
ETSI TS 125 123 V8.2.0 (2009-03)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Requirements for support of radio resource management (TDD)
(3GPP TS 25.123 version 8.2.0 Release 8)

Reference
RTS/TSGR-0425123v820

Keywords

UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009. All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM, **TIPHON**TM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.

3GPP[™] is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **LTE**[™] is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners. **GSM**® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intelle	ectual Property Rights	2
Forew	vord	2
Forew	vord	22
1	Scope	23
2	References	23
3	Definitions, symbols and abbreviations	24
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	
3.4	Test tolerances	
4	Idle Mode	
4 4.1	Cell Selection	
4.1.1	Introduction	
4.1.1 4.2		
4.2.1	Cell Re-selection	
4.2.1 4.2.1.1	Introduction.	
4.2.1.2	rr	
4.2.1.3	T T	
4.2.2	Requirements	
4.2.2.1		
4.2.2.1	1 1	
4.2.2.1	· · · · · · · · · · · · · · · · · · ·	
4.2.2.1	T T	
4.2.2.2	· · · · · · · · · · · · · · · · · · ·	
4.2.2.2	1 1	
4.2.2.2	1 1	
4.2.2.2	1 1	
4.2.2.3	1 2	
4.2.2.3	1 1	
4.2.2.3	1 1	
4.2.2.3	1 1	
4.2.2.3	1	
4.2.2.3	1	
4.2.2.3	1	
4.2.2.3		
4.2.2.4	1 7	
4.2.2.4		
4.2.2.4	1 1	
4.2.2.4	1 1	
4.2.2.5		
4.2.2.5	1 1	
4.2.2.5	1 1	
4.2.2.5	1 1	
4.2.2.5		
4.2.2.6		
4.2.2.6	1 1	
4.2.2.6	1 1	
4.2.2.6	1 1	
4.2.2.7		
4.2.2.7	1 1	
4.2.2.7	1 1	
4.2.2.7	1 1	
4.2.2.8	Number of cells in cell lists	38

4.2.2.8.1	3.84 Mcps option	
4.2.2.8.2	1.28 Mcps option	
4.2.2.8.3	7.68 Mcps option	
4.2.2.9	Additional requirements for inter-frequency measurements when MBMS reception is active	
4.2.2.9.1	3.84 Mcps option	
4.2.2.9.2	(void)	
4.2.2.9.3	7.68 Mcps option	
4.3	MBSFN cluster selection for carriers dedicated to MBSFN	40
4.3.1	Introduction	
4.4	MBSFN cluster reselection for carriers dedicated to MBSFN	40
4.4.1	Introduction	40
5 U	FRAN Connected Mode Mobility	40
5.1	TDD/TDD Handover	
5.1.1	Introduction	
5.1.1 5.1.1.1		
5.1.1.2	3.84 Mcps TDD option	
5.1.1.3	7.68 Mcps TDD option	
5.1.1.5	Requirements	
5.1.2.1	TDD/TDD handover delay	
5.1.2.1	3.84 Mcps TDD option	
5.1.2.1.2	1.28 Mcps TDD option	
5.1.2.1.3	7.68 Mcps TDD option	
5.1.2.1.5	Interruption time	
5.1.2.2.1	3.84 Mcps TDD option	
5.1.2.2.2	1.28 Mcps TDD option	
5.1.2.2.3	7.68 Mcps TDD option	
5.2	TDD/FDD Handover	
5.2.1	Introduction	
5.2.1.1	3.84 Mcps TDD option	
5.2.1.2	1.28 Mcps TDD option	
5.2.1.3	7.68 Mcps TDD option	
5.2.2	Requirements	
5.2.2.1	TDD/FDD handover delay	
5.2.2.1.1	3.84 Mcps TDD option	
5.2.2.1.2	1.28 Mcps TDD option	
5.2.2.1.3	7.68 Mcps TDD option	
5.2.2.2	Interruption time	
5.2.2.2.1	3.84 Mcps TDD option	
5.2.2.2.2	1.28 Mcps TDD option	
5.2.2.2.3	7.68 Mcps TDD option	
5.3	TDD/GSM Handover	46
5.3.1	Introduction	46
5.3.1.1	3.84 Mcps TDD option	46
5.3.1.2	1.28 Mcps TDD option	47
5.3.1.3	7.68 Mcps TDD option	47
5.3.2	Requirements	
5.3.2.1	TDD/GSM handover delay	
5.3.2.1.1	3.84 Mcps TDD option	
5.3.2.1.2	1.28 Mcps TDD option	
5.3.2.1.3	7.68 Mcps TDD option	
5.3.2.2	Interruption time	
5.3.2.2.1	3.84 Mcps TDD option	
5.3.2.2.2	1.28 Mcps TDD option	
5.3.2.2.3	7.68 Mcps TDD option	
5.3a	TDD to E-UTRAN FDD Handover	
5.3a.1	Introduction	
5.3a.2	Requirements	
5.3a.2.1	Handover delay	
5.3a.2.2	Interruption time	
5.3b	TDD to E-UTRAN TDD Handover	
5.3b.1	Introduction	50

5.3b.2	Requirements	50
5.3b.2.1	Handover delay	50
5.3b.2.2	Interruption time	
5.4	Cell Re-selection in Cell_FACH	
5.4.1	Introduction	
5.4.2	Requirements for 3.84Mcps TDD option	
5.4.2.1	Cell re-selection delay	
5.4.2.1.1	Intra-frequency cell re-selection	51
5.4.2.1.2	Inter-frequency cell re-selection	52
5.4.2.1.3	TDD FDD cell re-selection	52
5.4.2.1.4	Inter-RAT cell re-selection	
5.4.2.2	Interruption time	
5.4.2.2.1	TDD-TDD cell re-selection	
5.4.2.2.2	TDD-FDD cell re-selection	
5.4.2.2.3	TDD-GSM cell re-selection.	
5.4.2.3	Measurement and evaluation of cell selection criteria S of serving cell	
5.4.3	Requirements for 1.28Mcps TDD option	
5.4.3.1	Measurements	
5.4.3.2	Cell re-selection delay	
5.4.3.2.1	Intra-frequency cell re-selection	
5.4.3.2.2	Inter-frequency TDD cell re-selection	
5.4.3.2.3	Inter-frequency FDD cell re-selection	
5.4.3.2.4	Inter-RAT cell re-selection	
5.4.3.3	Interruption time	
5.4.3.3.1	TDD-TDD cell re-selection	
5.4.3.3.2	TDD-FDD cell re-selection	
5.4.3.3.3	TDD-GSM cell re-selection.	
5.4.3.4	Measurement and evaluation of cell selection criteria S of serving cell	
5.4.4	Requirements for 7.68Mcps TDD option	
5.4.4.1	Cell re-selection delay	
5.4.4.1.1	Intra-frequency cell re-selection	
5.4.4.1.2	Inter-frequency cell re-selection	
5.4.4.1.3	TDD FDD cell re-selection	
5.4.4.1.4	Inter-RAT cell re-selection	
5.4.4.2	Interruption time	
5.4.4.2.1	TDD-TDD cell re-selection	
5.4.4.2.2	TDD-FDD cell re-selection	
5.4.4.2.3	TDD-GSM cell re-selection	
5.4.4.3	Measurement and evaluation of cell selection criteria S of serving cell	
5.5	Cell Re-selection in Cell_PCH.	
5.5.1 5.5.2	Introduction	
5.5.2.1	Requirements	
5.5.2.1	1 1	
5.5.2.3	1.28 Mcps option	
5.5.2.5 5.6	7.68 Mcps option	
5.6.1	Introduction	
5.6.2	Requirements	
5.6.2.1	3.84 Mcps option	
5.6.2.2	1.28 Mcps option	
5.6.2.3	7.68 Mcps option	
5.7	RACH reporting	
5.7.1	Introduction	
5.7.1.1	3.84 Mcps TDD option	
5.7.1.2	1.28 Mcps TDD option	
5.7.1.3	7.68 Mcps TDD option	
5.7.2	Requirements	
5.7.2.1	3.84 Mcps TDD option	
5.7.2.2	1.28 Mcps TDD option	
5.7.2.3	7.68 Mcps TDD option	
5.8	Inter-RAT cell change order from UTRAN in CELL_DCH and CELL_FACH	
5.8.1	Introduction	66

5.8.1.1	3.84 Mcps TDD option	
5.8.1.2	1.28 Mcps TDD option	66
5.8.1.3	7.68 Mcps TDD option	
5.8.2	Requirements	67
5.8.2.1	Delay	
5.8.2.1.1	3.84 Mcps TDD option	67
5.8.2.1.2	1.28 Mcps TDD option	
5.8.2.1.3	7.68 Mcps TDD option	
5.8.2.2	Interruption time	
5.8.2.2.1	3.84 Mcps TDD option	
5.8.2.2.2	1.28 Mcps TDD option	
5.8.2.2.3	7.68 Mcps TDD option	69
6 (v	oid)	70
`		
	RC Connection Control	
6A.1.1	RRC re-establishment.	
	Introduction	
6A.1.2	Requirements	
6A.1.2.1	3.84Mcps TDD option	
6A.1.2.1.	- · · · · · · · · · · · · · · · · · · ·	
6A.1.2.2	1.28Mcps TDD option	
6A.1.2.2. 6A.1.2.3	7 1	
6A.1.2.3	7.68Mcps TDD option	
	J 1	
6A.2	Transport format combination selection in UE	
6A.2.1	Introduction	
6A.2.2 6A.2.2.1	Requirements	
6A.2.2.1	3.84 Mcps TDD option	
6A.2.2.3	1.28 Mcps TDD option	
	7.68 Mcps TDD option	
6A.3 6A.3.1	Maximum allowed UL TX Power	
6A.3.2		
6A.3.2.1	Requirements	
6A.3.2.2	3.84 Mcps option	
6A.3.2.3	7.68 Mcps option	
	• •	
7 Ti	ming characteristics	
7.1	Timing Advance	
7.1.1	3.84 Mcps TDD option	
7.1.1.1	Introduction	
7.1.1.2	Requirements	
7.1.1.2.1	Timing Advance adjustment accuracy	
7.1.1.2.2	Timing Advance adjustment delay	
7.1.2	1.28 Mcps TDD option	
7.1.2.1	Uplink synchronization control requirements for UE for 1.28 Mcps TDD option	
7.1.2.1.1	Uplink synchronization control steps	
7.1.2.1.1.	<u>*</u>	
7.1.3	7.68 Mcps TDD option	
7.1.3.1	Introduction	
7.1.3.2	Requirements	
7.1.3.2.1	Timing Advance adjustment accuracy	
7.1.3.2.2	Timing Advance adjustment delay	
7.2	Cell synchronization accuracy	
7.2.1	Definition	
7.2.2	Minimum requirements	
7.3	UE Transmit Timing for 3.84 Mcps TDD Option	
7.3.1	Definition	
7.3.2	Minimum Requirement	
7.3A	UE Transmit Timing for 7.68 Mcps TDD Option	
7.3A.1	Definition	
7342	Minimum Requirement	70

7.4	UE timer accuracy	
7.4.1	Introduction	80
7.4.2	Requirements	80
8 UI	E Measurements Procedures	80
8.1	General Measurement Requirements in CELL_DCH State (3.84 Mcps option)	
8.1.1	Introduction	
8.1.2	Requirements	
8.1.2.1	UE Measurement Capability	
8.1.2.2	TDD intra frequency measurements	
8.1.2.2.1	Identification of a new cell	
8.1.2.2.2	UE P-CCPCH RSCP measurement capability	
8.1.2.2.2 8.1.2.2.2	± • •	
8.1.2.2.3	Periodic Reporting	
8.1.2.2.4	Event-triggered Periodic Reporting	
8.1.2.2.5		
8.1.2.3	Event Triggered Reporting	
8.1.2.3.1	TDD inter frequency measurements.	
8.1.2.3.1	Identification of a new cell	
8.1.2.3.3	P-CCPCH RSCP measurement period	
	Periodic Reporting	
8.1.2.3.4	Event Triggered Reporting	
8.1.2.4	FDD measurements	
8.1.2.4.1	Identification of a new cell	
8.1.2.4.2	UE CPICH measurement capability	
8.1.2.4.3	Periodic Reporting	
8.1.2.4.4	Event Triggered Reporting	
8.1.2.5	GSM measurements	
8.1.2.5.1	GSM carrier RSSI	
8.1.2.5.2	BSIC verification	
8.1.2.5.2.		
8.1.2.5.2.2		
8.1.2.5.3	Periodic Reporting	
8.1.2.5.4	Event Triggered Reporting	
8.1.2.6	TDD Synchronisation to new cells	
8.1.2.7	E-UTRAN FDD measurements	
8.1.2.7.1	Identification of a new cell	
8.1.2.7.2	E-UTRAN RSRP and RSRQ measurement period	
8.1.2.7.3	Periodic reporting	
8.1.2.7.4	Void	
8.1.2.7.5	Event Triggered reporting	
8.1.2.8	E-UTRAN TDD measurements	91
8.1.2.8.1	Identification of a new cell	
8.1.2.8.2	E-UTRAN RSRP and RSRQ measurement period	92
8.1.2.8.3	Periodic reporting	92
8.1.2.8.4	Void	92
8.1.2.8.5	Event Triggered reporting	92
8.1A	General Measurements Requirements in CELL_DCH State (1.28 Mcps option)	
8.1A.1	Introduction	92
8.1A.2	Requirements	93
8.1A.2.1	UE Measurement Capability	93
8.1A.2.2	TDD intra frequency measurements	
8.1A.2.2.	Identification of a new cell	93
8.1A.2.2.2	UE P-CCPCH RSCP measurement capability	92
8.1A.2.2.2		
8.1A.2.2.3		
8.1A.2.2.4	1 6	
8.1A.2.2.5		
8.1A.2.3	TDD inter frequency measurements	
8.1A.2.3.1		
8.1A.2.3.2		
8.1A.2.3.3		
8 1A 2 3 4		96

8.1A.2.4	FDD measurements	
8.1A.2.4.1	Identification of a new cell	96
8.1A.2.4.2	UE CPICH measurement capability	
8.1A.2.4.3	Periodic Reporting	97
8.1A.2.4.4	Event Triggered Reporting	97
8.1A.2.5	GSM measurements	98
8.1A.2.5.1	GSM carrier RSSI	98
8.1A.2.5.2	BSIC verification	98
8.1A.2.5.2.1	Initial BSIC identification	99
8.1A.2.5.2.2	BSIC re-confirmation	99
8.1A.2.5.2.3	Periodic Reporting	
8.1A.2.5.2.4	Event Triggered Reporting	
8.1A.2.6	E-UTRAN FDD measurements	
8.1A.2.6.1	Identification of a new cell	
8.1A.2.6.2	E-UTRAN RSRP and RSRQ measurement period	
8.1A.2.6.4	void	
8.1A.2.6.5	Event Triggered reporting	
8.1A.2.7	E-UTRAN TDD measurements	
8.1A.2.7.1	Identification of a new cell	
8.1A.2.7.2	E-UTRAN RSRP and RSRQ measurement period	
8.1A.2.7.3	Periodic reporting	
8.1A.2.7.4	void	
8.1A.2.7.5	Event Triggered reporting	
	al Measurement Requirements in CELL_DCH State (7.68 Mcps option)	
	roduction	
	quirements	
8.1B.2.1	UE Measurement Capability	
8.1B.2.2	TDD intra frequency measurements.	
8.1B.2.2.1	Identification of a new cell	
8.1B.2.2.2	UE P-CCPCH RSCP measurement capability	
8.1B.2.2.3	Timeslot ISCP measurement capability	
8.1B.2.2.4	Periodic Reporting	
8.1B.2.2.5	Event-triggered Periodic Reporting	
8.1B.2.2.6	Event Triggered Reporting	
8.1B.2.3	TDD inter frequency measurements	
8.1B.2.3.1	Identification of a new cell	
	P-CCPCH RSCP measurement period	
8.1B.2.3.2		
8.1B.2.3.3	Periodic Reporting	
8.1B.2.3.4	Event Triggered Reporting	
8.1B.2.4	FDD measurements	
8.1B.2.4.1	Identification of a new cell	
8.1B.2.4.2	UE CPICH measurement capability	
8.1B.2.4.3	Periodic Reporting	
8.1B.2.4.4	Event Triggered Reporting	
8.1B.2.5	GSM measurements	
8.1B.2.5.1	GSM carrier RSSI	
8.1B.2.5.2	BSIC verification	
8.1B.2.5.2.1	Initial BSIC identification	
8.1B.2.5.2.2	BSIC re-confirmation.	
8.1B.2.5.3	Periodic Reporting	
8.1B.2.5.4	Event Triggered Reporting	
8.1B.2.6	TDD Synchronisation to new cells	
8.1B.2.7	E-UTRAN FDD measurements	
8.1B.2.7.1	Identification of a new cell	
8.1B.2.7.2	E-UTRAN RSRP and RSRQ measurement period	
8.1B.2.7.3	Periodic reporting	
8.1B.2.7.4	Void	
8.1B.2.7.5	Event Triggered reporting	
8.1B.2.8	E-UTRAN TDD measurements	
8.1B.2.8.1	Identification of a new cell	
8.1B.2.8.2	E-UTRAN RSRP and RSRQ measurement period	
8.1B.2.8.3	Periodic reporting	115

8.1B.2.8.4	Void	114
8.1B.2.8.5	Event Triggered reporting	
	Measurements in CELL_DCH State with special requirements (3.84 Mcps option)	
8.2.1		
8.2.2	Introduction	
	Requirements	
8.2A 1	Parallel Measurements in CELL_DCH State (1.28 Mcps option)	
	Introduction	
8.2A.2	Requirements	
	Measurements in CELL_DCH State with special requirements (7.68 Mcps option)	
8.2B.1	Introduction	
8.2B.2	Requirements	117
	Capabilities for Support of Event Triggering and Reporting Criteria in CELL_DCH state (3.84 Mcps	
	option)	
8.3.1	Introduction	
8.3.2	Requirements	117
	Capabilities for Support of Event Triggering and Reporting Criteria in CELL_DCH State (1.28 Mcps	
	option)	118
8.3A.1	Introduction	118
8.3A.2	Requirements	118
8.3B	Capabilities for Support of Event Triggering and Reporting Criteria in CELL_DCH state (7.68 Mcps	
	option)	119
8.3B.1	Introduction	
8.3B.2	Requirements	119
8.4	Measurements in CELL_FACH State (3.84 Mcps option)	
8.4.1	Introduction	
8.4.2	Requirements	
8.4.2.1	UE Measurement Capability	
8.4.2.2	TDD intra frequency measurements	
8.4.2.2.1	Identification of a new cell	
8.4.2.2.2	UE P-CCPCH RSCP measurement capability	
8.4.2.2.3	(void)	
8.4.2.2.4	(void)	
8.4.2.2.5	Timeslot ISCP measurement capability	
8.4.2.2.6	RACH reporting	
8.4.2.3	TDD inter frequency measurements	
8.4.2.3.1	Identification of a new cell	
8.4.2.3.2	P-CCPCH RSCP measurement period	
8.4.2.3.3	(void)	
8.4.2.3.4	(void)	
8.4.2.4	FDD measurements	
8.4.2.4.1	Identification of a new cell	
8.4.2.4.2	UE CPICH measurement capability	
8.4.2.4.3	(void)	
8.4.2.4.4	(void)	124
8.4.2.5	GSM measurements	124
8.4.2.5.1	GSM carrier RSSI	124
8.4.2.5.2	BSIC verification	125
8.4.2.5.2.1	Initial BSIC identification	126
8.4.2.5.2.2	BSIC re-confirmation	12
8.4A	Measurements in CELL_FACH State (1.28 Mcps option)	12
8.4A.1	Introduction	
8.4A.2	Requirements	
8.4A.2.1	UE Measurement Capability	
8.4A.2.2	TDD intra frequency measurements	
8.4A.2.2.1	Identification of a new cell	
8.4A.2.2.2	UE P-CCPCH RSCP measurement capability	
8.4A.2.2.2.2		
8.4A.2.2.3	RACH Reporting	
8.4A.2.3	TDD inter frequency measurements	
8.4A.2.3.1	Identification of a new cell	
8.4A.2.3.2	UE P-CCPCH RSCP measurement capability	129

1 Identification of a new cell	130
2 UE CPICH measurement capability	130
GSM measurements	131
1 GSM carrier RSSI	131
2 BSIC verification	132
2.1 Initial BSIC identification	133
2.2 BSIC re-confirmation	133
± •	
•	
GSM measurements	137
1 GSM carrier RSSI	138
2 BSIC verification	138
2.1 Initial BSIC identification	139
2.2 BSIC re-confirmation	140
Capabilities for Support of Event Triggering and Reporting Criteria in CELL FACH state (3.84 Mcp.	S
Introduction	140
Introduction	
Requirements	140
Requirements	140 s
Requirements	140 s 141
Requirements	140 s 141 141
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction. Requirements	140 s 141 141
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcpoption)	140 s 141 141 s
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option)	140 s 141 141 s 141
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction	140 s 141 141 s 141
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option)	140 s 141 141 s 141
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements	140 s 141 141 s 141 141
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements Requirements easurements performance requirements	140 s141141 s141141
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements Easurements performance requirements Measurements performance for UE	140 s141141 s141141141141
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcpoption) Introduction Requirements Requirements easurements performance requirements Measurements performance for UE Performance for UE measurements in downlink (RX)	140 s141 s141 s141 141 141 142 142
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcpoption) Introduction Requirements Easurements performance requirements Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD)	140 s141 s141 s141141141142142
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcpoption) Introduction Requirements Requirements easurements performance requirements Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements	140 s141141 s141141142142142142
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcpoption) Introduction Requirements Requirements easurements performance requirements Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option	140 s141 s141 s141142142142142
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements easurements performance requirements Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option	140 s141141 s141142142142142142
Requirements	14(s s141 s141 s s141141142
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements easurements performance requirements. Measurements performance for UE. Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements. 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option 3 7.68 Mcps TDD option Relative accuracy requirements.	14(s141141 s141141142142142142143143
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements easurements performance requirements Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option 3 7.68 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option Relative accuracy requirements	140 s141141 s141141142142142142143143143
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements easurements performance requirements. Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option	140 s141141 s141141142142142143143143
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements easurements performance requirements Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option 3 7.68 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option Relative accuracy requirements	140 s141141 s141141142142142143143143
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements easurements performance requirements. Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option	140 s141141 s141141142142142143143144142
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements easurements performance requirements Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option 3 7.68 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option 3 7.68 Mcps TDD option 4 3.84 Mcps TDD option 5 7.68 Mcps TDD option 7 7.68 Mcps TDD option	140 s141141 s141141142142142143143144145145
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements easurements performance requirements. Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements. 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option Relative accuracy requirements. 1 3.84 Mcps TDD option Relative accuracy TDD option Relative accuracy TDD option Relative accuracy TDD option Range/mapping	140 s141141 s141142142142142142142143143144145145146
Requirements	140 s141141 s141142142142142142142144142144144144144144144144
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcp. option) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements Requirements Requirements performance requirements Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option 3 7.68 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option 2 1.28 Mcps TDD option 2 1.28 Mcps TDD option CPICH measurements (FDD) CPICH measurements (FDD) CPICH RSCP	140 s141141 s141142142142142143144145146146146
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcp. TDD option) Introduction Requirements easurements performance requirements. Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option 3 7.68 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option CPICH measurements (FDD) CPICH measurements (FDD) CPICH RSCP 1 Inter frequency measurement absolute accuracy requirement 2 Range/mapping	140 s141141 s141142142142142143144145146146146
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 McpTDD option) Introduction Requirements easurements performance requirements. Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements. 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option Relative accuracy requirements. 1 3.84 Mcps TDD option Relative accuracy requirements. 1 3.84 Mcps TDD option Relative accuracy requirements. 1 3.84 Mcps TDD option CPICH measurements (FDD) CPICH RSCP 1 Inter frequency measurement absolute accuracy requirement 2 Range/mapping CPICH Ec/Io.	140 s141141 s141142142142142143144145146146146146
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 McpTDD option) Introduction Requirements easurements performance requirements easurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option Relative accuracy requirements 1 3.84 Mcps TDD option CPICH measurements (FDD) CPICH RSCP 1 Inter frequency measurement absolute accuracy requirement Range/mapping CPICH Ec/Io. 1 Inter frequency measurement relative accuracy requirement.	140 s141141 s141142142142142143144145146146147147
Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcpoption) Introduction Requirements Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 McpTDD option) Introduction Requirements easurements performance requirements. Measurements performance for UE Performance for UE measurements in downlink (RX) P-CCPCH RSCP (TDD) Absolute accuracy requirements. 1 3.84 Mcps TDD option 2 1.28 Mcps TDD option Relative accuracy requirements. 1 3.84 Mcps TDD option Relative accuracy requirements. 1 3.84 Mcps TDD option Relative accuracy requirements. 1 3.84 Mcps TDD option CPICH measurements (FDD) CPICH RSCP 1 Inter frequency measurement absolute accuracy requirement 2 Range/mapping CPICH Ec/Io.	140 s141141 s141142142142143144145146146147147
	GSM measurements GSM carrier RSSI. BSIC verification. Initial BSIC identification. BASIC re-confirmation. Measurements in CELL_FACH State (7.68 Mcps option). Introduction. Requirements. UE Measurement Capability. TDD intra frequency measurements. I Identification of a new cell. UE P-CCPCH RSCP measurement capability. TDD inter frequency measurement capability. TDD inter frequency measurement repriod. FDD measurements. I Identification of a new cell. UE P-CCPCH RSCP measurement period. FDD measurements. I Identification of a new cell. C P-CPCH RSCP measurement period. FDD measurements. I Identification of a new cell. BIC P-CPCH Measurement capability. GSM measurements. I Identification of a new cell. C UE CPICH measurement capability. GSM measurements. I Identification of a new cell. C UE CPICH measurement capability. GSM measurements. C SSM carrier RSSI. BSIC verification. C BSIC re-confirmation. Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (3.84 McpTDD option).

9.1.1.3.1.1	3.84 Mcps TDD option	148
9.1.1.3.1.2	1.28 Mcps TDD option	
9.1.1.3.1.3	7.68 Mcps TDD option	
9.1.1.3.2	Range/mapping	
9.1.1.4	UTRA carrier RSSI	
9.1.1.4.1	Absolute accuracy requirement	
9.1.1.4.1.1	3.84 Mcps TDD option	
9.1.1.4.1.2	1.28 Mcps TDD option	
9.1.1.4.1.3	7.68 Mcps TDD option	
9.1.1.4.2	Relative accuracy requirement	
9.1.1.4.2.1	3.84 Mcps TDD option	
9.1.1.4.2.2	1.28 Mcps TDD option	
9.1.1.4.2.3	7.68 Mcps TDD option	
9.1.1.4.3	Range/mapping	
9.1.1.5	GSM carrier RSSI	150
9.1.1.5a	E-UTRAN RSRP	
9.1.1.5b	E-UTRAN RSRQ	
9.1.1.6	SIR	
9.1.1.6.1	Absolute accuracy requirements	151
9.1.1.6.1.1	3.84 Mcps TDD option	
9.1.1.6.1.2	1.28 Mcps TDD option	
9.1.1.6.1.3	7.68 Mcps TDD option	
9.1.1.6.2	Range/mapping	152
9.1.1.7	Transport channel BLER	152
9.1.1.7.1	BLER measurement requirement	152
9.1.1.7.2	Range/mapping	152
9.1.1.8	SFN-SFN observed time difference	153
9.1.1.8.1	Accuracy requirements	153
9.1.1.8.1.1	3.84 Mcps TDD option	153
9.1.1.8.1.2	1.28 Mcps TDD option	
9.1.1.8.1.3	7.68 Mcps TDD option	154
9.1.1.8.2	Range/mapping	154
9.1.1.8.2.1	3.84 Mcps TDD option	154
9.1.1.8.2.2	1.28 Mcps TDD option	155
9.1.1.8.2.3	7.68 Mcps TDD option	
9.1.1.9	Observed time difference to GSM cell	
9.1.1.9.1	Accuracy requirements	
9.1.1.9.2	Range/mapping	
9.1.1.10	UE GPS Timing of Cell Frames for UP	
9.1.1.10.1	Accuracy requirement	
9.1.1.10.1.1	3.84 Mcps TDD Option	
9.1.1.10.1.2	1.28 Mcps TDD Option	
9.1.1.10.1.3	7.68 Mcps TDD Option	
9.1.1.10.2	UE GPS timing of Cell Frames for UP measurement report mapping	
9.1.1.10.2.1	3.84 Mcps TDD Option	
9.1.1.10.2.2	1.28 Mcps TDD Option	
9.1.1.10.2.3	7.68 Mcps TDD Option	
9.1.1.11	SFN-CFN observed time difference	
9.1.1.11.1	Accuracy requirements	
9.1.1.11.1.1	3.84 Mcps TDD Option	
9.1.1.11.1.2	1.28 Mcps TDD Option	
9.1.1.11.1.3 9.1.1.11.2	7.68 Mcps TDD Option	
9.1.1.11.2 9.1.2	Range/mapping Performance for UE Measurements in Uplink (TX)	
9.1.2 9.1.2.1		
9.1.2.1 9.1.2.1.1	UE transmitted power	
9.1.2.1.1		
9.1.2.1.2	Range/mapping Timing Advance (T _{ADV}) for 1.28 Mcps TDD	
9.1.2.2.1	Accuracy requirements	
9.1.2.2.1	Range/mapping	
9.1.2.2.2	UE transmission power headroom	
9.1.2.3	3 8/Mens TDD Ontion	163

9.1.2.3.2	1.28 Mcps TDD Option	
9.1.2.3.2.1	Delay requirement	
9.1.2.3.1.2	Measurement period requirement	
9.1.2.3.1.3	UE transmission power headroom measurement report mapping	
9.1.2.3.1.4	UE transmission power headroom measurement report accuracy	
	Measurements Performance for UTRAN	165
9.2.1	Performance for UTRAN Measurements in Uplink (RX)	
9.2.1.1	RSCP	
9.2.1.1.1	Absolute accuracy requirements	
9.2.1.1.1.1	3.84 Mcps TDD Option	
9.2.1.1.1.2	1.28 Mcps TDD Option	
9.2.1.1.1.3	7.68 Mcps TDD Option	
9.2.1.1.2	Relative accuracy requirements	
9.2.1.1.2.1	3.84 Mcps TDD Option	
9.2.1.1.2.2	1.28 Mcps TDD Option	
9.2.1.1.2.3	7.68 Mcps TDD Option	
9.2.1.1.3 9.2.1.2	Range/mappingTimeslot ISCP	
9.2.1.2.1	Absolute accuracy requirements	
9.2.1.2.1	3.84 Mcps TDD Option	
9.2.1.2.1.1	1.28 Mcps TDD Option	
9.2.1.2.1.2	7.68 Mcps TDD Option	
9.2.1.2.2	Range/mapping	
9.2.1.3	Received Total Wide Band Power	
9.2.1.3.1	Absolute accuracy requirements	
9.2.1.3.1.1	3.84 Mcps TDD Option	
9.2.1.3.1.2	1.28 Mcps TDD Option	
9.2.1.3.1.3	7.68 Mcps TDD Option	
9.2.1.3.2	Range/mapping	
9.2.1.4	SIR	
9.2.1.4.1	Absolute accuracy requirements	
9.2.1.4.1.1	3.84 Mcps TDD Option	
9.2.1.4.1.2	1.28 Mcps TDD Option	170
9.2.1.4.1.3	7.68 Mcps TDD Option	170
9.2.1.4.2	Range/mapping	
9.2.1.5	Transport Channel BER	
9.2.1.5.1	Accuracy requirement	
9.2.1.5.2	Range/mapping	
9.2.1.6	RX Timing Deviation	
9.2.1.6.1	Accuracy requirements	
9.2.1.6.1.1	3.84 Mcps TDD option	
9.2.1.6.1.2	1.28 Mcps TDD option	
9.2.1.6.1.3	7.68 Mcps TDD option	
9.2.1.6.2 9.2.1.6.2.1	Range/mapping	
	3.84 Mcps TDD option	
9.2.1.6.2.2 9.2.1.6.2.3	1.28 Mcps TDD option	
9.2.1.0.2.3	(void)	
9.2.1.7	(void)	
9.2.1.9	UTRAN GPS Timing of Cell Frames for UP	
9.2.1.9.1	Accuracy requirement	
9.2.1.9.1.1	3.84 Mcps TDD Option	
9.2.1.9.1.2	1.28 Mcps TDD Option	
9.2.1.9.1.3	7.68 Mcps TDD Option	
9.2.1.9.2	Range/mapping	
9.2.1.9.2.1	3.84 Mcps TDD Option	
9.2.1.9.2.2	1.28 Mcps TDD Option	
9.2.1.9.2.3	7.68 Mcps TDD Option	
9.2.1.10	SYNC-UL Timing Deviation for 1.28 Mcps	
9.2.1.10.1	Accuracy requirements	175
9.2.1.10.2	Range/mapping	
9.2.1.11	Node B Synchronisation for 3.84 Mcps	176

9.2.1.11.1	Cell Synchronisation burst timing Type1 and Type 2	
9.2.1.11.2	Range/mapping Type 1	
9.2.1.11.3	Range/mapping Type 2	
9.2.1.11.4	Cell Synchronisation burst SIR Type1 and Type2	
9.2.1.11.5	Range/Mapping for Type1 and Type 2	
9.2.1.11B	Node B Synchronisation for 1.28Mcps TDD	
9.2.1.11B.		
9.2.1.11B.2	0 11 0 11	
9.2.1.11B.3 9.2.1.11B.4	0 11 0 11	
9.2.1.11B.; 9.2.1.11B.;		
9.2.1.11 D 9.2.1.11 C	Node B Synchronisation for 7.68 Mcps	
9.2.1.11C		
9.2.1.11C.		
9.2.1.11C.		
9.2.1.11C.4		
9.2.1.11C.:		
9.2.1.12	SFN-SFN observed time difference	
9.2.1.12.1	Accuracy requirements	180
9.2.1.12.1.	1 3.84 Mcps TDD option	180
9.2.1.12.1.	2 1.28 Mcps TDD option	181
9.2.1.12.1.	7.68 Mcps TDD option	181
9.2.1.12.2	Range/mapping	
9.2.1.12.2.	1 1	
9.2.1.12.2.	1 1	
9.2.1.12.2.		
9.2.1.13	AOA measurement for UE positioning for 1.28Mcps TDD option	
9.2.1.13.1	Accuracy requirements	
9.2.1.13.2	Range/mapping	
9.2.1.14	HS-SICH reception quality	
9.2.1.14.1 9.2.1.14.1.	Range/mapping	
9.2.1.14.1. 9.2.1.14.1.		
9.2.1.14.1.	UpPTS interference (1.28Mcps TDD)	
9.2.1.15.1	Absolute accuracy requirements	
9.2.1.15.2	Range/mapping	
9.2.2	Performance for UTRAN measurements in downlink (TX)	
9.2.2.1	Transmitted carrier power	
9.2.2.1.1	Accuracy requirements	
9.2.2.1.2	Range/mapping	
9.2.2.2	Transmitted code power	186
9.2.2.2.1	Absolute accuracy requirements	186
9.2.2.2.2	Relative accuracy requirements	186
9.2.2.2.3	Range/mapping	186
9.2.2.3	Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH or E-	
	HICH transmission	
9.2.2.3.1	Accuracy requirements	
9.2.2.3.2	Range/mapping	187
10 FP	ACH physical layer information field definition (1.28 Mcps TDD)	187
	Received starting position of the UpPCH (UpPCH _{POS}) (1.28 Mcps TDD)	
	Fransmit Power Level Command for the RACH message (1.28 Mcps TDD)	
10.2.1	Accuracy requirements	
10.2.2	Range/mapping	
Annex A	(normative): Test Cases	189
A.1 Pur	pose of Annex	189
A.2 Rec	uirement classification for statistical testing	180
	Types of requirements in TS 25.123	
A.2.1.1	Time and delay requirements on UE higher layer actions	
A 2.1.2	Measurements of power levels relative powers and time	

A.2.1.	,	plementation requirements	
A.2.1.		sical layer timing requirements	
A.2.1.	5 BE	R and BLER requirements	190
A.3	Reserved	for Future Use	190
A.4	Idle Mod	e	190
A.4.1		lection	
A.4.2		e-Selection.	
A.4.2.		enario 1: Cell re-selection to intra frequency TDD cell	
A.4.2.		Test Purpose and Environment	
A.4.2.		3.84 Mcps TDD option	
A.4.2.		1.28 Mcps TDD option	
A.4.2. A.4.2.			
		7.68 Mcps TDD option	
A.4.2.		Test Requirements	
A.4.2.		3.84 Mcps TDD option	
A.4.2.		1.28 Mcps TDD option	
A.4.2.		7.68 Mcps TDD option	
A.4.2.		enario 2: Cell re-selection to inter-frequency TDD cell	
A.4.2.		Test Purpose and Environment	
A.4.2.		3.84 Mcps TDD option	
A.4.2.	2.1.2	1.28 Mcps TDD option	198
A.4.2.	2.1.3	7.68 Mcps TDD option	199
A.4.2.	2.2	Test Requirements	201
A.4.2.	2.2.1	3.84 Mcps TDD option	201
A.4.2.	2.2.2	1.28 Mcps TDD option	201
A.4.2.	2.2.3	7.68 Mcps TDD option	
A.4.2.	2A Sce	enario 2A: 3.84 Mcps TDD cell re-selection for 1.28 Mcps TDD UE	
A.4.2.		Test Purpose and Environment	
A.4.2.		Test Requirements	
A.4.2.		enario 2B: 3.84 Mcps/1.28 Mcps TDD cell re-selection	
A.4.2.		Test Purpose and Environment	
A.4.2.		Test Purpose and Environment Test Requirements	
A.4.2. A.4.2.		enario 2C: 3.84 Mcps TDD cell re-selection for 7.68 Mcps TDD UE	
		Test Democra and Environment	203
A.4.2.		Test Purpose and Environment	
A.4.2.		Test Requirements	
A.4.2.		enario 2D: 3.84 Mcps/7.68 Mcps TDD cell re-selection	
A.4.2.		Test Purpose and Environment	
A.4.2.		enario 3: TDD/FDD cell re-selection	
A.4.2.		Test Purpose and Environment	
A.4.2.	3.1.1	3.84 Mcps TDD option	
A.4.2.	3.1.2	1.28 Mcps TDD option	209
A.4.2.	3.1.3	7.68 Mcps TDD option	210
A.4.2.	3.2	Test Requirements	211
A.4.2.	3.2.1	3.84 Mcps TDD option	211
A.4.2.	3.2.2	1.28 Mcps TDD option	212
A.4.2.	3.2.3	7.68 Mcps TDD option	
A.4.2.		enario 4: inter RAT cell re-selection	
A.4.2.		Test Purpose and Environment	
A.4.2.		3.84 Mcps TDD option	
A.4.2.		1.28 Mcps TDD option	
A.4.2.		7.68 Mcps TDD option	
A.4.2. A.4.2.			
		Test Requirements.	
A.4.2.		3.84 Mpcs TDD option	
A.4.2.		1.28 Mpcs TDD option	
A.4.2.		7.68 Mpcs TDD option	
A.4.2.		Scenario 4A Test Purpose and Environment	
A.4.2.		(void)	
A.4.2.		1.28 Mcps TDD option	
A.4.2.		Scenario 4A Requirements	
A.4.2.	4.4.1	(void)	218
Δ 4 2	112	1.28 Mpcs TDD ontion	218

A.4.2.5	Scenario 5: TDD/E-UTRA cell re-selection	218
A.4.2.5.1	UTRA to E-UTRA TDD cell re-selection: E-UTRA is of higher priority	218
A.4.2.5.1.1	Test Purpose and Environment	218
A.4.2.5.1.1.1	3.84 Mcps TDD option	218
A.4.2.5.1.1.2	1.28 Mcps TDD option	218
A.4.2.5.1.1.3	7.68 Mcps TDD option	220
A.4.2.5.1.2	Test Requirements	220
A.4.2.5.1.2.1	3.84 Mpcs TDD option	220
A.4.2.5.1.2.2	1.28 Mpcs TDD option	
A.4.2.5.2	UTRA to E-UTRA TDD cell re-selection: E-UTRA is of lower priority	
A.4.2.5.2.1	Test Purpose and Environment	
A.4.2.5.2.1.1	3.84 Mcps TDD option	221
A.4.2.5.2.1.2	1.28 Mcps TDD option	
A.4.2.5.2.1.3	7.68 Mcps TDD option	
A.4.2.5.2.2	Test Requirements	
A.4.2.5.2.2.1	3.84 Mpcs TDD option	
A.4.2.5.2.2.2	1.28 Mpcs TDD option	
	AN Connected Mode Mobility	
	D/TDD Handover	
A.5.1.1	3.84Mcps TDD option	
A.5.1.1.1	Handover to intra-frequency cell	
A.5.1.1.1.1	Test Purpose and Environment	
A.5.1.1.1.2	Test Requirements	
A.5.1.1.2	Handover to inter-frequency cell	
A.5.1.1.2.1	Test Purpose and Environment	225
A.5.1.1.2.2	Test Requirements	
A.5.1.2	1.28Mcps TDD option	
A.5.1.2.1	Handover to intra-frequency cell	
A.5.1.2.1.1	Scenario 1	
A.5.1.2.1.1.1	Test Purpose and Environment	
A.5.1.2.1.1.2	Test Requirements	
A.5.1.2.1.2	Scenario 2	
A.5.1.2.1.2.1	Test Purpose and Environment	
A.5.1.2.1.2.2	Test Requirements	230
A.5.1.2.2	Handover to inter-frequency cell	230
A.5.1.2.2.1	Scenario 1	230
A.5.1.2.2.1.1	Test Purpose and Environment	230
A.5.1.2.2.1.2	Test Requirements	232
A.5.1.2.2.2	Scenario 2	
A.5.1.2.2.2.1	Test Purpose and Environment	232
A.5.1.2.2.2.2	Test Requirements	234
A.5.1.3	7.68Mcps TDD option	234
A.5.1.3.1	Handover to intra-frequency cell	234
A.5.1.3.1.1	Test Purpose and Environment	234
A.5.1.3.1.2	Test Requirements	235
A.5.1.3.2	Handover to inter-frequency cell	236
A.5.1.3.2.1	Test Purpose and Environment	236
A.5.1.3.2.2	Test Requirements	
	D/FDD Handover	
A.5.2.1	3.84 Mcps TDD option	
A.5.2.1.1	Test purpose and Environment	
A.5.2.1.2	Test Requirements	
A.5.2.2	1.28 Mcps TDD option	
A.5.2.2.1	Test purpose and Environment	
A.5.2.2.2	Test Requirements	
A.5.2.3	7.68 Mcps TDD option	
A.5.2.3.1	Test purpose and Environment	
A.5.2.3.2	Test Requirements.	
	D/GSM Handover	
A.5.3.1	Test Purpose and Environment	
A 5 3 1 1	3 84 Mcns TDD ontion	243

A.5.3.1.2	1.28Mcps TDD option	
A.5.3.1.3	7.68 Mcps TDD option	
A.5.3.2	Test Requirements	
A.5.3.2.1	3.84 Mcps TDD option	248
A.5.3.2.2	1.28 Mcps TDD option	
A.5.3.2.3	7.68 Mcps TDD option	248
A.5.4 C	ell Re-selection in CELL_FACH	248
A.5.4.1	3.84 Mcps TDD option	
A.5.4.1.1	Scenario 1: Re-selection to intra-frequency TDD cell	248
A.5.4.1.1.1	Test Purpose and Environment	248
A.5.4.1.1.2	Test Requirements	250
A.5.4.1.2	Scenario 2: Re-selection to inter-frequency TDD cell	250
A.5.4.1.2.1	Test Purpose and Environment	250
A.5.4.1.2.2	Test Requirements	253
A.5.4.2	1.28 Mcps TDD option	253
A.5.4.2.1	Re-selection to intra-frequency TDD cell	253
A.5.4.2.1.1	Test purpose and Environment	253
A.5.4.2.1.2	Test Requirements	254
A.5.4.2.2	Re-selection to inter-frequency TDD cell	255
A.5.4.2.2.1	Test Purpose and Environment	255
A.5.4.2.2.2	Test Requirements	258
A.5.4.3	7.68 Mcps TDD option	258
A.5.4.3.1	Scenario 1: TDD/TDD cell re-selection single carrier case	258
A.5.4.3.1.1	Test Purpose and Environment	258
A.5.4.3.1.2	Test Requirements	260
A.5.4.3.2	Scenario 2: TDD/TDD cell re-selection multi carrier case	
A.5.4.1.2.1	Test Purpose and Environment	260
A.5.4.3.2.2	Test Requirements	
A.5.5 C	ell Re-selection in CELL_PCH	263
A.5.5.1	Scenario 1: Re-selection to intra-frequency TDD cell	263
A.5.5.1.1	Test Purpose and Environment	
A.5.5.1.1.1	3.84Mcps TDD option	
A.5.5.1.1.2	1.28Mcps TDD option	264
A.5.5.1.1.3	7.68Mcps TDD option	
A.5.5.1.2	Test Requirements	
A.5.5.1.2.1	for 3.84Mcps TDD option	267
A.5.5.1.2.2	1.28Mcps TDD option	268
A.5.5.1.2.3	7.68Mcps TDD option	
A.5.5.2	Scenario 2: Re-selection to inter-frequency TDD cell	
A.5.5.2.1	Test Purpose and Environment	
A.5.5.2.1.1	for 3.84Mcps TDD option	268
A.5.5.2.1.2	for 1.28Mcps TDD option	270
A.5.5.2.1.3	7.68Mcps TDD option	
A.5.5.2.2	Test Requirements	
A.5.5.2.2.1	for 3.84Mcps TDD option	
A.5.5.2.2.2	for 1.28Mcps TDD option	
A.5.5.2.2.3	for 7.68Mcps TDD option	
A.5.6 C	ell Re-selection in URA_PCH	
A.5.6.1	Scenario 1: Re-selection to intra-frequency TDD cell	274
A.5.6.1.1	Test Purpose and Environment	274
A.5.6.1.1.1	for 3.84Mcps TDD option	
A.5.6.1.1.2	for 1.28Mcps TDD option	
A.5.6.1.1.3	for 7.68Mcps TDD option	
A.5.6.1.2	Test Requirements	
A.5.6.1.2.1	for 3.84Mcps TDD option	
A.5.6.1.2.2	for 1.28Mcps TDD option	
A.5.6.1.2.3	for 7.68Mcps TDD option	
A.5.6.2	Scenario 2: Re-selection to inter-frequency TDD cell	
A.5.6.2.1	Test Purpose and Environment	
A.5.6.2.1.1	for 3.84Mcps TDD option	
A.5.6.2.1.2	1.28Mcps TDD option	
A.5.6.2.1.3	for 7.68Mcps TDD option	

A.5.6.2.2	Test Requirements	283
A.5.6.2.2.1	3.84Mcps TDD option	
A.5.6.2.2.2	1.28Mcps TDD option	
A.5.6.2.2.3	7.68Mcps TDD option	
A.6 (void)		
A 6A RRC Co	nnection Control	284
	re-establishment delay	
	84 Mcps TDD option	
A.6A.1.1.1	RRC re-establishment delay to a known target cell	
A.6A.1.1.1		
	Test Purpose and Environment	
A.6A.1.1.2 A.6A.1.1.2	Test Requirements	
	RRC re-establishment delay to an unknown target cell	
A.6A.1.1.2.1	Test Purpose and Environment	
A.6A.1.1.2.2	Test Requirements	
A.6A.1.2	1.28 Mcps TDD Option	
A.6A.1.2.1	Test Purpose and Environment	
A.6A.1.2.1.1	Test 1	
A.6A.1.2.1.2	Test 2	
A.6A.1.2.2	Test Requirements	
A.6A.1.2.2.1	Test 1	
A.6A.1.2.2.2	Test 2	
	68 Mcps TDD option	
A.6A.1.3.1	RRC re-establishment delay to a known target cell	
A.6A.1.3.1.1	Test Purpose and Environment	
A.6A.1.3.1.2	Test Requirements	
A.6A.1.3.2	RRC re-establishment delay to an unknown target cell	
A.6A.1.3.2.1	Test Purpose and Environment	
A.6A.1.3.2.2	Test Requirements	
	port format combination selection in UE	
	84 Mcps TDD option	
A.6A.2.1.1	Test Purpose and Environment	
A.6A.2.1.1.1	Interactive or Background, PS, UL: 64 kbps	
A.6A.2.1.2	Test Requirements	
A.6A.2.1.2.1	Interactive or Background, PS, UL: 64 kbps	
	28 Mcps TDD option	
A.6A.2.2.1	Test Purpose and Environment	
A.6A.2.2.1.1	Interactive or Background, PS, UL: 64 kbps	
A.6A.2.2.2	Test Requirements	
A.6A.2.2.2.1	Interactive or Background, PS, UL: 64 kbps	
A.6A.2.3 7.0	68 Mcps TDD option	
A.6A.2.3.1	Test Purpose and Environment	
A.6A.2.3.1.1	Interactive or Background, PS, UL: 64 kbps	
A.6A.2.3.2	Test Requirements	
A.6A.2.3.2.1	Interactive or Background, PS, UL: 64 kbps	301
A.7 Timing	characteristics	201
_		
	g Advance	
	84 Mcps TDD option	
A.7.1.1.1	Test Purpose and Environment	
A.7.1.1.2	Test Requirements.	
	28 Mcps TDD option	
A.7.1.2.1	Test Purpose and Environment	
A.7.1.2.2	Test Procedure	
A.7.1.2.3	Test Requirements	
	68 Mcps TDD option	
A.7.1.3.1	Test Purpose and Environment	
A.7.1.3.2	Test Requirements	
	ynchronization accuracy	
A.7.3 UE T	ransmit Timing for 3.84 Mcps TDD option	304
A.8 UE Mea	surements Procedures	305

	DD intra frequency measurements	
A.8.1.1	Event 1G triggered reporting in AWGN propagation conditions	
A.8.1.1.1	Test Purpose and Environment	
A.8.1.1.1.1	3.84 Mcps TDD option	
A.8.1.1.1.2	1.28 Mcps TDD option	
A.8.1.1.1.3	7.68 Mcps TDD option	
A.8.1.1.2	Test Requirements	
A.8.1.1.2.1	3.84Mcps TDD option	
A.8.1.1.2.2	1.28Mcps TDD option	
A.8.1.1.2.3	7.68Mcps TDD option	
A.8.1.2	Event 1H and 1I triggered reporting in AWGN propagation conditions	
A.8.1.2.1	3.84 Mcps TDD option	
A.8.1.2.1.1	Test Purpose and Environment	
A.8.1.2.1.2	Test Requirements	
A.8.1.2.2	1.28 Mcps TDD option	
A.8.1.2.2.1	Test Purpose and Environment	
A.8.1.2.2.2	Test Requirements	
A.8.1.2.3	7.68 Mcps TDD option	
A.8.1.2.3.1	Test Purpose and Environment	
A.8.1.2.3.2	Test Requirements	
A.8.1.3	Correct reporting of neighbours in fading propagation condition	
A.8.1.3.1	3.84 Mcps TDD option	
A.8.1.3.1.1	Test Purpose and Environment	
A.8.1.3.1.2	Test Requirements	
A.8.1.3.2	(void)	
A.8.1.3.3	7.68 Mcps TDD option	
A.8.1.3.3.1	Test Purpose and Environment	
A.8.1.3.3.2	Test Requirements	
	DD inter frequency measurements	
A.8.2.1	Correct reporting of neighbours in AWGN propagation condition	
A.8.2.1.1	Test Purpose and Environment	
A.8.2.1.1.1	3.84Mcps TDD option	
A.8.2.1.1.2	1.28Mcps TDD option	
A.8.2.1.1.3	7.68Mcps TDD option	
A.8.2.1.2	Test Requirements	
A.8.2.1.2.1 A.8.2.1.2.2	3.84Mcps TDD option	
A.8.2.1.2.2 A.8.2.1.2.3	1.28Mcps TDD option	
	7.68Mcps TDD option	
A.8.3.1	DD measurements Correct reporting of FDD neighbours in AWGN propagation condition	
A.8.3.1.1	Test Purpose and Environment	
A.8.3.1.1 A.8.3.1.1.1	<u>*</u>	
A.8.3.1.1.2	3.84 Mcps TDD option	
A.8.3.1.1.2 A.8.3.1.1.3	7.68 Mcps TDD option	
A.8.3.1.2	Test Requirements	
A.8.3.1.2.1	3.84 Mcps TDD option	
A.8.3.1.2.1 A.8.3.1.2.2		
A.8.3.1.2.2 A.8.3.1.2.3	1.28 Mcps TDD option	
	SM measurements	
A.8.4.1	Correct reporting of GSM neighbours in AWGN propagation condition	
A.8.4.1.1	Test Purpose and Environment	
A.8.4.1.1	3.84 Mcps TDD option	
A.8.4.1.1.1 A.8.4.1.1.2	1.28 Mcps TDD option	
A.8.4.1.1.2.1	Test 1. With BSIC verification required	
A.8.4.1.1.2.2		
A.8.4.1.1.2.2 A.8.4.1.1.3	7.68 Mcps TDD option	
A.8.4.1.1.3 A.8.4.1.2	Test Requirements	
A.8.4.1.2.1	3.84 Mcps TDD option	
A.8.4.1.2.2	1.28 Mcps TDD option	
A.8.4.1.2.2.1	Test Requirement with BSIC verification required	
A.8.4.1.2.2.1	Test Requirement without BSIC verification required	
A.8.4.1.2.3	7.68 Mcps TDD option	

	Measi	urement Performance Requirements	333
A.9.1	Me	easurement Performance for UE (3.84 Mcps TDD option)	
A.9.1.	1	P-CCPCH RSCP	
A.9.1.	1.1	Test Purpose and Environment	
A.9.1.	1.1.1	Intra frequency test parameters	334
A.9.1.	1.1.2	Inter frequency test parameters	334
A.9.1.	1.2	Test Requirements	335
A.9.1.	2	CPICH measurements	335
A.9.1.	2.1	CPICH RSCP	335
A.9.1.	2.1.1	Test Purpose and Environment	335
A.9.1.	2.1.1.1	Inter frequency test parameters	335
A.9.1.	2.1.2	Test Requirements	
A.9.1.	2.2	CPICH Ec/lo	
A.9.1.	3	Timeslot ISCP	336
A.9.1.	3.1	Test Purpose and Environment	
A.9.1.	3.1.1	Intra frequency test parameters	
A.9.1.	3.2	Test Requirements	
A.9.1.	4	UTRA Carrier RSSI	
A.9.1.	4.1	Test Purpose and Environment	
A.9.1.		Inter frequency test parameters	
A.9.1.		Test Requirements	
A.9.1.		GSM carrier RSSI	
A.9.1.		Test Purpose and Environment	
A.9.1.		Inter frequency test parameters	
A.9.1.		Test Requirements	
A.9.1.		SIR	
A.9.1.		Transport channel BLER	
A.9.1. A.9.1.		SFN-SFN observed time difference	
A.9.1.	-	SFN-SFN observed time difference type 1	
A.9.1. A.9.1.			
	8.1.1.1	Test Purpose and Environment Intra frequency test parameters	
	8.1.1.2	Inter frequency test parameters	
		· · · ·	
A.9.1.		Test Requirements	
A.9.1.		SFN-SFN observed time difference type 2	
A.9.1.		Test Purpose and Environment	
	8.2.1.1	Intra frequency test parameters	
	8.2.1.2	Inter frequency test parameters	
A.9.1.		Test Requirements	
A.9.1.		Observed time difference to GSM cell	
A.9.1.		SFN-CFN observed time difference	
A.9.1.		Test Purpose and Environment	
A.9.1.		Intra frequency test parameters	
A.9.1.		Inter frequency test parameters	
A.9.1.		Test Requirements	
A.9.1.		UE transmitted power	
A.9.2		easurement Performance for UE for 1.28 Mcps TDD	
A.9.2.		P-CCPCH RSCP	
A.9.2.		Test Purpose and Environment	
A.9.2.		Intra frequency test parameters	
A.9.2.		Inter frequency test parameters	
A.9.2.		Test Requirements	346
A.9.2.		CPICH measurements	347
A.9.2.	2.1	CPICH RSCP	347
A.9.2.	2.1.1	Test Purpose and Environment	347
A.9.2.	2.1.1.1	Inter frequency test parameters	347
A.9.2.	2.1.2	Test Requirements	
A.9.2.	2.2	CPICH Ec/lo	
A.9.2.		Timeslot ISCP	
A.9.2.		Test Purpose and Environment	
A.9.2.		Intra frequency test parameters	
A.9.2.		Test Requirements	
A.9.2.		UTRA carrier RSSI	

A.9.2.4.1	Test Purpose and Environment	350
A.9.2.4.1.1	Inter frequency test parameters	
A.9.2.4.2	Test Requirements	
A.9.2.5	GSM carrier RSSI	
A.9.2.5 A.9.2.5.1	Test Purpose and Environment	
	•	
A.9.2.5.1.1	Inter RAT test parameters.	
A.9.2.5.2	Test Requirements	
A.9.2.6	SIR	
A.9.2.7	Transport channel BLER	
A.9.2.8	SFN-SFN observed time difference	
A.9.2.8.1	SFN-SFN observed time difference type 1	
A.9.2.8.1.1	Test Purpose and Environment	
A.9.2.8.1.1.1	Intra frequency test parameters	353
A.9.2.8.1.1.2	Inter frequency test parameters	354
A.9.2.8.1.2	Test Requirements	355
A.9.2.8.2	SFN-SFN observed time difference type 2	
A.9.2.8.2.1	Test Purpose and Environment	
A.9.2.8.2.1.1	Intra frequency test parameters	
A.9.2.8.2.1.2	Inter frequency test parameters	
A.9.2.8.2.2	Test Requirements	
A.9.2.9	Observed time difference to GSM cell	
A.9.2.10	SFN-CFN observed time difference	
A.9.2.10 A.9.2.10.1		
A.9.2.10.1 A.9.2.10.1.1	Test Purpose and Environment	
	Intra frequency test parameters	
A.9.2.10.1.2	Inter frequency test parameters	
A.9.2.10.2	Test Requirements	
A.9.2.11	UE transmitted power	
A.9.2.11.1	Test purpose and Environment	
A.9.2.11.1.1	Test procedure	362
A.9.2.11.2	Test requirements	
A.9.3 Me	easurement Performance for UE (7.68 Mcps TDD option)	363
A.9.3.1	P-CCPCH RSCP	363
A.9.3.1.1	Test Purpose and Environment	363
A.9.3.1.1.1	Intra frequency test parameters	363
A.9.3.1.1.2	Inter frequency test parameters	
A.9.3.1.2	Test Requirements	
A.9.3.2	CPICH measurements	
A.9.3.2.1	CPICH RSCP	
A.9.3.2.1.1	Test Purpose and Environment	
A.9.3.2.1.1	Inter frequency test parameters	
A.9.3.2.1.2	Test Requirements	
A.9.3.2.1.2 A.9.3.2.2	CPICH Ec/Io	
A.9.3.2.2 A.9.3.3		
	Timeslot ISCP	
A.9.3.3.1	Test Purpose and Environment	
A.9.3.3.1.1	Intra frequency test parameters	
A.9.3.3.2	Test Requirements	
A.9.3.4	UTRA Carrier RSSI	
A.9.3.4.1	Test Purpose and Environment	
A.9.3.4.1.1	Inter frequency test parameters	366
A.9.3.4.2	Test Requirements	
A.9.3.5	GSM carrier RSSI	367
A.9.3.5.1	Test Purpose and Environment	367
A.9.3.5.1.1	Inter frequency test parameters	
A.9.3.5.2	Test Requirements	
A.9.3.6	(void)	
A.9.3.7	(void)	
A.9.3.8	SFN-SFN observed time difference	
A.9.3.8.1	SFN-SFN observed time difference type 1	
A.9.3.8.1.1	Test Purpose and Environment	
A.9.3.8.1.1.1	Intra frequency test parameters	
A.9.3.8.1.1.2	Inter frequency test parameters	
Δ 9 3 8 1 2	Test Requirements	360

	of transmitted power	312
A.9.3.10.2 A.9.3.11	Test Requirements	
A.9.3.10.1.2 A.9.3.10.2	Inter frequency test parameters	
A.9.3.10.1.1 A.9.3.10.1.2	Intra frequency test parameters.	
A.9.3.10.1 A.9.3.10.1.1	Test Purpose and Environment	
A.9.3.10	SFN-CFN observed time difference	
A.9.3.9	Observed time difference to GSM cell	371
A.9.3.8.2.2	Test Requirements	
A.9.3.8.2.1.2	1 · · · J · · · · I · · · · · · · · · · ·	
A.9.3.8.2.1.1		
A.9.3.8.2.1	Test Purpose and Environment	370
A.9.3.8.2	SFN-SFN observed time difference type 2	370

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

This Technical Specification specifies requirements for support of Radio Resource Management for TDD. These requirements include requirements on measurements in UTRAN and the UE as well as requirements on node dynamic behaviour and interaction, in terms of delay and response characteristics.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]	(void)
[2]	(void)
[3]	3GPP TS 25.101: "UE Radio transmission and reception (FDD)".
[4]	3GPP TS 25.104: "UTRAN(BS) FDD; Radio transmission and reception".
[5]	3GPP TS 25.102: "UTRAN (UE) TDD; Radio transmission and reception ".
[6]	3GPP TS 25.105: "UTRAN (BS) TDD; Radio transmission and reception".
[7]	3GPP TS 25.303: "Interlayer Procedures in Connected Mode".
[8]	(void)
[9]	3GPP TS 25.142: "Base station conformance testing (TDD)".
[10]	(void)
[11]	(void)
[12]	3GPP TR 25.922: "RRM Strategies".
[13]	3GPP TS 25.321: "MAC protocol specification".
[14]	3GPP TS 25.225: "Physical layer measurements (TDD)".
[15]	3GPP TS 25.302: "Services provided by physical layer".
[16]	3GPP TS 25.331: "RRC protocol specification".
[17]	3GPP TS 25.224: "Physical layer procedures (TDD)".
[18]	$3\mbox{GPP TS}\ 25.304$: "UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode ".
[19]	ETSI ETR 273-1-2: "Electromagnetic compatibility and Radio spectrum Matters (ERM); Improvement of radiated methods of measurement (using test sites) and evaluation of the corresponding measurement uncertainties; Part 1: Uncertainties in the measurement of mobile radio equipment characteristics; Sub-part 2: Examples and annexes".
[20]	3GPP TS 45.005: "Radio transmission and reception".

[21]	3GPP TS 45.008: "Radio subsystem link control".
[22]	3GPP TS 45.010: "Radio subsystem synchronization".
[23]	3GPP TS 25.214: "Physical layer procedures (FDD)".
[24]	3GPP TS 36.133: "Requirements for support of radio resource management".
[25]	3GPP TS 36.304: "User Equipment (UE) procedures in idle mode".
[26]	3GPP TS 36.101: 'User Equipment (UE) radio transmission and reception'

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purpose of the present document the following terms and definitions apply.

The main general definitions strictly related to the transmission and reception characteristics but important also for the present document can be found in [3] for UE FDD, in [4] for BS FDD, in [5] for UE TDD, in [6] for BS TDD.

Node B: A logical node responsible for radio transmission / reception in one or more cells to/from the User Equipment. Terminates the Iub interface towards the RNC.

Power Spectral Density: The units of Power Spectral Density (PSD) are extensively used in this document. PSD is a function of power versus frequency and when integrated across a given bandwidth, the function represents the mean power in such a bandwidth. When the mean power is normalised to (divided by) the chip-rate it represents the mean energy per chip. Some signals are directly defined in terms of energy per chip, (DPCH_E_c, E_c, OCNS_E_c and P-CCPCH_E_c) and others defined in terms of PSD (I_o , I_{oc} , I_{or} and \hat{I}_{or}). There also exist quantities that are a ratio of energy per chip to PSD (DPCH_E_c/ I_{or} , E_c/ I_{or} etc.). This is the common practice of relating energy magnitudes in communication systems.

It can be seen that if both energy magnitudes in the ratio are divided by time, the ratio is converted from an energy ratio to a power ratio, which is more useful from a measurement point of view. It follows that an energy per chip of X dBm/3.84 MHz (3.84 Mcps TDD option) or X dBm/1.28 MHz (1.28 Mcps TDD option) can be expressed as a mean power per chip of X dBm. Similarly, a signal PSD of Y dBm/3.84 MHz (3.84 Mcps TDD option) or Y dBm/1.28 MHz (1.28 Mcps TDD option) can be expressed as a signal power of Y dBm.

MBSFN cluster: Set of cells operating in MBSFN mode providing only MBMS service in PtM mode and seen as one cell by a UE.

The following two definitions are applicable for LCR TDD multi-frequency operation.

Intra-frequency cell: In idle, CELL-FACH, CELL-PCH and URA-PCH state, intra-frequency cell is defined as the cell of which the primary frequency is the same as the user"s current frequency. In CELL-DCH state, intra-frequency cell is defined as the cell of which the frequency to be measured in that cell is the same as the operating frequency for single carrier operation or is the same as the associated DPCH operating frequency for multi-carrier operation.

Inter-frequency cell: In idle, CELL-FACH, CELL-PCH and URA-PCH state, inter-frequency cell is defined as the cell of which the primary frequency is different from the user"s current frequency. In CELL-DCH state, inter-frequency cell is defined as the cell of which the frequency to be measured in that cell is different from the operating frequency for single carrier operation or is different from the associated DPCH operating frequency for multi-carrier operation.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

[]	Values included in square bracket must be considered for further studies, because it means that a decision about that value was not taken.
$\frac{DPCH_E_c}{I_{or}}$	The ratio of the transmit energy per PN chip of the DPCH to the total transmit power spectral
<i>UI</i>	density at the Node B antenna connector.
E_c	Average energy per PN chip.
Ês	Received energy per RE (power normalized to the subcarrier spacing) during the useful part of the
	symbol, i.e. excluding the cyclic prefix, at the UE antenna connector
$\frac{E_c}{I_{or}}$	The ratio of the average transmit energy per PN chip for different fields or physical channels to the
	total transmit power spectral density at the Node B antenna connector.
I_o	The total received power spectral density, including signal and interference, as measured at the UE
	antenna connector.
$oldsymbol{I}_{ m ob}$	The total received power density, including signal and interference, as measured at the BS antenna
00	connector.
I_{oc}	The power spectral density (integrated in a noise bandwidth equal to the chip rate and normalized
	to the chip rate) of a band limited white noise source (simulating interference from cells, which are
	not defined in a test procedure) as measured at the UE antenna connector.
I_{or}	The total transmit power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate
	and normalized to the chip rate) of the down link signal at the Node B antenna connector.
\hat{I}_{or}	The received power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and
OI .	normalized to the chip rate) of the down link signal as measured at the UE antenna connector.
Iot	The received power spectral density of the total noise and interference for a certain RE (power integrated over the RE and normalized to the subcarrier spacing) as measured at the UE antenna connector
$\frac{OCNS_E_c}{I_{or}}$	The ratio of the average transmit energy per PN chip for the OCNS to the total transmit power
o,	spectral density at the Node B antenna connector.
$PICH _E_c$	The ratio of the average transmit energy per PN chip for the PICH to the total transmit power
$\overline{I_{or}}$	
	spectral density at the Node B antenna connector.
$PCCPCH_E_c$	The ratio of the average transmit energy per PN chip for the PCCPCH to the total transmit power
$\overline{I_{or}}$	The fails of the average transmit energy per 114 emp for the 1 eet eff to the total transmit power
o,	spectral density at the Node B antenna connector.
$\underline{SCH \ _E_c}$	The ratio of the average transmit energy per PN chip for the SCH to the total transmit power
$\overline{I_{or}}$	
-	spectral density at the Node B antenna connector. The transmit energy per PN chip for the SCH is
	averaged over the 256 chip duration when the SCH is present in the time slot
SCH_RP	Received (linear) average power of the resource elements that carry E-UTRA
	synchronisation signal, measured at the UE antenna connector.
PENALTY_TIM	
Qhyst	Defined in TS 25.304
Qoffset _{s,n}	Defined in TS 25.304 Defined in TS 25.304
Qqualmin	Defined in TS 25.304 Defined in TS 25.304
Qrxlevmin Sintersearch	Defined in TS 25.304 Defined in TS 25.304
Sintrasearch	Defined in TS 25.304 Defined in TS 25.304
SsearchRAT	Defined in TS 25.304 Defined in TS 25.304
SsearchKAI	Defined III 15 23.304

Time period 1 Time period 2

Defined in TS 25.304

T1 T2

TEMP_OFFSET

Treselection Defined in TS 25.304 UE_TXPWR_MAX_RACH Defined in TS 25.304

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ACPR Adjacent Channel Power Ratio AWGN Additive White Gaussian Noise

BER Bit Error Ratio
BLER Block Error Ratio
BS Base Station

CW Continuous wave (unmodulated signal)

CFN Connection Frame Number
CPICH Common Pilot Channel
DL Downlink (forward link)
DPCH Dedicated Physical Channel
DRX Discontinuous Reception

EIRP Equivalent Isotropic Radiated Power

eNB E-UTRAN NodeB

FDD Frequency Division Duplex

GERAN GSM EDGE Radio Access Network
GSM Global System for Mobile communication

HO Handover

MBSFN MBMS over a Single Frequency Network

OCNS Orthogonal Channel Noise Simulator, a mechanism used to simulate the users or control signals on

the other orthogonal channels of a Forward link.

OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
P-CCPCH Primary Common Control Physical Channel

PICH Paging Indicator Channel
PIN Personal Identification Number
PLMN Public Land Mobile Network

PPM Parts Per Million

QAM Quadrature Amplitude Modulation

RAT Radio Access Technology **RNC** Radio Network Controller RRM Radio Resource Management **RRC** Radio Resource Control **RSCP** Received Signal Code Power Reference Signal Received Power **RSRP RSRQ** Reference Signal Received Quality Received Signal Strength Indicator RSSI

SCH Synchronization Channel consisting of Primary and Secondary synchronization channels

SFN System Frame Number
SIR Signal to Interference ratio
TDD Time Division Duplex
TPC Transmit Power Control
TTI Transmission Time Interval

UE User Equipment
UL Uplink (reverse link)

UTRA UMTS Terrestrial Radio Access

UTRAN Universal Terrestrial Radio Access Network

3.4 Test tolerances

The requirements given in the present document make no allowance for measurement uncertainty. The test specification 34.122 and 25.142 define test tolerances. These test tolerances are individually calculated for each test. The test tolerances are then added to the limits in this specification to create test limits. The measurement results are compared against the test limits as defined by the shared risk principle.

Shared Risk is defined in ETR 273 Part 1 sub-part 2 subclause 6.5.

4 Idle Mode

4.1 Cell Selection

4.1.1 Introduction

After a UE has switched on and a PLMN has been selected, the Cell selection process takes place, as described in [18]. This process allows the UE to select a suitable cell where to camp on in order to access available services. In this process the UE can use stored information (*Stored information cell selection*) or not (*Initial cell selection*).

4.2 Cell Re-selection

4.2.1 Introduction

4.2.1.1 3.84 Mcps TDD option

The cell reselection procedure allows the UE to select a more suitable cell and camp on it.

When the UE is in either *Camped Normally state or Camped on Any Cell* state on a TDD cell, the UE shall attempt to identify, synchronise and monitor intra-frequency, inter-frequency and inter-RAT cells indicated in the measurement control system information of the serving cell. UE measurement activity is also controlled by measurement rules defined in [18], allowing the UE to limit its measurement activity if certain conditions are fullfilled.

4.2.1.2 1.28 Mcps TDD option

The cell reselection procedure allows the UE to select a more suitable cell and camp on it.

When the UE is in either *Camped Normally* state or *Camped on Any Cell* state on a TDD cell, the UE shall attempt to identify, synchronise and monitor intra-frequency, inter-frequency and inter-RAT cells indicated in the measurement control system information of the serving cell. UE measurement activity is also controlled by measurement rules defined in [18], allowing the UE to limit its measurement activity if certain conditions are fullfilled.

4.2.1.3 7.68 Mcps TDD option

The cell reselection procedure allows the UE to select a more suitable cell and camp on it.

When the UE is in either *Camped Normally state or Camped on Any Cell* state on a TDD cell, the UE shall attempt to identify, synchronise and monitor intra-frequency, inter-frequency and inter-RAT cells indicated in the measurement control system information of the serving cell. UE measurement activity is also controlled by measurement rules defined in [18], allowing the UE to limit its measurement activity if certain conditions are fullfilled.

4.2.2 Requirements

When absolute priority reselection is in use, UE shall search every layer of higher priority at least every $T_{higher_proirty_search} = (60 * N_{layers})$ seconds, where N_{layers} is the total number of configured higher priority E-UTRA, UTRA FDD and UTRA TDDcarrier frequencies and is additionally increased by one if GSM is configured as a higher priority.

Editors note: The measurement of cells that are detected in this search is still to be described.

4.2.2.1 Measurement and evaluation of cell selection criteria S of serving cell

4.2.2.1.1 3.84 Mcps TDD option

The UE shall measure the PCCPCH RSCP level of the serving cell and evaluate the cell selection criterion S_{rxlev} defined in [18] for the serving cell at least every DRX cycle. The UE shall filter the PCCPCH RSCP measurement of the serving cell using at least 2 measurements, which are taken so that the time difference between the measurements is at least $T_{measureTDD}/2$ (see table 4.1).

If the UE has evaluated in N_{serv} successive measurements that the serving cell does not fulfil the cell selection criterion S, the UE shall initiate the measurements of all neighbour cells indicated in the measurement control system information, regardless of the measurement rules currently limiting UE measurement activities.

If the UE has not found any new suitable cell based the on searches and measurements of the neighbour cells indicated in the measurement control system information for 12 s, the UE shall initiate cell selection procedures for the selected PLMN as defined in [18].

On transition from CELL_DCH to CELL_PCH/URA_PCH, if a UE cannot find a suitable UTRA cell, then it is considered to be "out of service area" and shall perform actions according to [16].

4.2.2.1.2 1.28 Mcps TDD option

The UE shall measure the PCCPCH RSCP level of the serving cell and evaluate the cell selection criterion S defined in [18] for the serving cell at least every DRX cycle. The UE shall filter the PCCPCH RSCP level of the serving cell using at least 2 measurements, which are taken so that the time difference between the first measurement and the last measurement used for filtering is at least $T_{measureNTDD}/2$ (see table 4.1A).

If the UE has evaluated in N_{serv} consecutive DRX cycles that the serving cell does not fulfil the cell selection criterion S the UE shall initiate the measurements of all neighbour cells indicated in the measurement control system information, regardless of the measurement rules currently limiting UE measurement activities.

If the UE has not found any new suitable cell based the on searches and measurements of the neighbour cells indicated in the measurement control system information for 12 s, the UE shall initiate cell selection procedures for the selected PLMN as defined in [18].

After this 12 s period a UE in Cell_PCH or URA_PCH is considered to be "out of service area" and shall perform actions according to [16].

On transition from CELL_DCH to CELL_PCH/URA_PCH, if a UE cannot find a suitable UTRA cell, then it is considered to be "out of service area" and shall perform actions according to [16].

4.2.2.1.3 7.68 Mcps TDD option

The UE shall measure the PCCPCH RSCP level of the serving cell and evaluate the cell selection criterion S_{rxlev} defined in [18] for the serving cell at least every DRX cycle. The UE shall filter the PCCPCH RSCP measurement of the serving cell using at least 2 measurements, which are taken so that the time difference between the measurements is at least $T_{measureTDD}/2$ (see table 4.1B).

If the UE has evaluated in N_{serv} successive measurements that the serving cell does not fulfil the cell selection criterion S, the UE shall initiate the measurements of all neighbour cells indicated in the measurement control system information, regardless of the measurement rules currently limiting UE measurement activities.

If the UE has not found any new suitable cell based the on searches and measurements of the neighbour cells indicated in the measurement control system information for 12 s, the UE shall initiate cell selection procedures for the selected PLMN as defined in [18].

On transition from CELL_DCH to CELL_PCH/URA_PCH, if a UE cannot find a suitable UTRA cell, then it is considered to be "out of service area" and shall perform actions according to [16].

4.2.2.2 Measurement of intra-frequency cells

4.2.2.2.1 3.84 Mcps option

The UE shall measure PCCPCH RSCP at least every $T_{measureTDD}$ (see table 4.1) for intra-frequency cells that are identified and measured according to the measurement rules. $T_{measureTDD}$ is defined in Table 4.1. The UE shall filter PCCPCH RSCP measurements of each measured intra-frequency cell using at least 2 measurements, which are taken so that the time difference between the first measurement and the last measurements used for filtering is at least $T_{measureTDD}/2$.

The filtering shall be such that the UE shall be capable of evaluating that an intra-frequency cell has become better ranked than the serving cell within $T_{\text{evaluateTDD}}$ (see table 4.1), from the moment the intra-frequency cell became at least 2 dB better ranked than the current serving cell, provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the intra frequency cell is better ranked than the serving cell, the UE shall evaluate this intra frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

If the UE is receiving the MTCH, the UE shall be able to identify new intra-frequency cells and take them into use for MTCH combing purposes as defined in section 8.4.2.2.1.

4.2.2.2.2 1.28 Mcps option

The UE shall measure PCCPCH RSCP at least every $T_{measureNTDD}$ (see table 4.1A) for intra-frequency cells that are identified and measured according to the measurement rules. $T_{measureNTDD}$ is defined in Table 4.1A. The UE shall filter PCCPCH RSCP measurements of each measured intra-frequency cell using at least 2 measurements, which are taken so that the time difference between the first measurement and the last measurement used for filtering is at least $T_{measureNTDD}/2$.

The filtering shall be such that the UE shall be capable of evaluating that an intra-frequency cell has become better ranked than the serving cell within $T_{\text{evaluateNTDD}}$ (see table 4.1A), from the moment the intra-frequency cell became at least 3 dB better ranked than the current serving cell, provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the intra frequency cell is better ranked than the serving cell, the UE shall evaluate this intra frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

If the UE is receiving the MTCH, the UE shall be able to identify new intra-frequency cells and take them into use for MTCH combing purposes as defined in section 8.4A.2.2.1.

4.2.2.2.3 7.68 Mcps option

The UE shall measure PCCPCH RSCP at least every $T_{measureTDD}$ (see table 4.1B) for intra-frequency cells that are identified and measured according to the measurement rules. $T_{measureTDD}$ is defined in Table 4.1B. The UE shall filter PCCPCH RSCP measurements of each measured intra-frequency cell using at least 2 measurements, which are taken so that the time difference between the first measurement and the last measurements used for filtering is at least $T_{measureTDD}/2$.

The filtering shall be such that the UE shall be capable of evaluating that an intra-frequency cell has become better ranked than the serving cell within $T_{\text{evaluateTDD}}$ (see table 4.1B), from the moment the intra-frequency cell became at least 2 dB better ranked than the current serving cell, provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the intra frequency cell is better ranked than the serving cell, the UE shall evaluate this intra frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.3 Measurement of inter-frequency TDD cells

4.2.2.3.1 3.84 Mcps option

The UE shall measure PCCPCH RSCP at least every $(N_{carrier}-1) * T_{measureTDD}$ (see table 4.1) for inter-frequency cells that are identified and measured according to the measurement rules. The parameter $N_{carrier}$ is the number of carriers used for

TDD cells. The UE shall filter PCCPCH RSCP measurements of each measured inter-frequency cell using at least 2 measurements, which are taken so that the time difference between the first and the last measurements used for filtering is at least $T_{\rm measureTDD}/2$.

The filtering of PCCPCH RSCP shall be such that the UE shall be capable of evaluating that an already identified interfrequency cell has become better ranked than the serving cell within $(N_{carrier}-1) * T_{evaluateTDD}$ from the moment the interfrequency cell became at least 3 dB better than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that interfrequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 3 dB better than the current serving cell provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the inter-frequency cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.3.2 1.28 Mcps option

The UE shall measure PCCPCH RSCP at least every $(N_{carrier}^{-1}) * T_{measureNTDD}$ (see table 4.1A) for inter-frequency 1.28 Mcps TDD OPTION cells that are identified and measured according to the measurement rules. The parameter $N_{carrier}$ is the number of carriers used for 1.28 Mcps TDD OPTION cells. The UE shall filter PCCPCH RSCP measurements of each measured inter-frequency cell using at least 2 measurements, which are taken so that the time difference between the first measurement and the last measurement used for filtering is at least $T_{measureNTDD}/2$.

The filtering of PCCPCH RSCP shall be such that the UE shall be capable of evaluating that an already identified interfrequency cell has become better ranked than the serving cell within $(N_{carrier}-1) * T_{evaluateNTDD}$ from the moment the interfrequency cell became at least 6 dB better ranked than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that inter-frequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 6 dB better ranked than the current serving cell provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the inter-frequency cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

In the case of multi-frequency network, N_{carrier} is the number of primary frequencies.

4.2.2.3.3 7.68 Mcps option

The UE shall measure PCCPCH RSCP at least every $(N_{carrier}-1) * T_{measureTDD}$ (see table 4.1B) for inter-frequency cells that are identified and measured according to the measurement rules. The parameter $N_{carrier}$ is the number of carriers used for TDD cells. The UE shall filter PCCPCH RSCP measurements of each measured inter-frequency cell using at least 2 measurements, which are taken so that the time difference between the first and the last measurements used for filtering is at least $T_{measureTDD}/2$.

The filtering of PCCPCH RSCP shall be such that the UE shall be capable of evaluating that an already identified interfrequency cell has become better ranked than the serving cell within $(N_{carrier}^{-1}) * T_{evaluateTDD}$ from the moment the interfrequency cell became at least 3 dB better than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that interfrequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 3 dB better than the current serving cell provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the inter-frequency cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.3A 1.28 Mcps TDD to 3.84 Mcps TDD cell re-selection

This requirement only applies to 1.28 Mcps UEs supporting this mode.

The ranking of the low and high chip rate TDD cells shall be made according to the cell reselection criteria specified in [18].

The UE shall measure PCCPCH RSCP at least every $N_{TDDcarrier} * T_{measureTDD}$ (see table 4.1A) for inter-frequency cells that are identified and measured according to the measurement rules. The parameter $N_{carrier}$ is the number of carriers used for 3.84 Mcps TDD cells. The UE shall filter PCCPCH RSCP measurements of each measured high chip rate TDD cell using at least 2 measurements, which are taken so that the time difference between the first measurement and the last measurement used for filtering is at least $T_{measureTDD}/2$.

The filtering of PCCPCH RSCP shall be such that the UE shall be capable of evaluating that a high chip rate TDD cell has become better ranked than the serving cell within $N_{TDDcarrier} * T_{evaluateTDD}$ from the moment the inter-frequency cell became at least 3 better ranked than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that inter-frequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 3 dB better ranked than the current serving cell provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the inter-frequency 3.84Mcps TDD cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency 3.84Mcps TDD cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.3B 3.84 Mcps TDD to 1.28 Mcps TDD cell re-selection

This requirement in this section only applies to UEs supporting both 3.84 Mcps TDD and 1.28Mcps TDD.

The UE shall measure PCCPCH RSCP at least every $N_{carrierNTDD}$ * $T_{measureNTDD}$ (see table 4.1A) for inter-frequency 1.28 Mcps TDD OPTION cells that are identified and measured according to the measurement rules. The parameter $N_{carrierNTDD}$ is the number of carriers used for 1.28 Mcps TDD cells. The UE shall filter PCCPCH RSCP measurements of each measured 1.28 Mcps TDD cell using at least 2 measurements, which are taken so that the time difference between the measurements is at least $T_{measureNTDD}/2$.

The filtering of PCCPCH RSCP shall be such that the UE shall be capable of evaluating that a 1.28 Mcps TDD cell has become better ranked than the serving cell within $N_{carrierNTDD} * T_{evaluateNTDD}$ from the moment the inter-frequency cell became at least 3 better ranked than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that inter-frequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 3 dB better ranked than the current serving cell provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the inter-frequency 1.28 Mcps TDD cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency 1.28 Mcps TDD cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

In the case of cell re-selection to 1.28 Mcps TDD multi-frequency network, $N_{carrierNTDD}$ is the number of primary frequencies.

4.2.2.3C 7.68 Mcps TDD to 3.84 Mcps TDD cell re-selection

This requirement in this section only applies to UEs supporting both 3.84 Mcps TDD and 7.68Mcps TDD.

The ranking of 3.84 Mcps and 7.68 Mcps chip rate TDD cells shall be made according to the cell reselection criteria specified in [18].

The UE shall measure PCCPCH RSCP at least every $N_{TDDcarrier}$ * $T_{measureTDD}$ (see Table 4.1B) for inter-frequency cells that are identified and measured according to the measurement rules. The parameter $N_{carrier}$ is the number of carriers used for 3.84 Mcps TDD cells. The UE shall filter PCCPCH RSCP measurements of each measured 3.84 Mcps chip rate TDD cell using at least 2 measurements, which are taken so that the time difference between the first measurement and the last measurement used for filtering is at least $T_{measureTDD}/2$.

The filtering of PCCPCH RSCP shall be such that the UE shall be capable of evaluating that a 3.84 Mcps chip rate TDD cell has become better ranked than the serving cell within $N_{TDDcarrier} * T_{evaluateTDD}$ from the moment the inter-frequency cell became at least 3 better ranked than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that inter-frequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 3 dB better ranked than the current serving cell provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the inter-frequency 3.84Mcps TDD cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency 3.84Mcps TDD cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.3D 3.84 Mcps TDD to 7.68 Mcps TDD cell re-selection

This requirement in this section only applies to UEs supporting both 3.84 Mcps TDD and 7.68Mcps TDD.

The UE shall measure PCCPCH RSCP at least every $N_{carrierNTDD}$ * $T_{measureNTDD}$ (see Table 4.1B) for inter-frequency 7.68 Mcps TDD OPTION cells that are identified and measured according to the measurement rules. The parameter $N_{carrierNTDD}$ is the number of carriers used for 7.68 Mcps TDD cells. The UE shall filter PCCPCH RSCP measurements of each measured 7.68 Mcps TDD cell using at least 2 measurements, which are taken so that the time difference between the first measurement and the last measurement is at least $T_{measureNTDD}/2$.

The filtering of PCCPCH RSCP shall be such that the UE shall be capable of evaluating that a 7.68 Mcps TDD cell has become better ranked than the serving cell within $N_{carrierNTDD} * T_{evaluateNTDD}$ from the moment the inter-frequency cell became at least 3 better ranked than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that inter-frequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 3 dB better ranked than the current serving cell provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the inter-frequency 7.68 Mcps TDD cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency 7.68 Mcps TDD cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.4 Measurement of inter-frequency FDD cells

4.2.2.4.1 3.84 Mcps option

The UE shall measure the CPICH RSCP and CPICH Ec/Io of each FDD neighbour cell indicated in the measurement control system information of the serving cell, according to the measurement rules defined in [18], at least every $T_{measureFDD}$ (see table 4.1). The UE shall filter CPICH RSCP measurements of each measured inter-frequency cell using at least 2 measurements which are taken so that the time difference between the first and last measurements used for filtering is at least $T_{measureFDD}/2$..

The filtering of CPICH RSCP shall be such that the UE shall be capable of evaluating that an already identified interfrequency cell has become better ranked than the serving cell within $N_{carrierFDD}$ * $T_{evaluateFDD}$ from the moment the interfrequency cell became at least 5 dB better than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that interfrequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 5 dB better than the current serving cell provided that Treselection timer is set to zero. The parameter $N_{carrierFDD}$ is the number of carriers used for FDD cells.

If Treselection timer has a non zero value and the inter-frequency cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

The ranking of the cells shall be made according to the cell reselection criteria specified in [18]. If FDD cell has been ranked as the best cell and IE cell_selection_and_reselection-quality_measure is set to CPICH Ec/No, then UE shall perform a second ranking of the FDD cells using CPICH Ec/Io as the measurement quantity, before performing cell reselection.

4.2.2.4.2 1.28 Mcps option

This requirement only applies to 1.28 Mcps UEs supporting both 1.28 Mcps TDD OPTION and FDD.

The UE shall measure the CPICH RSCP and CPICH Ec/Io at least every $N_{carrierFDD} * T_{measureFDD}$ (see table 4.1A) for inter-frequency FDD cells that are identified and measured according to the measurement rules. The UE shall filter CPICH RSCP measurements of each measured inter-frequency cell using at least 2 measurements which are taken so that the time difference between the first measurement and the last measurement used for filtering is at least $T_{measureFDD}/2$.

CPICH RSCP is used as basic measurement quantity for cell ranking, the filtering of CPICH RSCP shall be such that the UE shall be capable of evaluating that an already identified inter-frequency cell has become better ranked than the serving cell within $N_{carrierFDD}$ * $T_{evaluateFDD}$ from the moment the inter-frequency cell became at least 5 dB better ranked than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that inter-frequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 5 dB better ranked than the current serving cell provided that Treselection timer is set to zero. The parameter $N_{carrierFDD}$ is the number of carriers used for FDD cells.

If Treselection timer has a non zero value and the inter-frequency FDD cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency FDD cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304. If FDD cell has been ranked as the best cell and IE cell_selection_and_reselection-quality_measure is set to CPICH Ec/No, then UE shall perform a second ranking of the FDD cells using CPICH Ec/Io as the measurement quantity, before performing cell re-selection.

4.2.2.4.3 7.68 Mcps option

The UE shall measure the CPICH RSCP and CPICH Ec/Io of each FDD neighbour cell indicated in the measurement control system information of the serving cell, according to the measurement rules defined in [18], at least every $T_{measureFDD}$ (see table 4.1B). The UE shall filter CPICH RSCP measurements of each measured inter-frequency cell using at least 2 measurements which are taken so that the time difference between the first and last measurements used for filtering is at least $T_{measureFDD}/2$..

The filtering of CPICH RSCP shall be such that the UE shall be capable of evaluating that an already identified interfrequency cell has become better ranked than the serving cell within $N_{carrierFDD}$ * $T_{evaluateFDD}$ from the moment the interfrequency cell became at least 5 dB better than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that interfrequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 5 dB better than the current serving cell provided that Treselection timer is set to zero. The parameter $N_{carrierFDD}$ is the number of carriers used for FDD cells.

If Treselection timer has a non zero value and the inter-frequency cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

The ranking of the cells shall be made according to the cell reselection criteria specified in [18]. If FDD cell has been ranked as the best cell and IE cell_selection_and_reselection-quality_measure is set to CPICH Ec/No, then UE shall perform a second ranking of the FDD cells using CPICH Ec/Io as the measurement quantity, before performing cell reselection.

4.2.2.5 Measurement of inter-RAT GSM cells

4.2.2.5.1 3.84 Mcps option

The UE shall measure the signal level of the GSM BCCH carrier of each GSM neighbour cell indicated in the measurement control system information of the serving cell, according to the measurement rules defined in [18], at least every $T_{measureGSM}$ (see table 4.1). The UE shall maintain a running average of 4 measurements for each cell. The measurement samples for each cell shall be as far as possible uniformly distributed over the averaging period.

If GSM measurements are required by the measurement rules in [18], The UE shall attempt to verify the BSIC at least every 30 seconds for each of the 4 strongest GSM BCCH carriers and rank the verified GSM BCCH cells according to the cell re-selection criteria in [18]. If a change of BSIC is detected for one GSM cell then that GSM BCCH carrier shall be treated as a new GSM neighbour cell.

If the UE detects a BSIC, which is not indicated in the measurement control system information, the UE shall not consider that GSM BCCH carrier in cell reselection. The UE also shall not consider the GSM BCCH carrier in cell reselection, if the UE can not demodulate the BSIC of that GSM BCCH carrier.

