Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); ANSI-C code for the floating-point Adaptive Multi-Rate (AMR) speech codec (3GPP TS 26.104 version 5.1.0 Release 5)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

All published ETSI deliverables shall include information which directs the reader to the above source of information.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.
Contents

Intellectual Property Rights ... 2
Foreword .. 2

1 Scope .. 5
2 Normative references ... 5

3 Definitions and abbreviations ... 6
3.1 Definitions ... 6
3.2 Abbreviations ... 6

4 C code structure .. 6
4.1 Contents of the C source code .. 6
4.2 Program execution .. 7
4.3 Coding style ... 7
4.4 Code hierarchy .. 7
4.5 Variables, constants and tables ... 10
4.5.1 Description of constants used in the C code .. 11
4.5.2 Description of fixed tables used in the C code ... 11
4.5.3 Static variables used in the C code ... 13

5 Homing procedure ... 16

6 File formats ... 22
6.1 Speech file (encoder input / decoder output) ... 22
6.2 Mode control file (encoder input) .. 22
6.3 Parameter bitstream file (encoder output / decoder input) ... 22

Annex A (informative): Change History ... 23

History ... 24
Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

taxthe first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

This Technical Standard (TS) contains an electronic copy of the ANSI-C code for a floating-point implementation of the Adaptive Multi-Rate codec. This floating-point codec specification is mainly targeted to be used in multimedia applications such as the 3G-324M terminal specified in 3GPP TS 26.110, or in packet-based (e.g., H.323) applications. The bit-exact fixed-point ANSI-C code in 3GPP TS 26.073 remains the preferred implementation for all applications, but the floating-point codec may be used instead of the fixed-point codec when the implementation platform is better suited for a floating-point implementation. It has been verified that the fixed-point and floating-point codecs interoperate with each other without any artifacts.

The floating-point ANSI-C code in this specification is the only standard conforming non-bit-exact implementation of the Adaptive Multi Rate speech transcoder (3GPP TS 26.090 [2]), Voice Activity Detection (3GPP TS 26.094 [6]), comfort noise generation (3GPP TS 26.092 [4]), and source controlled rate operation (3GPP TS 26.093 [5]). The floating-point code also contains example solutions for substituting and muting of lost frames (3GPP TS 26.091 [3]).

The fixed-point specification in 26.073 shall remain the only allowed implementation for the 3G mandatory speech service and the use of the floating-point codec is strictly limited to other services.

The floating-point encoder in this specification is a non-bit-exact implementation of the fixed-point encoder producing quality indistinguishable from that of the the fixed-point encoder. The decoder in this specification is functionally a bit-exact implementation of the fixed-point decoder, but the code has been optimized for speed and the standard fixed-point libraries are not used as such.

2 Normative references

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[5] 3GPP TS 26.093: “AMR Speech Codec; Source controlled rate operation”.
3 Definitions and Abbreviations

3.1 Definitions

Definition of terms used in the present document, can be found in 3GPP TS 26.090 [2], 3GPP TS 26.091 [3], 3GPP TS 26.092 [4], 3GPP TS 26.093 [5], and 3GPP TS 26.094 [6].

3.2 Abbreviations

For the purpose of the present document, the following abbreviations apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ETS</td>
<td>European Telecommunication Standard</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communications</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
</tbody>
</table>

4 C code structure

This clause gives an overview of the structure of the floating-point C code and provides an overview of the contents and organization of the C code attached to this document. The basic structure of the floating-point C code follows that of the bit-exact fixed-point code [7].

The C code has been verified on the following systems:

- IBM PC/AT compatible computers with Windows NT40 and Microsoft Visual C++ v.5.0 compiler;
- HP workstations and GNU gcc compiler;
- IBM PC/AT compatible computers with Linux operating system and GNU gcc compiler;

ANSI-C 9899 was selected as the programming language because portability was desirable.

4.1 Contents of the C source code

The C code distribution has all files in the root level.

The files with suffix "c" contain the source code and the files with suffix "h" are the header files. The ROM data is contained in "rom" files with suffix "h".

The C code does not contain any speech coder installation verification data files. Verification for the bit-exact decoder is defined in specification 3GPP TS 26.073 [7].

Makefiles are provided for the platforms in which the C code has been verified (listed above). Once the software is installed, this directory will have a compiled version of encoder and decoder and all the object files.
4.2 Program execution

The Adaptive Multi-Rate codec is implemented in two programs:

- (encoder) speech encoder;
- (decoder) speech decoder.

The programs should be called like:

encoder [-dtx] mode speech_file bitstream_file

or

encoder [-dtx] -modefile=mode_file speech_file bitstream_file

decoder <parameter file> <speech output file>

The speech files contain 16-bit linear encoded PCM speech samples and the parameter files contain encoded speech data and some additional flags.

See the file readme.txt for more information on how to run the encoder and decoder programs.

4.3 Coding style

The C code has been written according to structuring conventions used in 3GPP TS 26.073 [7]. Encoder and decoder state structures are allocated and initialized with special initializing functions. There are no separate functions for each module, as opposed to the fixed-point implementation in 3GPP TS 26.073 [7].

4.4 Code hierarchy

The code hierarchy follows the one specified in 3GPP TS 26.073 [7].

Figures 1 to 4 are call graphs that show the functions used in the speech codec, including the functions of VAD, DTX, and comfort noise generation.

Each column represents a call level and each cell a function. The functions contain calls to the functions in rightwards neighboring cells. The time order in the call graphs is from the top downwards as the processing of a frame advances. All standard C functions, such as printf(), fwrite(), etc., have been omitted.

The encoder call graph is broken down into three separate call graphs, shown in Tables 1 to 3.
<table>
<thead>
<tr>
<th>Table 1: Speech encoder call structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech_Encode_Frame</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>cod_amr</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 2: cbsearch call structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Call Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>code_2i40_9bits</td>
<td>cor h x Dotprod40</td>
</tr>
<tr>
<td></td>
<td>set sign</td>
</tr>
<tr>
<td></td>
<td>cor h Dotprod40</td>
</tr>
<tr>
<td></td>
<td>search_2i40_9bits Dotprod40</td>
</tr>
<tr>
<td></td>
<td>build code_2i40_9bits</td>
</tr>
<tr>
<td>code_2i40_11bits</td>
<td>cor h x Dotprod40</td>
</tr>
<tr>
<td></td>
<td>set sign</td>
</tr>
<tr>
<td></td>
<td>cor h Dotprod40</td>
</tr>
<tr>
<td></td>
<td>search_2i40_11bits Dotprod40</td>
</tr>
<tr>
<td></td>
<td>build code_2i40_11bits</td>
</tr>
<tr>
<td>code_3i40_14bits</td>
<td>cor h x Dotprod40</td>
</tr>
<tr>
<td></td>
<td>set sign</td>
</tr>
<tr>
<td></td>
<td>cor h Dotprod40</td>
</tr>
<tr>
<td></td>
<td>search_3i40</td>
</tr>
<tr>
<td></td>
<td>build code_3i40_14bits</td>
</tr>
<tr>
<td>code_4i40_17bits</td>
<td>cor h x Dotprod40</td>
</tr>
<tr>
<td></td>
<td>set sign</td>
</tr>
<tr>
<td></td>
<td>cor h Dotprod40</td>
</tr>
<tr>
<td></td>
<td>search_4i40</td>
</tr>
<tr>
<td></td>
<td>build code_4i40</td>
</tr>
<tr>
<td>code_6i40_31bits</td>
<td>cor h x Dotprod40</td>
</tr>
<tr>
<td></td>
<td>set_sign12k2 Dotprod40</td>
</tr>
<tr>
<td></td>
<td>cor h Dotprod40</td>
</tr>
<tr>
<td></td>
<td>search_6i40</td>
</tr>
<tr>
<td></td>
<td>build code_6i40_31bits</td>
</tr>
<tr>
<td></td>
<td>compress code compress10</td>
</tr>
<tr>
<td>code_10i40_35bits</td>
<td>cor h x Dotprod40</td>
</tr>
<tr>
<td></td>
<td>set_sign12k2 Dotprod40</td>
</tr>
<tr>
<td></td>
<td>cor h Dotprod40</td>
</tr>
<tr>
<td></td>
<td>search_10i40</td>
</tr>
<tr>
<td></td>
<td>build code_10i40_35bits</td>
</tr>
</tbody>
</table>

