Universal Mobile Telecommunications System (UMTS); Multiplexing and channel coding (FDD) (3G TS 25.212 version 3.2.0 Release 1999)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scope</td>
</tr>
<tr>
<td>2</td>
<td>References</td>
</tr>
<tr>
<td>3</td>
<td>Definitions, symbols and abbreviations</td>
</tr>
<tr>
<td>3.1</td>
<td>Definitions</td>
</tr>
<tr>
<td>3.2</td>
<td>Symbols</td>
</tr>
<tr>
<td>3.3</td>
<td>Abbreviations</td>
</tr>
<tr>
<td>4</td>
<td>Multiplexing, channel coding and interleaving</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
</tr>
<tr>
<td>4.2</td>
<td>Transport-channel coding/multiplexing</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Error detection</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>CRC Calculation</td>
</tr>
<tr>
<td>4.2.1.1.1</td>
<td>Relation between input and output of the Cyclic Redundancy Check</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Transport block concatenation and code block segmentation</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Concatenation of transport blocks</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Code block segmentation</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Channel coding</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Convolutional coding</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Turbo coding</td>
</tr>
<tr>
<td>4.2.3.2.1</td>
<td>Turbo coder</td>
</tr>
<tr>
<td>4.2.3.2.2</td>
<td>Trellis termination for Turbo coder</td>
</tr>
<tr>
<td>4.2.3.2.3</td>
<td>Turbo code internal interleaver</td>
</tr>
<tr>
<td>4.2.3.3</td>
<td>Concatenation of encoded blocks</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Radio frame size equalisation</td>
</tr>
<tr>
<td>4.2.5</td>
<td>1st interleaving</td>
</tr>
<tr>
<td>4.2.5.1</td>
<td>Insertion of marked bits in the sequence to be input in first interleaver</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>1st interleaver operation</td>
</tr>
<tr>
<td>4.2.5.3</td>
<td>Relation between input and output of 1st interleaving in uplink</td>
</tr>
<tr>
<td>4.2.5.4</td>
<td>Relation between input and output of 1st interleaving in downlink</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Radio frame segmentation</td>
</tr>
<tr>
<td>4.2.6.1</td>
<td>Relation between input and output of the radio frame segmentation block in uplink</td>
</tr>
<tr>
<td>4.2.6.2</td>
<td>Relation between input and output of the radio frame segmentation block in downlink</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Rate matching</td>
</tr>
<tr>
<td>4.2.7.1</td>
<td>Determination of rate matching parameters in uplink</td>
</tr>
<tr>
<td>4.2.7.1.1</td>
<td>Determination of SF and number of PhCHs needed</td>
</tr>
<tr>
<td>4.2.7.2</td>
<td>Determination of rate matching parameters in downlink</td>
</tr>
<tr>
<td>4.2.7.2.1</td>
<td>Determination of rate matching parameters for fixed positions of TrCHs</td>
</tr>
<tr>
<td>4.2.7.2.2</td>
<td>Determination of rate matching parameters for flexible positions of TrCHs</td>
</tr>
<tr>
<td>4.2.7.3</td>
<td>Bit separation and collection in uplink</td>
</tr>
<tr>
<td>4.2.7.3.1</td>
<td>Bit separation</td>
</tr>
<tr>
<td>4.2.7.3.2</td>
<td>Bit collection</td>
</tr>
<tr>
<td>4.2.7.4</td>
<td>Bit separation and collection in downlink</td>
</tr>
<tr>
<td>4.2.7.4.1</td>
<td>Bit separation</td>
</tr>
<tr>
<td>4.2.7.4.2</td>
<td>Bit collection</td>
</tr>
<tr>
<td>4.2.7.5</td>
<td>Rate matching pattern determination</td>
</tr>
<tr>
<td>4.2.8</td>
<td>TrCH multiplexing</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Insertion of discontinuous transmission (DTX) indication bits</td>
</tr>
<tr>
<td>4.2.9.1</td>
<td>1st insertion of DTX indication bits</td>
</tr>
<tr>
<td>4.2.9.2</td>
<td>2nd insertion of DTX indication bits</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Physical channel segmentation</td>
</tr>
<tr>
<td>4.2.10.1</td>
<td>Relation between input and output of the physical segmentation block in uplink</td>
</tr>
<tr>
<td>4.2.10.2</td>
<td>Relation between input and output of the physical segmentation block in downlink</td>
</tr>
<tr>
<td>4.2.11</td>
<td>2nd interleaving</td>
</tr>
<tr>
<td>4.2.12</td>
<td>Physical channel mapping</td>
</tr>
<tr>
<td>4.2.12.1</td>
<td>Uplink</td>
</tr>
</tbody>
</table>

ETS

^{3G TS 25.212 version 3.2.0 Release 1999 3 ETSI TS 125 212 V3.2.0 (2000-03)}
4.2.12.2 Downlink ... 43
4.2.13 Restrictions on different types of CCTrCHs ... 43
4.2.13.1 Uplink Dedicated channel (DCH) .. 43
4.2.13.2 Random Access Channel (RACH) ... 43
4.2.13.3 Common Packet Channel (CPCH) ... 44
4.2.13.4 Downlink Dedicated Channel (DCH)... 44
4.2.13.5 Downlink Shared Channel (DSCH) associated with a DCH .. 44
4.2.13.6 Broadcast channel (BCH) ... 44
4.2.13.7 Forward access and paging channels (FACH and PCH) .. 44
4.2.14 Multiplexing of different transport channels into one CCTrCH, and mapping of one CCTrCH onto physical channels ... 44
4.2.14.1 Allowed CCTrCH combinations for one UE .. 45
4.2.14.1.1 Allowed CCTrCH combinations on the uplink .. 45
4.2.14.1.2 Allowed CCTrCH combinations on the downlink ... 45
4.3 Transport format detection .. 45
4.3.1 Blind transport format detection .. 46
4.3.2 Transport format detection based on TFCI .. 46
4.3.3 Coding of Transport-Format-Combination Indicator (TFCI) ... 46
4.3.4 Operation of Transport-Format-Combination Indicator (TFCI) in Split Mode .. 47
4.3.5 Mapping of TFCI words .. 48
4.3.5.1 Mapping of TFCI word in non compressed mode .. 48
4.3.5.2 Mapping of TFCI in compressed mode .. 49
4.3.5.2.1 Uplink compressed mode .. 49
4.3.5.2.2 Downlink compressed mode ... 49
4.4 Compressed mode .. 50
4.4.1 Frame structure in the uplink .. 50
4.4.2 Frame structure types in the downlink .. 50
4.4.3 Transmission time reduction method .. 51
4.4.3.1 Compressed mode by puncturing ... 51
4.4.3.2 Compressed mode by reducing the spreading factor by 2 ... 51
4.4.3.3 Compressed mode by higher layer scheduling ... 51
4.4.4 Transmission gap position .. 51
4.4.5 Parameters for downlink compressed mode .. 53

Annex A (informative): Blind transport format detection ... 55
A.1 Blind transport format detection using fixed positions .. 55
A.1.1 Blind transport format detection using received power ratio .. 55
A.1.2 Blind transport format detection using CRC ... 55
A.2 Blind transport format detection with flexible positions .. 56

Annex B (informative): Change history .. 58
Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:
 1 presented to TSG for information;
 2 presented to TSG for approval;
 3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document describes the characteristics of the Layer 1 multiplexing and channel coding in the FDD mode of UTRA.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.

[1] 3G TS 25.201: "Physical layer – General Description".
[2] 3G TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)".
[6] 3G TS 25.221: "Physical channels and mapping of transport channels onto physical channels (TDD)".
[7] 3G TS 25.222: "Multiplexing and channel coding (TDD)".
[8] 3G TS 25.223: "Spreading and modulation (TDD)".
[9] 3G TS 25.224: "Physical layer procedures (TDD)".
[10] 3G TS 25.225: "Measurements (TDD)".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

TG: Transmission Gap is consecutive empty slots that have been obtained with a transmission time reduction method. The transmission gap can be contained in one or two consecutive radio frames.

TGL: Transmission Gap Length is the number of consecutive empty slots that have been obtained with a transmission time reduction method. \(0 \leq TGL \leq 14\). The CFNs of the radio frames containing the first empty slot of the transmission gaps, the CFNs of the radio frames containing the last empty slot, the respective positions \(N_{\text{first}}\) and \(N_{\text{last}}\) within these frames of the first and last empty slots of the transmission gaps, and the transmission gap lengths can be calculated with the compressed mode parameters described in [5].
TrCH number: Transport channel number represents a TrCH ID assigned to L1 by L2. Transport channels are multiplexed to the CCTrCH in the ascending order of these IDs.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

\[
\begin{align*}
\lceil x \rceil & \quad \text{round towards } \infty, \text{i.e. integer such that } x \leq \lceil x \rceil < x + 1 \\
\lfloor x \rfloor & \quad \text{round towards } -\infty, \text{i.e. integer such that } x-1 < \lfloor x \rfloor \leq x \\
\| x \| & \quad \text{absolute value of } x \\
\sgn(x) & \quad \text{signum function, i.e. } \sgn(x) = \begin{cases}
1; & x \geq 0 \\
-1; & x < 0
\end{cases}
\end{align*}
\]

- \(N_{\text{first}} \) The first slot in the TG.
- \(N_{\text{last}} \) The last slot in the TG.
- \(N_{tr} \) Number of transmitted slots in a radio frame.

Unless otherwise is explicitly stated when the symbol is used, the meaning of the following symbols is:

- \(i \) TrCH number
- \(j \) TFC number
- \(k \) Bit number
- \(l \) TF number
- \(m \) Transport block number
- \(n_i \) Radio frame number of TrCH \(i \).
- \(p \) PhCH number
- \(r \) Code block number
- \(I \) Number of TrCHs in a CCTrCH.
- \(C_i \) Number of code blocks in one TTI of TrCH \(i \).
- \(F_i \) Number of radio frames in one TTI of TrCH \(i \).
- \(M_i \) Number of transport blocks in one TTI of TrCH \(i \).
- \(N_{\text{data},i,j} \) Number of data bits that are available for the CCTrCH in a radio frame with TFC \(j \).
- \(N_{\text{data},\text{cm},i,j} \) Number of data bits that are available for the CCTrCH in a compressed radio frame with TFC \(j \).
- \(P \) Number of PhCHs used for one CCTrCH.
- \(PL \) Puncturing Limit for the uplink. Signalled from higher layers
- \(RM_i \) Rate Matching attribute for TrCH \(i \). Signalled from higher layers.

Temporary variables, i.e. variables used in several (sub)clauses with different meaning.

- \(x, X \)
- \(y, Y \)
- \(z, Z \)

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

- **ARQ** Automatic Repeat Request
- **BCH** Broadcast Channel
- **BER** Bit Error Rate
- **BLER** Block Error Rate
- **BS** Base Station
- **CPCH** Common Control Physical Channel
- **CCTrCH** Coded Composite Transport Channel
- **CFN** Connection Frame Number
- **CRC** Cyclic Redundancy Code
- **DCH** Dedicated Channel
- **DL** Downlink (Forward link)
- **DPCCH** Dedicated Physical Control Channel
- **DPCH** Dedicated Physical Channel
4 Multiplexing, channel coding and interleaving

4.1 General

Data stream from/to MAC and higher layers (Transport block / Transport block set) is encoded/decoded to offer transport services over the radio transmission link. Channel coding scheme is a combination of error detection, error correcting, rate matching, interleaving and transport channels mapping onto/splitting from physical channels.

4.2 Transport-channel coding/multiplexing

Data arrives to the coding/multiplexing unit in form of transport block sets once every transmission time interval. The transmission time interval is transport-channel specific from the set {10 ms, 20 ms, 40 ms, 80 ms}.

The following coding/multiplexing steps can be identified:

- add CRC to each transport block (see subclause 4.2.1);
- transport block concatenation and code block segmentation (see subclause 4.2.2);
- channel coding (see subclause 4.2.3);
- rate matching (see subclause 4.2.7);
- insertion of discontinuous transmission (DTX) indication bits (see subclause 4.2.9);
- interleaving (two steps, see subclauses 4.2.4 and 4.2.11);
- radio frame segmentation (see subclause 4.2.6);
- multiplexing of transport channels (see subclause 4.2.8);
- physical channel segmentation (see subclause 4.2.10);
- mapping to physical channels (see subclause 4.2.12).

The coding/multiplexing steps for uplink and downlink are shown in figure 1 and figure 2 respectively.
Figure 1: Transport channel multiplexing structure for uplink
Figure 2: Transport channel multiplexing structure for downlink

The single output data stream from the TrCH multiplexing, including DTX indication bits in downlink, is denoted Coded Composite Transport Channel (CCTrCH). A CCTrCH can be mapped to one or several physical channels.
4.2.1 Error detection

Error detection is provided on transport blocks through a Cyclic Redundancy Check. The CRC is 24, 16, 12, 8 or 0 bits and it is signalled from higher layers what CRC length that should be used for each TrCH.

4.2.1.1 CRC Calculation

The entire transport block is used to calculate the CRC parity bits for each transport block. The parity bits are generated by one of the following cyclic generator polynomials:

- $g_{CRC24}(D) = D^{24} + D^{23} + D^6 + D^5 + D + 1$;
- $g_{CRC16}(D) = D^{16} + D^{12} + D^5 + 1$;
- $g_{CRC12}(D) = D^{12} + D^{11} + D^5 + D^2 + D + 1$;
- $g_{CRC8}(D) = D^{8} + D^7 + D^5 + D^3 + D + 1$.

Denote the bits in a transport block delivered to layer 1 by $a_{i1}, a_{i2}, a_{i3}, \ldots, a_{im}$, and the parity bits by $p_{i1}, p_{i2}, p_{i3}, \ldots, p_{in}$, A_i is the length of a transport block of TrCH i, m is the transport block number, and L_i is 24, 16, 12, 8, or 0 depending on what is signalled from higher layers.

The encoding is performed in a systematic form, which means that in GF(2), the polynomial:

$$a_{im1}D^{A_{i+23}} + a_{im2}D^{A_{i+22}} + \ldots + a_{imk}D^{A_{i+k}} + p_{im1}D^{23} + p_{im2}D^{22} + \ldots + p_{imk}D^{k} + p_{im24}$$

yields a remainder equal to 0 when divided by $g_{CRC24}(D)$, polynomial:

$$a_{im1}D^{A_{i+15}} + a_{im2}D^{A_{i+14}} + \ldots + a_{imk}D^{A_{i+k}} + p_{im1}D^{15} + p_{im2}D^{14} + \ldots + p_{imk}D^{k} + p_{im16}$$

yields a remainder equal to 0 when divided by $g_{CRC16}(D)$, polynomial:

$$a_{im1}D^{A_{i+11}} + a_{im2}D^{A_{i+10}} + \ldots + a_{imk}D^{A_{i+k}} + p_{im1}D^{11} + p_{im2}D^{10} + \ldots + p_{im1k}D^{k} + p_{im12}$$

yields a remainder equal to 0 when divided by $g_{CRC12}(D)$ and polynomial:

$$a_{im1}D^{A_{i+7}} + a_{im2}D^{A_{i+6}} + \ldots + a_{imk}D^{A_{i+k}} + p_{im1}D^{7} + p_{im2}D^{6} + \ldots + p_{im7k}D^{k} + p_{im8}$$

yields a remainder equal to 0 when divided by $g_{CRC8}(D)$.

If no transport blocks are input to the CRC calculation ($M_i = 0$), no CRC attachment shall be done. If transport blocks are input to the CRC calculation ($M_i \neq 0$) and the size of a transport block is zero ($A_i = 0$), CRC shall be attached, i.e. all parity bits equal to zero.

4.2.1.1.1 Relation between input and output of the Cyclic Redundancy Check

The bits after CRC attachment are denoted by $b_{i1}, b_{i2}, b_{i3}, \ldots, b_{in}$, where $B_i = A_i + L_i$. The relation between a_{imk} and b_{imk} is:

$$b_{imk} = a_{imk}, \quad k = 1, 2, 3, \ldots, A_i$$

$$b_{imk} = p_{im(li+1-(k-A_i))}, \quad k = A_i + 1, A_i + 2, A_i + 3, \ldots, A_i + L_i$$
4.2.2 Transport block concatenation and code block segmentation

All transport blocks in a TTI are serially concatenated. If the number of bits in a TTI is larger than \(Z \), the maximum size of a code block in question, then code block segmentation is performed after the concatenation of the transport blocks. The maximum size of the code blocks depends on whether convolutional coding, turbo coding or no coding is used for the TrCH.

