

ETSI TS 128 105 V19.3.0 (2025-10)

5G;
Management and orchestration;

Artificial Intelligence/ Machine Learning (AI/ML) management
(3GPP TS 28.105 version 19.3.0 Release 19)



TECHNICAL SPECIFICATION

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)13GPP TS 28.105 version 19.3.0 Release 19

Reference
RTS/TSGS-0528105vj30

Keywords
5G

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2025.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)23GPP TS 28.105 version 19.3.0 Release 19

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be
interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found at 3GPP to ETSI numbering cross-referencing.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://webapp.etsi.org/key/queryform.asp
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)33GPP TS 28.105 version 19.3.0 Release 19

Contents

Intellectual Property Rights .. 2

Legal Notice ... 2

Modal verbs terminology .. 2

Foreword ... 10

1 Scope .. 12

2 References .. 12

3 Definitions of terms, symbols and abbreviations ... 13

3.1 Terms .. 13

3.2 Symbols .. 14

3.3 Abbreviations ... 14

4 Concepts and overview .. 15

4.1 Overview .. 15

4.2 Management of AI/ML capabilities for RAN .. 16

4.3 Management of AI/ML capabilities for 5GC ... 16

4.4 Management of AI/ML capabilities for MDA.. 16

4a AI/ML management functionality and service framework .. 16

4a.0 ML model lifecycle .. 16

4a.1 Functionality and service framework for ML model training .. 17

4a.2 AI/ML functionalities management scenarios (relation with managed AI/ML features) 18

5 Void .. 21

6 AI/ML management use cases and requirements ... 21

6.1 ML model lifecycle management capabilities .. 21

6.2 Void .. 22

6.2a Void .. 22

6.2b ML model training.. 22

6.2b.1 Description .. 22

6.2b.2 Use cases ... 22

6.2b.2.1 ML model training requested by consumer ... 22

6.2b.2.2 ML model training initiated by producer .. 23

6.2b.2.3 ML model selection... 23

6.2b.2.4 Managing ML model training processes ... 23

6.2b.2.5 Handling errors in data and ML decisions .. 24

6.2b.2.6 ML model joint training .. 24

6.2b.2.7 ML model validation performance reporting .. 25

6.2b.2.8 Training data effectiveness reporting .. 25

6.2b.2.9 Performance management for ML model training .. 25

6.2b.2.9.1 Overview ... 25

6.2b.2.9.2 Performance indicator selection for MLmodel training ... 25

6.2b.2.9.3 ML model performance indicators query and selection for ML model training 26

6.2b.2.9.4 MnS consumer policy-based selection of ML model performance indicators for ML model
training... 26

6.2b.2.10 ML-Knowledge-based Transfer Learning ... 26

6.2b.2.10.1 Description .. 26

6.2b.2.10.2 Use cases ... 27

6.2b.2.11 ML model training for multiple contexts .. 28

6.2b.2.14 Management of distributed training .. 29

6.2b.2.15 Management of Federated learning ... 30

6.2b.2.15.1 Description .. 30

6.2b.2.15.2 Use cases ... 30

6.2b.2.16 Management of Reinforcement Learning .. 31

6.2b.2.16.1 Description .. 31

6.2b.2.16.2 Use cases ... 32

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)43GPP TS 28.105 version 19.3.0 Release 19

6.2b.2.17 Training data statistics ... 33

6.2b.3 Requirements for ML model training ... 34

6.2c ML model testing ... 39

6.2c.1 Description .. 39

6.2c.2 Use cases ... 39

6.2c.2.1 Consumer-requested ML model testing .. 39

6.2c.2.2 Producer-initiated ML model testing .. 39

6.2c.2.3 Joint testing of multiple ML models ... 39

6.2c.2.4 Performance management for ML model testing .. 39

6.2c.2.4.1 Overview ... 39

6.2c.2.4.2 Performance indicator selection for ML model testing ... 39

6.2c.2.4.3 ML model performance indicators query and selection for ML model testing 40

6.2c.2.4.4 MnS consumer policy-based selection of ML model performance indicators for ML model
testing .. 40

6.2c.3 Requirements for ML model testing ... 40

6.3 AI/ML inference emulation .. 41

6.3.1 Description .. 41

6.3.2 Use cases ... 41

6.3.2.1 AI/ML inference emulation ... 41

6.3.2.2 ML inference emulation environment selection .. 41

6.3.3 Requirements for Managing AI/ML inference emulation... 42

6.4 ML model deployment ... 42

6.4.1 ML model loading .. 42

6.4.1.1 Description .. 42

6.4.1.2 Use cases ... 42

6.4.1.2.1 Consumer requested ML model loading .. 42

6.4.1.2.2 Control of producer-initiated ML model loading .. 42

6.4.1.2.3 ML model registration ... 43

6.4.1.3 Requirements for ML model loading .. 43

6.5 AI/ML inference ... 43

6.5.1 AI/ML inference performance management ... 43

6.5.1.1 Description .. 43

6.5.1.2 Use cases ... 43

6.5.1.2.1 AI/ML inference performance evaluation ... 43

6.5.1.2.2 AI/ML performance measurements selection based on MnS consumer policy 44

6.5.1.3 Requirements for AI/ML inference performance management... 44

6.5.2 AI/ML update control ... 45

6.5.2.1 Description .. 45

6.5.2.2 Use cases ... 45

6.5.2.2.1 Availability of new capabilities or ML models ... 45

6.5.2.2.2 Triggering ML model update .. 45

6.5.2.3 Requirements for AIML update control .. 46

6.5.3 AI/ML inference capabilities management ... 46

6.5.3.1 Description .. 46

6.5.3.2 Use cases ... 47

6.5.3.2.1 Identifying capabilities of ML models .. 47

6.5.3.2.2 Mapping of the capabilities of ML models .. 47

6.5.3.3 Requirements for AI/ML inference capabilities management .. 47

6.5.4 AI/ML inference capability configuration management ... 48

6.5.4.1 Description .. 48

6.5.4.2 Use cases ... 48

6.5.4.2.1 Managing NG-RAN AI/ML-based distributed Network Energy Saving .. 48

6.5.4.2.2 Managing NG-RAN AI/ML-based distributed Mobility Optimization ... 48

6.5.4.2.3 Managing NG-RAN AI/ML-based distributed Load Balancing .. 48

6.5.4.3 Requirements for AI/ML inference management .. 49

6.5.5 AI/ML Inference History .. 49

6.5.5.1 Description .. 49

6.5.5.2 Use cases ... 49

6.5.5.2.1 AI/ML Inference History - tracking inferences and context .. 49

6.5.5.3 Requirements for AI/ML Inference History .. 50

6.5.6 Managing ML models in use in a live network... 50

6.5.6.1 Description .. 50

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)53GPP TS 28.105 version 19.3.0 Release 19

6.5.6.2 Use cases ... 50

6.5.6.2.1 Handling of underperforming ML trained models in live networks .. 50

6.5.6.2.2 Performance monitoring of Network Functions with ML trained models in live networks 50

6.5.6.3 Requirements for Managing ML models in use in a live network .. 51

6.5.7.2.1 Management of explanation in AI/ML inference .. 51

6.5.7.3 Requirements for AI/ML inference explainability managment... 51

7 Information model definitions for AI/ML management... 52

7.1 Imported and associated information entities ... 52

7.1.1 Imported information entities and local labels .. 52

7.1.2 Associated information entities and local labels ... 52

7.2 Void .. 52

7.2a Common information model definitions for AI/ML management ... 52

7.2a.1 Class diagram .. 52

7.2a.1.1 Relationships ... 52

7.2a.1.2 Inheritance ... 53

7.2a.2 Class definitions .. 53

7.2a.2.1 MLModel .. 53

7.2a.2.1.1 Definition... 53

7.2a.2.1.2 Attributes ... 54

7.2a.2.1.3 Attribute constraints .. 54

7.2a.2.1.4 Notifications .. 54

7.2a.2.2 MLModelRepository .. 54

7.2a.2.2.1 Definition... 54

7.2a.2.2.2 Attributes ... 54

7.2a.2.2.3 Attribute constraints .. 54

7.2a.2.2.4 Notifications .. 54

7.2a.2.3 MLModelCoordinationGroup ... 55

7.2a.2.3.1 Definition... 55

7.2a.2.3.2 Attributes ... 55

7.2a.2.3.3 Attribute constraints .. 55

7.2a.2.3.4 Notifications .. 55

7.3 Void .. 55

7.3a Information model definitions for AI/ML operational phases .. 55

7.3a.1 Information model definitions for ML model training ... 55

7.3a.1.1 Class diagram .. 55

7.3a.1.1.1 Relationships ... 55

7.3a.1.1.2 Inheritance ... 56

7.3a.1.2 Class definitions .. 56

7.3a.1.2.1 MLTrainingFunction .. 56

7.3a.1.2.1.1 Definition ... 56

7.3a.1.2.1.2 Attributes ... 57

7.3a.1.2.1.3 Attribute constraints ... 57

7.3a.1.2.1.4 Notifications... 57

7.3a.1.2.2 MLTrainingRequest .. 57

7.3a.1.2.2.1 Definition ... 57

7.3a.1.2.2.2 Attributes ... 58

7.3a.1.2.2.3 Attribute constraints ... 59

7.3a.1.2.2.4 Notifications... 59

7.3a.1.2.3 MLTrainingReport ... 59

7.3a.1.2.3.1 Definition ... 59

7.3a.1.2.3.2 Attributes ... 59

7.3a.1.2.3.3 Attribute constraints ... 60

7.3a.1.2.3.4 Notifications... 60

7.3a.1.2.4 MLTrainingProcess .. 60

7.3a.1.2.4.1 Definition ... 60

7.3a.1.2.4.2 Attributes ... 61

7.3a.1.2.4.3 Attribute constraints ... 62

7.3a.1.2.4.4 Notifications... 62

7.3a.2 Information model definitions for AI/ML inference emulation .. 65

7.3a.2.1 Class diagram .. 65

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)63GPP TS 28.105 version 19.3.0 Release 19

7.3a.2.1.1 Relationships ... 65

7.3a.2.1.2 Inheritance ... 66

7.3a.2.2 Class definitions .. 66

7.3a.2.2.1 AIMLInferenceEmulationFunction ... 66

7.3a.2.2.1.1 Definition ... 66

7.3a.2.2.1.2 Attributes ... 66

7.3a.2.2.1.3 Attribute constraints ... 66

7.3a.2.2.1.4 Notifications... 66

7.3a.3 Information model definitions for ML model deployment ... 66

7.3a.3.1 Class diagram .. 66

7.3a.3.1.1 Relationships ... 66

7.3a.3.1.2 Inheritance ... 67

7.3a.3.2 Class definitions .. 67

7.3a.3.2.1 MLModelLoadingRequest ... 67

7.3a.3.2.1.1 Definition ... 67

7.3a.3.2.1.2 Attributes ... 68

7.3a.3.2.1.3 Attribute constraints ... 68

7.3a.3.2.1.4 Notifications... 68

7.3a.3.2.2 MLModelLoadingPolicy ... 68

7.3a.3.2.2.1 Definition ... 68

7.3a.3.2.2.2 Attributes ... 68

7.3a.3.2.2.3 Attribute constraints ... 68

7.3a.3.2.2.4 Notifications... 69

7.3a.3.2.3 MLModelLoadingProcess ... 69

7.3a.3.2.3.1 Definition ... 69

7.3a.3.2.3.2 Attributes ... 69

7.3a.3.2.3.3 Attribute constraints ... 70

7.3a.3.2.3.4 Notifications... 70

7.3a.4 Information model definitions for AI/ML inference ... 70

7.3a.4.1 Class diagram .. 70

7.3a.4.1.1 Relationships ... 70

7.3a.4.1.2 Inheritance ... 71

7.3a.4.2 Class definitions .. 71

7.3a.4.2.1 MLUpdateFunction ... 71

7.3a.4.2.1.1 Definition ... 71

7.3a.4.2.1.2 Attributes ... 72

7.3a.4.2.1.3 Attribute constraints ... 72

7.3a.4.2.1.4 Notifications... 72

7.3a.4.2.2 MLUpdateRequest ... 72

7.3a.4.2.2.1 Definition ... 72

7.3a.4.2.2.2 Attributes ... 73

7.3a.4.2.2.3 Attribute constraints ... 73

7.3a.4.2.2.4 Notifications... 73

7.3a.4.2.3 MLUpdateProcess ... 73

7.3a.4.2.3.1 Definition ... 73

7.3a.4.2.3.2 Attributes ... 74

7.3a.4.2.3.3 Attribute constraints ... 74

7.3a.4.2.3.4 Notifications... 74

7.3a.4.2.4 MLUpdateReport.. 74

7.3a.4.2.4.1 Definition ... 74

7.3a.4.2.4.2 Attributes ... 75

7.3a.4.2.4.3 Attribute constraints ... 75

7.3a.4.2.4.4 Notifications... 75

7.3a.4.2.5 AIMLInferenceFunction ... 75

7.3a.4.2.5.1 Definition ... 75

7.3a.4.2.5.2 Attributes ... 75

7.3a.4.2.5.3 Attribute constraints ... 76

7.3a.4.2.5.4 Notifications... 76

7.3a.4.2.6 AIMLInferenceReport .. 76

7.3a.4.2.6.1 Definition ... 76

7.3a.4.2.6.2 Attributes ... 76

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)73GPP TS 28.105 version 19.3.0 Release 19

7.3a.4.2.6.3 Attribute constraints ... 76

7.3a.4.2.6.4 Notifications... 76

7.4 Data type definitions .. 77

7.4.1 ModelPerformance <<dataType>> ... 77

7.4.1.1 Definition .. 77

7.4.1.2 Attributes ... 77

7.4.1.3 Attribute constraints .. 77

7.4.1.4 Notifications .. 77

7.4.2 Void ... 77

7.4.3 MLContext <<dataType>> .. 77

7.4.3.1 Definition .. 77

7.4.3.2 Attributes ... 77

7.4.3.3 Attribute constraints .. 77

7.4.3.4 Notifications .. 78

7.4.4 SupportedPerfIndicator <<dataType>> ... 78

7.4.4.1 Definition .. 78

7.4.4.2 Attributes ... 78

7.4.4.3 Attribute constraints .. 78

7.4.4.4 Notifications .. 78

7.4.5 AvailMLCapabilityReport <<dataType>> .. 78

7.4.5.1 Definition .. 78

7.4.5.2 Attributes ... 79

7.4.5.3 Attribute constraints .. 79

7.4.5.4 Notifications .. 79

7.4.6 AIMLManagementPolicy <<dataType>> .. 79

7.4.6.1 Definition .. 79

7.4.6.2 Attributes ... 79

7.4.6.3 Attribute constraints .. 79

7.4.6.4 Notifications .. 79

7.4.7 ManagedActivationScope <<choice>> .. 79

7.4.7.1 Definition .. 79

7.4.7.2 Attributes ... 80

7.4.7.3 Attribute constraints .. 80

7.4.7.4 Notifications .. 80

7.4.8. MLCapabilityInfo <<dataType>> ... 80

7.4.8.1. Definition .. 80

7.4.8.2 Attributes ... 80

7.4.8.3 Attribute constraints .. 80

7.4.8.4 Notifications .. 80

7.4.9 InferenceOutput <<dataType>> ... 80

7.4.9.1 Definition .. 80

7.4.9.2 Attributes ... 81

7.4.9.3 Attribute constraints .. 81

7.4.9.4 Notifications .. 81

7.4.10 AIMLInferenceName <<choice>> ... 81

7.4.10.1 Definition .. 81

7.4.10.2 Attributes ... 81

7.4.10.3 Attribute constraints .. 81

7.4.10.4 Notifications .. 81

7.4.11 DataStatisticalProperties <<dataType>> .. 82

7.4.11.1 Definition .. 82

7.4.11.2 Attributes ... 82

7.4.11.3 Attribute constraints .. 82

7.4.11.4 Notifications .. 82

7.4.12 DistributedTrainingExpectation <<dataType>> ... 82

7.4.12.1 Definition .. 82

7.4.12.2 Attributes ... 82

7.4.12.3 Attribute constraints .. 82

7.4.12.4 Notifications .. 82

7.4.13 PotentialImpactInfo <<dataType>> .. 82

7.4.13.1 Definition .. 82

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)83GPP TS 28.105 version 19.3.0 Release 19

7.4.13.2 Attributes ... 83

7.4.13.3 Attribute constraints .. 83

7.4.13.4 Notifications .. 83

7.4.14 ImpactedPM <<dataType>> ... 83

7.4.14.1 Definition .. 83

7.4.14.2 Attributes ... 83

7.4.14.3 Attribute constraints .. 83

7.4.14.4 Notifications .. 83

7.4.15 MLKnowledge <<dataType>> ... 83

7.4.15.1 Definition .. 83

7.4.15.2 Attributes ... 84

7.4.15.3 Attribute constraints .. 84

7.4.15.4 Notifications .. 84

7.4.16 EnvironmentScope <<choice>> ... 84

7.4.16.1 Definition .. 84

7.4.16.2 Attributes ... 84

7.4.16.3 Attribute constraints .. 84

7.4.16.4 Notifications .. 84

7.4.17 SupportedLearningTechnology <<dataType>> .. 85

7.4.17.1 Definition .. 85

7.4.17.2 Attributes ... 85

7.4.17.3 Attribute constraints .. 85

7.4.17.4 Notifications .. 85

7.4.18 RLRequirement <<dataType>> .. 85

7.4.18.2 Attributes ... 86

7.4.18.3 Attribute constraints .. 86

7.4.18.4 Notifications .. 86

7.4.19 ClusteringCriteria <<dataType>> ... 86

7.4.19.1 Definition .. 86

7.4.19.2 Attributes ... 86

7.4.19.3 Attribute constraints .. 87

7.4.19.4 Notifications .. 87

7.4.20 FLParticipationInfo <<dataType>> .. 87

7.4.20.1 Definition .. 87

7.4.20.2 Attributes ... 87

7.4.20.3 Attribute constraints .. 87

7.4.20.4 Notifications .. 87

7.4.21 FLRequirement <<dataType>> .. 87

7.4.21.1 Definition .. 87

7.4.21.2 Attributes ... 88

7.4.21.3 Attribute constraints .. 88

7.4.21.4 Notifications .. 88

7.4.22 FLClientSelectionCriteria <<dataType>> .. 88

7.4.22.1 Definition .. 88

7.4.22.2 Attributes ... 88

7.4.22.3 Attribute constraints .. 88

7.4.22.4 Notifications .. 88

7.4.23 FLReportPerClient <<dataType>> ... 88

7.4.23.1 Definition .. 88

7.4.23.2 Attributes ... 89

7.4.23.3 Attribute constraints .. 89

7.4.23.4 Notifications .. 89

7.4a Enumerations .. 89

7.4a.1 NgRanInferenceType <<enumeration>> .. 89

7.5 Attribute definitions ... 90

7.5.1 Attribute properties ... 90

7.5.2 Constraints .. 109

7.6 Common notifications .. 109

7.6.1 Configuration notifications ... 109

8 Service components .. 109

8.0 General ... 109

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)93GPP TS 28.105 version 19.3.0 Release 19

8.1 Lifecycle management operations for AI/ML management MnS .. 109

9 Solution Set (SS) .. 111

9.1 OpenAPI document for provisioning MnS ... 111

9.2 OpenAPI document for AI/ML management ... 111

10 Stage 3 definition for AI/ML Management .. 112

10.1 RESTful HTTP-based solution set ... 112

10.1.1 ML model training .. 112

10.1.2 ML model testing .. 113

10.1.3 AI/ML inference emulation .. 113

10.1.4 ML model deployment .. 114

10.1.5 AI/ML inference ... 115

Annex A (informative): PlantUML source code for NRM class diagrams.. 117

A.1 General ... 117

A.2 PlantUML code for Figure 7.3a.1.1.1-1: NRM fragment for ML model training 117

A.3 PlantUML code for Figure 7.3a.1.1.2-1: Inheritance Hierarchy for ML model training related
NRMs ... 118

A.4 PlantUML code for Figure 7.2a.1.2-1: Inheritance Hierarchy for common information models for
AI/ML management ... 119

A.5 PlantUML code for Figure 7.2a.1.1-1: Relationships for common information models for AI/ML
management ... 119

A.6 PlantUML code for Figure 7.3a.1.1.1-2: NRM fragment for ML model testing 119

A.7 PlantUML code for Figure 7.3a.1.1.2-2: Inheritance Hierarchy for ML model testing related
NRMs ... 120

A.8 PlantUML code for Figure 7.3a.4.1.1-1: NRM fragment for ML update .. 120

A.9 PlantUML code for Figure 7.3a.4.1.2-1: Inheritance Hierarchy for ML update related NRMs........... 121

A.10 PlantUML code for Figure 7.3a.3.1.1-1: NRM fragment for ML model loading 121

A.11 PlantUML code for Figure 7.3a.3.1.2-1: Inheritance Hierarchy for ML model loading related
NRMs ... 122

A.12 PlantUML code for Figure 7.3a.4.1.1-2: NRM fragment for AI/ML inference function 122

A.13 PlantUML code for Figure 7.3a.4.1.2-2: Inheritance Hierarchy for AI/ML inference function 123

A.14 PlantUML code for Figure 7.3a.2.1.1-1: NRM fragment for AI/ML inference emulation Control 123

A.15 PlantUML code for Figure 7.3a.2.1.2-1: AI/ML inference emulation Inheritance Relations 124

Annex B (normative): OpenAPI definition of the AI/ML NRM .. 125

B.1 General ... 125

B.2 Solution Set (SS) definitions .. 125

B.2.1 OpenAPI document "TS28105_AiMlNrm.yaml" ... 125

Annex C (informative): Change history ... 126

History .. 130

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)103GPP TS 28.105 version 19.3.0 Release 19

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

In the present document, modal verbs have the following meanings:

shall indicates a mandatory requirement to do something

shall not indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in
Technical Reports.

The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided
insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced,
non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a
referenced document.

should indicates a recommendation to do something

should not indicates a recommendation not to do something

may indicates permission to do something

need not indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions
"might not" or "shall not" are used instead, depending upon the meaning intended.

can indicates that something is possible

cannot indicates that something is impossible

The constructions "can" and "cannot" are not substitutes for "may" and "need not".

will indicates that something is certain or expected to happen as a result of action taken by an agency
the behaviour of which is outside the scope of the present document

will not indicates that something is certain or expected not to happen as a result of action taken by an
agency the behaviour of which is outside the scope of the present document

might indicates a likelihood that something will happen as a result of action taken by some agency the
behaviour of which is outside the scope of the present document

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)113GPP TS 28.105 version 19.3.0 Release 19

might not indicates a likelihood that something will not happen as a result of action taken by some agency
the behaviour of which is outside the scope of the present document

In addition:

is (or any other verb in the indicative mood) indicates a statement of fact

is not (or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)123GPP TS 28.105 version 19.3.0 Release 19

1 Scope
The present document specifies the Artificial Intelligence / Machine Learning (AI/ML) management capabilities and
services for 5GS where AI/ML is used, including management and orchestration (e.g., MDA, see 3GPP TS 28.104 [2])
and 5G networks (e.g. NWDAF, see 3GPP TS 23.288 [3]) and NG-RAN (see TS 38.300 [16] and TS 38.401 [17]).

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

- For a specific reference, subsequent revisions do not apply.

- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2] 3GPP TS 28.104: "Management and orchestration; Management Data Analytics".

[3] 3GPP TS 23.288: "Architecture enhancements for 5G System (5GS) to support network data
analytics services".

[4] 3GPP TS 28.552: "Management and orchestration; 5G performance measurements".

[5] 3GPP TS 32.425: "Telecommunication management; Performance Management (PM);
Performance measurements Evolved Universal Terrestrial Radio Access Network (E-UTRAN)".

[6] 3GPP TS 28.554: "Management and orchestration; 5G end to end Key Performance Indicators
(KPI)".

[7] 3GPP TS 32.422: "Telecommunication management; Subscriber and equipment trace; Trace
control and configuration management".

[8] Void

[9] 3GPP TS 28.405: "Telecommunication management; Quality of Experience (QoE) measurement
collection; Control and configuration".

[10] Void

[11] 3GPP TS 28.532: "Management and orchestration; Generic management services".

[12] 3GPP TS 28.622: "Telecommunication management; Generic Network Resource Model (NRM)
Integration Reference Point (IRP); Information Service (IS)".

[13] 3GPP TS 32.156: "Telecommunication management; Fixed Mobile Convergence (FMC) Model
repertoire".

[14] 3GPP TS 32.160: "Management and orchestration; Management service template".

[15] 3GPP TS 28.533: "Management and orchestration; Architecture framework".

[16] 3GPP TS 38.300: "NR; NR and NG-RAN Overall description; Stage-2".

[17] 3GPP TS 38.401: "NG-RAN; Architecture description".

[18] 3GPP TS 28.541: " Management and orchestration; 5G Network Resource Model (NRM); Stage 2
and stage 3".

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)133GPP TS 28.105 version 19.3.0 Release 19

[19] 3GPP TS 28.623: "Telecommunication management; Generic Network Resource Model (NRM)
Integration Reference Point (IRP); Solution Set (SS) definitions".

[20] 3GPP TS 29.520: "5G System; Network Data Analytics Services; Stage 3".

[21] 3GPP TS 28.319: “Management and orchestration; Access Control for Management services”.

[22] 3GPP TS 28.111: "Management and orchestration; Fault Management (FM)".

3 Definitions of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term
defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

ML model: a manageable representation of an ML model algorithm.

NOTE 1: an ML model algorithm is a mathematical algorithm through which running a set of input data can
generate a set of inference output.

NOTE 2: ML model algorithm is proprietary and not in scope for standardization and therefore not treated in this
specification.

NOTE 3: ML model may include metadata. Metadata may include e.g. information related to the trained model, and
applicable runtime context.

ML model training: a process performed by an ML training function to take training data, run it through an ML model
algorithm, derive the associated loss and adjust the parameterization of that ML model iteratively based on the
computed loss and generate the trained ML model.

ML model initial training: a process of training an initial version of an ML model.

ML model re-training: a process of training a previously trained version of an ML model and generate a new version.

NOTE 4: a new version of a trained ML model supports the same type of inference as the previous version of the
ML model, i.e., the data type of inference input and data type of inference output remain unchanged
between the two versions of the ML model, but parameter values might be different for the re-trained
model.

ML model pre-specialized training: the process of training an ML model on a dataset not specific to any type of
inference.

ML model Fine-tuning: the process of training a pre-specialised trained ML model to narrow its inference scope to a
new single inference type, generating a new ML model.

NOTE 5: The pre-specialised trained model supports an inference scope that may be potentially adapted to support

a list of inference types, such as MDA types in MDA, analytics types in NWDAF, type of AI/ML
supported functions in NG-RAN, or vendor-specific extensions.

NOTE 6: The inference scope refers to a list of inference types that the ML model may be potentially adapted to
support.

NOTE 7: The type of inference represents the specific type of ML inference supported by the model, such as MDA
types in MDA, Analytics types in NWDAF, type of AI/ML supported functions in NG-RAN, or vendor-
specific extensions.

Distributed training: a process of distributing the training workload across multiple ML training functions.

Federated learning: a distributed machine learning approach where the ML model is trained collaboratively by
multiple ML training functions. This includes multiple FL clients, which perform training on local data, and one FL
server, which aggregates model outcomes from the clients iteratively without exchanging data samples.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)143GPP TS 28.105 version 19.3.0 Release 19

Horizontal federated learning: a federated learning technique without exchanging/sharing local data set, wherein the
local data set in different HFL clients for local model training have the same feature space for different samples.

FL Client: a training function that trains an ML model on local data and shares only the model updates with the FL
server, preserving data privacy.

FL Server: a function that aggregates the ML model updates from FL Clients to produce a global ML model.

Reinforcement learning: a machine learning approach in which an RL agent interacts with an RL environment by
observing states, taking actions and receiving rewards as feedback. The RL agent learns a decision making policy by
maximizing rewards over time through trial and error.

ML model joint training: a process of training a group of ML models.

ML training function: a logical function with ML model training capabilities.

ML knowledge: the implicit information representing experience gained by the training of an ML model

NOTE 8: Examples of experience include statistics (e.g. a distribution) or summaries (e.g. tables) indicating the ML
model’s recommended output for a given set of input data.

ML model testing: a process of evaluating the performance of an ML model using testing data different from data used
for model training and validation.

ML model joint testing: a process of evaluating the performance of a group of ML models using testing data different
from data used for model training and validation.

ML testing function: a logical function with ML model testing capabilities.

AI/ML inference: a process of running a set of input data through a trained ML model to produce set of output data,
such as predictions.

NOTE 9: The inference represents the process to realize the AI capabilities by utilizing a trained ML model and
other AI enablers if needed, hence the AI/ML prefix is used when referring to inference as compared to
training and testing.

AI/ML inference function: a logical function that employs trained ML model(s) to conduct inference.

AI/ML inference emulation: running the inference process to evaluate the performance of an ML model in an
emulation environment before deploying it into the target environment.

ML model deployment: a process of making a trained ML model available for use in the target environment.

ML model loading: a process of making a trained ML model available to an inference function.

AI/ML activation: a process of enabling the inference capability of an AI/ML inference function.

AI/ML deactivation: a process of disabling the inference capability of an AI/ML inference function.

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and TS 28.533 [15]. An
abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in
TR 21.905 [1] and TS 28.533 [15].

AI Artificial Intelligence
ML Machine Learning
FL Federated Learning
HFL Horizontal Federated Learning
VFL Vertical Federated Learning

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)153GPP TS 28.105 version 19.3.0 Release 19

4 Concepts and overview

4.1 Overview
The AI/ML techniques and relevant applications are being increasingly adopted by the wider industries and proved to
be successful. These are now being applied to telecommunication industry including mobile networks.

Although AI/ML techniques in general are quite mature nowadays, some of the relevant aspects of the technology are
still evolving while new complementary techniques are frequently emerging.

The AI/ML techniques can be generally characterized from different perspectives including the followings:

- Learning methods

The learning methods include supervised learning, semi-supervised learning, unsupervised learning and reinforcement
learning. Each learning method fits one or more specific category of inference (e.g. prediction), and requires specific
type of training data. A brief comparison of these learning methods is provided in table 4.1-1.

Table 4.1-1: Comparison of Learning methods

 Supervised
learning

Semi-supervised
learning

Unsupervised
learning

Reinforcement
learning

Category of inference Regression
(numeric),
classification

Regression
(numeric),
classification

Association,
Clustering

Reward-based
behaviour

Type of training data Labelled data (Note) Labelled data
(Note), and
unlabelled data

Unlabelled data Not pre-defined

NOTE: The labelled data refers to a set of training and testing data that have been assigned with one or more
labels in order to add context and meaning.

- Learning complexity:

- As per the learning complexity, there are Machine Learning (i.e. basic learning) and Deep Learning.

- Learning architecture

- Based on the topology and location where the learning tasks take place, the AI/ML can be categorized to
centralized learning, distributed learning and federated learning.

- Learning continuity

- From learning continuity perspective, the AI/ML can be offline learning or continual learning.

Artificial Intelligence/Machine Learning (AI/ML) capabilities are used in various domains in 5GS, including
management and orchestration (e.g. MDA, see 3GPP TS 28.104 [2]) and 5G networks (e.g. NWDAF, see 3GPP
TS 23.288 [3]).

The AI/ML inference function in the 5GS uses the ML model for inference.

Each AI/ML technique, depending on the adopted specific characteristics as mentioned above, may be suitable for
supporting certain type/category of use case(s) in 5GS.

To enable and facilitate the AI/ML capabilities with the suitable AI/ML techniques in 5GS, the ML model and AI/ML
inference function need to be managed.

The present document specifies the generic AI/ML management related capabilities and services without specifically
taking any of the above-mentioned learning methods into consideration. The AI/ML management capabilities which
include the followings:

- ML model training.

- ML model testing.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)163GPP TS 28.105 version 19.3.0 Release 19

- AI/ML inference emulation.

- ML model deployment.

- AI/ML inference.

4.2 Management of AI/ML capabilities for RAN
The management of AI/ML capabilities for the RAN covers scenarios where both the ML model training and AI/ML
inference are located in the NG-RAN node, as well as scenarios where the ML model training is located in the
management system and the AI/ML inference is located in the NG-RAN node. In either case, the NG-RAN AI/ML-
based feature defined in clause 16.20 of TS 38.300 [16] can be supported.

4.3 Management of AI/ML capabilities for 5GC

The management of AI/ML capabilities for the 5GC covers scenarios where both the ML model training and AI/ML
inference functions are located in the 5GC.in this case, the NWDAF feature defined in clause 6 of TS 23.288 [3] can be
supported.

4.4 Management of AI/ML capabilities for MDA
For MDA, the ML training function can be located either inside or outside the MDAF while the AI/ML inference
function is located in the MDAF. In this case, the MDA capabilities defined in clause 7.2 of TS 28.104 [2] can be
supported.

4a AI/ML management functionality and service
framework

4a.0 ML model lifecycle
AI/ML techniques are widely used in 5GS (including 5GC, NG-RAN, and management system), the generic AI/ML
operational workflow shown in Figure 4a.0-1, highlights the main steps of an ML model lifecycle.

ML model
training

ML model
testing

AI/ML
inference
emulation

ML model
deployment

AI/ML
inference

Sequence of flow

Figure 4a.0-1: ML model lifecycle

The ML model lifecycle includes training, testing, emulation, deployment, and inference. These steps are briefly
described below:

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)173GPP TS 28.105 version 19.3.0 Release 19

- ML model training: training, including initial training, re-training, pre-specialised training and fine-tuning.
Training could be for a single ML model or a group of ML models. It may also include validation of the ML
model(s) to evaluate the performance when the ML model(s) performs on the validation data. If the validation
result does not meet the expectation (e.g., the variance is not acceptable), the MnS Producer may decide to re-
train the ML model(s).

- ML model testing: testing of a validated ML model to evaluate the performance of the trained ML model when
it performs on testing data. If the testing result meets the expectations, the ML model may proceed to the next
step If the testing result does not meet the expectations, the ML model needs to be re-trained.

- AI/ML inference emulation: running an ML model for inference in an emulation environment. The purpose is
to evaluate the inference performance of the ML model in the emulation environment prior to applying it to the
target network or system. If the emulation result does not meet the expectation (e.g., inference performance does
not meet the target, or the ML model negatively impacts the performance of other existing functionalities), the
ML model needs to be re-trained.

