.3 Dialogue termination

Both the dialogue-initiator and the dialogue-responder have the ability to request the termination of a dialogue after it has been established when no dialogue is to be established or when a dialogue is no longer to be maintained according to the rules as stated in subclauses 14.1.2.1.1 and 14.1.2.1.2.

The dialogue termination procedure is driven by the following events:

- A TC-END request primitive
- A TC-END indication primitive

Sending of TC-END request

When the dialogue shall no longer be maintained, TC-USER shall process any component handling request primitives as described in subclause 14.1.1.4.1

After processing the last component handling request primitive (if any), TC-USER shall issue a TC-END request primitive with the release method parameter set to "basic end" or "prearranged release", in accordance with the rules as stated in subclauses 14.1.2.1.1 and 14.1.2.1.2.

When no dialogue is to be established, refer to subclauses 14.1.1.3.1.

Receipt of a TC-END indication

On receipt of a TC-END indication primitive, the TC-USER shall accept any component handling indication primitives and process them as described in subclause 14.1.1.4.1.

After processing the last component handling primitive all dialogue related resources are released.

14.1.1.3.4 User abort

Both the dialogue-initiator and the dialogue-responder have the ability to abort a dialogue at any time.

The user abort procedure is driven by one of the following events:

- A TC-U-ABORT request primitive
- A TC-U-ABORT indication primitive

Sending of TC-U-ABORT request

After issuing a TC-U-ABORT request primitive, all dialogue related resources are released.

Receipt of a TC-U-ABORT indication

On receipt of a TC-U-ABORT indication all dialogue related resources are released.
14.1.1.3.5 Provider abort

TC has the ability to abort a dialogue at both the dialogue-initiator side and the dialogue-responder side.

The provider abort procedure is driven by the following event:

- A TC-P-ABORT indication primitive

*Receipt of a TC-P-ABORT indication*

On receipt of a TC-P-ABORT indication, all dialogue related resources are released.

14.1.1.3.6 Mapping to TC dialogue primitives

The TC-UNI service is not used by CAP.

The mapping of parameters onto the TC Dialogue services is as follows:

The use of parameters of the TC-BEGIN service is as defined in subclause 14.1.1.3.7 with the following qualifications:

- The Destination Address parameter of the TC-BEGIN service shall be set to the CAP address of the AE which is to respond to the TC-BEGIN service.

  NOTE 1: The address used in this parameter may be mapped by SCCP address translation to one of a number of alternative AEs.

- The AC Name parameter of the TC-BEGIN service shall be set according to the specific interface being used between the initiating AE and the responding AE.

- The Originating Address parameter of the TC-BEGIN service shall be set to the unambiguous CAP address of the AE initiating the TC-BEGIN service.

The use of parameters of the TC-CONTINUE service is as defined in subclause 14.1.1.3.7 with the following qualifications:

- The AC Name parameter of the TC-CONTINUE service shall be set to the value of the AC Name parameter of the TC-BEGIN service for the same TC Dialogue ID parameter value.

  - If present, the Originating Address parameter of the TC-CONTINUE service shall be set to the unambiguous CAP address of the AE initiating the TC-CONTINUE service. This parameter is present only in the first TC-CONTINUE service after a TC-BEGIN service with the same TC Dialogue ID parameter value.

The use of parameters of the TC-END service is as defined in subclause 14.1.1.3.7 with the following qualifications:

- The AC Name parameter of the TC-END service shall be set to the value of the AC Name parameter of the TC-BEGIN service for the same TC Dialogue ID parameter value. This parameter is present only if the TC-END service is used immediately after the TC-BEGIN service.

The use of parameters of the TC-U-ABORT service is as defined in subclause 14.1.1.3.7 with the following qualifications:

- The Abort Reason parameter of the TC-U-ABORT service shall be used as specified in ETSI ETS 300 287-1 [22].

- The AC Name parameter of the TC-U-ABORT service shall be set to the value used in the TC-BEGIN service.

  NOTE 2: This parameter is present only if the TC-U-ABORT is the immediate response to a TC-BEGIN indication.

The use of parameters of the TC-P-ABORT service is as defined in subclause 14.1.1.3.7 with the following qualifications:

- The P-Abort parameter of the TC-P-ABORT service is set by TC to indicate the reason why TC aborted the dialogue. It shall take the values as defined in ETSI ETS 300 287-1 [22].
14.1.1.3.7 Default mapping to TC dialogue parameters

Dialogue Id

The value of this parameter is associated with the CAP invocation in an implementation dependent manner. This parameter uniquely identifies a specific TC dialogue to a remote CAP AE for a CAP AE.

Application-context-name

The application-context-name parameter is set in accordance with the set of Operations which need to be supported by the TC dialogue. The defined AC Names can be found in clauses 6 to 8.

User information

This parameter may be used by both initiating and responding application processes. This parameter shall be used for the CAP-GPRS-ReferenceNumber as defined in 14.1.7. For interfaces other than the gprsSSF-gsmSCF interface and for SMS related messages (as in subclauses 14.1.3, 14.1.4 and 14.1.5) the receiving side may ignore this parameter if received. The User Information parameter shall be encoded in accordance with the definition provided in ITU-T Recommendation Q.773 [46], subclause 3.2, and the definition of EXTERNAL type provided in ITU-T Recommendation X.690 [57], with the restriction that:

- a size (1..10) constraint of SEQUENCE OF EXTERNAL;
- an Object Identifier shall always be present to identify the user information and the entity which sent it;
- a single-ASN-1-type is used for encoding.

For the use of CAP defined TC-U-Abort reason, see the ASN.1 notation in the subclause 5.7.

For the use of CAP defined CAP-GPRS-ReferenceNumber, see subclause 14.1.7. For the abstract syntax of CAP defined CAP-GPRS-ReferenceNumber, see the ASN.1 notation in the subclause 8.1.

Component present

This parameter is used by TC-USER as described in ETSI ETS 300 287-1 [22].

Termination

The value of the release method parameter of the TC-END request primitive is set by TC-USER according to the rules as stated in subclauses 14.1.2.1.1 and 14.1.2.1.2.

Quality of service

The quality of service of TC request primitives is set by the TC-USER to the following value:

- Sequencing requested;
- return option, this parameter is set by TC-USER in an implementation dependent manner.

14.1.1.4 Component handling

14.1.1.4.1 Procedures for CAP Operations

The present subclause describes the procedures for CAP Operations.

Operation invocation

TC-USER shall build an operation argument from the parameters received and request the invocation of the associated operation using the TC-INVOK procedure. If a linked ID parameter is inserted in the primitive, then this indicates a child operation and implies that the operation is linked to a parent operation.
Operation invocation receipt

On receipt of a TC-INVOKE indication primitive, TC-USER shall:

- If the operation code does not correspond to an operation supported by the application-context, then request the transfer of a reject component using the TC-U-REJECT request primitive, with the appropriate problem code (unrecognized operation);

- If a linked ID is included, then perform the following checks: If the operation referred to by the linked ID does not allow linked operations or if the operation code does not correspond to a permitted linked operation, or if the parent operation invocation is not active, then request the transfer of a reject component using the TC-U-REJECT request primitive, with the appropriate problem code (linked response unexpected or unexpected linked operation);

- If a linked ID is not included, but a Linked ID is needed to correlate the indication primitive with a parent operation invocation, then request the transfer of a reject component using the TC-U-REJECT request primitive, with the appropriate problem code (mistyped parameter);

- If the type of the argument is not the one defined for the operation, then request the transfer of a reject component using the TC-U-REJECT request primitive, with the appropriate problem code (mistyped parameter);

- If the operation cannot be invoked because the CAP related dialogue is about to be released, then request the transfer of a reject component using the TC-U-REJECT request primitive with the problem code (Initiating Release);

- If sufficient CAP related resources are not available to perform the requested operation, then request the transfer of a reject component using the TC-U-REJECT request primitive with the problem code (Resource Limitation);

- Otherwise, accept the TC-INVOKE indication primitive. If the operation is to be user confirmed, then TC-USER waits for the corresponding response.

Operation Response

For user confirmed operations, TC-USER shall:

- If no error indication is included in the response to a class 1 or 3 operation, then construct a result information element from the parameters received and request its transfer using the TC-RESULT-L service.

- If an error indication is included in the response to a class 1 or 2 operation, then construct an error parameter from the parameters received and request its transfer using the TC-U-ERROR request primitive.

Receipt of a response

On receipt of a TC-RESULT-NL indication, TC-USER shall:

- Request the transfer of a reject component using the TC-U-REJECT request primitive, with the appropriate problem code (mistyped parameter).

On receipt of a TC-RESULT-L indication, TC-USER shall:

- If the type of the result parameter is not the one defined for the result of this operation, request the transfer of a reject component using the TC-U-REJECT request primitive, with the appropriate problem code (mistyped parameter);

- Otherwise, accept the TC-RESULT-L indication primitive.

On receipt of a TC-U-ERROR indication, TC-USER shall:

- If the error code is not defined for the TC-USER or is not one associated with the operation referred to by the invoke ID, request the transfer of a reject component using the TC-U-REJECT request primitive, with the appropriate problem code (unrecognized error or unexpected error);

- If the type of the error parameter is not the one defined for this error, request the transfer of a reject component using the TC-U-REJECT request primitive, with the appropriate problem code (mistyped parameter);

- Otherwise, accept the TC-U-ERROR indication primitive.
On receipt of a TC-U-REJECT indication primitive which affects a pending operation, TC-USER shall:
  - accept the TC-U-REJECT indication primitive.

On receipt of a TC-L-REJECT indicating "return result problem, return error unexpected", TC-USER shall inform the application process.

On receipt of a TC-L-REJECT indicating "return error problem, return error unexpected", TC-USER shall inform the application process.

This event occurs when the local TC detects a protocol error in an incoming component which affects an operation.

When the problem code indicates a general problem, it is considered that the event cannot be related to an active operation even if the invoke Id is provided by TC. This is because it is unclear whether the invoke Id refers to a local or remote invocation. The behaviour of TC-USER in such a case is described in the subclause headed "other events".

On receipt of a TC-L-CANCEL indication, the TC-USER shall:
  - If the associated operation is a class 1 operation, inform the application process;
  - If the associated operation is a class 2 operation and no linked operations are defined for this operation, ignore the primitive;
  - If the associated operation is a class 2 operation and has linked operations but none of them has been invoked, inform the application process;
  - If the associated operation is a class 2 operation and a linked operation invocation has already been received in response to this operation, ignore the primitive;
  - If the associated operation is a class 3 operation, inform the application process;
  - If the associated operation is a class 4 operation, ignore the primitive;

Other events

This subclause describes the behaviour of TC-USER on receipt of a component handling indication primitive which cannot be related to any operation or which does not affect a pending one.

On receipt of a TC-U-REJECT indication primitive which does not affect an active operation (i.e. indicating a return result or return error problem), it is up to the application process to abort, continue or terminate the dialogue, if not already terminated by the sending application process according to the rules as stated in subclause 14.1.2.1.2. This is also applicable for invoke problems related to a class 4 linked operation.

On receipt of a TC-R-REJECT indication (i.e. when a protocol error has been detected by the peer TC entity) which does not affect an active operation, it is up to the application process to abort, continue or terminate the dialogue, if not already terminated by the sending application process according to the rules as stated in subclause 14.1.2.1.2.

On receipt of a TC-L-REJECT indication primitive (i.e. when a protocol error has been detected by the local TC entity) which cannot be related to an active operation, it is up to the application process to continue, or to terminate the dialogue and implicitly trigger the transmission of the reject component or to abort the dialogue.

On receipt of a TC-NOTICE indication primitive, which informs the TC-USER that a message cannot be delivered by the Network Layer, it is for the application process to decide whether to terminate the dialogue or retry.

This primitive can occur only if the Return Option has been set (see subclause 14.1.1.3.6).

14.1.1.4.2 Mapping to TC component primitives

The mapping of parameters onto the TC Component services is as follows:

The TC-U-CANCEL service is not used.

The TC-RESULT-NL service is not used.

The use of parameters of the TC-INVOKE service is as defined in subclause 14.1.1.4.3 with the following qualifications:
- The Operation parameter of the TC-INVOKE service shall contain the \texttt{operation.\&operationCode} value of the CAP Operation to be invoked. The operation must be one of the valid operations supported by the AC for the TC dialogue and must be invokable by the local AE.

