

ETSI TS 126 404 V19.0.0 (2025-10)

Digital cellular telecommunications system (Phase 2+) (GSM);
Universal Mobile Telecommunications System (UMTS);

LTE;
5G;

General audio codec audio processing functions;
Enhanced aacPlus general audio codec;

Enhanced aacPlus encoder Spectral Band Replication (SBR) part
(3GPP TS 26.404 version 19.0.0 Release 19)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)13GPP TS 26.404 version 19.0.0 Release 19

Reference
RTS/TSGS-0426404vj00

Keywords
5G,GSM,LTE,UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2025.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)23GPP TS 26.404 version 19.0.0 Release 19

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be
interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found at 3GPP to ETSI numbering cross-referencing.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://webapp.etsi.org/key/queryform.asp
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)33GPP TS 26.404 version 19.0.0 Release 19

Contents

Intellectual Property Rights .. 2

Legal Notice ... 2

Modal verbs terminology .. 2

Foreword ... 4

1 Scope .. 5

2 Normative references ... 5

3 Definitions, symbols and abbreviations ... 5

3.1 Definitions .. 5

3.2 Symbols .. 6

3.3 Abbreviations ... 7

4 Outline description ... 7

5 SBR encoder description .. 7

5.1 SBR tools overview .. 7

5.1.1 Enhanced aacPlus sdynchronization without parametric stereo.. 8

5.1.2 Enhanced aacPlus synchronisation with parametric stereo ... 9

5.1.3 SBR encoder modules overview ... 10

5.2 Analysis filterbank ... 12

5.3 Frequency band tables .. 15

5.4 Time / frequency grid generation ... 15

5.4.1 Transient detector ... 15

5.4.2 Frame splitter .. 16

5.4.3 Frame generator .. 17

5.5 Envelope estimation ... 21

5.6 Additional control parameters .. 22

5.6.1 Introduction... 22

5.6.2 Tonality estimation ... 23

5.6.3 Noise-floor estimation .. 24

5.6.4 Inverse filtering estimation ... 25

5.6.5 Additional sines estimation ... 26

5.7 Data quantization .. 29

5.8 Envelope and noise floor coding .. 30

6 Bitstream .. 32

Annex A (informative): Change history ... 34

History .. 35

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)43GPP TS 26.404 version 19.0.0 Release 19

Foreword
The present document describes the detailed mapping of the general audio service employing the aacPlus general audio
codec within the 3GPP system.

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying
change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 Indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the specification;

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)53GPP TS 26.404 version 19.0.0 Release 19

1 Scope
This Telecommunication Standard (TS) describes the SBR encoder part of the Enhanced aacPlus general audio codec
[3].

2 Normative references
This TS incorporates by dated and undated reference, provisions from other publications. These normative references
are cited in the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent
amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or
revision. For undated references, the latest edition of the publication referred to applies.

[1] ISO/IEC 14496-3:2001/Amd.1:2003, Bandwidth Extension.

[2] ISO/IEC 14496-3:2001/Amd.1:2003/DCOR1.

[3] 3GPP TS 26.401 : Enhanced aacPlus general audio codec; General Description

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of this TS, the following definitions apply:

band: (as in limiter band, noise floor band, etc.) a group of consecutive QMF subbands

chirp factor: the bandwidth expansion factor of the formants described by a LPC polynomial

Down Sampled SBR: the SBR Tool with a modified synthesis filterbank resulting in a down sampled output signal
with the same sample rate as the input signal to the SBR Tool. May be used whenever a lower
sample rate output is desired.

envelope scalefactor: an element representing the averaged energy of a signal over a region described by a
frequency band and a time segment

frequency band: interval in frequency, group of consecutive QMF subbands

frequency border: frequency band delimiter, expressed as a specific QMF subband

noise floor: a vector of noise floor scalefactors

noise floor scalefactor: an element associated with a region described by a frequency band and a time segment,
representing the ratio between the energy of the noise to be added to the envelope adjusted HF
generated signal and the energy of the same

patch: a number of adjoining QMF subbands moved to a different frequency location

SBR envelope: a vector of envelope scalefactors

SBR frame: time segment associated with one SBR extension data element

SBR range: the frequency range of the signal generated by the SBR algorithm

subband: a frequency range represented by one row in a QMF matrix, carrying a subsampled signal

time border: time segment delimiter, expressed as a specific time slot

time segment: interval in time, group of consecutive time slots

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)63GPP TS 26.404 version 19.0.0 Release 19

time / frequency grid: a description of SBR envelope time segments and associated frequency resolution tables as
well as description of noise floor time segments

time slot: finest resolution in time for SBR envelopes and noise floors. One time slot equals two subsamples
in the QMF domain

3.2 Symbols
For the purposes of this TS, the following symbols apply:

Description of variables defined in one sub clause and used in other subclasses.

ch is the current channel, and when used as index in vectors left channel is represented by ch= 0 and
right channel is represented ch= 1.

EOrig has LE columns where each column is of length NLow or NHigh depending on the frequency
resolution for each SBR envelope. The elements in EOrig contains the envelope scalefactors of the
original signal.

 has two column vectors containing the frequency border tables for low and high frequency

resolution.

 internal sampling frequency of the SBR Tool, twice the sampling frequency of the core coder

(after sampling frequency mapping, Table 4.55). The sampling frequency of the SBR enhanced
output signal is equal to the internal sampling frequency of the SBR Tool, unless the SBR Tool is
operated in downsampled mode. If the SBR Tool is operated in downsampled mode, the output
sampling frequency is equal to the sampling frequency of the core coder.

fMaster is of length NMaster+1 and contains QMF master frequency grouping information.

fTableHigh is of length NHigh+1 and contains frequency borders for high frequency resolution SBR envelopes.

fTableLow is of length NLow+1 and contains frequency borders for low frequency resolution SBR envelopes.

fTableNoise is of length NQ+1 and contains frequency borders used by noise floors.

kx the first QMF subband in the SBR range.

k0 the first QMF subband in the fMaster table.

LE number of SBR envelopes.

LQ number of noise floors.

M number of QMF subbands in the SBR range.

middleBorder points to a specific time border.

NL number of limiter bands.

NMaster number of frequency bands in the master frequency resolution table.

NQ number of noise floor bands.

 number of frequency bands for low and high frequency resolution.

numPatches a variable indicating the number of patches in the SBR range.

numTimeSlots number of SBR envelope time slots that exist within an AAC frame, 16 for a 1024 AAC frame .

 offset-values for the SBR envelope and noise floor data, when using coupled channels.

,TableLow TableHigh =  F f f

SBRFs

[,]Low HighN N=n

[]24,12=panOffset

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)73GPP TS 26.404 version 19.0.0 Release 19

patchBorders a vector containing the frequency borders of the patches.

patchNumSubbands a vector holding the number of subbands in every patch.

QOrig has LQ columns where each column is of length NQ and contains the noise floor scalefactors.

 frequency resolution for all SBR envelopes in the current SBR frame, zero for low resolution, one

for high resolution.

reset a variable in the encoder and the decoder set to one if certain bitstream elements have changed
from the previous SBR frame, otherwise set to zero.

tE is of length LE+1 and contains start and stop time borders for all SBR envelopes in the current
SBR frame.

tHFAdj offset for the envelope adjuster module.

tHFGen offset for the HF-generation module.

tQ is of length LQ+1 and contains start and stop time borders for all noise floors in the current SBR
frame.

3.3 Abbreviations
For the purposes of this TS, the following abbreviations apply.

NA Not Applicable

aacPlus Combination of MPEG-4 AAC and MPEG-4 Bandwidth extension (SBR)

Enhanced aacPlus Combination of MPEG-4 AAC, MPEG-4 Bandwidth extension (SBR) and MPEG-4
Parametric Stereo

QMF Quadrature Mirror Filter

SBR Spectral Band Replication

4 Outline description
This TS is structured as follows:

Section 5.1 gives an encoder overview description. Section 5.2 gives a detailed description of the filterbanks used in the
encoder. Section 5.3 gives a specification of the used frequency band tables. Section 5.4 gives a detailed description of
the time grid calculation and the transient detection. Section 5.5 gives a detailed description of the envelope estimation.
Section 5.6 gives a detailed description of the estimation of the additional control parameters. Section 5.7 gives detailed
description of the data quantisation. Section 5.8 gives a detailed description of the envelope coding.

5 SBR encoder description

5.1 SBR tools overview
The encoder part of the SBR tool estimates several parameters used by the high frequency reconstruction method on the
decoder side. In order to synchronise the SBR bitstream data with the AAC codec, the two different modes of operation
have to be considered; normal aacPlus operation and aacPlus parametric stereo operation. In the normal case, the AAC
encoder is responsible for downsampling of the input PCM signal, while the SBR encoder works in parallel on twice the
sampling frequency compared to the downsampled signal. When using parametric stereo aacPlus, the SBR tool is also

0 1[,...,]Lr r −=r

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)83GPP TS 26.404 version 19.0.0 Release 19

responsible for downsampling of the AAC coder signal. The two modes are outlined in the following sections and
illustrated in Figure 1 and Figure 2.