Table 3: gainQuant call structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Call Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>gainQuant</td>
<td>gc_pred Dotprod40</td>
</tr>
<tr>
<td></td>
<td>calc_filt_energies Dotprod40</td>
</tr>
<tr>
<td></td>
<td>Dotprod40</td>
</tr>
<tr>
<td>MR475_gain_quant</td>
<td>gc_pred Dotprod40</td>
</tr>
<tr>
<td></td>
<td>q_gain_code</td>
</tr>
<tr>
<td></td>
<td>MR795_gain_quant_mod</td>
</tr>
<tr>
<td></td>
<td>calc_unfilt_energies Dotprod40</td>
</tr>
<tr>
<td></td>
<td>gain_adapt Gmed_n_f</td>
</tr>
<tr>
<td></td>
<td>MR795_gain_code_quant_mod</td>
</tr>
<tr>
<td></td>
<td>Chua_gain</td>
</tr>
</tbody>
</table>
Table 4: Speech decoder call structure

<table>
<thead>
<tr>
<th>Speech_Decode_Frame</th>
<th>Decoder_amr</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rx_dtx_handler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dtx_dec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decoder_amr_reset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lsf_lsp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_pst_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int_lpc_1st3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_pst_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get_lsp_pol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_plsf_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lsf_lsp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build_CN_code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lsf_lsp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lsp_Az</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int_lpc_1and3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec_lag3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pred_lag 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec_lag10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decode_2540 0bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decode_2540 11bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decode_3440 14bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decode_4440 17bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decompress_word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec_gain_pitch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_gain_pitch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec_gain_pitch_update</td>
<td></td>
<td></td>
</tr>
<tr>
<td>code_1040 60bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec_gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gc_pred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pow2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec_gain_code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gc_pred_average_limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gc_pred_update</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec_gain_code_update</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_gain_code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gc_pred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pow2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int_lsf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cb_gain_average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ph_disp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>agc2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syn_lsf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bgn_scd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dtx_dec_activity_update</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lsf_avg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post_Filter</td>
<td>Residual</td>
<td></td>
</tr>
<tr>
<td>Syn_lsf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lsf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>energy_new</td>
<td></td>
<td></td>
</tr>
<tr>
<td>energy_old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post_Process</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.5 Variables, constants and tables

The data types of variables and tables used in the floating-point implementation are signed integers in 2's complement representation, defined by:

- **Word8** 8 bit variable
- **UWord8** 8 bit unsigned variable
- **Word16** 16 bit variable
- **Word32** 32 bit variable

Floating-point numbers use the IEEE (Institute of Electrical and Electronics Engineers) format:

- **Float32** 8 bit exponent, 23 bit mantissa, 1 bit sign
- **Float64** 11 bit exponent, 52 bit mantissa, 1 bit sign
Furthermore some **enum** types are used, all possible to represent with one byte, and a boolean **Flag**.

4.5.1 Description of constants used in the C code

Constants for the codec are defined in rom (h) files.

4.5.2 Description of fixed tables used in the C code

This section contains a listing of all fixed tables sorted by source file name and table name.

Table 5: Speech encoder fixed tables

<table>
<thead>
<tr>
<th>File</th>
<th>Table name</th>
<th>Type[Length]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rom_enc.h</td>
<td>trackTable</td>
<td>Word8[4*5]</td>
<td>track table for algebraic code book search (MR475, MR515)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>gamma1</td>
<td>Float32[10]</td>
<td>spectral expansion factors</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>gamma1_12k2</td>
<td>Float32[10]</td>
<td>spectral expansion factors</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>gamma2</td>
<td>Float32[10]</td>
<td>spectral expansion factors</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>b60</td>
<td>Float32[61]</td>
<td>interpolation filter coefficients</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>startPos1</td>
<td>Word16[2]</td>
<td>track start search position for first pulse</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>startPos2</td>
<td>Word16[4]</td>
<td>track start search position for second pulse</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>startPos</td>
<td>Word16[16]</td>
<td>track start search position</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>qua_gain_code</td>
<td>Float32[64]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>gray</td>
<td>Word8[8]</td>
<td>gray coding table</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>grid</td>
<td>Float32[61]</td>
<td>grid points at which Chebyshev polynomials are evaluated</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>b24</td>
<td>Float32[25]</td>
<td>interpolation filter coefficients</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>lag_wind</td>
<td>Float32[10]</td>
<td>lag window table</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>lsp_init_data</td>
<td>Float32[10]</td>
<td>initialization table for lsp history in DTX</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>past_rq_init</td>
<td>Float32[80]</td>
<td>initialization table for the MA predictor in DTX</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>mean_lsf_3</td>
<td>Float32[10]</td>
<td>LSF means (not in MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>mean_lsf_5</td>
<td>Float32[10]</td>
<td>LSF means (MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>pred_fac</td>
<td>Float32[10]</td>
<td>LSF prediction factors (not in MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>dico1_lsf_3</td>
<td>Float32[3*256]</td>
<td>1st LSF quantizer (not in MR122 and MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>dico2_lsf_3</td>
<td>Float32[3*512]</td>
<td>2nd LSF quantizer (not in MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>dico3_lsf_3</td>
<td>Float32[4*512]</td>
<td>3rd LSF quantizer (not in MR122, MR515 and MR475)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>mr515_3_lsf</td>
<td>Float32[4*128]</td>
<td>3rd LSF quantizer (MR515 and MR475)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>mr795_1_lsf</td>
<td>Float32[3*512]</td>
<td>1st LSF quantizer (MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>dico1_lsf_5</td>
<td>Float32[4*128]</td>
<td>1st LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>dico2_lsf_5</td>
<td>Float32[4*256]</td>
<td>2nd LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>dico3_lsf_5</td>
<td>Float32[4*256]</td>
<td>3rd LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>dico4_lsf_5</td>
<td>Float32[4*256]</td>
<td>4th LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>dico5_lsf_5</td>
<td>Float32[4*64]</td>
<td>5th LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>table_gain_MR475</td>
<td>Float32[4*256]</td>
<td>gain quantization table (MR475)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>table_gain_highrates</td>
<td>Float32[128*3]</td>
<td>gain quantization table (MR67, MR74 and MR102)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>table_gain_lowrates</td>
<td>Float32[64*3]</td>
<td>gain quantization table (MR515 and MR59)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>window_200_40</td>
<td>Float32[240]</td>
<td>LP analysis window (not in MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>window_160_80</td>
<td>Float32[240]</td>
<td>1st LP analysis window (MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>window_232_8</td>
<td>Float32[240]</td>
<td>2nd LP analysis window (MR122)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>qua_gain_code</td>
<td>Float32[64]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>qua_gain_code</td>
<td>Float32[64]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>qua_gain_code</td>
<td>Float32[64]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>qua_gain_code</td>
<td>Float32[64]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>qua_gain_code</td>
<td>Float32[64]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>qua_gain_code</td>
<td>Float32[64]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>qua_gain_code</td>
<td>Float32[64]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_enc.h</td>
<td>qua_gain_code</td>
<td>Float32[64]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
</tbody>
</table>
Table 6: Speech decoder fixed tables