4.2.2.1 Concatenation of transport blocks

The bits input to the transport block concatenation are denoted by \(b_{i, m_1}, b_{i, m_2}, b_{i, m_3}, \ldots, b_{i, m_{B_i}} \) where \(i \) is the TrCH number, \(m \) is the transport block number, and \(B_i \) is the number of bits in each block (including CRC). The number of transport blocks on TrCH \(i \) is denoted by \(M_i \). The bits after concatenation are denoted by \(x_{i_1}, x_{i_2}, x_{i_3}, \ldots, x_{i_{X_i}} \), where \(i \) is the TrCH number and \(X_i = M_iB_i \). They are defined by the following relations:

\[
x_{i,k} = b_{i,k} \quad k = 1, 2, \ldots, B_i
\]
\[
x_{i,k} = b_{i,2(k-B_i)} \quad k = B_i + 1, B_i + 2, \ldots, 2B_i
\]
\[
x_{i,k} = b_{i,3(k-2B_i)} \quad k = 2B_i + 1, 2B_i + 2, \ldots, 3B_i
\]
\[
\vdots
\]
\[
x_{i,k} = b_{i,M_i,(k-(M_i-1)B_i)} \quad k = (M_i - 1)B_i + 1, (M_i - 1)B_i + 2, \ldots, M_iB_i
\]

4.2.2.2 Code block segmentation

Segmentation of the bit sequence from transport block concatenation is performed if \(X_i > Z \). The code blocks after segmentation are of the same size. The number of code blocks on TrCH \(i \) is denoted by \(C_i \). If the number of bits input to the segmentation, \(X_i \), is not a multiple of \(C_i \), filler bits are added to the beginning of the first block. The filler bits are transmitted and they are always set to 0. The maximum code block sizes are:

- convolutional coding: \(Z = 504 \);
- turbo coding: \(Z = 5114 \);
- no channel coding: \(Z = unlimited \).

The bits output from code block segmentation are denoted by \(o_{i,r1}, o_{i,r2}, o_{i,r3}, \ldots, o_{i,rK_i} \), where \(i \) is the TrCH number, \(r \) is the code block number, and \(K_i \) is the number of bits.

Number of code blocks: \(C_i = \lceil X_i / Z \rceil \)

Number of bits in each code block:

if \(X_i < 40 \) and Turbo coding is used, then

\[K_i = 40 \]

else

\[K_i = \lceil X_i / C_i \rceil \]

end if

Number of filler bits: \(Y_i = C_iK_i - X_i \)

If \(X_i \leq Z \), then

\[o_{i,k} = 0 \quad k = 1, 2, \ldots, Y_i \]
\[o_{i,k} = x_{i,(k-Y_i)} \quad k = Y_i+1, Y_i+2, \ldots, K_i \]

end if

If \(X_i > Z \), then

\[o_{i,k} = 0 \quad k = 1, 2, \ldots, Y_i \]

\[o_{i,k} = x_{i,(k-Y_i)} \quad k = Y_i+1, Y_i+2, \ldots, K_i \]

\[o_{i,2k} = x_{i,(k+K_i-Y_i)} \quad k = 1, 2, \ldots, K_i \]

\[o_{i,3k} = x_{i,(k+2K_i-Y_i)} \quad k = 1, 2, \ldots, K_i \]

\[\ldots \]

\[o_{i,C_k} = x_{i,(k+(C_i-1)K_i-Y_i)} \quad k = 1, 2, \ldots, K_i \]

end if

4.2.3 Channel coding

Code blocks are delivered to the channel coding block. They are denoted by \(o_{i1}, o_{i2}, o_{i3}, \ldots, o_{iK_i} \), where \(i \) is the TrCH number, \(r \) is the code block number, and \(K_i \) is the number of bits in each code block. The number of code blocks on TrCH \(i \) is denoted by \(C_i \). After encoding the bits are denoted by \(y_{i1}, y_{i2}, y_{i3}, \ldots, y_{iY_i} \), where \(Y_i \) is the number of encoded bits. The relation between \(o_{i,k} \) and \(y_{i,k} \) and between \(K_i \) and \(Y_i \) is dependent on the channel coding scheme.

The following channel coding schemes can be applied to TrCHs:

- convolutional coding;
- turbo coding;
- no coding.

Usage of coding scheme and coding rate for the different types of TrCH is shown in table 1.

The values of \(Y_i \) in connection with each coding scheme:

- convolutional coding with rate 1/2: \(Y_i = 2*K_i + 16 \); rate 1/3: \(Y_i = 3*K_i + 24 \);
- turbo coding with rate 1/3: \(Y_i = 3*K_i + 12 \);
- no coding: \(Y_i = K_i \).

<table>
<thead>
<tr>
<th>Table 1: Usage of channel coding scheme and coding rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of TrCH</td>
</tr>
<tr>
<td>BCH</td>
</tr>
<tr>
<td>PCH</td>
</tr>
<tr>
<td>RACH</td>
</tr>
<tr>
<td>CPCH, DCH, DSCH, FACH</td>
</tr>
</tbody>
</table>
4.2.3.1 Convolutional coding

Convolutional codes with constraint length 9 and coding rates 1/3 and 1/2 are defined.

The configuration of the convolutional coder is presented in figure 3.

Output from the rate 1/3 convolutional coder shall be done in the order output0, output1, output2, output0, output1, output 2, output 0, ..., output 1. Output from the rate 1/2 convolutional coder shall be done in the order output 0, output 1, output 0, output 1, ..., output 1.

8 tail bits with binary value 0 shall be added to the end of the code block before encoding.

The initial value of the shift register of the coder shall be "all 0" when starting to encode the input bits.

4.2.3.2 Turbo coding

4.2.3.2.1 Turbo coder

The scheme of Turbo coder is a Parallel Concatenated Convolutional Code (PCCC) with two 8-state constituent encoders and one Turbo code internal interleaver. The coding rate of Turbo coder is 1/3. The structure of Turbo coder is illustrated in figure 4.

The transfer function of the 8-state constituent code for PCCC is:

\[G(D) = \begin{bmatrix} g_1(D) \\ g_0(D) \end{bmatrix}, \]

where

\[g_0(D) = 1 + D^2 + D^3, \]
\[g_1(D) = 1 + D + D^3. \]
The initial value of the shift registers of the 8-state constituent encoders shall be all zeros when starting to encode the input bits.

Output from the Turbo coder is

\[x_1, z_1, \bar{z}_1, x_2, z_2, \bar{z}_2, \ldots, x_K, z_K, \bar{z}_K, \]

where \(x_1, x_2, \ldots, x_K \) are the bits input to the Turbo coder i.e. both first 8-state constituent encoder and Turbo code internal interleaver, and \(K \) is the number of bits, and \(z_1, z_2, \ldots, z_K \) and \(\bar{z}_1, \bar{z}_2, \ldots, \bar{z}_K \) are the bits output from first and second 8-state constituent encoders, respectively.

The bits output from Turbo code internal interleaver are denoted by \(x'_1, x'_2, \ldots, x'_K \), and these bits are to be input to the second 8-state constituent encoder.

![Turbo coder block diagram](image)

Figure 4: Structure of rate 1/3 Turbo coder (dotted lines apply for trellis termination only)

4.2.3.2.2 Trellis termination for Turbo coder

Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are padded after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 4 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 4 in lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be:

\[x_{K+1}, z_{K+1}, x_{K+2}, z_{K+2}, x_{K+3}, z_{K+3}, x'_{K+1}, z'_{K+1}, x'_{K+2}, z'_{K+2}, x'_{K+3}, z'_{K+3}. \]

4.2.3.2.3 Turbo code internal interleaver

The Turbo code internal interleaver consists of bits-input to a rectangular matrix, intra-row and inter-row permutations of the rectangular matrix, and bits-output from the rectangular matrix with pruning. The bits input to the Turbo code internal interleaver are denoted by \(x_1, x_2, x_3, \ldots, x_K \), where \(K \) is the integer number of the bits and takes one value of \(40 \leq K \leq 5114 \). The relation between the bits input to the Turbo code internal interleaver and the bits input to the channel coding is defined by \(x_i = o_{ik} \) and \(K = K_i \).

The following subclause specific symbols are used in subclauses 4.2.3.2.3.1 to 4.2.3.2.3.3:

- **K** Number of bits input to Turbo code internal interleaver
- **R** Number of rows of rectangular matrix
C Number of columns of rectangular matrix
p Prime number
v Primitive root
s(i) Base sequence for intra-row permutation
qj Minimum prime integers
rj Permutated prime integers
T(j) Inter-row permutation pattern
Uj(i) Intra-row permutation pattern
i Index of matrix
j Index of matrix
k Index of bit sequence

4.2.3.2.3.1 Bits-input to rectangular matrix

The bit sequence input to the Turbo code internal interleaver x_k is written into the rectangular matrix as follows.

(1) Determine the number of rows R of the rectangular matrix such that:

$$ R = \begin{cases}
5, & \text{if } (40 \leq K \leq 159) \\
10, & \text{if } ((160 \leq K \leq 200) \text{ or } (481 \leq K \leq 530)) \\
20, & \text{if } (K = \text{any other value})
\end{cases} $$

where the rows of rectangular matrix are numbered 0, 1, 2, ..., $R - 1$ from top to bottom.

(2) Determine the number of columns C of rectangular matrix such that:

if $(481 \leq K \leq 530)$ then

$p = 53$ and $C = p.$

else

Find minimum prime p such that

$$(p + 1) - K/R \geq 0,$$

and determine C such that

if $(p - K/R \geq 0)$ then

if $(p - 1 - K/R \geq 0)$ then

$C = p - 1.$

else

$C = p.$

end if

else

$C = p + 1$

end if

end if

where the columns of rectangular matrix are numbered 0, 1, 2, ..., C - 1 from left to right.

(3) Write the input bit sequence x_k into the $R \times C$ rectangular matrix row by row starting with bit x_1 in column 0 of row 0:

$$
\begin{bmatrix}
 x_1 & x_2 & x_3 & \cdots & x_C \\
 x_{(C+1)} & x_{(C+2)} & x_{(C+3)} & \cdots & x_{3C} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{((R-1)C+1)} & x_{((R-1)C+2)} & x_{((R-1)C+3)} & \cdots & x_{RC}
\end{bmatrix}
$$

4.2.3.2.3.2 Intra-row and inter-row permutations

After the bits-input to the $R \times C$ rectangular matrix, the intra-row and inter-row permutations are performed by using the following algorithm.

(1) Select a primitive root v from table 2.

(2) Construct the base sequence $s(i)$ for intra-row permutation as:

$$s(i) = [v \times s(i - 1)] \mod p, \quad i = 1, 2, \ldots, (p - 2), \text{and } s(0) = 1.$$

(3) Let $q_0 = 1$ be the first prime integer in $\{q_j\}$, and select the consecutive minimum prime integers $\{q_j\}$ ($j = 1, 2, \ldots, R - 1$) such that:

$$\text{g.c.d}\{q_j, p - 1\} = 1, \quad q_j > 6, \text{and } q_j > q_{j-1},$$

where g.c.d. is greatest common divisor.

(4) Permute $\{q_j\}$ to make $\{r_j\}$ such that

$$r_{T(j)} = q_j, \quad j = 0, 1, \ldots, R - 1,$$

where $T(j)$ indicates the original row position of the j-th permuted row, and $T(j)$ is the inter-row permutation pattern defined as the one of the following four kind of patterns: Pat_1, Pat_2, Pat_3 and Pat_4 depending on the number of input bits K.

$$T(j) = \begin{cases}
 Pat_4 & \text{if } (40 \leq K \leq 159) \\
 Pat_3 & \text{if } (160 \leq K \leq 200) \\
 Pat_1 & \text{if } (201 \leq K \leq 480) \\
 Pat_3 & \text{if } (481 \leq K \leq 530)
\end{cases},$$

where Pat_1, Pat_2, Pat_3 and Pat_4 have the following patterns respectively.

Pat_1: $\{19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 10, 8, 13, 17, 3, 1, 16, 6, 15, 11\}$

Pat_2: $\{19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16, 13, 17, 15, 3, 1, 6, 11, 8, 10\}$

Pat_3: $\{9, 8, 7, 6, 5, 4, 3, 2, 1, 0\}$

Pat_4: $\{4, 3, 2, 1, 0\}$
(5) Perform the j-th ($j = 0, 1, 2, \ldots, R - 1$) intra-row permutation as:

if ($C = p$) then

$$U_j(i) = s[(i \times r_j) \mod (p - 1)], \quad i = 0, 1, 2, \ldots, (p - 2), \quad \text{and} \quad U_j(p - 1) = 0,$$

where $U_j(i)$ is the input bit position of i-th output after the permutation of j-th row.

end if

if ($C = p + 1$) then

$$U_j(i) = s[(i \times r_j) \mod (p - 1)], \quad i = 0, 1, 2, \ldots, (p - 2), \quad U_j(p - 1) = 0, \quad \text{and} \quad U_j(p) = p,$$

where $U_j(i)$ is the input bit position of i-th output after the permutation of j-th row, and

if ($K = C \times R$) then

Exchange $U_{R,1}(p)$ with $U_{R,1}(0)$.

end if

end if

dend if

if ($C = p - 1$) then

$$U_j(i) = s[(i \times r_j) \mod (p - 1)] - 1, \quad i = 0, 1, 2, \ldots, (p - 2),$$

where $U_j(i)$ is the input bit position of i-th output after the permutation of j-th row.

end if

end if

Table 2: Table of prime p and associated primitive root v

<table>
<thead>
<tr>
<th>(p)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3</td>
<td>47</td>
<td>5</td>
<td>101</td>
<td>2</td>
<td>157</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>53</td>
<td>2</td>
<td>103</td>
<td>5</td>
<td>163</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>59</td>
<td>2</td>
<td>107</td>
<td>2</td>
<td>167</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>61</td>
<td>2</td>
<td>109</td>
<td>6</td>
<td>173</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>67</td>
<td>2</td>
<td>113</td>
<td>3</td>
<td>179</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>71</td>
<td>7</td>
<td>127</td>
<td>3</td>
<td>181</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>73</td>
<td>5</td>
<td>131</td>
<td>2</td>
<td>191</td>
<td>19</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>79</td>
<td>3</td>
<td>137</td>
<td>3</td>
<td>193</td>
<td>5</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>83</td>
<td>2</td>
<td>139</td>
<td>2</td>
<td>197</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>89</td>
<td>3</td>
<td>149</td>
<td>2</td>
<td>199</td>
<td>3</td>
</tr>
<tr>
<td>43</td>
<td>3</td>
<td>97</td>
<td>5</td>
<td>151</td>
<td>6</td>
<td>211</td>
<td>2</td>
</tr>
</tbody>
</table>

4.2.3.2.3.3 Bits-output from rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are denoted by y'_i:

$$
\begin{bmatrix}
y'_1 & y'_{(R+1)} & y'_{(2R+1)} & \cdots & y'_{((C-1)(R+1))} \\
y'_2 & y'_{(R+2)} & y'_{(2R+2)} & \cdots & y'_{((C-1)(R+2))} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
y'_R & y'_{2R} & y'_{3R} & \cdots & y'_{CR}
\end{bmatrix}
$$
The output of the Turbo code internal interleaver is the bit sequence read out column by column from the intra-row and inter-row permuted $R \times C$ matrix starting with bit y_1' in row 0 of column 0 and ending with bit y'_R in row $R - 1$ of column $C - 1$. The output is pruned by deleting bits that were not present in the input bit sequence, i.e. bits y'_k that corresponds to bits x_k with $k > K$ are removed from the output. The bits output from Turbo code internal interleaver are denoted by $x_1', x_2', ..., x_K'$, where x_1' corresponds to the bit y'_k with smallest index k after pruning, x_2' to the bit y'_k with second smallest index k after pruning, and so on. The number of bits output from Turbo code internal interleaver is K and the total number of pruned bits is:

$$R \times C - K.$$

4.2.3.3 Concatenation of encoded blocks

After the channel coding for each code block, if C_i is greater than 1, the encoded blocks are serially concatenated so that the block with lowest index r is output first from the channel coding block, otherwise the encoded block is output from channel coding block as it is. The bits output are denoted by $c_{i1}, c_{i2}, c_{i3}, ..., c_{iE_i}$, where i is the TrCH number and $E_i = C_i Y_i$. The output bits are defined by the following relations:

$$c_{ik} = y_{i,k} \quad k = 1, 2, ..., Y_i$$

$$c_{ik} = y_{i,2(k-Y_i)} \quad k = Y_i + 1, Y_i + 2, ..., 2Y_i$$

$$c_{ik} = y_{i,3(k-2Y_i)} \quad k = 2Y_i + 1, 2Y_i + 2, ..., 3Y_i$$

$$\vdots$$

$$c_{ik} = y_{i,C_i(k-(C_i-1)Y_i)} \quad k = (C_i - 1)Y_i + 1, (C_i - 1)Y_i + 2, ..., C_i Y_i$$

If no code blocks are input to the channel coding $(C_i = 0)$, no bits shall be output from the channel coding, i.e. $E_i = 0$.