NOTE 1: The AI/ML inference emulation is considered optional and can be skipped in the ML model lifecycle.

- ML model deployment: ML model deployment includes the ML model loading process (a.k.a. a sequence of
atomic actions) to make a trained ML model available for use at the target AI/ML inference function.

 ML model deployment may not be needed in some cases, for example when the training function and inference
function are co-located.

- AI/ML inference: performing inference using trained ML model(s) by the AI/ML inference function. The
AI/ML inference may also trigger model re-training or update based on e.g., performance monitoring and
evaluation.

NOTE 2: Depending on system implementation and AI/ML functionality arrangements, both AI/ML inference
emulation and ML deployment steps may be skipped.

NOTE 3: The sequence of ML model lifecycle in Figure 4a.0-1 is the typical process in an E2E perspective. The
actual sequence will depend on certain training techniques as described in their use cases, e.g., ML
reinforcement learning, Distributed training or Federated learning, etc.

4a.1 Functionality and service framework for ML model training
An ML training Function playing the role of ML training MnS producer, may consume various data for ML model
training purpose.

As illustrated in Figure 4a.1-1 the ML model training capability is provided via ML training MnS in the context of
SBMA to the authorized MnS consumer(s) by ML training MnS producer.

ML Training Function: ML Training MnS producer

ML Training

(Internal business logic)

ML Training MnS

Consumer

ML Training MnS

Data
Data

Data

Figure 4a.1-1: Functional overview and service framework for ML model training

The internal business logic of ML model training leverages the current and historical relevant data, including those
listed below to monitor the networks and/or services where relevant to the ML model, prepare the data, trigger and
conduct the training:

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)183GPP TS 28.105 version 19.3.0 Release 19

- Performance Measurements (PM) as per 3GPP TS 28.552 [4], 3GPP TS 32.425 [5] and Key Performance
Indicators (KPIs) as per 3GPP TS 28.554 [6].

- Trace/MDT/RLF/RCEF/RRC data, as per 3GPP TS 32.422 [7].

- QoE and service experience data as per 3GPP TS 28.405 [9].

- Analytics data offered by NWDAF as per 3GPP TS 23.288 [3].

- Alarm information and notifications as per 3GPP TS 28.111 [22].

- CM information and notifications.

- MDA reports from MDA MnS producers as per 3GPP TS 28.104 [2].

- Management data from non-3GPP systems.

- Other data that can be used for training.

4a.2 AI/ML functionalities management scenarios (relation with
managed AI/ML features)

The ML training function and/or AI/ML inference function can be located in the RAN domain MnS consumer (e.g.
cross-domain management system),a domain-specific management system (i.e. a management function for RAN or
CN), or in a network function (NF).

For MDA, the ML training function can be located inside or outside the MDAFwhile the AI/ML inference function is
located in the MDAF.

For NWDAF, the ML training function can be located in the MTLF of the NWDAF or in the management system, and
the AI/ML inference function is located in the AnLF.

For NG-RAN, the ML training function and AI/ML inference function can both be located in the NG-RAN node.or the
ML training function can be located in the management system and AI/ML inference function is located in the NG-
RAN node. Where the ML training function corresponds to ML model training that stated in clause 16.20.2 in TS
38.300 [16] and AI/ML inference function can correspond to AI/ML inference stated in clause 16.20.2 in TS 38.300
[16].

For LMF-based AI/ML Positioning, the ML training function can be located in the LMF or CN-domain management
function, and the AI/ML inference function can be located in the LMF.

Therefore, multiple location scenarios for ML training function and AI/ML inference functions are possible.

Scenario 1:

The ML training function and AI/ML inference function are both located in the 3GPP management system (e.g. a RAN
domain management function). For example, for RAN domain-specific MDA, both the ML training function and
AI/ML inference functions for MDA can be located in the RAN domain-specific MDAF as depicted in figure 4a.2-1.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)193GPP TS 28.105 version 19.3.0 Release 19

Figure 4a.2-1: Management for RAN domain specific MDAF

Similarly, for CN domain-specific MDA the ML training function and AI/ML inference function can be located in CN
domain-specific MDAF.

Scenario 2:

For AI/ML for NG-RAN, the ML model training is located in the 3GPP RAN domain-specific management function
while the AI/ML inference is located in NG-RAN node. For AI/ML inference use case, refer to Network Energy
Saving, Load Balancing, Mobility Optimization as defined in clause 16.20 in TS 38.300 [16]. See Figure 4a.2-2.

Figure 4a.2-2: Management where the ML model training is located in RAN domain management
function and AI/ML inference is located in NG-RAN node

Scenario 3:

For AI/ML in NG-RAN, the ML model training and AI/ML inference are both located in the NG-RAN node.For ML
model training and AI/ML inference use case, refer to Network Energy Saving, Load Balancing, Mobility Optimization
as defined in clause 16.20 in TS 38.300 [16]. See Figure 4a.2-3.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)203GPP TS 28.105 version 19.3.0 Release 19

Figure 4a.2-3: Management where the ML model training and AI/ML inference are both located in NG-
RAN node.

Scenario 4:

For NWDAF, both the MTLF and AnLF are located in the NWDAF. See Figure 4a.2-4.

Figure 4a.2-4: Management where the MTLF and AnLF are both located in CN

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)213GPP TS 28.105 version 19.3.0 Release 19

5 Void

6 AI/ML management use cases and requirements

6.1 ML model lifecycle management capabilities
Each operational step in the ML model lifecycle (see clause 4a.0.1) is supported by one or more AI/ML management
capabilities, which enable the MnS consumer (e.g. operator) to manage and control the ML model lifecycle as listed
below.

Management capabilities for ML model training

- ML model training management: allowing the MnS consumer to request the ML model training, consume and
control the producer-initiated training, and manage the ML model training/re-training process. The training
management capability may include training performance management and setting a policy for the producer-
initiated ML model training.

- ML model training capability also includes validation to evaluate the performance of the ML model when
performing on the validation data, and to identify the variance of the performance on the training and validation
data. If the variance is not acceptable, the ML model would need to be re-trained before being made available for
the next step in the ML model lifecycle (e.g., ML model testing).

Management capabilities for ML testing

- ML model testing management: allowing the MnS consumer to request the ML model testing, and to receive
the testing results for a trained ML model. It may also include capabilities for selecting the specific performance
metrics to be used or reported by the ML testing function. MnS consumer may also be allowed to trigger ML
model re-training based on the ML model testing performance results.

Management capabilities for AI/ML inference emulation:

- AI/ML inference emulation: a capability allowing an MnS consumer to request an ML inference emulation for
a specific ML model or models (after the training, validation, and testing) to evaluate the inference performance
in an emulation environment prior to applying it to the target network or system.

Management capabilities for ML model deployment:

- ML model loading management: allowing the MnS consumer to trigger, control and/or monitor the ML model
loading process.

Management capabilities for AI/ML inference:

- AI/ML inference management: allowing an MnS consumer to control the inference, i.e., activate/deactivate the
inference function and/or ML model/models, configure the allowed ranges of the inference output parameters.
The capabilities also allow the MnS consumer to monitor and evaluate the inference performance and when
needed trigger an update of an ML model or an AI/ML inference function.

The use cases and corresponding requirements for AI/ML management capabilities are specified in the following
clauses.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)223GPP TS 28.105 version 19.3.0 Release 19

6.2 Void

6.2a Void

6.2b ML model training

6.2b.1 Description

Before an ML model is deployed to conduct inference, the ML model algorithm associated with the ML model needs to
be trained. The ML model training can be an initial training or the re-training of an already trained ML model.

The ML model is trained by the ML training MnS producer, and the training can be triggered by request(s) from one or
more ML training MnS consumer(s), or initiated by the ML training MnS producer (e.g., as a result of model
performance evaluation).

The procedures in [21] for authentication and authorization are applicable for all ML model training use cases.

6.2b.2 Use cases

6.2b.2.1 ML model training requested by consumer

ML model training

ML model

ML training function: MLT MnS producer MLT MnS consumerML training request

Response

Training result

Figure 6.2b.2.1-1: ML model training requested by ML training MnS consumer

The ML model training may be triggered by the request(s) from one or more ML training MnS consumer(s). The
consumer may be for example a network function, a management function, an operator, or another functional
differentiation.

To trigger an initial ML model training, the MnS consumer needs to specify in the ML training request the inference
type which indicates the function or purpose of the ML model, e.g. CoverageProblemAnalysis [see TS 28.104 [2]]. The
ML training MnS producer can perform the initial training according to the designated inference type. To trigger an ML
model re-training, the MnS consumer needs to specify in the ML training request the identifier of the ML model to be
re-trained.

The consumer may provide the data source(s) that contain(s) the training data which are considered as inputs candidates
for training. To obtain the valid training outcomes, consumers may also designate their requirements for model
performance (e.g. accuracy, etc) in the training request.

The performance of the ML model depends on the degree of commonality between the distribution of the data used for
training and the distribution of the data used for inference. As time progresses, the distribution of the input data used for
inference might change as compared to the distribution of the data used for training. In such a scenario, the performance
of the ML model degrades over time. The ML training MnS producer may re-train the ML model if the inference
performance of the ML model falls below a certain threshold, which needs to be configurable by the MnS consumer.

Following the ML training request by the ML training MnS consumer, the ML training MnS producer provides a
response to the consumer indicating whether the request was accepted.

If the request is accepted, the ML training MnS producer decides when to start the ML model training with
consideration of the request(s) from the consumer(s). Once the training is decided, the producer performs the following:

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)233GPP TS 28.105 version 19.3.0 Release 19

- selects the training data, with consideration of the consumer provided candidate training data. Since the training
data directly influences the algorithm and performance of the trained ML model, the ML training MnS producer
may examine the consumer's provided training data and decide to select none, some or all of them. In addition,
the ML training MnS producer may select some other training data that are available;

- trains the ML model using the selected training data;

- validate the trained model using validation set of the training data;

- provides the training results (including the identifier of the ML model generated from the initially trained ML
model or the version number of the ML model associated with the re-trained model, training performance
results, etc.) to the ML training MnS consumer(s).

6.2b.2.2 ML model training initiated by producer

The ML model training may be initiated by the ML training MnS producer, for instance as a result of performance
evaluation of the ML model or based on feedback or new training data received from the consumer, or when new
training data, which are not from the consumer, describing the new network status/events become available.

Therefore, there is a need to monitor the performance and/or the KPIs of the ML model and use the thresholds that the
ML training MnS consumer configured for the ML training MnS producer to trigger the training or re-training.

When the ML training MnS producer decides to start the ML model training, the producer performs the followings:

- selects the training data;

- trains the ML model using the selected training data;

- provides the training results (including the identifier of the ML model generated frm the initially trained ML
model or the version number of the ML model associated with the re-trained model, training performance, etc.)
to the ML training MnS consumer(s) who have subscribed to receive the ML model training results.

6.2b.2.3 ML model selection

For a given machine learning-based use case, different entities that apply the respective ML model or AI/ML inference
function may have different inference requirements and capabilities. For example, one consumer with specific
responsibility wishes to have an AI/ML inference function supported by an ML model trained for city central business
district where mobile users move at speeds not exceeding 30 km/hr. On the other hand, another consumer, for the same
use case may support a rural environment and as such wishes to have an ML model and AI/ML inference function
fitting that type of environment. The different consumers need to know the available versions of ML model, with the
variants of trained ML models and to select the appropriate one for their respective conditions.

Besides, there is no guarantee that the available ML models have been trained according to the characteristics that the
consumers expect. As such the consumers need to know the conditions for which the ML models have been trained to
then enable them to select the models that are best fit to their conditions and needs.

The models that have been trained may differ in terms of complexity and performance. For example, a generic
comprehensive and complex model may have been trained in a cloud-like environment, but such a model cannot be
used in the gNB and instead, a less complex model, trained as a derivative of this generic model, could be a better
candidate. Moreover, multiple less complex models could be trained with different levels of complexity and
performance which would then allow different relevant models to be delivered to different consumers depending on
operating conditions and performance requirements. The consumers need to know the alternative models available and
interactively request and replace them when needed and depending on the observed inference-related constraints and
performance requirements.

6.2b.2.4 Managing ML model training processes

This relates to the management and controlling of the ML model training processes.

To achieve the desired outcomes of any machine learning relevant use-case or task, the ML model applied for such use
case or task, needs to be trained with the appropriate data. The training may be undertaken in a managed function or in a
management function.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)243GPP TS 28.105 version 19.3.0 Release 19

In either case, the network management system not only needs to have the required training capabilities but needs to
also have the means to manage the training process of the ML models. The consumers need to be able to interact with
the training process, e.g., to suspend or restart the process; and also need to manage and control the requests related to
such training process.

6.2b.2.5 Handling errors in data and ML decisions

Ideally, the ML models are trained on good quality data, i.e. data that was collected correctly and reflected the real
network status to represent the expected context in which the ML model is meant to operate. However, this is not
always the case in real world as data cannot be completely error-free. Good quality data is void of errors, such as:

- Imprecise measurements

- Missing values or records

- Records which are communicated with a significant delay (in case of online measurements).

Without errors, an ML model can depend on a few precise inputs, and does not need to exploit the redundancy present
in the training data. However, during inference, the ML model is very likely to come across these inconsistencies. When
this happens, the ML model shows high error in the inference outputs, even if redundant and uncorrupted data are
available from other sources.

Figure 6.2b.2.5-1: The propagation of erroneous information

As such, the training function should attempt to identify errors in the input data. If an model has been trained on
erroneous or inconsistent data, the consumer should be made aware of such.

6.2b.2.6 ML model joint training

Each ML model supports a specific type of inference. An AI/ML inference function may use one or more ML models to
perform the inference(s). When multiple ML models are employed, these ML models may operate together in a
coordinated way, such as in a sequence, or even in a more complicated structure. In this case, any change in the
performance of one ML model may impact another, and consequently impact the overall performance of the whole
AI/ML inference function.

There are different ways in which the group of ML models may coordinate. An example is the case where the output of
one ML model can be used as input to another ML model forming a sequence of interlinked ML models. Another example
is the case where multiple ML models provide the output in parallel (either the same output type where outputs may be
merged (e.g., using weights), or their outputs are needed in parallel as input to another ML model. The group of ML
models needs to be employed in a coordinated way to support an AI/ML inference function.

Therefore, it is desirable that the ML models can be trained or re-trained jointly, so that the group of these ML models
can complete a more complex task jointly with better performance.

The ML model joint training may be initiated by the ML training MnS producer or the ML training MnS consumer, with
the grouping of the ML models shared by the ML training MnS producer with the ML training MnS consumer.

ML Model
1

ML Model
2

Network

Resources

M
L
 C
o
n
su
m
e
r

p

KPIs
Error

p

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)253GPP TS 28.105 version 19.3.0 Release 19

6.2b.2.7 ML model validation performance reporting

During the ML model training process, the generated ML model needs to be validated. The purpose of ML validation is
to evaluate the performance of the ML model when performing on the validation data, and to identify the variance of
the performance on the training data and the validation data. The training data and validation data are of the same
pattern as they normally split from the same data set with a certain ratio in terms of quantity of the data samples.

In the ML model training, the ML model is generated based on the learning from the training data and validated using
the validation data. The performance of the ML model has tight dependency on the data (i.e., training data) from which
the ML model is generated. Therefore, an ML model performing well on the training data may not necessarily perform
well on other data e.g., while conducting inference. If the performance of ML model is not good enough according to
the result of ML validation, the ML model will be re-trained and validated again. The process of ML model tuning and
validation is repeated by the ML model training function, until the performance of the ML model meets the expectation
on both training data and validation data. The MnS producer subsequently selects one or more ML models with the best
level of performance on both training data and validation data as the result of the ML model training, and reports
accordingly to the consumer. The performance of each selected ML model on both training data and validation data also
needs to be reported.

The performance result of the validation may also be impacted by the ratio of the training data and the validation data.
MnS consumer needs to be aware of the ratio of training data and the validation data, coupled with the performance
score on each data set, in order to be confident about the performance of ML model.

6.2b.2.8 Training data effectiveness reporting

Training data effectiveness refers to the process of evaluating the contribution of a single data instance or a type of input
training data (e.g., one measurement type among all types of input training data) to ML model training process.

To efficiently train a ML model, high quality and large volume of training data instances are considered essential. The
open use of all available data can be costly, both in terms of data collection process and from a computational resources
perspective since the data also contains the unnecessary data samples that are computed through the ML model. It is better
that the training function evaluates the usefulness of different data samples and indicates that level of usefulness to the
consumer so that the data used for re-training can be further enhanced/optimized.

The 3GPP management system needs to support means to report the extent of effectiveness of the different training data
samples used in ML model training based on insight of how the different portion of data contribute differently to the
trained model accuracy.

6.2b.2.9 Performance management for ML model training

6.2b.2.9.1 Overview

In the ML model training, the performance of ML model needs to be evaluated on training data. The performance is the
degree to which the ML models fulfil the objectives for which they were trained. The related performance indicators
need to be collected and analyzed.

6.2b.2.9.2 Performance indicator selection for MLmodel training

The ML model training function may support training for a single or several ML model algorithm and may support the
capability to evaluate each ML model by one or more performance indicators.

The MnS consumer may prefer to use some performance indicator(s) over others to evaluate one kind of ML model.
The performance indicators for training mainly include the following aspects:ML model training process monitors
performance indicators: the performance indicators of the system that trains the ML model, including training duration
indicator.

- ML model training model performance indicators: performance indicators of the ML model itself, including but not
limited to:

- Accuracy indicator,

- Precision indicator,

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)263GPP TS 28.105 version 19.3.0 Release 19

- Recall indicator,

- F1 score indicator,

- MSE (Mean Squared Error) indicator, and

- MAE (Mean Absolute Error) indicator,

- RMSE (Root Mean Square Error) indicator.

The MnS producer for ML model training needs to provide the name(s) of supported performance indicator(s) for the
MnS consumer to query and select for ML model performance evaluation. The MnS consumer may also need to provide
the performance requirements of the ML model using the selected performance indicators.

The MnS producer for ML model training uses the selected performance indicators for evaluating ML model training,
and reports with the corresponding performance score in the ML model training report when the training is completed.

6.2b.2.9.3 ML model performance indicators query and selection for ML model training

ML model performance evaluation and management are needed during training. The related performance indicators
need to be collected and analyzed. The MnS producer of ML model training should determine which indicators are
needed, i.e., select some indicators based on the use case and use these indicators for performance evaluation.

The ML MnS consumer may have different requests on AI/ML performance, depending on its use case and
requirements, which may imply that different performance indicators may be relevant for performance evaluation. The
MnS producer for ML model training can be queried to provide the information on supported performance indicators
referring to ML model training. Such performance indicators for training may be for example
accuracy/precision/recall/F1-score/MSE/MAE. Based on supported performance indicators as well as based on
consumer’s requirements, the MnS consumer for ML model training may request a sub-set of supported performance
indicators to be monitored and used for performance evaluation. Management capabilities are needed to enable the MnS
consumer for ML model training or to query the supported performance indicators and select a sub-set of performance
indicators to be used for performance evaluation.

6.2b.2.9.4 MnS consumer policy-based selection of ML model performance indicators for
ML model training

ML model performance evaluation and management is needed during ML model training. The related performance
indicators need to be collected and analysed. The MnS producer for ML model training should determine which
indicators are needed or may be reported, i.e., select some indicators based on the service and use these indicators for
performance evaluation.

The MnS consumer for ML model training may have differentiated levels of interest in the different performance
dimensions or metrics. Thus, depending on its use case, the AI/ML MnS consumer may indicate the preferred behaviour
and performance requirement that needs to be considered during training by the MnS producer. These performance
requirements do not need to indicate the technical performance indicators used for ML model training, testing or
inference, such as "accuracy" or "precision" or "recall" or "MSE" or "MAE" or “F1 score" etc. The ML MnS consumer
for ML model training may not be capable enough to indicate the performance metrics to be used for training.

6.2b.2.10 ML-Knowledge-based Transfer Learning

6.2b.2.10.1 Description

It is known that existing ML capability can be leveraged in producing new or improving other ML capability.
Specifically, transfer learning allows knowledge contained in one or more ML models to be transferred to another ML
model. Transfer learning relies on task and domain similarity to determine whether parts of a deployed ML model can
be reused in another domain / task with some modifications.

In multi-vendor environments, aspects of transfer learning need to be supported in network management systems.
However, as ML models are not expected to be multi-vendor objects, i.e. an ML model cannot be transferred directly
from one function to another, the knowledge contained within the model, referred to as ML knowledge, should be
transferred instead of the ML model itself.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)273GPP TS 28.105 version 19.3.0 Release 19

ML knowledge represents the information representing experience gained by the training of an ML model (e.g.
experience that indicates the recommended outputs for a given set of input data). This information can be of various
forms such as statistics (e.g. a distribution) or summaries (e.g. tables).

For example, knowledge contained in an ML model deployed to perform mobility optimization during the day can be
leveraged to produce a new ML model to perform mobility optimization at night. As illustrated in Figure 6.2b.2.10.1-1,
the network or its management system needs to have the required management services to support ML Knowledge-
based Transfer Learning (MLKTL). ML Knowledge-based Transfer Learning refers to the capability of enabling and
managing the transfer learning between any two ML models or training functions.

ML-Knowledge-based
Transfer Learning Function

(Source MLKTL)

Source
MLModel

ML-Knowledge-based
Transfer Learning Function

(Peer MLKTL)

Peer
MLModel

ML-Knowledge-based
Transfer Learning MnS

Consumer

1) Request available MLKnowledge at Source ML model)

2) Report candidate MLKnowledge in Source ML model)

3a) Instantiate MLKnowledge-based TL (peer
MLKTL Id, MLKnowledge)

4a) Report on MLKnowledge-based TL

3b) Instantiate MLKnowledge-based TL
(source MLKTL Id, MLKnowledge)

4b) Report on MLKnowledge-based TL

3- Services between source and
peer to transfer knowledge and
trigger learning

Figure 6.2b.2.10.1-1: ML Knowledge-based Transfer Learning (MLKTL) flow between the source
MLKTL

(which is the ML training function with the pre-trained ML model), the peer MLKTL
(which is the ML training function that shall train a new ML model) and the MLKTL MnS consumer

(which may be the operator or another management function that triggers or controls MLKTL)

NOTE 1: The services between the source and peer for the transfer knowledge and triggering of learning is
implementation specific and is not in scope of the current specification.

NOTE 2: Transfer learning (including knowledge-based transfer learning) can be sensitive from a data exposure
and privacy aspect. Knowledge-based transfer learning will not be triggered for non-authorized MnS
consumers, but the authorization of the MnS consumers is not in scope of the current document.

6.2b.2.10.2 Use cases

6.2b.2.10.2.1 Discovering sharable Knowledge

For transfer learning, it is expected that the source ML Knowledge-based Transfer Learning (MLKTL) Functionshares
its knowledge with the target ML training function, either through a single instance of knowledge transfer or through an
interactive transfer learning process. The ML knowledge here represents any experiences or information gathered by the
ML model within the source MLKTL Functionthrough training, inference, updates, or testing. This knowledge can be in
the form of data statistics, features of the underlying ML model, or the output of the ML model. The 3GPP management
systems should provide mechanisms for an MnS consumer to discover this potentially shareable knowledge as well as
the means for the MLKTL provider to share that knowledge with the MnS consumer.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)283GPP TS 28.105 version 19.3.0 Release 19

6.2b.2.10.2.2 Knowledge sharing and transfer learning

Transfer learning may be triggered by an MnS consumer, either to fulfil its own learning needs or delegate the process
to another ML training function. The model containing the knowledge may be an independent managed entity or it
could be an attribute of a managed ML model or ML training function. In the latter case, MLKTL does not involve
sharing the ML model itself or parts of it but would focus on enabling the sharing of the knowledge contained within
the ML model or ML-enabled function.

The 3GPP management system should provide mechanisms and services needed to realize the ML Knowledge-based
transfer learning process. Specifically, the 3GPP management system should enable an MnS consumer to request and
receive sharable knowledge as well as means for the MnS producer of MLKTL to share the knowledge with the MnS
consumer or a designated target ML training function. Similarly, the 3GPP management system should support MnS
consumers in managing and controlling the MLKTL process, including handling requests associated with knowledge
transfer learning between two ML models directly or via a shared knowledge repository.

The two use cases should address the four scenarios illustrated below.

It should be noted that, the use cases and requirements here focus on the required management capabilities the
implementation of the knowledge transfer learning processes are implementation details that are out of the scope of the
present document.

Scenario 1: Interactions for ML-Knowledge-based Transfer Learning (MLKTL) to support training at the ML
knowledge Transfer MnS consumer as a peer - ML knowledge-based Transfer Learning MnS consumer obtains the ML
knowledge which it then uses for training the new ML model based on knowledge received from the MLKTL source
Function.

Scenario 2: Interactions for ML-Knowledge-based Transfer Learning (MLKTL) to support training at the peer ML
Knowledge-based Transfer Learning Functiontriggered by the MLKTL Source - the ML Knowledge-based Transfer
Learning MnS consumer acting as the MLKTL Source (the source of the ML knowledge) triggers the training at the ML
knowledge-based Transfer Function by providing the ML knowledge to be used for the training, the ML Knowledge-
based Transfer Learning MnS consumer then undertakes the training.

Scenario 3: Interactions for ML-Knowledge-based Transfer Learning (MLKTL) to support training at the Peer ML
knowledge-based Transfer Learning Function who is different from the ML knowledge-based Transfer Learning MnS
consumer - the ML knowledge-based Transfer Learning MnS consumer triggers training at the MLKTL peer Function.
The MLKTL MnS consumer then obtains the ML knowledge from the MLKTL source Functionand then uses the
knowledge for training the new ML model based on knowledge received from the MLKTL source Function.

Scenario 4: Interactions for ML-Knowledge-based Transfer Learning (MLKTL) to support training at the Source ML
knowledge Transfer Function- the ML knowledge-based Transfer Learning MnS consumer triggers training at the
MLKTL source Function. The MLKTL MnS consumer then takes its available ML knowledge-based and uses the
knowledge for training the new ML model based.

6.2b.2.11 ML model training for multiple contexts

Although the ML model may provide an AI/ML inference service for multiple scenarios, there are similarities in the
contexts where ML models operate and perform AI/ML inferences. For e.g., two ML model instances for the same
inference type in urban or rural areas would have significant overlap in their contexts with respect to their type of learning,
performance characteristic, task solving type, clustering technique, training and inference time. The context similarity can
be leveraged in forming a cluster of ML models, where ML model instances in the cluster are either trained from the same
previously trained ML model or from an ML model previously trained for another similar context as the baseline. The
training of an ML model for multiple contexts allows for efficiency by cluster training rather than individually training
each one of them. ML training needs to support the capability to form a cluster of ML models as per clustering criteria
and train them from the same baseline ML model or from an ML model previously trained for another similar context as
the baseline. As input to the training, the clustering criteria needed to distinguish the ML model instances i.e. which ML
models can form the cluster and trained together having similarities in context, learning paradigm, evaluation performance
metrics, task type, training and inference time etc., may be provided by the MnS consumer.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)293GPP TS 28.105 version 19.3.0 Release 19

In the case of degradation of ML models, updating of ML models is expected to be triggered. For ML models created
by training in clusters, the retraining of a degraded ML model could be triggered to start from another
member of the cluster, i.e. start from an ML model with another context to create a new ML model
with the desired context.6.2b.2.12 ML Pre-specialised training

ML model pre-specialised training refers to the process of training an ML model using a dataset that is not specific to
one single type of inference. This means that this type of ML model training is not intended to support only one type of
inference but rather leverages commonalities among multiple use cases. ML model pre-specialised training can be
appliedto AI/ML-based use cases specified in [2], and [3]. For example, an ML model could be pre-specialised trained
using dataset from SLS analysis capability group covering type of inference including ServiceExperienceAnalysis,
NetworkSliceThroughputAnalysis, NetworkSliceTrafficAnalysis, NetworkSliceLoadAnalysis and E2ElatencyAnalysis
(see TS 28.104 [4]).

A pre-specialised trained ML model supports more than one inference type (i.e., is not designed to conduct inference for
a specific inference type), but this does not preclude the possibility for a pre-specialised model to conduct inference
once it achieved performance requirement for a specific inference type.

A pre-specialised trained ML model can be fine-tuned to narrow down its inference scope, evolving into a new ML
model with a single inference type.

6.2b.2.13 ML Fine-tuning of pre-specialised trained model

Fine-tuning of a pre-specialised trained ML model narrows down the inference scope to support a single inference type.
This means that a fine-tuned ML model can only support a single inference type for conducting inference.

Fine-tuning differs from re-training, where an ML model is re-trained on the same dataset and inference type for which
it was previously trained.

The key distinction between re-training and fine-tuning is that re-training results in a new version of the same ML
model for the same inference type, while fine-tuning produces a new ML model with an adapted inference scope or a
single inference type.

Consumer may request fine-tuning of a pre-specialised trained ML model, and MLT MnS producer may evaluate
whether the pre-specialised ML model can be fine-tuned according to the training requirements.

Authentication procedures need to be established with appropriate tunnelling and authorisation mechanisms prior to an
ML fine-tuning training request.

6.2b.2.14 Management of distributed training

Distributed training is a model training approach that involves distributing the training workload across multiple
training functions to accelerate the training process and/or reduce the required computational resources.

In 5GS, the ML training function may be located within the management system or in the NF (e.g. NWDAF), Each
training node has different computing resources and storage capacity based on physical infrastructure such as
CPU/GPU/DPU, memory, storage, and network bandwidth. In order to obtain load balance between nodes and
maximize the efficiency of resource utilization, splitting up the training may be necessary and involving multiple
training functions according to the actual situation of nodes may be needed. Thus, aspects of distributed training need to
be supported in the management systems.

Distributed training refers to the approach of distributed computation to scale out a training job, either to accelerate the
process or to handle workloads that cannot fit into a single machine.

Management of distributed training can be used for AI/ML-based use cases specified in [2] and [3]. In 5GS, distributed
training can apply across various deployment scenarios for the ML training function. These functions may be located
within the 3GPP management system, domain-specific management functions (e.g., RAN domain management function
or CN domain management function), or directly in Network Functions such as the NWDAF. The location of these
functions depends on the specific scenario defined in clause 4a.2.

When receiving an ML training request, the MLT MnS producer may evaluate whether distributed training is needed
according to the training requirements provided by the ML training consumer, and it is up to the MLT MnS producer to
determine, based on some information (e.g target inference location) provided by the consumer, appropriate training
function(s) which may need to participate in the ML model training. The training requirement may further include (not

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)303GPP TS 28.105 version 19.3.0 Release 19

limited to) expected model performance. Collaboration, mutual agreement and authentication procedures are needed to
be established between distributed ML training functions before sharing any information between these functions.

The actions of ML model distributed training may involve for example, splitting the training of an ML model across
many ML training functions, each responsible for computing a portion of the ML models operations. Since the training
data may be sparse, MLT MnS consumer may provide indication that the training data should not be split while splitting
the training among multiple training functions.

NOTE 1: How to split the ML model and synchronize the parameters in different training function depends on
the distributed algorithm which are proprietary and not in scope for standardization.

NOTE 2: The data exchange between different training functions should be in the security tunnel with
appropriate authentication and authorization mechanisms.

6.2b.2.15 Management of Federated learning

6.2b.2.15.1 Description

Federated learning (FL) is a distributed machine learning approach that allows multiple FL clients to collaboratively
train an ML model on local datasets contained in each FL Client without explicitly exchanging data samples.

FL is supported by a group of FL clients and FL server wherein FL client keeps the data localized and private and trains
the ML model directly on the local nodes (client) where the data is obtained or stored.

Federated learning can be categorized into two main types: Horizontal federated learning (HFL) and Vertical federated
learning (VFL), based on the nature of the data distribution and the way the model training is orchestrated among
participants. For HFL, the process typically includes FL Client discovery and selection, local ML model training and
updates by the FL Clients, ML model updates aggregation, and global ML model distribution by the FL Server.
Management of Federated learning can be used for AI/ML-based use cases specified in [2] and [3].

FL Server

FL Client

Interim local ML model

Interim global ML model

FL Client FL Client

Interim global ML model

Interim local ML model

Interim local ML model Interim global ML model

... ...

Figure 6.2b.2.15.1-1: ML model distribution and aggregation for HFL

NOTE: A prior agreement as well as authentication procedures needs to be established between FL Server and FL
clients before sharing any information between these functions.

6.2b.2.15.2 Use cases

6.2b.2.15.2.1 Management of different roles in Federated learning

For FL, an ML model is collaboratively trained by a group of FL clients (e.g. MTLF in NWDAFs) including one acting
as FL server and the others acting as FL clients. Federated Learning training allows multiple FL clients to
collaboratively train an ML model on local datasets.

For managing the FL, the ML training MnS consumer needs to know the FL clients and FL server involved in the FL,
so that the consumer understands the impact of each one of them and can manage them correspondingly.

When receiving an ML training request, the ML training MnS Producer should evaluate whether FL process needs to be
started according to the training requirements (e.g. minimum number of FL Clients, minimum number of total
iterations, minimum number of data samples and available time of the FL Clients, fault tolerance, energy source and
carbon emission information) provided by the ML training consumer. Based on the received requirements, the ML
training MnS Producer with the role of FL server may select (including adding and removing) appropriate FL Clients.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)313GPP TS 28.105 version 19.3.0 Release 19

To evaluate the performance of FL, the consumer can query the performance of the final global ML model running on
the local training data set of participating FL clients. For instance, if an FL server cannot produce a global ML model
with satisfied performance for the FL clients, the consumer may interact with the MnS ML training producer to
optimize the FL for future training, e.g. updating the criteria for selecting FL clients.

In addition, the consumer needs to get the information about the contribution of each FL client to the FL process, for
instance, the number of iterations in which the FL client participated in the FL, the number of data samples the FL client
used and thetraining duration performed by the FL Client.

6.2b.2.16 Management of Reinforcement Learning

6.2b.2.16.1 Description

In RL, the agent uses a trial-and-error approach to develop a policy that maximises its cumulative reward over time.

RL can be used for supporting various AI/ML functions (including NG-RAN AI/ML supported functions, e.g., Energy
Saving (ES), Mobility Load Balancing (MLB) and Mobility Robustness Optimization (MRO), etc.) when the ML
training function is located in OAM. For these scenarios, RL needs to be managed.

An RL agent functionally consists of two main parts: a training component and an inference component.