- The Parameters parameter of the TC-INVOKE service shall contain a value of the \texttt{operation.\&ArgumentType} value for the operation being invoked, as specified by the Operation parameter.

The use of parameters of the TC-RESULT-L service is as defined in subclause 14.1.1.4.3 with the following qualifications:

- The \texttt{Invoke Id} parameter of the TC-RESULT-L service shall be set to the value of the Invoke \texttt{Id} parameter of the TC-INVOKE service from the remote AE to which a result is being sent.

- The Operation parameter of the TC-RESULT-L service shall be set to the value of the Operation parameter of the TC-INVOKE service from the remote AE which contains the same Invoke \texttt{Id} Parameter value.

- The Parameters parameter of the TC-RESULT-L service shall contain the \texttt{operation.\&ResultType} value for the operation result, as specified by the Operation parameter.

The use of parameters of the TC-U-ERROR service is as defined in subclause 14.1.1.4.3 with the following qualifications:

- The \texttt{Invoke Id} parameter of the TC-U-ERROR service shall be set to the value of the Invoke \texttt{Id} parameter of the TC-INVOKE service from the remote AE to which an error is being sent.

- The Error parameter of the TC-U-ERROR service shall be set to the value of the \texttt{error.\&errorCode} of the error to be sent. It must be one of the errors which is expected for the invoked operation as defined in the \texttt{operation.\&Errors} specification.

- The Parameters parameter of the TC-U-ERROR service shall be set to the value of the \texttt{error.\&ParameterType} of the error to be sent, as identified by the Error parameter.

The use of parameters of the TC-U-REJECT service is as defined in subclause 14.1.1.4.3 with the following qualifications:

- The \texttt{Invoke Id} parameter of the TC-U-REJECT service shall be set to the Invoke \texttt{Id} Parameter of the TC component service from the remote AE which is being rejected.

The use of parameters of the TC-L-CANCEL service is as defined in subclause 14.1.1.4.3.

14.1.1.4.3 Default mapping to TC component parameters

\textit{Invoke Id}

This parameter is set by the sending application process. It represents the unique identity of an instance of an operation which is invoked by an AE within a specific TC dialogue. The TC dialogue is identified by the Dialogue \texttt{Id} parameter.

\textit{Linked Id}

This parameter is set by the sending application process. It represents the \texttt{Invoke Id} of an operation which was received from the remote AE for a specific TC dialogue to which the operation being invoked by the local AE is to be linked. This parameter is present only if the original operation invoked by the remote AE is defined as having linked operations. The type of local operation invoked must be the same type as one of the operations defined as being linked.

\textit{Dialogue Id}

The value of this parameter is associated with the CAP invocation in an implementation dependent manner. It represents the identity of the established TC dialogue which will carry the component services between the local AE and the remote AE.

\textit{Class}

The value of this parameter is set according to the type of the operation to be invoked according to the operation definitions in clauses 6 through 8.
Time out
The value of this parameter is set according to the type of operation invoked.

Last component
This parameter is used as described in ETSI ETS 300 287-1 [22].

Problem code
This parameter is used as described in subclause 14.1.1.4.1.

Abort reason
This parameter is used by TC-USER, and attributes and coding are specified by network operator.

14.1.2 gsmSSF-gsmSCF interfaces

14.1.2.1 Normal procedures

14.1.2.1.1 gsmSSF-to-gsmSCF messages

The present subclause defines the normal procedures for TC messages from the gsmSSF to the gsmSCF.

gsmSSF FSM related messages

A dialogue shall be established when the gsmSSF FSM transits from the state "Idle" to the state "Waiting_for_Instructions".

The CAP Operation InitialDP shall be sent with a TC-BEGIN request primitive.

When the dialogue was opened with InitialDP or InitiateCallAttempt operation then the gsmSSF shall maintain the dialogue when sending the SpecializedResourceReport operation indicating the announcement complete for PlayAnnouncement regardless of the fact whether the disconnectFromIPForbidden parameter was set to true or false.

For all other operations sent from the gsmSSF FSM, the dialogue shall be maintained except for the following cases.

When the gsmSSF FSM executes a non-error case state transition to the state "Idle" and there is one or more pending operation and TC dialogue is established, TC dialogue can be terminated by TC-END primitive with component(s).

When the gsmSSF sends the last EventReportBCSM, ApplyChargingReport or CallInformationReport the dialogue may be ended from the gsmSSF by a TC-END request primitive with basic end.

In the case that there is no pending operation and TC dialogue is established, TC dialogue can be terminated by TC-END primitive with zero component or prearranged end. When the gsmSSF FSM makes a non-error case state transition to the state "Idle" and there is no operation to be sent, the dialogue is ended by means of a TC-END request primitive (basic) with zero components, or the dialogue is locally ended by means of a TC-END request primitive with prearranged end.

In the case where a call release is initiated by any other entity than a gsmSCF, the gsmSSF can end a dialogue with a TC-END request primitive with zero component or prearranged end if a TC dialogue is established and the gsmSSF has no pending call information requests (or pending requests which should be treated in the same way, see subclause 14.1.1.1) nor any armed EDP.

When the gsmSSF has sent the last EventReportBCSM, ApplyChargingReport or CallInformationReport the dialogue may be ended from the gsmSCF by a TC-END request primitive with basic end.

Assisting gsmSSF FSM related messages

A dialogue shall be established when the assisting gsmSSF FSM transits from the state "Idle" to the state "Waiting_for_Instructions". The AssistRequestInstructions operation shall be transmitted with a TC-BEGIN request primitive.

For all other operations sent from the assisting gsmSSF FSM, the dialogue shall be maintained except for the following cases.
When the assisting gsmSSF FSM makes a non-error case state transition to the state "Idle" and there is one or more pending operation and TC dialogue is established, TC dialogue can be terminated by TC-END primitive with component(s).

In the assisting gsmSSF case the same rules apply as for the gsmSRF as specified for the SpecializedResourceReport operation in subclause 14.1.3.1.1.

In the case that there is no pending operation and TC dialogue is established, TC dialogue can be terminated by TC-END primitive with zero component or prearranged end. When the assisting gsmSSF FSM makes a non-error case state transition to the state "Idle" and there is no operation to be sent, the dialogue is ended by means of a TC-END request primitive (basic) with zero components, or the dialogue is locally ended by means of a TC-END request primitive with prearranged end.

gsmSSME FSM related messages

The following procedures shall be followed:

- The dialogue shall be maintained when the ActivityTest Return Result is sent.

14.1.2.1.2 gsmSCF-to-gsmSSF messages

The present subclause defines the normal procedures for TC messages from the gsmSCF to the gsmSSF.

SCSM-FSM related messages

A dialogue shall be established when the SCSM-FSM receives an InitialDP operation for TDP-R or an AssistRequestInstructions operation, or sends an InitiateCallAttempt operation.

For subsequent operations sent from the SCSM-FSM, the dialogue shall be maintained except for the following cases:

The dialogue shall no longer be maintained when the prearranged end condition is met in the gsmSCF. When the gsmSCF does not expect any messages other than possibly REJECT or ERROR messages for the operations sent and when the last associated operation timer expires, the dialogue is locally ended by means of a TC-END request primitive with prearranged end.

Alternatively, the sending of operations, leading to the termination of the relationship, by means of a TC-END request primitive (basic end) is possible.

SCME-FSM related messages

The operations sent from the SCME-FSM shall be issued according to the following procedures:

- The dialogue shall be maintained when the ActivityTest operation is sent.

- For sending one or more CallGap operations, the SCME FSM shall use an existing SCSM FSM associated dialogue which was initiated by a gsmSSF FSM (i.e. established for the transmission of the InitialDP operation). The dialogue shall be maintained.

14.1.2.1.3 smsSSF -to-gsmSCF SMS related messages

A dialogue shall be established when the smsSSF has finalised trigger processing and transits to the state "Waiting_for_Instructions". The relevant CAP Operation, which can be the InitialDPSMS operation only, shall be transmitted in the same message.

For all other operations sent from the smsSSF, the dialogue shall be maintained.

The dialogue shall no longer be maintained when the prearranged end condition is met in the smsSSF. When the smsSSF makes a state transition to the state "Idle", the dialogue is locally ended by means of a TC-END request primitive with prearranged end.

When the smsSSF FSM transits to the state "Idle", but no event was reported to the gsmSCF, then the smsSSF shall send TC-END with zero components to the gsmSCF.

When the smsSSF has sent the last EventReportSMS operation the dialogue may be ended from the gsmSCF by a TC-END request primitive with basic end. If the smsSSF decides to apply basic end, then it shall send TC-END with zero components.
14.1.2.1.4 gsmSCF-to-smsSSF SMS related messages

All operations are sent after a dialogue was established from the smsSSF (the gsmSCF has previously received a TC-BEGIN indication primitive with an InitialSMSEvent operation).

The dialogue shall no longer be maintained when the prearranged end condition is met in the gsmSCF. When the gsmSCF does not expect any messages other than possibly REJECT or ERROR messages for the operations sent and when the last associated operation timer expires, the dialogue is locally ended by means of a TC-END request primitive with prearranged end.

Alternatively, the sending of operations, leading to the termination of the control relationship, by means of a TC-END request primitive (basic end) is possible.

14.1.2.1.5 Use of dialogue handling services

Dialogue handling services are used to trigger the sending of the APDUs associated with the operations involved in the CAP packages.

Component grouping is performed under the control of the application-process through an appropriate usage of the TC-BEGIN, TC-CONTINUE and TC-END service.

14.1.2.2 Abnormal procedures

The following procedures also apply to the gsmSCF-gsmSRF interfaces.

14.1.2.2.1 gsmSCF-to-gsmSSF/gsmSRF messages

Considering that gsmSSF and gsmSRF do not have the logic to recover from error cases detected on the gsmSCF-gsmSSF/gsmSRF interface, the following shall apply:

- Operation errors and rejection of TC components shall be transmitted to the gsmSSF and, respectively, the gsmSRF with a TC-END request primitive, basic end.

If, in violation of the above procedure, an ERROR or REJECT component is received with a TC-CONTINUE indication primitive, then the gsmSSF and, respectively, the gsmSRF shall abort the dialogue with a TC-U-ABORT request primitive.

14.1.2.2.2 gsmSSF/gsmSRF/-to-gsmSCF messages

Operation errors and rejection of TC components shall be transmitted to the gsmSCF according to the following rules:

- The dialogue shall be maintained when the preceding message, which contained the erroneous component, indicated that the dialogue shall be maintained. I.e. the error or reject shall be transmitted with a TC-CONTINUE request primitive if the erroneous component was received with a TC-CONTINUE indication primitive.
  On receipt of an ERROR or REJECT component the gsmSCF decides on further processing. It may either continue, explicitly end or abort the dialogue.

- When the gsmSSF has received and processed InitiateCallAttempt and has acknowledged InitiateCallAttempt with InitiateCallAttempt-RESULT, then a User Error resulting from an erroneous component that is contained in the same TC_Begin message as InitiateCallAttempt, shall be transmitted with a TC-CONTINUE indication primitive.

- In all other situations the dialogue shall no longer be maintained. I.e. the error or reject shall be transmitted with a TC-END request primitive, basic end, if the erroneous component was received with a TC-BEGIN indication primitive.

- on expiration of application timer Tssf or Tsrf, dialogue shall be terminated by means of by TC-U-ABORT primitive with an Abort reason, regardless of TC dialogue is established or not.

If the error processing in the gsmSSF or gsmSRF leads to the case where the gsmSSF or gsmSRF is not able to process further gsmSCF operations while the dialogue is to be maintained, then the gsmSSF or gsmSRF aborts the dialogue
with a TC-END request primitive with basic end or a TC-U-ABORT request primitive, depending on whether any pending ERROR or REJECT component is to be sent or not.

The gsmSSF can end a dialogue with a TC-U-ABORT request primitive in the case that call release is initiated by any other entity then the gsmSCF and the gsmSSF has no pending call information requests (or pending requests which should be treated in the same way, i.e., ApplyCharging nor any armed EDP to notify the gsmSCF of the call release (for alternative way, see subclause 14.1.2.1.1).