Figure 1 aacPlus block diagram

Figure 2 Parametric stereo aacPlus block diagram

5.1.1 Enhanced aacPlus sdynchronization without parametric stereo

The time domain input PCM signal is assumed to be stored in a buffer x, where 2048 new samples are added to the end
of the buffer every frame. Before adding new samples, all samples in the buffer must be left-shifted 2048 samples. The
buffersize amounts to 576 + 2048 + tinputDelay samples, where tinputDelay equals the total AAC delay, i.e. the delay for the
entire encoder – decoder chain, plus the SBR decoder buffer delay minus the SBR encoder buffer delay. All delays are
expressed in the SBR input sampling rate:

The PCM buffer x is fed to the analysis QMF bank, where subband filtering is performed. The window stride of the
QMF bank is illustrated in Figure 3a, which shows that the first window is applied from sample 0 to sample 639 on the
PCM buffer. The output from the analysis QMF bank: 32 subbands having 64 frequency channels each, is stored in the
matrix X (Figure 3b) as

A delay of qmfWriteOffset subband samples is hence introduced, making

The algorithmic buffer delay in the decoder is 6 subband samples, giving

The total AAC delay is the delay introduced by the 1024 point MDCT transform, the window switching look-ahead and
the delay introduced by the downsampling filter. If other delays are introduced these of course have to be accounted for.

SBR
Encoder

Down-
sampler

AAC
Encoder

B
it

st
re

am
P

ay
lo

ad
F

o
rm

at
te

rPCM signal
(L/R/M)

Coded Audio
Stream

Enhanced
SBR

Encoder

AAC
Encoder

B
it

st
re

am
P

ay
lo

ad
F

o
rm

at
te

r

PCM signal (L)

PCM signal (R)

Downsampled PCM
signal (M)

Coded Audio
Stream

inputDelayt totAACDelay SBRDelayDec SbrDelayEnc= + −

(,), 0 64, 0k l qmfWriteOffset k l numTimeSlots RATE+ ≤ < ≤ < ⋅X

32 64 2048sbrDelayEnc = ⋅ =

6 64 384SBRDelayDec = ⋅ =

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)93GPP TS 26.404 version 19.0.0 Release 19

Figure 3 aacPlus encoder buffers and synchronisation

5.1.2 Enhanced aacPlus synchronisation with parametric stereo

The time domain input PCM signal is assumed to be stored in a buffer x, where 2048 new samples are added to the end
of the buffer every frame. Before adding new samples, all samples in the buffer must be left-shifted 2048 samples. The
buffersize amounts to 576 + 2048. Note that two buffers are needed for stereo signals.

The PCM buffer is fed to the analysis QMF bank, where subband filtering is performed. The window stride of the QMF
bank is illustrated in Figure 4a, which shows that the first window is applied from sample 0 to sample 639 on the PCM
buffer. The output from the analysis QMF bank: 32 subbands having 64 frequency channels each, is stored in the matrix
H (Figure 4b) as

Two buffers are needed for stereo operation. The subband samples in the matrix H are fed to the hybrid filter bank (See
[5]) which introduces a delay of 6 subband samples. Parametric stereo parameters are extracted from the output of the
hybrid filterbank and downmixing of the stereo signal is performed. Subsequently, hybrid synthesis filtering is applied
to the modified hybrid subband samples.

The downmixed subband samples are fed to the subband matrix X (Figure 4c) as

whereafter "normal" SBR operation is undertaken. The subband samples are in parallell fed to the 32 channel synthesis
filter bank. The stride for the synthesis windowing is illustrated in Figure 4d. The output from the filterbank, having a
sampling frequency half of the SBR sampling frequency is forwarded to the AAC encoder.

After SBR processing of the current frame, an additional delay of one frame has to be introduced by delaying the SBR
frame data (Figure 4e).

To achieve synchronisation, the total AAC codec delay is bound to be 3200 samples, expressed in the SBR input
sampling frequency.

new input samples
0 1024 2048

0 numTimeSlots * RATE-1

PCM buffer

640 samples

2624

(b) subband sample buffer X

576

0

new complex QMF samples

qmfWriteOffset

RATE * numTimeSlots 2 * RATE * numTimeSlots - 1

tinputDelay

(a) QMF analysis windowing of input signal

(), 6 , 0 64, 0k l k l numTimeSlots RATE+ ≤ < ≤ < ×H

(), , 0 64, 0k l qmfWriteOffset k l numTimeSlots RATE+ ≤ < ≤ < ×X

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)103GPP TS 26.404 version 19.0.0 Release 19

Figure 4 Enhanced aacPlus stereo synchronisation

5.1.3 SBR encoder modules overview

The modules of the encoder part of the SBR tool are illustrated in the block diagram of Figure 5. The SBR tool operates
on discrete mono signals in general, but some of the modules in Figure 5 need simultaneous access to both the left and
right signal in case of stereo signals.

new input samples

time domain samples

0 1024 2048

0 512 1024

0 numTimeSlots * RATE-1

PCM buffer

AAC PCM signal

(a) QMF analysis windowing of input signal

(d) QMF downmix synthesis windowing

640 samples

320 samples

2624

(c) subband sample buffer X

576

new complex-valued QMF samples

0

0

new hybrid filtered QMF samples

RATE * numTimeSlots + 5

qmfWriteOffset

RATE * numTimeSlots 2 * RATE * numTimeSlots - 1

0 numTimeSlots * RATE-1

(b) hybrid filtering delay

(e) delay of SBR frame data

new coded SBR frame datacoded SBR data from last frame

6 subband
samples

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)113GPP TS 26.404 version 19.0.0 Release 19

- As outlined in 5.1.1 and 5.1.2, the time domain signal is first filtered by the 64 channel complex QMF bank
(section 5.2). The output from the analysis QMF bank: 32 subbands having 64 frequency channels each, is stored
in the matrix X as

Several modules use the output from the QMF bank;

- The transient detector operates on the matrix X starting at subband sample 0.

- The frame splitter operates on the matrix X starting at subband sample 0.

- The output from the transient detector and frame splitter is fed to the frame generator, where the time and
frequency resolutions for the current frame are determined.

- The Tonality detector operates on the matrix X starting at subband sample qmfWriteOffset.

- The control data from the Tonality detector and also the current time and frequency grid is forwarded to the unit
for Additional control parameters. In this module, the levels of the adaptive noise, inverse filtering and additional
sines are determined.

- The Envelope energy formatter operates on the matrix X starting from subband sample 0. The unit needs the
time frequency grid and the additional control data as inputs.

- The formatted envelope data is subsequently quantised and Huffman coded, before being fed to the Bitstream
multiplexer, where all SBR data is formatted and packed into a SBR frame. The SBR frame is transmitted as a
fill-element in the bitstream multiplex together with the AAC channel element for the current frame. In case of a
Parametric stereo SBR element, the current SBR frame is delayed one frame before entering the bitstream
multiplexer (Section 5.1.2).

(), , 0 64, 0k l qmfWriteOffset k l numTimeSlots RATE+ ≤ < ≤ < ⋅X

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)123GPP TS 26.404 version 19.0.0 Release 19

Figure 5 Sbr Encoder overview

5.2 Analysis filterbank
Subband filtering of the input signal is done by a 64-subband QMF bank. The output from the filterbank, i.e. the
subband samples, are complex-valued and thus oversampled by a factor two compared to a regular QMF bank. The
flowchart of this operation is given in Figure 6. The filtering comprises the following steps, where an array x consisting
of 640 time domain input samples are assumed. Higher indices into the array corresponds to older samples:

- Shift the samples in the array x by 64 positions. The oldest 64 samples are discarded and 64 new samples are
stored in positions 0 to 63.

- Multiply the samples of array x by window c. The window coefficients are found in Figure 6.

- Sum the samples according to the formula in the flowchart to create the 128-element array u.

- Build two arrays, r and i, from u by the operations

- Calculate 64 new complex-valued subband samples, X = R + i I, where i is the imaginary unit, by DCT and DST
type III transforming r and i according to

64
 c

h
A

n
al

ys
is

Q
M

F

Transient
detector

Frame
splitter

PCM signal
(L/R/M) Tonality

detector

T / F Grid
Generator

Additional
Control

Parameters

Envelope
Energy

Formatter

Quantiser and
T/F Huffman

Encoder

B
it

st
re

am
 M

u
lt

ip
le

xe
r

Coded SBR
Bitstream

() () ()
() () ()

127
,0 64

127

n u n u n
n

n u n u n

= − −
≤ <

= + −
r

i

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)133GPP TS 26.404 version 19.0.0 Release 19

Every loop in the flowchart produces 64 complex-valued subband samples, each representing the output from one
filterbank subband. For every SBR frame the filterbank will produce subband samples from
every filterbank subband, corresponding to a time domain signal of length samples. In the
flowchart X[k][l] corresponds to subband sample l in QMF subband k.