The training component learns to generate or update the RL model from the outcomes of its actions taken by the
inference component in an RL environment (e.g., a live 5G subnetwork or a simulated environment). RL can occur in
one of two modes for:

- RL in online mode: in online mode, the RL model is trained and applied in real time through direct interaction
between the RL agent components and the RL environment. In this approach, the RL agent’s training component
continuously learns by receiving rewards, and observing state transitions resulting from its actions, while the RL
agent’s inference component uses the trained model in real time to determine actions in the RL environment.

RL Agent: training

component

(e.g., ML training

 function)

RL Environment

RL Agent: Inference

component

(e.g., AI/ML supported

function)

StateAction

StateReward

RL Agent

Figure 6.2b.2.16.1-1: RL in online mode

 For RL operating in online mode within a target network, direct interaction with the network occurs in real-time.
As a result, both ML model testing and AI/ML emulation steps may not be executed as a distinct step, and if the
RL agent training components and RL agent inference component are not co-located, model deployment may
occur automatically between them without an external deployment trigger.

NOTE 1: RL in online mode is not supported in current release specifications.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)323GPP TS 28.105 version 19.3.0 Release 19

- RL in offline mode: In offline mode, instead of direct interaction, the training process relies on a pre-collected
dataset from a data collection entity (e.g., the MnS producer for collecting the performance measurements, Trace
events, MDT/UE level measurements, alarm information, and/or configuration parameters updates, etc.). This
dataset consists of state transition, action, and reward information collected over a period of time from the RL
environment, allowing the RL agent training component to train the model without real-time interaction with the
environment.

RL Agent: training

component

(e.g., ML training

 function)

RL Environment

RL Agent: Inference

component

(e.g., AI/ML supported

function)

StateActionState

Data collection

entity

Reward

RL training

data set

Figure 6.2b.2.16.1-2: RL in offline mode

For RL in offline mode, the RL model may undergo ML model testing and AI/ML emulation steps before being
deployed in the target network.

For RL in online mode, the RL model cannot be tested as much as RL in offline mode. If online RL agent training is
discontinued in the target network, the RL agent inference component continues to operate, and the rewards and state
may not be sent to the RL agent training component from the RL environment.

The RL environment will be impacted by actions of the agent. Agent’s action depends on input data, which comes from
the RL environment. The RL agent needs the data samples for training regardless of the RL environment they come
from.

NOTE 2: Rewards, states, and actions are not subject to standardization. While measurements and KPIs may be
defined, the mapping of such data to states and rewards is implementation-specific.

NOTE 3: Figures 6.2b.2.16.1-1 and 6.2b.2.16.1-2 conceptually and logically illustrate how the RL process works in
both online and offline modes, without restricting the implementation of RL agent training and inference
components.

6.2b.2.16.2 Use cases

6.2b.2.16.2.1 Enabling Reinforcement Learning

Once the RL model is trained and deployed (if training and inference occur on separate entities), the inference
component adopts the RL model and makes decisions based on state transitions in the RL environment.

To enable, facilitate, and manage RL for 5GS, the 3GPP management system needs to support the following RL
components in performing their respective functions:

- RL agent training component: collects the data for training, trains the RL model and reports the training result
of the training component. The data for training includes state transitions, rewards from the RL environment for
online RL, or the pre-processed data set for a period of time from the data collection entity for offline RL, as

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)333GPP TS 28.105 version 19.3.0 Release 19

well as the actions taken by the RL agent inference component. The trained RL model would be used by the
inference component to determine actions for observed state conditions. Additionally, the RL agent training
component needs to indicate the RL environment(s) (e.g., a live subnetwork or a simulation subnetwork) for
which an RL model has been trained.

- RL agent inference component: activates the trained RL model (RL policy), receives state transitions from the
RL environment, and determine actions based on the RL model. The RL agent inference component needs to be
configured with the information about the RL environment(s) where a trained RL model can be used.

- RL environment: executes the actions determined by the RL agent inference component and reports rewards to
the RL agent training component for online RL or to the data collection entity for offline RL.

6.2b.2.16.2.2 Exploration in Reinforcement Learning

Reinforcement Learning (RL) has the ability to learn and adapt itself to dynamic environments and thus finds the near
optimal solution for a problem. However, the potential negative impact to the mobile network caused by RL is still the
main drawback. In particular, during the exploration step performing trials and learning from errors may have an impact
on the operational network and may result in unsafe operations causing network performance degradations. Therefore,
the exploration step in RL needs to be under a controlled configuration range that the RL agent is allowed to act upon,
so that the RL actions do not violate system performance requirements. If the RL agent behaves in an unexpected
manner, there needs to be a set of fall-back actions in place, e.g. to switch from RL-based solution to non-RL-based
solution, to fall back to last discrete time step, and to terminate the RL process.

When RL is supported, a consumer may want to provide a scope (e.g. geographical area, time window) that can aid the
MnS producer to select/create the environment when performing RL. The environment may include information of the
entities the RL agent may impact when performing RL, i.e., the allowed scope for entities to be impacted by RL actions.
If the MnS producer supports multiple types of environments, the consumer may want to state their preference for
environment type for RL during training, i.e., simulated environment or live network. When the live network is
preferred by the MnS consumer, the consumer can provide network performance requirements (e.g. lower bound
threshold, acceptable range, maximum performance deterioration Rate, etc.) of performing ML training of RL, to make
the MnS producer adapt the training configurations to meet the network performance requirements. Furthermore, the
MnS consumer can provide its concerned performance metrics to guide the MnS producer to set reward/state.

NOTE: Support for both environment types can be considered optional in the RL training.

6.2b.2.17 Training data statistics

During ML training, it is important to ensure that training data is as uniform and representative as possible, and outliers
are handled appropriately during the data pre-processing to train robust ML models that do not require frequent re-
training.

Non-uniform distribution of training data can significantly degrade the performance of trained ML models. The ML
model may learn and reflect this non-uniformity, rather than the true underlying patterns in the data. This could lead to
inaccurate predictions when the ML model is deployed for inference. Furthermore, an ML model trained on non-uniform
data may not generalize well to new unseen data, as the training data might not accurately represent the full range of
possible inputs the ML model may encounter during inference. This can limit the usefulness of the ML model.

Similarly, outliers in training data can significantly degrade the performance of trained ML model. ML models learn to
make predictions based on the patterns they identify in the training data. Outliers can skew these patterns and lead to an
ML model that is biased towards these extreme values, rather than accurately reflecting the majority of the data.

Therefore, it could be useful to ensure that training data is as uniform and representative as possible, and outliers are
handled appropriately during the data pre-processing to train robust ML models that do not require frequent re-training.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)343GPP TS 28.105 version 19.3.0 Release 19

6.2b.3 Requirements for ML model training

Table 6.2b.3-1

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)353GPP TS 28.105 version 19.3.0 Release 19

Requirement label Description Related use case(s)
REQ-ML_TRAIN-FUN-01 The ML training MnS producer shall have a capability allowing

an authorized ML training MnS consumer to request ML
model training.

ML model training
requested by
consumer (clause
6.2b.2.1)

REQ- ML_TRAIN-FUN-02 The ML training MnS producer shall have a capability allowing
the authorized ML training MnS consumer to specify the data
sources containing the candidate training data for ML model
training.

ML model training
requested by
consumer (clause
6.2b.2.1)

REQ- ML_TRAIN-FUN-03 The ML training MnS producer shall have a capability allowing
the authorized ML training MnS consumer to specify the
AI/ML inference name of the ML model to be trained.

ML model training
requested by
consumer (clause
6.2b.2.1)

REQ- ML_TRAIN-FUN-04 The ML training MnS producer shall have a capability to
provide the training result to the ML training MnS consumer.

ML model training
requested by
consumer (clause
6.2b.2.1), ML model
training initiated by
MnS producer (clause
6.2b.2.2)

REQ- ML_TRAIN-FUN-05 The ML training MnS producer shall have a capability allowing
an authorized ML training MnS consumer to configure the
thresholds of the performance measurements and/or KPIs to
trigger the re-training of an ML model. (See Note)

ML model training
initiated by MnS
producer (clause
6.2b.2.2)

REQ- ML_TRAIN-FUN-06 The ML training MnS producer shall have a capability to
provide the version number of the ML model when it is
generated by ML model re-training to the authorized ML
training MnS consumer.

ML model training
requested by
consumer (clause
6.2b.2.1), ML model
training initiated by
MnS producer (clause
6.2b.2.2)

REQ- ML_TRAIN-FUN-07 The ML training MnS producer shall have a capability allowing
an authorized ML training MnS consumer to manage the
training process, including starting, suspending, or resuming
the training process, and configuring the ML context for ML
model training.

ML model training
requested by
consumer (clause
6.2b.2.1), ML model
training initiated by
MnS producer (clause
6.2b.2.2), ML model
joint training (clause
6.2b.2.6)

REQ- ML_TRAIN-FUN-08 The ML training MnS producer should have a capability to
provide the grouping of ML models to an authorized ML
training MnS consumer to enable coordinated inference.

ML model joint training
(clause 6.2b.1.2.6)

REQ- ML_TRAIN-FUN-09 The ML training MnS producer should have a capability to
allow an authorized ML training MnS consumer to request
joint training of a group of ML models.

ML model joint training
(clause 6.2b.2.6)

REQ- ML_TRAIN-FUN-10 The ML training MnS producer should have a capability to
jointly train a group of ML models and provide the training
results to an authorized consumer.

ML model joint training
(clause 6.2b.2.6)

REQ-ML_SELECT-01 3GPP management system shall have a capability to enable
an authorized ML training MnS consumer to discover the
properties of available ML models including the contexts
under which each of the models were trained.

ML model and ML
model selection
(clause 6.2b.2.3)

REQ-ML_SELECT-02 3GPP management system shall have a capability to enable
an authorized ML training MnS consumer to select an ML
model to be used for inference.

ML models and ML
model selection
(clause 6.2b.2.3)

REQ-ML_SELECT-03 3GPP management system shall have a capability to enable
an authorized ML training MnS consumer to request for
information and be informed about the available alternative
ML models of differing complexity and performance.

ML model and ML
model selection
(clause 6.2b.2.3)

REQ-ML_SELECT-04 The 3GPP management system shall have a capability to
provide a selected ML model to the authorized ML training
MnS consumer.

ML model and ML
model selection
(clause 6.2b.2.3)

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)363GPP TS 28.105 version 19.3.0 Release 19

Requirement label Description Related use case(s)
REQ-ML_TRAIN- MGT-01 The ML training MnS producer shall have a capability allowing

an authorized consumer to manage and configure one or
more requests for the specific ML model training, e.g. to
modify the request or to delete the request.

ML model training
requested by
consumer (clause
6.2b.2.1), Managing
ML model Training
Processes (clause
6.2b.2.4)

REQ-ML_TRAIN- MGT-02 The ML training MnS producer shall have a capability
allowing an authorized ML training MnS consumer to manage
and configure one or more training processes, e.g. to start,
suspend or restart the training.

ML model training
requested by
consumer (clause
6.2b.2.1),
Managing ML model
training processes
(clause 6.2b.2.4)

REQ-ML_TRAIN- MGT-03 3GPP management system shall have a capability to enable
an authorized ML training MnS consumer (e.g. the
function/model different from the function that generated a
request for ML model training) to request for a report on the
outcomes of a specific training instance.

Managing ML model
training processes
(clause 6.2b.2.4)

REQ-ML_TRAIN- MGT-04 3GPP management system shall have a capability to enable
an authorized ML training MnS consumer to define the
reporting characteristics related to a specific training request
or training instance.

Managing ML model
training processes
(clause 6.2b.2.4)

REQ-ML_TRAIN- MGT-05 3GPP management system shall have a capability to enable
the ML training function to report to any authorized ML
training MnS consumer about specific ML model training
process and/or report about the outcomes of any such ML
model training process.

Managing ML model
training processes
(clause 6.2b.2.4)

REQ-ML_ERROR-01 The 3GPP management system shall enable an authorized
consumer of data services (e.g. an ML training function) to
request from an MnS producer of data services a Value
Quality Score of the data, which is the numerical value that
represents the dependability/quality of a given observation
and measurement type.

Handling errors in data
and ML decisions
(clause 6.2b.2.5)

REQ-ML_ERROR-02 The 3GPP management system shall enable an authorized
consumer of AI/ML decisions (e.g. a controller) to request ML
decision confidence score which is the numerical value that
represents the dependability/quality of a given decision
generated by an AI/ML inference function.

Handling errors in data
and ML decisions
(clause 6.2b.2.5)

REQ-ML_ERROR-03 The 3GPP management system shall have a capability to
enable an authorized consumer to provide to the ML training
MnS producer, a training data quality score, which is the
numerical value that represents the dependability/quality of a
given observation and measurement type.

Handling errors in data
and ML decisions
(clause 6.2b.2.5)

REQ-ML_ERROR-04 The 3GPP management system shall enable an MnS
producer of ML decisions (e.g. an AI/ML inference function) to
provide to an authorized consumer of ML decisions (e.g. a
controller) an AI/ML decision confidence score which is the
numerical value that represents the dependability/quality of a
given decision generated by the AI/ML inference function.

Handling errors in data
and ML decisions
(clause 6.2b.2.5)

REQ-ML_VLD-01 The ML training MnS producer should have a capability to
validate the ML models during the ML model training process
and report the performance of the ML models on both the
training data and validation data to the authorized consumer.

ML model validation
performance reporting
(clause 6.2b.2.7)

REQ-ML_VLD-02 The ML training MnS producer should have a capability to
report the ratio (in terms of quantity of data samples) of the
training data and validation data used during the ML model
training and validation process.

ML model validation
performance reporting
(clause 6.2b.2.7)

REQ-TRAIN_EFF-01 The 3GPP management system should have the capability to
allow an authorized consumer to configure an ML training
function to report the effectiveness of data used for model
training.

Training data
effectiveness reporting
(clause 6.2b.2.8)

REQ-ML_TRAIN_PM-1 The ML Training MnS producer should have a capability to
allow an authorized consumer to get the capabilities about
what kind of ML models the ML training function is able to
train.

Performance indicator
selection for ML model
training (clause
6.2b.2.9.2)

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)373GPP TS 28.105 version 19.3.0 Release 19

Requirement label Description Related use case(s)
REQ-ML_TRAIN_PM-2 The ML Training MnS producer should have a capability to

allow an authorized consumer to query what performance
indicators are supported by the ML model training for each ML
model.

ML model performance
indicators query and
selection for ML model
training (clause
6.2b.2.9.3)

REQ-ML_TRAIN_PM-3 The ML Training MnS producer should have a capability to
allow an authorized consumer to select the performance
indicators from those supported by the ML training function for
reporting the training performance for each ML model.

ML model performance
indicators query and
selection for ML model
training (clause
6.2b.2.9.3)

REQ-ML_TRAIN_PM-4 The ML Training MnS producer should have a capability to
allow an authorized consumer to provide the performance
requirements for the ML model training using the selected the
performance indicators from those supported by the ML
training function.

MnS consumer policy-
based selection of ML
model performance
indicators for ML model
training (clause
6.2b.2.9.4)

REQ-MLKTL-1 The 3GPP management system should have a capability to
enable an authorized MnS consumer to discover or request all
or part of the available shareable knowledge at a given
MLKTL MnS producer.

ML-Knowledge-based
Transfer Learning
(clause 6.2b.2.10.2.1)

REQ-MLKTL-2 The 3GPP management system should have a capability for
an MLKTL MnS producer to provide to an authorized MnS
consumer all or part of its available shareable knowledge

ML-Knowledge-based
Transfer Learning
(clause 6.2b.2.10.2.1)

REQ-MLKTL-3 The 3GPP management system should have a capability
enabling an authorized MnS consumer to request a MLKTL
MnS producer to initiate and execute a transfer learning
instance to a specified ML model or ML-enabled function

ML-Knowledge-based
Transfer Learning
(clause 6.2b.2.10.2.2)

REQ-MLKTL-4 The 3GPP management system should have a capability to
enable an authorized MnS consumer to manage or control the
knowledge request or the knowledge process or transfer
learning process, e.g. to suspend, re-activate or cancel the
ML Knowledge Request; or to adjust the description of the
desired knowledge
NOTE: An example MnS consumers include an operator or
the function that generated the request for available
Knowledge

ML-Knowledge-based
Transfer Learning
(clause 6.2b.2.10.2.2)

REQ-MLKTL-5 The 3GPP management system should have a capability to
enable an ML model or ML training function to register
available knowledge to a shared knowledge repository, e.g.
through a ML Knowledge Registration process

ML-Knowledge-based
Transfer Learning
(clause 6.2b.2.10.2.2)

REQ-MLKTL-6 The 3GPP management system should have a capability
enabling an authorized MnS consumer to request the
Knowledge Repository to provide some or all the knowledge
available for sharing based on specific criteria

ML-Knowledge-based
Transfer Learning
(clause 6.2b.2.10.2.2)

REQ-ML_TRAIN_CLUSTER-
01

The ML training MnS producer should have a capability for an
authorized MnS consumer to request training of a cluster of
ML models as per clustering criteria associated to a set of
multiple contexts from a previously trained ML model.

ML model training for
multiple contexts
(clause 6.2b.2.11)

REQ-ML_TRAIN-PRE-01 The ML training MnS producer should have a capability
allowing an authorized ML training MnS consumer to request
pre-specialized training of a ML model.

ML Pre-specialised
training (clause
6.2b.2.12)

REQ- ML_TRAIN-FT-x1 The ML training MnS producer should have a capability to
enable an authorised consumer to request the fine-tuning of a
pre-specialised trained ML model.

ML Pre-specialised
training (clause
6.2b.2.12), ML fine-
tuning (clause
6.2b.2.13)

REQ- ML_TRAIN-FT-x2 The ML training MnS producer should have a capability
allowing the consumer to specify the training type of an ML
model training request such as pre-specialised training, and
fine-tuning.

ML Pre-specialised
training (clause
6.2b.2.12), ML fine-
tuning (clause
6.2b.2.13)

REQ-ML_DIST-TRNG-01 The ML training MnS producer should have a capability
allowing and authorized consumer to provide distributed
training requirements to the MnS Producer.

Management of
Distributed training
(clause 6.2b.2.14)

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)383GPP TS 28.105 version 19.3.0 Release 19

Requirement label Description Related use case(s)
REQ-ML_TRAIN_FL-1 The ML training MnS producer should have a capability

allowing an authorized consumer to discover the FL roles (FL
server or FL client) in Federated learning.

Management of
different roles in
Federated learning
(Clause 6.2b.2.15.2.1)

REQ-ML_TRAIN_FL-2 The ML training MnS producer should have a capability
allowing an authorized consumer to provide FL training
requirements to the MnS Producer.

Management of
different roles in
Federated learning
(Clause 6.2b.2.15.2.1)

REQ-ML_TRAIN_FL-3 The ML training MnS producer should have a capability
allowing an authorized consumer to provide requirements for
selecting (including adding and removing) FL clients in
Federated learning to the MnS Producer.

Management of
different roles in
Federated learning
(Clause 6.2b.2.15.2.1)

REQ-ML_TRAIN_FL-4 The ML training MnS producer should have a capability
allowing an authorized consumer to get the performance of
the global ML model on each participating FL Client.

Management of
different roles in
Federated learning
(Clause 6.2b.2.15.2.1)

REQ-ML_TRAIN_FL-5 The ML training MnS producer should have a capability to
report the information about the contribution of each FL client
to the FL process to MnS consumer.

Management of
different roles in
Federated learning
(Clause 6.2b.2.15.2.1)

REQ-ML_TRAIN_FL-6 The ML training MnS producer should have a capability to
report the candidate FL Clients for the FL process.

Management of
different roles in
Federated learning
(Clause 6.2b.2.15.2.1)

REQ-RL_TRAIN_01 The ML training MnS producer should have a capability
allowing an authorized MnS consumer to query if RL training
is supported.

Enabling
Reinforcement learning
(6.2b.2.16.2.1)

REQ-RL_TRAIN_02 The ML training MnS producer should have a capability to
report RL types (i.e., online RL, offline RL) to an authorized
consumer.

Enabling
Reinforcement
Learning
(6.2b.2.16.2.1)

REQ-RL_TRAIN_03 The ML training MnS producer should have a capability to
allow an authorized consumer to get the type and scope of
the RL environment for which an RL model has been trained.

Exploration in
Reinforcement learning
(6.2b.2.16.2.2)

REQ-RL_TRAIN_04 The ML training MnS producer should have a capability to
allow an authorized consumer to select the type of the RL
environment for which an RL model is to be trained.

Exploration in
Reinforcement learning
(6.2b.2.16.2.2)

REQ-RL_TRAIN_05 The ML training MnS producer should have a capability to
allow an authorized consumer to provide the scope of the RL
environment for which an RL model is to be trained.

Exploration in
Reinforcement learning
(6.2b.2.16.2.2)

REQ-RL_TRAIN_06 The ML training MnS producer should have a capability
allowing an authorized MnS consumer to provide network
performance requirements of performing RL training.

Exploration in
Reinforcement learning
(6.2b.2.16.2.2)

REQ-RL_TRAIN_07 The ML training MnS producer should have a capability to
allow an authorized MnS consumer to specify the
configuration range that the RL agent is allowed to explore.

Exploration in
Reinforcement learning
(6.2b.2.16.2.2)

REQ-RL_TRAIN_08 The ML training MnS producer should have a capability to
allow an authorized consumer to provide the allowed scope
for the entities to be impacted by the RL actions.

Exploration in
Reinforcement learning
(6.2b.2.16.2)

REQ-ML_TRAIN_DST-01 The 3GPP management system should enable an authorized
consumer to provide information on the training dataset
distribution.

Training data statistics
(clause 6.2b.2.17)

REQ-ML_TRAIN_DST-02 The 3GPP management system should enable an authorized
consumer to provide information on the usage of outliers in
the training dataset.

Training data statistics
(clause 6.2b.2.17)

NOTE: The performance measurements and KPIs are specific to each type (i.e., the inference type that the ML
model supports) of ML model.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)393GPP TS 28.105 version 19.3.0 Release 19

6.2c ML model testing

6.2c.1 Description

After the training and validation, the ML model needs to be tested to evaluate the performance of it when it conducts
inference using testing data.

If the testing performance is not acceptable or does not meet the pre-defined requirements, the consumer may request
the ML training MnS producer to re-train the ML model with specific training data and/or performance requirements.

6.2c.2 Use cases

6.2c.2.1 Consumer-requested ML model testing

After receiving an ML training report about a trained ML model from the ML training MnS producer, the consumer
may request the ML testing MnS producer to test the ML model before applying it to the target inference function.

The ML model testing is to conduct inference on the tested ML model using the testing data as inference inputs and
produce the inference output for each testing dataset example.

The ML testing MnS producer may be the same as or different from the ML training MnS producer.

After completing the ML model testing, the ML testing MnS producer provides the testing report indicating the success
or failure of the ML model testing to the consumer. For a successful ML model testing, the testing report contains the
testing results, i.e., the inference output for each testing dataset example.

6.2c.2.2 Producer-initiated ML model testing

The ML model testing may also be initiated by the MnS producer, after the ML model is trained and validated. A
consumer (e.g., an operator) may still need to define the policies (e.g., allowed time window, maximum number of
testing iterations, etc.) for the testing of a given ML model. The consumer may pre-define performance requirements for
the ML model testing and allow the MnS producer to decide on whether ML model re-training/validation need to be
triggered. ML model re-training may be triggered by the testing MnS producer itself based on the performance
requirements supplied by the MnS consumer.

6.2c.2.3 Joint testing of multiple ML models

A group of ML models may work in a coordinated manner for complex use cases.

The group of ML models is generated by the ML training function. The group, including all contained ML models,
needs to be tested. After the ML model testing of the group, the MnS producer provides the testing results to the
consumer.

NOTE: This use case is about the ML models testing before deployment.

6.2c.2.4 Performance management for ML model testing

6.2c.2.4.1 Overview

During ML model testing, the performance of ML model needs to be evaluated on testing data. The performance is the
degree to which the ML models fulfil the objectives for which they were trained. The related performance indicators
need to be collected and analyzed.

6.2c.2.4.2 Performance indicator selection for ML model testing

The ML model testing function may support testing for a single or several ML model algorithms and may support the
capability to evaluate each ML model by one or more performance indicators.

The MnS consumer may prefer to use some performance indicator(s) over others to evaluate one kind of ML model.
The performance indicators for testing mainly include the following aspects:

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)403GPP TS 28.105 version 19.3.0 Release 19

- ML model testing performance indicators: performance indicators of the ML model itself, including but not
limited to:

- Accuracy indicator,

- Precision indicator,

- Recall indicator,

- F1 score indicator,

- MSE (Mean Squared Error) indicator,

- MAE (Mean Absolute Error) indicator, and

- RMSE (Root Mean Square Error) indicator.

In a similar way as for training, the MnS producer for ML model testing needs to provide the name(s) of supported
performance indicator(s) for the MnS consumer to query and select for ML model performance evaluation. The MnS
consumer may also need to provide the performance requirements of the ML model using the selected performance
indicators.

The MnS producer for ML model testing uses the selected performance indicators for evaluating ML model testing, and
reports with the corresponding performance score in the ML testing report when testing is completed.

6.2c.2.4.3 ML model performance indicators query and selection for ML model testing

In a similar way as for training, the MnS producer of ML model training or testing should determine which indicators
are needed, i.e., select some indicators based on the use case and use these indicators for performance evaluation.The
ML MnS consumer for ML model testing may have different requests on AI/ML performance, depending on its use
case and requirements, which may imply that different performance indicators may be relevant for performance
evaluation. The procedure is the same as described in 6.2b.2.9.3 for training.

6.2c.2.4.4 MnS consumer policy-based selection of ML model performance indicators for
ML model testing

In a similar way as for training, the MnS consumer for ML model testing may have differentiated levels of interest in
the different performance dimensions or metrics. Thus, depending on its use case, the AI/ML MnS consumer may
indicate the preferred behaviour and performance requirement that needs to be considered during testing. The same
description in 6.2b.2.9.4 applies for policy based selection of performance indiactors for testing.

6.2c.3 Requirements for ML model testing

Table 6.2c.3-1

Requirement label Description Related use case(s)
REQ-ML_TEST-1 The ML testing MnS producer shall have a capability to allow an

authorized consumer to request the testing of a specific ML model.
Consumer-requested
ML model testing
(clause 6.2c.2.1)

REQ-ML_TEST-2 The ML testing MnS producer shall have a capability to trigger the
testing of an ML model and allow the MnS consumer to set the policy for
the testing.

Producer-initiated ML
model testing
(6.2c.2.2)

REQ-ML_TEST-3 The ML testing MnS producer shall have a capability to report the
performance of the ML model when it performs inference on the testing
data.

Consumer-requested
ML model testing
(clause 6.2c.2.1), and
Producer-initiated ML
model testing (clause
6.2c.2.2)

REQ-ML_TEST-4 The ML testing MnS producer shall have a capability allowing an
authorized consumer to request the testing of a group of ML models.

Joint testing of
multiple ML models
(clause 6.2c.2.3)

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)413GPP TS 28.105 version 19.3.0 Release 19

Requirement label Description Related use case(s)
REQ-ML_TEST_PM-
1

The ML testing MnS producer should have a capability to allow an
authorized consumer to get the capabilities about what kind of ML
models the ML testing function is able to test.

Performance indicator
selection for ML
model testing (clause
6.2c.2.4.2)

REQ-ML_TEST_PM-
2

The ML testing MnS producer should have a capability to allow an
authorized consumer to query what performance indicators are
supported by the ML testing function for each ML model.

Performance indicator
selection for ML
model testing (clause
6.2c.2.4.2)

REQ-ML_TEST_PM-
3

The ML testing MnS producer should have a capability to allow an
authorized consumer to select the performance indicators from those
supported by the ML testing function for reporting the testing
performance for each ML model.

Performance indicator
selection for ML tra
(clause 6.2c.2.4.2)

6.3 AI/ML inference emulation

6.3.1 Description

Before the ML model is applied in the production network, the MnS inference consumer may want to receive results of
inference in one or more environments that emulate (to different extents) the expected inference characteristics, in a
process that may be termed as Inference emulation. The Inference emulation phase enables this.

6.3.2 Use cases

6.3.2.1 AI/ML inference emulation

After the ML model is validated and tested during development, the MnS consumer may wish to receive information
from an inference emulation process that indicates if the ML model or the associated ML inference function is working
correctly under certain runtime context.

The management system should have the capabilities enabling an MnS consumer:

- request an inference emulation function to provide emulation reports; and

- to receive the results from running inference through an AI/ML inference emulation environment available at the
emulation MnS producer.

6.3.2.2 ML inference emulation environment selection

Although an ML model may be well-trained, its performance in the production network can be difficult to predict and
guarantee because the training environment and production network are not identical. If a trained or tested ML model is
directly applied to the production network, it may negatively impact the production network.

ML emulation involves applying the ML model in an emulation environment to verify whether its performance meets
the expected inference characteristics. Considering the diversity of ML inference scenarios, one or more emulation
environments are provided, each differing in terms of emulation scope, emulation performance, and other factors.

The management system should have the capability to enable an MnS consumer to select the appropriate emulation
environment and provide the necessary configuration properties related to that environment. The configuration
information may include defining the scope of the emulation, the emulation time, and other relevant parameters.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)423GPP TS 28.105 version 19.3.0 Release 19

6.3.3 Requirements for Managing AI/ML inference emulation

Table 6.3.3-1

Requirement label Description Related use case(s)
REQ-AI/ML_EMUL-
1:

The MnS producer for AI/ML inference emulation should have a
capability enabling an authorized MnS consumer to receive reporting
about the ML inference emulation.

AI/ML Inference
emulation (clause
6.3.2.1)

REQ-AI/ML_EMUL-
2:

The MnS producer for AI/ML inference emulation should have a
capability enabling an authorized MnS consumer to request an inference
emulation function to provide inference emulation reports on an ML
model or inference Function.

AI/ML Inference
emulation (clause
6.3.2.1)

REQ-EMUL_SEL-1 The MnS producer for AI/ML inference emulation should have a
capability enabling an authorized MnS consumer to select the emulation
environment.

ML inference
emulation
environment selection
(clause 6.3.2.2)

6.4 ML model deployment

6.4.1 ML model loading

6.4.1.1 Description

ML model loading refers to the process of making an ML model available for use in the inference function. After a
trained ML model meets the performance criteria per the ML model testing and optionally ML emulation, the ML
model could be loaded into the target inference function(s) in the system. The way for loading the ML model is not in
scope of the present document.

6.4.1.2 Use cases

6.4.1.2.1 Consumer requested ML model loading

After a trained ML model or the coordination group of ML models are tested and optionally emulated, if the
performance of the ML model or the coordination group of ML models meet the MnS consumer’s requirements, the
MnS consumer may request to load the one or more ML models to one or more target inference function(s) where the
ML models will be used for conducting inference. Once the ML models loading request is accepted, the MnS consumer
(e.g., operator) needs to know the progress of the loading and needs to be able to control (e.g., cancel, suspend, resume)
the loading process. For a completed ML model loading, the ML model instance loaded to each target inference
function needs to be manageable individually, for instance, to be activated/deactivated individually or concurrently.

6.4.1.2.2 Control of producer-initiated ML model loading

To enable more autonomous AI/ML operations, the MnS producer is allowed to load the ML model or the coordination
group of ML models without the consumer’s specific request.

In this case, the consumer needs to be able to set the policy for the ML loading, to make sure that ML models loaded by
the MnS producer meet the performance target. The policy could be, for example, the threshold of the testing
performance of the ML models, the threshold of the inference performance of the existing ML model, the time schedule
allowed for ML model loading, etc.

ML models are typically trained and tested to meet specific requirements for inference, addressing a specific use case or
task. The network conditions may change regularly, for example, the gNB providing coverage for a specific location is
scheduled to accommodate different load levels and/or patterns of services at different times of the day, or on different
days in a week. One or more ML models may be loaded per the policy to adapt to a specific load/traffic pattern.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)433GPP TS 28.105 version 19.3.0 Release 19

6.4.1.2.3 ML model registration

After multiple iterations, there could be a large number of ML models with different versions, deployment
environments, performance levels, and functionalities. ML model registration refers to the process of recording,
tracking, controlling those trained ML models enabling future retrieval, reproducibility, sharing and loading in the
target inference functions across different environments. For example, the inference MnS consumer could recall the
most applicable version dealing with a sudden changed deployment environment of the target inference function by
tracking the registration information.

The ML training MnS producer should register the ML model along with its loading information, e.g., ML model
metadata and relevant information (e.g., description, version, version date, target inference function, deployment
environment, etc.).

6.4.1.3 Requirements for ML model loading

Table 6.4.1.3-1

Requirement label Description Related use case(s)
REQ- ML_LOAD-FUN-01 The MnS producer for ML model loading shall have a

capability allowing an authorized consumer to request to
trigger loading of one or more ML model(s).

Consumer requested
ML model loading
(clause 6.4.1.2.1)

REQ- ML_LOAD-FUN-02 The MnS producer for ML model loading shall have a
capability allowing an authorized consumer to provide a policy
for the MnS producer to trigger loading of one or more ML
model(s).

Producer-initiated ML
model loading (clause
6.4.1.2.2)

REQ- ML_LOAD-FUN-03 The MnS producer for ML model loading shall be able to
inform an authorized consumer about the progress of ML
model loading.

Consumer requested
ML model loading
(clause 6.4.1.2.1) and
Producer-initiated ML
model loading (clause
6.4.1.2.2)

REQ- ML_LOAD-FUN-04 The MnS producer for ML model loading shall have a
capability allowing an authorized consumer to control the
process of ML model loading.

Consumer requested
ML model loading
(clause 6.4.1.2.1) and
Producer-initiated ML
model loading (clause
6.4.1.2.2)

REQ- ML_REG-01 The ML training MnS producer should have a capability to
register an ML model to record the relevant information that
may be used for loading.

ML model registration
(Clause 6.4.1.2.3)

REQ- ML_REG-02 The ML training MnS producer should have a capability to
allow an authorized consumer (e.g., an AI/ML inference
function) to acquire the registration information of ML models.

ML model registration
(Clause 6.4.1.2.3)

6.5 AI/ML inference

6.5.1 AI/ML inference performance management

6.5.1.1 Description

During AI/ML inference, the performance of the AI/ML inference function and ML model need to be evaluated against
the MnS consumer's provided performance expectations/targets, to identify and timely fix any problem. Actions to fix
any problem would be e.g., to trigger the ML model re-training, ML model testing, or re-deployment.