14.1.2.2.3 gsmSCF-to-smsSSF SMS related messages

Considering that the smsSSF does not have the logic to recover from error cases detected on the gsmSCF-smsSSF interface, the following shall apply:

- operation errors and rejection of TC components shall be transmitted to the smsSSF with a TC-END request primitive, basic end.

If, in violation of the above procedure, an ERROR or REJECT component is received with a TC-CONTINUE indication primitive, then the smsSSF shall abort the dialogue with a TC-U-ABORT request primitive.

14.1.2.2.4 smsSSF-to-gsmSCF SMS related messages

Operation errors and rejection of TC components shall be transmitted to the gsmSCF according to the following rules:

- the dialogue shall be maintained when the preceding message, which contained the erroneous component, indicated that the dialogue shall be maintained. I.e. the error or reject shall be transmitted with a TC-CONTINUE request primitive if the erroneous component was received with a TC-CONTINUE indication primitive;
- on receipt of an ERROR or REJECT component the gsmSCF decides on further processing. It may either continue, explicitly end or abort the dialogue;

If the error processing in the smsSSF leads to the case where the smsSSF is not able to process further gsmSCF operations while the dialogue is to be maintained, then the smsSSF aborts the dialogue with a TC-U-ABORT request primitive.

The smsSSF aborts a dialogue with a TC-U-ABORT request primitive if release is initiated by any other entity than the gsmSCF and the smsSSF has no armed EDPs to notify the gsmSCF.

14.1.2.2.5 Use of dialogue handling services

On receipt of a TC-U-REJECT.ind in the FE, this primitive should be ignored. It is up to the application process to abort, continue or terminate the dialogue, if not already terminated by the sending application process according to the rules as stated in subclause 14.1.1.2. This is also applicable for invoke problems related to a class 4 linked operation.

A TC-U-REJECT.req should be sent followed by a TC-CONTINUE.req.

On receipt of a TC-R-REJECT.ind in the FE, this primitive should be ignored. It is up to the application process to abort, continue or terminate the dialogue, if not already terminated by the sending application process according to the rules as stated in subclause 14.1.1.2. This is also applicable for invoke problems related to a class 4 linked operation.

On receipt of a TC-L-REJECT indication primitive (i.e. when a protocol error has been detected by the local TC entity) which cannot be related to an active operation, it is up to the application process to continue or to terminate the dialogue and implicitly trigger the transmission of the reject component or to abort the dialogue.

On receipt of a TC-NOTICE indication the TC-USER is informed that a message cannot be delivered by the Network Layer. It occurs if the Return Option has been set (see subclause 14.1.1.3.7). It is for the application process to decide whether to terminate the dialogue or retry.

The application-process is the sole user of the TC-P-ABORT service and TC-NOTICE service.

The receipt of a TC-U-ABORT-Ind or TC-P-ABORT-Ind on a dialogue terminates all request processing.
14.1.2.3 Dialogue handling

14.1.2.3.1 Dialogue establishment

14.1.2.3.2 Dialogue continuation

14.1.2.3.3 Dialogue termination

14.1.2.3.4 User abort

14.1.2.3.5 Provider abort

14.1.2.3.6 Mapping to TC dialogue primitives

The gsmSSF-gsmSCF IN services can be mapped onto TC services. The present subclause defines the mapping of the gsmSSF-gsmSCF IN services onto the services of the TC dialogue handling services defined in ETSI ETS 300 287-1 [22].

a) The TC-BEGIN service is used to invoke the operations of the gsmSCF-gsmSSF connection packages as defined in clause 6.

b) The TC-CONTINUE service is used to report the success of the operations invoked in a TC-BEGIN service and to invoke or respond to any other operations.

c) The TC-U-ABORT service is used to report the failure of operations of the connection packages as defined in clause 6.

The mapping of the parameters onto the TC-BEGIN primitive is defined in subclause 14.1.1.3.6 with the following qualifications:

- The AC Name parameter shall take the value of the application-context-name field of the cap3-sms-AC object if the initiating AE is a gsmSSF.

The mapping of the parameters onto the TC-CONTINUE primitive is defined in subclause 14.1.1.3.6.

The mapping of the parameters onto the TC-U-ABORT primitive is defined in subclause 14.1.1.3.6 with the following qualifications:

- The Application-Context-Name parameter shall be used as specified in ETSI ETS 300 287-1 [22]. When the responding AE refuses a dialogue because the application-context-name it receives is not supported, this parameter shall have the value of the application-context-name field of the cap3-sms-AC object if the responding AE is a gsmSCF.

The use of the parameters of the TC-END service is defined in subclause 14.1.1.3.6.

14.1.2.4 Component Handling

14.1.2.4.1 Procedures for CAP Operations

The CAP ASEs are users of the TC component handling services except for the TC-L-REJECT and TC-L-CANCEL services which are used by the application-process. Receipt of a TC-L-REJECT-Ind leads the application-process to abandon the dialogue (i.e. it issues a TC-U-ABORT-Request primitive).

The TC-U-CANCEL service is never used.

14.1.2.4.2 Mapping to TC component parameters

The gsmSSF-gsmSCF IN ASE services are mapped onto the TC component handling services. The mapping of operations and errors onto TC services is defined in subclause 14.1.1.4.2 with the following qualifications:

The timeout parameter of the TC-INVOKE-Req primitives is set according to clause 6.
14.1.3 gsmSCF-gsmSRF interface

14.1.3.1 Normal procedures

14.1.3.1.1 gsmSCF-to/from-gsmSRF messages

A dialogue is established when the gsmSRF sends an AssistRequestInstructions operation to the gsmSCF. For all other operations sent to/from the gsmSRF, the dialogue shall be maintained.

In the case that there is no pending operation and TC dialogue is established, TC dialogue can be terminated by TC-END primitive with zero component. When the SCSM makes a non-error case state transition to end-user interaction and there is no operation to be sent, the dialogue is ended by means of a TC-END request primitive (basic) with zero components.

When the dialogue is opened with the AssistRequestInstructions operation then the gsmSRF shall no longer maintain the dialogue when sending the SpecializedResourceReport operation indicating announcement complete for PlayAnnouncement with disconnectFromIPForbidden parameter was set to false or Return Result of the PromptAndCollectUserInfo operation with disconnectFromIPForbidden parameter was set to false. The dialogue is ended by means of a TC-END request primitive with basic end, and the SpecializedResourceReport operation is transmitted with the same request.

Regardless of whether pending operation exists or not, when the SRSM-FSM is informed of the disconnection of bearer connection (in the case of gsmSCF initiated disconnection or call abandon from call party) and dialogue is established, the dialogue is ended by means of a TC-END request primitive (basic) with zero components or TC-END request primitive (prearranged end).

The dialogue shall no longer be maintained when the prearranged end condition is met in the gsmSRF. When the SRSM-FSM is informed the disconnection of bearer connection and TC dialogue is not established, TC dialogue is locally terminated by TC-END primitive with prearranged end.

When the gsmSCF does not expect any messages other than possibly REJECT or ERROR messages for the operations sent and when the last associated operation timer expires, the dialogue is locally ended by means of a TC-END request primitive with prearranged end. Alternatively, the sending of operations, leading to the termination of the relationship, by means of a TC-END request primitive (basic end) is possible.

In the relay case, the gsmSRF-gsmSCF relationship uses the gsmSSF-gsmSCF TC dialogue. This is possible, because begin and end of the gsmSRF-gsmSCF relationship are embedded in the gsmSSF-gsmSCF relationship. gsmSRF-gsmSCF information shall be exchanged with TC-CONTINUE request primitives.

14.1.3.1.2 Abnormal procedures

14.1.3.1.3 Dialogue handling

14.1.3.1.3.1 Dialogue establishment

14.1.3.1.3.2 Dialogue continuation

14.1.3.1.3.3 Dialogue termination

14.1.3.1.3.4 User abort

14.1.3.1.3.5 Provider abort

14.1.3.1.3.6 Mapping to TC dialogue primitives

The gsmSCF-gsmSRF IN services can be mapped onto TC services. The present subclause defines the mapping of the gsmSCF-gsmSRF IN services onto the services of the TC dialogue handling services defined in ETSI ETS 300 287-1 [22].
a) The TC-BEGIN service is used to invoke the operations of the gsmSRF-gsmSCF connection packages as defined in clause 6.

b) The TC-CONTINUE service is used to report the success of the operations invoked in a TC-BEGIN service and to invoke or respond to any other operations.

c) The TC-U-ABORT service is used to report the failure of operation of the gsmSCF-gsmSRF operations packages as defined in clause 6.

The mapping of parameters onto the TC Dialogue services is as defined in subclause 14.1.1.3.6 with the following qualifications:

The mapping of the parameters onto the TC-BEGIN primitive is defined in subclause 14.1.1.3.6 with the following qualifications:

- The AC Name parameter shall take the value of the application-context-name field of the gsmSRF-gsmSCF-ac object.

14.1.3.2 Component handling

14.1.3.2.1 Procedures for CAP Operations

14.1.3.2.2 Mapping to TC component parameters

The mapping of parameters for the TC component services is defined in subclause 14.1.1.4.2 with the following qualifications.

The Timeout Parameter of the TC-INVOKE service is set according to clauses 6.

14.1.4 gprsSSF-gsmSCF interface

14.1.4.1 Normal procedures

14.1.4.1.1 TC-dialogues and relationships

The GPRS dialogue can consist of multiple consecutive TC-dialogues. A GPRS dialogue is identified by a GPRS-ReferenceNumber consisting of the originationReference and the destinationReference. One GPRS-Reference is assigned by the SGSN and shall be unique within this SGSN. The other GPRS-Reference is assigned by the gsmSCF and shall be unique within this gsmSCF.

The TC-dialogues are closed and (re)opened whenever necessary.

14.1.4.1.2 Use of the GPRS Reference

For the use of CAP defined GPRS-ReferenceNumber, see also the ASN.1 notation in the subclause 8.1.

When the gprsSSF sends the first operation for a new GPRS dialogue (InitialDPGPRS), the gprsSSF shall include a GPRS Reference Number in the TC message. This GPRS Reference Number shall consist of the SGSN Process Id as originationReference, which is internally allocated by the gprsSSF. This number is used by the gprsSSF to associate an incoming TC message with an internal GPRS Process.

When the gsmSCF has received the InitialDPGPRS operation, it shall store the SGSN Process ID and allocate an SCF Process Id which is used by the gsmSCF to associate an incoming TC message with an internal gsmSCF Process.

The gsmSCF shall include the GPRS Reference Number in the first TC-CONTINUE message, SGSN Process Id in destinationReference and SCF Process Id in originationReference, returned to the gprsSSF.

When the gprsSSF receives the first TC message from the gsmSCF for this GPRS dialogue, the gprsSSF shall store the gsmSCF Process Id together with the SGSN Process Id.
From here onwards all the TC messages that open a new TC dialogue shall include the GPRS Reference Number consisting of the originationReference and the destinationReference to associate the internal process in the origination entity and the destination entity, respectively, until the end of the relationship between these processes.

For any TC-CONTINUE in the existing TC dialogue, transporting the GPRS Reference Number is not needed except for the first response after the InitialDPGPRS operation.

### 14.1.4.1.3 gprsSSF-to-gsmSCF messages

The present subclause defines the normal procedures for TC messages from the gprsSSF to the gsmSCF.

#### gprsSSF FSM related messages

A GPRS dialogue and a TC dialogue shall be established when the gprsSSF FSM transits from the state "Idle" to the state "Waiting_for_Instructions". The InitialDPGPRS operation shall be transmitted in the same TC message, i.e. TC-BEGIN. It shall contain the GPRS-Reference as assigned by the SGSN in the originationReference. The gprsSSF may initiate the subsequent TC dialogues for this GPRS dialogue with the following operations:

- ApplyChargingReportGPRS
- EntityReleasedGPRS
- EventReportGPRS

For the establishment of a new TC dialogue within the context of the current GPRS dialogue, the gprsSSF may apply one of the following mechanisms:

1. the gprsSSF shall memorise the gsmSCF address used in the first response message to the InitialDPGPRS and use it to open the new TC dialogue;
2. the gprsSSF shall use the gsmSCF address from GPRS-CSI to open the new TC dialogue.