4.2.4 Radio frame size equalisation

Radio frame size equalisation is padding the input bit sequence in order to ensure that the output can be segmented in F_i data segments of same size as described in subclause 4.2.7. Radio frame size equalisation is only performed in the UL (DL rate matching output block length is always an integer multiple of F_i).

The input bit sequence to the radio frame size equalisation is denoted by $c_{i1}, c_{i2}, c_{i3}, ..., c_{iE_i}$, where i is TrCH number and E_i the number of bits. The output bit sequence is denoted by $t_{i1}, t_{i2}, t_{i3}, ..., t_{iT_i}$, where T_i is the number of bits. The output bit sequence is derived as follows:

- $t_{ik} = c_{ik}$ for $k = 1 \ldots E_i$; and
- $t_{ik} = \{0, 1\}$ for $k = E_i + 1 \ldots T_i$, if $E_i < T_i$;

where

- $T_i = F_i \times N_i$; and
- $N_i = \lceil E_i / F_i \rceil$ is the number of bits per segment after size equalisation.

4.2.5 1st interleaving

In Compressed Mode by puncturing, bits marked with a fourth value on top of $\{0, 1, 8\}$ and noted p, are introduced in the radio frames to be compressed, in positions corresponding to the first bits of the radio frames. They will be removed in a later stage of the multiplexing chain to create the actual gap. Additional puncturing has been performed in the rate matching step, over the TTI containing the compressed radio frame, to create room for these p-bits. The following subclause describes this feature.
4.2.5.1 Insertion of marked bits in the sequence to be input in first interleaver

In normal mode, compressed mode by higher layer scheduling, and compressed mode by spreading factor reduction:

\[x_{ik} = z_{ik} \text{ and } X_i = Z_i \]

In case of compressed mode by puncturing and fixed positions, sequence \(x_{ik} \) which will be input to first interleaver for TrCh \(i \) and TTI \(m \) within largest TTI, is built from bits \(z_{ik}, k = 1, \ldots, Z_i \) plus \(N_{p_{TTI,m_{\text{lat}}}i} \) bits marked \(p \) and \(X_i = Z_i + N_{p_{TTI,m_{\text{lat}}}i} \), as is described thereafter.

\(N_{p_{TTI,m_{\text{lat}}}i} \) is defined in the Rate Matching subclause 4.2.7.

\(P_{Fi}[x] \) defines the inter column permutation function for a TTI of length \(F_i \times 10 \text{ms} \), as defined in Table 3 above. \(P_{Fi}[x] \) is the Bit Reversal function of \(x \) on \(\log_2(F_i) \) bits.

NOTE 1: \(C[x], x = 0 \text{ to } F_i - 1 \), the number of bits \(p \) which have to be inserted in each of the \(F_i \) segments of the TTI, i.e. in each column of the first interleaver. \(C[x] \) is equal to \(N_{p{x_{i,max}}} \) for \(x \) equal 0 to \(F_i - 1 \) for fixed positions. It is noted \(N_{p{x_{i}}} \) in the following initialisation step.

NOTE 2: \(cbi[x], x = 0 \text{ to } F_i - 1 \), the counter of the number of bits \(p \) inserted in each of the \(F_i \) segments of the TTI, i.e. in each column of the first interleaver.

\[
\text{col} = 0
\]

\textbf{while} \(\text{col} < F_i \) \textbf{do}

\[
C[\text{col}] = N_{p{\text{col}}_i} \quad \text{-- initialisation of number of bits} \; p \; \text{to be inserted in each of the} \; F_i \; \text{segments of the TTI}
\]

\[
\text{cbi}[\text{col}] = 0 \quad \text{-- initialisation of counter of number of bits} \; p \; \text{inserted in each of the} \; F_i \; \text{segments of the TTI}
\]

\textbf{end do}

\(n = 0, m = 0 \)

\textbf{while} \(n < X_i \) \textbf{do}

\(\text{col} = n \text{ mod } F_i \)

\textbf{if} \(\text{cbi}[\text{col}] < C[E_i, \text{col}] \) \textbf{do}

\[
x_{i,n} = p \quad \text{-- insert one} \; p \; \text{bit}
\]

\[
\text{cbi}[\text{col}] = \text{cbi}[\text{col}] + 1 \quad \text{-- update counter of number of bits} \; p \; \text{inserted}
\]

\textbf{else}

\[
x_{i,n} = z_{i,m}
\]

\(m = m + 1 \)

\textbf{endif}

\(n = n + 1 \)

\textbf{end do}

4.2.5.2 1st interleaver operation

The 1st interleaving is a block interleaver with inter-column permutations. The input bit sequence to the 1st interleaver is denoted by \(x_{i1}, x_{i2}, x_{i3}, \ldots, x_{iX_i} \), where \(i \) is TrCH number and \(X_i \) the number of bits (at this stage \(X_i \) is assumed and guaranteed to be an integer multiple of TTI). The output bit sequence is derived as follows:

1. Select the number of columns \(C_i \) from Table 3.
(2) Determine the number of rows \(R_I \) defined as:

\[
R_I = \frac{X_{i}}{C_{I}}
\]

(3) Write the input bit sequence into the \(R_I \times C_{I} \) rectangular matrix row by row starting with bit \(x_{i,j} \) in the first column of the first row and ending with bit \(x_{i,(C_{I}+1)} \) in column \(C_{I} \) of row \(R_I \):

\[
\begin{bmatrix}
 x_{i1} & x_{i2} & x_{i3} & \ldots & x_{i,C_{I}} \\
 x_{i,(C_{I}+1)} & x_{i,(C_{I}+2)} & x_{i,(C_{I}+3)} & \ldots & x_{i,(2C_{I})} \\
 \vdots & \vdots & \vdots & \ldots & \vdots \\
 x_{i,(R_I-1)C_{I}+1} & x_{i,(R_I-1)C_{I}+2} & x_{i,(R_I-1)C_{I}+3} & \ldots & x_{i,(R_I C_{I})}
\end{bmatrix}
\]

(4) Perform the inter-column permutation based on the pattern \(\{ P_1(j) \} \) \((j=0,1, \ldots, C-1)\) shown in table 3, where \(P_1(j) \) is the original column position of the \(j \)-th permuted column. After permutation of the columns, the bits are denoted by \(y_{i,k} \):

\[
\begin{bmatrix}
 y_{i1} & y_{i,(R_I+1)} & y_{i,(2R_I+1)} & \ldots & y_{i,(C_{I}-1)R_I+1} \\
 y_{i2} & y_{i,(R_I+2)} & y_{i,(2R_I+2)} & \ldots & y_{i,(C_{I}-1)R_I+2} \\
 \vdots & \vdots & \vdots & \ldots & \vdots \\
 y_{i,R_I} & y_{i,(2R_I)} & y_{i,(3R_I)} & \ldots & y_{i,(R_I C_{I})}
\end{bmatrix}
\]

(5) Read the output bit sequence \(y_{i1}, y_{i2}, y_{i3}, \ldots, y_{i,(C_{I} R_I)} \) of the 1st interleaving column by column from the inter-column permuted \(R_I \times C_{I} \) matrix. Bit \(y_{i,1} \) corresponds to the first row of the first column and bit \(y_{i,(R_I C_{I})} \) corresponds to row \(R_I \) of column \(C_{I} \).

<table>
<thead>
<tr>
<th>TTI</th>
<th>Number of columns (C_{I})</th>
<th>Inter-column permutation patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ms</td>
<td>1</td>
<td>{0}</td>
</tr>
<tr>
<td>20 ms</td>
<td>2</td>
<td>{0,1}</td>
</tr>
<tr>
<td>40 ms</td>
<td>4</td>
<td>{0,2,1,3}</td>
</tr>
<tr>
<td>80 ms</td>
<td>8</td>
<td>{0,2,4,6,1,5,3,7}</td>
</tr>
</tbody>
</table>

4.2.5.3 Relation between input and output of 1st interleaving in uplink

The bits input to the 1st interleaving are denoted by \(I_{i1}, I_{i2}, I_{i3}, \ldots, I_{iT_{I}} \), where \(i \) is the TrCH number and \(T_{I} \) the number of bits. Hence, \(z_{ik} = I_{ik} \) and \(X_i = T_{I} \).

The bits output from the 1st interleaving are denoted by \(d_{i1}, d_{i2}, d_{i3}, \ldots, d_{iT_{I}} \), and \(d_{ik} = y_{ik} \).

4.2.5.4 Relation between input and output of 1st interleaving in downlink

If fixed positions of the TrCHs in a radio frame is used then the bits input to the 1st interleaving are denoted by \(h_{i1}, h_{i2}, h_{i3}, \ldots, h_{i(F H_{I})} \), where \(i \) is the TrCH number. Hence, \(z_{ik} = h_{ik} \) and \(Z_{i} = F_{i} \times H_{i} \times N_{pT_{I},m_{\max}} \) in compressed mode by puncturing, and \(Z_{i} = F_{i} H_{i} \) otherwise.

If flexible positions of the TrCHs in a radio frame is used then the bits input to the 1st interleaving are denoted by \(g_{i1}, g_{i2}, g_{i3}, \ldots, g_{iC_{I}} \), where \(i \) is the TrCH number. Hence, \(z_{ik} = g_{ik} \) and \(Z_{i} = G_{i} \).

The bits output from the 1st interleaving are denoted by \(q_{i1}, q_{i2}, q_{i3}, \ldots, q_{iQ_{i}} \), where \(i \) is the TrCH number and \(Q_{i} \) the number of bits. Hence, \(q_{ik} = y_{ik} \), \(Q_{i} = F_{i} H_{i} \) if fixed positions are used, and \(Q_{i} = G_{i} \) if flexible positions are used.
4.2.6 Radio frame segmentation

When the transmission time interval is longer than 10 ms, the input bit sequence is segmented and mapped onto consecutive F_i radio frames. Following rate matching in the DL and radio frame size equalisation in the UL the input bit sequence length is guaranteed to be an integer multiple of F_i.

The input bit sequence is denoted by $x_{i,1}, x_{i,2}, x_{i,3}, \ldots, x_{i,X_i}$, where i is the TrCH number and X_i is the number bits. The F_i output bit sequences per TTI are denoted by $y_{i,n_i,1}, y_{i,n_i,2}, y_{i,n_i,3}, \ldots, y_{i,n_i,Y_i}$, where n_i is the radio frame number in current TTI and Y_i is the number of bits per radio frame for TrCH i. The output sequences are defined as follows:

$$y_{i,n_i,k} = x_{i,((n_i-1)Y_i+k)} , n_i = 1 \ldots F_i , k = 1 \ldots Y_i$$

where

$$Y_i = \left(\frac{X_i}{F_i}\right)$$

is the number of bits per segment.

The n_i-th segment is mapped to the n_i-th radio frame of the transmission time interval.

4.2.6.1 Relation between input and output of the radio frame segmentation block in uplink

The input bit sequence to the radio frame segmentation is denoted by $d_{i,1}, d_{i,2}, d_{i,3}, \ldots, d_{i,T_i}$, where i is the TrCH number and T_i the number of bits. Hence, $x_{i,k} = d_{i,k}$ and $X_i = T_i$.

The output bit sequence corresponding to radio frame n_i is denoted by $e_{i,1}, e_{i,2}, e_{i,3}, \ldots, e_{i,N_i}$, where i is the TrCH number and N_i is the number of bits. Hence, $e_{i,k} = y_{i,n_i,k}$ and $N_i = Y_i$.

4.2.6.2 Relation between input and output of the radio frame segmentation block in downlink

The bits input to the radio frame segmentation are denoted by $q_{i,1}, q_{i,2}, q_{i,3}, \ldots, q_{i,Q_i}$, where i is the TrCH number and Q_i the number of bits. Hence, $x_{i,k} = q_{i,k}$ and $X_i = Q_i$.

The output bit sequence corresponding to radio frame n_i is denoted by $f_{i,1}, f_{i,2}, f_{i,3}, \ldots, f_{i,V_i}$, where i is the TrCH number and V_i is the number of bits. Hence, $f_{i,k} = y_{i,n_i,k}$ and $V_i = Y_i$.

4.2.7 Rate matching

Rate matching means that bits on a transport channel are repeated or punctured. Higher layers assign a rate-matching attribute for each transport channel. This attribute is semi-static and can only be changed through higher layer signalling. The rate-matching attribute is used when the number of bits to be repeated or punctured is calculated.

The number of bits on a transport channel can vary between different transmission time intervals. In the downlink the transmission is interrupted if the number of bits is lower than maximum. When the number of bits between different transmission time intervals in uplink is changed, bits are repeated or punctured to ensure that the total bit rate after TrCH multiplexing is identical to the total channel bit rate of the allocated dedicated physical channels.

If no bits are input to the rate matching for all TrCHs within a CCTrCH, the rate matching shall output no bits for all TrCHs within the CCTrCH and no uplink DPDCH will be selected in the case of uplink rate matching.

Notation used in subclause 4.2.7 and subclauses:

N_{iq}: For uplink: Number of bits in a radio frame before rate matching on TrCH i with transport format combination j.

For downlink: An intermediate calculation variable (not an integer but a multiple of 1/8).
N_{TII}^i: Number of bits in a transmission time interval before rate matching on TrCH i with transport format l.
 Used in downlink only.

ΔN_j^i: For uplink: If positive - number of bits that should be repeated in each radio frame on TrCH i with transport format combination j.
 If negative - number of bits that should be punctured in each radio frame on TrCH i with transport format combination j.

 For downlink: An intermediate calculation variable (not an integer but a multiple of 1/8).

ΔN_{TII}^i: If positive - number of bits to be repeated in each transmission time interval on TrCH i with transport format j.
 If negative - number of bits to be punctured in each transmission time interval on TrCH i with transport format j.

 Used in downlink only.

$N_{pTTI}^{TTI,m}_{i,l,m=0\,\text{to}\,F_{\text{max}}/F_i-1}$: Positive or null: number of bits to be removed in TTI number m within the largest TTI, to create the required gaps in the compressed radio frames of this TTI, in case of compressed mode by puncturing, for TrCH i with transport format l. In case of fixed positions and compressed mode by puncturing, this value is noted $N_{pTTI}^{TTI,m}_{i,max}$ since it is calculated for all TrCh with their maximum number of bits; thus it is the same for all TFCs.

 Used in downlink only.

$N_{pT}^{n}_{i,l,n=0\,\text{to}\,F_{\text{max}}-1}$: Positive or null: number of bits, in radio frame number n within the largest TTI, corresponding to the gap for compressed mode in this radio frame, for TrCH i with transport format l. The value will be null for the un-compressed radio frames. In case of fixed positions and compressed mode by puncturing, this value is noted $N_{pT}^{n}_{i,max}$ since it is calculated for all TrChs with their maximum number of bits; thus it is the same for all TFCs.

 Used in downlink only.

$N_{TCI}[k], k=0\,\text{to}\,F_i-1$: Positive or null: number of bits in each radio frame corresponding to the gap for compressed mode for the CCTrCh.

RM_i: Semi-static rate matching attribute for transport channel i. Signalled from higher layers.

PL: Puncturing limit for uplink. This value limits the amount of puncturing that can be applied in order to avoid multicode or to enable the use of a higher spreading factor. Signalled from higher layers.

$N_{data,j}$: Total number of bits that are available for the CCTrCH in a radio frame with transport format combination j.

I: Number of TrCHs in the CCTCh.

Z_q: Intermediate calculation variable.

F_i: Number of radio frames in the transmission time interval of TrCH i.

F_{max}: Maximum number of radio frames in a transmission time interval used in the CCTrCH:

$$F_{\text{max}} = \max_{1\leq i \leq I} F_i$$

n_i: Radio frame number in the transmission time interval of TrCH i ($0 \leq n_i < F_i$).

q: Average puncturing or repetition distance (normalised to only show the remaining rate matching on top of an integer number of repetitions). Used in uplink only.

$I_p(n_i)$: The inverse interleaving function of the 1st interleaver (note that the inverse interleaving function is identical to the interleaving function itself for the 1st interleaver). Used in uplink only.
S(ni): The shift of the puncturing or repetition pattern for radio frame \(n_i\). Used in uplink only.

TF\(i(j): Transport format of TrCH \(i\) for the transport format combination \(j\).

TFS(i): The set of transport format indexes \(l\) for TrCH \(i\).