<table>
<thead>
<tr>
<th>File</th>
<th>Table name</th>
<th>Type[Length]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rom_dec.h</td>
<td>dtx_log_en_adjust</td>
<td>Word16[9]</td>
<td>level adjustments for each mode</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>cdown</td>
<td>Word32[7]</td>
<td>attenuation factors for codebook gain</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>pdown</td>
<td>Word32[7]</td>
<td>attenuation factors for adaptive codebook gain</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>gamma3_MR122</td>
<td>Word32[10]</td>
<td>spectral expansion factors</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>gamma4_MR122</td>
<td>Word32[10]</td>
<td>spectral expansion factors</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>gamma4</td>
<td>Word32[10]</td>
<td>spectral expansion factors</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>bitno_MR475</td>
<td>Word16[17]</td>
<td>number of bits per parameter to transmit (MR475)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>bitno_MR515</td>
<td>Word16[19]</td>
<td>number of bits per parameter to transmit (MR515)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>bitno_MR59</td>
<td>Word16[19]</td>
<td>number of bits per parameter to transmit (MR59)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>bitno_MR67</td>
<td>Word16[19]</td>
<td>number of bits per parameter to transmit (MR67)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>bitno_MR74</td>
<td>Word16[19]</td>
<td>number of bits per parameter to transmit (MR74)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>bitno_MR795</td>
<td>Word16[23]</td>
<td>number of bits per parameter to transmit (MR795)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>bitno_MR102</td>
<td>Word16[39]</td>
<td>number of bits per parameter to transmit (MR102)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>bitno_MR122</td>
<td>Word16[57]</td>
<td>number of bits per parameter to transmit (MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>bitno_MRDXTX</td>
<td>Word16[5]</td>
<td>number of bits per parameter to transmit (MRDXTX)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>qua_gain_pitch</td>
<td>Word32[16]</td>
<td>adaptive codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>qua_gain_code</td>
<td>Word32[96]</td>
<td>fixed codebook gain quantization table (MR122, MR795)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>gray</td>
<td>Word8[8]</td>
<td>gray coding table</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>dgray</td>
<td>Word8[8]</td>
<td>gray decoding table</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>sqrt_table</td>
<td>Word32[49]</td>
<td>table to compute sqrt(x)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>inv_sqrt_table</td>
<td>Word32[49]</td>
<td>table used in inverse square root computation</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>log2_table</td>
<td>Word32[33]</td>
<td>table used in base 2 logarithm computation</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>pow2_table</td>
<td>Word32[33]</td>
<td>table used in 2 to the power computation</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>cos_table</td>
<td>Word32[65]</td>
<td>table to compute cos(x) in Lsf_lsp()</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>acos_slope</td>
<td>Word32[64]</td>
<td>table to compute acos(x) in Lsp_lsp()</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>ph_imp_low_MR795</td>
<td>Word32[40]</td>
<td>phase dispersion impulse response (MR795)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>ph_imp_mid_MR795</td>
<td>Word32[40]</td>
<td>phase dispersion impulse response (MR795)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>ph_imp_low</td>
<td>Word32[40]</td>
<td>phase dispersion impulse response (MR475 - MR67)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>ph_imp_mid</td>
<td>Word32[40]</td>
<td>phase dispersion impulse response (MR475 - MR67)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>past_rq_init</td>
<td>Word32[80]</td>
<td>initialization table for the MA predictor in DTX</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>mean_lsf_3</td>
<td>Word32[10]</td>
<td>LSF means (not in MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>mean_lsf_5</td>
<td>Word32[10]</td>
<td>LSF means (MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>pred_fac</td>
<td>Word32[10]</td>
<td>LSF prediction factors (not in MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>dico1_lsf_3</td>
<td>Word32[3*256]</td>
<td>1st LSF quantizer (not in MR122 and MR795)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>dico2_lsf_3</td>
<td>Word32[3*512]</td>
<td>2nd LSF quantizer (not in MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>dico3_lsf_3</td>
<td>Word32[4*512]</td>
<td>3rd LSF quantizer (not in MR122, MR515 and MR475)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>mr515_3_lsf</td>
<td>Word32[4*128]</td>
<td>3rd LSF quantizer (MR515 and MR475)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>mr795_1_lsf</td>
<td>Word32[3*512]</td>
<td>1st LSF quantizer (MR795)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>dico1_lsf_5</td>
<td>Word32[4*128]</td>
<td>1st LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>dico2_lsf_5</td>
<td>Word32[4*256]</td>
<td>2nd LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>dico3_lsf_5</td>
<td>Word32[4*256]</td>
<td>3rd LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>dico4_lsf_5</td>
<td>Word32[4*256]</td>
<td>4th LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>dico5_lsf_5</td>
<td>Word32[4*64]</td>
<td>5th LSF quantizer (MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>table_gain_MR475</td>
<td>Word32[4*256]</td>
<td>gain quantization table (MR475)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>table_gain_highrates</td>
<td>Word32[128*4]</td>
<td>gain quantization table (MR67, MR74 and MR102)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>table_gain_lowrates</td>
<td>Word32[64*4]</td>
<td>gain quantization table (MR515 and MR59)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>inter_6</td>
<td>Word32[61]</td>
<td>interpolation filter coefficients</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>window_200_40</td>
<td>Word32[240]</td>
<td>LP analysis window (not in MR122)</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>table_speech_bad</td>
<td>UWord8[9]</td>
<td>comparison optimisation table in DTX</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>table_SID</td>
<td>Uword8[9]</td>
<td>comparison optimisation table in DTX</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>table_DTX</td>
<td>Uword8[9]</td>
<td>comparison optimisation table in DTX</td>
</tr>
<tr>
<td>rom_dec.h</td>
<td>table_mute</td>
<td>Uword8[9]</td>
<td>comparison optimisation table in DTX</td>
</tr>
</tbody>
</table>
4.5.3 Static variables used in the C code

In this section, two tables that specify the static variables for the speech encoder and decoder, respectively, are shown. All static variables are declared within a C `struct`.