If Treselection timer has a non zero value and the inter-RAT GSM cell is better ranked than the serving cell, the UE shall evaluate this inter-RAT GSM cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.5.2 1.28 Mcps option

The UE shall measure the signal level of the GSM BCCH carrier of each GSM neighbour cell indicated in the measurement control system information of the serving cell, according to the measurement rules defined in [18], at least every $T_{measureGSM}$ (see table 4.1A). The UE shall maintain a running average of 4 measurements for each cell. The measurement samples for each cell shall be as far as possible uniformly distributed over the averaging period.

If GSM measurements are required by the measurement rules in [18], the UE shall attempt to verify the BSIC at least every 30 seconds for each of the 4 strongest GSM BCCH carriers and rank the verified GSM BCCH cells according to the cell re-selection criteria in [18]. If a change of BSIC is detected for one GSM cell then that GSM BCCH carrier shall be treated as a new GSM neighbour cell.

If the UE detects a BSIC, which is not indicated in the measurement control system information, the UE shall not consider that GSM BCCH carrier in cell reselection. The UE also shall not consider the GSM BCCH carrier in cell reselection, if the UE can not demodulate the BSIC of that GSM BCCH carrier.

If Treselection timer has a non zero value and the inter-RAT GSM cell is better ranked than the serving cell, the UE shall evaluate this inter-RAT GSM cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.5.3 7.68 Mcps option

The UE shall measure the signal level of the GSM BCCH carrier of each GSM neighbour cell indicated in the measurement control system information of the serving cell, according to the measurement rules defined in [18], at least every $T_{measureGSM}$ (see table 4.1B). The UE shall maintain a running average of 4 measurements for each cell. The measurement samples for each cell shall be as far as possible uniformly distributed over the averaging period.

If GSM measurements are required by the measurement rules in [18], The UE shall attempt to verify the BSIC at least every 30 seconds for each of the 4 strongest GSM BCCH carriers and rank the verified GSM BCCH cells according to the cell re-selection criteria in [18]. If a change of BSIC is detected for one GSM cell then that GSM BCCH carrier shall be treated as a new GSM neighbour cell.

If the UE detects a BSIC, which is not indicated in the measurement control system information, the UE shall not consider that GSM BCCH carrier in cell reselection. The UE also shall not consider the GSM BCCH carrier in cell reselection, if the UE can not demodulate the BSIC of that GSM BCCH carrier.

If Treselection timer has a non zero value and the inter-RAT GSM cell is better ranked than the serving cell, the UE shall evaluate this inter-RAT GSM cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.5a Measurements of inter-RAT E-UTRA cells

The UE shall be able to identify new E-UTRA cells and perform RSRP measurements of identified E-UTRA cells if carrier frequency information is provided by the serving cell, even if no explicit neighbour list with physical layer cell identities is provided.

If the S-value of the UTRA serving cell is greater than $Thresh_{serving_high}$ then

- the UE may not search for, or measure E-UTRA layers of equal or lower priority.
- the UE shall search for and measure E-UTRA layers of higher priority. The minimum rate at which the UE is required to search for and measure such layers may be reduced in this scenario to maintain UE battery life. Details are still FFS.

If the S-value of the UTRA serving cell is less than or equal to Thresh_{serving_high} then the UE shall search for and measure E-UTRA frequency layers of higher or lower priority in preparation for possible reselection. In this scenario, the minimum rate at which the UE is required to search for and measure such layers is not reduced.

The UE shall be able to identify a new detectable inter-RAT E-UTRA cell within K_{carrier} * [30] seconds if at least E-UTRA carrier frequency information is provided in the inter-RAT measurement control system information . The parameter K_{carrier} is the number of E-UTRA carrier frequencies indicated in the inter-RAT measurement control system information. It shall be possible to evaluate the need for reselection to E-UTRA cells which have:

- RSRP \geq -TBD dBm and \hat{E} s/Iot > [-3] dB,
- SCH RP \geq -TBD dBm and SCH \hat{E} s/Iot > [-3] dB.

The UE shall measure RSRP at least every $K_{carrier} * T_{measure, EUTRA}$ as defined in table 4.2 or 4.2A or 4.3B for identified E-UTRA cells.

If the UE detects on a E-UTRA carrier a cell whose physical identity is indicated as not allowed for that carrier in the measurement control system information of the serving cell, the UE is not required to perform measurements on that cell.

The UE shall filter RSRP measurements of each measured E-UTRA cell using at least [2] measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least $(K_{carrier} * T_{measure.EUTRA})/2$.

RSRP measurements of E-UTRA cells shall not be filtered over a longer period than that specified in Table 4.2 or 4.2A or 4.2B.

The UE shall not consider an E-UTRA neighbour cell in cell reselection, if it is indicated as not allowed in the measurement control system information of the serving cell.

The filtering shall be such that the UE shall be capable of evaluating that the EUTRAN cell has met reselection criterion defined TS 36.304 within $K_{carrier} *T_{evaluateEUTRA}$ as specified in table 4.2 or 4.2A or 4.2B

4.2.2.6 Evaluation of cell reselection criteria

4.2.2.6.1 3.84 Mcps option

The UE shall evaluate the cell re-selection criteria defined in [18] for the cells, which have new measurement results available, at least once every DRX cycle.

UE shall perform cell reselection immediately after the UE has found a better ranked suitable cell unless less than 1 second has elapsed from the moment the UE started camping on the current serving cell.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304.

4.2.2.6.2 1.28 Mcps option

The UE shall evaluate the cell re-selection criteria defined in [18] for the cells, which have new measurement results available, at least every DRX cycle.

Cell reselection shall take place immediately after the UE has found a better ranked suitable cell unless the UE has made cell reselection within the last 1 second.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304.

4.2.2.6.3 7.68 Mcps option

The UE shall evaluate the cell re-selection criteria defined in [18] for the cells, which have new measurement results available, at least once every DRX cycle.

UE shall perform cell reselection immediately after the UE has found a better ranked suitable cell unless less than 1 second has elapsed from the moment the UE started camping on the current serving cell.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304.

4.2.2.7 Maximum interruption time in paging reception

4.2.2.7.1 3.84 Mcps option

UE shall perform the cell re-selection with minimum interruption in monitoring downlink channels for paging reception.

At intra-frequency cell re-selection, the UE shall monitor the downlink of current serving cell for paging reception until the UE is capable to start monitoring downlink channels of the target intra-frequency cell for paging reception. The interruption time shall not exceed 50 ms.

At inter-frequency and inter-RAT cell re-selection, the UE shall monitor the downlink of current serving cell for paging reception until the UE is capable to start monitoring downlink channels for paging reception of the target inter-frequency cell. For inter-frequency cell re-selection, the interruption time shall not exceed T_{SI} + 50 ms. For inter-RAT cell re-selection the interruption time shall not exceed T_{BCCH} + 50 ms for GSM or $T_{SI\,EUTRA}$ + [50ms] for E-UTRA.

T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [16] for a UTRAN cell.

T_{BCCH} is the maximum time allowed to read BCCH data from a GSM cell as defined in [21].

T_{SI-EUTRA} is the maximum time allowed to read system information from a E-UTRA cell [24].

These requirements assume sufficient radio conditions, so that decoding of system information can be made without errors.

Table 4.1: T_{measureTDD}, T_{evaluateTDD}, T_{measureNTDD}, T_{evaluateNTDD}, T_{measureFDD}, T_{evaluateFDD} and T_{measureGSM}

DRX cycle length [s]	N _{serv} (number of DRX cycles)	T _{measureTDD} [s] (number of DRX cycles)	T _{evaluateTDD} [s] (number of DRX cycles)	T _{measureNTDD} [s] (number of DRX cycles)	T _{evaluateNTDD} [s] (number of DRX cycles)	T _{measureFDD} [s] (number of DRX cycles)	T _{evaluateFDD} [s] (number of DRX cycles)	T _{measureGSM} [s] (number of DRX cycles)
0.08	4	0.64 (8	2.56 (32	0.64 (8	2.56 (32	0.64 (8	2.56 (32	2.56 (32
		DRX	DRX	DRX	DRX	DRX	DRX	DRX
		cycles)	cycles)	cycles)	cycles)	cycles)	cycles)	cycles)
0.16	4	0.64 (4)	2.56 (16)	0.64 (4)	2.56 (16)	0.64 (4)	2.56 (16)	2.56 (16)
0.32	4	1.28 (4)	5.12 (16)	1.28 (4)	5.12 (16)	1.28 (4)	5.12 (16)	5.12 (16)
0.64	4	1.28 (2)	5.12 (8)	1.28 (2)	5.12 (8)	1.28 (2)	5.12 (8)	5.12 (8)
1.28	2	1.28 (1)	6.4 (5)	1.28 (1)	6.4 (5)	1.28 (1)	6.4 (5)	6.4 (5)
2.56	2	2.56 (1)	7.68 (3)	2.56 (1)	7.68 (3)	2.56 (1)	7.68 (3)	7.68 (3)
5.12	1	5.12 (1)	10.24 (2)	5.12 (1)	10.24 (2)	5.12 (1)	10.24 (2)	10.24 (2)

Table 4.2: T_{measureE-UTRA} and T_{evaluateEUTRA}

DRX cycle length [s]	T _{measureE-UTRA} [s] (number of DRX cycles)	T _{evaluateEUTRA} [s] (number of DRX cycles)	
0.08	[2.56 (32)]	[7.68 (96)]	
0.16	[[2.56 (16)]	[7.68 (48)]	
0.32	[5.12 (16)]	[15.36 (48)]	
0.64	[5.12 (8)]	[15.36 (24)]	
1.28	[6.4 (5)]	[19.2 (15)]	
2.56	[7.68 (3)]	[23.04 (9)]	
5.12	[10.24 (2)]	[30.72 (6)]	

In idle mode, UE shall support DRX cycles lengths 0.64, 1.28, 2.56 and 5.12 s, according to [16].

4.2.2.7.2 1.28 Mcps option

UE shall perform the cell re-selection with minimum interruption in monitoring downlink channels for paging reception.

At intra-frequency cell re-selection, the UE shall monitor the downlink of current serving cell for paging reception until the UE is capable to start monitoring downlink channels of the target intra-frequency cell for paging reception. The interruption time shall not exceed 50 ms.

At inter-frequency and inter-RAT cell re-selection, the UE shall monitor the downlink of current serving cell for paging reception until the UE is capable to start monitoring downlink channels for paging reception of the target inter-frequency cell. For inter-frequency cell re-selection he interruption time must not exceed $T_{SI} + 50$ ms. For inter-Rat cell re-selection the interruption time must not exceed $T_{BCCH} + 50$ ms for GSM or $T_{SI \, EUTRA} + [50ms]$ for E-UTRA.

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [16] for a UTRAN cell.

T_{BCCH} is the maximum time allowed to read BCCH data from a GSM cell [21].

T_{SI-EUTRA} is the maximum time allowed to read system information from a E-UTRA cell [24].

10.24 (2)

These requirements assume sufficient radio conditions, so that decoding of system information can be made without errors and does not take into account cell re-selection failure.

DRX Nserv T_{measureNTDD} T_{evaluateTDD} T_{measureFD} T_{measureGSM} T_{evaluateNTDD} T_{measureTD} T_{evaluateFDD} cycle (number of [s] (number [s] _D [s] [s] _D [s] [s] [s] of DRX (number length DRX cycles) (number of (number (number (number (number of cycles) DRX of DRX of DRX of DRX of DRX DRX [s] cycles) cycles) cycles) cycles) cycles) cycles) 0.08 0.64 (8 DRX 2.56 (32 0.64 (8 2.56 (32 0.64 (8 2.56 (32 2.56 (32 cycles) DRX DRX DRX DRX DRX DRX cycles) cycles) cycles) cycles) cycles) cycles) 0.16 4 0.64 (4) 2.56 (16) 0.64(4)2.56 (16) 0.64(4)2.56 (16) 2.56 (16) 5.12 (16) 1.28 (4) 5.12 (16) 0.32 4 1.28 (4) 1.28 (4) 5.12 (16) 5.12 (16) 0.64 4 1.28 (2) 5.12 (8) 1.28 (2) 5.12 (8) 1.28 (2) 5.12 (8) 5.12 (8) 1.28 2 1.28 (1) 6.4 (5) 1.28 (1) 6.4 (5) 1.28 (1) 6.4 (5) 6.4 (5) 2 2.56 2.56 (1) 7.68 (3) 2.56(1)7.68(3)2.56 (1) 7.68 (3) 7.68 (3)

Table 4.1A: T_{measureNTDD}, T_{evaluateNTDD}, T_{measureTDD}, T_{evaluateTDD}, T_{measureFDD}, T_{evaluateFDD} and T_{measureGSM}

Table 4.2A: T_{measureE-UTRA} and T_{evaluateEUTRA}

5.12 (1)

10.24 (2)

5.12 (1)

10.24 (2)

10.24 (2)

DRX cycle length [s]	T _{measureE-UTRA} [s] (number of DRX cycles)	T _{evaluateEUTRA} [s] (number of DRX cycles)		
0.08	[2.56 (32)]	[7.68 (96)]		
0.16	[[2.56 (16)]	[7.68 (48)]		
0.32	[5.12 (16)]	[15.36 (48)]		
0.64	[5.12 (8)]	[15.36 (24)]		
1.28	[6.4 (5)]	[19.2 (15)]		
2.56	[7.68 (3)]	[23.04 (9)]		
5.12	[10.24 (2)]	[30.72 (6)]		

In idle mode, UE shall support DRX cycles lengths 0.64, 1.28, 2.56 and 5.12 s.

4.2.2.7.3 7.68 Mcps option

5.12 (1)

5.12

UE shall perform the cell re-selection with minimum interruption in monitoring downlink channels for paging reception.

At intra-frequency cell re-selection, the UE shall monitor the downlink of current serving cell for paging reception until the UE is capable to start monitoring downlink channels of the target intra-frequency cell for paging reception. The interruption time shall not exceed 50 ms.

At inter-frequency and inter-RAT cell re-selection, the UE shall monitor the downlink of current serving cell for paging reception until the UE is capable to start monitoring downlink channels for paging reception of the target inter-

frequency cell. For inter-frequency cell re-selection, the interruption time shall not exceed T_{SI} + 50 ms. For inter-RAT cell re-selection the interruption time shall not exceed T_{BCCH} + 50 ms for GSM or $T_{SI\,EUTRA}$ + [50ms] for E-UTRA.

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [16] for a UTRAN cell.

 T_{BCCH} is the maximum time allowed to read BCCH data from a GSM cell as defined in [21].

T_{SI-EUTRA} is the maximum time allowed to read system information from a E-UTRA cell [24].

These requirements assume sufficient radio conditions, so that decoding of system information can be made without errors.

Table 4.1B: T_{measureTDD}, T_{evaluateTDD}, T_{measureNTDD}, T_{evaluateNTDD}, T_{measureFDD} and T_{measureGSM}

DRX cycle length [s]	N _{serv} (number of DRX cycles)	T _{measureTDD} [s] (number of DRX cycles)	T _{evaluateTDD} [s] (number of DRX cycles)	T _{measureNTDD} [s] (number of DRX cycles)	T _{evaluateNTDD} [s] (number of DRX cycles)	T _{measureFDD} [s] (number of DRX cycles)	T _{evaluateFDD} [s] (number of DRX cycles)	T _{measureGSM} [s] (number of DRX cycles)
0.08	4	0.64 (8	2.56 (32	0.64 (8	2.56 (32	0.64 (8	2.56 (32	2.56 (32
		DRX	DRX	DRX	DRX	DRX	DRX	DRX
		cycles)	cycles)	cycles)	cycles)	cycles)	cycles)	cycles)
0.16	4	0.64 (4)	2.56 (16)	0.64 (4)	2.56 (16)	0.64 (4)	2.56 (16)	2.56 (16)
0.32	4	1.28 (4)	5.12 (16)	1.28 (4)	5.12 (16)	1.28 (4)	5.12 (16)	5.12 (16)
0.64	4	1.28 (2)	5.12 (8)	1.28 (2)	5.12 (8)	1.28 (2)	5.12 (8)	5.12 (8)
1.28	2	1.28 (1)	6.4 (5)	1.28 (1)	6.4 (5)	1.28 (1)	6.4 (5)	6.4 (5)
2.56	2	2.56 (1)	7.68 (3)	2.56 (1)	7.68 (3)	2.56 (1)	7.68 (3)	7.68 (3)
5.12	1	5.12 (1)	10.24 (2)	5.12 (1)	10.24 (2)	5.12 (1)	10.24 (2)	10.24 (2)

Table 4.2B: T_{measureE-UTRA} and T_{evaluateEUTRA}

DRX cycle length [s]	T _{measureE-UTRA} [s] (number of DRX cycles)	T _{evaluateEUTRA} [s] (number of DRX cycles)
0.08	[2.56 (32)]	[7.68 (96)]
0.16	[[2.56 (16)]	[7.68 (48)]
0.32	[5.12 (16)]	[15.36 (48)]
0.64	[5.12 (8)]	[15.36 (24)]
1.28	[6.4 (5)]	[19.2 (15)]
2.56	[7.68 (3)]	[23.04 (9)]
5.12	[10.24 (2)]	[30.72 (6)]

In idle mode, UE shall support DRX cycles lengths 0.64, 1.28, 2.56 and 5.12 s, according to [16].

4.2.2.8 Number of cells in cell lists

4.2.2.8.1 3.84 Mcps option

For idle mode cell re-selection purposes, the UE shall be capable of monitoring:

- 32 intra-frequency cells (including serving cell), and
- 32 inter-frequency cells, including
 - TDD mode cells on maximum 2 additional TDD carriers, and
 - Depending on UE capability, FDD mode cells, distributed on up to 3 FDD carriers, and
- Depending on UE capability, 32 inter RAT GSM cells,
- Depending on UE capability, [32] E-UTRA cells distributed on up to [TBD] E-UTRA carriers,

as indicated in cell information lists sent in system information (BCCH).

4.2.2.8.2 1.28 Mcps option

For idle mode cell re-selection purposes, the UE shall be capable of monitoring:

- 32 intra-frequency cells (including serving cell), and
- 32 inter-frequency cells, including
 - TDD mode cells on up to minimum 8 additional TDD carriers, and
 - Depending on UE capability, FDD mode cells distributed on up to 3 FDD carriers, and
- Depending on UE capability, 32 GSM cells distributed on up to 32 GSM carriers,
- Depending on UE capability, [32] E-UTRA cells distributed on up to [TBD] E-UTRA carriers,

as indicated in cell information lists sent in system information (BCCH).

4.2.2.8.3 7.68 Mcps option

For idle mode cell re-selection purposes, the UE shall be capable of monitoring:

- 32 intra-frequency cells (including serving cell), and
- 32 inter-frequency cells, including
 - TDD mode cells on maximum 2 additional TDD carriers, and
 - Depending on UE capability, FDD mode cells, distributed on up to 3 FDD carriers, and
- Depending on UE capability, 32 inter RAT GSM cells,
- Depending on UE capability, [32] E-UTRA cells distributed on up to [TBD] E-UTRA carriers,

as indicated in cell information lists sent in system information (BCCH).

4.2.2.9 Additional requirements for inter-frequency measurements when MBMS reception is active

4.2.2.9.1 3.84 Mcps option

For MBMS capable UE, when MBMS reception is active the following requirements shall apply:

If the UE is required to perform inter-frequency measurements as indicated by the cell reselection measurement rules in 25.304, the UE shall ensure that it switches back to its serving cell frequency in time to perform demodulation of MTCH signals.

4.2.2.9.2 (void)

4.2.2.9.3 7.68 Mcps option

For MBMS capable UE, when MBMS reception is active the following requirements shall apply:

If the UE is required to perform inter-frequency measurements as indicated by the cell reselection measurement rules in 25.304, the UE shall ensure that it switches back to its serving cell frequency in time to perform demodulation of MTCH signals.

4.3 MBSFN cluster selection for carriers dedicated to MBSFN

4.3.1 Introduction

UEs supporting MBSFN services may search for and select an appropriate MBSFN cluster according to [18]. No test requirements are specified.

4.4 MBSFN cluster reselection for carriers dedicated to MBSFN

4.4.1 Introduction

UEs supporting MBSFN services employ MBSFN cluster reselection procedures in order to identify and select a more suitable MBSFN cluster on which to camp on (and to possibly receive service from) according to [18]. No test requirements are specified.

5 UTRAN Connected Mode Mobility

This section contains the requirements on the mobility procedures in UTRAN connected mode such as handover and cell re-selection.

Requirements related to the measurements in support of the execution of the UTRAN connected mode mobility procedures are specified in section 8.

The radio links the UE shall use are controlled by UTRAN with RRC signalling.

UE behaviour in response to UTRAN RRC messages is described in [16].

The purpose of Cell reselection in CELL_FACH, CELL_PCH and URA_PCH states is that the UE shall select a better cell according to the cell reselection criteria in [18]. CELL_FACH, CELL_PCH and URA_PCH states are described in [16].

5.1 TDD/TDD Handover

5.1.1 Introduction

5.1.1.1 3.84 Mcps TDD option

The TDD/TDD handover procedure is initiated from UTRAN with a RRC message that implies a hard handover as described in [16].

The TDD/TDD handover procedure may cause the UE to change its frequency.

5.1.1.2 1.28 Mcps TDD option

The purpose of TDD/TDD handover is to change the cell of the connection between UE and UTRAN. The handover procedure is initiated from UTRAN with a RRC message that implies a handover, refer to [16]. The handover procedure may cause the UE to change its frequency.

In the case of multi-frequency network, handover can occure between primary frequency in serving cell and primary frequency in target cell, primary frequency in serving cell and secondary frequency in target cell, secondary frequency in serving cell and primary frequency cell in target cell.

5.1.1.3 7.68 Mcps TDD option

The TDD/TDD handover procedure is initiated from UTRAN with a RRC message that implies a hard handover as described in [16].

The TDD/TDD handover procedure may cause the UE to change its frequency.

5.1.2 Requirements

5.1.2.1 TDD/TDD handover delay

5.1.2.1.1 3.84 Mcps TDD option

RRC procedure performance values for all RRC procedures that can command a hard handover are specified in [16].

When the UE receives a RRC message implying TDD/TDD handover with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCH within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCH at the designated activation time + interruption time.

where:

 $D_{handover}$ equals the RRC procedure performance value defined in [16] plus the interruption time stated in section 5.1.2.2.1.

5.1.2.1.2 1.28 Mcps TDD option

RRC procedure performance values for all RRC procedures that can command a hard handover are specified in [16].

When the UE receives a RRC message that implies a TDD/TDD handover, with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall start transmission within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCH or the SYNC-UL in case that a handover to 1.28 Mcps TDD option with SYNCH uplink exchange is recommended at the designated activation time + interruption time.

where D_{handover} equals the RRC procedure performance value defined [16] plus the interruption time stated in section 5.1.2.2.2.

5.1.2.1.3 7.68 Mcps TDD option

RRC procedure performance values for all RRC procedures that can command a hard handover are specified in [16].

When the UE receives a RRC message implying TDD/TDD handover with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCH within $D_{handover}$ seconds from the end of the last TTI containing the RRC command

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCH at the designated activation time + interruption time.

where:

- D_{handover} equals the RRC procedure performance value defined in [16] plus the interruption time stated in section 5.1.2.2.3.

5.1.2.2 Interruption time

5.1.2.2.1 3.84 Mcps TDD option

The interruption time i.e. the time between the end of the last TTI containing a transport block on the old DPCH and the time the UE starts transmission of the new uplink DPCH, is dependent on whether the target cell is known for the UE or not.

If TDD/TDD intra-frequency or inter-frequency handover is commanded, the interruption time shall be less than,

$$T_{interrupt}\!\!=T_{offset}\!\!+\!\!T_{UL}\!\!+\!\!30^*\!F_{SFN}\!\!+\!\!20^*KC\!\!+\!\!180^*UC\!\!+\!\!10^*F_{max}\ ms$$

where,

T_{offset}	Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell and the time that can elapse until the appearance of a Beacon channel
T_{UL}	Equal to 10 ms, the time that can elapse until the appearance of the UL timeslot in the target cell
F_{SFN}	Equal to 1 if SFN decoding is required and equal to 0 otherwise
KC	Equal to 1 if a known target cell is indicated in the RRC message implying TDD/TDD handover and equal to 0 otherwise
UC	Equal to 1 if an unknown target cell is indicated in the RRC message implying TDD/TDD handover and equal to 0 otherwise
F_{max}	denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

An intra-frequency or inter-frequency TDD target cell shall be considered as known by the UE, if either or both of the following conditions are true:

- the target cell has been measured during the last 5 seconds
- the UE has had a radio link connected to the target cell during the last 5 seconds.

The interruption time requirements for an unknown target cell shall apply only if the signal quality of the unknown target cell is sufficient for successful synchronisation with one attempt.

5.1.2.2.2 1.28 Mcps TDD option

The interruption time i.e. the time between the end of the last TTI containing a transport block on the old DPCH and the time the UE starts transmission of the new uplink DPCH or the SYNC-UL in case that a handover with SYNCH uplink exchange is recommended, shall be less than the value defined in the equation below. There is different requirement on the interruption time depending on if the cell is known or not and if the SFN of the target cell has to be decoded by the UE or not.

If TDD/TDD intra-frequency or inter-frequency handover is commanded, the interruption time shall be less than,

$$T_{interrupt} = T_{offset} + T_{UL} + 30*F_{SFN} + 20*KC + 180*UC + 10*F_{max} ms$$

where,

$T_{ m offset}$	Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell and the time that can elapse until the appearance of a Beacon channel
T_{UL}	Equal to 10 ms , the time that can elapse until the appearance of the UL timeslot in the target cell
F_{SFN}	Equal to 1 if SFN decoding is required and equal to 0 otherwise
KC	Equal to 1 if a known target cell is indicated in the RRC message implying TDD/TDD handover and equal to 0 otherwise
UC	Equal to 1 if an unknown target cell is indicated in the RRC message implying TDD/TDD handover and equal to 0 otherwise

 F_{max} denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

A cell shall be regarded as known by the UE if either or both of the following conditions are true:

- it has been measured during the last 5 seconds or
- a dedicated connection existed between the UE and the cell during the last 5 seconds.

The SFN of the target cell needs not to be decoded by the UE if either or both of the following conditions are true:

- a handover with timing maintain is commanded by the UTRAN or
- the SFN of the target cell is known by the UE.

The interruption time requirement for the cell shall apply if the signal quality of the unknown cell is good enough for successful synchronisation with one attempt.

5.1.2.2.3 7.68 Mcps TDD option

The interruption time i.e. the time between the end of the last TTI containing a transport block on the old DPCH and the time the UE starts transmission of the new uplink DPCH, is dependent on whether the target cell is known for the UE or not.

If TDD/TDD intra-frequency or inter-frequency handover is commanded, the interruption time shall be less than,

$$T_{interrupt} = T_{offset} + T_{UL} + 30*F_{SFN} + 20*KC + 180*UC + 10*F_{max} ms$$

where,

$T_{ m offset}$	Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell and the time that can elapse until the appearance of a Beacon channel
T_{UL}	Equal to 10 ms, the time that can elapse until the appearance of the UL timeslot in the target cell
F_{SFN}	Equal to 1 if SFN decoding is required and equal to 0 otherwise
KC	Equal to 1 if a known target cell is indicated in the RRC message implying TDD/TDD handover and equal to 0 otherwise
UC	Equal to 1 if an unknown target cell is indicated in the RRC message implying TDD/TDD handover and equal to 0 otherwise
F_{max}	denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

An intra-frequency or inter-frequency TDD target cell shall be considered as known by the UE, if either or both of the following conditions are true:

- the target cell has been measured during the last 5 seconds
- the UE has had a radio link connected to the target cell during the last 5 seconds.

The interruption time requirements for an unknown target cell shall apply only if the signal quality of the unknown target cell is sufficient for successful synchronisation with one attempt.

5.2 TDD/FDD Handover

5.2.1 Introduction

5.2.1.1 3.84 Mcps TDD option

The purpose of TDD/FDD handover is to change the radio access mode from TDD to FDD. The TDD/FDD handover procedure is initiated from UTRAN with a RRC message that implies a hard handover as described in [16].

5.2.1.2 1.28 Mcps TDD option

The purpose of TDD/FDD handover is to change the radio access mode from TDD to FDD.

The TDD/FDD handover procedure is initiated from UTRAN with a RRC message that implies a hard handover as described in [16]

5.2.1.3 7.68 Mcps TDD option

The purpose of TDD/FDD handover is to change the radio access mode from TDD to FDD. The TDD/FDD handover procedure is initiated from UTRAN with a RRC message that implies a hard handover as described in [16].

5.2.2 Requirements

The requirements in this section shall apply to UE supporting TDD and FDD.

5.2.2.1 TDD/FDD handover delay

5.2.2.1.1 3.84 Mcps TDD option

RRC procedure performance values for all RRC procedures that can command a hard handover, are specified in [16].

When the UE receives a RRC message implying TDD/FDD handover with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCCH within RRC procedure delay seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than $D_{handover}$ seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCCH at the designated activation time + interruption time.

where:

 D_{handover} equals the RRC procedure performance value as defined in [16] plus the interruption time stated in section 5.2.2.2.

5.2.2.1.2 1.28 Mcps TDD option

RRC procedure performance values for all RRC procedures that can command a hard handover, are specified in [16].

When the UE receives a RRC message that implies a TDD/FDD handover, with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCCH within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCCH at the designated activation time + interruption time.

 $D_{handover}$ equals the RRC procedure performance value defined in [16] plus the interruption time stated in section 5.2.2.2.2.

5.2.2.1.3 7.68 Mcps TDD option

RRC procedure performance values for all RRC procedures that can command a hard handover, are specified in [16].

When the UE receives a RRC message implying TDD/FDD handover with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCCH within RRC procedure delay seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than $D_{handover}$ seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCCH at the designated activation time + interruption time.

where:

- D_{handover} equals the RRC procedure performance value as defined in [16] plus the interruption time stated in section 5.2.2.2.3.

5.2.2.2 Interruption time

5.2.2.2.1 3.84 Mcps TDD option

The interruption time, i.e. the time between the end of the last TTI containing a transport block on the old DPCH and the time the UE starts transmission of the new uplink DPCCH, is dependent on whether the target cell is known for the UE or not.

If TDD/FDD handover is commanded, the interruption time shall be less than,

$$T_{interrupt} = T_{offset} + 40 + 50 * KC + 150 * UC + 10 * F_{max} ms$$

where.

T_{offset}	Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell.
KC	Equal to 1 if a known target cell is indicated in the RRC message implying TDD/FDD handover and equal to 0 otherwise
UC	Equal to 1 if an unknown target cell is indicated in the RRC message implying TDD/FDD handover and equal to 0 otherwise
F_{max}	denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

An inter-frequency FDD target cell shall be considered known by the UE, if the target cell has been measured by the UE during the last 5 seconds.

The phase reference is the Primary CPICH.

The interruption time requirements for an unknown target cell shall apply only if the signal quality of the unknown target cell is sufficient for successful synchronisation with one attempt.

Note that the requirements in this section assume that N312 has the smallest possible value, i.e. only one in-sync indication as described in [23] is required.

5.2.2.2.2 1.28 Mcps TDD option

The interruption time, i.e. the time between the end of the last TTI containing a transport block on the old DPCH and the time the UE starts transmission of the new uplink DPCCH, is dependent on whether the target cell is known for the UE or not.

If TDD/FDD handover is commanded, the interruption time shall be less than,

$$T_{interrupt} = T_{IU} + 40 + 50 * KC + 150 * UC + 10 * F_{max} ms$$

where,

T_{IU}	The interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).
KC	Equal to 1 if a known target cell is indicated in the RRC message implying 1.28Mcps TDD/FDD handover and equal to 0 otherwise.
UC	Equal to 1 if an unknown target cell is indicated in the RRC message implying 1.28Mcps TDD/FDD handover and equal to 0 otherwise.

 F_{max} denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

An inter-frequency FDD target cell shall be considered known by the UE, if the target cell has been measured by the UE during the last 5 seconds.

The phase reference is the Primary CPICH.

The interruption time requirements for an unknown target cell shall apply only if the signal quality of the unknown target cell is sufficient for successful synchronisation with one attempt.

Note that the requirements in this section assume that N312 has the smallest possible value, i.e. only one in-sync indication as described in [23] is required.

5.2.2.2.3 7.68 Mcps TDD option

The interruption time, i.e. the time between the end of the last TTI containing a transport block on the old DPCH and the time the UE starts transmission of the new uplink DPCCH, is dependent on whether the target cell is known for the UE or not.

If TDD/FDD handover is commanded, the interruption time shall be less than,

$$T_{interrupt} = T_{offset} + 40 + 50 * KC + 150 * UC + 10 * F_{max} ms$$

where.

 T_{offset} Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell.

KC Equal to 1 if a known target cell is indicated in the RRC message implying TDD/FDD handover

and equal to 0 otherwise

UC Equal to 1 if an unknown target cell is indicated in the RRC message implying TDD/FDD

handover and equal to 0 otherwise

 F_{max} denotes the maximum number of radio frames within the transmission time intervals of all

transport channels that are multiplexed into the same CCTrCH.

An inter-frequency FDD target cell shall be considered known by the UE, if the target cell has been measured by the UE during the last 5 seconds.

The phase reference is the Primary CPICH.

The interruption time requirements for an unknown target cell shall apply only if the signal quality of the unknown target cell is sufficient for successful synchronisation with one attempt.

Note that the requirements in this section assume that N312 has the smallest possible value, i.e. only one in-sync indication as described in [23] is required.

5.3 TDD/GSM Handover

5.3.1 Introduction

5.3.1.1 3.84 Mcps TDD option

The purpose of inter-RAT handover from UTRAN TDD to GSM is to transfer a connection between the UE and UTRAN TDD to GSM. The handover procedure is initiated from UTRAN with a RRC message (HANDOVER FROM UTRAN COMMAND) as described in [16].

5.3.1.2 1.28 Mcps TDD option

The purpose of inter-RAT handover from UTRAN TDD to GSM is to transfer a connection between the UE and UTRAN TDD to GSM. The handover procedure is initiated from UTRAN with a RRC message (HANDOVER FROM UTRAN COMMAND). The procedure is described in [16]

5.3.1.3 7.68 Mcps TDD option

The purpose of inter-RAT handover from UTRAN TDD to GSM is to transfer a connection between the UE and UTRAN TDD to GSM. The handover procedure is initiated from UTRAN with a RRC message (HANDOVER FROM UTRAN COMMAND) as described in [16].

5.3.2 Requirements

The requirements in this section shall apply to UE supporting TDD and GSM.

5.3.2.1 TDD/GSM handover delay

5.3.2.1.1 3.84 Mcps TDD option

The RRC procedure performance value for the RRC HANDOVER FROM UTRAN COMMAND shall be 50 ms.

If the activation time is used in the RRC HANDOVER FROM UTRAN COMMAND, it corresponds to the CFN of the UTRAN channel.

When the UE receives a RRC HANDOVER FROM UTRAN COMMAND with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to transmit as specified [22] on the new channel of the new RAT within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to transmit as specified in [22] on the new channel of the new RAT at the designated activation time + interruption time.

D_{handover} equals the RRC procedure performance value plus the interruption time stated in section 5.3.2.2.

5.3.2.1.2 1.28 Mcps TDD option

The RRC procedure performance value for the RRC HANDOVER FROM UTRAN COMMAND shall be within 50 ms.

If the activation time is used in the RRC HANDOVER FROM UTRAN COMMAND, it corresponds to the CFN of the UTRAN channel.

When the UE receives a RRC HANDOVER FROM UTRAN COMMAND with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to transmit as specified in [22] on the new channel within the new RAT within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to transmit as specified in [22] on the new channel of the new RAT at the designated activation time + interruption time.

D_{handover} equals the RRC procedure performance value (50 ms) plus the interruption time stated in section 5.3.2.2.

5.3.2.1.3 7.68 Mcps TDD option

The RRC procedure performance value for the RRC HANDOVER FROM UTRAN COMMAND shall be 50 ms.

If the activation time is used in the RRC HANDOVER FROM UTRAN COMMAND, it corresponds to the CFN of the UTRAN channel.

When the UE receives a RRC HANDOVER FROM UTRAN COMMAND with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to transmit as specified [22] on the new channel of the new RAT within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to transmit as specified in [22] on the new channel of the new RAT at the designated activation time + interruption time.

D_{handover} equals the RRC procedure performance value plus the interruption time stated in section 5.3.2.2.

5.3.2.2 Interruption time

5.3.2.2.1 3.84 Mcps TDD option

The interruption time, i.e. the time between the end of the last TTI containing a transport block on the old DPCH and the time the UE is ready to transmit on the new channel of the new RAT, is dependent on whether the UE has synchonised to the target cell or not before receiving the RRC HANDOVER FROM UTRAN COMMAND.

The interruption time for the purpose of TDD/GSM handover shall be less than the value in Table 5.4.

Synchronisation status Interruption time [ms]

The UE has synchronised to the GSM cell before the HANDOVER FROM UTRAN COMMAND is received

The UE has not synchronised to the GSM cell before the HANDOVER FROM UTRAN COMMAND is received

Table 5.4: TDD/GSM interruption time

The requirements in Table 5.4 for the case where the UE has not synchronised to the GSM target cell before receiving the RRC HANDOVER FROM UTRAN COMMAND shall apply only if the signal quality of the GSM target cell is sufficient for successful synchronisation with one attempt.

If the UE is unable to synchronise to the GSM cell on the first attempt, it shall continue to search for synchronisation information for up to 800 ms. If after 800 ms the UE has not synchronised to the GSM cell it shall follow the handover failure procedure specified in [16].

5.3.2.2.2 1.28 Mcps TDD option

The interruption time, i.e. the time between the end of last TTI containing a transport block on the old DPCH and the time the UE is ready to transmit on the new channel of the new RAT, is dependent on whether the UE has synchonised to the target cell or not before receiving the RRC HANDOVER FROM UTRAN COMMAND.

The interruption time for the purpose of TDD/GSM handover shall be less than the value in Table 5.4A.

Table 5.4A: TDD/GSM interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the	40
HANDOVER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before	140
the HANDOVER FROM UTRAN COMMAND is received	

The requirements in Table 5.4A for the case where the UE has not synchronised to the GSM target cell before receiving the RRC HANDOVER FROM UTRAN COMMAND shall apply only if the signal quality of the GSM target cell is sufficient for successful synchronisation with one attempt.

If the UE is unable to synchronise to the GSM cell on the first attempt, it shall continue to search for synchronisation information for up to 800 ms. If after 800 ms the UE has not synchronised to the GSM cell it shall follow the handover failure procedure specified in [16].

5.3.2.2.3 7.68 Mcps TDD option

The interruption time, i.e. the time between the end of the last TTI containing a transport block on the old DPCH and the time the UE is ready to transmit on the new channel of the new RAT, is dependent on whether the UE has synchonised to the target cell or not before receiving the RRC HANDOVER FROM UTRAN COMMAND.

The interruption time for the purpose of TDD/GSM handover shall be less than the value in Table 5.4B.

Table 5.4B: TDD/GSM interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the	40
HANDOVER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before	140
the HANDOVER FROM UTRAN COMMAND is received	

The requirements in Table 5.4B for the case where the UE has not synchronised to the GSM target cell before receiving the RRC HANDOVER FROM UTRAN COMMAND shall apply only if the signal quality of the GSM target cell is sufficient for successful synchronisation with one attempt.

If the UE is unable to synchronise to the GSM cell on the first attempt, it shall continue to search for synchronisation information for up to 800 ms. If after 800 ms the UE has not synchronised to the GSM cell it shall follow the handover failure procedure specified in [16].

5.3a TDD to E-UTRAN FDD Handover

5.3a.1 Introduction

The purpose of inter-RAT handover from UTRAN TDD to E-UTRAN FDD is to transfer a connection between the UE and UTRAN TDD to E-UTRAN FDD. The handover procedure is initiated from UTRAN with a RRC message (HANDOVER FROM UTRAN COMMAND). The procedure is described in TS 25.331.

5.3a.2 Requirements

The requirements in this section shall apply to UE supporting TDD and E-UTRAN FDD.

5.3a.2.1 Handover delay

When the UE receives a RRC HANDOVER FROM UTRAN COMMAND message with activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink PRACH channel within $D_{handover}$ seconds from the end of the last TTI containing the RRC command, where:

- D_{handover} equals the maximum RRC procedure delay defined plus the interruption time stated in section 5.3a.2.2.

The UE shall process the RRC procedures for the RRC HANDOVER FROM UTRAN COMMAND within [50] ms, which is noted as RRC procedure delay.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink PRACH channel at the designated activation time + interruption time.

5.3a.2.2 Interruption time

The interruption time is the time between end of the last TTI in which the UE has received the handover command and the time the UE starts transmission of the PRACH in the new E-UTRA cell, excluding the RRC procedure delay. This requirement applies when UE is not required to perform any synchronisation procedure before transmitting on the new PRACH.

When inter-RAT handover to E-UTRAN is commanded, the interruption time shall be less than Tinterrupt:

$$T_{interrupt} = T_{search} + T_{IU} + 20 \ ms$$

where

 T_{search} is the time required to search the target cell when the target cell is not already known when the handover command is received by the UE. If the target cell is known, then $T_{search} = 0$ ms.

 T_{IU} is the interruption uncertainty in acquiring the first available PRACH occasion in the new cell. T_{IU} can be up to 30 ms.

NOTE: The actual value of T_{IU} shall depend upon the PRACH configuration used in the target cell.

In the interruption requirement a cell is known if it has been meeting the relevant cell identification requirement during the last 5 seconds otherwise it is unknown. Relevant cell identification requirements are described in Section 8.1.2.7.1 for 3.84 Mcps TDD option and Section 8.1A.2.6.1 for 1.28 Mcps TDD option and Section 8.1B.2.7.1 for 7.68 Mcps TDD option.

5.3b TDD to E-UTRAN TDD Handover

5.3b.1 Introduction

The purpose of inter-RAT handover from UTRAN TDD to E-UTRAN TDD is to transfer a connection between the UE and UTRAN TDD to E-UTRAN TDD. The handover procedure is initiated from UTRAN with a RRC message (HANDOVER FROM UTRAN COMMAND). The procedure is described in TS 25.331.

5.3b.2 Requirements

The requirements in this section shall apply to UE supporting TDD and E-UTRAN TDD.

5.3b.2.1 Handover delay

When the UE receives a RRC HANDOVER FROM UTRAN COMMAND message with activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink UpPTS or PRACH channel within $D_{handover}$ seconds from the end of the last TTI containing the RRC command, where:

- D_{handover} equals the maximum RRC procedure delay defined plus the interruption time stated in section 5.3b.2.2.

The UE shall process the RRC procedures for the RRC HANDOVER FROM UTRAN COMMAND within [50] ms, which is noted as RRC procedure delay.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink [TBD] channel at the designated activation time + interruption time.

5.3b.2.2 Interruption time

The interruption time is the time between end of the last TTI in which the UE has received the handover command and the time the UE starts transmission of the UpPTS or PRACH in the new E-UTRA cell, excluding the RRC procedure delay. This requirement applies when UE is not required to perform any synchronisation procedure before transmitting on the new UpPTS or PRACH.

When inter-RAT handover to E-UTRAN is commanded, the interruption time shall be less than T_{interrupt}:

$$T_{interrupt} = T_{search} + T_{IU} + 20 \text{ ms}$$

where

 T_{search} is the time required to search the target cell when the target cell is not already known when the handover command is received by the UE. If the target cell is known, then $T_{search} = 0$ ms.

 T_{IU} is the interruption uncertainty in acquiring the first available UpPTS or PRACH occasion in the new cell. T_{IU} can be up to 30 ms.

NOTE: The actual value of T_{IU} shall depend upon the PRACH configuration used in the target cell.

In the interruption requirement a cell is known if it has been meeting the relevant cell identification requirement during the last 5 seconds otherwise it is unknown. Relevant cell identification requirements are described in Section 8.1.2.8.1 for 3.84 Mcps TDD option and Section 8.1A.2.7.1 for 1.28 Mcps TDD option and Section 8.1B.2.8.1 for 7.68 Mcps TDD option.

5.4 Cell Re-selection in Cell_FACH

5.4.1 Introduction

The UE shall evaluate the cell re-selection criteria specified in [18], based on radio measurements, and if a better ranked cell is found that cell is selected.

5.4.2 Requirements for 3.84Mcps TDD option

The cell re-selection delays specified below are applicable when the RRC parameter $T_{reselection}$ is set to 0. Otherwise the Cell reselection delay is increased by $T_{reselection}$ s.

P-CCPCH RSCP shall be used for cell reselection in Cell-FACH state to another TDD cell, CPICH Ec/Io and CPICH RSCP shall be used for cell re-selection to a FDD cell and GSM carrier RSSI shall be used for cell re-selection to a GSM cell. The accuracies of the measurements used for cell re-selection in an AWGN environment shall comply with the requirements in chapter 9. The measurements used for S-criteria and cell re-selection evaluation in CELL_FACH state shall be performed according to section 8.4.

5.4.2.1 Cell re-selection delay

For UTRA TDD, the cell re-selection delay is defined as the time between the occurrence of an event which will trigger the cell re-selection process and the moment in time when the UE starts sending the RRC CELL UPDATE message to the UTRAN on RACH.

For UTRA FDD, the cell re-selection delay is defined as the time between the occurrence of an event which will trigger the cell re-selection process and the moment in time when the UE starts sending the the preambles on the PRACH for sending RRC CELL UPDATE message to the UTRAN.

For GSM, the cell re-selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselection process and the moment in time when the UE starts sending the random access in the target cell of the new RAT

These requirements assume radio conditions to be sufficient, so that reading of system information can be done without errors.

5.4.2.1.1 Intra-frequency cell re-selection

The cell re-selection delay in CELL_FACH state for intra frequency TDD cells shall be less than:

$$T_{\text{reselection, intra}} = T_{\text{identify, intra}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

where

 $T_{identify,\;intra}$ is specified in 8.4.2.2.1.

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system information blocks defined in [16] for a UTRAN cell.

 T_{RA} is the additional delay caused by the random access procedure.

If a cell has been detectable at least $T_{identify,intra}$, the cell re-selection delay in CELL_FACH state to an intra-frequency TDD cell shall be less than,

$$T_{reselection, intra} = T_{measurement period, intra} + T_{IU} + 20 + T_{SI} + T_{RA} ms$$

where

T_{measurement period intra} is specified in 8.4.2.2.2.

5.4.2.1.2 Inter-frequency cell re-selection

The cell re-selection delay in CELL_FACH state for inter-frequency TDD cells shall be less than:

$$T_{\text{reselection, inter}} = T_{\text{identify, inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

where

T_{identify, inter} is specified in 8.4.2.3.1.

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be

up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the

reception procedure and the RRC procedure performance value of system information blocks

defined in [16] for a UTRAN cell.

T_{RA} is the additional delay caused by the random access procedure.

If a cell has been detectable at least $T_{identify,inter}$, the cell re-selection delay in CELL_FACH state to an inter-frequency TDD cell shall be less than,

$$T_{\text{reselection, inter}} = T_{\text{measurement inter}} + T_{\text{IU}} + 20 + T_{\text{SL}} + T_{\text{RA}} \text{ ms}$$

where

 $T_{\text{measurement inter}}$ is specified in 8.4.2.3.2.

5.4.2.1.3 TDD FDD cell re-selection

The requirements in this section shall apply to UE supporting TDD and FDD.

The cell re-selection delay in CELL_FACH state to an inter-frequency FDD cells shall be less than:

$$T_{\text{reselection, FDD}} = T_{\text{identify FDD inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

where

T_{identify, FDD} is specified in 8.4.2.4.1

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be

up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the

reception procedure and the RRC procedure performance value of system information blocks

defined in [16] for a UTRAN cell.

T_{RA} is the additional delay caused by the random access procedure.

If a cell has been detectable at least $T_{identify\;FDD\;inter}$, the cell re-selection delay in CELL_FACH state to an interfrequency FDD cell shall be less than,

$$T_{\rm reselection,\,FDD} = T_{\rm measurement\,FDD\,inter} + T_{\rm IU} + 20 + T_{\rm SI} + T_{\rm RA}\,{\rm ms}$$

where

T_{measurement FDD inter} is specified in 8.4.2.4.1.

5.4.2.1.4 Inter-RAT cell re-selection

The requirements in this section shall apply to UE supporting TDD and GSM.

The cell re-selection delay in CELL_FACH state for inter-RAT cells shall be less than:

$$T_{\text{reselection GSM}} = T_{\text{identify GSM}} + T_{\text{measurement GSM}} + 40 + T_{\text{BCCH}} + T_{\text{RA}} \text{ ms}$$

where

T_{BCCH} is the maximum time allowed to read the BCCH data from a GSM cell [21].

T_{RA} is the additional delay caused by the random access procedure.

a) For a UE using measurement occasions and idle intervals to perform GSM measurements

T_{identify, GSM} equal to T_{identify about} as is specified in 8.4.2.5.2.1.

$$T_{\text{measurement, GSM}} = Max \left\{ 8 \cdot \frac{N_{carriers}}{N_{GSM \ carrier RSSI}} \cdot T_{meas}, 4 * T_{meas}, 480 ms \right\}$$

where

N_{carriers} is the number of GSM carriers in the Inter-RAT cell info list

 $N_{GSM\ carrier\ RSSI}$ shall be derived from the values in table 8.7 section 8.4.2.5.1.

 T_{meas} is specified in section 8.4.2.1.

b) For a UE not using measurement occasions and idle intervals to perform GSM measurements

 $T_{identify GSM} = 150 \text{ ms}$

 $T_{\text{measurement GSM}} = 480 \text{ ms}$

5.4.2.2 Interruption time

For UTRA TDD, the interruption time is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts to transmit the RRC CELL UPDATE message to the UTRAN on the RACH.

For UTRA FDD, the interruption time is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts sending preambles on the PRACH for sending the RRC CELL UPDATE message to the UTRAN.

For GSM, the interruption time is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts sending the random access in the target cell of the new RAT.

The requirements on interruption time in this section shall apply only if the signal quality of the serving cell is sufficient to allow decoding of the FACH during cell-re-selection.

5.4.2.2.1 TDD-TDD cell re-selection

In case of cell reselection to an intra-frequency TDD cell or cell re-selection to an inter-frequency TDD cell and when the UE does not need measurement occasions to perform TDD inter-frequency measurements, the interruption time shall be less than.

$$T_{interrupt1} = T_{IU} + 20 + T_{RA} \text{ ms}$$

In case of cell re-selection to an inter-frequency TDD cell and when the UE needs measurement occasions to perform inter-frequency TDD measurements, the interruption time shall be less than

$$T_{interrupt2} = T_{IU} + 20 + T_{SI} + T_{RA} ms$$

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system information blocks defined in [16].

T_{RA} is the additional delay caused by the random access procedure.

5.4.2.2.2 TDD-FDD cell re-selection

The requirements in this section shall apply to UE supporting TDD and FDD.

In case of cell re-selection to an inter-frequency FDD cell and when the UE does not need measurement occasions to perform inter-frequency FDD measurements, the interruption time shall be less than,

$$T_{interrupt1. FDD} = T_{IU} + 20 + T_{RA} ms$$

In case of cell re-selection to an inter-frequency TDD cell and when the UE needs measurement occasions to perform inter-frequency TDD measurements, the interruption time shall be less than

$$T_{interrupt2}$$
, $FDD = T_{IU} + 20 + T_{SI} + T_{RA}$ ms

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system information blocks defined in [16].

 T_{RA} is the additional delay caused by the random access procedure.

5.4.2.2.3 TDD-GSM cell re-selection

The requirements in this section shall apply to UE supporting TDD and GSM.

In case of cell re-selection to an inter-RAT cell, the interruption time shall be less than,

$$T_{interrupt,GSM} = 40 + T_{BCCH} + T_{RA} \text{ ms}$$

where

T_{BCCH} is the maximum time allowed to read BCCH data from the GSM cell [21].

T_{RA} is the additional delay caused by the random access procedure.

5.4.2.3 Measurement and evaluation of cell selection criteria S of serving cell

The S-criteria detection delay is defined as the time between the occurrence of an event which leads to that the cell selection criteria S for serving cell is not fulfilled and the moment in time when the UE detects that the cell selection criteria S for serving cell is not fulfilled.

The UE shall filter the P-CCPCH RSCP measurements used for cell selection criteria S evaluation of the serving cell over at least 3 measurement periods $T_{\text{Measurement period intra}}$.

The S-critera detection delay in CELL_FACH state shall be less than:

$$T_{S-criteria} = 5 \times T_{measurement period intra}$$
 ms

where

 $T_{measurement\ period\ intra}$ is specified in 8.4.2.2.2.

If the UE has evaluated that the serving cell does not fulfil the cell selection criterion S during 4 s and if during this time period the UE has not found any new suitable cell based on measurements of neighbour cells as indicated in the measurement control system information, the UE shall consider having detected "out of service area" and initiate actions according to [16] and [18].

On transition from CELL_DCH to CELL_FACH, if a UE cannot find a suitable UTRA cell, then it is considered to be "out of service area" and shall perform actions according to [16].

5.4.3 Requirements for 1.28Mcps TDD option

The cell re-selection delays specified below are applicable when the RRC parameter $T_{reselection}$ is set to 0. Otherwise the Cell reselection delay is increased by $T_{reselection}$ s.

P-CCPCH RSCP shall be used for cell reselection in Cell-FACH state to another TDD cell, CPICH RSCP and if requested in addition CPICH Ec/Io shall be used for cell re-selection to a FDD cell and GSM BCCH carrier RSSI shall be used for cell re-selection to a GSM cell. The accuracies of the measurements used for cell re-selection in an AWGN environment shall comply with the requirements in chapter 9. The measurements used for S-criteria and cell re-selection evaluation in CELL_FACH state shall be performed according to section 8.4A.

NOTE: In CELL_FACH state, there are no requirements for inter-RAT reselection to an E-UTRAN cell.

5.4.3.1 Measurements

The UE measurement capability according to section 8.4A shall apply.

5.4.3.2 Cell re-selection delay

For cell re-selection to TDD, the cell re-selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselection process and the moment in time when the UE starts to send SYNCH-UL sequence for sending the RRC CELL UPDATE message to the UTRAN.

For cell re-selection to FDD the cell re-selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselection process and the moment in time when the UE starts sending the preambles on the PRACH for sending RRC CELL UPDATE message to the UTRAN.

For cell re-selection to GSM the cell re-selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselection process and the moment in time when the UE starts sending the random access in the target cell of the new RAT.

5.4.3.2.1 Intra-frequency cell re-selection

The cell re-selection delay in CELL_FACH state to an intra frequency cell shall be less than:

$$T_{reselection, intra} = T_{identify intra} + T_{IU} + 20 + T_{SI} + T_{RA} ms$$

If a cell has been detectable at least for $T_{identify,intra}$, the cell re-selection delay in CELL_FACH state to an intra frequency cell shall be less than:

$$T_{\rm reselection,\,intra} = T_{\rm Measurement\,Period\ Intra} + T_{\rm IU} + 20 + T_{\rm SI} + T_{\rm RA} + T_{\rm CSI}\ ms$$

where

T_{identify intra} is specified in 8.4A.2.2.1

T_{Measurement Period Intra} is specified in 8.4A.2.2.2

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be

up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the

reception procedure and the RRC procedure delay of system information blocks defined in [16] for

a UTRAN cell.

T_{RA} is the additional delay caused by the random access procedure.

T_{CSI} is the additional delay in case the cell re-selection indication shall be sent in enhanced

CELL_FACH state. T_{CSI} can be up to one sub frame (5ms) or the delay caused by the random

access procedure (T_{RA}) .

This requirement assumes radio conditions to be sufficient, so reading of system information can be done without errors.

5.4.3.2.2 Inter-frequency TDD cell re-selection

The cell re-selection delay in CELL_FACH state to an inter-frequency TDD cell shall be less than:

$$T_{\text{reselection, inter}} = T_{\text{identify inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} + T_{\text{CSI}} \text{ ms}$$

If a cell has been detectable at least for $T_{identify,inter}$, the cell re-selection delay in CELL_FACH state to an inter frequency cell shall be less than:

$$T_{reselection, inter} = T_{measurement inter} + T_{IU} + 20 + T_{SI} + T_{RA} + T_{CSI} ms$$

where

T_{identify inter} is specified in 8.4A.2.3.1

T_{measurement inter} is specified in 8.4A.2.3.2

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be

up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the

reception procedure and the RRC procedure delay of system information blocks defined in 25.331

for a UTRAN cell.

T_{RA} is the additional delay caused by the random access procedure.

T_{CSI} is the additional delay in case the cell re-selection indication shall be sent in enhanced

CELL_FACH state. T_{CSI} can be up to one sub frame (5ms) or the delay caused by the random

access procedure (T_{RA}) .

This requirement assumes radio conditions to be sufficient, so reading of system information can be done without errors.

5.4.3.2.3 Inter-frequency FDD cell re-selection

The requirements in this section shall apply to UE supporting both 1.28 Mcps TDD and FDD.

The cell re-selection delay in CELL_FACH state to a FDD cell shall be less than:

$$T_{\rm reselection,\,FDD} = T_{\rm identify\,\,FDD\,\,inter} + T_{\rm IU} + 20 + T_{\rm SI} \, + T_{\rm RA} + T_{\rm CSI} \ \, {\rm ms}$$

If a cell has been detectable at least $T_{identify\ FDD\ inter}$, the cell re-selection delay in CELL_FACH state to FDD cell shall be less than:

$$T_{reselection, FDD} = T_{measurement FDD inter} + T_{IU} + 20 + T_{SI} + T_{RA} + T_{CSI} ms$$

where

T_{identify FDD inter} is specified in 8.4A.2.4.1

T_{measurement FDD inter} is specified in 8.4A.2.4.1.

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be

up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the

reception procedure and the RRC procedure delay of system information blocks defined in [16] for

a UTRAN cell.

 T_{RA} is the additional delay caused by the random access procedure.

T_{CSI} is the additional delay in case the cell re-selection indication shall be sent in enhanced

CELL_FACH state. T_{CSI} can be up to one sub frame (5ms) or the delay caused by the random

access procedure (T_{RA}).

This requirement assumes radio conditions to be sufficient, so reading of system information can be done without errors.

5.4.3.2.4 Inter-RAT cell re-selection

The requirements in this section shall apply to UE supporting both 1.28 Mcps TDD and GSM.

The cell re-selection delay in CELL_FACH state to an inter-RAT cell shall be less than:

$$T_{\rm reselection,\,GSM} = T_{\rm identify\ GSM} + T_{\rm measurement\,GSM} + 40 + T_{\rm BCCH} + T_{\rm RA} + T_{\rm CSI}\ {\rm ms}$$

 T_{RA} = The additional delay caused by the random access procedure.

T_{BCCH} = The maximum time allowed to read BCCH data from GSM cell [21].

T_{CSI} is the additional delay in case the cell re-selection indication shall be sent in enhanced

CELL_FACH state. T_{CSI} can be up to one sub frame (5ms) or the delay caused by the random

access procedure (T_{RA}) .

where

a) For UE requiring idle intervals or measurement occasions:

 $T_{identify\;GSM}$ is equal to $T_{identify\;abort}$ as specified in 8.4A.2.5.2.1.

 $T_{\text{Measurement GSM}}$ is the worst case time for measuring one previously identified GSM carrier.

$$T_{\text{measurement GSM}} = Max \left\{ 8 \cdot \frac{N_{carriers}}{N_{GSM \ carrierRSSI}} \cdot T_{meas}, 480ms \right\}$$

where

N_{carriers} is the number of GSM carriers in the Inter-RAT cell info list

 $N_{GSM\ carrier\ RSSI}$ is specified in section 8.4A.2.5.1.

 T_{meas} is specified in section 8.4A.2.1.

b) For UE not requiring idle intervals and measurement occasions

 $T_{identify, GSM} = 150 \text{ ms}$

 $T_{Measurement, GSM} = 480 \text{ ms}$

This requirement assumes radio conditions to be sufficient, so reading of system information can be done without errors.

5.4.3.3 Interruption time

For UTRA TDD, the interruption time is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts to transmit the SYNCH-UL sequence in the UpPTS for sending the RRC CELL UPDATE message to the UTRAN.

For UTRA FDD, the interruption time is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts sending preambles on the PRACH for sending the RRC CELL UPDATE message to the UTRAN.

For GSM, the interruption time is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts sending the random access in the target cell of the new RAT.

The requirements on interruption time in this section shall apply only if the signal quality of the serving cell is sufficient to allow decoding of the FACH during cell-re-selection.

5.4.3.3.1 TDD-TDD cell re-selection

In case of cell re-selection to a TDD cell, the interruption time shall be less than

$$\boldsymbol{T}_{interrupt,\;TDD} = \boldsymbol{T}_{IU} + 20 + \boldsymbol{T}_{SI} + \boldsymbol{T}_{RA} + \boldsymbol{T}_{CSI}\;ms$$

where

 T_{SI}

 T_{RA}

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system information blocks defined in [16].

is the additional delay caused by the random access procedure.

T_{CSI} is the additional delay in case the cell re-selection indication shall be sent in enhanced

CELL_FACH state. T_{CSI} can be up to one sub frame (5ms) or the delay caused by the random

access procedure (T_{RA}).

5.4.3.3.2 TDD-FDD cell re-selection

The requirements in this section shall apply to UE supporting both 1.28 Mcps TDD and FDD.

In case of cell re-selection to a FDD cell, the interruption time shall be less than

$$T_{\text{interrupt, FDD}} = T_{IU} + 20 + T_{SI} + T_{RA} + T_{CSI}$$
 ms

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system information blocks

defined in [16].

T_{RA} is the additional delay caused by the random access procedure.

T_{CSI} is the additional delay in case the cell re-selection indication shall be sent in enhanced

CELL_FACH state. T_{CSI} can be up to one sub frame (5ms) or the delay caused by the random

access procedure (T_{RA}).

5.4.3.3.3 TDD-GSM cell re-selection

The requirements in this section shall apply to UE supporting both 1.28 Mcps TDD and GSM.

In case of cell re-selection to an inter-RAT cell, the interruption time shall be less than

$$T_{interrupt,GSM} = 40 + T_{BCCH} + T_{RA} + T_{CSI} ms$$

where

T_{BCCH} is the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} is the additional delay caused by the random access procedure.

T_{CSI} is the additional delay in case the cell re-selection indication shall be sent in enhanced

CELL_FACH state. T_{CSI} can be up to one sub frame (5ms) or the delay caused by the random

access procedure (T_{RA}).

5.4.3.4 Measurement and evaluation of cell selection criteria S of serving cell

The S-criteria detection delay is defined as the time between the occurrence of an event which leads to that the cell selection criteria S for serving cell is not fulfilled and the moment in time when the UE detects that the cell selection criteria S for serving cell is not fulfilled.

The UE shall filter the P-CCPCH RSCP measurements used for cell selection criteria S evaluation of the serving cell over at least 3 measurement periods $T_{Measurement_Period\ Intra}$.

The S-critera detection delay in CELL_FACH state shall be less than:

$$T_{S\text{-criteria}} = 5 \times T_{\text{Measurement Period Intra}} \text{ ms}$$

where T_{Measurement_Period Intra} is specified in 8.4A.2.2.2.

The UE is "out of service area" if the UE has evaluated for 4 s that that the serving cell does not fulfil the cell selection criterion S and if the UE has not found any new suitable cell based on searches and measurements of the neighbour cells indicated in the measurement control system information during these 4 s. When the UE is "out of service area" it shall initiate cell selection procedures for the selected PLMN as defined in [18].

On transition from CELL_DCH to CELL_FACH, if a UE cannot find a suitable UTRA cell, then it is considered to be "out of service area" and shall perform actions according to [16].

5.4.4 Requirements for 7.68Mcps TDD option

The cell re-selection delays specified below are applicable when the RRC parameter $T_{reselection}$ is set to 0. Otherwise the Cell reselection delay is increased by $T_{reselection}$ s.

P-CCPCH RSCP shall be used for cell reselection in Cell-FACH state to another TDD cell, CPICH Ec/Io and CPICH RSCP shall be used for cell re-selection to a FDD cell and GSM carrier RSSI shall be used for cell re-selection to a GSM cell. The accuracies of the measurements used for cell re-selection in an AWGN environment shall comply with

the requirements in chapter 9. The measurements used for S-criteria and cell re-selection evaluation in CELL_FACH state shall be performed according to section 8.4B.

5.4.4.1 Cell re-selection delay

For UTRA TDD, the cell re-selection delay is defined as the time between the occurrence of an event which will trigger the cell re-selection process and the moment in time when the UE starts sending the RRC CELL UPDATE message to the UTRAN on RACH.

For UTRA FDD, the cell re-selection delay is defined as the time between the occurrence of an event which will trigger the cell re-selection process and the moment in time when the UE starts sending the the preambles on the PRACH for sending RRC CELL UPDATE message to the UTRAN.

For GSM, the cell re-selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselection process and the moment in time when the UE starts sending the random access in the target cell of the new RAT.

These requirements assume radio conditions to be sufficient, so that reading of system information can be done without errors.

5.4.4.1.1 Intra-frequency cell re-selection

The cell re-selection delay in CELL_FACH state for intra frequency TDD cells shall be less than:

$$T_{\text{reselection, intra}} = T_{\text{identify, intra}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}}$$
 ms

where

 $T_{identify, intra}$ is specified in 8.4B.2.2.1.

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be

up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the

reception procedure and the RRC procedure performance value of system information blocks

defined in [16] for a UTRAN cell.

T_{RA} is the additional delay caused by the random access procedure.

If a cell has been detectable at least $T_{identify,intra}$, the cell re-selection delay in CELL_FACH state to an intra-frequency TDD cell shall be less than,

$$T_{\rm reselection,\,intra} = T_{\rm measurement\,period,\,intra} + T_{\rm IU} + 20 + T_{\rm SI} + T_{\rm RA} \ \, {\rm ms}$$

where

T_{measurement period intra} is specified in 8.4B.2.2.2.

5.4.4.1.2 Inter-frequency cell re-selection

The cell re-selection delay in CELL_FACH state for inter-frequency TDD cells shall be less than:

$$T_{reselection, inter} = T_{identify, inter} + T_{IU} + 20 + T_{SI} + T_{RA} \text{ ms}$$

where

 $T_{identify, inter}$ is specified in 8.4B.2.3.1.

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be

up to one frame (10 ms).

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system information blocks defined in [16] for a UTRAN cell.

 T_{RA} is the additional delay caused by the random access procedure.

If a cell has been detectable at least $T_{identify,inter}$, the cell re-selection delay in CELL_FACH state to an inter-frequency TDD cell shall be less than,

$$T_{reselection, inter} = T_{measurement inter} + T_{IU} + 20 + T_{SI} + T_{RA} ms$$

where

T_{measurement inter} is specified in 8.4B.2.3.2.

5.4.4.1.3 TDD FDD cell re-selection

The requirements in this section shall apply to UE supporting TDD and FDD.

The cell re-selection delay in CELL_FACH state to an inter-frequency FDD cells shall be less than:

$$T_{\text{reselection, FDD}} = T_{\text{identify FDD inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

where

T_{identify, FDD} is specified in 8.4B.2.4.1

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be

up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the

reception procedure and the RRC procedure performance value of system information blocks

defined in [16] for a UTRAN cell.

 T_{RA} is the additional delay caused by the random access procedure.

If a cell has been detectable at least $T_{identify\;FDD\;inter}$, the cell re-selection delay in CELL_FACH state to an interfrequency FDD cell shall be less than,

$$T_{\text{reselection.FDD}} = T_{\text{measurement FDD inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

where

 $T_{\text{measurement FDD inter}}$ is specified in 8.4B.2.4.1.

5.4.4.1.4 Inter-RAT cell re-selection

The requirements in this section shall apply to UE supporting TDD and GSM.

The cell re-selection delay in CELL_FACH state for inter-RAT cells shall be less than:

$$T_{\rm reselection\,GSM} = T_{\rm identify\,GSM} + T_{\rm measurement\,\,GSM} + 40 + T_{\rm BCCH} + T_{\rm RA}\,{\rm ms}$$

where

T_{BCCH} is the maximum time allowed to read the BCCH data from a GSM cell [21].

T_{RA} is the additional delay caused by the random access procedure.

a) For a UE using measurement occasions and idle intervals to perform GSM measurements

T_{identify, GSM} equal to T_{identify about} as is specified in 8.4B.2.5.2.1.

$$T_{\text{measurement, GSM}} = Max \left\{ 8 \cdot \frac{N_{carriers}}{N_{GSM \ carrier RSSI}} \cdot T_{meas}, 4 * T_{meas}, 480ms \right\}$$

where

N_{carriers} is the number of GSM carriers in the Inter-RAT cell info list

 $N_{GSM\ carrier\ RSSI}$ shall be derived from the values in section 8.4B.2.5.1.

T_{meas} is specified in section 8.4B.2.1.

b) For a UE not using measurement occasions and idle intervals to perform GSM measurements

 $T_{identify GSM} = 150 \text{ ms}$

 $T_{measurement GSM} = 480 \text{ ms}$

5.4.4.2 Interruption time

For UTRA TDD, the interruption time is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts to transmit the RRC CELL UPDATE message to the UTRAN on the RACH.

For UTRA FDD, the interruption time is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts sending preambles on the PRACH for sending the RRC CELL UPDATE message to the UTRAN.

For GSM, the interruption time is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts sending the random access in the target cell of the new RAT.

The requirements on interruption time in this section shall apply only if the signal quality of the serving cell is sufficient to allow decoding of the FACH during cell-re-selection.

5.4.4.2.1 TDD-TDD cell re-selection

In case of cell reselection to an intra-frequency TDD cell or cell re-selection to an inter-frequency TDD cell and when the UE does not need measurement occasions to perform TDD inter-frequency measurements, the interruption time shall be less than,

$$T_{interrupt1} = T_{IU} + 20 + T_{RA} \text{ ms}$$

In case of cell re-selection to an inter-frequency TDD cell and when the UE needs measurement occasions to perform inter-frequency TDD measurements, the interruption time shall be less than

$$T_{interrupt2} = T_{IU} + 20 + T_{SI} + T_{RA} \text{ ms}$$

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system information blocks defined in [16].

T_{RA} is the additional delay caused by the random access procedure.

5.4.4.2.2 TDD-FDD cell re-selection

The requirements in this section shall apply to UE supporting TDD and FDD.

In case of cell re-selection to an inter-frequency FDD cell and when the UE does not need measurement occasions to perform inter-frequency FDD measurements, the interruption time shall be less than,

$$T_{interrupt1, FDD} = T_{IU} + 20 + T_{RA} ms$$

In case of cell re-selection to an inter-frequency TDD cell and when the UE needs measurement occasions to perform inter-frequency TDD measurements, the interruption time shall be less than

$$T_{interrupt2, FDD} = T_{IU} + 20 + T_{SI} + T_{RA} ms$$

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be

up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the

reception procedure and the RRC procedure performance value of system information blocks

defined in [16].

T_{RA} is the additional delay caused by the random access procedure.

5.4.4.2.3 TDD-GSM cell re-selection

The requirements in this section shall apply to UE supporting TDD and GSM.

In case of cell re-selection to an inter-RAT cell, the interruption time shall be less than,

$$T_{interrupt.GSM} = 40 + T_{BCCH} + T_{RA} \text{ ms}$$

where

T_{BCCH} is the maximum time allowed to read BCCH data from the GSM cell [21].

T_{RA} is the additional delay caused by the random access procedure.

5.4.4.3 Measurement and evaluation of cell selection criteria S of serving cell

The S-criteria detection delay is defined as the time between the occurrence of an event which leads to that the cell selection criteria S for serving cell is not fulfilled and the moment in time when the UE detects that the cell selection criteria S for serving cell is not fulfilled.

The UE shall filter the P-CCPCH RSCP measurements used for cell selection criteria S evaluation of the serving cell over at least 3 measurement periods $T_{\text{Measurement period intra}}$.

The S-critera detection delay in CELL_FACH state shall be less than:

$$T_{S\text{-criteria}} = 5 \times T_{measurement period intra}$$
 ms

where

 $T_{\text{measurement period intra}}$ is specified in 8.4B.2.2.2.

If the UE has evaluated that the serving cell does not fulfil the cell selection criterion S during 4 s and if during this time period the UE has not found any new suitable cell based on measurements of neighbour cells as indicated in the measurement control system information, the UE shall consider having detected "out of service area" and initiate actions according to [16] and [18].

On transition from CELL_DCH to CELL_FACH, if a UE cannot find a suitable UTRA cell, then it is considered to be "out of service area" and shall perform actions according to [16].

5.5 Cell Re-selection in Cell PCH

5.5.1 Introduction

The UE shall evaluate the cell re-selection criteria specified in [18], based on radio measurements, and if a better cell is found that cell is selected.

5.5.2 Requirements

5.5.2.1 3.84 Mcps option

Requirements for cell re-selection in Cell_PCH state are the same as for cell re-selection in idle mode, see section 4.2. The UE shall support all DRX cycle lengths in table 4.1, according to [16].

The UE shall consider having detected "out of service area" and initiate actions according to [16] and [18], if the serving cell does not fulfil the cell selection criterion S in N_{serv} consecutive DRX cycles and if during the following 12 s no new suitable cell based upon measurements of all neighbour cells indicated in the measurement control system information has been found.

5.5.2.2 1.28 Mcps option

Requirements for cell re-selection in Cell_PCH state are the same as for cell re-selection in idle mode, see section 4.2. The UE shall support all DRX cycle lengths in table 4.1A, according to [16].

5.5.2.3 7.68 Mcps option

Requirements for cell re-selection in Cell_PCH state are the same as for cell re-selection in idle mode, see section 4.2. The UE shall support all DRX cycle lengths in table 4.1B, according to [16].

The UE shall consider having detected "out of service area" and initiate actions according to [16] and [18], if the serving cell does not fulfil the cell selection criterion S in N_{serv} consecutive DRX cycles and if during the following 12 s no new suitable cell based upon measurements of all neighbour cells indicated in the measurement control system information has been found.

5.6 Cell Re-selection in URA_PCH

5.6.1 Introduction

The UE shall evaluate the cell re-selection criteria specified in [18], based on radio measurements, and if a better cell is found that cell is selected.

5.6.2 Requirements

5.6.2.1 3.84 Mcps option

Requirements for cell re-selection in URA_PCH state are the same as for cell re-selection in idle mode, see section 4.2. The UE shall support all DRX cycle lengths in table 4.1, according to [16].

The UE shall consider having detected "out of service area" and initiate actions according to [16] and [18], if the serving cell does not fulfil the cell selection criterion S in N_{serv} consecutive DRX cycles and if during the following 12 s no new suitable cell based upon measurements of all neighbour cells indicated in the measurement control system information has been found.

5.6.2.2 1.28 Mcps option

Requirements for cell re-selection in URA_PCH state are the same as for cell re-selection in idle mode, see section 4.2. The UE shall support all DRX cycle lengths in table 4.1A, according to [16].

5.6.2.3 7.68 Mcps option

Requirements for cell re-selection in URA_PCH state are the same as for cell re-selection in idle mode, see section 4.2. The UE shall support all DRX cycle lengths in table 4.1B, according to [16].

The UE shall consider having detected "out of service area" and initiate actions according to [16] and [18], if the serving cell does not fulfil the cell selection criterion S in N_{serv} consecutive DRX cycles and if during the following 12 s no new suitable cell based upon measurements of all neighbour cells indicated in the measurement control system information has been found.

5.7 RACH reporting

5.7.1 Introduction

5.7.1.1 3.84 Mcps TDD option

The network may request the UE to report on RACH P-CCPCH RSCP for the serving cell and up to 6 strongest monitored set cells and SFN-SFN observed time difference between the serving cell and up to 6 different monitored set cells.

5.7.1.2 1.28 Mcps TDD option

The network may request the UE to report on RACH P-CCPCH RSCP for the serving cell and up to 6 strongest monitored set cells and SFN-SFN observed time difference between the serving cell and up to 6 different monitored set cells.

5.7.1.3 7.68 Mcps TDD option

The network may request the UE to report on RACH P-CCPCH RSCP for the serving cell and up to 6 strongest monitored set cells and SFN-SFN observed time difference between the serving cell and up to 6 different monitored set cells.

5.7.2 Requirements

5.7.2.1 3.84 Mcps TDD option

If all of the following conditions are true, the UE is allowed to have an additional delay of $N_{RACH}*50$ ms in RACH transmission compared to the normal RACH transmission delay.

- SFN-SFN observed time difference measurement results are required to be reported on RACH
- The set of cells on which the SFN-SFN observed time difference measurement is to be reported has not changed since the previous RACH measurement report
- The UE has not measured the SFN-SFN observed time differences for the cells to be reported on RACH in the CELL_FACH state according to the requirements defined in Section 8.4.2.2

If at least one of the previous conditions is false, the UE shall be able to report the requested measurement results on RACH within a normal RACH transmission delay.

 N_{RACH} is the number of cells requiring SFN decoding prior to the reporting of SFN-SFN observed time difference measurement results on RACH.

5.7.2.2 1.28 Mcps TDD option

If all of the following conditions are true, the UE is allowed to have an additional delay of $N_{RACH}*50$ ms in RACH transmission compared to the normal RACH transmission delay.

- SFN-SFN observed time difference measurement results are required to be reported on RACH

- The set of cells on which the SFN-SFN observed time difference measurement is to be reported has not changed since the previous RACH measurement report
- The UE has not measured the SFN-SFN observed time differences for the cells to be reported on RACH in the CELL_FACH state according to the requirements defined in Section 8.4A.2.2

If at least one of the previous conditions is false, the UE shall be able to report the requested measurement results on RACH within a normal RACH transmission delay.

 N_{RACH} is the number of cells requiring SFN decoding prior to the reporting of SFN-SFN observed time difference measurement results on RACH.

5.7.2.3 7.68 Mcps TDD option

If all of the following conditions are true, the UE is allowed to have an additional delay of $N_{RACH}*50$ ms in RACH transmission compared to the normal RACH transmission delay.

- SFN-SFN observed time difference measurement results are required to be reported on RACH
- The set of cells on which the SFN-SFN observed time difference measurement is to be reported has not changed since the previous RACH measurement report
- The UE has not measured the SFN-SFN observed time differences for the cells to be reported on RACH in the CELL_FACH state according to the requirements defined in Section 8.4B.2.2

If at least one of the previous conditions is false, the UE shall be able to report the requested measurement results on RACH within a normal RACH transmission delay.

N_{RACH} is the number of cells requiring SFN decoding prior to the reporting of SFN-SFN observed time difference measurement results on RACH.

5.8 Inter-RAT cell change order from UTRAN in CELL_DCH and CELL FACH

5.8.1 Introduction

5.8.1.1 3.84 Mcps TDD option

The purpose of inter-RAT cell change order from UTRAN TDD to GSM is to transfer a connection between the UE and UTRAN TDD to GSM. This procedure may be used in CELL_DCH and CELL_FACH state. The cell change order procedure is initiated from UTRAN with a RRC message (CELL CHANGE ORDER FROM UTRAN). The procedure is described in [16].

5.8.1.2 1.28 Mcps TDD option

The purpose of inter-RAT cell change order from 1.28 Mcps TDD to GSM is to transfer a connection between the UE and 1.28 Mcps TDD to GSM. This procedure may be used in CELL_DCH and CELL_FACH state. The cell change order procedure is initiated from UTRAN with a RRC message (CELL CHANGE ORDER FROM UTRAN). The procedure is described in [16].

NOTE: No procedure is defined for Inter-RAT cell change order from 1.28Mcps TDD to E-UTRAN.

5.8.1.3 7.68 Mcps TDD option

The purpose of inter-RAT cell change order from UTRAN TDD to GSM is to transfer a connection between the UE and UTRAN TDD to GSM. This procedure may be used in CELL_DCH and CELL_FACH state. The cell change order procedure is initiated from UTRAN with a RRC message (CELL CHANGE ORDER FROM UTRAN). The procedure is described in [16].

5.8.2 Requirements

5.8.2.1 Delay

5.8.2.1.1 3.84 Mcps TDD option

The requirements in this section shall apply to UE supporting 3.84 Mcps TDD and GSM.

When the UE receives a RRC CELL CHANGE ORDER FROM UTRAN COMMAND with the activation time "now" or earlier than the value in table 5.5 from the end of the last TTI containing the RRC command, the UE shall start transmit the random access in the target cell of the new RAT within the value in table 5.5 from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than the value in table 5.5 from the end of the last TTI containing the RRC command, the UE shall start transmit the random access in the target cell of the new RAT at the designated activation time.

The UE shall process the RRC procedures for the RRC CELL CHANGE ORDER FROM UTRAN COMMAND within 50 ms. If the activation time is used, it corresponds to the CFN of the UTRAN channel.

Table 5.5: Inter-RAT cell change order from UTRAN - delay

UE synchronisation status	delay [ms]
The UE has synchronised to the GSM cell before the CELL	$90 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before the CELL	190 + T _{BCCH} +T _{RA}
CHANGE ORDER FROM UTRAN COMMAND is received	

where

 T_{BCCH} = the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} = the additional delay caused by the random access procedure

5.8.2.1.2 1.28 Mcps TDD option

The requirements in this section shall apply to UE supporting both 1.28 Mcps TDD and GSM.

The RRC procedure performance value for the RRC CELL CHANGE ORDER FROM UTRAN COMMAND shall be within 50 ms.

If the activation time is used in the RRC CELL CHANGE ORDER FROM UTRAN COMMAND, it corresponds to the CFN of the UTRAN channel.

When the UE receives a RRC CELL CHANGE ORDER FROM UTRAN COMMAND with the activation time "now" or earlier than the value in table 5.5A from the end of the last TTI containing the RRC command, the UE shall start transmit the random access in the target cell of the new RAT within the value in table 5.5A from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than the value in table 5.5A from the end of the last TTI containing the RRC command, the UE shall start transmit the random access in the target cell of the new RAT at the designated activation time.

Table 5.5A: Inter-RAT cell change order from UTRAN - delay

UE synchronisation status	delay [ms]
The UE has synchronised to the GSM cell before the CELL	90 + T _{BCCH} +T _{RA}
CHANGE ORDER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before the CELL	190 + T _{BCCH} +T _{RA}
CHANGE ORDER FROM UTRAN COMMAND is received	

where

 T_{BCCH} = the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} = the additional delay caused by the random access procedure

5.8.2.1.3 7.68 Mcps TDD option

The requirements in this section shall apply to UE supporting 7.68 Mcps TDD and GSM.

When the UE receives a RRC CELL CHANGE ORDER FROM UTRAN COMMAND with the activation time "now" or earlier than the value in table 5.5B from the end of the last TTI containing the RRC command, the UE shall start transmit the random access in the target cell of the new RAT within the value in table 5.5B from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than the value in table 5.5B from the end of the last TTI containing the RRC command, the UE shall start transmit the random access in the target cell of the new RAT at the designated activation time.

The UE shall process the RRC procedures for the RRC CELL CHANGE ORDER FROM UTRAN COMMAND within 50 ms. If the activation time is used, it corresponds to the CFN of the UTRAN channel.

Table 5.5B: Inter-RAT cell change order from UTRAN - delay

UE synchronisation status	delay [ms]
The UE has synchronised to the GSM cell before the CELL	$90 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before the CELL	190 + T _{BCCH} +T _{RA}
CHANGE ORDER FROM UTRAN COMMAND is received	

where

T_{BCCH} = the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} = the additional delay caused by the random access procedure

5.8.2.2 Interruption time

5.8.2.2.1 3.84 Mcps TDD option

The requirements in this section shall apply to UE supporting 3.84 Mcps TDD and GSM.

The requirements on interruption time below is valid when the signal quality of the serving cell is good enough to allow decoding of the old channel during the inter-RAT cell change order from UTRAN delay.

The interruption time, i.e. the time between the end of the last TTI containing a transport block that the UE is able to receive on the old channel and the time the UE starts transmit the random access in the target cell, shall be less than the value in table 5.6. The requirement in table 5.6 for the case, that UE is not synchronised to the GSM cell before the CELL CHANGE ORDER FROM UTRAN COMMAND is received, is valid when the signal quality of the GSM cell is good enough for successful synchronisation with one attempt.

Table 5.6: Inter-RAT cell change order from UTRAN - interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the CELL	$40 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before the CELL	$140 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	

where

T_{BCCH} = the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} = the additional delay caused by the random access procedure

5.8.2.2.2 1.28 Mcps TDD option

The requirements in this section shall apply to UE supporting both 1.28 Mcps TDD and GSM.

The requirement on interruption time below is valid when the signal quality of the serving cell is good enough to allow decoding of the old channel during the inter-RAT cell change order from UTRAN delay.

The interruption time, i.e. the time between the end of the last TTI containing a transport block that the UE is able to receive on the old channel and the time the UE starts transmit the random access in the target cell, shall be less than the value in table 5.6A.

Table 5.6A: Inter-RAT cell change order from UTRAN - interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the CELL	$40 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before the CELL	$140 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	

where

 T_{BCCH} = the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} = the additional delay caused by the random access procedure

The requirements in Table 5.6A for the case where the UE has not synchronised to the GSM target cell before receiving the RRC CELL CHANGE ORDER FROM UTRAN COMMAND shall apply only if the signal quality of the GSM target cell is sufficient for successful synchronisation with one attempt.

If the UE is unable to synchronise to the GSM cell on the first attempt, it shall continue to search for synchronisation information for up to 800 ms. If after 800 ms the UE has not synchronised to the GSM cell it shall follow the cell change order from UTRAN failure procedure specified in [16].

5.8.2.2.3 7.68 Mcps TDD option

The requirements in this section shall apply to UE supporting 7.68 Mcps TDD and GSM.

The requirements on interruption time below is valid when the signal quality of the serving cell is good enough to allow decoding of the old channel during the inter-RAT cell change order from UTRAN delay.

The interruption time, i.e. the time between the end of the last TTI containing a transport block that the UE is able to receive on the old channel and the time the UE starts transmit the random access in the target cell, shall be less than the value in table 5.6B. The requirement in table 5.6B for the case, that UE is not synchronised to the GSM cell before the CELL CHANGE ORDER FROM UTRAN COMMAND is received, is valid when the signal quality of the GSM cell is good enough for successful synchronisation with one attempt.

Table 5.6B: Inter-RAT cell change order from UTRAN - interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the CELL	$40 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before the CELL	$140 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	

where

 T_{BCCH} = the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} = the additional delay caused by the random access procedure

6 (void)

6A RRC Connection Control

6A.1 RRC re-establishment

6A.1.1 Introduction

RRC connection re-establishment is needed, when a UE in CELL_DCH state loses radio connection due to radio link failure. The procedure when a radio link failure occurs in CELL_DCH state is specified in [16].

6A.1.2 Requirements

6A.1.2.1 3.84Mcps TDD option

The requirements in this section are applicable when the UE performs a RRC connetion re-establishment to a cell belonging to any of the frequencies present in the previous monitored set.

The UE moves from CELL_DCH to CELL_FACH state and shall be capable of sending a RRC CELL UPDATE message using the cause value "radio link failure" within $T_{RE\text{-}ESTABLISH}$ seconds from when the radio link failure occurred.

 $T_{RE-ESTABLISH}$ equals the RRC procedure performance value $T_{RRC-RE-ESTABLISH}$ according to [16] plus the UE reestablishment delay $T_{UE-RE-ESTABLISH-REO}$ specified in 6A.1.2.1.

$$T_{RE-ESTABLISH} = T_{RRC-RE-ESTABLISH} + T_{UE-RE-ESTABLISH-REQ}$$

6A.1.2.1.1 UE re-establishment delay requirement

For UTRA TDD, the UE re-establishment delay $T_{\text{UE-RE-ESTABLISH-REQ}}$ is defined as the time between the moment when radio link failure is considered by the UE to when the UE starts sending the RRC CELL UPDATE message to the UTRAN on RACH.

 $T_{UE-RE-ESTABLISH-REQ}$ is depending on whether the target cell is known by the UE or not. A cell shall be considered known by the UE if either or both of the following conditions are true:

- the UE has had a radio link connected to the cell during the last 5 seconds
- the cell has been measured by the UE during the last 5 seconds.

In case that the target cell is known by the UE, the UE re-establishment delay shall be less than

$$T_{UE-RE-ESTABLISH-REQ-KNOWN} = 50 + T_{SEARCH-KNOWN} + T_{SI}$$
 ms

In case that the target cell is not known by the UE, the UE re-establishment delay shall be less than,

$$T_{\text{UE-RE-ESTABLISH-REQ-UNKNOWN}} = 50 + T_{\text{SEARCH-UNKNOWN}} * NF + T_{\text{SI}} \text{ ms}$$

in case that the target cell is not known by the UE;

where.

T_{SEARCH-KNOWN} Equal to 100 ms, the time it takes for the UE to search for the known target cell

 $T_{SEARCH-UNKNOWN}$ Equal to 800 ms, the time it takes for the UE to search for the unknown target cell

 T_{SI} The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system information blocks defined in [16] for a UTRAN cell.

NF The number of different frequencies in the previous (old) monitored set.

These requirements assume radio conditions to be sufficient, so that reading of system information can be done without errors.

6A.1.2.2 1.28Mcps TDD option

The requirements in this section are applicable when the UE performs a RRC connection re-establishment to a cell belonging to any of the frequencies present in the previous monitored set.

The UE moves from CELL_DCH to CELL_FACH state and shall be capable of sending a CELL UPDATE message using the cause "radio link failure" within $T_{RE-ESTABLISH}$ seconds from when the radio link failure occurred.

 $T_{RE-ESTABLISH}$ equals the RRC procedure delay ($T_{RRC-RE-ESTABLISH}$) according to TS25.331 plus the UE Re-establishment delay requirement ($T_{UE-RE-ESTABLISH-REO}$), specified in 6A.1.2.2.1.

$$T_{RE-ESTABLISH} = T_{RRC-RE-ESTABLISH} + T_{UE-RE-ESTABLISH-REQ}$$

6A.1.2.2.1 Re-establishment delay requirement

The UE Re-establishment delay requirement ($T_{\text{UE-RE-ESTABLISH-REQ}}$) is defined as the time between the moment when radio link failure is considered by the UE to when the UE starts to send SYNC-UL in the UpPTS for sending a CELL UPDATE message using the cause "radio link failure".

 $T_{RE-ESTABLISH-REQ}$ is depending on whether the target cell is known by the UE or not. A cell is known if either or both of the following conditions are true:

- the UE has had a dedicated connection to the cell during the last 5 seconds
- the cell has been measured by the UE during the last 5 seconds

The UE Re-establishment delay shall be less than

$$T_{UE-RE-ESTABLISH-REQ-KNOWN} = 50ms + T_{search} + T_{SI} + T_{RA}$$

in case that the target cell is known by the UE, and

$$T_{UE}$$
-RE-ESTABLISH-REQ-UNKNOWN = 50 ms+ T_{search} *NF + T_{SI} + T_{RA}

in case that the target cell is unknown by the UE

where

- T_{search} is the time it takes for the UE to search the cell.
 - $T_{search} = 100$ ms if the target cell is known by the UE, and
 - T_{search} =800 ms if the target cell is not known by the UE.
- T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms)
- T_{RA} = The additional delay caused by the random access procedure.
- NF is the number of different frequencies in the monitored set.

This requirement assumes radio conditions to be sufficient, so that reading of system information can be done without errors.

6A.1.2.3 7.68Mcps TDD option

The requirements in this section are applicable when the UE performs a RRC connetion re-establishment to a cell belonging to any of the frequencies present in the previous monitored set.