The gsmSCF shall memorise the gprsSSF address received along with the InitialDPGPRS and use it for the opening of new TC dialogues within the context of the current GPRS dialogue.

The gsmSCF may open subsequent TC dialogues with the following CAP Operations:

- ActivityTestGPRS;
- ApplyChargingGPRS;
- CancelGPRS;
- FurnishChargingInformationGPRS;
- ReleaseGPRS;
- RequestReportGPRSEvent;
- SendChargingInformationGPRS.

The CAP Operation that opens a TC dialogue shall be sent with a TC-BEGIN request primitive. This message shall contain the GPRS-ReferenceNumber assigned by the sender of this message in the originationReference. If the operation opens a subsequent TC dialogue, then this message shall contain also the previously received destinationReference. If an operation opens a GPRS dialogue, then the TC message reply shall contain the originationReference as assigned by the sender, i.e. the gsmSCF.

The TC dialogue shall be closed for the idle periods, i.e. when the gprsSSF FSM transits from the state "Waiting_for_Instructions" to the state "Idle", if the gprsSSF FSM is in the state "Monitoring" and has received all replies or time-outs for the operations sent, after standalone operations of the gsmSCF in Monitoring state if gprsSSF FSM does not transit to the state "Idle" (ActivityTestGPRS, ApplyChargingGPRS, CancelGPRS, FurnishChargingInformationGPRS, RequestReportGPRSEvent, SendChargingInformationGPRS), or at the end of a GPRS dialogue.

Each TC dialogue shall be terminated by the gprsSSF using TC-END (basic end). The following operations can cause the end of the GPRS dialogue:
- ContinueGPRS;
- ConnectGPRS;
- ApplyChargingReportGPRS result;
- EntityReleasedGPRS result;
- EventReportGPRS (EDP-N) result;
- CancelGPRS;
- ReleaseGPRS;
- RequestReportGPRSEvent (disarming of DPs).

When the gprsSSF FSM makes a non-error case state transition to the state "Idle" and there is one or more pending operation and TC dialogue is established, TC dialogue may be terminated by TC-END primitive with zero component(s) after all pending operations have been sent. When the gprsSSF sends the last EventReportGPRS, EntityReleasedGPRS or ApplyChargingReportGPRS, then after reception of the result or error, the GPRS dialogue may be ended from the gprsSSF by a TC-END request primitive with basic end.

In the case that there is no pending operation, result nor error, and TC dialogue is established, TC dialogue shall be terminated by a TC-END primitive with zero component.

In the case where a PDP Context release or detach is initiated by any other entity than a gsmSCF, the gprsSSF shall end a GPRS dialogue with the EntityReleasedGPRS operation if the gprsSSF has no armed DP to report nor pending ApplyChargingReportGPRS which should reported.

In the case of overlapping dialogues for the same GPRS dialogue the gsmSCF opened TC dialogue is aborted by the gprsSSF with the abort reason overlapping-dialogue as specified in subclause 5.7. This abort reason is used to indicate to the gsmSCF that a specific instance already has a TC dialogue open. It is typically obtained when both the gsmSCF and gprsSSF open a new dialogue at the same time. While the gprsSSF waits for a response to an operation sent in TC-BEGIN it may receive an operation from the gsmSCF in TC-BEGIN. In such cases the dialogue opened by the gprsSSF is maintained and the dialogue opened by the gsmSCF is aborted with this abort reason.

gprsSSME FSM related messages

The following procedures shall be followed:
- The TC dialogue shall be terminated by a TC-END primitive with zero components after the ActivityTestGPRS Return Result is sent.

14.1.4.1.4 gsmSCF-to-gprsSSF messages

The present subclause defines the normal procedures for TC messages from the gsmSCF to the gprsSSF.

In the case of overlapping dialogues for the same relationship the gsmSCF opened dialogue is closed by the gprsSSF as specified in subclause 5.7. The gsmSCF shall first respond normally to the operations sent by the gprsSSF, and then decide on the further actions.

SCME-FSM related messages

The operations sent from the SCME-FSM shall be issued according to the following procedures:
- A new subsequent TC dialogue is established when the ActivityTestGPRS operation is sent.

14.1.4.2 Abnormal procedures

14.1.4.2.1 gsmSCF-to-gprsSSF messages

The present subclause defines the abnormal procedures for TC messages from the gsmSCF to the gprsSSF.

Considering that the gprsSSF does not have the logic to recover from error cases detected on the gsmSCF-gprsSSF interface, the following shall apply:
- Operation errors and rejection of TC components shall be transmitted to the gprsSSF with a TC-END request primitive, basic end.

- The GPRS dialogue shall be closed.

- The gprsSSF shall apply Default GPRS Handling from the valid CSI to the PDP Context or GPRS Session.

If, in violation of the above procedure, an ERROR or REJECT component is received with a TC-CONTINUE indication primitive, then the gprsSSF shall abort the dialogue with a TC-U-ABORT request primitive and shall apply Default GPRS Handling from the valid CSI to the PDP Context or GPRS Session.

14.1.4.2.2 gprsSSF-to-gsmSCF messages

The present subclause defines the abnormal procedures for TC messages from the gprsSSF to the gsmSCF.

Operation errors and rejection of TC components shall be transmitted to the gsmSCF according to the following rules:

- The TC dialogue shall be maintained when the preceding message, which contained the erroneous component, indicated that the dialogue shall be maintained. I.e. the error or reject shall be transmitted with a TC-CONTINUE request primitive.

On receipt of an ERROR or REJECT component the gsmSCF decides on further processing. It may either continue, explicitly end or abort the TC dialogue. If the TC dialogue is closed due to such error, then the GPRS dialogue shall also be closed.

- on expiration of application timer Tssf, the TC dialogue shall be terminated by means of by TC-U-ABORT primitive with an Abort reason. The GPRS dialogue shall be closed.

If the error processing in the gprsSSF leads to the case where the gprsSSF is not able to process further gsmSCF operations while the TC dialogue is to be maintained, then the gprsSSF aborts the TC dialogue with a TC-END request primitive with basic end or a TC-U-ABORT request primitive, depending on whether any pending ERROR or REJECT component is to be sent or not.

The gprsSSF can end a TC dialogue with a TC-U-ABORT request primitive in the following case:

- Any entity other than the gsmSCF initiates closure of the GPRS dialogue, and
- The gprsSSF has no pending reports, and
- The gprsSSF has no armed EDP to notify the gsmSCF that the GPRS dialogue has been closed.

For an alternative method, see subclause 14.1.7.1.1.

14.1.4.2.3 Default GPRS Handling

If a TC dialogue is closed due to unrecoverable TC/protocol error (does not apply to the overlapping TC dialogues), or aborted by the gsmSCF, or at the Tssf expiry, then the gprsSSF shall check the applicable Default GPRS Handling parameter of the GPRS-CSI. In this context the applicable Default GPRS Handling is the one that corresponds the TDP that opened the GPRS dialogue. The same default handling shall apply to all state models that are controlled by the particular GPRS dialogue.

14.2 Services assumed from SCCP

The present subclause describes the services required from the SCCP that may be used by the CAMEL applications for the CAMEL Application Part (CAP) used between the gsmSSF, assisting gsmSSF, gsmSRF, gprsSSF, and gsmSCF.

The following SCCP revisions are supported by CAP:

- Signalling Connection Control Part, Signalling System no. 7 CCITT ("Blue Book SCCP")
- Signalling Connection Control Part, Signalling System no. 7 ITU-T Recommendation Q.711 to Q.716 ("White Book SCCP")

NOTE: Support of White Book SCCP at the receiving side shall be mandated from 00:01hrs, 1st July 2002(UTC).
When CAP uses White Book SCCP to send a message, and SCCP segments the message into one or more XUDT messages, then the transmission of this message may fail.

Failure will occur when the destination SCCP, or any intermediate SCCP, does not support White Book SCCP.

Support of ANSI T1.112-1996 [91] SCCP applies to PLMNs in North America only. Interworking between a PLMN in North America and a PLMN outside North America will involve a STP to translate between ANSI SCCP and ITU-T/CCITT SCCP.

14.2.1 Normal procedures

The SCCP forms the link between the TC and the MTP and provides (in conjunction with the MTP) the network services for the CAMEL applications. The network services provided allow the signalling messages sent by the application to the lower layers to be successfully delivered to the peer application.

14.2.2 Service functions from SCCP

14.2.2.1 SCCP connectionless services

The services described are those given in the SCCP ITU-T recommendations Q.711 to Q.716 should be consulted to identify possible interworking and compatibility issues between the different SCCP versions.

The following Connection-less services are expected from the SCCP:

a) Network Addressing to enable signalling connections between SCCP users;

b) Sequence Control to enable the SCCP users to invoke "sequence guaranteed" or "sequence not guaranteed" options for a given stream of messages to the same destination;

c) Segmentation/reassembly of large user messages (for "White Book SCCP" only);

d) Return Option to enable the SCCP users to invoke "discard message on error" or "return message on error" for a given message not able to be delivered by the SCCP to the destination SCCP user, due to routeing or segmentation/re-assembly failure;

e) Congestion control.

The primitives used for the above services are given below.

The N-UNITDATA request and N-UNITDATA indication primitives are used to send and receive data. The parameters of these primitives include the Called and Calling Addresses, Sequence Control, Return Option and User Data with the addressing parameters always mandatory.

The N-NOTICE indication primitive is used to return undelivered data if return option is set and a routeing/segmentation error occurs.

14.2.2.1.1 Sub-System Number (SSN)

The use of SSN is a network operator option and values for intra-PLMN usage are network specific. A CAP SSN has been reserved for inter-PLMN use, as defined in 3GPP TS 23.003 [5].

14.2.2.1.2 Addressing

The addressing elements consist of information contained within the Calling and the Called Party Addresses which are sent by the application to the lower layers.

The application expects the SCCP to route messages by either (a) the use of the Destination Point Code (DPC) plus the Subsystem Number (SSN), or (b) the use of the GT plus optionally the SSN. The application also specifies to the lower layer whether to route the message on the DPC or the GT.
Method (a) above may be used when the application is aware of the destination point code and the destination SSN located at that point code to which the message is to be delivered. Within a national network different SSNs, according to ITU-T Recommendation Q.713 [42], may be allocated for the different network specific applications, e.g. a SSN may be allocated for a gsmSCF functionality.

Method (b) above may be used when a message is to be delivered to a SCCP-user which can be identified by the combination of the elements within the GT. An example of the use of this method is when messages have to be delivered between different networks. This method may be used since the originating network is unaware of the point code and SSN's allocations within the destination network. The network that determines the end-node to which the message is to be delivered has to perform a GT Translation to derive the destination Point Code and the SSN. If optionally the original address contained the SSN, then this may be used as the destination SSN, or the translation may, if required, provide an appropriate new SSN.

When GT is used for addressing, the CAMEL application expects that the SCCP supports the following elements as defined in ITU-T Recommendation Q.713 [42]:

**Address Indicator:**

The application will set this indicator to indicate one or any combination of the elements "signalling point code, GT, subsystem number" in the address information octets.

**GT Indicator:**

This indicator specifies the method employed for the formatting of the address information. There are four values (1 to 4), for example, the value 4 indicates that the format includes the numbering plan, the nature of the address indicator and the translation type. The format with the indicator value 4 is always used for internetwork connections.

**Translation Type:**

The Translation Types are defined within ITU-T Recommendation Q.713 [42].

**Numbering Plan:**

1) The *proposed* "generic numbering plan" is described within the ITU-T Recommendation Q.713 [42]. This numbering plan identifies the SCCP nodes or SCCP subsystems unambiguously such that messages may be efficiently routed within one or more networks, and is particularly useful when used in the Calling Address for the sending of a response message back to the originating node. This is achieved by having an international and a national part in the generic numbering plan. For response messages the responding node analyses the international part of the generic numbering plan to determine the gateway node to which the response is to be routed. Having routed to the gateway node, the national part (which was populated within the originating network) is analysed to determine the originating node within the originating network.

2) A numbering plan which would define particular nodes based specifically on services is outside the scope of CAMEL.

3) The SCCP caters for a number of other numbering plans (e.g. ISDN, Mobile etc. numbering plans). The whole range catered for is shown in [?]. These may be used by CAMEL applications if deemed suitable.