Table 7: Speech encoder static variables

<table>
<thead>
<tr>
<th>Struct name</th>
<th>Variable</th>
<th>Type [Length]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech_Encode_FrameState</td>
<td>cod_amr_state</td>
<td>cod_amrState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>pre_state</td>
<td>Pre_ProcessState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>dtx</td>
<td>Word32</td>
<td>Is set if DTX functionality is used</td>
</tr>
<tr>
<td>Pre_ProcessState</td>
<td>y2</td>
<td>Float32</td>
<td>filter state</td>
</tr>
<tr>
<td></td>
<td>y1</td>
<td>Word16 Float32</td>
<td>filter state</td>
</tr>
<tr>
<td></td>
<td>x0</td>
<td>Float32</td>
<td>filter state</td>
</tr>
<tr>
<td></td>
<td>x1</td>
<td>Float32</td>
<td>filter state</td>
</tr>
<tr>
<td>cod_amrState</td>
<td>old_speech</td>
<td>Float32 [320]</td>
<td>speech buffer</td>
</tr>
<tr>
<td></td>
<td>speech</td>
<td>Float32</td>
<td>pointer to current frame in old_speech</td>
</tr>
<tr>
<td></td>
<td>p_window</td>
<td>Float32</td>
<td>pointer to LPC analysis window in old_speech</td>
</tr>
<tr>
<td></td>
<td>p_window_12k2</td>
<td>Float32</td>
<td>pointer to LPC analysis window with no lookahead in old_speech (MR122)</td>
</tr>
<tr>
<td></td>
<td>new_speech</td>
<td>Float32</td>
<td>pointer to the last 160 speech samples in old_speech</td>
</tr>
<tr>
<td></td>
<td>old_wsp</td>
<td>Float32 [303]</td>
<td>buffer holding spectral weighted speech</td>
</tr>
<tr>
<td></td>
<td>wsp</td>
<td>Float32</td>
<td>pointer to the current frame in old_wsp</td>
</tr>
<tr>
<td></td>
<td>old_lags</td>
<td>Word32 [5]</td>
<td>open loop LTP states</td>
</tr>
<tr>
<td></td>
<td>ol_gain_fig</td>
<td>Float32 [2]</td>
<td>enables open loop pitch lag weighting (MR102)</td>
</tr>
<tr>
<td></td>
<td>old_exc</td>
<td>Float32 [314]</td>
<td>excitation vector</td>
</tr>
<tr>
<td></td>
<td>exc</td>
<td>Float32</td>
<td>current excitation</td>
</tr>
<tr>
<td></td>
<td>ai_zero</td>
<td>Float32 [51]</td>
<td>history of weighted synth. filter followed by zero vector</td>
</tr>
<tr>
<td></td>
<td>zero</td>
<td>Float32</td>
<td>zero vector</td>
</tr>
<tr>
<td></td>
<td>h1</td>
<td>Float32</td>
<td>impulse response of weighted synthesis filter</td>
</tr>
<tr>
<td></td>
<td>hvect</td>
<td>Float32 [80]</td>
<td>zero vector followed by impulse response</td>
</tr>
<tr>
<td></td>
<td>lpcSt</td>
<td>lpcState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>lspSt</td>
<td>lspState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>clLtpSt</td>
<td>clLtpState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>gainQuantSt</td>
<td>gainQuantState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>pitchOLWghtSt</td>
<td>pitchOLWghtState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>tonStabSt</td>
<td>tonStabState</td>
<td>see below in this table</td>
</tr>
<tr>
<td>vadSt</td>
<td>vadState2</td>
<td>vadState2</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>dix</td>
<td>Word32</td>
<td>is set if DTX functionality is used</td>
</tr>
<tr>
<td></td>
<td>dix_encSt</td>
<td>dix_encState</td>
<td>see below in this table</td>
</tr>
<tr>
<td>mem_syn</td>
<td>mem_w0</td>
<td>Float32 [10]</td>
<td>weighting filter memory (applied to error signal)</td>
</tr>
<tr>
<td>mem_w</td>
<td>mem_err</td>
<td>Float32 [50]</td>
<td>filter memory for production of error vector</td>
</tr>
<tr>
<td>error</td>
<td>error</td>
<td>Float32</td>
<td>error signal (input minus synthesized speech)</td>
</tr>
<tr>
<td>sharp</td>
<td>sharp</td>
<td>Float32</td>
<td>pitch sharpening gain</td>
</tr>
<tr>
<td>vadState</td>
<td>bckr_est</td>
<td>Float32 [9]</td>
<td>background noise estimate</td>
</tr>
<tr>
<td></td>
<td>ave_level</td>
<td>Float32 [9]</td>
<td>averaged input components for stationary estimation</td>
</tr>
<tr>
<td></td>
<td>old_level</td>
<td>Float32 [9]</td>
<td>input levels of the previous frame</td>
</tr>
<tr>
<td></td>
<td>sub_level</td>
<td>Float32 [9]</td>
<td>input levels calculated at the end of a frame (lookahead)</td>
</tr>
<tr>
<td></td>
<td>a_data5</td>
<td>Float32 [6]</td>
<td>memory for the filter bank</td>
</tr>
<tr>
<td></td>
<td>burst_count</td>
<td>Word16</td>
<td>counts length of a speech burst</td>
</tr>
<tr>
<td></td>
<td>hang_count</td>
<td>Word16</td>
<td>hangover counter</td>
</tr>
<tr>
<td></td>
<td>stat_count</td>
<td>Word16</td>
<td>stationary counter</td>
</tr>
<tr>
<td></td>
<td>vadreg</td>
<td>Word32</td>
<td>15 flags for intermediate VAD decisions</td>
</tr>
<tr>
<td></td>
<td>pitch</td>
<td>Word32</td>
<td>15 flags for pitch detection</td>
</tr>
<tr>
<td></td>
<td>tone</td>
<td>Word16</td>
<td>15 flags for tone detection</td>
</tr>
<tr>
<td></td>
<td>complex_high</td>
<td>Word16</td>
<td>flags for complex detection</td>
</tr>
<tr>
<td></td>
<td>complex_low</td>
<td>Word16</td>
<td>flags for complex detection</td>
</tr>
<tr>
<td></td>
<td>oldlag_count</td>
<td>Word32</td>
<td>variables for pitch detection</td>
</tr>
<tr>
<td></td>
<td>oldlag</td>
<td>Word32</td>
<td>variables for pitch detection</td>
</tr>
<tr>
<td></td>
<td>complex_hang_count</td>
<td>Word16</td>
<td>complex hangover counter, used by VAD</td>
</tr>
<tr>
<td></td>
<td>complex_hang_timer</td>
<td>Word16</td>
<td>hangover initiator, used by CAD</td>
</tr>
<tr>
<td>Struct name</td>
<td>Variable</td>
<td>Type[Length]</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>best_corr_hp</td>
<td>Float32</td>
<td>filtered value</td>
<td></td>
</tr>
<tr>
<td>speech_vad_decision</td>
<td>Word16</td>
<td>final decision</td>
<td></td>
</tr>
<tr>
<td>complex_warning</td>
<td>Word16</td>
<td>complex background warning</td>
<td></td>
</tr>
<tr>
<td>sp_burst_count</td>
<td>Word16</td>
<td>counts length of a speech burst incl HO addition</td>
<td></td>
</tr>
<tr>
<td>corr_hp_fast</td>
<td>Word16</td>
<td>filtered value</td>
<td></td>
</tr>
<tr>
<td>dtx_encState</td>
<td>lsp_hist</td>
<td>Float32[80] LSP history (8 frames)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>log_en_hist</td>
<td>Float32[8] logarithmic frame energy history (8 frames)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hist_ptr</td>
<td>Word16 pointer to the cyclic history vectors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>log_en_index</td>
<td>Word16 Index for logarithmic energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>init_lsf_vq_index</td>
<td>Word32 initial index for lsf predictor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lsp_index</td>
<td>Word16[lsp] lsp indecies to the three code books</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dtxHangoverCount</td>
<td>Word16 is decreased in DTX hangover period</td>
<td></td>
</tr>
<tr>
<td></td>
<td>decAnaElapsedCount</td>
<td>Word16 counter for elapsed speech frames in DTX</td>
<td></td>
</tr>
<tr>
<td>LevinsonState</td>
<td>LevinsonSt</td>
<td>LevinsonState see below</td>
<td></td>
</tr>
<tr>
<td></td>
<td>old_A</td>
<td>Float32[11] last frames direct form coefficients</td>
<td></td>
</tr>
<tr>
<td>lspState</td>
<td>lsp_old</td>
<td>Float32[10] old LSP vector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lsp_old_q</td>
<td>Float32[10] old quantized LSP vector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>qSt</td>
<td>Q_pslfState see below in this table</td>
<td></td>
</tr>
<tr>
<td>Q_pslfState</td>
<td>past_rq</td>
<td>Float32[10] past quantized LSF prediction error</td>
<td></td>
</tr>
<tr>
<td>clLtpState</td>
<td>pitchSt</td>
<td>Pitch_frState see below in this table</td>
<td></td>
</tr>
<tr>
<td>ionStabState</td>
<td>count</td>
<td>Word16 count consecutive (potential) resonance frames</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gp</td>
<td>Float32[7] pitch gain history</td>
<td></td>
</tr>
<tr>
<td>Pitch frState</td>
<td>T0_prev_subframe</td>
<td>Word32 integer, pitch lag of previous subframe</td>
<td></td>
</tr>
<tr>
<td>gainQuantState</td>
<td>sf0_gcode0</td>
<td>Float32 subframe 0/2 codebook gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sf0_target_en</td>
<td>Float32 subframe 0/2 target energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sf0_coef</td>
<td>Float32[5] subframe 0/2 energy coefficient</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gain_idx_ptr</td>
<td>Word16 pointer to gain index value in parameter frame</td>
<td></td>
</tr>
<tr>
<td>gc_predSt</td>
<td>gc_predSt</td>
<td>gc_predSt see below in this table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gc_predUncSt</td>
<td>gc_predState see below in this table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>adaptSt</td>
<td>GainAdaptState see below in this table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>past_qua_en</td>
<td>Float32[4] MA predictor memory (20*log10(pred. error))</td>
<td></td>
</tr>
<tr>
<td>GainAdaptState</td>
<td>onset</td>
<td>Word16 onset counter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>prev_alpha</td>
<td>Float32 previous adaptor output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>prev_gc</td>
<td>Float32 previous codebook gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lppy_mem</td>
<td>Float32[5] pitch gain history</td>
<td></td>
</tr>
<tr>
<td>pitchOLWghtState</td>
<td>old_T0_med</td>
<td>Float32 weighted open loop pitch lag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ada_w</td>
<td>Word16 weighting level depending on open loop pitch gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wght_flg</td>
<td>Word16 switches lag weighting on and off</td>
<td></td>
</tr>
</tbody>
</table>
Table 8: Speech decoder static variables