() ()

() ()

63

0

63

0

1
cos

64 2
,0 64

1
sin

64 2

n

n

k r n k n

k

k i n k n

π

π
=

=

  = +  
   ≤ <

  = +  
  





R

I

numTimeSlots RATE⋅
64numTimeSlots RATE⋅ ⋅

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)143GPP TS 26.404 version 19.0.0 Release 19

Figure 6: Flowchart of encoder analysis QMF bank

Shift input buffer x

For n = 639 down to 64 do
x[n] = x[n - 64]

Add new samples to input buffer x

For n = 63 down to 0 do
x[n] = next_input_audio_sample

Window by 640 coefficients to produce array Z

For n = 0 to 639 do
Z[n] = x[n] * c[n]

Summation to create array Y

For n = 0 to 127 do

 4

u[n] = Σ Z[n + j * 128]

 j=0

Start
(for QMF subsample l)

Done

Combinations to form r and i

For n = 0 to 63 do
r[n] = u[n] - u[127-n]
i[n] = u[n] + u[127-n]

Apply DCT and DST type III transforms to r and i and output result

For k = 0 to 63 do
 63

R[k] = Σ r[n] * cos(π / 64 * (k + 0.5) * n)
 n=0

 63

I[k] = Σ i[n] * sin(π / 64 * (k + 0.5) * n)
 n=0

X[k][l] = R[k] + i * I[k]

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)153GPP TS 26.404 version 19.0.0 Release 19

5.3 Frequency band tables

The SBR encoder use these different frequency band tables: , , and , which are defined

according to subclause 4.6.18.3.2 in [1]. The parameters needed to define all frequency band tables are transmitted in
the SBR bitstream header. For SBR header bitstream elements enabled with either bs_header_extra_1 or
bs_header_extra_1 there are default values and hence a transmission of these elements are only needed if they differ
from the default value. Default values are defined in subclause 4.5.2.8.1 in [1]. The SBR header parameters are
regarded as tuning parameters since they are strongly bitrate and sampling frequency dependant Throughout the tuning
work for 3GPP submission several bitrate and sampling frequency dependant tunings have been created and in the
reference c-code there are tunings available from 8kbit/s mono to 48 kbit/s stereo.

5.4 Time / frequency grid generation
An introduction to the time / frequency grid generation, including a brief discussion of the frame classes, is given in the
informal encoder description in [1], subclause 4.B.18.3. The present encoder implementation employs three tools for
the grid generation:

- The Transient Detector (TD)

- The Frame Splitter (FS)

- The Frame Generator (FG)

Those tools are described in the subsequent sections. Figure 7 shows the ranges of the frame classes and the transient
detector offset versus the indices used by the frame generator.

 |<------------tranPos---------->|
 |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|
 0 1 2 3 4 5 6 7 8 9 A B C D E F TD index (hexadecimal)
|<------------FIXFIX----------->|
|<------------FIXVAR----------->:<--->:
:<--->:<------VARFIX----------->|
:<--->:<------VARVAR----------->:<--->: Ybuffer
.. QMF slots
I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-Io|o|o|-|-|-|-|-|-|-|-|-|-|-|-|-I SBR slots
0 4 8 16 19 32 FG index
 I: nominal frame boundaries
 o: frame overlap region slots

Figure 7: The four frame classes and the transient detector range

5.4.1 Transient detector

The transient detection is performed according to the pseudo-code below. It operates on subband samples of one frame
length starting from sample 8. The output from the transient detector are the variables tranFlag and tranPos. The first is
a boolean indicating whether there is a transient in the processed frame, and the second specifies the position (in time
slots) for the on-set of the transient. The time / frequency grid generation module uses the output from the transient
detector and the stored transient detection output from the previous frame to perform its operations.

Masterf TableHighf TableLowf TableNoisef

()
() ()

()
()

0; 16;

32

16; 48;

0

for n n n

a n a n

for n n n

a n

= < + +

= +

= < + +

=

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)163GPP TS 26.404 version 19.0.0 Release 19

t and a are static channel-dependent arrays of length 64 that needs to be stored in between calls to the transient detector.
On start-up, all elements in both arrays must be set to zero.

5.4.2 Frame splitter

The frame splitting is accomplished according to the following algorithm. It is only active when the transient detector
has detected the absence of a transient in the current frame of interest, i.e. when tranFlag = 0). It operates on subband
samples of one and a half frame length starting from subband sample 0. The output from the frame splitter is the
variable splitFlag, which indicates whether the current frame (free from transients) should be divided into two
envelopes of equal size.

()

() { }
()

()

63
2

16

263
2

16

2 2

0; 64;

1
(,)

48

1
(,)

47

128000, 0.66 () 0.34

1; 4;

1
(,2) (,2 1)

2 2 2

1
(,2

2

n

n

for i i i

m X i n

temp m X i n

t i MAX t i temp

for n = 16;n < 48;n++

for d d d

n d n d
L X i INT X i INT

n d
R X i INT

=

=

= < + +

=

 = −
 

= ⋅ + ⋅

= < + +

 − −    = ⋅ + ⋅ +     
     

+= ⋅





()()

() () ()
()

2 2

) (,2 1)
2 2

n d
X i INT

if R L t i

R L t i
a n a n

t i

 +    + ⋅ +     
     

− >

− −
= +

()

() () ()

8; 40;

9
1 1 203.125

10

8

2

1

0

0

for n n n

if a n a n AND a n

n
tranPos INT

tranFlag

break

else

tranPos

tranFlag

= < + +

 < − − > 
 

− =  
 

=

=
=

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)173GPP TS 26.404 version 19.0.0 Release 19

The variable is a static channel-dependent variable that must be stored in between calls to the frame splitting

module. This variable should be set to zero on start-up.

5.4.3 Frame generator

The frame generator creates the time/frequency grid for one SBR frame. Input signals are provided by the transient
detector and the frame splitter. The frame generator produces two outputs: The sbr_grid() portion of the bitstream, and
an internal representation of the time/frequency grid to be used by the envelope and noise floor estimators, see Figure 5.

When no transients are present (i.e. tranFlag = 0), FIXFIX class frames are used. The frame splitter decides whether to
use one or two envelopes in the FIXFIX frames (splitFlag = 0 or splitFlag = 1 respectively). "Sparse" transients
(separated by one or more frames with tranFlag = 0) are coded by means of FIXVAR-VARFIX sequences. "Tight"
transients (tranFlag = 1 for two or more consecutive frames) are handeled by inserting VARVAR class frames.

As most transients are "sparse", the frame generator prepares a grid for a FIXVAR-VARFIX pair upon detection of a
transient after a sequence of FIXFIX frames. The present frame is encoded using the FIXVAR portion, and the
VARFIX grid is stored. At the next call of the generator it is known whether the transient actually is "sparse" or not. If
'yes', the already calculated and stored VARFIX grid is used. If 'no', a new grid, meeting the requirements of the new
transient, as well as those of the previous one, is calculated, whereby a VARVAR class frame is used.

The operation of the frame generator is further described below by means of pseudo-code, where the syntax

[out0, out1, ..., outm-1] = function(in0, in1, ..., inn-1) is used.

FrameGenerator(tranFlag, tranPos, splitFlag)
{
 static frameClassOld; // frameClass used for previous frame
 static G1; // grid designed during previous call

 [frameClass, frameClassOld] = calcFrameClass(frameClassOld, tranFlag);

 if (tranFlag)

() () ()
() ()

-2

sbrStartBand-1 47
2

0 16

116(1) 1
2

16

 7.5 5 0.01

(,)

,
, , , 0 , 0 1

1,

h

l

currlow
i n

kl
l

high
j l i k h

currhig

totalBitRate frameSize
splitThr e

codecBitrate sampleFreq

e i n

k p HI
e p,l i j p HI l

k p HI

e

= =

−+ −

= =

 
= ⋅ − ⋅ − 

 

=

 == ≤ < ≤ < = +

 

 

X

F
X n

F

() ()

() ()
() ()

() () ()

()

() ()

0 0

()

0

,0 ,1

2
2

,1 8 6
log , 0

,0 8 6

,0 ,1 16 6

1

HI HI

h high high
p p

currlow prevlow
tot currhigh

high

high

HI
high high

p tot

e p e p

e e
e e

e p e
dvec p ABS p HI

e p e

e p e p e
d dvec p

e

if d splitThr

splitFlag

e

= =

=

= +

+
= + +

  + = ≤ <   +   

+ +
=

>
=

 



n n

n

n

0

prevlow currlow

lse

splitFlag

e e

=
=

prevLowe

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)183GPP TS 26.404 version 19.0.0 Release 19