TFCS: The set of transport format combination indexes \(j\).

e\(_{\text{ini}}\): Initial value of variable \(e\) in the rate matching pattern determination algorithm of subclause 4.2.7.5.

e\(_{\text{plus}}\): Increment of variable \(e\) in the rate matching pattern determination algorithm of subclause 4.2.7.5.

e\(_{\text{minus}}\): Decrement of variable \(e\) in the rate matching pattern determination algorithm of subclause 4.2.7.5.

b: Indicates systematic and parity bits

- \(b=1\): Systematic bit. \(X(t)\) in subclause 4.2.3.2.1.
- \(b=2\): 1st parity bit (from the upper Turbo constituent encoder). \(Y(t)\) in subclause 4.2.3.2.1.
- \(b=3\): 2nd parity bit (from the lower Turbo constituent encoder). \(Y'(t)\) in subclause 4.2.3.2.1.

The * (star) notation is used to replace an index \(x\) when the indexed variable \(X_x\) does not depend on the index \(x\). In the left wing of an assignment the meaning is that "\(X_\ast = Y\)" is equivalent to "for all \(x\) do \(X_x = Y\)". In the right wing of an assignment, the meaning is that "\(Y = X_\ast\)" is equivalent to "take any \(x\) and do \(Y = X_x\)".

The following relations, defined for all TFC \(j\), are used when calculating the rate matching parameters:

\[
Z_{0,j} = 0
\]

\[
Z_j = \begin{bmatrix} \sum_{m=1}^{i} RM_{m} \cdot N_{mj} \\ \sum_{m=1}^{i} RM_{m} \cdot N_{mj} \end{bmatrix} \] for all \(i = 1 .. I\) \hspace{1cm} (1)

\[
\Delta N_{ij} = Z_{ij} - Z_{i-1,j} - N_{ij} \quad \text{for all} \ i = 1 .. I
\]

4.2.7.1 Determination of rate matching parameters in uplink

4.2.7.1.1 Determination of SF and number of PhCHs needed

In uplink, puncturing can be applied to match the CCTrCH bit rate to the PhCH bit rate. The bit rate of the PhCH(s) is limited by the UE capability and restrictions imposed by UTRAN, through limitations on the PhCH spreading factor. The maximum amount of puncturing that can be applied is signalled from higher layers and denoted by \(PL\). The number of available bits in the radio frames of one PhCH for all possible spreading factors is given in [2]. Denote these values by \(N_{256}, N_{128}, N_{64}, N_{32}, N_{16}, N_{8}, N_{4}\) where the index refers to the spreading factor. The possible number of bits available to the CCTrCH on all PhCHs, \(N_{\text{data}}\), then are \{ \(N_{256}, N_{128}, N_{64}, N_{32}, N_{16}, N_{8}, N_{4}, 2N_{4}, 3N_{4}, 4N_{4}, 5N_{4}, 6N_{4}\) \}. Depending on the UE capability and the restrictions from UTRAN, the allowed set of \(N_{\text{data}}\), denoted SET0, can be a subset of \{ \(N_{256}, N_{128}, N_{64}, N_{32}, N_{16}, N_{8}, N_{4}, 2N_{4}, 3N_{4}, 4N_{4}, 5N_{4}, 6N_{4}\) \}. \(N_{\text{data},j}\) for the transport format combination \(j\) is determined by executing the following algorithm:

\[
\text{SET1} = \{ N_{\text{data}} \text{ in SET0 such that } \min_{1 \leq y \leq I} \{ RM_y \} \cdot N_{\text{data}} - \sum_{x=1}^{I} RM_{x} \cdot N_{x,j} \text{ is non negative } \}
\]

If SET1 is not empty and the smallest element of SET1 requires just one PhCH then

\[
N_{\text{data},j} = \min \text{ SET1}
\]

else
SET2 = \{ N_{data} \text{ in SET0 such that } \min_{1 \leq y \leq I} \left\{ \sum_{x=1}^{M_y} N_{data} - PL \right\} \text{ is non negative} \}

Sort SET2 in ascending order

N_{data} = \min \text{ SET2}

While N_{data} is not the max of SET2 and the follower of N_{data} requires no additional PhCH do

N_{data} = \text{ follower of } N_{data} \text{ in SET2}

End while

N_{data,j} = N_{data}

End if

4.2.7.1.2 Determination of parameters needed for calculating the rate matching pattern

The number of bits to be repeated or punctured, \(\Delta N_{ij} \), within one radio frame for each TrCH \(i \) is calculated with equation 1 for all possible transport format combinations \(j \) and selected every radio frame. \(N_{data,j} \) is given from subclause 4.2.7.1.1.

In compressed mode \(N_{data,j} \) is replaced by \(N_{data,j}^{cm} \) in Equation 1. \(N_{data,j}^{cm} \) is given as follows:

In compressed mode by higher layer scheduling, \(N_{data,j}^{cm} \) is obtained by executing the algorithm in subclause 4.2.7.1.1 but with the number of bits in one radio frame of one PhCH reduced to \(\frac{N_{tr}}{15} \) of the value in normal mode.

\(N_{tr} \) is the number of transmitted slots in a compressed radio frame and is defined by the following relation:

\[
N_{tr} = \begin{cases}
15 - TGL, & \text{if } N_{first} + TGL \leq 15 \\
N_{first}, & \text{in first frame if } N_{first} + TGL > 15 \\
30 - TGL - N_{first}, & \text{in second frame if } N_{first} + TGL > 15
\end{cases}
\]

\(N_{first} \) and \(TGL \) are defined in subclause 4.4.

In compressed mode by spreading factor reduction, \(N_{data,j}^{cm} = 2N_{data,j} - 2N_{TGL} \), where \(N_{TGL} = \frac{15 - N_{tr}}{15} N_{data,j} \)

If \(\Delta N_{ij} = 0 \) then the output data of the rate matching is the same as the input data and the rate matching algorithm of subclause 4.2.7.5 does not need to be executed.

If \(\Delta N_{ij} \neq 0 \) the parameters listed in subclauses 4.2.7.1.2.1 and 4.2.7.1.2.2 shall be used for determining \(e_{\text{init}} \), \(e_{\text{plus}} \), and \(e_{\text{minus}} \) (regardless if the radio frame is compressed or not).

4.2.7.1.2.1 Uncoded and convolutionally encoded TrCHs

\(R = \Delta N_{ij} \mod N_{ij} \) -- note: in this context \(\Delta N_{ij} \mod N_{ij} \text{ is in the range of } 0 \text{ to } N_{ij} - 1 \text{ i.e. -1 mod 10 = 9.} \)

if \(R \neq 0 \) and \(2R \leq N_{ij} \)

then \(q = \lceil N_{ij} / R \rceil \)

else

\(q = \lceil N_{ij} / (R - N_{ij}) \rceil \)

endif
-- note: \(q \) is a signed quantity.

If \(q \) is even

\[
q' = q + \gcd(|q|, F_i)/F_i
\]

-- note that \(q' \) is not an integer, but a multiple of 1/8

else

\[
q' = q
\]

endif

for \(x = 0 \) to \(F_i-1 \)

\[
S(I_F(\lfloor x^aq' \rfloor \mod F_i)) = (\lfloor x^aq' \rfloor \div F_i)
\]

end for

\(\Delta N_i = \Delta N_{i,j} \)

\(a = 2 \)

For each radio frame, the rate-matching pattern is calculated with the algorithm in subclause 4.2.7.5, where:

\[
X_i = N_{i,j},\text{ and}
\]

\[
e_{im} = (a \cdot S(n_i) |\Delta N_i| + 1) \mod (a \cdot N_{ij}).
\]

\[
e_{plus} = a \cdot N_{ij}
\]

\[
e_{minus} = a \cdot |\Delta N_i|
\]

puncturing for \(\Delta N < 0 \), repetition otherwise.

4.2.7.1.2.2 Turbo encoded TrCHs

If repetition is to be performed on turbo encoded TrCHs, i.e. \(\Delta N_{i,j} > 0 \), the parameters in subclause 4.2.7.1.2.1 are used.

If puncturing is to be performed, the parameters below shall be used. Index \(b \) is used to indicate systematic \((b=1)\), 1st parity \((b=2)\), and 2nd parity bit \((b=3)\).

\[
a = 2 \text{ when } b=2
\]

\[
a = 1 \text{ when } b=3
\]

\[
\Delta N_i = \begin{cases}
\lfloor \Delta N_{i,j} / 2 \rfloor & b = 2 \\
\lfloor \Delta N_{i,j} / 4 \rfloor & b = 3
\end{cases}
\]

If \(\Delta N_i \) is calculated as 0 for \(b=2 \) or \(b=3 \), then the following procedure and the rate matching algorithm of subclause 4.2.7.5 don't need to be performed for the corresponding parity bit stream.

\[
X_i = \lfloor N_{i,j}/3 \rfloor.
\]

\[
q = \lfloor X_i/|\Delta N_i| \rfloor
\]

if\((q \leq 2) \)

for \(x = 0 \) to \(F_i-1 \)

\[
S[I_F((3x+b-1) \mod F_i)] = x \mod 2;
\]

end for

else
if q is even

then $q' = q - \gcd(q, F_i)/F_i$ --- where $\gcd(q, F_i)$ means greatest common divisor of q and F_i

-- note that q' is not an integer, but a multiple of $1/8$

else $q' = q$

endif

for $x=0$ to $F_i - 1$

$r = \lceil x \cdot q' \rceil \mod F_i$;

$S[I_i[(3r+b-1) \mod F_i]] = \lfloor x \cdot q' \rfloor \div F_i$;

endfor

endif

For each radio frame, the rate-matching pattern is calculated with the algorithm in subclause 4.2.7.5, where:

X_i is as above:

$e_{\text{ini}} = (a \cdot S(n_i) \cdot |\Delta N_i| + X_i) \mod (a \cdot X_i)$, if $e_{\text{ini}} \neq 0$ then $e_{\text{ini}} = a \cdot X_i$.

$e_{\text{plus}} = a \cdot X_i$

$e_{\text{minus}} = a \cdot |\Delta N_i|$

4.2.7.2 Determination of rate matching parameters in downlink

For downlink $N_{\text{data},j}$ does not depend on the transport format combination j. $N_{\text{data},*}$ is given by the channelization code(s) assigned by higher layers. Denote the number of physical channels used for the CCTrCH by P. $N_{\text{data},*}$ is the number of bits available to the CCTrCH in one radio frame and defined as $N_{\text{data},*} = P(15N_{\text{data1}} + 15N_{\text{data2}})$, where N_{data1} and N_{data2} are defined in [2]. Note that contrary to the uplink, the same rate matching patterns are used in normal and compressed mode by spreading factor reduction or higher layer scheduling.

In the following, the total amount of puncturing or repetition for the TTI is calculated. Additional calculations for compressed mode by puncturing in case of fixed positions are performed to determine this total amount of rate matching needed.

For compressed mode by puncturing, in TTIs where some compressed radio frames occur, the puncturing is increased or the repetition is decreased compared to what is calculated according to the rate matching parameters provided by higher layers. This allows to create room for later insertion of marked bits, noted p-bits, which will identify the positions of the gaps in the compressed radio frames.

The amount of additional puncturing corresponds to the number of bits to create the gap in the TTI for TrCh i. In case of fixed positions, it is calculated in addition to the amount of rate matching indicated by higher layers. It is noted $N_{p\text{TTL},m}^{\text{i},\text{max}}$.

In fixed positions case, to obtain the total rate matching $\Delta N_{\text{TTL},m}^{\text{i},\text{cm},\text{m}}$ to be performed on the TTI m, $N_{p\text{TTL},m}^{\text{i},\text{max}}$ is substracted from $\Delta N_{\text{TTL},m}^{\text{i},\text{cm},\text{m}}$ (calculated based on higher layers RM parameters as for normal rate matching). This allows to create room for the $N_{p\text{TTL},m}^{\text{i},\text{max}}$ bits to be inserted later. If the result is null, i.e. the amount of repetition matches exactly the amount of additional puncturing needed, then no rate matching is necessary.

In case of compressed mode by puncturing and fixed positions, for some calculations, $N_{\text{data},*}'$ is used for radio frames with gap instead of $N_{\text{data},*}$, where $N_{\text{data},*}' = P(15N_{\text{data1}} + 15N_{\text{data2}})$. N_{data1} and N_{data2} are the number of bits in the data fields of the slot format used for the current compressed mode, i.e. slot format A or B as defined in [2] corresponding to the Spreading Factor and the number of transmitted slots in use.
The number of bits corresponding to the gap for TrCh i, in each radio frame of its TTI is calculated using the number of bits to remove on each Physical Channel \(N_{TGL}[k]\), where \(k\) is the radio frame number in the TTI.

For each radio frame \(k\) of the TTI, \(N_{TGL}[k]\) is given by the relation:

\[
N_{TGL} = \begin{cases}
\frac{TGL}{15} N_{data,*}, & \text{if } N_{first} + TGL \leq 15 \\
15 - \frac{N_{first}}{15} N_{data,*}, & \text{in first radio frame of the gap if } N_{first} + TGL > 15 \\
\frac{TGL - (15 - N_{first})}{15} N_{data,*}, & \text{in second radio frame of the gap if } N_{first} + TGL > 15
\end{cases}
\]

\(N_{first}\) and \(TGL\) are defined in subclause 4.4.

Note that \(N_{TGL}[k] = 0\) if radio frame \(k\) is not compressed.

4.2.7.2.1 Determination of rate matching parameters for fixed positions of TrCHs

4.2.7.2.1.1 Calculation of \(\Delta N_{max}\) for normal mode and compressed mode by higher layer scheduling and spreading factor reduction

First an intermediate calculation variable \(N_{i,*}\) is calculated for all transport channels \(i\) by the following formula:

\[
N_{i,*} = \frac{1}{F_i} \cdot \max_{l \in TFS(i)} N_{TTL,i,l}^{TTI}
\]

The computation of the \(\Delta N_{TTL,i,l}^{TTI}\) parameters is then performed in for all TrCH \(i\) and all TF \(l\) by the following formula, where \(\Delta N_{i,*}\) is derived from \(N_{i,*}\) by the formula given at subclause 4.2.7:

\[
\Delta N_{max} = F_i \cdot \Delta N_{i,*}
\]

If \(\Delta N_{max} = 0\) then, for TrCH \(i\), the output data of the rate matching is the same as the input data and the rate matching algorithm of subclause 4.2.7.5 does not need to be executed. In this case we have:

\[
\forall l \in TFS(i) \Delta N_{TTL,i,l}^{TTI} = 0
\]

If \(\Delta N_{max} \neq 0\) the parameters listed in subclauses 4.2.7.2.1.3 and 4.2.7.2.1.4 shall be used for determining \(e_{min}\), \(e_{plus}\), and \(e_{minus}\).

4.2.7.2.1.2 Calculations for compressed mode by puncturing

Calculations of \(\Delta N_{TTL,m,i,\text{max}}\) for all TTI \(m\) within largest TTI, for all TrCh \(i\)

First an intermediate calculation variable \(N_{n,i,*}\) is calculated for all transport channels \(i\) and all frames \(n\) in TTI \(m\) within the largest TTI, using the same formula as for normal mode above by replacing \(N_{TTL,i,l}^{TTI}\) by \(N_{TTL,m,i,l}\), the number of bits in TTI \(m\).

The computation of the \(\Delta N_{TTL,m,i,\text{max}}\) parameters is then performed for all TrCh \(i\) by the following formula:

\[
\Delta N_{TTL,m,i,\text{max}} = \sum_{n=0}^{n=F_i} \Delta N_{n,i,*}
\]
where all $\Delta N_{i,n}^{\text{c}}$ are derived from $N_{i,n}^{\text{c}}$ for all TrCh i and all frames n in TTI m, from the formula given at subclause 4.2.7 using $N_{\text{data},i,n}^{\text{c}}$ for the non compressed frames of TTI m and using $N_{\text{data},i,n}^{\text{c},*}$ instead of $N_{\text{data},i,n}^{\text{c}}$, for the compressed frames of TTI m.

Calculations of $Np_{i,n}^{\text{c},\text{max}}$ and $Np_{\text{TTL }m}^{\text{c},\text{max}}$

Let $Np_{i,n}^{\text{c},\text{max}}$ be the number of bits to eliminate on TrCh i to create the gap for compressed mode, in each radio frame k of the TTI, calculated for the Transport Format Combination of TrCh i, in which the number of bits of TrCh i is at its maximum.

$Np_{i,n}^{\text{c},\text{max}}$ is calculated for each radio frame k of the TTI in the following way.

Intermediate variables Z_i for $i = 1$ to I are calculated using the formula (1) in 4.2.7, by replacing $N_{\text{data},i}^{\text{c}}$ by $N_{\text{TGL}}[k]$.

Then $Np_{i,n}^{\text{c},\text{max}} = (Z_i - Z_{i-1})$ for $i = 1$ to I.