The UE moves from CELL_DCH to CELL_FACH state and shall be capable of sending a RRC CELL UPDATE message using the cause value "radio link failure" within $T_{RE-ESTABLISH}$ seconds from when the radio link failure occurred.

 $T_{RE-ESTABLISH}$ equals the RRC procedure performance value $T_{RRC-RE-ESTABLISH}$ according to [16] plus the UE reestablishment delay $T_{UE-RE-ESTABLISH-REQ}$ specified in 6A.1.2.3.

 $T_{RE-ESTABLISH} = T_{RRC-RE-ESTABLISH} + T_{UE-RE-ESTABLISH-REQ}$

6A.1.2.3.1 UE re-establishment delay requirement

For UTRA TDD, the UE re-establishment delay $T_{\text{UE-RE-ESTABLISH-REQ}}$ is defined as the time between the moment when radio link failure is considered by the UE to when the UE starts sending the RRC CELL UPDATE message to the UTRAN on RACH.

 $T_{UE-RE-ESTABLISH-REQ}$ is depending on whether the target cell is known by the UE or not. A cell shall be considered known by the UE if either or both of the following conditions are true:

- the UE has had a radio link connected to the cell during the last 5 seconds
- the cell has been measured by the UE during the last 5 seconds.

In case that the target cell is known by the UE, the UE re-establishment delay shall be less than

 $T_{UE-RE-ESTABLISH-REQ-KNOWN} = 50 + T_{SEARCH-KNOWN} + T_{SI} \text{ ms}$

In case that the target cell is not known by the UE, the UE re-establishment delay shall be less than,

 $T_{UE-RE-ESTABLISH-REO-UNKNOWN} = 50 + T_{SEARCH-UNKNOWN} *NF + T_{SI} ms$

in case that the target cell is not known by the UE;

where,

T_{SEARCH-KNOWN} Equal to 100 ms, the time it takes for the UE to search for the known target cell

T_{SEARCH-UNKNOWN} Equal to 800 ms, the time it takes for the UE to search for the unknown target cell

 T_{SI} The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system information blocks defined in [16] for a UTRAN cell.

NF The number of different frequencies in the previous (old) monitored set.

These requirements assume radio conditions to be sufficient, so that reading of system information can be done without errors.

6A.2 Transport format combination selection in UE

6A.2.1 Introduction

When the UE estimates that a certain TFC would require more power than the maximum transmit power, it shall limit the usage of transport format combinations for the assigned transport format combination set. This in order to make it possible for the network operator to maximise the coverage. The transport format combination selection in UE is described in [13].

6A.2.2 Requirements

6A.2.2.1 3.84 Mcps TDD option

The UE shall continuously evaluate based on the *Elimination*, *Recovery* and *Blocking* criteria defined below, how TFCs can be used for the purpose of TFC selection. The evaluation shall be performed using the estimated UE transmit power of a given CCTrCH in its associated timeslots.

In the case of a single CCTrCH or multiple CCTrCHs having mutually exclusive timeslot assignments, the UE shall consider the *Eliminiation* criterion for a given TFC of a CCTrCH to be fulfilled if for 3 successive frames the estimated UE transmit power is greater than the Maximum UE transmitter power for at least one timeslot associated with the CCTrCH in each frame.

. In the case of multiple CCTrCHs not having mutually exclusive timeslot assignments, if for a given CCTrCH for 3 successive frames the estimated UE transmit power is greater than the Maximum UE transmitter power for at least one timeslot associated with the CCTrCH in each frame, the UE shall consider the *Elimination* criterion for a given TFC to be fulfilled if the use of this TFC will cause the estimated UE transmit power to continue to be greater than the Maximum UE transmitter power in at least one timeslot associated with the CCTrCH.

In the case of multi-frame operation of UL Physical Channels, the UE shall only consider active frames for the evaluation of the *Elimination* criterion.

If the *Elimination* criterion for a given TFC is fulfilled, the MAC in the UE shall consider that the TFC is in Excess-Power state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Elimination* criterion was fulfilled.

The UE shall not consider the *Recovery* criterion for a given TFC to be fulfilled until the use of this TFC will not cause the estimated UE transmit power to be greater than the Maximum UE transmitter power for all UL timeslots associated with the TFC for a minimum of 3 successive frames.

In the case of multi-frame operation of UL Physical Channels, the UE shall only consider active frames for the evaluation of the *Recovery* criterion.

. If the *Recovery* criterion for a given TFC is fulfilled, the MAC in the UE shall consider that the TFC is in Supported state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Recovery* criterion was fulfilled.

The UE shall consider the *Blocking* criterion for a given TFC to be fulfilled at the latest at the start of the longest uplink TTI after the moment at which the TFC will have been in Excess-Power state for a duration of

$$(T_{notify} + T_{modify} + T_{L1 proc}).$$

where:

T_{notify} equals 15 ms, and

 T_{modify} equals MAX($T_{adapt\ max}$, T_{TTI}), and

T_{L1 proc} equals 35 ms, and

 T_{adapt_max} equals MAX(T_{adapt_1} , T_{adapt_2} , ..., T_{adapt_N}), and

N equals the number of logical channels that need to change rate, and

 T_{adapt_n} equals the time it takes for higher layers to provide data to MAC in a new supported bitrate, for logical channel n. Table 6A.1 defines T_{adapt} times for different services. For services where no codec is used T_{adapt} shall be considered to be equal to 0 ms.

Table 6A.1: T_{adapt}

Service	T _{adapt} [ms]
UMTS AMR	40
UMTS AMR 2	60

T_{TTI} equals the longest uplink TTI of the selected TFC (ms).

The Maximum UE transmitter power is defined as follows

Maximum UE transmitter power = MIN(Maximum allowed UL TX Power, UE maximum transmit power)

where

Maximum allowed UL TX Power is set by UTRAN and defined in [16], and

UE maximum transmit power is defined by the UE power class, and specified in [5].

6A.2.2.2 1.28 Mcps TDD option

The UE shall continuously evaluate based on the *Elimination*, *Recovery* and *Blocking* criteria defined below, how TFCs can be used for the purpose of TFC selection. The evaluation shall be performed using the estimated UE transmit power of a given TFC. The UE transmit power estimation shall be made using the UE transmitted power measured over the measurement period and the gain factors of the corresponding TFC.

The UE shall consider the *Eliminiation* criterion for a given TFC to be fulfilled if the estimated UE transmit power needed for this TFC is greater than the Maximum UE transmitter power for at least X out of Y successive measurement periods. The MAC in the UE shall consider that the TFC is in Excess-Power state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within [15 ms] from the moment the *Elimination* criterion was fulfilled.

The UE shall consider the *Recovery* criterion for a given TFC to be fulfilled if the estimated UE transmit power needed for this TFC has not been greater than the Maximum UE transmitter power for at least Y successive measurement periods. The MAC in the UE shall consider that the TFC is in Supported state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Recovery* criterion was fulfilled.

The UE shall consider the *Blocking* criterion for a given TFC to be fulfilled at the latest at the start of the longest uplink TTI after the moment at which the TFC will have been in Excess-Power state for a duration of $(T_{notify} + T_{modify} + T_{L1_proc})$.

where:

T_{notify} equals [15] ms, and

 T_{modify} equals $MAX(T_{adapt_max}, T_{TTI}),$ and

 $T_{L1\;proc}$ equals 15 ms, and

 $T_{adapt_max} \ equals \ MAX(T_{adapt_1}, \, T_{adapt_2}, \, ..., \, T_{adapt_N}), \ and$

N equals the number of logical channels that need to change rate, and

 T_{adapt_n} equals the time it takes for higher layers to provide data to MAC in a new supported bitrate, for logical channel n. Table 6A.2 defines T_{adapt} times for different services. For services where no codec is used T_{adapt} shall be considered to be equal to 0 ms.

Table 6A.2: Tadapt

Service	T _{adapt} [ms]
AMR	40

T_{TTI} equals the longest uplink TTI of the selected TFC (ms).

The Maximum UE transmitter power is defined as follows

Maximum UE transmitter power = MIN(Maximum allowed UL TX Power, UE maximum transmit power)

where

Maximum allowed UL TX Power is set by UTRAN and defined in [16], and

UE maximum transmit power is defined by the UE power class, and specified in [5].

6A.2.2.3 7.68 Mcps TDD option

The UE shall continuously evaluate based on the *Elimination*, *Recovery* and *Blocking* criteria defined below, how TFCs can be used for the purpose of TFC selection. The evaluation shall be performed using the estimated UE transmit power of a given CCTrCH in its associated timeslots.

In the case of a single CCTrCH or multiple CCTrCHs having mutually exclusive timeslot assignments, the UE shall consider the *Eliminiation* criterion for a given TFC of a CCTrCH to be fulfilled if for 3 successive frames the estimated UE transmit power is greater than the Maximum UE transmitter power for at least one timeslot associated with the CCTrCH in each frame.

In the case of multiple CCTrCHs not having mutually exclusive timeslot assignments, if for a given CCTrCH for 3 successive frames the estimated UE transmit power is greater than the Maximum UE transmitter power for at least one timeslot associated with the CCTrCH in each frame, the UE shall consider the *Elimination* criterion for a given TFC to be fulfilled if the use of this TFC will cause the estimated UE transmit power to continue to be greater than the Maximum UE transmitter power in at least one timeslot associated with the CCTrCH.

In the case of multi-frame operation of UL Physical Channels, the UE shall only consider active frames for the evaluation of the *Elimination* criterion.

If the *Elimination* criterion for a given TFC is fulfilled, the MAC in the UE shall consider that the TFC is in Excess-Power state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Elimination* criterion was fulfilled.

The UE shall not consider the *Recovery* criterion for a given TFC to be fulfilled until the use of this TFC will not cause the estimated UE transmit power to be greater than the Maximum UE transmitter power for all UL timeslots associated with the TFC for a minimum of 3 successive frames.

In the case of multi-frame operation of UL Physical Channels, the UE shall only consider active frames for the evaluation of the *Recovery* criterion.

If the *Recovery* criterion for a given TFC is fulfilled, the MAC in the UE shall consider that the TFC is in Supported state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Recovery* criterion was fulfilled.

The UE shall consider the *Blocking* criterion for a given TFC to be fulfilled at the latest at the start of the longest uplink TTI after the moment at which the TFC will have been in Excess-Power state for a duration of

$$(T_{notify} + T_{modify} + T_{L1_proc}).$$

where:

 T_{notify} equals 15 ms, and

 T_{modify} equals $MAX(T_{adapt_max}, T_{TTI})$, and

T_{L1 proc} equals 35 ms, and

 T_{adapt_max} equals MAX($T_{adapt_1},\,T_{adapt_2},\,...,\,T_{adapt_N}$), and

N equals the number of logical channels that need to change rate, and

 T_{adapt_n} equals the time it takes for higher layers to provide data to MAC in a new supported bitrate, for logical channel n. Table 6A.3 defines T_{adapt} times for different services. For services where no codec is used T_{adapt} shall be considered to be equal to 0 ms.

Table 6A.3: T_{adapt}

Service	T _{adapt} [ms]
UMTS AMR	40
UMTS AMR 2	60

T_{TTI} equals the longest uplink TTI of the selected TFC (ms).

The Maximum UE transmitter power is defined as follows

Maximum UE transmitter power = MIN(Maximum allowed UL TX Power, UE maximum transmit power)

where

Maximum allowed UL TX Power is set by UTRAN and defined in [16], and

UE maximum transmit power is defined by the UE power class, and specified in [5].

6A.3 Maximum allowed UL TX Power

6A.3.1 Introduction

UTRAN may limit the power the UE is using on the uplink by setting the maximum allowed UL TX power IE defined in [16].

6A.3.2 Requirements

6A.3.2.1 3.84 Mcps option

For each measurement period, the UE shall with the use of the UE transmitted power measurement, estimate if it has reached the Maximum allowed UL TX Power or not. With tolerances as defined for the UE transmitted power measurement accuracy (section 9.1.2.1.1), the UE output power shall not exceed the Maximum allowed UL TX Power, as set by the UTRAN.

For UE output powers that are outside the range covered by the UE transmitted power measurement the UE output power shall not exceed the Maximum allowed UL TX Power with more than the tolerances specified for the UL Power Control in [5].

6A.3.2.2 1.28 Mcps option

For each measurement period, the UE shall with the use of the UE transmitted power measurement, estimate if it has reached the Maximum allowed UL TX Power or not. With tolerances as defined for the UE transmitted power measurement accuracy (section 9.1.2.1.1), the UE output power shall not exceed the Maximum allowed UL TX Power, as set by the UTRAN.

For UE output powers that are outside the range covered by the UE transmitted power measurement the UE output power shall not exceed the Maximum allowed UL TX Power with more than the tolerances specified for the UL Power Control in [5].

6A.3.2.3 7.68 Mcps option

For each measurement period, the UE shall with the use of the UE transmitted power measurement, estimate if it has reached the Maximum allowed UL TX Power or not. With tolerances as defined for the UE transmitted power measurement accuracy (section 9.1.2.1.1), the UE output power shall not exceed the Maximum allowed UL TX Power, as set by the UTRAN.

For UE output powers that are outside the range covered by the UE transmitted power measurement the UE output power shall not exceed the Maximum allowed UL TX Power with more than the tolerances specified for the UL Power Control in [5].

7 Timing characteristics

7.1 Timing Advance

7.1.1 3.84 Mcps TDD option

7.1.1.1 Introduction

The timing advance is initiated from UTRAN with an RRC message that implies an adjustement of the timing advance, see TS 25.331 section 8.6.6.26.

To update timing advance of a UE, the UTRAN measures RX Timing deviation. The measurements are defined in TS 25.225 and measurement accuracies are specified in section 9.

7.1.1.2 Requirements

7.1.1.2.1 Timing Advance adjustment accuracy

The UE shall adjust the timing of its transmissions with an accuracy better than or equal to ± 0.5 chip to the signalled timing advance value.

7.1.1.2.2 Timing Advance adjustment delay

The UE shall adjust the timing of its transmission at the designated activation time, when the indicated activation time is later than D_{TA} msec from the end of the last TTI containing the RRC message implying an adjustment of the timing advance.

 D_{TA} equals the RRC procedure delay of the RRC message implying an adjustment of the timing advance as defined in TS25.331 section 13.5.

7.1.2 1.28 Mcps TDD option

For 1.28 Mcps TDD the timing advance in the UE is adjusted by means of uplink synchronization. For the random access procedure the node B commands the UE to adjust its synchronisation shift by means of signalling the received position of the UpPTS in the FPACH. During the connection the node B measures the timing in the uplink and transmits a SS (Synchronization Shift) command to the UE at least once per sub-frame.

These SS commands determined whether the UE synchronization shift is either left unchanged, or adjusted 1 step up or 1 step down. The step size of the SS adjustment is (k/8)Tc where k (=1,2,...,8) is signalled by higher layer signalling.

7.1.2.1 Uplink synchronization control requirements for UE for 1.28 Mcps TDD option

Uplink synchronization control is the ability of the UE transmitter to adjust its TX timing in accordance with one or more SS commands received in the downlink.

7.1.2.1.1 Uplink synchronization control steps

The SS step is the change in UE transmission timing in response to a single SS command, SS_cmd, received by the UE.

7.1.2.1.1.1 Minimum requirement

The UE transmitter shall have the capability of changing the transmission timing with a step size of 1/8, 2/8, 3/8, ..., 1 chip according to the value of Δ_{SS} , within n=(1,2,...,6) time slots excluding special timeslots (DwPTS, GP, UpPTS) after the SS_cmd arrived (closed loop). For the open loop any step being a multiple of 1/8 chip has to be allowed.

- a) The minimum transmission timing step $\Delta_{SS,min}$ due to closed loop uplink synchronization control shall be within the range shown in Table 7.1.
- b) In case uplink synchronization control implies larger adjustment than the minimum step the UE shall perform a multiple integer number of the minimum step. Within the implementation grid of the applicable timing steps of the UE the step being closest to the required step should be executed.

Uplink synchronisation control range for minimum step

1/8 chip step size

Upper 1/7 chip

1/7 chip

Table 7.1: Uplink synchronisation control range

Lower

1/9 chip

1/9 chip

7.1.3 7.68 Mcps TDD option

7.1.3.1 Introduction

SS_cmd

Up

Down

The timing advance is initiated from UTRAN with an RRC message that implies an adjustement of the timing advance, see TS 25.331 section 8.6.6.26.

To update timing advance of a UE, the UTRAN measures RX Timing deviation. The measurements are defined in TS 25.225 and measurement accuracies are specified in section 9.

7.1.3.2 Requirements

7.1.3.2.1 Timing Advance adjustment accuracy

The UE shall adjust the timing of its transmissions with an accuracy better than or equal to ± 0.5 chip to the signalled timing advance value.

7.1.3.2.2 Timing Advance adjustment delay

The UE shall adjust the timing of its transmission at the designated activation time, when the indicated activation time is later than D_{TA} msec from the end of the last TTI containing the RRC message implying an adjustment of the timing advance.

 D_{TA} equals the RRC procedure delay of the RRC message implying an adjustment of the timing advance as defined in TS25.331 section 13.5.

7.2 Cell synchronization accuracy

7.2.1 Definition

Cell synchronization accuracy is defined as the maximum deviation in frame start times between any pair of cells on the same frequency that have overlapping coverage areas.

7.2.2 Minimum requirements

The cell synchronization accuracy shall be better than or equal to 3µs.

7.3 UE Transmit Timing for 3.84 Mcps TDD Option

7.3.1 Definition

UE transmit timing is defined as the frame start time of uplink transmissions relative to the downlink frame timing at zero propagation delay with timing advance turned off. The reference point for UE transmit timing shall be the antenna connector. This is applicable for the AWGN propagation condition. In the case of multi-path fading conditions, the reference point for UE transmit timing shall be the first significant path of the received PCCPCH.

7.3.2 Minimum Requirement

The UE transmit timing error shall be within 0 to +3 chips for the AWGN propagation condition.

7.3A UE Transmit Timing for 7.68 Mcps TDD Option

7.3A.1 Definition

UE transmit timing is defined as the frame start time of uplink transmissions relative to the downlink frame timing at zero propagation delay with timing advance turned off. The reference point for UE transmit timing shall be the antenna connector. This is applicable for the AWGN propagation condition. In the case of multi-path fading conditions, the reference point for UE transmit timing shall be the first significant path of the received PCCPCH.

7.3A.2 Minimum Requirement

The UE transmit timing error shall be within 0 to +3 chips for the AWGN propagation condition.

7.4 UE timer accuracy

7.4.1 Introduction

UE timers are used in different protocol entities to control the UE behaviour.

7.4.2 Requirements

For UE timers T3xx, T_{barred} , Treselection, Penalty_time, T_{CRmax} , $T_{CrmaxHyst}$ [16], UE shall comply with the timer accuracies according to Table 7.2.

The requirements are only related to the actual timing measurements internally in the UE. They do not include the following:

- Inaccuracy in the start and stop conditions of a timer (e.g. UE reaction time to detect that start and stop conditions of a timer is fulfilled), or
- Inaccuracies due to restrictions in observability of start and stop conditions of a UE timer (e.g. TTI alignment when UE sends messages at timer expiry).

Table 7.2

Timer value [s]	Accuracy
timer value <4	± 0.1 s
timer value ≥ 4	± 2.5 %

8 UE Measurements Procedures

8.1 General Measurement Requirements in CELL_DCH State (3.84 Mcps option)

8.1.1 Introduction

This section contains requirements on the UE regarding measurement reporting in CELL_DCH state. The requirements are split in TDD intra frequency, TDD inter frequency, FDD and GSM measurements. These measurements may be used by the UTRAN, e.g. for handover decisions. The measurements are defined in [14], the measurement model is defined in [15] and measurement accuracies are specified in section 9. Control of measurement reporting is specified in [16] and parallel measurements are specified in section 8.2. For the description of the idle intervals see [14].

8.1.2 Requirements

8.1.2.1 UE Measurement Capability

The UE shall be able to monitor up to

- 32 intra frequency TDD cells (including serving cell), and
- 32 inter frequency cells, including
 - TDD mode cells distributed on up to 2 additional TDD carriers and
 - Depending on UE capability, FDD mode cells, distributed on up to 3 FDD carriers.
- Depending on UE capability, 32 inter RAT GSM cells,
- Depending on UE capability, [32] E-UTRA cells distributed on up to [TBD] E-UTRA carriers

The requirements in section 9 are applicable for a UE performing measurements according to this section.

For measurements on intra- and inter-frequency TDD, inter-frequency FDD and GSM cells, idle intervals as described in [14] can be used. The time $T_{measure}$ per 480 ms period available for these measurements is the sum of the duration of all idle intervals during any given 480 ms period, i.e. the amount of time not used by the UE for receiving in active DL timeslots or for transmission in active UL timeslots. Note that Beacon timeslots of the serving cell can be located inside idle intervals and that implementation margin due to frequency switching is not taken into account for $T_{measure}$.

The requirements in this section are based upon the assumption, that the time durations T_{intra} and T_{inter} during any given 480 ms period for the purpose of measurements on intra-frequency TDD cells and for measurements on inter-frequency TDD, inter-frequency FDD and GSM cells are respectively,

$$T_{intra} = \left[96 + 24 \cdot Floor \left\{ \frac{M_{intra} + 3}{4} \right\} \right] \text{ ms}$$

$$T_{inter} = 480 \text{ ms} - T_{intra}$$

where, M_{intra} is equal to the number of intra-frequency TDD cells in the neighbour list

The time duration T_{inter} shall be equally shared for inter-frequency measurements on the different modes and systems which the UE has capability for and that are in the monitored set signalled by UTRAN, i.e.

$$T_{inter} = N_{TDD} \cdot T_{TDD inter} + N_{FDD} \cdot T_{FDD inter} + N_{GSM} \cdot T_{GSM inter}$$

For this, the following parameters are defined,

T_{TDD inter} is the time duration allocated for the purpose of TDD inter-frequency measurements.

T_{FDD inter} is the time duration allocated for the purpose of FDD inter-frequency measurements.

T_{GSM inter} is the time duration allocated for the purpose of GSM measurements.

 N_{TDD} is equal to 1 if there are inter-frequency TDD cells in the neighbour list, equal to 0 otherwise.

 N_{FDD} is equal to 1 if the UE has capability for FDD and if there are inter-frequency FDD cells in the neighbour list, equal to 0 otherwise.

N_{GSM} is equal to 1 if the UE has capability for GSM and if there are GSM cells in the neighbour list, equal to 0 otherwise.

8.1.2.2 TDD intra frequency measurements

During the CELL_DCH state, the UE shall continuously measure identified intra frequency TDD cells and search for new intra frequency TDD cells in the monitored set. In case the UTRAN requests the UE to report detected set cells, the UE shall also search for intra frequency TDD cells outside the monitored and active set. Cells, which are neither included in the active set nor in the monitored set, and are identified by the UE belong to the detected set according to [16].

In order for the requirements in the following subsections to apply, the Beacon timeslots of the intra-frequency TDD cells indicated in the measurement control information shall either be synchronised with the Beacon timeslots of the serving cell or non-overlapping in time with the active UL timeslots used by the UE for transmission, such that the UE can measure an intra-frequency TDD cell at least once every frame for the slot allocation case in use in this cell. The UE shall be capable of intra frequency measurements during active DL timeslots.

8.1.2.2.1 Identification of a new cell

The UE shall be able to identify a new detectable intra-frequency TDD cell belonging to the monitored set within $T_{identify\ intra}$ ms, where $T_{identify\ intra} = 800$ ms.

When L3 filtering is used, an additional delay can be expected.

8.1.2.2.2 UE P-CCPCH RSCP measurement capability

In CELL_DCH state, the UE shall be capable of performing P-CCPCH RSCP measurements for $X_{measurement\ intra}$ identified intra-frequency TDD cells of the monitored set with a measurement period for intra-frequency P-CCPCH RSCP measurements $T_{measurement\ period\ intra}$, where

 $X_{measurement intra} = 6 (cells)$

 $T_{\text{measurement period intra}} = 200 \text{ ms}$

The UE physical layer shall be capable of reporting these measurements to higher layers with the measurement period $T_{\text{measurement period intra}}$.

If the UE has identified more than $X_{measurement\ intra}$ intra-frequency TDD cells, the UE shall perform measurements of all identified cells but the reporting rate of P-CCPCH RSCP measurements of cells from the UE physical layer to higher layers may be decreased.. The measurement accuracy for all measured cells shall be as specified in the section 9.

8.1.2.2.2A Timeslot ISCP measurement capability

In CELL_DCH state the measurement period for intra frequency Timeslot ISCP measurements on arbitrary DL timeslots, including Beacon timeslots is 400 ms. When no inter frequency measurement is scheduled, the UE shall be capable of performing Timeslot ISCP measurements for a total of 10 different combinations of an arbitrary DL timeslot and an intra-frequency cell [16], including the current serving cell. The UE physical layer shall be capable of reporting Timeslot ISCP measurements to higher layers with the measurement period of 400 ms.

When inter-frequency measurements are required by the network, the UE shall be capable of performing Timeslot ISCP measurements for at least $Y_{measurement intra\ ISCP}$ different combinations, where $Y_{measurement intra\ ISCP}$ is defined in the following equation. Any Timeslot ISCP measurement that could not be performed during that measurement period, shall be measured in the following measurement periods. The measurement accuracy of the Timeslot ISCP measurement shall be as specified in the section 9.

$$\mathbf{Y}_{\text{measurement intra ISCP}} = Floor \left\{ X_{\text{basic measurement ISCP}} \cdot \frac{5}{6} \frac{\mathbf{T}_{\text{intra}}}{\mathbf{T}_{\text{measurement period intra ISCP}}} \right\}$$

whereby function Floor(x) takes the integer part of x.

- X_{basic measurement ISCP} = 10 (combinations of an arbitrary DL timeslot and an intra-frequency cell)
- $T_{measurement\ period,\ intra,\ ISCP} = 400\ ms$. The measurement period for intra frequency Timeslot ISCP measurements.
- T_{intra} is specified in 8.1.2.1.

8.1.2.2.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.2.4 Event-triggered Periodic Reporting

Reported measurements in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.5 Event Triggered Reporting.

8.1.2.2.5 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report, until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay

uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

For P-CCPCH RSCP measurements, the event triggered measurement reporting delay, on cells belonging to the monitored set, measured without L3 filtering shall be less than T $_{identify\ intra}$ defined in Section 8.1.2.2.1. When L3 filtering is used an additional delay can be expected..

If a cell, belonging to the monitored set has been detectable at least for the time period $T_{identify\;intra}$ and then enters the reporting range, the event triggered P-CCPCH RSCP measurement reporting delay shall be less than $T_{measurement_period\;intra}$ when the L3 filter has not been used and the UE P-CCPCH RSCP measurement capabilities of section 8.1.2.2.1 are valid.

8.1.2.3 TDD inter frequency measurements

When signalled by UTRAN during CELL_DCH state, the UE shall continuously measure detected inter-frequency TDD cells and search for new inter-frequency TDD cells indicated in the measurement control information.

In order for the requirements in the following subsections to apply, the Beacon timeslots of the inter-frequency TDD cells indicated in the measurement control information shall be non-overlapping in time with the active DL and UL timeslots used by the UE for reception and transmission such that the UE can measure an inter-frequency cell TDD cell at least once every frame for the slot allocation case in use in this cell and by assuming 2*0.5 ms implementation margin for frequency switching per idle interval.

8.1.2.3.1 Identification of a new cell

When idle intervals are used for inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within

$$T_{\text{identify inter}} = Max \left\{ 5000, N_{\text{basic identify TDD inter}} \cdot \frac{T_{\text{measurement period TDD inter}}}{N_{\text{TDD inter}}} \cdot N_{\text{Freq}} \right\} ms$$

If the UE does not require idle intervals to perform inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

When L3 filtering is used, an additional delay can be expected.

8.1.2.3.2 P-CCPCH RSCP measurement period

When idle intervals are used for TDD inter frequency measurements, the UE shall be capable of performing P-CCPCH RSCP measurements for $X_{measurement\ TDD\ inter}$ inter-frequency TDD cells per TDD frequency of the monitored set.

The UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in section 9 and with a measurement period of $T_{measurement inter}$.

$$T_{\text{measurement inter}} = Max \bigg\{ T_{\text{measurement period TDD inter}} , N_{\text{basic measurement TDD inter}} \cdot \frac{T_{\text{measurement period TDD inter}}}{N_{\text{TDD inter}}} \cdot N_{\textit{Freq}} \bigg\} ms$$

If the UE does not require idle intervals to perform TDD inter-frequency measurements, the measurement period for inter frequency P-CCPCH RSCP measurements shall be 480 ms.

Where,

 $X_{measurement TDD inter} = 6 \text{ (cells)}$

 $T_{measurement_period\ inter}$ = 480 ms. The time period used for calculating the measurement period $T_{measurement_inter}$ for inter frequency P-CCPCH RSCP measurements.

 $N_{TDD\ inter}$: This is the available number of measurement opportunities for a Beacon timeslot of an inter-frequency TDD cell during the time period $T_{TDD\ inter}$. The UE shall consider that a measurement opportunity on a Beacon timeslot of an inter-frequency TDD cell is provided if an idle interval of length equal to or greater than 3

timeslots less 2*0.5 ms implementation margin for frequency switching per idle interval completely overlaps in time with the Beacon timeslot of the inter-frequency TDD cell.

 $N_{basic_identify_TDD\ inter} = 80$. This is a number of measurement opportunities for a Beacon timeslot of an interfrequency TDD cell during the time period used in the inter frequency TDD equation where the maximum allowed time for the UE to identify a new detectable inter-frequency TDD cell is defined.

 $N_{basic_measurement_TDD\ inter} = 5$. This is a number of measurement opportunities for a Beacon timeslot of an interfrequency TDD cell during the time period $T_{TDD\ inter}$ used in the inter-frequency TDD equation where the measurement period for inter-frequency P-CCPCH RSCP measurements is defined.

 $N_{\text{Freq TDD}}$: This is the number of TDD frequencies indicated in the inter frequency measurement control information.

Note that the number of measurement opportunities available to the UE depends on UL and DL timeslot assignments for transmission and reception and on Beacon timeslot allocations in the inter-frequency TDD cells.

8.1.2.3.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.3.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report, until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify\ inter}$ defined in Section 8.1.2.3.1 When L3 filtering is used an additional delay can be expected.

If an intra frequency TDD cell has been detectable at least for the time period $T_{identify_inter}$ and then enters the reporting range, the event triggered measurement reporting delay shall be less than $T_{measurement_period\ inter}$ when the L3 filter has not been used.

8.1.2.4 FDD measurements

The requirements in this section shall apply to UE supporting TDD and FDD.

In the CELL_DCH state when FDD inter frequency measurements are scheduled the UE shall continuously measure detected inter frequency FDD cells and search for new inter frequency FDD cells indicated in the measurement control information.

8.1.2.4.1 Identification of a new cell

When idle intervals are used for inter-frequency FDD measurements, the UE shall be able to identify a new detectable inter-frequency FDD cell belonging to the monitored set within

$$T_{\text{identify FDD inter}} = Max \left\{ 5000, T_{\text{basic identify FDD inter}} \cdot \frac{T_{\text{measurement period FDD inter}}}{T_{\text{FDD inter}}} \cdot N_{\text{Freq}} \right\} ms$$

If the UE does not require idle intervals to perform FDD inter-frequency measurements, the UE shall be able to identify a new detectable inter-frequency FDD cell belonging to the monitored set within 5000 ms.

When L3 filtering is used an additional delay can be expected.

An inter-frequency FDD cell shall be considered detectable, when CPICH Ec/Io \geq -20 dB, SCH_Ec/Io \geq -17 dB and SCH_Ec/Io is equally divided between primary synchronisation code and secondary synchronisation code.

8.1.2.4.2 UE CPICH measurement capability

When idle intervals are used for FDD inter frequency measurements, the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9 with measurement period given by

$$T_{\text{measurement FDD inter}} = Max \left\{ T_{\text{measurement period FDD inter}}, T_{\text{basic measurement FDD inter}} \cdot \frac{T_{\text{measurement period FDD inter}}}{T_{\text{FDD inter available}}} \cdot N_{\textit{Freq,FDD}} \right\} ms$$

If the UE does not require idle intervals to perform FDD inter-frequency measurements, the measurement period for inter frequency CPICH measurements shall be 480 ms.

The UE shall be capable of performing CPICH measurements for $X_{\text{measurement FDD inter}}$ inter-frequency FDD cells per frequency of the monitored set and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{measurement FDD inter}}$.

 $X_{basic measurement FDD inter} = 6 (cells)$

 $T_{measurement_period\ FDD\ inter}$ = 480 ms. The time period used for calculating the measurement period $T_{measurement_FDD\ inter}$ for inter frequency CPICH measurements.

 $T_{FDD\ inter:\ available}$: This is the available time for measurements on inter-frequency FDD cells. $T_{FDD\ inter\ available}$ shall be derived from $T_{FDD\ inter}$ by assuming 2*0.5 ms implementation margin for frequency switching per idle interval and by only taking into account the remaining number of full timeslots per idle interval. Idle intervals smaller than 3 timeslots shall not be taken into account for calculating $T_{FDD\ inter\ available}$.

 $T_{basic_identify_FDD\ inter} = 800\ ms$. This is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new detectable inter-frequency FDD cell is defined.

 $T_{basic_measurement_FDD\ inter} = 50$ ms. This is the time period used in the inter-frequency equation for defining the measurement period for inter frequency CPICH measurements.

N_{Freq}: This is the number of FDD frequencies indicated in the inter frequency measurement control information.

8.1.2.4.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.4.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports as long as the reporting criteria are not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify\ FDD\ inter}$ defined in Section 8.1.2.4.1. When L3 filtering is used an additional delay can be expected.

If an inter frequency FDD cell has been detectable at least for the time period $T_{identify_FDD\ inter}$ and then enters the reporting range, the event triggered measurement reporting delay shall be less than $T_{measurement_period\ FDD\ inter}$ provided the timing to that cell has not changed more than +/-32 chips during the time period $T_{identify\ FDD\ inter}$ and the L3 filter has not been used.

8.1.2.5 GSM measurements

The requirements in this section shall apply to UE supporting TDD and GSM.

In CELL_DCH state, measurements opportunities for GSM measurements are provided by means of idle intervals.

Measurements on GSM cells can be requested with BSIC verified or BSIC non-verified.

- a) In CELL_DCH state, when signaled by UTRAN and when idle intervals are used for GSM measurements, the UE shall continuously measure GSM cells and search for new GSM cells given in the monitored set.
 - In section 8.1.2.1 the split of measurements between different modes and systems is defined. Every second
 measurement opportunity scheduled for GSM measurements, as given by 8.1.2.1 shall be allocated for GSM
 initial BSIC identification.
 - The remaining measurements opportunities scheduled for GSM measurements shall be used as follows. 3 measurement opportunities out of 4 shall be allocated for GSM carrier RSSI measurements and 1 out of 4 shall be allocated for GSM BSIC reconfirmation. The scheduling of measurement opportunities between GSM carrier RSSI measurements and GSM BSIC reconfirmation is up to the UE.
- b) In CELL_DCH state, when signaled by UTRAN and when the UE does not need idle intervals to perform GSM measurements, the UE shall measure all GSM cells present in the monitored set
 - the relevant requirements for GSM dedicated mode when a TCH channel is assigned in [21] shall apply. This is further detailed in the following sub-sections.

8.1.2.5.1 GSM carrier RSSI

a) For a UE using idle intervals to perform GSM measurements

A UE supporting GSM measurements using idle intervals shall meet the minimum number of GSM carrier RSSI measurements specified in table 8.1.

In the CELL_DCH state the measurement period, $T_{measurement period GSM}$, for the GSM carrier RSSI measurement is 480 ms.

The UE shall meet the measurement accuracy requirements stated for RXLEV in [21], when the given measurement time allows the UE to the take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

Table 8.1

Idle interval length (timeslots)	Number of GSM carrier RSSI samples in each idle interval
3	1
4	2
5	3
6	4
7	6
8	7
9	8
10	10
11	11
12	12
13	14

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods. This means that, in this particular case, the L1 reporting period to higher layers of a GSM neighbour can be a multiple of the measurement period.

b) For a UE not using idle intervals to perform GSM measurements

The samples allocated to each carrier shall as far as possible be uniformly distributed over each measurement period. At least 3 received signal level measurement samples are required per GSM carrier RSSI measurement. The measurement period shall be 480 ms.

8.1.2.5.2 BSIC verification

a) For a UE using idle intervals to perform GSM measurements

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

- 1) Initial BSIC identification: Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the TDD and GSM cell.. The requirements for Initial BSIC identification can be found in section 8.1.2.5.2.1.
- 2) BSIC re-confirmation: Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The requirements for Initial BSIC identification can be found in section 8.1.2.5.2.2.

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified, the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

If the UTRAN requests measurements on a GSM cell with BSIC verified, the UE shall behave as follows:

- The UE shall perform GSM carrier RSSI measurements according to Section 8.1.2.5.1 and the UE shall perform measurement reporting as defined in Section 8.6.7.6 of [16].
- The UE shall use the last available GSM carrier RSSI measurement results for arranging GSM cells in signal strength order for performing BSIC identification.
- The UE shall perform BSIC re-confirmation according to Section 8.1.2.5.2.2

The UE shall perform event evaluation for event-triggered reporting after the BSIC has been verified for a GSM cell. The UE shall use the last available GSM carrier RSSI measurement results in event evaluation and event-triggered reporting. Periodic reports shall be triggered according to the given reporting period even if the BSIC of a GSM cell has not been verified as defined in Sections 8.6.7.5 and 8.6.7.6 of [16]. Non verified BSIC shall be indicated in the measurement report.

The UE shall consider the BSIC of a GSM cell to be "verified", if it has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification). From that time instant, the UE shall attempt to reconfirm the BSIC at least once every $T_{re\text{-confirm abort}}$ seconds. Otherwise, the UE shall consider the BSIC of the GSM cell to be "non-verified".

The time requirement for initial BSIC identification, $T_{identify \ abort}$, and the BSIC re-confirmation interval $T_{re-confirm \ abort}$ can be found in the sections below.

The UE shall be able to decode a BSIC for the purpose of initial BSIC identification or BSIC reconfirmation within an idle interval, when the time difference between the middle of the received GSM synchronisation burst at the UE and the middle of the idle interval is within the limits specified in Table 8.1.AA.

Table 8.1AA

Idle Interval Length (timeslots)	Maximum time difference [μs]
3	± 65
4	± 398
5	± 732
6	± 1065
7	± 1398
8	± 1732
9	± 2065
10	± 2398
11	± 2732
12	± 3065
13	± 3398

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [20].

b) For a UE not using idle intervals to perform GSM measurements

If a BSIC is decoded and matches the expected value, the UE shall consider it as "verified", otherwise it shall consider it as "non-verified".

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [20].

8.1.2.5.2.1 Initial BSIC identification

For GSM cells that are requested with BSIC verified the UE shall attempt to decode the SCH on the BCCH carrier of the 8 strongest BCCH carriers of the GSM cells indicated in the measurement control information. The UE shall give priority for BSIC decodingattempts in decreasing signal strength order to BSIC carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value after layer 3 filtering. The GSM signal strength levels used in BSIC identification for arranging GSM cells in signal strength order shall be based on the latest GSM carrier RSSI measurement results available.

If the BSIC of a GSM BCCH carriers has been successfully decoded the UE shall inmediately continue BSIC identification with the next BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within $T_{identify\,abort}$, the UE shall abort the BSIC decoding attempts for that GSMBCCH carrier. The UE shall continue to try to perform BSIC decoding of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC decoding failed shall not be re-considered for BSIC decoding until BSIC decoding attempts have been made for all the rest of the 8 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

Where $T_{identify abort} = 5000 \text{ ms.}$

8.1.2.5.2.2 BSIC re-confirmation

The requirements of this section are applicable for BSIC re-confirmation.

The UE shall maintain the timing information of at least 8 identified GSM cells. Initial timing information is obtained from the initial BSIC decoding. The timing information shall be updated every time the BSIC is decoded.

If more than one BSIC can be decoded within the same measurement window given by the idle intervals, priority shall be given to the least recently decoded BSIC.

If the UE fails to decode the BSIC after two successive attempts or if the UE has not been able to re-confirm the BSIC for a GSM BCCH carrier within $T_{re-confirm_abort}$ seconds, the UE shall abort the BSIC re-confirmation attempts for that GSM BCCH carrier. The GSM BCCH carrier shall be treated as a new GSM BCCH carrier with unidentified BSIC and the GSM BCCH carrier shall be moved to the initial BSIC decoding procedure, see section 8.1.2.5.2.1. The UE shall be able to make BSIC re-confirmation attempts for the 8 strongest GSM cells in the monitored list.

Where $T_{re\text{-confirm abort}} = 5000 \text{ ms.}$

8.1.2.5.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.5.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered reporting delay requirement is valid, when the UE for each GSM carrier in the monitored set can take the required number of samples during the measurement period T_{measurement period GSM} (see section 8.1.2.5.1).

The event triggered measurement reporting delay for a GSM cell with verified BSIC, measured without L3 filtering shall be less than $2*T_{measurement\ period\ GSM}$, where $T_{measurement\ period\ GSM}$ is defined in Section 8.1.2.5.1. When L3 filtering is used an additional delay can be expected. For a GSM cell with non-verified BSIC an additional delay according to section 8.1.2.5.2.1 Initial BSIC identification can be expected.

8.1.2.6 TDD Synchronisation to new cells

For the requirements in section 8 and 9 to apply, an intra-frequency or inter-frequency TDD cell shall be considered

detectable when,

$$\left(\frac{P - CCPCH _E_c}{I_o}\right)_{in \ dB} \ge -8dB$$

$$\left(\frac{SCH_E_c}{I_o}\right)_{in\ dB} \ge -13dB$$

where the received P-CCPCH E_c/I_o is defined as

$$\left. \left(\frac{P - CCPCH _E_c}{I_o} \right) \right|_{in \ dB} = \left(\frac{P - CCPCH _E_c}{I_{or}} \right) \right|_{in \ dB} - \frac{I_o}{\left(\hat{I}_{or} \right)} \right|_{in \ dB}$$

and the received SCH E_c/I_o is defined as

$$\left(\frac{SCH_{-}E_{c}}{I_{o}}\right)_{in\ dB} = \left(\frac{SCH_{-}E_{c}}{I_{or}}\right)_{in\ dB} - \frac{I_{o}}{\left(\hat{I}_{or}\right)_{in\ dB}}$$

and SCH_Ec/Ior is equally divided between primary synchronisation code and the sum of all secondary synchronisation codes, where the secondary synchronisation codes are also equally divided.

8.1.2.7 E-UTRAN FDD measurements

The requirements in this section apply only to UEs supporting 3.84Mcps TDD and E-UTRAN FDD.

- 1) For a UE requiring idle intervals to perform E-UTRAN FDD measurements. In CELL_DCH state when signalled by UTRAN and when idle intervals are used, the UE shall continuously measure previously detected E-UTRAN FDD cells and search for new E-UTRAN FDD cells.
- 2) For a UE not requiring idle intervals to perform E-UTRAN FDD measurements:

- the UE shall measure either all E-UTRAN FDD cells present in the monitored set or, if only frequencies are provided in the neighbour cell list, the strongest cells present in the detected set, up to the monitoring capabilities of the UE.
- the relevant requirements for E-UTRAN FDD dedicated mode when a [TBD] channel is assigned in 3GPP TS 36.133 [24] shall apply. This is further detailed in the following subclauses.

8.1.2.7.1 Identification of a new cell

When idle intervals are used for E-UTRAN FDD measurements, the UE shall be able to identify a new detectable E-UTRAN FDD cell within

$$T_{\text{Identify E-UTRAN FDD}} = T_{\text{Basic_Identify_E-UTRAN FDD}} \cdot \frac{T_{\text{Measurement_Period_E-UTRAN FDD}}}{T_{\text{E-UTRAN FDD}}} \quad \textit{ms} : T_{\text{E-UTRAN FDD}} = T_{\text{E-UTRAN FDD}$$

If the UE does not need idle intervals to perform E-UTRAN FDD measurements, the UE shall be able to identify a new detectable E-UTRAN FDD cell within $T_{\text{Basic Identify E-UTRAN FDD}}$ ms.

Where:

 $T_{\text{E-UTRAN FDD}}$: This is the minimum time that is available for E-UTRAN FDD measurements during the measurement period $T_{\text{Measurement_Period_E-UTRAN FDD}}$ with an arbitrarily chosen timing. The minimum time per idle interval is calculated by assuming 2*0.5 ms for implementation margin.

 $T_{Basic\ Identifv\ E-UTRAN\ FDD} = 480\ ms$

When L3 filtering is used an additional delay can be expected.

An E-UTRAN FDD cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 of [24] are fulfilled for a corresponding Band,
- SCH_RP|_{dBm} \geq -127 dBm for Bands 1, 4, 6, 10, defined in [26] and SCH_Ês/Iot \geq -4 dB,
- SCH_RP|_{dBm} \geq -126 dBm for Band 9 defined in [26] and SCH_Ês/Iot \geq -4 dB,
- SCH_RP $|_{dBm} \ge -125$ dBm for Bands 2, 5, 7, 11, 17 defined in [26] and SCH_ \hat{E} s/Iot ≥ -4 dB,
- SCH_RP $|_{dBm} \ge$ -124 dBm for Bands 3, 8, 12, 13, 14 defined in [26] and SCH_ \hat{E} s/Iot \ge -4 dB.

8.1.2.7.2 E-UTRAN RSRP and RSRQ measurement period

When idle intervals are scheduled for E-UTRAN FDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1.5a and 9.1.1.5b with measurement period of $T_{Measurement_Period_E-UTRAN\ FDD} = 480\ x\ N_{Freq}$ ms where N_{Freq} is the number of FDD frequencies indicated in the E-UTRAN measurement control information.

The UE shall be capable of performing RSRP measurements of at least 4 E-UTRAN FDD cells per E-UTRAN FDD frequency for up to 3 FDD E-UTRAN frequencies.

8.1.2.7.3 Periodic reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.7.4 Void

8.1.2.7.5 Event Triggered reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is: $[2] \times TTI_{DCCH}$. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{Identify\ E-UTRAN\ FDD}$ defined in Section 8.1.2.7.1. When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{Identify\ E-UTRAN\ FDD}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period_E-UTRAN\ FDD}$ provided the timing to that cell has not changed more than [FFS] while idel interval has not been available and the L3 filter has not been used.

8.1.2.8 E-UTRAN TDD measurements

The requirements in this section apply only to UEs supporting 1.28Mcps TDD and E-UTRAN TDD.

- 1) For a UE requiring idle intervals to perform E-UTRAN TDD measurements. In CELL_DCH state when signalled by UTRAN and when idle intervals are used, the UE shall continuously measure previously detected E-UTRAN TDD cells and search for new E-UTRAN TDD cells.
- 2) For a UE not requiring idle intervals to perform E-UTRAN TDD measurements:
 - the UE shall measure either all E-UTRAN TDD cells present in the monitored set or, if only frequencies are provided in the neighbour cell list, the strongest cells present in the detected set, up to the monitoring capabilities of the UE.
 - the relevant requirements for E-UTRAN TDD dedicated mode when a [TBD] channel is assigned in 3GPP TS 36.133 [24] shall apply. This is further detailed in the following subclauses.

8.1.2.8.1 Identification of a new cell

When idle intervals are used for E-UTRAN measurements, the UE shall be able to identify a new detectable E-UTRAN TDD cell within

$$T_{\text{Identify E-UTRAN TDD}} = T_{\text{Basic_Identify_E-UTRAN TDD}} \cdot \frac{T_{\text{Measurement_Period_E-UTRAN TDD}}}{T_{\text{E-UTRAN TDD}}} \quad \textit{ms} \; ;$$

If the UE does not need idle intervals to perform E-UTRAN TDD measurements, the UE shall be able to identify a new detectable E-UTRAN TDD cell within $T_{Basic_Identify_E-UTRAN\ TDD}$ ms.

Where:

 $T_{\text{E-UTRAN TDD}}$: This is the minimum time that is available for E-UTRAN TDD measurements during the measurement period $T_{\text{Measurement_Period_E-UTRAN TDD}}$ with an arbitrarily chosen timing. The minimum time per idle interval is calculated by assuming 2*0.5 ms for implementation margin.

 $T_{Basic_Identify_E-UTRAN\ TDD} = 480\ ms$

When L3 filtering is used an additional delay can be expected.

An E-UTRAN TDD cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 of [24] are fulfilled for a corresponding Band.
- SCH RP_{|dBm}≥ -127 dBm for Bands 33, 34, 35, 36, 37, 38, 39 and 40 defined in [26] and SCH Ês/Iot ≥ -4 dB,

8.1.2.8.2 E-UTRAN RSRP and RSRQ measurement period

When idle intervals are scheduled for E-UTRAN TDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1.5a and 9.1.1.5b with measurement period of $T_{Measurement_Period_E-UTRAN\ TDD} = 480\ x\ N_{Freq}$ ms where N_{Freq} is the number of TDD frequencies indicated in the E-UTRAN measurement control information.

The UE shall be capable of performing RSRP measurements of at least 4 E-UTRAN TDD cells per E-UTRAN TDD frequency for up to 3 E-UTRAN TDD frequencies.

8.1.2.8.3 Periodic reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9

8.1.2.8.4 Void

8.1.2.8.5 Event Triggered reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: [2] x TTI_{DCCH}. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{\text{Identify E-UTRAN TDD}}$ defined in Section 8.1.2.8.1. When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{Identify\ E-UTRAN\ TDD}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period_E-UTRAN_TDD}$ provided the timing to that cell has not changed more than [FFS] while idel interval has not been available and the L3 filter has not been used.

8.1A General Measurements Requirements in CELL_DCH State (1.28 Mcps option)

8.1A.1 Introduction

This section contains requirements on the UE regarding measurement reporting in CELL_DCH state. The requirements are split in TDD intra frequency, TDD inter frequency, FDD, GSM and E-UTRAN measurements. These measurements may be used by the UTRAN, e.g. for handover decisions. The measurements are defined in TS 25.225, the measurement model is defined in TS 25.302 and measurement accuracies are specified in section 9. Control of measurement reporting is specified in TS 25.331 and parallel measurements are specified in section 8.2A. For the description of the idle intervals see TS 25.225, Annex A.

8.1A.2 Requirements

8.1A.2.1 UE Measurement Capability

The UE shall be able to monitor up to

- 32 intra frequency TDD cells, and
- 32 inter frequency cells, including
 - TDD cells on up to minimum 8 additional TDD carriers, and
 - Depending on UE capability, FDD cells, distributed on up to 3 FDD carriers, and
- Depending on UE capability, 32 GSM cells distributed on up to 32 GSM carriers.
- Depending on UE capability, [32] E-UTRA cells distributed on up to [TBD] E-UTRA carriers

Performance requirements for different types of measurements and different number of cells are defined in the following sections.

The requirements in section 9 are applicable for a UE performing measurements according to this section.

The received P-CCPCH E_c/I_o is defined as

$$\left(\frac{P - CCPCH _E_c}{I_o}\right)_{in \ dB} = \left(\frac{P - CCPCH _E_c}{I_{or}}\right)_{in \ dB} - \frac{I_o}{(\hat{I}_{or})}_{in \ dB}$$

The received DwPTS E_c/I_o is defined as

$$\left(\frac{DwPCH_E_c}{I_o}\right)_{in_dB} = \left(\frac{DwPCH_E_c}{I_{or}}\right)_{in_dB} - \frac{I_o}{(\hat{I}_{or})_{in_dB}}$$

8.1A.2.2 TDD intra frequency measurements

During the CELL_DCH state the UE shall continuously measure identified intra frequency cells and search for new intra frequency cells in the monitored set. In case the UTRAN requests the UE to report detected set cells, the UE shall also search for intra frequency cells outside the monitored and active set set. Cells, which are neither included in the active set nor in the monitored set, and are identified by the UE belong to the detected set according to TS 25.331. Intra frequency measurements can be performed (simultaneously to data reception from the active cell) in all time slots not used for inter frequency measurements.

8.1A.2.2.1 Identification of a new cell

The UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{identify\ intra} = T_{basic\ identify\ TDD,\ intra} \cdot \frac{N_{Period,\ Intra}}{N_{Intra}} \, ms$$

A cell shall be considered detectable when P-CCPCH Ec/Io \geq -8 dB and DwPCH_Ec/Io \geq -5 dB. When L3 filtering is used an additional delay can be expected.

The UE shall be able to identify a new detectable cell not belonging to the monitored set within

$$T_{\text{identify detected set}} = 30s$$

when P-CCPCH Ec/Io ≥ -8 dB, DwPCH_Ec/Io ≥ -5 dB. When L3 filtering is used an additional delay can be expected.

8.1A.2.2.2 UE P-CCPCH RSCP measurement capability

In the CELL_DCH state the measurement period for intra frequency P-CCPCH RSCP measurements is 200 ms. When all TS0, DwPTS and main guard periods in the measurement period are scheduled for intra frequency measurements, the UE shall be capable of performing P-CCPCH RSCP measurements for 6 identified intra-frequency cells of the monitored set and the UE physical layer shall be capable of reporting these measurements to higher layers with the measurement period of 200 ms. When inter-frequency measurements required by the network have to be performed during periods of TS0, DwPTS or main guard period, the UE shall be capable of performing P-CCPCH RSCP measurements for at least $Y_{\text{measurement intra}}$ cells , where $Y_{\text{measurement intra}}$ is defined in the following equation. The measurement accuracy for all measured cells shall be as specified in the section 9. If the UE has identified more than $Y_{\text{measurement intra}}$ cells, the UE shall perform measurements of all identified cells but the reporting rate of P-CCPCH RSCP measurements of cells from UE physical layer to higher layers may be decreased.

$$\mathbf{Y}_{\text{measurement intra}} = \text{Floor} \left\{ X_{\text{basic measurement TDD}} \cdot \frac{\mathbf{N}_{\text{Intra}}}{\mathbf{N}_{\text{Period, Intra}}} \right\}$$

whereby function Floor(x) takes the integer part of x.

 $X_{\text{basic measurement TDD}} = 6 \text{ (cells)}$

 $T_{\text{Measurement_Period, Intra}}$ = 200 ms. The measurement period for Intra frequency P-CCPCH RSCP measurements.

 $N_{Period,Intra}$ = 40 Number of subframes in $T_{Measurement\ Period,\ Intra}$.

N_{Intra}: This is the minimum number of sub-frame in that the period of TS0, DwPTS and main guard period is available for intra frequency measurements, during the measurement period.

 $T_{basic_identify_TDD, intra} = 800$ ms. This is the time period used in the intra frequency equation where the maximum allowed time for the UE to identify a new TDD cell is defined.

The UE shall furthermore be capable of performing P-CCPCH measurements for at least 1 detected intra-frequency cell, in the detected set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of 10 s. The measurement accuracy for all measured cells shall be as specified in the section 9.

8.1A.2.2.2A Timeslot ISCP measurement capability

In the CELL_DCH state the measurement period for intra frequency Timeslot ISCP measurements on arbitrary DL timeslots, including Beacon timeslots is 400 ms. When no inter frequency measurement is scheduled, the UE shall be capable of performing Timeslot ISCP measurements for a total of 5 different combinations of an arbitrary DL timeslot and an intra-frequency cell [16], including the current serving cell. The UE physical layer shall be capable of reporting Timeslot ISCP measurements to higher layers with the measurement period of 400 ms.

When inter-frequency measurements are required by the network, the UE shall be able to perform Timeslot ISCP measurements for at least $Y_{measurement\ intra\ ISCP}$ different combinations, where $Y_{measurement\ intra\ ISCP}$ is defined in the following equation. Any Timeslot ISCP measurement that could not be performed during that measurement period, shall be measured in the following measurement periods. The measurement accuracy of the Timeslot ISCP measurement shall be as specified in the section 9.

$$\mathbf{Y}_{\text{measurement intra ISCP}} = Floor \left\{ X_{\text{basic measurement ISCP}} \cdot \frac{\mathbf{T}_{\text{Intra}}}{\mathbf{T}_{\text{Measurement Period, Intra, ISCP}}} \right\}$$

whereby function Floor(x) takes the integer part of x.

X_{basic measurement ISCP} = 5 (combinations of an arbitrary DL timeslot and an intra-frequency cell)

 $T_{\text{Measurement_Period, Intra, ISCP}} = 400 \text{ ms.}$ The measurement period for Intra frequency Timeslot ISCP measurements.

T_{Intra}: This is the minimum time (representing a time corresponding to an integer number of full slots) that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing.

8.1A.2.2.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1A.2.2.4 Event-triggered Periodic Reporting

Reported measurements in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1A.2.2.5 Event Triggered Reporting.

8.1A.2.2.5 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report, until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, on cells belonging to monitored set, measured without L3 filtering shall be less than T $_{identify\ intra}$ defined in Section 8.1A.2.2.1

If a cell belonging to monitored set has been detectable at least for the time period $T_{identify_intra}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period\ Intra}$ when the L3 filter has not been used and the UE P-CCPCH measurement capabilities of Section 8.1A.2.2.2 are valid.

The event triggered measurement reporting delay on cells not belonging to monitored set, measured without L3 filtering, shall be less than the above defined $T_{identify detected set}$ defined in Section 8.1A.2.2.1.

8.1A.2.3 TDD inter frequency measurements

When signalled by the network during CELL_DCH state, the UE shall continuously measure identified inter frequency TDD cells and search for new inter frequency TDD cells indicated in the measurement control information.

8.1A.2.3.1 Identification of a new cell

When idle intervals are used for inter-frequency TDD measurements, the UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify inter}} = Max \left\{ 5000, N_{\text{basic identify TDD,inter}} \cdot \frac{T_{\text{Measurement Period,Inter}}}{N_{\text{Inter}}} \cdot N_{\text{Freq}} \right\} ms$$

If the UE does not require idle intervals to perform inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

A cell shall be considered detectable when P-CCPCH Ec/Io \geq -8 dB and DwPCH_Ec/Io \geq -5 dB. When L3 filtering is used an additional delay can be expected.

8.1A.2.3.2 UE P-CCPCH RSCP measurement capability

When idle intervals are used for TDD inter frequency measurements, the UE physical layer shall be capable of reporting P-CCPCH RSCP measurements to higher layers with measurement accuracy as specified in section 9 and with measurement period given by

$$T_{\text{measurement inter}} = Max \bigg\{ T_{\text{Measurement Period, Inter}} \cdot N_{\text{basic measurement TDD inter}} \cdot \frac{T_{\text{Measurement Period, Inter}}}{N_{\text{Inter}}} \cdot N_{\text{Freq}} \bigg\} ms$$

If the UE does not require idle intervals to perform TDD inter-frequency measurements, the measurement period for inter frequency P-CCPCH RSCP measurements is 480 ms.

96

The UE shall be capable of performing P-CCPCH RSCP measurements for $X_{\text{basic measurement TDD inter}}$ inter-frequency cells per TDD frequency of the monitored set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{Measurement Inter.}}$

 $X_{basic\ measurement\ TDDinter} = 6$

 $T_{\text{Measurement_Period Inter}}$ =480 ms. The period used for calculating the measurement period $T_{\text{measurement_inter}}$ for interfrequency P-CCPCH RSCP measurements.

 N_{Inter} : This is the minimum number of sub-frame in that the signal of P-CCPCH and DwPCH can be

received for inter frequency target cell during the period $T_{Measurement_Period\ inter}$ with an arbitrarily chosen timing. It depends on the channel allocation and is calculated by assuming 2*0.1ms for implementation margin (for the description of the idle intervals see Annex A of 25.225).

 $T_{basic_identify_TDD,inter}$ = 800ms. This is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new TDD cell is defined.

 $N_{basic\ identify\ TDD,\ Inter}$ = 160, Number of subframes in $T_{basic\ identify\ TDD,\ inter}$.

 $T_{basic_measurement_TDD\ inter} = 50$ ms. This is the time period used in the equation for defining the measurement period for inter frequency P-CCPCH RSCP measurements.

 $N_{basic measurement TDD, Inter}$ = 10, Number of subframes in $T_{basic measurement TDD Inter}$.

N_{Freq} Number of TDD frequencies indicated in the inter frequency measurement control information.

8.1A.2.3.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1A.2.3.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report, until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify\ inter}$ defined in Section 8.1A.2.3.1. When L3 filtering is used an additional delay can be expected.

8.1A.2.4 FDD measurements

The requirements in this section shall apply to UE supporting 1.28Mcps TDD and FDD.

In the CELL_DCH state when FDD inter frequency measurements are scheduled the UE shall continuously measure identified inter frequency FDD cells and search for new inter frequency FDD cells indicated in the measurement control information.

8.1A.2.4.1 Identification of a new cell

When idle intervals are used for inter-frequency FDD measurements, the UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify FDD inter}} = Max \left\{ 5000, T_{\text{basic identify FDD inter}} \cdot \frac{T_{\text{Measurement Period FDD inter}}}{T_{\text{FDD inter}}} \cdot N_{\text{Freq}} \right\} ms$$

IF the UE does not require idle intervals to perform inter-frequency FDD measurements, the UE shall be able to identify a new detectable inter-frequency FDD cell belonging to the monitored set within 5000 ms.

When L3 filtering is used an additional delay can be expected.

A cell shall be considered detectable when CPICH $Ec/Io \ge -20$ dB, $SCH_Ec/Io \ge -17$ dB and SCH_Ec/Io is equally divided between primary synchronisation code and secondary synchronisation code.

8.1A.2.4.2 UE CPICH measurement capability

When idle intervals are used for FDD inter frequency measurements, the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9 with measurement period given by

$$T_{\text{measurement FDD inter}} = Max \left\{ T_{\text{Measurement Period FDD inter}}, T_{\text{basic measurement FDD inter}} \cdot \frac{T_{\text{Measurement Period FDD inter}}}{T_{\text{FDD inter}}} \cdot N_{\textit{Freq}} \right\} ms$$

If the UE does not need idle intervals to perform FDD measurements, the measurement period for inter frequency measurements is 480 ms.

The UE shall be capable of performing FDD measurements for $X_{\text{basic measurement FDD inter}}$ inter-frequency cells per FDD frequency of the monitored set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{Measurement FDDInter}}$.

 $X_{basic\ measurement\ FDDinter} = 6$

 $T_{\text{Measurement_Period FDD inter}} = 480 \text{ ms.}$ The period used for calculating the measurement period $T_{\text{measurement_FDD inter}}$ for interfrequency CPICH measurements.

 $T_{FDD\ inter:}$

This is the minimum time that is available for inter frequency measurements, during the period $T_{Measurement_Period\ FDD\ inter}$ with an arbitrarily chosen timing. The minimum time depends on the channel allocation and is calculated by assuming 2*0.1 ms for implementation margin (for the description of the idle intervals see Annex A of 25.225). It is assumed for the requirement that the slot allocation allows measurement windows in the idle periods to be of minimum duration necessary to perform the measurements.

 $T_{basic_identify_FDD,inter} = 800$ ms. This is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new FDD cell is defined.

 $T_{basic_measurement_FDD\ inter} = 50$ ms. This is the time period used in the equation for defining the measurement period for inter frequency CPICH measurements.

N_{Frea}: Number of FDD frequencies indicated in the inter frequency measurement control information.

8.1A.2.4.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1A.2.4.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports as long as the reporting criteria are not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify\ FDD\ inter}$ defined in Section 8.1A.2.4.1. When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify_FDD\ inter}$ and then enters the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period\ FDD\ Inter}$ provided the timing to that cell has not changed more than +/-32 chips while idle intervals have has not been available and the L3 filter has not been used.

8.1A.2.5 GSM measurements

The requirements in this section shall apply to UE supporting 1.28Mcps TDD and GSM.

Measurements on GSM cells can be requested with BSIC verified or BSIC non-verified.

- For a UE requiring idle intervals to perform GSM measurements. In CELL_DCH state when signalled by UTRAN and when idle intervals are used, the UE shall continuously measure GSM cells and search for new GSM cells given in the monitored set.
- 2) For a UE not requiring idle intervals to perform GSM measurements:
 - the UE shall measure all GSM cells present in the monitored set
 - the relevant requirements for GSM dedicated mode when a TCH channel is assigned in TS 45.008 shall apply. This is further detailed in the following sub-sections.

8.1A.2.5.1 GSM carrier RSSI

1) For a UE requiring idle intervals to perform GSM measurements

An UE supporting GSM measurements using idle intervals shall meet the minimum number of GSM RSSI carrier measurements specified in table 8.1A.

In the CELL_DCH state the measurement period, $T_{Measurement\ Period,\ GSM}$, for the GSM carrier RSSI measurement is 480 ms.

The UE shall meet the measurement accuracy requirements stated for RXLEV in TS 45.008, when the given measurement time allows the UE to the take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

Idle Interval
Length
(timeslots)

3

4

2

5

Number of GSM carrier
RSSI samples in each
idle interval
2
3

Table 8.1A

For the description of the idle intervals see Annex A of 25.225.

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods. This means that, in this particular case, the L1 reporting period to higher layers of a GSM neighbour can be a multiple of the measurement period.

2) For a UE not requiring idle intervals to perform GSM measurements

The samples allocated to each carrier shall as far as possible be uniformly distributed over each measurement period. At least 3 received signal level measurement samples are required per RSSI value. The measurement period is 480 ms.

8.1A.2.5.2 BSIC verification

1) For a UE requiring idle intervals to perform GSM measurements

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

1) Initial BSIC identification

Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the TDD and GSM cell. The UE shall trigger the initial BSIC identification within the available idle intervals. The requirements for Initial BSIC identification can be found in section 8.1A.2.5.2.1,"Initial BSIC identification".

2) BSIC re-confirmation

Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The UE shall trigger the BSIC re-confirmation within the available idle intervals. The requirements for BSIC re-confirmation can be found in section 8.1A.2.5.2.2, "BSIC re-confirmation".

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

The UE shall use the last available GSM carrier RSSI measurement results for arranging GSM cells in signal strength order for performing BSIC identification. The UE shall perform event evaluation for event-triggered reporting after the BSIC has been verified for a GSM cell. The UE shall use the last available GSM carrier RSSI measurement results in event evaluation and event-triggered reporting. Periodic reports shall be triggered according to Sections 8.6.7.5 and 8.6.7.6 of [16]

The BSIC of a GSM cell is considered to be "verified" if the UE has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification) and from that moment the BSIC shall be re-confirmed at least once every $T_{\text{re-confirm abort}}$ seconds. Otherwise the BSIC of the GSM cell is considered as "non-verified". The time requirement for initial BSIC identification, $T_{\text{identify abort}}$, and the BSIC re-confirmation interval $T_{\text{re-confirm abort}}$ can be found in the sections below.

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

2) For a UE not requiring idle intervals to perform GSM measurements

If a BSIC is decoded and matches the expected value, it is considered as "verified", else it is considered as "non verified".

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

8.1A.2.5.2.1 Initial BSIC identification

For GSM cells that are requested with BSIC verified the UE shall attempt to decode the SCH on the BCCH carrier of the8 strongest BCCH carriers of the GSM cells indicated in the measurement control information. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BSIC carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value after layer 3 filtering. The GSM signal strength levels used in BSIC identification for arranging GSM cells in signal strength order shall be based on the latest GSM carrier RSSI measurement results available.

If the BSIC of a GSM BCCH carriers has been successfully decoded the UE shall immediately continue BSIC identification with the next BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within $T_{identify \, abort}$, the UE shall abort the BSIC identification attempts for that GSMBCCH carrier. The UE shall continue to try to perform BSIC identification of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC identification failed shall not be re-considered for BSIC identification until BSIC decoding attempts have been made for all the rest of the 8 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

 $T_{identify\;abort} = 5000$ ms. This is the time necessary to identify one new GSM cell. It is assumed for the requirement that the slot allocation allows measurement windows in the idle periods to be of minimum duration necessary to perform the measurements.

8.1A.2.5.2.2 BSIC re-confirmation

The requirements of this section are applicable for BSIC re-confirmation.

The UE shall maintain the timing information of at least 8 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

For each idle interval, the UE is able to use for BSIC re-confirmation, the UE shall attempt to decode the BSIC falling within the effective measurement window. If more than one BSIC can be decoded within the same measurement window given by the idle intervals, priority shall be given to the least recently decoded BSIC.

If the UE fails to decode the BSIC after two successive attempts or if the UE has not been able to re-confirm the BSIC for a GSM BCCH carrier within $T_{re-confirm_abort}$ seconds, the UE shall abort the BSIC re-confirmation attempts for that GSM BCCH carrier. The GSM BCCH carrier shall be treated as a new GSM BCCH carrier with unidentified BSIC and the GSM BCCH carrier shall be moved to the initial BSIC decoding procedure, see section 8.1A.2.5.2.1. The UE shall be able to make BSIC re-confirmation attempts for the 8 strongest GSM cells in the monitored list.

 $T_{re-confirm abort}$ =5000 ms. This is the BSIC reconfirmation interval.

It is assumed for the requirement that the slot allocation allows measurement windows in the idle periods to be of minimum duration necessary to perform the measurements.

8.1A.2.5.2.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1A.2.5.2.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered reporting delay requirement is valid when the UE for each GSM carrier in the monitored set can take the required number of samples during the measurement period $T_{Measurement\ Period,\ GSM}$ (see section 8.1A.2.5.1).

The event triggered measurement reporting delay for a GSM cell with verified BSIC, measured without L3 filtering shall be less than $2*T_{Measurement\ Period,\ GSM}$, where $T_{Measurement\ Period,\ GSM}$ is defined in Section 8.1A.2.5.1. When L3 filtering is used an additional delay can be expected. For a GSM cell with non-verified BSIC an additional delay according to section 8.1A.2.5.2.1 Initial BSIC identification can be expected.

8.1A.2.6 E-UTRAN FDD measurements

The requirements in this section apply only to UEs supporting 1.28Mcps TDD and E-UTRAN FDD.

- 1) For a UE requiring idle intervals to perform E-UTRAN FDD measurements:
 - a minimum idle interval of 6ms shall be scheduled by the network.
 - when signalled by UTRAN, the UE shall continuously measure previously detected E-UTRAN FDD cells and search for new E-UTRAN FDD cells.
- 2) For a UE not requiring idle intervals to perform E-UTRAN FDD measurements:
 - the UE shall measure either all E-UTRAN FDD cells present in the monitored set or, if only frequencies are provided in the neighbour cell list, the strongest cells present in the detected set, up to the monitoring capabilities of the UE.
 - the relevant requirements for E-UTRAN FDD dedicated mode when a [TBD] channel is assigned in 3GPP TS 36.133 [24] shall apply. This is further detailed in the following subclauses.

8.1A.2.6.1 Identification of a new cell

When idle intervals are used for E-UTRAN FDD measurements, the UE shall be able to identify a new detectable E-UTRAN FDD cell within

$$T_{\text{Identify E-UTRAN FDD}} = T_{\text{Basic_Identify_E-UTRAN FDD}} \cdot \frac{T_{\text{Measurement_Period_E-UTRAN FDD}}}{T_{\text{E-UTRAN FDD}}} \quad \textit{ms}$$

If the UE does not need idle intervals to perform E-UTRAN FDD measurements, the UE shall be able to identify a new detectable E-UTRAN FDD cell within $T_{\text{Basic Identify E-UTRAN FDD}}$ ms.

Where:

 $T_{\text{E-UTRAN FDD}}$: This is the minimum time that is available for E-UTRAN FDD measurements during the measurement period $T_{\text{Measurement_Period_E-UTRAN FDD}}$ with an arbitrarily chosen timing. The minimum time per idle interval is calculated by assuming 2*0.5 ms for implementation margin.

 $T_{\text{Basic Identify E-UTRAN FDD}} = 480 \text{ ms}$

When L3 filtering is used an additional delay can be expected.

An E-UTRAN FDD cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 of [24] are fulfilled for a corresponding Band.
- SCH_RP $|_{dBm} \ge -127$ dBm for Bands 1, 4, 6, 10, defined in [26] and SCH_E_S/Iot ≥ -4 dB,
- SCH_RP $_{dBm} \ge -126$ dBm for Band 9 defined in [26] and SCH_E_S/Iot ≥ -4 dB,
- SCH_RP $|_{dBm} \ge -125$ dBm for Bands 2, 5, 7, 11, 17 defined in [26] and SCH_E_S/Iot ≥ -4 dB,
- SCH_RP $|_{dBm} \ge -124$ dBm for Bands 3, 8, 12, 13, 14 defined in [26] and SCH_E_S/Iot ≥ -4 dB.

8.1A.2.6.2 E-UTRAN RSRP and RSRQ measurement period

When idle intervals are scheduled for E-UTRAN FDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1.5a and 9.1.1.5b with measurement period of $T_{Measurement_Period_E-UTRAN\ FDD} = 480\ x\ N_{Freq}$ ms where N_{Freq} is the number of FDD frequencies indicated in the E-UTRAN measurement control information.

The UE shall be capable of performing RSRP measurements of at least 4 E-UTRAN FDD cells per E-UTRAN FDD frequency for up to 3 FDD E-UTRAN frequencies.

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1A.2.6.4 void

8.1A.2.6.5 Event Triggered reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay

uncertainty is: [2] x TTI_{DCCH} . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{identify\ E-UTRAN\ FDD}$ defined in Section 8.1A.2.6.1. When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify E-UTRAN FDD}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period_E-UTRAN_FDD}$ provided the timing to that cell has not changed more than [FFS] while idle interval has not been available and the L3 filter has not been used.

8.1A.2.7 E-UTRAN TDD measurements

The requirements in this section apply only to UEs supporting 1.28Mcps TDD and E-UTRAN TDD.

- 1) For a UE requiring idle intervals to perform E-UTRAN TDD measurements:
 - a minimum idle interval of 6ms shall be scheduled by the network.
 - when signalled by UTRAN, the UE shall continuously measure previously detected E-UTRAN TDD cells and search for new E-UTRAN TDD cells.
- 2) For a UE not requiring idle intervals to perform E-UTRAN TDD measurements:
 - the UE shall measure either all E-UTRAN TDD cells present in the monitored set or, if only frequencies are provided in the neighbour cell list, the strongest cells present in the detected set, up to the monitoring capabilities of the UE.
 - the relevant requirements for E-UTRAN TDD dedicated mode when a [TBD] channel is assigned in 3GPP TS 36.133 [24] shall apply. This is further detailed in the following subclauses.

8.1A.2.7.1 Identification of a new cell

When idle intervals are used for E-UTRAN measurements, the UE shall be able to identify a new detectable E-UTRAN TDD cell within

$$T_{\text{Identify E-UTRAN TDD}} = T_{\text{Basic_Identify_E-UTRAN TDD}} \cdot \frac{T_{\text{Measurement_Period_E-UTRAN TDD}}}{T_{\text{E-UTRAN TDD}}} \quad \textit{ms} \, ;$$

If the UE does not need idle intervals to perform E-UTRAN TDD measurements, the UE shall be able to identify a new detectable E-UTRAN TDD cell within $T_{Basic\ Identify\ E-UTRAN\ TDD}$ ms.

Where:

 $T_{\text{E-UTRAN TDD}}$: This is the minimum time that is available for E-UTRAN TDD measurements during the measurement period $T_{\text{Measurement_Period_E-UTRAN TDD}}$ with an arbitrarily chosen timing. The minimum time per idle interval is calculated by assuming 2*0.5 ms for implementation margin.

 $T_{Basic\ Identify\ E-UTRAN\ TDD} = 480\ ms$

When L3 filtering is used an additional delay can be expected.

An E-UTRAN TDD cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 of [24] are fulfilled for a corresponding Band,
- SCH_RP|_{dBm}≥ -127 dBm for Bands33, 34, 35, 36, 37, 38, 39 and 40 defined in [26] and SCH Ês/Iot ≥ -4 dB,

8.1A.2.7.2 E-UTRAN RSRP and RSRQ measurement period

When idle intervals are scheduled for E-UTRAN TDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1.5a and 9.1.1.5b with measurement period of $T_{Measurement_Period_E-UTRAN\ TDD} = 480\ x\ N_{Freq}$ ms where N_{Freq} is the number of TDD frequencies indicated in the E-UTRAN measurement control information.

The UE shall be capable of performing RSRP measurements of at least 4 E-UTRAN TDD cells per E-UTRAN TDD frequency for up to 3 E-UTRAN TDD frequencies.

8.1A.2.7.3 Periodic reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1A.2.7.4 void

8.1A.2.7.5 Event Triggered reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is: $[2] \times TTI_{DCCH}$. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{Identify\ E-UTRAN\ TDD}$ defined in Section 8.1A.2.7.1. When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{Identify\ E-UTRAN\ TDD}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period_E-UTRAN_TDD}$ provided the timing to that cell has not changed more than [FFS] while idel interval has not been available and the L3 filter has not been used.

8.1B General Measurement Requirements in CELL_DCH State (7.68 Mcps option)

8.1B.1 Introduction

This section contains requirements on the UE regarding measurement reporting in CELL_DCH state. The requirements are split in TDD intra frequency, TDD inter frequency, FDD and GSM measurements. These measurements may be used by the UTRAN, e.g. for handover decisions. The measurements are defined in [14], the measurement model is defined in [15] and measurement accuracies are specified in section 9. Control of measurement reporting is specified in [16] and parallel measurements are specified in section 8.2B. For the description of the idle intervals see [14].

8.1B.2 Requirements

8.1B.2.1 UE Measurement Capability

The UE shall be able to monitor up to

- 32 intra frequency TDD cells (including serving cell), and
- 32 inter frequency cells, including
 - TDD mode cells distributed on up to 2 additional TDD carriers and
 - Depending on UE capability, FDD mode cells, distributed on up to 3 FDD carriers.
- Depending on UE capability, 32 inter RAT GSM cells.
- Depending on UE capability, [32] E-UTRA cells distributed on up to [TBD] E-UTRA carriers

The requirements in section 9 are applicable for a UE performing measurements according to this section.

For measurements on intra- and inter-frequency TDD, inter-frequency FDD and GSM cells, idle intervals as described in [14] can be used. The time $T_{measure}$ per 480 ms period available for these measurements is the sum of the duration of all idle intervals during any given 480 ms period, i.e. the amount of time not used by the UE for receiving in active DL timeslots or for transmission in active UL timeslots. Note that Beacon timeslots of the serving cell can be located inside idle intervals and that implementation margin due to frequency switching is not taken into account for $T_{measure}$.

The requirements in this section are based upon the assumption, that the time durations T_{intra} and T_{inter} during any given 480 ms period for the purpose of measurements on intra-frequency TDD cells and for measurements on inter-frequency TDD, inter-frequency FDD and GSM cells are respectively,

$$T_{intra} = \left[96 + 24 \cdot Floor \left\{ \frac{M_{intra} + 3}{4} \right\} \right] \text{ ms}$$

$$T_{inter} = 480 \text{ ms} - T_{intra}$$

where, M_{intra} is equal to the number of intra-frequency TDD cells in the neighbour list

The time duration T_{inter} shall be equally shared for inter-frequency measurements on the different modes and systems which the UE has capability for and that are in the monitored set signalled by UTRAN, i.e.

$$T_{inter} = N_{TDD} \cdot T_{TDD inter} + N_{FDD} \cdot T_{FDD inter} + N_{GSM} \cdot T_{GSM inter}$$

For this, the following parameters are defined,

T_{TDD inter} is the time duration allocated for the purpose of TDD inter-frequency measurements.

T_{FDD inter} is the time duration allocated for the purpose of FDD inter-frequency measurements.

 $T_{\text{GSM inter}}$ is the time duration allocated for the purpose of GSM measurements.

 N_{TDD} is equal to 1 if there are inter-frequency TDD cells in the neighbour list, equal to 0 otherwise.

 N_{FDD} is equal to 1 if the UE has capability for FDD and if there are inter-frequency FDD cells in the neighbour list, equal to 0 otherwise.

 N_{GSM} is equal to 1 if the UE has capability for GSM and if there are GSM cells in the neighbour list, equal to 0 otherwise.

8.1B.2.2 TDD intra frequency measurements

During the CELL_DCH state, the UE shall continuously measure identified intra frequency TDD cells and search for new intra frequency TDD cells in the monitored set. In case the UTRAN requests the UE to report detected set cells, the UE shall also search for intra frequency TDD cells outside the monitored and active set. Cells, which are neither included in the active set nor in the monitored set, and are identified by the UE belong to the detected set according to [16].

In order for the requirements in the following subsections to apply, the Beacon timeslots of the intra-frequency TDD cells indicated in the measurement control information shall either be synchronised with the Beacon timeslots of the serving cell or non-overlapping in time with the active UL timeslots used by the UE for transmission, such that the UE can measure an intra-frequency TDD cell at least once every frame for the slot allocation case in use in this cell. The UE shall be capable of intra frequency measurements during active DL timeslots.

8.1B.2.2.1 Identification of a new cell

The UE shall be able to identify a new detectable intra-frequency TDD cell belonging to the monitored set within $T_{identify\ intra}$ ms, where $T_{identify\ intra} = 800$ ms.

When L3 filtering is used, an additional delay can be expected.

8.1B.2.2.2 UE P-CCPCH RSCP measurement capability

In CELL_DCH state, the UE shall be capable of performing P-CCPCH RSCP measurements for $X_{measurement\ intra}$ identified intra-frequency TDD cells of the monitored set with a measurement period for intra-frequency P-CCPCH RSCP measurements $T_{measurement\ period\ intra}$, where

 $X_{measurement intra} = 6 (cells)$

 $T_{\text{measurement period intra}} = 200 \text{ ms}$

The UE physical layer shall be capable of reporting these measurements to higher layers with the measurement period $T_{\text{measurement period intra}}$.

If the UE has identified more than $X_{measurement\ intra}$ intra-frequency TDD cells, the UE shall perform measurements of all identified cells but the reporting rate of P-CCPCH RSCP measurements of cells from the UE physical layer to higher layers may be decreased.. The measurement accuracy for all measured cells shall be as specified in the section 9.

8.1B.2.2.3 Timeslot ISCP measurement capability

In CELL_DCH state the measurement period for intra frequency Timeslot ISCP measurements on arbitrary DL timeslots, including Beacon timeslots is 400 ms. When no inter frequency measurement is scheduled, the UE shall be capable of performing Timeslot ISCP measurements for a total of 10 different combinations of an arbitrary DL timeslot and an intra-frequency cell [16], including the current serving cell. The UE physical layer shall be capable of reporting Timeslot ISCP measurements to higher layers with the measurement period of 400 ms.

When inter-frequency measurements are required by the network, the UE shall be capable of performing Timeslot ISCP measurements for at least $Y_{measurement\ intra\ ISCP}$ different combinations, where $Y_{measurement\ intra\ ISCP}$ is defined in the following equation. Any Timeslot ISCP measurement that could not be performed during that measurement period, shall be measured in the following measurement periods. The measurement accuracy of the Timeslot ISCP measurement shall be as specified in the section 9.

$$\mathbf{Y}_{\text{measurement intra ISCP}} = Floor \left\{ X_{\text{basic measurement ISCP}} \cdot \frac{5}{6} \frac{\mathbf{T}_{\text{intra}}}{\mathbf{T}_{\text{measurement period intra ISCP}}} \right\}$$

whereby function Floor(x) takes the integer part of x.

- X_{basic} measurement ISCP = 10 (combinations of an arbitrary DL timeslot and an intra-frequency cell)
- $T_{measurement\ period,\ intra,\ ISCP} = 400\ ms$. The measurement period for intra frequency Timeslot ISCP measurements.
- T_{intra} is specified in 8.1B.2.1.

8.1B.2.2.4 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1B.2.2.5 Event-triggered Periodic Reporting

Reported measurements in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1B.2.2.6 Event Triggered Reporting.

8.1B.2.2.6 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report, until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay

uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

For P-CCPCH RSCP measurements, the event triggered measurement reporting delay, on cells belonging to the monitored set, measured without L3 filtering shall be less than T $_{identify\ intra}$ defined in Section 8.1B.2.2.1. When L3 filtering is used an additional delay can be expected..

If a cell, belonging to the monitored set has been detectable at least for the time period $T_{identify\;intra}$ and then enters the reporting range, the event triggered P-CCPCH RSCP measurement reporting delay shall be less than $T_{measurement_period\;intra}$ when the L3 filter has not been used and the UE P-CCPCH RSCP measurement capabilities of section 8.1B.2.2.1 are valid.

8.1B.2.3 TDD inter frequency measurements

When signalled by UTRAN during CELL_DCH state, the UE shall continuously measure detected inter-frequency TDD cells and search for new inter-frequency TDD cells indicated in the measurement control information.

In order for the requirements in the following subsections to apply, the Beacon timeslots of the inter-frequency TDD cells indicated in the measurement control information shall be non-overlapping in time with the active DL and UL timeslots used by the UE for reception and transmission such that the UE can measure an inter-frequency cell TDD cell at least once every frame for the slot allocation case in use in this cell and by assuming 2*0.5 ms implementation margin for frequency switching per idle interval.

8.1B.2.3.1 Identification of a new cell

When idle intervals are used for inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within

$$T_{\text{identify inter}} = Max \left\{ 5000, N_{\text{basic identify TDD inter}} \cdot \frac{T_{\text{measurement period TDD inter}}}{N_{\text{TDD inter}}} \cdot N_{\text{Freq}} \right\} ms$$

If the UE does not require idle intervals to perform inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

When L3 filtering is used, an additional delay can be expected.

8.1B.2.3.2 P-CCPCH RSCP measurement period

When idle intervals are used for TDD inter frequency measurements, the UE shall be capable of performing P-CCPCH RSCP measurements for $X_{measurement\ TDD\ inter}$ inter-frequency TDD cells per TDD frequency of the monitored set.

The UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in section 9 and with a measurement period of $T_{measurement inter}$.

$$T_{\text{measurement inter}} = Max \bigg\{ T_{\text{measurement period TDD inter}} , N_{\text{basic measurement TDD inter}} \cdot \frac{T_{\text{measurement period TDD inter}}}{N_{\text{TDD inter}}} \cdot N_{\textit{Freq}} \bigg\} ms$$

If the UE does not require idle intervals to perform TDD inter-frequency measurements, the measurement period for inter frequency P-CCPCH RSCP measurements shall be 480 ms.

Where,

 $X_{\text{measurement TDD inter}} = 6 \text{ (cells)}$

 $T_{measurement_period\ inter}$ = 480 ms. The time period used for calculating the measurement period $T_{measurement_inter}$ for inter frequency P-CCPCH RSCP measurements.

 $N_{TDD\ inter}$: This is the available number of measurement opportunities for a Beacon timeslot of an inter-frequency TDD cell during the time period $T_{TDD\ inter}$. The UE shall consider that a measurement opportunity on a Beacon timeslot of an inter-frequency TDD cell is provided if an idle interval of length equal to or greater than 3

timeslots less 2*0.5 ms implementation margin for frequency switching per idle interval completely overlaps in time with the Beacon timeslot of the inter-frequency TDD cell.

 $N_{basic_identify_TDD\ inter} = 80$. This is a number of measurement opportunities for a Beacon timeslot of an interfrequency TDD cell during the time period used in the inter frequency TDD equation where the maximum allowed time for the UE to identify a new detectable inter-frequency TDD cell is defined.

 $N_{basic_measurement_TDD\ inter} = 5$. This is a number of measurement opportunities for a Beacon timeslot of an interfrequency TDD cell during the time period $T_{TDD\ inter}$ used in the inter-frequency TDD equation where the measurement period for inter-frequency P-CCPCH RSCP measurements is defined.

 $N_{\text{Freq TDD}}$: This is the number of TDD frequencies indicated in the inter frequency measurement control information.

Note that the number of measurement opportunities available to the UE depends on UL and DL timeslot assignments for transmission and reception and on Beacon timeslot allocations in the inter-frequency TDD cells.

8.1B.2.3.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1B.2.3.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report, until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify\ inter}$ defined in Section 8.1B.2.3.1 When L3 filtering is used an additional delay can be expected.

If an intra frequency TDD cell has been detectable at least for the time period $T_{identify_inter}$ and then enters the reporting range, the event triggered measurement reporting delay shall be less than $T_{measurement_period\ inter}$ when the L3 filter has not been used.

8.1B.2.4 FDD measurements

The requirements in this section shall apply to UE supporting TDD and FDD.

In the CELL_DCH state when FDD inter frequency measurements are scheduled the UE shall continuously measure detected inter frequency FDD cells and search for new inter frequency FDD cells indicated in the measurement control information.

8.1B.2.4.1 Identification of a new cell

When idle intervals are used for inter-frequency FDD measurements, the UE shall be able to identify a new detectable inter-frequency FDD cell belonging to the monitored set within

$$T_{\text{identify FDD inter}} = Max \left\{ 5000, T_{\text{basic identify FDD inter}} \cdot \frac{T_{\text{measurement period FDD inter}}}{T_{\text{FDD inter}}} \cdot N_{\text{Freq}} \right\} ms$$

If the UE does not require idle intervals to perform FDD inter-frequency measurements, the UE shall be able to identify a new detectable inter-frequency FDD cell belonging to the monitored set within 5000 ms.

When L3 filtering is used an additional delay can be expected.

An inter-frequency FDD cell shall be considered detectable, when CPICH Ec/Io \geq -20 dB, SCH_Ec/Io \geq -17 dB and SCH_Ec/Io is equally divided between primary synchronisation code and secondary synchronisation code.

8.1B.2.4.2 UE CPICH measurement capability

When idle intervals are used for FDD inter frequency measurements, the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9 with measurement period given by

$$T_{\text{measurement FDD inter}} = Max \left\{ T_{\text{measurement period FDD inter}}, T_{\text{basic measurement FDD inter}} \cdot \frac{T_{\text{measurement period FDD inter}}}{T_{\text{FDD inter available}}} \cdot N_{\textit{Freq,FDD}} \right\} ms$$

If the UE does not require idle intervals to perform FDD inter-frequency measurements, the measurement period for inter frequency CPICH measurements shall be 480 ms.

The UE shall be capable of performing CPICH measurements for $X_{\text{measurement FDD inter}}$ inter-frequency FDD cells per frequency of the monitored set and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{measurement FDD inter}}$.

 $X_{basic measurement FDD inter} = 6 (cells)$

 $T_{measurement_period\ FDD\ inter}$ = 480 ms. The time period used for calculating the measurement period $T_{measurement_FDD\ inter}$ for inter frequency CPICH measurements.

 $T_{FDD\ inter:\ available}$: This is the available time for measurements on inter-frequency FDD cells. $T_{FDD\ inter\ available}$ shall be derived from $T_{FDD\ inter}$ by assuming 2*0.5 ms implementation margin for frequency switching per idle interval and by only taking into account the remaining number of full timeslots per idle interval. Idle intervals smaller than 3 timeslots shall not be taken into account for calculating $T_{FDD\ inter\ available}$.

 $T_{basic_identify_FDD\ inter} = 800\ ms$. This is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new detectable inter-frequency FDD cell is defined.

 $T_{basic_measurement_FDD\ inter} = 50$ ms. This is the time period used in the inter-frequency equation for defining the measurement period for inter frequency CPICH measurements.

N_{Freq}: This is the number of FDD frequencies indicated in the inter frequency measurement control information.

8.1B.2.4.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1B.2.4.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports as long as the reporting criteria are not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify\ FDD\ inter}$ defined in Section 8.1B.2.4.1. When L3 filtering is used an additional delay can be expected.

If an inter frequency FDD cell has been detectable at least for the time period $T_{identify_FDD\ inter}$ and then enters the reporting range, the event triggered measurement reporting delay shall be less than $T_{measurement_period\ FDD\ inter}$ provided the timing to that cell has not changed more than +/-32 chips during the time period $T_{identify\ FDD\ inter}$ and the L3 filter has not been used.