 GP = fillFrameTran(tranPos); // load transient borders into GP

 switch (frameClass) {
 case FIXFIX:
 BS = calcSbrGrid(FIXFIX, dc, splitFlag);
 break;
 case FIXVAR:
 if (tranPos > 8)
 GP = fillFramePre(GP); // append borders before transient borders
 if (tranPos < 10)
 GP = fillFramePost(GP); // append borders after transient borders
 [G0, G1] = splitAndStore(GP); // split GP into two grids, G0 and G1
 BS = calcSbrGrid(FIXVAR, G0, dc); // calc BS using G0
 break;
 case VARFIX:
 BS = calcSbrGrid(VARFIX, G1, dc); // calc BS using G1 (from previous call)
 break;
 case VARVAR:
 GP = fillFrameInter(G1, GP); // resolve conflicts and merge G1 and GP
 if (tranPos < 10)
 GP = fillFramePost(GP); // append fill-borders after tran-borders in GP
 [G0, G1] = splitAndStore(GP); // split GP into two grids, G0 and G1
 BS = calcSbrGrid(VARVAR, G0, dc); // calc BS using newly designed G0
 break;
 }

 return [BS, FI = decodeSbrGrid(BS)];// decode BS into FI
}

The following pseudo-variables are defined:

GP = "Grid-Pair":
- GP.aBorders: array holding envelope borders of two consecutive frames
- GP.aFreqRes: array holding envelope frequency resolutions of two consecutive frames
- GP.iTran : index of transient leading border

Gi = "Grid instance i":
- Gi.aBorders: array holding envelope borders of one frame
- Gi.aFreqRes: array holding envelope frequency resolutions of one frame
- Gi.iTran : index of transient leading border of one frame

BS = "Bit-Stream":
- sbr_grid() as defined in [1] Subclause 4.4.2.8, Table 4.61A

FI = "Frame-Info":
- FI.t_E: tE , envelope borders as defined in 3.2
- FI.r : 0 1[,...,]Lr r −=r , envelope frequency resolutions as defined in 3.2
- FI.t_Q: tQ , noise floor borders as defined in 3.2
- FI.l_A: lA , index of border where the preceding envelope is to be "shortened"

the symbolic constant,

dc: don't care

and the operations

cat(a, b): concatenate vectors a & b
length(a): number of elements of vector a
fliplr(a): reverse order of elements of vector a
ones(a) : generate vector of length a, were all elements are 1

The internal functions are defined below:

calcFrameClass (frameClassOld, tranFlag)
{
 switch (frameClassOld) {
 case FIXFIX:
 if (tranFlag)

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)193GPP TS 26.404 version 19.0.0 Release 19

 frameClass = FIXVAR;// stationary to transient transition
 else
 frameClass = FIXFIX;// when no transients are present, FIXFIX frames are used
 break;
 case FIXVAR:
 if (tranFlag)
 frameClass = VARVAR;// "tight" transients are handeled by VARVAR frames
 else
 frameClass = VARFIX;// "sparse" transients are handeled by [FIXVAR, VARFIX] pairs
 break;
 case VARFIX:
 if (tranFlag)
 frameClass = FIXVAR;
 else
 frameClass = FIXFIX;// transient to stationary transition
 break;
 case VARVAR:
 if (tranFlag)
 frameClass = VARVAR;// "tight" transients are handeled by VARVAR frames
 else
 frameClass = VARFIX;
 break;
 }

 frameClassOld = frameClass;

 return [frameClass, frameClassOld];
}

fillFrameTran(tranPos)
{
 GP.aBorders = {tranPos + 4, tranPos + 6, tranPos + 10};
 GP.aFreqRes = {0, 0, 1};
 GP.iTran = 0;
 return GP;
}

fillFramePre(GP)
{
 aBordersFill = fillHelper(GP.aBorders[0], 8);
 GP.aBorders = cat(fliplr(aBordersFill), GP.aBorders);
 GP.aFreqRes = cat(ones(length(aBordersFill)), GP.aFreqRes);
 GP.iTran += length(aBordersFill);
 return GP;
}

fillFramePost(GP, tranPos)
{
 if (tranPos < 4)
 maxStep = 6;
 else if (tranPos == 4 || tranPos == 5)
 maxStep = 4;
 else
 maxStep = 8;
 aBordersFill = fillHelper((32 - GP.aBorders[length(GP.aBorders) - 1], maxStep);
 GP.aBorders = cat(GP.aBorders, aBordersFill);
 GP.aFreqRes = cat(GP.aFreqRes, ones(length(aBordersFill)));
 return GP;
}

splitAndStore(GP)
{
 iSplit = 0;
 while (GP.aBorders[iSplit] < 16)
 iSplit++;
 for (i = 0; i <= iSplit; i++) {
 G0.aBorders[i] = GP.aBorders[i];
 G0.aFreqRes[i] = GP.aFreqRes[i];
 }
 G0.iTran = GP.iTran;
 for (j = 0, i = iSplit; i < length(GP.aBorders); i++, j++) {

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)203GPP TS 26.404 version 19.0.0 Release 19

 G1.aBorders[j] = GP.aBorders[i] - 16;
 G1.aFreqRes[j] = GP.aFreqRes[i];
 }
 G1.iTran = GP.iTran - iSplit;
}

As evident from the pseudo code, every transient is initially processed by fillFrameTran() by inserting one border at the
onset of the transient, and two "decay" borders after the onset at the distances 2 and 6 slots from the first border
respectively. The frequency resolutions of the two corresponding envelopes are 'low', whereas all other envelopes use
'high' resolution. Additional borders are inserted before said borders by fillFramePre() and fillFramePost(), such that no
envelope exceeds the length 12 slots. The function fillHelper(A, B) subdivides the distance A by calculating segments
quantized to the lengths {2, 4, 6, 8} slots while limiting the segment length to B. In splitAndStore() the borders are
separated into two groups, each associated with one frame. The above procedures are illustrated by Figure 8.

 tranFlag = 1
 tranPos = 9
 <T>
 |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|
 0 1 2 3 4 5 6 7 8 9 A B C D E F TD index
 *
 |<-----6----|<-2|<--4---|-----6---->|
 N | N
|<--------- Frame n: FIXVAR ----:--3->|<-- Frame n+1: VARFIX -->|
.. QMF slots
I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-Io|o|o|-|-|-|-|-|-|-|-|-|-|-|-|-I SBR slots
0 7 13 15 19 25 32 FG index

 I: nominal frame boundaries
 o: frame overlap region slots
 *: border pointed to by bs_pointer
 N: noise floor middle border

Figure 8: Example of isolated transient

In Figure 8. the borders at index 7, 13, 15 and 19 are used for the present FIXVAR class frame. Conversion into
sbr_grid() bitstream elements is performed in calcSbrGrid(). The methods of the four classes for conversion of borders
and frequency resolutions are implicitely defined by the bitstream and decoding equations in [1], subclause 4.4.2.8
(Table 4.61A) and 4.6.18.3, and are hence not described here. In the example bs_var_bord_1 = 3, bs_num_rel_1 = 3,
the relative borders have the lengths 4, 2 and 6 ("right to left"), and the frequency resolutions are 0, 0, 1, 1 ("right to
left"). The bs_pointer is set to point to the transient leading border, i.e. the value is 3 since FIXVAR borders are also
indexed "right to left", starting from 1 (0 signals that no transient leading border is present within the frame). The
border at index 19 must be followed up in the next frame by a leading border at index 3. The border at 25, however,
may or may not yield a border at 9, since a transient is possible in frame n + 1. If the transient actually is "sparse", the
VARFIX bitstream comprises of bs_var_bord_0 = 3, bs_num_rel_0 = 1, one relative border of length 6, bs_pointer = 0
and frequency resolutions 1, 1.

Figure 9. gives an example of "tight" transients, and also serves to outline the functionality of fillFrameInter(). Here G1
contains borders at index 1 and 7, but a transient is located already at index 6. In fillFrameInter() the preliminary border
at 7 is simply removed, and the rest of the borders for the present frame are taken from GP. (If on the other hand the
distance between the last border in G1 and the first border in GP exceeds 12, the segment inbetween said borders is
subdivided analogously to the procedures in fillFramePre().) Hereafter GP is finalized and split in the same manner as
described above, whereafter G0 is converted into a bitstream using the VARVAR method of calcSbrGrid(). Hereby the
leading border yields bs_var_bord_0 = 1 and the trailing border bs_var_bord_1 = 2. Clearly bs_num_rel_0 = 0 and
bs_num_rel_1 = 3. Figure 9. also shows that fillFramePost() has inserted a border at 18, thereby meeting the
requirement that one border is present within the interval [16, 19]. This concludes the description of how to generate
BS.

 tranFlag = 1
 tranPos = 2
 <T>
 I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-I
 0 1 2 3 4 5 6 7 8 9 A B C D E F TD index

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)213GPP TS 26.404 version 19.0.0 Release 19

 *
 |<r2|<--r4--|<----6-----|-----6---->|
:1| | |
:1|<------- Frame n: VARVAR ----:2->|<--- Frame n+1: VARFIX --->|
.. QMF slots
I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-Io|o|oI-|-|-|-|-|-|-|-|-|-|-|-|-I SBR slots
0 1 6 7 8 12 18 24 32 FG index

Figure 9: Example of tight transients

The second output of the frame generator, FI, comprises of tE, r, tQ and lA. Since those signals are equivalent to their
counterparts at the decoder side, the relation between FI and BS is fully defined by the decoding equations in MPEG-4.
Thus, as the last step in the frame generator, the decodeSbrGrid() function parses and decodes the now available
sbr_grid() portion of the bitstream in accordance with the description in the MPEG-4 standard, which shall not be
repeated here.