The total number of bits $Np_{\text{TTL }m}^{\text{c},\text{max}}$ corresponding to the gaps for compressed mode for TrCh i in the TTI is calculated as:

$$Np_{\text{TTL }m}^{\text{c},\text{max}} = \sum_{n=0}^{\text{TFI}_{\text{max}} - 1} Np_{i,n}^{\text{c},\text{max}}$$

If $\Delta N_{\text{max}} = Np_{\text{TTL }m}^{\text{c},\text{max}}$, then, for TRCH i, the output data of the rate matching is the same as the input data and the rate matching algorithm of subclause 4.2.7.5 does not need to be executed. If $\Delta N_{\text{max}} \neq Np_{\text{TTL }m}^{\text{c},\text{max}}$, then, for TRCH i, the rate matching algorithm of subclause 4.2.7.5 needs to be executed.

$$\Delta N_{\text{TTL },m}^{\text{c},\text{max}} = \Delta N_{\text{TTL },m}^{\text{c},\text{max}} - Np_{\text{TTL }m}^{\text{c},\text{max}}$$

4.2.7.2.1.3 Determination of rate matching parameters for uncoded and convolutionally encoded TrCHs

$\Delta N_i = \Delta N_{\text{max}}$

For compressed mode by puncturing, ΔN_i is defined as: $\Delta N_i = \Delta N_{\text{TTL },m}^{\text{c},\text{max}}$, instead of the previous relation.

$a=2$

$$N_{\text{max}} = \max_{l \in \text{TFS}(i)} N_{il}^{\text{TTL }}$$

For each transmission time interval of TrCH i with TF l, the rate-matching pattern is calculated with the algorithm in subclause 4.2.7.5. The following parameters are used as input:

$$X = N_{il}^{\text{TTL }}$$

$$e_{\text{ini}} = 1$$

$$e_{\text{plus}} = a \cdot N_{\text{max}}$$

$$e_{\text{min}} = a \cdot |\Delta N_{i}|$$

Puncturing if $\Delta N_i < 0$, repetition otherwise. The values of $\Delta N_{i,l}^{\text{TTL }}$ may be computed by counting repetitions or puncturing when the algorithm of subclause 4.2.7.5 is run. The resulting values of $\Delta N_{i,l}^{\text{TTL }}$ can be represented with following expression.

$$\Delta N_{i,l}^{\text{TTL }} = \left[\frac{\Delta N_{\text{max}} \times X_{i}}{N_{\text{max}}} \right] \times \text{sgn}(\Delta N_{\text{max}})$$

ETS
4.2.7.2.1.4 Determination of rate matching parameters for Turbo encoded TrCHs

If repetition is to be performed on turbo encoded TrCHs, i.e. \(\Delta N_{\text{max}} > 0 \), the parameters in subclause 4.2.7.2.1.3 are used.

If puncturing is to be performed, the parameters below shall be used. Index \(b \) is used to indicate systematic \((b=1)\), 1st parity \((b=2)\), and 2nd parity bit \((b=3)\).

\[a = 2 \text{ when } b = 2 \]
\[a = 1 \text{ when } b = 3 \]

The bits indicated by \(b=1 \) shall not be punctured.

\[\Delta N_i = \begin{cases} \left\lfloor \frac{\Delta N_{\text{max}}}{2} \right\rfloor, & b = 2 \\ \left\lceil \frac{\Delta N_{\text{max}}}{2} \right\rceil, & b = 3 \end{cases} \]

In Compressed Mode by puncturing, the following relations are used instead of the previous ones:

\[\Delta N_i = \left\lfloor \Delta N_{i,\text{max}}^{\text{TTL,cm,m}} / 2 \right\rfloor, \quad b = 2 \]
\[\Delta N_i = \left\lceil \Delta N_{i,\text{max}}^{\text{TTL,cm,m}} / 2 \right\rceil, \quad b = 3 \]

\[N_{\text{max}} = \max \left(N_{i,\text{TTL}}^{\text{T}} / 3 \right) \]

For each transmission time interval of TrCH \(i \) with TF \(l \), the rate-matching pattern is calculated with the algorithm in subclause 4.2.7.5. The following parameters are used as input:

\[X_i = N_{i,\text{TTL}} / 3 \]
\[e_{\text{ini}} = N_{\text{max}} \]
\[e_{\text{plus}} = a \cdot N_{\text{max}} \]
\[e_{\text{min,ini}} = a \cdot \left\lceil \Delta N_i \right\rceil \]

The values of \(\Delta N_{i,l}^{\text{TTL}} \) may be computed by counting puncturing when the algorithm of subclause 4.2.7.5 is run. The resulting values of \(\Delta N_{i,l}^{\text{TTL}} \) can be represented with following expression.

\[\Delta N_{i,l}^{\text{TTL}} = \left\lfloor \frac{\left\lceil \Delta N_{\text{max}} / 2 \right\rceil}{N_{\text{max}}} \times X_i + 0.5 \right\rfloor - \left\lceil \frac{\left\lfloor \Delta N_{\text{max}} / 2 \right\rfloor}{N_{\text{max}}} \times X_i \right\rceil \]

In the above equation, the first term of the right hand side represents the amount of puncturing for \(b=2 \) and the second term represents the amount of puncturing for \(b=3 \).

4.2.7.2.2 Determination of rate matching parameters for flexible positions of TrCHs

4.2.7.2.2.1 Calculations for normal mode, compressed mode by higher layer scheduling, and compressed mode by spreading factor reduction

First an intermediate calculation variable \(N_{ij} \) is calculated for all transport channels \(i \) and all transport format combinations \(j \) by the following formula:
\[N_{i,j} = \frac{1}{F_i} \cdot N_{iTFi,(j)}^{TTL} \]

Then rate matching ratios \(RF_i \) are calculated for each transport channel \(i \) in order to minimise the number of DTX bits when the bit rate of the CCTrCH is maximum. The \(RF_i \) ratios are defined by the following formula:

\[RF_i = \frac{N_{data,*}}{\max_p \sum_{j=1}^{J} (RM_j \cdot N_{i,j})} \cdot RM_i \]

The computation of \(\Delta N_{i,j}^{TTL} \) parameters is then performed in two phases. In a first phase, tentative temporary values of \(\Delta N_{i,j}^{TTL} \) are computed, and in the second phase they are checked and corrected. The first phase, by use of the \(RF_i \) ratios, ensures that the number of DTX indication bits inserted is minimum when the CCTrCH bit rate is maximum, but it does not ensure that the maximum CCTrCH bit rate is not greater than \(N_{data,*} \) per 10ms. The latter condition is ensured through the checking and possible corrections carried out in the second phase.

At the end of the second phase, the latest value of \(\Delta N_{i,j}^{TTL} \) is the definitive value.

The first phase defines the tentative temporary \(\Delta N_{i,j}^{TTL} \) for all transport channel \(i \) and any of its transport format \(l \) by use of the following formula:

\[\Delta N_{i,j}^{TTL} = F_i \left(\frac{RF_i \cdot N_{i,j}^{TTL}}{F_i} \right) - N_{i,j}^{TTL} = F_i \left(\frac{N_{data,*} \cdot RM_i \cdot N_{i,j}^{TTL}}{\max_p \sum_{j=1}^{J} (RM_j \cdot N_{i,j})} \right) - N_{i,j}^{TTL} \]

The second phase is defined by the following algorithm:

for all \(j \) in TFCS do

\[D = \sum_{i=1}^{I} \frac{N_{i,jTFi,(j)}^{TTL} + \Delta N_{i,jTFi,(j)}^{TTL}}{F_i} \]

-- CCTrCH bit rate (bits per 10ms) for TFC \(l \)

if \(D > N_{data,*} \) then

for \(i = 1 \) to \(I \) do

\[\Delta N = F_i \cdot \Delta N_{i,j} \]

-- \(\Delta N_{i,j} \) is derived from \(N_{i,j} \) by the formula given at subclause 4.2.7.

if \(\Delta N_{i,jTFi,(j)}^{TTL} > \Delta N \) then

\[\Delta N_{i,jTFi,(j)}^{TTL} = \Delta N \]

end-if

end-for

end-if

NOTE: The order in which the transport format combinations are checked does not change the final result.

If \(\Delta N_{i,j}^{TTL} = 0 \) then, for TrCH \(i \) at TF \(l \), the output data of the rate matching is the same as the input data and the rate matching algorithm of subclause 4.2.7.5 does not need to be executed.
If $\Delta N_{i,l}^{T TI} \neq 0$ the parameters listed in subclauses 4.2.7.2.2 and 4.2.7.2.2.3 shall be used for determining e_{ini}, e_{plus}, and e_{minus}.

4.2.7.2.2 Determination of rate matching parameters for uncoded and convolutionally encoded TrCHs

$$\Delta N_i = \Delta N_{i,l}^{T TI}$$

$a = 2$

For each transmission time interval of TrCH i with TF l, the rate-matching pattern is calculated with the algorithm in subclause 4.2.7.5. The following parameters are used as input:

$$X_i = N_{i,l}^{T TI}$$

$$e_{ini} = 1$$

$$e_{plus} = a \cdot N_{i,l}^{T TI}$$

$$e_{min,as} = a \cdot |\Delta N_i|$$

Puncturing for $\Delta N_i < 0$, repetition otherwise.

4.2.7.2.3 Determination of rate matching parameters for Turbo encoded TrCHs

If repetition is to be performed on turbo encoded TrCHs, i.e. $\Delta N_{i,l}^{T TI} > 0$, the parameters in subclause 4.2.7.2.2 are used.

If puncturing is to be performed, the parameters below shall be used. Index b is used to indicate systematic ($b=1$), 1st parity ($b=2$), and 2nd parity bit ($b=3$).

$a = 2$ when $b=2$

$a = 1$ when $b=3$

The bits indicated by $b=1$ shall not be punctured.

$$\Delta N_i = \begin{cases} \left\lfloor \frac{\Delta N_{i,l}^{T TI}}{2} \right\rfloor, & b = 2 \\ \left\lfloor \frac{\Delta N_{i,l}^{T TI}}{2} \right\rfloor, & b = 3 \end{cases}$$

For each transmission time interval of TrCH i with TF l, the rate-matching pattern is calculated with the algorithm in subclause 4.2.7.5. The following parameters are used as input:

$$X_i = N_{i,l}^{T TI} / 3,$$

$$e_{ini} = X_i,$$

$$e_{plus} = a \cdot X_i,$$

$$e_{min,as} = a \cdot |\Delta N_i|$$

4.2.7.3 Bit separation and collection in uplink

The systematic bits (excluding bits for trellis termination) of turbo encoded TrCHs shall not be punctured. The systematic bit, first parity bit, and second parity bit in the bit sequence input to the rate matching block are therefore separated from each other. Puncturing is only applied to the parity bits and systematic bits used for trellis termination.
The bit separation function is transparent for uncoded TrCHs, convolutionally encoded TrCHs, and for turbo encoded TrCHs with repetition. The bit separation and bit collection are illustrated in figures 5 and 6.

The offsets α_b for the systematic ($b=1$) and parity bits ($b \in \{2, 3\}$) are listed in table 4.

<table>
<thead>
<tr>
<th>TTI (ms)</th>
<th>α_1</th>
<th>α_2</th>
<th>α_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10, 40</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>20, 80</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
The bit separation is different for different radio frames in the TTI. A second offset is therefore needed. The radio frame number for TrCH i is denoted by n_i, and the offset by β_{n_i}.

Table 5: Radio frame dependent offset needed for bit separation

<table>
<thead>
<tr>
<th>TTI (ms)</th>
<th>β_0</th>
<th>β_1</th>
<th>β_2</th>
<th>β_3</th>
<th>β_4</th>
<th>β_5</th>
<th>β_6</th>
<th>β_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

4.2.7.3.1 Bit separation

The bits input to the rate matching are denoted by $e_{i,1}, e_{i,2}, e_{i,3}, \ldots, e_{i,N_i}$, where i is the TrCH number and N_i is the number of bits input to the rate matching block. Note that the transport format combination number j for simplicity has been left out in the bit numbering, i.e. $N_i=N_{i,j}$. The bits after separation are denoted by $x_{b_{h,1}}, x_{b_{h,2}}, x_{b_{h,3}}, \ldots, x_{b_{h,X_i}}$. For turbo encoded TrCHs with puncturing, b indicates systematic, first parity, or second parity bit. For all other cases b is defined to be 1. X_i is the number of bits in each separated bit sequence. The relation between $e_{i,k}$ and $x_{b_{h,k}}$ is given below.

For turbo encoded TrCHs with puncturing:

\[
x_{1,i,k} = e_{i,3(k-1)+1+(\alpha_i+\beta_{n_i}) \mod 3} \quad k = 1, 2, 3, \ldots, X_i \quad X_i = [N_i/3] \\
x_{1,i,[N_i/3]+k} = e_{i,3(k-1)+1+(\alpha_i+\beta_{n_i}) \mod 3} \quad k = 1, \ldots, N_i \mod 3 \quad \text{Note: When } (N_i \mod 3) = 0 \text{ this row is not needed.} \\
x_{2,i,k} = e_{i,3(k-1)+1+(\alpha_i+\beta_{n_i}) \mod 3} \quad k = 1, 2, 3, \ldots, X_i \quad X_i = [N_i/3] \\
x_{3,i,k} = e_{i,3(k-1)+1+(\alpha_i+\beta_{n_i}) \mod 3} \quad k = 1, 2, 3, \ldots, X_i \quad X_i = [N_i/3]
\]

For uncoded TrCHs, convolutionally encoded TrCHs, and turbo encoded TrCHs with repetition:

\[
x_{1,i,k} = e_{i,k} \quad k = 1, 2, 3, \ldots, X_i \quad X_i = N_i
\]

4.2.7.3.2 Bit collection

The bits $x_{b_{h,k}}$ are input to the rate matching algorithm described in subclause 4.2.7.5. The bits output from the rate matching algorithm are denoted $y_{b_{h,1}}, y_{b_{h,2}}, y_{b_{h,3}}, \ldots, y_{b_{h,Y_i}}$.

Bit collection is the inverse function of the separation. The bits after collection are denoted by $z_{h_{b,1}}, z_{h_{b,2}}, z_{h_{b,3}}, \ldots, z_{h_{b,Y_i}}$. After bit collection, the bits indicated as punctured are removed and the bits are then denoted by $f_{i,1}, f_{i,2}, f_{i,3}, \ldots, f_{i,V_i}$, where i is the TrCH number and $V_i = N_i + \Delta N_i$. The relations between $y_{b_{h,k}}, z_{b_{h,k}}$, and $f_{i,k}$ are given below.

For turbo encoded TrCHs with puncturing ($Y_i=X_i$):

\[
z_{i,3(k-1)+1+(\alpha_i+\beta_{n_i}) \mod 3} = y_{1,i,k} \quad k = 1, 2, 3, \ldots, X_i \\
z_{i,3(k-1)+1+(\alpha_i+\beta_{n_i}) \mod 3} = y_{1,i,[N_i/3]+k} \quad k = 1, \ldots, N_i \mod 3 \quad \text{Note: When } (N_i \mod 3) = 0 \text{ this row is not needed.} \\
z_{i,3(k-1)+1+(\alpha_i+\beta_{n_i}) \mod 3} = y_{2,i,k} \quad k = 1, 2, 3, \ldots, X_i \\
z_{i,3(k-1)+1+(\alpha_i+\beta_{n_i}) \mod 3} = y_{3,i,k} \quad k = 1, 2, 3, \ldots, X_i
\]
After the bit collection, bits $z_{i,k}$ with value δ, where $\delta \in \{0, 1\}$, are removed from the bit sequence. Bit $f_{i,1}$ corresponds to the bit $z_{i,k}$ with smallest index k after puncturing, bit $f_{i,2}$ corresponds to the bit $z_{i,k}$ with second smallest index k after puncturing, and so on.

For uncoded TrCHs, convolutionally encoded TrCHs, and turbo encoded TrCHs with repetition:

$$z_{i,k} = y_{i,k} \quad k = 1, 2, 3, \ldots, Y_i$$

When repetition is used, $f_{i,k} = z_{i,k}$ and $Y_i = V_i$.

When puncturing is used, $Y_i = X_i$ and bits $z_{i,k}$ with value δ, where $\delta \in \{0, 1\}$, are removed from the bit sequence. Bit $f_{i,1}$ corresponds to the bit $z_{i,k}$ with smallest index k after puncturing, bit $f_{i,2}$ corresponds to the bit $z_{i,k}$ with second smallest index k after puncturing, and so on.

4.2.7.4 Bit separation and collection in downlink

The systematic bits (excluding bits for trellis termination) of turbo encoded TrCHs shall not be punctured. The systematic bit, first parity bit, and second parity bit in the bit sequence input to the rate matching block are therefore separated from each other. Puncturing is only applied to the parity bits and systematic bits used for trellis termination.