6.5.1.2 Use cases

6.5.1.2.1 AI/ML inference performance evaluation

During AI/ML inference, the AI/ML inference function (including e.g., MDAF, NWDAF or RAN functions) uses one
or more ML models for inference to generate the AI/ML inference output. The performance of a running ML model

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)443GPP TS 28.105 version 19.3.0 Release 19

may degrade over time due to changes in network state, which will affect the related network performance and service.
Thus, it is necessary to evaluate performance of the ML model during the AI/ML inference process. If the inference
output is executed, the network performance related to each AI/ML inference function also needs to be evaluated.

The consumer (e.g., a Network or Management function) may take some actions according to the AI/ML inference
output provided by the AI/ML inference function. If the actions are taken accordingly, the network performance is
expected to be optimized. Each AI/ML inference function has its specific focus and will impact the network
performance from different perspectives.

The consumer may choose to not take any actions for various reasons, e.g., lacking confidence in the inference output,
avoiding potential conflict with other actions or when no actions are needed or recommended at all according to the
inference output.

For evaluating the performance of the AI/ML inference function and ML model, the MnS producer responsible for ML
inference performance management needs to be able to get the inference output generated by each AI/ML inference
function. Then, the MnS producer can evaluate the performance based on the inference output and related network
measurements (i.e., the actual output).

Depending on the performance evaluation results, some actions (e.g., deactivate the running model, start retraining,
change the running model with a new one, etc) can be taken to avoid generating the inaccurate inference output.

To monitor the performance during AI/ML inference, the MnS producer responsible for AI/ML inference performance
management can perform evaluation periodically. The performance evaluation period may be determined based on the
network change speed. Besides, a consumer (e.g., an operator) may wish to control and manage the performance
evaluation capability. For example, the operator may configure the performance evaluation period of a specified ML
model.

6.5.1.2.2 AI/ML performance measurements selection based on MnS consumer policy

Evaluation and management of the performance of an ML model is needed during AI/ML inference. The related
performance measurements need to be collected and analysed. The MnS producer for inference should determine which
measurements are needed or may be reported, i.e., select some measurements based on the service and use these
measurements for performance evaluation.

The MnS consumer for inference may have differentiated levels of interest in the different performance dimensions or
metrics. Thus, depending on its use case, the MnS consumer may indicate the preferred behaviour and performance
requirement that needs to be considered during inference from the ML model by the AI/ML inference MnS Producer.
The AI/ML inference MnS consumer may not be capable enough to indicate the performance metrics. Instead, the
AI/ML MnS consumer may indicate the requirement using a policy or guidance that reflects the preferred performance
characteristics of the ML model. Based on the indicated policy/guidance, the AI/ML MnS producer may then deduce
and apply the appropriate performance indicators for inference. Management capabilities are needed to enable the MnS
consumer to indicate the behavioural and performance policy/guidance that may be translated by the MnS producer into
one or more technical performance measurements during inference.

6.5.1.3 Requirements for AI/ML inference performance management

Table 6.5.1.3-1

Requirement label Description Related use case(s)
REQ-
AI/ML_INF_PE-01

The MnS producer responsible for AI/ML inference management shall
have a capability enabling an authorized consumer to get the inference
output provided by an AI/ML inference function (e.g., MDAF, NWDAF or
RAN function).

AI/ML inference
performance
evaluation (clause
6.5.1.2.1)

REQ-
AI/ML_INF_PE-02

The MnS producer responsible for AI/ML inference management shall
have a capability enabling an authorized consumer to get the
performance evaluation of an AI/ML inference output as measured by a
defined set of performance metrics

AI/ML inference
performance
evaluation (clause
6.5.1.2.1)

REQ-
AI/ML_INF_PE-03

The MnS producer responsible for AI/ML inference management shall
have a capability enabling an authorized consumer to provide feedback
about an AI/ML inference output expressing the degree to which the
inference output meets the consumer's expectations.

AI/ML inference
performance
evaluation (clause
6.5.1.2.1)

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)453GPP TS 28.105 version 19.3.0 Release 19

Requirement label Description Related use case(s)
REQ-
AI/ML_INF_PE-04

The MnS producer responsible for AI/ML inference management shall
have a capability enabling an authorized consumer to be informed about
the executed actions that were triggered based on the inference output
provided by an AI/ML inference function (e.g., MDAF, NWDAF or RAN
function).

AI/ML inference
performance
evaluation (clause
6.5.1.2.1)

REQ-
AI/ML_INF_PE-05

The MnS producer responsible for AI/ML inference management shall
have a capability enabling an authorized consumer to obtain the
performance data related to an ML model or an AI/ML inference function
(e.g., MDAF, NWDAF or RAN function).

AI/ML inference
performance
evaluation (clause
6.5.1.2.1)

REQ-AI/ML_PERF-
SEL-1

The ML training MnS producer shall have a capability allowing an
authorized MnS consumer to discover supported AI/ML performance
measurements related to AI/ML inference and select some of the desired
measurements based on the MnS consumer’s requirements.

AI/ML performance
measurements
selection based on
MnS consumer policy
(clause 6.5.1.2.2)

REQ-AI/ML_PERF-
POL-1

The AI/ML MnS producer shall have a capability allowing the authorized
MnS consumer to indicate a performance policy related to AI/ML
inference.

AI/ML performance
measurements
selection based on
MnS consumer policy
(clause 6.5.1.2.2)

6.5.2 AI/ML update control

6.5.2.1 Description

In many cases, network conditions change makes the capabilities of the ML model(s) decay, or at least become
inappropriate for the changed conditions. In such cases, the MnS consumer should still be enabled to trigger updates, e.g.,
when the consumer realizes that the insight or decisions generated by the function are no longer appropriate for the
observed network states, when the consumer observes the inference performance of ML model(s) is decreasing.

The MnS consumer may request the AI/ML Inference MnS producer to use an updated ML model(s) for the inference
with some specific performance requirements. This gives flexibility to the AI/ML inference MnS producer on how to
address the requirements by for example getting ML model(s) updated, which may be loading the already trained ML
model(s) or may lead to requesting to train/re-train the ML model(s) by utilizing the ML training MnS.

6.5.2.2 Use cases

6.5.2.2.1 Availability of new capabilities or ML models

Depending on their configurations, AI/ML inference functions may learn new characteristics during their utilization, e.g.,
if they are configured to learn through reinforcement learning or if they are configured to download new versions of their
constituent ML model. In such cases, the authorized consumer of AI/ML may wish to be informed by the AI/ML Inference
MnS producer (e.g., the operator, a management function, or a network function) about their new capabilities.

6.5.2.2.2 Triggering ML model update

When the inference capabilities of AI/ML inference functions degenerate, the typical action may be to trigger ML model
re-training of the constituent ML models. It is possible, however, that the AI/ML inference MnS producer only offers
inference capabilities and is not equipped with capabilities to update, train/re-train its constituent ML models.
Nevertheless, the authorized MnS consumer may still need to request for improvements in the capabilities of the AI/ML
inference function. In such cases, the authorized MnS consumer may still wish to request for an improvement and may
specify in its request e.g., a new version of the ML models, i.e., to have the ML models updated or re-trained. The
corresponding internal actions taken by the AI/ML MnS inference producer may not be necessarily known by the
consumer.

The AI/ML inference MnS consumer needs to request the AI/ML inference MnS producer to update its capabilities or
its constituent ML models and the AI/ML MnS producer should respond accordingly. For example, the AI/ML
inference MnS producer may download new software that supports the required updates, download from a remote
server a file containing configurations and parameters to update one or more of its constituent ML models, or it may
trigger one or more remote or local AI/ML-related processes (including ML model training/re-training, testing, etc.)
needed to generate the required updates. Related notifications for update can be sent to the AI/ML inference MnS

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)463GPP TS 28.105 version 19.3.0 Release 19

consumer to indicate the information of the update process, e.g., the update is finished successfully, the maximum time
taken to complete the update is reached but the performance does not achieve the requirements, etc.

Besides, an AI/ML inference MnS consumer may wish to manage the update process(es), e.g., to define policies on how
often the update may occur, suspend or restart the update or adjust the update conditions or characteristics, the
requirements could include, e.g., the times when the update may be executed, the expected achievable performance for
updating, the expected time taken to complete the update, etc.

6.5.2.3 Requirements for AIML update control

Table 6.5.2.3-1

Requirement label Description Related use case(s)
REQ-
AIML_UPDATE-1

The AI/ML Inference MnS producer should have a capability to inform
an authorized MnS consumer of the availability of AI/ML capabilities or
ML models or versions thereof (e.g., as learned through a training
process or as provided via a software update) and the readiness to
update the AI/ML capabilities of the respective network function when
triggered

Availability of new
capabilities or ML
models (clause
6.5.2.2.1)

REQ-
AIML_UPDATE-2

The AI/ML Inference MnS producer should have a capability to inform
an authorized MnS consumer of the expected performance gain if/when
the AI/ML capabilities or ML models of the respective network function
are updated with/to the specific set of newly available AI/ML capabilities

Availability of new
capabilities or ML
models (clause
6.5.2.2.1)

REQ-
AIML_UPDATE-3

The AI/ML Inference MnS producer should have a capability to allow an
authorized MnS consumer to request the AI/ML MnS producer to
update its ML models using a specific version of newly available AI/ML
capabilities or ML models or using AI/ML capabilities or ML models with
requirements (e.g., the minimum achievable performance after
updating, the maximum time taken to complete the update, etc)

Triggering ML model
update (clause
6.5.2.2.2)

REQ-
AIML_UPDATE-4

The AI/ML Inference MnS producer should have a capability for the
AI/ML MnS producer to inform an authorized MnS consumer about of
the process or outcomes related to any request for updating the AI/ML
capabilities or ML models

Triggering ML model
update (clause
6.5.2.2.2)

REQ-
AIML_UPDATE-5

The AI/ML Inference MnS producer should have a capability for the
AI/ML MnS producer to inform an authorized MnS consumer about of
the achieved performance gain following the update of the AI/ML
capabilities of a network function with/to the specific newly available ML
models or set of AI/ML capabilities

Triggering ML model
update (clause
6.5.2.2.2)

REQ-
AIML_UPDATE-6

The AI/ML Inference MnS producer should have a capability for an
authorized MnS consumer (e.g., an operator or the function/ model that
generated the request for updating the AI/ML capabilities) to manage
the request and subsequent process, e.g. to suspend, re-activate or
cancel the request or process; or to adjust the characteristics of the
capability update; or to define how often the update may occur,
suspend, restart or cancel the request or to further adjust the
requirements of the update

Triggering ML model
update (clause
6.5.2.2.2)

6.5.3 AI/ML inference capabilities management

6.5.3.1 Description

A network or management function that applies AI/ML to accomplish specific tasks may be considered to have one or
more ML models, each having specific capabilities.

Different network functions, e.g., MDA Functions, may need to rely on existing AI/ML capabilities to accomplish the
desired inference. However, the details of such ML-based solutions (i.e., which ML models are applied and how) for
accomplishing those inference functionalities is not obvious. The management services are required to identify the
capabilities of the involved ML models and to map those capabilities to the desired logic.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)473GPP TS 28.105 version 19.3.0 Release 19

6.5.3.2 Use cases

6.5.3.2.1 Identifying capabilities of ML models

Network functions, especially network automation functions, may need to rely on capabilities of ML models that are not
internal to those network functions to accomplish the desired automation (inference). For example, as stated in TS
28.104 [2], "An MDA Function may optionally be deployed as one or more AI/ML inference function(s) in which the
relevant ML models are used for inference per the corresponding MDA capability". Similarly, owing to the differences
in the kinds and complexity of intents that need to be fulfilled, an intent fulfillment solution may need to employ the
capabilities of existing AI/ML inference functions to fulfill the intents. In any such case, management services are
required to identify the capabilities of those existing ML models that are employed by AI/ML inference functions.

Figure 6.5.3.2.1-1: Request and reporting on AI/ML inference capabilities

Figure 6.5.3.2.1-1 shows that the consumer may wish to obtain information about the available AI/ML inference
capabilities to determine how to use them for the consumer's needs, e.g., for fulfillment of intent targets or other
automation targets.

6.5.3.2.2 Mapping of the capabilities of ML models

Besides the discovery of the capabilities of ML models, services are needed for mapping the ML modelsand
capabilities. In other words, instead of the consumer discovering specific capabilities, the consumer may want to know
the ML models that can be used to achieve a certain outcome. For this, the producer should be able to inform the
consumer of the set of available ML models that together achieve the consumer's automation needs.

In the case of intents for example, the complexity of the stated intents may significantly vary - from simple intents
which may be fulfilled with a call to a single ML model to complex intents that may require an intricate orchestration of
multiple ML models. For simple intents, it may be easy to map the execution logic to one or multiple ML models. For
complex intents, it may be required to employ multiple ML models along with a corresponding functionality that
manages their interrelated execution. The usage of the ML models requires the awareness of their capabilities and
interrelations.

Moreover, given the complexity of the required mapping to the multiple ML models, services should be supported to
provide the mapping of ML models and capabilities.

6.5.3.3 Requirements for AI/ML inference capabilities management

Table 6.5.3.3-1

Requirement label Description Related use case(s)
REQ-ML_CAP-01 The AI/ML inference MnS Producer shall have a capability allowing an

authorized MnS consumer to request the capabilities of existing ML
models available within the AI/ML inference producer.

Identifying capabilities
of ML models (clause
6.5.3.2.1)

AI/ML MnS
Consumer

AI/ML
Inference
Producer

Request AI/ML
Capabilities

Report on AI/ML
Capabilities

ML model

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)483GPP TS 28.105 version 19.3.0 Release 19

Requirement label Description Related use case(s)
REQ- ML_CAP-02 The AI/ML inference MnS Producer shall have a capability to report to

an authorized MnS consumer the capabilities of an ML model as a
decision described as a triplet <object(s), parameters, metrics> with the
entries respectively indicating: the object or object types for which the
ML model can undertake optimization or control; the configuration
parameters on the stated object or object types, which the ML model
optimizes or controls to achieve the desired outcomes; and the network
metrics which the ML model optimizes through its actions.

Identifying capabilities
of ML models (clause
6.5.3.2.1)

REQ-ML_CAP-03 The AI/ML inference MnS Producer shall have a capability to report to
an authorized MnS consumer the capabilities of an ML model as an
analysis described as a tuple <object(s), characteristics> with the
entries respectively indicating: the object or object types for which the
ML model can undertake analysis; and the network characteristics
(related to the stated object or object types) for which the ML model
produces analysis

Identifying capabilities
of ML models (clause
6.5.3.2.1)

REQ-ML_CAP-04 The AI/ML inference MnS Producer shall have a capability allowing an
authorized MnS consumer to request a mapping of the consumer's
inference targets to the capabilities of one or more ML models.

Mapping of the
capabilities of ML
models (clause
6.5.3.2.2)

6.5.4 AI/ML inference capability configuration management

6.5.4.1 Description

The objective of AI/ML for NG-RAN is to improve network performance and user experience, which can yield further
insights, e.g., for Network Energy Saving, Load Balancing, Mobility Optimization as defined in TS 38.300 [16].
According to the principles defined in clause 16.20.2, clause 15.4, clause 15.5 in TS 38.300 [16], either “AI/ML model
training is located in the OAM and AI/ML model inference is located in the NG-RAN node;” or “AI/ML model training
and AI/ML model inference are both located in the NG-RAN node”. To manage the network performance,the AI/ML
inference and the associated ML model(s) may need to be managed and configured to conduct inference in the 5G
system in alignement with the consumer´s expectation, e.g., to enable the AI/ML inference function to perform
inference.

The MnS producer for AI/ML inference management needs to provide a capability for configuration of the AI/ML
inference function.

6.5.4.2 Use cases

6.5.4.2.1 Managing NG-RAN AI/ML-based distributed Network Energy Saving

The MnS consumer monitors the network performance and determines whether, and when, to activate or deactivate an
AI/ML inference related to an AI/ML-based Distributed Network Energy Saving. The activation and deactivation
actions for AI/ML inference related to an AI/ML-based Distributed Network Energy Saving perfromed by the MnS
producer may also be triggered by policies provided by the consumer.

6.5.4.2.2 Managing NG-RAN AI/ML-based distributed Mobility Optimization

The MnS consumer monitors the network performance and determines whether activation or deactivation of an AI/ML
inference related to an AI/ML-based Distributed Mobility Optimization is required. The activation and deactivation
actions performed by the MnS producer may also be triggered by some defined policies provided by the consumer.

6.5.4.2.3 Managing NG-RAN AI/ML-based distributed Load Balancing

The MnS consumer monitors the network performance and determines whether, and when, to activate or deactivate an
AI/ML-based Distributed Load balancing. The activation and deactivation actionsperfrormed by the MnS producer may
also be triggered by policies provided by the consumer.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)493GPP TS 28.105 version 19.3.0 Release 19

6.5.4.3 Requirements for AI/ML inference management

Table 6.5.4.3-1

Requirement label Description Related use case(s)
REQ- AI/ML_INF-01 The MnS producer of NG-RAN AI/ML-based distributed Network

Energy Saving should enable an authorized MnS consumer to to
manage the ML model and/or AI/ML Inference Function related to
Distribuited Energy Saving functions.

Managing AI/ML-based
for NG-RAN distributed
Network Energy Saving
(clause 6.5.4.2.1)

REQ- AI/ML_INF-02 The MnS producer of NG-RAN AI/ML-based distributed Mobility
Optimization should enable an authorized MnS consumer to manage
the ML model and/or AI/ML Inference Function related to Distribuited
Mobility Optimization functions.

Managing AI/ML-based
for NG-RAN distributed
Mobility Optimization
(clause 6.5.4.2.2)

REQ- AI/ML_INF-03 The MnS producer of NG-RAN AI/ML-based distributed Load
Balancing should enable an authorized MnS consumer to request to
manage ML model and/or AI/ML Inference Function related to
Distribuited the Load Balancing functions.

Managing AI/ML-based
for NG-RAN distributed
Load Balancing (clause
6.5.4.2.3)

REQ-AIML_
INF_ACT-1

The MnS producer for AI/ML inference management should have a
capability allowing an authorized MnS consumer to activate and
deactivate an ML inference function.

Managing AI/ML-enabled
for Distributed Network
Energy Saving (clause
6.5.4.2.1)
Managing AI/ML-enabled
for distributed Mobility
Optimization (clause
6.5.4.2.2)
Managing AI/ML-enabled
for distributed Load
balancing (clause
6.5.4.2.3)

REQ-AIML_
INF_ACT-2

The MnS producer for AI/ML inference management should have a
capability to allow an authorized MnS consumer to provide the policy
for activating and deactivating inference function.
Note: The policies instructing the ML MnS producer on how or/and
when to activate which ML capabilities.

Managing AI/ML-enabled
for Distributed Network
Energy Saving (clause
6.5.4.2.1)
Managing AI/ML-enabled
for distributed Mobility
Optimization (clause
6.5.4.2.2)
Managing AI/ML-enabled
for distributed Load
balancing (clause
6.5.4.2.3)

6.5.5 AI/ML Inference History

6.5.5.1 Description

Different functionalities in the network or management domains may utilize AI/ML inference techniques to conduct
their tasks under different contexts. Depending on the contexts, the outcome of the ML model at inference might be
different. The history of such inference outcome and the corresponding context within which they were taken may be of
interest to different consumers.

6.5.5.2 Use cases

6.5.5.2.1 AI/ML Inference History - tracking inferences and context

For different automation requirements in specific network domain, management/automation functions (e.g., MDAS,
SON) may apply ML functionality to make the appropriate inferences in different contexts. The context is the set of
appropriate conditions under which the inference was made including network conditions, traffic characteristics, time of
day, weather, and climate, etc. And depending on the contexts, the different inferences may have different outcomes. The
inference history, which is the history of such inferences and the contexts within which they are taken, may be of interest
to different consumers. The AI/ML inference history includes outputs derived by the ML model and the contexts, e.g.,
network resources, time periods, traffic conditions, etc. The inference history output should be reported by the MnS
Producer to the MnS Consumer.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)503GPP TS 28.105 version 19.3.0 Release 19

The inferences may need to be tracked for future reference, e.g., to evaluate the appropriateness/usefullness of the
inference outcome for those contexts or to evaluate degradations in the ML model's performance. For this, the network
not only needs to have the required inference capabilities but needs also to have the means to track and enable usage of
the history of the inferences made by the ML model. The MnS producer, i.e., a specific AI/ML inference function should
also provide the capability for AI/ML inference history Control, the means to control the process of compiling and
reporting on AI/ML inference history.

Figure 6.5.5.2.1-1: Example use and control of AI/ML inference history request and reporting.

6.5.5.3 Requirements for AI/ML Inference History

Table 6.5.5.3-1

Requirement label Description Related use case(s)
REQ-AI/ML_INF-
HIST-01

The MnS producer for AI/ML inference management should have a
capability allowing an authorized consumer to receive the inference
history of a specific ML model.

AI/ML Inference
History - tracking
inferences and
context (clause
6.5.5.2.1)

REQ-AI/ML-INF-
HIST-02

The MnS producer for AI/ML inference management should have a
capability enabling an authorized consumer to define the reporting
characteristics of historical inference outputs related to a specific
instance of an ML model.

AI/ML Inference
History - tracking
inferences and
context (clause
6.5.5.2.1)

6.5.6 Managing ML models in use in a live network

6.5.6.1 Description

These use cases deal with managing ML models that are in-use or deployed in the live network. These use cases will
apply to all supported AI/ML inference capabilities.

6.5.6.2 Use cases

6.5.6.2.1 Handling of underperforming ML trained models in live networks

Actions may need to be taken by a network operator once trained ML models has been identified that is contributing
towards non-optimal running of the network. These actions may involve for example, without service interruptions,
reverting to running of the network without ML based optimizations (i.e deavtivating the AIMLInferenceFunction) or
replacing current ML model with an earlier model one that was performing better (i.e deploying a new MLmodel).

6.5.6.2.2 Performance monitoring of Network Functions with ML trained models in live
networks

Several trained ML models maybe in use in an operator network with each one of them influencing network
performance. The Network Functions with these ML models need to be monitored to ensure network is running
optimally with these models in use. KPIs for evaluating runtime performance of Network Functions using ML models
should be provided for this purpose as part of the model. These KPIs correspond to specific network functions of 5GC

ML Inference History Control

MLModel

Request ML Inference History

Report on ML Inference History

ML MnS Producer

(provides Inference

History)

MnS Consumer

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)513GPP TS 28.105 version 19.3.0 Release 19

AI/ML supported functions and NG-RAN AI/ML supported functions and would need to be collectable by the network
operator.

6.5.6.3 Requirements for Managing ML models in use in a live network

Table 6.5.6.3-1

Requirement label Description Related use case(s)
REQ-AI/ML_INF-
LIVES-01

The 3GPP management system should have a capability enabling an
authorized consumer to identify ML model(s) that may cause
performance measurement and/or KPI degradation.

Handling of
underperforming ML
trained models in live
networks (6.5.6.2.1)

REQ-AI/ML_INF-
LIVES-02

The 3GPP management system should be able to collect network
related performance data pertaining to Network Functions actively
utilizing ML models.

Performance
monitoring of Network
Functions with ML
trained models in live
networks (6.5.6.2.2)

6.5.7 AI/ML inference explainability

6.5.7.1 Description

Explainable ML refers to a process that enables the consumers (e.g. operator) to understand and trust the outputs
provided by ML models. In essence, AI/ML inference explainable is about making the decision-making of ML
comprehensible to its consumers. The aim is to explain individual outputs provided by an ML model, i.e., it focuses on
explaining why a specific output was generated by the ML model for a particular input data sample.

6.5.7.2 Use cases

6.5.7.2.1 Management of explanation in AI/ML inference

Once the ML model is trained and deployed for inference, the generated explanations by the AI/ML inference MnS
producer may need to be reported to the AI/ML inference MnS consumer. These explanations explain why this ML
model has produced a certain inference result. These explanations can be used by MnS consumers to understand to
making more informed decisions for network operationregarding the deactivation of AI/ML inference or fallback to a
previous version of the ML model. E.g. the explanation of ML model inference results typically involves the following
aspects to understand why the model produces a specific inference result, such as the critical features in the training or
inference data.

6.5.7.3 Requirements for AI/ML inference explainability managment

Table 6.5.7.3-1

Requirement label Description Related use case(s)
REQ-ML-INF-EXP-
01

The 3GPP management system should have a capability to report the
explanations for AI/ML inference to an authorized consumer.

Management of
explanation in AI/ML
inference (clause
6.5.7.2.1)

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)523GPP TS 28.105 version 19.3.0 Release 19

7 Information model definitions for AI/ML management

7.1 Imported and associated information entities

7.1.1 Imported information entities and local labels

Table 7.1.1-1

Label reference Local label
3GPP TS 28.622 [12], IOC, Top Top
3GPP TS 28.622 [12], IOC, SubNetwork SubNetwork

3GPP TS 28.622 [12], IOC, ManagedElement ManagedElement

3GPP TS 28.622 [12], IOC, ManagedFunction ManagedFunction

3GPP TS 28.622 [12], IOC, ThresholdMonitor ThresholdMonitor

3GPP TS 28.541 [18], IOC, GNBCUCPFunction GNBCUCPFunction

3GPP TS 28.104 [2], IOC, MDAFunction MDAFunction

3GPP TS 28.622 [12], dataType, TimeWindow TimeWindow

3GPP TS 28.622 [12], dataType, GeoArea GeoArea

3GPP TS 28.622 [12], dataType, ThresholdInfo ThresholdInfo

3GPP TS 28.622 [12], dataType, ProcessMonitor ProcessMonitor

7.1.2 Associated information entities and local labels

Table 7.1.2-1

Label reference Local label
3GPP TS 28.104 [2], IOC, MDAFunction MDAFunction
3GPP TS 28.541 [18], IOC, NWDAFFunction NWDAFFunction

3GPP TS 28.541 [18], IOC, ANLFFunction ANLFFunction

3GPP TS 28.541 [18], IOC,
DESManagementFunction

DESManagementFunction

3GPP TS 28.541 [18], IOC, DMROFunction DMROFunction

3GPP TS 28.541 [18], IOC, DLBOFunction DLBOFunction

3GPP TS 28.541 [18], IOC, LMFFunction LMFFunction

7.2 Void

7.2a Common information model definitions for AI/ML
management

7.2a.1 Class diagram

7.2a.1.1 Relationships

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)533GPP TS 28.105 version 19.3.0 Release 19

Figure 7.2a.1.1-1: Relations for common information models for AI/ML management

7.2a.1.2 Inheritance

Figure 7.2a.1.2-1: Inheritance Hierarchy for common information models for AI/ML management

7.2a.2 Class definitions

7.2a.2.1 MLModel

7.2a.2.1.1 Definition

This IOC represents the ML model. ML model algorithm or ML model are not subject to standardization. It is name-
contained by MLModelRepository.

This MLModel MOI can be created by the system (MnS producer) or pre-installed. The MnS consumer can request the
system to delete the MLModel MOI.

The MLModel contains 3 types of contexts - TrainingContext, ExpectedRunTimeContext and
RunTimeContext which represent status and conditions of the MLModel. These contexts are of mLContext
<<dataType>>, see clauses 7.4.3 and 7.5.1 for details.

It also contains a reference named retrainingEventsMonitorRef which is a pointer to ThresholdMonitor
MOI. This indicates the list of performance measurements and the corresponding thresholds that are monitored and used
to identify the need for re-training by the MnS Producer. After the MLModel MOI has been instantiated, the MnS
Consumer can request MnS producer to instantiate a ThresholdMonitor MOI and update the reference in the
MLModel MOI that can be used by the MnS producer to decide on the re-training of the MLModel. The MnS producer
can be ML training MnS producer or AI/ML Inference MnS Producer.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)543GPP TS 28.105 version 19.3.0 Release 19

The ML model includes information about its applicable type of training, which includes pre-specialised training, fine-
tuning, or re-training.

For a pre-specialised trained ML model, the MLModel MOI also include information about its applicable inference
scope, which corresponds to a list of inference types which the model can be adapted (fine-tuned) to support.

7.2a.2.1.2 Attributes

The MLModel IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the following attributes:

Table 7.2a.2.1.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
mLModelId M T F F T
aIMLInferenceName M T F F T
mLModelVersion M T F F T
expectedRunTimeContext M T T F T
trainingContext CM T F F T
runTimeContext O T F F T
supportedPerformanceIndicators O T F F T
mLCapabilitiesInfoList M T F F T
mLTrainingType M T F F T
inferenceScope CM T F F T
Attribute related to role
retrainingEventsMonitorRef O T T F T
aIMLInferenceReportRefList O T F F T
usedByFunctionRefList O T F F T

7.2a.2.1.3 Attribute constraints

Table Void

None.

7.2a.2.1.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.2a.2.2 MLModelRepository

7.2a.2.2.1 Definition

The IOC MLModelRepository represents the repository that contains the ML models. It is name-contained by
SubNetwork or ManagedElement.

This MLModelRepository instance can be created by the system (MnS producer) or pre-installed.

The MLModelRepository MOI may contain one or more MLModel(s).

7.2a.2.2.2 Attributes

The MLModelRepository IOC inherited from Top IOC (defined in TS 28.622 [12]).

7.2a.2.2.3 Attribute constraints

None.

7.2a.2.2.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)553GPP TS 28.105 version 19.3.0 Release 19

7.2a.2.3 MLModelCoordinationGroup

7.2a.2.3.1 Definition

This IOC represents the group of ML models, which can be trained and tested jointly and used to perform inference in a
coordinated way. It is name-contained by MLModelRepository.

This MLModelCoordinationGroup instance is created by the system (MnS producer) or pre-installed. The MnS
consumer can request the System to delete the MLModelCoordinationGroup MOI.

One ML model may have dependencies on one or more of the other ML models of the same group.

One group is associated with at least two ML models.

7.2a.2.3.2 Attributes

The MLModelCoordinationGroup IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12])
and the following attributes:

Table 7.2a.2.3.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable

Attribute related to role
memberMLModelRefList M T F F T

7.2a.2.3.3 Attribute constraints

None.

7.2a.2.3.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3 Void

7.3a Information model definitions for AI/ML operational phases

7.3a.1 Information model definitions for ML model training

7.3a.1.1 Class diagram

7.3a.1.1.1 Relationships

This clause depicts the set of classes (e.g. IOCs) that encapsulates the information relevant to ML model training. For
the UML semantics, see TS 32.156 [13].

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)563GPP TS 28.105 version 19.3.0 Release 19

Figure 7.3a.1.1.1-1: NRM fragment for ML model training

7.3a.1.1.2 Inheritance

Figure 7.3a.1.1.2-1: Inheritance Hierarchy for ML model training related NRMs

7.3a.1.2 Class definitions

7.3a.1.2.1 MLTrainingFunction

7.3a.1.2.1.1 Definition

The IOC MLTrainingFunction represents the function that is responsible for ML model training. The MOI of
MLTrainingFunction is also the container of the MLTrainingRequest, MLTrainingReport,
MLTrainingProcess and ThresholdMonitor MOI(s).

This MLTrainingFunction instance is created by the system (MnS producer) or pre-installed, it can only be
deleted by the system.

The ThresholdMonitor contains the list of performance measurements and the corresponding thresholds that are
monitored and used to identify the need for ML model re-training by the MnS Producer.

TheML training function represented by MLTrainingFunction MOI supports training of one or more
MLModel(s).

The MLTrainingFunction includes information about its applicable type of training, which includes pre-
specialised training, fine-tuning, or re-training.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)573GPP TS 28.105 version 19.3.0 Release 19

The MLTrainingFunction MOI have a supportedLearningTechnology attribute to indicate the supported learning
technology including Reinforcement learning, Federated learning and Distributed training. This attribute can enable the
ML training MnS producer allowing ML training MnS consumer to query if RL/FL/DL is supported.

An MLTrainingFunction instance may contain a set of ML knowledge instances associated with a set of ML
models that have been trained. An MnS consumer can find available ML knowledge by reading the mLKnowledge
attribute on the ML MLTrainingFunction. Relatedly, the MnS consumer can find the characteristics of a
specific ML knowledge instance by reading the related mLKnowledge. The request for training using MLknowledge
is not to be combined with training using collected data – the training function should not provide ML knowledge along
side the raw data used for creating the ML knowledge.

7.3a.1.2.1.2 Attributes

The MLTrainingFunction IOC includes attributes inherited from ManagedFunction IOC (defined in TS
28.622 [12]) and the following attributes:

Table 7.3a.1.2.1.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
supportedLearningTechn
ology M T F F T

fLParticipationInfo CM T F F T
mLKnowledge O T F F T
mLTrainingType M T F F T
Attribute related to role
mLModelRepositoryRef M T F F T

7.3a.1.2.1.3 Attribute constraints

Table 7.3a.1.2.1.3-1

Name Definition
fLParticipationInfo Condition: FL is supported.

7.3a.1.2.1.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.1.2.2 MLTrainingRequest

7.3a.1.2.2.1 Definition

The IOC MLTrainingRequest represents the ML model training request that is triggered by the ML training MnS
consumer.

To trigger the ML model training process, ML training MnS consumer needs to create MLTrainingRequest
instances on the ML training MnS producer. The MLTrainingRequest MOI is contained under one
MLTrainingFunction MOI.

The MLTrainingRequest MOI may represent the request for initial ML model training or re-training. For ML
model re-training, the MLTrainingRequest is associated to one MLModel for re-training a single ML model or
associated to one MLModelCoordinationGroup.

The MLTrainingRequest includes information about a ML training type to define the type of training requested by
the MnS consumer. The training type can be one of the following: (1) initial training, where the MnS consumer requests
to train an ML model of which the instance does not exist yet, (2) pre-specialised training, where the ML model is
trained on a dataset that is not specific to any particular type of inference, (3) re-training, where the ML model is re-
trained on the same type of dataset on which it was previously trained to support the same type of inference, and (4)
fine-tuning, where the ML model is trained to adapt it to support a new single type of inference. The

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)583GPP TS 28.105 version 19.3.0 Release 19

aIMLInferenceName means the inference type will be used for conducting inference. The MLTrainingRequest has a
source to identify where it is coming from, which is represented with trainingRequestSource attribute. This
attribute may be used by an ML training MnS producer to prioritize the training resources for different sources.

Each MLTrainingRequest indicates the expectedRunTimeContext that describes the specific conditions for which
the MLModel should be trained.