5.5 Envelope estimation
By using the time/frequency grid created by the framing generator and the transient information from the transient
detector, the QMF bank subband matrix is grouped in time and frequency into envelope scalefactorbands. For each
scalefactorband the squared average energy is calculated and stored in the energy matrix E according to the recursion
below.

If a missing harmonic has been detected in a certain scalefactorband the squared energy for that scalefatorband is
calculated as the maximum energy instead of average energy. Since the missing harmonics detection and signalling
always operate using the recursion shown below.

()

()()()
() () ()
() () ()

()()
()()

 0

1 , 1
 =

0 ,

 0

1 , 0, , 1, 0, 1

 = 1 , 0, , 1, 0, 2

0 ,

,

1,

E

A
l

k

l k

h

for l ;l < L ;l ++

l l
temp

otherwise

for p ; p < l ; p++

p l HI HI HI

temp p l LO LO LO

otherwise

k p l temp

k p l

=

= −



=

 = = − >
 = = − >



= +

= +

n r

r F F

r F F

F r

F r

()
()

()

()

() ()()() ()

1 1 1
2

 ,

 ,
1

E h

E l

RATE l k

i RATE l j k

E l E h l

j i

p l
RATE l temp l k k

⋅ + − −

= ⋅ ==
⋅ + − − ⋅ −

 
t

t

X

E
t t

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)223GPP TS 26.404 version 19.0.0 Release 19

For stereo with no channel coupling, the energy for every channel is calculated as in the mono case shown above. In the
case of stereo and coupling the energy is calculated according to:

5.6 Additional control parameters

5.6.1 Introduction

In order to achieve optimal results, given the HF generator used in the decoder, several additional parameters apart from
the spectral envelope are assessed. The noise floor is estimated for the current SBR frame. It is defined as the ratio
between the energy of the noise that should be added to a particular frequency band, in order to obtain a similar tonal to
noise ratio to that of the original signal, and the energy of the HF generated signal for that frequency band.

The noise floor is estimated once or twice per SBR frame dependent on the number of spectral envelopes estimated for
the SBR frame (indicated by). The frequency resolution for the noise floor scalefactor is calculated according to the

same algorithm subsequently used in the decoder and described in [1] subclause 4.6.18.3. The start and stop time
borders of the different noise floors are given from the time grid.

The level of the inverse filtering applied in the decoder is estimated for different frequency ranges with the same
frequency resolution as used for the noise floor scalefactor estimation. The estimation algorithm compares the tonality
of the original and the tonality that will be attained after the HF generator in the decoder. The ratio between the two is
mapped to four different inverse filtering levels, off, low, mid and high. These levels corresponds to different chirp
factors in the HF generator as outlined in [1] subclause 4.6.18.5. Moreover, the encoder assesses where a strong tonal
component will be missing after the HF generation in the decoder. This detection is done on the highest frequency
resolution given by the high frequency resolution table, fTableHigh. The level of the tonal component is implicitly coded
by the SBR envelope and the noise floor scalefactors, and thus only the frequency needs to be coded.

()

()()()
() () ()
() () ()

()()
()()

for 0; ;

1 , 1
 =

0 ,

 for 0; ;

1 , 0, , 1, 0, 1

 = 1 , 0, , 1, 0, 2

0 ,

,

1,

E

A
l

k

l k

h

l l L l ++

l l
temp

otherwise

p p l p

p l HI HI HI

temp p l LO LO LO

otherwise

k p l temp

k p l

= <

= −



= < + +

 = = − >
 = = − >



= +

= +

n r

r F F

r F F

F r

F r

()

()
()

()

()

() ()()()
() ()

1 1
2

0,398107267 , 1

0,5 ,

 ; ;

,

1

 ,

E

E

h l

l h

RATE l

i RATE l

temp l

E l E

temp

k k
boostcomp

otherwise

for k k k < k k

k i

k k boostcomp
RATE l temp l

p l MAX

⋅ + −

= ⋅

− >
= 


= + +

− = ⋅
⋅ + − −

=


t

t

X

e
t t

E e

() () () ()(), ,
, , 0 ,0

2
Left Right

CouplingLeft E

p l p l
p l p l l L

+
= ≤ < ≤ <

E E
E n r

() ()
() ()(),

, , 0 ,0
,

Left
CouplingRight E

Right

p l
p l p l l L

p l

ε
ε

+
= ≤ < ≤ <

+
E

E n r
E

Qt

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)233GPP TS 26.404 version 19.0.0 Release 19

5.6.2 Tonality estimation
The following detection modules base their output on a tonality estimate calculated in the tonality estimation module:

- Noise-floor estimation

- Inverse filtering estimation

- Additional sines estimation

The tonality is derived from the prediction gain of a second order linear prediction performed in every QMF subband.
The LPC is calculated using the covariance method, and for every frame two tonality estimates are calculated for every
subband.

In the following, X is the matrix holding the most recently available complex QMF subband samples. The tonality
values are calculated and stored in the T and Tsbr matrices. These also contain buffered values from previous frames.
The Tsbr values are obtained from the T values by patching the tonality values similarly to the patching of the subband
channels in the high frequency reconstruction modules in the decoder.

Since the subband signals are complex valued, this results in complex filter coefficients for the linear prediction. The
prediction filter coefficients are obtained from the covariance method. The covariance matrix elements for every
tonality estimate calculated are:

where k is the subband index, and l is the tonality estimate.

Based on the covariance elements the coefficients and used to calculate the tonality estimates for the

subbands are calculated as:

,

,

.

where εInv is the relaxation parameter (εInv = 1E-6).

The tonality values are calculated based on the above coefficients according to:

The tonality values are patched similarly to the patching of the QMF subbands in the decoder during high frequency
reconstruction. Hence, it is possible to compare tonality of a "simulated" SBR signal and the original signal on the
encoder side. The patch used is built in accordance to the flowchart in Figure 4.46, subclause 4.6.18.6.3 in [1], where

() () ()
116 1 1

*
,

2 0 0

0 3
, , 16 , 16 ,

1 3

xk M

k l
n k l

i
i j k n i l k n j l

j
φ

+ −−

= = =

≤ <
= − + ⋅ ⋅ − + ⋅  ≤ <
  X X

()0
l kα ()1

l kα

() () () () 2

, , ,

1
d 2,2 1,1 1,2

1
l

k l k l k l
Inv

k φ φ φ
ε

= ⋅ −
+

()
() () () ()

() ()

()

, , , ,

1

0,1 1,2 0,2 1,1
, 0

0 , 0

k l k l k l k l l
ll

l

d k
d kk

d k

φ φ φ φ
α

 ⋅ − ⋅
≠= 

 =

()
() () ()

() ()

()

*
, 1 ,

,
,0

,

0,1 1,2
, 1,1 0

1,1

0 , 1,1 0

l
k l k l

k ll
k l

k l

k

k

φ α φ
φ

φα
φ

 + ⋅
− ≠= 

 =

()
() () () (){ }

(){ } () () () (){ }
* *

0 , 1 ,

* *
, 0 , 1 ,

0,1 0,2
, 2

0,0 0,1 0,2

l l
k l k l

l l
k l k l k l

re k k
k l

re re k k

α φ α φ
φ α φ α φ

⋅ + ⋅
+ =

− ⋅ + ⋅
T

()
(){ }

1

,
0

0,0
2

N

k l
k

re
l

N

φ
−

=+ =


Nrg

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)243GPP TS 26.404 version 19.0.0 Release 19

the output variable numPatches is an integer value specifying the number of patches. patchStartSubband and
patchNumSubbands are vectors holding the data output from the patch decision algorithm.

Hence, the tonality values for the SBR part is obtained according to:

for .

5.6.3 Noise-floor estimation

The noise floor estimation module estimates the amount of noise relative to the energy of the patched SBR signal that
should be added on the decoder side in order to obtain a tonal to noise ratio similar to that of the original. The
estimation is based on the tonality values in the T and Tsbr matrices, and the estimation is done for the number of
frequency bands indicated by NQ , and the frequency ranges defined in fTableNoise for the time segments defined by .

The algorithm below is outlined for noise floor band nfBand for noise floor nfEnv and should be applied for all noise-
floor bands, and noise floors in the present frame. If the number of spectral envelopes for the present frame is larger
than one, two noise floors will be estimated, otherwise one. For the case of two noise floors startIndex will be zero for
the first noise-floor and one for the second noise-floor, while stopIndex will be one for the first noise-floor, and two for
the second noise-floor. In case of only one noise-floor, the startIndex will be zero and the stopIndex will be one.