**Encoding Scheme:**

This identifies the encoding scheme employed by the application and is generally BCD encoded with odd or even number of digits.

**GT Address Information:**

These are the actual address digits supplied by the application and may be BCD digits or encoded as indicated by the encoding scheme.

The network provider must ensure that any change of GT value during translation preserves any CAP specific information contained in the initial GT value.

This requirement applies to all interfaces, not just those used for internetworking.

If *route on SSN* is to be supported from the originating node, then an ITU-T non-zero internationally standardised SSN is required for international internetworking.
In the absence of a ITU-T standardised non-zero SSN for CAP services, the use of route on GT is mandatory from the origin node to the network containing the destination node.

When the SCCP of CCITT Signalling System No. 7 is used, the format and coding of address parameters carried by the SCCP for that purpose shall comply with ITU-T Recommendation Q.713 [42] with the following restrictions:

1) Intra-PLMN addressing

For communication between entities within the same PLMN, the use of SCCP addressing is network specific, and method (a) and (b) are both applicable.

2) Inter-PLMN addressing

method (b) with the mandatory SSN is applicable only with the following format:

i) Called Party Address

- SSN indicator = a standardised SSN shall be used. The SSN used shall be that specified for CAP in 3GPP TS 23.003 [5];
- Point Code indicator = 0;
- Global title indicator = 0100 (Global title includes translation type, numbering plan, encoding scheme and nature of address indicator);
- Translation type = 0 (Not used);
- Routing indicator = 0 (Routing on global title);

The format is also described in the table 14-2 below (for NP=1, NAI=4):

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RI = 0</td>
<td>GTI = 4 (0100)</td>
<td>SSNI = 1</td>
<td>PCI = 0</td>
<td>Octet 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSN = a value for CAP as specified in 3GPP TS 23.003 [5]</td>
<td>Octet 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation type = 0</td>
<td>Octet 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numbering plan = 1 (E.164)</td>
<td>Encoding scheme = 1 or 2</td>
<td>Octet 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Nature of address indicator = 4 (International)</td>
<td>Octet 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country code digit 2 (if present)</td>
<td>Country code digit 1</td>
<td>Octet 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Destination Code (NDC) Digit 1</td>
<td>Country code digit 3 (if present)</td>
<td>Octet 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDC digit 3 (if present)</td>
<td>NDC digit 2 (if present)</td>
<td>Octet 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDC digit 5 (if present)</td>
<td>NDC digit 4 (if present)</td>
<td>Octet 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment identification digit 2</td>
<td>Equipment identification digit 1</td>
<td>Octet 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>filler = 0 (if needed)</td>
<td>Equipment identification digit m</td>
<td>Octet n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Country code, National Destination Code, and SN(equipment id) are provided as example, so each digit may differ for each Inter-PLMN addressing case. (e.g., there is a case where only CC digit 1 shall be used). See ITU-T Recommendation Q.713 [42] for translation rules.

ii) Calling Party Address

- SSN indicator = a standardised SSN shall be used. The SSN used shall be that specified for CAP in 3GPP TS 23.003 [5];
- Point code indicator = 0;
- Global title indicator = 0100 (Global title includes translation type, numbering plan, encoding scheme and nature of address indicator);
- Translation type = 0 (Not used);
- Routing indicator = 0 (Routing on Global Title).
The format is also described in the Table 14-3 below (for NP=1, NAI=4):

### Table 14-3: Calling Party Address format

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>RI = 0</td>
<td>GTI = 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Octet 1</td>
</tr>
<tr>
<td>SSN = a value for CAP as specified in 3GPP TS 23.003 [5]</td>
<td>Octet 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation type = 0</td>
<td>Octet 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numbering plan = 1 (E.164)</td>
<td>Encoding scheme = 1 or 2</td>
<td>Octet 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Nature of address indicator = 4 (International)</td>
<td>Octet 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country code digit 2 (if present)</td>
<td>Country code digit 1</td>
<td>Octet 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Destination Code (NDC) Digit 1</td>
<td>Country code digit 3 (if present)</td>
<td>Octet 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDC digit 3 (if present)</td>
<td>NDC digit 2 (if present)</td>
<td>Octet 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDC digit 5 (if present)</td>
<td>NDC digit 4 (if present)</td>
<td>Octet 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment identification digit 2</td>
<td>Equipment identification digit 1</td>
<td>Octet 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filler = 0 (if needed)</td>
<td>Equipment identification digit m</td>
<td>Octet n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Country code, National Destination Code, and SN(equipment id) are provided as example, so each digit may differ for each Inter-PLMN addressing case. (e.g., there is a case where only CC digit 1 shall be used). See ITU-T Recommendation Q.713 [42] for translation rules.

When the SCCP of ANSI Signalling System No. 7 is used, the format and coding of address parameters carried by the SCCP for the purpose of signalling transfer shall comply with ANSI Recommendation T1.112-1996 [91] with the following restrictions:

1) Intra-PLMN addressing
   
   For communication between entities within the same PLMN, the use of SCCP addressing is network specific.

2) Inter-PLMN addressing
   
   a) Called Party Address
      
      - SSN indicator = a standardised SSN shall be used. The SSN used shall be that specified for CAP in 3GPP TS 23.003 [5];
      - Point Code indicator = 0;
      - Global title indicator = 0010 (Global title includes translation type);
      - the Translation Type (TT) field shall be coded according to the content of the address information as follows:
        
        TT = 9 (decimal), if IMSI is included; or
        TT = 14 (decimal), if MSISDN is included; or
        TT = 10 (decimal), if a Network Element address is included. (If TT=10, then Number Portability is not applicable, if TT=14, then Number Portability is applicable)
      - Routing indicator = 0 (Routeing on global title);
   
   b) Calling Party Address
      
      - SSN indicator = a standardised SSN shall be used. The SSN used shall be that specified for CAP in 3GPP TS 23.003 [5];
      - Point code indicator = 0;
      - Global title indicator = 0010 (Global title includes translation type);
      - the Translation Type (TT) field shall be coded according to the content of the address information as follows:
        
        TT = 9 (decimal), if IMSI is included; or
TT = 14 (decimal), if MSISDN is included; or
TT = 10 (decimal), if a Network Element address is included. (If TT=10, then Number Portability is not applicable, if TT=14, then Number Portability is applicable)
- Routing indicator = 0 (Routing on Global Title).

14.2.2.1.3 Sequence control

The application will specify whether SCCP protocol class 0 or 1 is required. Class 0 provides a basic connection-less service where the sequence of message delivery is not guaranteed. Class 1 connection-less service provides a guaranteed sequence delivery of messages (with the same called address) for a given stream of messages. Class 1 shall be requested by any application that can send more than 1 TC message to its peer (consecutive TR-CONTINUE) before receiving a response from its peer (TR-CONTINUE or TR-END).

On receipt of a TC-RESULT-NL indication, the TC-USER shall request the transfer of a reject component using TC-U-REJECT request primitive, with the appropriate problem code (mistyped parameter).

The return option may be used if requested by the application (Network Operator to determine).

14.2.2.1.4 Return on error

Return on Error mechanism may be required by the CAMEL applications such that the application is aware of messages that have not been delivered to the destination by the SCCP. The return option allows the return of the message that was not delivered due to routing or segmentation/re-assembly failure back to the issuing user. This return option may be required in all segments of a long message or only in the first segment by the CAMEL applications.

If the return option is invoked by the application and the message is not delivered, then the SCCP specifies the "return reason" as specified in ITU-T Recommendation Q.713 [42]. The N-NOTICE primitive is used to return the undelivered message to the originating user.

14.2.2.1.5 Segmentation / reassembly

The application expects that since the SCCP can send up to 260 octets of user data (including the address information and TC-message) in a UDT message (248 octets in a XUDT message performing segmentation and congestion control), segmentation is available for long user messages.

Also the SCCP is expected to perform the reassembly function on received segmented messages and deliver the reassembled message to the user.

However, it should be noted that even though the theoretical maximum size of SCCP-user data and addresses that can be segmented by the SCCP is 3 968 octets, the SCCP-user would limit the length to about 2 560 octets to allow for the largest known addresses. Note that the application must also allow for the octets used for the TC-message in the 2 560 octets.

The CAMEL application does not expect the SCCP to segment the long message into more than 16 segments.

14.2.2.1.6 Congestion control

To help control of possible congestion that might occur in the lower layers the application may assign a value to indicate the importance of the message. The use of this parameter requires the use of SCCP (1997) ITU-T Recommendations.

Also there exist other congestion control mechanisms as indicated below in SCCP Management.

These congestion control methods are network operator option in the case of intra-PLMN network signalling, and shall not be used in the case of inter-PLMN network signalling.

14.2.2.2 SCCP connection oriented services

The use by CAMEL applications for the Connection-oriented services is outside the scope of CAMEL.
14.2.2.3 SCCP management

The subsystems used within the CAMEL application expect the SCCP to provide management procedures to maintain network performance by re-routing in the event of failure of a subsystem, and in the case of network congestion by use of the congestion handling procedure. These procedures have appropriate interactions with the SCCP user as described in ITU-T Recommendations Q.713 [42] and ITU-T Recommendation Q.714 [43].

To achieve the above the SCCP is expected to perform the following procedures:

- Signalling point status management (which include the signalling point prohibited, signalling point allowed, signalling point congested, and local MTP availability sub procedures).
- Subsystem status management (which include the subsystem prohibited, subsystem allowed, and subsystem status test sub procedures).
- Co-ordinated state change (a procedure which allows a duplicated subsystem to be withdrawn from service without affecting the performance of the network).

These SCCP management procedures are network operator option in the case of intra-PLMN network signalling, and shall not be used in the case of inter-PLMN network signalling.
Annex A (normative):
Mapping between CAP and ISUP

A.1 InitialDP operation

<table>
<thead>
<tr>
<th>ISUP message IAM (Note 1)</th>
<th>CAP Operation InitialDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Called party number (note 6)</td>
<td>CalledPartyNumber</td>
</tr>
<tr>
<td>Calling party number</td>
<td>CallingPartyNumber</td>
</tr>
<tr>
<td>Calling party's category</td>
<td>CallingPartysCategory</td>
</tr>
<tr>
<td>Location number</td>
<td>LocationNumber</td>
</tr>
<tr>
<td>Original called number</td>
<td>OriginalCalledPartyID</td>
</tr>
<tr>
<td>User teleservice information (1st priority)</td>
<td>HighLayerCompatibility</td>
</tr>
<tr>
<td>High layer compatibility IE contained in access transport (2nd priority) (Note 2)</td>
<td>HighLayerCompatibility2</td>
</tr>
<tr>
<td>Low Layer compatibility IE contained in access transport (note 4)</td>
<td>LowLayerCompatibility</td>
</tr>
<tr>
<td>Low Layer compatibility IE contained in access transport (note 4)</td>
<td>LowLayerCompatibility2</td>
</tr>
<tr>
<td>Generic number <em>additional calling party number</em></td>
<td>AdditionalCallingPartyNumber</td>
</tr>
<tr>
<td>User service information prime (1st priority)</td>
<td>BearerCapability</td>
</tr>
<tr>
<td>User service information (2nd priority) (Note 3)</td>
<td>BearerCapability2</td>
</tr>
<tr>
<td>Redirecting number</td>
<td>RedirectingPartyID</td>
</tr>
<tr>
<td>Call diversion treatment indicators</td>
<td>ServiceInteractionIndicatorsTwo.Call diversion treatment indicators</td>
</tr>
<tr>
<td>Conference treatment indicators</td>
<td>ServiceInteractionIndicatorsTwo.Conference treatment indicators</td>
</tr>
<tr>
<td>User-to-user indicators (Note 5)</td>
<td>UU-Data.UUIndicator</td>
</tr>
<tr>
<td>User-to-user information (Note 5)</td>
<td>UU-Data.UUI</td>
</tr>
</tbody>
</table>

NOTE 1: Optional parameters may be absent, i.e. they are only mapped only if these parameters are available at the DP.

NOTE 2: If two high layer compatibility information elements are contained in the access transport parameter, then the second information element, carrying the preferred HLC, is mapped to the CAP highLayerCompatibility parameter, and the first information element, carrying the less preferred HLC, is mapped to the CAP highLayerCompatibility2 parameter.