8.1B.2.5 GSM measurements

The requirements in this section shall apply to UE supporting TDD and GSM.

In CELL_DCH state, measurements opportunities for GSM measurements are provided by means of idle intervals.

Measurements on GSM cells can be requested with BSIC verified or BSIC non-verified.

- a) In CELL_DCH state, when signaled by UTRAN and when idle intervals are used for GSM measurements, the UE shall continuously measure GSM cells and search for new GSM cells given in the monitored set.
 - In section 8.1B.2.1 the split of measurements between different modes and systems is defined. Every second
 measurement opportunity scheduled for GSM measurements, as given by 8.1B.2.1 shall be allocated for
 GSM initial BSIC identification.
 - The remaining measurements opportunities scheduled for GSM measurements shall be used as follows. 3 measurement opportunities out of 4 shall be allocated for GSM carrier RSSI measurements and 1 out of 4 shall be allocated for GSM BSIC reconfirmation. The scheduling of measurement opportunities between GSM carrier RSSI measurements and GSM BSIC reconfirmation is up to the UE.
- b) In CELL_DCH state, when signaled by UTRAN and when the UE does not need idle intervals to perform GSM measurements, the UE shall measure all GSM cells present in the monitored set
 - the relevant requirements for GSM dedicated mode when a TCH channel is assigned in [21] shall apply. This is further detailed in the following sub-sections.

8.1B.2.5.1 GSM carrier RSSI

a) For a UE using idle intervals to perform GSM measurements

A UE supporting GSM measurements using idle intervals shall meet the minimum number of GSM carrier RSSI measurements specified in table 8.1B.

In the CELL_DCH state the measurement period, $T_{measurement period GSM}$, for the GSM carrier RSSI measurement is 480 ms.

The UE shall meet the measurement accuracy requirements stated for RXLEV in [21], when the given measurement time allows the UE to the take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

Table 8.1B

Idle interval length (timeslots)	Number of GSM carrier RSSI samples in each idle interval
3	1
4	2
5	3
6	4
7	6
8	7
9	8
10	10
11	11
12	12
13	14

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods. This means that, in this particular case, the L1 reporting period to higher layers of a GSM neighbour can be a multiple of the measurement period.

b) For a UE not using idle intervals to perform GSM measurements

The samples allocated to each carrier shall as far as possible be uniformly distributed over each measurement period. At least 3 received signal level measurement samples are required per GSM carrier RSSI measurement. The measurement period shall be 480 ms.

8.1B.2.5.2 BSIC verification

a) For a UE using idle intervals to perform GSM measurements

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

- 1) Initial BSIC identification: Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the TDD and GSM cell.. The requirements for Initial BSIC identification can be found in section 8.1B.2.5.2.1.
- 2) BSIC re-confirmation: Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The requirements for Initial BSIC identification can be found in section 8.1B.2.5.2.2.

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified, the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

If the UTRAN requests measurements on a GSM cell with BSIC verified, the UE shall behave as follows:

- The UE shall perform GSM carrier RSSI measurements according to Section 8.1B.2.5.1 and the UE shall perform measurement reporting as defined in Section 8.6.7.6 of [16].
- The UE shall use the last available GSM carrier RSSI measurement results for arranging GSM cells in signal strength order for performing BSIC identification.
- The UE shall perform BSIC re-confirmation according to Section 8.1B.2.5.2.2

The UE shall perform event evaluation for event-triggered reporting after the BSIC has been verified for a GSM cell. The UE shall use the last available GSM carrier RSSI measurement results in event evaluation and event-triggered reporting. Periodic reports shall be triggered according to the given reporting period even if the BSIC of a GSM cell has not been verified as defined in Sections 8.6.7.5 and 8.6.7.6 of [16]. Non verified BSIC shall be indicated in the measurement report.

The UE shall consider the BSIC of a GSM cell to be "verified", if it has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification). From that time instant, the UE shall attempt to reconfirm the BSIC at least once every $T_{re\text{-confirm abort}}$ seconds. Otherwise, the UE shall consider the BSIC of the GSM cell to be "non-verified".

The time requirement for initial BSIC identification, $T_{identify\ abort}$, and the BSIC re-confirmation interval $T_{re-confirm\ abort}$ can be found in the sections below.

The UE shall be able to decode a BSIC for the purpose of initial BSIC identification or BSIC reconfirmation within an idle interval, when the time difference between the middle of the received GSM synchronisation burst at the UE and the middle of the idle interval is within the limits specified in Table 8.1C.

Table 8.1C

Idle Interval Length (timeslots)	Maximum time difference [μs]
3	± 65
4	± 398
5	± 732
6	± 1065
7	± 1398
8	± 1732
9	± 2065
10	± 2398
11	± 2732
12	± 3065
13	± 3398

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [20].

b) For a UE not using idle intervals to perform GSM measurements

If a BSIC is decoded and matches the expected value, the UE shall consider it as "verified", otherwise it shall consider it as "non-verified".

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [20].

8.1B.2.5.2.1 Initial BSIC identification

For GSM cells that are requested with BSIC verified the UE shall attempt to decode the SCH on the BCCH carrier of the 8 strongest BCCH carriers of the GSM cells indicated in the measurement control information. The UE shall give priority for BSIC decodingattempts in decreasing signal strength order to BSIC carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value after layer 3 filtering. The GSM signal strength levels used in BSIC identification for arranging GSM cells in signal strength order shall be based on the latest GSM carrier RSSI measurement results available.

If the BSIC of a GSM BCCH carriers has been successfully decoded the UE shall inmediately continue BSIC identification with the next BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within $T_{identify\;abort}$, the UE shall abort the BSIC decoding attempts for that GSMBCCH carrier. The UE shall continue to try to perform BSIC decoding of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC decoding failed shall not be re-considered for BSIC decoding until BSIC decoding attempts have been made for all the rest of the 8 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

Where $T_{identify abort} = 5000 \text{ ms.}$

8.1B.2.5.2.2 BSIC re-confirmation

The requirements of this section are applicable for BSIC re-confirmation.

The UE shall maintain the timing information of at least 8 identified GSM cells. Initial timing information is obtained from the initial BSIC decoding. The timing information shall be updated every time the BSIC is decoded.

If more than one BSIC can be decoded within the same measurement window given by the idle intervals, priority shall be given to the least recently decoded BSIC.

If the UE fails to decode the BSIC after two successive attempts or if the UE has not been able to re-confirm the BSIC for a GSM BCCH carrier within $T_{re-confirm_abort}$ seconds, the UE shall abort the BSIC re-confirmation attempts for that GSM BCCH carrier. The GSM BCCH carrier shall be treated as a new GSM BCCH carrier with unidentified BSIC and the GSM BCCH carrier shall be moved to the initial BSIC decoding procedure, see section 8.1B.2.5.2.1. The UE shall be able to make BSIC re-confirmation attempts for the 8 strongest GSM cells in the monitored list.

Where $T_{\text{re-confirm abort}}$ =5000 ms.

8.1B.2.5.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1B.2.5.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered reporting delay requirement is valid, when the UE for each GSM carrier in the monitored set can take the required number of samples during the measurement period T_{measurement period GSM} (see section 8.1B.2.5.1).

The event triggered measurement reporting delay for a GSM cell with verified BSIC, measured without L3 filtering shall be less than $2*T_{measurement\ period\ GSM}$, where $T_{measurement\ period\ GSM}$ is defined in Section 8.1B.2.5.1. When L3 filtering is used an additional delay can be expected. For a GSM cell with non-verified BSIC an additional delay according to section 8.1B.2.5.2.1 Initial BSIC identification can be expected.

8.1B.2.6 TDD Synchronisation to new cells

For the requirements in section 8 and 9 to apply, an intra-frequency or inter-frequency TDD cell shall be considered

detectable when,

$$\left(\frac{P - CCPCH _E_c}{I_o}\right)_{in \ dR} \ge -11dB$$

$$\left. \left(\frac{SCH _E_c}{I_o} \right) \right|_{in \ dB} \ge -13dB$$

where the received P-CCPCH E_c/I_o is defined as

$$\left(\frac{P - CCPCH _E_c}{I_o}\right)_{in\ dB} = \left(\frac{P - CCPCH _E_c}{I_{or}}\right)_{in\ dB} - \frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}}$$

and the received SCH E_c/I_o is defined as

$$\left. \left(\frac{SCH_E_c}{I_o} \right) \right|_{in~dB} = \left(\frac{SCH_E_c}{I_{or}} \right) \right|_{in~dB} - \frac{I_o}{\left(\hat{I}_{or} \right)} \right|_{in~dB}$$

and SCH_Ec/Ior is equally divided between primary synchronisation code and the sum of all secondary synchronisation codes, where the secondary synchronisation codes are also equally divided.

8.1B.2.7 E-UTRAN FDD measurements

The requirements in this section apply only to UEs supporting 7.68Mcps TDD and E-UTRAN FDD.

- 1) For a UE requiring idle intervals to perform E-UTRAN FDD measurements. In CELL_DCH state when signalled by UTRAN and when idle intervals are used, the UE shall continuously measure previously detected E-UTRAN FDD cells and search for new E-UTRAN FDD cells.
- 2) For a UE not requiring idle intervals to perform E-UTRAN FDD measurements:

- the UE shall measure either all E-UTRAN FDD cells present in the monitored set or, if only frequencies are provided in the neighbour cell list, the strongest cells present in the detected set, up to the monitoring capabilities of the UE.
- the relevant requirements for E-UTRAN FDD dedicated mode when a [TBD] channel is assigned in 3GPP TS 36.133 [24] shall apply. This is further detailed in the following subclauses.

8.1B.2.7.1 Identification of a new cell

When idle intervals are used for E-UTRAN FDD measurements, the UE shall be able to identify a new detectable E-UTRAN FDD cell within

$$T_{\text{Identify E-UTRAN FDD}} = T_{\text{Basic_Identify_E-UTRAN FDD}} \cdot \frac{T_{\text{Measurement_Period_E-UTRAN FDD}}}{T_{\text{E-UTRAN FDD}}} \quad \textit{ms}$$

If the UE does not need idle intervals to perform E-UTRAN FDD measurements, the UE shall be able to identify a new detectable E-UTRAN FDD cell within $T_{Basic\ Identify\ E-UTRAN\ FDD}$ ms.

Where:

 $T_{\text{E-UTRAN FDD}}$: This is the minimum time that is available for E-UTRAN FDD measurements during the measurement period $T_{\text{Measurement_Period_E-UTRAN FDD}}$ with an arbitrarily chosen timing. The minimum time per idle interval is calculated by assuming 2*0.5 ms for implementation margin.

 $T_{Basic\ Identify\ E-UTRAN\ FDD} = 480\ ms$

When L3 filtering is used an additional delay can be expected.

An E-UTRAN FDD cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 of [24] are fulfilled for a corresponding Band,
- SCH RP_{|dRm} \geq -127 dBm for Bands 1, 4, 6, 10, defined in [26] and SCH E_S/Iot \geq -4 dB,
- SCH_RP|_{dBm} \geq -126 dBm for Band 9 defined in [26] and SCH_E_S/Iot \geq -4 dB,
- SCH RP $|_{dBm} \ge -125$ dBm for Bands 2, 5, 7, 11, 17 defined in [26] and SCH E_S/Iot ≥ -4 dB,
- SCH_RP $|_{dBm}$ ≥ -124 dBm for Bands 3, 8, 12, 13, 14 defined in [26] and SCH_E_S/Iot ≥ -4 dB.

8.1B.2.7.2 E-UTRAN RSRP and RSRQ measurement period

When idle intervals are scheduled for E-UTRAN FDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1.5a and 9.1.1.5b with measurement period of $T_{Measurement_Period_E-UTRAN\ FDD} = 480\ x\ N_{Freq}$ ms where N_{Freq} is the number of FDD frequencies indicated in the E-UTRAN measurement control information.

The UE shall be capable of performing RSRP measurements of at least 4 E-UTRAN FDD cells per E-UTRAN FDD frequency for up to 3 FDD E-UTRAN frequencies.

8.1B.2.7.3 Periodic reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1B.2.7.4 Void

8.1B.2.7.5 Event Triggered reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is: $[2] \times TTI_{DCCH}$. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{identify\ E-UTRAN\ FDD}$ defined in Section 8.1B.2.7.1. When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify E-UTRAN FDD}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period_E-UTRAN_FDD}$ provided the timing to that cell has not changed more than [FFS] while idel interval has not been available and the L3 filter has not been used.

8.1B.2.8 E-UTRAN TDD measurements

The requirements in this section apply only to UEs supporting 1.28Mcps TDD and E-UTRAN TDD.

- 1) For a UE requiring idle intervals to perform E-UTRAN TDD measurements. In CELL_DCH state when signalled by UTRAN and when idle intervals are used, the UE shall continuously measure previously detected E-UTRAN TDD cells and search for new E-UTRAN TDD cells.
- 2) For a UE not requiring idle intervals to perform E-UTRAN TDD measurements:
 - the UE shall measure either all E-UTRAN TDD cells present in the monitored set or, if only frequencies are provided in the neighbour cell list, the strongest cells present in the detected set, up to the monitoring capabilities of the UE.
 - the relevant requirements for E-UTRAN TDD dedicated mode when a [TBD] channel is assigned in 3GPP TS 36.133 [24] shall apply. This is further detailed in the following subclauses.

8.1B.2.8.1 Identification of a new cell

When idle intervals are used for E-UTRAN measurements, the UE shall be able to identify a new detectable E-UTRAN TDD cell within

$$T_{\text{Identify E-UTRAN TDD}} = T_{\text{Basic_Identify_E-UTRAN TDD}} \cdot \frac{T_{\text{Measurement_Period_E-UTRAN TDD}}}{T_{\text{E-UTRAN TDD}}} \quad \textit{ms}$$

If the UE does not need idle intervals to perform E-UTRAN TDD measurements, the UE shall be able to identify a new detectable E-UTRAN TDD cell within $T_{Basic\ Identify\ E-UTRAN\ TDD}$ ms.

Where:

 $T_{\text{E-UTRAN TDD}}$: This is the minimum time that is available for E-UTRAN TDD measurements during the measurement period $T_{\text{Measurement_Period_E-UTRAN TDD}}$ with an arbitrarily chosen timing. The minimum time per idle interval is calculated by assuming 2*0.5 ms for implementation margin.

 $T_{Basic_Identify_E-UTRAN\ TDD} = 480ms$

When L3 filtering is used an additional delay can be expected.

An E-UTRAN TDD cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 of [24] are fulfilled for a corresponding Band,
- SCH_RP|_{dBm}≥ -127 dBm for Bands 33, 34, 35, 36, 37, 38, 39 and 40 defined in [26] and SCH Ês/Iot ≥ -4 dB,

8.1B.2.8.2 E-UTRAN RSRP and RSRQ measurement period

When idle intervals are scheduled for E-UTRAN TDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1.5a and 9.1.1.5b with measurement period of $T_{Measurement_Period_E-UTRAN\ TDD} = 480\ x\ N_{Freq}$ ms where N_{Freq} is the number of TDD frequencies indicated in the E-UTRAN measurement control information.

The UE shall be capable of performing RSRP measurements of at least 4 E-UTRAN TDD cells per E-UTRAN TDD frequency for up to 3 E-UTRAN TDD frequencies.

8.1B.2.8.3 Periodic reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1B.2.8.4 Void

8.1B.2.8.5 Event Triggered reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is: $[2] \times TTI_{DCCH}$. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{Identify\ E-UTRAN\ TDD}$ defined in Section 8.1B.2.8.1. When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{Identify\ E-UTRAN\ TDD}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period_E-UTRAN_TDD}$ provided the timing to that cell has not changed more than [FFS] while idel interval has not been available and the L3 filter has not been used.

8.2 Measurements in CELL_DCH State with special requirements (3.84 Mcps option)

8.2.1 Introduction

This section contains specific requirements for certain measurements beyond those specified in section 8.1. The measurements are defined in [14], the measurement model is defined in [15] and measurement accuracies are specified in section 9. As long as the measurement configuration does not exceed the requirements stated in section 8.2.2, the UE shall meet the performance requirements defined in section 9. Control of measurement reporting is specified in [16]. Idle intervals for the purpose of measurements are described in [14].

8.2.2 Requirements

The UE shall be able to perform in parallel all physical layer measurements according to table 8.2. In this section one physical layer measurement corresponds to a measurement at the reference point B (i.e. measurement reported by layer 1 after layer 1 filtering) in the measurement model in [15].

In addition to the requirements in table 8.2, a UE in CELL_DCH state shall also be able to measure and report the quantities according to section 8.1.

Table 8.2: Parallel physical layer measurement requirements

Measurement quantity	Number of parallel physical layer measurements possible to request from the UE	Note
Transport channel BLER	1 per Transport Channel	
UE transmitted power	1 per UL timeslot	
SFN-SFN observed time difference type 2	1	
UE GPS Timing of Cell Frames for UP	1	Only applicable for UE with
		this capability

8.2A Parallel Measurements in CELL_DCH State (1.28 Mcps option)

8.2A.1 Introduction

The purpose with this section is to ensure that all UE can handle a certain number of measurements in parallel. The measurements are defined in TS 25.225, the measurement model is defined in TS 25.302 and measurement accuracies are specified in section 9. As long as the measurement configuration does not exceed the requirements stated in section 8.2.2, the UE shall meet the performance requirements defined in section 9. Control of measurement reporting is specified in TS 25.331 and measurements reporting delays are specified in section 8.1A. For the description of the idle intervals see TS 25.225, Annex A.

8.2A.2 Requirements

The UE shall be able to perform in parallel all physical layer measurements according to table 8.2A. In this section one physical layer measurement corresponds to a measurement at the reference point B (i.e. measurement reported by layer 1 after layer 1 filtering) in the measurement model in TS 25.302 [15].

In addition to the requirements in table 8.2A the UE shall in parallel, in state CELL_DCH, also be able to measure and report the quantities according to section 8.1A.

Table 8.2A: Parallel physical layer measurement requirements

Measurement quantity	Number of parallel physical layer measurements possible to request from the UE
Transport channel BLER	1 per TrCh
UE transmitted power	1
SFN-SFN observed time difference type 2	1
UE GPS Timing of Cell Frames for UP	1

8.2B Measurements in CELL_DCH State with special requirements (7.68 Mcps option)

8.2B.1 Introduction

This section contains specific requirements for certain measurements beyond those specified in section 8.1B. The measurements are defined in [14], the measurement model is defined in [15] and measurement accuracies are specified in section 9. As long as the measurement configuration does not exceed the requirements stated in section 8.2B.2, the UE shall meet the performance requirements defined in section 9. Control of measurement reporting is specified in [16]. Idle intervals for the purpose of measurements are described in [14].

8.2B.2 Requirements

The UE shall be able to perform in parallel all physical layer measurements according to table 8.2B. In this section one physical layer measurement corresponds to a measurement at the reference point B (i.e. measurement reported by layer 1 after layer 1 filtering) in the measurement model in [15].

In addition to the requirements in table 8.2B, a UE in CELL_DCH state shall also be able to measure and report the quantities according to section 8.1B.

 Measurement quantity
 Number of parallel physical layer measurements possible to request from the UE
 Note

 Transport channel BLER
 1 per Transport Channel

 UE transmitted power
 1 per UL timeslot

 SFN-SFN observed time difference type 2
 1

 UE GPS Timing of Cell Frames for UP
 1
 Only applicable for UE with this capability

Table 8.2B: Parallel physical layer measurement requirements

8.3 Capabilities for Support of Event Triggering and Reporting Criteria in CELL_DCH state (3.84 Mcps option)

8.3.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria. As long as the measurement configuration does not exceed the requirements stated in section 8.3.2, the UE shall meet the performance requirements defined in section 9.

The UE can be requested to make measurements under different measurement identities. Each Measurement Identity corresponds to either event based reporting, periodic reporting or no reporting. In case of event based reporting each Measurement Identity is associated with one or more events, each identified with an Event Identity. In case of periodic reporting, a Measurement Identity is associated with one periodic reporting criterion. In case of no reporting, a Measurement Identity is associated with one no reporting criterion.

The purpose of this section is to set some limits on the number of different event, periodic and no reporting criteria the UE may be requested to track in parallel.

8.3.2 Requirements

In this section a reporting criterion corresponds to either one event (in the case of event based reporting), or one periodic reporting criterion (in the case of periodic reporting), or one no reporting criterion (in case of no reporting). Fore event based reporting, each instance of event, with the same or different Event Identities, is counted as separate reporting criterion in Table 8.6.

The UE shall be able to support in parallel per category up to E_{cat} reporting criteria according to Table 8.6. The same type of events (e.g. events 1G) are counted as different events if either any of the parameters related to the events or their neighbour cell lists or both differ from each other.

For the measurement categories: Intra-frequency, Inter frequency and Inter-RAT the UE need not support more than 14 reporting criteria in total. For the measurement categories Traffic volume and Quality measurements the UE need not support more than 16 reporting criteria in total.

For the measurement category Intra-frequency the UE shall support at least 2 reporting criteria for event type 1G and at least 4 reporting criteria for an arbitrary combination of event types 1H and 1I.

Table 8.6: Requirements for reporting criteria per measurement category

Measurement category	E _{cat}	Note
Intra-frequency	6	
Inter-frequency	6	
Inter-RAT	4	Only applicable for UE with this capability
UE internal measurements	8	
Traffic volume measurements	2 + (2 per Transport Channel)	
Quality measurements	2 per Transport Channel	
UP measurements	2	Only applicable for UE with this capability.

8.3A Capabilities for Support of Event Triggering and Reporting Criteria in CELL_DCH State (1.28 Mcps option)

8.3A.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria. As long as the measurement configuration does not exceed the requirements stated in section 8.3A.2, the UE shall meet the performance requirements defined in section 9.

The UE can be requested to make measurements under different measurement identities. Each Measurement Identity corresponds to either event based reporting, periodic reporting or no reporting. In case of event based reporting, each Measurement Identity is associated with one or more events, each identified with an Event Identity. In case of periodic reporting, a Measurement Identity is associated with one periodic reporting criterion. In case of no reporting, a Measurement Identity is associated with one no reporting criterion.

The purpose of this section is to set some limits on the number of different event, periodic and no reporting criteria the UE may be requested to track in parallel.

8.3A.2 Requirements

In this section a reporting criterion corresponds to either one event (in the case of event based reporting), or one periodic reporting criterion (in case of periodic reporting), or one no reporting criterion (in case of no reporting). For event based reporting, each instance of event, with the same or different Event Identities, is counted as separate reporting criterion in Table 8.6A.

The UE shall be able to support in parallel per category up to E_{cat} reporting criteria according to Table 8.6A. The same type of events (e.g. events 1G) are counted as different events if either any of the parameters related to the events or their neighbour cell lists differ from each other.

For the measurement categories: Intra-frequency, Inter frequency and Inter-RAT the UE need not support more than 14 reporting criteria in total. For the measurement categories Traffic volume and Quality measurements the UE need not support more than 16 reporting criteria in total.

Table 8.6A: Requirements for reporting criteria per measurement category

Measurement category	E _{cat}	Note
Intra-frequency	4	
Inter-frequency	6	
Inter-RAT GSM	4	Only applicable for UE with this capability
Inter-RAT E-UTRA	[TBD]	Only applicable for UE with this capability
UE internal measurements	8	
Traffic volume measurements	2 + (2 per Transport Channel)	
Quality measurements	2 per Transport Channel	
UP measurements	2	Only applicable for UE with this capability.

8.3B Capabilities for Support of Event Triggering and Reporting Criteria in CELL_DCH state (7.68 Mcps option)

8.3B.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria. As long as the measurement configuration does not exceed the requirements stated in section 8.3B.2, the UE shall meet the performance requirements defined in section 9.

The UE can be requested to make measurements under different measurement identities. Each Measurement Identity corresponds to either event based reporting, periodic reporting or no reporting. In case of event based reporting each Measurement Identity is associated with one or more events, each identified with an Event Identity. In case of periodic reporting, a Measurement Identity is associated with one periodic reporting criterion. In case of no reporting, a Measurement Identity is associated with one no reporting criterion.

The purpose of this section is to set some limits on the number of different event, periodic and no reporting criteria the UE may be requested to track in parallel.

8.3B.2 Requirements

In this section a reporting criterion corresponds to either one event (in the case of event based reporting), or one periodic reporting criterion (in the case of periodic reporting), or one no reporting criterion (in case of no reporting). Fore event based reporting, each instance of event, with the same or different Event Identities, is counted as separate reporting criterion in Table 8.6B.

The UE shall be able to support in parallel per category up to E_{cat} reporting criteria according to Table 8.6B. The same type of events (e.g. events 1G) are counted as different events if either any of the parameters related to the events or their neighbour cell lists or both differ from each other.

For the measurement categories: Intra-frequency, Inter frequency and Inter-RAT the UE need not support more than 14 reporting criteria in total. For the measurement categories Traffic volume and Quality measurements the UE need not support more than 16 reporting criteria in total.

For the measurement category Intra-frequency the UE shall support at least 2 reporting criteria for event type 1G and at least 4 reporting criteria for an arbitrary combination of event types 1H and 1I.

Measurement category	E _{cat}	Note
Intra-frequency	6	
Inter-frequency	6	
Inter-RAT	4	Only applicable for UE with this capability
UE internal measurements	8	
Traffic volume measurements	2 + (2 per Transport Channel)	
Quality measurements	2 per Transport Channel	
UP measurements	2	Only applicable for UE with this capability.

Table 8.6B: Requirements for reporting criteria per measurement category

8.4 Measurements in CELL_FACH State (3.84 Mcps option)

8.4.1 Introduction

This section contains requirements on the UE regarding measurement reporting in CELL_FACH state. The requirements are split in TDD intra frequency, TDD inter frequency, FDD and GSM measurements. These measurements may be used by the UTRAN, e.g. for handover decisions. The measurements are defined in [14], the measurement model is defined in [15] and measurement accuracies are specified in section 9. Control of measurement reporting is specified in [16] and parallel measurements are specified in section 8.2. For the description of the idle intervals see [14].

8.4.2 Requirements

8.4.2.1 UE Measurement Capability

The UE shall be able to monitor up to

- 32 intra frequency TDD cells (including serving cell), and
- 32 inter frequency cells, including
 - TDD mode cells distributed on up to 2 additional TDD carriers and
 - Depending on UE capability, FDD mode cells, distributed on up to 3 FDD carriers.
- Depending on UE capability, 32 inter RAT GSM cells.

The requirements in section 9 on P-CCPCH RSCP measurements are applicable for a UE performing measurements according to this section. For inter-frequency FDD, TDD and GSM cell re-selection, measurement occasions as specified in [16] and idle intervals as described in [14] are used to find and measure on other cells.

It is defined below how the measurements on different systems and modes are performed given the time allocated to that system. The requirements in this section are based on the assumption that the time during the measurement occasions and idle intervals that is allocated to each of the different modes and systems shall be equally shared by the modes which the UE has capability for and that are in the monitored set signalled by the network.

The UE is required to measure periodically once every time period T_{meas} on each of the modes and systems, FDD interfrequency cells, TDD interfrequency cells and GSM carriers, for which the corresponding parameter N_{FDD} , N_{TDD} and N_{GSM} is set to 1, within the measurement time T_{meas}

$$T_{meas} = \left[\left(N_{FDD} + N_{TDD} + N_{GSM} \right) \cdot N_{TTI} \cdot \mathbf{M} - \mathbf{REP} \cdot 10 \right] \mathbf{ms}$$

where the following parameters are defined:

 N_{TDD} = 0 or 1. If there are inter-frequency TDD cells in the neighbour list N_{TDD} =1, otherwise N_{TDD} =0.

 N_{FDD} = 0 or 1. If the UE is capable of FDD and there are FDD cells in the neighbour list $N_{FDD}=1$

otherwise $N_{FDD} = 0$.

 N_{GSM} = 0 or 1. If the UE is capable of GSM and there are GSM cells in the neighbour list, $N_{GSM}=1$,

otherwise $N_{GSM} = 0$.

M_REP is the Measurement Occasion cycle length in number of frames as specified in [16].

N_{TTI} is the number of frames in each measurement occasion, equal to the length of the largest TTI on

the SCCPCH monitored by the UE. FACHs that only carry MBMS logical channels (MTCH

MSCH or MCCH) are excluded from measurement occasion calculation.

For 3.84 Mcps TDD UE capable of MBMS reception and if MBMS reception is active, during Measurement Occasion the UE shall:

- Start to switch back to its serving cell frequency 1 timeslot prior to the start of the MBMS reception
- Switch back to its target inter-frequency within 1 timeslot immediately after the last MBMS reception.

The FACH Measurement Occasion of N_{TTI} frames will be repeated every N_{TTI} * M_REP frame.

Table 8.6B: K values for each N_{TTI} value

N _{TTI}	K	
1	3,4,5,6	
2	2,3,4,5	
4	2,3,4	
8	1,2,3	

8.4.2.2 TDD intra frequency measurements

During the CELL_FACH state the UE shall continuously measure identified intra frequency TDD cells and search for new intra frequency TDD cells in the monitored set. If a measurement occasion is activated, intra frequency measurements can be performed between the measurement occasions.

In case no measurement occasion is activated, in order for the requirements in the following subsections to apply, the Beacon timeslots of the intra-frequency TDD cells indicated in the measurement control information shall either be synchronised with the Beacon timeslots of the serving cell, such that the UE can measure an intra-frequency cell TDD cell at least once every frame for the slot allocation case in use in this cell. The UE shall be capable of intra frequency measurements during active DL timeslots.

8.4.2.2.1 Identification of a new cell

The UE shall be able to identify a new inter frequency TDD detectable cell belonging to the monitored set within $T_{identify}$ intra ms, where $T_{identify intra}$ is specified in section 8.1.2.2.1.

In the case that MTCH is being received, the UE shall be able to take identified cells into use for MTCH combining purposes within $T_{identify\ intra}$ ms.

If more candidate cells are identified than the UE has combing capability, then cells ranked in decreasing MTCH reception quality shall be considered for combing purposes.

8.4.2.2.2 UE P-CCPCH RSCP measurement capability

In CELL_FACH state the UE shall be capable of performing P-CCPCH RSCP measurements for $X_{measurement\ intra}$ identified intra-frequency TDD cells of the monitored set with a measurement period for intra-frequency P-CCPCH RSCP measurements $T_{measurement\ period\ intra}$, where

X_{measurement intra} is specified in section 8.1.2.2.2

 $T_{measurement \, period \, intra}$ is specified in section 8.1.2.2.2

The UE physical layer shall be capable of reporting these measurements to higher layers with the measurement period $T_{measurement period intra}$.

If the UE has identified more than $X_{\text{measurement intra}}$ intra-frequency cells, the UE shall perform measurements of all identified cells but the reporting rate of P-CCPCH RSCP measurements of cells from UE physical layer to higher layers may be decreased. The measurement accuracy for all measured cells shall be as specified in the section 9.

8.4.2.2.3 (void)

8.4.2.2.4 (void)

8.4.2.2.5 Timeslot ISCP measurement capability

In CELL_FACH state the measurement period for intra frequency Timeslot ISCP measurements on arbitrary DL timeslots, including Beacon timeslots is 400 ms. The UE shall be capable of performing Timeslot ISCP measurements on the current serving cell for 10 arbitrary DL timeslots. The UE physical layer shall be capable of reporting Timeslot ISCP measurements to higher layers with the measurement period of 400 ms.

8.4.2.2.6 RACH reporting

Reporting measurements in the measurement reports sent on the RACH shall meet the requirements in section 9.

8.4.2.3 TDD inter frequency measurements

When signalled by UTRAN during CELL_FACH state, the UE shall continuously measure identified inter frequency TDD cells and search for new inter frequency TDD cells indicated in the measurement control information.

In CELL_FACH state, measurements opportunities for TDD inter-frequency measurements are provided by means of measurement occasions and idle intervals.

8.4.2.3.1 Identification of a new cell

When measurement occasions and idle intervals are used for inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within

$$T_{\text{identify inter}} = Max \left\{ 5000, Ceil \left\{ \frac{T_{\text{basic identify TDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{Freq, TDD} \right\} \text{ms}$$

If the UE does not require measurement occasions and idle intervals to perform TDD inter-frequency measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

8.4.2.3.2 P-CCPCH RSCP measurement period

When measurement occasions and idle intervals are used for inter-frequency TDD measurements, the UE shall be capable of performing P-CCPCH RSCP measurements for $X_{\text{measurement TDD inter}}$ inter-frequency TDD cells per TDD frequency of the monitored set.

The UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in section 9 with measurement period of $T_{\text{measurement inter}}$.

$$T_{\text{measurement inter}} = Max \left\{ T_{\text{measurement period TDD inter}}, 2 \cdot T_{\text{meas}}, Ceil \left\{ \frac{T_{\text{basic measurement TDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq}} \right\}$$

If the UE does not require idle intervals to perform inter-frequency TDD measurements, the measurement period for inter frequency P-CCPCH RSCP measurements shall be 480 ms.

Where,

X_{measurement TDD inter} is specified in section 8.1.2.4.2.

T_{measurement period inter} is specified in section 8.1.2.3.2

 T_{Meas} is specified in section 8.4.2.1.

T _{Inter FACH:} is equal to (N_{TTI}*10 - 2*0.5) ms.

 $T_{basic\ identify\ TDD\ inter} = 800\ ms.$

 $T_{basic\ measurement\ TDD\ inter} = 50\ ms$

N_{Freq TDD}is specified in section 8.1.2.3.2

8.4.2.3.3 (void)

8.4.2.3.4 (void)

8.4.2.4 FDD measurements

The requirements in this section shall apply to UE supporting TDD and FDD.

In the CELL_FACH state when FDD inter frequency measurements are scheduled the UE shall continuously measure detected inter frequency FDD cells and search for new inter frequency cells indicated in the measurement control information.

In CELL_FACH state, measurements opportunities for FDD inter-frequency measurements are provided by means of measurement occasions and idle intervals.

8.4.2.4.1 Identification of a new cell

When measurement occasions and idle intervals are used for inter-frequency FDD measurements, the UE shall be able to identify a new detectable inter frequency FDD cell belonging to the monitored set within

$$T_{\text{identify FDD inter}} = Max \left\{ 5000, Ceil \left\{ \frac{T_{\text{basic identify FDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq,FDD}} \right\}$$

If the UE does not require measurement occasions and idle intervals to perform FDD inter-frequency measurements, the UE shall be able to identify a new detectable inter-frequency FDD cell belonging to the monitored set within 5000 ms.

An inter-frequency FDD cell shall be considered detectable, when CPICH Ec/Io \geq -20 dB, SCH_Ec/Io \geq -17 dB and SCH_Ec/Io is equally divided between primary synchronisation code and secondary synchronisation code.

8.4.2.4.2 UE CPICH measurement capability

When measurement occasions and idle intervals are used for FDD inter frequency measurements, the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9 with measurement period given by

$$T_{\text{measurement FDD inter}} = Max \left\{ T_{\text{measurement period FDD inter}}, 2 \cdot T_{\text{meas}}, Ceil \left\{ \frac{T_{\text{basic measurement FDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq,FDD}} \right\} \text{ms}$$

If the UE does not require measurement occasions and idle intervals to perform inter-frequency FDD measurements, the measurement period for inter frequency CPICH measurements shall be 480 ms.

The UE shall be capable of performing CPICH measurements for $X_{\text{measurement FDD inter}}$ inter-frequency FDD cells per frequency of the monitored set and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{measurement FDD inter}}$.

X_{basic measurement FDD inter} is specified in section 8.1.2.4.2.

T_{measurement period FDD inter} is specified in section 8.1.2.4.2

T_{Inter FACH:} is specified in section 8.4.2.3.2

 $T_{\text{basic identify FDD inter}}$ is specified in section 8.1.2.4.2

 $T_{\text{basic measurement FDD inter}}$ is specified in section 8.1.2.4.2.

N_{Freq FDD}is specified in section 8.1.2.4.2

8.4.2.4.3 (void)

8.4.2.4.4 (void)

8.4.2.5 GSM measurements

The requirements in this section shall apply to UE supporting TDD and GSM.

In CELL_FACH state, measurements opportunities for GSM measurements are provided by means of measurement occasions and idle intervals.

Measurements on GSM cells can be requested with BSIC verified or BSIC non-verified.

- a) In CELL_DCH state, when signaled by UTRAN and when measurement occasions and idle intervals are used for GSM measurements, the UE shall continuously measure GSM cells and search for new GSM cells given in the monitored set.
 - In section 8.4.2.1 the split of measurements between different modes and systems is defined. Every second
 measurement opportunity scheduled for GSM measurements, as given by 8.4.2.1 shall be allocated for GSM
 initial BSIC identification.
 - The remaining measurement opportunities scheduled for GSM measurements shall be scheduled as follows. 3 measurement opportunities out of 4 shall be allocated for GSM carrier RSSI measurements and 1 out of 4

shall be allocated for GSM BSIC reconfirmation. The scheduling of measurement opportunities between GSM carrier RSSI measurements and GSM BSIC reconfirmation is up to the UE.

- b) In CELL_FACH state, when signaled by UTRAN and when the UE does not need measurement occasions and idle intervals to perform GSM measurements, the UE shall measure all GSM cells present in the monitored set
 - the relevant requirements for GSM dedicated mode when a TCH channel is assigned in [21] shall apply. This is further detailed in the following sub-sections.

8.4.2.5.1 GSM carrier RSSI

a) For a UE using measurement occasions and idle intervals to perform GSM measurements

A UE supporting GSM measurements using measurement occasions and idle intervals shall meet the minimum number of GSM carrier RSSI measurements specified in table 8.7.

In CELL_FACH state the measurement period, T_{measurement period GSM}, for the GSM carrier RSSI measurement is 480 ms.

The UE shall meet the measurement accuracy requirements stated for RXLEV in [21], when the given measurement time allows the UE to take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

Number of GSM carrier RSSI Measurement opportunity samples per measurement length (timeslots) opportunity. 3 1 4 2 5 3 6 4 6 8 8 9 10 10 11 11 12 12 13 14 15 16 30 32 60 64 120 128

Table 8.7

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods. This means that, in this particular case, the L1 reporting period to higher layers of a GSM neighbour can be a multiple of the measurement period.

b) For a UE not using measurement occasions and idle intervals to perform GSM measurements

The samples allocated to each carrier shall as far as possible be uniformly distributed over each measurement period. At least 3 received signal level measurement samples are required per GSM carrier RSSI measurement. The measurement period shall be 480 ms.

In case UTRA RACH procedure prevents the UE from acquiring the required number of samples per GSM carrier during one measurement period, the GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods.

8.4.2.5.2 BSIC verification

a) For a UE using measurement occasions and idle intervals to perform GSM measurements

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

- 1) Initial BSIC identification: Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the TDD and GSM cell. The requirements for Initial BSIC identification can be found in 8.4.2.5.2.1.
- 2) BSIC re-confirmation: Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The requirements for Initial BSIC identification can be found in 8.4.2.5.2.2.

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

The UE shall consider the BSIC of a GSM cell to be "verified" if it has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification) From that time instant, the UE shall attempt to reconfirm the BSIC at least once every 6 times $T_{re\text{-confirm abort}}$ seconds. Otherwise, the UE shall consider the BSIC of the GSM cell to be "non-verified".

The time requirement for initial BSIC identification, $T_{identify \ abort}$, and the BSIC re-confirmation interval $T_{re-confirm \ abort}$ can be found in the sections below.

The UE shall be able to decode a BSIC for the purpose of initial BSIC identification or BSIC reconfirmation within a measurement opportunity, when the time difference between the middle of the received GSM synchronisation burst at the UE and the middle of the measurement opportunity is within the limits specified in Table 8.7.A.

Idle Interval Length (timeslots) Maximum time difference [µs] 3 ± 65 4 ±398 5 ± 732 6 ± 1065 7 ± 1398 8 ± 1732 9 ± 2065 10 ± 2398 11 ± 2732 12 ± 3065 13 ± 3398 15 ± 4100 30 ± 9100 60 ± 19100 120 ± 39100

Table 8.7A

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [20].

b) For a UE not using measurement occasions and idle intervals to perform GSM measurements

The UE shall attempt to verify the BSIC for at least the 6 strongest GSM carriers at least every 10 seconds, to confirm that it is monitoring the same cell, as far as UTRA RACH procedure does not prevent UE from decoding BSIC.

If a BSIC is decoded and matches the expected value, the UE shall consider it as "verified", otherwise it shall consider it as "non-verified".

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [20].

8.4.2.5.2.1 Initial BSIC identification

This measurement shall be performed in the measurement opportunities as described in 8.4.2.5.

The UE shall continuously attempt to decode the BSIC of the SCH on the BCCH carrier of the 6 strongest BCCH carriers of the GSM cells indicated in the measurement control information. The UE shall give priority for BSIC

decoding attempts in decreasing signal strength order to BSIC carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value.

When the UE attempts to decode the BSIC of one GSM BCCH carrier with unknown BSIC, the UE shall use all available measurementopportunities allocated for GSM initial BSIC identification according section 8.4.2.5 to attempt to decode the BSIC from that GSM BCCH carrier.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall immediately continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within $T_{identify\,abort}$, the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall continue to try to perform BSIC identification of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC identification failed shall not be re-considered for BSIC identification until BSIC identification attempts have been made for all the rest of the 6 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

T_{identify abort} is specified in section 8.1.2.5.

8.4.2.5.2.2 BSIC re-confirmation

The requirements of this section are applicable for BSIC re-confirmation.

The UE shall maintain the timing information of 6 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

For each measurement opportunity allocated for GSM BSIC reconfirmation as described in 8.4.2.5, the UE shall attempt to decode the BSIC occurring during the measurement opportunity. When the UE has to select one out of several possible GSM cells to reconfirm during the same measurement opportunity, priority shall be given to the least recently decoded BSIC.

If the UE fails to decode the BSIC after two successive attempts, the UE shall abort the BSIC re-confirmation attempts for that GSM cell. The GSM cell shall be treated as a new GSM cell with unidentified BSIC and the GSM cell shall be moved to the initial BSIC identification procedure, see section 8.4.2.5.2.1. The UE shall be able to make BSIC reconfirmation attempts for the 6 strongest GSM cells in the monitored list.

Where $T_{\text{re-confirm abort}}$ is specified in section 8.1.2.5.

8.4A Measurements in CELL_FACH State (1.28 Mcps option)

8.4A.1 Introduction

This section contains requirements on the UE regarding measurement reporting in CELL_FACH state. The requirements for cell re-selection are split in TDD intra frequency, TDD inter frequency, FDD and GSM measurements. The measurements are defined in TS 25.225, the measurement model is defined in TS 25.302 and measurement accuracies are specified in section 9. Control of measurement reporting is specified in TS 25.331 and parallel measurements are specified in section 8.2. For the description of the idle intervals see TS 25.225, Annex A.

NOTE: In CELL_FACH state, there are no requirements for measurements of inter-RAT E-UTRAN cells.

8.4A.2 Requirements

8.4A.2.1 UE Measurement Capability

The UE shall be able to monitor up to

- 32 intra frequency TDD cells, and
- 32 inter frequency cells, including
 - TDD cells distributed on up to 3 additional TDD carriers and

- Depending on UE capability, FDD cells, distributed on up to 3 FDD carriers.
- Depending on UE capability, 32 GSM cells distributed on up to 32 GSM carriers.

The requirements in section 9 on P-CCPCH RSCP measurements are applicable for a UE performing measurements according to this section. For inter-frequency FDD, TDD and GSM cell re-selection, measurement occasions as specified in TS 25.331 and, in addition, idle intervals as described in TS 25.225 are used to find and measure on these cells.

It is defined below how the measurements on different systems and modes are performed given the time allocated to that system. The requirements in this section are based on the assumption that the time during the measurement occasions and idle intervals that is allocated to each of the different modes and systems shall be equally shared by the modes which the UE has capability for and that are in the monitored set signalled by the network.

The UE is required to measure periodically once every time period T_{meas} on each of the modes and systems, FDD interfrequency cells, TDD interfrequency cells and GSM carriers, for which the corresponding parameter N_{FDD} , N_{TDD} and N_{GSM} is set to 1, within the measurement time T_{meas}

$$T_{meas} = [(N_{FDD} + N_{TDD} + N_{GSM}) \cdot N_{TTI} \cdot M_{REP} \cdot 10] \text{ms}$$

where the following parameters are defined:

 N_{TDD} = 0 or 1. If there are inter-frequency TDD cells in the neighbour list N_{TDD} =1, otherwise N_{TDD} =0.

 N_{FDD} = 0 or 1. If the UE is capable of FDD and there are FDD cells in the neighbour list $N_{FDD}=1$

otherwise $N_{FDD} = 0$.

 N_{GSM} = 0 or 1. If the UE is capable of GSM and there are GSM cells in the neighbour list, N_{GSM} =1,

otherwise N_{GSM} =0.

M_REP is the Measurement Occasion cycle length in number of frames as specified in TS 25.331.

N_{TTI} is the number of frames in each measurement occasion, equal to the length of the largest TTI on

the SCCPCH monitored by the UE. FACHs that only carry MBMS logical channels (MTCH

MSCH or MCCH) are excluded from measurement occasion calculation.

The FACH Measurement Occasion of N_{TTI} frames will be repeated every N_{TTI} * M_REP frame.

8.4A.2.2 TDD intra frequency measurements

During the CELL_FACH state the UE shall continuously measure identified intra frequency cells and search for new intra frequency cells in the monitored set. Intra frequency measurements can be performed (simultaneously to data reception from the active cell) in all time slots not used for inter frequency measurements.

8.4A.2.2.1 Identification of a new cell

The UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify intra}} = T_{\text{basic identify TDD, intra}} \cdot \frac{N_{\text{Period, Intra}}}{N_{\text{Intra}}} \text{ms}$$

A cell shall be considered detectable when P-CCPCH Ec/Io \geq -8 dB, DwPCH_Ec/Io \geq -5 dB.

In the case that MTCH is being received, the UE shall be able to take identified cells into use for MTCH combining purposes within $T_{identify\ intra}$ ms.

If more candidate cells are identified than the UE has combing capability, then cells ranked in decreasing MTCH reception quality shall be considered for combing purposes.

8.4A.2.2.2 UE P-CCPCH RSCP measurement capability

In the CELL_FACH state the measurement period for intra frequency P-CCPCH RSCP measurements is 200 ms. When all TS0, DwPTS and main guard period in the measurement period are scheduled for intra frequency measurements, the

UE shall be capable of performing P-CCPCH RSCP measurements for 6 identified intra-frequency cells of the monitored set and the UE physical layer shall be capable of reporting these measurements to higher layers with the measurement period of 200 ms. When inter-frequency measurements required by the network have to be performed during periods of TS0, DwPTS and main guard period, the UE shall be capable of performing P-CCPCH RSCP measurements for at least $Y_{\text{measurement intra}}$ cells , where $Y_{\text{measurement intra}}$ is defined in the following equation.. The measurement accuracy for all measured cells shall be as specified in the section 9. If the UE has identified more than $Y_{\text{measurement intra}}$ cells, the UE shall perform measurements of all identified cells but the reporting rate of P-CCPCH RSCP measurements of cells from UE physical layer to higher layers may be decreased.

$$\mathbf{Y}_{\text{measurement intra}} = \text{Floor} \left\{ X_{\text{basic measurement TDD}} \cdot \frac{\mathbf{N}_{\text{Intra}}}{\mathbf{N}_{\text{Period, Intra}}} \right\}$$

whereby function Floor(x) takes the integer part of x.

X_{basic measurement TDD} is specified in section 8.1A.2.2.2</sub>

 $T_{Measurement_Period, Intra}$ is specified in section 8.1A.2.2.2

N_{Period, Intra}: is specified in section 8.1A.2.2.2

N_{Intra}: is specified in section 8.1A.2.2.2

 $T_{basic_identify_TDD,\;intra} \quad is\; specified\; in\; section\; 8.1A.2.2.2$

8.4A.2.2.2A Timeslot ISCP measurement capability

In the CELL_FACH state the measurement period for intra frequency Timeslot ISCP measurements on arbitrary DL timeslots, including Beacon timeslots is 400 ms. When no inter frequency measurement is scheduled, the UE shall be capable of performing Timeslot ISCP measurements on the current serving cell for 5 arbitrary DL timeslots. The UE physical layer shall be capable of reporting Timeslot ISCP measurements to higher layers with the measurement period of 400 ms.

When inter-frequency measurements are required by the network, the UE shall be able to perform Timeslot ISCP measurements on the current serving for at least $Y_{measurement\ intra\ ISCP}$ arbitrary DL timeslots, where $Y_{measurement\ intra\ ISCP}$ is defined in the following equation. Any Timeslot ISCP measurement that could not be performed during that measurement period, shall be measured in the following measurement periods. The measurement accuracy of the Timeslot ISCP measurement shall be as specified in the section 9.

$$\mathbf{Y}_{\text{measurement intra ISCP}} = Floor \left\{ X_{\text{basic measurement ISCP}} \cdot \frac{\mathbf{T}_{\text{Intra}}}{\mathbf{T}_{\text{Measurement Period, Intra, ISCP}}} \right\}$$

whereby function Floor(x) takes the integer part of x,

 $X_{\text{basic measurement ISCP}} = 5$ (arbitrary DL timeslots of the current serving cell)

T_{Measurement_Period, Intra, ISCP} is specified in section 8.1A.2.2.2A,

T_{Intra} is specified in section 8.1A.2.2.2A.

8.4A.2.2.3 RACH Reporting

Reported measurements in the measurement reports sent on the RACH shall meet the requirements in section 9.

8.4A.2.3 TDD inter frequency measurements

When signalled by the network during CELL_FACH state, the UE shall continuously measure identified inter frequency cells and search for new inter frequency cells indicated in the measurement control information.

8.4A.2.3.1 Identification of a new cell

The UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify inter}} = Max \left\{ 5000, N_{\text{basic identify TDD,inter}} \cdot \frac{T_{\text{Measurement Period, Inter}}}{N_{\text{Inter FACH}}} \cdot N_{\text{Freq}} \right\} ms$$

If the UE does not require measurement occasions and idle intervals to perform TDD inter-frequency measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

A cell shall be considered detectable when P-CCPCH Ec/Io \geq -8 dB, DwPCH_Ec/Io \geq -5 dB.

8.4A.2.3.2 UE P-CCPCH RSCP measurement capability

When TDD inter frequency measurements are scheduled, the UE physical layer shall be capable of reporting P-CCPCH RSCP measurements to higher layers with measurement accuracy as specified in section 9 with measurement period given by

$$T_{\text{measurement inter}} = Max \left\{ T_{\text{Measurement Period, Inter}}, N_{\text{basic measurement TDD inter}} \cdot \frac{T_{\text{Measurement Period, Inter}}}{N_{\text{Inter FACH}}} \cdot N_{\text{Freq}} \right\} ms$$

where

 $T_{Measurement_Period\ Inter}$ is specified in section 8.1A.2.3.2

N Inter FACH:

This is the minimum number of sub-frame in that the signal of P-CCPCH and DwPCH can be received for inter frequency target cell during the period $T_{measurement_Period\ Inter}$ with an arbitrarily chosen timing. It depends on the channel allocation and on measurement occasions during CELL-FACH state and is calculated by assuming 2*0.1ms for implementation margin (for the description of the idle intervals see Annex A of 25.225 and for definition of measurement occasions during CELL_FACH state given by M_REP and TTI see TS 25.331). During the measurement occasions for CELL_FACH state the UE shall measure primarily cells that can not be measured in the idle intervals.

 $T_{basic_identify_TDD,inter}$ is specified in section 8.1A.2.3.2

N_{basic identify TDD, Inter} is specified in section 8.1A.2.3.2

 $T_{basic_measurement_TDD\ inter}$ is specified in section 8.1A.2.3.2

 $N_{basic\ measurement\ TDD,\ Inter}$ is specified in section 8.1A.2.3.2

 N_{Freq} is specified in section 8.1A.2.3.2

If the UE does not need measurement occasions and idle intervals to perform inter-frequency measurements, the measurement period for inter frequency measurements is 480ms.

The UE shall be capable of performing P-CCPCH measurements for $X_{\text{basic measurement TDD inter}}$ inter-frequency cells per TDD frequency of the monitored set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{Measurement_Inter.}}$

X_{basic measurement TDDinter} is defined in section 8.1A.2.3.2.

8.4A.2.4 FDD measurements

The requirements in this section shall apply only to UE supporting 1.28Mcps TDD and FDD.

In the CELL_FACH state when FDD inter frequency measurements are scheduled the UE shall continuously measure identified inter frequency FDD cells and search for new inter frequency FDD cells indicated in the measurement control information.

8.4A.2.4.1 Identification of a new cell

The UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify FDD inter}} = Max \bigg\{ 5000, T_{\text{basic identify FDD inter}} \cdot \frac{T_{\text{Measurement Period FDD inter}}}{T_{\text{Inter FACH}}} \cdot N_{\text{Freq}} \bigg\} ms$$

If the UE does not require measurement occasions and idle intervals to perform FDD inter-frequency measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000ms.

An inter-frequency FDD cell shall be considered detectable, when CPICH Ec/Io \geq -20 dB, SCH_Ec/Io \geq -17 dB and SCH_Ec/Io is equally divided between primary synchronisation code and secondary synchronisation code.

8.4A.2.4.2 UE CPICH measurement capability

When FDD inter frequency measurements are scheduled, the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9 with measurement period given by

$$T_{\text{measurement FDD inter}} = Max \left\{ T_{\text{Measurement Period FDD inter}}, T_{\text{basic measurement FDD inter}} \cdot \frac{T_{\text{Measurement Period FDD inter}}}{T_{\text{Inter FACH}}} \cdot N_{\textit{Freq}} \right\} ms$$

 $T_{Measurement_Period\;FDD\;inter} \quad is\; specified\; in\; section\; 8.1A.2.4.2$

T Inter FACH:

This is the minimum time that is available for the inter frequency measurements during the period $T_{\text{Measurement_Period FDD inter}}$ with an arbitrarily chosen timing. The minimum time depends on the channel allocation and on measurement occasions during CELL_FACH state and is calculated by assuming 2*0.1 ms for implementation margin (for the description of the idle intervals see Annex A of 25.225 and for definition of measurement occasions during CELL_FACH state given by M_REP and TTI see TS 25.331). It is assumed for the requirement that the slot allocation allows measurement windows in the idle periods to be of minimum duration necessary to perform the measurements. During the measurement occasions for CELL_FACH state the UE shall measure primarily cells that can not be measured in the idle intervals.

 $T_{basic_identify_FDD,inter}$ is specified in section 8.1A.2.4.2

T_{basic_measurement_FDD inter} is specified in section 8.1A.2.4.2.

 N_{Freq} is specified in section 8.1A.2.4.2

If the UE does not need measurement occasions and idle intervals to perform inter-frequency measurements, the measurement period for FDD measurements is 480 ms.

The UE shall be capable of performing CPICH measurements for $X_{\text{basic measurement FDD inter}}$ inter-frequency cells per FDD frequency of the monitored set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{MeasurementFDD Inter}}$.

 $X_{basic\ measurement\ FDDinter}$ is defined in section 8.1A.2.4.2

8.4A.2.5 GSM measurements

The requirements in this section shall apply to UE supporting 1.28Mcps TDD and GSM.

To support cell reselection the UE shall always perform BSIC verification in Cell FACH state.

1) For a UE requiring idle intervals or measurement occasions to perform GSM measurements. When signalled by UTRAN during CELL_FACH state, the UE shall continuously measure GSM cells and search for new GSM cells given in the monitored set.

In section 8.4A.2.1 the split of measurements between different modes and systems is defined. Every second measurement window due to idle intervals and measurements occasions scheduled for GSM measurements, as given by 8.4A.2.1 shall be allocated for GSM initial BSIC identification.

The remaining measurement windows due to idle intervals and measurements occasions used for GSM measurements shall be scheduled as follows. 3 window out of 4 shall be allocated for GSM carrier RSSI measurements and 1 out of 4 shall be allocated for GSM BSIC reconfirmation. The scheduling of measurement windows between GSM carrier RSSI measurements and GSM BSIC reconfirmation is up to the UE.

- 2) For a UE not requiring idle intervals and measurement occasions to perform GSM measurements:
 - the UE shall measure all GSM cells present in the monitored set
 - the relevant requirements for GSM dedicated mode when a TCH channel is assigned in TS 45.008 shall apply. This is further detailed in the following sub-sections.

8.4A.2.5.1 GSM carrier RSSI

1) For a UE requiring idle intervals or measurement occasions to perform GSM measurements.

An UE supporting GSM measurements shall meet the minimum number of GSM carrier RSSI measurements specified in table 8.8. This measurement shall be based on measurement windows allocated for GSM carrier RSSI measurements as described in 8.4A.2.5. In the CELL_FACH state the measurement period for the GSM carrier RSSI measurement is 480 ms.

The UE shall meet the measurement accuracy requirements stated for RXLEV in TS 45.008, when the given measurement time allows the UE to take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

Number of GSM carrier Measurement Window RSSI samples per Length (slots) measurement window 3 4 2 5 3 7 6 15 16 30 32 60 64 120 128

Table 8.8

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods. This means that, in this particular case, the L1 reporting period to higher layers of a GSM neighbour can be a multiple of the measurement period.

2) For a UE not requiring idle intervals and measurement occasions to perform GSM measurements:

The samples allocated to each carrier shall as far as possible be uniformly distributed over each measurement period. At least 3 received signal level measurement samples are required per RSSI value. The measurement period is 480 ms.

In case UTRA RACH procedure prevents the UE from acquiring the required number of samples per GSM carrier during one measurement period, the GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods.

8.4A.2.5.2 BSIC verification

1) For a UE requiring idle intervals or measurement occasions to perform GSM measurements.

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

Initial BSIC identification

Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the TDD and GSM cell. The UE shall trigger the initial BSIC identification within 50% of the available measurement windows. The requirements for Initial BSIC identification can be found in 8.4A.2.5.2.1,Initial BSIC identification

BSIC re-confirmation

Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The UE shall trigger the

BSIC re-confirmation within the available measurement windows. The requirements for Initial BSIC identification can be found in section 8.4A.2.5.2.2, BSIC re-confirmation.

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

The BSIC of a GSM cell is considered to be "verified" if the UE has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification) and from that moment the BSIC shall be re-confirmed at least once every 6 times $T_{\text{re-confirm abort}}$ seconds. Otherwise the BSIC of the GSM cell is considered as "non-verified". The time requirement for initial BSIC identification, $T_{\text{identify abort}}$, and the BSIC re-confirmation interval $T_{\text{re-confirm abort}}$ can be found in the sections below.

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

2) For a UE not requiring idle intervals and measurement occasions to perform GSM measurements:

The UE shall attempt to check the BSIC for at least the 6 strongest GSM carriers at least every 10 seconds, to confirm that it is monitoring the same cell, as far as UTRA RACH procedure does not prevent UE from decoding BSIC.

If a BSIC is decoded and matches the expected value, it is considered as "verified", else it is considered as "non verified".

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

8.4A.2.5.2.1 Initial BSIC identification

This measurement is performed in the measurement windows allocated for Initial BSIC identification as described in 8.4A.2.5.

For GSM cells that are requested with BSIC verified the UE shall continuously attempt to decode the SCH on the BCCH carrier of the 6 strongest BCCH carriers of the GSM cells indicated in the measurement control information. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BSIC carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value.

When the UE attempts to decode the BSIC of one GSM BCCH carrier with unknown BSIC, the UE shall use all available measurements windows allocated for GSM initial BSIC identification according section 8.4A.2.5 to attempt to decode the BSIC from that GSM BCCH carrier.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall immediately continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within $T_{identify\ abort}$, the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall continue to try to perform BSIC identification of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC identification failed shall not be re-considered for BSIC identification until BSIC identification attempts have been made for all the rest of the 6 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

 $T_{identify \ abort}$ is specified in section 8.1A.2.5.

8.4A.2.5.2.2 BSIC re-confirmation

The requirements of this section are applicable for BSIC re-confirmation.

The UE shall maintain the timing information of 6 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

For each measurement window allocated for GSM BSIC reconfirmation as described in 8.4A.2.5, the UE shall attempt to decode the BSIC falling within the effective measurement window duration. If more than one BSIC can be decoded within the same measurement window, priority shall be given to the least recently decoded BSIC.

If the UE fails to decode the BSIC after two successive attempts, the UE shall abort the BSIC re-confirmation attempts for that GSM cell. The GSM cell shall be treated as a new GSM cell with unidentified BSIC and the GSM cell shall be moved to the initial BSIC identification procedure, see section 8.4A.2.5.2.1. The UE shall be able to make BSIC reconfirmation attempts for the 6 strongest GSM cells in the monitored list.

T_{re-confirm abort} is specified in section 8.1A.2.5.

It is assumed for the requirement that the measurement windows possible due to higher layer parameters are of minimum duration necessary to perform the measurements.

8.4B Measurements in CELL_FACH State (7.68 Mcps option)

8.4B.1 Introduction

This section contains requirements on the UE regarding measurement reporting in CELL_FACH state. The requirements are split in TDD intra frequency, TDD inter frequency, FDD and GSM measurements. These measurements may be used by the UTRAN, e.g. for handover decisions. The measurements are defined in [14], the measurement model is defined in [15] and measurement accuracies are specified in section 9. Control of measurement reporting is specified in [16] and parallel measurements are specified in section 8.2B. For the description of the idle intervals see [14].

8.4B.2 Requirements

8.4B.2.1 UE Measurement Capability

The UE shall be able to monitor up to

- 32 intra frequency TDD cells (including serving cell), and
- 32 inter frequency cells, including
 - TDD mode cells distributed on up to 2 additional TDD carriers and
 - Depending on UE capability, FDD mode cells, distributed on up to 3 FDD carriers.
- Depending on UE capability, 32 inter RAT GSM cells.

The requirements in section 9 on P-CCPCH RSCP measurements are applicable for a UE performing measurements according to this section. For inter-frequency FDD, TDD and GSM cell re-selection, measurement occasions as specified in [16] and idle intervals as described in [14] are used to find and measure on other cells.

It is defined below how the measurements on different systems and modes are performed given the time allocated to that system. The requirements in this section are based on the assumption that the time during the measurement occasions and idle intervals that is allocated to each of the different modes and systems shall be equally shared by the modes which the UE has capability for and that are in the monitored set signalled by the network.

The UE is required to measure periodically once every time period T_{meas} on each of the modes and systems, FDD interfrequency cells, TDD interfrequency cells and GSM carriers, for which the corresponding parameter N_{FDD} , N_{TDD} and N_{GSM} is set to 1, within the measurement time T_{meas}

$$T_{meas} = [(N_{FDD} + N_{TDD} + N_{GSM}) \cdot N_{TTI} \cdot M_{REP} \cdot 10] \text{ ms}$$

where the following parameters are defined:

 N_{TDD} = 0 or 1. If there are inter-frequency TDD cells in the neighbour list N_{TDD} =1, otherwise N_{TDD} =0.

 N_{FDD} = 0 or 1. If the UE is capable of FDD and there are FDD cells in the neighbour list $N_{FDD}=1$ otherwise $N_{FDD}=0$.

....

 N_{GSM} = 0 or 1. If the UE is capable of GSM and there are GSM cells in the neighbour list, $N_{GSM}=1$,

otherwise $N_{GSM} = 0$.

M_REP is the Measurement Occasion cycle length in number of frames as specified in [16].

N_{TTI} is the number of frames in each measurement occasion, equal to the length of the largest TTI on

the SCCPCH monitored by the UE.

For 7.68 Mcps TDD UE capable of MBMS reception and if MBMS reception is active, during Measurement Occasion the UE shall:

- Start to switch back to its serving cell frequency 1 timeslot prior to the start of the MBMS reception
- Switch back to its target inter-frequency within 1 timeslot immediately after the last MBMS reception.

The FACH Measurement Occasion of N_{TTI} frames will be repeated every N_{TTI} * M_REP frame.

Table 8.8A: K values for each N_{TTI} value

N _{TTI}	K
1	3,4,5,6
2	2,3,4,5
4	2,3,4
8	1,2,3

8.4B.2.2 TDD intra frequency measurements

During the CELL_FACH state the UE shall continuously measure identified intra frequency TDD cells and search for new intra frequency TDD cells in the monitored set. If a measurement occasion is activated, intra frequency measurements can be performed between the measurement occasions.

In case no measurement occasion is activated, in order for the requirements in the following subsections to apply, the Beacon timeslots of the intra-frequency TDD cells indicated in the measurement control information shall either be synchronised with the Beacon timeslots of the serving cell, such that the UE can measure an intra-frequency cell TDD cell at least once every frame for the slot allocation case in use in this cell. The UE shall be capable of intra frequency measurements during active DL timeslots.

8.4B.2.2.1 Identification of a new cell

The UE shall be able to identify a new inter frequency TDD detectable cell belonging to the monitored set within $T_{identify}$ intra ms, where $T_{identify intra}$ is specified in section 8.1B.2.2.1.

8.4B.2.2.2 UE P-CCPCH RSCP measurement capability

In CELL_FACH state the UE shall be capable of performing P-CCPCH RSCP measurements for $X_{measurement\ intra}$ identified intra-frequency TDD cells of the monitored set with a measurement period for intra-frequency P-CCPCH RSCP measurements $T_{measurement\ period\ intra}$, where

 $X_{measurement\ intra}$ is specified in section 8.1B.2.2.2

 $T_{\text{measurement period intra}}$ is specified in section 8.1B.2.2.2

The UE physical layer shall be capable of reporting these measurements to higher layers with the measurement period $T_{\text{measurement period intra}}$.

If the UE has identified more than $X_{\text{measurement intra}}$ intra-frequency cells, the UE shall perform measurements of all identified cells but the reporting rate of P-CCPCH RSCP measurements of cells from UE physical layer to higher layers may be decreased. The measurement accuracy for all measured cells shall be as specified in the section 9.

8.4B.2.2.3 Timeslot ISCP measurement capability

In CELL_FACH state the measurement period for intra frequency Timeslot ISCP measurements on arbitrary DL timeslots, including Beacon timeslots is 400 ms. The UE shall be capable of performing Timeslot ISCP measurements on the current serving cell for 10 arbitrary DL timeslots. The UE physical layer shall be capable of reporting Timeslot ISCP measurements to higher layers with the measurement period of 400 ms.

8.4B.2.2.4 RACH reporting

Reporting measurements in the measurement reports sent on the RACH shall meet the requirements in section 9.

8.4B.2.3 TDD inter frequency measurements

When signalled by UTRAN during CELL_FACH state, the UE shall continuously measure identified inter frequency TDD cells and search for new inter frequency TDD cells indicated in the measurement control information.

In CELL_FACH state, measurements opportunities for TDD inter-frequency measurements are provided by means of measurement occasions and idle intervals.

8.4B.2.3.1 Identification of a new cell

When measurement occasions and idle intervals are used for inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within

$$T_{\text{identify inter}} = Max \left\{ 5000, Ceil \left\{ \frac{T_{\text{basic identify TDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq,TDD}} \right\} \text{ms}$$

If the UE does not require measurement occasions and idle intervals to perform TDD inter-frequency measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

8.4B.2.3.2 P-CCPCH RSCP measurement period

When measurement occasions and idle intervals are used for inter-frequency TDD measurements, the UE shall be capable of performing P-CCPCH RSCP measurements for $X_{measurement\ TDD\ inter}$ inter-frequency TDD cells per TDD frequency of the monitored set.

The UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in section 9 with measurement period of $T_{\text{measurement inter}}$.

$$\mathbf{T}_{\text{measurement inter}} = Max \left\{ \mathbf{T}_{\text{measurement period TDD inter}}, 2 \cdot \mathbf{T}_{\text{meas}}, Ceil \left\{ \frac{\mathbf{T}_{\text{basic measurement TDD inter}}}{\mathbf{T}_{\text{Inter FACH}}} \right\} \cdot \mathbf{T}_{\text{meas}} \cdot \mathcal{N}_{\textit{Freq}} \right\}$$

If the UE does not require idle intervals to perform inter-frequency TDD measurements, the measurement period for inter frequency P-CCPCH RSCP measurements shall be 480 ms.

Where,

X_{measurement TDD inter} is specified in section 8.1B.2.4.2.

T_{measurement_period inter} is specified in section 8.1B.2.3.2

T_{Meas} is specified in section 8.4B.2.1.

T _{Inter FACH:} is equal to (N_{TTI}*10 - 2*0.5) ms.

 $T_{basic\ identify\ TDD\ inter} = 800\ ms.$

 $T_{\text{basic measurement TDD inter}} = 50 \text{ ms}$

 $N_{\text{Freq TDD}}$ is specified in section 8.1B.2.3.2

8.4B.2.4 FDD measurements

The requirements in this section shall apply to UE supporting TDD and FDD.

In the CELL_FACH state when FDD inter frequency measurements are scheduled the UE shall continuously measure detected inter frequency FDD cells and search for new inter frequency cells indicated in the measurement control information.

In CELL_FACH state, measurements opportunities for FDD inter-frequency measurements are provided by means of measurement occasions and idle intervals.

8.4B.2.4.1 Identification of a new cell

When measurement occasions and idle intervals are used for inter-frequency FDD measurements, the UE shall be able to identify a new detectable inter frequency FDD cell belonging to the monitored set within

$$T_{\text{identify FDD inter}} = Max \left\{ 5000, Ceil \left\{ \frac{T_{\text{basic identify FDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{Freq, FDD} \right\}$$

If the UE does not require measurement occasions and idle intervals to perform FDD inter-frequency measurements, the UE shall be able to identify a new detectable inter-frequency FDD cell belonging to the monitored set within 5000 ms.

An inter-frequency FDD cell shall be considered detectable, when CPICH Ec/Io \geq -20 dB, SCH_Ec/Io \geq -17 dB and SCH_Ec/Io is equally divided between primary synchronisation code and secondary synchronisation code.

8.4B.2.4.2 UE CPICH measurement capability

When measurement occasions and idle intervals are used for FDD inter frequency measurements, the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9 with measurement period given by

$$T_{\text{measurement FDD inter}} = Max \left\{ T_{\text{measurement period FDD inter}}, 2 \cdot T_{\text{meas}}, Ceil \left\{ \frac{T_{\text{basic measurement FDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq,FDD}} \right\} \text{ms}$$

If the UE does not require measurement occasions and idle intervals to perform inter-frequency FDD measurements, the measurement period for inter frequency CPICH measurements shall be 480 ms.

The UE shall be capable of performing CPICH measurements for $X_{\text{measurement FDD inter}}$ inter-frequency FDD cells per frequency of the monitored set and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{measurement FDD inter}}$.

X_{basic measurement FDD inter} is specified in section 8.1B.2.4.2.

 $T_{measurement_period\ FDD\ inter}$ is specified in section 8.1B.2.4.2

T_{Inter FACH:} is specified in section 8.4B.2.3.2

T_{basic identify FDD inter} is specified in section 8.1B.2.4.2

 $T_{\text{basic measurement FDD inter}}$ is specified in section 8.1B.2.4.2.

N_{Freq FDD}is specified in section 8.1B.2.4.2

8.4B.2.5 GSM measurements

The requirements in this section shall apply to UE supporting TDD and GSM.

In CELL_FACH state, measurements opportunities for GSM measurements are provided by means of measurement occasions and idle intervals.

Measurements on GSM cells can be requested with BSIC verified or BSIC non-verified.

- a) In CELL_DCH state, when signaled by UTRAN and when measurement occasions and idle intervals are used for GSM measurements, the UE shall continuously measure GSM cells and search for new GSM cells given in the monitored set.
 - In section 8.4B.2.1 the split of measurements between different modes and systems is defined. Every second measurement opportunity scheduled for GSM measurements, as given by 8.4B.2.1 shall be allocated for GSM initial BSIC identification.

- The remaining measurement opportunities scheduled for GSM measurements shall be scheduled as follows. 3 measurement opportunities out of 4 shall be allocated for GSM carrier RSSI measurements and 1 out of 4 shall be allocated for GSM BSIC reconfirmation. The scheduling of measurement opportunities between GSM carrier RSSI measurements and GSM BSIC reconfirmation is up to the UE.
- b) In CELL_FACH state, when signaled by UTRAN and when the UE does not need measurement occasions and idle intervals to perform GSM measurements, the UE shall measure all GSM cells present in the monitored set
 - the relevant requirements for GSM dedicated mode when a TCH channel is assigned in [21] shall apply. This is further detailed in the following sub-sections.

8.4B.2.5.1 GSM carrier RSSI

a) For a UE using measurement occasions and idle intervals to perform GSM measurements

A UE supporting GSM measurements using measurement occasions and idle intervals shall meet the minimum number of GSM carrier RSSI measurements specified in table 8.8B.

In CELL_FACH state the measurement period, T_{measurement period GSM}, for the GSM carrier RSSI measurement is 480 ms.

The UE shall meet the measurement accuracy requirements stated for RXLEV in [21], when the given measurement time allows the UE to take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

Number of GSM carrier RSSI Measurement opportunity samples per measurement length (timeslots) opportunity. 3 4 2 5 3 6 4 7 6 8 9 8 10 10 11 11 12 12 13 14 15 16 30 32 60 64 120 128

Table 8.8B

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods. This means that, in this particular case, the L1 reporting period to higher layers of a GSM neighbour can be a multiple of the measurement period.

b) For a UE not using measurement occasions and idle intervals to perform GSM measurements

The samples allocated to each carrier shall as far as possible be uniformly distributed over each measurement period. At least 3 received signal level measurement samples are required per GSM carrier RSSI measurement. The measurement period shall be 480 ms.

In case UTRA RACH procedure prevents the UE from acquiring the required number of samples per GSM carrier during one measurement period, the GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods.

8.4B.2.5.2 BSIC verification

a) For a UE using measurement occasions and idle intervals to perform GSM measurements

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

- 1) Initial BSIC identification: Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the TDD and GSM cell. The requirements for Initial BSIC identification can be found in 8.4B.2.5.2.1.
- 2) BSIC re-confirmation: Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The requirements for Initial BSIC identification can be found in 8.4B.2.5.2.2.

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

The UE shall consider the BSIC of a GSM cell to be "verified" if it has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification) From that time instant, the UE shall attempt to reconfirm the BSIC at least once every 6 times $T_{re-confirm\ abort}$ seconds. Otherwise, the UE shall consider the BSIC of the GSM cell to be "non-verified".

The time requirement for initial BSIC identification, $T_{identify abort}$, and the BSIC re-confirmation interval $T_{re-confirm abort}$ can be found in the sections below.

The UE shall be able to decode a BSIC for the purpose of initial BSIC identification or BSIC reconfirmation within a measurement opportunity, when the time difference between the middle of the received GSM synchronisation burst at the UE and the middle of the measurement opportunity is within the limits specified in Table 8.8.C.

Idle Interval Length Maximum time difference [µs] (timeslots) 3 ± 65 4 ± 398 5 ± 732 6 ± 1065 7 ± 1398 8 ± 1732 9 ± 2065 10 ± 2398 11 ± 2732 12 ± 3065 13 ± 3398 15 ± 4100 30 ± 9100 60 ± 19100 120 ± 39100

Table 8.8C

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [20].

b) For a UE not using measurement occasions and idle intervals to perform GSM measurements

The UE shall attempt to verify the BSIC for at least the 6 strongest GSM carriers at least every 10 seconds, to confirm that it is monitoring the same cell, as far as UTRA RACH procedure does not prevent UE from decoding BSIC.

If a BSIC is decoded and matches the expected value, the UE shall consider it as "verified", otherwise it shall consider it as "non-verified".

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [20].

8.4B.2.5.2.1 Initial BSIC identification

This measurement shall be performed in the measurement opportunities as described in 8.4B.2.5.

The UE shall continuously attempt to decode the BSIC of the SCH on the BCCH carrier of the 6 strongest BCCH carriers of the GSM cells indicated in the measurement control information. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BSIC carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value.

When the UE attempts to decode the BSIC of one GSM BCCH carrier with unknown BSIC, the UE shall use all available measurement opportunities allocated for GSM initial BSIC identification according section 8.4B.2.5 to attempt to decode the BSIC from that GSM BCCH carrier.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall immediately continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within $T_{identify\ abort}$, the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall continue to try to perform BSIC identification of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC identification failed shall not be re-considered for BSIC identification until BSIC identification attempts have been made for all the rest of the 6 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

T_{identify abort} is specified in section 8.1B.2.5.

8.4B.2.5.2.2 BSIC re-confirmation

The requirements of this section are applicable for BSIC re-confirmation.

The UE shall maintain the timing information of 6 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

For each measurement opportunity allocated for GSM BSIC reconfirmation as described in 8.4B.2.5, the UE shall attempt to decode the BSIC occurring during the measurement opportunity. When the UE has to select one out of several possible GSM cells to reconfirm during the same measurement opportunity, priority shall be given to the least recently decoded BSIC.

If the UE fails to decode the BSIC after two successive attempts, the UE shall abort the BSIC re-confirmation attempts for that GSM cell. The GSM cell shall be treated as a new GSM cell with unidentified BSIC and the GSM cell shall be moved to the initial BSIC identification procedure, see section 8.4B.2.5.2.1. The UE shall be able to make BSIC reconfirmation attempts for the 6 strongest GSM cells in the monitored list.

Where $T_{re\text{-confirm abort}}$ is specified in section 8.1B.2.5.

8.5 Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (3.84 Mcps TDD option)

8.5.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria.

8.5.2 Requirements

In this section reporting criteria can be either event triggered reporting criteria or periodic reporting criteria.

Table 8.9A: Requirements for reporting criteria per measurement category

Measurement category	E _{cat}	Note
Traffic volume measurements	2 + (2 per Transport	
	Channel)	

8.5A Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (1.28 Mcps option)

8.5A.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria.

8.5A.2 Requirements

In this section reporting criteria can be either event triggered reporting criteria or periodic reporting criteria.

Table 8.9: Requirements for reporting criteria per measurement category

Measurement category	E _{cat}	Note
Traffic volume measurements	2	

8.5B Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state (7.68 Mcps TDD option)

8.5B.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria.

8.5B.2 Requirements

In this section reporting criteria can be either event triggered reporting criteria or periodic reporting criteria.

Table 8.9B: Requirements for reporting criteria per measurement category

Measurement category	E _{cat}	Note
Traffic volume measurements	2 + (2 per Transport	
	Channel)	

9 Measurements performance requirements

One of the key services provided by the physical layer is the measurement of various quantities which are used to trigger or perform a multitude of functions. Both the UE and the UTRAN are required to perform a variety of measurements. The complete list of measurements is specified in 3GPP TS 25.302 "Services Provided by Physical Layer". The physical layer measurements for TDD are described and defined in 3GPP TS 25.225 "Physical layer - Measurements (TDD)". In this clause for TDD, per each measurement the relevant requirements on performance in terms of accuracy are reported.

The accuracy requirements in this clause are applicable for AWGN radio propagation conditions.

Unless explicitly stated,

- Reported measurements shall be within defined range in 90 % of the cases.
- Measurement channel is 12,2 kbps as defined in 3GPP TS 25.102 annex A. This measurement channel is used both in active cell and cells to be measured.
- Physical channels used as defined in 3GPP TS 25.102 annex A.
- All requirements are defined when UE is in a CELL_DCH or CELL_FACH stage. The difference between modes are the reporting delay. Some of the measurements are not requested to be reported in both stages.

- Single task reporting.
- Power control is active.

9.1 Measurements performance for UE

The requirements in this clause are applicable for a UE:

- in state CELL_DCH and state CELL_FACH.
- performing measurements according to section 8.
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in TS25.302.

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the layer 3 filtering disabled.

9.1.1 Performance for UE measurements in downlink (RX)

9.1.1.1 P-CCPCH RSCP (TDD)

These measurements consider *P-CCPCH RSCP* measurements for TDD cells.

The measurement period for CELL_DCH and CELL_FACH state state can be found in section 8.

9.1.1.1.1 Absolute accuracy requirements

9.1.1.1.1 3.84 Mcps TDD option

The accuracy requirements in table 9.1 are valid under the following conditions:

P-CCPCH RSCP ≥ -102 dBm.

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1.2.6

Table 9.1: P-CCPCH RSCP absolute accuracy

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
P-CCPCH_RSCP	dBm	± 6	± 9	-9470
	dBm	± 8	± 11	-7050

9.1.1.1.2 1.28 Mcps TDD option

The accuracy requirements in table 9.1A are valid under the following conditions:

P-CCPCH RSCP ≥ -102 dBm

P-CCPCH Ec/Io \geq -8 dB

 $DwPCH_Ec/Io \ge -5 dB$

Table 9.1A: P-CCPCH_RSCP absolute accuracy

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 1.28 MHz]
P-CCPCH_RSCP	dBm	± 6	± 9	-9470
	dBm	± 8	± 11	-7050

9.1.1.1.3 7.68 Mcps TDD option

The accuracy requirements in table 9.1B are valid under the following conditions:

P-CCPCH RSCP ≥ -102 dBm.

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1B.2.6

Table 9.1B: P-CCPCH_RSCP absolute accuracy

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/7.68 MHz]
P-CCPCH_RSCP	dBm	± 6	± 9	-9470
	dBm	± 8	± 11	-7050

9.1.1.1.2 Relative accuracy requirements

9.1.1.1.2.1 3.84 Mcps TDD option

The P-CCPCH_RSCP intra-frequency relative accuracy is defined as the P-CCPCH_RSCP measured from one cell compared to the P-CCPCH_RSCP measured from another cell on the same frequency.

The accuracy requirements in table 9.2 are valid under the following conditions:

P-CCPCH RSCP1,2 \geq -102 dBm.

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \Big|_{in \ dBm} \right| \le 20 dB$$

Relative Io difference [dB] ≤ relative RSCP difference [dB]

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1.2.6

It is assumed that the measurements of P-CCPCH RSCP1 and P-CCPCH RSCP2 can be performed within 20ms due to slot allocations in the cells concerned.

Table 9.2: P-CCPCH_RSCP intra-frequency relative accuracy

		Accura	cy [dB]	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 3.84MHz]	Relative RSCP difference [dB]
P-CCPCH_RSCP		±1	±1		<2
	dBm	<u>±2</u>	±2	-9450	
		±3	± 3		>14

The P-CCPCH_RSCP inter-frequency relative accuracy is defined as the P-CCPCH_RSCP measured from one cell compared to the P-CCPCH_RSCP measured from another cell on a different frequency.

The accuracy requirements in table 9.3 are valid under the following conditions:

P-CCPCH RSCP1,2 \geq -102 dBm.

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \right|_{in \ dBm} \le 20 dB$$

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1.2.6

Table 9.3: P-CCPCH_RSCP inter-frequency relative accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
P-CCPCH_RSCP	dBm	± 6	± 6	-9450

9.1.1.1.2.2 1.28 Mcps TDD option

The P-CCPCH_RSCP intra-frequency relative accuracy is defined as the P-CCPCH_RSCP measured from one cell compared to the P-CCPCH_RSCP measured from another cell on the same frequency.

The accuracy requirements in table 9.3A are valid under the following conditions:

P-CCPCH RSCP1,2 \geq -102 dBm.

$$\left| P - CCPCH \quad RSCP1 \right|_{in \ dBm} - P - CCPCH \quad RSCP \ 2 \Big|_{in \ dBm} \right| \le 8 dB$$

P-CCPCH Ec/Io \geq -8 dB

 $DwPCH_Ec/Io \ge -5 dB$

It is assumed that the measurements of P-CCPCH RSCP1 and P-CCPCH RSCP2 can be performed within 20ms.

Table 9.3A: P-CCPCH_RSCP intra-frequency relative accuracy

		Accura	Conditions	
Parameter	Unit	Normal condition Extreme condition		lo [dBm /1.28 MHz]
P-CCPCH_RSCP	dBm	±3	±3	-9450

The P-CCPCH_RSCP inter-frequency relative accuracy is defined as the P-CCPCH_RSCP measured from one cell compared to the P-CCPCH_RSCP measured from another cell on a different frequency.

The accuracy requirements in table 9.3B are valid under the following conditions:

P-CCPCH RSCP1,2 \geq -102 dBm.

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \right|_{in \ dBm} \le 20 dB$$

P-CCPCH Ec/Io ≥ -8 dB

 $DwPCH_Ec/Io \ge -5 dB$

Table 9.3B: P-CCPCH_RSCP inter-frequency relative accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition Extreme condition	Extreme condition	lo [dBm/1.28 MHz]
P-CCPCH_RSCP	dBm	± 6	± 6	-9450

9.1.1.1.2.3 7.68 Mcps TDD option

The P-CCPCH_RSCP intra-frequency relative accuracy is defined as the P-CCPCH_RSCP measured from one cell compared to the P-CCPCH_RSCP measured from another cell on the same frequency.

The accuracy requirements in table 9.3C are valid under the following conditions:

P-CCPCH RSCP1,2 \geq -102 dBm.

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \right|_{in \ dBm} \le 20 dB$$

Relative Io difference [dB] \leq relative RSCP difference [dB]

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1B.2.6

It is assumed that the measurements of P-CCPCH RSCP1 and P-CCPCH RSCP2 can be performed within 20ms due to slot allocations in the cells concerned.

Table 9.3C: P-CCPCH_RSCP intra-frequency relative accuracy

		Accura	cy [dB]	Conditions		
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 7.68MHz]	relative RSCP difference [dB]	
P-CCPCH_RSCP		±1	±1		<2	
	dBm	±2	±2	-9450	214	
		±3	± 3		>14	

The P-CCPCH_RSCP inter-frequency relative accuracy is defined as the P-CCPCH_RSCP measured from one cell compared to the P-CCPCH_RSCP measured from another cell on a different frequency.

The accuracy requirements in table 9.3D are valid under the following conditions:

P-CCPCH RSCP1,2 \geq -102 dBm.

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \right|_{in \ dBm} \le 20 dB$$

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1B.2.6

Table 9.3D: P-CCPCH_RSCP inter-frequency relative accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/7.68 MHz]
P-CCPCH_RSCP	dBm	± 6	± 6	-9450

9.1.1.1.3 Range/mapping

The reporting range for *P-CCPCH RSCP* is from -120 ...-25 dBm.

In table 9.4 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.4

Reported value	Measured quantity value	Unit
P-CCPCH RSCP_LEV05	P-CCPCH RSCP <-120	dBm
P-CCPCH RSCP_LEV04	-120 ≤ P-CCPCH RSCP < -119	dBm
P-CCPCH RSCP_LEV03	-119 ≤ P-CCPCH RSCP < -118	dBm
P-CCPCH RSCP_LEV _89	-27 ≤ P-CCPCH RSCP < -26	dBm
P-CCPCH RSCP_LEV _90	-26 ≤ P-CCPCH RSCP < -25	dBm
P-CCPCH RSCP_LEV _91	-25 ≤ P-CCPCH RSCP	dBm

9.1.1.2 CPICH measurements (FDD)

NOTE: This measurement is used for handover between UTRA TDD and UTRA FDD.

These measurements consider *CPICH RSCP* and *CPICH Ec/Io* measurements. The requirements in this section are valid for terminals supporting this capability.

The measurement period for CELL_DCH state and CELL_FACH state can be found in section 8.

9.1.1.2.1 CPICH RSCP

9.1.1.2.1.1 Inter frequency measurement absolute accuracy requirement

The accuracy requirements in table 9.5 are valid under the following conditions:

 $CPICH_RSCP1|_{dBm} \ge -114 dBm$.

$$\frac{I_{o}}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{CPICH_E_{c}}{I_{or}}\right)_{in\ dB} \leq 20dB$$

Table 9.5: CPICH_RSCP Inter frequency absolute accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 3.84 MHz]
CPICH RSCP	dBm	± 6	± 9	-9470
GEIGH_NOOF	dBm	± 8	± 11	-7050

9.1.1.2.1.2 Range/mapping

The reporting range for CPICH RSCP is from -120 ...-25 dBm.

In table 9.6 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.6

Reported value	Measured quantity value	Unit
CPICH_RSCP_LEV05	CPICH RSCP <-120	dBm
CPICH_RSCP_LEV04	-120 ≤ CPICH RSCP < -119	dBm
CPICH_RSCP_LEV03	-119 ≤ CPICH RSCP < -118	dBm
		•••
CPICH_RSCP_LEV _89	-27 ≤ CPICH RSCP < -26	dBm
CPICH_RSCP_LEV _90	-26 ≤ CPICH RSCP < -25	dBm
CPICH_RSCP_LEV _91	-25 ≤ CPICH RSCP	dBm

9.1.1.2.2 CPICH Ec/lo

9.1.1.2.2.1 Inter frequency measurement relative accuracy requirement

The relative accuracy of CPICH Ec/Io is defined as the CPICH Ec/Io measured from one cell compared to the CPICH Ec/Io measured from another cell on a different frequency.

The accuracy requirements in table 9.7 are valid under the following conditions:

CPICH_RSC1,2 \geq -114 dBm.

$$|CPICH _RSCP1|_{in dBm} - CPICH _RSCP2|_{in dBm}| \le 20dB$$

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{lin\ dB}} - \left(\frac{CPICH_E_c}{I_{or}}\right)_{lin\ dB} \le 20dB$$

Table 9.7: CPICH Ec/lo Inter frequency relative accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH_Ec/lo	dB	\pm 1.5 for -14 \leq CPICH Ec/lo \pm 2 for -16 \leq CPICH Ec/lo $<$ -14 \pm 3 for -20 \leq CPICH Ec/lo $<$ -16	± 3	-9450

9.1.1.2.2.2 Range/mapping

The reporting range for CPICH Ec/Io is from -24 ...0 dB.

In table 9.8 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.8

Reported value	Measured quantity value	Unit
CPICH_Ec/lo _00	CPICH Ec/lo < -24	dB
CPICH_Ec/lo _01	-24 ≤ CPICH Ec/lo < -23.5	dB
CPICH_Ec/lo _02	-23.5 ≤ CPICH Ec/lo < -23	dB

CPICH_Ec/lo _47	-1 ≤ CPICH Ec/lo < -0.5	dB
CPICH_Ec/lo _48	-0.5 ≤ CPICH Ec/lo < 0	dB
CPICH_Ec/lo _49	0 ≤ CPICH Ec/Io	dB

9.1.1.3 Timeslot ISCP

The measurement period for CELL_DCH state and CELL_FACH state can be found in section 8.

9.1.1.3.1 Absolute accuracy requirements

9.1.1.3.1.1 3.84 Mcps TDD option

Table 9.9: Timeslot_ISCP Intra frequency absolute accuracy

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 3.84 MHz]
Timeslot ISCP	dBm	± 6	± 9	-9470
Timesiot_iscr	dBm	± 8	± 11	-7050

9.1.1.3.1.2 1.28 Mcps TDD option

Table 9.9A: Timeslot_ISCP Intra frequency absolute accuracy

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 1.28MHz]
Timeslot ISCP	dBm	± 6	± 9	-9470
Tillesiot_ISCP	dBm	± 8	± 11	-7050

9.1.1.3.1.3 7.68 Mcps TDD option

Table 9.9B: Timeslot_ISCP Intra frequency absolute accuracy

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 7.68 MHz]
Timeslot ISCP	dBm	± 6	± 9	-9470
Timesiot_iscr	dBm	± 8	± 11	-7050

9.1.1.3.2 Range/mapping

The reporting range for *Timeslot ISCP* is from -115...-25 dBm.

In table 9.10 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.10

Reported value	Reported value Measured quantity value	
UE_TS_ISCP_LEV_00	Timeslot_ISCP < -115	dBm
UE_TS_ISCP_LEV_01	-115 ≤ Timeslot_ISCP < -114	dBm
UE_TS_ISCP_LEV_02	-114 ≤ Timeslot_ISCP < -113	dBm
UE_TS_ISCP_LEV_89	-27 ≤ Timeslot_ISCP < -26	dBm
UE_TS_ISCP_LEV_90	-26 ≤ Timeslot_ISCP < -25	dBm
UE_TS_ISCP_LEV_91	-25 ≤ Timeslot_ISCP	dBm

9.1.1.4 UTRA carrier RSSI

NOTE: The purpose of measurement is for Inter-frequency handover evaluation.