The noise floor is calculated by averaging of the tonality values for the given time/frequency range, or by choosing the
maximum tonality value. The latter is used if the additional sine detection algorithm detects that a sine should be added
on the decoder side for frequency band that is included in the present noise floor frequency band.

Hence, for every noise floor band the tonality values are calculated according to:

or, if a sine will be added at the decoder side as indicated by "missingHarmonicsFlag", according to:

The tonality values Tavg and TavgSbr are subsequently used to calculate the actual noise-floor value, according to:

 ,

if the additional sine detection has indicated that there is a sinusoidal missing in the present noise-floor band, or the
inverse filtering level for the present noise-floor band is equal or below INVF_LEVEL_MID. If neither of these cases
are true, the noise-floor value is calculated according to:

() (), 2 , 2k l p l+ = +Tsbr T

()

()

1

0

i

x
q

k k x q

p i x

−

=

 = + +

 = +

patchNumSubbands

patchStartSubband

()0 , 0 , 0 2x i i numPatches l≤ < ≤ < ≤ <patchNumSubbands

Qt

()
()

()

()

()

() ()() () ()()

1 -1 1 -1

,

1 - 1 -

Q TableNoise

Q TableNoise

nfEnv nfBand

l nfEnv k nfBand

Q Q TableNoise TableNoise

k l

Tavg
nfEnv nfEnv nfBand nfBand

+ +

= ==
+ ⋅ +

 
t f

t f

T

t t f f

()
()

()

()

()

() ()() () ()()

1 -1 1 -1

,

1 - 1 -

Q TableNoise

Q TableNoise

nfEnv nfBand

l nfEnv k nfBand

Q Q TableNoise TableNoise

k l

TavgSbr
nfEnv nfEnv nfBand nfBand

+ +

= ==
+ ⋅ +

 
t f

t f

Tsbr

t t f f

()()() () () () ()max max , ,1 , 1 , 1TableNoise TableNoise Q QTavg k l nfBand k nfBand nfEnv l nfEnv= ≤ < + ≤ < +T f f t t

()()() () () () ()max max , ,1 , 1 , 1TableNoise TableNoise Q QTavgSbr k l nfBand k nfBand nfEnv l nfEnv= ≤ < + ≤ < +Tsbr f f t t

() 1
, min ,nfBand nfEnv nfOffset nfMaxLevel

Tavg

 
= ⋅ 

 
nf

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)253GPP TS 26.404 version 19.0.0 Release 19

The noise-floor values are smoothed by applying a LP filter over time using previous noise floor values. Hence for
every nfBand, the smoothing is done according to:

where nfPrev are the nf values from the previous estimates (where the most recent estimates is placed at the end of the
vector, i.e. position 2), and h is defined as:

5.6.4 Inverse filtering estimation

The inverse filtering detection is done on the frequency bands indicated by fTableNoise . For every band a tonality value is
calculated from the original input signal and the "patched" SBR signal. The values are mapped to a specific regions
given the "Region borders" in the detectorParamsAAC struct, and the appropriate inverse filtering value is given from
the "Region space" also in detectorParamsAAC.

typedef enum
{
 INVF_OFF = 0,
 INVF_LOW_LEVEL,
 INVF_MID_LEVEL,
 INVF_HIGH_LEVEL
}
INVF_MODE;

static const DETECTOR_PARAMETERS detectorParamsAAC = {
 { 1.0f, 10.0f, 14.0f, 19.0f}, /* Region borders SBR. */
 { 0.0f, 3.0f, 7.0f, 10.0f}, /* Region borders Orig. */
 {25.0f, 30.0f, 35.0f, 40.0f}, /* Region borders Nrg. */
 4, /* Number of borders SBR. */
 4, /* Number of borders orig. */
 4, /* Number of borders Nrg. */
 1.0f, /* Delta value for hysteresis. */
 { /* Region space. */
 {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */
 {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */
 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /*regionSbr*/
 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL,INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL,INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
 },/*------------------------ regionOrig ---------------------------------*/
 { /* Region space transient. */
 {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
 {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
 {INVF_HIGH_LEVEL,INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /*regionSbr*/
 {INVF_HIGH_LEVEL,INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
 {INVF_HIGH_LEVEL,INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
 },/*------------------------ regionOrig ---------------------------------*/
 {-4, -3, -2, -1, 0} /*Reduction factor of the inverse filtering for low energies.*/
};
static const float hysteresis = 1.0f; /* Delta value for hysteresis. */

The parameters Tavg and TavgSbr are calculated for every inverse filtering band by averaging the tonality values in the
T and Tsbr matrices over the frequency regions indicated by fTableNoise according to (outlined for band invBand):

()
max 1,0.25

, min ,

TavgSbr

Tavg
nfBand nfEnv nfOffset nfMaxLevel

Tavg

  ⋅  
  = ⋅

 
 
 

nf

() () () () ()
2

0

, , 3 ,prev
i

nfBand nfEnv nfBand nfEnv i nfBand i
=

= ⋅ + ⋅Q nf h h nf

[]0.05857864376269, 0.2, 0.34142135623731, 0.4=h

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)263GPP TS 26.404 version 19.0.0 Release 19

The values are subsequently filtered by a two tap FIR filter according to:

where the and are the Tavg and TavgSbr from the previous frame.

The avgNrg parameter is similarly calculated:

The region borders for the SBR tonality and the original tonality is modified given previous values. The modification is
done by adding the "hysteresis" value to the upper border of the previous region, and subtracting the hysteresis value
from the lower border of the previous region. This gives the region-borders used for the detection of the present band in
the present frame. The following pseudo-code outlines how the hysteresis is applied, where the quantSteps are the
region border given in detectorParamsAAC.

 if(prevRegion < numRegions)
 quantStepsTmp[prevRegion] = quantSteps[prevRegion] + hysteresis;
 if(prevRegion > 0)
 quantStepsTmp[prevRegion - 1] = quantSteps[prevRegion - 1] - hysteresis;

The region corresponding to the filtered tonality values for the original and the SBR signal is obtained by finding the
region that has an upper border higher than the present value, and a lower border lower or equal to the present value.
This means that if the present value is smaller than the first value in the border vector, the region returned will be zero,
and so on.

The regions for the original and the SBR signal are used to index the region space as indicated by the
detectorParamsAAC, and the inverse filtering level value corresponding to the element pointed out by the region
indexes is returned. Different region spaces are used for frames where a transient is detected.

Subsequently an energy compensation is applied. The energy-value calculated from the auto correlation is mapped to a
region defined in detectorParamsAAC. The index value is subtracted from the inverse filtering level obtained from the
region space, and this gives the final inverse filtering level stored in the bs_inv_filt vector.

5.6.5 Additional sines estimation

The additional sines estimation module, estimates for which frequency bands a strong sinusoidal component will be
missing after high frequency reconstruction in the decoder. The result of the detection may not include a detection of a
new siusoidal component unless the frame contains a transient, as defined by the transient detector, or unless the
previous frame contained a transient positioned less than nine QMF slots from the trailing border of the previous frame.
Such a detection will be removed.

The detection algorithm firstly calculates the input data upon which detection is done, based on the T and Tsbr values.

()
()

()
()

() ()()

1 -1

,0 ,1

2 1 -

TableNoise

TableNoise

invBand

k invBand

TableNoise TableNoise

k k

Tavg
invBand invBand

+

=

+
=

⋅ +


f

f

T T

f f

()
()

()
()

() ()()

1 -1

,0 ,1

2 1 -

TableNoise

TableNoise

invBand

k invBand

TableNoise TableNoise

k k

TavgSbr
invBand invBand

+

=

+
=

⋅ +


f

f

Tsbr Tsbr

f f

0.666666 0.333333Smooth PrevTavg Tavg Tavg= ⋅ + ⋅

0.666666 0.333333Smooth PrevTavgSbr TavgSbr TavgSbr= ⋅ + ⋅

PrevTavg PrevTavgSbr

() ()0 1

2
avgNrg

+
=

Nrg Nrg

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)273GPP TS 26.404 version 19.0.0 Release 19

The detection system is based on using guide-vectors holding information on previous detections. There are two
different guide-vectors:

- guidevectorDiff (has the frequency resolution of the scalefactorbands)

- guidevectorOrig (has the frequency resolution of the QMF)

For every frame two tonality estimates in time are available, and hence two estimates in time for the diff, sfm, sfmsbr
parameters are available as well. For every estimate a detection is done using the guide-vectors from the previous
detection. The results from the separate detections are finally merged into one decision reflecting the current frame

The detection algorithm is applied for every estimate, using guide-vectors from the previous detection and producing a
detection vector and new guide-vectors. The algorithm is outlined below for tonality estimate l0.