NOTE 3: If User service information prime and User service information are present, then one of the following two mapping rules shall be applied. The principles for the choice of mapping rule are specified in 3GPP TS 23.078 [7].

- One of User service information prime or User service information is mapped to Bearer Capability.
- User service information prime is mapped to BearerCapability and User service information is mapped to Bearer Capability2.

NOTE 4: If two low layer compatibility information elements are contained in the access transport parameter, then the first information element, carrying the preferred LLC, is mapped to the CAP lowLayerCompatibility parameter, and the second information element, carrying the less preferred LLC, is mapped to the CAP lowLayerCompatibility2 parameter.
NOTE 5: If present in ISUP IAM, user-to-user indicators and user-to-user information may optionally be mapped into the InitialDP Operation.

NOTE 6: For trunk originating calls using overlap signalling, the called party number may contain partial address digits.

### A.1.1 EventReportBCSM Operation

#### Table A.1.1

<table>
<thead>
<tr>
<th>ISUP message</th>
<th>CAP Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMs (Note 1)</td>
<td>EventReportBCSM</td>
</tr>
<tr>
<td>Subsequent number</td>
<td>CalledPartyNumber</td>
</tr>
</tbody>
</table>

**NOTE 1:** For trunk originating calls using overlap signalling, subsequent address digits may be reported to the gsmSCF in EventReportBCSM, if requested by the gsmSCF with the "Collect Information" operation.

### A.2 ContinueWithArgument operation

Table A.2 illustrates the mapping of parameters received in the ContinueWithArgument operation to parameters sent in the ISUP IAM to the succeeding exchange. All parameters which were received in the ISUP IAM and which are not replaced by parameters mapped from the ContinueWithArgument operation, shall be treated (and propagated to the succeeding exchange) according to the normal procedures. Propagation of ISUP parameters and mapping of parameters according to Table A.2 applies also for CWA when used to set up a new party leg in an existing call, except when the existing call is a NC call, in which case only mapping of parameters according to Table A.2 applies. The rule of copying ISUP parameters received from incoming leg to NP leg is valid also when the incoming leg no longer exists.

For trunk originating calls using overlap signalling, the called party number in ISUP IAM may contain partial address digits. Any address digits received in SAMs, before the ISUP IAM is sent out, may also be included in the called party number parameter. Any address digits received in SAMs, after the ISUP IAM is sent out and before an ISUP ACM is received, shall be passed on to the succeeding exchange as received.

On sending of the ISUP IAM the awaiting address complete timer is started. If the timer expires, then the call is released in both directions and an appropriate indication is returned to the calling subscriber.

#### Table A.2

<table>
<thead>
<tr>
<th>CAP Operation ContinueWithArgument (Note 1)</th>
<th>ISUP message IAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>callingPartysCategory</td>
<td>Calling party's category</td>
</tr>
<tr>
<td>genericNumbers</td>
<td>Generic number (Note 2)</td>
</tr>
<tr>
<td>serviceInteractionIndicatorTwo</td>
<td>See Table A.4</td>
</tr>
<tr>
<td>cug-Interlock</td>
<td>Closed user group interlock code</td>
</tr>
<tr>
<td>cug-OutgoingAccess</td>
<td>Optional forward call indicators (Note 3)</td>
</tr>
</tbody>
</table>

**NOTE 1:** Optional parameters may be absent, i.e. they are mapped only if received.

**NOTE 2:** The set of generic numbers received in the genericNumbers parameter is mapped to the appropriate number of Generic Number parameters in the ISUP IAM. This shall be performed irrespective of the value of the screening indicator in the ISUP calling party number.

**NOTE 3:** The cug-OutgoingAccess is mapped to the Closed User Group indicator which is carried in bits A & B of the Optional forward call indicators.

### A.3 Connect operation

On receipt of a Connect operation from the gsmSCF the called party number used for routeing is derived from the destinationRoutingAddress (see Table A.3). If the triggering of the CAMEL service was made for a mobile terminating
call in the GMSC or VMSC or for a mobile forwarded call, then an ISUP ACM shall be sent to the preceding exchange. The encoding of the backward call indicators in the ISUP ACM is specified in 3GPP TS 09.12 [1].

On receipt of a Connect operation from the gsmSCF for a trunk originating call, the called party number used for routing is derived from the destinationRoutingAddress (see Table A.3) and an ISUP ACM is sent to the preceding exchange (in an overlap signalling scenario this will prevent any further SAMs being sent by the preceding exchange).

Table A.3 illustrates the mapping of parameters received in the Connect operation to parameters sent in the ISUP IAM to the succeeding exchange. Parameters which were received in the ISUP IAM and are not replaced by parameters of the Connect operation are treated according to the normal procedures.

On sending of the ISUP IAM the awaiting address complete timer is started. If the timer expires, then the call is released in both directions and an appropriate indication is returned to the calling subscriber.

Table A.3

<table>
<thead>
<tr>
<th>CAP Operation Connect (Note 1)</th>
<th>ISUP message IAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DestinationRoutingAddress</td>
<td>Called party number</td>
</tr>
<tr>
<td>OriginalCalledPartyID</td>
<td>Original called number</td>
</tr>
<tr>
<td>callingPartysCategory</td>
<td>Calling party's category</td>
</tr>
<tr>
<td>redirectingPartyID</td>
<td>Redirecting number</td>
</tr>
<tr>
<td>redirectionInformation</td>
<td>Redirection information</td>
</tr>
<tr>
<td>GenericNumbers</td>
<td>Generic number (Note 2)</td>
</tr>
<tr>
<td>ServiceInteractionIndicatorTwo</td>
<td>See Table A.4</td>
</tr>
<tr>
<td>Cug-Interlock</td>
<td>Closed user group interlock code</td>
</tr>
<tr>
<td>cug-OutgoingAccess</td>
<td>Optional forward call indicators (Note 3)</td>
</tr>
</tbody>
</table>

NOTE 1: Optional parameters may be absent, i.e. they are mapped only if received.

NOTE 2: The set of generic numbers received in the genericNumbers parameter is mapped to the appropriate number of Generic Number parameters in the ISUP IAM. This shall be performed irrespective of the value of the screening indicator in the ISUP calling party number.

NOTE 3: The cug-OutgoingAccess is mapped to the Closed User Group indicator which is carried in bits A & B of the Optional forward call indicators.

Table A.4 – Mapping of the CAP Connect and ContinueWithArgument operation serviceInteractionIndicatorsTwo to ISUP.
Table A.4

<table>
<thead>
<tr>
<th>CAP ServiceInteractionIndicators</th>
<th>ISUP parameter in ACM/CPG/CON/ANM/REL</th>
<th>IAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call to be diverted indicator</td>
<td></td>
<td>Call diversion treatment indicators parameter</td>
</tr>
<tr>
<td>– call diversion allowed</td>
<td></td>
<td>Call to be diverted indicator</td>
</tr>
<tr>
<td>– call diversion not allowed</td>
<td></td>
<td>– no indication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– call diversion allowed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– call diversion not allowed</td>
</tr>
<tr>
<td>Conference at DLE accept. ind.</td>
<td></td>
<td>Conference treatment indicators parameter</td>
</tr>
<tr>
<td>– accept conference request</td>
<td></td>
<td>Conference acceptance ind.</td>
</tr>
<tr>
<td>– reject conference request</td>
<td></td>
<td>– no indication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– accept conference request</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– reject conference request</td>
</tr>
<tr>
<td>Calling party restriction indicator</td>
<td></td>
<td>Calling party number address presentation restricted indicator</td>
</tr>
<tr>
<td>- no IN impact</td>
<td></td>
<td>- no impact</td>
</tr>
<tr>
<td>- presentation restricted</td>
<td></td>
<td>- presentation restricted</td>
</tr>
<tr>
<td>Conference at OLE accept. ind.</td>
<td>ACM/CPG/CON/ANM: Conference treatment indicators parameter</td>
<td>---</td>
</tr>
<tr>
<td>– accept conference request</td>
<td>Conference acceptance ind.</td>
<td>- no indication</td>
</tr>
<tr>
<td>– reject conference request</td>
<td>– accept conference request</td>
<td>– reject conference request</td>
</tr>
<tr>
<td>Call completion treatment indicator</td>
<td>REL, busy cause</td>
<td>Diagnostig field</td>
</tr>
<tr>
<td>- accept CCBS service request</td>
<td></td>
<td>– CCBS possible</td>
</tr>
<tr>
<td>- reject CCBS service request</td>
<td></td>
<td>– CCBS not possible</td>
</tr>
<tr>
<td>Connected number treatment indicator</td>
<td>Note 3</td>
<td>---</td>
</tr>
<tr>
<td>– no IN impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– presentation restricted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– present called IN number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– present called IN number not</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 3:

If "no IN impact" was received for Connected number treatment indicator in the serviceInteractionIndicatorsTwo, then a connected number parameter and a generic number parameter "additional connected number" are passed on unchanged.

If "presentation restricted" was received for Connected number treatment indicator in the serviceInteractionIndicatorsTwo, then:

a) If a connected number parameter has been received in the ISUP ANM or ISUP CON, then the address presentation restricted indicator is set to "presentation restricted".

b) If a generic number parameter "additional connected number" has been received in the ISUP ANM or ISUP CON, then the address presentation restricted indicator is set to "presentation restricted".

c) If a redirection number parameter has been received, then a redirection number restriction parameter is sent in the ISUP ANM with bits AB set to "presentation restricted".

If "present called IN number" was received for Connected number treatment indicator in the serviceInteractionIndicatorsTwo, then:

a) If a connected number parameter has been received in the ISUP ANM or ISUP CON, then the connected number parameter is modified as follows:

  nature of address indicator and numbering plan indicator are encoded as received in the called party number of the ISUP IAM,

  address presentation restricted indicator: 00 (presentation allowed),
address signals: as received in the called party number and possible subsequent number parameters, until the ISUP ACM was sent.

b) A generic number parameter "additional connected number" is deleted from the message, if applicable.

c) A redirection number parameter is deleted from the relevant messages, if applicable.

If "present called IN number restricted" was received for Connected number treatment indicator in the serviceInteractionIndicatorsTwo, then:

a) If a connected number parameter has been received in the ISUP ANM or ISUP CON, then the connected number parameter is modified as follows:

   nature of address indicator and numbering plan indicator are encoded as received in the called party number of the ISUP IAM,

   address presentation restricted indicator: 01 (presentation restricted),

   address signals: as received in the called party number and possible subsequent number parameters, until the ISUP ACM was sent.

b) A generic number parameter "additional connected number" is deleted from the message, if applicable.

c) A redirection number parameter is deleted from the relevant messages, if applicable.

A.4 AssistRequestInstructions operation

If an ISUP IAM is received at an assisting SSP containing an assisting gsmSSF or at an IP containing a gsmSRF, then an AssistRequestInstructions operation is sent to the gsmSCF. The correlationID parameter in the AssistRequestInstructions operation can contain:

a) the CorrelationID digits extracted from the ISUP IAM Called Party Number,

b) the whole Called Party Number received in the ISUP IAM (CorrelationID digits extracted at gsmSCF),

c) the contents of the ISUP IAM CorrelationID parameter.

In the case where the gsmSCF and the assisting gsmSSF are both in the HPLMN and ISUP 97 is supported then any of these mechanisms may be used.

In the case where the gsmSCF and the assisting gsmSSF are both in the HPLMN and ISUP 97 is not supported then mechanisms a) and b) may be used.

In the case where the gsmSCF is in the HPLMN and the assisting gsmSSF is in the VPLMN then only mechanism b) may be used when an all-ISUP 97 signalling path cannot be guaranteed. Mechanism a) may be used if bilateral agreements on the format of the information transferred in the ISUP IAM Called Party Number are defined between the HPLMN and the VPLMN.

In the case where the gsmSCF is in the HPLMN and the assisting gsmSSF is in the VPLMN then mechanism c) may only be used if an all-ISUP 97 signalling path can be guaranteed between the HPLMN and the VPLMN.