The measurement period is equal to the measurement period for UE P-CCPCH RSCP measurement. The measurement period for CELL_DCH state can be found in section 8.

9.1.1.4.1 Absolute accuracy requirement

Absolute accuracy case only one carrier is applied.

9.1.1.4.1.1 3.84 Mcps TDD option

Table 9.11: UTRA carrier RSSI Inter frequency absolute accuracy

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 3.84 MHz]
UTRA Carrier RSSI	dBm	± 4	± 7	-9470
OTRA Calliel RSSI	dBm	± 6	± 9	-7050

9.1.1.4.1.2 1.28 Mcps TDD option

Table 9.11A: UTRA carrier RSSI Inter frequency absolute accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 1.28MHz]
UTRA Carrier RSSI	dBm	± 4	± 7	-9470
UTRA Calliel RSSI	dBm	± 6	± 9	-7050

9.1.1.4.1.3 7.68 Mcps TDD option

Table 9.11B: UTRA carrier RSSI Inter frequency absolute accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/ 7.68 MHz]
UTRA Carrier RSSI	dBm	± 4	± 7	-9470
UTRA Carrier R55i	dBm	± 6	± 9	-7050

9.1.1.4.2 Relative accuracy requirement

Relative accuracy requirement is defined as active cell frequency UTRAN RSSI compared to measured other frequency UTRAN RSSI level.

9.1.1.4.2.1 3.84 Mcps TDD option

The accuracy requirements in table 9.12 are valid under the following conditions:

| Channel 1_Io| $_{dBm/3.84\;MHz}$ -Channel 2_Io| $_{dBm/3.84\;MHz}$ | $<20\;dB$.

Table 9.12: UTRA carrier RSSI Inter frequency relative accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition Extreme condition		lo [dBm/3.84 MHz]
UTRA Carrier RSSI	dBm	± 7	± 11	-9450

9.1.1.4.2.2 1.28 Mcps TDD option

The accuracy requirements in table 9.12A are valid under the following conditions:

| Channel 1_Io| $_{dBm/1.28\;MHz}$ -Channel 2_Io| $_{dBm/1.28\;MHz}$ | < 20 dB.

Table 9.12A: UTRA carrier RSSI Inter frequency relative accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/1.28 MHz]
UTRA Carrier RSSI	dBm	± 7	± 11	-9450

9.1.1.4.2.3 7.68 Mcps TDD option

The accuracy requirements in table 9.12B are valid under the following conditions:

 \mid Channel $1_Io|_{dBm/7.68\;MHz}$ -Channel $2_Io|_{dBm/7.68\;MHz}\mid$ $<20\;dB.$

Table 9.12B: UTRA carrier RSSI Inter frequency relative accuracy

		Accuracy [dB]		Conditions
Parameter	er Unit Normal condit		Extreme condition	lo [dBm/7.68 MHz]
UTRA Carrier RSSI	dBm	± 7	± 11	-9450

9.1.1.4.3 Range/mapping

The reporting range for UTRA carrier RSSI is from -100 ...-25 dBm.

In table 9.13 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.13

Reported value	Measured quantity value	Unit
UTRA_carrier_RSSI_LEV _00	UTRA carrier RSSI < -100	dBm
UTRA_carrier_RSSI_LEV _01	-100 ≤ UTRA carrier RSSI < -99	dBm
UTRA_carrier_RSSI_LEV _02	-99 ≤ UTRA carrier RSSI < -98	dBm
UTRA_carrier_RSSI_LEV _74	-27 ≤ UTRA carrier RSSI < -26	dBm
UTRA_carrier_RSSI_LEV _75	-26 ≤ UTRA carrier RSSI < -25	dBm
UTRA_carrier_RSSI_LEV _76	-25 ≤ UTRA carrier RSSI	dBm

9.1.1.5 GSM carrier RSSI

NOTE: This measurement is for handover between UTRAN and GSM.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for CELL_DCH state can be found in section 8.1.2.5, 8.1A.2.5 and 8.1B.2.5. The measurement period for CELL_FACH state can be found in section 8.4.2.5, 8.4A.2.5 and 8.4B.2.5.

If the UE, in CELL_DCH state, does not need idle intervals to perform GSM measurements, the measurement accuracy requirements for RXLEV in TS 45.008 shall apply.

If the UE, in CELL_DCH state needs idle intervals to perform GSM measurements, the measurement accuracy requirement is stated in section 8.1.2.5, 8.1A.2.5 and 8.1B.2.5.

If the UE, in CELL_FACH state, does not need measurement occasions and/or idle intervals to perform GSM measurements, the measurement accuracy requirements for RXLEV in TS 45.008 shall apply.

If the UE, in CELL_FACH state needs measurement occasions and/or idle intervals to perform GSM measurements, the measurement accuracy requirement is stated in section 8.4.2.5, 8.4A.2.5 and 8.4B.2.5.

The reporting range and mapping specified for RXLEV in TS 45.008 shall apply.

9.1.1.5a E-UTRAN RSRP

NOTE: This measurement is for handover between UTRAN and E-UTRAN.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for E-UTRA RSRP in CELL_DCH state can be found in section 8.1.2.7 / 8.1.2.8, section 8.1A.2.6 / 8.1A.2.7 and section 8.1B.2.7 / 8.1B.2.8.

In Cell DCH state, whether or not UE requires idle intervals to perform E-UTRAN measurements, the requirements for accuracy of E-UTRA RSRP measurements in CELL_DCH state shall be the same as the inter-frequency RSRP Accuracy Requirements in 3GPP TS 36.133 [24].

The reporting range and mapping specified for RSRP in 3GPP TS 36.133 [24] shall apply.

9.1.1.5b E-UTRAN RSRQ

NOTE: This measurement is for handover between UTRAN and E-UTRAN.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for E-UTRA RSRQ in CELL_DCH state can be found in section 8.1.2.7 / 8.1.2.8, section 8.1A.2.6 / 8.1A.2.7 and section 8.1B.2.7 / 8.1B.2.8.

In CELL DCH state, whether or not UE requires idle intervals to perform E-UTRAN measurements, the requirements for accuracy of E-UTRA RSRQ measurements in CELL_DCH state shall be the same as the inter-frequency RSRQ Accuracy Requirements in 3GPP TS 36.133 [24].

The reporting range and mapping specified for RSRQ in 3GPP TS 36.133 [24] shall apply.

9.1.1.6 SIR

The measurement period is equal to the measurement period for UE P-CCPCH RSCP measurement. The measurement period for CELL_DCH state and CELL_FACH state can be found in section 8.

9.1.1.6.1 Absolute accuracy requirements

9.1.1.6.1.1 3.84 Mcps TDD option

Table 9.14: SIR Intra frequency absolute accuracy

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	
				For 0 <sir<20db and="" lo<="" td=""></sir<20db>
SIR	dB	±3 dB	[]	range -9450
				dBm/3.84MHz
				For $-7 \le SIR \le 0$ dB and lo
SIR	dB	±(3 - SIR)	[]	range -9450
				dBm/3.84MHz

9.1.1.6.1.2 1.28 Mcps TDD option

Table 9.14A: SIR Intra frequency absolute accuracy

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	
SIR	dB	±3 dB	[]	For 0 <sir<20db and="" lo<br="">range -9450 dBm/1.28MHz</sir<20db>
SIR	dB	±(3 - SIR)	[]	For -7 ≤ SIR ≤ 0 dB and lo range -9450 dBm/1.28MHz

9.1.1.6.1.3 7.68 Mcps TDD option

Table 9.14B: SIR Intra frequency absolute accuracy

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	
				For 0 <sir<20db and="" lo<="" td=""></sir<20db>
SIR	dB	±3 dB	[]	range -9450
				dBm/7.68MHz
				For $-7 \le SIR \le 0$ dB and lo
SIR	dB	±(3 - SIR)	[]	range -9450
				dBm/7.68MHz

9.1.1.6.2 Range/mapping

The reporting range for SIR is from -11 ...20 dB.

In table 9.15 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.15

Reported value	Measured quantity value	Unit
UE_SIR_00	SIR< -11,0	dB
UE_SIR_01	-11,0 ≤ SIR< -10,5	dB
UE_SIR_02	-10,5 ≤ SIR< -10,0	dB

UE_SIR_61	-19 ≤ SIR< 19,5	dB
UE_SIR_62	19,5 ≤ SIR< 20	dB
UE_SIR_63	20 ≤ SIR	dB

9.1.1.7 Transport channel BLER

9.1.1.7.1 BLER measurement requirement

The Transport Channel BLER value shall be calculated from a window with the size equal to the reporting interval (see clause on periodical reporting criteria in TS 25.331).

9.1.1.7.2 Range/mapping

The *Transport channel BLER* reporting range is from 0 to 1.

In table 9.16 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.16

Reported value	Measured quantity value	Unit
BLER_LOG _00	Transport channel BLER = 0	-
BLER_LOG _01	-∞ < Log10(Transport channel BLER) < -4,03	-
BLER_LOG _02	-4,03 ≤ Log10(Transport channel BLER) < -3,965	-
BLER_LOG _03	-3,965 ≤ Log10(Transport channel BLER) < -3,9	-
BLER_LOG _61	-0,195 ≤ Log10(Transport channel BLER) < -0,13	-
BLER_LOG _62	-0,13 ≤ Log10(Transport channel BLER) < -0,065	-
BLER_LOG _63	-0,065 ≤ Log10(Transport channel BLER) ≤ 0	-

9.1.1.8 SFN-SFN observed time difference

The measurement period is equal to the measurement period for UE P-CCPCH RSCP measurement. The measurement period for CELL_DCH state and CELL_FACH state can be found in section 8.

9.1.1.8.1 Accuracy requirements

9.1.1.8.1.1 3.84 Mcps TDD option

The accuracy requirement in table 9.17 is valid under the following conditions:

P-CCPCH_RSCP1,2 \geq -102 dBm..

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \right|_{in \ dBm} \le 20 dB$$

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1.2.6.

Table 9.17: SFN-SFN observed time difference accuracy

Parameter	Unit	Accuracy [chip]	Conditions Io [dBm/3.84 MHz]
SFN-SFN observed time difference	chip	+/-0,5 for both type 1 and 2	-9450

9.1.1.8.1.2 1.28 Mcps TDD option

The accuracy requirements in table 9.3B are valid under the following conditions:

P-CCPCH RSCP1,2 \geq -102 dBm.

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \right|_{in \ dBm} \le 20 dB$$

P-CCPCH Ec/Io \geq -8 dB

 $DwPCH_Ec/Io \ge -5 dB$

Table 9.17A: SFN-SFN observed time difference accuracy

Parameter	Unit	Accuracy [chip]	Conditions lo [dBm/ 1.28 MHz]
SFN-SFN observed time difference	chip	+/-0,5 for type 1 but +/- 0.125 for type 2	-9450

9.1.1.8.1.3 7.68 Mcps TDD option

The accuracy requirement in table 9.17B is valid under the following conditions:

P-CCPCH_RSCP1,2 \geq -102 dBm..

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \right|_{in \ dBm} \le 20 dB$$

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1B.2.6.

Table 9.17B: SFN-SFN observed time difference accuracy

Parameter	Unit	Accuracy [chip]	Conditions lo [dBm/7.68 MHz]
SFN-SFN observed time difference	chip	+/-1 for both type 1 and 2	-9450

9.1.1.8.2 Range/mapping

9.1.1.8.2.1 3.84 Mcps TDD option

The reporting range for SFN-SFN observed time difference type 1 is from 0 ... 9830400 chip.

In table 9.18 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.18

Reported value	Measured quantity value	Unit
T1_SFN-SFN_TIME _0000000	0 ≤ SFN-SFN observed time difference type 1 < 1	Chip
T1_SFN-SFN_TIME _0000001	1 ≤ SFN-SFN observed time difference type 1 < 2	Chip
T1_SFN-SFN_TIME _0000002	2 ≤ SFN-SFN observed time difference type 1 < 3	Chip
T1_SFN-SFN_TIME _9830397	9830397 ≤ SFN-SFN observed time difference type 1 < 9830398	Chip
T1_SFN-SFN_TIME _9830398	9830398 ≤ SFN-SFN observed time difference type 1 < 980399	Chip
T1_SFN-SFN_TIME _9830399	9830399 ≤ SFN-SFN observed time difference type 1 < 9830400	Chip

The reporting range for SFN-SFN observed time difference type 2 is from -1280 ... +1280 chip.

In table 9.19 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.19

Reported value	Measured quantity value	Unit
T2_SFN-SFN_TIME _00000	SFN-SFN observed time difference type 2 < -	Chip
	1280,0000	
T2_SFN-SFN_TIME _00001	-1280,0000 ≤ SFN-SFN observed time	Chip
	difference type 2 < -1279,9375	
T2_SFN-SFN_TIME _00002	-1279,9375 ≤ SFN-SFN observed time	Chip
	difference type 2 < -1279,8750	
T2_SFN-SFN_TIME _40959	1279,8750 ≤ SFN-SFN observed time	Chip
	difference type 2 < 1279,9375	
T2_SFN-SFN_TIME _40960	1279,9375 ≤ SFN-SFN observed time	Chip
	difference type 2 < 1280,0000	
T2_SFN-SFN_TIME _40961	1280,0000 ≤ SFN-SFN observed time	Chip
	difference type 2	

9.1.1.8.2.2 1.28 Mcps TDD option

The reporting range for SFN-SFN observed time difference type 1 is from 0 ... 3276800 chip.

In table 9.18A mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.18A

Reported value	Measured quantity value	
T1_SFN-SFN_TIME _0000000	0 ≤ SFN-SFN observed time difference type 1 < 1	chip
T1_SFN-SFN_TIME _0000001	1 ≤ SFN-SFN observed time difference type 1 < 2	chip
T1_SFN-SFN_TIME _0000002	2 ≤ SFN-SFN observed time difference type 1 < 3	chip
•••	***	
T1_SFN-SFN_TIME _3276797	3276797 ≤ SFN-SFN observed time difference type 1	chip
	< 3276798	
T1_SFN-SFN_TIME _3276798	3276798 ≤ SFN-SFN observed time difference type 1 < 3276799	chip
T1_SFN-SFN_TIME _3276799	3276799 ≤ SFN-SFN observed time difference type 1 < 3276800	chip

The reporting range for SFN-SFN observed time difference type 2 is from -432 ... +432 chip.

In table 9.19A mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.19A

Reported value	Measured quantity value	Unit
T2_SFN-SFN_TIME _00000	SFN-SFN observed time difference type 2 < -432,00000	chip
T2_SFN-SFN_TIME _00001	-432,00000 ≤ SFN-SFN observed time difference type 2 < -431,96875	chip
T2_SFN-SFN_TIME _00002	-431,96875 ≤ SFN-SFN observed time difference type 2 < -431,9375	chip

T2_SFN-SFN_TIME _27647	431,9375 ≤ SFN-SFN observed time difference type 2 < 431,96875	chip
T2_SFN-SFN_TIME _27648	431,96875 ≤ SFN-SFN observed time difference type 2 < 432,00000	chip
T2_SFN-SFN_TIME _27649	432,00000 ≤ SFN-SFN observed time difference type 2	chip

9.1.1.8.2.3 7.68 Mcps TDD option

The reporting range for SFN-SFN observed time difference type 1 is from $0 \dots 19660800$ chip.

In table 9.18B mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.18B

Reported value	Measured quantity value	Unit
T1_SFN-SFN_TIME _00000000	0 ≤ SFN-SFN observed time difference type 1 < 2	Chip
T1_SFN-SFN_TIME _0000001	2 ≤ SFN-SFN observed time difference type 1 < 4	Chip
T1_SFN-SFN_TIME _0000002	4 ≤ SFN-SFN observed time difference type 1 < 6	Chip
T1_SFN-SFN_TIME _9830397	19660794 ≤ SFN-SFN observed time difference type 1 < 19660796	Chip
T1_SFN-SFN_TIME _9830398	19660796 ≤ SFN-SFN observed time difference type 1 < 19660798	Chip
T1_SFN-SFN_TIME _9830399	19660798 ≤ SFN-SFN observed time difference type 1 < 19660800	Chip

The reporting range for SFN-SFN observed time difference type 2 is from -2560 ... +2560 chip.

In table 9.19B mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.19B

Reported value	Measured quantity value	Unit
T2_SFN-SFN_TIME _00000	SFN-SFN observed time difference type 2 < -	Chip
	2560,0000	
T2_SFN-SFN_TIME _00001	-2560,0000 ≤ SFN-SFN observed time	Chip
	difference type 2 < -2559,875	
T2_SFN-SFN_TIME _00002	-2559,875 ≤ SFN-SFN observed time	Chip
	difference type 2 < -2559.750	
T2_SFN-SFN_TIME _40959	2559.750 ≤ SFN-SFN observed time difference	Chip
	type 2 < 2559,875	
T2_SFN-SFN_TIME _40960	2559,875 ≤ SFN-SFN observed time difference	Chip
	type 2 < 2560,0000	
T2_SFN-SFN_TIME _40961	2560,0000 ≤ SFN-SFN observed time	Chip
	difference type 2	

9.1.1.9 Observed time difference to GSM cell

NOTE: This measurement is used to determine the system time difference between UTRAN and GSM cells.

The requirements in this section are valid for terminals supporting UTRA TDD and GSM.

The measurement period for CELL_DCH state can be found in section 8.

9.1.1.9.1 Accuracy requirements

Table 9.20 Observed time difference to GSM cell accuracy

Parameter	Unit	Accuracy [chip]	Conditions
Observed time difference to GSM cell	chip	± 20	

9.1.1.9.2 Range/mapping

The reporting range for Observed time difference to GSM cell is from $0 \dots 3060/13 \text{ ms}$.

In table 9.21 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.21

Reported value	Measured quantity value	Unit
GSM_TIME _0000	0 ≤ Observed time difference to GSM cell < 1x3060/(4096x13)	ms
GSM_TIME _0001	$1x3060/(4096x13) \le$ Observed time difference to GSM cell < $2x3060/(4096x13)$	ms
GSM_TIME _0002	2x3060/(4096x13)≤ Observed time difference to GSM cell < 3x3060/(4096x13)	ms
GSM_TIME _0003	3x3060/(4096x13) ≤ Observed time difference to GSM cell < 4x3060/(4096x13)	ms
GSM_TIME _4093	4093x3060/(4096x13) ≤ Observed time difference to GSM cell < 4094x3060/(4096x13)	ms
GSM_TIME _4094	4094x3060/(4096x13) ≤ Observed time difference to GSM cell < 4095x3060/(4096x13)	ms
GSM_TIME _4095	4095x3060/(4096x13) ≤ Observed time difference to GSM cell < 3060/13	ms

9.1.1.10 UE GPS Timing of Cell Frames for UP

9.1.1.10.1 Accuracy requirement

9.1.1.10.1.1 3.84 Mcps TDD Option

The requirements in this section are valid for terminals supporting this capability

The measurement period for CELL_DCH state and CELL_FACH state can be found in section 8.

Table 9.22

Parameter	Unit	Accuracy [chip]	Conditions
UE GPS Timing of Cell Frames for LCS	chip	[]	

9.1.1.10.1.2 1.28 Mcps TDD Option

The requirements in this section are valid for terminals supporting this capability

The measurement period for CELL_DCH state and CELL_FACH state can be found in section 8.

Table 9.22A

Parameter	Unit	Accuracy [chip]	Conditions
UE GPS Timing of Cell Frames for LCS	chip	[]	

9.1.1.10.1.3 7.68 Mcps TDD Option

The requirements in this section are valid for terminals supporting this capability

The measurement period for CELL_DCH state and CELL_FACH state can be found in section 8.

Table 9.22B

Parameter	Unit	Accuracy [chip]	Conditions
UE GPS Timing of Cell Frames for LCS	chip	[]	

9.1.1.10.2 UE GPS timing of Cell Frames for UP measurement report mapping

9.1.1.10.2.1 3.84 Mcps TDD Option

The reporting range for UE GPS timing of Cell Frames for UP is from 0 ... 2322432000000 chip.

In table 9.23 mapping of the measured quantity is defined.

Table 9.23

Reported value	Measured quantity value	Unit
GPS_TIME_00000000000000	UE GPS timing of Cell Frames for UP < 0,0625	chip
GPS_TIME_0000000000001	0,0625 ≤ UE GPS timing of Cell Frames for UP < 0,1250	chip
GPS_TIME_000000000000000002	0,1250 ≤ UE GPS timing of Cell Frames for UP < 0,1875	chip
GPS_TIME_37158911999997	2322431999999,8125 ≤ UE GPS timing of Cell Frames	chip
	for UP < 2322431999999,8750	
GPS_TIME_37158911999998	2322431999999,8750 ≤ UE GPS timing of Cell Frames	chip
	for UP < 2322431999999,9375	
GPS_TIME_37158911999999	2322431999999,9375 ≤ UE GPS timing of Cell Frames	chip
	for UP < 2322432000000,0000	

9.1.1.10.2.2 1.28 Mcps TDD Option

The reporting range for UE GPS timing of Cell Frames for UP is from 0 ... 774144000000 chip.

In table 9.23A mapping of the measured quantity is defined.

Table 9.23A

Reported value	Measured quantity value	Unit
GPS_TIME_0000000000000	UE GPS timing of Cell Frames for UP< 0,25	chip
GPS_TIME_000000000001	0,25 ≤ UE GPS timing of Cell Frames for UP< 0,50	chip
GPS_TIME_0000000000002	0,50 ≤ UE GPS timing of Cell Frames for UP < 0,75	chip
	···	
GPS_TIME_3096575999997	774143999999,25 ≤ UE GPS timing of Cell Frames for UP < 774143999999,50	chip
GPS_TIME_3096575999998	774143999999,50 ≤ UE GPS timing of Cell Frames for UP < 774143999999,75	chip
GPS_TIME_3096575999999	774143999999,75 ≤ UE GPS timing of Cell Frames for UP < 774144000000,00	chip

9.1.1.10.2.3 7.68 Mcps TDD Option

The reporting range for UE GPS timing of Cell Frames for UP is from 0 ... 4644864000000 chip.

In table 9.23B mapping of the measured quantity is defined.

Table 9.23B

Reported value	Measured quantity value	Unit
GPS_TIME_00000000000000	UE GPS timing of Cell Frames for UP < 0,125	chip
GPS_TIME_0000000000001	0,125 ≤ UE GPS timing of Cell Frames for UP < 0,250	chip
GPS_TIME_000000000000000002	0,250 ≤ UE GPS timing of Cell Frames for UP < 0,375	chip
GPS_TIME_37158911999997	4644863999999,625 ≤ UE GPS timing of Cell Frames for UP < 4644863999999,750	chip
GPS_TIME_37158911999998	4644863999999,750 ≤ UE GPS timing of Cell Frames for UP < 4644863999999,875	chip
GPS_TIME_37158911999999	4644863999999,875 ≤ UE GPS timing of Cell Frames for UP < 4644864000000,0000	chip

9.1.1.11 SFN-CFN observed time difference

NOTE: This measurement is for handover timing purposes to identify active cell and neighbour cell time difference.

The measurement period is equal to the measurement period for UE P-CCPCH RSCP measurement. The measurement period for CELL DCH state can be found in section 8.

9.1.1.11.1 Accuracy requirements

9.1.1.11.1.1 3.84 Mcps TDD Option

The accuracy requirements in tables 9.24 are valid under the following conditions:

P-CCPCH_RSCP1,2
$$\geq$$
 -102dBm.

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \right|_{in \ dBm} \le 20 dB$$

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1.2.6

Table 9.24 SFN-CFN observed time difference accuracy for a TDD neighbour cell

Parameter	Unit	Accuracy [chip]	Conditions Io [dBm/3.84 MHz]
SFN-CFN observed time difference	chip	+/-0,5	-9450

The accuracy requirements in table 9.25 are valid under the following conditions:

CPICH_RSCP1,2 \geq -114 dBm.

$$|CPICH _RSCP1|_{in dBm} - CPICH _RSCP2|_{in dBm}| \le 20dB$$

The received signal levels on SCH and CPICH are according the requirements in paragraph 8.1.2.6.

Table 9.25: SFN-CFN observed time difference accuracy for a FDD neighbour cell

Parameter	Unit	Accuracy [chip]	Conditions lo [dBm/3.84 MHz]
SFN-CFN observed time difference	chip	+/-1	-9450

9.1.1.11.1.2 1.28 Mcps TDD Option

The accuracy requirements in tables 9.25A are valid under the following conditions:

P-CCPCH_RSCP1,2 \geq -102dBm.

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \Big|_{in \ dBm} \right| \le 20 dB$$

P-CCPCH Ec/Io \geq -8 dB

 $DwPCH_Ec/Io \ge -5 dB$

Table 9.25A SFN-CFN observed time difference accuracy for a TDD neighbour cell

Parameter	Unit	Accuracy [chip]	Conditions lo [dBm/1.28 MHz]
SFN-CFN observed time difference	chip	+/-0,5	-9450

The accuracy requirements in table 9.25B are valid under the following conditions:

CPICH RSCP1,2 \geq -114 dBm.

$$|CPICH _RSCP1|_{in dBm} - CPICH _RSCP2|_{in dBm}| \le 20dB$$

The received signal levels on SCH and CPICH are according the requirements in paragraph 8.1.2.6

Table 9.25B SFN-CFN observed time difference accuracy for a FDD neighbour cell

Parameter	Unit	Accuracy [chip]	Conditions lo [dBm/3.84MHz]
SFN-CFN observed time difference	chip	+/-1	-9450

9.1.1.11.1.3 7.68 Mcps TDD Option

The accuracy requirements in tables 9.25C are valid under the following conditions:

P-CCPCH RSCP1,2 \geq -102dBm.

$$\left| P - CCPCH RSCP1 \right|_{in \ dBm} - P - CCPCH RSCP2 \right|_{in \ dBm} \le 20 dB$$

The received signal levels on SCH and P-CCPCH are according the requirements in paragraph 8.1B.2.6

Table 9.25C: SFN-CFN observed time difference accuracy for a TDD neighbour cell

Parameter	Unit	Accuracy [chip]	Conditions
Farameter	Oill	Accuracy [cnip]	lo [dBm/7.68 MHz]
SFN-CFN observed time difference	chip	+/-1	-9450

The accuracy requirements in table 9.25D are valid under the following conditions:

CPICH_RSCP1,2 \geq -114 dBm.

$$\left| CPICH _RSCP1 \right|_{in \ dBm} - CPICH _RSCP2 \right|_{in \ dBm} \le 20 dB$$

The received signal levels on SCH and CPICH are according the requirements in paragraph 8.1B.2.6.

Table 9.25D: SFN-CFN observed time difference accuracy for a FDD neighbour cell

Parameter	Unit	Accuracy [chip]	Conditions lo [dBm/3.84 MHz]
SFN-CFN observed time difference	chip	+/-2	-9450

9.1.1.11.2 Range/mapping

The reporting range for SFN-CFN observed time difference for a TDD neighbour cell is from 0...256 frames.

In table 9.26 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.26: SFN-CFN observed time difference range/mapping for a TDD neighbour cell

Reported value	Measured quantity value	Unit
SFN-CFN_TIME_000	0 ≤ SFN-CFN observed time difference < 1	frame
SFN-CFN_TIME_001	1 ≤ SFN-CFN observed time difference < 2	frame
SFN-CFN_TIME_002	2 ≤ SFN-CFN observed time difference < 3	frame
SFN-CFN_TIME_253	253 ≤ SFN-CFN observed time difference < 254	frame
SFN-CFN_TIME_254	254 ≤ SFN-CFN observed time difference < 255	frame
SFN-CFN_TIME_255	255 ≤ SFN-CFN observed time difference < 256	frame

The reporting range for SFN-CFN observed time difference for a FDD neighbour cell is from 0 ... 9830400 chip.

In table 9.27 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.27: SFN-CFN observed time difference range/mapping for a FDD neighbour cell

Reported value	Measured quantity value	Unit
SFN-CFN_TIME _0000000	0 ≤ SFN-CFN observed time difference < 1	chip
SFN-CFN_TIME _0000001	1 ≤ SFN-CFN observed time difference < 2	chip
SFN-CFN_TIME _0000002	2 ≤ SFN-CFN observed time difference < 3	chip
SFN-CFN_TIME _9830397	9830397 ≤ SFN-CFN observed time difference < 9830398	chip
SFN-CFN_TIME _9830398	9830398 ≤ SFN-CFN observed time difference < 980399	chip
SFN-CFN_TIME _9830399	9830399 ≤ SFN-CFN observed time difference < 9830400	chip

9.1.2 Performance for UE Measurements in Uplink (TX)

The output power is defined as the average power of the transmit timeslot, and is measured with a filter that has a Root-Raised Cosine (RRC) filter response with a roll off $\alpha = 0,22$ and a bandwidth equal to the chip rate.

9.1.2.1 UE transmitted power

The measurement period for CELL_DCH state and CELL_FACH state is 1 slot.

9.1.2.1.1 Absolute accuracy requirements

Table 9.28 UE transmitted power absolute accuracy

		Accuracy [dB]	
Parameter	Unit	PUEMAX 24dBm	PUEMAX 21dBm
UE reported power ≥ PUEMAX	dBm	+1/-3	±2
PUEMAX > UE reported power ≥ PUEMAX-1	dBm	+1,5/-3,5	±2,5
PUEMAX-1 > UE reported power ≥ PUEMAX-2	dBm	+2/-4	±3
PUEMAX-2 > UE reported power ≥ PUEMAX-3	dBm	+2,5/-4,5	±3,5
PUEMAX-3 > UE reported power ≥ PUEMAX-10	dBm	+3/-5	±4

NOTE 1: User equipment maximum output power, PUEMAX, is the maximum output power level without tolerance defined for the power class of the UE in 3GPP TS 25.102 "UTRA (UE) TDD; Radio Transmission and Reception".

NOTE 2: UE transmitted power is the reported value.

9.1.2.1.2 Range/mapping

The reporting range for *UE transmitted power* is from -50 ...+34 dBm.

In table 9.29 mapping of the measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.29

Reported value	Measured quantity value	Unit
UE_TX_POWER _021	-50 ≤ UE transmitted power < -49	dBm
UE_TX_POWER _022	-49 ≤ UE transmitted power < -48	dBm
UE_TX_POWER _023	-48 ≤ UE transmitted power < -47	dBm
		:
UE_TX_POWER _102	31 ≤ UE transmitted power < 32	dBm
UE_TX_POWER _103	32 ≤ UE transmitted power < 33	dBm
UE_TX_POWER _104	33 ≤ UE transmitted power < 34	dBm

9.1.2.2 Timing Advance (T_{ADV}) for 1.28 Mcps TDD

This measurement refers to TS25.225 subsection 5.1.14.

9.1.2.2.1 Accuracy requirements

Table 9.28A

D	1124	A	Conditions
Parameter	Unit	Accuracy [chip]	Range [chips]
Timing Advance	chip	+/- 0.125	0,, 1023.875

9.1.2.2.2 Range/mapping

The reporting range for *Timing Advance* is from 0 ... 1023..875 chips.

In table 9.29A the mapping of the measured quantity is defined. The signalling range may be larger than the guaranteed accuracy range.

Table 9.29A

Reported value	Measured quantity value	Unit
TIMING_ADVANCE_0000	Timing Advance < 0.125	Chip
TIMING_ADVANCE_0001	0.125 ≤ Timing Advance < 0.25	Chip
TIMING_ADVANCE_1023	127.875≤ Timing Advance < 128	Chip
TIMING_ADVANCE_8189	1023.625 ≤ Timing Advance <1023.75	Chip
TIMING_ADVANCE_8190	1023.75 ≤ Timing Advance <1023.875	Chip
TIMING_ADVANCE_8191	1023.875 ≤Timing Advance	Chip

NOTE: This measurement can be used for timing advance (synchronisation shift) calculation for uplink synchronisation or location services.

9.1.2.3 UE transmission power headroom

9.1.2.3.1 3.84Mcps TDD Option

<Void>

9.1.2.3.2 1.28 Mcps TDD Option

This measurement refers to TS25.225 subsection 5.1.16.

9.1.2.3.2.1 Delay requirement

The UE transmission power headroom measurement reporting delay is defined as the time between the end of the UE transmission power headroom measurement period and the time when the UE starts transmitting the measurement report over the Uu interface. The reporting delay of the UE transmission power headroom measurement result shall be not more than 10ms, which is applicable for all configured triggering mechanisms for UE transmission power headroom measurement.

9.1.2.3.1.2 Measurement period requirement

The reported UE transmission power headroom measurement result shall be an estimate of the average value of the UE transmission power headroom over a 100ms period.

9.1.2.3.1.3 UE transmission power headroom measurement report mapping

The UE transmission power headroom reporting range is from -14 ...+28 dB. Table 9.28B defines the mapping

Table 9.28B

Reported value	Measured quantity value	Unit
UE_POWER_HEADROOM _0	UPH < -14	dB
UE_POWER_HEADROOM _1	-14 ≤ UPH < -12	dB
UE_POWER_HEADROOM _2	-12 ≤ UPH < -10	dB
UE_POWER_HEADROOM _3	-10 ≤ UPH < -9	dB
UE_POWER_HEADROOM _4	-9 ≤ UPH < -8	dB
UE_POWER_HEADROOM _5	-8 ≤ UPH < -7	dB
UE_POWER_HEADROOM _6	-7 ≤ UPH < -6	dB
UE_POWER_HEADROOM _7	-6 ≤ UPH < -5	dB
UE_POWER_HEADROOM _8	-5 ≤ UPH < -4	dB
UE_POWER_HEADROOM _9	-4≤ UPH < -3	dB
UE_POWER_HEADROOM _10	-3 ≤ UPH < -2	dB
UE_POWER_HEADROOM _11	-2≤ UPH < -1	dB
UE_POWER_HEADROOM _12	-1 ≤ UPH < 0	dB
UE_POWER_HEADROOM _13	0 ≤ UPH < 1	dB
UE_POWER_HEADROOM _14	1 ≤ UPH <2	dB
UE_POWER_HEADROOM _15	2 ≤ UPH < 3	dB
UE_POWER_HEADROOM _16	3≤ UPH < 4	dB
UE_POWER_HEADROOM _17	4 ≤ UPH < 5	dB
UE_POWER_HEADROOM _18	5 ≤ UPH <6	dB
UE_POWER_HEADROOM _19	6 ≤ UPH < 7	dB
UE_POWER_HEADROOM _20	7 ≤ UPH < 8	dB
UE_POWER_HEADROOM _21	8 ≤ UPH <9	dB
UE_POWER_HEADROOM _22	9 ≤ UPH <10	dB
UE_POWER_HEADROOM _23	10 ≤ UPH <11	dB
UE_POWER_HEADROOM _24	11 ≤ UPH <12	dB
UE_POWER_HEADROOM _25	12 ≤ UPH < 14	dB
UE_POWER_HEADROOM _26	14 ≤ UPH <16	dB
UE_POWER_HEADROOM _27	16 ≤ UPH <18	dB
UE_POWER_HEADROOM _28	18 ≤ UPH < 20	dB
UE_POWER_HEADROOM _29	20 ≤ UPH < 23	dB
UE_POWER_HEADROOM _30	23 ≤ UPH <28	dB
UE_POWER_HEADROOM _31	28 ≤ UPH	dB

9.1.2.3.1.4 UE transmission power headroom measurement report accuracy

The accuracy requirements for UE transmission power headroom depends on the total power transmitted by the UE. Table 9.29B defines the accuracy of the measured quantity.

Table 9.29B

Total UE putput power value (dBm)	UPH reporting Accuracy [dB]*		
	PUEMAX 24dBm	PUEMAX 21dBm	
Total output power=PUEMAX	+1/-3	±2	
Total output power =PUEMAX-1	+1,5/-3,5	±2,5	
Total output power =PUEMAX-2	+2/-4	±3	
Total output power =PUEMAX-3	+2,5/-4,5	±3,5	
PUEMAX-10≤ Total output power <puemax-3< td=""><td>+3/-5</td><td>±4</td></puemax-3<>	+3/-5	±4	

^{*}Note: UPH reporting accuracy is the difference between the UPH reported by the UE and the actual uplink power headroom

^{**}Note: PUEMAX, is the maximum output power level without tolerance defined for the power class of the UE in 3GPP TS 25.102

9.2 Measurements Performance for UTRAN

9.2.1 Performance for UTRAN Measurements in Uplink (RX)

9.2.1.1 RSCP

The measurement period shall be 100 ms.

9.2.1.1.1 Absolute accuracy requirements

9.2.1.1.1.1 3.84 Mcps TDD Option

Table 9.30: RSCP absolute accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions		lo [dBm/3.84 MHz]
RSCP	dBm	± 6	± 9	-10574

Table 9.30A: RSCP absolute accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	lo [dBm/3.84 MHz]
RSCP	dBm	± 6	± 9	-9160

9.2.1.1.1.2 1.28 Mcps TDD Option

Table 9.30B: RSCP absolute accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	lo [dBm/1.28 MHz]
RSCP	dBm	± 6	± 9	-10574

Table 9.30C: RSCP absolute accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions Extreme conditions		lo [dBm/1.28 MHz]
RSCP	dBm	± 6	± 9	-9160

9.2.1.1.1.3 7.68 Mcps TDD Option

Table 9.30D: RSCP absolute accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	lo [dBm/7.68 MHz]
RSCP	dBm	± 6	± 9	-10574

Table 9.30E: RSCP absolute accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	lo [dBm/7.68 MHz]
RSCP	dBm	± 6	± 9	-9160

9.2.1.1.2 Relative accuracy requirements

The relative accuracy of RSCP in inter frequency case is defined as the RSCP measured from one UE compared to the RSCP measured from another UE.

9.2.1.1.2.1 3.84 Mcps TDD Option

Table 9.31: RSCP relative accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lo [dBm/3.84 MHz]
RSCP	dBm	± 3 for intra-frequency	-10574

Table 9.31A: RSCP relative accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lo [dBm/3.84MHz]
RSCP	dBm	± 3 for intra-frequency	-9160

9.2.1.1.2.2 1.28 Mcps TDD Option

Table 9.31B: RSCP relative accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lo [dBm/1.28MHz]
RSCP	dBm	± 3 for intra-frequency	-10574

Table 9.31C: RSCP relative accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lo [dBm/1.28MHz]
RSCP	dBm	± 3 for intra-frequency	-9160

9.2.1.1.2.3 7.68 Mcps TDD Option

Table 9.31D: RSCP relative accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lo [dBm/7.68 MHz]
RSCP	dBm	± 3 for intra-frequency	-10574

Table 9.31E: RSCP relative accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lo [dBm/7.68MHz]
RSCP	dBm	± 3 for intra-frequency	-9160

9.2.1.1.3 Range/mapping

The reporting range for *RSCP* is from -120 ...-57 dBm.

In table 9.32 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.32

Reported value	Measured quantity value	Unit
RSCP_LEV _00	RSCP <-120,0	dBm
RSCP_LEV _01	-120,0 ≤ RSCP < -119,5	dBm
RSCP_LEV _02	-119,5 ≤ RSCP < -119,0	dBm

RSCP_LEV _125	-58,0 ≤ RSCP < -57,5	dBm
RSCP_LEV _126	-57,5 ≤ RSCP < -57,0	dBm
RSCP_LEV _127	-57,0 ≤ RSCP	dBm

9.2.1.2 Timeslot ISCP

The measurement period shall be 100 ms.

9.2.1.2.1 Absolute accuracy requirements

9.2.1.2.1.1 3.84 Mcps TDD Option

Table 9.33: Timeslot ISCP Intra frequency absolute accuracy for Wide Area BS

Parameter	Unit	Accura	Conditions	
		Normal conditions		lo [dBm/3.84 MHz]
Timeslot ISCP	dBm	± 6	± 9	-10574

Table 9.33A: Timeslot ISCP Intra frequency absolute accuracy for Local Area BS

Parameter	Unit	Accura	Conditions	
		Normal conditions	lo [dBm/3.84 MHz]	
Timeslot ISCP	dBm	± 6	± 9	-9160

9.2.1.2.1.2 1.28 Mcps TDD Option

Table 9.33B: Timeslot ISCP Intra frequency absolute accuracy for Wide Area BS

Parameter	Unit	Accura	Conditions	
		Normal conditions Extreme conditions		lo [dBm/1.28 MHz]
Timeslot ISCP	dBm	± 6	± 9	-10574

Table 9.33C: Timeslot ISCP Intra frequency absolute accuracy for Local Area BS

Parameter	Unit	Accura	Conditions	
		Normal conditions Extreme conditions		lo [dBm/1.28 MHz]
Timeslot ISCP	dBm	± 6	± 9	-9160

9.2.1.2.1.3 7.68 Mcps TDD Option

Table 9.33D: Timeslot ISCP Intra frequency absolute accuracy for Wide Area BS

Parameter	Unit	Accura	Conditions	
		Normal conditions	Extreme conditions	lo [dBm/7.68 MHz]
Timeslot ISCP	dBm	± 6	± 9	-10574

Table 9.33E: Timeslot ISCP Intra frequency absolute accuracy for Local Area BS

Parameter	Unit	Accura	Conditions	
		Normal conditions Extreme conditions		lo [dBm/7.68 MHz]
Timeslot ISCP	dBm	± 6	± 9	-9160

9.2.1.2.2 Range/mapping

The reporting range for *Timeslot ISCP* is from -120...-57 dBm.

In table 9.34 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.34

Reported value	Measured quantity value	Unit
UTRAN_TS_ISCP_LEV_00	Timeslot_ISCP < -120,0	dBm
UTRAN_TS_ISCP_LEV_01	-120,0 ≤ Timeslot_ISCP < -119,5	dBm
UTRAN_TS_ISCP_LEV_02	-119,5 ≤ Timeslot_ISCP < -119,0	dBm
UTRAN_TS_ISCP_LEV_125	-58,0 ≤ Timeslot_ISCP < -57,5	dBm
UTRAN_TS_ISCP_LEV_126	-57,5 ≤ Timeslot_ISCP < -57,0	dBm
UTRAN_TS_ISCP_LEV_127	-57,0 ≤ Timeslot_ISCP	dBm

9.2.1.3 Received Total Wide Band Power

The measurement period shall be 100 ms.

9.2.1.3.1 Absolute accuracy requirements

9.2.1.3.1.1 3.84 Mcps TDD Option

Table 9.35: RECEIVED TOTAL WIDE BAND POWER Intra frequency absolute accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lob [dBm/3.84 MHz]
lob	dBm/3.84MHz	± 4	-10574

Table 9.35A: RECEIVED TOTAL WIDE BAND POWER Intra frequency absolute accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lob [dBm/3.84MHz]
lob	dBm/3.84MHz	± 4	-9160

9.2.1.3.1.2 1.28 Mcps TDD Option

Table 9.35B: RECEIVED TOTAL WIDE BAND POWER Intra frequency absolute accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lob [dBm/1.28MHz]
lob	dBm/1.28MHz	± 4	-10574

Table 9.35C: RECEIVED TOTAL WIDE BAND POWER Intra frequency absolute accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lob [dBm/1.28MHz]
lob	dBm/1.28MHz	± 4	-9160

9.2.1.3.1.3 7.68 Mcps TDD Option

Table 9.35D: RECEIVED TOTAL WIDE BAND POWER Intra frequency absolute accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lob [dBm/7.68 MHz]
lob	dBm/7.68MHz	± 4	-10574

Table 9.35E: RECEIVED TOTAL WIDE BAND POWER Intra frequency absolute accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]	Conditions
			lob [dBm/7.68MHz]
lob	dBm/7.68MHz	± 4	-9160

9.2.1.3.2 Range/mapping

The reporting range for RECEIVED TOTAL WIDE BAND POWER is from -112 ... -50 dBm.

In table 9.36 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.36

Reported value	Measured quantity value	Unit
RECEIVED TOTAL WIDE BAND	RECEIVED TOTAL WIDE BAND POWER < -112,0	dBm
POWER_LEV _000		
RECEIVED TOTAL WIDE BAND	-112,0 ≤ RECEIVED TOTAL WIDE BAND POWER < -	dBm
POWER_LEV _001	111,9	
RECEIVED TOTAL WIDE BAND	-111,9 ≤ RECEIVED TOTAL WIDE BAND POWER < -	dBm
POWER_LEV _002	111,8	
RECEIVED TOTAL WIDE BAND	-50,2 ≤ RECEIVED TOTAL WIDE BAND POWER < -50,1	dBm
POWER_LEV _619		
RECEIVED TOTAL WIDE BAND	-50,1 ≤ RECEIVED TOTAL WIDE BAND POWER < -50,0	dBm
POWER_LEV _620		
RECEIVED TOTAL WIDE BAND	-50,0 ≤ RECEIVED TOTAL WIDE BAND POWER	dBm
POWER_LEV _621		

9.2.1.4 SIR

The measurement period shall be $80\ \mathrm{ms}.$

9.2.1.4.1 Absolute accuracy requirements

9.2.1.4.1.1 3.84 Mcps TDD Option

Table 9.37: SIR Intra frequency absolute accuracy

Parameter	Unit	Accuracy [dB]	Conditions
			Range
SIR	dB	± 3	For 0 <sir<20 db="" lob<="" td="" when=""></sir<20>
			> -105 dBm/3.84MHz
SIR	dB	+/-(3 - SIR)	For -7 <sir<0 db="" lob<="" td="" when=""></sir<0>
			> -105 dBm/3.84MHz

9.2.1.4.1.2 1.28 Mcps TDD Option

Table 9.37A: SIR Intra frequency absolute accuracy

Parameter	Unit	Accuracy [dB]	Conditions
			Range
SIR	dB	± 3	For 0 <sir<20 db="" lob<="" td="" when=""></sir<20>
			> -105 dBm/1.28MHz
SIR	dB	+/-(3 - SIR)	For -7 <sir<0 db="" lob<="" td="" when=""></sir<0>
		,	> -105 dBm/1.28MHz

9.2.1.4.1.3 7.68 Mcps TDD Option

Table 9.37B: SIR Intra frequency absolute accuracy

Parameter	Unit	Accuracy [dB]	Conditions
			Range
SIR	dB	± 3	For 0 <sir<20 db="" lob<="" td="" when=""></sir<20>
			> -105 dBm/7.68MHz
SIR	dB	+/-(3 - SIR)	For -7 <sir<0 db="" lob<="" td="" when=""></sir<0>
		·	> -105 dBm/7.68MHz

9.2.1.4.2 Range/mapping

The reporting range for SIR is from -11 ... 20 dB.

In table 9.38 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.38

Reported value	Measured quantity value	Unit
UTRAN_SIR_00	SIR < -11,0	dB
UTRAN_SIR_01	-11,0 ≤ SIR < -10,5	dB
UTRAN_SIR_02	-10,5 ≤ SIR < -10,0	dB
UTRAN_SIR_61	19,0 ≤ SIR < 19,5	dB
UTRAN_SIR_62	19,5 ≤ SIR < 20,0	dB
UTRAN_SIR_63	20,0 ≤ SIR	dB

9.2.1.5 Transport Channel BER

The measurement period shall be equal to the TTI of the transport channel. Each reported Transport channel BER measurement shall be an estimate of the BER averaged over one measurement period only.

9.2.1.5.1 Accuracy requirement

The average of consecutive Transport channel BER measurements is required to fulfil the accuracy stated in table 9.39 if the total number of erroneous bits during these measurements is at least 500 and the absolute BER value for each of the measurements is within the range given in table 9.39.

Table 9.39: Transport channel BER accuracy

Parameter	Unit	Accuracy [% of the absolute BER value]	Conditions
		absolute BER value	Range
TrpBER	-	+/- 10	Convolutional coding 1/3 rd with any amount of repetition or a maximum of 25% puncturing: for absolute BER value ≤ 15% Convolutional coding 1/2 with any amount of repetition or no puncturing: for absolute BER value ≤ 15% Turbo coding 1/3 rd with any amount of repetition or a maximum of 20% puncturing: for absolute BER value ≤ 15%.

9.2.1.5.2 Range/mapping

The *Transport channel BER* reporting range is from 0 to 1.

In table 9.40 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.40

Reported value	Measured quantity value	Unit
TrCh_BER_LOG_000	Transport channel BER = 0	-
TrCh_BER_LOG_001	-∞ < Log10(Transport channel BER) < -2,06375	-
TrCh_BER_LOG_002	-2,06375≤ Log10(Transport channel BER) < -2,055625	-
TrCh_BER_LOG_003	-2,055625 ≤ Log10(Transport channel BER) < -2,0475	-
TrCh_BER_LOG_253	-0,024375 ≤ Log10(Transport channel BER) < -0,01625	-
TrCh_BER_LOG_254	-0,01625 ≤ Log10(Transport channel BER) < -0,008125	-
TrCh_BER_LOG_255	-0,008125 ≤ Log10(Transport channel BER) ≤ 0	-

9.2.1.6 RX Timing Deviation

The measurement period shall be 100 ms.

9.2.1.6.1 Accuracy requirements

9.2.1.6.1.1 3.84 Mcps TDD option

Table 9.41: RX Timing Deviation accuracy

Parameter	Unit	Accuracy [chip]	Conditions
			Range [chips]
RX Timing Deviation	chip	+/- 0,5	-1024,, 1024

9.2.1.6.1.2 1.28 Mcps TDD option

Table 9.41A: RX Timing Deviation accuracy

Bananatan	11!1	A	Conditions
Parameter	Unit	Accuracy [chip]	Range [chips]
RX Timing Deviation	chip	+/- 0.125	-16,, 16

9.2.1.6.1.3 7.68 Mcps TDD option

Table 9.41B: RX Timing Deviation accuracy

Parameter	Unit	Accuracy [chip]	Conditions
			Range [chips]
RX Timing Deviation	chip	+/- 1.0	-2048,, 2048

9.2.1.6.2 Range/mapping

9.2.1.6.2.1 3.84 Mcps TDD option

The reporting range for RX Timing Deviation is from -1023,9375 ... 1023,9375 chips.

In table 9.42 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.42

Reported value	Measured quantity value	Unit
RX_TIME_DEV_0000	RX Timing Deviation < -1023,9375	chip
RX_TIME_DEV_0001	-1023,9375≤ RX Timing Deviation < 1023,875	chip
RX_TIME_DEV_0002	-1023,875≤ RX Timing Deviation < -1023,8125	chip
RX_TIME_DEV_16384	000,00≤ RX Timing Deviation <0,0625	chip
RX_TIME_DEV_32765	1023,8125 ≤ RX Timing Deviation < 1023,875	chip
RX_TIME_DEV_32766	1023,875≤ RX Timing Deviation < 1023,9375	chip
RX_TIME_DEV_32767	1023,9375 ≤ RX Timing Deviation	chip

NOTE: This measurement may be used for timing advance calculation or location services.

9.2.1.6.2.2 1.28 Mcps TDD option

The reporting range for RX Timing Deviation is from -16 16 chips.

In table 9.42A mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.42A

Reported value	Measured quantity value	Unit
RX_TIME_DEV_000	RX Timing Deviation < -15,9375	Chip
RX_TIME_DEV_001	-15,9375 ≤ RX Timing Deviation < -15,875	Chip
RX_TIME_DEV_002	-15,875 ≤ RX Timing Deviation < -15,8125	Chip
RX_TIME_DEV_509	15,8125 ≤ RX Timing Deviation < 15,875	Chip
RX_TIME_DEV_510	15,875 ≤ RX Timing Deviation < 15,9375	Chip
RX_TIME_DEV_511	15,9375 ≤ RX Timing Deviation	Chip

NOTE: This measurement can be used for timing advance (synchronisation shift) calculation for uplink synchronisation or location services.

9.2.1.6.2.3 7.68 Mcps TDD option

The reporting range for RX Timing Deviation is from -2047,9375 ... 2047,9375 chips.

In Table 9.42B mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.42B

Reported value	Measured quantity value	Unit
RX_TIME_DEV_0000	RX Timing Deviation < -2047,9375	chip
RX_TIME_DEV_0001	-2047,9375 ≤ RX Timing Deviation < -2047,875	chip
RX_TIME_DEV_0002	-2047,875 ≤ RX Timing Deviation < -2047,8125	chip
RX_TIME_DEV_32768	000,00 ≤ RX Timing Deviation <0,0625	chip

RX_TIME_DEV_65533	2047,8125 ≤ RX Timing Deviation < 2047,875	chip
RX_TIME_DEV_65534	2047,875 ≤ RX Timing Deviation < 2047,9375	chip
RX_TIME_DEV_65535	2047,9375 ≤ RX Timing Deviation	chip

NOTE: This measurement may be used for timing advance calculation or location services.

9.2.1.7 (void)

9.2.1.8 (void)

9.2.1.9 UTRAN GPS Timing of Cell Frames for UP

NOTE: This measurement is used for UP purposes.

The measurement period shall be [1] second.

9.2.1.9.1 Accuracy requirement

9.2.1.9.1.1 3.84 Mcps TDD Option

Three accuracy classes are defined for the UTRAN GPS Timing of Cell Frames for UP measurement, i.e. accuracy class A, B and C. The implemented accuracy class depends on the UP methods that are supported.

Table 9.43

Parameter	Unit	Accuracy [chip]	Conditions
UTRAN GPS timing of Cell	chip	Accuracy Class A: +/- [20000] chip	Over the full
Frames for UP		Accuracy Class B: +/- [20] chip	range
		Accuracy Class C: +/- [X] chip	

9.2.1.9.1.2 1.28 Mcps TDD Option

Three accuracy classes are defined for the UTRAN GPS Timing of Cell Frames for UP measurement, i.e. accuracy class A, B and C. The implemented accuracy class depends on the UP methods that are supported.

Table 9.43A

Parameter	Unit	Accuracy [chip]	Conditions
UTRAN GPS timing of Cell	chip	Accuracy Class A: +/- [5000] chip	Over the full
Frames for UP	-	Accuracy Class B: +/- [5] chip	range
		Accuracy Class C: +/- [X] chip	

9.2.1.9.1.3 7.68 Mcps TDD Option

Three accuracy classes are defined for the UTRAN GPS Timing of Cell Frames for UP measurement, i.e. accuracy class A, B and C. The implemented accuracy class depends on the UP methods that are supported.

Table 9.43B

Parameter	Unit	Accuracy [chip]	Conditions
UTRAN GPS timing of Cell	chip	Accuracy Class A: +/- [40000] chip	Over the full
Frames for UP		Accuracy Class B: +/- [40] chip	range
		Accuracy Class C: +/- [X] chip	

9.2.1.9.2 Range/mapping

9.2.1.9.2.1 3.84 Mcps TDD Option

The reporting range for UTRAN GPS timing of Cell Frames for UP is from 0 ... 2322432000000 chip.

In table 9.44 the mapping of measured quantity is defined.

Table 9.44

Reported value	Measured quantity value	Unit
GPS_TIME_00000000000000	UTRAN GPS timing of Cell Frames for UP < 0,0625	Chip
GPS_TIME_00000000000001	0,0625 ≤ UTRAN GPS timing of Cell Frames for UP < 0,1250	Chip
GPS_TIME_000000000000000000000000000000000000	0,1250 ≤ UTRAN GPS timing of Cell Frames for UP < 0,1875	Chip
GPS_TIME_37158911999997	2322431999999,8125 ≤ UTRAN GPS timing of Cell Frames for UP < 2322431999999,8750	Chip
GPS_TIME_37158911999998	2322431999999,8750 ≤ UTRAN GPS timing of Cell Frames for UP < 2322431999999,9375	Chip
GPS_TIME_37158911999999	2322431999999,9375 ≤ UTRAN GPS timing of Cell Frames for UP < 2322432000000,0000	Chip

9.2.1.9.2.2 1.28 Mcps TDD Option

The reporting range for UTRAN GPS timing of Cell Frames for UP is from 0 ... 774144000000 chip.

In table 9.44A mapping of the measured quantity is defined.

Table 9.44A

Reported value	Measured quantity value	Unit
GPS_TIME_0000000000000	UTRAN GPS timing of Cell Frames for UP < 0,25	chip
GPS_TIME_000000000001	0,25 ≤ UTRAN GPS timing of Cell Frames for UP < 0,50	chip
GPS_TIME_0000000000002	0,50 ≤ UTRAN GPS timing of Cell Frames for UP < 0,75	chip
GPS_TIME_3096575999997	$774143999999,25 \le UTRAN GPS $ timing of Cell Frames for UP < $774143999999,50$	chip
GPS_TIME_3096575999998	774143999999,50 ≤ UTRAN GPS timing of Cell Frames for UP <774143999999,75	chip
GPS_TIME_3096575999999	774143999999,75 ≤ UTRAN GPS timing of Cell Frames for UP < 774144000000,00	chip

9.2.1.9.2.3 7.68 Mcps TDD Option

The reporting range for UTRAN GPS timing of Cell Frames for UP is from 0 ... 4644864000000 chip.

In table 9.44B the mapping of measured quantity is defined.

Table 9.44B

Reported value	Measured quantity value	Unit
GPS_TIME_000000000000000	UTRAN GPS timing of Cell Frames for UP < 0,125	Chip
GPS_TIME_00000000000001	0,125 ≤ UTRAN GPS timing of Cell Frames for UP < 0, 250	Chip
GPS_TIME_000000000000000000000000000000000000	0,250 ≤ UTRAN GPS timing of Cell Frames for UP < 0,375	Chip
GPS_TIME_37158911999997	4644863999999,625 ≤ UTRAN GPS timing of Cell Frames for UP < 4644863999999,750	Chip
GPS_TIME_37158911999998	4644863999999,750 ≤ UTRAN GPS timing of Cell Frames for UP < 4644863999999,875	Chip
GPS_TIME_37158911999999	4644863999999,875 ≤ UTRAN GPS timing of Cell Frames for UP < 464486400000,0000	Chip

9.2.1.10 SYNC-UL Timing Deviation for 1.28 Mcps

This measurement refers to TS25.225 subsection 5.2.8.1.

9.2.1.10.1 Accuracy requirements

Table 9.44AA

Davamatar	l lmit	A a a surra a su Falaira I	Conditions
Parameter	Unit	Accuracy [chip]	Range [chips]
SYNC-UL Timing Deviation	chip	+/- 0.125	0,, 1023.875

9.2.1.10.2 Range/mapping

The reporting range for SYNC-UL Timing Deviation is from 0 ... 1023.875 chips.

In table 9.44B the mapping of the measured quantity is defined. Signaling range may be larger than the guaranteed accuracy range.

Table 9.44B

Reported value	Measured quantity value	Unit
SYNC_UL_TIME_DEV_0000	SYNC-UL Timing Deviation < 0.125	Chip
SYNC_UL_TIME_DEV_0001	0.125 ≤ SYNC-UL Timing Deviation < 0.25	Chip
	•••	
SYNC_UL_TIME_DEV_1023	127.875 ≤ SYNC-UL Timing Deviation < 128	Chip
SYNC_UL_TIME_DEV_8189	1023.625 ≤ SYNC-UL Timing Deviation < 1023.75	Chip
SYNC_UL_TIME_DEV_8190	1023.75 ≤ SYNC-UL Timing Deviation <1023.875	Chip
SYNC_UL_TIME_DEV_8191	1023.875 < ≤ SYNC-UL Timing Deviation	Chip

NOTE: This measurement can be used for timing advance (synchronisation shift) calculation for uplink synchronisation or location services.

9.2.1.11 Node B Synchronisation for 3.84 Mcps

Cell synchronisation burst timing is the time of start (defined by the first detected path in time) of the cell sync burst of a neighbouring cell. Type 1 is used for the initial phase of Node B synchronization. Type 2 is used for the steady-state phase of Node B synchronization. Both have different range.

The reference point for the cell sync burst timing measurement shall be the Rx antenna connector.

9.2.1.11.1 Cell Synchronisation burst timing Type1 and Type 2

Table 9.44C

Parameter	Unit	Accuracy [chip]	Conditions
Cell Synchronisation burst timing	chip	[+/-0,5 for both type 1	
		and type 2]	

9.2.1.11.2 Range/mapping Type 1

The reporting range for Cell Synchronisation burst timing type 1 is from -131072 to +131072 chips with 1/4 chip resolution.

In table 9.44D the mapping of measured quantity is defined for burst type 1.

Table 9.44D

Reported value	Measured quantity value	Unit
Burst_TIMETYPE1_0000000	-131072 ≤ burst timing Type 1< -131071.75	Chip
Burst_TIMETYPE1_0000001	-131071.75 ≤ burst timing Type 1< -131071.5	Chip
Burst_TIMETYPE1_0000002	-131071.5 ≤ burst timing Type 1< -131071.25	Chip
	•••	
Burst_TIMETYPE1_1048573	131071.25 ≤ burst timing Type 1< 131071.5	Chip
Burst_TIMETYPE1_1048574	131071.5 ≤ burst timing Type 1< 131071.75	Chip
Burst_TIMETYPE1_1048575	131071.75 ≤ burst timing Type 1< 131072	Chip

9.2.1.11.3 Range/mapping Type 2

The reporting range for Cell Synchronisation burst timing type 2 is from -16 to +16 chips with 1/8 chip resolution. In table 9.44E the mapping of measured quantity is defined for burst type 2.

Table 9.44E

Reported value	Measured quantity value	Unit
Burst_TIMETYPE2_0000	-16 ≤ burst timing Type 2< -15.875	Chip
Burst_TIMETYPE2_0001	-15.875 ≤ burst timing Type 2< -15.750	Chip
Burst_TIMETYPE2_0002	-15.750 ≤ burst timing Type 2< -15.625	Chip
	•••	
Burst_TIMETYPE2_0253	15.625 ≤ burst timing Type 2< 15.750	Chip
Burst_TIMETYPE2_0254	15.750 ≤ burst timing Type 2< 15.875	Chip
Burst_TIMETYPE2_0255	15.875 ≤ burst timing Type 2< 16	Chip

9.2.1.11.4 Cell Synchronisation burst SIR Type1 and Type2

Signal to Interference Ratio for the cell sync burst, defined according to TS25.225.

The reference point for the cell synchronisation burst SIR shall be the Rx antenna connector.

Table 9.44F

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	
Cell Synchronisation burst SIR	dB	±3 dB for both type 1 and 2	[]	

9.2.1.11.5 Range/Mapping for Type1 and Type 2

The reporting range for SIR is from 0 ... 60 dB with a resolution of 2dB.

In table 9.44H mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.44H

Reported value	Measured quantity value	Unit
Cell_Synch_Burst_SIR_00	SIR< 0	dB
Cell_Synch_Burst_SIR_01	0 ≤ SIR< 2	dB
Cell_Synch_Burst_SIR_02	2 ≤ SIR< 4	dB

Cell_Synch_Burst_SIR_29	56≤ SIR< 58	dB
Cell_Synch_Burst_SIR_30	58 ≤ SIR< 60	dB
Cell_Synch_Burst_SIR_31	60 ≤ SIR	dB

9.2.1.11B Node B Synchronisation for 1.28Mcps TDD

Cell synchronisation burst timing is the time of start (defined by the first detected path in time) of the cell sync burst of a neighbouring cell. Type 1 is used for the initial phase of Node B synchronisation. Type 2 is used for the steady-state phase of Node B synchronisation. Both have different range.

The reference point for the cell sync burst timing measurement shall be the Rx antenna connector.

9.2.1.11B.1 Cell Synchronisation burst timing Type1 and Type 2

Table 9.44HA

Parameter	Unit	Accuracy [chip]	Conditions
Cell Synchronisation burst timing	chip	[+/-0.125 for both type 1 and type 2]	

9.2.1.11B.2 Range/mapping Type 1

The reporting range for Cell Synchronisation burst timing type 1 is from -65536 to +65536 chips with 1/4 chip resolution.

In table 9.44HB the mapping of measured quantity is defined for burst type 1.

Table 9.44HB

Reported value	Measured quantity value	Unit
Burst_TIMETYPE1_0000000	-65536 ≤ burst timing Type 1< -65535.75	Chip
Burst_TIMETYPE1_0000001	-65535.75 ≤ burst timing Type 1< -65535.5	Chip
Burst_TIMETYPE1_0000002	-65535.5 ≤ burst timing Type 1< -65535.25	Chip
Burst_TIMETYPE1_0524285	65535.25 ≤ burst timing Type 1< 65535.5	Chip
Burst_TIMETYPE1_0524286	65535.5 ≤ burst timing Type 1< 65535.75	Chip
Burst_TIMETYPE1_0524287	65535.75 ≤ burst timing Type 1< 65536	Chip

9.2.1.11B.3 Range/mapping Type 2

The reporting range for Cell Synchronisation burst timing type 2 is from -8 to +8 chips with 1/8 chip resolution. In table 9.44HC the mapping of measured quantity is defined for burst type 2.

Table 9.44HC

Reported value	Measured quantity value	Unit
Burst_TIMETYPE2_0000	-8 ≤ burst timing Type 2< -7.875	Chip
Burst_TIMETYPE2_0001	-7.875 ≤ burst timing Type 2< -7.750	Chip
Burst_TIMETYPE2_0002	-7.750 ≤ burst timing Type 2< -7.625	Chip
	•••	
Burst_TIMETYPE2_0125	7.625 ≤ burst timing Type 2< 7.750	Chip
Burst_TIMETYPE2_0126	7.750 ≤ burst timing Type 2< 7.875	Chip
Burst_TIMETYPE2_0127	7.875 ≤ burst timing Type 2< 8	Chip

9.2.1.11B.4 Cell Synchronisation burst SIR Type1 and Type2

Signal to Interference Ratio for the cell sync burst, defined according to TS25.225.

The reference point for the cell synchronisation burst SIR shall be the Rx antenna connector.

Table 9.44HD

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	
Cell Synchronisation burst SIR	dB	±3 dB for both type 1 and 2	[]	

9.2.1.11B.5 Range/Mapping for Type1 and Type 2

The reporting range for SIR is from 0 ... 30 dB with a resolution of 1dB.

In table 9.44HE mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.44HE

Reported value	Measured quantity value	Unit
Cell_Sync_Burst_SIR_00	SIR< 0	dB
Cell_Sync_Burst_SIR_01	0 ≤ SIR< 1	dB
Cell_Sync_Burst_SIR_02	1 ≤ SIR< 2	dB
Cell_Sync_Burst_SIR_29	28≤ SIR< 29	dB
Cell_Sync_Burst_SIR_30	29 ≤ SIR< 30	dB
Cell_Sync_Burst_SIR_31	30 ≤ SIR	dB

9.2.1.11C Node B Synchronisation for 7.68 Mcps

Cell synchronisation burst timing is the time of start (defined by the first detected path in time) of the cell sync burst of a neighbouring cell. Type 1 is used for the initial phase of Node B synchronization. Type 2 is used for the steady-state phase of Node B synchronization. Both have different range.

The reference point for the cell sync burst timing measurement shall be the Rx antenna connector.

9.2.1.11C.1 Cell Synchronisation burst timing Type1 and Type 2

Table 9.44HF

Parameter	Unit	Accuracy [chip]	Conditions
Cell Synchronisation burst timing	chip	[+/-1 for both type 1 and type 2]	

9.2.1.11C.2 Range/mapping Type 1

The reporting range for Cell Synchronisation burst timing type 1 is from -262144 to +262144 chips with 1/2 chip resolution.

In table 9.44 HG the mapping of measured quantity is defined for burst type 1.

Table 9.44HG

Reported value	Measured quantity value	Unit
Burst_TIMETYPE1_0000000	-262144 ≤ burst timing Type 1< -262143.5	Chip
Burst_TIMETYPE1_0000001	-262143.5 ≤ burst timing Type 1< -262143	Chip
Burst_TIMETYPE1_0000002	-262143 ≤ burst timing Type 1< -262142.5	Chip
Burst_TIMETYPE1_1048573	262142.5 ≤ burst timing Type 1< 262143	Chip
Burst_TIMETYPE1_1048574	262143 ≤ burst timing Type 1< 262143.5	Chip
Burst_TIMETYPE1_1048575	262143.5 ≤ burst timing Type 1< 262144	Chip

9.2.1.11C.3 Range/mapping Type 2

The reporting range for Cell Synchronisation burst timing type 2 is from -32 to +32 chips with 1/4 chip resolution. In table 9.44HH the mapping of measured quantity is defined for burst type 2.

Table 9.44HH

Reported value	Measured quantity value	Unit
Burst_TIMETYPE2_0000	-32 ≤ burst timing Type 2< -31.75	Chip
Burst_TIMETYPE2_0001	-31.75 ≤ burst timing Type 2< -31.5	Chip
Burst_TIMETYPE2_0002	-31.5 ≤ burst timing Type 2< -31.25	Chip
Burst_TIMETYPE2_0253	31.25 ≤ burst timing Type 2< 31.5	Chip
Burst_TIMETYPE2_0254	31.5 ≤ burst timing Type 2< 31.75	Chip
Burst_TIMETYPE2_0255	31.75 ≤ burst timing Type 2< 32	Chip

9.2.1.11C.4 Cell Synchronisation burst SIR Type1 and Type2

Signal to Interference Ratio for the cell sync burst, defined according to TS25.225.

The reference point for the cell synchronisation burst SIR shall be the Rx antenna connector.

Table 9.44HI

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions	Extreme conditions	
Cell Synchronisation burst SIR	dB	±3 dB for both type 1 and 2	[]	

9.2.1.11C.5 Range/Mapping for Type1 and Type 2

The reporting range for SIR is from 0 ... 60 dB with a resolution of 2dB.

In table 9.44HJ mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.44HJ

Reported value	Measured quantity value	Unit
Cell_Synch_Burst_SIR_00	SIR< 0	dB
Cell_Synch_Burst_SIR_01	0 ≤ SIR< 2	dB
Cell_Synch_Burst_SIR_02	2 ≤ SIR< 4	dB
Cell_Synch_Burst_SIR_29	56≤ SIR< 58	dB
Cell_Synch_Burst_SIR_30	58 ≤ SIR< 60	dB
Cell_Synch_Burst_SIR_31	60 ≤ SIR	dB

9.2.1.12 SFN-SFN observed time difference

The measurement period shall be 100 ms.

9.2.1.12.1 Accuracy requirements

9.2.1.12.1.1 3.84 Mcps TDD option

Table 9.44I: SFN-SFN observed time difference accuracy

Parameter	Unit	Accuracy [chip]	Conditions Range [chips]
SFN-SFN observed time	chip	+/-0,5	-1280 +1280

9.2.1.12.1.2 1.28 Mcps TDD option

Table 9.44J: SFN-SFN observed time difference accuracy

Dorometer		Acquirecy [chim]	Conditions
Parameter	Unit	Accuracy [chip]	Range [chips]
SFN-SFN observed time difference	chip	+/- 0.125	-432 +432

9.2.1.12.1.3 7.68 Mcps TDD option

Table 9.44JA: SFN-SFN observed time difference accuracy

Parameter	Unit	Accuracy [chip]	Conditions Range [chips]
SFN-SFN observed time difference	chip	+/-1.0	-2560 + 2560

9.2.1.12.2 Range/mapping

9.2.1.12.2.1 3.84 Mcps TDD option

The reporting range for SFN-SFN observed time difference is from -1280 ... +1280 chip.

In table 9.44K mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.44K

Reported value	Measured quantity value	Unit
SFN-SFN_TIME _00000	SFN-SFN observed time difference < -	Chip
	1280,0000	
SFN-SFN_TIME _00001	-1280,0000 ≤ SFN-SFN observed time	Chip
	difference < -1279,9375	
SFN-SFN_TIME _00002	-1279,9375 ≤ SFN-SFN observed time	Chip
	difference < -1279,8750	
SFN-SFN_TIME _40959	1279,8750 ≤ SFN-SFN observed time	Chip
	difference < 1279,9375	
SFN-SFN_TIME _40960	1279,9375 ≤ SFN-SFN observed time	Chip
	difference < 1280,0000	
SFN-SFN_TIME _40961	1280,0000 ≤ SFN-SFN observed time	Chip
	difference	

9.2.1.12.2.2 1.28 Mcps TDD option

The reporting range for SFN-SFN observed time difference is from -432 \dots +432 chip.

In table 9.44L mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.44L

Reported value	Measured quantity value	Unit
SFN-SFN_TIME _00000	SFN-SFN observed time difference < -432,00000	chip
SFN-SFN_TIME _00001	-432,00000 ≤ SFN-SFN observed time difference < -431,96875	chip
SFN-SFN_TIME _00002	-431,96875 ≤ SFN-SFN observed time difference < -431,9375	chip
SFN-SFN_TIME _27647	431,9375 ≤ SFN-SFN observed time difference < 431,96875	chip
SFN-SFN_TIME _27648	431,96875 ≤ SFN-SFN observed time difference < 432,00000	chip
SFN-SFN_TIME _27649	432,00000 ≤ SFN-SFN observed time difference	chip

9.2.1.12.2.3 7.68 Mcps TDD option

The reporting range for SFN-SFN observed time difference is from -2560 ... +2560 chip.

In Table 9.44LA mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.44LA

Reported value	Measured quantity value	Unit
SFN-SFN_TIME _00000	SFN-SFN observed time difference < -2560,0000	Chip
SFN-SFN_TIME _00001	-2560,0000 ≤ SFN-SFN observed time difference < -2559,8750	Chip
SFN-SFN_TIME _00002	-2559,8750 ≤ SFN-SFN observed time difference < -2559,7500	Chip
	···	
SFN-SFN_TIME _40959	2559,7500 ≤ SFN-SFN observed time difference < 2559,8750	Chip
SFN-SFN_TIME _40960	2559,8750 ≤ SFN-SFN observed time difference < 2560,0000	Chip
SFN-SFN_TIME _40961	2560,0000 ≤ SFN-SFN observed time difference	Chip

9.2.1.13 AOA measurement for UE positioning for 1.28Mcps TDD option

AOA defines the angle of arrival of the signals from a user at the antenna. The reference direction for this measurement shall be the North. The measurement period shall be 200ms.

9.2.1.13.1 Accuracy requirements

Eight accuracy classes are defined for UTRAN AOA measurement, i.e. accuracy class A to H.

Table 9.44M

Parameter	Unit	Accuracy [degree]	Conditions
UTRAN AOA	degree	Accuracy Class A: +/- 180 degree	Over the full
measurement for UE		Accuracy Class B: +/- 90 degree	range
positioning		Accuracy Class C: +/- 60 degree	
		Accuracy Class D: +/- 20 degree	
		Accuracy Class E: +/- 10 degree	
		Accuracy Class F: +/- 5 degree	
		Accuracy Class G: +/- 2 degree	
		Accuracy Class H: +/- 1 degree	

9.2.1.13.2 Range/mapping

The reporting range for AOA measurement is from 0 ... 360 degree.

The mapping of the measured quantity is defined in table 9.44N.

Table 9.44N

Reported value	Measured quantity value	Unit
AOA_ANGLE _000	0 ≤ AOA_ANGLE < 0,5	degree
AOA_ANGLE _001	0,5 ≤ AOA_ANGLE < 1	degree
AOA_ANGLE _002	1 ≤ AOA_ANGLE < 1,5	degree
	•••	
AOA_ANGLE _717	358,5 ≤ AOA_ANGLE < 359	degree
AOA_ANGLE _718	359 ≤ AOA_ANGLE < 359,5	degree
AOA_ANGLE _719	359,5 ≤ AOA_ANGLE < 360	degree

9.2.1.14 HS-SICH reception quality

The measurement period shall be 200 ms

9.2.1.14.1 Range/mapping

9.2.1.14.1.1 3.84 Mcps TDD and 7.68 Mcps TDD

The HS-SICH reception quality reporting range is from 0...20 reception indications.

The mappings of the measured quantities are defined in tables 9.44O, 9.44P and 9.44Q.

Table 9.440

Reported value	Measured quantity value	Unit
FAILED_HS_SICH_00	Failed HS-SICH receptions = 0	-
FAILED_HS_SICH_01	Failed HS-SICH receptions = 1	-
FAILED_HS_SICH_02	Failed HS-SICH receptions = 2	-
FAILED_HS_SICH_17	Failed HS-SICH receptions = 17	-
FAILED_HS_SICH_18	Failed HS-SICH receptions = 18	-
FAILED_HS_SICH_19	Failed HS-SICH receptions = 19	-
FAILED_HS_SICH_20	Failed HS-SICH receptions = 20	-

Table 9.44P

Reported value	Measured quantity value	Unit
MISSED_HS_SICH_00	Missed HS-SICH receptions = 0	-
MISSED_HS_SICH_01	Missed HS-SICH receptions = 1	-
MISSED_HS_SICH_02	Missed HS-SICH receptions = 2	-
	•••	
MISSED_HS_SICH_17	Missed HS-SICH receptions = 17	-
MISSED_HS_SICH_18	Missed HS-SICH receptions = 18	-
MISSED_HS_SICH_19	Missed HS-SICH receptions = 19	-
MISSED_HS_SICH_20	Missed HS-SICH receptions = 20	-

Table 9.44Q

Reported value	Measured quantity value	Unit
TOTAL_HS_SICH_00	Expected HS-SICH transmissions = 0	-
TOTAL_HS_SICH_01	Expected HS-SICH transmissions = 1	-
TOTAL_HS_SICH_02	Expected HS-SICH transmissions = 2	-
TOTAL_HS_SICH_17	Expected HS-SICH transmissions = 17	-
TOTAL_HS_SICH_18	Expected HS-SICH transmissions = 18	-
TOTAL_HS_SICH_19	Expected HS-SICH transmissions = 19	-
TOTAL_HS_SICH_20	Expected HS-SICH transmissions = 20	-

9.2.1.14.1.2 1.28 Mcps TDD

The HS-SICH reception quality reporting range is from 0...40 reception indications.

The mappings of the measured quantities are defined in tables 9.44O, 9.44P and 9.44Q.

Table 9.44O-1

183

Reported value	Measured quantity value	Unit
FAILED_HS_SICH_00	Failed HS-SICH receptions = 0	-
FAILED_HS_SICH_01	Failed HS-SICH receptions = 1	-
FAILED_HS_SICH_02	Failed HS-SICH receptions = 2	-
FAILED_HS_SICH_37	Failed HS-SICH receptions = 37	-
FAILED_HS_SICH_38	Failed HS-SICH receptions = 38	-
FAILED_HS_SICH_39	Failed HS-SICH receptions = 39	-
FAILED_HS_SICH_40	Failed HS-SICH receptions = 40	-

Table 9.44P-1

Reported value	Measured quantity value	Unit
MISSED_HS_SICH_00	Missed HS-SICH receptions = 0	-
MISSED_HS_SICH_01	Missed HS-SICH receptions = 1	-
MISSED_HS_SICH_02	Missed HS-SICH receptions = 2	-
MISSED_HS_SICH_37	Missed HS-SICH receptions = 37	-
MISSED_HS_SICH_38	Missed HS-SICH receptions = 38	-
MISSED_HS_SICH_39	Missed HS-SICH receptions = 39	-
MISSED_HS_SICH_40	Missed HS-SICH receptions = 40	-

Table 9.44Q-1

Reported value	Measured quantity value	Unit
TOTAL_HS_SICH_00	Expected HS-SICH transmissions = 0	-
TOTAL_HS_SICH_01	Expected HS-SICH transmissions = 1	-
TOTAL_HS_SICH_02	Expected HS-SICH transmissions = 2	-
TOTAL_HS_SICH_37	Expected HS-SICH transmissions = 37	-
TOTAL_HS_SICH_38	Expected HS-SICH transmissions = 38	-
TOTAL_HS_SICH_39	Expected HS-SICH transmissions = 39	-
TOTAL_HS_SICH_40	Expected HS-SICH transmissions = 40	-

9.2.1.15 UpPTS interference (1.28Mcps TDD)

The measurement period shall be 100 ms.

9.2.1.15.1 Absolute accuracy requirements

Table 9.44R: UpPTS interference Intra frequency absolute accuracy for Wide Area BS

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions Extreme conditions		lo [dBm/1.28 MHz]
UpPTS interference	dBm	± 6	± 9	-10574

Table 9.44S: UpPTS interference Intra frequency absolute accuracy for Local Area BS

Parameter	Unit	Accuracy [dB]		Conditions
		Normal conditions Extreme conditions		lo [dBm/1.28 MHz]
UpPTS interference	dBm	± 6	± 9	-9160

9.2.1.15.2 Range/mapping

The reporting range for UpPTS interference is from -120...-57 dBm.

In table 9.44T mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.44T

Reported value	Measured quantity value	Unit
UTRAN_UPPTS_LEV_00	UpPTS interference < -120,0	dBm
UTRAN_UPPTS_LEV _01	-120,0 ≤ UpPTS interference < -119,5	dBm
UTRAN_UPPTS_LEV _02	-119,5 ≤ UpPTS interference < -119,0	dBm

UTRAN_UPPTS_LEV _125	-58,0 ≤ UpPTS interference < -57,5	dBm
UTRAN_UPPTS_LEV _126	-57,5 ≤ UpPTS interference < -57,0	dBm
UTRAN_UPPTS_LEV _127	-57,0 ≤ UpPTS interference	dBm

9.2.2 Performance for UTRAN measurements in downlink (TX)

The output power is defined as the average power of the transmit timeslot, and is measured with a filter that has a Root-Raised Cosine (RRC) filter response with a roll off $\alpha = 0.22$ and a bandwidth equal to the chip rate.

9.2.2.1 Transmitted carrier power

The measurement period shall be 100 ms.

9.2.2.1.1 Accuracy requirements

Table 9.45 Transmitted carrier power accuracy

Parameter	Unit	Accuracy [% units]	Conditions
			Range
Transmitted carrier power	%	± 10	For 10% ≤ Transmitted carrier
			power ≤90%

9.2.2.1.2 Range/mapping

The reporting range for *Transmitted carrier power* is from 0 ... 100 %.

In table 9.46 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.46

Reported value	Measured quantity value	Unit
UTRAN_TX_POWER _000	Transmitted carrier power = 0	%
UTRAN_TX_POWER _001	0 < Transmitted carrier power ≤ 1	%
UTRAN_TX_POWER _002	1 < Transmitted carrier power ≤ 2	%
UTRAN_TX_POWER _003	2 < Transmitted carrier power ≤ 3	%
•••		
UTRAN_TX_POWER _098	97 < Transmitted carrier power ≤ 98	%
UTRAN_TX_POWER _099	98 < Transmitted carrier power ≤ 99	%
UTRAN_TX_POWER _100	99 < Transmitted carrier power ≤ 100	%

9.2.2.2 Transmitted code power

The measurement period shall be 100 ms.

9.2.2.2.1 Absolute accuracy requirements

Table 9.47: Transmitted code power absolute accuracy

Parameter	Unit	Accuracy [dB]	Conditions
			Range
Transmitted code	dBm	± 3	Over the full range
power			

9.2.2.2.2 Relative accuracy requirements

The relative accuracy of transmitted code power is defined as the transmitted code power measured at one dedicated radio link compared to the transmitted code power measured from a different dedicated radio link in the same cell.

Table 9.48: Transmitted code power relative accuracy

Parameter	Unit	Accuracy [dB]	Conditions
			Range
Transmitted code power	dBm	± 2	Over the full range

9.2.2.2.3 Range/mapping

The reporting range for Transmitted code power is from -10 ... 46 dBm.

In table 9.49 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.49

Reported value	Measured quantity value	Unit
UTRAN_CODE_POWER _010	-10,0 ≤ Transmitted code power < -9,5	dBm
UTRAN_CODE_POWER _011	-9,5 ≤ Transmitted code power < -9,0	dBm
UTRAN_CODE_POWER _012	-9,0 ≤ Transmitted code power < -8,5	dBm
	•••	
UTRAN_CODE_POWER _120	45,0 ≤ Transmitted code power < 45,5	dBm
UTRAN_CODE_POWER _121	45,5 ≤ Transmitted code power < 46,0	dBm
UTRAN_CODE_POWER _122	46,0 ≤ Transmitted code power < 46,5	dBm

9.2.2.3 Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH or E-HICH transmission

The measurement period shall be 100 ms.

9.2.2.3.1 Accuracy requirements

Table 9.50: Transmitted carrier power accuracy

Parameter	Unit	Accuracy [% units]	Conditions
			Range
Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH or E-HICH transmission	%	± 10	For 10% ≤ Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH E-AGCH or E-HICH, transmission ≤90%

9.2.2.3.2 Range/mapping

The reporting range for *Transmitted carrier power of all codes not used for HS-PDSCH*, *HS-SCCH*, *E-AGCH or E-HICH transmission* is from 0 ... 100 %.

In table 9.51 mapping of the measured quantity is defined. Signalling range may be larger than the guaranteed accuracy range.

Table 9.51

Reported value	Measured quantity value	Unit
Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH	Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH	%
or E-HICH transmission_000	or E-HICH transmission = 0	0.4
mitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH or E-	0 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-	%
HICH transmission _001	AGCH or E-HICH transmission ≤ 1	
mitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH or E- HICH transmission _002	1 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E- AGCH or E-HICH transmission ≤ 2	%
mitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH or E- HICH transmission _003	2 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E- AGCH or E-HICH transmission ≤ 3	%
mitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH or E- HICH transmission _098	97 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E- AGCH or E-HICH transmission ≤ 98	%
mitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH or E- HICH transmission _099	98 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E- AGCH or E-HICH transmission ≤ 99	%
mitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH or E- HICH transmission 100	99 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E- AGCH or E-HICH transmission ≤ 100	%
THOTT HANDINGOID TOO	ACCITOR ETHORITICATION SOUT STOO	

10 FPACH physical layer information field definition (1.28 Mcps TDD)

1.28 Mcps TDD introduces the FPACH (Fast Physical Access CHannel) which carries physical layer information. Two of these information fields are the "received starting position of the UpPCH" (Uplink Pilot CHannel) and the "transmit power level command for the RACH message". Both information fields are directly (received starting position of the

UpPCH) or can be indirectly (transmit power level command for the RACH message) derived from measurements but are no measurements themselves.

10.1 Received starting position of the UpPCH (UpPCH_{POS}) (1.28 Mcps TDD)

The received starting position of the UpPCH (UpPCH $_{POS}$) is derectly derived from measurement, it is equivalent to the received SYNC-UL Timing Deviation for 1.28 Mcps. Its accurecy and range/mapping is defined in section 9.2.1.10. The information field value, UpPCH $_{POS}$ -FIELD_LEV_xxxx, is equivalent to the reported value SYNC_UL_TIME_DEV_xxxx.

10.2 Transmit Power Level Command for the RACH message (1.28 Mcps TDD)

10.2.1 Accuracy requirements

Since this is a desired RX power at the node B and this is no measured value and the derivation of this value in the node B is implementation specific, accuracy requirements are not applicable.

10.2.2 Range/mapping

PRX_{PRACH.des} FIELD is given with a resolution of 0.5 dB with the range [-120,-80] dBm.

PRX_{PRACH,des} FIELD shall be transmitted in the FPACH.

Table 10.1

Information field value	Measured quantity value	Unit
PRX _{PRACH,des} FIELD_LEV_00	$PRX_{PRACH,des} < -120$	dBm
PRX _{PRACH,des} FIELD_LEV_01	$-120 \le PRX_{PRACH, des} < -119.5$	dBm
PRX _{PRACH,des} FIELD_LEV_02	$-119.5 \le PRX_{PRACH,des} < -119$	dBm

PRX _{PRACH,des} FIELD_LEV_79	$-81 \le PRX_{PRACH,des} < -80.5$	dBm
PRX _{PRACH,des} FIELD_LEV_80	$-80.5 \le PRX_{PRACH,des} < -80$	dBm
PRX _{PRACH,des} FIELD_LEV_81	$-80 ≤ PRX_{PRACH,des}$	dBm

Annex A (normative): Test Cases

A.1 Purpose of Annex

This Annex specifies test specific parameters for some of the functional requirements in chapters 4 to 9. The tests provide additional information to how the requirements should be interpreted for the purpose of conformance testing. The tests in this Annex are described such that one functional requirement may be tested in one or several test and one test may verify several requirements. Some requirements may lack a test.

The conformance tests are specified in TS34.122. Statistical interpretation of the requirements is described in Annex A.2.

A.2 Requirement classification for statistical testing

Requirements in this specification are either expressed as absolute requirements with a single value stating the requirement, or expressed as a success rate. There are no provisions for the statistical variations that will occur when the parameter is tested.

Annex A outlines the test in more detail and lists the test parameters needed. The test will result in an outcome of a test variable value for the DUT inside or outside the test limit. Overall, the probability of a "good" DUT being inside the test limit(s) and the probability of a "bad" DUT being outside the test limit(s) should be as high as possible. For this reason, when selecting the test variable and the test limit(s), the statistical nature of the test is accounted for.

The statistical nature depends on the type of requirement. Some have large statistical variations, while others are not statistical in nature at all. When testing a parameter with a statistical nature, a confidence level is set. This establishes the probability that a DUT passing the test actually meets the requirement and determines how many times a test has to be repeated and what the pass and fail criteria are. Those aspects are not covered by TS 25.123. The details of the tests, how many times to run it and how to establish confidence in the tests are described in TS 34.122. This Annex establishes what the test variable is and whether it can be viewed as statistical in nature or not.

A.2.1 Types of requirements in TS 25.123

A.2.1.1 Time and delay requirements on UE higher layer actions

One part of the RRM requirements are delay requirements:

- In idle mode (A.4) there is cell re-selection delay.
- In UTRAN Connected Mode Mobility (A.5) there is measurement reporting delay, handover delay and cell reselection delay.
- In RRC Connection Control (A.6) there is RRC re-establishment delay. In case of 1,28Mcps TDD option there is also TFC blocking delay.

All have in common that the UE is required to perform an action observable in higher layers (e.g. camp on the correct cell) within a certain time after a specific event (e.g. a new strong pilot arises). The delay time is statistical in nature for several reasons, among others that measurements required by the UE are performed in a fading radio environment.

The variations make a strict limit unsuitable for a test. Instead there is a condition set for a correct action by the UE, e.g. that the UE shall camp on the correct cell within X seconds. Then the rate of correct events as observed during repeated tests shall be at least 90% in case of AWGN propagation condition. How the limit is applied in the test depends on the confidence required, further detailed are in TS 34.122.

A.2.1.2 Measurements of power levels, relative powers and time

A very large number of requirements are on measurements that the UE performs:

- In UTRAN Connected Mode Mobility (A.5) there are measurement reports.
- Measurement performance requirements (A.8) has requirements on all type of measurements.

The accuracy requirements on measurements are expressed in this specification as a fixed limit (e.g. +/-X dB), but the measurement error will have a distribution that is not easily confined in fixed limits. Assuming a Gaussian distribution of the error, the limits will have to be set at +/-3,29 σ if the probability of failing a "good DUT" in a single test is to be kept at 0,1%. It is more reasonable to set the limit tighter and test the DUT by counting the rate of measurements that are within he limits, in a way similar to the requirements on delay.

A.2.1.3 Implementation requirements

A few requirements are strict actions the UE should take or capabilities the UE should have, without any allowance for deviations. These requirements are absolute and should be tested as such. Examples are

- "Event triggered report rate" in UTRAN Connected Mode Mobility (A.5)

A.2.1.4 Physical layer timing requirements

All requirements on "Timing Characteristics" (A.7) are absolute limits on timing accuracy.

A.2.1.5 BER and BLER requirements

Some measurement report procedures in "UE Measurement procedures" (A.8) have requirements on DCH BLER. These are tested in the same way as BLER requirements in TS 25.102.

A.3 Reserved for Future Use

NOTE: This section is included in order to make the following section numbering, match the sections in the beginning of this specification.

A.4 Idle Mode

A.4.1 Cell selection

NOTE: This section is included for consistency with numbering with section 4; no test covering requirements exist.