<table>
<thead>
<tr>
<th>Struct name</th>
<th>Variable</th>
<th>Type [Length]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech_Decode_FrameState</td>
<td>decoder_amrState</td>
<td>Decoder_amrState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>post_state</td>
<td>Post_FilterState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>postHP_state</td>
<td>Post_ProcessState</td>
<td>see below in this table</td>
</tr>
<tr>
<td>Decoder_amrState</td>
<td>old_exc</td>
<td>Word32[194]</td>
<td>excitation vector</td>
</tr>
<tr>
<td></td>
<td>exc</td>
<td>Word32</td>
<td>current excitation</td>
</tr>
<tr>
<td></td>
<td>lsp_old</td>
<td>Word32[10]</td>
<td>LSP vector of previous frame</td>
</tr>
<tr>
<td></td>
<td>mem_syn</td>
<td>Word32[10]</td>
<td>synthesis filter memory</td>
</tr>
<tr>
<td></td>
<td>sharp</td>
<td>Word32</td>
<td>pitch sharpening gain</td>
</tr>
<tr>
<td></td>
<td>old_T0</td>
<td>Word32</td>
<td>pitch sharpening lag</td>
</tr>
<tr>
<td></td>
<td>prev_bf</td>
<td>Word16</td>
<td>previous value of "bad frame" flag</td>
</tr>
<tr>
<td></td>
<td>prev_pdf</td>
<td>Word16</td>
<td>previous value of "pot. dangerous frame" flag</td>
</tr>
<tr>
<td></td>
<td>state</td>
<td>Word16</td>
<td>ECU state (0..6)</td>
</tr>
<tr>
<td></td>
<td>excEnergyHist</td>
<td>Word32[9]</td>
<td>excitation energy history</td>
</tr>
<tr>
<td></td>
<td>T0_lagBuff</td>
<td>Word32</td>
<td>received pitch lag for ECU</td>
</tr>
<tr>
<td></td>
<td>inBackgroundNoise</td>
<td>Word32</td>
<td>background noise flag</td>
</tr>
<tr>
<td></td>
<td>voicedHangover</td>
<td>Word32</td>
<td>hangover flag</td>
</tr>
<tr>
<td></td>
<td>ltpGainHistory</td>
<td>Word32[9]</td>
<td>pitch gain history</td>
</tr>
<tr>
<td></td>
<td>background_state</td>
<td>Bgn_scdState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>Cb_gain_averageState</td>
<td>Cb_gain_averageState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>lsp_avg_st</td>
<td>lsp_avgState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>lsfState</td>
<td>D_plsfState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>ec_gain_p_st</td>
<td>ec_gain_pitchState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>ec_gain_c_st</td>
<td>ec_gain_codeState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>pred_state</td>
<td>gc_predState</td>
<td>see table 7</td>
</tr>
<tr>
<td></td>
<td>nodataSeed</td>
<td>Word16</td>
<td>seed for CN generator</td>
</tr>
<tr>
<td></td>
<td>dtxDecoderState</td>
<td>dtx_decState</td>
<td>see below in this table</td>
</tr>
<tr>
<td>dtx_decState</td>
<td>since_last_sid</td>
<td>Word16</td>
<td>number of frames since last SID frame</td>
</tr>
<tr>
<td></td>
<td>true_sid_period_inv</td>
<td>Word16</td>
<td>inverse of true SID update rate</td>
</tr>
<tr>
<td></td>
<td>log_en</td>
<td>Word32</td>
<td>logarithmic frame energy</td>
</tr>
<tr>
<td></td>
<td>old_log_en</td>
<td>Word32</td>
<td>previous value of log_en</td>
</tr>
<tr>
<td></td>
<td>pn_seed_rx</td>
<td>Word32</td>
<td>random number generator seed</td>
</tr>
<tr>
<td></td>
<td>lsp</td>
<td>Word32[10]</td>
<td>LSP vector</td>
</tr>
<tr>
<td></td>
<td>lsp_old</td>
<td>Word32[10]</td>
<td>previous LSP vector</td>
</tr>
<tr>
<td></td>
<td>lsp_avg_st</td>
<td>lsp_avgState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>lsp_hist</td>
<td>Word32[80]</td>
<td>LF vector history (8 frames)</td>
</tr>
<tr>
<td></td>
<td>lsp_hist_ptr</td>
<td>Word16</td>
<td>index to beginning of LS history</td>
</tr>
<tr>
<td></td>
<td>lsp_hist_mean</td>
<td>Word32[80]</td>
<td>mean-removed LS history (8 frames)</td>
</tr>
<tr>
<td></td>
<td>log_pg_mean</td>
<td>Word16</td>
<td>mean-removed logarithmic prediction gain</td>
</tr>
<tr>
<td></td>
<td>log_en_hist</td>
<td>Word32[8]</td>
<td>logarithmic frame energy history</td>
</tr>
<tr>
<td></td>
<td>log_en_hist_ptr</td>
<td>Word16</td>
<td>index to beginning of log, frame energy history</td>
</tr>
<tr>
<td></td>
<td>log_en_adjust</td>
<td>Word16</td>
<td>mode-dependent frame energy adjustment</td>
</tr>
<tr>
<td></td>
<td>dtxHangoverCount</td>
<td>Word16</td>
<td>counts down in hangover period</td>
</tr>
<tr>
<td></td>
<td>decAnaElapsedCount</td>
<td>Word16</td>
<td>counts elapsed speech frames after DTX</td>
</tr>
<tr>
<td></td>
<td>sid_frame</td>
<td>Word16</td>
<td>flags SID frames</td>
</tr>
<tr>
<td></td>
<td>valid_data</td>
<td>Word16</td>
<td>flags SID frames containing valid data</td>
</tr>
<tr>
<td></td>
<td>dtxHangoverAdded</td>
<td>Word16</td>
<td>flags hangover period at end of speech</td>
</tr>
<tr>
<td></td>
<td>dtxGlobalState</td>
<td>enum DXTStateType</td>
<td>DXT state flags</td>
</tr>
<tr>
<td></td>
<td>data_updated</td>
<td>Word16</td>
<td>flags CNI updates</td>
</tr>
<tr>
<td>Bgn_scdState</td>
<td>frameEnergyHist</td>
<td>Word32[60]</td>
<td>history of synthesis frame energy</td>
</tr>
<tr>
<td></td>
<td>bgHangover</td>
<td>Word16</td>
<td>number of frames since last speech frame</td>
</tr>
<tr>
<td>Cb_gain_averageState</td>
<td>cbGainHistory</td>
<td>Word32[7]</td>
<td>codebook gain history</td>
</tr>
<tr>
<td></td>
<td>hangVar</td>
<td>Word16</td>
<td>counts length of talkspurt in subframes</td>
</tr>
<tr>
<td></td>
<td>hangCount</td>
<td>Word16</td>
<td>number of subframes since last talkspurt</td>
</tr>
<tr>
<td>lsp_avgState</td>
<td>lsp_meanSave</td>
<td>Word32[10]</td>
<td>averaged LSP vector</td>
</tr>
<tr>
<td>D_plsfState</td>
<td>past_r_q</td>
<td>Word32[10]</td>
<td>past quantized LSF prediction vector</td>
</tr>
<tr>
<td></td>
<td>past_lsf_q</td>
<td>Word32[10]</td>
<td>past dequantized LSF vector</td>
</tr>
<tr>
<td>ec_gain_pitchState</td>
<td>gbuf</td>
<td>Word32[64]</td>
<td>pitch gain history</td>
</tr>
<tr>
<td></td>
<td>past_gain_pit</td>
<td>Word32</td>
<td>previous pitch gain (limited to 1.0)</td>
</tr>
<tr>
<td></td>
<td>prev_gp</td>
<td>Word32</td>
<td>previous good pitch gain</td>
</tr>
<tr>
<td>ec_gain_codeState</td>
<td>gbuf</td>
<td>Word32[5]</td>
<td>codebook gain history</td>
</tr>
<tr>
<td></td>
<td>past_gain_code</td>
<td>Word32</td>
<td>previous codebook gain</td>
</tr>
<tr>
<td></td>
<td>prev_gc</td>
<td>Word32</td>
<td>previous good codebook gain</td>
</tr>
<tr>
<td>ph_dispState</td>
<td>gainMem</td>
<td>Word32[5]</td>
<td>pitch gain history</td>
</tr>
<tr>
<td></td>
<td>prevState</td>
<td>Word32</td>
<td>previously used impulse response</td>
</tr>
<tr>
<td></td>
<td>prevCbgGain</td>
<td>Word32</td>
<td>previous codebook gain</td>
</tr>
<tr>
<td></td>
<td>lockFull</td>
<td>Word16</td>
<td>force maximum phase dispersion</td>
</tr>
<tr>
<td></td>
<td>onset</td>
<td>Word16</td>
<td>onset counter</td>
</tr>
<tr>
<td>Post_FilterState</td>
<td>res2</td>
<td>Word32[40]</td>
<td>LP residual</td>
</tr>
<tr>
<td></td>
<td>mem_syn_pst</td>
<td>Word32[10]</td>
<td>synthesis filter memory</td>
</tr>
<tr>
<td></td>
<td>synth_buf</td>
<td>Word16[170]</td>
<td>synthesis filter work area</td>
</tr>
<tr>
<td></td>
<td>agc_state</td>
<td>agcState</td>
<td>see below in this table</td>
</tr>
<tr>
<td></td>
<td>preemphasis_state</td>
<td>preemphasisState</td>
<td>see below in this table</td>
</tr>
</tbody>
</table>
5 Homing procedure

The principles of the homing procedures are described in 3GPP TS 06.090 [2]. This specification only includes a detailed description of the 8 decoder homing frames. For each AMR codec mode, the corresponding decoder homing frame has a fixed set of speech parameters shown in table 9a-9h. The bit allocation within these parameters is identical to the corresponding bit allocation of the source encoder output parameters given in 3GPP TS 06.090 [2].

In the following tables, the following naming convention is used for the individual parameters. Letters in *italics* indicate numbers.