In case the request is accepted, the ML training MnS producer decides when to start the ML model training based on
MnS consumer requirements. Once the MnS producer decides to start the training based on the request, the ML training
MnS producer instantiates one or more MLTrainingProcess MOI(s) that are responsible to perform the followings:

- collects (more) data for training, if the training data are not available or the data are available but not sufficient
for the training;

- prepares and selects the required training data, with consideration of the MnS consumer’s request provided
candidate training data if any. The ML training MnS producer may examine the MnS consumer's provided
candidate training data and select none, some or all of them for training. In addition, the ML training MnS
producer may select some other training data that are available in order to meet the MnS consumer’s
requirements for the ML model training;

- trains the MLModel using the selected and prepared training data.

The MLTrainingRequest may have a requestStatus field to represent the status of the specific
MLTrainingRequest:

- The attribute values are "NOT_STARTED", " IN_PROGRESS", "SUSPENDED", "FINISHED", and
"CANCELLED".

- When value turns to " IN_PROGRESS", the ML training MnS producer instantiates one or more
MLTrainingProcess MOI(s) representing the training process(es) being performed per the request and
notifies the MLT MnS consumer(s) who subscribed to the notification.

When all of the training process associated to this request are completed, the value turns to "FINISHED".

The ML training MnS prodcuer shall delete the corresponding MLTrainingRequest instance in case of the status
value turns to "FINISHED" or "CANCELLED". The MnS producer may notify the status of the request to MnS
consumer after deleting MLTrainingRequest instance.

For the MLTrainingRequest used to trigger the ML model training of RL, the MLTrainingRequest MOI has
an rLRequirement attribute to indicate the requirements of the RL.

The attribute fLRequirement indicates the requirements for the MLTrainingFunction playing the role of FL server to
coordinate the training of an MLModel using Federated learning.

The MLTrainingRequest can be used to trigger ML-knowledge-based transfer learning. The source ML knowledge
should be indicated using the mLKnowledgeName, where the source does not want to reveal the source MLModel.
The request for training using ML knowledge is not to be combined with training using collected data – the request
cannot be for both mLKnowledgeName and candidateTrainingDataSource.

For the MLTrainingRequest to include clustering criteria, indicating which ML models with multiple contexts
belonging to the same MnS producer can form the cluster and trained together, the MLTrainingRequest MOI is
enhanced with attribute clusteringInfo containing information that provides the clustering criteria for the ML
models to be trained together.

7.3a.1.2.2.2 Attributes

The MLTrainingRequest IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the
following attributes:

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)593GPP TS 28.105 version 19.3.0 Release 19

Table 7.3a.1.2.2.1-1

Attribute name Support
Qualifier

isReadable isWritable isInvariant isNotifyable

aIMLInferenceName CM T T T T
candidateTrainingDataSource O T T F T
trainingDataQualityScore O T T F T
trainingRequestSource M T T F T
requestStatus M T F F T
expectedRuntimeContext M T T F T
performanceRequirements M T T F T
rLRequirement CM T T F T
fLRequirement CM T T F T
cancelRequest O T T F T
suspendRequest O T T F T
trainingDataStatisticalProperties O T T F T
distributedTrainingExpectation O T T F T
mLKnowledgeName CM T T F T
mLTrainingType M T T F T
expectedInferenceScope CM T T F T
clusteringInfo O T T F T
Attribute related to role
mLModelRef M T T T T
mLModelCoordinationGroupRef CM T T T T

7.3a.1.2.2.3 Attribute constraints

Table 7.3a.1.2.2.3-1

Name Definition
aIMLInferenceName Condition: Any of the following training types are supported: Initial training,

pre-specialized training, fine-tuning.
mLModelCoordinationGroupRef Condition: ML model joint training is supported.
mLKnowledgeName Condition: ML-knowledge-based transfer learning is supported.

Knowledge is indicated only if candidateTrainingDataSource is not
indicated

rLRequirement Condition: Reinforcement learning is supported.
fLRequirement Condition: FL is supported
expectedInferenceScope Condition: The MLTrainingRequest is for an ML model pre-specialised

training.

7.3a.1.2.2.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.1.2.3 MLTrainingReport

7.3a.1.2.3.1 Definition

The IOC MLTrainingReport represents the ML model training report that is provided by the training MnS
producer. The MLTrainingReport is associated with one MLModel or one MLModelCoordinationGroup.

The MLTrainingReport instance is created by the training MnS producer automatically when creating an
MLTrainingRequest instance.

The MLTrainingReport MOI is contained under one MLTrainingFunction MOI.

7.3a.1.2.3.2 Attributes

The MLTrainingReport IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the
following attributes:

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)603GPP TS 28.105 version 19.3.0 Release 19

Table 7.3a.1.2.3.2-1

Attribute name Support
Qualifier

isReadable isWritable isInvariant isNotifyable

usedConsumerTrainingData CM T F F T
modelConfidenceIndication O T F F T
modelPerformanceTraining M T F F T
areNewTrainingDataUsed M T F F T
modelPerformanceValidation O T F F T
fLReportPerClient CM T F F T
Attribute related to role
trainingRequestRef CM T F F T
trainingProcessRef M T F F T
lastTrainingRef CM T F F T
mLModelGeneratedRef M T F F T
mLModelCoordinationGroupGeneratedRef CM T F F T
mLModelRef M T F F T

7.3a.1.2.3.3 Attribute constraints

Table 7.3a.1.2.3.3-1

Name Definition
trainingRequestRef Condition: The MLTrainingReport MOI represents the report for

the ML model training that was requested by the MnS consumer (via
MLTrainingRequest MOI).

lastTrainingRef Condition: The MLTrainingReport MOI represents the report for
the ML model training that was not ML model initial training (i.e. the
model has been trained before).

mLModelCoordinationGroupGeneratedRef Condition: The MLTrainingReport MOI represents the report for
ML model joint training.

fLReportPerClient Condition: FL is supported.

7.3a.1.2.3.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.1.2.4 MLTrainingProcess

7.3a.1.2.4.1 Definition

The IOC MLTrainingProcess represents the ML model training process. When a ML model training process
starts, an instance of the MLTrainingProcess is created by the MnS Producer and notification is sent to MnS
consumer who has subscribed to it. The MnS producer can delete the MLTrainingProcess instance whose attribute
status equals to "FINISHED" or "CANCELLED" automatically.

One MLTrainingProcess MOI may be instantiated for each MLTrainingRequest MOI or a set of
MLTrainingRequest MOIs.

For each MLModel under training, a MLTrainingProcess is instantiated, i.e. an MLTrainingProcess is
associated with one MLModel or one MLModelCoordinationGroup. The MLTrainingProcess may be
associated with one or more MLTrainingRequest MOI.

The MLTrainingProcess does not have to correspond to a specific MLTrainingRequest, i.e. a
MLTrainingRequest does not have to be associated to a specific MLTrainingProcess. The
MLTrainingProcess may be managed separately from the MLTrainingRequest MOIs, e.g. the
MLTrainingRequest MOI may come from consumers which are network functions while the operator may wish to
manage the MLTrainingProcess that is instantiated following the requests. Thus, the MLTrainingProcess
may be associated to either one or more MLTrainingRequest MOI.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)613GPP TS 28.105 version 19.3.0 Release 19

Each MLTrainingProcess instance needs to be managed differently from the related MLModel, although the
MLTrainingProcess may be associated to only one MLModel. For example, the MLTrainingProcess may
be triggered to start with a specific version of the MLModel and multiple MLTrainingProcess instances may be
triggered for different versions of the MLModel. In either case the MLTrainingProcess instances are still
associated with the same MLModel but are managed separately from the MLModel.

Each MLTrainingProcess has a priority that may be used to prioritize the execution of different
MLTrainingProcess instances.

Each MLTrainingProcess may have one or more termination conditions used to define the points at which the
MLTrainingProcess may terminate.

The "progressStatus" attribute represents the status of the ML model training and includes information the ML
training MnS consumer can use to monitor the progress and results. The data type of this attribute is
"ProcessMonitor" (see 3GPP TS 28.622 [12]). The following specializations are provided for this data type for the
ML model training process:

- The "status" attribute values are "RUNNING", "CANCELLING", "SUSPENDED", "FINISHED", and
"CANCELLED". The other values are not used.

- The "timer" attribute is not used.

- When the "status" is equal to "RUNNING" the "progressStateInfo" attribute shall indicate one of the
following states: "COLLECTING_DATA", "PREPARING_TRAINING_DATA", "TRAINING".

- No specifications are provided for the "resultStateInfo" attribute. Vendor specific information may be
provided though.

When the training is completed with "status" equal to "FINISHED", the MLT MnS producer provides the training
report, by creating an MLTrainingReport MOI, to the MLT MnS consumer.

7.3a.1.2.4.2 Attributes

The MLTrainingProcess IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the
following attributes:

Table 7.3a.1.2.4.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
priority M T T F T
terminationConditions M T T F T
progressStatus M T F F T
cancelProcess O T T F T
suspendProcess O T T F T
Attribute related to role
trainingRequestRef CM T F F T
trainingReportRef M T F F T
mLModelGeneratedRef CM T F F T
mLModelRef M T F F T
participatingFLClientR
efList

CM T F F T

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)623GPP TS 28.105 version 19.3.0 Release 19

7.3a.1.2.4.3 Attribute constraints

Table 7.3a.1.2.4.3-1

Name Definition
trainingRequestRef Condition: The MLTrainingReport MOI represents the report for the ML

model training that was requested by the training MnS consumer (via
MLTrainingRequest MOI).

mLModelGeneratedRef Condition: The MLTrainingProcess MOI is instantiated to retrain an
existing MLModel.

participatingFLClientRefList Condition: FL is supported.

7.3a.1.2.4.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.1b Information model definitions for ML model testing

7.3a.1b.1 Class diagram

7.3a.1b.1.1 Relationships

This clause depicts the set of classes (e.g. IOCs) that encapsulates the information relevant to ML model testing. For the
UML semantics, see TS 32.156 [13].

Figure 7.3a.1b.1.1-1: NRM fragment for ML model testing

7.3a.1b.1.2 Inheritance

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)633GPP TS 28.105 version 19.3.0 Release 19

Figure 7.3a.1b.1.2-1: Inheritance Hierarchy for ML model testing related NRMs

7.3a.1b.2 Class definitions

7.3a.1b.2.1 MLTestingFunction

7.3a.1b.2.1.1 Definition

The ML model testing may be conducted by the ML training function, or by a separate function.

This MLTestingFunction instance is created by the system (MnS producer) or pre-installed, it can only be deleted
by the system.

In case the ML model testing is conducted by a function separate from the ML training function, the IOC
MLTestingFunction is instantiated and represents the logical function that undertakes ML model testing.

The model represented by MLTestingFunction MOI supports testing of one or more MLModel(s).

7.3a.1b.2.1.2 Attributes

The MLTestingFunction IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the
following attributes:

Table 7.3a.1b.2.1.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
Attribute related to role
mLModelRef M T F F F

7.3a.1b.2.1.3 Attribute constraints

None.

7.3a.1b.2.1.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.1b.2.2 MLTestingRequest

7.3a.1b.2.2.1 Definition

The IOC MLTestingRequest represents the ML model testing request that is triggered by the ML testing MnS
consumer.

To trigger the ML model testing process, ML testing MnS consumer needs to create MLTrainingRequest.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)643GPP TS 28.105 version 19.3.0 Release 19

The MLTestingRequest MOI is contained under one MLTestingFunction MOI or MLTrainingFunction
MOI which represents the logical function that conducts the ML model testing. Each MLTestingRequest is
associated to at least one MLModel.

In case the request is accepted, the ML testing MnS producer decides when to start the ML model testing. Once the
MnS producer decides to start the testing based on the request, the ML testing MnS producer:

- collects (more) data for testing, if the testing data are not available or the data are available but not sufficient for
the testing;

- prepares and selects the required testing data;

- tests the MLModel by performing inference using the selected testing data, and

- reports the performance of the MLModel when it performs on the selected testing data.

The MLTestingRequest may have a requestStatus field to represent the status of the request:

- The attribute values are "NOT_STARTED", "IN_PROGRESS", "SUSPENDED", "FINISHED", and
"CANCELLED".

The ML testing MnS prodcuer shall delete the corresponding MLTestingRequest instance in case of the status
value turns to "FINISHED" or "CANCELLED". The MnS producer may notify the status of the request to MnS
consumer before deleting MLTestingRequest instance.

7.3a.1b.2.2.2 Attributes

The MLTestingRequest IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the
following attributes:Table 7.3a.1b.2.2.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
requestStatus M T F F T
cancelRequest O T T F T
suspendRequest O T T F T

Attribute related to role
mLModelRef CM T F F T
mLModelCoordinationGroupRef CM T F F T

7.3a.1b.2.2.3 Attribute constraints

Table 7.3a.1b.2.2.3-1

Name Definition
mLModelRef Condition: Testing of a single ML model is supported.
mLModelCoordinationGroupRef Condition: Joint testing is supported.

7.3a.1b.2.2.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.1b.2.3 MLTestingReport

7.3a.1b.2.3.1 Definition

The IOC MLTestingReport represents the ML testing report that is provided by the ML testing MnS producer.

The MLTestingReport MOI is contained under one MLTestingFunction MOI or MLTrainingFunction
MOI which represents the logical function that conducts the ML model testing.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)653GPP TS 28.105 version 19.3.0 Release 19

For the joint testing of a group of ML models, the ML testing report contains the testing results for every ML model in
the group.

The MLTestingReport instance is created by the ML testing MnS producer and notification is sent to ML testing
Consumer who has subscribed to it.

7.3a.1b.2.3.2 Attributes

The MLTestingReport represents the report for the ML model testing that was requested by the MnS consumer (via
MLTestingRequest MOI). The IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the
following attributes:

Table 7.3a.1b.2.3.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
modelPerformanceTesting M T F F T
mLTestingResult M T F F T

Attribute related to role
testingRequestRef CM T F F T

7.3a.1b.2.3.3 Attribute constraints

Table 7.3a.1b.2. 3.3-1

Name Definition
testingRequestRef Condition: Report on testing requested by the MnS consumer is

supported.

7.3a.1b.2.3.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.2 Information model definitions for AI/ML inference emulation

7.3a.2.1 Class diagram

7.3a.2.1.1 Relationships

Figure 7.3a.2.1.1-1: NRM fragment for AI/ML inference emulation control

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)663GPP TS 28.105 version 19.3.0 Release 19

7.3a.2.1.2 Inheritance

Figure 7.3a.2.1.2-1: AI/ML inference emulation Inheritance Relations

7.3a.2.2 Class definitions

7.3a.2.2.1 AIMLInferenceEmulationFunction

7.3a.2.2.1.1 Definition

This IOC represents the properties of a function that undertakes AI/ML Inference Emulation.

This AIMLInferenceEmulationFunction instance is created by the system (AI/ML inference emulation MnS
producer) or pre-installed, it can only be deleted by the system.

An AIMLInferenceEmulationFunction may be associated with one or more MLModel(s).
AIMLInferenceFunction is name contained with AIMLInferenceEmulationReport(s) that delivers the
outcomes of the emulation processes.

NOTE: The way of triggering of an AI/ML inference emulation and the instantiation of the related AI/ML
inference emulation process is not in the scope of the present document.

7.3a.2.2.1.2 Attributes

The AIMLInferenceEmulationFunction IOC inherited from ManagedFunction IOC (defined in TS 28.622
[12]).

7.3a.2.2.1.3 Attribute constraints

None.

7.3a.2.2.1.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.3 Information model definitions for ML model deployment

7.3a.3.1 Class diagram

7.3a.3.1.1 Relationships

This clause depicts the set of classes (e.g. IOCs) that encapsulates the information relevant to ML model loading. For
the UML semantics, see TS 32.156 [13].

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)673GPP TS 28.105 version 19.3.0 Release 19

Figure 7.3a.3.1.1-1: NRM fragment for ML model loading

7.3a.3.1.2 Inheritance

Figure 7.3a.3.1.2-1: Inheritance Hierarchy for ML model loading related NRMs

7.3a.3.2 Class definitions

7.3a.3.2.1 MLModelLoadingRequest

7.3a.3.2.1.1 Definition

This IOC represents the ML model loading request that is created by the MnS consumer. Using this IOC, the MnS
consumer requests the MnS producer to load an ML model to the target inference function.

To trigger the ML model loading process, MnS consumer has to create MLModelLoadingRequest object instances
on the MnS producer.

This IOC has a requestStatus field to represent the status of the request:

- The attribute value is one of "NOT_STARTED", "IN_PROGRESS", "SUSPENDED", "FINISHED_SUCCESS
", FINISHED_FAILED" and "CANCELLED".

- When value turns to "IN_PROGRESS", the MnS producer instantiates one or more
MLModelLoadingProcess MOI(s) representing the loading process(es) being performed per the request
and notifies the MnS consumer(s) who subscribed to the notification.

The MnS prodcuer shall delete the corresponding MLModelLoadingRequest instance in case of the status value
turns to "FINISHED" or "CANCELLED".

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)683GPP TS 28.105 version 19.3.0 Release 19

7.3a.3.2.1.2 Attributes

The MLModelLoadingRequest IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and
the following attributes:

Table 7.3a.3.2.1.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
requestStatus M T F F T
cancelRequest O T T F T
suspendRequest O T T F T

Attribute related to role
mLModelToLoadRef M T F F T

7.3a.3.2.1.3 Attribute constraints

None.

7.3a.3.2.1.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.3.2.2 MLModelLoadingPolicy

7.3a.3.2.2.1 Definition

This IOC represents the ML model loading policy set by the MnS consumer to the producer for loading an ML model to
the target inference function(s).

To specify ML model loading policy for one or muiltiply ML models, MnS consumer needs to create
MLModelLoadingPolicy object instances.

To remove ML model loading policy for one or muiltiply ML models, MnS consumer needs to delete
MLModelLoadingPolicy object instances.

This IOC is used for the MnS consumer to set the conditions for the producer-initated ML model loading. The MnS
producer is only allowed to load the ML model when all of the conditions are met.

7.3a.3.2.2.2 Attributes

The MLModelLoadingPolicy IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the
following attributes:

Table 7.3a.3.2.2.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
aIMLInferenceName CM T T F T
policyForLoading M T T F T

Attribute related to role
mLModelRef CM T F F F

7.3a.3.2.2.3 Attribute constraints

Table 7.3a.3.2.2.3-1

Name Definition
aIMLInferenceName Condition: The ML model loading policy is related to an initially trained ML

model.
mLModelRef Condition: The ML model loading policy is related to a re-trained ML model.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)693GPP TS 28.105 version 19.3.0 Release 19

7.3a.3.2.2.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.3.2.3 MLModelLoadingProcess

7.3a.3.2.3.1 Definition

This IOC represents the ML model loading process.

For the consumer requested ML model loading, one or more MLModelLoadingProcess MOI(s) may be
instantiated for each ML model loading request presented by the MLModelLoadingRequest MOI.

For the producer-initiated ML model loading, one or more MLModelLoadingProcess MOI(s) may be instantiated
and associated with each MLModelLoadingPolicy MOI.

One MLModelLoadingProcess MOI represent the ML model loading process(es) corresponding to one or more
target inference function(s).

The "progressStatus" attribute represents the status of the ML model loading process and includes information the
MnS consumer can use to monitor the progress and results. The data type of this attribute is "ProcessMonitor" (see
3GPP TS 28.622 [12]). The following specializations are provided for this data type for the ML model loading process:

- The "status" attribute values are "RUNNING", "CANCELLING", "SUSPENDED", "FINISHED", and
"CANCELLED". The other values are not used.

- The "timer" attribute is not used.

- When the "status" is equal to "RUNNING" the "progressStateInfo" attribute shall indicate one of the
following state: "LOADING".

- No specifications are provided for the "resultStateInfo" attribute. Vendor specific information may be
provided though.

When the loading is completed with "status" equal to "FINISHED", the MnS producer creates the MOI(s) of loaded
MLModel under each MOI of the target inference function(s).

When a ML model loading process starts, an instance of the MLModelLoadingProcess is created by the MnS
Producer and notification is sent to MnS consumers who have subscribed to it. The MnS producer can delete the
MLModelLoadingProcess instance whose attribute status equals to "FINISHED" or or "CANCELLED"
automatically.

7.3a.3.2.3.2 Attributes

The MLModelLoadingProcess IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and
the following attributes:

Table 7.3a.3.2.3.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
progressStatus M T F F T
cancelProcess O T T F T
suspendProcess O T T F T

Attribute related to role
mLModelLoadingRequestR
ef

CM T F F T

mLModelLoadingPolicyRe
f

CM T F F T

loadedMLModelRef M T F F T

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)703GPP TS 28.105 version 19.3.0 Release 19

7.3a.3.2.3.3 Attribute constraints

Table 7.3a.3.2.3.3-1

Name Definition
mLModelLoadingRequestRef Condition: The MLModelLoadingProcess MOI is corresponding to the

ML model loading requested by the MnS consumer.
mLModelLoadingPolicyRef Condition: The MLModelLoadingProcess MOI is corresponding to the

ML model loading initiated by the MnS producer.

7.3a.3.2.3.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.4 Information model definitions for AI/ML inference

7.3a.4.1 Class diagram

7.3a.4.1.1 Relationships

Figure 7.3a.4.1.1-1: NRM fragment for ML update

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)713GPP TS 28.105 version 19.3.0 Release 19

NOTE 1: The ManagedEntity and AIMLSupportedFunction shall not represent the same MOI.

NOTE 2: For AnLFFunction, DMROFunction, DLBOFunction, and DESManagementFunction see [18] and for
MDAFunction see [2].

Figure 7.3a.4.1.1-2: NRM fragment for AI/ML inference function

7.3a.4.1.2 Inheritance

Figure 7.3a.4.1.2-1: Inheritance Hierarchy for ML update related NRMs

Figure 7.3a.4.1.2-2: Inheritance Hierarchy for AI/ML inference function

7.3a.4.2 Class definitions

7.3a.4.2.1 MLUpdateFunction

7.3a.4.2.1.1 Definition

This IOC represents the function responsible for ML update.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)723GPP TS 28.105 version 19.3.0 Release 19

This MLUpdateFunction instance can be created by the system or pre-installed.

The MOI of MLUpdateFunction is name-contained in an MOI of either a subnetwork, a managedFunction
or a managementFunction.

The MLUpdateFunction is be associated with one or more ML models.

The MLUpdateFunction contains one or more MLUpdateRequest(s)as well as one or more
MLUpdateProcess(s), where an MLUpdateProcess is instantiated corresponding to one received
MLUpdateRequest.

7.3a.4.2.1.2 Attributes

The MLUpdateFunction IOC includes attributes inherited from ManagedFunction IOC (defined in TS 28.622
[12]) and the following attributes:

Table 7.3a.4.2.1.2-1

Attribute name
Support
Qualifier

isReadable isWritable isInvariant isNotifyable

availMLCapabilityReport M T F F F
Attributes related to Role

mLModelRef M T F F F

7.3a.4.2.1.3 Attribute constraints

None.

7.3a.4.2.1.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.4.2.2 MLUpdateRequest

7.3a.4.2.2.1 Definition

This IOC represents the properties of MLUpdateRequest.

For each request to update the ML capabilities, a consumer creates a new MOI of MLUpdateRequest on the
MLUpdateFunction, i.e., MLUpdateRequest is instantiated for each request for updating ML capabilities:

- Each MLUpdateRequest is associated to at least one MLModel

- Each MLUpdateRequest may have a RequestStatus field that is used to track the status of the specific
MLUpdateRequest or the associated MLUpdateProcess. The RequestStatus is updated by MnS
producer when there is a change in status of the update progress. The RequestStatus is an enumeration
with the values: NOT_STARTED, IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and
CANCELLED

- Each MLUpdateRequest may contain specific reporting requirements including an
mLUpdateReportingPeriod that defines the time duration upon which the MnS consumer expects the
ML update is reported. The reporting requirements contained in the MLUpdateRequest are mapped to
an existing MLUpdateProcess instance.

- The MLUpdateRequest may specify a performanceGainThreshold which defines the minimum
performance gain that shall be achieved with the capability update. This implies that the difference in the

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)733GPP TS 28.105 version 19.3.0 Release 19

performances between the existing capabilities and the new capabilities needs to be at least
performanceGainThreshold, otherwise the new capabilities shall not be applied. A threshold of
performanceGainThreshold=0% implies that the capabilities should be applied even if there is no
noticeable performance gain.

- The MLUpdateRequest may indicates the maximum time that should be taken to complete the update.

To trigger the ML update process, MnS consumer needs to create MLUpdateRequest instances on the MnS
producer.

The MnS prodcuer shall delete the corresponding MLUpdateRequest instance in case of the status value turns to
"FINISHED" or "CANCELLED".

7.3a.4.2.2.2 Attributes

The MLUpdateRequest IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the following
attributes:

Table 7.3a.4.2.2.2-1

Attribute name
Support
Qualifier

isReadable isWritable isInvariant isNotifyable

performanceGainThreshold O T T T F
newCapabilityVersionId O T T T F
updateTimeDeadline O T T T F
requestStatus M T F F T
mLUpdateReportingPeriod O T T F T
cancelRequest O T T F T
suspendRequest O T T F T

Attributes related to Role
mLUpdateProcessRef M T F F F
mLModelRefList M T F F F

7.3a.4.2.2.3 Attribute constraints

None.

7.3a.4.2.2.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.4.2.3 MLUpdateProcess

7.3a.4.2.3.1 Definition

This IOC represents the ML update process.

For each MLUpdateRequest to update the ML capabilities, the MLUpdateProcess is instantiated for the
MLUpdateRequest unless the MLUpdateRequest is associated with an ongoing MLUpdateProcess if the
MLUpdateProcess is updating the same MLModel(s) as stated in the MLUpdateRequest i.e., the
MLUpdateProcess is associated with at least one MLUpdateRequest. Relatedly, the MLUpdateProcess is
associated with at least one MLModel.

- Each MLUpdateProcess may have a status attribute (i.e., progressStatus) used to indicate progress status
of theupdate process.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)743GPP TS 28.105 version 19.3.0 Release 19

- The MLUpdateProcess has the capability of compiling and delivering reports and notifications relating
to the ML update request or process.

When a ML update process starts, an instance of the MLUpdateProcess is created by the MnS Producer and informed
to MnS consumer who has subscribed to it. The MnS producer can delete the MLUpdateProcess instance whose
attribute status equals to "FINISHED" or or "CANCELLED".

7.3a.4.2.3.2 Attributes

The MLUpdateProcess IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the following
attributes:

Table 7.3a.4.2.3.2-1

Attribute name
Support
Qualifier

isReadable isWritable isInvariant isNotifyable

cancelProcess O T T F T
suspendProcess O T T F T
progressStatus M T F F T

Attributes related to Role
mLModelRefList M T F F T
mLUpdateRequestRefList M T F F T
mLUpdateReportRef M T F F T

7.3a.4.2.3.3 Attribute constraints

None.

7.3a.4.2.3.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.4.2.4 MLUpdateReport

7.3a.4.2.4.1 Definition

This IOC represents the properties of MLUpdateReport.

- The ML update process may generate one or more MLUpdateReport(s).

- Each MLUpdateReport is associated to one or more MLModel (s) to indicate ML models that have been
updated.

- The MLUpdateReport may indicate the achieved performance gain for the specific ML capability update,
which is the gain in performance of the new capabilities compared with the original capabilities.

- MLUpdateReport provides reports about MLModel (s) or MLUpdateProcess(s) that themselves
are associated with MLModel (s) for which update is requested and/or executed. Correspondingly, both
the MLUpdateRequest(s) and the MLUpdateProcess(s) are conditionally mandatory in that at
least one of them must be associated with an instance of MLUpdateReport.

The MLUpdateReport instance can be created by the MnS producer when creating an MLUpdateRequest
instance.

When the MnS producer delete a MLUpdateRequest instance, the corresponding MLUpdateReport instance is
also deleted by MnS producer.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)753GPP TS 28.105 version 19.3.0 Release 19

7.3a.4.2.4.2 Attributes

The MLUpdateReport IOC includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the following
attributes:

Table 7.3a.4.2.4.2-1

Attribute name
Support
Qualifier

isReadable isWritable isInvariant isNotifyable

updatedMLCapability M T F F F
Attributes related to Role

mLModelRefList M T F F F
mLUpdateProcessRef M T F F F

7.3a.4.2.4.3 Attribute constraints

None.

7.3a.4.2.4.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.3a.4.2.5 AIMLInferenceFunction

7.3a.4.2.5.1 Definition

This IOC represents the common properties of the AI/ML inference function.

This AIMLInferenceFunction instance can be created by the system or pre-installed.

The AIMLInferenceFunction MOI may be associated with one or more MOIs that represent the
functions/functionalities (Note) provided by the subject AIMLInferenceFunction MOI.

The AIMLInferenceFunction MOI can be only created by the MnS producer but not MnS consumer.

The MOI of AIMLInferenceFunction or the MOI of the IOC inheriting from the AIMLInferenceFunction
IOC contains one or more MOI(s) of MLModel.

NOTE: The IOCs representing the functions/functionalities (Note) that use the AI/ML inference function include
MDAFunction, AnLFFunction, DMROFunction, DLBOFunction, LMFFunction, and
DESManagementFunction.

The AIMLInferenceFunction MOI may be contained by either a SubNetwork MOI, a ManagedElement MOI, or
an MOI of ManagedFunction’s subclass, and it is allowed for an MnS producer to support multiple
AIMLInferenceFunction MOIs contained in different superordinated MOIs among SubNetwork,
ManagedElement and the ManagedFunction’s subclass.

The generation of inference outputs is based on the configuration of inference, e.g., to start a stated time, or to be
executed at all times. The observations of the inference function and information on derived Outputs is registered in the
inference report.

7.3a.4.2.5.2 Attributes

The AIMLInferenceFunction IOC includes attributes inherited from ManagedFunction IOC (defined in TS
28.622 [12]) and the following attributes:

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)763GPP TS 28.105 version 19.3.0 Release 19

Table 7.3a.4.2.5.2-1

Attribute name
Support
Qualifier

isReadable isWritable isInvariant isNotifyable

activationStatus M T T F T
managedActivationScope O T T F T
Attributes related to role
usedByFunctionRefList M T F F T
mLModelRefList M T F T T

7.3a.4.2.5.3 Attribute constraints

None.

7.3a.4.2.5.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.4.2.6 AIMLInferenceReport

7.3a.4.2.6.1 Definition

This IOC represents a report from a AI/ML Inference.

An AIMLInferenceFunction may generate one or more AIMLInferenceReport(s).

Each AIMLInferenceReport provides information about inference outputs from one or more MLModel.

The AIMLInferenceReport also provides historical inference outputs for a series of time stamps.

The AIMLInferenceReport instance can be created by the MnS producer when creating an
AIMLInferenceFunction instance.

The potentialImpactInfo includes impacted managed objects and network performance metrics, which can be
utilized to manage the network performance to prevent network performance degradation.

7.3a.4.2.6.2 Attributes

The AIMLInferenceReport includes inherited attributes from Top IOC (defined in TS 28.622 [12]) and the
following attributes:

Attribute name Support
Qualifier isReadable isWritable isInvariant isNotifyable

inferenceOutputs M T F F T
potentialImpactInfo O T F F T

Attributes related to role
mLModelRef M T F F T

7.3a.4.2.6.3 Attribute constraints

None.

7.3a.4.2.6.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)773GPP TS 28.105 version 19.3.0 Release 19

7.4 Data type definitions

7.4.1 ModelPerformance <<dataType>>

7.4.1.1 Definition

This data type specifies the performance of an ML model when performing training and inference. The performance
score is provided for each inference output.

7.4.1.2 Attributes

Table 7.4.1.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
inferenceOutputName M T T/F (NOTE) F T
performanceScore M T T/F (NOTE) F T
performanceMetric M T T/F (NOTE) F T
decisionConfidenceScore O T F F T
NOTE: The isWritable qualifier is “T” if the attribute is used in MLTrainingRequest. The isWritable qualifier is "F"

otherwise.

7.4.1.3 Attribute constraints

None.

7.4.1.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.2 Void

7.4.3 MLContext <<dataType>>

7.4.3.1 Definition

The MLContext represents the status and conditions related to the MLModel. There are three types of context - the
ExpectedRunTimeContext, the trainingContext and the RunTimeContext, see clause 7.5.1 for details
of each type.

7.4.3.2 Attributes

Table 7.4.3.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
inferenceEntityRef CM T F F F
dataProviderRef M T F F F

7.4.3.3 Attribute constraints

Table 7.4.3.3-1

Name Definition
inferenceModelRef Condition: The is supported for expectedRunTimeContext or

runTimeContext.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)783GPP TS 28.105 version 19.3.0 Release 19

7.4.3.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.4 SupportedPerfIndicator <<dataType>>

7.4.4.1 Definition

This data type specifies a Performance indicator of an ML model. The data type may be used to indicate which
performance indicators shall be applicable to either of training, testing or inference.

7.4.4.2 Attributes

Table 7.4.4.2-1

Attribute name Support
Qualifier isReadable isWritable

isInvariant isNotifyable

performanceIndicatorName M T F F T
isSupportedForTraining CM T F F T
isSupportedForTesting CM T F F T

7.4.4.3 Attribute constraints

Table 7.4.4.3-1

Name Definition
isSupportedForTraining Condition: if the performance indicator named performanceIndicatorName is

applicable for training, the isSupportedforTraining must be stated
isSupportedForTesting Condition: if the performance indicator named performanceIndicatorName is

applicable for testing, the isSupportedForTesting must be stated

7.4.4.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.5 AvailMLCapabilityReport <<dataType>>

7.4.5.1 Definition

This dataType represents the the report of available ML capabilities following the update for specific ML capability(es).

- The ML update process may generate one or more availMLCapabilityReport (s), which indicate to the
consumer that new ML capability(es) is/are available and can be applied.

- Each availMLCapabilityReport is associated to one or more MLModel(s) and may indicate the one or
more MLModel(s) to which it applies.

- The availMLCapabilityReport may include CapabilityVersions which indicate that there are multiple
candidate sets of available ML capabilities with a different version number for each set.

- The availMLCapabilityReport may include the expectedPerformanceGains, which provides information on
the expected performance gain if/when the ML capabilities of the respective network function are updated with/to the
specific set of newly available ML capabilities.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)793GPP TS 28.105 version 19.3.0 Release 19

7.4.5.2 Attributes

The AvailMLCapabilityReport includes the following attributes:

Table 7.4.5.2-1Attribute name
Support
Qualifier

isReadab
le

isWritable isInvariant
isNotifyab

le
availMLCapabilityReportID M T F F T
mLCapabilityVersionId M T F F T
expectedPerformanceGains O T F F T
Attributes related to Role
mLModelRef M T F F T

7.4.5.3 Attribute constraints

None.