Firstly, for every scalefactor band the difference signal is compared to a threshold thresTemp. The threshold is
calculated based on the guide-vectors and a decay-factor according to:

 thresTemp = guideVectorDiff[i][l0] ?

 max(decayGuideDiff*guideVectorDiff[i][l0],thresHoldDiffGuide):
 thresHoldDiff;
 thresTemp = min(thresTemp, thresHoldDiff);

If the difference diff for a scalefactor band is higher than the threshold, the detection vector is set to one for this
scalefactor band, and the new guide vector is given the current difference value for the present scalefactor band. If the
difference in tonality is lower than the threshold, but the guide vector indicated that present scale factor band had a
detected missing sine in for the previous tonality estimate, the guide vector "guideVectorOrig", is assigned the
thresHoldToneGuide value, in order to track the decay of the original tone instead of the difference signal. This is
outlined for scalefactor band i, in the following pseudo-code:

 if(diff[i][l0] > thresTemp){
 detVec[i][l0] = 1;
 guideVectorDiff[i][l0+1] = diff[i][l0];
 }
 else{
 if(guideVectorDiff[i]){
 guideVectorOrig[i][l0] = thresHoldToneGuide;
 }
 }

A second detection is done for all scalefactor bands where guideVectorOrig is not zero. The threshold used is calculated
according to:

 thresOrig = max(guideVectorOrig[i][l0]*decayGuideOrig,thresHoldToneGuide);
 thresOrig = min(thresOrig,thresHoldTone);

() ()()
()()() () ()

max ,
, , 2 4, 1 ,0

max max , ,1
High High

k l
m l l m k m m Nsfb

k l
= ≤ < ≤ < + ≤ <

T
diff f f

Tsbr

()
()

()

()

() ()() ()
()

() () ()

1 1

1
1 1 1

,

, , 2 4,0

1 ,

High

High

High High High

High

m

k m

m m m

High High
k m

k l

m l l m Nsfb

m m k l

+ −

=

+ − + −

=

= ≤ < ≤ <
 

+ − ⋅  
 
 



∏

f

f

f f f

f

T

sfm

f f T

()
()

()

()

() ()() ()
()

() () ()

1 1

1
1 1 1

,

, , 2 4,0

1 ,

High

High

High High High

High

m

k m

m m m

High High
k m

k l

m l l m Nsfb

m m k l

+ −

=

+ − + −

=

= ≤ < ≤ <
 

+ − ⋅  
 
 



∏

f

f

f f f

f

Tsbr

sfmSbr

f f Tsbr

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)283GPP TS 26.404 version 19.0.0 Release 19

If the tonality value in T for any QMF subband within the a scalefactor band is above the threshold the detection vector
element for this subband is set to one, as well as the new guide vector. The following pseudo-code outlines the second
round of detection, for scalefactor band i, where ll and lu are the lower and upper QMF subband borders for the present
scalefactor band:

 if(guideVectorOrig[i][l0]){
 for(j= ll;j<lu;j++){
 if(T[j][l0] > thresOrig){
 detVec[i][l0] = 1;
 guideVectorOrig[i][l0+1] = T[j][l0];
 }
 }
 }

Finally, for every scalefactor band, a detection is done in order to make sure that one single strong sinusoidal in the
original signal is not replaced (by patching) by several strong sinusoids in the SBR signal. For all scalefactor bands
larger than one QMF subband, the values of sfm and sfmSbr is compared. This is done according to:

 for(j= ll;j<lu;j++){
 if(T[j][l0] > thresOrig &&
 (sfmSbr[i][l0] > sfmThresSbr && sfm[i][l0]<sfmThresOrig)){
 detVec[i][l0] = 1;
 guideVectorOrig[i][l0+1] = T[j][l0];
 }
 }

However, for the scalefactor bands only containing one QMF subband the above matrices are defined according to:

 if(T[ll][l0] > thresHoldTone &&
 (diff[+1][l0] < 1/thresHoldTone ||
 diff[i-1][l0] < 1/thresHoldTone)){
 detVec[i][l0] = 1;
 guideVectorOrig[i][l0+1] = T[ll][l0];
 }

The above is applied for every estimate, i.e. twice per frame. If a new detection is allowed, e.g. there is a transient
present in the frame, the following additional algorithmic step is performed:

- Identify adjacent scalefactor bands where detection of a missing sine is done in both bands

- Find the QMF subband within each scalefactor band that has the highest tonality

- If the QMF subband with the highest tonality value are adjacent, remove the detection for the scalefactor band
with the lowest tonality.

Finally the detection decisions from the different detections are merged together, according to:

 for(i = 0; i< nSfb; i++){
 for(est = start; est < totNoEst; est++){
 bs_add_harmonic[i] = bs_add_harmonic[i] || detVec[i][est];
 }
 }

Here start equals two if the newDetectionAllowed flag is set, otherwise it is set to zero.

If the newDetectionAllowed flag is not set, detections that were not present before are removed, according to:

 if(!newDetectionAllowed){
 for(i=0;i<nSfb;i++){
 if(bs_add_harmonic[i] – prev_bs_add_harmonic[i] > 0)
 bs_add_harmonic[i] = 0;
 }
 }

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)293GPP TS 26.404 version 19.0.0 Release 19

Apart from detection in which scalefactor band a sinusoidal should be added the module also calculates an energy
compensation vector. This is used in the envelope estimation module.

For every scalefactor band where a missing sine has been detected the maximum tonality value in the T matrix is found,
indicated by maxPosF (indicating the subband) and maxPosT (indicating the QMF slot). If maxPosF coincides with a
scalefactor band border and a detection was not done for the adjacent scalefactor band, a compensation value is
calculated according to (here outlined for the case where the maxPosF value coincides for the lower scalefactorband
border):

 compValue = (int) (fabs(ILOG2*log(diff[i - 1][maxPosT] +EPS)) + 0.5f);
 if (compValue > maxComp)
 compValue = maxComp;

 if(!pAddHarmonicsScaleFactorBands[i-1]) {
 if(tonality[maxPosF -1][maxPosT] > tonalityQuota*tonality[maxPosF][maxPosT]){
 compVec[i-1] = -1*compValue;
 }
 }

Finally the detection algorithm compensates for the case where a strong sinusoidal is present in the patched SBR signal
where there were no strong sinusoidal in the original, and at the same time there is a sinusoidal missing in the adjacent
scalefactor band. This is done for all scalefactor bands where a sine is missing (except for the first and the last
scalefactor band), according to the following:

 compValue = (int) (fabs(ILOG2*log(diff[i - 1][maxPosT]+EPS)) + 0.5f);
 if (compValue > maxComp)
 compValue = maxComp;

 if(1/diff[i-1][maxPosT] > diffQuota*diff[i][maxPosT]){
 compVec[i-1] = -1*compValue;
 }

 compValue = (int) (fabs(ILOG2*log(diff[i + 1][maxPosT]+EPS)) + 0.5f);
 if (compValue > maxComp)
 compValue = maxComp;

 if(1/diff[i+1][maxPosT] > diffQuota*diff[i][maxPosT]){
 compVec[i+1] = compValue;
 }

The bitstream element bs_add_harmonic_flag is set to one if any element of the bs_add_harmonic is not zero,
otherwise it is set to zero.

5.7 Data quantization
The spectral envelope scalefactors are quantized in 3dB steps or in 1.5dB steps, dependent on the time frequency
resolution of the current SBR frame, and bs_amp_res. For the case where there is only one SBR envelope per SBR
frame and of SBR frame class FIXFIX, 1.5 dB steps are always used, disregarded the value of bs_amp_res.

For mono and stereo without channel coupling the quantization is done according to:

where and

For the coupled channel mode, the left channel is quantized according to the above, while the right channel should be
quantized according to:

() () () ()()2

,
, max log ,0 0.5 , 0 , 0

64Q E

k l
k l INT a a compgain l k l l L

   
= ⋅ + − ⋅ ≤ < ≤ <        

E
E n r

2 , 0

1 , 1

bs_amp_res
a

bs_amp_res

=
=  =

() () () (), , 0

0 ,

compVec l r l HI compVec l
comgain l

otherwise

 = >= 


() ()()() ()2, log , 0.5QRight k l INT a k l bs_amp_res= ⋅ + +E E panOffset

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)303GPP TS 26.404 version 19.0.0 Release 19

The noise floor scalefactors data is always quantized in 3dB steps. For stereo without channel coupling and for mono
the channels are quantized according to:

 ,

where shall be limited to the interval .

For coupling however, the right and left channels are quantized according to:

 ,

where

 shall be limited to the interval and is limited to the interval

.

In the case of coupling, the and values shall be quantized to multiples of two, e.g.

.

5.8 Envelope and noise floor coding
The spectral envelope scalefactors and noise floor scalefactors are delta coded in either the time direction or the
frequency direction, according to the preferred choice indicated in bs_df_env(l) and bs_df_noise(l). The
bs_df_env and bs_df_noise elements are chosen so that the total number of bits required for coding the scalefactor
data of the present frame is minimised, with the reservation for the case when reset = 1. In this case delta coding in the
time direction is not allowed for the first SBR envelope or noise floor of that SBR frame.

The above minimization of envelope bits are for stereo done in both coupling and left/right stereo mode and based on
this the stereo mode is chosen so that the total number of bits required is minimized.