A.4.2 Cell Re-Selection

For each of the re-selection scenarios in section 4.2 a test is proposed.

For TDD/TDD cell reselection two scenarios are considered:

Scenario 1: Single carrier case

Scenario 2: Multi carrier case

A.4.2.1 Scenario 1: Cell re-selection to intra frequency TDD cell

A.4.2.1.1 Test Purpose and Environment

This test is to verify the requirement for the cell re-selection delay in the single carrier case reported in section 4.2.2.

A.4.2.1.1.1 3.84 Mcps TDD option

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.4.1 and A.4.2. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.1: General test parameters for Cell Re-selection to intra-frequency TDD cell

Para	meter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2, Cell3,Cell4,	
			Cell5, Cell6	
Final condition	Active cell		Cell2	
Н	ICS		Not used	
UE_TXPWR	XPWR_MAX_RACH dE		21	The value shall be used for all cells in the test.
Qrxl	evmin	dBm	-102	The value shall be used for all cells in the test.
Access Service	e Class (ASC#0)			Selected so that no additional delay is caused by
- Persist	ence value		1	the random access procedure. The value shall be
				used for all cells in the test.
•	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX cy	cle length	S	1.28	The value shall be used for all cells in the test.
	T1	S	15	
	T2	S	15	

Table A.4.2: Cell re-selection to intra-frequency TDD cell

Parameter	Unit		Ce	II 1			Ce	II 2		Cell 3				
Timeslot Number		()		8	()		3	(0		3	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1	•		Char	nnel 1			Char	nnel 1		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	
\hat{I}_{or}/I_{oc}	dB	9	7	9	7	7	9	7	9	-1	-1	-1	-1	
PCCPCH RSCP	dBm	-64	-66			-66	-64			-74	-74			
Qoffset1 _{s,n}	dB		, C2: 0; C1,0 1, C5:0	C4:0			C2,0	; C2, C3 C4:0); C2,C6			C3,	; C3, C2 C4:0); C3,C6		
Qhyst 1 _s	dB			0				0			•	0		
Treselection	S		()			()		0				
Sintrasearch	dB		not	sent		not sent				not sent				
			Ce	II 4			Ce	II 5			Ce	II 6		
Timeslot)		8)	8			0		8	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1			Char	nnel 1			Char	nnel 1		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74			
Qoffset1 _{s,n}	dB		, C1: 0; C3:0 C4 C6				C5,0	; C5, C2 C3:0 ; C5, C6	·		C6,	; C6, C2 C3:0 ; C6, C!	·	
Qhyst1 _s	dB		()			()			(0		
Treselection	S		()		0						0		
Sintrasearch	dB		not	sent			not	sent			not	sent		
I_{oc}	dBm/ 3,84 MHz	-70												
Propagation Condition		AWGN												

A.4.2.1.1.2 1.28 Mcps TDD option

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.4.1A and A.4.2A. The UE is requested to monitor neighbouring cells on 1 carrier. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.1A: General test parameters for Cell Re-selection to intra-frequency TDD cell

Par	ameter	Unit	Value	Comment
Initial condition	Active cell		Cell1	
	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXPW	R_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
Qr	xlevmin	dBm	-103	The value shall be used for all cells in the test.
	ce Class (ASC#0) stence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX o	cycle length	S	1.28	The value shall be used for all cells in the test.
	T1	S	15	
	T2	S	15	

Table A.4.2A: Cell re-selection to intra-frequency TDD cell

Parameter	Unit		Ce	II 1			Ce	II 2		Cell 3				
Timeslot Number)	DW	PTS	()	DW	PTS	(0	DW	PTS	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1		Channel 1				Channel 1				
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
DwPCH_Ec/lor	dB			0	0			0	0			0	0	
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
\hat{I}_{or}/I_{oc}	dB	10	7	10	7	7	10	7	10	-1	-1	-1	-1	
PCCPCH RSCP	dBm	-63	-66			-66	-63			-74	-74			
Qoffset1 _{s,n}	dB		, C2: 0; C1,0 1, C5:0	C4:0			, C1: 0; C2,0 2, C5: 0	C4:0			, C1: 0; C3,0 3, C5: 0	C4:0	,	
Qhyst1 _s	dB		()			()			()		
Treselection	S			0			()				0		
Sintrasearch	dB			sent		not sent				not sent				
			Ce	II 4		Cell 5					Ce	II 6		
Timeslot)		PTS)		PTS		0		PTS	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1			Char	nel 1			Char	nel 1		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
DwPCH_Ec/lor	dB			0	0			0	0			0	0	
OCNS_Ec/lor	dB	-3	-3		Ť	-3	-3			-3	-3		 	
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74			
Qoffset1 _{s,n}	dB		, C1: 0; C3:0 C4 C6				, C1: 0; C5,0 5, C4:0;	C3:0		C6, C1: 0; C6, C2:0; C6,C3:0 C6, C4:0; C6, C5:0				
Qhyst1 _s	dB		()			()			()		
Treselection	S			0			()			()		
Sintrasearch	dB		not	sent		not sent					not sent			
I_{oc}	dBm/ 1.28 MHz	-70												
Propagation Condition								'GN						
Note: In the case of mu	ılti-fregue	ncv ce	II. the U	TRA R	F Char	nel Nu	mber is	the pri	mary fr	eauenc	v"s cha	nnel nu	umber.	

A.4.2.1.1.3 7.68 Mcps TDD option

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.4.1B and A.4.2B. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.1B: General test parameters for Cell Re-selection to intra-frequency TDD cell

Para	meter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell2	
F	HCS		Not used	
UE_TXPWF	R_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
Qrx	levmin	dBm	-102	The value shall be used for all cells in the test.
Access Servic	e Class (ASC#0)			Selected so that no additional delay is caused
- Persist	ence value		1	by the random access procedure. The value
				shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX cy	DRX cycle length		1.28	The value shall be used for all cells in the test.
T1		S	15	
	T2	S	15	

Table A.4.2B: Cell re-selection to intra-frequency TDD cell

Parameter	Unit		Се	II 1			Ce	II 2		Cell 3				
Timeslot Number)		3	()		3	(0	8		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1		Channel 1					Char	nnel 1		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	
\hat{I}_{or}/I_{oc}	dB	9	7	9	7	7	9	7	9	-1	-1	-1	-1	
PCCPCH RSCP	dBm	-64	-66			-66	-64			-74	-74			
Qoffset1 _{s,n}	dB		, C2: 0; C1,0 1, C5:0	C4:0	•		, C1: 0; C2,0 2, C5: 0	C4:0	·		C3,	; C3, C2 C4:0); C3,C6	,	
Qhyst 1 _s	dB			0				0				0		
Treselection	S		()			()			(0		
Sintrasearch	dB		not	sent		not sent				not sent				
				II 4				II 5				II 6		
Timeslot			0		8	0 8				(0		8	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1			Chan	nel 1			Char	nnel 1		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	- 3,12	
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74			
Qoffset1 _{s,n}	dB		, C1: 0; C3:0 C4 C6				, C1: 0; C5,0 5, C4:0;	C3:0			C6,	; C6, C2 C3:0 ; C6, C!		
Qhyst1 _s	dB)			()			(0		
Treselection	S	0						0 0						
Sintrasearch	dB		not	sent			not:	sent			not	sent		
I_{oc}	dBm/ 7,68 MHz		-70											
Propagation Condition			AWGN											

A.4.2.1.2 Test Requirements

A.4.2.1.2.1 3.84 Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

T_{evaluateTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluateTDD} of 6.4s

according to Table 4.1 in section 4.2.2.7.

T_{SI} Maximum repetition rate of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.1.2.2 1.28 Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send SYNCH-UL sequence in the UpPTS for sending the RRC CONNECTION REQUEST to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateNTDD} + T_{SI}$, where:

T_{evaluateNTDD}: A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluateNTDD} of 6.4s

according to Table 4.1A in section 4.2.

T_{SI}: Time required for receiving all the relevant system information data according to the reception

procedure and the RRC procedure delay of system information blocks defined in 25.331 for a

UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.1.2.3 7.68 Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE:

The cell re-selection delay can be expressed as: $T_{\text{evaluateTDD}} + T_{\text{SI}},$ where:

T_{evaluateTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluateTDD} of 6.4s

according to Table 4.1B in section 4.2.2.7.

T_{SI} Maximum repetition rate of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.2 Scenario 2: Cell re-selection to inter-frequency TDD cell

A.4.2.2.1 Test Purpose and Environment

This test is to verify the requirement for the cell re-selection delay in the multi carrier case reported in section 4.2.2.

A.4.2.2.1.1 3.84 Mcps TDD option

This scenario implies the presence of 2 carriers and 6 cells as given in Table A.4.3 and A.4.4. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.3: General test parameters for Cell Re-selection to inter-frequency TDD cell

Par	ameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2, Cell3,Cell4,	
			Cell5, Cell6	
Final condition	Active cell		Cell2	
I	HCS		Not used	
UE_TXPW	TXPWR_MAX_RACH dB		21	The value shall be used for all cells in the test.
Qn	devmin	dBm	-102	The value shall be used for all cells in the test.
Access Service	ce Class (ASC#0)			Selected so that no additional delay is caused
- Persis	tence value		1	by the random access procedure. The value
				shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX c	ycle length	S	1.28	The value shall be used for all cells in the test.
	T1		30	
	T2	S	15	

Table A.4.4: Cell re-selection to iner-frequency TDD cell

Parameter	Unit		Се	ell 1			Се	II 2		Cell 3				
Timeslot Number			0		3	(0	8	3	(0	8		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel			Chai	nnel 1		Channel 2				Channel 1				
Number				illici i										
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	
\hat{I}_{or}/I_{oc}	dB	6	0	6	0	0	6	0	6	-3	-3	-3	-3	
PCCPCH RSCP	dBm	-67	-73			-73	-67			-76	-76			
Qoffset1 _{s,n}	dB		C4:0 C	; C1, C 1, C5:0 6:0			, C1: 0; C4:0 C2 C6				C3,0	; C3, C2 C4:0 ; C3, C6		
Qhyst1 _s	dB			0			()			(0		
Treselection	S			0		0					(0		
Sintrasearch	dB		not	sent			not	sent		not sent				
Sintersearch	dB			sent		not sent				not sent				
				ell 4				II 5				II 6		
Timeslot			0		3		0		3		0	8		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Chai	nnel 1		Channel 2			Channel 2					
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	
\hat{I}_{or}/I_{oc}	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	
PCCPCH RSCP	dBm	-76	-76			-76	-76			-76	-76			
Qoffset1 _{s,n}	dB		C4,	; C4, C C3:0 ; C4, C			, C1: 0; C5,0 5, C4:0;	C3:0			C6,0	C6, C2 C3:0 C6, C5		
Qhyst1 _s	dB			0			()			(0		
Treselection	s			0			()			(0		
Sintrasearch	dB							sent						
Sintersearch	dB	not sent not sent not sent												
I_{oc}	dBm/3, 84 MHz	-70												
Propagation Condition			AWGN											

A.4.2.2.1.2 1.28 Mcps TDD option

This scenario implies the presence of 2 carriers and 6 cells as given in Table A.4.3A and A.4.4A. The UE is requested to monitor neighbouring cells on 2 carriers. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.3A: General test parameters for Cell Re-selection to inter-frequency TDD cell

Pa	rameter	Unit	Value	Comment
Initial condition	Active cell		Cell1	
	Neighbour cells		Cell2, Cell3,Cell4, Cell5,	
			Cell6	
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXPW	UE_TXPWR_MAX_RACH		21	The value shall be used for all cells in the test.
Qrxlevmin		dBm	-103	The value shall be used for all cells in the test.
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX	DRX cycle length		1.28	The value shall be used for all cells in the test.
	T1	S	30	
	T2	S	15	

Table A.4.4A: Cell re-selection to inter-frequency TDD cell

Parameter	Unit		Ce	II 1			Ce	II 2		Cell 3				
Timeslot Number		()	DW	PTS	()	DW	PTS	()	DW	PTS	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF			Char	nal 1			Chan	nel 2			Char	nel 1		
Channel Number						Channel 2								
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
DwPCH_Ec/lor	dB			0	0			0	0			0	0	
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
\hat{I}_{or}/I_{oc}	dB	10	4	10	4	4	10	4	10	-1	-1	-1	-1	
PCCPCH RSCP	dBm	-63	-69			-69	-63			-74	-74			
Qoffset1 _{s,n}	dB		, C2: 0; C4:0 C′ C6				, C1: 0; C4:0C2 C6	, C5:0;			, C1: 0; C3,0 3, C5:0;	C4:0	,	
Qhyst1 _s	dB)			())		
Treselection	S		()			()			()		
Sintrasearch	dB		not	sent			not :	sent			not	sent		
Sintersearch	dB			sent		not sent				not sent				
		Cell 4					Ce				Ce	II 6		
Timeslot)		PTS	(PTS)		PTS	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1			Chan	nel 2			Char	nel 2		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
DwPCH_Ec/lor	dB			0	0			0	0			0	0	
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74			
Qoffset1 _{s,n}	dB		, C1: 0; C4,0 1, C5:0;	C3:0	,		, C1: 0; C5,0 5, C4:0;	23:0	·		, C1: 0; C6,0 3, C4:0;	C3:0	,	
Qhyst1 _s	dB		()			()			()		
Treselection	S		()			()			()		
Sintrasearch	dB		not	sent			not	sent			not	sent		
Sintersearch	dB		not	sent			not	sent			not	sent		
I_{oc}	dBm/ 1.28 MHz		-70											
Propagation Condition		AWGN frequency cell, the UTRA RF Channel Number is the primary frequency"s channel												
NOTE: In the car		f	11	المملك		- Ol	I N I			.				

number.

7.68 Mcps TDD option A.4.2.2.1.3

This scenario implies the presence of 2 carriers and 6 cells as given in Table A.4.3B and A.4.4B. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.3B: General test parameters for Cell Re-selection to intra-frequency TDD cell

Par	ameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2, Cell3,Cell4,	
			Cell5, Cell6	
Final condition	Active cell		Cell2	
I	HCS		Not used	
UE_TXPW	R_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
Qr	devmin	dBm	-102	The value shall be used for all cells in the test.
Access Service	ce Class (ASC#0)			Selected so that no additional delay is caused
- Persis	tence value		1	by the random access procedure. The value
				shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX c	ycle length	S	1.28	The value shall be used for all cells in the test.
	T1	S	30	
	T2	S	15	

Table A.4.4B: Cell re-selection to inter-frequency TDD cell

Parameter	Unit		Ce	ell 1			Се	II 2		Cell 3				
Timeslot Number			0		3	,	0		8	1	0		3	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel			Chai	nnel 1		Channel 2				Channel 1				
Number														
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	
\hat{I}_{or}/I_{oc}	dB	6	0	6	0	0	6	0	6	-3	-3	-3	-3	
PCCPCH RSCP	dBm	-67	-73			-73	-67			-76	-76			
Qoffset1 _{s,n}	dB		, C2: 0 C4:0 C C				, C1: 0; C4:0 C2 C6				, C1: 0; C3,0 3, C5:0;	C4:0	,	
Qhyst1 _s	dB			0			()			()		
Treselection	S			0			()			()		
Sintrasearch	dB		not	sent			not	sent		not sent				
Sintersearch	dB		not	sent			not sent				not sent			
			Ce	ell 4			Ce	II 5			Ce	II 6		
Timeslot			0		3	(0		8	(0	8	3	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Chai	nnel 1			Char	nel 2			Channel 2			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	
\hat{I}_{or}/I_{oc}	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	
PCCPCH RSCP	dBm	-76	-76			-76	-76			-76	-76			
Qoffset1 _{s,n}	dB		l, C1: 0 C4, 4, C5:0	C3:0	,		, C1: 0; C5,0 5, C4:0;	C3:0	,	C6, C1: 0; C6, C2:0; C6,C3:0 C6, C4:0; C6, C5:0				
Qhyst1 _s	dB			0			()			()		
Treselection	S			0			()			()		
Sintrasearch	dB								sent					
Sintersearch	dB	not sent not sent not sent												
I_{oc}	dBm/7, 68 MHz	-70												
Propagation Condition			AWGN											

A.4.2.2.2 Test Requirements

A.4.2.2.2.1 3.84 Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

 $T_{evaluateTDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluateTDD}$ of 6.4s

according to Table 4.1 in section 4.2.2.7.

T_{SI} Maximum repetition rate of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.2.2.2 1.28 Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the SYNCH-UL sequence in the UpPTS for sending the RRC CONNECTION REQUEST to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateNTDD} + T_{SI}$, where:

T_{evaluateNTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluate NTDD} of 6.4s

according to Table 4.1A in section 4.2.

T_{SI} Time required for receiving all the relevant system information data according to the reception

procedure and the RRC procedure delay of system information blocks defined in 25.331 for a

UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.2.2.3 7.68 Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

 $T_{evaluateTDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluateTDD}$ of 6.4s

according to Table 4.1B in section 4.2.2.7.

T_{SI} Maximum repetition rate of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.2A Scenario 2A: 3.84 Mcps TDD cell re-selection for 1.28 Mcps TDD UE

A.4.2.2A.1 Test Purpose and Environment

This test is to verify the requirement for the 1.28 Mcps TDD OPTION/3.84 Mcps TDD OPTION cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 low chip rate (1.28 Mcps TDD OPTION) and 1 high chip rate (3.84 Mcps TDD OPTION)) cell as given in Table A.4.3B and A.4.4B.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304.

Table A.4.3B: General test parameters for TDD low chip rate to TDD high chip rate cell re-selection

Pa	arameter	Unit	Value	Comment
Initial	Active cell		Cell1	1.28 Mcps TDD OPTION cell
condition	Neighbour cell		Cell2	3.84 Mcps TDD OPTION cell
Final condition	Active cell		Cell2	3.84 Mcps TDD OPTION cell
	HCS		Not used	
UE_TXPWR_MAX_RACH		dBm	21	The value shall be used for all cells in the test.
Access Service Class (ASC#0)				Selected so that no additional
	istence value		1	delay is caused by the random access procedure. The value shall be used for all cells in the test.
T _{SI}		S	1,28	The value shall be used for all cells in the test.
DRX	cycle length	S	1,28	The value shall be used for all cells in the test.
	T1	s	30	
	T2	g.	15	

Table A.4.4B: Test parameters for TDD low chip rate to TDD high chip rate cell re-selection

Parameter	Unit		Ce	II 1			Ce	II 2	
Timeslot Number		0		DwPTS		0		8	
		T1	T2	T 1	T 2	T1	T2	T 1	T 2
UTRA RF Channel			Char	nel 1			Chan	nel 2	
Number (NOTE)			Onai				Oriai		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0	n.	a.	n.	a.
SCH_Ec/lor	dB	n.	a.	n.	a.	-9	-9	-9	-9
SCH_t _{offset}		n.	a.	n.	a.	0	0	0	0
PICH_Ec/lor	dB							-3	-3
OCNS_Ec/Ior	dB	-;	3	n.	a.	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	10	7			7	10	7	10
I_{oc}		-	70 dBm/	1.28 MF	łz	-70 dBm/ 3.84 MHz			
PCCPCH_RSCP	dBm	-63	-66			-66	-63		
Qrxlevmin	dBm		-1	03			-1	03	
Qoffset1 _{s,n}	dB		C1, (C2: 0			C2, (C1: 0	
Qhyst1 _s	dB		()			()	
Treselection	S		()			()	
Sintersearch	dB	not sent not sent					sent		
Propagation		AMON							
Condition		AWGN AWGN							
	NOTE: In the case of multi-frequency cell for 1.28 Mcps TDD option, the UTRA RF Channel								
Number is	the primary f	requency	/"s chanı	nel numb	er.				

A.4.2.2A.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

$$T_{evaluateTDD} + T_{SI} \\$$

where:

T_{evaluateTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluateTDD} of 6.4s

according to Table 4.1A in section 4.2.

 T_{SI} Time required for receiving all the relevant system information data according to the reception

procedure and the RRC procedure delay of system information blocks defined in [16] for a

UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.2B Scenario 2B: 3.84 Mcps/1.28 Mcps TDD cell re-selection

A.4.2.2B.1 Test Purpose and Environment

This test is to verify the requirement for the 3.84 Mcps/1.28 Mcps TDD cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 3.84 Mcps TDD serving cell, and 1 1.28 Mcps TDD cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 3.84Mcps TDD carrier and 1 1.28Mcps TDD carrier. Test parameters are given in Table A.4.3C, A4.4C, and A.4.4D. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.3C: General test parameters for 3.84 Mcps /1.28 Mcps TDD cell re-selection

Pa	arameter	Unit	Value	Comment
Initial	Active cell		Cell 1	3.84 Mcps TDD OPTION cell
condition	Neighbour cell		Cell 2	1.28 Mcps TDD OPTION cell
Final condition	Active cell		Cell 2	1.28 Mcps TDD OPTION cell
	HCS		Not used	
UE_TXP	WR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
	Q _{rxlevmin}	dBm	-103	
Access Serv	vice Class (ASC#0) istence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T_{SI}	S	1,28	The value shall be used for all cells in the test.
DRX	cycle length	S	1,28	The value shall be used for all cells in the test.
	T1	S	30	
	T2	S	15	

Table A.4.4C: Cell 1 specific test parameters for 3.84 Mcps TDD/1.28 Mcps TDD cell re-selection

Parameter	Unit	Cell 1				
Timeslot Number		0			8	
		T1	T2	T 1	T 2	
UTRA RF Channel Number		Channel 1				
PCCPCH_Ec/lor	dB	-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	
SCH_t _{offset}				0		
PICH_Ec/lor	dB			-3	-3	
OCNS_Ec/lor	dB	-3.12				
\hat{I}_{or}/I_{oc}	dB	10	7	10	7	
PCCPCH_RSCP	dBm	-63	-66			
Qoffset1 _{s,n}	dB		C1,	C2: 0		
Qhyst1 _s	dB			0		
Treselection	S			0		
Sintersearch	dB	not sent				
I_{oc}	I_{oc} dBm/3.84 MHz		-70			
Propagation Condition		AWGN				

Table A.4.4D: Cell 2 specific test parameters for 3.84 Mcps TDD/1.28 Mcps TDD cell re-selection

Parameter	Unit	Cell 2					
Timeslot Number		()	Dwl	PTS		
		T1	T2	T 1	T 2		
UTRA RF Channel Number*			Channel 2				
PCCPCH_Ec/lor	dB	-3	-3				
DwPCH_Ec/lor	dB			0	0		
OCNS_Ec/lor	dB	-	3				
\hat{I}_{or}/I_{oc}	dB	7	10	7	10		
PCCPCH_RSCP	dBm	-66	-63				
Qoffset1 _{s,n}	dB	C2, C1: 0					
Qhyst1 _s	dB		()			
Treselection	S		()			
Sintersearch	dB		not	sent			
I_{oc}	dBm/1. 28 MHz	-70					
Propagation Condition	AWGN						
* Note: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency"s channel number.							

A.4.2.2B.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the SYNCH-UL sequence in the UpPTS for sending the RRC CONNECTION REQUEST to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

$$T_{evaluateNTDD} + T_{SI}$$

where:

 $T_{evaluateNTDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluate\ NTDD}$ of 6.4s according to Table 4.1 in section 4.2.

Time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [16] for a UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.2C Scenario 2C: 3.84 Mcps TDD cell re-selection for 7.68 Mcps TDD UE

A.4.2.2C.1 Test Purpose and Environment

This test is to verify the requirement for the 7.68 Mcps TDD OPTION/3.84 Mcps TDD OPTION cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 higher chip rate (7.68 Mcps TDD OPTION) and 1 high chip rate (3.84 Mcps TDD OPTION)) cell as given in Table A.4.4E and A4.4F.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304.

Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.4E: General test parameters for TDD higher chip rate (7.68 Mcps) to TDD high chip rate (3.84 Mcps) cell re-selection

Pa	arameter	Unit	Value	Comment
Initial	Active cell		Cell1	7.68 Mcps TDD OPTION cell
condition	Neighbour cell		Cell2	3.84 Mcps TDD OPTION cell
Final condition	Active cell		Cell2	3.84 Mcps TDD OPTION cell
	HCS		Not used	
UE_TXP\	WR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
C	Qrxlevmin		-102	The value shall be used for all cells in the test.
	vice Class (ASC#0) istence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1,28	The value shall be used for all cells in the test.
DRX	cycle length	S	1,28	The value shall be used for all cells in the test.
	T1	S	30	
	T2	S	15	

Table A.4.4F: Test parameters for TDD higher chip rate (7.68 Mcps) to TDD high chip rate (3.84 Mcps) cell re-selection

Parameter	Unit	Cell 1				Ce	II 2		
Timeslot Number		0 8			()	8		
		T1	T2	T 1	T 2	T1	T2	T 1	T 2
UTRA RF Channel Number			Char	nel 1			Char	nel 2	
PCCPCH_Ec/lor	dB	-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	5	5	5	5
PICH_Ec/lor	dB			-3	-3			-3	-3
OCNS_Ec/Ior		-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	10	7	10	7	7	10	7	10
PCCPCH_RSCP	dBm	-63	-66			-66	-63		
Qoffset1 _{s,n}	dB		C1, (C2: 0			C2, (C1: 0	
Qhyst1 _s	dB		()			()	
Treselection	S		()			()	
Sintersearch	dB	not sent					not	sent	
I_{oc}		-70 dBm/7.68 MHz -70 dBm/3.84 MHz							
Propagation Condition					AW	'GN			

A.4.2.2C.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

 $T_{evaluateTDD} + T_{SI}$

where:

 $T_{evaluate\,TDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluate\,TDD}$ of 6.4s

according to Table 4.1B in section 4.2.

T_{SI} Maximum repetition rate of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.2D Scenario 2D: 3.84 Mcps/7.68 Mcps TDD cell re-selection

A.4.2.2D.1 Test Purpose and Environment

This test is to verify the requirement for the 3.84 Mcps/7.68 Mcps TDD cell re-selection delay reported in section 4.2.

This scenario implies the presence of one 3.84 Mcps TDD serving cell, and one 7.68 Mcps TDD cell to be re-selected. The UE is requested to monitor neighbouring cells on one 3.84Mcps TDD carrier and one 7.68 Mcps TDD carrier. Test parameters are given in Table A.4.4G and A.4.4H. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.4G: General test parameters for 3.84 Mcps /7.68 Mcps TDD cell re-selection

Pa	arameter	Unit	Value	Comment
Initial	Active cell		Cell 1	3.84 Mcps TDD OPTION cell
condition	Neighbour cell		Cell 2	7.68 Mcps TDD OPTION cell
Final condition	Active cell		Cell 2	7.68 Mcps TDD OPTION cell
Tinal condition	HCS		Not used	7.00 Mcps 1DD Of Holy cell
UE_TXP	UE_TXPWR_MAX_RACH		21	The value shall be used for all cells in the test.
	$Q_{rxlevmin}$		-102	
Access Serv	vice Class (ASC#0) istence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1,28	The value shall be used for all cells in the test.
DRX	cycle length	S	1,28	The value shall be used for all cells in the test.
	T1	S	30	
	T2	S	15	

Table A.4.4H: Cell 1 specific test parameters for 3.84 Mcps TDD/7.68 Mcps TDD cell re-selection

Parameter	Unit	Cell 1				Ce	II 2		
Timeslot Number		0 8			(0		8	
		T1	T2	T 1	T 2	T1	T2	T 1	T 2
UTRA RF Channel Number			Char	nel 1			Char	nel 2	
PCCPCH_Ec/lor	dB	-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	5	5	5	5
PICH_Ec/lor	dB			-3	-3			-3	-3
OCNS_Ec/Ior		-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	10	7	10	7	7	10	7	10
PCCPCH_RSCP	dBm	-63	-66			-66	-63		
Qoffset1 _{s,n}	dB		C1, (C2: 0			C2, (C1: 0	
Qhyst1 _s	dB		()			()	
Treselection	S		()			()	
Sintersearch	dB	not sent					not	sent	
I_{oc}		-70 dBm/3.84 MHz -70 dBm/7.68 MHz					z		
Propagation Condition					AW	'GN			

A.4.2.3 Scenario 3: TDD/FDD cell re-selection

A.4.2.3.1 Test Purpose and Environment

A.4.2.3.1.1 3.84 Mcps TDD option

This test is to verify the requirement for the TDD/FDD cell re-selection delay reported in section 4.2.2.

This scenario implies the presence of 1 UTRA TDD and 1 UTRA FDD cell as given in Table A.4.5 and A.4.6. The maximum repetition period of the relevant system information blocks that need to be received by the UE to camp on a cell shall be 1280 ms.

Table A.4.5: General test parameters for the TDD/FDD cell re-selection

Par	Parameter		Value	Comment
Initial condition	Active cell		Cell1	TDD cell
	Neighbour cells		Cell2	FDD cell
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXPW	R_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
Access Servi	ce Class (ASC#0)		1	Selected so that no additional delay is caused
- Persis	tence value			by the random access procedure. The value
				shall be used for all cells in the test.
DRX o	DRX cycle length		1.28	The value shall be used for all cells in the test.
T1		S	30	During T1 cell 1 better ranked than cell 2
	T2	S	15	During T2 cell 2 better ranked than cell 1

Table A.4.6: TDD/FDD cell re-selection

Parameter	Unit	Cell 1				Cell 2			
Timeslot Number		()		8	n.a	n.a.		
		T1	T2	T 1	T 2	T 1	T 2		
UTRA RF Channel Number			Char	nel 1		Char	Channel 2		
CPICH_Ec/lor	dB	n.	a.	n.	a.	-10	-10		
PCCPCH_Ec/lor	dB	-3	-3			-12	-12		
SCH_Ec/lor	dB	-9	-9	-9	-9	-12	-12		
SCH_t _{offset}		0	0	0	0	n.a.	n.a.		
PICH_Ec/lor	dB			-3	-3	-15	-15		
OCNS_EcIor	dB	-3,12	-3,12	-3,12	-3,12	-0,941	-0,941		
\hat{I}_{or}/I_{oc}	dB	3	-2	3	-2	-2	3		
I_{oc}	dBm/3.8 4 MHz				-7	70			
CPICH_RSCP	dBm	n.	a.	n.	a.	-82	-77		
PCCPCH_RSCP	dBm	-70	-75			n.a.	n.a.		
Cell_selection_and reselection_quality _measure			CPICH	_RSCP		СРІСН	_RSCP		
Qrxlevmin	dBm		-1	02		-1	15		
Qoffset1 _{s,n}	dB	C1, C2: -12				C2, C	1: +12		
Qhyst1 _s	dB	0				()		
Treselection	S	0)		
Propagation Condition			AW	'GN		AW	GN		

A.4.2.3.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the 1.28 Mcps TDD OPTION/FDD cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 1.28Mps TDD serving cell, and 1 FDD cell to be selected. The UE is requested to monitor neighbouring cells on 1 1.28Mcps TDD carrier and 1 FDD carrier. Test parameters are given in Table A.4.5A, A4.6A, and A.4.6AA.

Table A.4.5A: General test parameters for the TDD/FDD cell re-selection

Pai	Parameter		Value	Comment
Initial condition	Active cell		Cell1	1.28 Mcps TDD OPTION cell
	Neighbour cells		Cell2	FDD cell
Final condition	Active cell		Cell2	FDD cell
	HCS		Not used	
UE_TXPW	'R_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
	ce Class (ASC#0) stence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX o	cycle length	S	1.28	The value shall be used for all cells in the test.
	T1	S	30	
	T2	S	15	

Table A.4.6A: Cell 1 specific test parameters for 1.28 Mcps TDD/FDD cell re-selection

Parameter	Unit	Cell 1				
Timeslot Number		0		Dw	PTS	
		T1	T2	T 1	T 2	
UTRA RF Channel Number*			Chann	el 1		
PCCPCH_Ec/lor	dB	-3	-3			
DwPCH_Ec/lor	dB			0	0	
OCNS_Ec/lor	dB	-	3			
\hat{I}_{or}/I_{oc}	dB	8	2	8	2	
PCCPCH_RSCP	dBm	-65	-71			
Cell_selection_and_ reselection_quality_measure		CPICH RSCP				
Qrxlevmin	dBm		-10	3		
Qoffset1 _{s,n}	dB		C1, C2	: -12		
Qhyst1 _s	dB		0			
Treselection	S		0			
Sintersearch	dB		not se	ent		
I_{oc}	dBm/1. 28 MHz	-70				
Propagation Condition AWGN						
* Note: In the case of multi-frequency cell, the UTRA RF Channel Number is						
the primary frequency"s channel number.						

Table A.4.6AA: Cell 2 specific test parameters for 1.28 Mcps TDD/FDD cell re-selection

Parameter	Unit	Cell 2 (l	JTRA)
		T1	T2
UTRA RF Channel Number		Channel 2	
CPICH_Ec/lor	dB	-10	
PCCPCH_Ec/lor	dB	-12	
SCH_Ec/lor	dB	-12	
PICH_Ec/lor	dB	-15	
OCNS_Ec/lor	dB	-0.941	
\hat{I}_{or}/I_{oc}	dB	-3	3
CPICH_RSCP	dBm	-83	-77
Cell_selection_and_ reselection_quality_measure		CPICH RS	СР
Qrxlevmin	dBm	-115	
Qoffset1 _{s, n}	dB	C2, C1: +1	2
Qhyst1	dB	0	
Treselection	S	0	
Sintersearch	dB	not sent	
I_{oc}	dBm/3.84 MHz	-70	
Propagation Condition		AWGN	

A.4.2.3.1.3 7.68 Mcps TDD option

This test is to verify the requirement for the TDD/FDD cell re-selection delay reported in section 4.2.2.

This scenario implies the presence of 1 UTRA TDD and 1 UTRA FDD cell as given in Table A.4.5B and A.4.6B. The maximum repetition period of the relevant system information blocks that need to be received by the UE to camp on a cell shall be 1280 ms.

Table A.4.5B: General test parameters for the TDD/FDD cell re-selection

Par	Parameter		Value	Comment
Initial condition	Active cell		Cell1	TDD cell
	Neighbour cells		Cell2	FDD cell
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXPW	UE_TXPWR_MAX_RACH		21	The value shall be used for all cells in the test.
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
DRX cycle length		S	1.28	The value shall be used for all cells in the test.
T1		S	30	During T1 cell 1 better ranked than cell 2
	T2	S	15	During T2 cell 2 better ranked than cell 1

Table A.4.6B: TDD/FDD cell re-selection

Parameter	Unit		Ce	II 1		Cell 2		
Timeslot Number		()		8	n.a	n.a.	
		T1	T2	T 1	T 2	T 1	T 2	
UTRA RF Channel Number			Char	nel 1		Channel 2		
CPICH_Ec/lor	dB	n.	a.	n.	a.	-10	-10	
PCCPCH_Ec/lor	dB	-3	-3			-12	-12	
SCH_Ec/lor	dB	-9	-9	-9	-9	-12	-12	
SCH_t _{offset}		0	0	0	0	n.a.	n.a.	
PICH_Ec/lor	dB			-3	-3	-15	-15	
OCNS_EcIor	dB	-3,12	-3,12	-3,12	-3,12	-0,941	-0,941	
\hat{I}_{or}/I_{oc}	dB	3	-2	3	-2	-2	3	
I_{oc}		-	70 dBm/	7.68 MH	Z	-70 dBm/3.84 MHz		
CPICH_RSCP	dBm	n.	a.	n.	a.	-82	-77	
PCCPCH_RSCP	dBm	-70	-75			n.a.	n.a.	
Cell_selection_and reselection_quality _measure			CPICH	_RSCP		CPICH	_RSCP	
Qrxlevmin	dBm		-1	02		-1	15	
Qoffset1 _{s,n}	dB	C1, C2: -12				C2, C	1: +12	
Qhyst1 _s	dB	0)	
Treselection	S	0			•)	
Propagation Condition			AW	'GN		AWGN		

A.4.2.3.2 Test Requirements

A.4.2.3.2.1 3.84 Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE:

The cell re-selection delay can be expressed as: $T_{\text{evaluateFDD}} + T_{\text{SI}}$, where:

T_{evaluateFDD} See Table 4.1 in section 4.2.2.

T_{SI} Maximum repetition rate of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.3.2.2 1.28 Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

 $T_{evaluateFDD} + T_{SI}$

where:

 $T_{evaluateFDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluateFDD}$ of 6.4s

according to Table 4.1A in section 4.2.

T_{SI} Time required for receiving all the relevant system information data according to the reception

procedure and the RRC procedure delay of system information blocks defined in 25.331 for a

UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.3.2.3 7.68 Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE:

The cell re-selection delay can be expressed as:

 $T_{evaluateFDD} + T_{SI}$, where:

 $T_{evaluateFDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluateFDD}$ of 6.4s

according to Table 4.1B in section 4.2.

T_{SI} Maximum repetition rate of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.4 Scenario 4: inter RAT cell re-selection

A.4.2.4.1 Test Purpose and Environment

A.4.2.4.1.1 3.84 Mcps TDD option

This test is to verify the requirement for the UTRA TDD to GSM cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 UTRA TDD serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UTRA TDD carrier and 12 GSM cells. Test parameters are given in Table, A.4.7, A.4.8, A.4.9. Cell 1 and Cell 2 shall belong to different Location Areas.

For this test environment the ranking/mapping function indicated in the broadcast of cell 1 shall be in such a way as to enable the UE to evaluate that the TDD cell 1 is better ranked as the GSM cell 2 during T1 and the GSM cell 2 is better ranked than the TDD cell 1 during T2.

Table A.4.7: General test parameters for UTRAN to GSM Cell Re-selection

Parameter		Unit	Value	Comment
Initial condition	Active cell		Cell1	UTRA TDD Cell
	Neighbour cell		Cell2	GSM Cell
Final condition	Active cell		Cell2	
HC	S		Not used	
DRX cycle length		S	1,28	UTRA TDD cell
T1		S	45	
T:	2	S	35	

Table A.4.8: Cell re-selection UTRA TDD to GSM cell case (cell 1)

Parameter	Unit	Cell 1 (UTRA TDD)				
Timeslot Number		C)	8		
		T1	T2	T1	T2	
UTRA RF Channel Number		Chan	nel 1	Channel 1		
PCCPCH_Ec/lor	dB	-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	
SCH_t _{offset}		0	0	0	0	
PICH_Ec/lor	dB			-3	-3	
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	
\hat{I}_{or}/I_{oc}	dB	3	-2	3	-2	
I_{oc}	dBm/3, 84 MHz	-70		-7	-70	
PCCPCH RSCP	dBm	-70	-75	n.a.	n.a.	
Propagation Condition		AWGN AWGN		/GN		
Qrxlevmin	dBm	-102				
Qoffset1 _{s, n}	dB	C1, C2: 0				
Qhyst1	dB	0			•	
Treselection	S	0				
Ssearch _{RAT}	dB		not	sent		

Table A.4.9: Cell re-selection UTRA TDD to GSM cell case (cell 2)

Parameter	Unit	Cell 2 (GSM)		
Farameter	Oilit	T1	T2	
Absolute RF Channel Number		ARFCN 1		
RXLEV	dBm	-90 -75		
RXLEV_ACCESS_MIN	dBm	-104		
MS_TXPWR_MAX_CCH	dBm	33		

A.4.2.4.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the UTRAN to GSM cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. Test parameters are given in Table A.4.7A, A.4.8A, A.4.9A.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304. Cell 1 and cell 2 shall belong to different location areas.

Table A.4.7A: General test parameters for UTRAN (1.28 Mcps TDD OPTION) to GSM Cell Re-selection

Parameter		Unit	Value	Comment
Initial condition	Active cell		Cell1	1.28 Mcps TDD OPTION cell
Neighbour cell			Cell2	GSM cell
Final condition	Active cell		Cell2	GSM cell
DRX cycle length		S	1,28	
HCS			Not used	
T1		S	45	
T2		S	15	

Table A.4 8A: Cell re-selection UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1 (UTRA)				
Timeslot Number		()	Dwl	PTS	
		T1	T2	T1	T2	
UTRA RF Channel Number*		Chan	nel 1	Char	nnel 1	
PCCPCH_Ec/lor	dB	-3	-3			
DwPCH_Ec/lor	dB			0	0	
OCNS_Ec/lor	dB	-3	-3			
\hat{I}_{or}/I_{oc}	dB	13	-12	13	-12	
I_{oc}	dBm/1. 28 MHz	-80				
PCCPCH RSCP	dBm	-70	-95	n.a.	n.a.	
Propagation Condition		AW	AWGN		AWGN	
Treselection	S			0		
Ssearch _{RAT}	dB		Not	sent		
Qrxlevmin	dBm		-1	03		
Qoffset1 _{s,n}	dB	C1, C2: 0				
Qhyst1 _s	dB	dB 0				
* Note: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency"s channel number.						

Table A.4.9A: Cell re-selection UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2 (GSM)		
	Oilit	T1	T2	
Absolute RF Channel Number		ARFCN 1		
RXLEV	dBm	-75	-75	
RXLEV_ACCESS_MIN	dBm	-104		
MS_TXPWR_MAX_CCH	dBm	3	3	

A.4.2.4.1.3 7.68 Mcps TDD option

This test is to verify the requirement for the UTRA TDD to GSM cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 UTRA TDD serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UTRA TDD carrier and 12 GSM cells. Test parameters are given in Table, A.4.7B, A.4.8B, A.4.9B. Cell 1 and Cell 2 shall belong to different Location Areas.

For this test environment the ranking/mapping function indicated in the broadcast of cell 1 shall be in such a way as to enable the UE to evaluate that the TDD cell 1 is better ranked as the GSM cell 2 during T1 and the GSM cell 2 is better ranked than the TDD cell 1 during T2.

Table A.4.7B: General test parameters for UTRAN to GSM Cell Re-selection

Parameter		Unit	Value	Comment
Initial condition	Active cell		Cell1	UTRA TDD Cell
	Neighbour cell		Cell2	GSM Cell
Final condition	Active cell		Cell2	
HC	S		Not used	
DRX cycle length		S	1,28	UTRA TDD cell
T1		S	45	
T2	2	S	35	

Table A.4.8B: Cell re-selection UTRA TDD to GSM cell case (cell 1)

Parameter	Unit	Cell 1 (UTRA TDD)			
Timeslot Number		0			3
		T1	T2	T1	T2
UTRA RF Channel Number		Chan	nel 1	Char	nel 1
PCCPCH_Ec/lor	dB	-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0
PICH_Ec/lor	dB			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	3	-2	3	-2
I_{oc}	dBm/7, 68 MHz	-70		-70	
PCCPCH RSCP	dBm	-70	-75	n.a.	n.a.
Propagation Condition		AWGN AWGN		/GN	
Qrxlevmin	dBm	-102			
Qoffset1 _{s, n}	dB		C1, (C2: 0	·
Qhyst1	dB	0			·
Treselection	S	0			
Ssearch _{RAT}	dB		not	sent	•

Table A.4.9B: Cell re-selection UTRA TDD to GSM cell case (cell 2)

Parameter	Unit	Cell 2 (GSM)	
		T1	T2
Absolute RF Channel Number		ARFCN 1	
RXLEV	dBm	-90	-75
RXLEV_ACCESS_MIN	dBm	-104	
MS_TXPWR_MAX_CCH	dBm	33	

A.4.2.4.2 Test Requirements

A.4.2.4.2.1 3.84 Mpcs TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than $26 \text{ s} + T_{BCCH}$, where T_{BCCH} is the maximum time allowed to read BCCH data in the GSM cell [21].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

$$4 * T_{measureGSM} + T_{BCCH}$$

where:

T_{measureGSM} Equal to the value specified in Table 4.1 in section 4.2

T_{BCCH} Equal to 1.9 s, i.e. the maximum time allowed to read BCCH data when synchronised to a BCCH

carrier from a GSM cell [21].

This gives a total of 25.6 s + T_{BCCH} , allow 26 s + T_{BCCH} in the test case.

A.4.2.4.2.2 1.28 Mpcs TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send RR Channel Request message to perform a Location update.

The cell re-selection delay shall be less than $8 \text{ s} + T_{BCCH}$ where T_{BCCH} is the maximum time allowed to read BCCH data from GSM cell [21].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

 $Max(3*T_{measure\,NTDD}$, $T_{measure\,GSM}\!+\!1DRX)\!+\,T_{BCCH}$

where:

 $T_{measureNTDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{measureNTDD}$ of 1.28s

according to Table 4.1A in section 4.2.

 $T_{measureGSM}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{measureGSM}$ of 6.4s

according to Table 4.1A in section 4.2.

DRX cycle length 1.28s is assumed, see Table A.4.1A

T_{BCCH} Maximum time allowed to read BCCH data from GSM cell [20].

According to [21], the maximum time allowed to read the BCCH data, when being synchronized to a BCCH carrier, is 1.9 s.

This gives a total of 7.68s $+T_{BCCH}$, thus allow 8s $+T_{BCCH}$.

A.4.2.4.2.3 7.68 Mpcs TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than $26 \text{ s} + T_{BCCH}$, where T_{BCCH} is the maximum time allowed to read BCCH data in the GSM cell [21].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

 $4 * T_{measureGSM} + T_{BCCH}$

where:

T_{measureGSM} Equal to the value specified in Table 4.1B in section 4.2

 T_{BCCH} Equal to 1.9 s, i.e. the maximum time allowed to read BCCH data when synchronised to a BCCH

carrier from a GSM cell [21].

This gives a total of 25.6 s + T_{BCCH} , allow 26 s + T_{BCCH} in the test case.

A.4.2.4.3 Scenario 4A Test Purpose and Environment

A.4.2.4.3.1 (void)

A.4.2.4.3.2 1.28 Mcps TDD option

This test is to verify the requirement for the UTRAN to GSM cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. Test parameters are given in Table A.4.10A, A.4.11A, A.4.12A.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304. Cell 1 and cell 2 shall belong to different location areas.

Table A.4.10A: General test parameters for UTRAN (1.28 Mcps TDD OPTION) to GSM Cell Reselection

Par	ameter	Unit	Value	Comment
Initial condition	Active cell		Cell1	1.28 Mcps TDD OPTION cell
	Neighbour cell		Cell2	GSM cell
Final condition	Active cell		Cell2	GSM cell
DRX c	ycle length	S	1,28	
	HCS		Not Used	
	T1	S	45	
	T2	S	45	

Table A.4 11A: Cell re-selection UTRAN to GSM cell case (cell 1)

Parameter	Unit		Cell 1	(UTRA)			
Timeslot Number		0		Dw	PTS		
		T1	T2	T1	T2		
UTRA RF Channel Number (NOTE)		Chan	nel 1	Char	nnel 1		
PCCPCH_Ec/lor	dB	-3	-3				
DwPCH_Ec/lor	dB			0	0		
OCNS_Ec/lor	dB	-3	-3				
\hat{I}_{or}/I_{oc}	dB	6	6	6	6		
I_{oc}	dBm/1. 28 MHz	-80					
PCCPCH RSCP	dBm	-77	-77				
Propagation Condition		AWGN AWGN		/GN			
Treselection	S			0			
Ssearch _{RAT}	dB		Not	sent			
Qrxlevmin	dBm			03			
Qoffset1 _{s,n}	dB		C1, (C2: 0			
Qhyst1 _s	dB		()			
NOTE: In the case of multi-frequency cell, the UTRA RF							
Channel Number is the primary frequency"s channel number.							

Table A.4.12A: Cell re-selection UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2 (GSM)		
	Oilit	T1	T2	
Absolute RF Channel Number		ARFCN 1		
RXLEV	dBm	-90	-70	
RXLEV_ACCESS_MIN	dBm	-104		
MS_TXPWR_MAX_CCH	dBm	33		

A.4.2.4.4 Scenario 4A Requirements

A.4.2.4.4.1 (void)

A.4.2.4.4.2 1.28 Mpcs TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than $26 \text{ s} + T_{BCCH}$, where T_{BCCH} is the maximum time allowed to read BCCH data from GSM cell [21].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The UE shall keep a running average of 4 measurements, thus gives 4* T_{measureGSM} +T_{BCCH}, where:

 $T_{measureGSM}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{measureGSM}$ of 6.4s according to Table 4.1A in section 4.2.

T_{BCCH} Maximum time allowed to read BCCH data from GSM cell [21].

According to [21], the maximum time allowed to read the BCCH data, when being synchronized to a BCCH carrier, is 1.9 s.

This gives a total of 25.6s $+T_{BCCH}$, thus allow 26s $+T_{BCCH}$.

A.4.2.5 Scenario 5: TDD/E-UTRA cell re-selection

A.4.2.5.1 UTRA to E-UTRA TDD cell re-selection: E-UTRA is of higher priority

A.4.2.5.1.1 Test Purpose and Environment

A.4.2.5.1.1.1 3.84 Mcps TDD option

A.4.2.5.1.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the UTRA TDD to E-UTRA TDD inter-RAT cell re-selection requirements specified in section 4.2.2.5a when the E-UTRA cell is of higher priority.

This test scenario comprised of 1 UTRA TDD serving cell, and 1 E-UTRA TDD cell to be re-selected. Test parameters are given in table A.4.2.5.1.1.2-1, A.4.2.5.1.1.2-2, and A.4.2.5.1.1.2-3. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Both UTRA cell 1 and E-UTRA cell 2 are already identified by the UE prior to the start of the test. At T1 the UE is camped on to cell 1. Cell 2 is of higher priority than cell 1.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304.

Table A.4.2.5.1.1.2-1: General test parameters for UTRAN (1.28 Mcps TDD OPTION) to E-UTRAN TDD Cell Re-selection

Para	meter	Unit	Value	Comment
Initial	Active cell		Cell 2	UE shall be forced to cell 2 in the initialisation phase, so that
condition				reselection to cell 1 occurs during the first T1 phase
T1 end	Active cell		Cell1	UE shall perform reselection to cell 1 during T1
condition	Neighbour cell		Cell2	E-UTRA TDD cell
T3 end	Active cell		Cell2	UE shall perform reselection to cell 2 during T3
condition	Neighbour cell		Cell1	UTRA 1.28 Mcps TDD OPTION cell
Uplink-down configuration			1	As specified in table 4.2.2 in TS 36.211
configuration	pecial subframe onfiguration of cell 2		6	As specified in table 4.2.1 in TS 36.211
PRACH cont	RACH configuration of		53	As specified in table 4.7.1-3 in TS 36.211
CP length of	cell 2		Normal	
Time offset b	oetween cells		3 ms	Asynchronous cells
Access Barr	ing	-	Not	No additional delays in random access procedure.
Information			sent	
Treselection		S	0	
DRX cycle le	ength	S	1,28	
HCS			Not	
			used	
T1		S	25	T1 need to be defined so that cell re-selection reaction time is taken into account.
T2			5 During T2, cell 2 shall be powered off, and during the off the physical layer cell identity shall be changed, The inte to ensure that cell 2 has not been detected by the UE pr the start of period T3	
Т3		S	85	T3 need to be defined so that cell re-selection reaction time is taken into account.

Table A.4.2.5.1.1.2-2: Cell specific test parameters for cell re-selection UTRA TDD to E-UTRA TDD test case (cell 1)

Parameter	Unit	Cell 1 (UTRA)					
Timeslot Number			0 DwPTS				;
		T1	T2	T3	T1	T2	T3
UTRA RF Channel Number (Note1)				Char	nel 1		
PCCPCH_Ec/lor	dB	-3	-3	-3			
DwPCH_Ec/lor	dB				0	0	0
OCNS_Ec/lor	dB	-3	-3	-3			
\hat{I}_{or}/I_{oc}	dB	11	11	11	11	11	11
I_{oc}	dBm/1.28 MHz	-80					
PCCPCH RSCP	dBm	-72	-72	-72		n.a.	
Propagation Condition				AW	GN		
Qrxlevmin	dBm			-1	03		
Qoffset1s,n	dB	C1, C2: 0					
Qhyst1s	dB	0					
Thresh _{x, high} (Note2)	dB			46 (-9	4dBm)		•

Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency"s channel number.

Note2: This refers to the value of $\mathsf{Thresh}_{\mathsf{x},\,\mathsf{high}}$ which is included in UTRA system information, and is a threshold for the E-UTRA target cell

Table A.4.2.5.1.1.2-3: Cell specific test parameters for cell re-selection UTRA TDD to E-UTRA TDD test case (cell 2)

Parameter	Unit		Cell 2			
		T1	T2	T3		
E-UTRA RF Channel			2			
Number						
BWchannel	MHz		10			
PBCH_RA	dB					
PBCH_RB	dB					
PSS_RB	dB					
SSS_RB	dB					
PCFICH_PA	dB					
PHICH_PA	dB					
PHICH_PB	dB	0	0	0		
PDCCH_PA	dB					
PDCCH_PB	dB					
PDSCH_PA	dB					
PDSCH_PB	dB					
OCNG_RANote 1	dB					
OCNG_RBNote 1	dB					
Qrxlevmin	dBm/15kHz	-140	-140	-140		
N_{oc}	dBm/15kHz		-98			
RSRP	dBm/15kHz	-101	-inf	-87		
\hat{E}_s/I_{ot}	dB	-3				
Snonintrasearch	dB		Not sent			
Thresh _{serving, low}	dB	4	l6 (-94dBm	1)		
Thresh _{x, low} (Note2)	dB	24 (-79dBm)				
Propagation Condition			AWGN			
Note 1: OCNG shall be used such that cell is fully allocated and a constant						

Note 1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note2: This refers to the value of Thresh_{x, low} which is included in E-UTRA system information, and is a threshold for the UTRA target cell

A.4.2.5.1.1.3 7.68 Mcps TDD option

A.4.2.5.1.2 Test Requirements

A.4.2.5.1.2.1 3.84 Mpcs TDD option

A.4.2.5.1.2.2 1.28 Mpcs TDD option

The cell reselection delay to higher priority is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to higher priority shall be less than [81] s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as: $T_{higher_priority_search} + T_{evaluateE-UTRA} + T_{SI}$,

Where:

T_{higher_priority_search} [60]s, See section 4.2.2.5a

T_{evaluateE-UTRA} [19.2]s, See Table 4.2A in section 4.2.2.7

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 80.48 s, allow 81 s for higher priority cell reselection in the test case.

A.4.2.5.1.2.3 7.68 Mpcs TDD option

A.4.2.5.2 UTRA to E-UTRA TDD cell re-selection: E-UTRA is of lower priority

A.4.2.5.2.1 Test Purpose and Environment

A.4.2.5.2.1.1 3.84 Mcps TDD option

A.4.2.5.2.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the UTRA TDD to E-UTRA TDD inter-RAT cell re-selection requirements specified in section 4.2.2.5a when the E-UTRA cell is of lower priority.

This test scenario comprised of 1 UTRA TDD serving cell, and 1 E-UTRA TDD cell to be re-selected. Test parameters are given in table A.4.2.5.2.1.2-1, A.4.2.5.2.1.2-2, and A.4.2.5.2.1.2-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. At T1 the UE is camped on to cell 1. Cell 2 is of lower priority than cell

The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304.

Table A.4.2.5.2.1.2-1: General test parameters for UTRAN (1.28 Mcps TDD OPTION) to E-UTRAN TDD Cell Re-selection

Parai	neter	Unit	Value	Comment
Initial	Active cell		Cell 2	UE shall be forced to cell 2 in the initialisation phase, so that
condition				reselection to cell 1 occurs during the first T1 phase
T1 end	Active cell		Cell1	UE shall perform reselection to cell 1 during T1
condition	Neighbour cell		Cell2	E-UTRA TDD cell
T2 end	Active cell		Cell2	UE shall perform reselection to cell 2 during T2
condition	Neighbour cell		Cell1	UTRA 1.28 Mcps TDD OPTION cell
Uplink-downlin of cell 2	k configuration		1	As specified in table 4.2.2 in TS 36.211
Special subfrar configuration o			6	As specified in table 4.2.1 in TS 36.211
PRACH config	uration of cell 2		53	As specified in table 4.7.1-3 in TS 36.211
CP length of ce	ell 2		Normal	
Time offset bet	ween cells		3 ms	Asynchronous cells
Access Barring	Information	-	Not sent	No additional delays in random access procedure.
Treselection		S	0	
DRX cycle leng	gth	S	1,28	
HCS			Not used	
T1	T1		85	T1 need to be defined so that cell re-selection reaction time is taken into account.
T2		S	25	

Table A.4.2.5.2.1.2-2: Cell specific test parameters for cell re-selection UTRA TDD to E-UTRA TDD test case (cell 1)

Parameter	Unit	Cell 1 (UTRA)			
Timeslot Number		C	0		PTS
		T1	T2	T1	T2
UTRA RF Channel Number (Note1)			Char	nel 1	
PCCPCH_Ec/lor	dB	-3	-3		
DwPCH_Ec/lor	dB			0	0
OCNS_Ec/lor	dB	-3	-3		
\hat{I}_{or}/I_{oc}	dB	11	-3	11	-3
I_{oc}	dBm/1.28 MHz	-80			
PCCPCH RSCP	dBm	-72	-86	n.a.	n.a.
Propagation Condition			AW	'GN	
Qrxlevmin	dBm		-1	03	
Qoffset1s,n	dB		C1, (C2: 0	
Qhyst1s	dB	0		•	
Snonintrasearch	dB	Not sent			·
Thresh _{serving, low}	dB	24 (-79dBm)			
Thresh _{x, low} (Note2)	dB		46 (-9	4dBm)	·

Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency"s channel number.

Note2: This refers to the value of $\mathsf{Thresh}_{\mathsf{x,\,low}}$ which is included in UTRA system information, and is a threshold for the E-UTRA target cell

Table A.4.2.5.2.1.2-3: Cell specific test parameters for cell re-selection UTRA TDD to E-UTRA TDD test case (cell 2)

Parameter	Unit	Ce	II 2	
		T1	T2	
E-UTRA RF Channel		2	2	
Number				
BWchannel	MHz	1	0	
PBCH_RA	dB			
PBCH_RB	dB			
PSS_RB	dB			
SSS_RB	dB			
PCFICH_PA	dB			
PHICH_PA	dB			
PHICH_PB	dB	0	0	
PDCCH_PA	dB			
PDCCH_PB	dB			
PDSCH_PA	dB			
PDSCH_PB	dB			
OCNG_RA ^{Note1}	dB			
OCNG_RB ^{Note1}	dB			
Qrxlevmin	dBm/15kHz	-140	-140	
N_{oc}	dBm/15kHz	-6	98	
RSRP	dBm/15kHz	-87	-87	
\hat{E}_{s}/I_{ot}	dB	11	11	
Thresh _{x, high} (Note2)	dB	24(-79	9dBm)	
Propagation Condition		AWGN		

Note1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note2: This refers to the value of Thresh_{x, high} which is included in E-UTRA system information, and is a threshold for the UTRA target cell

A.4.2.5.2.1.3 7.68 Mcps TDD option

A.4.2.5.2.2 Test Requirements

A.4.2.5.2.2.1 3.84 Mpcs TDD option

A.4.2.5.2.2.2 1.28 Mpcs TDD option

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to lower priority shall be less than [21] s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as: TevaluateE-UTRA + TSI,

Where:

T_{evaluateE-UTRA} [19.2]s, See Table 4.2A in section 4.2.2.7

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s, allow 21 s for lower priority cell reselection in the test case.

A.4.2.5.2.2.3 7.68 Mpcs TDD option

A.5 UTRAN Connected Mode Mobility

A.5.1 TDD/TDD Handover

A.5.1.1 3.84Mcps TDD option

A.5.1.1.1 Handover to intra-frequency cell

A.5.1.1.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the intra-frequency handover delay in CELL_DCH state in the single carrier case reported in section 5.1.2.1.

The test parameters are given in Table A.5.1.1 and A.5.1.2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G shall be used, and that P-CCPCH RSCP and SFN-CFN observed timed difference shall be reported together with Event 1G. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration message with activation time "now" with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 1G. The starting point of T3 is definied as the end of the last TTI containing the physical channel reconfiguration message.

The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2. The UL DPCH shall be transmitted in timeslot 12.

Table A.5.1.1: General test parameters for Handover to intra-frequency cell

Para	Parameter U		Value	Comment
DCH parameters			DL and UL Reference	As specified in TS 25.102 section A.2.2
			Measurement Channel 12.2 kbps	and A.2.1
Power Contro	ol		On	
Target quality	y value on	BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbour cell		Cell 2	
Final condition	Active cell		Cell 2	
HCS			Not used	
0		dB	0	Cell individual offset. This value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trigg	jer	ms	0	
Filter coeffici	Filter coefficient		0	
Monitored cell list size			6 TDD neighbours on Channel 1	
T1		S	10	
T2	•	S	10	
T3		S	10	

Table A.5.1.2: Cell specific test parameters for Handover to intra-frequency cell

Parameter	Unit	Cell 1 Cell 2												
DL timeslot number			0		4			0			5			
		T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3	
UTRA RF Channel Number		Cha			nnel 1			Channel 1						
PCCPCH_Ec/lor	dB		-3			n.a.			-3			n.a		
SCH_Ec/lor	dB		-9			n.a.			-9			n.a.		
SCH_t _{offset}	dB		0			n.a.		5			n.a.			
DPCH_Ec/lor	dB		n.a.		Not	e 1	n.a.	n.a.		n	.a.	Note 1		
OCNS_Ec/lor	dB		-3,12		Not	e 2	n.a.	n.a.	-3,	,12	n	.a.	Note 2	
\hat{I}_{or}/I_{oc}	dB				1			-Inf.	;	3	-1	lnf.	3	
PCCPCH RSCP	dBm		-72			n.a.		-Inf.	-7	70		n.a		
I_{oc}	dBm/ 3,84 MHz	-70												
Propagation Condition							AW	′GN						

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor .

A.5.1.1.1.2 Test Requirements

The UE shall start to transmit the UL DPCH to Cell 2 less than 160 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.1.2 Handover to inter-frequency cell

A.5.1.1.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the inter-frequency handover delay in CELL_DCH state in the dual carrier case reported in section 5.1.2.1.

The test consists of two successive time periods, with a time duration T1 and T2. The test parameters are given in tables A.5.1.3 and A.5.1.4 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used. The PCCPCH RSCP and SFN-CFN observed time difference of the best cell on the unused frequency shall be reported together with Event 2C reporting. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration message with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 2C. The starting point of T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2. The UL DPCH shall be transmitted in timeslot 12.

Table A.5.1.3: General test parameters for Handover to inter-frequency cell

Para	Parameter		Value	Comment
DCH parame	ters		DL and UL Reference	As specified in TS 25.102 section A.2.2
			Measurement Channel 12.2 kbps	and A.2.1
Power Contro	ol		On	
Target quality DTCH	y value on	BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbour cell		Cell 2	
Final condition	Active cell		Cell 2	
HCS			Not used	
0			0	Cell individual offset. This value shall be used for all cells in the test.
Hysteresis		dB	0	Hysteresis parameter for event 2C
Time to Trigg	jer	ms	0	
Threshold no frequency	n-used	dBm	-80	Applicable for Event 2C
Filter coefficie	ent		0	
Monitored ce	II list size		6 TDD neighbours on Channel 1 6 TDD neighbours on Channel 2	
T _{SI}		s	1.28	The value shall be used for all cells in the test.
T1		S	10	
T2		S	10	
T3		S	10	

TableA.5.1.4: Cell Specific parameters for Handover to inter-frequency cell

Parameter	Unit		Cell 1 Cell 2										
DL timeslot number			0		4				2		5		
		T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
UTRA RF Channel Number				Cha	nnel 1			Channel 2					
PCCPCH_Ec/lor	dB		-3			n.a.			-3		n.a.		
SCH_Ec/lor	dB		-9			n.a.			-9		n.a.		
SCH_t _{offset}	dB		0			n.a.			5		n.a.		
DPCH_Ec/lor	dB		n.a.		Note	e 1	n.a.		n.a.		n.a	а.	Note 1
OCNS_Ec/lor	dB		-3,12		Note	e 2	n.a.	n.a.	-3,	,12	n.a	а.	Note 2
\hat{I}_{or}/I_{oc}	dB				1			-Inf.	7	7	-In	f.	7
PCCPCH RSCP	dBm		-72			n.a.		-Inf.	-6	66		n.a	
I_{oc}	dBm/ 3,84 MHz		-70										
Propagation Condition			AWGN										

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor .

A.5.1.1.2.2 Test Requirements

The UE shall start to transmit the UL DPCH to Cell 2 less than 160 ms from the beginning of time period T2.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.2 1.28Mcps TDD option

A.5.1.2.1 Handover to intra-frequency cell

A.5.1.2.1.1 Scenario 1

This test case is applicable for UE handovers in single frequency network and UE handovers from primary frequency to primary frequency in multi-frequency network.

A.5.1.2.1.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the intra-frequency handover delay in CELL_DCH state in the case as reported in section 5.1.2.1.2.

The test parameters are given in Table A.5.1.5 and A.5.1.6 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G shall be used, and that PCCPCH RSCP and SFN-CFN observed timed difference shall be reported together with Event 1G. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration with activation time "now" at the beginning of T3 with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 1G. The starting point of T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

Table A.5.1.5: General test parameters for intra-frequency handover

Para	ameter	Unit	Value	Comment
DPCH parame	eters		DL and UL Reference	As specified in TS 25.102 section A.2.2.2
			Measurement Channel 12.2	and A.2.1.2
	kbps		kbps	
Power Contro	Power Control		On	
Target quality	value on DPCH	BLER	0.01	
Initial conditions	Active cell		Cell 1	In the case of multi-frequency network, the UE has a RRC connection on the primary frequency in cell 1.
	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	In the case of multifrequency network, UE will handover to the primary frequency in cell 2.
0		dB	0	cell-individual-offset The value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trigge	er	ms	0	
Filter coefficie	nt		0	
Monitored cel	list size		6 TDD neighbours on Channel 1	
T1		S	5	
T2		S	5	
T3		S	5	

Table A.5.1.6: Cell specific test parameters for intra-frequency handover

Parameter	Unit				(Cell 1				
Timeslot Number			0			DwPTS			5	
		T1	T2	T3	T1	T2	T3	T1	T2	T3
UTRA RF Channel			Channel 1							
Number(Note3)										
PCCPCH_Ec/lor	dB		-3 n.a.							
DwPCH_Ec/lor						0				
DPCH_Ec/lor	dB		n.a.			n.a.		No	ote1	n.a.
OCNS_Ec/lor	dB		-3						Note2	2
\hat{I}_{or}/I_{oc}	dB		3			3			3	
I_{oc}	dBm/ 1.28 MHz	-70								
PCCPCH_RSCP	dBm	-70 n.a. n.a.								
Propagation Condition					-	AWGN				
Parameter	Unit				(Cell 2				
Timeslot Number			0			DwPTS			5	
		T1	T2	T3	T1	T2	T3	T1	T2	T3
UTRA RF Channel Number(Note3)					Ch	nannel 1				
PCCPCH_Ec/lor	dB		-3						n.a.	
DwPCH_Ec/lor						0				
DPCH_Ec/lor	dB	I na I na I na I						Not e1		
OCNS_Ec/lor	dB	-3 Note2						<u> </u>		
\hat{I}_{or}/I_{oc}	dB	-Inf. 6 -Inf. 6 -Inf.					6			
I_{oc}	dBm/ 1.28 MHz	-70								
PCCPCH_RSCP	dBm									
Propagation Condition		AWGN								

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or}.

In the case of multi-frequency network, the UTRA RF Channel Number is the primary

frequency"s channel number.

A.5.1.2.1.1.2 Test Requirements

The UE shall start to transmit the UL DPCH to cell 2 less than 160 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.2.1.2 Scenario 2

Note 3:

This test case is applicable for UE handovers from secondarhy frequency to parimary frequency in the case of multi-frequency network.

A.5.1.2.1.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the intra-frequency handover delay in CELL_DCH state in the case as reported in section 5.1.2.1.2.

The test parameters are given in Table A.5.1.5A and A.5.1.6A below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G shall be used, and that PCCPCH RSCP and SFN-CFN observed timed difference shall be reported together with Event 1G. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration with activation time "now" at the beginning of T3 with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 1G. The starting point of T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

Table A.5.1.5A: General test parameters for intra-frequency handover

Para	Parameter Unit Value		Comment	
DPCH parame	eters		DL and UL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2.2 and A.2.1.2
Power Contro	Power Control		On	
Target quality	Target quality value on DPCH		0.01	
Initial conditions	Active cell		Cell 1	The UE has a RRC connection on the secondary frequency in cell 1.
	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	The UE will handover to the primary frequency in cell 2.
0		dB	0	cell-individual-offset The value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trigge	er	ms	0	
Filter coefficie	nt		0	
Monitored cell list size			6 TDD neighbours on Channel 1	
T1		S	5	
T2		S	5	
T3	·	S	5	

Table A.5.1.6A: Cell specific test parameters for intra-frequency handover

Parameter	Unit				-	Cell 1				
Timeslot Number			0 DwPTS 5					5		
		T1	T2	T3	T1	T2	T3	T1	T2	T3
UTRA RF Channel					Ck	nannel 1	ı			
Number(Note3)					Ci	larinei	l			
UTRA RF Channel			Channel 2							
Number(Note4)						iai ii ici 2	<u> </u>			
PCCPCH_Ec/lor	dB		-3						n.a.	
DwPCH_Ec/lor						0				
DPCH_Ec/lor	dB		n.a.			n.a.		No	ote1	n.a.
OCNS_Ec/lor	dB		-3						Note2	
\hat{I}_{or}/I_{oc}	dB		3			3			3	
7	dBm/									
I_{oc}	1.28					-70				
DOODOLL DOOD	MHz									
PCCPCH_RSCP	dBm	-70 n.a. n.a.								
Propagation Condition	11.74	1				AWGN				
Parameter	Unit					Cell 2				
Timeslot Number		T4	0	Т0		DwPTS		T4	<u>5</u>	To
LITERA DE OL		T1	T2	T3	T1	T2	T3	T1	T2	T3
UTRA RF Channel Number(Note3)					Cł	annel 2	2			
UTRA RF Channel					Ch	nannel 1	1			
Number(Note4)							-			
PCCPCH_Ec/lor	dB		-3						n.a.	
DwPCH_Ec/lor						0				
DPCH_Ec/lor	dB	I na I na I na I					Not e1			
OCNS_Ec/lor	dB	-3 Note2								
\hat{I}_{or}/I_{oc}	dB	-Inf.	(3	-Inf.	6	6	-	lnf.	6
	dBm/					70				
I_{oc}	1.28 MHz					-70				
PCCPCH_RSCP	dBm									
Propagation Condition		AWGN								

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to $I_{\rm or}$.

Note3: The UTRA RF Channel Number is the primary frequency"s channel number.

Note3: The UTRA RF Channel Number is the secondary frequency"s channel number.

A.5.1.2.1.2.2 Test Requirements

The UE shall start to transmit the UL DPCH in cell 2 less than 160 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.2.2 Handover to inter-frequency cell

A.5.1.2.2.1 Scenario 1

This test case is applicable for UE handovers in single frequency network and UE handovers from primary frequency to the primary frequency in multi-frequency network.

A.5.1.2.2.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the inter-frequency handover delay in CELL_DCH in the case as reported in section 5.1.2.1.2.

The test consists of three successive time periods, with a time duration T1, T2 and T3. The test parameters are given in tables A.5.1.7 and A.5.1.8 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used. The PCCPCH RSCP and SFN-CFN observed timed difference of the best cell on the unused frequency shall be reported together with Event 2C reporting. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration with activation time "now" with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 2C. The starting point of T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

Table A.5.1.7: General test parameters for inter-frequency handover

Para	Parameter Unit Value		Value	Comment
DPCH parar	meters		DL and UL Reference Measurement	As specified in TS 25.102 section A.2.2.2
			Channel 12.2 kbps	and A.2.1.2
Power Cont	rol		On	
Target quali DPCH	ty value on	BLER	0.01	
Initial conditions			Cell 1	In the case of multi-frequency network, the UE has a RRC connection on the primary frequency in cell 1.
	Neighbour cell		Cell 2	
Final conditions	Active cell		Cell 2	In the case of multi-frequency network, the UE will handover to the primary frequency in cell 2.
Threshold notice frequency	on used	dBm	-75	Absolute RSCP threshold for event 2C
0		dB	0	cell-individual-offset The value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trig	ger	ms	0	
Filter coeffic	eient		0	
Monitored c	ell list size		6 TDD neighbours on Channel 1 6 TDD neighbours on Channel 2	
T1		S	5	
T2		S	10	
T3		S	5	

TableA.5.1.8: Cell Specific parameters for inter-frequency handover

Parameter	Unit				(Cell 1				
Timeslot Number			0			DwPTS	3	5		
		T1	T2	T3	T1	T2	T3	T1	T2	T3
UTRA RF Channel			Channel 1							
Number(Note 3)			Charmer							
PCCPCH_Ec/lor	dB		-3						n.a.	
DwPCH_Ec/lor						0				
DPCH_Ec/lor	dB		n.a.			n.a.		No	ote1	n.a.
OCNS_Ec/lor	dB		-3						Note2	<u> </u>
\hat{I}_{or}/I_{oc}	dB		3			3			3	
I_{oc}	dBm/ 1.28 MHz					-70				
PCCPCH_RSCP	dBm		-70			n.a.			n.a.	
Propagation Condition		AWGN								
Parameter	Unit				(Cell 2				
Timeslot Number			0			DWPTS	<u> </u>		5	
		T1	T2	T3	T1	T2	T3	T1	T2	T3
UTRA RF Channel Number(Note 3)					Cł	annel 2	2			
PCCPCH_Ec/lor	dB		-3						n.a.	
DwPCH_Ec/lor						0				
DPCH_Ec/lor	dB		n.a.			n.a.		n	ı.a.	Not e1
OCNS_Ec/lor	dB	-3 Note2)			
\hat{I}_{or}/I_{oc}	dB	-Inf.	4	1	-Inf.	4	1	-	Inf.	4
I_{oc}	dBm/ 1.28 MHz					-70				
PCCPCH_RSCP	dBm									
Propagation Condition		AWGN								

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to $I_{\rm or}$

In the case of multi-frequency network, the UTRA RF Channel Number is the primary

frequency"s channel number.

A.5.1.2.2.1.2 Test Requirements

The UE shall start to transmit the UL DPCH to cell 2 less than 160 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.2.2.2 Scenario 2

Note 3:

This test case is applicable for UE handovers from secondarhy frequency to parimary frequency in the case of multi-frequency network.

A.5.1.2.2.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the inter-frequency handover delay in CELL_DCH in the case as reported in section 5.1.2.1.2.

The test consists of three successive time periods, with a time duration T1, T2 and T3. The test parameters are given in tables A.5.1.7A and A.5.1.8A below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used. The PCCPCH RSCP and SFN-CFN observed timed difference of the best cell on the unused frequency shall be reported together with Event 2C reporting. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration with activation time "now" with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 2C. The starting point of T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

Table A.5.1.7: General test parameters for inter-frequency handover

Para	Parameter Unit Value		Value	Comment
DPCH para	meters		DL and UL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2.2 and A.2.1.2
Power Cont	rol		On	
Target quali DPCH	ity value on	BLER	0.01	
Initial conditions	Initial Active cell		Cell 1	The UE has a RRC connection on the secondary frequency in cell 1.
	Neighbour cell		Cell 2	
Final conditions	Active cell		Cell 2	The UE will handover to the primary frequency in cell 2.
Threshold n frequency	on used	dBm	-75	Absolute RSCP threshold for event 2C
0		dB	0	cell-individual-offset The value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trig	ger	ms	0	
Filter coeffic	cient		0	
Monitored c	ell list size		6 TDD neighbours on Channel 1 6 TDD neighbours on Channel 2	
T1		S	5	
T2 s		S	10	
T3		S	5	

TableA.5.1.8: Cell Specific parameters for inter-frequency handover

Unit				(Cell 1				
		0 DwPTS 5					5		
	T1	T2	T3	T1	T2	T3	T1	T2	T3
				Ck	onnol 1	ı			
				Ci	iaririei	l			
				Ch	annal ')			
					iai ii ici 2	<u> </u>			
dB		-3						n.a.	
					0				
dB		n.a.			n.a.		No	ote1	n.a.
dB		-3						Note2	
dB		3			3			3	
dBm/									
-	-70								
	70 20 20								
ubili									
Unit									
Ome		0				1		5	
	T1		T3				T1		T3
				Cr	nannel '				
				Ch	annel :				
				<u> </u>	iaiiioi 2				
dB		-3						n.a.	
					0				
dB	I na I na I na I					Not e1			
dB	-3 Note2								
dB	-Inf.	4	4	-Inf.	4	1	-1	lnf.	4
dBm/					70				
					-70				
<u> </u>									
	dB dB dB dB dB MHz dBm Unit dB dB	dB dB dB dB dB dB dB dB dB dB	T1 T2	T1	T1 T2 T3 T1 Ch	T1	O DWPTS T1 T2 T3 T1 T2 T3 Channel 1 dB -3 O O D DWPTS O O DWPTS dB -70 n.a. AWGN DWPTS Unit Cell 2 DWPTS T3 T1 T2 T3 T1 T2 T3 dB -3 Channel 1 Channel 2 dB GB GB <td>O DWPTS T1 T2 T3 T1 T2 T3 T1 Channel 1 Channel 2 dB -3 O<td>DwPTS 5 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T2 T3 T1 T2 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T3</td></td>	O DWPTS T1 T2 T3 T1 T2 T3 T1 Channel 1 Channel 2 dB -3 O <td>DwPTS 5 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T2 T3 T1 T2 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T3</td>	DwPTS 5 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T2 T3 T1 T2 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T3

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to $I_{\rm or.}$

Note3: The UTRA RF Channel Number is the primary frequency"s channel number.

Note4: The UTRA RF Channel Number is the secondary frequency"s channel number.

A.5.1.2.2.2.2 Test Requirements

The UE shall start to transmit the UL DPCH to cell 2 less than 160 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.3 7.68Mcps TDD option

A.5.1.3.1 Handover to intra-frequency cell

A.5.1.3.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the intra-frequency handover delay in CELL_DCH state in the single carrier case reported in section 5.1.2.1.

The test parameters are given in Table A.5.1.9 and A.5.1.10 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G shall be used, and that P-CCPCH RSCP and SFN-CFN observed timed difference shall be reported together with Event 1G. The test consists of three successive time periods,

with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration message with activation time "now" with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 1G. The starting point of T3 is definied as the end of the last TTI containing the physical channel reconfiguration message.

The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2. The UL DPCH shall be transmitted in timeslot 12.

Table A.5.1.9: General test parameters for Handover to intra-frequency cell

Para	ameter	Unit	Value	Comment
DCH parame	Measurement Channel 12		DL and UL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2 and A.2.1
Power Contro	ol		On	
Target quality DTCH	Гarget quality value on DTCH		0.01	
Initial	Active cell		Cell 1	
conditions	Neighbour cell		Cell 2	
Final condition	Active cell		Cell 2	
HCS			Not used	
0		dB	0	Cell individual offset. This value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trigg	er	ms	0	
Filter coefficie	ent		0	
Monitored ce	II list size		6 TDD neighbours on Channel 1	
T1		S	10	
T2	s 10		10	
T3	•	S	10	

Table A.5.1.10: Cell specific test parameters for Handover to intra-frequency cell

Parameter	Unit		Cell 1 Cell 2										
DL timeslot number			0			4			0		5		
		T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
UTRA RF Channel Number				Cha	nnel 1					Cha	nnel 1		
PCCPCH_Ec/lor	dB		-3			n.a.			-3			n.a	
SCH_Ec/lor	dB		-9			n.a.			-9			n.a	
SCH_t _{offset}	dB		0 n.a. 5 n					n.a					
DPCH_Ec/lor	dB		n.a.		Not	e 1	n.a.		n.a.		n.	.a.	Note 1
OCNS_Ec/lor	dB		-3,12		Not	e 2	n.a.	n.a.	-3	,12	n.	.a.	Note 2
\hat{I}_{or}/I_{oc}	dB				1			-Inf.	;	3	-1:	nf.	3
PCCPCH RSCP	dBm		-72 n.aInf70 n.a.										
I_{oc}	dBm/ 7,68 MHz	-70											
Propagation Condition			AWGN										

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor .

A.5.1.3.1.2 Test Requirements

The UE shall start to transmit the UL DPCH to Cell 2 less than 160 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.3.2 Handover to inter-frequency cell

A.5.1.3.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the inter-frequency handover delay in CELL_DCH state in the dual carrier case reported in section 5.1.2.1.

The test consists of two successive time periods, with a time duration T1 and T2. The test parameters are given in tables A.5.1.11 and A.5.1.12 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used. The PCCPCH RSCP and SFN-CFN observed time difference of the best cell on the unused frequency shall be reported together with Event 2C reporting. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration message with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 2C. The starting point of T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2. The UL DPCH shall be transmitted in timeslot 12.

Table A.5.1.11: General test parameters for Handover to inter-frequency cell

Par	ameter			Comment
DCH parame	eters		DL and UL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2 and A.2.1
Power Contr	ol		On	
Target quality value on DTCH		BLER	0.01	
Initial			Cell 1	
conditions	Neighbour cell		Cell 2	
Final condition	Active cell		Cell 2	
HCS			Not used	
0		dB	0	Cell individual offset. This value shall be used for all cells in the test.
Hysteresis		dB	0	Hysteresis parameter for event 2C
Time to Trigg	jer	ms	0	
Threshold no frequency	n-used	dBm	-80	Applicable for Event 2C
Filter coeffici	ent		0	
Monitored ce	II list size		6 TDD neighbours on Channel 1 6 TDD neighbours on Channel 2	
T _{SI}	T _{SI} s		1.28	The value shall be used for all cells in the test.
T1			10	
T2	T2		10	
T3		S	10	

Cell 1 Cell 2 **Parameter** Unit **DL** timeslot 4 2 5 0 number T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 UTRA RF Channel Channel 1 Channel 2 Number PCCPCH_Ec/lor dB -3 n.a. -3 n.a. SCH_Ec/lor dB -9 n.a. -9 n.a. SCH_t_{offset} dΒ 0 n.a. 5 n.a. DPCH Ec/lor dB Note 1 n.a. Note 1 n.a. n.a. n.a. OCNS Ec/lor dB -3,12 Note 2 n.a. n.a. -3.12 n.a. Note 2 dB -Inf. 7 -Inf. I_{or}/I_{oc} 1 7 PCCPCH RSCP dBm -72 -Inf. -66 n.a. n.a. dBm/ 7,68 -70 MHz Propagation AWGN

TableA.5.1.12: Cell Specific parameters for Handover to inter-frequency cell

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor .

A.5.1.3.2.2 Test Requirements

Condition

The UE shall start to transmit the UL DPCH to Cell 2 less than 160 ms from the beginning of time period T2.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.2 TDD/FDD Handover

A.5.2.1 3.84 Mcps TDD option

A.5.2.1.1 Test purpose and Environment

The purpose of this test is to verify the requirement for the TDD/FDD handover delay in CELL_DCH state reported in section 5.2.2.1.

The test parameters are given in Table A.5.2.1, A.5.2.2 and A.5.2.3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G and 2B shall be used. The CPICH_RSCP of the best cell on the unused frequency shall be reported together with Event 2B reporting. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration message with activation time "now" with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 2B. The starting point of T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

Table A.5.2.1: General test parameters for TDD/FDD handover

Parar	meter	Unit	Value	Comment		
DCH pai	DCH parameters		DL and UL Reference	As specified in TS 25.102 annex A.2.2		
			Measurement Channel 12.2 kbps	and TS 25.101 annex A		
Power	Control		On			
	lity value on CH	BLER	0.01			
Initial	Active cell		Cell 1	TDD cell		
conditions	Neighbour cell		Cell 2	FDD cell		
Final condition	Active cell		Cell 2	FDD cell		
Н	CS		Not used			
(0		0	Cell individual offset. This value shall be used for all cells in the test.		
Hyste	eresis	dB	3	Hysteresis parameter for event 2B		
Time to	Trigger	ms	0			
Absolute thr	eshold used lency	dBm	-71	Applicable for Event 2B		
	I non-used iency	dBm	-80	Applicable for Event 2B		
W non-used	d frequency		1	Applicable for Event 2B		
Filter co	efficient		0			
	Monitored cell list size		Ionitored cell list size		6 TDD neighbours on Channel 1 6 FDD neighbours on Channel 2	
Т	- SI	S	1.28	The value shall be used for all cells in the test.		
T	1	S	5			
Т	2	S	15			
T	3	S	5			

Table A.5.2.2: Cell 1 specific test parameters for TDD/FDD handover

Parameter	Unit	Cell 1						
DL timeslot number		0 2			2			
		T1	T2	T3	T1	T2	T3	
UTRA RF Channel				Chanr	nol 1			
Number				Chan	ICI I			
PCCPCH_Ec/lor	dB		-3			n.a.		
SCH_Ec/lor	dB		-9			n.a.		
SCH_t _{offset}	dB	0 n.a.						
DPCH_Ec/lor	dB	n.a.			Note 1 n		n.a.	
OCNS_Ec/lor	dB	-3,12		Note 2		n.a.		
\hat{I}_{or}/I_{oc}	dB	5	-	1	5	-	1	
PCCPCH RSCP	dBm	-68	-7	'4		n.a.		
	dBm/							
I_{oc}	3,84			-70	0			
	MHz							
Propagation Condition		AWGN						
Note 1: The DPCH level	Note 1: The DPCH level is controlled by the power control loop							
Note 2: The power of the OCNS channel that is added shall make the total power from the cell								

Table A.5.2.3: Cell 2 specific test parameters for TDD/FDD handover

Parameter	Unit	Cell 2				
		T1, T2	T3			
CPICH_Ec/lor	dB	-1	0			
PCCPCH_Ec/lor	dB	-1:	2			
SCH_Ec/lor	dB	-1:	2			
PICH_Ec/lor	dB	-15				
DPCH_Ec/lor	dB	n.a.	Note 1			
OCNS_Ec/lor	dB	-0.941	Note 2			
CPICH_RSCP	dBm	-83	-77			
\hat{I}_{or}/I_{oc}	dB	-3	3			
I_{oc}	dBm/3. 84 MHz	-70				
Propagation Condition		AWGN				
Note 1: The DPCH level is controlled by the power control loop						

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or}

A.5.2.1.2 **Test Requirements**

The UE shall start to transmit the UL DPCCH to Cell 2 less than 220 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.2.2 1.28 Mcps TDD option

A.5.2.2.1 Test purpose and Environment

The purpose of this test is to verify the requirement for the TDD/FDD handover delay in CELL_DCH state reported in section 5.2.2.2.

The test parameters are given in Table A.5.2.4, A.5.2.5 and A.5.2.6 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G and 2B shall be used. The CPICH_RSCP of the best cell on the unused frequency shall be reported together with Event 2B reporting. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration message with activation time "now" with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 2B. The starting point of T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

Table A.5.2.4: General test parameters for TDD/FDD handover

Parar	Parameter		Value	Comment
DCH parameters			DL and UL Reference	As specified in TS 25.102 annex A and
			Measurement Channels 12.2 kbps	TS 25.101 annex A
Power	Control		On	
Initial	Active cell		Cell 1	TDD cell
conditions	Neighbour cell		Cell 2	FDD cell
Final condition	Active cell		Cell 2	FDD cell
(Ó		0	Cell individual offset. This value shall be used for all cells in the test.
Hyste	eresis	dB	3	Hysteresis parameter for event 2B
Time to	Time to Trigger		0	
Absolute thr	eshold used ency	dBm	-71	Applicable for Event 2B
Threshold frequ	non-used ency	dBm	-80	Applicable for Event 2B
	d frequency		1	Applicable for Event 2B
Filter co	efficient		0	
Monitored (cell list size		6 TDD neighbours on Channel 1 6 FDD neighbours on Channel 2	
T _{SI}		S	1.28	The value shall be used for all cells in the test.
Т	1	S	5	
Т	2	S	15	
T	3	S	5	

Table A.5.2.5: Cell 1 specific test parameters for TDD/FDD handover

Parameter	Unit	Cell 1					
Timeslot number			0		5		
		T1	T2	T3	T1	T2	T3
UTRA RF Channel Number(Note3		Channel 1					
PCCPCH_Ec/lor	dB	-3 n.a.					
DPCH_Ec/lor	dB	n.a.			Note 1		n.a.
OCNS_Ec/lor	dB		-3	-3 No		e 2	n.a.
\hat{I}_{or}/I_{oc}	dB	5	-	1	5		-1
PCCPCH RSCP	dBm	-68 -74 n.a.					
I_{oc}	dBm/ 1.28 MHz	-70					
Propagation Condition		AWGN					

The power of the OCNS channel that is added shall make the total power from the cell Note 2: to be equal to lor.

In the case of multi-frequency network, the UTRA RF Channel Number can be set for Note3:

the primary frequency in this test.

Table A.5.2.6: Cell 2 specific test parameters for TDD/FDD handover

Parameter	Unit	Cell 2				
		T1	T2	T3		
CPICH_Ec/lor	dB		-10			
PCCPCH_Ec/lor	dB		-12			
SCH_Ec/lor	dB		-12			
PICH_Ec/lor	dB	-15				
DPCH_Ec/lor	dB	n.a. Note 1				
OCNS_Ec/lor	dB	-0.9	941	Note 2		
CPICH_RSCP	dBm	-Inf		75		
\hat{I}_{or}/I_{oc}	dB	-Inf 5				
I_{oc}	dBm/ 3.84 MHz	-70				
Propagation Condition		AWGN				
Note 1: The DPCH level is controlled by the power control loop						

The power of the OCNS channel that is added shall make the total power from the cell to be equal to $I_{\rm or}$

A.5.2.2.2 **Test Requirements**

The UE shall start to transmit the UL DPCCH to Cell 2 less than 220 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.2.3 7.68 Mcps TDD option

A.5.2.3.1 Test purpose and Environment

The purpose of this test is to verify the requirement for the TDD/FDD handover delay in CELL_DCH state reported in section 5.2.2.1.

The test parameters are given in Table A.5.2.7, A.5.2.8 and A.5.2.9 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G and 2B shall be used. The CPICH_RSCP of the best cell on the unused frequency shall be reported together with Event 2B reporting. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration message with activation time "now" with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 2B. The starting point of T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

Table A.5.2.7: General test parameters for TDD/FDD handover

Parar	meter	Unit	Value	Comment		
DCH pai	DCH parameters		DL and UL Reference	As specified in TS 25.102 annex A.2.2		
			Measurement Channel 12.2 kbps	and TS 25.101 annex A		
Power	Control		On			
	lity value on CH	BLER	0.01			
Initial	Active cell		Cell 1	TDD cell		
conditions	Neighbour cell		Cell 2	FDD cell		
Final condition	Active cell		Cell 2	FDD cell		
Н	CS		Not used			
(0		0	Cell individual offset. This value shall be used for all cells in the test.		
Hyste	eresis	dB	3	Hysteresis parameter for event 2B		
Time to	Trigger	ms	0			
Absolute thr	eshold used lency	dBm	-71	Applicable for Event 2B		
	I non-used iency	dBm	-80	Applicable for Event 2B		
W non-used	d frequency		1	Applicable for Event 2B		
Filter co	efficient		0			
	Monitored cell list size		Ionitored cell list size		6 TDD neighbours on Channel 1 6 FDD neighbours on Channel 2	
Т	- SI	S	1.28	The value shall be used for all cells in the test.		
T	1	S	5			
Т	2	S	15			
T	3	S	5			

Table A.5.2.8: Cell 1 specific test parameters for TDD/FDD handover

Parameter	Unit	Cell 1					
DL timeslot number			0		2		
		T1	T2	T3	T1	T2	T3
UTRA RF Channel				Chani	ool 1		
Number				Criarii	iei i		
PCCPCH_Ec/lor	dB		-3			n.a.	
SCH_Ec/lor	dB	-9 n.a.					
SCH_t _{offset}	dB	0			n.a.		
DPCH_Ec/lor	dB		n.a.		Note 1		n.a.
OCNS_Ec/lor	dB		-3,12		Note 2		n.a.
\hat{I}_{or}/I_{oc}	dB	5	-	1	5	-	1
PCCPCH RSCP	dBm	-68	-7	' 4		n.a.	
	dBm/	·					
I_{oc}	7,68	-70					
	MHz						
Propagation Condition		AWGN					
Note 1: The DPCH level is controlled by the power control loop							

The power of the OCNS channel that is added shall make the total power from the cell to be equal to $I_{\rm or}$ Note 2:

Table A.5.2.9: Cell 2 specific test parameters for TDD/FDD handover

Parameter	Unit	Cell 2				
		T1, T2	T3			
CPICH_Ec/lor	dB	-10)			
PCCPCH_Ec/lor	dB	-12	2			
SCH_Ec/lor	dB	-12	2			
PICH_Ec/lor	dB	-15				
DPCH_Ec/lor	dB	n.a.	Note 1			
OCNS_Ec/lor	dB	-0.941	Note 2			
CPICH_RSCP	dBm	-83	-77			
\hat{I}_{or}/I_{oc}	dB	-3	3			
I_{oc}	dBm/7. 68 MHz	-70				
Propagation Condition		AWGN				
Note 1: The DPCH level is controlled by the power control loop						

The power of the OCNS channel that is added shall make the total power from the cell to be equal to $I_{\rm or}$

A.5.2.3.2 **Test Requirements**

The UE shall start to transmit the UL DPCCH to Cell 2 less than 220 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

TDD/GSM Handover A.5.3

A.5.3.1 Test Purpose and Environment

A.5.3.1.1 3.84 Mcps TDD option

The purpose of this test is to verify the requirement for the UTRA TDD to GSM handover delay reported in section 5.4.2.1.