7.4.5.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.4.6 AIMLManagementPolicy <<dataType>>

7.4.6.1 Definition

This data type represents the properties of a policy for AI/ML management.

7.4.6.2 Attributes

Table 7.4.6.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
thresholdList M T T F T
managedActivationScope M T T F T

7.4.6.3 Attribute constraints

None.

7.4.6.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.7 ManagedActivationScope <<choice>>

7.4.7.1 Definition

This <<choice>> defines the scopes for activating or deactivating the ML Inference function. It is a choice between
the scopes parameter required for the activation or deactivation.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)803GPP TS 28.105 version 19.3.0 Release 19

7.4.7.2 Attributes

Table 7.4.7.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
CHOICE_1.1 dNList CM T T F T
CHOICE_1.2 timeWindow CM T T F T
CHOICE_1.3 geoPolygon CM T T F T

7.4.7.3 Attribute constraints

Table 7.4.7.3-1

Name Definition
dNList Condition: if the sub scope is per list of managed elements (e.g., DN list)
timeWindow Condition: if the sub scope is per list of time window.
geoPolygon Condition: if the sub scope is per list of GeoArea.

7.4.7.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.8. MLCapabilityInfo <<dataType>>

7.4.8.1. Definition

This dataType represents information about what the ML model can make inference for. The capabilityName
is used as the identifier for the ML capability.

7.4.8.2 Attributes

The MLCapabilityInfo <<dataType>> includes the following attributes:

Attribute name
Support
Qualifier

isReadable isWritable isInvariant isNotifyable

aIMLInferenceName M T F F T
capabilityName O T F F T
mLCapabilityParameters O T F F T

7.4.8.3 Attribute constraints

None.

7.4.8.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.9 InferenceOutput <<dataType>>

7.4.9.1 Definition

This dataType represents the properties of the content of an inference output.

The inference output contains a time stamp which indicates the time at which the inference output is generated. The
inference output may include inference explanation information of the ML model during Inference.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)813GPP TS 28.105 version 19.3.0 Release 19

7.4.9.2 Attributes

The InferenceOutput includes the following attributes:

Attribute name
Support
Qualifier

isReadabl
e

isWritable isInvariant
isNotifyab

le
inferenceOutputId M T F F T
aIMLInferenceName M T F F T
inferenceOutputTime M T F F T
inferencePerformance O T F F T
inferenceExplanationInfo O T F F T
outputResult M T F F T
NOTE: The relation between the Output and Outputs of other instances like MDA is not addressed in the present

document

7.4.9.3 Attribute constraints

None.

7.4.9.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.4.10 AIMLInferenceName <<choice>>

7.4.10.1 Definition

This <<choice>> represents the type of inference that the ML model supports.

7.4.10.2 Attributes

Attribute name
Support
Qualifier

isReadab
le

isWritable isInvariant
isNotifyab

le
CHOICE_1.1 mDAType M T F F T
CHOICE_2.1 nwdafAnalyticsType M T F F T
CHOICE_3.1 ngRanInferenceType M T F F T
CHOICE_4.1 vSExtensionType O T F F T

7.4.10.3 Attribute constraints

Name Definition
CHOICE_1.1 mDAType This attribute shall be supported, when the MnS producer supports a

management activity for an AIML inference for MDA
CHOICE_2.1 nwdafAnalyticsType

This attribute shall be supported, when the MnS producer supports a
management activity for an AIML inference for NWDAF

CHOICE_3.1 ngRanInferenceType

This attribute shall be supported, when the MnS producer supports a
management activity for an AIML inference for NG-RAN

CHOICE_4.1 vSExtensionType

This attribute shall be supported, when the MnS producer supports a
management activity for an ML model with inference name is vendor's
specific extensions

7.4.10.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)823GPP TS 28.105 version 19.3.0 Release 19

7.4.11 DataStatisticalProperties <<dataType>>

7.4.11.1 Definition

This data type specifies the data statistical properties that the training MnS producer should consider when preparing the
training data for training an ML model.

7.4.11.2 Attributes

Table 7.4.11.2-1

Attribute name Support
Qualifier isReadable isWritable

isInvariant isNotifyable

uniformlyDistributedTrainingData O T T F T
trainingDataWithOrWithoutOutliers O T T F T

7.4.11.3 Attribute constraints

None.

7.4.11.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.12 DistributedTrainingExpectation <<dataType>>

7.4.12.1 Definition

This data type represents the Distributed training expectation from ML training MnS consumer.

The attribute dataSplitIndication provides MnS consumers the ability to provide its preferences on splitting the
training data. If the data is to be split, the data split mechanism is up to the MnS producer.

The attribute suggestedTrainingNodeList provides the ability for an MnS consumer to provide suggestions on
nodes involved in Distributed training.

7.4.12.2 Attributes

Attribute name S isReadable isWritable isInvariant isNotifyable
expectedTrainingTime O T T F T
dataSplitIndication O T T F T
suggestedTrainingNodeList O T T F T

7.4.12.3 Attribute constraints

None

7.4.12.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.4.13 PotentialImpactInfo <<dataType>>

7.4.13.1 Definition

This datatype define the potential network impacts due to the inference output results.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)833GPP TS 28.105 version 19.3.0 Release 19

7.4.13.2 Attributes

The PotentialImpactInfo includes the following attributes:

Attribute name Support
Qualifier isReadable isWritable isInvariant isNotifyable

impactedScope M T F F T
impactedPM M T F F T

7.4.13.3 Attribute constraints

None.

7.4.13.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.4.14 ImpactedPM <<dataType>>

7.4.14.1 Definition

This datatype define the potential performance data that may be affected in a non-optimal way due to the
recommendations/configurations provided as part of inference output result.

7.4.14.2 Attributes

The ImpactedPM includes the following attributes:

Table 7.4.14.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
pMIdentifier M T F F T

7.4.14.3 Attribute constraints

None.

7.4.14.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.4.15 MLKnowledge <<dataType>>

7.4.15.1 Definition

The MLKnowledge represents the properties of the ML knowledge, i.e., information on the experience gained by
training of an ML model.

The MLKnowledge is identified by a specific aIMLInferenceName.

The MLKnowledge is contained in a pair of linked lists PredictorArray and ResponseArray. The nature of the data
inside the lists is left to implementation, only the entities that have a prior agreement can exchange and use the lists. To
identify available ML Knowldge, the MnS consumer can execute a getMOIattributes operation on the MLKnowldge.
The knowledge is implementation specific

NOTE: The MLKnowledge definition may be further refined or elaborated in future releases.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)843GPP TS 28.105 version 19.3.0 Release 19

7.4.15.2 Attributes

Table 7.4.15.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
mLKnowledgeName M T F F F
knowledgeType M T F F F
predictorResponseArray O T F F T

7.4.15.3 Attribute constraints

None

7.4.15.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.16 EnvironmentScope <<choice>>

7.4.16.1 Definition

This <<choice>> represents the scope of environment. This represents the information that can be used to
select/determine the environment for the Reinforcement learning.

managedEntitiesScope indicates the environment by the DNs of the managed entities.

areaScope indicates the target geographical location of the environment. When defined, the network node(s) serving
the specified location forms the RL environment.

timeWindow indicates the timeframe information at which the model is to be trained. It may define a time duration in a
day or a time schedule information, i.e. when it is expected for the model to be trained or when it is expected for the
trained model to perform its inference.

7.4.16.2 Attributes

Table 7.4.16.2-1

Attribute name S isReadable isWritable isInvariant isNotifyable
Choice_1.1 managedEntitiesScope CM T T F T
Choice_1.2 areaScope CM T T F T
Choice 2 timeWindow CM T T F T

7.4.16.3 Attribute constraints

Table 7.4.16.3-1

Name Definition
Choice_1.1
managedEntitiesScope

Condition: the MnS producer supports to identify the scope by managed entities.

Choice_1.2 areaScope Condition: the MnS producer supports to identify the scope by area scope.
Choice_2 timeWindow Condition: the MnS producer supports to identify the scope by time window.

7.4.16.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)853GPP TS 28.105 version 19.3.0 Release 19

7.4.17 SupportedLearningTechnology <<dataType>>

7.4.17.1 Definition

This dataType represents the supported learning technologies of the ML training function for ML model training.

The SupportedLearningTechnology contains the following attributes:

learningTechnologyName indicates learning technologies including the name of Reinforcement learning,
Federated learning and Distributed training which can be supported by the ML training function.
supportedInferenceNameList indicates the type of inference function that the learning technologies can be
applied.

7.4.17.2 Attributes

The SupportedLearningTechnology includes the following attributes:

Table 7.4.17.2-1

Attribute name Support
Qualifier isReadable isWritable isInvariant isNotifyable

learningTechnologyName M T F F T
supportedRLEnvironment CM T F F T
supportedFLRole CM T F F T
supportedInferenceNameList O T F F T

7.4.17.3 Attribute constraints

Table 7.4.17.3-1

Name Definition
supportedRLEnvironment Condition: This attribute shall be supported, when Reinforcement

learning is supported.
supportedFLRole Condition: This attribute shall be supported, when Federated learning

is supported.

7.4.17.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.4.18 RLRequirement <<dataType>>

7.4.18.1 Definition

This dataType represents the ML model training requirement for the RL.

rLEnvironment Type indicates required RL environment type, indicating real-network and simulation network
environment where the ML model should be trained.

rLEnvironmentScope indicates RL environment scope, which may be a RL geographical area, network node(s), and
time window. The scope does not only include the entities directly involved in RL process, but also includes other
entities impacted by RL agent actions. ML training MnS consumer can provide the specific environment scope enabling
the producer to select/determine/create the RL environment.

rLPerformanceRequirements indicates the attribute of the network performance requirements for performing online
ML training, which indicates the tolerable network performance degradation. When the network performance is within
the range, the RL training process can be continued. Otherwise, fall back actions can be determined by the producer.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)863GPP TS 28.105 version 19.3.0 Release 19

This information can be used to decide the appropriate rewards and state settings. ML training MnS consumer can use
this attribute to provide performance requirements of the real operational network during RL training.

These RL related attributes may be used by an ML training MnS producer to perform the ML model training with the
training technology of RL.

7.4.18.2 Attributes

The RLRequirement includes the following attributes:

Table 7.4.18.2-1

Attribute name Support
Qualifier

isReadable isWritable isInvariant isNotifyable

rLEnvironmentType O T T F T
rLEnvironmentScope O T T F T
rLImpactedScope O T T F T
rLPerformanceRequirements O T T F T

7.4.18.3 Attribute constraints

None

7.4.18.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.4.19 ClusteringCriteria <<dataType>>

7.4.19.1 Definition

This dataType represents a set of requirements or criteria related to ML models in order to decide which all ML models
can be grouped or clustered together for training.

performanceMetric indicates the criteria based on the performance metric for which the ML model is mainly
evaluated. For example, the models, which intend to achieve same performance characteristic, can be clustered together
for training. It indicates the performance metric used to evaluate the performance of an ML model.

taskType indicates grouping criteria based on the task the ML model is trained for. This can be aIMLInferenceName
or capabilityName defined in 3GPP TS 28.105. That is, which can indicate the type of inference or the capability that
the ML model supports like the values of the MDA type (3GPP TS 28.104), Analytics ID(s) of NWDAF (3GPP TS
23.288), types of inference for NG-RAN (TS 38.300 and TS 38.401), and vendor's specific extensions

allowedClusterTrainingTime indicates the combined time limit within which the training of ML models
‘cluster’ shall be completed. A cluster of ML models takes more time to train together as compared to time taken for
training an individual ML model. The criteria allows grouping only those ML models for training whose training time
does not exceed the set combined time limit.preferredModelDiversity indicates the preferred model diversity
types that can be considered for models clustering for training together.

NOTE: It is left up to the producer to decide how to consider these criteria for clustering ML models in case of
multiple criteria.

7.4.19.2 Attributes

The ClusteringCriteria includes the following attributes:

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)873GPP TS 28.105 version 19.3.0 Release 19

Table 7.4.19.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
performanceMetric O T T F T
taskType M T T F T
allowedClusterTrainingTime M T T F T
preferredModelDiversity O T T F T

7.4.19.3 Attribute constraints

None.

7.4.19.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.4.20 FLParticipationInfo <<dataType>>

7.4.20.1 Definition

This <<dataType>> defines the FL capability that an ML training function supports.

7.4.20.2 Attributes

Table 7.4.20.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
fLRole M T F F T
isAvailableForFLTraini
ng

O T F F T

candidateFLClientRefLi
st

CO T F F T

NOTE: FL capability should be aligned with RL NRM

7.4.20.3 Attribute constraints

Table 7.4.20.3-1

Name Definition
candidateFLClientRefList Condition: The ML training function plays the role of “FL_server”.

7.4.20.4 Notifications

The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.4.21 FLRequirement <<dataType>>

7.4.21.1 Definition

The <<datatype>> FLRequirement represents the requirement for the ML training function that plays the role of FL
server to train an ML model using FL.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)883GPP TS 28.105 version 19.3.0 Release 19

7.4.21.2 Attributes

The FLRequirement <<datatype>>includes attributes inherited from Top IOC (defined in TS 28.622 [12]) and the
following attributes:

Table 7.4.21.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
fLClientSelectionCrite
ria

M T T F T

7.4.21.3 Attribute constraints

None

7.4.21.4 Notifications

The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.4.22 FLClientSelectionCriteria <<dataType>>

7.4.22.1 Definition

This data type specifies the criteria for selecting the FL clients by the FL server. It defines the conditions that FL clients
should meet to participate in FL.

7.4.22.2 Attributes

Table 7.4.22.2-1

Attribute name Support
Qualifier

isReadable isWritable isInvariant isNotifyable

minimumAvailableDataSamples M T T F T
minimumAvailableTimeDuration M T T F T
minimumInterimModelPerformance O T T F T
servingGeoArea O T T F T
clientRedundancy O T T F T
trainingDataWithOrWithoutOutliers O T T F T
uniformlyDistributedTrainingData O T T F T

7.4.22.3 Attribute constraints

None.

7.4.22.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.23 FLReportPerClient <<dataType>>

7.4.23.1 Definition

This data type specifies the detailed report for an FL from the FL server for each participating FL client.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)893GPP TS 28.105 version 19.3.0 Release 19

7.4.23.2 Attributes

Table 7.4.23.2-1

Attribute name Support Qualifier isReadable isWritable isInvariant isNotifyable
clientRef M T F F T
numberOfDataSamplesUsed O T F F T
trainingTimeDuration O T F F T
modelPerformanceOnClient O T F F T

7.4.23.3 Attribute constraints

None.

7.4.23.4 Notifications

The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4a Enumerations

7.4a.1 NgRanInferenceType <<enumeration>>

Table 7.4a.1-1: <<enumeration>> NgRanInferenceType

Enumeration value Description
"NG_RAN_NETWORK_ENERGY_SAVING" Indicates that the NgRanInferenceType for the

Network Energy Saving defined in TS 38.300 [16]
"NG_RAN_LOAD_BALANCING" Indicates that the NgRanInferenceType for Load

Balancing defined in TS 38.300 [16]
"NG_RAN_MOBILITY_OPTIMIZATION" Indicates that the NgRanInferenceType for the

Mobility Optimization defined in TS 38.300 [16]

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)903GPP TS 28.105 version 19.3.0 Release 19

7.5 Attribute definitions

7.5.1 Attribute properties

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)913GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
mLModelId It identifies the ML model.

It is unique in each MnS producer.

allowedValues: N/A.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

candidateTrainingDataSource It provides the address(es) of the candidate training
data source provided by MnS consumer. The
detailed training data format is vendor specific.

allowedValues: N/A.

type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

aIMLInferenceName It indicates the type of inference that the ML model
supports.

allowedValues: see clause 7.4.10

type:
AIMLInferenceName
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLTrainingRequest.aIMLInfere
nceName

It indicates the type of inference that the ML model
conducting inference.

allowedValues: see clause 7.4.10

type:
AIMLInferenceName
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

mDAType It indicates the type of inference that the ML model
for MDA supports.

The detailed definition and corresponding allowed
values for mDAType see TS 28.104 [2].

type: MDAType (TS 28.104
[2])
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

nwdafAnalyticsType It indicates the type of inference that the ML model
for NWDAF supports.

The detailed definition and corresponding allowed
values for nwdafAnalyticsID see NwdafEvent in TS
29.520 [20].

type: NwdafEvent (TS
29.520 [20])
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ngRanInferenceType It indicates the type of inference that the ML model
for NG-RAN supports.

The detailed definition and corresponding allowed
values for ngRanInferenceType see clause 7.4a.1

type: NgRanInferenceType
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

vSExtensionType It indicates the type of inference that is vendor's
specific extension.

allowedValues: N/A.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

usedConsumerTrainingData It provides the address(es) where lists of the MnS
consumer-provided training data are located, which
have been used for the ML model training. It may
include the information about the effectiveness of
training data, which indicates the MnS consumer-
provided training data is useful or not.

allowedValues: N/A.

type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)923GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
trainingRequestRef It is the DN(s) of the related MLTrainingRequest

MOI(s).

type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

trainingProcessRef It is the DN(s) of the related MLTrainingProcess
MOI(s) that produced the MLTrainingReport.

type: DN
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

trainingReportRef It is the DN of the MLTrainingReport MOI that
represents the reports of the ML model training.

type: DN
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

lastTrainingRef It is the DN of the MLTrainingReport MOI that
represents the reports for the last training of the ML
model(s).

type: DN
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

modelConfidenceIndication It indicates the average confidence value (in unit of
percentage) that the ML model would perform for
inference on the data with the same distribution as
training data.
Essentially, this is a measure of degree of the
convergence of the trained ML model.

allowedValues: { 0..100 }.

type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

trainingRequestSource It identifies the entity that requested to instantiate
the MLTrainingRequest MOI.
This attribute is the DN of a managed entity,
otherwise, it is a String.

type: <<Choice>>
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLTrainingRequest.requestSta
tus

It describes the status of a particular ML model
training request.
allowedValues: NOT_STARTED, IN_PROGRESS,
CANCELLING, SUSPENDED, FINISHED, and
CANCELLED.

type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

mLTrainingProcessId It identifies the training process.
It is unique in each instantiated process in the MnS
producer.

allowedValues: N/A.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

priority It indicates the priority of the training process.
The priority may be used by the ML model training
to schedule the training processes. Lower value
indicates a higher priority.

allowedValues: { 0..65535 }.

type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: 0
isNullable: False

terminationConditions It indicates the conditions to be considered by the
ML training MnS producer to terminate a specific
training process.

allowedValues: N/A.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)933GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
progressStatus It indicates the status of the process.

allowedValues: N/A.

type: ProcessMonitor
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLUpdateProcess.cancelProces
s

It allows the ML update MnS consumer to cancel the
ML update process.
Setting this attribute to "TRUE" cancels the ML
update process. Setting the attribute to "FALSE" has
no observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

MLUpdateProcess.suspendProce
ss

It allows the ML update MnS consumer to suspend
the ML update process.
Setting this attribute to "TRUE" suspends the ML
update process. The process can be resumed by
setting this attribute to “FALSE” when it is
suspended. Setting the attribute to "FALSE" has no
observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

mLModelVersion It indicates the version number of the ML model.

allowedValues: N/A.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

performanceRequirements It indicates the expected performance for a trained
ML model when performing on the training data.

allowedValues: N/A.

type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

modelPerformanceTraining It indicates the performance score of the ML model
when performing on the training data.

allowedValues: N/A.

type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

MLTrainingProcess.progressSt
atus.progressStateInfo

It provides the following specialization for the
“progressStateInfo“ attribute of the “ProcessMonitor“
data type for the
“MLTrainingProcess.progressStatus“.

When the ML model training is in progress, and the "
mLTrainingProcess.progressStatus.status " is equal
to "RUNNING", it provides the more detailed
progress information.

allowedValues for "
mLTrainingProcess.progressStatus.status " =
"RUNNING":
- “COLLECTING_DATA”
- “PREPARING_TRAINING_DATA”
- “TRAINING” + DN of the MLModel being trained

The allowed values for "
mLTrainingProcess.progressStatus.status " =
"CANCELLING" are vendor specific.

The allowed values for "
mLTrainingProcess.progressStatus.status " =
"NOT_STARTED" are vendor specific.

type: String
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)943GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
inferenceOutputName It indicates the name of an inference output of an

ML model.

allowedValues: the name of the MDA output IEs
(see 3GPP TS 28.104 [2]), name of analytics output
IEs of NWDAF (see TS 23.288 [3]), RAN inference
output IE name(s), and vendor's specific extensions.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

performanceMetric It indicates the performance metric used to evaluate
the performance of an ML model, e.g. "accuracy",
"precision", "F1 score", etc.

allowedValues: N/A.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

performanceScore It indicates the performance score (in unit of
percentage) of an ML model when performing
inference on a specific data set (Note).

The performance metrics may be different for
different kinds of ML models depending on the
nature of the model. For instance, for numeric
prediction, the metric may be accuracy; for
classification, the metric may be a combination of
precision and recall, like the "F1 score".

allowedValues: { 0..100 }.

type: Real
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLTrainingRequest.cancelRequ
est

It allows the ML training MnS consumer to cancel
the ML model training request.
Setting this attribute to "TRUE" cancels the ML
model training request. The request can be resumed
by setting this attribute to "FALSE" when it is
suspended. Cancellation is possible when the
requestStatus is the "NOT_STARTED", "
IN_PROGRESS", and "SUSPENDED" state. Setting
the attribute to "FALSE" has no observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

MLTrainingRequest.suspendReq
uest

It allows the ML training MnS consumer to suspend
the ML model training request.
Setting this attribute to "TRUE" suspends the ML
model training process. Suspension is possible
when the requestStatus is not the "FINISHED"
state. Setting the attribute to "FALSE" has no
observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

MLTrainingProcess.cancelProc
ess

It allows the ML training MnS consumer to cancel
the ML model training process.
Setting this attribute to “TRUE“ cancels the ML
model training process. Cancellation is possible
when the
“mLTrainingProcess.progressStatus.status“ is not
the “FINISHED“ state. Setting the attribute to
“FALSE“ has no observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

MLTrainingProcess.suspendPro
cess

It allows the ML training MnS consumer to suspend
the ML model training process.
Setting this attribute to "TRUE" suspends the ML
model training process. The process can be
resumed by setting this attribute to “FALSE” when it
is suspended. Suspension is possible when the "
mLTrainingProcess.progressStatus.status" is not the
"FINISHED", "CANCELLING" or "CANCELLED"
state. Setting the attribute to "FALSE" has no
observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)953GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
inferenceEntityRef It describes the target entities that will use the ML

model for inference.
type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

dataProviderRef It describes the entities that have provided or should
provide data needed by the ML model e.g. for
training or inference

type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

areNewTrainingDataUsed It indicates whether new training data are used for
the ML model training.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

trainingDataQualityScore It indicates numerical value that represents the
dependability/quality of a given observation and
measurement type. The lowest value indicates the
lowest level of dependability of the data, i.e. that the
data is not usable at all.

 allowedValues: { 0..100 }.

type: Real
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

decisionConfidenceScore It is the numerical value that represents the
dependability/quality of a given decision generated
by the AI/ML inference function. The lowest value
indicates the lowest level of dependability of the
decisions, i.e. that the data is not usable at all.

allowedValues: { 0..100 }.

type: Real
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

expectedRuntimeContext This describes the context where an MLModel is
expected to be applied.

allowedValues: N/A

type: MLContext
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

trainingContext This specifies the context under which the MLModel
has been trained.

allowedValues: N/A

type: MLContext
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

runTimeContext This specifies the context where the MLmodel or
model is being applied.

allowedValues: N/A

type: MLContext
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLTrainingRequest.mLModelRef It identifies the DN of the MLModel requested to be
trained.

type: DN
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

MLTrainingReport.mLModelGene
ratedRef

It identifies the DN of the MLModel generated by the
ML model training.

type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)963GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
mLModelRepositoryRef It identifies the DN of the MLModelRepository. type: DN

multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

mLRepositoryId It indicates the unique ID of the ML repository. type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

modelPerformanceValidation It indicates the performance score of the ML model
when performing on the validation data.

allowedValues: N/A

type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

dataRatioTrainingAndValidati
on

It indicates the ratio (in terms of quantity of data
samples) of the training data and validation data
used during the training and validation process. It is
represented by the percentage of the validation data
samples in the total training data set (including both
training data samples and validation data samples).
The value is an integer reflecting the rounded
number of percent * 100.

allowedValues: { 0 .. 100 }.

type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLTestingRequest.requestStat
us

It describes the status of a particular ML testing
request.
allowedValues: NOT_STARTED, IN_PROGRESS,
CANCELLING, SUSPENDED, FINISHED, and
CANCELLED.

type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLTestingRequest.cancelReque
st

It allows the ML testing MnS consumer to cancel the
ML testing request.
Setting this attribute to "TRUE" cancels the ML
testing request. Cancellation is possible when the
requestStatus is the "NOT_STARTED", "
IN_PROGRESS", and "SUSPENDED" state. Setting
the attribute to "FALSE" has no observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

MLTestingRequest.suspendRequ
est

It allows the ML testing MnS consumer to suspend
the ML testing request.
Setting this attribute to "TRUE" suspends the ML
testing request. The request can be resumed by
setting this attribute to “FALSE” when it is
suspended. Suspension is possible when the
requestStatus is not the "FINISHED" state.
Setting the attribute to "FALSE" has no observable
result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

MLTestingRequest.mLModelRef It identifies the DN of the MLModel requested to be
tested.

type: DN
Multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

modelPerformanceTesting It indicates the performance score of the ML model
when performing on the testing data.

allowedValues: N/A.

type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)973GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
mLTestingResult It provides the address where the testing result is

provided.
The detailed testing result format is vendor specific.

allowedValues: N/A.

type: String
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

testingRequestRef It identifies the DN of the MLTestingRequest MOI.

type: DN
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

supportedPerformanceIndicato
rs

This parameter lists specific
PerformanceIndicator(s) of an ML model.

allowedValues: N/A.

type:
SupportedPerfIndicator
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

performanceIndicatorName It indicates the identifier of the specific performance
indicator.
allowedValues: N/A

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

isSupportedForTraining It indicates whether the specific performance
indicator is supported a performance metric of ML
model training for the ML model.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

isSupportedForTesting It indicates whether the specific performance
indicator is supported a performance metric of ML
model testing for the ML model.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

mLUpdateProcessRef It is the DN of the mLUpdateProcess MOI that
represents the process of updating an ML model.

type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

mLUpdateRequestRefList It is the list of DN of the MLUpdateRequest MOI
that represents an
 ML update request.

type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

mLUpdateReportRef It is the DN of the MLUpdateReport MOI that
represents an ML update report.

type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

mLUpdateReportingPeriod It specifies the time duration upon which the MnS
consumer expects the ML update is reported.

type: TimeWindow
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)983GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
availMLCapabilityReport It represents the available ML capabilities.

allowedValues: N/A.

type:
AvailMLCapabilityReport
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

updatedMLCapability It represents the updated ML capabilities.

allowedValues: N/A.

type:
AvailMLCapabilityReport
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

availMLCapabilityReportID It identifies the available ML capability report.

allowedValues: N/A.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

newCapabilityVersionId It indicates the specific version of AI/ML capabilities
to be applied for the update. It is typically the one
indicated by the MLCapabilityVersionID in a
newCapabilityVersion

type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

mlCapabilityVersionId It indicates the version of ML capabilities that is
available for the update.

type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

performanceGainThreshold It defines the minimum performance gain as a
percentage that shall be achieved with the capability
update, i.e., the difference in the performances
between the existing capabilities and the new
capabilities should be at least
performanceGainThreshold otherwise the new
capabilities should not be applied.
Allowed value: float between 0.0 and 100.0

type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

expectedPerformanceGains It indicates the expected performance gain if/when
the AI/ML capabilities of the respective network
function are updated with/to the specific set of newly
available AI/ML capabilities.

type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

updateTimeDeadline It indicates the maximum as stated in the MLUpdate
request that should be taken to complete the update

type: TimeWindow
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLUpdateReport.mLModelRefLis
t

It indicates the DN of MLModel instances that can
be updated.

type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

MLUpdateRequest.requestStatu
s

It describes the status of a particular ML update
request.
allowedValues: NOT_STARTED, IN_PROGRESS,
CANCELLING, SUSPENDED, FINISHED, and
CANCELLED.

type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)993GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
MLUpdateRequest.cancelReques
t

It allows the MnS consumer to cancel the ML update
request.
Setting this attribute to "TRUE" cancels the ML
update request. Cancellation is possible when the
requestStatus is the "NOT_STARTED", "
IN_PROGRESS", and "SUSPENDED" state. Setting
the attribute to "FALSE" has no observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

MLUpdateRequest.suspendReque
st

It allows the MnS consumer to suspend the ML
update request.
Setting this attribute to "TRUE" suspends the ML
update request. The request can be resumed by
setting this attribute to “FALSE” when it is
suspended. Suspension is possible when the
requestStatus is not the "FINISHED" state.
Setting the attribute to "FALSE" has no observable
result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

memberMLModelRefList It identifies the list of member ML models within an
ML model coordination group.

type: DN
multiplicity: 2..*
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

MLTrainingRequest.mLModelCoo
rdinationGroupRef

It identifies the DN of the
MLModelCoordinationGroup requested to be
trained.

type: DN
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLTrainingReport.mLModelCoor
dinationGroupGeneratedRef

It identifies the DN of the
MLModelCoordinationGroup generated by ML
model joint training.

type: DN
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLTestingRequest.mLModelCoor
dinationGroupRef

It identifies the DN of the
MLModelCoordinationGroup requested to be
tested.

type: DN
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

retrainingEventsMonitorRef It indicates the DN of the ThresholdMonitor MOI
that indicates the performance measurements and
its corresponding thresholds to be used by MnS
producer to initiate the re-training of the MLModel.

type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLModelLoadingRequest.reques
tStatus

It describes the status of a particular ML model
loading request.
allowedValues: NOT_STARTED, IN_PROGRESS,
CANCELLING, SUSPENDED, FINISHED, and
CANCELLED.

type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLModelLoadingRequest.cancel
Request

It allows the MnS consumer to cancel the ML model
loading request.
Setting this attribute to "TRUE" cancels the ML
model loading. Cancellation is possible when the
requestStatus is the "NOT_STARTED", "
IN_PROGRESS", and "SUSPENDED" state. Setting
the attribute to "FALSE" has no observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1003GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
MLModelLoadingRequest.suspen
dRequest

It allows the MnS consumer to suspend the ML
model loading request.
Setting this attribute to "TRUE" suspends the ML
model loading request. The request can be resumed
by setting this attribute to “FALSE” when it is
suspended. Suspension is possible when the
requestStatus is not the "FINISHED" state.
Setting the attribute to "FALSE" has no observable
result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

mLModelToLoadRef It identifies the DN of a trained MLModel requested
to be loaded to the target inference function(s).

type: DN
multiplicity: 0..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

policyForLoading

It provides the policy for controlling ML model
loading triggered by the MnS producer.

This policy contains two thresholds in the
thresholdList attribute. The first threshold is
related to the ML model to be loaded, and the
second threshold is related to the existing ML model
being used for inference.

type:
AIMLManagementPolicy
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

thresholdList It provides the list of threshold. type: ThresholdInfo
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

MLModelLoadingProcess.progre
ssStatus.progressStateInfo

It provides the following specialization for the
"progressStateInfo" attribute of the "ProcessMonitor"
data type for the
"MLModelLoadingProcess.progressStatus".

When the ML model loading is in progress, and the "
MLModelLoadingProcess.progressStatus.st
atus " is equal to "RUNNING", it provides the more
detailed progress information.

allowedValues for "
MLModelLoadingProcess.progressStatus.st
atus " = "RUNNING":
The allowed values for "
MLModelLoadingProcess.progressStatus.st
atus " = "CANCELLING" are vendor specific.
The allowed values for "
MLModelLoadingProcess.progressStatus.st
atus " = "NOT_STARTED" are vendor specific.

type: String
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

MLModelLoadingProcess.cancel
Process

It allows the MnS consumer to cancel the ML model
loading process.
Setting this attribute to "TRUE" cancels the process.
Cancellation is possible when the
"MLModelLoadingProcess.progressStatus.status" is
not the "FINISHED" state. Setting the attribute to
"FALSE" has no observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1013GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
MLModelLoadingProcess.suspen
dProcess

It allows the MnS consumer to suspend the ML
model loading process.
Setting this attribute to "TRUE" suspends the
process. The process can be resumed by setting
this attribute to "FALSE" when it is suspended.
Suspension is possible when the
"MLModelLoadingProcess.progressStatus.status" is
not the "FINISHED", "CANCELLING" or
"CANCELLED" state. Setting the attribute to
"FALSE" has no observable result.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

mLModelLoadingRequestRef It identifies the DN of the associated
MLModelLoadingRequest.

type: DN
multiplicity: 0..*
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

mLModelLoadingPolicyRef It identifies the DN of the associated
MLModelLoadingPolicyRef.

type: DN
multiplicity: 0..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

loadedMLModelRef It identifies the DN of the MLModel that has been
loaded to the inference function.

type: DN
multiplicity: 0..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

activationStatus It describes the activation status.

allowedValues: ACTIVATED, DEACTIVATED.

type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

AIMLManagementPolicy.managed
ActivationScope

It provides a list of sub scopes for which ML
inference is activated as triggered by a policy on the
MnS producer. For example, the sub scopes may be
a list of cells or of geographical areas. The list is an
ordered list indicating the inference is activated for
the first sub scope and gradually extended to the
next sub scope if the policy evaluates to true.

allowedValues: N/A

type:
ManagedActivationScope
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

AIMLInferenceFunction.manage
dActivationScope

It provides a list of sub scopes for which ML
inference is activated as triggered by a policy on the
MnS producer. For example, the sub scopes may be
a list of cells or of geographical areas. The list is an
ordered list indicating the inference is activated for
the first sub scope and gradually extended to the
next sub scope if the policy evaluates to true.

allowedValues: N/A

type:
AIMLManagementPolicy
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ManagedActivationScope.dNLis
t

It indicates the list of DN, the list is an ordered list
indicating the inference is activated for the first sub
scope and gradually extended to the next sub
scope.

allowedValues: N/A

type: DN
multiplicity: *
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1023GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
ManagedActivationScope.timeW
indow

It indicates the list of time window; the list is an
ordered list indicating the inference is activated for
the first sub scope and gradually extended to the
next sub scope.

allowedValues: N/A

type: TimeWindow
multiplicity: *
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

ManagedActivationScope.geoPo
lygon

It indicates the list of GeoArea, the list is an ordered
list indicating the inference is activated for the first
sub scope and gradually extended to the next sub
scope.

allowedValues: N/A

type: GeoArea
multiplicity: *
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

usedByFunctionRefList It provides the DNs of the functions supported by the
AIMLInferenceFunction.

allowedValues: N/A

type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

inferenceOutputId It identifies an inference output within an
AIMLinferenceReport.

type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

inferenceOutputs It indicates the Outputs that have been derived by
the AIMLInferenceFunction instance from a
specific ML model.