The bit separation function is transparent for uncoded TrCHs, convolutionally encoded TrCHs, and for turbo encoded TrCHs with repetition. The bit separation and bit collection are illustrated in figures 7 and 8.

![Figure 7: Puncturing of turbo encoded TrCHs in downlink](image-url)
4.2.7.4.1 Bit separation

The bits input to the rate matching are denoted by $c_{ik}, c_{i2}, c_{i3}, \ldots, c_{id}$, where i is the TrCH number and E_i is the number of bits input to the rate matching block. Note that E_i is a multiple of 3 for turbo encoded TrCHs and that the transport format combination number j for simplicity has been left out in the bit numbering, i.e. $E_i=N_{ij}$. The bits after separation are denoted by $x_{b1}, x_{b2}, x_{b3}, \ldots, x_{bX_i}$. For turbo encoded TrCHs with puncturing, b indicates systematic, first parity, or second parity bit. For all other cases b is defined to be 1. X_i is the number of bits in each separated bit sequence. The relation between c_{ik} and x_{bik} is given below.

For turbo encoded TrCHs with puncturing:

$$x_{1,i,k} = c_{i,3(k-1)+1} \quad k = 1, 2, 3, \ldots, X_i \quad X_i = E_i/3$$

$$x_{2,i,k} = c_{i,3(k-1)+2} \quad k = 1, 2, 3, \ldots, X_i \quad X_i = E_i/3$$

$$x_{3,i,k} = c_{i,3(k-1)+3} \quad k = 1, 2, 3, \ldots, X_i \quad X_i = E_i/3$$

For uncoded TrCHs, convolutionally encoded TrCHs, and turbo encoded TrCHs with repetition:

$$x_{1,i,k} = c_{i,k} \quad k = 1, 2, 3, \ldots, X_i \quad X_i = E_i$$

4.2.7.4.2 Bit collection

The bits x_{bik} are input to the rate matching algorithm described in subclause 4.2.7.5. The bits output from the rate matching algorithm are denoted $y_{b1}, y_{b2}, y_{b3}, \ldots, y_{by}$. Bit collection is the inverse function of the separation. The bits after collection are denoted by $z_{b1}, z_{b2}, z_{b3}, \ldots, z_{bY_i}$. After bit collection, the bits indicated as punctured are removed and the bits are then denoted by $g_{i1}, g_{i2}, g_{i3}, \ldots, g_{iG}$, where i is the TrCH number and $G_i=N_{y}+\Delta N_{y}$. The relations between y_{bik}, z_{bik}, and g_{ik} are given below.

For turbo encoded TrCHs with puncturing ($Y_i=X_i$):

$$z_{i,3(k-1)+1} = y_{1,i,k} \quad k = 1, 2, 3, \ldots, Y_i$$

$$z_{i,3(k-1)+2} = y_{2,i,k} \quad k = 1, 2, 3, \ldots, Y_i$$
After the bit collection, bits $z_{l,k}$ with value δ, where $\delta \not\in \{0, 1\}$, are removed from the bit sequence. Bit $g_{l,1}$ corresponds to the bit $z_{l,k}$ with smallest index k after puncturing, bit $g_{l,2}$ corresponds to the bit $z_{l,k}$ with second smallest index k after puncturing, and so on.

For uncoded TrCHs, convolutionally encoded TrCHs, and turbo encoded TrCHs with repetition:

$$z_{l,k} = y_{l,k} \quad k = 1, 2, 3, \ldots, Y_l$$

When repetition is used, $g_{l,k} = z_{l,k}$ and $Y_i = G_i$.

When puncturing is used, $Y_i = X_i$ and bits $z_{l,k}$ with value δ, where $\delta \not\in \{0, 1\}$, are removed from the bit sequence. Bit $g_{l,1}$ corresponds to the bit $z_{l,k}$ with smallest index k after puncturing, bit $g_{l,2}$ corresponds to the bit $z_{l,k}$ with second smallest index k after puncturing, and so on.

4.2.7.5 Rate matching pattern determination

Denote the bits before rate matching by:

$$x_{i,1}, x_{i,2}, x_{i,3}, \ldots, x_{i,Y_i},$$

where i is the TrCH number and the sequence is defined in 4.2.7.3 for uplink or in 4.2.7.4 for downlink. Parameters X_i, e_{ini}, e_{plus}, and e_{minus} are given in 4.2.7.1 for uplink or in 4.2.7.2 for downlink.

The rate matching rule is as follows:

- if puncturing is to be performed

 $$e = e_{ini} \quad -- \text{initial error between current and desired puncturing ratio}$$
 $$m = 1 \quad -- \text{index of current bit}$$

 do while $m \leq X_i$

 $$e = e - e_{minus} \quad -- \text{update error}$$

 if $e \leq 0$ then

 set bit $x_{i,m}$ to δ where $\delta \in \{0, 1\}$

 $$e = e + e_{plus} \quad -- \text{update error}$$

 end if

 $$m = m + 1 \quad -- \text{next bit}$$

 end do

- else

 $$e = e_{ini} \quad -- \text{initial error between current and desired puncturing ratio}$$
 $$m = 1 \quad -- \text{index of current bit}$$

 do while $m \leq X_i$

 $$e = e - e_{minus} \quad -- \text{update error}$$

 do while $e \leq 0$ -- check if bit number m should be repeated

 repeat bit $x_{i,m}$

 $$e = e + e_{plus} \quad -- \text{update error}$$

 end do
\[m = m + 1 \quad \text{-- next bit} \]
\[\text{end do} \]
\[\text{end if} \]

A repeated bit is placed directly after the original one.

4.2.8 TrCH multiplexing

Every 10 ms, one radio frame from each TrCH is delivered to the TrCH multiplexing. These radio frames are serially multiplexed into a coded composite transport channel (CCTrCH).

The bits input to the TrCH multiplexing are denoted by \(f_1, f_2, f_3, \ldots, f_{N_i} \), where \(i \) is the TrCH number and \(V_i \) is the number of bits in the radio frame of TrCH \(i \). The number of TrCHs is denoted by \(I \). The bits output from TrCH multiplexing are denoted by \(S_1, S_2, S_3, \ldots, S_S \), where \(S \) is the number of bits, i.e. \(S = \sum V_i \). The TrCH multiplexing is defined by the following relations:

\[s_k = f_{i_k} \quad k = 1, 2, \ldots, V_1 \]
\[s_k = f_{2, (k-V_1)} \quad k = V_1+1, V_1+2, \ldots, V_1+V_2 \]
\[s_k = f_{3, (k-(V_1+V_2))} \quad k = (V_1+V_2)+1, (V_1+V_2)+2, \ldots, (V_1+V_2)+V_3 \]
\[\ldots \]
\[s_k = f_{I, (k-(V_1+V_2+\ldots+V_{I-1}))} \quad k = (V_1+V_2+\ldots+V_{I-1})+1, (V_1+V_2+\ldots+V_{I-1})+2, \ldots, (V_1+V_2+\ldots+V_{I-1})+V_I \]

4.2.9 Insertion of discontinuous transmission (DTX) indication bits

In the downlink, DTX is used to fill up the radio frame with bits. The insertion point of DTX indication bits depends on whether fixed or flexible positions of the TrCHs in the radio frame are used. It is up to the UTRAN to decide for each CCTrCH whether fixed or flexible positions are used during the connection. DTX indication bits only indicate when the transmission should be turned off, they are not transmitted.

4.2.9.1 1\(^{st}\) insertion of DTX indication bits

This step of inserting DTX indication bits is used only if the positions of the TrCHs in the radio frame are fixed. With fixed position scheme a fixed number of bits is reserved for each TrCH in the radio frame.

The bits from rate matching are denoted by \(g_{i1}, g_{i2}, g_{i3}, \ldots, g_{iG_i} \), where \(G_i \) is the number of bits in one TTI of TrCH \(i \). Denote the number of bits in one radio frame of TrCH \(i \) by \(H_i \). Denote \(D_i \) the number of bits output of the first DTX insertion block.

In normal or compressed mode by spreading factor reduction, \(H_i \) is constant and corresponds to the maximum number of bits from TrCH \(i \) in one radio frame for any transport format of TrCH \(i \) and \(D_i = F_i \times H_i \).

In compressed mode by puncturing, additional puncturing is performed in the rate matching block. The empty positions resulting from the additional puncturing are used to insert p-bits in the first interleaving block, the DTX insertion is therefore limited to allow for later insertion of p-bits. Thus DTX bits are inserted until the total number of bits is \(D_i \) where \(D_i = F_i \times H_i + \Delta N_{TTI, max} \) and \(H_i = N_{i, max} + \Delta N_{i} \).

The bits output from the DTX insertion are denoted by \(h_{i1}, h_{i2}, h_{i3}, \ldots, h_{iD_i} \). Note that these bits are three valued. They are defined by the following relations:

\[h_{ik} = g_{ik} \quad k = 1, 2, 3, \ldots, G_i \]
$$h_k = \delta \quad k = G_i+1, G_i+2, G_i+3, \ldots, D_i$$

where DTX indication bits are denoted by δ. Here $g_{ik} \in \{0, 1\}$ and $\delta \notin \{0, 1\}$.

4.2.9.2 2nd insertion of DTX indication bits

The DTX indication bits inserted in this step shall be placed at the end of the radio frame. Note that the DTX will be distributed over all slots after 2nd interleaving.

The bits input to the DTX insertion block are denoted by $s_1, s_2, s_3, \ldots, s_s$, where S is the number of bits from TrCH multiplexing. The number of PhCHs is denoted by P and the number of bits in one radio frame, including DTX indication bits, for each PhCH by R.

In normal mode

$$R = \frac{N_{data,*}}{P} = 15N_{data1} + 15N_{data2},$$

where N_{data1} and N_{data2} are defined in [2].

For compressed mode, $N'_{data,*}$ is defined as $N'_{data,*} = P(15N_{data1} + 15N_{data2})$. N'_{data1} and N'_{data2} are the number of bits in the data fields of the slot format used for the current compressed mode, i.e. slot format A or B as defined in [2] corresponding to the Spreading Factor and the number of transmitted slots in use.

In case of compressed mode by puncturing and fixed positions, DTX shall be inserted until $N'_{data,*}$ bits, since the exact room for the gap is already reserved thanks to the earlier insertion of the p-bits. Therefore R is defined as $R = \frac{N'_{data,*}}{P}$.

In compressed mode by SF reduction and by higher layer scheduling, additional DTX shall be inserted if the transmission time reduction method does not exactly create a transmission gap of the desired TGL. The number of bits available to the CCTrCH in one radio frame in compressed mode by SF reduction and by higher layer scheduling is denoted by $N'_{data,*}$ and $R = \frac{N'_{data,*}}{P}$. The exact value of $N'_{data,*}$ is dependent on the TGL and the transmission time reduction method, which are signalled from higher layers. For transmission time reduction by SF/2 method in compressed mode

$$N'_{data,*} = \frac{N'_{data,*}}{2},$$

and for other methods it can be calculated as $N'_{data,*} = N'_{data,*} - N_{TGL}$.

For every transmission time reduction method $N'_{data,*} = P(15N'_{data1} + 15N'_{data2})$, where N'_{data1} and N'_{data2} are the number of bits in the data fields of a slot for slot format A or B as defined in [2]. N_{TGL} is the number of bits that are located within the transmission gap and defined as:

$$N_{TGL} = \begin{cases}
\frac{TGL}{15} N'_{data,*}, & \text{if } N_{first} + TGL \leq 15 \\
\frac{15 - N_{first}}{15} N'_{data,*}, & \text{in first frame if } N_{first} + TGL > 15 \\
\frac{TGL - (15 - N_{first})}{15} N'_{data,*}, & \text{in second frame if } N_{first} + TGL > 15
\end{cases}$$

N_{first} and TGL are defined in subclause 4.4.

NOTE: In compressed mode by SF/2 method DTX is also added in physical channel mapping stage (subclause 4.2.12.2). During 2nd DTX insertion the number of CCTrCH bits is kept the same as in normal mode.

The bits output from the DTX insertion block are denoted by $w_1, w_2, w_3, \ldots, w_{(PR)}$. Note that these bits are four valued in case of compressed mode by puncturing, and three valued otherwise. They are defined by the following relations:

$$w_k = s_k \quad k = 1, 2, 3, \ldots, S$$
\[w_k = \delta \quad k = S+1, S+2, S+3, \ldots, PR \]

where DTX indication bits are denoted by \(\delta \). Here \(s_k \in \{0, 1, p\} \) and \(\delta \notin \{0, 1\} \).

4.2.10 Physical channel segmentation

When more than one PhCH is used, physical channel segmentation divides the bits among the different PhCHs. The bits input to the physical channel segmentation are denoted by \(x_1, x_2, x_3, \ldots, x_y \), where \(Y \) is the number of bits input to the physical channel segmentation block. The number of PhCHs is denoted by \(P \).

The bits after physical channel segmentation are denoted \(u_{p1}, u_{p2}, u_{p3}, \ldots, u_{pU} \), where \(p \) is PhCH number and \(U \) is the number of bits in one radio frame for each PhCH, i.e. \(U = \frac{Y - NTGL}{P} \) for compressed mode by puncturing, and \(U = \frac{Y}{P} \) otherwise. The relation between \(x_k \) and \(u_{pk} \) is given below.

For all modes, some bits of the input flow are mapped to each code until the number of bits on the code is \(V \). For modes other than compressed mode by puncturing, all bits of the input flow are taken to be mapped to the codes. For compressed mode by puncturing, only the bits of the input flow not corresponding to bits \(p \) are taken to be mapped to the codes, each bit \(p \) is removed to ensure creation the gap required by the compressed mode, as described below.

4.2.10.1 Relation between input and output of the physical segmentation block in uplink

The bits input to the physical segmentation are denoted by \(S_{11}, S_{12}, S_{13}, \ldots, S_9 \). Hence, \(x_k = s_k \) and \(Y = S \).

4.2.10.2 Relation between input and output of the physical segmentation block in downlink

The bits input to the physical segmentation are denoted by \(w_1, w_2, w_3, \ldots, w_{PU} \). Hence, \(x_k = w_k \) and \(Y = PU \).

4.2.11 2nd interleaving

The 2nd interleaving is a block interleaver with inter-column permutations. The bits input to the 2nd interleaver are denoted \(u_{p1}, u_{p2}, u_{p3}, \ldots, u_{pU} \), where \(p \) is PhCH number and \(U \) is the number of bits in one radio frame for one PhCH.

1. Set the number of columns \(C_2 = 30 \). The columns are numbered 0, 1, 2, \ldots, \(C_2 \cdot 1 \) from left to right.
(2) Determine the number of rows \(R_2 \) by finding minimum integer \(R_2 \) such that:

\[
U \leq R_2 C_2 .
\]

(3) The bits input to the 2nd interleaving are written into the \(R_2 \times C_2 \) rectangular matrix row by row.

\[
\begin{bmatrix}
 u_{p1} & u_{p2} & u_{p3} & \cdots & u_{p30} \\
 u_{p31} & u_{p32} & u_{p33} & \cdots & u_{p60} \\
 \vdots & \vdots & \vdots & \cdots & \vdots \\
 u_{p,((R_2-1)30+1)} & u_{p,((R_2-1)30+2)} & u_{p,((R_2-1)30+3)} & \cdots & u_{p,R_230} \\
\end{bmatrix}
\]

(4) Perform the inter-column permutation based on the pattern \(\{ P_{2}(j) \} \) \((j = 0, 1, \ldots, C_2-1) \) that is shown in table 6, where \(P_{2}(j) \) is the original column position of the \(j \)-th permuted column. After permutation of the columns, the bits are denoted by \(y_{pk} \).

\[
\begin{bmatrix}
 y_{p1} & y_{p,(R_2+1)} & y_{p,(2R_2+1)} & \cdots & y_{p,(29R_2+1)} \\
 y_{p2} & y_{p,(R_2+2)} & y_{p,(2R_2+2)} & \cdots & y_{p,(29R_2+2)} \\
 \vdots & \vdots & \vdots & \cdots & \vdots \\
 y_{pR_2} & y_{p,(2R_2)} & y_{p,(3R_2)} & \cdots & y_{p,(30R_2)} \\
\end{bmatrix}
\]

(5) The output of the 2nd interleaving is the bit sequence read out column by column from the inter-column permuted \(R_2 \times C_2 \) matrix. The output is pruned by deleting bits that were not present in the input bit sequence, i.e. bits \(y_{pk} \) that corresponds to bits \(u_{pk} \) with \(k > U \) are removed from the output. The bits after 2nd interleaving are denoted by \(v_{p1}, v_{p2}, \ldots, v_{pU} \), where \(v_{p1} \) corresponds to the bit \(y_{pk} \) with smallest index \(k \) after pruning, \(v_{p2} \) to the bit \(y_{pk} \) with second smallest index \(k \) after pruning, and so on.