The test parameters are given in Tables A.5.3.1, A.5.3.2 and A.5.3.3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 3C shall be used. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a HANDOVER FROM UTRAN COMMAND message with activation time "now" with one active cell, cell 2. The HANDOVER FROM UTRAN COMMAND message shall be sent to the UE during period T2. The starting point of T3 is defined as the end of the last TTI containing the HO command. In the GSM Handover command contained in this message, IE starting time shall not be included.

Cell 1 is a UTRA TDD cell and cell 2 is a GSM cell. The Beacon timeslot shall be transmitted in timeslot 0 for cell 1 and no second Beacon timeslot shall be provided for cell 1. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3.

Table A.5.3.1: General test parameters for TDD/GSM handover

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel	As specified in TS 25.102 section A.2.2
·		12.2 kbps	
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Initial conditions	Active cell	Cell 1	UTRA TDD cell
	Neighbour cell	Cell 2	GSM cell
Final condition	Active cell	Cell 2	GSM cell
Inter-RAT measurement quantity		GSM carrier RSSI	
BSIC verification required		Required	
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for Event 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		12 TDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	Measurement control information is sent before the start of time period T1.
T _{identify abort}	S	5	As specified in section 8.1.2.5
T _{reconfirm abort}	S	5	As specified in section 8.1.2.5
T1	S	10	
T2	S	10	
T3	S	10	

Table A.5.3.2: Cell 1 specific test parameters for TDD/GSM handover

Unit	Cell 1					
		0		1		
	T1	T2	T3	T1	T2	T3
			Chan	nol 1		
			Chan			
dB		-3			n.a.	
dB		-9			n.a.	
dB	0 n.a.					
dB	n.a.			Note 1		n.a.
dB		-3,12 Note 2		te 2	n.a.	
dB	6 6					
dBm	-68 n.a.					
dBm/	,					
3,84	-70					
MHz						
	AWGN					
	dB dB dB dB dB dB dBm dBm/ 3,84 MHz	dB d	T1 T2	0 T1 T2 T3 Channel Channel dB -3 dB -9 dB 0 dB n.a. dB -3,12 dB 6 dBm/ -68 dBm/ 3,84 MHz -7	0 T1 T2 T3 T1 Channel 1 dB -3 Channel 1 dB -9 Channel 1 dB -9 Channel 1 dB 0 Channel 1 dB -9 Channel 1 dB 0 Channel 1 dB 0	Image: Control of the contro

Note 1:

The DPCH level is controlled by the power control loop

The power of the OCNS channel that is added shall make the total power from the cell Note 2: to be equal to lor.

Table A.5.3.3: Cell 2 specific test parameters for TDD/GSM handover

Parameter	Unit	Cell 2		
Farameter	Onit	T1	T2, T3	
Absolute RF Channel		ARFCN 1		
Number				
RXLEV	dBm	-85	-75	

A.5.3.1.2 1.28Mcps TDD option

The purpose of this test is to verify the requirement for the UTRA TDD to GSM handover delay reported in section 5.3.2.

The test parameters are given in Tables A.5.3.4, A.5.3.5 and A.5.3.6 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 3C shall be used. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a HANDOVER FROM UTRAN COMMAND message with activation time "now" with one active cell, cell 2. The HANDOVER FROM UTRAN COMMAND message shall be sent to the UE during period T2. The starting point of T3 is defined as the end of the last TTI containing the HO command. In the GSM Handover command contained in this message, the IE starting time shall not be included.

Cell 1 is a UTRA TDD cell and cell 2 is a GSM cell.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

Table A.5.3.4: General test parameters for TDD/GSM handover

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel	As specified in TS 25.102 section A
		12.2 kbps	
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Initial conditions	Active cell	Cell 1	UTRA TDD cell
	Neighbour cell	Cell 2	GSM cell
Final condition	Active cell	Cell 2	GSM cell
Inter-RAT measurement quantity		GSM carrier RSSI	
BSIC verification required		Required	
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for Event 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		12 TDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	Measurement control information is sent before the start of time period T1.
Tidentify abort	S	5	As specified in section 8.1A.2.5
T _{reconfirm abort}	S	5	As specified in section 8.1A.2.5
T1	S	10	
T2	S	10	
T3	S	10	

Table A.5.3.5: Cell 1 specific test parameters for TDD/GSM handover

Parameter	Unit			Cel	11			
DL timeslot number			0			DwPTS		
		T1	T2	T3	T1	T2	Т3	
UTRA RF Channel Number (NOTE)		Channel 1						
PCCPCH_Ec/lor	dB		-3					
DwPCH_Ec/lor	dB 0							
OCNS_Ec/lor	dB		-3					
\hat{I}_{or}/I_{oc}	dB	5 5						
I_{oc}	dBm/ 1.28 -70 MHz							
Propagation Condition AWGN								
NOTE: In the case of mu the primary frequ		-frequency network,the UTRA RF Channel Number can be set for ncy in this test.						

Table A.5.3.6: Cell 2 specific test parameters for TDD/GSM handover

Parameter	Unit	Cell	2
Farameter	Onit	T1	T2, T3
Absolute RF Channel Number		ARFC	N 1
RXLEV	dBm	-85	-75

A.5.3.1.3 7.68 Mcps TDD option

The purpose of this test is to verify the requirement for the UTRA TDD to GSM handover delay reported in section 5.4.2.1.

The test parameters are given in Tables A.5.3.7, A.5.3.8 and A.5.3.9 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 3C shall be used. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a HANDOVER FROM UTRAN COMMAND message with activation time "now" with one active cell, cell 2. The HANDOVER FROM UTRAN COMMAND message shall be sent to the UE during period T2. The starting point of T3 is defined as the end of the last TTI containing the HO command. In the GSM Handover command contained in this message, IE starting time shall not be included.

Cell 1 is a UTRA TDD cell and cell 2 is a GSM cell. The Beacon timeslot shall be transmitted in timeslot 0 for cell 1 and no second Beacon timeslot shall be provided for cell 1. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3.

Table A.5.3.7: General test parameters for TDD/GSM handover

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Initial conditions	Active cell	Cell 1	UTRA TDD cell
	Neighbour cell	Cell 2	GSM cell
Final condition	Active cell	Cell 2	GSM cell
Inter-RAT		GSM carrier RSSI	
measurement			
quantity			
BSIC verification		Required	
required			
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for Event 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list		12 TDD neighbours on Channel 1	Measurement control information is
size		6 GSM neighbours including ARFCN 1	sent before the start of time period T1.
T _{identify abort}	S	5	As specified in section 8.1.2.5
T _{reconfirm abort}	S	5	As specified in section 8.1.2.5
T1	S	10	
T2	S	10	
T3	S	10	

Table A.5.3.8: Cell 1 specific test parameters for TDD/GSM handover

Unit	Cell 1							
		0		1				
	T1	T2	T3	T1	T2	Т3		
			Chan	nol 1				
			Criari	ilei i				
dB		-3			n.a.			
dB		-9			n.a.			
dB		0			n.a.			
dB		n.a.		No	te 1	n.a.		
dB		-3,12		No	te 2	n.a.		
dB		6			6			
dBm		-68			n.a.			
dBm/								
7,68	-70							
MHz								
	AWGN							
	dB dB dB dB dB dB dBm dBm/ 7,68 MHz	dB dB dB dB dB dB dB dBm dBm/ 7,68 MHz	T1 T2	0 T1 T2 T3 Channel Channel dB -3 dB -9 dB 0 dB n.a. dB -3,12 dB 6 dBm/ -68 dBm/ 7,68 MHz -7	0 T1 T2 T3 T1 Channel 1 dB -3 Channel 1 dB -9 Channel 1 dB -9 Channel 1 dB 0 Channel 1 dB -9 Channel 1 dB 0 Channel 1 dB 0	O 1 T1 T2 T3 T1 T2 Channel 1 Channel 1 Channel 1 Channel 1 dB -9 n.a. n.a. n.a. n.a. Note 1 dB n.a. Note 2 dB dB 6 dB dB n.a. dB dB n.a. dB dB n.a. dB dB dB n.a. dB dB <t< td=""></t<>		

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor.

Table A.5.3.9: Cell 2 specific test parameters for TDD/GSM handover

Parameter	Unit	Cell	2			
Farameter	Oilit	T1	T2, T3			
Absolute RF Channel		ADECN 4				
Number		ARFCN 1				
RXLEV	dBm	-85	-75			

A.5.3.2 Test Requirements

A.5.3.2.1 3.84 Mcps TDD option

The UE shall begin to send access bursts on the new DCCH of the target cell less than 90 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.3.2.2 1.28 Mcps TDD option

The UE shall begin to send access bursts on the new DCCH of the target cell less than 90 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.3.2.3 7.68 Mcps TDD option

The UE shall begin to send access bursts on the new DCCH of the target cell less than 90 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.4 Cell Re-selection in CELL_FACH

A.5.4.1 3.84 Mcps TDD option

A.5.4.1.1 Scenario 1: Re-selection to intra-frequency TDD cell

A.5.4.1.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state in the single carrier case reported in section 5.4.2.1.1. The test parameters are given in Tables A.5.4.1 to A.5.4.4.

Table A.5.4.1: General test parameters for Cell Re-selection in CELL_FACH

i i	Parameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXI	PWR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
	Qrxlevmin	dBm	-102	The value shall be used for all cells in the test.
	ervice Class (ASC#0) rsistence value	-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T_{SI}	S	1,28	The value shall be used for all cells in the test.
	T1	S	15 (initial), 5 (repetition)	
	T2	s	5	

Table A.5.4.2: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	Kbps	24,4
Channel symbol rate	Ksps	12,2
Slot Format #	-	0
Frame allocation	-	Continuous frame allocation
Midamble allocation	-	Default Midamble

Table A.5.4.3: Transport channel parameters for S-CCPCH

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	20 ms
Type of Error Protection	Convolutional Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16

Table A.5.4.4: Cell specific test parameters for Cell Re-selection in CELL_FACH

Parameter	Unit		Ce	II 1			Cell 2			Cell 3			
Timeslot Number		(0 8		0		8		0		8		
		T1	T1 T2 T1 T2			T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Char	nel 1		Channel 1				Channel 1			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0 0 0 0				5	5	5	10	10	10	10
PICH_Ec/lor	dB		-3 -3					-3	-3			-3	-3

OCNS_Ec/lor	dB	-3,12	240 240 240 240 240 240 240 240 240							-3,12	-3,12	-3,12	
			·	,	-3,12	-3,12	-3,12		-3,12				,
\hat{I}_{or}/I_{oc}	dB	_	9 7 9 7			7	9	7	9	-1	-1	-1	-1
PCCPCH RSCP	dBm	-64	-66			-66	-64			-74	-74		
		C1	, C2: 0;		3:0;	C2	, C1: 0;		3:0;	C3		C3, C2	2:0;
Qoffset1 _{s,n}	dB		C1,0				C2,0					C4:0	
		С	1, C5:0		3:0	C2	c, C5: 0	; C2, C	6:0	C3	3, C5: 0	; C3, C	6:0
Qhyst1 _s	dB		(()	
Treselection			(()			()	
Sintrasearch	dB		not	sent			not :	sent			not	sent	
FACH measurement			not	sent			not	sent			not	sent	
occasion info			HOU.	36111			1100	36111			HOU	SCIIL	
	dBm/												
I_{oc}	3,84						-7	70					
	MHz												
Propagation							AW	GN					
Condition						1				1			
			Ce				Се			Cell 6			
Timeslot)		3)		3)		3
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel			Chan	nel 1		Channel 1				Channel 1			
Number		_			1	<u> </u>						1	
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
		C4	, C1: 0;	C4, C2	2:0;	C5	, C1: 0;	C5, C2	2:0;	C6		C6, C2	2:0;
Qoffset1 _{s,n}	dB	C4,0	C3:0 C4	l, C5:0;	C4,		C5,0	C3:0			C6,0	C3:0	
·			C	6:0		C5	5, C4:0;	C5, C6	6:0	C	6, C4:0;	C6, C5	5:0
Qhyst1 _s	dB		(()			()	
Treselection			()			()			()	
Sintrasearch	dB		not	sent			not :	sent			not	sent	
FACH measurement		not cont not cont not cont											
occasion info		not sent not sent not sent											
	dBm/												
I_{oc}	3,84	-70											
	MHz												
Propagation			AWGN										
Condition			AVVGIN										

NOTE: S-CCPCH shall not be located in TS0.

A.5.4.1.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the CELL UPDATE message with cause value "cell reselection" in cell 2.

The cell re-selection delay shall be less than 2,5 s.

The rate of correct cell re-selections observed during repeated tests shall be at least 90%.

A.5.4.1.2 Scenario 2: Re-selection to inter-frequency TDD cell

A.5.4.1.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state in the multi carrier case reported in section 5.4.2.1.2. The test parameters are given in Tables A.5.4.5 to A.5.4.8.

Table A.5.4.5: General test parameters for Cell Re-selection in CELL_FACH

F	Parameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXF	PWR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
	Qrxlevmin	dBm	-102	The value shall be used for all cells in the test.
	ervice Class (ASC#0) rsistence value	-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1,28	The value shall be used for all cells in the test.
	T1	S	15 (initial), 5 (repetition)	
	T2	S	5	

Table A.5.4.6: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	Kbps	24,4
Channel symbol rate	Ksps	12,2
Slot Format #	-	0
Frame allocation	-	Continuous frame allocation
Midamble allocation	-	Default Midamble

Table A.5.4.7: Transport channel parameters for S-CCPCH

Parameter	FACH				
Transport Channel Number	1				
Transport Block Size	240				
Transport Block Set Size	240				
Transmission Time Interval	20 ms				
Type of Error Protection	Convolutional Coding				
Coding Rate	1/2				
Rate Matching attribute	256				
Size of CRC	16				

Table A.5.4.8: Cell specific test parameters for Cell Re-selection in CELL_FACH

Parameter	Unit		Ce	II 1		Cell 2				Cell 3			
Timeslot Number		0 8			0 8			0 8					
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Channel 1				Channel 2				Channel 1			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	9	3	9	3	3	9	3	9	-1	-1	-1	-1
PCCPCH RSCP dBm		-64	-70			-70	-64			-74	-74		
Qoffset1 _{s,n}	dB	C1, C2: 0; C1, C3:0; C1,C4:0 C1, C5:0; C1,C6:0				C2, C1: 0; C2, C3:0; C2,C4:0 C2, C5: 0; C2, C6:0				C3, C1: 0; C3, C2:0; C3,C4:0 C3, C5: 0; C3, C6:0			
Qhyst1 _s	dB		()			()			()	
Treselection			()			()			()	
Sintrasearch	dB		not	sent			not :	sent			not	sent	
Sintersearch	dB		not	sent			not :	sent			not	sent	
FACH measurement occasion info			not	sent			not	sent			not	sent	
Inter-frequency TDD measurement indicator		TRUE					TR	UE		TRUE			
I_{oc}	dBm/ 3,84 MHz		-70										
Propagation Condition							AW						
			Ce			Cell 5				Cell 6			
Timeslot		()			()		3	(0	8	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		T1	T2 Chan	T1 inel 1	T2	T1	T2 Chan	T1 nel 2	T2	T1		T1 nnel 2	12
Number	dB		Chan		T2		Chan		T2		Char		12
Number PCCPCH_Ec/lor	dB dB	-3	Chan	nel 1		-3	l	nel 2		-3	Char	nel 2	
Number PCCPCH_Ec/lor SCH_Ec/lor	dB dB	-3	Chan -3 -9	nel 1 -9	-9		Chan -3 -9	nel 2 -9	-9	-3 -9	Char -3 -9	nnel 2 -9	-9
Number PCCPCH_Ec/lor SCH_Ec/lor SCH_toffset	dB	-3	Chan	-9 15	-9 15	-3	Chan	-9 20	-9 20	-3	Char	-9 25	-9 25
Number PCCPCH_Ec/lor SCH_Ec/lor SCH_t _{offset} PICH_Ec/lor	dB dB	-3 -9 15	-3 -9 15	-9 15 -3	-9 15 -3	-3 -9 20	Chan -3 -9 20	-9 20 -3	-9 20 -3	-3 -9 25	Char -3 -9 25	-9 25 -3	-9 25 -3
Number PCCPCH_Ec/lor SCH_Ec/lor SCH_t _{offset} PICH_Ec/lor OCNS_Ec/lor	dB	-3	Chan -3 -9	-9 15	-9 15	-3	Chan -3 -9	-9 20	-9 20	-3 -9	Char -3 -9	-9 25	-9 25
$\begin{array}{c} \text{Number} \\ \text{PCCPCH_Ec/lor} \\ \text{SCH_Ec/lor} \\ \text{SCH_toffset} \\ \text{PICH_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \\ \hat{I}_{or}/I_{oc} \end{array}$	dB dB dB	-3 -9 15	-3 -9 15	-9 15 -3 -3,12	-9 15 -3 -3,12	-3 -9 20	Chan -3 -9 20	-9 20 -3 -3,12	-9 20 -3 -3,12	-3 -9 25 -3,12	Char -3 -9 25	-9 25 -3 -3,12	-9 25 -3 -3,12
Number PCCPCH_Ec/lor SCH_Ec/lor SCH_t _{offset} PICH_Ec/lor OCNS_Ec/lor	dB dB dB	-3 -9 15 -3,12 -1 -74 C4	Chan -3 -9 15 -3,12 -1	-9 15 -3 -3,12 -1 C4, C2	-9 15 -3 -3,12 -1	-3 -9 20 -3,12 -1 -74 C5	Chan -3 -9 20 -3,12 -1	-9 20 -3 -3,12 -1 C5, C2	-9 20 -3 -3,12 -1	-3 -9 25 -3,12 -1 -74	Char -3 -9 25 -3,12 -1 -74 , C1: 0;	-9 25 -3 -3,12 -1 C6, C2	-9 25 -3 -3,12 -1
$\begin{array}{c} \text{Number} \\ \text{PCCPCH_Ec/lor} \\ \text{SCH_Ec/lor} \\ \text{SCH_t}_{\text{offset}} \\ \text{PICH_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \hat{I}_{or}/I_{oc} \\ \text{PCCPCH RSCP} \\ \end{array}$	dB dB dB dB dB dB dBm	-3 -9 15 -3,12 -1 -74 C4	Chan -3 -9 15 -3,12 -1 -74 , C1: 0;	-9 15 -3 -3,12 -1 C4, C2 1, C5:0;	-9 15 -3 -3,12 -1	-3 -9 20 -3,12 -1 -74 C5	Chan -3 -9 20 -3,12 -1 -74 , C1: 0; C5,(-9 20 -3 -3,12 -1 C5, C2 C3:0 C5, C6	-9 20 -3 -3,12 -1	-3 -9 25 -3,12 -1 -74	Char -3 -9 25 -3,12 -1 -74 , C1: 0; C6,6 6, C4:0;	-9 25 -3 -3,12 -1 C6, C2	-9 25 -3 -3,12 -1
$\begin{array}{c} \text{Number} \\ \text{PCCPCH_Ec/lor} \\ \text{SCH_Ec/lor} \\ \text{SCH_t}_{\text{offset}} \\ \text{PICH_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \hline \hat{I}_{or}/I_{oc} \\ \text{PCCPCH RSCP} \\ \\ \text{Qoffset1}_{\text{s,n}} \\ \\ \text{Qhyst1}_{\text{s}} \end{array}$	dB dB dB dB	-3 -9 15 -3,12 -1 -74 C4	Chan -3 -9 15 -3,12 -1 -74 , C1: 0; C3:0 C4	-9 15 -3 -3,12 -1 C4, C2 1, C5:0;	-9 15 -3 -3,12 -1	-3 -9 20 -3,12 -1 -74 C5	Chan -3 -9 20 -3,12 -1 -74 , C1: 0; C5,0,5, C4:0;	-9 20 -3 -3,12 -1 C5, C2 C3:0 C5, C6	-9 20 -3 -3,12 -1	-3 -9 25 -3,12 -1 -74	Char -3 -9 25 -3,12 -1 -74 , C1: 0; C6,6 6, C4:0;	-9 25 -3 -3,12 -1 C6, C2 C3:0 C6, C5	-9 25 -3 -3,12 -1
$\begin{array}{c} \text{Number} \\ \text{PCCPCH_Ec/lor} \\ \text{SCH_Ec/lor} \\ \text{SCH_t}_{\text{offset}} \\ \text{PICH_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \hline \hat{I}_{or}/I_{oc} \\ \text{PCCPCH RSCP} \\ \\ \text{Qoffset1}_{\text{s,n}} \\ \\ \text{Chyst1}_{\text{s}} \\ \text{Treselection} \\ \end{array}$	dB dB dB dB dB dB dBm	-3 -9 15 -3,12 -1 -74 C4	Chan -3 -9 15 -3,12 -1 -74 , C1: 0; C3: 0 C4	-9 15 -3 -3,12 -1 -1 C4, C2 1, C5:0; 6:0	-9 15 -3 -3,12 -1	-3 -9 20 -3,12 -1 -74 C5	Chan -3 -9 20 -3,12 -1 -74 , C1: 0; C5,6, C4:0;	-9 20 -3 -3,12 -1 C5, C2 C3:0 C5, C6	-9 20 -3 -3,12 -1	-3 -9 25 -3,12 -1 -74	Char -3 -9 25 -3,12 -1 -74 , C1: 0; C6,6 6, C4:0;	-9 25 -3 -3,12 -1 C6, C2 C3:0 C6, C5	-9 25 -3 -3,12 -1
$\begin{array}{c} \text{Number} \\ \text{PCCPCH_Ec/lor} \\ \text{SCH_Ec/lor} \\ \text{SCH_t}_{\text{offset}} \\ \text{PICH_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \hline \hat{I}_{or}/I_{oc} \\ \text{PCCPCH RSCP} \\ \\ \text{Qoffset1}_{\text{s,n}} \\ \\ \text{Qhyst1}_{\text{s}} \end{array}$	dB dB dB dB dB dB dB dB	-3 -9 15 -3,12 -1 -74 C4	Chan -3 -9 15 -3,12 -1 -74 , C1: 0; C3: 0 C4	-9 15 -3 -3,12 -1 C4, C2 1, C5:0; 6:0)	-9 15 -3 -3,12 -1	-3 -9 20 -3,12 -1 -74 C5	Chan -3 -9 20 -3,12 -1 -74 , C1: 0; C5,6, C4:0;	-9 20 -3 -3,12 -1 C5, C2 C3:0 C5, C6)	-9 20 -3 -3,12 -1	-3 -9 25 -3,12 -1 -74	Char -3 -9 25 -3,12 -1 -74 , C1: 0; C6,6 6, C4:0;	-9 25 -3 -3,12 -1 C6, C2 C3:0 C6, C5	-9 25 -3 -3,12 -1
$\begin{array}{c} \text{Number} \\ \text{PCCPCH_Ec/lor} \\ \text{SCH_Ec/lor} \\ \text{SCH_toffset} \\ \text{PICH_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \hline \\ \hat{I}_{or}/I_{oc} \\ \text{PCCPCH RSCP} \\ \\ \text{Qoffset1}_{s,n} \\ \hline \\ \text{Chyst1}_{s} \\ \text{Treselection} \\ \text{Sintrasearch} \\ \text{Sintersearch} \\ \text{FACH measurement} \end{array}$	dB dB dB dB dB dBm dB	-3 -9 15 -3,12 -1 -74 C4	Chan -3 -9 15 -3,12 -1 -74 , C1: 0; C3: 0 C4 (not i	-9 15 -3 -3,12 -1 -1 C4, C2 1, C5:0; 6:0	-9 15 -3 -3,12 -1	-3 -9 20 -3,12 -1 -74 C5	Chan -3 -9 20 -3,12 -1 -74 , C1: 0; C5, C4:0; (not:	-9 20 -3 -3,12 -1 C5, C2 C3:0 C5, C6	-9 20 -3 -3,12 -1	-3 -9 25 -3,12 -1 -74	Char -3 -9 25 -3,12 -1 -74 , C1: 0; C6, C4:0; (not not	-9 25 -3 -3,12 -1 C6, C2 C3:0 C6, C5	-9 25 -3 -3,12 -1
$\begin{array}{c} \text{Number} \\ \text{PCCPCH_Ec/lor} \\ \text{SCH_Ec/lor} \\ \text{SCH_t}_{\text{offset}} \\ \text{PICH_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \hline \hat{I}_{or}/I_{oc} \\ \text{PCCPCH RSCP} \\ \\ \text{Qoffset1}_{\text{s,n}} \\ \hline \text{Treselection} \\ \text{Sintrasearch} \\ \text{Sintersearch} \end{array}$	dB dB dB dB dB dB dB	-3 -9 15 -3,12 -1 -74 C4	Chan -3 -9 15 -3,12 -1 -74 , C1: 0; C3: 0 C4 (not i	-9 15 -3 -3,12 -1 -1 C4, C2 1, C5:0; 3:0)) sent sent	-9 15 -3 -3,12 -1	-3 -9 20 -3,12 -1 -74 C5	Chan -3 -9 20 -3,12 -1 -74 , C1: 0; C5, C4:0; (not:	-9 20 -3 -3,12 -1 C5, C2 C3:0 C5, C6 O) seent seent	-9 20 -3 -3,12 -1	-3 -9 25 -3,12 -1 -74	Char -3 -9 25 -3,12 -1 -74 , C1: 0; C6, C4:0; (not not	-9 25 -3 -3,12 -1 C6, C2 C3:0 C6, C5 C9 sent sent	-9 25 -3 -3,12 -1
$\begin{array}{c} \text{Number} \\ \text{PCCPCH_Ec/lor} \\ \text{SCH_Ec/lor} \\ \text{SCH_toffset} \\ \text{PICH_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \hline \hat{I}_{or}/I_{oc} \\ \text{PCCPCH RSCP} \\ \\ \text{Qoffset1s,n} \\ \\ \text{Treselection} \\ \text{Sintrasearch} \\ \text{Sintersearch} \\ \text{FACH measurement} \\ \text{occasion info} \\ \\ \text{Inter-frequency TDD} \\ \text{measurement} \\ \text{indicator} \\ \\ I_{oc} \\ \end{array}$	dB dB dB dB dB dB dB dB	-3 -9 15 -3,12 -1 -74 C4	Chan -3 -9 15 -3,12 -1 -74 , C1: 0; C3: 0 C4 () () () () () () () () () () () () ()	-9 15 -3 -3,12 -1 -1 C4, C2 1, C5:0; 3:0)) sent sent	-9 15 -3 -3,12 -1	-3 -9 20 -3,12 -1 -74 C5	Chan -3 -9 20 -3,12 -1 -74 , C1: 0; C5,6, C4:0; (not: not:	-9 20 -3 -3,12 -1 C5, C2 C3:0 C5, C6 O) seent seent	-9 20 -3 -3,12 -1	-3 -9 25 -3,12 -1 -74	Char -3 -9 25 -3,12 -1 -74 , C1: 0; C6,6 6, C4:0; (not not	-9 25 -3 -3,12 -1 C6, C2 C3:0 C6, C5 C9 sent sent	-9 25 -3 -3,12 -1
Number PCCPCH_Ec/lor SCH_Ec/lor SCH_toffset PICH_Ec/lor OCNS_Ec/lor Îor/Ioc PCCPCH RSCP Qoffset1s,n Qhyst1s Treselection Sintrasearch Sintersearch FACH measurement occasion info Inter-frequency TDD measurement indicator	dB d	-3 -9 15 -3,12 -1 -74 C4,0	Chan -3 -9 15 -3,12 -1 -74 , C1: 0; C3: 0 C2 C6 (not: not:	-9 15 -3 -3,12 -1 C4, C2 4, C5:0; 5:0)) sent sent UE	-9 15 -3 -3,12 -1	-3 -9 20 -3,12 -1 -74 C5	Chan -3 -9 20 -3,12 -1 -74 , C1: 0; C5,6, C4:0; (not: not:	-9 20 -3 -3,12 -1 C5, C2 C3:0 C5, C6 C5, C6 C5 C5 C5 C7 C5 C7	-9 20 -3 -3,12 -1	-3 -9 25 -3,12 -1 -74	Char -3 -9 25 -3,12 -1 -74 , C1: 0; C6,6 6, C4:0; (not not	-9 25 -3 -3,12 -1 C6, C2 C3:0 C6, C5 C9 sent sent	-9 25 -3 -3,12 -1

A.5.4.1.2.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the CELL UPDATE message with cause value "cell reselection" in cell 2.

The cell re-selection delay shall be less than 3 s.

The rate of correct cell re-selections observed during repeated tests shall be at least 90%.

A.5.4.2 1.28 Mcps TDD option

A.5.4.2.1 Re-selection to intra-frequency TDD cell

A.5.4.2.1.1 Test purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state in the case reported in section 5.4.3.2.1.

The test parameters are given in Tables A.5.4.9to A.5.4.12

Table A.5.4.9: General test parameters for Cell Re-selection in CELL_FACH

	Parameter	Unit	Value	Comment		
initial Active cell			Cell1			
condition	condition Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6			
final condition	Active cell		Cell2			
	HCS		Not used			
UE_	UE_TXPWR_MAX_RACH		UE_TXPWR_MAX_RACH dE		21	The value shall be used for all cells in the test.
	Qrxlevmin	dBm	-103	The value shall be used for all cells in the test.		
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.		
T _{SI}		S	1.28	The value shall be used for all cells in the test.		
	T1	S	15 (initial), 5 (repetition)			
	T2	S	5			

Table A.5.4.10: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	kbps	35.2
Channel symbol rate	ksps	17.6
Slot Format #	-	0; 2
Frame allocation	-	Continuous frame allocation
Midamble allocation	-	Common Midamble

Table A.5.4.11: Transport channel parameters for S-CCPCH

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	20 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16

Table A.5.4.12: Cell specific test parameters for Cell Re-selection in CELL_FACH

Parameter	Unit	Cell 1				Cell 2				Cell 3			
Timeslot Number		0 DWPTS			()	DW	PTS	0 DWP		PTS		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number (NOTE 2)			Channel 1			Chan	nel 1		Channel 1				
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0			0	0			0	0
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	10	7	10	7	7	10	7	10	-1	-1	-1	-1
PCCPCH RSCP	dBm	-63	-66			-66	-63			-74	-74		
Qoffset1 _{s,n}	dB			C3:0; C1 ; C1,C6:			: 0; C2, C 2, C5: 0				: 0; C3, 0 C3, C5: 0		
Qhyst1 _s	dB		()			()				0	
Treselection			()			()			()	
Sintrasearch	dB		not	sent			not :	sent			not	sent	
FACH measurement occasion info			not sent not sent				not sent						
00003101111110		Cell 4		Cell 5			Cell 6						
Timeslot		()		PTS	0 DWPTS			0 DWPT			PTS	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number (NOTE 2)				nel 1	I.	Channel 1			Channel 1				
PCCPCH Ec/lor	dB	-3	-3			-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0	- J		0	0			0	0
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
Qoffset1 _{s,n}	dB			C2:0; C4 C4, C6:		C5, C1: 0; C5, C2:0; C5,C3:0 C5, C4:0; C5, C6:0			C6, C1: 0; C6, C2:0; C6,C3:0 C6, C4:0; C6, C5:0				
Qhyst1 _s	dB)		0				0			
Treselection			()			0)	
Sintrasearch dB			not	sent		not sent				not sent			
FACH measurement occasion info		not sent			not sent				not sent				
I_{oc}	dBm/1. 28 MHz		-70										
Propagation Condition			AWGN										

NOTE 1: S-CCPCH is located in an other downlink TS than TS0.

NOTE 2: In the case of multi-frequency network, the UTRA RF Channel Number is the primary frequency"s channel number.

A.5.4.2.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send SYNCH-UL sequence in the UpPTS for sending the CELL UPDATE message with cause value "cell reselection" in cell 2.

The cell re-selection delay shall be less than 1.6 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE:

The cell re-selection delay can be expressed as:

$$T_{\text{reselection, intra}} = T_{\text{Measurement Period Intra}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

where:

 $T_{\text{Measurement Period Intra}} \quad \text{Specified in 8.4A.2.2.2 gives 200ms for this test case.}$

Time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms). 1280 ms is assumed in this test case.

 T_{RA} The additional delay caused by the random access procedure described in TS25.224. In this test case the persistence value is 1 thus T_{RA} is set to 35ms in the test case.

This gives a total of 1.545s, allow 1.6s in the test case.

A.5.4.2.2 Re-selection to inter-frequency TDD cell

A.5.4.2.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state in section 5.4.3.2.2. The test parameters are given in Tables A.5.4.13 to A.5.4.16

Table A.5.4.13: General test parameters for Cell Re-selection in CELL_FACH

	Parameter		Parameter		Value	Comment		
initial	Active cell		Cell1					
condition	Neighbour cells		Cell2, Cell3, Cell4, Cell5, Cell6					
final condition	Active cell Cell2		Cell2					
	HCS		Not used					
UE_	UE_TXPWR_MAX_RACH		UE_TXPWR_MAX_RACH de		_TXPWR_MAX_RACH dBm 21		21	The value shall be used for all cells in the test.
	Qrxlevmin dBm		-103	The value shall be used for all cells in the test.				
	s Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.				
	T _{SI}		1.28	The value shall be used for all cells in the test.				
	T1	S	15 (initial), 5 (repetition)					
	T2	S	5					

Table A.5.4.14: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	kbps	35.2
Channel symbol rate	ksps	17.6
Slot Format #	-	0; 2
Frame allocation	-	Continuous frame allocation
Midamble allocation	-	Common Midamble

Table A.5.4.15: Transport channel parameters for S-CCPCH

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	20 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16

Table A.5.4.16: Cell specific test parameters for Cell re-selection in CELL_FACH state

Parameter	Unit		Ce		Се	II 2		Cell 3							
Timeslot Number		()	DW	PTS	()		PTS	0 DWPTS					
		T1 T2 T1 T2				T1	T2	T1	T2	T1	T2	T1	T2		
UTRA RF Channel Number (NOTE 2)		Channel 1					Channel 2				Channel 1				
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3				
DwPCH_Ec/lor	dB			0	0			0	0			0	0		
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3				
\hat{I}_{or}/I_{oc}	dB	10	4	10	4	4	10	4	10	-1	-1	-1	-1		
PCCPCH RSCP	dBm	-63	-69			-69	-63			-74	-74				
Qoffset1 _{s,n}	dB		2: 0; C1, C1, C5:0;				: 0; C2, C C2, C5: 0			ŕ	: 0; C3, 0 C3, C5: 0	ŕ			
Qhyst1 _s	dBm		()			(0			
Treselection	S		()			()			(0			
Sintrasearch	dB		not :	sent			not	sent			not	sent			
Sintersearch	dB		not :	sent			not	sent			not	sent			
FACH measurement occasion info			not :	sent			not	sent			not	sent			
FACH measurement occasion cycle length			2	1			4	1			4	4			
Inter-frequency TDD measurement indicator			TR	UE			TRUE				TRUE				
Inter-frequency FDD measurement indicator		FALSE				FALSE				FALSE					
			Cell 4			Cell 5			Cell 6						
Timeslot		()	DW	PTS	()	DW	PTS	0 DWPTS			PTS		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2		
UTRA RF Channel Number (NOTE 2)			Chan	nel 1			Char	nel 2			Char	nnel 2			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3				
DwPCH_Ec/lor	dB			0	0			0	0			0	0		
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3				
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74				
Qoffset1 _{s,n}	dB		1: 0; C4, C4, C5:0;			C5, C1: 0; C5, C2:0; C5,C3:0 C5, C4:0; C5:C6:0				C6, C1: 0; C6, C2:0; C6,C3:0 C6, C4:0; C6:C5:0					
Qhyst1 _s	dB		(0			0					
Treselection	S		(0				0					
Sintrasearch	dB		not :					sent				sent			
Sintersearch FACH measurement	dB		not :					sent sent				sent sent			
occasion info FACH measurement															
occasion cycle length Inter-frequency TDD				}		4					4				
measurement indicator		TRUE			TRUE				TRUE						
Inter-frequency FDD measurement indicator			FAL	_SE		FALSE				FALSE					
I_{oc}	dBm/ 1.28 MHz					•	-7	70		•					
Propagation Condition	1		AWGN												

NOTE 1: S-CCPCH is located in an other downlink TS than TS0.

NOTE 2: In the case of multi-frequency network, the UTRA RF Channel Number is the primary frequency schannel number.

A.5.4.2.2.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send SYNCH-UL sequence in the UpPTS for sending the CELL UPDATE message with cause value "cell reselection" in cell 2.

The cell re-selection delay shall be less than 2 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

$$T_{\text{reselection, inter}} = T_{\text{measurement inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms,}$$

where:

T_{measurement inter} is specified in 8.4A.2.3.2 gives 480ms for this test case.

T_{SI} Time required for receiving all the relevant system information data according to the reception

procedure and the RRC procedure delay of system information blocks defined in 25.331 for a

UTRAN cell (ms). 1280 ms is assumed in this test case.

 T_{RA} The additional delay caused by the random access procedure described in TS25.224. In this test

case the persistence value is 1 thus T_{RA} is set to 35ms in the test case.

This gives a total of 1.825s, allow 1.9s in the test case.

A.5.4.3 7.68 Mcps TDD option

A.5.4.3.1 Scenario 1: TDD/TDD cell re-selection single carrier case

A.5.4.3.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state in the single carrier case reported in section 5.4.4.1.1. The test parameters are given in Tables A.5.4.17 to A.5.4.20.

Table A.5.4.17: General test parameters for Cell Re-selection in CELL_FACH

i i	Parameter	Unit	Value	Comment
Initial Active cell			Cell1	
condition	condition Neighbour cells (Cell2, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXI	PWR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
	Qrxlevmin	dBm	-102	The value shall be used for all cells in the test.
	ervice Class (ASC#0) rsistence value	-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}		1,28	The value shall be used for all cells in the test.
	T1	S	15 (initial), 5 (repetition)	
	T2	S	5	

Table A.5.4.18: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	Kbps	24,4
Channel symbol rate	Ksps	12,2
Slot Format #	-	0
Frame allocation	-	Continuous frame allocation
Midamble allocation	-	Default Midamble

Table A.5.4.19: Transport channel parameters for S-CCPCH

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	20 ms
Type of Error Protection	Convolutional Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16

Table A.5.4.20: Cell specific test parameters for Cell Re-selection in CELL_FACH

Parameter	Unit	Cell 1					Ce	II 2		Cell 3				
Timeslot Number		()	8		0 8		3	0		8			
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Channel 1				Char	nnel 1		Channel 1				
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	

OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12		
\hat{I}_{or}/I_{oc}	dB	9	7	9	7	7	9	7	9	-1	-1	-1	-1		
PCCPCH RSCP	dBm	-64	-66			-66	-64			-74	-74				
Qoffset1 _{s,n}	dB			C3:0; C ²); C1,C6:				C3:0; C2; C2, C6:			C3, C1: 0; C3, C2:0; C3,C4:0 C3, C5: 0; C3, C6:0				
Qhyst1 _s	dB		(0			(0			(0			
Treselection			(0			(0			()			
Sintrasearch	dB		not	sent			not	sent			not	sent			
FACH measurement occasion info			not	sent			not	sent			not	sent			
I_{oc}	dBm/7, 68 MHz							70							
Propagation Condition							AW	'GN							
			Ce	11 4			Ce	II 5			Ce	Cell 6			
Timeslot			0 8				0		3		0		8		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2		
UTRA RF Channel Number			Char	nnel 1			Channel 1				Char	nnel 1			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3				
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9		
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25		
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3		
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12		
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74				
Qoffset1 _{s,n}	dB			C2:0; C4; C4; C6:				C2:0; C5; C5; C6:		C6, C1: 0; C6, C2:0; C6,C3:0 C6, C4:0; C6, C5:0					
Qhyst1 _s	dB		(0			(0			()			
Treselection			(0			(0			()			
Sintrasearch	dB		not	sent		not sent					not	sent			
FACH measurement occasion info			not	sent		not sent				not sent					
I_{oc}	dBm/7, 68 MHz					•	-7	70		•					
Propagation Condition			AWGN												

NOTE: S-CCPCH shall not be located in TS0.

A.5.4.3.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the CELL UPDATE message with cause value "cell reselection" in cell 2.

The cell re-selection delay shall be less than 2,5 s.

The rate of correct cell re-selections observed during repeated tests shall be at least 90%.

A.5.4.3.2 Scenario 2: TDD/TDD cell re-selection multi carrier case

A.5.4.1.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state in the multi carrier case reported in section 5.4.4.1.2. The test parameters are given in Tables A.5.4.21 to A.5.4.24.

Table A.5.4.21: General test parameters for Cell Re-selection in CELL_FACH

i	Parameter	Unit	Value	Comment		
Initial	Active cell		Cell1			
condition	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6			
Final condition	Active cell		Cell2			
	HCS		HCS		Not used	
UE_TXI	PWR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.		
	Qrxlevmin	dBm	-102	The value shall be used for all cells in the test.		
	ervice Class (ASC#0) rsistence value	-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.		
	T _{SI}	S	1,28	The value shall be used for all cells in the test.		
	T1	S	15 (initial), 5 (repetition)			
	T2	S	5			

Table A.5.4.22: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	Kbps	24,4
Channel symbol rate	Ksps	12,2
Slot Format #	-	0
Frame allocation	-	Continuous frame allocation
Midamble allocation	-	Default Midamble

Table A.5.4.23: Transport channel parameters for S-CCPCH

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	20 ms
Type of Error Protection	Convolutional Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16

Table A.5.4.24: Cell specific test parameters for Cell Re-selection in CELL_FACH

Parameter	Unit	Cell 1					Ce	II 2		Cell 3					
Timeslot Number		()	3	3	()	3	3	()	3	3		
		T1	T2	T1	T2	T1	T2 T1 T2			T1 T2 T1 T2			T2		
UTRA RF Channel Number			Chan	nel 1			Chan	nel 2		Channel 1					
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3				
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9		
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10		
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3		
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12		
\hat{I}_{or}/I_{oc}	dB	9	3	9	3	3	9	3	9	-1	-1	-1	-1		
PCCPCH RSCP	dBm	-64	-70			-70	-64			-74	-74				
Qoffset1 _{s,n}	dB			C3:0; C1 ; C1,C6:				C3:0; C2 ; C2, C6:				C2:0; C3; ; C3, C6:			
Qhyst1 _s	dB		()			()			()			
Treselection			()			()			()			
Sintrasearch	dB		not :	sent			not :	sent			not	sent			
Sintersearch	dB		not	sent			not :	sent			not	sent			
FACH measurement occasion info			not	sent			not	sent			not	sent			
Inter-frequency TDD measurement indicator			TRUE				TRUE				TRUE				
I_{oc}	dBm/ 7,68 MHz						-7	70							
Propagation Condition							AW	'GN							
				II 4			Ce				Ce				
Timeslot)	8)	8)	3	-		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2		
UTRA RF Channel Number			Chan	nel 1		Channel 2				Channel 2					
PCCPCH_Ec/lor	dB	-3	-3			-3 -3				-3	-3				
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9		
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25		
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3		
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12		
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74				
Qoffset1 _{s,n}	dB			C2:0; C4 C4, C6:				C2:0; C5 C5, C6:		C6, C1: 0; C6, C2:0; C6,C3:0 C6, C4:0; C6, C5:0					
Qhyst1 _s	dB)))			
Treselection			()			()			()			
Sintrasearch						not sent				0 not sent					
1	dB		not	sent			not :	not sent				not sent not sent			
Sintersearch	dB dB			sent sent											
FACH measurement			not				not				not				
FACH	dB		not :	sent			not :	sent			not :	sent			
FACH measurement occasion info Inter-frequency TDD measurement			not :	sent sent			not :	sent sent			not :	sent sent			

NOTE: S-CCPCH shall not be located in TS0.

A.5.4.3.2.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the CELL UPDATE message with cause value "cell reselection" in cell 2.

The cell re-selection delay shall be less than $3\ \mathrm{s}.$

The rate of correct cell re-selections observed during repeated tests shall be at least 90%.

A.5.5 Cell Re-selection in CELL PCH

A.5.5.1 Scenario 1: Re-selection to intra-frequency TDD cell

A.5.5.1.1 Test Purpose and Environment

A.5.5.1.1.1 3.84Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in CELL_PCH state in section 5.5.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.5.1 and A.5.5.2.

Table A.5.5.1: General test parameters for Cell Re-selection to intra-frequency cell

	Parameter	Unit	Value	Comment				
Initial	Active cell		Cell1					
condition	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6					
Final condition	Active cell		Cell2					
	HCS		Not used					
UE_TX	JE_TXPWR_MAX_RACH c		21	The value shall be used for all cells in the test.				
	Qrxlevmin	dBm	-102	The value shall be used for all cells in the test.				
	ervice Class (ASC#0) ersistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.				
	T _{SI}		T _{SI}		T _{SI} s		1.28	The value shall be used for all cells in the test.
DR	DRX cycle length		1.28	The value shall be used for all cells in the test.				
	T1		15					
	T2	S	15					

Table A.5.5.2: Cell re-selection to intra-frequency cell

Parameter	Unit	Cell 1				Се	II 2		Cell 3				
Timeslot Number		()	3	3	(0 8			0		8	3
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Channel 1			Channel 1				Channel 1			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0 0 0			5	5	5	5	10	10	10	10
PICH_Ec/lor	dB		-3 -3					-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	9	7	9	7	7	9	7	9	-1	-1	-1	-1
PCCPCH RSCP	dBm	-64	-66			-66	-64			-74	-74		
Qoffset1 _{s,n}	dB		C1, C2: 0; C1, C3:0; C1,C4:0 C1, C5:0; C1,C6:0					C3:0; C2; C2; C2, C6:		C3, C1: 0; C3, C2:0; C3,C4:0 C3, C5: 0; C3, C6:0			
Qhyst1 _s	dB		0				(0			()	
Treselection	S		0					0		0			
Sintrasearch	dB		not sent				not sent				not		
			Cell 4				Ce	II 5			Ce	II 6	
Timeslot)		3	0 8					0		3
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Char	nnel 1		Channel 1					Char	nel 1	
PCCPCH_Ec/lor	dB	-3	-3			-3 -3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
Qoffset1 _{s,n}	dB			C2:0; C4 C4, C6:				C2:0; C5; C5; C6:			1: 0; C6, C6, C4:0;		
Qhyst1 _s	dB)				0)	
Treselection	S		()		0					()	
Sintrasearch	dB		not sent n								not	sent	
I_{oc}	dBm/3, 84 MHz		-70										
Propagation Condition							AW	/GN					

A.5.5.1.1.2 1.28Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in CELL_PCH state in section 5.5.2.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.5.3 and A.5.5.4.

Table A.5.5.3: General test parameters for Cell Re-selection to intra-frequency TDD cell in

Pai	rameter	Unit	Value	Comment		
Initial condition	Active cell		Cell1			
	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6			
Final condition	Active cell		Cell2			
	HCS		Not used			
UE_TXPW	R_MAX_RACH	dBm	21	The value shall be used for all cells in the test.		
Qr	xlevmin	dBm	-103	The value shall be used for all cells in the test.		
	ce Class (ASC#0) stence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.		
	T _{SI}		T _{SI}		1.28	The value shall be used for all cells in the test.
DRX o	DRX cycle length s		1.28	The value shall be used for all cells in the test.		
	T1	S	15			
	T2	S	15			

Table A.5.5.4: Cell re-selection to intra-frequency TDD cell

Parameter	Unit		Cell 1				Ce	II 2		Cell 3			
Timeslot Number		()	DW	PTS	(0	DW	PTS	(0	DW	PTS
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Char	nnel 1			Channel 1				Char	nel 1	
PCCPCH_Ec/lor	dB	-3	-3	-3 -3 -3				-3	-3				
DwPCH_Ec/lor	dB			0	0 0 0						0	0	
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	10	7	10	7	7	10	7	10	-1	-1	-1	-1
PCCPCH RSCP	dBm	-63	-66			-66	-63			-74	-74		
Qoffset1 _{s,n}	dB		C1, C2: 0; C1, C3:0; C1,C4:0 C1, C5:0; C1,C6:0				1: 0; C2, 22, C5: 0				1: 0; C3, C3, C5: 0		
Qhyst1 _s	dB		(0			(0			()	
Treselection	S			0			(0			(0	
Sintrasearch	dB		not sent			not sent				not sent			
			Cell 4				Ce	II 5			Ce	II 6	
Timeslot		•)	DW	PTS	(0		PTS	(0		PTS
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Char	nnel 1		Channel 1					Char	nel 1	
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0			0	0			0	0
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
Qoffset1 _{s,n}	dB			C2:0; C4; C4; C6:		C5, C1: 0; C5, C2:0; C5,C3:0 C5, C4:0; C5, C6:0				C6, C1: 0; C6, C2:0; C6,C3:0 C6, C4:0; C6, C5:0			
Qhyst1 _s	dB		(0			(0			()	
Treselection	S			0		0				0			
Sintrasearch	dB		not	sent		not sent					not	sent	
I_{oc}	dBm/1. 28 MHz					-70							
Propagation Condition			AWGN										
NOTE: In the case of	l multi-frequ	ency net	work,the	UTRA F	RF Chanr	nel Numb	er is the	primary	frequenc	cy"s char	nel numl	oer.	

A.5.5.1.1.3 7.68Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in CELL_PCH state in section 5.5.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.5.3A and A.5.5.4A.

Table A.5.5.3A: General test parameters for Cell Re-selection to intra-frequency TDD cell

	Parameter	Unit	Value	Comment				
Initial	Active cell		Cell1					
condition	ondition Neighbour cells		Cell2, Cell3,Cell4,					
	-		Cell5, Cell6					
Final	Active cell		Cell2					
condition								
	HCS		Not used					
UE_TX	PWR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.				
	Qrxlevmin	dBm	-102	The value shall be used for all cells in the test.				
Access Se	ervice Class (ASC#0)		1	Selected so that no additional delay is caused by				
- Pe	rsistence value			the random access procedure. The value shall be				
				used for all cells in the test.				
	T _{SI}		T _{SI}		T _{SI} s		1.28	The value shall be used for all cells in the test.
DR	DRX cycle length		1.28	The value shall be used for all cells in the test.				
	T1		15					
	T2	S	15					

Table A.5.5.4A: Cell re-selection to intra-frequency TDD cell

Parameter	Unit	Cell 1			Cell 2				Cell 3				
Timeslot Number		()	8	3	0 8		0		8			
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Channel 1			Channel 1				Channel 1				
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9				-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0 0			5	5	5	5	10	10	10	10
PICH_Ec/lor	dB		-3 -3					-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	9	7	9	7	7	9	7	9	-1	-1	-1	-1
PCCPCH RSCP	dBm	-64	-66			-66	-64			-74	-74		
Qoffset1 _{s,n}	dB	,	C1, C2: 0; C1, C3:0; C1,C4:0 C1, C5:0; C1,C6:0					C3:0; C2; C2, C6:			1: 0; C3, 3, C5: 0		
Qhyst1 _s	dB		0				()			()	
Treselection	S		0				()		0			
Sintrasearch	dB		not sent			not sent					not	sent	
			Ce	II 4		Cell 5					Ce	II 6	
Timeslot)		3)		3		0		3
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Char	nel 1		Channel 1					Char	nel 1	
PCCPCH_Ec/lor	dB	-3	-3			-3 -3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
Qoffset1 _{s,n}	dB		C4, C1: 0; C4, C2:0; C4,C3:0 C4, C5:0; C4, C6:0					C2:0; C5 C5, C6:		,	1: 0; C6, C6, C4:0;		
Qhyst1 _s	dB		()			()			()	
Treselection	S		()			()			()	
Sintrasearch	dB		not	sent			not	sent			not	sent	
I_{oc}	dBm/7, 68 MHz		-70										
Propagation Condition			AWGN										

A.5.5.1.2 Test Requirements

A.5.5.1.2.1 for 3.84Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the CELL UPDATE message with cause "cell reselection" in cell 2.

The cell re-selection delay shall be less than 8 s.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

 $T_{evaluateTDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluateTDD}$ of 6.4s according to Table 4.1 in section 4.2.2.7.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.5.1.2.2 1.28Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send SYNCH-UL sequence in the UpPTS for sending the CELL UPDATE message with cause "cell reselection" in cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

 $T_{evaluateNTDD} + T_{SI}$

where:

 $T_{evaluate NTDD}$: A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluate NTDD}$ of 6.4s

according to Table 4.1A in section 4.2.

T_{SI}: Time required for receiving all the relevant system information data according to the reception

procedure and the RRC procedure delay of system information blocks defined in 25.331 for a

UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.5.1.2.3 7.68Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the CELL UPDATE message with cause "cell reselection" in cell 2.

The cell re-selection delay shall be less than 8 s.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

T_{evaluateTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluateTDD} of 6.4s

according to Table 4.1B in section 4.2.2.7.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.5.2 Scenario 2: Re-selection to inter-frequency TDD cell

A.5.5.2.1 Test Purpose and Environment

A.5.5.2.1.1 for 3.84Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in CELL_PCH state in section 5.5.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.5.5 and A.5.5.6

Table A.5.5.5: General test parameters for Cell Re-selection to inter-frequency TDD cell

P	arameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXP\	WR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
C	Qrxlevmin	dBm	-102	The value shall be used for all cells in the test.
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX	DRX cycle length		1.28	The value shall be used for all cells in the test.
	T1		30	
	T2	S	15	

Table A.5.5.6: Cell re-selection to inter-frequency TDD cell

Parameter	Unit	Cell 1				Cell 2				Cell 3				
Timeslot Number		0)	3	3	()		3	0		8	3	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nnel 1		Channel 2				Channel 1				
PCCPCH_Ec/lor	dB	-3 -3		-3	-3			-3	-3					
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	
\hat{I}_{or}/I_{oc}	dB	6	0	6	0	0	6	0	6	-3	-3	-3	-3	
PCCPCH RSCP	dBm	-67	-73			-73	-67			-76	-76			
Qoffset1 _{s,n}	dB			C3:0; C1 C1, C6:				C3:0; C2; C2, C6:			1: 0; C3, C3, C5:0;			
Qhyst1 _s	dB)))		
Treselection	S		())			()		
Sintrasearch	dB		not sent				not	sent		not sent				
Sintersearch	dB		not sent				not sent				not sent			
			Cell 4				Ce	II 5			Ce	II 6		
Timeslot		0 8			()		3	()	8	3		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nnel 1		Channel 2					Char	nel 2		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	
\hat{I}_{or}/I_{oc}	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	
PCCPCH RSCP	dBm	-76	-76			-76	-76			-76	-76			
Qoffset1 _{s,n}	dB			C2:0; C4 C4, C6:				C2:0; C5; C5; C6:			1: 0; C6, C6, C4:0;			
Qhyst1 _s	dB	0)			()		
Treselection	s	0					()			()		
Sintrasearch	dB		not	sent		not sent					not	sent		
Sintersearch	dB		not	sent			not	sent			not	sent		
I_{oc}	dBm/3, 84 MHz	-70												
Propagation Condition		AWGN												

A.5.5.2.1.2 for 1.28Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in CELL_PCH state in section 5.5.2.2.

This scenario implies the presence of 2 carriers and 6 cells as given in Table A.5.5.7 and A.5.5.8.

Table A.5.5.7: General test parameters for Cell Re-selection to inter-frequency TDD cell

Pa	rameter	Unit	Value	Comment
Initial condition	Active cell		Cell1	
	Neighbour cells		Cell2, Cell3,Cell4, Cell5,	
			Cell6	
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXPW	UE_TXPWR_MAX_RACH		21	The value shall be used for all cells in the test.
Qr	Qrxlevmin		-103	The value shall be used for all cells in the test.
	ce Class (ASC#0) stence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX	cycle length	S	1.28	The value shall be used for all cells in the test.
	T1	S	30	
	T2	S	15	

Table A.5.5.8: Cell re-selection to inter-frequency TDD cell

Parameter	Unit		Ce	II 1			Се	II 2		Cell 3			
Timeslot Number		()	DW	PTS	(0	DW	PTS	0		DW	PTS
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number (NOTE)			Char	nnel 1		Channel 2				Channel 1			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0			0	0			0	0
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	10	4	10	4	4	10	4	10	-1	-1	-1	-1
PCCPCH RSCP	dBm	-63	-69			-69	-63			-74	-74		
Qoffset1 _{s,n}	dB			C3:0; C ² ; C1, C6:			2, C1: 0; 4:0C2, C					C2:0; C ; C3, C6:	
Qhyst1 _s	dB		(0			()			(0	
Treselection	S		(0			()			(0	
Sintrasearch	dB		not	sent			not	sent			not	sent	
Sintersearch	dB		not	sent		not sent				not sent			
			Cell 4				Ce	II 5			Ce	ell 6	
Timeslot			0 DWPTS				0 DWPTS				0		PTS
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number (NOTE)			Cha	nnel		Channel 2					Cha	annel	
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0			0	0			0	0
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
Qoffset1 _{s,n}	dB			C2:0; C4; C4; C6:			1: 0; C5, C5, C4:0;					C2:0; C ; C6, C5:	
Qhyst1 _s	dB			0			()			(0	
Treselection	S		(0			()			(0	
Sintrasearch	dB		not	sent		not sent					not	sent	
Sintersearch	dB		not	sent		not sent not sent							
I_{oc}	dBm/ 1.28 MHz		-70										
Propagation Condition		AWGN											
NOTE: In case of m	ulti-frequenc	y networ	k, the U	TRA RF (Channel	Number	is the pri	mary fre	quency"s	channe	l number		

A.5.5.2.1.3 7.68Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in CELL_PCH state in section 5.5.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.5.9 and A.5.5.10

Table A.5.5.9: General test parameters for Cell Re-selection to inter-frequency TDD cell

P	arameter	Unit	Value	Comment		
Initial	Active cell		Cell1			
condition	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6			
Final condition	Active cell		Cell2			
	HCS		Not used			
UE_TXP\	UE_TXPWR_MAX_RACH		21	The value shall be used for all cells in the test.		
C	Qrxlevmin	dBm	-102	The value shall be used for all cells in the test.		
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.		
	T _{SI}		T _{SI} s		1.28	The value shall be used for all cells in the test.
DRX	DRX cycle length		1.28	The value shall be used for all cells in the test.		
_	T1		30			
	T2		15			

Table A.5.5.10: Cell re-selection to inter-frequency TDD cell

Parameter	Unit	Cell 1				Cell 2				Cell 3				
Timeslot Number		0)	8	3	()		3	0		8	3	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1		Channel 2				Channel 1				
PCCPCH_Ec/lor	dB	-3 -3		-3	-3			-3	-3					
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	
\hat{I}_{or}/I_{oc}	dB	6	0	6	0	0	6	0	6	-3	-3	-3	-3	
PCCPCH RSCP	dBm	-67	-73			-73	-67			-76	-76			
Qoffset1 _{s,n}	dB			C3:0; C′ C1, C6:				C3:0; C2; C2, C6:				C2:0; C3 C3, C6:		
Qhyst1 _s	dB)))		
Treselection	S		()			()			()		
Sintrasearch	dB		not sent				not	sent		not sent				
Sintersearch	dB		not sent				not sent				not sent			
			Cell 4				Ce	II 5			Ce	II 6		
Timeslot		0 8			()	3	3	()	8	3		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1		Channel 2					Char	nel 2		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25	
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3	
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	
\hat{I}_{or}/I_{oc}	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	
PCCPCH RSCP	dBm	-76	-76			-76	-76			-76	-76			
Qoffset1 _{s,n}	dB			C2:0; C4 C4, C6:				C2:0; C5; C5; C6:				C2:0; C6		
Qhyst1 _s	dB	0					()			()		
Treselection	s	0					()			()		
Sintrasearch	dB		not	sent		not sent					not	sent		
Sintersearch	dB		not	sent			not	sent			not	sent		
I_{oc}	dBm/7, 68 MHz	-70												
Propagation Condition		AWGN												

A.5.5.2.2 Test Requirements

A.5.5.2.2.1 for 3.84Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the CELL UPDATE message with cause "cell reselection" in cell 2.

The cell re-selection delay shall be less than 8 s.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

T_{evaluateTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluate TDD} of 6.4s

according to Table 4.1 in section 4.2.2.7.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.5.2.2.2 for 1.28Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the SYNCH-UL sequence in the UpPTS for sending the CELL UPDATE message with cause "cell reselection" in cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

 $T_{evaluateNTDD} + T_{SI} \\$

where:

T_{evaluateNTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluate NTDD} of 6.4s

according to Table 4.1A in section 4.2.

T_{SI} Time required for receiving all the relevant system information data according to the reception

procedure and the RRC procedure delay of system information blocks defined in 25.331 for a

UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.5.2.2.3 for 7.68Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the CELL UPDATE message with cause "cell reselection" in cell 2.

The cell re-selection delay shall be less than 8 s.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

T_{evaluateTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluateTDD} of 6.4s

according to Table 4.1B in section 4.2.2.7.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.6 Cell Re-selection in URA_PCH

A.5.6.1 Scenario 1: Re-selection to intra-frequency TDD cell

A.5.6.1.1 Test Purpose and Environment

A.5.6.1.1.1 for 3.84Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in URA_PCH state in section 5.6.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.6.1 and A.5.6.2.

Table A.5.6.1: General test parameters for Cell Re-selection to intra-frequency TDD cell

Para	meter	Unit	Value	Comment										
Initial condition	Active cell		Cell1											
	Neighbour cells		Cell2, Cell3,Cell4,											
			Cell5, Cell6											
Final condition	Active cell		Cell2											
H	CS		Not used											
UE_TXPWR	_MAX_RACH	dBm	21	The value shall be used for all cells in the test.										
Qrxle	evmin	dBm	-102	The value shall be used for all cells in the test.										
Access Service	Class (ASC#0)			Selected so that no additional delay is caused by										
- Persiste	nce value		1	the random access procedure. The value shall be										
				used for all cells in the test.										
Т	T _{SI}		T _{SI}		T _{SI}		T _{SI}		T _{SI}		T _{SI}		1.28	The value shall be used for all cells in the test.
DRX cyc	DRX cycle length		1.28	The value shall be used for all cells in the test.										
T	T1		15											
Т	T2		15											

Table A.5.6.2: Cell re-selection to intra-frequency TDD cell

Parameter	Unit	Cell 1				Cell 2				Cell 3			
Timeslot Number		,)	w)		3	()	,	8
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Chan	nel 1		Channel 1				Channel 1			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	9	7	9	7	7	9	7	9	-1	-1	-1	-1
PCCPCH RSCP	dBm	-64	-66			-66	-64			-74	-74		
Qoffset1 _{s,n}	dB		2: 0; C1, C1, C5:0					C3:0; C2; C2, C6:			1: 0; C3, 3, C5: 0		
Qhyst1 _s	dB		()			()			()	
Treselection	S		0				()		0			
Sintrasearch	dB		not	sent		not sent				not sent			
		Cell 4				Cell 5					Ce	II 6	
Timeslot			0 8)		3)		8
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Chan	nel 1		Channel 1					Char	nel 1	
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	9	9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
Qoffset1 _{s,n}	dB		1: 0; C4, C4, C5:0;					C2:0; C5 C5, C6:		,	1: 0; C6, C6, C4:0;		
Qhyst1 _s	dB	0					()			()	
Treselection	S		()		0				0			
Sintrasearch	dB		not :	sent				sent			not	sent	
I_{oc}	dBm/3,84 MHz							70					
Propagation Condition		AWGN											

A.5.6.1.1.2 for 1.28Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in URA_PCH state in section 5.6.2.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.6.3 and A.5.6.4.

Table A.5.6.3: General test parameters for Cell Re-selection to intra-frequency TDD cell

Pai	rameter	Unit	Value	Comment
Initial condition	Active cell		Cell1	
	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXPW	UE_TXPWR_MAX_RACH		21	The value shall be used for all cells in the test.
Qr	xlevmin	dBm	-103	The value shall be used for all cells in the test.
	ce Class (ASC#0) stence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in the test.
DRX	DRX cycle length		1.28	The value shall be used for all cells in the test.
	T1	S	15	
	T2	S	15	

Table A.5.6.4: Cell re-selection to intra-frequency TDD cell

Parameter	Unit		Се	II 1			Се	II 2		Cell 3			
Timeslot Number		()	DW	PTS	()	DW	PTS	(0	DWPTS	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number (NOTE)			Char	nel 1			Char	nel 1		Channel 1			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0	_	_	0	0	_	_	0	0
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	10	7	10	7	7	10	7	10	-1	-1	-1	-1
PCCPCH RSCP	dBm	-63	-66			-66	-63			-74	-74		
Qoffset1 _{s,n}	dB			C3:0; C ² ; C1,C6:			1: 0; C2, 22, C5: 0				1: 0; C3, 23, C5: 0		
Qhyst1 _s	dB		()			. ()			(0	
Treselection	S			0			()				0	
Sintrasearch	dB		not	sent		not sent				not sent			
			Cell 4				Cell 5				Ce	II 6	
Timeslot		0 DWPTS			()		PTS		0	DW	PTS	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number (NOTE)			Char	nel 1		Channel 1					Char	nnel 1	
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0			0	0			0	0
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
Qoffset1 _{s,n}	dB			C2:0; C4 C4, C6:			1: 0; C5, C5, C4:0;			C6, C1: 0; C6, C2:0; C6,C3:0 C6, C4:0; C6, C5:0			
Qhyst1 _s	dB)))	
Treselection	S			0			()			()	
Sintrasearch	dB	not sent					not	sent		not sent			
I_{oc}	dBm/1.28 MHz		-70										
Propagation Condition			AWGN										
NOTE1: In the case	of multi-freq	of multi-frequency network,the UTRA RF Channel Number is the primary frequency"s channel number.											

A.5.6.1.1.3 for 7.68Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in URA_PCH state in section 5.6.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.6.3A and A.5.6.4A.

Table A.5.6.3A: General test parameters for Cell Re-selection to intra-frequency TDD cell

Para	meter	Unit	Value	Comment														
Initial condition	Active cell		Cell1															
	Neighbour cells		Cell2, Cell3,Cell4,															
			Cell5, Cell6															
Final condition	Active cell		Cell2															
H	CS		Not used															
UE_TXPWR	JE_TXPWR_MAX_RACH		21	The value shall be used for all cells in the test.														
Qrxle	evmin	dBm	-102	The value shall be used for all cells in the test.														
Access Service	Class (ASC#0)			Selected so that no additional delay is caused by														
- Persiste	nce value		1	the random access procedure. The value shall be														
				used for all cells in the test.														
Т	T _{SI}		T _{SI}		T _{SI}		T _{SI}		T _{SI}		T _{SI}		T _{SI}		T _{SI}		1.28	The value shall be used for all cells in the test.
DRX cyc	DRX cycle length		1.28	The value shall be used for all cells in the test.														
T	T1		15															
Т	T2		15															

Table A.5.6.4A: Cell re-selection to intra-frequency TDD cell

Parameter	Unit		Ce	II 1		Cell 2				Cell 3			
Timeslot Number		()	8	3	()		3	0		8	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Char	nel 1		Channel 1				Channel 1			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	9	7	9	7	7	9	7	9	-1	-1	-1	-1
PCCPCH RSCP	dBm	-64	-66			-66	-64			-74	-74		
Qoffset1 _{s,n}	dB	,		C3:0; C1; C1,C6:				C3:0; C2; C2, C6:			1: 0; C3, 3, C5: 0		
Qhyst1 _s	dB		()			()			()	
Treselection	S		()			()		0			
Sintrasearch	dB		not	sent		not sent				not sent			
			Ce	II 4		Cell 5					Ce	II 6	
Timeslot			0 8)		3		0		3
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Char	nel 1		Channel 1					Char	nnel 1	
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
Qoffset1 _{s,n}	dB			C2:0; C4 C4, C6:				C2:0; C5 C5, C6:		,	1: 0; C6, C6, C4:0;		•
Qhyst1 _s	dB	0					()			()	
Treselection	S		()		0					()	
Sintrasearch	dB		not	sent			not	sent			not	sent	
I_{oc}	dBm/7,68 MHz						-7	70					
Propagation Condition		AWGN											

A.5.6.1.2 Test Requirements

A.5.6.1.2.1 for 3.84Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the URA UPDATE message with URA update cause value "change of URA" in cell 2.

The cell re-selection delay shall be less than 8 s.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

 $T_{evaluate\,TDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluate\,TDD}$ of 6.4s according to Table 4.1 in section 4.2.2.7.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.6.1.2.2 for 1.28Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send SYNCH-UL sequence in the UpPTS for sending the URA UPDATE message with URA update cause value "change of URA" in cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

 $T_{evaluateNTDD} + T_{SI}$

where:

 $T_{evaluate\,NTDD}$: A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluate\,NTDD}$ of 6.4s

according to Table 4.1A in section 4.2.

T_{SI}: Time required for receiving all the relevant system information data according to the reception

procedure and the RRC procedure delay of system information blocks defined in 25.331 for a

UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.6.1.2.3 for 7.68Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the URA UPDATE message with URA update cause value "change of URA" in cell 2.

The cell re-selection delay shall be less than 8 s.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

T_{evaluateTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluate TDD} of 6.4s

according to Table 4.1B in section 4.2.2.7.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.6.2 Scenario 2: Re-selection to inter-frequency TDD cell

A.5.6.2.1 Test Purpose and Environment

A.5.6.2.1.1 for 3.84Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in URA_PCH state in section 5.6.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.6.5 and A.5.6.6.

Table A.5.6.5: General test parameters for Cell Re-selection to inter-frequency TDD cell

Para	meter	Unit	Value	Comment
Initial condition	Active cell		Cell1	
	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell2	
Н	CS		Not used	
UE_TXPWR	_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
Qrxle	evmin	dBm	-102	The value shall be used for all cells in the test.
- Persiste	e Class (ASC#0) ence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
٦	T _{SI}		1.28	The value shall be used for all cells in the test.
DRX cyc	DRX cycle length		1.28	The value shall be used for all cells in the test.
7	T1		30	
T2		S	15	

Table A.5.6.6: Cell re-selection to inter-frequency TDD cell

Parameter	Unit		Се	II 1			Се	II 2		Cell 3			
Timeslot Number		()	3	3	()	3	3	()	3	В
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel			Char	nel 1		Channel 2				Channel 1			
Number				1									
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3	_	
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	6	0	6	0	0	6	0	6	-3	-3	-3	-3
PCCPCH RSCP	dBm	-67	-73			-73	-67			-76	-76		
Qoffset1 _{s,n}	dB			C3:0; C ²				C2, C3: 5:0; C2,				C2:0; C3; C3; C6:	
Qhyst1 _s	dB)	<u> </u>	02,0)	00.0))	<u> </u>
Treselection	S			<u>, </u>)				<u>)</u>	
Sintrasearch	dB			sent		not sent				not sent			
Sintersearch	dB					not sent						sent	
Sintersearch	ub ub		not sent Cell 4					II 5				II 6	
Timeslot		,	0 8			(3	-)		8
Tilliosiot		T1	T2	T1	, T2	T1	T2	T1		T1	T2	T1	T2
UTRA RF Channel Number			1	nnel 1		Channel 2			Channel 2				
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		15	15	15	15	20	20	20	20	25	25	25	25
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
PCCPCH RSCP	dBm	-76	-76			-76	-76			-76	-76		
Qoffset1 _{s,n}	dB			C2:0; C4 C4, C6:				C2:0; C5 C5, C6:				C2:0; C6; C6; C6; C5:	
Qhyst1 _s	dB	0				0)	
Treselection	S	0					()			()	
Sintrasearch	dB	not sent				not sent				not sent			
Sintersearch	dB			sent				sent				sent	
I_{oc}	dBm/3,84 MHz			-				70				-	
Propagation Condition							AW	/GN					

A.5.6.2.1.2 1.28Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in URA_PCH state in section 5.6.2.2.

This scenario implies the presence of 2 carriers and 6 cells as given in Table A.5.6.7 and A.5.6.8.

Table A.5.6.7: General test parameters for Cell Re-selection to inter-frequency TDD cell

Pa	rameter	Unit	Value	Comment
Initial condition	Active cell		Cell1	
	Neighbour cells		Cell2, Cell3,Cell4, Cell5,	
			Cell6	
Final condition	Active cell		Cell2	
	HCS		Not used	
UE_TXPW	/R_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
Qr	Qrxlevmin		-103	The value shall be used for all cells in
				the test.
	ice Class (ASC#0)			Selected so that no additional delay is
- Persis	stence value		1	caused by the random access
				procedure. The value shall be used for all cells in the test.
	T _{SI}	S	1.28	The value shall be used for all cells in
				the test.
DRX	DRX cycle length		1.28	The value shall be used for all cells in
				the test.
	T1	S	30	
	T2	S	15	

Table A.5.6.8: Cell re-selection to inter-frequency TDD cell

Parameter	Unit		Ce	ell 1			Ce	II 2		Cell 3			
Timeslot Number			0	DW	PTS	()	DW	PTS	(0	DWPTS	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Channel 1			Channel 2				Channel 1			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0			0	0			0	0
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	10	4	10	4	4	10	4	10	-1	-1	-1	-1
PCCPCH RSCP	dBm	-63	-69			-69	-63			-74	-74		
Qoffset1 _{s,n}	dB			C3:0; C ² ; C1, C6:			2, C1: 0; 4:0C2, C				1: 0; C3, C3, C5:0		
Qhyst1 _s	dB		(0			()			()	
Treselection	S		(0			()			()	
Sintrasearch	dB		not	sent		not sent				not sent			
Sintersearch	dB		not sent			not sent				not sent			
		Cell 4				Ce				Ce	II 6		
Timeslot			0		PTS	0 DWPTS				0		PTS	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Cha	ınnel		Channel 2				Channel			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
DwPCH_Ec/lor	dB			0	0			0	0			0	0
OCNS_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
\hat{I}_{or}/I_{oc}	dB	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
PCCPCH RSCP	dBm	-74	-74			-74	-74			-74	-74		
Qoffset1 _{s,n}	dB			C2:0; C4; C4; C4;		C5, C1: 0; C5, C2:0; C5,C3:0 C5, C4:0; C5, C6:0				C6, C1: 0; C6, C2:0; C6,C3:0 C6, C4:0; C6, C5:0			
Qhyst1 _s	dB			0			())	
Treselection	S	0				0					()	
Sintrasearch	dB	not sent				not sent				not sent			
Sintersearch	dB	not sent					not	sent			not	sent	
I_{oc}	dBm/1.28 MHz		-70										
Propagation Condition							AW	/GN					

A.5.6.2.1.3 for 7.68Mcps TDD option

This test is to verify the requirement for the cell re-selection delay in URA_PCH state in section 5.6.2.

This scenario implies the presence of 1 carrier and 6 cells as given in Table A.5.6.9 and A.5.6.10.

Table A.5.6.9: General test parameters for Cell Re-selection to inter-frequency TDD cell

Para	meter	Unit	Value	Comment
Initial condition	Active cell		Cell1	
	Neighbour cells		Cell2, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell2	
Н	CS		Not used	
UE_TXPWR	UE_TXPWR_MAX_RACH		21	The value shall be used for all cells in the test.
Qrxle	evmin	dBm	-102	The value shall be used for all cells in the test.
Access Service	e Class (ASC#0)			Selected so that no additional delay is caused
- Persiste	ence value		1	by the random access procedure. The value
				shall be used for all cells in the test.
7	T _{SI}		1.28	The value shall be used for all cells in the test.
DRX cyc	DRX cycle length		1.28	The value shall be used for all cells in the test.
	T1		30	
	Γ2	S	15	

Table A.5.6.10: Cell re-selection to inter-frequency TDD cell

Parameter	Unit		Се	II 1			Ce	II 2		Cell 3			
Timeslot Number		0)		3	()		3		0	8	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Channel 1			Channel 2			Channel 1				
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	5	5	5	5	10	10	10	10
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	6	0	6	0	0	6	0	6	-3	-3	-3	-3
PCCPCH RSCP	dBm	-67	-73			-73	-67			-76	-76		
Qoffset1 _{s,n}	dB			C3:0; C'				C2, C3: 5:0; C2,		C3, C1: 0; C3, C2:0; C3,C4:0 C3, C5:0; C3, C6:0			
Qhyst1 _s	dB		()			()			()	
Treselection	S		()			()			()	
Sintrasearch	dB		not	sent			not	sent		not sent			
Sintersearch	dB		not sent				not	sent			not	sent	
		Cell 4					Ce	II 5			Ce	II 6	
Timeslot		0		3	3	0 8			()	3	3	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Char	nnel 1		Channel 2			Channel 2				
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			-3	-3		
SCH Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}	-	15	15	15	15	20	20	20	20	25	25	25	25
PICH_Ec/lor	dB			-3	-3			-3	-3			-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
PCCPCH RSCP	dBm	-76	-76			-76	-76			-76	-76		
Qoffset1 _{s,n}	dB			C2:0; C4 C4, C6:				C2:0; C5 C5, C6:				C2:0; C6	
Qhyst1 _s	dB	0))	
Treselection	S	0				0				0			
Sintrasearch	dB	not sent				not sent				not	sent		
Sintersearch	dB		not	sent			not	sent			not	sent	
I_{oc}	dBm/7,68 MHz						-	70					
Propagation Condition							AW	/GN					

A.5.6.2.2 Test Requirements

A.5.6.2.2.1 3.84Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the URA UPDATE message with URA update cause "change of URA" in cell 2.

The cell re-selection delay shall be less than 8 s.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

 $T_{evaluate\,TDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluate\,TDD}$ of 6.4s

according to Table 4.1 in section 4.2.2.7.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.6.2.2.2 1.28Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the SYNCH-UL sequence in the UpPTS for sending the URA UPDATE message with URA update cause "change of URA" in cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

 $T_{evaluateNTDD} + T_{SI}$

where:

 $T_{evaluateNTDD}$ A DRX cycle length of 1280ms is assumed for this test case, this leads to a $T_{evaluate\,NTDD}$ of 6.4s

according to Table 4.1A in section 4.2.

T_{SI} Time required for receiving all the relevant system information data according to the reception

procedure and the RRC procedure delay of system information blocks defined in 25.331 for a

UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.6.2.2.3 7.68Mcps TDD option

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the URA UPDATE message with URA update cause "change of URA" in cell 2.

The cell re-selection delay shall be less than 8 s.

NOTE:

The cell re-selection delay can be expressed as: $T_{evaluateTDD} + T_{SI}$, where:

T_{evaluateTDD} A DRX cycle length of 1280ms is assumed for this test case, this leads to a T_{evaluateTDD} of 6.4s

according to Table 4.1B in section 4.2.2.7.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.6 (void)

A.6A RRC Connection Control

A.6A.1 RRC re-establishment delay

A.6A.1.1 3.84 Mcps TDD option

A.6A.1.1.1 RRC re-establishment delay to a known target cell

A.6A.1.1.1.1 Test Purpose and Environment

The purpose is to verify that the RRC re-establishment delay to a known target cell is within the specified limits. This test will partly verify the requirements in section 6A.1.2.

The test parameters are given in table A.6A.1 and table A.6A.2 below. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consists of 2 successive time periods, with time durations of T1 and T2 respectively.

During T1, the DL DPCH in cell 1 shall be transmitted in timeslot 2 and the UL DPCH in cell 1 shall be transmitted in timeslot 10. At the beginning of time period T2, the DPCH shall be removed.

Cell 1 and cell shall be synchronised, i.e. share the same frame and timeslot timing.

Table A.6A.1: General test parameters for RRC re-establishment delay, known target cell case

Pa	arameter	Unit	Value	Comment		
DCH paramete	DCH parameters		DL reference measurement channel 12.2 kbps	As specified in TS 25.102 section A.2.2		
Power Control			On			
Target quality	value on DTCH	BLER	0.01			
Initial	Active cell		Cell 1	Cell 2 shall be included in the		
conditions	Neighbour cell	1	Cell 2	monitored set in Cell 1.		
Final conditions	Active cell		Cell 2			
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.		
N313			20			
N315			1			
T313		Seconds	0			
T _{SI}		ms	1280			
Monitored cell list size			24 TDD neighbours on Channel 1			
Reporting freq	uency	Seconds	4	·		
T1			10	·		
T2			6			

Table A.6A.2: Cell specific parameters for RRC re-establishment delay test, known target cell case

Parameter	Unit		Ce	II 1		Cell 2					
Timeslot Number		(0		8		0		8		
		T1	T2	T1	T2	T1	T2	T1	T2		
UTRA RF Channel Number			Char	nel 1		Channel 1					
PCCPCH_Ec/lor	dB	-3	-3	n.a.	n.a.	-3	-3	n.a.	n.a.		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9		
SCH_t _{offset}		0	0	0	0	15	15	15	15		
PICH_Ec/lor	dB	n.a.	n.a.	-3	-3	n.a.	n.a.	-3	-3		
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12		
\hat{I}_{or}/I_{oc}	dB	3	-13	3	-13	5	5	5	5		
I_{oc}	dBm/ 3.84 MHz	-70									
P-CCPCH_RSCP	dB	-70	-86	n.a.	n.a.	-68	-68	n.a.	n.a.		
Propagation Condition					AW	'GN					

A.6A.1.1.1.2 Test Requirements

The RRC re-establishment delay $T_{\text{RE-ESTABLISH}}$ to a known target cell shall be less than 2 s.

The rate of successful RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in this test case can be expressed as,

T_{RE-ESTABLISH}= T_{RRC-RE-ESTABLISH}+ T_{UE-RE-ESTABLISH-REO-KNOWN}.

where.

 $T_{RRC-RE-ESTABLISH} = 160ms + (N_{313}-1)*10ms + T_{313}$

 $T_{UE-RE-ESTABLISH-REO-KNOWN} = 50ms + T_{SEARCH-KNOWN} + T_{SI} + T_{RA}$

and,

 N_{313} Equal to 20 and therefore resulting in 200 ms delay.

 T_{313} Equal to 0 s.

T_{SEARCH-KNOWN} Equal to 100 ms

T_{SI} Equal to 1280 ms, the time required for receiving all the relevant system information data

according to the reception procedure and the RRC procedure performance value of system

information blocks defined in [16] for a UTRAN cell.

T_{RA} Equal to 40 ms, the additional delay caused by the random access procedure.

A.6A.1.1.2 RRC re-establishment delay to an unknown target cell

A.6A.1.1.2.1 Test Purpose and Environment

The purpose is to verify that the RRC re-establishment delay to an unknown target cell is within the specified limits. This test will partly verify the requirements in section 6A.1.2.

The test parameters are given in table A.6A.3 and table A.6A.4 below. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consists of 2 successive time periods, with time durations of T1 and T2 respectively.

During T1, the DL DPCH in cell 1 shall be transmitted in timeslot 2 and the UL DPCH in cell 1 shall be transmitted in timeslot 10. At the beginning of time period T2, the DPCH shall be removed.

Cell 1 and cell shall be synchronised, i.e. share the same frame and timeslot timing.

Table A.6A.3: General test parameters for RRC re-establishment delay, unknown target cell case

Pa	Parameter		Value	Comment		
DCH parameters			DL reference measurement channel 12.2 kbps	As specified in TS 25.102 section A.2.2		
Pov	ver Control		On			
Target qual	ity value on DTCH	BLER	0.01			
Initial	Active cell		Cell 1	Cell 2 shall not be included in the		
conditions	Neighbour cell		Cell 2	monitored set in Cell 1.		
Final conditions	Active cell		Cell 2			
Access Serv	ice Class (ASC#0)	-	1	Selected so that no additional		
- Persistence value				delay is caused by the random access procedure. The value shall be used for all cells in the test.		

N313		20	
N315		1	
T313	Seconds	0	
T _{SI}	ms	1280	
Monitored cell list size		16 TDD neighbours on Channel	
		1	
		16 TDD neighbours on Channel	
		2	
Reporting frequency	Seconds	4	
T1		10	
T2		6	

Table A.6A.4: Cell specific parameters for RRC re-establishment delay test, unknown target cell case

Parameter	Unit		Се	II 1		Cell 2					
Timeslot Number			0		8		0		3		
		T1	T2	T1	T2	T1	T2	T1	T2		
UTRA RF Channel Number			Channel 1				Channel 2				
PCCPCH_Ec/lor	dB	-3	-3	n.a.	n.a.	-3	-3	n.a.	n.a.		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9		
SCH_t _{offset}		0	0	0	0	15	15	15	15		
PICH_Ec/lor	dB	n.a.	n.a.	-3	-3	n.a.	n.a.	-3	-3		
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12		
\hat{I}_{or}/I_{oc}	dB	3	-13	3	-13	5	5	5	5		
I_{oc}	dBm/ 3.84 MHz	-70									
P-CCPCH_RSCP	dB	-70	-86	n.a.	n.a.	-68	-68	n.a.	n.a.		
Propagation Condition					AW	/GN					

A.6A.1.1.2.2 Test Requirements

The RRC re-establishment delay $T_{RE-ESTABLISH}$ to an unknown target cell shall be less than 3,7 s.

The rate of successful RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in this test case can be expressed as,

 $T_{\text{RE-ESTABLISH}} = T_{\text{RRC-RE-ESTABLISH}} + T_{\text{UE-RE-ESTABLISH-REQ-UNKNOWN}}$

where,

 $T_{RRC-RE-ESTABLISH} = 160ms + (N_{313}-1)*10ms + T_{313}$

 $T_{UE-RE-ESTABLISH-REQ-KNOWN} = 50ms + T_{SEARCH-UNKNOWN} *NF + T_{SI} + T_{RA},$

and,

 N_{313} Equal to 20 and therefore resulting in 200 ms delay.

 T_{313} Equal to 0 s.

 $T_{SEARCH\text{-}UNKNOWN}$ Equal to 800 ms

NF Equal to 2, the number of different frequencies in the monitored set of cell 1.

T_{SI} Equal to 1280 ms, the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system

information blocks defined in [16] for a UTRAN cell.

T_{RA} Equal to 40 ms, the additional delay caused by the random access procedure.

A.6A.1.2 1.28 Mcps TDD Option

A.6A.1.2.1 Test Purpose and Environment

A.6A.1.2.1.1 Test 1

The purpose is to verify that the RRC connection re-establishment delay is within the specified limits. These tests will verify the requirements in section 6A.1.2.2.

The test parameters are given in table A.6A.5 and table A.6A.6 below. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively. At the start of time period T2, the dedicated channel is removed.

Table A.6A.5: General test parameters for RRC connection re-establishment delay, Test 1

Parameter	Unit	Value	Comment
DCH Parameters		DL Reference measurement channel 12.2 kbps	As specified in TS25.102, section A.2.2.2
Power Control		On	
Active cell, Initial condition		Cell 1	
Active cell, Final condition		Cell 2	
N313		20	
N315		1	
T313	Seconds	0	
T _{SI}	ms	1280	Time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms). Note: Since 1280 ms is one of the typical values for repeating system information blocks, T _{SI} of 1280 ms could be increased by the RRC procedure delay in order to allow the SIB repetition period of 1280 ms
Monitored cell list size		24	Monitored set shall only include intra frequency neighbours
Cell 2			Included in monitored set
Reporting frequency	Seconds	4	
T1	S	10	
T2	S	6	

Table A.6A.6: Cell specific parameters for RRC connection re-establishment delay test, Test 1

Parameter	Unit	Cell 1				Ce	II 2		
Timeslot Number			0	5		0			
		T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number (NOTE3)		Channel 1				Char	nnel 1		
DPCH_Ec/lor	dB	Not a	pplicable	Note 1	-infinity	Not ap	plicable		
OCNS_Ec/lor	dB	Note 2		Note 2		Note 2			
PCCPCH_Ec/lor	dB		-3			-3			
\hat{I}_{or}/I_{oc}	dB	[3]	-infinity	3	-infinity	6	6		
I_{oc}	dBm/ 1.28 MHz	-70							
PCCPCH_RSCP	dBm	-70 -infinity Not applicable		plicable	-67	-67			
Propagation Condition		AWGN							

NOTE 1: The DPCH level is controlled by the power control loop.

NOTE 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to loc

NOTE 3: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency.

A.6A.1.2.1.2 Test 2

The test parameters are given in table A.6A.7 and table A.6A.8 below. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively. At the start of time period T2, the dedicated channel is removed.

Table A.6A.7: General test parameters for RRC connection re-establishment delay, Test 2

Parameter	Unit	Value	Comment
DCH Parameters		DL Reference measurement channel 12.2 kbps	As specified in TS25.102, section A.2.2.2
Power Control		On	
Active cell, Initial condition		Cell 1	Channel 1
Active cell, Final condition		Cell 2	Channel 2 or 3
N313		20	
N315		1	
T313	Seconds	0	
T _{SI}	ms	1280	Time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms). Note: Since 1280 ms is one of the typical values for repeating system information blocks, T _{SI} of 1280 ms could be increased by the RRC procedure delay in order to allow the SIB repetition period of 1280 ms
Cells in the monitored set		24	
Channels in the monitored set		Channel 1, Channel 2, Channel 3	
Cell 2			Cell 2 is not included in the monitored set. Cell 2 is located on a different channel than cell 1.
Reporting frequency	Seconds	4	
T1	S	10	
T2	S	6	

Table A.6A.8: Cell specific parameters for RRC connection re-establishment delay test, Test 2

Parameter	Unit		Cel	l 1			Ce	II 2	
Timeslot Number		()	5		0			
		T1	T2	T1	T2	T1	T2		
UTRA RF Channel Number (NOTE3)		Channel 1				Char	nnel 2		
PCCPCH_Ec/lor	dB	-	3			-	3		
DPCH_Ec/lor	dB	Not applicable		Note 1	-infinity	Not applicable			
OCNS_Ec/lor	dB	Not	te 2	Note 2		Note 2			
\hat{I}_{or}/I_{oc}	dB	3	-infinity	3	-infinity	6	6		
I_{oc}	dBm/ 1.28 MHz	-70							
PCCPCH_RSCP	dBm	-70 -infinity		Not applicable		-67	-67		•
Propagation Condition		AWGN							

NOTE 1: The DPCH level is controlled by the power control loop.

NOTE 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or.}

NOTE 3: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency.