Each ML model, inferenceOutputs may be a set
of values.

allowedValues: N/A.

type: InferenceOutput
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

inferencePerformance It indicates the performance score of the ML model
during Inference.

allowedValues: N/A.

type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

inferenceOutputTime It indicates the time at which the inference output is
generated.

allowedValues: N/A

type: DateTime
multiplicity: *
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

outputResult It indicates the result of an inference. type: AttributeValuePair
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: Null
isNullable: False

mLCapabilitiesInfoList It indicates information about what an ML model can
generate inference for.

allowedValues: N/A.

type: MLCapabilityInfo
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

capabilityName It indicates the name of a capability for which an ML
model can generate inference. The capability is
defined by Mns producer which can be traffic
analysis capability, coverage analysis capability,
mobility analysis capability or vendor specific
extensions.

allowedValues: N/A.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1033GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
mLCapabilityParameters It indicates a set of optional parameters that apply

for an aIMLInferenceName capabilityName.

allowedValues: N/A

type: AttributeValuePair
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

aIMLInferenceReportRefList It indicates a list of DN of the
AIMLInferenceReport MOI that represents an
AIML inference report.

type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

mLModelRefList It identifies the list of MLModel DN.

type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

mLKnowledge It indicates an instance of ML Knowledge available
at the ML training function.

type: MLKnowledge
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

mLKnowledgeName It identifies the ML Knowledge.
It is unique in each MnS producer.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

knowledgeType It identifies the type of ML Knowledge as either a
Statistic, a regression or a Table of input-output
value(s)

Allowed values: TABLE , STATISTIC,
REGRESSION

type: ENUM
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

predictorResponseArray It identifies the predictor and corresponding
response data for a piece of ML Knowledge. For
exapme, it represents one of the following:
- the input and output data for a table
- the predictor and response for a statistic,
- the input and output data for a regression

NOTE: The nature of the data is not scope of this
specification

type: pair<String, String>
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

inferenceExplanationInfo It indicates the inference explanation information of
the ML model Inference results. E.g. the critical
features in the training or inference data.

type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

mLTrainingType It indicates the type of ML training (e.g., initial-
training, re-training, pre-specialised training, fine-
tuning) requested by the MnS consumer.

allowed values: INITIAL_TRAINING,
PRE_SPECIALISED_TRAINING, RE_TRAINING,
FINE_TUNING

type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

expectedInferenceScope It indicates the inference capabilities that the ML
model is expected to support, where the inference
scope contains a list of aIMLInferenceName that the
ML model can be potential adapted to support.

type: AIMLInferenceName
multiplicity: *
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1043GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
inferenceScope It indicates the inference capabilities that the ML

model after pre-specialized training can be fine-
tuned to support, where the inference scope
contains a list of aIMLInferenceName that the ML
model can be potentially adapted to support.

type: AIMLInferenceName
multiplicity: *
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

distributedTrainingExpectati
on

It indicates distributed training expectations provided
by MnS consumer.

allowedValues: N/A.

type:
DistributedTrainingExpectat
ion
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

expectedTrainingTime It indicates the expected training duration provided
by MnS consumer, in unit of minutes.

allowedValues: Integer

type: Integer
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

dataSplitIndication This is a Boolean attribute specifying whether the
provided training data should be split or not. The
value FALSE specifies that the training data shall
not be spilt.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: False
isNullable: False

suggestedTrainingNodeList It indicates a list of suggested training nodes
provided by MnS consumer.

allowedValues: Not applicable.

type: DN
multiplicity: 0..*
isOrdered: N/A
isUnique: True
defaultValue: None
isNullable: False

trainingDataStatisticalPrope
rties

It indicates the training data statistical properties to
be considered by the MnS producer when training
an ML model.

type:
DataStatisticalProperties
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

uniformlyDistributedTraining
Data

It indicates the need for using training data that are
uniformly distributed according to the different
aspects (e.g., equivalent data samples for each UE
in the training data, equivalent data samples for
each type of slice in the training data, equivalent
data samples from each GeoArea in the training
data) of the aIMLinferenceName.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

trainingDataWithOrWithoutOut
liers

It indicates that the training data samples should
consider or disregard data samples that are at the
extreme boundaries of the value range.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

potentialImpactInfo This datatype defines the potential network impacts
due to the inference output results

type: PotentialImpactInfo
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1053GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
impactedScope This will specify the scope of affect, the inference

output may have on the network including entities
performing the recommended actions in the
inference output and entities impacted due to
implementation of the recommended actions

The choice attribute dNList defines Identifier of
the network functions that may be affected by the
output result of the inference function.

The choice attribute timeWindow defines a time
duration indicating that the related network
function(s) may be affected during this time duration
by the inference output result.

The choice attribute geoPolygon defines a
Geographical location indicating that the network
function(s) in that location may be affected by the
inference output result.

type:
ManagedActivationScope
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

impactedPM This will identify the potential performance metrics
that may be degraded/improved due to the
implementation of recommendations provided as
part of inference output.

type: ImpactedPM
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

pMIdentifier This indicates the performance measurement or the
KPI that may be impacted by the ML model. This will
be the name of PM and KPI as defined in 3GPP TS
28.552 and 28.554 respectively (e.g. for Managing
NG-RAN AI/ML-based distributed Load Balancing
function, the PM can be measurements related to
MLB, UE throughput and Radio resource utilization
etc).

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

supportedLearningTechnology It identifies the learning technologies including
Reinforcement learning, Federated learning and
Distributed training which supported by the ML
training function.

type:
SupportedLearningTechnol
ogy
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

rLRequirement It identifies the expected performance and
performed scope for the ML model training when
Reinforcement learning is supported.

type: RLRequirement
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

learningTechnologyName It indicates a list of learning technology names used
to represent the learning technics supported by the
ML training function.

allowedValues: RL, FL, DL
where RL indicates Reinforcement learning, FL
indicates Federated learning and DL indicates of
Distributed training.

type: Enum
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

supportedRLEnvironment It indicates the supported RL environments. When
the ML training function supports RL, this attribute is
included in the SupportedLearningTechnology
datatype, which indicates the supported
environment of the ML training function for ML
model training by RL.

allowedValues: SIMULATION_ENVIRONMENTS,
REAL_NETWORK_ENVIRONMENTS.

type: Enum
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1063GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
supportedFLRole It indicates the role that the ML training function

supports to play in the FL.

allowedValues: FL_SERVER, FL_CLIENT,

type: Enum
multiplicity: 1..2
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

fLParticipationInfo It indicates the information of the ML training
function participating in the FL process.

type:
FLParticipationInfo
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

FLParticipationInfo.fLRole It indicates the role that an ML training function
plays in FL.

allowedValues: FL_Server, FL_Client.

type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

FLParticipationInfo.isAvaila
bleForFLTraining

This attribute defines the FL state of the
MLTrainingFunction for training a given ML model.

allowedValues:
“TRUE” indicates that the MLTrainingFunction is
available for starting or joining a new FL process for
the ML model;
“FALSE” indicates that the MLTrainingFunction is
unavailable for a starting or joining new FL process
for the ML model.

type: Boolean
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: False
isNullable: False

FLParticipationInfo.candidat
eFLClientRefList

It identifies the DNs of the MLTrainingFunction
instances that are capable of acting as the FL client.

type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

fLRequirement It indicates the requirements of FL training. type: FLRequirement
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

fLClientSelectionCriteria It provides the criteria for selecting the FL clients for
an FL.

type:
FLClientSelectionCriteria
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

FLClientSelectionCriteria.mi
nimumAvailableDataSamples

It indicates the minimum number of data samples
can be used for training.

type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

FLClientSelectionCriteria.mi
nimumAvailableTimeDuration

It indicates the minimum time length that the FL
client is available to participate into an FL, in unit of
minutes.

type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

FLClientSelectionCriteria.mi
nimumInterimModelPerformance

It indicates the minimum training performance score
for an interim model on an FL client.

type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1073GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
FLClientSelectionCriteria.un
iformlyDistributedTrainingDa
ta

It indicates the need for using training data that are
uniformly distributed according to the different
aspects (e.g., equivalent data samples for each UE
in the training data, equivalent data samples for
each type of slice in the training data, equivalent
data samples from each GeoArea in the training
data) of the aIMLinferenceName.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

FLClientSelectionCriteria.tr
ainingDataWithOrWithoutOutli
ers

It indicates that the training data samples should
consider or disregard data samples that are at the
extreme boundaries of the value range.

allowedValues: TRUE, FALSE.

type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

FLClientSelectionCriteria.se
rvingGeoArea

It indicates the serving geographical area of an FL
client.

type: GeoArea
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

FLClientSelectionCriteria.cl
ientRedundancy

This defines that if the FL client needs to have some
type of redundancy to handle client dropouts
gracefully in order to be selected by FL server to
train a ML model. Its values can be TRUE or
FALSE, where TRUE means the FL client must
have some type of redundancy and FALSE means
the redundancy of FL client does not matter for its
selection

type: Boolen
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

fLReportPerClient This report is provided by the server to the
consumer.

type: FLReportPerClient
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

FLReportPerClient.clientRef It identifies the DN of MLTrainingFunction that
plays the role of FL client.

type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

FLReportPerClient.numberOfDa
taSamplesUsed

It indicates the number of data samples that have
been used in the ML training.

type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/ATrue
defaultValue: None
isNullable: False

FLReportPerClient.trainingTi
meDuration

It indicates the time window that the FL client/FL
server can participate into an FL process.

type: TimeWindow
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

FLReportPerClient.
modelPerformanceOnClient

It indicates the performance score of the final global
ML model running on the local data set of the FL
client.

type: ModelPerformance
multiplicity: 2..*
isOrdered: False
isUnique: False
defaultValue: None
isNullable: False

participatingFLClientRefList It identifies the list of DN of the
MLTrainingFunction that participated the FL
process as FL clients.

type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1083GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
supportedInferenceNameList

It indicates a list of inference name that the learning
technologies can be applied.

allowedValues: see clause 7.4.10

type:
AIMLInferenceName
multiplicity: 1..*
isOrdered: False
isUnique: N/A
defaultValue: None
isNullable: False

rLEnvironmentType It indicates the simulated environment or real
network where the ML model should be traind.

allowedValues: SIMULATION_ENVIRONMENTS,
REAL_NETWORK_ENVIRONMENTS

type: Enum
multiplicity: 0..*
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

rLEnvironmentScope It indicates the specific environment scope for the
entities that the RL process should be performed,
i.e, where the RL agent is located.

type: EnvironmentScope
multiplicity: 1..*
isOrdered: False
isUnique: N/A
defaultValue: None
isNullable: False

rLImpactedScope It indicates the specific environment scope for the
entities that may be impacted by the RL process,
i.e., scope may be impacted by actions of the RL
agent.

type: EnvironmentScope
multiplicity: 1..*
isOrdered: False
isUnique: N/A
defaultValue: None
isNullable: False

rLPerformanceRequirements It indicates a list of thresholds for the network
performance requirements, when the RL training
process(es) is performed.

type: ThresholdInfo
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

clusteringInfo It contains information that indicates the clustering
criteria for the ML models that can be grouped
together for training

type: ClusteringCriteria
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

ClusteringCriteria.performan
ceMetric

This defines clustering criteria based on the
performance metric for which the ML model is
mainly evaluated. That is, the models, which intend
to achieve same performance characteristic (e.g.
accuracy, precision, F1 score etc) can be clustered
together for training. It indicates the performance
metric used to evaluate the performance of an ML
model

allowedValues: N/A

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

taskType This defines grouping criteria based on the task the
ML model is trained for. For example, this can be
aIMLInferenceName or capabilityName as defined in
3GPP TS 28.105.

Note: Whether the taskType can be
aIMLInferenceName here is FFS.

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

allowedClusterTrainingTime This defines the combined time limit within which the
training of ML models cluster shall be completed. A
cluster of ML models takes more time to train
together as compared to time taken for training an
individual ML model. The criteria allows
accommodating only those ML models whose
training time does not exceed the set combined time
limit

type: TimeWindow
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1093GPP TS 28.105 version 19.3.0 Release 19

Attribute Name Documentation and Allowed Values Properties
preferredModelDiversity This defines the MnS consumer preferred model

diversity types that is to be considered for models
clustering. For example, decision trees, neural
networks, linear regression and like so

type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

NOTE: When the performanceScore is to indicate the performance score for ML model training, the data set is the
training data set. When the performanceScore is to indicate the performance score for ML validation, the data
set is the validation data set. When the performanceScore is to indicate the performance score for ML model
testing, the data set is the testing data set.

7.5.2 Constraints

None.

7.6 Common notifications

7.6.1 Configuration notifications

This clause presents a list of notifications, defined in 3GPP TS 28.532 [11], that an MnS consumer may receive. The
notification header attribute objectClass/objectInstance shall capture the DN of an instance of a class
defined in the present document.

Table 7.6.1-1

Name Qualifier Notes
notifyMOICreation O --
notifyMOIDeletion O --
notifyMOIAttributeValueChanges O --
notifyEvent O --
notifyMOIChanges O --

8 Service components

8.0 General
The operations for generic provisioning management service refer to clause 11.1.1 of TS 28.532 [11]. For notifications,
see clause 7.6.

8.1 Lifecycle management operations for AI/ML management
MnS

The components for ML model training MnS are listed in table 8.1-1.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1103GPP TS 28.105 version 19.3.0 Release 19

Table 8.1-1: Components for ML model training

ML model training management
capability

Management service
component type A

Management service
component type B

Management
service

component
type C

Create an ML model training
request

createMOI operation MLTrainingRequest

N/A

Modify an ML model training
request

modifyMOIAttributes operation

Query an ML model training report getMOIAttributes operation MLTrainingReport
Modify an ML model training
process

modifyMOIAttributes operation MLTrainingProcess

Query an ML model training
process

getMOIAttributes operation

Create, Delete, and Update ML
model training

changeMOIs operation MLTrainingRequest

The components for ML model testing are listed in table 8.1-2.

Table 8.1-2: Components for ML model testing

ML model testing management
capability

Management service
component type A

Management service
component type B

Management
service

component
type C

Create an ML model testing request createMOI operation MLTestingRequest N/A
Modify an ML model testing request modifyMOIAttributes operation
Query an ML model testing report getMOIAttributes operation MLTestingReport
Subscribe an ML model testing
report

createMOI operation

Unsubscribe an ML model testing
report

deleteMOI operation

Query an ML model testing report
subscription

getMOIAttributes operation

Create, Delete, and Update ML
model testing

changeMOIs operation MLTestingRequest

The components for ML model deployment are listed in table 8.1-3

Table 8.1-3: Components for ML model deployment

ML model deployment
management capability

Management service
component type A

Management service
component type B

Management
service

component
type C

Create an ML model loading request createMOI operation MLModelLoadingRequest

N/A

Modify an ML model loading request modifyMOIAttributes operation
Create an ML model loading policy createMOI operation MLModelLoadingPolicy
Delete an ML model loading policy deleteMOI operation
Modify an ML model loading policy modifyMOIAttributes operation
Query an ML model loading policy getMOIAttributes operation
Modify an ML model loading
process

modifyMOIAttributes operation MLModelLoadingProcess

Query an ML model loading process getMOIAttributes operation
Create, Delete, and Update ML
model Loading

changeMOIs operation MLModelLoadingRequest
MLModelLoadingPolicy

The components for ML model inference are listed in table 8.1-4

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1113GPP TS 28.105 version 19.3.0 Release 19

Table 8.1-4: Components for AI/ML inference

AI/ML Inference management
capability

Management service
component type A

Management service
component type B

Management
service

component
type C

Create an ML model update request createMOI operation MLUpdateRequest

N/A

Modify an ML model update request modifyMOIAttributes operation
Modify an ML model update process modifyMOIAttributes operation MLUpdateProcess
Query an ML model update process getMOIAttributes operation
Query an ML model update report getMOIAttributes operation MLUpdateReport
Query an AI/ML inference report getMOIAttributes operation AIMLInferenceReport
Create, Delete, and Update ML
model Update and ML update
request

changeMOIs operation MLUpdateRequest

The components for AI/ML inference emulation are listed in table 8.1-5.

Table 8.1-5: Components for AI/ML inference emulation MnS

ML model emulation management
capability

Management service
component type A

Management service
component type B

Management
service

component
type C

Query an AI/ML inference emulation
report

getMOIAttributes operation AIMLInferenceReport N/A

9 Solution Set (SS)

9.1 OpenAPI document for provisioning MnS
The OpenAPI/YAML definitions for provisioning MnS are specified in 3GPP Forge, refer to clause 4.3 (OpenAPI
Definitions) of TS 28.623 [19] for the Forge location. An example of Forge location is:
"https://forge.3gpp.org/rep/sa5/MnS/-/tree/Tag_Rel19_SA105/".

Directory: OpenAPI

File: TS28532_ProvMnS.yaml

9.2 OpenAPI document for AI/ML management
The present document defines the following NRM Solution Set definitions for AI/ML management:

The OpenAPI/YAML definitions are specified in 3GPP Forge, refer to clause 4.3 of TS 28.623 [19] for the Forge
location. An example of Forge location is: "https://forge.3gpp.org/rep/sa5/MnS/-/tree/Tag_Rel19_SA105/".

Directory: OpenAPI

File: TS28105_AiMlNrm.yaml

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1123GPP TS 28.105 version 19.3.0 Release 19

10 Stage 3 definition for AI/ML Management

10.1 RESTful HTTP-based solution set
The RESTful HTTP-based solution set for generic provisioning management service is defined in clause 12.1.1 in
3GPP TS 28.532 [11]. Corresponding className is ML model training, ML model testing, AI/ML inference emulation,
ML model deployment, and AI/ML inference.

10.1.1 ML model training

Table 10.1.1-1describes the SS to support ML model training request management based on Table 12.1.1.1.1-1 in TS
28.532 [11].

Table 10.1.1-1: SS to support ML model training request management

ML model
training
request

management

IS operation HTTP
Method

Resource URI

Create an ML
model training
request

createMOI
operation

PUT {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTrainingRequest}={id}

Modify an ML
model training
request

modifyMOIAttributes
operation

PUT
PATCH

{MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTrainingRequest}={id}

Create, Delete,
and Update ML
training request

changeMOIs
operation

PATCH {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTrainingRequest}={id}

Table 10.1.1-2 describes the SS to support ML model training report management based on Table 12.1.1.1.1-1 in TS
28.532 [11].

Table 10.1.1-2: SS to support ML model training report management

ML model
training
report

management

IS operation HTTP
Method

Resource URI

Query an ML
model
training report

getMOIAttributes operation GET {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTrainingReport}={id}

Table 10.1.1-3 describes the SS to support ML model training process based on Table 12.1.1.1.1-1 in TS 28.532 [11].

Table 10.1.1-3: SS to support ML model training process management

ML model
training
process

management

IS operation HTTP
Method

Resource URI

Modify an ML
model
training
process

modifyMOIAttributes operation PUT
PATCH

{MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTrainingProcess}={id}

Query an ML
model
training
process

getMOIAttributes operation GET {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTrainingProcess}={id}

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1133GPP TS 28.105 version 19.3.0 Release 19

10.1.2 ML model testing

Table 10.1.2-1 describes the SS to support ML model testing management based on Table 12.1.1.1.1-1in TS 28.532
[11].

Table 10.1.2-1: SS to support ML model testing management

ML model
testing request
management

IS operation HTTP
Method

Resource URI

Create an ML
model testing
request

createMOI
operation

PUT {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTestingRequest}={id}

Modify an ML
model testing
request

modifyMOIAttributes
operation

PUT
PATCH

{MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTestingRequest}={id}

Create, Delete,
and Update ML
testing request

changeMOIs
operation

PATCH {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTestingRequest}={id}

Table 10.1.2-2 describes the SS to support ML model testing report management based on Table 12.1.1.1.1-1 in TS
28.532 [11].

Table 10.1.2-2: SS to support ML model testing report management

ML model
testing
report

management

IS operation HTTP
Method

Resource URI

Query an ML
model testing
report

getMOIAttributes operation GET {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTestingreport}={id}

Subscribe an
ML model
testing report

createMOI operation PUT {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTestingreport}={id}

Unsubscribe
an ML model
testing report

deleteMOI operation DELETE {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTestingreport}={id}

Query an ML
model testing
report
subscription

getMOIAttributes operation GET {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLTestingreport}={id}

10.1.3 AI/ML inference emulation

Table 10.1.3-1 describes the SS to support AI/ML inference emulation report management based on Table 12.1.1.1.1-1
in TS 28.532 [11].

Table 10.1.3-1: SS to support AI/ML inference emulation report management

AI/ML
inference
emulation

report
management

IS operation HTTP
Method

Resource URI

Query an
AI/ML
inference
emulation
report

getMOIAttributes operation GET {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{AIMLInferenceReport}={id}

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1143GPP TS 28.105 version 19.3.0 Release 19

10.1.4 ML model deployment

Table 10.1.4-1 describes the SS to support ML model loading request management based on Table 12.1.1.1.1-1 in TS
28.532 [11].

Table 10.1.4-1: SS to support ML model loading request management

ML model
loading

management

IS operation HTTP
Method

Resource URI

Create an ML
model loading
request

createMOI
operation

PUT {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingRequest}={id}

Modify an ML
model loading
request

modifyMOIAttributes
operation

PUT
PATCH

{MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingRequest}={id}

Create, Delete,
and Update ML
model Loading
request

changeMOIs
operation

PATCH {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingRequest}={id}

Table 10.1.4-2 describes the SS to support ML model loading policy based on Table 12.1.1.1.1-1 in TS 28.532 [11].

Table 10.1.4-2: SS to support ML model loading policy management

ML model
loading
policy

management

IS operation HTTP
Method

Resource URI

Create an ML
model
loading policy

createMOI operation PUT
PATCH

{MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingPolicy}={id}

Delete an ML
model
loading policy

deleteMOI operation DELETE {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingPolicy}={id}

Modify an ML
model
loading policy

modifyMOIAttributes operation PUT
PATCH

{MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingPolicy}={id}

Query an ML
model
loading policy

getMOIAttributes operation GET {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingPolicy}={id}

Create,
Delete, and
Update ML
model
Loading
policy

changeMOIs operation PATCH {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingPolicy}={id}

Table 10.1.4-3 describes the SS to support ML model loading process management based on Table 12.1.1.1.1-1 in TS
28.532 [11].

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1153GPP TS 28.105 version 19.3.0 Release 19

Table 10.1.4-3: SS to support ML model loading process management

ML model
loading
process

management

IS operation HTTP
Method

Resource URI

Modify an ML
model
loading
process

modifyMOIAttributes operation PUT
PATCH

{MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingProcess}={id}

Query an ML
model
loading
process

getMOIAttributes operation GET {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLModelLoadingProcess}={id}

10.1.5 AI/ML inference

Table 10.1.5-1 describes the SS to support ML model update request management based on Table 12.1.1.1.1-1 in TS
28.532 [11].

Table 10.1.5-1: SS to support ML model update request management

ML model
update request
management

IS operation HTTP
Method

Resource URI

Create an ML
model update
request

createMOI
operation

PUT {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLUpdateRequest}={id}

Modify an ML
model update
request

modifyMOIAttributes
operation

PUT
PATCH

{MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLUpdateRequest}={id}

Create, Delete,
and Update ML
model Update
request

changeMOIs
operation

PATCH {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLUpdateRequest}={id}

Table 10.1.5-2 describes the SS to support ML model update report management based on Table 12.1.1.1.1-1 in TS
28.532 [11].

Table 10.1.5-2: SS to support ML model update report management

ML model
update
report

management

IS operation HTTP
Method

Resource URI

Query an ML
model update
report

getMOIAttributes operation GET {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLUpdateReport}={id}

Table 10.1.5-3 describes the SS to support ML model update process management based on Table 12.1.1.1.1-1 in TS
28.532 [11].

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1163GPP TS 28.105 version 19.3.0 Release 19

Table 10.1.5-3: SS to support ML model update process management

ML model
update

process
management

IS operation HTTP
Method

Resource URI

Modify an ML
model update
process

modifyMOIAttributes operation PUT
PATCH

{MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLUpdateProcess}={id}

Query an ML
model update
process

getMOIAttributes operation PATCH {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{MLUpdateProcess}={id}

Table 10.1.5-4 describes the SS to support AI/ML infernece report management based on Table 12.1.1.1.1-1 in TS
28.532 [11].

Table 10.1.5-4: SS to support AI/ML infernece report management

AI/ML
inference

report
management

IS operation HTTP
Method

Resource URI

Query an
AI/ML
inference
report

getMOIAttributes operation GET {MnSRoot}/ProvMnS/{MnSVersion}/{URI-LDN-first-
part}/{AIMLInferenceReport}={id}

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1173GPP TS 28.105 version 19.3.0 Release 19

Annex A (informative):
PlantUML source code for NRM class diagrams

A.1 General
This annex contains the PlantUML source code for the NRM diagrams defined in clause 7.2a of the present document.

A.2 PlantUML code for Figure 7.3a.1.1.1-1: NRM
fragment for ML model training

@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class ManagedEntity <<ProxyClass>>
class MLModel <<InformationObjectClass>>
class MLModelCoordinationGroup <<InformationObjectClass>>
class MLTrainingFunction <<InformationObjectClass>>
class MLTrainingRequest <<InformationObjectClass>>
class MLTrainingReport <<InformationObjectClass>>
class MLTrainingProcess <<InformationObjectClass>>
class MLModelRepository <<InformationObjectClass>>

ManagedEntity "1" *-- "*" MLTrainingFunction: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingProcess: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingRequest: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingReport: <<names>>
MLTrainingFunction "1" *-- "*" ThresholdMonitor : <<names>>

MLTrainingFunction "*" --> "1" MLModelRepository
MLTrainingProcess "1" -r-> "1" MLTrainingReport
MLTrainingProcess "*" <-l- "*" MLTrainingRequest
MLTrainingRequest "1" --> "0..1" MLModel
MLTrainingRequest "1" -r-> "0..1" MLModelCoordinationGroup
MLTrainingReport "1" --> "0..1" MLModel
MLTrainingReport "1" --> "0..1" MLModelCoordinationGroup
MLTrainingProcess "1" --> "0..1" MLModel
MLTrainingProcess "1" --> "0..1" MLModelCoordinationGroup
MLModel"*" -l-> "1" ThresholdMonitor
MLTrainingReport "1" -r-> "1" MLTrainingReport

note left of ManagedEntity
 This represents the following IOCs:
 SubNetwork or
 ManagedFunction or
 ManagedElement
 end note

@enduml

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1183GPP TS 28.105 version 19.3.0 Release 19

A.3 PlantUML code for Figure 7.3a.1.1.2-1: Inheritance
Hierarchy for ML model training related NRMs

@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class ManagedFunction <<InformationObjectClass>>
class MLTrainingFunction <<InformationObjectClass>>
class MLTrainingRequest <<InformationObjectClass>>
class MLTrainingProcess <<InformationObjectClass>>
class MLTrainingReport <<InformationObjectClass>>

ManagedFunction <|-- MLTrainingFunction
Top <|-- MLTrainingRequest
Top <|-- MLTrainingProcess
Top <|-- MLTrainingReport

@enduml

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1193GPP TS 28.105 version 19.3.0 Release 19

A.4 PlantUML code for Figure 7.2a.1.2-1: Inheritance
Hierarchy for common information models for AI/ML
management

@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class MLModelRepository <<InformationObjectClass>>
class MLModel <<InformationObjectClass>>
class MLModelCoordinationGroup <<InformationObjectClass>>

Top <|-- MLModelRepository
Top <|-- MLModel
Top <|-- MLModelCoordinationGroup

@enduml

A.5 PlantUML code for Figure 7.2a.1.1-1: Relationships
for common information models for AI/ML
management

@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class ManagedEntity <<ProxyClass>>
class MLModelRepository <<InformationObjectClass>>
class MLModel <<InformationObjectClass>>
class MLModelCoordinationGroup <<InformationObjectClass>>

ManagedEntity "1" *-- "*" MLModelRepository : <<names>>
MLModelRepository "1" *-- "*" MLModel: <<names>>
MLModelRepository "1" *-- "*" MLModelCoordinationGroup: <<names>>

MLModelCoordinationGroup "*" -r-> "2..*" MLModel

note left of ManagedEntity
 This represents the following IOCs:
 ManagedElement or
 SubNetwork
 end note

@enduml

A.6 PlantUML code for Figure 7.3a.1.1.1-2: NRM
fragment for ML model testing

@startuml

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1203GPP TS 28.105 version 19.3.0 Release 19

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class MLTestingEntity <<ProxyClass>>
class TestingFunction <<ProxyClass>>
class MLModel <<InformationObjectClass>>
class MLModelCoordinationGroup <<InformationObjectClass>>
class MLTestingFunction <<InformationObjectClass>>
class MLTestingRequest <<InformationObjectClass>>
class MLTestingReport <<InformationObjectClass>>

MLTestingEntity "1" *-- "*" MLTestingFunction: <<names>>

TestingFunction "1" *-- "*" MLTestingRequest : <<names>>
TestingFunction "1" *-- "*" MLTestingReport : <<names>>

MLTestingRequest "*" --> "0..1" MLModel
MLTestingRequest "*" --> "0..1" MLModelCoordinationGroup
MLTestingReport "*" -l-> "1" MLTestingRequest

(MLTestingRequest, MLModel) ... (MLTestingRequest, MLModelCoordinationGroup) : {xor}

note left of MLTestingEntity
 Represents the following IOCs:
 Subnetwork or
 ManagedFunction or
 ManagedElement
 end note

note left of TestingFunction
 Represents the following IOCs:
 MLTestingFunction or
 MLTrainingFunction
 end note

@enduml

A.7 PlantUML code for Figure 7.3a.1.1.2-2: Inheritance
Hierarchy for ML model testing related NRMs

@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class ManagedFunction <<InformationObjectClass>>
class MLTestingFunction <<InformationObjectClass>>
class MLTestingRequest <<InformationObjectClass>>
class MLTestingReport <<InformationObjectClass>>

ManagedFunction <|-- MLTestingFunction
Top <|-- MLTestingRequest
Top <|-- MLTestingReport

@enduml

A.8 PlantUML code for Figure 7.3a.4.1.1-1: NRM
fragment for ML update

@startuml

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1213GPP TS 28.105 version 19.3.0 Release 19

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class MLUpdateEntity <<ProxyClass>>
class MLUpdateFunction <<InformationObjectClass>>
class MLUpdateRequest <<InformationObjectClass>>
class MLUpdateProcess <<InformationObjectClass>>
class MLUpdateReport <<InformationObjectClass>>
class MLModel <<InformationObjectClass>>

MLUpdateEntity "1" *-- "*" MLUpdateFunction:<<names>>
MLUpdateFunction "1" *-- "*" MLUpdateRequest:<<names>>
MLUpdateFunction "1" *-- "*" MLUpdateProcess:<<names>>
MLUpdateFunction "1" *-- "*" MLUpdateReport:<<names>>

MLUpdateFunction "1" --> "*" "MLModel"
MLUpdateRequest "*" <-r-> "1" "MLUpdateProcess"
MLUpdateProcess "1" <-r-> "1" "MLUpdateReport"
MLUpdateProcess "*" --> "*" "MLModel"
MLUpdateReport "*" --> "*" "MLModel"
MLUpdateRequest "*" --> "*" "MLModel"

note left of MLUpdateEntity
 Represents the IOCs:
 SubNetwork or
 ManagedFunction or
 ManagementFunction
 end note

@enduml

A.9 PlantUML code for Figure 7.3a.4.1.2-1: Inheritance
Hierarchy for ML update related NRMs

@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class ManagedFunction <<InformationObjectClass>>
class MLUpdateFunction <<InformationObjectClass>>
class MLUpdateRequest <<InformationObjectClass>>
class MLUpdateProcess <<InformationObjectClass>>
class MLUpdateReport <<InformationObjectClass>>

ManagedFunction <|-- MLUpdateFunction
Top <|-- MLUpdateRequest
Top <|-- MLUpdateProcess
Top <|-- MLUpdateReport

@enduml

A.10 PlantUML code for Figure 7.3a.3.1.1-1: NRM
fragment for ML model loading

@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1223GPP TS 28.105 version 19.3.0 Release 19

skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class AIMLInferenceFunction <<InformationObjectClass>>
class MLModel <<InformationObjectClass>>
class MLModelLoadingRequest <<InformationObjectClass>>
class MLModelLoadingPolicy <<InformationObjectClass>>
class MLModelLoadingProcess <<InformationObjectClass>>

AIMLInferenceFunction"1" *-- "*" MLModelLoadingRequest : <<names>>
AIMLInferenceFunction "1" *-- "*" MLModelLoadingPolicy : <<names>>
AIMLInferenceFunction "1" *-- "*" MLModelLoadingProcess : <<names>>

MLModelLoadingRequest "1" <-r- "*" MLModelLoadingProcess
MLModelLoadingProcess "*" -r-> "1" MLModelLoadingPolicy

MLModelLoadingRequest "1" --> "*" MLModel
MLModelLoadingProcess "1" --> "*" MLModel

(MLModelLoadingProcess, MLModelLoadingRequest) ... (MLModelLoadingProcess, MLModelLoadingPolicy) :
{xor}

@enduml

A.11 PlantUML code for Figure 7.3a.3.1.2-1: Inheritance
Hierarchy for ML model loading related NRMs

@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>

class MLModelLoadingRequest <<InformationObjectClass>>
class MLModelLoadingPolicy <<InformationObjectClass>>
class MLModelLoadingProcess <<InformationObjectClass>>

Top <|-- MLModelLoadingRequest
Top <|-- MLModelLoadingPolicy
Top <|-- MLModelLoadingProcess

@enduml

A.12 PlantUML code for Figure 7.3a.4.1.1-2: NRM
fragment for AI/ML inference function

@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class AIMLInferenceFunction <<InformationObjectClass>>
class AIMLInferenceReport <<InformationObjectClass>>
class MLModel <<InformationObjectClass>>

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1233GPP TS 28.105 version 19.3.0 Release 19

class ManagedEntity <<ProxyClass>>
class AIMLSupportedFunction <<ProxyClass>>

ManagedEntity "1" *-- "*" AIMLInferenceFunction : <<names>>
AIMLInferenceFunction "*" <-l-> "*" AIMLSupportedFunction
MLModel "*" <-r-> "*" AIMLSupportedFunction
MLModel "*" <-r-> "*" AIMLInferenceFunction
MLModel "1..*" <-r-> "*" AIMLInferenceReport
AIMLInferenceFunction "1" *-- "*" AIMLInferenceReport : <<names>>

note right of ManagedEntity #white
 Represents the IOCs:
 ManagedElement or
 SubNetwork or
 ManagedFunction
 end note

note top of AIMLSupportedFunction #white
 Represents the IOCs:
 DMROFunction or
 DLBOFunction or
 DESManagementFunction or
 MDAFunction or
 AnLFFunction or
 LMFFunction
 end note

@enduml

A.13 PlantUML code for Figure 7.3a.4.1.2-2: Inheritance
Hierarchy for AI/ML inference function

@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class AIMLInferenceFunction << InformationObjectClass >>
class AIMLInferenceReport <<InformationObjectClass>>

ManagedFunction <|-- AIMLInferenceFunction
Top <|-- AIMLInferenceReport

@enduml

A.14 PlantUML code for Figure 7.3a.2.1.1-1: NRM
fragment for AI/ML inference emulation Control

@startuml
scale max 350 height
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class ManagedEntity <<ProxyClass>>
class AIMLInferenceEmulationFunction <<InformationObjectClass>>
class AIMLInferenceReport << InformationObjectClass >>

ManagedEntity "1" *-- "*" AIMLInferenceEmulationFunction: <<names>>
AIMLInferenceEmulationFunction "1" *-- "*" AIMLInferenceReport : <<names>>

note left of ManagedEntity

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1243GPP TS 28.105 version 19.3.0 Release 19

 Represents the following IOCs:
 SubNetwork or
 ManagedFunction or
 Managed Element
 end note
@enduml

A.15 PlantUML code for Figure 7.3a.2.1.2-1: AI/ML
inference emulation Inheritance Relations

@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class ManagedFunction <<InformationObjectClass>>
class AIMLInferenceEmulationFunction << InformationObjectClass >>

ManagedFunction <|-- AIMLInferenceEmulationFunction
@enduml

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1253GPP TS 28.105 version 19.3.0 Release 19

Annex B (normative):
OpenAPI definition of the AI/ML NRM

B.1 General
This annex contains the OpenAPI definition of the AI/ML NRM in YAML format.