- LPC__n index of \(n \)th LSF submatrix
- LTP-LAG \(m \) adaptive codebook index for subframe \(m \)
- LTP-GAIN \(m \) adaptive codebook gain index in subframe \(m \)
- FCB-GAIN \(m \) fixed codebook gain index in subframe \(m \)
- GAIN_VQ \(m \) codebook gain VQ index in subframe \(m \) (subframe \(m \) and \(m+1 \) for MR475)
- POS \(m _n \) position index of \(n \)th pulse in subframe \(m \)
- POS \(m _n _k \) position index of \(n \)th and \(k \)th pulse in subframe \(m \)
- POS \(m _n _k _l _j \) position index of \(n \)th, \(k \)th, \(l \)th, and \(j \)th pulse in subframe \(m \)
- SIGN \(m _n _k \) sign information for \(n \)th and \(k \)th pulse in subframe \(m \)
- SIGN \(m _n _k _l _j \) sign information for \(n \)th, \(k \)th, \(l \)th, and \(j \)th pulse in subframe \(m \)
- SIGN__m _n _k _POS__m _n \) sign information for \(n \)th and \(k \)th pulse and position index for \(n \)th pulse in subframe \(m \)

<table>
<thead>
<tr>
<th>Struct name</th>
<th>Variable</th>
<th>Type[Length]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>agcState</td>
<td>past_gain</td>
<td>Word16</td>
<td>past agc gain</td>
</tr>
<tr>
<td>preemphasisState</td>
<td>mem_pre</td>
<td>Word16</td>
<td>filter state</td>
</tr>
<tr>
<td>Post_ProcessState</td>
<td>y2_hi</td>
<td>Word32</td>
<td>filter state, upper word</td>
</tr>
<tr>
<td></td>
<td>y2_lo</td>
<td>Word32</td>
<td>filter state, lower word</td>
</tr>
<tr>
<td></td>
<td>y1_hi</td>
<td>Word32</td>
<td>filter state, upper word</td>
</tr>
<tr>
<td></td>
<td>y1_lo</td>
<td>Word32</td>
<td>filter state, lower word</td>
</tr>
<tr>
<td></td>
<td>x0</td>
<td>Word32</td>
<td>filter state</td>
</tr>
<tr>
<td></td>
<td>x1</td>
<td>Word32</td>
<td>filter state</td>
</tr>
</tbody>
</table>
Table 9a: Parameter values for the decoder homing frame (MR475)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (LSB=b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC 1</td>
<td>0x00F8</td>
</tr>
<tr>
<td>LPC 2</td>
<td>0x009D</td>
</tr>
<tr>
<td>LPC 3</td>
<td>0x001C</td>
</tr>
<tr>
<td>LTP-LAG 1</td>
<td>0x0066</td>
</tr>
<tr>
<td>POS 1_1_2</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_1_2</td>
<td>0x0003</td>
</tr>
<tr>
<td>GAIN-VQ 1</td>
<td>0x0028</td>
</tr>
<tr>
<td>LTP-LAG 2</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 2_1_2</td>
<td>0x0038</td>
</tr>
<tr>
<td>SIGN_2_1_2</td>
<td>0x0001</td>
</tr>
<tr>
<td>LTP-LAG 3</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 3_1_2</td>
<td>0x0031</td>
</tr>
<tr>
<td>SIGN_3_1_2</td>
<td>0x0002</td>
</tr>
<tr>
<td>GAIN-VQ 3</td>
<td>0x0008</td>
</tr>
<tr>
<td>LTP-LAG 4</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 4_1_2</td>
<td>0x0026</td>
</tr>
<tr>
<td>SIGN_4_1_2</td>
<td>0x0003</td>
</tr>
</tbody>
</table>

Table 9b: Parameter values for the decoder homing frame (MR515)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (LSB=b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC 1</td>
<td>0x00F8</td>
</tr>
<tr>
<td>LPC 2</td>
<td>0x009D</td>
</tr>
<tr>
<td>LPC 3</td>
<td>0x001C</td>
</tr>
<tr>
<td>LTP-LAG 1</td>
<td>0x0066</td>
</tr>
<tr>
<td>POS 1_1_2</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_1_2</td>
<td>0x0003</td>
</tr>
<tr>
<td>GAIN-VQ 1</td>
<td>0x0037</td>
</tr>
<tr>
<td>LTP-LAG 2</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 2_1_2</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_2_1_2</td>
<td>0x0003</td>
</tr>
<tr>
<td>GAIN-VQ 2</td>
<td>0x0005</td>
</tr>
<tr>
<td>LTP-LAG 3</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 3_1_2</td>
<td>0x0037</td>
</tr>
<tr>
<td>SIGN_3_1_2</td>
<td>0x0003</td>
</tr>
<tr>
<td>GAIN-VQ 3</td>
<td>0x0003</td>
</tr>
<tr>
<td>LTP-LAG 4</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 4_1_2</td>
<td>0x0023</td>
</tr>
<tr>
<td>SIGN_4_1_2</td>
<td>0x0003</td>
</tr>
<tr>
<td>GAIN-VQ 4</td>
<td>0x001F</td>
</tr>
</tbody>
</table>
Table 9c: Parameter values for the decoder homing frame (MR59)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (LSB=b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC 1</td>
<td>0x00F8</td>
</tr>
<tr>
<td>LPC 2</td>
<td>0x00E3</td>
</tr>
<tr>
<td>LPC 3</td>
<td>0x002F</td>
</tr>
<tr>
<td>LTP-LAG 1</td>
<td>0x00BD</td>
</tr>
<tr>
<td>POS 1_1_2</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_1_2</td>
<td>0x0003</td>
</tr>
<tr>
<td>GAIN-VQ 1</td>
<td>0x0037</td>
</tr>
<tr>
<td>LTP-LAG 2</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 2_1_2</td>
<td>0x0001</td>
</tr>
<tr>
<td>SIGN_2_1_2</td>
<td>0x0003</td>
</tr>
<tr>
<td>GAIN-VQ 2</td>
<td>0x000F</td>
</tr>
<tr>
<td>LTP-LAG 3</td>
<td>0x0060</td>
</tr>
<tr>
<td>POS 3_1_2</td>
<td>0x00F9</td>
</tr>
<tr>
<td>SIGN_3_1_2</td>
<td>0x0003</td>
</tr>
<tr>
<td>GAIN-VQ 3</td>
<td>0x0037</td>
</tr>
<tr>
<td>LTP-LAG 4</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 4_1_2</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_4_1_2</td>
<td>0x0003</td>
</tr>
<tr>
<td>GAIN-VQ 4</td>
<td>0x0037</td>
</tr>
</tbody>
</table>

Table 9d: Parameter values for the decoder homing frame (MR67)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (LSB=b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC 1</td>
<td>0x00F8</td>
</tr>
<tr>
<td>LPC 2</td>
<td>0x00E3</td>
</tr>
<tr>
<td>LPC 3</td>
<td>0x002F</td>
</tr>
<tr>
<td>LTP-LAG 1</td>
<td>0x00BD</td>
</tr>
<tr>
<td>POS 1_1_2_3</td>
<td>0x0002</td>
</tr>
<tr>
<td>SIGN_1_1_2_3</td>
<td>0x0007</td>
</tr>
<tr>
<td>GAIN-VQ 1</td>
<td>0x0000</td>
</tr>
<tr>
<td>LTP-LAG 2</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 2_1_2_3</td>
<td>0x0098</td>
</tr>
<tr>
<td>SIGN_2_1_2_3</td>
<td>0x0007</td>
</tr>
<tr>
<td>GAIN-VQ 2</td>
<td>0x0061</td>
</tr>
<tr>
<td>LTP-LAG 3</td>
<td>0x0060</td>
</tr>
<tr>
<td>POS 3_1_2_3</td>
<td>0x05C5</td>
</tr>
<tr>
<td>SIGN_3_1_2_3</td>
<td>0x0007</td>
</tr>
<tr>
<td>GAIN-VQ 3</td>
<td>0x0000</td>
</tr>
<tr>
<td>LTP-LAG 4</td>
<td>0x000F</td>
</tr>
<tr>
<td>POS 4_1_2_3</td>
<td>0x0318</td>
</tr>
<tr>
<td>SIGN_4_1_2_3</td>
<td>0x0007</td>
</tr>
<tr>
<td>GAIN-VQ 4</td>
<td>0x0000</td>
</tr>
</tbody>
</table>
Table 9e: Parameter values for the decoder homing frame (MR74)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (LSB=0b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC 1</td>
<td>0x00F8</td>
</tr>
<tr>
<td>LPC 2</td>
<td>0x00E3</td>
</tr>
<tr>
<td>LPC 3</td>
<td>0x002F</td>
</tr>
<tr>
<td>LTP-LAG 1</td>
<td>0x00BD</td>
</tr>
<tr>
<td>POS_1_1_2_3_4</td>
<td>0x0006</td>
</tr>
<tr>
<td>SIGN_1_1_2_3_4</td>
<td>0x000F</td>
</tr>
<tr>
<td>GAIN-VQ 1</td>
<td>0x0000</td>
</tr>
<tr>
<td>LTP-LAG 2</td>
<td>0x001B</td>
</tr>
<tr>
<td>POS_2_1_2_3_4</td>
<td>0x0208</td>
</tr>
<tr>
<td>SIGN_2_1_2_3_4</td>
<td>0x000F</td>
</tr>
<tr>
<td>GAIN-VQ 2</td>
<td>0x0062</td>
</tr>
<tr>
<td>LTP-LAG 3</td>
<td>0x0060</td>
</tr>
<tr>
<td>POS_3_1_2_3_4</td>
<td>0x1BA6</td>
</tr>
<tr>
<td>SIGN_3_1_2_3_4</td>
<td>0x000F</td>
</tr>
<tr>
<td>GAIN-VQ 3</td>
<td>0x0000</td>
</tr>
<tr>
<td>LTP-LAG 4</td>
<td>0x001B</td>
</tr>
<tr>
<td>POS_4_1_2_3_4</td>
<td>0x0006</td>
</tr>
<tr>
<td>SIGN_4_1_2_3_4</td>
<td>0x000F</td>
</tr>
<tr>
<td>GAIN-VQ 4</td>
<td>0x0000</td>
</tr>
</tbody>
</table>