A.5 ConnectToResource operation

On receipt of a ConnectToResource operation from the gsmSCF, the gsmSRF is connected to the call, to facilitate User Interactive dialogue with the user.
If the User Interactive dialogue is to be performed at a forwarding MSC or at a terminating MSC (GMSC or VMSC), then an ISUP ACM shall be sent to the preceding exchange. The encoding of the backward call indicators in the ISUP ACM is specified in 3GPP TS 09.12 [1], with the Optional Backward Call Indicators indicating "in-band information or an appropriate pattern is now available".

If the User Interactive dialogue is to be performed at a forwarding MSC or at a terminating MSC (GMSC or VMSC), then when the gsmSRF indicates through-connection and the ConnectToResource operation indicates that a bothway throughconnection is required, an ISUP ANM shall be sent to the preceding exchange if answer has not previously been sent. As a network operator/equipment vendor option an ISUP CPG message may be sent if ISUP ANM has already been sent.

### A.6 EstablishTemporaryConnection operation

On receipt of an EstablishTemporaryConnection operation from the gsmSCF then if the triggering of the CAMEL service was made for a mobile terminating call in the GMSC or VMSC or for a forwarded call, then an ISUP ACM shall be sent to the preceding exchange. The encoding of the backward call indicators in the ISUP ACM is specified in 3GPP TS 09.12 [1]. In addition, an ISUP IAM shall be sent to the succeeding exchange.

Table A.5 illustrates the mapping of parameters received in the EstablishTemporaryConnection operation to parameters sent in the ISUP IAM to the succeeding exchange. On sending of the ISUP IAM the awaiting address complete timer is started. If the timer expires, then the call is released in both directions and an appropriate indication is returned to the calling subscriber.

<table>
<thead>
<tr>
<th>CAP Operation</th>
<th>ISUP message IAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EstablishTemporaryConnection</td>
<td>IAM</td>
</tr>
<tr>
<td>AssistingSSPIPRoutingAddress (note 1)</td>
<td>Called party number</td>
</tr>
<tr>
<td>CorrelationID</td>
<td>Correlation id (note 2)</td>
</tr>
<tr>
<td>ScfId</td>
<td>GsmSCF id (note 2)</td>
</tr>
<tr>
<td>OriginalCalledPartyID</td>
<td>Original called number (note 3)</td>
</tr>
<tr>
<td>CallingPartyNumber</td>
<td>Calling party number (note 3)</td>
</tr>
</tbody>
</table>

**NOTE 1:** The AssistingSSPIPRoutingAddress parameter may also include a Hex B digit, in order to delineate the boundary between digits used for routeing and digits forming part of the SCFid and/or CorrelationID.

**NOTE 2:** These optional parameters may be absent, i.e. they are mapped only if received. If they are received and cannot be mapped, then an error is sent to the gsmSCF as detailed in clause 11.

**NOTE 3:** These optional parameters may be absent, i.e. they are mapped only if received.

Except for the Called Party Number the remaining mandatory ISUP IAM parameters are set as follows:

a) **Nature of connection indicators**

   - Satellite indicator: set as in an Originating MSC,
   - Continuity check indicator: set as in Originating MSC,
   - Echo control device indicator: set as in Originating MSC

b) **Forward Call Indicators**

   - National/international call indicator: set as in Originating MSC,
   - End-to-end method indicator: 00 (no end-to-end method available),
   - Interworking indicator: 0 (no interworking encountered),
   - End-to-end information indicator: 0 (no end-to-end information available),
   - ISDN User Part indicator: 1 (ISDN User Part used all the way),
ISDN User Part preference indicator: 00 (ISDN User Part preferred all the way),
ISDN access indicator: 0 (originating access non-ISDN),
SCCP method indicator: 00 (no indication)
c) Calling Party's Category
00001010 (ordinary subscriber)
d) Transmission Medium Requirement
00000011 (3.1 kHz audio)

The ISUP IAM optional parameter Propagation Delay Counter is set as in an Originating MSC.

### A.7 ReleaseCall operation

Upon receipt of the ReleaseCall operation, the GMSC/gsmSSF (VMSC/gsmSSF) sends REL messages in both directions. The cause indicators parameter contains the releaseCallArg parameter of the ReleaseCall operation.

### A.8 InitiateCallAttempt operation

On receipt of an InitiateCallAttempt operation, the GMSC/gsmSSF or VMSC/gsmSSF prepares to set up a new call leg in an existing call configuration, or to set up a new call, to the destination defined by the DestinationRoutingAddress parameter. The GMSC/gsmSSF or VMSC/gsmSSF does not send the ISUP IAM until it has received a ContinueWithArgument operation, which contains additional information needed to populate the parameters of the ISUP IAM.

For a new call leg in an existing call, except a NC call, all parameters which were received in the ISUP IAM and which were not replaced by parameters mapped from the InitiateCallAttempt or ContinueWithArgument operation, shall be treated (and propagated to the succeeding exchange) according to the normal procedures. The rule of copying ISUP parameters received from incoming leg to NP leg is valid also when the incoming leg no longer exists.

Table A.6 illustrates the mapping of parameters received in the InitiateCallAttempt operation to parameters sent in the ISUP IAM to the succeeding exchange.

<table>
<thead>
<tr>
<th>CAP Operation InitiateCallAttempt (Note 1)</th>
<th>ISUP message IAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DestinationRoutingAddress</td>
<td>Called party number</td>
</tr>
<tr>
<td>CallingPartyNumber</td>
<td>Calling party number</td>
</tr>
<tr>
<td>Transmission medium requirement (Note 2) (Note 4)</td>
<td>Transmission medium requirement (Note 2) (Note 4)</td>
</tr>
<tr>
<td>Access transport (Note 3) (Note 4)</td>
<td>Access transport (Note 3) (Note 4)</td>
</tr>
</tbody>
</table>

**NOTE 1:** Optional parameters may be absent, i.e. they are mapped only if received.

**NOTE 2:** The transmission medium requirement parameter field shall be set to "speech".

**NOTE 3:** The "Bearer capability" and "High layer compatibility information" elements shall be filled in accordance with ETSI EN 300 403-1 [25] for speech call.

**NOTE 4:** Only the minimum set of parameters indicating the fact that the call is a speech call is described here.
Annex B (normative):  
Mapping between CAP and MAP and mapping between CAP and SM-CP

The Short Message signalling between the SMS-GMSC and the MSC or SGSN, for the transport of SM RP-DUs, is specified in 3GPP TS 29.002 [11]. The Short Message signalling between the MSC or SGSN and the MS, for the transport of SM RP-DUs, is specified in 3GPP TS 24.011 [10].

B.1 Mapping between CAP and MAP

B.1.1 MO-SMS

B.1.1.1 ConnectSMS operation

The Short Message TPDU is carried by a Short Message RPDU. The RPDU between the MSC or SGSN and the SMS-IWMSC is conveyed in the MAP MO-ForwardSM OPERATION. The MSC or SGSN shall obtain information from CAP OPERATION ConnectSMS and place it in MAP OPERATION MO-ForwardSM.

<table>
<thead>
<tr>
<th>CAP ConnectSMS</th>
<th>MAP MO-ForwardSM ARGUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallingPartysNumber</td>
<td>sm-RP-OA; CHOICE set to msisdn</td>
</tr>
<tr>
<td>DestinationSubscriberNumber</td>
<td>sm-RP-UI; TP-Destination-Address</td>
</tr>
<tr>
<td>SMSCAddress</td>
<td>sm-RP-DA; CHOICE set to serviceCentreAddressDA</td>
</tr>
</tbody>
</table>

NOTE The encoding of “SignalInfo” in MO-ForwardSM is specified in 3GPP TS 23.040 [6].

B.1.1.2 EventReportSMS operation

The MSC or SGSN may receive error information from the SMS-IWMSC, via the MAP OPERATION MO-ForwardSM ERROR. The MSC or SGSN shall obtain the error information from MAP OPERATION MO-ForwardSM and place it in the CAP OPERATION EventReportSMS.

<table>
<thead>
<tr>
<th>CAP EventReportSMS</th>
<th>MAP MO-ForwardSM ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO_SMS Cause</td>
<td>SM-DeliveryFailure; SM-DeliveryFailureCause; SM-EnumeratedDeliveryFailureCause</td>
</tr>
</tbody>
</table>
B.1.2 MT-SMS

B.1.2.1 InitialDPSMS operation (MT-SMS)

The Short Message TPDU is carried by a Short Message RPDU. The RPDU between the SMS-GMSC and the MSC or SGSN is conveyed in the MAP MT-ForwardSM OPERATION ARGUMENT. The MSC or SGSN shall obtain information from the MT-ForwardSM MAP Message and place it in CAP InitialDPSMS.

<table>
<thead>
<tr>
<th><strong>Table B.3</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CAP InitialDPSMS</strong></td>
</tr>
<tr>
<td>CallingPartysNumber</td>
</tr>
<tr>
<td>SMSCAddress</td>
</tr>
<tr>
<td>TPShortMessageSpecificInfo</td>
</tr>
<tr>
<td>TPProtocolIdentifier</td>
</tr>
<tr>
<td>TPDataCodingScheme</td>
</tr>
<tr>
<td>TPValidityPeriod</td>
</tr>
</tbody>
</table>

NOTE The encoding of “SignalInfo” in MT-ForwardSM is specified in 3GPP TS 23.040 [6].

B.1.2.2 ReleaseSMS operation (MT-SMS)

When the MSC or SGSN receives the CAP ReleaseSMS operation, it shall return a RP-ERROR RPDU to the SMS-GMSC. The RP-ERROR RPDU between the MSC or SGSN and the SMS-GMSC is conveyed in the MAP MT-ForwardSM OPERATION ERROR.

<table>
<thead>
<tr>
<th><strong>Table B.4</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CAP ReleaseSMS</strong></td>
</tr>
<tr>
<td>RPCause</td>
</tr>
</tbody>
</table>

B.2 Mapping between CAP and SM-CP

B.2.1 MO-SMS

B.2.1.1 InitialDPSMS operation

The Short Message TPDU is carried by a Short Message RPDU. The RPDU between the MS and the MSC or SGSN is conveyed in the RP-DATA Relay Message. The MSC or SGSN shall obtain information from the RP-DATA Message and place it in CAP InitialDPSMS OPERATION.
Table B.5

<table>
<thead>
<tr>
<th>CAP InitialDPSMS ARGUMENT</th>
<th>SM-CP RP-DATA Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>DestinationSubscriberNumber</td>
<td>RP-User Data; TPDU; TP-Destination-Address</td>
</tr>
<tr>
<td>SMSCAddress</td>
<td>RP-User Data; TP-User Data; TP-Destination Address</td>
</tr>
<tr>
<td>TPSShortMessageSpecificInfo</td>
<td>RP-User Data; TPDU; 1st octet</td>
</tr>
<tr>
<td>TPProtocolIdentifier</td>
<td>RP-User Data; TPDU; TP-Protocol-Identifier</td>
</tr>
<tr>
<td>TPDDataCodingScheme</td>
<td>RP-User Data; TPDU; TP-Data-Coding-Scheme</td>
</tr>
<tr>
<td>TPValidityPeriod</td>
<td>RP-User Data; TPDU; TP-Validity-Period-Format</td>
</tr>
</tbody>
</table>

B.2.1.2 ReleaseSMS operation

When the MSC or SGSN receives the CAP ReleaseSMS operation, it shall return a RP-ERROR RPDU to the MS. The RP-ERROR RPDU between the MSC or SGSN and the MS is conveyed in the RP-ERROR Relay Message. The MSC or SGSN shall obtain the RPCause from the CAP ReleaseSMS OPERATION and place it in the RP-ERROR Message.

Table B.6

<table>
<thead>
<tr>
<th>CAP ReleaseSMS ARGUMENT</th>
<th>SM-CP RP-ERROR Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPCause</td>
<td>RP-Cause</td>
</tr>
</tbody>
</table>

B.2.2 MT-SMS

B.2.2.1 ConnectSMS operation

When the MSC or SGSN receives the ConnectSMS operation, it shall use the received information to replace data in the Short Message SMS-DELIVER TPDU. The SMS-DELIVER TPDU is carried in a RP-MT-DATA RPDU. The RP-MT-DATA RPDU between the MSC or SGSN and the MS is conveyed by the SM-CP CP-Data Message.