<table>
<thead>
<tr>
<th>Number of column (C_2)</th>
<th>Inter-column permutation pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>{0, 20, 10, 5, 15, 25, 3, 13, 23, 8, 18, 28, 1, 11, 21, 6, 16, 26, 4, 14, 24, 19, 9, 29, 12, 2, 7, 22, 27, 17}</td>
</tr>
</tbody>
</table>

4.2.12 Physical channel mapping

The PhCH for both uplink and downlink is defined in [2]. The bits input to the physical channel mapping are denoted by \(v_{p1}, v_{p2}, \ldots, v_{pU} \), where \(p \) is the PhCH number and \(U \) is the number of bits in one radio frame for one PhCH. The bits \(v_{pk} \) are mapped to the PhCHs so that the bits for each PhCH are transmitted over the air in ascending order with respect to \(k \).

In compressed mode, no bits are mapped to certain slots of the PhCH(s). If \(N_{first} + TGL \leq 15 \), no bits are mapped to slots \(N_{first} \) to \(N_{last} \). If \(N_{first} + TGL > 15 \), i.e. the transmission gap spans two consecutive radio frames, the mapping is as follows:

- In the first radio frame, no bits are mapped to slots \(N_{first}, N_{first}+1, N_{first}+2, \ldots, 14 \).
- In the second radio frame, no bits are mapped to the slots 0, 1, 2, \ldots, \(N_{last} \).

\(TGL, N_{first} \), and \(N_{last} \) are defined in subclause 4.4.

4.2.12.1 Uplink

In uplink, the PhCHs used during a radio frame are either completely filled with bits that are transmitted over the air or not used at all. The only exception is when the UE is in compressed mode. The transmission can then be turned off during consecutive slots of the radio frame.
4.2.12.2 Downlink

In downlink, the PhCHs do not need to be completely filled with bits that are transmitted over the air. Bits \(v_{pk} \notin \{0, 1\} \) are not transmitted.

During compressed mode by reducing the spreading factor by 2, no bits are mapped to the DPDCH field as follows:

If \(N_{\text{first}} + TGL \leq 15 \), i.e. the transmission gap spans one radio frame,

- If \(N_{\text{first}} + 7 \leq 14 \)
 - no bits are mapped to slots \(N_{\text{first}} - N_{\text{last}} + 1, N_{\text{first}} + 2, \ldots, N_{\text{last}} + (7 - TGL) \)
 - no bits are mapped to the first \((N_{\text{Data1}} + N_{\text{Data2}})/2 \) bit positions of slot \(N_{\text{last}} + (8 - TGL) \)

else

- no bits are mapped to slots \(N_{\text{first}} - N_{\text{last}} + 1, N_{\text{first}} + 2, \ldots, 14 \)
- no bits are mapped to slots \(N_{\text{first}} - 1, N_{\text{first}} - 2, N_{\text{first}} - 3, \ldots, N_{\text{first}} - (7 - TGL - (14 - N_{\text{last}})) \)
- no bits are mapped to the last \((N_{\text{Data1}} + N_{\text{Data2}})/2 \) bit positions of slot \(N_{\text{first}} - (8 - TGL - (14 - N_{\text{last}})) \)

end if

If \(N_{\text{first}} + TGL > 15 \), i.e. the transmission gap spans two consecutive radio frames,

- In the first radio frame, no bits are mapped to last \((N_{\text{Data1}} + N_{\text{Data2}})/2 \) bit positions in slot 7 as well as to slots 8, 9, 10, \ldots, 14.
- In the second radio frame, no bits are mapped to slots 0, 1, 2, \ldots, 6 as well as to first \((N_{\text{Data1}} + N_{\text{Data2}})/2 \) bit positions in slot 7.

\(N_{\text{Data1}} \) and \(N_{\text{Data2}} \) are defined in [2].

The following rules should be used for the selection of fixed or flexible positions of the TrCHs in the radio frame:

- For TrCHs not relying on TFCI for transport format detection (blind transport format detection), the positions of the transport channels within the radio frame should be fixed. In a limited number of cases, where there are a small number of transport format combinations, it is possible to allow flexible positions.

- For TrCHs relying on TFCI for transport format detection, higher layer signal whether the positions of the transport channels should be fixed or flexible.

4.2.13 Restrictions on different types of CCTrCHs

Restrictions on the different types of CCTrCHs are described in general terms in TS 25.302[11]. In this subclause those restrictions are given with layer 1 notation.

4.2.13.1 Uplink Dedicated channel (DCH)

The maximum value of the number of TrCHs \(I \) in a CCTrCH, the maximum value of the number of transport blocks \(M_i \) on each transport channel, and the maximum value of the number of DPDCHs \(P \) are given from the UE capability class.

4.2.13.2 Random Access Channel (RACH)

- There can only be one TrCH in each RACH CCTrCH, i.e. \(I = 1, s_k = f_{1k} \) and \(S = V_i \).

- The maximum value of the number of transport blocks \(M_i \) on the transport channel is given from the UE capability class.

- The transmission time interval is either 10 ms or 20 ms.

- Only one PRACH is used, i.e. \(P = 1, u_{1k} = s_k \), and \(U = S \).
4.2.13.3 Common Packet Channel (CPCH)

- The maximum value of the number of TrCHs \(I \) in a CCTrCH, the maximum value of the number of transport blocks \(M_i \) on each transport channel, and the maximum value of the number of DPDCHs \(P \) are given from the UE capability class.

NOTE: Only the data part of the CPCH can be mapped on multiple physical channels (this note is taken from TS 25.302).

4.2.13.4 Downlink Dedicated Channel (DCH)

The maximum value of the number of TrCHs \(I \) in a CCTrCH, the maximum value of the number of transport blocks \(M_i \) on each transport channel, and the maximum value of the number of DPDCHs \(P \) are given from the UE capability class.

4.2.13.5 Downlink Shared Channel (DSCH) associated with a DCH

- The spreading factor is indicated with the TFCI or with higher layer signalling on DCH.
- The maximum value of the number of TrCHs \(I \) in a CCTrCH, the maximum value of the number of transport blocks \(M_i \) on the transport channel and the maximum value of the number of PDSCHs \(P \) are given from the UE capability class.

4.2.13.6 Broadcast channel (BCH)

- There can only be one TrCH in the BCH CCTrCH, i.e. \(I=1 \), \(s_k = f_{1k} \), and \(S = V_1 \).
- There can only be one transport block in each transmission time interval, i.e. \(M_1 = 1 \).
- All transport format attributes have predefined values.
- Only one primary CCPCH is used, i.e. \(P=1 \).

4.2.13.7 Forward access and paging channels (FACH and PCH)

- The maximum value of the number of TrCHs \(I \) in a CCTrCH and the maximum value of the number of transport blocks \(M_i \) on each transport channel are given from the UE capability class.
- The transmission time interval for TrCHs of PCH type is always 10 ms.
- Only one secondary CCPCH is used per CCTrCH, i.e. \(P=1 \).

4.2.14 Multiplexing of different transport channels into one CCTrCH, and mapping of one CCTrCH onto physical channels

The following rules shall apply to the different transport channels which are part of the same CCTrCH:

1) Transport channels multiplexed into one CCTrCH shall have co-ordinated timings. When the TFCS of a CCTrCH is changed because one or more transport channels are added to the CCTrCH or reconfigured within the CCTrCH, or removed from the CCTrCH, the change may only be made at the start of a radio frame with CFN fulfilling the relation

\[\text{CFN} \mod F_{\text{max}} = 0, \]

where \(F_{\text{max}} \) denotes the maximum number of radio frames within the transmission time intervals of all transport channels which are multiplexed into the same CCTrCH, including any transport channels \(i \) which are added, reconfigured or have been removed, and CFN denotes the connection frame number of the first radio frame of the changed CCTrCH.

After addition or reconfiguration of a transport channel \(i \) within a CCTrCH, the TTI of transport channel \(i \) may only start in radio frames with CFN fulfilling the relation:

\[\text{CFN}_i \mod F_i = 0. \]
2) Only transport channels with the same active set can be mapped onto the same CCTrCH.

3) Different CCTrCHs cannot be mapped onto the same PhCH.

4) One CCTrCH shall be mapped onto one or several PhCHs. These physical channels shall all have the same SF.

5) Dedicated Transport channels and common transport channels cannot be multiplexed into the same CCTrCH.

6) For the common transport channels, only the FACH and PCH may belong to the same CCTrCH.

There are hence two types of CCTrCH:

1) CCTrCH of dedicated type, corresponding to the result of coding and multiplexing of one or several DCHs.

2) CCTrCH of common type, corresponding to the result of the coding and multiplexing of a common channel, RACH in the uplink, DSCH, BCH, or FACH/PCH for the downlink.

4.2.14.1 Allowed CCTrCH combinations for one UE

4.2.14.1.1 Allowed CCTrCH combinations on the uplink

A maximum of one CCTrCH is allowed for one UE on the uplink. It can be either:

1) one CCTrCH of dedicated type;

2) one CCTrCH of common type.

4.2.14.1.2 Allowed CCTrCH combinations on the downlink

The following CCTrCH combinations for one UE are allowed:

- \(x \) CCTrCH of dedicated type + \(y \) CCTrCH of common type

The allowed combination of CCTrCHs of dedicated and common type are given from UE radio access capabilities. There can be a maximum on one CCTrCH of common type for DSCH and a maximum of one CCTrCH of common type for FACH. With one CCTrCH of common type for DSCH, there shall be at least one CCTrCH of dedicated type.

NOTE 1: There is only one DPCCH in the uplink, hence one TPC bits flow on the uplink to control possibly the different DPDCHs on the downlink, part of the same or several CCTrCHs.

NOTE 2: There is only one DPCCH in the downlink, even with multiple CCTrCHs. With multiple CCTrCHs, the DPCCH is transmitted on one of the physical channels of that CCTrCH which has the smallest SF among the multiple CCTrCHs. Thus there is only one TPC command flow and only one TFCI word in downlink even with multiple CCTrCHs.

4.3 Transport format detection

If the transport format set of a TrCH \(i \) contains more than one transport format, the transport format can be detected according to one of the following methods:

- TFCl based detection: This method is applicable when the transport format combination is signalled using the TFCl field;

- explicit blind detection: This method typically consists of detecting the TF of TrCH \(i \) by use of channel decoding and CRC check;

- guided detection: This method is applicable when there is at least one other TrCH \(i' \), hereafter called guiding TrCH, such that:

 - the guiding TrCH has the same TTI duration as the TrCH under consideration, i.e. \(F_i = F_{i'} \);
 - different TFs of the TrCH under consideration correspond to different TFs of the guiding TrCH;

 - explicit blind detection is used on the guiding TrCH.
If the transport format set for a TrCH \(i \) contains one transport format only, no transport format detection needs to be performed for this TrCH.

For uplink, blind transport format detection is a network controlled option. For downlink, the UE shall be capable of performing blind transport format detection, if certain restrictions on the configured transport channels are fulfilled.

For a DPCH associated with a PDSCH, the DPCCH shall include TFCI.

4.3.1 Blind transport format detection

When no TFCI is available then explicit blind detection or guided detection shall be performed on all TrCHs within the CCTrCH that have more than one transport format. The UE shall only be required to support blind transport format detection if all of the following restrictions are fulfilled:

1. the number of CCTrCH bits received per radio frame is 600 or less;
2. the number of transport format combinations of the CCTrCH is 64 or less;
3. fixed positions of the transport channels is used on the CCTrCH to be detected;
4. convolutional coding is used on all explicitly detected TrCHs;
5. CRC is appended to all transport blocks on all explicitly detected TrCHs;
6. the number of explicitly detected TrCHs is 3 or less;
7. for all explicitly detected TrCHs \(i \), the number of code blocks in one TTI (\(C_i \)) shall not exceed 1;
8. the sum of the transport format set sizes of all explicitly detected TrCHs, is 16 or less. The transport format set size is defined as the number of transport formats within the transport format set;
9. there is at least one TrCH that can be used as the guiding transport channel for all transport channels using guided detection.

Examples of blind transport format detection methods are given in annex A.

4.3.2 Transport format detection based on TFCI

If a TFCI is available, then TFCI based detection shall be applicable to all TrCHs within the CCTrCH. The TFCI informs the receiver about the transport format combination of the CCTrCHs. As soon as the TFCI is detected, the transport format combination, and hence the transport formats of the individual transport channels are known.

4.3.3 Coding of Transport-Format-Combination Indicator (TFCI)

The TFCI bits are encoded using a \((32, 10)\) sub-code of the second order Reed-Muller code. The coding procedure is as shown in figure 9.

![Figure 9: Channel coding of TFCI bits](image)

If the TFCI consist of less than 10 bits, it is padded with zeros to 10 bits, by setting the most significant bits to zero. The length of the TFCI code word is 32 bits.

The code words of the \((32,10)\) sub-code of second order Reed-Muller code are linear combination of 10 basis sequences. The basis sequences are as in the following table 7.
<table>
<thead>
<tr>
<th>i</th>
<th>M_{i,0}</th>
<th>M_{i,1}</th>
<th>M_{i,2}</th>
<th>M_{i,3}</th>
<th>M_{i,4}</th>
<th>M_{i,5}</th>
<th>M_{i,6}</th>
<th>M_{i,7}</th>
<th>M_{i,8}</th>
<th>M_{i,9}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Let’s define the TFCI information bits as a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9 (a_0 is LSB and a_9 is MSB). The TFCI information bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated DPCH radio frame.

The output code word bits b_i are given by:

$$b_i = \sum_{n=0}^{9} (a_n \times M_{i,n}) \mod 2$$

where $i=0...31$.

The output bits are denoted by b_k, $k = 0, 1, 2, ..., 31$.

In downlink, when the SF <128 the encoded TFCI code words are repeated yielding 8 encoded TFCI bits per slot in normal mode and 16 encoded TFCI bits per slot in compressed mode. Mapping of repeated bits to slots is explained in subclause 4.3.5.

4.3.4 Operation of Transport-Format-Combination Indicator (TFCI) in Split Mode

If one of the DCH is associated with a DSCH, the TFCI code word may be split in such a way that the code word relevant for TFCI activity indication is not transmitted from every cell. The use of such a functionality shall be indicated by higher layer signalling.

The TFCI bits are encoded using a (16, 5) bi-orthogonal (or first order Reed-Muller) code. The coding procedure is as shown in figure 10.
Figure 10: Channel coding of split mode TFCI bits

The code words of the (16,5) bi-orthogonal code are linear combinations of 5 basis sequences as defined in table 8.

<table>
<thead>
<tr>
<th>i</th>
<th>M_{i,0}</th>
<th>M_{i,1}</th>
<th>M_{i,2}</th>
<th>M_{i,3}</th>
<th>M_{i,4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Let’s define a first set of TFCI information bits as a_{1,0}, a_{1,1}, a_{1,2}, a_{1,3}, a_{1,4} (a_{1,0} is LSB and a_{1,4} is MSB). This set of TFCI information bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the DCH CCTrCH in the associated DPCH radio frame.

Let’s define a second set of TFCI information bits as a_{2,0}, a_{2,1}, a_{2,2}, a_{2,3}, a_{2,4} (a_{2,0} is LSB and a_{2,4} is MSB). This set of TFCI information bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the associated DSCH CCTrCH in the corresponding PDSCH radio frame.

The output code word bits b_k are given by:

\[b_{2i} = \sum_{n=0}^{i} (a_{1,n} \times M_{i,n}) \mod 2 \]

\[b_{2i+1} = \sum_{n=0}^{i} (a_{2,n} \times M_{i,n}) \mod 2 \]

where i=0…15, j=0,1.

The output bits are denoted by b_k, k = 0, 1, 2, ..., 31.

4.3.5 Mapping of TFCI words

4.3.5.1 Mapping of TFCI word in non compressed mode

The bits of the code word are directly mapped to the slots of the radio frame. Within a slot the bit with lower index is transmitted before the bit with higher index. The coded bits b_k are mapped to the transmitted TFCI bits d_k, according to the following formula:

\[d_k = b_k \mod 32 \]
For uplink physical channels regardless of the SF and downlink physical channels, if $SF \geq 128$, $k = 0, 1, 2, \ldots, 29$.

NOTE: This means that bits b_{30} and b_{31} are not transmitted.

For downlink physical channels whose $SF < 128$, $k = 0, 1, 2, \ldots, 119$. Note that this means that bits b_0 to b_{23} are transmitted four times and bits b_{24} to b_{31} are transmitted three times.

4.3.5.2 Mapping of TFCI in compressed mode

The mapping of the TFCI bits in compressed mode is different for uplink, downlink with $SF \geq 128$ and downlink with $SF < 128$.