Table 9f: Parameter values for the decoder homing frame (MR795)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (LSB=0b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC 1</td>
<td>0x00C2</td>
</tr>
<tr>
<td>LPC 2</td>
<td>0x00E3</td>
</tr>
<tr>
<td>LPC 3</td>
<td>0x002F</td>
</tr>
<tr>
<td>LTP-LAG 1</td>
<td>0x00BD</td>
</tr>
<tr>
<td>POS_1_1_2_3_4</td>
<td>0x0006</td>
</tr>
<tr>
<td>SIGN_1_1_2_3_4</td>
<td>0x000F</td>
</tr>
<tr>
<td>LTP-GAIN 1</td>
<td>0x000A</td>
</tr>
<tr>
<td>FCB-GAIN 1</td>
<td>0x0000</td>
</tr>
<tr>
<td>LTP-LAG 2</td>
<td>0x0039</td>
</tr>
<tr>
<td>POS_2_1_2_3_4</td>
<td>0x1C08</td>
</tr>
<tr>
<td>SIGN_2_1_2_3_4</td>
<td>0x0007</td>
</tr>
<tr>
<td>LTP-GAIN 2</td>
<td>0x000A</td>
</tr>
<tr>
<td>FCB-GAIN 2</td>
<td>0x000B</td>
</tr>
<tr>
<td>LTP-LAG 3</td>
<td>0x0063</td>
</tr>
<tr>
<td>POS_3_1_2_3_4</td>
<td>0x11A6</td>
</tr>
<tr>
<td>SIGN_3_1_2_3_4</td>
<td>0x000F</td>
</tr>
<tr>
<td>LTP-GAIN 3</td>
<td>0x0001</td>
</tr>
<tr>
<td>FCB-GAIN 3</td>
<td>0x0000</td>
</tr>
<tr>
<td>LTP-LAG 4</td>
<td>0x0039</td>
</tr>
<tr>
<td>POS_4_1_2_3_4</td>
<td>0x09A0</td>
</tr>
<tr>
<td>SIGN_4_1_2_3_4</td>
<td>0x000F</td>
</tr>
<tr>
<td>LTP-GAIN 4</td>
<td>0x0002</td>
</tr>
<tr>
<td>FCB-GAIN 4</td>
<td>0x0001</td>
</tr>
</tbody>
</table>
Table 9g: Parameter values for the decoder homing frame (MR102)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (LSB=b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC 1</td>
<td>0x00F8</td>
</tr>
<tr>
<td>LPC 2</td>
<td>0x00E3</td>
</tr>
<tr>
<td>LPC 3</td>
<td>0x002F</td>
</tr>
<tr>
<td>LTP-LAG 1</td>
<td>0x0045</td>
</tr>
<tr>
<td>SIGN_1_1_5</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_2_6</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_3_7</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_4_8</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_1_1_2_5</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_1_3_6_7</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_1_4_8</td>
<td>0x0000</td>
</tr>
<tr>
<td>GAIN-VQ_1</td>
<td>0x0000</td>
</tr>
<tr>
<td>LTP-LAG 2</td>
<td>0x001B</td>
</tr>
<tr>
<td>SIGN_2_1_5</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_2_2_6</td>
<td>0x0001</td>
</tr>
<tr>
<td>SIGN_2_3_7</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_2_4_8</td>
<td>0x0001</td>
</tr>
<tr>
<td>POS_2_1_2_5</td>
<td>0x0326</td>
</tr>
<tr>
<td>POS_2_3_6_7</td>
<td>0x00CE</td>
</tr>
<tr>
<td>POS_2_4_8</td>
<td>0x007E</td>
</tr>
<tr>
<td>GAIN-VQ_2</td>
<td>0x0051</td>
</tr>
<tr>
<td>LTP-LAG 3</td>
<td>0x0062</td>
</tr>
<tr>
<td>SIGN_3_1_5</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_3_2_6</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_3_3_7</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_3_4_8</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_3_1_2_5</td>
<td>0x015A</td>
</tr>
<tr>
<td>POS_3_3_6_7</td>
<td>0x0359</td>
</tr>
<tr>
<td>POS_3_4_8</td>
<td>0x0076</td>
</tr>
<tr>
<td>GAIN-VQ_3</td>
<td>0x0000</td>
</tr>
<tr>
<td>LTP-LAG 4</td>
<td>0x001B</td>
</tr>
<tr>
<td>SIGN_4_1_5</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_4_2_6</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_4_3_7</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_4_4_8</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_4_1_2_5</td>
<td>0x017C</td>
</tr>
<tr>
<td>POS_4_3_6_7</td>
<td>0x0215</td>
</tr>
<tr>
<td>POS_4_4_8</td>
<td>0x0038</td>
</tr>
<tr>
<td>GAIN-VQ_4</td>
<td>0x0030</td>
</tr>
</tbody>
</table>
Table 9h: Parameter values for the decoder homing frame (MR122)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (LSB=b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC1</td>
<td>0x0004</td>
</tr>
<tr>
<td>LPC2</td>
<td>0x002A</td>
</tr>
<tr>
<td>LPC3</td>
<td>0x00DB</td>
</tr>
<tr>
<td>LPC4</td>
<td>0x0096</td>
</tr>
<tr>
<td>LPC5</td>
<td>0x002A</td>
</tr>
<tr>
<td>LTP-LAG 1</td>
<td>0x0156</td>
</tr>
<tr>
<td>LTP-GAIN 1</td>
<td>0x000B</td>
</tr>
<tr>
<td>SIGN_1_1_6_POS_1_1</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_2_7_POS_1_2</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_3_8_POS_1_3</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_4_9_POS_1_4</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_1_5_10_POS_1_5</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_1_6</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_1_7</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_1_8</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_1_9</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_1_10</td>
<td>0x0000</td>
</tr>
<tr>
<td>FCB-GAIN 1</td>
<td>0x0000</td>
</tr>
<tr>
<td>LTP-LAG 2</td>
<td>0x0036</td>
</tr>
<tr>
<td>LTP-GAIN 2</td>
<td>0x000B</td>
</tr>
<tr>
<td>SIGN_2_1_6_POS_2_1</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_2_2_7_POS_2_2</td>
<td>0x000F</td>
</tr>
<tr>
<td>SIGN_2_3_8_POS_2_3</td>
<td>0x000E</td>
</tr>
<tr>
<td>SIGN_2_4_9_POS_2_4</td>
<td>0x000C</td>
</tr>
<tr>
<td>SIGN_2_5_10_POS_2_5</td>
<td>0x000D</td>
</tr>
<tr>
<td>POS_2_6</td>
<td>0x0000</td>
</tr>
<tr>
<td>POS_2_7</td>
<td>0x0001</td>
</tr>
<tr>
<td>POS_2_8</td>
<td>0x0005</td>
</tr>
<tr>
<td>POS_2_9</td>
<td>0x0007</td>
</tr>
<tr>
<td>POS_2_10</td>
<td>0x0001</td>
</tr>
<tr>
<td>FCB-GAIN 2</td>
<td>0x0008</td>
</tr>
<tr>
<td>LTP-LAG 3</td>
<td>0x0024</td>
</tr>
<tr>
<td>LTP-GAIN 3</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_3_1_6_POS_3_1</td>
<td>0x0001</td>
</tr>
<tr>
<td>SIGN_3_2_7_POS_3_2</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_3_3_8_POS_3_3</td>
<td>0x0005</td>
</tr>
<tr>
<td>SIGN_3_4_9_POS_3_4</td>
<td>0x0006</td>
</tr>
<tr>
<td>SIGN_3_5_10_POS_3_5</td>
<td>0x0001</td>
</tr>
<tr>
<td>POS_3_6</td>
<td>0x0002</td>
</tr>
<tr>
<td>POS_3_7</td>
<td>0x0004</td>
</tr>
<tr>
<td>POS_3_8</td>
<td>0x0007</td>
</tr>
<tr>
<td>POS_3_9</td>
<td>0x0004</td>
</tr>
<tr>
<td>POS_3_10</td>
<td>0x0002</td>
</tr>
<tr>
<td>FCB-GAIN 3</td>
<td>0x0003</td>
</tr>
<tr>
<td>LTP-LAG 4</td>
<td>0x0036</td>
</tr>
<tr>
<td>LTP-GAIN 4</td>
<td>0x000B</td>
</tr>
<tr>
<td>SIGN_4_1_6_POS_4_1</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_4_2_7_POS_4_2</td>
<td>0x0002</td>
</tr>
<tr>
<td>SIGN_4_3_8_POS_4_3</td>
<td>0x0004</td>
</tr>
<tr>
<td>SIGN_4_4_9_POS_4_4</td>
<td>0x0000</td>
</tr>
<tr>
<td>SIGN_4_5_10_POS_4_5</td>
<td>0x0003</td>
</tr>
<tr>
<td>POS_4_6</td>
<td>0x0006</td>
</tr>
<tr>
<td>POS_4_7</td>
<td>0x0001</td>
</tr>
<tr>
<td>POS_4_8</td>
<td>0x0007</td>
</tr>
<tr>
<td>POS_4_9</td>
<td>0x0006</td>
</tr>
<tr>
<td>POS_4_10</td>
<td>0x0005</td>
</tr>
<tr>
<td>FCB-GAIN 4</td>
<td>0x0000</td>
</tr>
</tbody>
</table>
6 File formats