The information models of the AI/ML NRM are defined in clause 7.

Mapping rules to produce the OpenAPI definition based on the information model are defined in 3GPP TS 32.160 [14].

B.2 Solution Set (SS) definitions

B.2.1 OpenAPI document "TS28105_AiMlNrm.yaml"
Note that clause 9 includes the location of TS28105_AiMlNrm.yaml.

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1263GPP TS 28.105 version 19.3.0 Release 19

Annex C (informative):
Change history

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1273GPP TS 28.105 version 19.3.0 Release 19

Change history
Date Meeting TDoc CR Rev Cat Subject/Comment New

version
2022-06 SA#96 Upgrade to change control version 17.0.0
2022-09 SA#97e SP-220851 0003 - F Corrections to the terms and definition description and

corresponding updates
17.1.0

2022-09 SA#97e SP-220850 0004 1 F fix incorrect yaml file name in TS28.105 17.1.0
2022-09 SA#97e SP-220851 0005 1 F Clarifications and corrections of Use cases 17.1.0
2022-09 SA#97e SP-220851 0006 1 F Clarifications and corrections into the Class definitions and Attribute

properties
17.1.0

2022-09 SA#97e SP-220851 0007 1 F Correction and clarifications of the Requirements 17.1.0
2022-09 SA#97e Alignment with content with FORGE 17.1.1
2022-12 SA#98e SP-221166 0008 2 F Adding missing attributes 17.2.0
2022-12 SA#98e SP-221166 0009 - F Correction of stage 3 openAPI 17.2.0
2023-03 SA#99 SP-230193 0011 - F Adding the missing definition of attributes Stage 2 and Stage 3 17.3.0
2023-03 SA#99 SP-230193 0013 1 F Correcting the attribute properties 17.3.0
2023-03 SA#99 SP-230193 0014 1 F Correction of the Handling errors in data and ML decisions 17.3.0
2023-03 SA#99 SP-230193 0015 1 F Correction of terminologies 17.3.0
2023-03 SA#99 SP-230193 0017 1 F Correct AI/ML related terms 17.3.0
2023-03 SA#99 SP-230193 0018 1 F Correct formatting and spelling errors 17.3.0
2023-03 SA#99 SP-230193 0019 1 F Correct attribute definitions 17.3.0
2023-06 SA#100 SP-230655 0022 1 F Correcting the attribute properties 17.4.0
2023-06 SA#100 SP-230649 0024 1 F Grammatical Corrections 17.4.0
2023-06 SA#100 SP-230655 0030 - F Removal of SW loading from training phase 17.4.0
2023-06 SA#100 SP-230655 0031 1 F Correction of the figure for ML training function 17.4.0
2023-06 SA#100 SP-230668 0023 1 C Not implemented due to violation of drafting rules. It will be

modified and included in a future CR (MCC).
18.0.0

2023-09 SA#101 SP-230948 0023 3 C Modelling ML Entity 18.1.0
2023-09 SA#101 SP-230948 0035 A Clarify ML models as proprietary 18.1.0
2023-09 SA#101 SP-230948 0039 1 A Restore the wrongly voided clause “5 Service and functional

framework”
18.1.0

2023-12 SA#102 SP-231459 0041 1 F Rel-18 CR TS 28.105 Adding the missing relation between ML
entity and ML process – Partially implemented (1st change could
not be implemented due to a clash with CR 066)

18.2.0

2023-12 SA#102 SP-231467 0043 1 A Correction on ModelPerformance 18.2.0
2023-12 SA#102 SP-231490 0045 - A Rel-18 CR TS 28.105 Corrections of ML training related use cases

description
18.2.0

2023-12 SA#102 SP-231490 0047 - A Rel 18 CR TS 28.105 Remove unused decision entity term 18.2.0
2023-12 SA#102 SP-231490 0049 - A Rel 18 CR TS 28.105 Clarify the description of confidenceIndication

attribute
18.2.0

2023-12 SA#102 SP-231467 0061 - A Rel 18 CR TS 28.105 Remove unused attribute mLEntityList 18.2.0
2023-12 SA#102 SP-231467 0063 1 A CR TS 28.105 Rel-18 Correction of IOC name 18.2.0
2023-12 SA#102 SP-231467 0065 1 A TS 28.105 Rel-18 Correction of attribute properties 18.2.0
2023-12 SA#102 SP-231459 0066 1 F TS 28.105 Rel-18 Correction of MLTrainingFunction constraints –

Partially implemented (1st change could not be implemented due to
a clash with CR 041)

18.2.0

2023-12 SA#102 SP-231467 0068 1 A Rel 18 CR TS 28.105 Resolve issues related to the usage of
confidenceIndication attribute

18.2.0

2023-12 SA#102 SP-231490 0069 - A Rel 18 CR TS 28.105 Fix incorrect figure label 18.2.0
2023-12 Alignment with the Forge 18.2.0
2024-03 SA#103 SP-240186 0073 - F TS28.105 Rel18 correction to Schema definition Issues for

SubNetwork and ManagedElement of OpenAPI SS
18.3.0

2024-03 SA#103 SP-240155 0075 - A Rel-18 Correct trainingRequestSource attribute type 18.3.0
2024-03 SA#103 SP-240155 0076 1 B Enhancements for AI-ML management 18.3.0
2024-03 SA#103 SP-240162 0080 1 A Rel 18 CR TS 28.105 Add additional reference related to NWDAF 18.3.0
2024-03 SA#103 SP-240162 0082 1 A Rel 18 CR TS 28.105 Add missing abbreviations 18.3.0
2024-06 SA#104 SP-240830 0126 - F TS28.105 Rel18 correction to Schema definition Issues for

SubNetwork of OpenAPI SS
18.4.0

2024-06 SA#104 SP-240808 0140 - F TS28.105 Rel18 Moving normative stage 3 to Forge 18.4.0
2024-06 SA#104 SP-240804 0142 1 A Rel-18 CR TS 28.105 correct the AI/ML technique overview 18.4.0
2024-06 SA#104 SP-240830 0146 - F Rel 18 Input to draftCR TS 28.105 correct terminationConditions

attribute
18.4.0

2024-06 SA#104 SP-240830 0147 - F Rel18 TS 28.105 stage 3 changes for stage 2 corrections 18.4.0
2024-06 SA#104 SP-240830 0151 - F CR Rel-18 TS28.105 AI/ML management 18.4.0
2024-09 SA#105 SP-241181 0152 1 F TS28.105 Rel18 correction to attribute name of attribute related to

role for different cardinality
18.5.0

2024-09 SA#105 SP-241181 0153 1 F Rel18 TS 28.105 corrections to misalignment between stage 3 and
stage 2

18.5.0

2024-09 SA#105 SP-241181 0154 1 F Rel-18 CR TS 28.105 correct the ML model related attributes 18.5.0
2024-09 SA#105 SP-241181 0155 1 F Rel-18 CR TS 28.105 correct the description of ML model lifecycle

and ML entity
18.5.0

2024-09 SA#105 SP-241181 0156 - F Rel-18 CR TS 28.105 Correct InferenceType to
aIMLInferenceName

18.5.0

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1283GPP TS 28.105 version 19.3.0 Release 19

Change history
Date Meeting TDoc CR Rev Cat Subject/Comment New

version
2024-09 SA#105 SP-241181 0157 1 F Rel-18 CR TS 28.105 Correct MLEntity to MLModel 18.5.0
2024-09 SA#105 SP-241181 0160 2 F Rel-18 CR TS 28.105 Clarification of scope 18.5.0
2024-09 SA#105 SP-241181 0161 1 F Rel-18 CR TS28.105 corrections to ML model lifecycle figure and

corresponding description
18.5.0

2024-09 SA#105 SP-241181 0163 - F Rel 18 CR TS 28.105 Fix training definitions 18.5.0
2024-09 SA#105 SP-241181 0164 - F Rel 18 CR TS 28.105 Fix remaining entity to model 18.5.0
2024-09 SA#105 SP-241181 0168 1 A Rel-18 CR TS 28.105 Correction to using data types 18.5.0
2024-09 SA#105 SP-241181 0176 1 F Rel-18 CR TS 28.105 Corrections including editorial fixes 18.5.0
2024-09 SA#105 SP-241181 0165 1 C Rel 19 CR TS 28.105 Remove Support Qualifier from attribute

constraints
19.0.0

2024-12 SA#106 SP-241639 0181 1 C Rel-19 CR TS 28.105 Implement readonly attributes for openAPI
SS

19.1.0

2024-12 SA#106 SP-241644 0183 1 A Rel-19 CR TS 28.105 correct the areNewTrainingDataUsed
attributes

19.1.0

2024-12 SA#106 SP-241639 0184 - B Enhance the isUnique property for stage 3 OpenAPI 19.1.0
2024-12 SA#106 SP-241634 0189 1 A Rel 19 CR TS 28.105 Make decisionConfidenceScore attr

applicable for Training
19.1.0

2024-12 SA#106 SP-241644 0191 2 A Rel 19 CR TS 28.105 Fix modelPerformanceValidation attribute 19.1.0
2024-12 SA#106 SP-241644 0193 1 A CR Rel-19 TS 28.105 add missing terms 19.1.0
2024-12 SA#106 SP-241644 0195 - A Rel-19 CR TS 28.105 AIML Terminology Alignment 19.1.0
2024-12 SA#106 SP-241639 0197 C Rel-19 CR TS 28.105 Implement default value for openAPI SS 19.1.0
2024-12 SA#106 SP-241644 0199 1 A Rel-19 CR TS 28.105 Clarify the Usage of mLModelRef and

mLModelCoordinationGroupRef
19.1.0

2024-12 SA#106 SP-241644 0200 1 A Rel-19 CR TS28.105 Correct stage2 and stage3 definition for
aIMLInferenceName

19.1.0

2024-12 SA#106 SP-241639 0201 1 B Rel19 CR 28.105 Enhance the OpenAPI related to multiplicity 19.1.0
2024-12 SA#106 SP-241634 0204 1 A Rel-19 CR TS 28.105 Fix trainingRequestSource attribute 19.1.0
2024-12 SA#106 SP-241639 0206 C Rel-19 CR TS 28.105 add missing inheritence statement for IOC

definition
19.1.0

2024-12 SA#106 SP-241644 0211 1 A Rel 19 CR TS 28.105 Correct information model definitions for ML
model deployment

19.1.0

2024-12 SA#106 SP-241644 0214 1 A Rel 19 CR TS 28.105 Corrections for aiml inference history 19.1.0
2024-12 SA#106 SP-241644 0216 A Rel 19 CR TS 28.105 Remove allowedValues from attribute

definitions where value is same as type
19.1.0

2024-12 SA#106 SP-241643 0217 1 A Rel-19 CR TS 28.105 Correct description of
MLModelCoordinationGroup

19.1.0

2024-12 SA#106 SP-241644 0219 1 A Rel-19 CR TS 28.105 Add missing attribute to MLModelRepository 19.1.0
2024-12 SA#106 SP-241644 0221 1 A Rel-19 CR TS 28.105 correction of attribute descriptions and legal

values
19.1.0

2024-12 SA#106 SP-241644 0223 1 A Rel-19 CR TS 28.105 Correction of not used attribute and attribute
properties

19.1.0

2025-03 SA#107 SP-250148 0229 1 F Rel-19 CR TS 28.105 Correction of PlanUML code 19.2.0
2025-03 SA#107 SP-250148 0233 - F Rel19 CR TS28.105 correction to data type definitions related to

AIMLInferenceName
19.2.0

2025-03 SA#107 SP-250156 0241 1 A Rel-19 CR TS 28.105 correct the components for ML model
deployment and AI/ML inference

19.2.0

2025-03 SA#107 SP-250156 0243 1 A Rel-19 CR TS 28.105 correct the the requirements for ML model
training

19.2.0

2025-03 SA#107 SP-250156 0250 - A Rel-19 CR TS 28.105 Correct MLTrainingFunction definition 19.2.0

2025-03 SA#107 SP-250156 0254 - A Rel 19 CR TS 28.105 Correct isWritable property of requestStatus
for MLLoadingRequest and MLUpdateRequest

19.2.0

2025-03 SA#107 SP-250156 0259 1 A Rel-19 CR TS 28.105 Correct MLContext attributes 19.2.0

2025-03 SA#107 SP-250156 0266 1 A Rel-19 CR TS 28.105 Correction of MLTestingRequest attributes 19.2.0

2025-03 SA#107 SP-250156 0268 1 A Rel-19 CR TS 28.105 Correction of MLModel attribute properties 19.2.0

2025-03 SA#107 SP-250156 0273 1 A Rel-19 CR TS 28.105 Correct MLTrainingReport attributes 19.2.0

2025-03 SA#107 SP-250156 0275 1 A Rel-19 CR TS 28.105 Correct MLTrainingRequest attributes 19.2.0

2025-03 SA#107 SP-250156 0276 1 A Rel-19 CR TS 28.105 Correct MLTrainingProcess attributes 19.2.0

2025-09 SA#109 SP-251108 0290 1 C Rel-19 TS 28.105 stage 3 update to align with Rel-19 stage 2
specifications

19.3.0

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1293GPP TS 28.105 version 19.3.0 Release 19

Change history
Date Meeting TDoc CR Rev Cat Subject/Comment New

version
2025-09 SA#109 SP-251087 0294 1 A Rel 19 TS 28.105 Correct missing Associated information entities 19.3.0

2025-09 SA#109 SP-251087 0298 1 A Rel 19 TS 28.105 Correct Common notifications definition 19.3.0

2025-09 SA#109 SP-251108 0301 B REL-19 CR to TS 28.105 for AIML_MGT_Ph2 19.3.0

ETSI

ETSI TS 128 105 V19.3.0 (2025-10)1303GPP TS 28.105 version 19.3.0 Release 19

History

Document history

V19.3.0 October 2025 Publication

	Intellectual Property Rights
	Legal Notice
	Modal verbs terminology
	Foreword
	1 Scope
	2 References
	3 Definitions of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Concepts and overview
	4.1 Overview
	4.2 Management of AI/ML capabilities for RAN
	4.3 Management of AI/ML capabilities for 5GC
	4.4 Management of AI/ML capabilities for MDA

	4a AI/ML management functionality and service framework
	4a.0 ML model lifecycle
	4a.1 Functionality and service framework for ML model training
	4a.2 AI/ML functionalities management scenarios (relation with managed AI/ML features)

	5 Void
	6 AI/ML management use cases and requirements
	6.1 ML model lifecycle management capabilities
	6.2 Void
	6.2a Void
	6.2b ML model training
	6.2b.1 Description
	6.2b.2 Use cases
	6.2b.2.1 ML model training requested by consumer
	6.2b.2.2 ML model training initiated by producer
	6.2b.2.3 ML model selection
	6.2b.2.4 Managing ML model training processes
	6.2b.2.5 Handling errors in data and ML decisions
	6.2b.2.6 ML model joint training
	6.2b.2.7 ML model validation performance reporting
	6.2b.2.8 Training data effectiveness reporting
	6.2b.2.9 Performance management for ML model training
	6.2b.2.9.1 Overview
	6.2b.2.9.2 Performance indicator selection for MLmodel training
	6.2b.2.9.3 ML model performance indicators query and selection for ML model training
	6.2b.2.9.4 MnS consumer policy-based selection of ML model performance indicators for ML model training

	6.2b.2.10 ML-Knowledge-based Transfer Learning
	6.2b.2.10.1 Description
	6.2b.2.10.2 Use cases

	6.2b.2.11 ML model training for multiple contexts
	6.2b.2.14 Management of distributed training
	6.2b.2.15 Management of Federated learning
	6.2b.2.15.1 Description
	6.2b.2.15.2 Use cases

	6.2b.2.16 Management of Reinforcement Learning
	6.2b.2.16.1 Description
	6.2b.2.16.2 Use cases

	6.2b.2.17 Training data statistics

	6.2b.3 Requirements for ML model training

	6.2c ML model testing
	6.2c.1 Description
	6.2c.2 Use cases
	6.2c.2.1 Consumer-requested ML model testing
	6.2c.2.2 Producer-initiated ML model testing
	6.2c.2.3 Joint testing of multiple ML models
	6.2c.2.4 Performance management for ML model testing
	6.2c.2.4.1 Overview
	6.2c.2.4.2 Performance indicator selection for ML model testing
	6.2c.2.4.3 ML model performance indicators query and selection for ML model testing
	6.2c.2.4.4 MnS consumer policy-based selection of ML model performance indicators for ML model testing

	6.2c.3 Requirements for ML model testing

	6.3 AI/ML inference emulation
	6.3.1 Description
	6.3.2 Use cases
	6.3.2.1 AI/ML inference emulation
	6.3.2.2 ML inference emulation environment selection

	6.3.3 Requirements for Managing AI/ML inference emulation

	6.4 ML model deployment
	6.4.1 ML model loading
	6.4.1.1 Description
	6.4.1.2 Use cases
	6.4.1.2.1 Consumer requested ML model loading
	6.4.1.2.2 Control of producer-initiated ML model loading
	6.4.1.2.3 ML model registration

	6.4.1.3 Requirements for ML model loading

	6.5 AI/ML inference
	6.5.1 AI/ML inference performance management
	6.5.1.1 Description
	6.5.1.2 Use cases
	6.5.1.2.1 AI/ML inference performance evaluation
	6.5.1.2.2 AI/ML performance measurements selection based on MnS consumer policy

	6.5.1.3 Requirements for AI/ML inference performance management

	6.5.2 AI/ML update control
	6.5.2.1 Description
	6.5.2.2 Use cases
	6.5.2.2.1 Availability of new capabilities or ML models
	6.5.2.2.2 Triggering ML model update

	6.5.2.3 Requirements for AIML update control

	6.5.3 AI/ML inference capabilities management
	6.5.3.1 Description
	6.5.3.2 Use cases
	6.5.3.2.1 Identifying capabilities of ML models
	6.5.3.2.2 Mapping of the capabilities of ML models

	6.5.3.3 Requirements for AI/ML inference capabilities management

	6.5.4 AI/ML inference capability configuration management
	6.5.4.1 Description
	6.5.4.2 Use cases
	6.5.4.2.1 Managing NG-RAN AI/ML-based distributed Network Energy Saving
	6.5.4.2.2 Managing NG-RAN AI/ML-based distributed Mobility Optimization
	6.5.4.2.3 Managing NG-RAN AI/ML-based distributed Load Balancing

	6.5.4.3 Requirements for AI/ML inference management

	6.5.5 AI/ML Inference History
	6.5.5.1 Description
	6.5.5.2 Use cases
	6.5.5.2.1 AI/ML Inference History - tracking inferences and context

	6.5.5.3 Requirements for AI/ML Inference History

	6.5.6 Managing ML models in use in a live network
	6.5.6.1 Description
	6.5.6.2 Use cases
	6.5.6.2.1 Handling of underperforming ML trained models in live networks
	6.5.6.2.2 Performance monitoring of Network Functions with ML trained models in live networks

	6.5.6.3 Requirements for Managing ML models in use in a live network
	6.5.7.2.1 Management of explanation in AI/ML inference

	6.5.7.3 Requirements for AI/ML inference explainability managment

	7 Information model definitions for AI/ML management
	7.1 Imported and associated information entities
	7.1.1 Imported information entities and local labels
	7.1.2 Associated information entities and local labels

	7.2 Void
	7.2a Common information model definitions for AI/ML management
	7.2a.1 Class diagram
	7.2a.1.1 Relationships
	7.2a.1.2 Inheritance

	7.2a.2 Class definitions
	7.2a.2.1 MLModel
	7.2a.2.1.1 Definition
	7.2a.2.1.2 Attributes
	7.2a.2.1.3 Attribute constraints
	7.2a.2.1.4 Notifications

	7.2a.2.2 MLModelRepository
	7.2a.2.2.1 Definition
	7.2a.2.2.2 Attributes
	7.2a.2.2.3 Attribute constraints
	7.2a.2.2.4 Notifications

	7.2a.2.3 MLModelCoordinationGroup
	7.2a.2.3.1 Definition
	7.2a.2.3.2 Attributes
	7.2a.2.3.3 Attribute constraints
	7.2a.2.3.4 Notifications

	7.3 Void
	7.3a Information model definitions for AI/ML operational phases
	7.3a.1 Information model definitions for ML model training
	7.3a.1.1 Class diagram
	7.3a.1.1.1 Relationships
	7.3a.1.1.2 Inheritance

	7.3a.1.2 Class definitions
	7.3a.1.2.1 MLTrainingFunction
	7.3a.1.2.1.1 Definition
	7.3a.1.2.1.2 Attributes
	7.3a.1.2.1.3 Attribute constraints
	7.3a.1.2.1.4 Notifications

	7.3a.1.2.2 MLTrainingRequest
	7.3a.1.2.2.1 Definition
	7.3a.1.2.2.2 Attributes
	7.3a.1.2.2.3 Attribute constraints
	7.3a.1.2.2.4 Notifications

	7.3a.1.2.3 MLTrainingReport
	7.3a.1.2.3.1 Definition
	7.3a.1.2.3.2 Attributes
	7.3a.1.2.3.3 Attribute constraints
	7.3a.1.2.3.4 Notifications

	7.3a.1.2.4 MLTrainingProcess
	7.3a.1.2.4.1 Definition
	7.3a.1.2.4.2 Attributes
	7.3a.1.2.4.3 Attribute constraints
	7.3a.1.2.4.4 Notifications

	7.3a.2 Information model definitions for AI/ML inference emulation
	7.3a.2.1 Class diagram
	7.3a.2.1.1 Relationships
	7.3a.2.1.2 Inheritance

	7.3a.2.2 Class definitions
	7.3a.2.2.1 AIMLInferenceEmulationFunction
	7.3a.2.2.1.1 Definition
	7.3a.2.2.1.2 Attributes
	7.3a.2.2.1.3 Attribute constraints
	7.3a.2.2.1.4 Notifications

	7.3a.3 Information model definitions for ML model deployment
	7.3a.3.1 Class diagram
	7.3a.3.1.1 Relationships
	7.3a.3.1.2 Inheritance

	7.3a.3.2 Class definitions
	7.3a.3.2.1 MLModelLoadingRequest
	7.3a.3.2.1.1 Definition
	7.3a.3.2.1.2 Attributes
	7.3a.3.2.1.3 Attribute constraints
	7.3a.3.2.1.4 Notifications

	7.3a.3.2.2 MLModelLoadingPolicy
	7.3a.3.2.2.1 Definition
	7.3a.3.2.2.2 Attributes
	7.3a.3.2.2.3 Attribute constraints
	7.3a.3.2.2.4 Notifications

	7.3a.3.2.3 MLModelLoadingProcess
	7.3a.3.2.3.1 Definition
	7.3a.3.2.3.2 Attributes
	7.3a.3.2.3.3 Attribute constraints
	7.3a.3.2.3.4 Notifications

	7.3a.4 Information model definitions for AI/ML inference
	7.3a.4.1 Class diagram
	7.3a.4.1.1 Relationships
	7.3a.4.1.2 Inheritance

	7.3a.4.2 Class definitions
	7.3a.4.2.1 MLUpdateFunction
	7.3a.4.2.1.1 Definition
	7.3a.4.2.1.2 Attributes
	7.3a.4.2.1.3 Attribute constraints
	7.3a.4.2.1.4 Notifications

	7.3a.4.2.2 MLUpdateRequest
	7.3a.4.2.2.1 Definition
	7.3a.4.2.2.2 Attributes
	7.3a.4.2.2.3 Attribute constraints
	7.3a.4.2.2.4 Notifications

	7.3a.4.2.3 MLUpdateProcess
	7.3a.4.2.3.1 Definition
	7.3a.4.2.3.2 Attributes
	7.3a.4.2.3.3 Attribute constraints
	7.3a.4.2.3.4 Notifications

	7.3a.4.2.4 MLUpdateReport
	7.3a.4.2.4.1 Definition
	7.3a.4.2.4.2 Attributes
	7.3a.4.2.4.3 Attribute constraints
	7.3a.4.2.4.4 Notifications

	7.3a.4.2.5 AIMLInferenceFunction
	7.3a.4.2.5.1 Definition
	7.3a.4.2.5.2 Attributes
	7.3a.4.2.5.3 Attribute constraints
	7.3a.4.2.5.4 Notifications

	7.3a.4.2.6 AIMLInferenceReport
	7.3a.4.2.6.1 Definition
	7.3a.4.2.6.2 Attributes
	7.3a.4.2.6.3 Attribute constraints
	7.3a.4.2.6.4 Notifications

	7.4 Data type definitions
	7.4.1 ModelPerformance <<dataType>>
	7.4.1.1 Definition
	7.4.1.2 Attributes
	7.4.1.3 Attribute constraints
	7.4.1.4 Notifications

	7.4.2 Void
	7.4.3 MLContext <<dataType>>
	7.4.3.1 Definition
	7.4.3.2 Attributes
	7.4.3.3 Attribute constraints
	7.4.3.4 Notifications

	7.4.4 SupportedPerfIndicator <<dataType>>
	7.4.4.1 Definition
	7.4.4.2 Attributes
	7.4.4.3 Attribute constraints
	7.4.4.4 Notifications

	7.4.5 AvailMLCapabilityReport <<dataType>>
	7.4.5.1 Definition
	7.4.5.2 Attributes
	7.4.5.3 Attribute constraints
	7.4.5.4 Notifications

	7.4.6 AIMLManagementPolicy <<dataType>>
	7.4.6.1 Definition
	7.4.6.2 Attributes
	7.4.6.3 Attribute constraints
	7.4.6.4 Notifications

	7.4.7 ManagedActivationScope <<choice>>
	7.4.7.1 Definition
	7.4.7.2 Attributes
	7.4.7.3 Attribute constraints
	7.4.7.4 Notifications

	7.4.8. MLCapabilityInfo <<dataType>>
	7.4.8.1. Definition
	7.4.8.2 Attributes
	7.4.8.3 Attribute constraints
	7.4.8.4 Notifications

	7.4.9 InferenceOutput <<dataType>>
	7.4.9.1 Definition
	7.4.9.2 Attributes
	7.4.9.3 Attribute constraints
	7.4.9.4 Notifications

	7.4.10 AIMLInferenceName <<choice>>
	7.4.10.1 Definition
	7.4.10.2 Attributes
	7.4.10.3 Attribute constraints
	7.4.10.4 Notifications

	7.4.11 DataStatisticalProperties <<dataType>>
	7.4.11.1 Definition
	7.4.11.2 Attributes
	7.4.11.3 Attribute constraints
	7.4.11.4 Notifications

	7.4.12 DistributedTrainingExpectation <<dataType>>
	7.4.12.1 Definition
	7.4.12.2 Attributes
	7.4.12.3 Attribute constraints
	7.4.12.4 Notifications

	7.4.13 PotentialImpactInfo <<dataType>>
	7.4.13.1 Definition
	7.4.13.2 Attributes
	7.4.13.3 Attribute constraints
	7.4.13.4 Notifications

	7.4.14 ImpactedPM <<dataType>>
	7.4.14.1 Definition
	7.4.14.2 Attributes
	7.4.14.3 Attribute constraints
	7.4.14.4 Notifications

	7.4.15 MLKnowledge <<dataType>>
	7.4.15.1 Definition
	7.4.15.2 Attributes
	7.4.15.3 Attribute constraints
	7.4.15.4 Notifications

	7.4.16 EnvironmentScope <<choice>>
	7.4.16.1 Definition
	7.4.16.2 Attributes
	7.4.16.3 Attribute constraints
	7.4.16.4 Notifications

	7.4.17 SupportedLearningTechnology <<dataType>>
	7.4.17.1 Definition
	7.4.17.2 Attributes
	7.4.17.3 Attribute constraints
	7.4.17.4 Notifications

	7.4.18 RLRequirement <<dataType>>
	7.4.18.2 Attributes
	7.4.18.3 Attribute constraints
	7.4.18.4 Notifications

	7.4.19 ClusteringCriteria <<dataType>>
	7.4.19.1 Definition
	7.4.19.2 Attributes
	7.4.19.3 Attribute constraints
	7.4.19.4 Notifications

	7.4.20 FLParticipationInfo <<dataType>>
	7.4.20.1 Definition
	7.4.20.2 Attributes
	7.4.20.3 Attribute constraints
	7.4.20.4 Notifications

	7.4.21 FLRequirement <<dataType>>
	7.4.21.1 Definition
	7.4.21.2 Attributes
	7.4.21.3 Attribute constraints
	7.4.21.4 Notifications

	7.4.22 FLClientSelectionCriteria <<dataType>>
	7.4.22.1 Definition
	7.4.22.2 Attributes
	7.4.22.3 Attribute constraints
	7.4.22.4 Notifications

	7.4.23 FLReportPerClient <<dataType>>
	7.4.23.1 Definition
	7.4.23.2 Attributes
	7.4.23.3 Attribute constraints
	7.4.23.4 Notifications

	7.4a Enumerations
	7.4a.1 NgRanInferenceType <<enumeration>>

	7.5 Attribute definitions
	7.5.1 Attribute properties
	7.5.2 Constraints

	7.6 Common notifications
	7.6.1 Configuration notifications

	8 Service components
	8.0 General
	8.1 Lifecycle management operations for AI/ML management MnS

	9 Solution Set (SS)
	9.1 OpenAPI document for provisioning MnS
	9.2 OpenAPI document for AI/ML management

	10 Stage 3 definition for AI/ML Management
	10.1 RESTful HTTP-based solution set
	10.1.1 ML model training
	10.1.2 ML model testing
	10.1.3 AI/ML inference emulation
	10.1.4 ML model deployment
	10.1.5 AI/ML inference

	Annex A (informative): PlantUML source code for NRM class diagrams
	A.1 General
	A.2 PlantUML code for Figure 7.3a.1.1.1-1: NRM fragment for ML model training
	A.3 PlantUML code for Figure 7.3a.1.1.2-1: Inheritance Hierarchy for ML model training related NRMs
	A.4 PlantUML code for Figure 7.2a.1.2-1: Inheritance Hierarchy for common information models for AI/ML management
	A.5 PlantUML code for Figure 7.2a.1.1-1: Relationships for common information models for AI/ML management
	A.6 PlantUML code for Figure 7.3a.1.1.1-2: NRM fragment for ML model testing
	A.7 PlantUML code for Figure 7.3a.1.1.2-2: Inheritance Hierarchy for ML model testing related NRMs
	A.8 PlantUML code for Figure 7.3a.4.1.1-1: NRM fragment for ML update
	A.9 PlantUML code for Figure 7.3a.4.1.2-1: Inheritance Hierarchy for ML update related NRMs
	A.10 PlantUML code for Figure 7.3a.3.1.1-1: NRM fragment for ML model loading
	A.11 PlantUML code for Figure 7.3a.3.1.2-1: Inheritance Hierarchy for ML model loading related NRMs
	A.12 PlantUML code for Figure 7.3a.4.1.1-2: NRM fragment for AI/ML inference function
	A.13 PlantUML code for Figure 7.3a.4.1.2-2: Inheritance Hierarchy for AI/ML inference function
	A.14 PlantUML code for Figure 7.3a.2.1.1-1: NRM fragment for AI/ML inference emulation Control
	A.15 PlantUML code for Figure 7.3a.2.1.2-1: AI/ML inference emulation Inheritance Relations

	Annex B (normative): OpenAPI definition of the AI/ML NRM
	B.1 General
	B.2 Solution Set (SS) definitions
	B.2.1 OpenAPI document "TS28105_AiMlNrm.yaml"

	Annex C (informative): Change history
	History