4.3.5.2.1 Uplink compressed mode

For uplink compressed mode, the slot format is changed so that no TFCI bits are lost. The different slot formats in compressed mode do not match the exact number of TFCI bits for all possible TGLs. Repetition of the TFCI bits is therefore used.

Denote the number of bits available in the TFCI fields of one compressed radio frame by D and the number of bits in the TFCI field in a slot by N_{TFCI}. Denote by E the first bit to be repeated. $E = N_{first} \cdot N_{TFCI}$. If $N_{first} \neq 14$, then E corresponds to the number of the first TFCI bit in the slot directly after the TG. The following relations then define the mapping.

$$d_k = b_k \mod 32$$

where $k = 0, 1, 2, \ldots, \min(31, D-1)$.

If $D > 32$, the remaining positions are filled by repetition (in reversed order):

$$d_{D-k-1} = b_{(E+k) \mod 32}$$

where $k = 0, \ldots, D-33$.

4.3.5.2.2 Downlink compressed mode

For downlink compressed mode, the slot format is changed so that no TFCI bits are lost. The different slot formats in compressed mode do not match the exact number of TFCI bits for all possible TGLs. DTX is therefore used if the number of TFCI fields exceeds the number of TFCI bits. DTX is used if the block of fields, where DTX is used, starts on the first field after the gap. If there are fewer TFCI fields after the gap than DTX bits, the last fields before of the gap are also filled with DTX.

Denote the number of bits available in the TFCI fields of one compressed radio frame by D and the number of bits in the TFCI field in a slot by N_{TFCI}. Denote by E the first bit to be repeated.

$$E = N_{first} \cdot N_{TFCI}$$

if $N_{first} + \text{TGL} \leq 15$, else $E = 0$.

If the transmission gap does not extend to the end of the frame then E corresponds to the number of the first TFCI bit in the slot directly after the TG. Denote the total number of TFCI bits to be transmitted by N_{tot}. If $SF \geq 128$ then $N_{tot} = 32$, else $N_{tot} = 128$. The following relations then define the mapping:

$$d_k = b_{(k \mod 32)}$$

where $k = 0, 1, 2, \ldots, \min(E, N_{tot})$, and, if $E < N_{tot}$,

$$d_{k+D-N_{tot}} = b_{(k \mod 32)}$$

where $k = E, \ldots, N_{tot} - 1$.

DTX bits are sent on d_k where $k = \min(E, N_{tot}), \ldots, \min(E, N_{tot}) + D - N_{tot} - 1$.
4.4 Compressed mode

In compressed mode, TGL slots from \(N_{\text{first}}\) to \(N_{\text{last}}\) are not used for transmission of data. As illustrated in figure 11, the instantaneous transmit power is increased in the compressed frame in order to keep the quality (BER, FER, etc.) unaffected by the reduced processing gain. The amount of power increase depends on the transmission time reduction method (see subclause 4.4.3). What frames are compressed, are decided by the network. When in compressed mode, compressed frames can occur periodically, as illustrated in figure 11, or requested on demand. The rate and type of compressed frames is variable and depends on the environment and the measurement requirements.

![Figure 11: Compressed mode transmission](image)

4.4.1 Frame structure in the uplink

The frame structure for uplink compressed mode is illustrated in figure 12.

![Figure 12: Frame structure in uplink compressed transmission](image)

4.4.2 Frame structure types in the downlink

There are two different types of frame structures defined for downlink compressed mode. Type A maximises the transmission gap length and type B is optimised for power control.

- With frame structure of type A, the pilot field of the last slot in the transmission gap is transmitted. Transmission is turned off during the rest of the transmission gap (figure 13(a)).

- With frame structure of type B, the TPC field of the first slot in the transmission gap and the pilot field of the last slot in the transmission gap is transmitted. Transmission is turned off during the rest of the transmission gap (figure 13(b)).
4.4.3 Transmission time reduction method

When in compressed mode, the information normally transmitted during a 10 ms frame is compressed in time. The mechanisms provided for achieving this are puncturing, reduction of the spreading factor by a factor of two, and higher layer scheduling. In the downlink, all methods are supported while compressed mode by puncturing is not used in the uplink. The maximum idle length is defined to be 7 slots per one 10 ms frame. The slot formats that are used in compressed mode are listed in [2].

4.4.3.1 Compressed mode by puncturing

During compressed mode, rate matching (puncturing) is applied for creating transmission gap in one frame. The algorithm for rate matching (puncturing) as described in subclause 4.2.7 is used.

4.4.3.2 Compressed mode by reducing the spreading factor by 2

During compressed mode, the spreading factor (SF) can be reduced by 2 during one radio frame to enable the transmission of the information bits in the remaining time slots of a compressed frame.

On the downlink, UTRAN can also order the UE to use a different scrambling code in compressed mode than in normal mode. If the UE is ordered to use a different scrambling code in compressed mode, then there is a one-to-one mapping between the scrambling code used in normal mode and the one used in compressed mode, as described in TS 25.213[3] subclause 5.2.1.

4.4.3.3 Compressed mode by higher layer scheduling

Compressed mode can be obtained by higher layer scheduling. Higher layers then set restrictions so that only a subset of the allowed TFCs are used in compressed mode. The maximum number of bits that will be delivered to the physical layer during the compressed radio frame is then known and a transmission gap can be generated. Note that in the downlink, the TFCI field is expanded on the expense of the data fields and this shall be taken into account by higher layers when setting the restrictions on the TFCs. Compressed mode by higher layer scheduling shall not be used with fixed starting positions of the TrCHs in the radio frame.

4.4.4 Transmission gap position

Transmission gaps can be placed at different positions as shown in figures 14 and 15 for each purpose such as interfrequency power measurement, acquisition of control channel of other system/carrier, and actual handover operation.

When using single frame method, the transmission gap is located within the compressed frame depending on the transmission gap length (TGL) as shown in figure 14 (1). When using double frame method, the transmission gap is located on the center of two connected frames as shown in figure 14 (2).

![Frame structure types in downlink compressed transmission](image-url)
Parameters of the transmission gap positions are calculated as follows.

TGL is the number of consecutive idle slots during the compressed mode transmission gap:

\[TGL = 3, 4, 5, 7, 10, 14 \]

\(N_{\text{first}} \) specifies the starting slot of the consecutive idle slots,

\[N_{\text{first}} = 0, 1, 2, 3, \ldots, 14. \]

\(N_{\text{last}} \) shows the number of the final idle slot and is calculated as follows;

- If \(N_{\text{first}} + TGL \leq 15 \), then \(N_{\text{last}} = N_{\text{first}} + TGL - 1 \) (in the same frame);
- If \(N_{\text{first}} + TGL > 15 \), then \(N_{\text{last}} = (N_{\text{first}} + TGL - 1) \mod 15 \) (in the next frame).

When the transmission gap spans two consecutive radio frames, \(N_{\text{first}} \) and TGL must be chosen so that at least 8 slots in each radio frame are transmitted.
Figure 15: Transmission gap positions with different N_{first}

4.4.5 Parameters for downlink compressed mode

Table 9 shows the detailed parameters for each transmission gap length for the different transmission time reduction methods.
Table 9: Parameters for compressed mode

<table>
<thead>
<tr>
<th>TGL</th>
<th>Frame Type</th>
<th>Spreading Factor</th>
<th>Idle length [ms]</th>
<th>Transmission time Reduction method</th>
<th>Idle frame Combining</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>512 - 4</td>
<td>1.73-1.99</td>
<td>Puncturing, Spreading factor division by 2 or Higher layer scheduling</td>
<td>(S) (D) = (1,2) or (2,1)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>256 - 4</td>
<td>1.60-1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>512 - 4</td>
<td>2.40-2.66</td>
<td></td>
<td>(S) (D) = (1,3), (2,2) or (3,1)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>256 - 4</td>
<td>2.27-2.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>512 - 4</td>
<td>3.07-3.33</td>
<td></td>
<td>(S) (D) = (1,4), (2,3), (3, 2) or (4,1)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>256 - 4</td>
<td>2.94-3.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>512 - 4</td>
<td>4.40-4.66</td>
<td></td>
<td>(S) (D) = (1,6), (2,5), (3,4), (4,3), (5,2) or (6,1)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>256 - 4</td>
<td>4.27-4.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>512 - 4</td>
<td>6.40-6.66</td>
<td></td>
<td>(S) (D) = (3,7), (4,6), (5,5), (6,4) or (7,3)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>256 - 4</td>
<td>6.27-6.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>A</td>
<td>512 - 4</td>
<td>9.07-9.33</td>
<td></td>
<td>(D) = (7,7)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>256 - 4</td>
<td>8.93-9.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(S): Single-frame method as shown in figure 14 (1).

(D): Double-frame method as shown in figure 14 (2). (x,y) indicates x: the number of idle slots in the first frame, y: the number of idle slots in the second frame.

NOTE: Compressed mode by spreading factor reduction is not supported when SF=4 is used in normal mode.
Annex A (informative):
Blind transport format detection

A.1 Blind transport format detection using fixed positions

A.1.1 Blind transport format detection using received power ratio

For the dual transport format case (the possible data rates are 0 and full rate, and CRC is only transmitted for full rate), blind transport format detection using received power ratio can be used.

The transport format detection is then done using average received power ratio of DPDCH to DPCCH. Define the following:

- P_c: Received power per bit of DPCCH calculated from all pilot and TPC bits per slot over a radio frame;
- P_d: Received power per bit of DPDCH calculated from X bits per slot over a radio frame;
- X: the number of DPDCH bits per slot when transport format corresponds to full rate;
- T: Threshold of average received power ratio of DPDCH to DPCCH for transport format detection.

The decision rule can then be formulated as:

If $P_d/P_c > T$ then:
- full rate transport format detected;
else
- zero rate transport format detected.

A.1.2 Blind transport format detection using CRC

For the multiple transport format case (the possible data rates are 0, ..., (full rate)/r, ..., full rate, and CRC is transmitted for all transport formats), blind transport format detection using CRC can be used.

At the transmitter, the data stream with variable number of bits from higher layers is block-encoded using a cyclic redundancy check (CRC) and then convolutionally encoded. CRC parity bits are attached just after the data stream with variable number of bits as shown in figure A.1.

The receiver knows only the possible transport formats (or the possible end bit position $\{n_{end}\}$) by Layer-3 negotiation. The receiver performs Viterbi-decoding on the soft decision sample sequence. The correct trellis path of the Viterbi-decoder ends at the zero state at the correct end bit position.

The blind transport format detection method using CRC traces back the surviving trellis path ending at the zero state (hypothetical trellis path) at each possible end bit position to recover the data sequence. For each recovered data sequence error-detection is performed by checking the CRC, and if there is no error, the recovered sequence is declared to be correct.

The following variable is defined:

$$s(n_{end}) = -10 \log \left(\frac{a_0(n_{end}) - a_{\text{min}}(n_{end})}{a_{\text{max}}(n_{end}) - a_{\text{min}}(n_{end})} \right) \ [\text{dB}] \ (\text{Eq. 1})$$

where $a_{\text{max}}(n_{end})$ and $a_{\text{min}}(n_{end})$ are the maximum and minimum path-metric values among all survivors at end bit position n_{end}, and $a_0(n_{end})$ is the path-metric value at zero state.
In order to reduce the probability of false detection (this happens if the selected path is wrong but the CRC misses the error detection), a path selection threshold D is introduced. The threshold D determines whether the hypothetical trellis path connected to the zero state should be traced back or not at each end bit position n_{end}. If the hypothetical trellis path connected to the zero state that satisfies:

$$s(n_{\text{end}}) \leq D \quad \text{(Eq. 2)}$$

is found, the path is traced back to recover the frame data, where D is the path selection threshold and a design parameter.

If more than one end bit positions satisfying Eq. 2 is found, the end bit position which has minimum value of $s(n_{\text{end}})$ is declared to be correct. If no path satisfying Eq. 2 is found even after all possible end bit positions have been exhausted, the received frame data is declared to be in error.

Figure A-2 shows the procedure of blind transport format detection using CRC.

![Figure A.1: An example of data with variable number of bits. Four possible transport formats, and transmitted end bit position $n_{\text{end}} = 3$.](image)

A.2 Blind transport format detection with flexible positions

In certain cases where the CCTrCH consists of multiple transport channels and a small number of transport format combinations are allowed, it is possible to allow blind transport format detection with flexible positions.

Several examples for how the blind transport format detection with flexible positions might be performed are:

- the blind transport format detection starts at a fixed position and identifies the transport format of the first present transport channel and stops. The position of the other transport channels and their transport format being derived on the basis of the allowed transport format combinations, assuming that there is a one to one relationship between the transport format combination and the transport format of the first present transport channel;

- the blind rate detection evaluates all transport format combinations and picks the most reliable one.
Comparison of $S(n_{\text{end}})$

- $S_{\text{min}} = S(n_{\text{end}})$
- $S_{\text{min}} > S(n_{\text{end}})$

* If the value of detected n_{end}' is "0", the received frame data is declared to be in error.

Figure A.2: Basic processing flow of blind transport format detection
Annex B (informative):
Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG #</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Rev</th>
<th>Subject/Comment</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/01/00</td>
<td>RAN_05</td>
<td>RP-99588</td>
<td></td>
<td></td>
<td>Approved at TSG RAN #5 and placed under Change Control</td>
<td></td>
<td>3.0.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99680</td>
<td>001</td>
<td>3</td>
<td>Correction of rate matching parameters for repetition after 1st interleaving in 25.212</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99680</td>
<td>004</td>
<td></td>
<td>Changing the initial offset value for convolutional code rate matching</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99681</td>
<td>005</td>
<td>1</td>
<td>Introduction of compressed mode by higher layer scheduling</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99679</td>
<td>008</td>
<td></td>
<td>Editorial corrections to TS 25.212</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99680</td>
<td>009</td>
<td></td>
<td>Removal of SFN multiplexing</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99680</td>
<td>010</td>
<td>1</td>
<td>Clarification of bit separation and collection</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99680</td>
<td>011</td>
<td>2</td>
<td>Connection between TTI and CFN</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99680</td>
<td>012</td>
<td>2</td>
<td>Zero length transport blocks</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99680</td>
<td>014</td>
<td></td>
<td>Update of channel coding sections</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99680</td>
<td>016</td>
<td></td>
<td>Removal of TrCH restriction in DSCH CCTrCH</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99681</td>
<td>017</td>
<td></td>
<td>20 ms RACH message length</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>14/01/00</td>
<td>RAN_06</td>
<td>RP-99680</td>
<td>018</td>
<td></td>
<td>Minimum SF in UL</td>
<td>3.0.0</td>
<td>3.1.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>025</td>
<td>2</td>
<td>CR for parity bit attachment to 0 bit transport block</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>029</td>
<td></td>
<td>Limitations of blind transport format detection</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>034</td>
<td>1</td>
<td>Clarification of fixed position rate matching</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>035</td>
<td>1</td>
<td>Clarification of DL compressed mode</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>036</td>
<td></td>
<td>Reconfiguration of TFCS</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>037</td>
<td>1</td>
<td>Removal of fixed gap position in 25.212</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>038</td>
<td>2</td>
<td>Definition clarification for TS 25.212</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>039</td>
<td>1</td>
<td>Clarification on TFCI coding input</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>041</td>
<td>2</td>
<td>Correction of UL compressed mode by higher layer scheduler</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>042</td>
<td>5</td>
<td>Downlink Compressed Mode by puncturing</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>044</td>
<td></td>
<td>Modification of Turbo code internal interleaver</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>045</td>
<td></td>
<td>Editorial corrections</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>046</td>
<td></td>
<td>SF/2 method: DTX insertion after 2nd interleaver</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>047</td>
<td>1</td>
<td>TFCI coding for FDD</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>048</td>
<td></td>
<td>Mapping of TFCI in downlink compressed mode</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>049</td>
<td></td>
<td>Editorial changes to Annex A</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>050</td>
<td></td>
<td>Removal of rate matching attribute setting for RACH</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>052</td>
<td></td>
<td>Padding Function for Turbo coding of small blocks</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>055</td>
<td>2</td>
<td>Clarifications relating to DSCH</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000061</td>
<td>056</td>
<td></td>
<td>Editorial modification of uplink shifting parameter calculation for turbo code puncturing</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000062</td>
<td>059</td>
<td>1</td>
<td>Revision: Editorial correction to the calculation of Rate Matching parameters</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000062</td>
<td>060</td>
<td></td>
<td>Editorial changes of channel coding section</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
<tr>
<td>31/03/00</td>
<td>RAN_07</td>
<td>RP-000062</td>
<td>061</td>
<td></td>
<td>Removal of DL compressed mode by higher layer scheduling with fixed positions</td>
<td>3.1.1</td>
<td>3.2.0</td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3.2.0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>