This section describes the file formats used by the encoder and decoder programs. The test sequences defined in [2] also use the file formats described here.

6.1 Speech file (encoder input / decoder output)

Speech files read by the encoder and written by the decoder consist of 16-bit words where each word contains a 13-bit, left aligned speech sample. The byte order depends on the host architecture (e.g. MSByte first on SUN workstations, LSByte first on PCs etc.). Both the encoder and the decoder program process complete frames (of 160 samples) only.

This means that the encoder will only process \(n \) frames if the length of the input file is \(n \times 160 + k \) words, while the files produced by the decoder will always have a length of \(n \times 160 \) words.

6.2 Mode control file (encoder input)

The encoder program can optionally read in a mode control file which specifies the encoding mode for each frame of speech processed. The file is a text file containing one line per speech frame. Each line contains one of the mode names from the list \{MR475, MR515, MR59, MR67, MR74, MR795, MR102, MR122\}.

6.3 Parameter bitstream file (encoder output / decoder input)

The files produced by the speech encoder/expected by the speech decoder contain an arbitrary number of frames in the format described in RFC 3267 [9], sections 5.1 and 5.3.

By using preprocessor definition encoder/decoder can optionally use AMR Interface Format 2. The format is described in TS 26.101 [8] Annex A.

By using another preprocessor definition encoder/decoder can optionally use format compatible with the existing AMR fixed-point C-code. Frame format is following.

<table>
<thead>
<tr>
<th>FRAME_TYPE</th>
<th>B1</th>
<th>B2</th>
<th>...</th>
<th>B244</th>
<th>MODE_INFO</th>
<th>unused1</th>
<th>...</th>
<th>unused4</th>
</tr>
</thead>
</table>

Each box corresponds to one \text{Word16} value in the bitstream file, for a total of 250 words or 500 bytes per frame. The fields have the following meaning:

FRAME_TYPE transmit frame type, which is one of
- TX_SPEECH (0x0000)
- TX_SID_FIRST (0x0001)
- TX_SID_UPDATE (0x0002)
- TX_NO_DATA (0x0003)

B0...B244 speech encoder parameter bits (i.e. the bitstream itself). Each Bx either has the value 0x0000 or 0x0001. Only mode MR122 really uses all 244 bits; for the other modes, only the first \(n \) bits are used (35 \leq n \leq 204). The remaining bits are unused (written as 0x0000)

MODE_INFO encoding mode information, which is one of
- MR475 (0x0000)
- MR515 (0x0001)
- MR59 (0x0002)
- MR67 (0x0003)
- MR74 (0x0004)
- MR795 (0x0005)
- MR102 (0x0006)
- MR122 (0x0007)

unused1...4 unused, written as 0x0000

As indicated in section 6.1 above, the byte order depends on the host architecture.
Annex A (informative):
Change History

<table>
<thead>
<tr>
<th>TSG SA#</th>
<th>Tdoc</th>
<th>CR</th>
<th>Rev</th>
<th>Cat</th>
<th>PH</th>
<th>Vers</th>
<th>New Vers</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>SP-000577</td>
<td>002</td>
<td>A</td>
<td>Rel-4</td>
<td>3.0.0</td>
<td>4.0.0</td>
<td>AMR Core Frame bit ordering (AMR speech Codec; Floating point C-Code)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SP-010306</td>
<td>004</td>
<td>1</td>
<td>A</td>
<td>Rel-4</td>
<td>4.0.0</td>
<td>4.1.0</td>
<td>Limiting predicted codebook gain computing in encoder</td>
</tr>
<tr>
<td>12</td>
<td>SP-010306</td>
<td>006</td>
<td>1</td>
<td>A</td>
<td>Rel-4</td>
<td>4.0.0</td>
<td>4.1.0</td>
<td>Correction of decoder operation in error concealment of lost frames</td>
</tr>
<tr>
<td>12</td>
<td>SP-010306</td>
<td>008</td>
<td>1</td>
<td>A</td>
<td>Rel-4</td>
<td>4.0.0</td>
<td>4.1.0</td>
<td>Correction of mode state bug in AMR decoder</td>
</tr>
<tr>
<td>12</td>
<td>SP-010306</td>
<td>012</td>
<td>1</td>
<td>A</td>
<td>Rel-4</td>
<td>4.0.0</td>
<td>4.1.0</td>
<td>Correction of decoder Reset</td>
</tr>
<tr>
<td>12</td>
<td>SP-010306</td>
<td>014</td>
<td>1</td>
<td>A</td>
<td>Rel-4</td>
<td>4.0.0</td>
<td>4.1.0</td>
<td>Correction of comfort noise parameter interpolation bug of AMR decoder</td>
</tr>
<tr>
<td>12</td>
<td>SP-010306</td>
<td>016</td>
<td>1</td>
<td>A</td>
<td>Rel-4</td>
<td>4.0.0</td>
<td>4.1.0</td>
<td>Correction of the TX_TYPE and RX_TYPE identifiers</td>
</tr>
<tr>
<td>MCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Correction of bugs in code</td>
</tr>
<tr>
<td>13</td>
<td>SP-010452</td>
<td>010</td>
<td>1</td>
<td>A</td>
<td>Rel-4</td>
<td>4.1.0</td>
<td>4.2.0</td>
<td>Correction to make encoder and decoder memories independent</td>
</tr>
<tr>
<td>13</td>
<td>SP-010452</td>
<td>018</td>
<td>A</td>
<td>Rel-4</td>
<td>4.1.1</td>
<td>4.2.0</td>
<td></td>
<td>Correction of decoder operation in error concealment of lost frames</td>
</tr>
<tr>
<td>15</td>
<td>SP-020079</td>
<td>019</td>
<td>A</td>
<td>Rel-4</td>
<td>4.2.0</td>
<td>4.3.0</td>
<td></td>
<td>Maintaining bit-exactness with TS 26.073</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0.0</td>
<td></td>
<td>Version for Release 5</td>
</tr>
<tr>
<td>19</td>
<td>SP-030088</td>
<td>21</td>
<td>1</td>
<td>F</td>
<td>Rel-5</td>
<td>5.0.0</td>
<td>5.1.0</td>
<td>MMS compatible i/o format option</td>
</tr>
<tr>
<td>19</td>
<td>SP-030088</td>
<td>24</td>
<td>A</td>
<td>Rel-5</td>
<td>5.0.0</td>
<td>5.1.0</td>
<td></td>
<td>Correction to floating-point implementation of sp_dec.c</td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5.0.0</td>
</tr>
<tr>
<td>V5.1.0</td>
</tr>
</tbody>
</table>

V5.0.0 June 2002 Publication

V5.1.0 March 2003 Publication