Below the delta coding of envelope scalefactors and noise floor scalefactors are defined.

() ()()()2, _ _ log , 0.5Q k l INT NOISE FLOOR OFFSET k l= − +Q Q

(),Q k lQ []0,30

() ()
() ()2

,
, log 0.5 1

,
Left

QRight
Right

k l
k l INT

k l

  
= + +    

  

Q
Q panOffset

Q

() () ()
2

, ,
, _ _ log 0.5

2
Left Right

QLeft

k l k l
k l INT NOISE FLOOR OFFSET

  + 
= − +    

  

Q Q
Q

(),QRight k lQ ()0,2 1 ⋅  panOffset (),QLeft k lQ

[]0,30

(),QRight k lQ (),QRight k lE

[]0,2,4,6,8...

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)313GPP TS 26.404 version 19.0.0 Release 19

where and,

where and is defined below. As represents the envelope scalefactors for the current SBR frame,

the envelope scalefactors from the previous SBR frame is denoted . Envelope scalefactors from the previous SBR

frame, is needed when delta coding in time direction over SBR frame boundaries. The number of SBR envelopes of

the previous SBR frame is denoted , and is also needed in that case, as well as frequency resolution vector of the

previous SBR frame, denoted r'.

 and .

()

()
()

() ()() ()()
()

() ()() ()()
()

() ()

()() ()()

()()
()

()
()

()

0

0, , 0

0

0

, 1, , 1

0

0

0
, , ,

1

0

0
,

1

, , , 0

1

 is def

E

Q

E

Q Q

E

E Q

E

Delta

E Q

l L

l k

l

l L

k l k l k l

l

l L

k l
g k l k l

l

l g l

l L

k l
k l

l

g i k l k l l

g l

i k

δ

δ

δ

δ

 ≤ <
⋅ =
 =

 ≤ <
⋅ − − ≤ <
 =

≤ <
 ≤ <⋅ − 

=
 =

≤ <

≤ <
=

=

⋅ − =

=

E

bs_df_env

E E n r

bs_df_env

n r
E

bs_df_env

r

n r
E

bs_df_env

E r

()() ()

()() ()()

()()
()

()
()

()
()() () ()()

ined by

0

0

1

, , , 1

0

 is defined by

1

TableHigh TableLow

E

E Q

TableLow TableHigh TableLow

i k k

l L

k l

l

g i k l k l l

g l

i k

i k k i k

δ



















 
 
 









 = 


 ≤ <


≤ <
 =
 ⋅ − =  =


 ≤ < +

f f

n r

bs_df_env

E r

f f f






0.5 1 _ 1

1

if ch AND bs coupling

otherwise
δ

= == 


(),Eg k l ()g l QE

Q′E

Q′E

EL′

()
() ()()

() ()()

1
, 1 ,

0
,

0
, 1 ,

0

E

Q

E

Q E

l L
k l

k l
g k l

l
k L

k l

 ≤ <−  ≤ < = 
= ′ ′ −  ≤ <

E
n r

E
n r

() ()
()

1 ,1

1 , 0
E

E

l l L
g l

L l

 − ≤ <=  ′ − =

r

r´

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)323GPP TS 26.404 version 19.0.0 Release 19

The delta coding of the noise floor scalefactors are defined as:

where

and where is the noise floor scalefactors from the previous SBR frame and is the number of noise floors from

the previous SBR frame. and are stored as bitstream element as shown below prior to

Huffman coding.

For the envelope scalefactors and the noise floor scalefactors different Huffman tables are used dependent on coding
directions, quantization and stereo mode, according to in [1], sub clause 4.A.6.1 Table 4.A.76

6 Bitstream

Figure 10 below gives a brief hierarchical representation of the SBR and parametric stereo parts of the aacPlus
bitstream, with references to the corresponding decoder specifications. An overview of sbr_extension_data() is given in
[1], Figure 4.19A, and subclause 4.4.2.8 of [1] defines the syntax. Clearly, the operation of the SBR Bitstream
Multiplexer in Figure 5 is defined by this syntax. The optional CRC calculation is also defined by the decoder
description [1], subclause 4.5.2.8.1. For convenience, pointers to the relevant sections in the present document are
given within paranthesises in Figure 10.

extension_payload() [1], Amendment Subpart 4, Table 4.51
 sbr_extension_data() [1], Subclause 4.4.2.8, Table 4.54A
 sbr_header() ", ", Table 4.55A (5.3)
 sbr_data() ", ", Table 4.56A
 sbr_single_channel_element() ", ", Table 4.57A
 sbr_grid() ", ", Table 4.61A (5.4.3)

()

()
()

() ()()
()

() ()()
()

() ()()
()

0

0, , 0

0

0

, 1, , 1

0
,

0

, , 1 , 0

1

1

, , 1 , 0

1

Q

Q

Q

Q Q Q

Delta

Q Q Q Q

Q

Q Q Q

l L

l k

l

l L

k l k l k N

l
k l

l

k l k L k N

l

l L

k l k l k N

l

δ

δ

δ

δ

 ≤ <
 ⋅ = 
  =


 ≤ <
 ⋅ − − ≤ <
 = = 
 =
 ′ ′⋅ − − ≤ <
 =

 ≤ <


⋅ − − ≤ <
 =

Q

bs_df_noise

Q Q

bs_df_noise
Q

Q Q

bs_df_env

Q Q

bs_df_env








0.5 1 _ 1

1

if ch AND bs coupling

otherwise
δ

= == 


′Q QL′

(),Delta k lQ (),Delta k lE

[][][] ()
0

, ,
0

Q
Delta

Q

l L
bs_data_noise ch l k k l

k N

≤ <
=  ≤ <

Q

[][][] () ()()
0

, ,
0

E

Delta

l L
bs_data_env ch l k k l

k l

≤ <=  ≤ <
E

n r

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)333GPP TS 26.404 version 19.0.0 Release 19

 sbr_dtdf() ", ", Table 4.62A (5.8)
 sbr_invf() ", ", Table 4.63A (5.6.4)
 sbr_envelope() ", ", Table 4.64A (5.5, 5.7, 5.8)
 sbr_noise() ", ", Table 4.65A (5.6.3, 5.7, 5.8)
 sbr_sinusoidal_coding() ", ", Table 4.66A (5.6.5)
 sbr_extension() [7], Subclause 8.A.2, Table 8.A.1
 ps_data() [7], Subclause 8.4.1, Table 8.1

Figure 10: Enhanced aacPlus with parametric stereo bitstream hierarchy

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)343GPP TS 26.404 version 19.0.0 Release 19

Annex A (informative):
Change history

Change history
Date TSG SA# TSG Doc. CR Rev Subject/Comment Old New
2004-09 25 SP-040636 Approved at SA#25 2.0.0 6.0.0
2007-09 36 Version for Release 7 6.0.0 7.0.0
2008-12 42 Version for Release 8 7.0.0 8.0.0
2009-12 46 Version for Release 9 8.0.0 9.0.0
2011-03 51 Version for Release 10 9.0.0 10.0.0
2012-09 57 Version for Release 11 10.0.0 11.0.0
2014-09 65 Version for Release 12 11.0.0 12.0.0
2015-12 70 Version for Release 13 12.0.0 13.0.0

Change history
Date Meeting TDoc CR Rev Cat Subject/Comment New

version
2017-03 75 Version for Release 14 14.0.0
2018-06 80 Version for Release 15 15.0.0
2020-07 - - - - - Update to Rel-16 version (MCC) 16.0.0
2022-04 - - - - - Update to Rel-17 version (MCC) 17.0.0
2024-03 - - - - - Update to Rel-18 version (MCC) 18.0.0
2025-10 - - - - - Update to Rel-19 version (MCC) 19.0.0

ETSI

ETSI TS 126 404 V19.0.0 (2025-10)353GPP TS 26.404 version 19.0.0 Release 19

History

Document history

V19.0.0 October 2025 Publication

	Intellectual Property Rights
	Legal Notice
	Modal verbs terminology
	Foreword
	1 Scope
	2 Normative references
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Symbols
	3.3 Abbreviations

	4 Outline description
	5 SBR encoder description
	5.1 SBR tools overview
	5.1.1 Enhanced aacPlus sdynchronization without parametric stereo
	5.1.2 Enhanced aacPlus synchronisation with parametric stereo
	5.1.3 SBR encoder modules overview

	5.2 Analysis filterbank
	5.3 Frequency band tables
	5.4 Time / frequency grid generation
	5.4.1 Transient detector
	5.4.2 Frame splitter
	5.4.3 Frame generator

	5.5 Envelope estimation
	5.6 Additional control parameters
	5.6.1 Introduction

	5.6.2 Tonality estimation
	5.6.3 Noise-floor estimation
	5.6.4 Inverse filtering estimation
	5.6.5 Additional sines estimation

	5.7 Data quantization
	5.8 Envelope and noise floor coding

	6 Bitstream
	Annex A (informative): Change history
	History