Table B.7

<table>
<thead>
<tr>
<th>CAP ConnectSMS</th>
<th>SM-CP RP-DATA Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallingPartysNumber</td>
<td>RP-User Data; TPDU; TP-Originating-Address</td>
</tr>
</tbody>
</table>

B.2.2.2 EventReportSMS operation

When the MSC or SGSN receives the RP-ERROR RPDU from the MS, it shall send the RP-Cause to the gsmSCF. The RP-ERROR RPDU between the MS and the MSC or SGSN is conveyed in the RP-ERROR Relay Message. The MSC or SGSN shall obtain the RPCause from the RP-ERROR Message and place it in CAP EventReportSMS.

Table B.8

<table>
<thead>
<tr>
<th>CAP EventReportSMS</th>
<th>SM-CP RP-ERROR Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>EventSpecificInformation</td>
<td>RP-Cause</td>
</tr>
</tbody>
</table>
Annex C (informative):
Change history

Comments on CAMEL Phase 4 Rel-6

- For Release Rel-6, the version of module CAP-U-ABORT-Data is aligned with the other CAP modules; the module version is increased to version8(7). The increase of module version number does not affect the data type definitions contained within the module.

- CAP Operation 'SpecialisedResourceReport' is spelled with a 'z' (American spelling) in ASN.1. Therefore, TS definitions contained within the module.

- For consistency purposes, module CAP-GPRS-ReferenceNumber is placed in a separate section. All CAP Modules (starting with BEGIN and ending with END) are specified in a separate section.

- The Rel-5 history overview ('How CAMEL Phase 4 Rel-5 Version 5.0.0 was created') is removed from the Rel-6 version of the present specification.

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG #</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Rev</th>
<th>Subject/Comment</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-12</td>
<td>CN#22</td>
<td>NP-030527</td>
<td>332</td>
<td>1</td>
<td>Collective CR for Rel-6 Enhanced Dialed Services</td>
<td>5.6.0</td>
<td>6.0.0</td>
</tr>
<tr>
<td>2003-12</td>
<td>CN#22</td>
<td>NP-030528</td>
<td>343</td>
<td>1</td>
<td>Change of position armed with criteria</td>
<td>5.6.0</td>
<td>6.0.0</td>
</tr>
<tr>
<td>2004-03</td>
<td>CN#23</td>
<td>NP-040138</td>
<td>350</td>
<td>2</td>
<td>Enhancement of Event Specific Information for DP</td>
<td>6.0.0</td>
<td>6.1.0</td>
</tr>
<tr>
<td>2004-03</td>
<td>CN#23</td>
<td>NP-040095</td>
<td>352</td>
<td>1</td>
<td>CAMEL4 SCUDIF notification during active call for prepay</td>
<td>6.0.0</td>
<td>6.1.0</td>
</tr>
<tr>
<td>2004-03</td>
<td>CN#23</td>
<td>NP-040096</td>
<td>356</td>
<td>1</td>
<td>LLC passes on the gsmSSF - gsmSCF interface</td>
<td>6.0.0</td>
<td>6.1.0</td>
</tr>
<tr>
<td>2004-03</td>
<td>CN#23</td>
<td>NP-040136</td>
<td>360</td>
<td></td>
<td>Correction to description of Service Interaction Indicators Two parameter</td>
<td>6.0.0</td>
<td>6.1.0</td>
</tr>
<tr>
<td>2004-03</td>
<td>CN#23</td>
<td>NP-040136</td>
<td>361</td>
<td></td>
<td>Correction to temporary connection establishment</td>
<td>6.0.0</td>
<td>6.1.0</td>
</tr>
<tr>
<td>2004-03</td>
<td>CN#23</td>
<td>NP-040137</td>
<td>362</td>
<td></td>
<td>Correction to SplitLeg and MoveLeg preconditions</td>
<td>6.0.0</td>
<td>6.1.0</td>
</tr>
<tr>
<td>2004-03</td>
<td>CN#23</td>
<td>NP-040138</td>
<td>363</td>
<td></td>
<td>Correction to Disconnect Leg preconditions</td>
<td>6.0.0</td>
<td>6.1.0</td>
</tr>
<tr>
<td>2004-03</td>
<td>CN#23</td>
<td>NP-040138</td>
<td>364</td>
<td></td>
<td>Correction to GPRS protocol definition</td>
<td>6.0.0</td>
<td>6.1.0</td>
</tr>
<tr>
<td>2004-06</td>
<td>CN#24</td>
<td>NP-040249</td>
<td>366</td>
<td>1</td>
<td>Enhancement to User Interaction</td>
<td>6.1.0</td>
<td>6.2.0</td>
</tr>
<tr>
<td>2004-06</td>
<td>CN#24</td>
<td>NP-040249</td>
<td>367</td>
<td>1</td>
<td>Adding missing ROS Object Identifier</td>
<td>6.1.0</td>
<td>6.2.0</td>
</tr>
<tr>
<td>2004-06</td>
<td>CN#24</td>
<td>NP-040207</td>
<td>370</td>
<td>1</td>
<td>Mapping between ICA and IAM</td>
<td>6.1.0</td>
<td>6.2.0</td>
</tr>
<tr>
<td>2004-06</td>
<td>CN#24</td>
<td>NP-040207</td>
<td>371</td>
<td></td>
<td>Correction to Tssf timer</td>
<td>6.1.0</td>
<td>6.2.0</td>
</tr>
<tr>
<td>2004-06</td>
<td>CN#24</td>
<td>NP-040207</td>
<td>372</td>
<td></td>
<td>Correction to ERB pre-condition for gsmSSF FSM state</td>
<td>6.1.0</td>
<td>6.2.0</td>
</tr>
<tr>
<td>2004-06</td>
<td>CN#24</td>
<td>NP-040207</td>
<td>374</td>
<td>2</td>
<td>Correction to Move Leg pre-condition</td>
<td>6.1.0</td>
<td>6.2.0</td>
</tr>
<tr>
<td>2004-06</td>
<td>CN#24</td>
<td>NP-040249</td>
<td>375</td>
<td></td>
<td>Correction to First Digit Timer for Prompt&amp;Collect</td>
<td>6.1.0</td>
<td>6.2.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>CN#25</td>
<td>NP-040405</td>
<td>380</td>
<td></td>
<td>Support of User-to-User Information (UII) in CAMEL InitialDP operation</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>CN#25</td>
<td>NP-040397</td>
<td>382</td>
<td>2</td>
<td>Clarification on the handling of operation invocation when LinkedID is missing although expected</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>CN#25</td>
<td>NP-040406</td>
<td>383</td>
<td></td>
<td>Correction to usage of ACM for CAP ETC and CAP CTR</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>CN#25</td>
<td>NP-040406</td>
<td>384</td>
<td></td>
<td>Correction to Cancel procedure description</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>CN#25</td>
<td>NP-040406</td>
<td>385</td>
<td></td>
<td>Correction to SplitLeg ASN.1 description</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>CN#25</td>
<td>NP-040406</td>
<td>386</td>
<td></td>
<td>Correction to Apply Charging Report procedure</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>CN#25</td>
<td>NP-040406</td>
<td>387</td>
<td></td>
<td>Correction to Assist Request Instructions procedure</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>CN#25</td>
<td>NP-040406</td>
<td>388</td>
<td></td>
<td>Correction to Call Information Request and Report</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>CN#25</td>
<td>NP-040406</td>
<td>389</td>
<td></td>
<td>Correction to Tssf timer setting for SMS control</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-12</td>
<td>CN#26</td>
<td>NP-040544</td>
<td>390</td>
<td></td>
<td>Correction of wrong TS numbers in references</td>
<td>6.3.0</td>
<td>6.4.0</td>
</tr>
<tr>
<td>2005-06</td>
<td>CT#28</td>
<td>CP-050103</td>
<td>392</td>
<td>1</td>
<td>Additions to CAP for trunk originated services</td>
<td>6.4.0</td>
<td>7.0.0</td>
</tr>
<tr>
<td>2005-09</td>
<td>CT#29</td>
<td>CP-050312</td>
<td>393</td>
<td>1</td>
<td>Additions and clarifications to CAP for trunk originated services</td>
<td>7.0.0</td>
<td>7.1.0</td>
</tr>
<tr>
<td>2005-12</td>
<td>CT#30</td>
<td>CP-050626</td>
<td>396</td>
<td>1</td>
<td>Support of an Operation Arg and Errors for CollectInformation</td>
<td>7.1.0</td>
<td>7.2.0</td>
</tr>
<tr>
<td>2006-06</td>
<td>CT#32</td>
<td>CP-060311</td>
<td>397</td>
<td>1</td>
<td>Addition of information related to service change</td>
<td>7.2.0</td>
<td>7.3.0</td>
</tr>
<tr>
<td>2007-09</td>
<td>CT#37</td>
<td>CP-070540</td>
<td>398</td>
<td>2</td>
<td>AC/ACR Handling</td>
<td>7.3.0</td>
<td>7.4.0</td>
</tr>
<tr>
<td>Date</td>
<td>TSG #</td>
<td>TSG Doc.</td>
<td>CR Rev</td>
<td>Subject/Comment</td>
<td>Old</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>------------------------------------------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>2007-09</td>
<td>CT#37</td>
<td>CP-070540</td>
<td>0400</td>
<td>QoS Extension</td>
<td>7.3.0</td>
<td>7.4.0</td>
<td></td>
</tr>
<tr>
<td>2008-12</td>
<td>CT#42</td>
<td></td>
<td></td>
<td>Upgraded unchanged from Rel-7</td>
<td>7.4.0</td>
<td>8.0.0</td>
<td></td>
</tr>
<tr>
<td>2009-09</td>
<td>CT#45</td>
<td>CP-090523</td>
<td>0407</td>
<td>Correction to InvokeID syntax definition</td>
<td>8.0.0</td>
<td>8.1.0</td>
<td></td>
</tr>
<tr>
<td>2009-12</td>
<td>CT#46</td>
<td></td>
<td></td>
<td>Upgraded unchanged from Rel-8</td>
<td>8.1.0</td>
<td>9.0.0</td>
<td></td>
</tr>
<tr>
<td>2010-03</td>
<td>CT#47</td>
<td>CP-100029</td>
<td>0409</td>
<td>User CSG Information for CAMEL</td>
<td>9.0.0</td>
<td>9.1.0</td>
<td></td>
</tr>
<tr>
<td>2010-04</td>
<td></td>
<td></td>
<td></td>
<td>Figures 4-1/4, 4-1/6 and 4-1/8 were not visible. Release corrected on cover page.</td>
<td>9.1.0</td>
<td>9.1.1</td>
<td></td>
</tr>
<tr>
<td>2010-06</td>
<td>CT#48</td>
<td>CP-100261</td>
<td>0413</td>
<td>ASN.1 Module Version Update</td>
<td>9.1.1</td>
<td>9.2.0</td>
<td></td>
</tr>
<tr>
<td>2011-03</td>
<td>CT#51</td>
<td></td>
<td></td>
<td>Update to Rel-10 version (MCC)</td>
<td>9.2.0</td>
<td>10.0.0</td>
<td></td>
</tr>
<tr>
<td>2011-09</td>
<td>CT#53</td>
<td>CP-110733</td>
<td>0414</td>
<td>Extension parameter for Release Call</td>
<td>10.0.0</td>
<td>11.0.0</td>
<td></td>
</tr>
<tr>
<td>2011-12</td>
<td>CT#53</td>
<td>CP-110813</td>
<td>0415</td>
<td>Extension of SclID parameter length</td>
<td>11.0.0</td>
<td>11.1.0</td>
<td></td>
</tr>
<tr>
<td>2012-12</td>
<td>CT#58</td>
<td>CP-120749</td>
<td>0416</td>
<td>CWA Correction and CWA and ICA Clarification</td>
<td>11.1.0</td>
<td>11.2.0</td>
<td></td>
</tr>
<tr>
<td>2014-09</td>
<td></td>
<td></td>
<td></td>
<td>Update to Rel-12 version (MCC)</td>
<td>11.2.0</td>
<td>12.0.0</td>
<td></td>
</tr>
</tbody>
</table>
### History

#### Document history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>V12.0.0</td>
<td>October 2014</td>
<td>Publication</td>
</tr>
</tbody>
</table>