A.6A.1.2.2 Test Requirements

A.6A.1.2.2.1 Test 1

The Re-establishment delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send SYNC-UL in the UpPTS for sending a CELL UPDATE message using the cause "radio link failure".

The Re-establishment delay $T_{\text{RE-ESTABLISH}}$ to a known cell shall be less than 1815 ms.

The rate of correct tests observed during repeated tests shall be at least 90%.

NOTE: The Re-establishment delay can be expressed in this case as

T_{RE-ESTABLISH}= T_{RRC-RE-ESTABLISH}+ T_{UE-RE-ESTABLISH-REO-KNOWN}.

Where

 $T_{RRC-RE-ESTABLISH} = 160ms + (N_{313}-1)*10ms + T_{313}$

 $T_{\text{UE}^{-}\text{RE-ESTABLISH-REQ-KNOWN}} \quad = 50 ms + T_{search} + T_{SI} + T_{RA}$

N313=20

 $T_{313}=0s$

 T_{search} is the time it takes for the UE to search the cell. $T_{\text{search}} = 100 \text{ ms}$ in case of a known target cell.

The additional delay caused by the random access procedure. 35 ms is assumed in this test case

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms) 1280 ms is assumed in this test case.

This gives a total delay of 1.815s allow 1.9s in the test case.

A.6A.1.2.2.2 Test 2

The Re-establishment delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send SYNC-UL in the UpPTS for sending a CELL UPDATE message using the cause "radio link failure".

The Re-establishment delay to an unknown cell shall be less than 4115 ms.

The rate of correct tests observed during repeated tests shall be at least 90%.

NOTE: The Re-establishment delay can be expressed in case as

T_{RE-ESTABLISH}= T_{RRC-RE-ESTABLISH}+ T_{UE-RE-ESTABLISH-REQ-UNKNOWN}.

Where

 $T_{RRC-RE-ESTABLISH} = 160ms + (N_{313}-1)*10ms + T_{313}$

 $T_{UERE-ESTABLISH-REQ-UNKNOWN} = 50 \text{ms} + T_{search} * NF + T_{SI} + T_{RA},$

 $N_{313}=20$

 $T_{313} = 0s$

 T_{search} is the time it takes for the UE to search the cell. T_{search} =800 ms in case of an unknown target cell.

NF is the number of different frequencies in the monitored set. NF=3

T_{RA} The additional delay caused by the random access procedure. 35 ms is assumed in this test case

T_{SI} is the time required for receiving all the relevant system information data according to the

reception procedure and the RRC procedure delay of system information blocks defined in 25.331

for a UTRAN cell (ms).1280 ms is assumed in this test case.

This gives a total of 4.115s, allow 4.2s in the test case.

A.6A.1.3 7.68 Mcps TDD option

A.6A.1.3.1 RRC re-establishment delay to a known target cell

A.6A.1.3.1.1 Test Purpose and Environment

The purpose is to verify that the RRC re-establishment delay to a known target cell is within the specified limits. This test will partly verify the requirements in section 6A.1.2.

The test parameters are given in table A.6A.5A and table A.6A.6A below. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consists of 2 successive time periods, with time durations of T1 and T2 respectively.

During T1, the DL DPCH in cell 1 shall be transmitted in timeslot 2 and the UL DPCH in cell 1 shall be transmitted in timeslot 10. At the beginning of time period T2, the DPCH shall be removed.

Cell 1 and cell shall be synchronised, i.e. share the same frame and timeslot timing.

Table A.6A.5A: General test parameters for RRC re-establishment delay, known target cell case

F	Parameter Uni		Parameter		Value	Comment
DCH parame	H parameters		ameters		DL reference measurement	As specified in TS 25.102 section
			channel 12.2 kbps	A.2.2		
Power Contr	ol		On			
Target qualit	y value on DTCH	BLER	0.01			
Initial	Active cell		Cell 1	Cell 2 shall be included in the		
conditions	Neighbour cell		Cell 2	monitored set in Cell 1.		
Final	Active cell		Cell 2			
conditions						
Access Ser	vice Class (ASC#0)	-	1	Selected so that no additional		
- Persistenc	- Persistence value			delay is caused by the random		
				access procedure. The value		
				shall be used for all cells in the		
				test.		

N313		20	
N315		1	
T313	Seconds	0	
T _{SI}	ms	1280	
Monitored cell list size		24 TDD neighbours on Channel	
		1	
Reporting frequency	Seconds	4	
T1		10	
T2		6	

Table A.6A.6A: Cell specific parameters for RRC re-establishment delay test, known target cell case

Parameter	Unit	Cell 1					Ce	II 2	
Timeslot Number		()	8		0		8	
		T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Char	nel 1			Char	nel 1	
PCCPCH_Ec/lor	dB	-3	-3	n.a.	n.a.	-3	-3	n.a.	n.a.
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	15	15	15	15
PICH_Ec/lor	dB	n.a.	n.a.	-3	-3	n.a.	n.a.	-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	3	-13	3	-13	5	5	5	5
I_{oc}	dBm/ 7.68 MHz	-70							
P-CCPCH_RSCP	dB	-70	-86	n.a.	n.a.	-68	-68	n.a.	n.a.
Propagation Condition					AW	'GN			

A.6A.1.3.1.2 Test Requirements

The RRC re-establishment delay $T_{\text{RE-ESTABLISH}}$ to a known target cell shall be less than 2 s.

The rate of successful RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in this test case can be expressed as,

 $T_{\text{RE-ESTABLISH}} = T_{\text{RRC-RE-ESTABLISH}} + T_{\text{UE-RE-ESTABLISH-REQ-KNOWN}}.$

where,

 $T_{RRC\text{-}RE\text{-}ESTABLISH} = \quad 160ms + (N_{313}\text{-}1)*10ms + T_{313}$

 $T_{\text{UE-RE-ESTABLISH-REQ-KNOWN}} = 50 \text{ms} + T_{\text{SEARCH-KNOWN}} + T_{\text{SI}} + T_{\text{RA}},$

and,

N₃₁₃ Equal to 20 and therefore resulting in 200 ms delay.

 T_{313} Equal to 0 s.

T_{SEARCH-KNOWN} Equal to 100 ms

T_{SI} Equal to 1280 ms, the time required for receiving all the relevant system information data

according to the reception procedure and the RRC procedure performance value of system

information blocks defined in [16] for a UTRAN cell.

T_{RA} Equal to 40 ms, the additional delay caused by the random access procedure.

A.6A.1.3.2 RRC re-establishment delay to an unknown target cell

A.6A.1.3.2.1 Test Purpose and Environment

The purpose is to verify that the RRC re-establishment delay to an unknown target cell is within the specified limits. This test will partly verify the requirements in section 6A.1.2.

The test parameters are given in table A.6A.7A and table A.6A.8A below. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consists of 2 successive time periods, with time durations of T1 and T2 respectively.

During T1, the DL DPCH in cell 1 shall be transmitted in timeslot 2 and the UL DPCH in cell 1 shall be transmitted in timeslot 10. At the beginning of time period T2, the DPCH shall be removed.

Cell 1 and cell shall be synchronised, i.e. share the same frame and timeslot timing.

Table A.6A.7A: General test parameters for RRC re-establishment delay, unknown target cell case

Pa	Parameter		Value	Comment
DCH	parameters		DL reference measurement channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Pov	ver Control		On	
Target qual	ity value on DTCH	BLER	0.01	
Initial	Active cell		Cell 1	Cell 2 shall not be included in the
conditions	Neighbour cell	1	Cell 2	monitored set in Cell 1.
Final conditions	Active cell		Cell 2	
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	N313		20	
	N315		1	
	T313	Seconds	0	
	T _{SI}	ms	1280	
Monitor	ed cell list size		16 TDD neighbours on Channel 1 16 TDD neighbours on Channel 2	
Reporting frequency S		Seconds	4	
·	T1		10	
	T2		6	

Table A.6A.8A: Cell specific parameters for RRC re-establishment delay test, unknown target cell case

Parameter	Unit		Cell 1 Cell 2					II 2	
Timeslot Number		()	8		0		8	
		T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number			Chan	nel 1			Char	nel 2	
PCCPCH_Ec/lor	dB	-3	-3	n.a.	n.a.	-3	-3	n.a.	n.a.
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	15	15	15	15
PICH_Ec/lor	dB	n.a.	n.a.	-3	-3	n.a.	n.a.	-3	-3
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12	-3,12
\hat{I}_{or}/I_{oc}	dB	3	-13	3	-13	5	5	5	5
I_{oc}	dBm/ 7.68 MHz	-70							
P-CCPCH_RSCP	dB	-70	-86	n.a.	n.a.	-68	-68	n.a.	n.a.
Propagation Condition			AWGN						

A.6A.1.3.2.2 Test Requirements

The RRC re-establishment delay $T_{\text{RE-ESTABLISH}}$ to an unknown target cell shall be less than 3,7 s.

The rate of successful RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in this test case can be expressed as,

 $T_{\text{RE-ESTABLISH}} = T_{\text{RRC-RE-ESTABLISH}} + T_{\text{UE-RE-ESTABLISH-REQ-UNKNOWN}}$

where,

 $T_{RRC-RE-ESTABLISH} = 160ms + (N_{313}-1)*10ms + T_{313}$

 $T_{\text{UE-RE-ESTABLISH-REQ-KNOWN}} = 50 \text{ms} + T_{\text{SEARCH-UNKNOWN}} * \text{NF} + T_{\text{SI}} + T_{\text{RA}},$

and,

N₃₁₃ Equal to 20 and therefore resulting in 200 ms delay.

 T_{313} Equal to 0 s.

T_{SEARCH-UNKNOWN} Equal to 800 ms

NF Equal to 2, the number of different frequencies in the monitored set of cell 1.

T_{SI} Equal to 1280 ms, the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure performance value of system

information blocks defined in [16] for a UTRAN cell.

T_{RA} Equal to 40 ms, the additional delay caused by the random access procedure.

A.6A.2 Transport format combination selection in UE

A.6A.2.1 3.84 Mcps TDD option

A.6A.2.1.1 Test Purpose and Environment

The purpose is to verify the UE blocks (stops using) a currently used TFC when the UE output power is not sufficient to support that TFC. This test will verify the general requirement on TFC selection in section 6A.2.

A.6A.2.1.1.1 Interactive or Background, PS, UL: 64 kbps

The test will verify the general requirement on TFC selection in section 6A.2 for a 64 kbps UL reference RAB intended for packet data services, i.e. Interactive or Background, PS as defined in TS 34.108 and multiplexed to a 3.4 kbps DCCH.

The test parameters are given in Table A.6A.9, A.6A.10, A.6A.11 and Table A.6A.12 below. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively.

Details on the UL reference RAB in table A.6A.10 can be f ound in TS 34.108 section "Interactive or background / UL:64 DL: 64 kbps / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH".

Table A.6A.9: General test parameters

Parameter	Unit	Value	Comment
TFCS size		10	
TFCS		UL_TFC0, UL_TFC1,	Gain factors for TFC0 to TFC9 shall be set to 1.
		UL_TFC2, UL_TFC3,	
		UL_TFC4, UL_TFC5,	
		UL_TFC6, UL_TFC7,	
		UL_TFC8, UL_TFC9	
Power Control		On	
Active cell		Cell 1	
Maximum allowed UL TX power	dBm	0	Value of IE "Maximum allowed UL Tx power
Primary CCPCH Tx power	dBm	18	Value of IE "Primary CCPCH Tx power"
UL timeslot interference	dBm	-80	Value of IE "UL timeslot interference"
			This value shall apply to all timeslots
α		1	IE "Alpha" either not sent or explicitly set to value
UL target SIR	dB	6	
DPCH constant offset	dB	adjustable	Value of IE "DPCH constant power
T1	S	10	
T2	S	10	

Table A.6A.10: Transport channel parameters for UL reference RAB, Interactive or Background and DCCH

Parameter	Unit	64 kbps RAB	DCCH 3.4kbps		
Transport Channel Number		1	2		
Transmission Time Interval	ms	20	40		
Type of Error Protection		Turbo coding	Convolutional coding		
Coding Rate		1/3			
Size of CRC	bits	16			
Transport Block Size	bits	336	148		
Transport Block Set Size	bits	336*B (B=0,1,2,3,4)	148*B (B=0,1)		
Transport Format Set	bits				
TF0		0x336	0x148		
TF1		1x336	1x148		
TF2		2x336	N/A		
TF3		3x336	N/A		
TF4		4x336	N/A		

Table A.6A.11: UL TFCI

TFCI	(64 kbps RAB, DCCH)
UL_TFC0	(TF0, TF0)
UL_TFC1	(TF0, TF1)
UL_TFC2	(TF1, TF0)
UL_TFC3	(TF1, TF1)
UL_TFC4	(TF2, TF0)
UL_TFC5	(TF2, TF1)
UL_TFC6	(TF3, TF0)
UL_TFC7	(TF3, TF1)
UL_TFC8	(TF4, TF0)
UL_TFC9	(TF4, TF1)

Table A.6A.12: Physical channel parameters

Parameter	Unit	Value
UL timeslot		7
Burst type		1
Resource units		{(spreading factor 16 x 1 code) + (spreading factor 4 x 1 code)}
		x 1 time slot
TFCI	Bits	16
TPC	Bits	2
Frame allocation		Continuous

The test shall be performed in AWGN channel propagation conditions. The P-CCPCH in the DL shall be transmitted in timeslot 0.

The amount of available user data shall be sufficient to allow uplink transmission at the highest bit rate (UL_TFC8 or UL_TFC9) during the entire test and it shall be ensured that the UE is using UL_TFC8 or UL_TFC9 at the end of T1.

The test shall be performed in the following way:

Before time period T1:

The allowed TFCS according to table A.6A.5 shall be signalled to the UE.

During time period T1:

With the received P-CCPCH power level set to -60 dBm, the value of the DPCH constant value shall be adjusted such that the mean UE output power is -10 dBm. These conditions are held steady during period T1.

During time period T2:

At the beginning of time period T2, the received P-CCPCH power level shall be decreased by 20 dB.

A.6A.2.1.2 Test Requirements

A.6A.2.1.2.1 Interactive or Background, PS, UL: 64 kbps

The UE shall have stopped using UL_TFC8 and UL_TFC9 within 170 ms from beginning of time period T2.

The rate of correct TFC selections observed during repeated tests shall be at least 90%.

NOTE: The delay from the begining of T2 can be expressed as:

$$T_{detect_block} + T_{notify} + T_{modify} + T_{L1_proc} + T_{align_TTI} + T_{offset}$$

where:

 T_{detect_block} Equal to 30 ms, the time needed to detect that UL_TFC8 and UL_TFC9 can no longer be supported. This defines the maximum time to detect that the *Elimination* criterion is fulfilled for UL_TFC8 and UL_TFC9.

T_{notify} Equal to 15 ms, the time allowed for MAC to indicate to higher layers that UL_TFC8 and

UL_TFC9 can no longer be supported.

 T_{modify} Equal to MAX(T_{adapt_max} , T_{TTI}) = MAX(0, 40)=40ms

 T_{adapt_max} Equals to 0 ms for the case without codec.

T_{TTI} See section 6A.2. Equals 40 ms in the test case.

T_{L1 proc} Equals 35 ms.

 T_{align_TTI} Align with the longest uplink TTI where the new TFC can be selected. The worst case equals

40ms in this test case.

 T_{offset} Equal to 10 ms, the maximum time between reception of the DL beacon timeslot and the UL

DPCH timeslot.

A.6A.2.2 1.28 Mcps TDD option

A.6A.2.2.1 Test Purpose and Environment

The purpose is to verify the UE blocks (stops using) a currently used TFC when the UE output power is not sufficient to support that TFC. This test will verify the general requirement on TFC selection in section 6.4.

A.6A.2.2.1.1 Interactive or Background, PS, UL: 64 kbps

The test will verify the general requirement on TFC selection in section 6.4 for a RAB intended for packet data services, i.e. Interactive or Background, PS, UL: 64kbps as defined in TS 34.108.

The test parameters are given in Table A.6A.13, A.6A.14 and Table A.6A.15 below. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively.

Details on the UL reference RAB in table A.6A.13 and A.6A.14 can be found in TS 34.108 section "Interactive or background / UL:64 DL: 64 kbps / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH".

Table A.6A.13: UL reference RAB, Interactive or Background

	TFI	64 kbps RAB (20ms TTI)	DCCH 3.4kbps (40ms TTI)
TFS	TF0, bits	0x336	0x148
	TF1, bits	1x336	1x148
	TF2, bits	2x336	N/A
	TF3, bits	3x336	N/A
	TF4, bits	4x336	N/A

Table A.6A.14: UL TFCI

TFCI	(64 kbps RAB, DCCH)
UL_TFC0	(TF0, TF0)
UL_TFC1	(TF0, TF1)
UL_TFC2	(TF1, TF0)
UL_TFC3	(TF1, TF1)
UL_TFC4	(TF2, TF0)
UL_TFC5	(TF2, TF1)
UL_TFC6	(TF3, TF0)
UL_TFC7	(TF3, TF1)
UL_TFC8	(TF4, TF0)
UL TFC9	(TF4, TF1)

Table A.6A.15: General test parameters

Parameter	Unit	Value	Comment
TFCS size		10	
TFCS		UL_TFC0, UL_TFC1, UL_TFC2, UL_TFC3,	
		UL_TFC4, UL_TFC5, UL_TFC6, UL_TFC7,	
		UL_TFC8, UL_TFC9	
Power Control		On	
TPC step size	dB	1	
Maximum allowed	dBm	21	
UL TX power			
T1	S	30	
T2	S	10	

The test shall be performed in AWGN channel propagation conditions.

The radio conditions in the test shall be sufficient, so that decoding of the TPC commands can be made without errors.

The amount of available user data shall be sufficient to allow uplink transmission at the highest bit rate (UL_TFC8 or UL_TFC9) during the entire test and it shall be ensured that the UE is using UL_TFC8 or UL_TFC9 at the end of T1.

The test shall be performed in the following way:

Before time period T1:

The allowed TFCS according to table A.x.z shall be signalled to the UE.

During time period T1:

The system simulator shall ensure that the UE output power is commanded to be between 9to 10 dB below the UE Maximum allowed UL TX power.

During time period T2:

The system simulator shall continuously send TPC_cmd=Up to the UE from the beginning of T2 until the end of T2.

OTE: This will emulate that UL_TFC8 to UL_TFC9 can not be supported beacuse the UE reaches the maximum UL Tx power and still UTRAN is sending power-up commands. The time from the beginning of T2 until the UE blocks (stops using) UL_TFC8 and UL_TFC9 shall be measured.

A.6A.2.2.2 Test Requirements

A.6A.2.2.2.1 Interactive or Background, PS, UL: 64 kbps

The UE shall have stopped using UL_TFC8 and UL_TFC9 within [TBD] ms from beginning of time period T2.

The rate of correct tests observed during repeated tests shall be at least 90%.

NOTE: The delay from the begining of T2 can be expressed as: $T_{ramp} + T_{detect_block} + T_{notify} + T_{modify} + T_{L1_proc} + T_{align_TTI}$, where:

T_{ramp} Margin added for the increase of UE output power to the UE maximum power. A margin of 7 frames (70ms) is used, i.e. 14 TPC commands.

The time needed to detect that UL_TFC8 and UL_TFC9 can no longer be supported, i.e. defines

the maximum time to detect that the *Limited TFC Set* criterion is fulfilled for UL_TFC8 and UL_TFC9. This figure is currently TBD as X and Y in the general requirement, see section 6.4.2,

are not finalised yet.

T_{notify} Equal to [15] ms, the time allowed for MAC to indicate to higher layers that UL_TFC8 and

UL_TFC9 can no longer be supported.

 T_{modify} Equal to $MAX(T_{adapt_max}, T_{TTI}) = MAX(0, 40) = 40ms$

 T_{adapt_max} Equals to 0ms for the case without codec.

 T_{L1_proc} Equals 15ms.

T_{align TTI} Align with the longest uplink TTI where the new TFC can be selected. The worst case equals

40ms in this test case.

T_{TTI} See section 6.4.2. Equals 40 ms in the test case.

This gives a maximum delay of $(70 + T_{detect_block} + [15] + 40 + 15 + 40)$ ms from the beginning of T2.

A.6A.2.3 7.68 Mcps TDD option

A.6A.2.3.1 Test Purpose and Environment

The purpose is to verify the UE blocks (stops using) a currently used TFC when the UE output power is not sufficient to support that TFC. This test will verify the general requirement on TFC selection in section 6A.2.

A.6A.2.3.1.1 Interactive or Background, PS, UL: 64 kbps

The test will verify the general requirement on TFC selection in section 6A.2 for a 64 kbps UL reference RAB intended for packet data services, i.e. Interactive or Background, PS as defined in TS 34.108 and multiplexed to a 3.4 kbps DCCH.

The test parameters are given in Table A.6A.16, A.6A.17, A.6A.18 and Table A.6A.19 below. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively.

Details on the UL reference RAB in table A.6A.17 is similar to that in TS 34.108 section "Interactive or background / UL:64 DL: 64 kbps / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH" with the exception that the Spreading Factor is 32 here instead of 16.

Table A.6A.16: General test parameters

Parameter	Unit	Value	Comment
TFCS size		10	
TFCS		UL_TFC0, UL_TFC1,	Gain factors for TFC0 to TFC9 shall be set to 1.
		UL_TFC2, UL_TFC3,	
		UL_TFC4, UL_TFC5,	
		UL_TFC6, UL_TFC7,	
		UL_TFC8, UL_TFC9	
Power Control		On	
Active cell		Cell 1	
Maximum allowed UL TX power	dBm	0	Value of IE "Maximum allowed UL Tx power
Primary CCPCH Tx power	dBm	18	Value of IE "Primary CCPCH Tx power"
UL timeslot interference	dBm	-80	Value of IE "UL timeslot interference"
			This value shall apply to all timeslots
α		1	IE "Alpha" either not sent or explicitly set to value
UL target SIR	dB	6	
DPCH constant offset	dB	adjustable	Value of IE "DPCH constant power
T1	S	10	
T2	S	10	

Table A.6A.17: Transport channel parameters for UL reference RAB, Interactive or Background and DCCH

Parameter	Unit	64 kbps RAB	DCCH 3.4kbps	
Transport Channel Number		1	2	
Transmission Time Interval	ms	20	40	
Type of Error Protection		Turbo coding	Convolutional coding	
Coding Rate		1/3		
Size of CRC	bits	16		
Transport Block Size	bits	336	148	
Transport Block Set Size	bits	336*B (B=0,1,2,3,4)	148*B (B=0,1)	
Transport Format Set	bits			
TF0		0x336	0x148	
TF1		1x336	1x148	
TF2		2x336	N/A	
TF3		3x336	N/A	
TF4		4x336	N/A	

Table A.6A.18: UL TFCI

TFCI	(64 kbps RAB, DCCH)
UL_TFC0	(TF0, TF0)
UL_TFC1	(TF0, TF1)
UL_TFC2	(TF1, TF0)
UL_TFC3	(TF1, TF1)
UL_TFC4	(TF2, TF0)
UL_TFC5	(TF2, TF1)
UL_TFC6	(TF3, TF0)
UL_TFC7	(TF3, TF1)
UL_TFC8	(TF4, TF0)
UL_TFC9	(TF4, TF1)

Table A.6A.19: Physical channel parameters

Parameter	Parameter Unit Value		
UL timeslot		7	
Burst type	Burst type 1		
Resource units		{(spreading factor 32 x 1 code) + (spreading factor 8 x 1 code)}	
		x 1 time slot	
TFCI Bits		16	
TPC Bits		2	
Frame allocation		Continuous	

The test shall be performed in AWGN channel propagation conditions. The P-CCPCH in the DL shall be transmitted in timeslot 0.

The amount of available user data shall be sufficient to allow uplink transmission at the highest bit rate (UL_TFC8 or UL_TFC9) during the entire test and it shall be ensured that the UE is using UL_TFC8 or UL_TFC9 at the end of T1.

The test shall be performed in the following way:

Before time period T1:

The allowed TFCS according to table A.6A.16 shall be signalled to the UE.

During time period T1:

With the received P-CCPCH power level set to -60 dBm, the value of the DPCH constant value shall be adjusted such that the mean UE output power is -10 dBm. These conditions are held steady during period T1.

During time period T2:

At the beginning of time period T2, the received P-CCPCH power level shall be decreased by 20 dB.

A.6A.2.3.2 Test Requirements

A.6A.2.3.2.1 Interactive or Background, PS, UL: 64 kbps

The UE shall have stopped using UL_TFC8 and UL_TFC9 within 170 ms from beginning of time period T2.

The rate of correct TFC selections observed during repeated tests shall be at least 90%.

NOTE: The delay from the beginning of T2 can be expressed as:

$$T_{detect_block} + T_{notify} + T_{modify} + T_{L1_proc} + T_{align_TTI} + T_{offset}$$

where:

 T_{detect_block} Equal to 30 ms, the time needed to detect that UL_TFC8 and UL_TFC9 can no longer be

supported. This defines the maximum time to detect that the Elimination criterion is fulfilled for

UL_TFC8 and UL_TFC9.

T_{notify} Equal to 15 ms, the time allowed for MAC to indicate to higher layers that UL_TFC8 and

UL_TFC9 can no longer be supported.

 T_{modify} Equal to MAX(T_{adapt_max} , T_{TTI}) = MAX(0, 40)=40ms

 $T_{adapt\ max}$ Equals to 0 ms for the case without codec.

T_{TTI} See section 6A.2. Equals 40 ms in the test case.

T_{L1 proc} Equals 35 ms.

T_{align_TTI} Align with the longest uplink TTI where the new TFC can be selected. The worst case equals

40ms in this test case.

T_{offset} Equal to 10 ms, the maximum time between reception of the DL beacon timeslot and the UL

DPCH timeslot.

A.7 Timing characteristics

A.7.1 Timing Advance

A.7.1.1 3.84 Mcps TDD option

A.7.1.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirements on timing advance adjustment accuracy and timing advance adjustment delay in section 7.1.1.

The test parameters are given in table A.7.1 and table A.7.1A. The test consists of two successive time periods, with a time duration of T1 and T2 respectively. At the start of time duration T1, the UE shall transmit with the Uplink Timing Advance value set to zero, i.e. Timing Advance disabled.

During time period T1, UTRAN shall send an Uplink Physical Channel control message with activation time at the beginning of T2. The Uplink Physical Channel Control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T2 is greater than or equal to the RRC procedure delay as defined in [16].

T1

T2

Parameter Unit Value Comment DCH parameters **DL Reference Measurement** As specified in TS 25.102 section A.2.2 Channel 12.2 kbps Power Control On BLER Target quality value on 0.01 DTCH Initial Timing 0 IE "Uplink timing advance" value zero or conditions IE "Uplink timing advance control" value Advance value disabled. Final IE "Uplink timing advance" value set to 5. Timing 5 Advance value condition Monitored cell list size 6 TDD neighbors on Channel 1 T_{SI} 1.28 The value shall be used for all cells in the s

Table A.7.1.1: General test parameters for Timing Advance test

Table A.7.1.2: Cell specific test parameters for Timing Advance test

5

5

Parameter	Unit	Cell 1				
DL timeslot number		0			2	
		T1	T2	T1	T2	
UTRA RF Channel Number		Channel 1				
PCCPCH_Ec/lor	dB	-3	3	r	n.a.	
SCH_Ec/lor	dB	-9		n.a.		
SCH_t _{offset}	dB	0		n.a.		
DPCH_Ec/lor	dB	n.a.		No	Note 1	
OCNS_Ec/lor	dB	-3,12 Note 2		ote 2		
\hat{I}_{or}/I_{oc}	dB	3				
I_{oc}	dBm/ 3,84 MHz	-70				
Propagation Condition		AWGN				

Note 1: The DPCH level is controlled by the power control loop

s

s

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor .

A.7.1.1.2 Test Requirements

The UE shall apply the signalled Timing Advance value to the UL DPCH transmission timing at the designated activation time, i.e the beginning of time period T2. The Timing Advance adjustement accuracy shall be within the limits specified in section 7.1.1.2.

The rate of correct Timing Advance adjustments observed during repeated tests shall be at least 90%.

A.7.1.2 1.28 Mcps TDD option

A.7.1.2.1 Test Purpose and Environment

Timing advance is applied to adjust the UE transmit time in order to ensure that all the signal received by the BS is synchronised.

The purpose of this test is to verify the ability of the UE to adjust its timing advance according to the SS commands within the specified accuracy defined in section 7.1.2.

The test parameters are given in table A.7.1.3 and table A.7.1.4. The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

Table A.7.1.3: General test parameters for Timing Advance test

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement	As specified in TS 25.102
•		Channel 12.2 kbps	section A.2.2
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Monitored cell list size		6 TDD neighbors on Channel 1	

Table A.7.1.4: Cell specific test parameters for Timing Advance test

Parameter	Unit	Cel	l 1		
Timeslot Number		0	DwPTS		
UTRA RF Channel Number (NOTE)		Chan	nel 1		
PCCPCH_Ec/lor	dB	-3			
DwPCH_Ec/lor	dB		0		
OCNS_Ec/lor	dB	-3			
\hat{I}_{or}/I_{oc}	dB	6	6		
I_{oc}	dBm/ 1.28 MHz	-8	0		
PCCPCH RSCP	dBm	-77			
Propagation Condition		AW	GN		
NOTE: In the case of multi-frequency network, the UTRA RF Channel Number can be set for					

NOTE: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency.

A.7.1.2.2 Test procedure

- 1) Configure the UE transmitter to enable synchronisation steps of size 1/8 chip
- 2) send synchronisation commands to the UE under test
- 3) measure the received time of the uplink signal.
- 4) check that the measured UE synchronisation control range is within the limits defined in section 7.1.2.1.1.1 Table 7.1

A.7.1.2.3 Test Requirements

The rate of correct uplink synchronisation control range observed during repeated tests shall be at least 90%.

A.7.1.3 7.68 Mcps TDD option

A.7.1.3.1 Test Purpose and Environment

The purpose of this test is to verify the requirements on timing advance adjustment accuracy and timing advance adjustment delay in section 7.1.3.

The test parameters are given in table A.7.5 and table A.7.6. The test consists of two successive time periods, with a time duration of T1 and T2 respectively. At the start of time duration T1, the UE shall transmit with the Uplink Timing Advance value set to zero, i.e. Timing Advance disabled.

During time period T1, UTRAN shall send an Uplink Physical Channel control message with activation time at the beginning of T2. The Uplink Physical Channel Control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T2 is greater than or equal to the RRC procedure delay as defined in [16].

Table A.7.1.5: General test parameters for Timing Advance test

Par	Parameter		Value	Comment
DCH parameters			DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Powe	er Control		On	
	Target quality value on DTCH		0.01	
Initial conditions	Timing Advance value		0	IE "Uplink timing advance" value zero or IE "Uplink timing advance control" value disabled.
Final condition			5	IE "Uplink timing advance" value set to 5.
Monitore	Monitored cell list size		6 TDD neighbors on Channel 1	
T _{SI}		S	1.28	The value shall be used for all cells in the test.
	T1	S	5	
	T2	S	5	

Table A.7.1.6: Cell specific test parameters for Timing Advance test

Parameter	Unit	Cell 1				
DL timeslot number		0			2	
		T1	T2	T1	T2	
UTRA RF Channel Number		Channel 1				
PCCPCH_Ec/lor	dB	-3		r	n.a.	
SCH_Ec/lor	dB	-9		n.a.		
SCH_t _{offset}	dB	0		n.a.		
DPCH_Ec/lor	dB	n.a.		No	Note 1	
OCNS_Ec/lor	dB	-3,12 Note 2		ote 2		
\hat{I}_{or}/I_{oc}	dB	3				
I_{oc}	dBm/ 7,68 MHz	-70				
Propagation Condition		AWGN				

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor .

A.7.1.3.2 Test Requirements

The UE shall apply the signalled Timing Advance value to the UL DPCH transmission timing at the designated activation time, i.e the beginning of time period T2. The Timing Advance adjustement accuracy shall be within the limits specified in section 7.1.3.2.

The rate of correct Timing Advance adjustments observed during repeated tests shall be at least 90%.

A.7.2 Cell synchronization accuracy

NOTE: This section is included for consistency with numbering with section 7; currently no test covering requirements in section 7.2 exists.

A.7.3 UE Transmit Timing for 3.84 Mcps TDD option

NOTE: This section is included for consistency with numbering with section 7; currently no test covering requirements in section 7.3 exists.

A.8 UE Measurements Procedures

A.8.1 TDD intra frequency measurements

A.8.1.1 Event 1G triggered reporting in AWGN propagation conditions

A.8.1.1.1 Test Purpose and Environment

A.8.1.1.1.1 3.84 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of events. This test will partly verify the requirements in section 8.1.2 and section 9.1.

The test parameters are given in Table A.8.1.1 and A.8.1.1A below. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. Three cells shall be present in the test, cell 1 being the serving cell and cell 2 and cell 3 being neighbour cells on the used frequency. All cells shall be synchronised, i.e. share the same frame and timeslot timing.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G shall be used, and that P-CCPCH RSCP shall be reported together with Event 1G. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2. The DL DPCH shall be transmitted in timeslot 2 and the UL DPCH shall be transmitted in timeslot 10. The TTI of the uplink DCCH shall be 20ms.

Table A.8.1.1: General test parameters for Event 1G triggered reporting in AWGN propagation condition

Para	meter	Unit	Value	Comment
DCH paramet	ers		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Contro	I		On	
Target quality DTCH	value on	BLER	0.01	
Initial	Active cell		Cell 1	
conditions	ditions Neighbour cell		Cell 2, Cell 3	
Final condition	Active cell		Cell 1	
0		dB	0	Cell individual offset. This value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trigge	er	ms	0	
Threshold use	ed frequency	dBm	-70	Applicable for Event 1G
Filter coefficie	ent		0	
Monitored cel	l list size		12 TDD neighbours on Channel 1	
T1		S	6	
T2		S	6	
T3		S	6	

Table A.8.1.1A: Cell specific parameters for Event 1G triggered correct reporting in AWGN propagation condition

Parameter	Unit		Cell 1			Cell 2		Cell 3			
		T1	T2	Т3	T1	T2	T3	T1	T2	Т3	
DL timeslot number			0			0		0			
UTRA RF Channel Number			Channel 1			Channel 1		Channel 1			
PCCPCH_Ec/lor	dB		-3			-3		-3			
SCH_Ec/lor	dB		-9			-9		-9			
SCH_t _{offset}			0			5			10		
OCNS_Ec/lor	dB		-3,12			-3,12			-3,12		
\hat{I}_{or}/I_{oc}	dB	7		5	5	7	-Inf	-1	nf	7	
PCCPCH RSCP	dBm	-66	-(68	-68	-66	-Inf	-	nf	-66	
I_{oc}	dBm / 3,84 MHz		-70								
Propagation Condition		AWGN									

A.8.1.1.1.2 1.28 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of events. This test will partly verify the requirements in section 8.1A.2 and section 9.1.

The test parameters are given in Table A.8.1.1B and A.8.1.1C below. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. Three cells shall be present in the test, cell 1 being the serving cell and cell 2 and cell 3 being neighbour cells on the used frequency. All cells shall be synchronised, i.e. share the same frame and timeslot timing.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G shall be used, and that P-CCPCH RSCP shall be reported together with Event 1G reporting. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16]. The cell specific test parameters are given in Table A.8.1.1C below.

The TTI of the uplink DCCH shall be 40ms.

Table A.8.1.1B: General test parameters for Event 1G triggered reporting in AWGN propagation condition

Parameter	Unit	Value	Comment
DPCH parameters		DL Reference Measurement Channel	As specified in TS 25.102 section A.
active cell		12.2 kbps	The DPCH is located in an other timeslot than 0
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Active cell		Cell 1	
Neighbour cell		Cell 2, Cell 3	
0	dB	0	Cell individual offset. This value shall be used for all cells in the test.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list		12 TDD neighbours on Channel 1	
size		-	
T1	S	6	
T2	S	6	
T3	S	6	

Table A.8.1.1C: Cell specific parameters for Event 1G triggered correct reporting in AWGN propagation condition

Parameter	Unit			Ce	II 1					Ce	II 2			Cell 3					
DL timeslot number			0		DwPTS			0 DwPTS			S	0			DwPTS				
		T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	Т3	T1	T2	T3	T1	T2	T3
UTRA RF Channel Number (NOTE 2)				Chan	nel 1					Chan	nel 1			Char			nel 1		
PCCPCH_Ec/lor	dB		-3						-3						-3				
DwPCH_Ec/lor	dB					0						0						0	
OCNS_Ec/lor	dB		-3						-3						-3				
\hat{I}_{or}/I_{oc}	dB	7	4	4	7	4	4	4	7	-Inf	4	7	-Inf	-1	nf	6	-11	nf	6
PCCPCH RSCP	dBm	-66	-6	69				-69	-66	-Inf				-1	nf	-66			
I_{oc}	dBm/ 1,28 MHz									-7	70								
Propagation Condition										AW	'GN								

Note 1: The DPCH of all cells are located in a timeslot other than 0.

Note 2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency in this test.

A.8.1.1.3 7.68 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of events. This test will partly verify the requirements in section 8.1B.2 and section 9.1.

The test parameters are given in Table A.8.1.1D and A.8.1.1E below. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. Three cells shall be present in the test, cell 1 being the serving cell and cell 2 and cell 3 being neighbour cells on the used frequency. All cells shall be synchronised, i.e. share the same frame and timeslot timing.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G shall be used, and that P-CCPCH RSCP shall be reported together with Event 1G. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2. The DL DPCH shall be transmitted in timeslot 2 and the UL DPCH shall be transmitted in timeslot 10. The TTI of the uplink DCCH shall be 20ms.

Table A.8.1.1D: General test parameters for Event 1G triggered reporting in AWGN propagation condition

Para	ameter	Unit	Value	Comment
DCH parame	eters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Contro	ol		On	
Target quality DTCH	y value on	BLER	0.01	
Initial	nitial Active cell		Cell 1	
conditions			Cell 2, Cell 3	
Final condition	Active cell	Cell 1		
0		dB	0	Cell individual offset. This value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trigg	ger	ms	0	
Threshold us	sed frequency	dBm	-70	Applicable for Event 1G
Filter coeffici	ent		0	
Monitored ce	ell list size		12 TDD neighbours on Channel 1	
T1	T1		6	
T2		S	6	
T3			6	

Table A.8.1.1E: Cell specific parameters for Event 1G triggered correct reporting in AWGN propagation condition

Parameter	Unit		Cell 1	ell 1 Cell 2					Cell 3				
		T1	T2 T3	T1	T2	T3	T1	T2	Т3				
DL timeslot number			0		0		0						
UTRA RF Channel Number			Channel 1		Channel 1	1	Channel 1						
PCCPCH_Ec/lor	dB		-3		-3		-3						
SCH_Ec/lor	dB		-9		-9		-9						
SCH_t _{offset}			0		5			10					
OCNS_Ec/lor	dB		-3,12		-3,12		-3,12						
\hat{I}_{or}/I_{oc}	dB	7	5	5	7	-Inf	ıl-	nf	7				
PCCPCH RSCP	dBm	-66	-68	-68	-66	-Inf	-Ir	nf	-66				
I_{oc}	dBm / 7,68 MHz		-70										
Propagation Condition		AWGN											

A.8.1.1.2 Test Requirements

A.8.1.1.2.1 3.84Mcps TDD option

The UE shall send one Event 1G triggered measurement report for Cell 2 with a measurement reporting delay less than 200ms from the beginning of time period T2.

The UE shall send one Event 1G triggered measurement report for Cell 3 with a measurement reporting delay less than 800ms from the beginning of time period T3.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of events correctly reported during repeated tests shall be at least 90%.

A.8.1.1.2.2 1.28Mcps TDD option

The UE shall send one Event 1G triggered measurement report for cell 2, with a measurement reporting delay less than 280ms from the beginning of time period T2.

The UE shall send one Event 1G triggered measurement report for Cell 3 with a measurement reporting delay less than 880ms from the beginning of time period T3.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of events correctly reported during repeated tests shall be at least 90%.

A.8.1.1.2.3 7.68Mcps TDD option

The UE shall send one Event 1G triggered measurement report for Cell 2 with a measurement reporting delay less than 200ms from the beginning of time period T2.

The UE shall send one Event 1G triggered measurement report for Cell 3 with a measurement reporting delay less than 800ms from the beginning of time period T3.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of events correctly reported during repeated tests shall be at least 90%.

A.8.1.2 Event 1H and 1I triggered reporting in AWGN propagation conditions

A.8.1.2.1 3.84 Mcps TDD option

A.8.1.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of event 1H and event 1I. This test will partly verify the requirements in section 8.1.2 and section 9.1.

The test parameters are given in Table A.8.1.2, Table A.8.1.2A and Table A.8.1.2B below. The test consists of five successive time periods, with a time duration of T1, T2, T3, T4 and T5 respectively. Two cells shall be present in the test, cell 1 being the current serving cell and cell 2 being a neighbour cell on the used frequency.

In the measurement control information it shall be indicated to the UE that event-triggered reporting with event 1H and event 1I shall be used and that Timeslot ISCP and P-CCPCH RSCP shall be reported together with event 1H and 1I. Measurement control information shall be sent to the UE before the beginning of time period T1.

The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2. The UL DPCH shall be transmitted in timeslot 10. In addition, timeslots 3 and 4 shall be allocated as DL timeslots. Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing.

Table A.8.1.2: General test parameters for correct event 1H and 1I reporting in AWGN propagation condition

Para	meter	Unit	Value	Comment		
DCH paramet	ters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2		
Power Contro	ol		On			
Target quality DTCH	value on	BLER	0.01			
Initial	Active cell		Cell 1			
conditions	Neighbour cell		Cell 2			
Final condition	Active cell		Cell 1			
HCS			Not used			
0			dB		0	Cell individual offset. This value shall be used for all cells in the test.
Timeslot list cell 1			2, 3, 4	Timeslot numbers in IE "Cell info" for Cell 1		
Timeslot list o	ell 2		4	Timeslot numbers in IE "Cell info" for Cell 2		
Threshold use	ed frequency	dBm	-68	Threshold 1 applicable for event 1H, cell 1 timeslots 2, 4 and cell 2 timeslot 4		
Threshold use	ed frequency	dBm	-73	Threshold 2 applicable for event 1H, cell 1 timeslots 2, 3, 4 and cell 2 timeslot 4		
Threshold use	ed frequency	dBm	-67	Applicable for event 1I, cell 1 timeslots 2, 4 and cell 2 timeslot 4		
Hysteresis		dB	0			
Time to Trigg	er	ms	0			
Filter coefficie	ent		0			
Monitored cel	l list size		6 TDD neighbours on Channel 1	Cell 2 shall belong to the monitored set		
T1		S	5			
T2		S	5			
T3		S	5			
T4		S	5			
T5		S	5			

Table A.8.1.2A: Cell 1 specific test parameters for correct event 1H and 1I reporting in AWGN propagation condition

Parameter	Unit	Cell 1										
		T1	T2	T3	T4	T5	T1	T2	T3	T4	T5	
UTRA RF Channel						Chai	nnel 1					
Number						Criai	inei i					
DL timeslot number				0					2			
PCCPCH_Ec/lor	dB		-3 n.a.									
SCH_Ec/lor	dB			-9					n.a.			
SCH_t _{offset}	dB			5					n.a.			
DPCH_Ec/lor	dB			n.a.					Note 1			
OCNS_Ec/lor	dB		-3,12 Note 2									
\hat{I}_{or}/I_{oc}	dB	4 4										
PCCPCH RSCP	dBm	-69 n.a.										
I_{oc}	dBm / 3,84 MHz	-70										
Propagation Condition						AV	/GN					
DL timeslot number				3					4			
PCCPCH_Ec/lor	dB			n.a.					n.a.			
SCH_Ec/lor	dB			n.a.					n.a.			
SCH_t _{offset}	dB			n.a.					n.a.			
DPCH_Ec/lor	dB			n.a.					n.a.			
OCNS_Ec/lor	dB			0					0			
\hat{I}_{or}/I_{oc}	dB			3					0		6	
PCCPCH RSCP	dBm	n.a. n.a.										
I_{oc}	dBm / 3,84 MHz	-70										
Propagation Condition						AW	/GN					
Note 1: The DPCH level i	is controlled b	y the po	ower con	trol loop						_		

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor

Table A.8.1.2B: Cell 2 specific test parameters for correct event 1H and 1I reporting in AWGN propagation condition

Parameter	Unit					Ce	ell 2					
		T1	T2	T3	T4	T5	T1	T2	T3	T4	T5	
UTRA RF Channel						Char	nnel 1					
Number						Criai	iiiei i					
DL timeslot number			0 2									
PCCPCH_Ec/lor	dB			-3					n.a.			
SCH_Ec/lor	dB			-9					n.a.			
SCH_t _{offset}	dB			10					n.a.			
DPCH_Ec/lor	dB			n.a.					n.a.			
OCNS_Ec/lor	dB		-3,12 0									
\hat{I}_{or}/I_{oc}	dB			1			0	6		0		
PCCPCH RSCP	dBm		-72 n.a.									
I_{oc}	dBm / 3,84 MHz	-70										
Propagation Condition	Í					ΑV	/GN					
DL timeslot number				3					4			
PCCPCH_Ec/lor	dB			n.a.					n.a.			
SCH_Ec/lor	dB			n.a.					n.a.			
SCH_t _{offset}	dB			n.a.					n.a.			
DPCH_Ec/lor	dB			n.a.					n.a.			
OCNS_Ec/lor	dB			0					0			
\hat{I}_{or}/I_{oc}	dB	3 6 0)			
PCCPCH RSCP	dBm			n.a.					n.a.			
I_{oc}	dBm / 3,84 MHz					-7	70					
Propagation Condition		AWGN										

A.8.1.2.1.2 Test Requirements

The UE shall send one event 1I triggered measurement report, with a measurement reporting delay less than 400 ms from the beginning of time period T2.

The UE shall send one event 1H triggered measurement report, with a measurement reporting delay less than 400 ms from the beginning of time period T3.

The UE shall send one event 1H triggered measurement report, with a measurement reporting delay less than 400 ms from the beginning of time period T4.

The UE shall send one event 1I triggered measurement report, with a measurement reporting delay less than 400 ms from the beginning of time period T5.

The UE shall not send event 1H or 1I triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.1.2.2 1.28 Mcps TDD option

A.8.1.2.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of event 1H and event 1I. This test will partly verify the requirements in section 8.1A.2 and section 9.1.

The test parameters are given in Table A.8.1.2C, Table A.8.1.2D and Table A.8.1.2E below. The test consists of four successive time periods, with a time duration of T1, T2, T3 and T4 respectively. Two cells shall be present in the test, cell 1 being the current serving cell and cell 2 being a neighbour cell on the used frequency.

In the measurement control information it shall be indicated to the UE that event-triggered reporting with event 1H and event 1I shall be used and that Timeslot ISCP and P-CCPCH RSCP shall be reported together with event 1H and 1I. Measurement control information shall be sent to the UE before the beginning of time period T1.

The UL DPCH shall be transmitted in timeslot 2. In addition, timeslots 5 and 6 shall be allocated as DL timeslots.

Table A.8.1.2C: General test parameters for correct event 1H and 1I reporting in AWGN propagation condition

Para	ameter	Unit	Value	Comment		
DCH parame	eters active cell		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.		
Power Contro	ol		On			
Target quality	y value on	BLER	0.01			
Initial	Active cell		Cell 1			
conditions	Neighbour cell		Cell 2			
Final condition	Active cell		Cell 1			
0			dB		0	Cell individual offset. This value shall be used for all cells in the test.
Timeslot list cell 1			5, 6	Timeslot numbers in IE "Cell info" for Cell		
Timeslot list	cell 2		6	Timeslot numbers in IE "Cell info" for Cell 2		
Threshold us	ed frequency	dBm	-68	Applicable for event 1H, cell 1 timeslots 5, 6 and cell 2 timeslot 6		
Threshold us	ed frequency	dBm	-66	Applicable for event 1I, cell 1 timeslots 5, 6 and cell 2 timeslot 6		
Hysteresis		dB	0			
Time to Trigg	jer	ms	0			
Filter coeffici	ent		0			
Monitored ce	II list size		6 TDD neighbours on Channel 1	Cell 2 shall belong to the monitored set		
T1	·	S	5			
T2		S	5			
T3		S	5			
T4		S	5			

Table A.8.1.2D: Cell 1 specific test parameters for correct event 1H and 1I reporting in AWGN propagation condition

Parameter	Unit						Cell 1						
		T1	T2	T3	T4	T1	T2	T3	T4	T1	T2	T3	T4
UTRA RF Channel Number (Note 3)						(Channe	l 1					
DL timeslot number			0 5 6										
PCCPCH_Ec/lor	dB		-3										
DPCH_Ec/lor	dB						No	te 1					
OCNS_Ec/lor	dB			-3			No	te 2			C)	
\hat{I}_{or}/I_{oc}	dB		4 3							0	6	;	0
PCCPCH RSCP	dBm		-69 n.a. n.a.										
I_{oc}	dBm / 1 28 MHz		-70										

Note 1: The DPCH level is controlled by the power control loop

Note 2:

The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor In the case of multi-frequency network, the UARA RF Channel Number can be set for the primary frequency in Note 3: this test.

Table A.8.1.2E: Cell 2 specific test parameters for correct event 1H and 1I reporting in AWGN propagation condition

Parameter	Unit				Се	ell 2					
		T1	T2	T3	T4	T1	T2	T3	T4		
UTRA RF Channel Number (Note 1)					Chai	nnel 1					
DL timeslot number				0			6				
PCCPCH_Ec/lor	dB		-3								
DPCH_Ec/lor	dB										
OCNS_Ec/lor	dB		-3								
\hat{I}_{or}/I_{oc}	dB			4		6 0					
PCCPCH RSCP	dBm			-69			n.a	۱.			
I_{oc}	dBm / 1.28 MHz				-	70					
Note1: In the case of multi-frequency network, the UARA RF Channel Number can be set for the primary frequency in this test.											

A.8.1.2.2.2 Test Requirements

The UE shall send one event 1I triggered measurement report, with a measurement reporting delay less than 480 ms from the beginning of time period T2.

The UE shall send one event 1H triggered measurement report, with a measurement reporting delay less than 480 ms from the beginning of time period T3.

The UE shall send one event 1H triggered measurement report, with a measurement reporting delay less than 480 ms from the beginning of time period T4.

The UE shall not send event 1H or 1I triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.1.2.3 7.68 Mcps TDD option

A.8.1.2.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of event 1H and event 1I. This test will partly verify the requirements in section 8.1B.2 and section 9.1.

The test parameters are given in Table A.8.1.2F, Table A.8.1.2G and Table A.8.1.2H below. The test consists of five successive time periods, with a time duration of T1, T2, T3, T4 and T5 respectively. Two cells shall be present in the test, cell 1 being the current serving cell and cell 2 being a neighbour cell on the used frequency.

In the measurement control information it shall be indicated to the UE that event-triggered reporting with event 1H and event 1I shall be used and that Timeslot ISCP and P-CCPCH RSCP shall be reported together with event 1H and 1I. Measurement control information shall be sent to the UE before the beginning of time period T1.

The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2. The UL DPCH shall be transmitted in timeslot 10. In addition, timeslots 3 and 4 shall be allocated as DL timeslots. Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing.

Table A.8.1.2F: General test parameters for correct event 1H and 1I reporting in AWGN propagation condition

Para	ameter	Unit	Value	Comment
DCH parame			DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Contro	Power Control		On	
Target quality DTCH	y value on	BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbour cell		Cell 2	
Final condition	Active cell		Cell 1	
HCS	•		Not used	
0		dB	0	Cell individual offset. This value shall be used for all cells in the test.
Timeslot list cell 1			2, 3, 4	Timeslot numbers in IE "Cell info" for Cell 1
Timeslot list cell 2			4	Timeslot numbers in IE "Cell info" for Cell 2
Threshold us	ed frequency	dBm	-68	Threshold 1 applicable for event 1H, cell 1 timeslots 2, 4 and cell 2 timeslot 4
Threshold us	ed frequency	dBm	-73	Threshold 2 applicable for event 1H, cell 1 timeslots 2, 3, 4 and cell 2 timeslot 4
Threshold us	ed frequency	dBm	-67	Applicable for event 1I, cell 1 timeslots 2, 4 and cell 2 timeslot 4
Hysteresis		dB	0	
Time to Trigg	jer	ms	0	
Filter coefficie			0	
Monitored cell list size			6 TDD neighbours on Channel 1	Cell 2 shall belong to the monitored set
T1		S	5	
T2		S	5	
T3		S	5	
T4		S	5	
T5		S	5	

Table A.8.1.2G: Cell 1 specific test parameters for correct event 1H and 1I reporting in AWGN propagation condition

Parameter	Unit	Cell 1									
		T1	T2	T3	T4	T5	T1	T2	T3	T4	T5
UTRA RF Channel		Channel 1									
Number						Criai	inei i				
DL timeslot number				0					2		
PCCPCH_Ec/lor	dB			-3					n.a.		
SCH_Ec/lor	dB			-9					n.a.		
SCH_t _{offset}	dB			5					n.a.		
DPCH_Ec/lor	dB			n.a.					Note 1		
OCNS_Ec/lor	dB			-3,12					Note 2		
\hat{I}_{or}/I_{oc}	dB		4						4		
PCCPCH RSCP	dBm	-69 n.a.									
I_{oc}	dBm / 7,68 MHz	-70									
Propagation Condition		AWGN									
DL timeslot number				3			4				
PCCPCH_Ec/lor	dB			n.a.			n.a.				
SCH_Ec/lor	dB			n.a.			n.a.				
SCH_t _{offset}	dB			n.a.			n.a.				
DPCH_Ec/lor	dB			n.a.					n.a.		
OCNS_Ec/lor	dB			0					0		
\hat{I}_{or}/I_{oc}	dB			3					0		6
PCCPCH RSCP	dBm			n.a.					n.a.		
I_{oc}	dBm / 7,68 MHz	-70									
Propagation Condition		AWGN									
Note 1: The DPCH level Note 2: The power of						e total po	wer fron	n the cel	l to be equ	ual to lor	

Table A.8.1.2H: Cell 2 specific test parameters for correct event 1H and 1I reporting in AWGN propagation condition

Parameter	Unit					Ce	II 2				
		T1	T2	T3	T4	T5	T1	T2	T3	T4	T5
UTRA RF Channel						Char	nel 1				
Number						Criai	inei i				
DL timeslot number				0					2		
PCCPCH_Ec/lor	dB			-3					n.a.		
SCH_Ec/lor	dB			-9					n.a.		
SCH_t _{offset}	dB			10					n.a.		
DPCH_Ec/lor	dB			n.a.					n.a.		
OCNS_Ec/lor	dB		-3,12 0								
\hat{I}_{or}/I_{oc}	dB		1				0	6		0	
PCCPCH RSCP	dBm	-72 n.a.									
I_{oc}	dBm / 7,68 MHz	-70									
Propagation Condition	,					AW	'GN				
DL timeslot number				3					4		
PCCPCH_Ec/lor	dB			n.a.					n.a.		
SCH_Ec/lor	dB			n.a.					n.a.		
SCH_t _{offset}	dB			n.a.					n.a.		
DPCH_Ec/lor	dB			n.a.					n.a.		
OCNS_Ec/lor	dB			0					0		
\hat{I}_{or}/I_{oc}	dB			3				6		()
PCCPCH RSCP	dBm	n.a. n.a.									
I_{oc}	dBm / 7,68 MHz	-70									
Propagation Condition						AW	′GN				

A.8.1.2.3.2 Test Requirements

The UE shall send one event 1I triggered measurement report, with a measurement reporting delay less than 400 ms from the beginning of time period T2.

The UE shall send one event 1H triggered measurement report, with a measurement reporting delay less than 400 ms from the beginning of time period T3.

The UE shall send one event 1H triggered measurement report, with a measurement reporting delay less than 400 ms from the beginning of time period T4.

The UE shall send one event 1I triggered measurement report, with a measurement reporting delay less than 400 ms from the beginning of time period T5.

The UE shall not send event 1H or 1I triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.1.3 Correct reporting of neighbours in fading propagation condition

A.8.1.3.1 3.84 Mcps TDD option

A.8.1.3.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs sufficient layer 1 filtering of the P-CCPCH RSCP measurement which is the base for Event 1G evaluation. This test is performed in fading propagation conditions and will partly verify the requirements in section 8.1.2.

The test parameters are given in Table A.8.1.3 and A.8.1.3A below. The test consists of one time period with time duration of T1. Two cells shall be present in the test, cell 1 being the current serving cell and cell 2 being a neighbour cell on the used frequency. Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G shall be used, and that P-CCPCH RSCP shall be reported together with Event 1G. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12. The TTI of the UL DCCH shall be 20ms.

Table A.8.1.3: General test parameters for correct reporting of neighbours in fading propagation condition

Para	meter	Unit	Value	Comment
DCH paramet	ers		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Contro	l		On	
Target quality value on DTCH		BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbour cell		Cell 2	
Final condition	Active cell		Cell 1	
0		dB	0	Cell individual offset. This value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trigg	er	ms	200	
Filter coefficie	Filter coefficient		0	
Monitored cell list size			6 TDD neighbours on Channel 1	Sent before the beginning of time period T1
T1	•	S	200	

Table A.8.1.3A: Cell specific test parameters for correct reporting of neighbours in fading propagation condition

Parameter	Unit	Ce	ell 1	Ce	II 2				
		T1	T1	T1	T1				
DL timeslot number		0	8	0	8				
UTRA RF Channel Number		Char	nnel 1	Channel 1					
PCCPCH_Ec/lor	dB	-3	n.a.	-3	n.a.				
SCH_Ec/lor	dB	-9	-9	-9	-9				
SCH_t _{offset}		0	0	2	2				
PICH_Ec/lor	dB	n.a.	-3	n.a.	-3				
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12				
\hat{I}_{or}/I_{oc}	dB	7	7	2	2				
PCCPCH RSCP	dBm	-66	n.a.	-71	n.a.				
I_{oc}	dBm/ 3,84 MHz	-70							
Propagation Condition		Ca	se 4 as specified in	Case 4 as specified in TS25.102 Annex B					

A.8.1.3.1.2 Test Requirements

The number of Event 1G triggered measurement reports during time period T2 shall be less than 60.

A.8.1.3.2 (void)

A.8.1.3.3 7.68 Mcps TDD option

A.8.1.3.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs sufficient layer 1 filtering of the P-CCPCH RSCP measurement which is the base for Event 1G evaluation. This test is performed in fading propagation conditions and will partly verify the requirements in section 8.1.2B.

The test parameters are given in Table A.8.1.3B and A.8.1.3C below. The test consists of one time period with time duration of T1. Two cells shall be present in the test, cell 1 being the current serving cell and cell 2 being a neighbour cell on the used frequency. Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1G shall be used, and that P-CCPCH RSCP shall be reported together with Event 1G. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12. The TTI of the UL DCCH shall be 20ms.

Table A.8.1.3B: General test parameters for correct reporting of neighbours in fading propagation condition

Para	ameter	Unit	Value	Comment
DCH parame	ters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Contro	ol		On	
Target quality value on DTCH		BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbour cell		Cell 2	
Final condition	Active cell		Cell 1	
0		dB	0	Cell individual offset. This value shall be used for all cells in the test.
Hysteresis		dB	0	
Time to Trigg	jer	ms	200	
Filter coefficie	ent		0	
Monitored cell list size			6 TDD neighbours on Channel 1	Sent before the beginning of time period T1
T1		S	200	

Table A.8.1.3C: Cell specific test parameters for correct reporting of neighbours in fading propagation condition

Parameter	Unit	Ce	ell 1	Ce	II 2		
		T1	T1	T1	T1		
DL timeslot number		0	8	0	8		
UTRA RF Channel Number		Cha	nnel 1	Channel 1			
PCCPCH_Ec/lor	dB	-3	n.a.	-3	n.a.		
SCH_Ec/lor	dB	-9	-9	-9	-9		
SCH_t _{offset}		0	0	2	2		
PICH_Ec/lor	dB	n.a.	-3	n.a.	-3		
OCNS_Ec/lor	dB	-3,12	-3,12	-3,12	-3,12		
\hat{I}_{or}/I_{oc}	dB	7	7	2	2		
PCCPCH RSCP	dBm	-66	n.a.	-71	n.a.		
I_{oc}	dBm/ 7,68 MHz	-70					
Propagation Condition		Case 4 as specified in TS25.102 Annex B					

A.8.1.3.3.2 Test Requirements

The number of Event 1G triggered measurement reports during time period T2 shall be less than 60.

A.8.2 TDD inter frequency measurements

A.8.2.1 Correct reporting of neighbours in AWGN propagation condition

A.8.2.1.1 Test Purpose and Environment

A.8.2.1.1.1 3.84Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter frequency measurements. The test will partly verify the requirements in section 8.1.2. and 9.1

The test consists of 2 successive time periods, with a time duration T1 and T2. The test parameters are given in tables A.8.2A and A.8.2B below. Two cells shall be present in the test, cell 1 being the serving cell and cell 2 being a UTRA TDD neighbour cell on the unused frequency. All cells shall be synchronised, i.e. share the same frame and timeslot timing.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used. P-CCPCH RSCP of the best cell on the unused frequency shall be reported together with Event 2C reporting. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3. The TTI of the uplink DCCH shall be 20 ms.

Table A.8.2A: General test parameters for correct reporting of TDD inter frequency neighbours in AWGN propagation condition

Pa	arameter	Unit	Value	Comment
DPCH parameters			DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 annex A.2.2
Power Cont	rol		On	
Target quali	ty value on DTCH	BLER	0.01	
Initial	Active cell		Cell 1	UTRA TDD cell
conditions	Neighbour cell		Cell 2	UTRA TDD cell
Threshold n	on used frequency	dB	-71	Applicable for event 2C
Hysteresis		dB	0	Applicable for event 2C
Time to Trig	ger	ms	0	
Filter coeffic	eient		0	
Monitored c	ell list size		24 on channel 1	
			16 on channel 2	
T1		S	10	
T2		S	10	

Table A.8.2B: Cell specific test parameters for correct reporting of TDD inter frequency neighbours in AWGN propagation condition

Parameter	Unit		Ce	II 1			Cell 2			
Timeslot Number		0		3	8)	8		
		T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number			Char	nel 1			Char	nel 2		
PCCPCH_Ec/lor	dB	-3	-3			-3	-3			
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9	
SCH_t _{offset}		0	0	0	0	15	15	15	15	
PICH_Ec/lor				-3	-3			-3	-3	
OCNS		-4,28	-4,28	-4,28	-4,28	-4,28	-4,28	-4,28	-4,28	
\hat{I}_{or}/I_{oc}	dB	3	3	3	3	-Infinity	9	-Infinity	9	
I_{oc}	dBm/3.8 4 MHz				-7	70				
PCCPCH_RSCP	dB	-70	-70			-Infinity	-64			
Propagation Condition					AW	/GN				

A.8.2.1.1.2 1.28Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter frequency measurements. The test will partly verify the requirements in section 8.1A.2 and 9.1.

The test consist of 2 successive time periods, with a time duration T1 and T2. The test parameters are given in tables A.8.2C and A.8.2D below. Two cells shall be present in the test, cell 1 being the active cell and cell 2 being a 1.28Mcps TDD option neighbour cell on the unused frequency.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used. P-CCPCH RSCP of the best cell on the unused frequency shall be reported together with Event 2C reporting. The measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

Table A.8.2C: General test parameters for correct reporting of TDD inter frequency neighbours in **AWGN** propagation condition

Para	ameter	Unit	Value	Comment
DPCH parameters active cell			DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2. The DPCH is located in an other timeslot than 0
Power Control			On	
Target quality v	/alue on DTCH	BLER	0.01	
Initial	Active cell		Cell 1	1.28Mcps TDD cell
conditions	Neighbour cell		Cell 2	1.28Mcps TDD cell
Final condtions	Active cell		Cell 1	
Threshold non	used frequency	dBm	-71	Absolute P-CCPCH RSCP threshold for event 2C
W non-used fre	equency		1	Applicable for event 2C
Hysteresis		dB	0	
Time to Trigger	7	ms	0	
Filter coefficien	nt		0	
Monitored cell I	Monitored cell list size		24 on channel 1 16 on channel 2	
T1	T1		10	
T2		S	10	

Table A.8.2D: Cell Specific Parameters for Correct Reporting of Neighbours in AWGN Propagation Condition

Parameter	Unit	Cell 1				Cell 2			
Timeslot Number		()	DwPTS		0		DwPTS	
		T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number (NOTE)		Channel 1			Channel 2				
PCCPCH_Ec/lor	dB	-3			-;	3			
DwPCH_Ec/lor	dB			()			0	
OCNS_Ec/lor	dB	-;	3			-3			
\hat{I}_{or}/I_{oc}	dB	3	3			-Infinity	8		
I_{oc}	dBm/1. 28 MHz	-70							
PCCPCH_RSCP	dBm	-70	-70		•	-Infinity	-65		•
Propagation Condition		AWGN							

NOTE1: The DPCH of all cells are located in a timeslot other than 0.

NOTE2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the

primary frequency in this test.

A.8.2.1.1.3 7.68Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter frequency measurements. The test will partly verify the requirements in section 8.1.2B and 9.1

The test consists of 2 successive time periods, with a time duration T1 and T2. The test parameters are given in tables A.8.2F and A.8.2F below. Two cells shall be present in the test, cell 1 being the serving cell and cell 2 being a UTRA TDD neighbour cell on the unused frequency. All cells shall be synchronised, i.e. share the same frame and timeslot timing.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used. P-CCPCH RSCP of the best cell on the unused frequency shall be reported together with Event 2C reporting. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3. The TTI of the uplink DCCH shall be 20 ms.

Table A.8.2E: General test parameters for correct reporting of TDD inter frequency neighbours in AWGN propagation condition

Pa	arameter	Unit	Value	Comment
DPCH parameters			DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 annex A.2.2
Power Cont	rol		On	
Target quali	ty value on DTCH	BLER	0.01	
Initial	Active cell		Cell 1	UTRA TDD cell
conditions	Neighbour cell		Cell 2	UTRA TDD cell
Threshold n	Threshold non used frequency		-71	Applicable for event 2C
Hysteresis		dB	0	Applicable for event 2C
Time to Trig	ger	ms	0	
Filter coeffic	eient		0	
Monitored c	ell list size		24 on channel 1	
			16 on channel 2	
T1		S	10	
T2		s	10	

Table A.8.2F: Cell specific test parameters for correct reporting of TDD inter frequency neighbours in AWGN propagation condition

Parameter	Unit	Cell 1				Cell 2			
Timeslot Number		0		8		0		8	
		T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number (Note 1)		Channel 1				Channel 2			
PCCPCH_Ec/lor	dB	-3	-3			-3	-3		
SCH_Ec/lor	dB	-9	-9	-9	-9	-9	-9	-9	-9
SCH_t _{offset}		0	0	0	0	15	15	15	15
PICH_Ec/lor				-3	-3			-3	-3
OCNS		-4,28	-4,28	-4,28	-4,28	-4,28	-4,28	-4,28	-4,28
\hat{I}_{or}/I_{oc}	dB	3	3	3	3	-Infinity	9	-Infinity	9
I_{oc}	dBm/7.6 8 MHz	-70							
PCCPCH_RSCP	dB	-70	-70			-Infinity	-64		
Propagation Condition		AWGN							

A.8.2.1.2 Test Requirements

A.8.2.1.2.1 3.84Mcps TDD option

The UE shall send one Event 2C triggered measurement report, with a measurement reporting delay less than 5 s from the beginning of time period T2.

The UE shall not send any measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.2.1.2.2 1.28Mcps TDD option

The UE shall send one Event 2C triggered measurement report, with a measurement reporting delay less than 5080ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of events correctly reported during repeated tests shall be at least 90%.

A.8.2.1.2.3 7.68Mcps TDD option

The UE shall send one Event 2C triggered measurement report, with a measurement reporting delay less than 5 s from the beginning of time period T2.

The UE shall not send any measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.3 FDD measurements

A.8.3.1 Correct reporting of FDD neighbours in AWGN propagation condition

A.8.3.1.1 Test Purpose and Environment

A.8.3.1.1.1 3.84 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of events when measuring on UTRA FDD cells. This test will partly verify the requirements in section 8.1.2 and 9.1.

The test parameters are given in Table A.8.3A and A.8.3B below. The test consists of two successive time periods, with time durations of T1 and T2 respectively. Two cells shall be present in the test, cell 1 being the serving UTRA TDD cell and cell 2 being a UTRA FDD neighbour cells on the unused frequency.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used and that CPICH Ec/I0 of the best cell on the unused frequency shall be reported together with Event 2C. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

The second Beacon timeslot shall be provided in timeslot 8 for cell 1. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3. The TTI of the uplink DCCH shall be 20 ms.

Table A.8.3A: General test parameters for correct reporting of FDD neighbours in AWGN

Parameter		Unit	Value	Comment			
DPCH parameters			DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.			
Power Control			On				
Target quality	ty value on DTCH	BLER	0.01				
Initial	Active cell		Cell 1	UTRA TDD cell			
conditions	Neighbour cell		Cell 2	UTRA FDD cell			
Final conditions	Active cell		Cell 1				
Threshold no frequency	on used	dB	-18	Applicable for event 2C			
W non-used	frequency		1	Applicable for event 2C			
Hysteresis		dB	0	Applicable for event 2C			
Time to Trig	ger	ms	0				
Filter coeffic	ient		0				
Monitored cell list size			6 TDD neighbours on channel 1 6 FDD neighbours on channel 2				
T1		S	15				
T2	<u> </u>	S	10				

Table A.8.3B: Cell specific parameters for correct reporting of FDD neighbours in AWGN propagation condition

Parameter	Unit	Cell 1				Cell 2	
Timeslot Number		0		8		n.a	
		T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Channel 1			Channel 2		
CPICH_Ec/lor	dB	n.a.		n.a.		-10	
PCCPCH_Ec/lor	dB	-3	-3			-12	
SCH_Ec/lor	dB	-9	-9	-9	9	-12	
SCH_t _{offset}		0	0	0	0	n.a.	
PICH_Ec/lor				-3	-3	-15	
OCNS	dB	-4,28	-4,28 -4,28 -4,28 -0,9		941		
\hat{I}_{or}/I_{oc}	dB	3	3	3	3	-infinity	-1.8
I_{oc}	dBm/ 3.84 MHz	-70			-70		
CPICH_Ec/lo		n.a.			-infinity	-14	
PCCPCH_RSCP	dB	-70 -70 -70 -70		n.a	n.a.		
Propagation Condition		AWGN			AWGN		

A.8.3.1.1.2 1.28 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of an event when measuring on UTRA FDD cells. This test will partly verify the requirements in section 8.1A.2 and 9.1.

The test consists of two successive time periods, with a time duration T1 and T2. The test parameters are given in Table A.8.3C and A.8.3D. Two cells shall be present in the test, cell 1 being current active 1.28Mcps TDD cell and cell 2 being a UTRA FDD neighbouring cell.

In the measurement control information it is indicated to the UE hat event-triggered reporting with Event 2C shall be used and the CPICH RSCP of the best cell on the unused frequency shall be reported together with Event 2C. The measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

Table A.8.3C: General test parameters for Correct reporting of FDD neighbours in AWGN propagation condition

Pai	rameter	Unit	Value	Comment
DPCH parameters active cell			DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A. The DPCH is located in an other timeslot than 0.
Power Contro	l		On	
Target quality	value on DTCH	BLER	0.01	
Initial	Active cell		Cell 1	1.28Mcps TDD cell
conditions	Neighbour cell		Cell2	FDD cell
Final conditions	Active cell		Cell 1	1.28Mcps TDD cell
Threshold nor	Threshold non used frequency		-86	Absolute CPICH RSCP threshold for event 2C
Hysteresis		dB	0	
W non-used fi	requency		1	Applicable for event 2C
Time to Trigge	er	ms	0	
Filter coefficie	Filter coefficient		0	
Monitored cell list size			6 TDD neighbours on Channel 1 6 FDD neighbours on Channel 2	
T1	T1		10	
T2		S	10	

Table A.8.3D: Cell Specific parameters for Correct reporting of FDD neighbours in AWGN propagation condition:

Parameter	Unit		Се	ell 1		Ce	II 2
Timeslot Number		0 DwPTS		n.a	n.a.		
		T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		(Channel	1 (Note	1)	Channel 2	
CPICH_Ec/lor	dB	n.	a.	n.	a.	-10	-10
PCCPCH_Ec/lor	dB	-3	-3			-12	-12
SCH_Ec/lor	dB					-12	-12
PICH_Ec/lor	dB					-15	-15
DwPCH_Ec/lor	dB			0	0	n.a.	n.a.
OCNS	dB	-3	-3			-0,941	-0,941
\hat{I}_{or}/I_{oc}	dB	3	3	3	3	-Infinity	-2
I_{oc}	dBm/1.28 MHz	-70					
I_{oc}	dBm/3.84 MHz			-7	70		
CPICH_RSCP	dBm	n.a.		-Infinity	-82		
PCCPCH_RSCP	dBm	-70	-70			n.a.	n.a.
Propagation Condition				/GN		AW	GN

NOTE 1: The DPCH of cell 1 is located in a timeslot other than 0.

NOTE 2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency in this test.

A.8.3.1.1.3 7.68 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of events when measuring on UTRA FDD cells. This test will partly verify the requirements in section 8.1.2B and 9.1.

The test parameters are given in Table A.8.3E and A.8.3F below. The test consists of two successive time periods, with time durations of T1 and T2 respectively. Two cells shall be present in the test, cell 1 being the serving UTRA TDD cell and cell 2 being a UTRA FDD neighbour cells on the unused frequency.

In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used and that CPICH Ec/I0 of the best cell on the unused frequency shall be reported together with Event 2C. The

Measurement control message shall be sent to the UE such that the delay between the end of the last received TTI containing the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [16].

The second Beacon timeslot shall be provided in timeslot 8 for cell 1. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3. The TTI of the uplink DCCH shall be 20 ms.

Table A.8.3E: General test parameters for correct reporting of FDD neighbours in AWGN

Pa	Parameter		Value	Comment
DPCH parameters			DL Reference Measurement	As specified in TS 25.102 section A.2.2
			Channel 12.2 kbps	
Power Contr	rol		On	
Target qualit	ty value on DTCH	BLER	0.01	
Initial	Active cell		Cell 1	UTRA TDD cell
conditions	Neighbour cell		Cell 2	UTRA FDD cell
Final	Active cell		Cell 1	
conditions				
Threshold no	on used	dB	-18	Applicable for event 2C
frequency				
W non-used	frequency		1	Applicable for event 2C
Hysteresis		dB	0	Applicable for event 2C
Time to Trig	ger	ms	0	
Filter coeffic	ient		0	
Monitored co	ell list size		6 TDD neighbours on channel 1	
			6 FDD neighbours on channel 2	
T1		S	15	
T2	_	S	10	

Table A.8.3F: Cell specific parameters for correct reporting of FDD neighbours in AWGN propagation condition

Parameter	Unit	Cell 1			Cel	l 2	
Timeslot Number		0		8		n.a	
		T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Channel 1 Channel		nel 2			
CPICH_Ec/lor	dB	n.	a.	n.	a.	-1	0
PCCPCH_Ec/lor	dB	-3	-3			-1:	2
SCH_Ec/lor	dB	-9	-9	-9	-9	-1:	2
SCH_t _{offset}		0	0	0	0	n.a	a.
PICH_Ec/lor				-3	-3	-15	
OCNS	dB	-4,28	-4,28	-4,28	-4,28	-0,9	41
\hat{I}_{or}/I_{oc}	dB	3	3	3	3	-infinity	-1.8
I_{oc}	dBm/ 7.68 MHz	-70			-7	0	
CPICH_Ec/lo		n.a.		-infinity	-14		
PCCPCH_RSCP	dB	-70 -70 -70 -70		n.a.			
Propagation Condition		AWGN			AW	GN	

A.8.3.1.2 Test Requirements

A.8.3.1.2.1 3.84 Mcps TDD option

The UE shall send one Event 2C triggered measurement report, with a measurement reporting delay less than 5 seconds from the start of time period T2.

The UE shall not send any measurement reports, as long as the reporting criteria are not fulfilled.

The rate of events correctly observed during repeated tests shall be at least 90%.

A.8.3.1.2.2 1.28 Mcps TDD option

The UE shall send one Event 2C triggered measurement report, with a measurement reporting delay less than 5 s from the beginning of time period T2.

The UE shall not send any measurement reports, as long as the reporting criteria are not fulfilled.

The rate of events correctly reported during repeated tests shall be at least 90%.

A.8.3.1.2.3 7.68 Mcps TDD option

The UE shall send one Event 2C triggered measurement report, with a measurement reporting delay less than 5 seconds from the start of time period T2.

The UE shall not send any measurement reports, as long as the reporting criteria are not fulfilled.

The rate of events correctly observed during repeated tests shall be at least 90%.

A.8.4 GSM measurements

A.8.4.1 Correct reporting of GSM neighbours in AWGN propagation condition

A.8.4.1.1 Test Purpose and Environment

A.8.4.1.1.1 3.84 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of an event when doing GSM measurements. This test will partly verify the requirements in section 8.1.2.5. The requirements are also applicable for a UE not requiring idle intervals to perform GSM measurements.

The test parameters are given in Tables A.8.4.1, A.8.4.2 and A.8.4.3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 3B and 3C shall be used. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

Cell 1 is a UTRA TDD cell and cell 2 is a GSM cell. The Beacon timeslot shall be transmitted in timeslot 0 for cell 1 and no second Beacon timeslot shall be provided for cell 1. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3.

Table A.8.4.1: General test parameters for correct reporting of GSM neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel	As specified in TS 25.102 section A.2.2
		12.2 kbps	
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Active cell		Cell 1	
Inter-RAT		GSM carrier RSSI	
measurement			
quantity			
BSIC verification		Required	
required			
Threshold other	dBm	-80	Absolute GSM carrier RSSI threshold
system			for Events 3B and 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list		12 TDD neighbours on Channel 1	Measurement control information is
size		6 GSM neighbours including ARFCN 1	sent before the start of time period T1.
Tidentify abort	S	5	As specified in section 8.1.2.5
T _{reconfirm abort}	S	5	As specified in section 8.1.2.5
T1	S	10	
T2	S	10	
T3	S	10	

Table A.8.4.2: Cell specific parameters for correct reporting of GSM neighbours in AWGN propagation condition (cell 1)

Parameter	Unit	Се	II 1	
rarameter	Oilit	T1, T	2, T3	
DL timeslot number		0	1	
UTRA RF Channel number		Chan	inel 1	
PCCPCH_Ec/lor	dB	-3	n.a.	
SCH_Ec/lor	dB	-9	n.a.	
SCH_t _{offset}		0	n.a.	
OCNS_Ec/lor	dB	-3,12	Note 2	
DPCH_Ec/lor	dB	n.a.	Note 1	
Îor/loc	dB	6	6	
lo, Note 1 dBm / 3.84 MHz			70	
Propagation condition		AWGN		
Note 1: The DPCH level is controlled by the power control loop				
Note 2: The power of the OCNS channel that is added shall make				
the total power from	n the cell to b	e equal to lor		

Table A.8.4.3: Cell specific parameters for correct reporting of GSM neighbours in AWGN propagation condition (cell 2)

Parameter	Unit	Cell 2		
Farameter	Onit	T1	T2	T3
Absolute RF Channel Number			ARFCN 1	
RXLEV	dBm	-85	-75	-85

A.8.4.1.1.2 1.28 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter-RAT GSM measurements. This test will partly verify the requirements in section 8.1A.2.5. The requirements are also applicable for a UE not requiring idle intervals to perform GSM measurements.

Two cells shall be present in the test, Cell 1 is current active cell, cell 2 is a GSM cell. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 3B and 3C shall be used. At the start of time duration T1, the UE may not have any timing information of cell 2.

A.8.4.1.1.2.1 Test 1. With BSIC verification required

The test parameters are given in Tables A.8.4.4, A.8.4.5 and A.8.4.6.

Table A.8.4.4: General test parameters for Correct reporting of GSM neighbours in AWGN propagation condition, Test 1.

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2. The DPCH is located in an other timeslot than 0.
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Active cell		Cell 1	
Inter-RAT measurement quantity		GSM Carrier RSSI	
BSIC verification required		required	
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for event 3B and 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		12 TDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	Measurement control information is sent before T1 starts.
T Identify abort	S	5.0	
T Reconfirm abort	S	5.0	
T1	S	5	
T2	S	7	
T3	S	5	

Table A.8.4.5: Cell specific test parameters for Correct reporting of GSM neighbours in AWGN propagation condition (cell 1)

Cell 1

Parameter	Unit	Cell 1		
Farailletei	Onit	T1, T2, T3		
Timeslot Number		0	DwPTS	
UTRA RF Channel Number (NOTE 3)		Cha	nnel 1	
PCCPCH_Ec/lor	dB	-3		
DwPCH_Ec/lor	dB		0	
OCNS_Ec/lor		-3		
\hat{I}_{or}/I_{oc}	dB	3		
I_{oc}	dBm/1.28 MHz	-70		
PCCPCH_RSCP	dB	-70		
Propagation Condition		AWGN		
make th NOTE 2: PCCPC parame settable	The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor. PCCPCH RSCP levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.			
NOTE 3: In the ca Channe in this te	Number can be se			

Table A.8.4.6: Cell specific test parameters for Correct reporting of GSM neighbours in AWGN propagation condition (cell 2)

Parameter	Unit	Cell 2			
Farameter	Offic	T1	T2	T3	
Absolute RF Channel Number			ARFCN ²	1	
RXLEV	dBm	-infinity	-75	-85	

A.8.4.1.1.2.2 Test 2. Without BSIC verification required

The test parameters are given in Tables A.8.4.7, A.8.4.8 and A.8.4.9.

Table A.8.4.7: General test parameters for Correct reporting of GSM neighbours in AWGN propagation condition, Test 2

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2. The DPCH is located in an other timeslot than 0.
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Active cell		Cell 1	
Inter-RAT measurement quantity		GSM Carrier RSSI	
BSIC verification required		Not required	
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for event 3B and 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		12 TDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	Measurement control information is sent before T1 starts.
T1	S	5	
T2	S	2	
T3	S	5	

Table A.8.4.8: Cell specific test parameters for Correct reporting of GSM neighbours in AWGN propagation condition (cell 1)

Parameter	Unit	C	ell 1	
raiailletei	Offic	T1, T2, T3		
Timeslot Number		0	DwPTS	
UTRA RF Channel		Cha	nnel 1	
Number (NOTE 3)		Cila	illiei i	
PCCPCH_Ec/lor	dB	-3		
DwPCH_Ec/lor	dB		0	
OCNS_Ec/lor		-3		
\hat{I}_{or}/I_{oc}	dB	3		
I_{oc}	dBm/1.28 MHz	-70		
PCCPCH_RSCP	dB	-70		
Propagation Condition		AWGN		

NOTE 1: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor.

NOTE 2: PCCPCH RSCP levels have been calculated from other parameters for information purposes. They are not

settable parameters themselves.

NOTE 3: In the case of multi-frequency network, the UTRA RF
Channel Number can be set for the primary frequency

in this test.

Table A.8.4.9: Cell specific test parameters for Correct reporting of GSM neighbours in AWGN propagation condition (cell 2)

Parameter	Unit	t Cell 2				
Farameter	Offic			T3		
Absolute RF Channel		ADECN 4				
Number		ARFCN 1				
RXLEV	dBm	-infinity -75 -85				

A.8.4.1.1.3 7.68 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of an event when doing GSM measurements. This test will partly verify the requirements in section 8.1.2B.5. The requirements are also applicable for a UE not requiring idle intervals to perform GSM measurements.

The test parameters are given in Tables A.8.4.7, A.8.4.8 and A.8.4.9 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 3B and 3C shall be used. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

Cell 1 is a UTRA TDD cell and cell 2 is a GSM cell. The Beacon timeslot shall be transmitted in timeslot 0 for cell 1 and no second Beacon timeslot shall be provided for cell 1. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3.

Table A.8.4.7: General test parameters for correct reporting of GSM neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel	As specified in TS 25.102 section A.2.2
		12.2 kbps	
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Active cell		Cell 1	
Inter-RAT		GSM carrier RSSI	
measurement			
quantity			
BSIC verification		Required	
required			
Threshold other	dBm	-80	Absolute GSM carrier RSSI threshold
system			for Events 3B and 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list		12 TDD neighbours on Channel 1	Measurement control information is
size		6 GSM neighbours including ARFCN 1	sent before the start of time period T1.
Tidentify abort	S	5	As specified in section 8.1.2B.5
Treconfirm abort	S	5	As specified in section 8.1.2B.5
T1	S	10	
T2	S	10	
T3	S	10	

Table A.8.4.8: Cell specific parameters for correct reporting of GSM neighbours in AWGN propagation condition (cell 1)

Parameter	Unit	Се	II 1		
rarameter	Onit	T1, T2, T3			
DL timeslot number		0	1		
UTRA RF Channel number		Chan	inel 1		
PCCPCH_Ec/lor	dB	-3	n.a.		
SCH_Ec/lor	dB	-9	n.a.		
SCH_t _{offset}		0	n.a.		
OCNS_Ec/lor	dB	-3,12	Note 2		
DPCH_Ec/lor	dB	n.a.	Note 1		
Îor/loc	dB	6	6		
Io, Note 1	dBm / 7.68 MHz	-7	70		
Propagation condition		AWGN			
Note 1: The DPCH level is controlled by the power control loop					
Note 2: The power of the OCNS channel that is added shall make					
the total power from	n the cell to b	e equal to lor	•		

Table A.8.4.9: Cell specific parameters for correct reporting of GSM neighbours in AWGN propagation condition (cell 2)

Parameter	Unit	Cell 2				
Faranietei	Oilit	T1	T2	T3		
Absolute RF Channel Number			ARFCN 1			
RXLEV	dBm	-85	-75	-85		

A.8.4.1.2 Test Requirements

A.8.4.1.2.1 3.84 Mcps TDD option

The UE shall send one Event 3C triggered measurement report for cell 2, with a measurement reporting delay less than 960 ms from the start of time period T2.

The UE shall send one Event 3B triggered measurement report for cell 2, with a measurement reporting delay less than 960 ms from the start of time period T3.

The UE shall not send any Event 3B or 3C triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.4.1.2.2 1.28 Mcps TDD option

A.8.4.1.2.2.1 Test Requirement with BSIC verification required

The UE shall send one Event 3C triggered measurement report for cell 2, with a measurement reporting delay less than 5.96s from the beginning of time period T2.

The UE shall send one Event 3B triggered measurement report for cell 2, with a measurement reporting delay less than 960 ms from the beginning of time period T3.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of events correctly observed during repeated tests shall be at least 90%.

A.8.4.1.2.2.1 Test Requirement without BSIC verification required

The UE shall send one Event 3C triggered measurement report for cell 2, with a measurement reporting delay less than 960ms from the beginning of time period T2.

The UE shall send one Event 3B triggered measurement report for cell 2, with a measurement reporting delay less than 960 ms from the beginning of time period T3.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of events correctly observed during repeated tests shall be at least 90%.

A.8.4.1.2.3 7.68 Mcps TDD option

The UE shall send one Event 3C triggered measurement report for cell 2, with a measurement reporting delay less than 960 ms from the start of time period T2.

The UE shall send one Event 3B triggered measurement report for cell 2, with a measurement reporting delay less than 960 ms from the start of time period T3.

The UE shall not send any Event 3B or 3C triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.9 Measurement Performance Requirements

Unless explicitly stated:

- Measurement channel is 12.2 kbps as defined in TS 25.102 annex A. This measurement channel is used both in active cell and cells to be measured.
- Cell 1 is the active cell.

- Single task reporting.
- Power control is active.

A.9.1 Measurement Performance for UE (3.84 Mcps TDD option)

A.9.1.1 P-CCPCH RSCP

A.9.1.1.1 Test Purpose and Environment

The purpose of this test is to verify that the P-CCPCH RSCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.1.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12.

A.9.1.1.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2.

Both P-CCPCH RSCP intra frequency absolute and relative accuracy requirements are tested by using test parameters in Table A 9.1.

Table A.9.1: P-CCPCH RSCP Intra frequency test parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3
raiailletei	Offic	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
DL timeslot number		0	0	0	0	0	0
UTRA RF Channel number		Char	nel 1	Channel 1		Char	nel 1
PCCPCH_Ec/lor	dB	-	3	-	3	-	3
SCH_Ec/lor	dB	-9		-9		-9	
SCH_t _{offset}		0	5	0	5	0	5
OCNS_Ec/lor	dB	-3	,12	-3	-3,12		12
loc	dBm / 3.84 MHz	-7	5.7	-59.8		-98	3.7
Îor/loc	dB	5	2	9	2	3	0
PCCPCH RSCP, Note 1	dBm	-73.7	-76.7	-53.8	-60.8	-98.7	-101.7
Io, Note 1	dBm / 3.84 MHz	-69		-50		-6	94
Propagation condition		AW	'GN	AW	′GN	AW	'GN

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.1.1.2 Inter frequency test parameters

In this case both cells are on different frequencies. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

P-CCPCH RSCP inter frequency relative accuracy requirements are tested by using test parameters in Table A.9.2.

Table A.9.2: P-CCPCH RSCP Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Те	st 3
Parameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
DL timeslot number		0	2	0	2	0	2
UTRA RF Channel		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
number		Citatille	Chamile 2	Chamilei	Chamile 2	Chamile	Charmerz
PCCPCH_Ec/lor	dB	T	3	-	3	-	3
SCH_Ec/lor	dB	ī	9	-	9	-	.9
SCH_t _{offset}		0	5	0	5	0	5
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12	
loc	dBm / 3.84 MHz	-75.2	-75.2	-57.8	-54.1	-98.7	-97
Îor/loc	dB	5	5	7	2	3	0
PCCPCH RSCP, Note 1	dBm	-73.2	-73.2	-54.8	-55.1	-98.7	-100
Io, Note 1	dBm / 3.84 MHz	-69		-50		-!	94
Propagation condition		AW	GN	AWGN		AWGN	

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.1.2 Test Requirements

The P-CCPCH RSCP measurement accuracy shall meet the requirements in section 9.1.1.1.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.2 CPICH measurements

A.9.1.2.1 CPICH RSCP

A.9.1.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the CPICH RSCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.2 and applies to UE"s supporting this capability.

The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3.

A.9.1.2.1.1.1 Inter frequency test parameters

In this case both cells are on different frequencies. Cell 1 is a UTRA TDD cell and cell 2 is a UTRA FDD cell. No second Beacon timeslot shall be provided for cell 1.

CPICH RSCP inter frequency absolute accuracy requirements are tested by using test parameters in Table A.9.3.

Table A.9.3: CPICH RSCP Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Test 2		
Parameter	Offic	Cell 1		Cell 1	Cell 2	
DL timeslot number		0	n.a.	0	n.a.	
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2	
CPICH_Ec/lor	dB	n.a.	-10	n.a.	-10	
PCCPCH_Ec/lor	dB	-3	-12	-3	-12	
SCH_Ec/lor	dB	-9	-12	-9	-12	
SCH_t _{offset}		5	n.a.	5	n.a.	
PICH_Ec/lor	dB	n.a.	-15	n.a.	-15	
OCNS_Ec/lor	dB	-3.12	-0.94	-3.12	-0.94	
loc	dBm/ 3.84 MHz	-57.7	-60	-84.7	-84	
Îor/loc	dB	7	9.54	3	0	
PCCPCH RSCP, Note 1	dBm	-53.7	n.a.	-84.7	n.a.	
CPICH RSCP, Note 1	dBm	n.a.	-60.46	n.a.	-94	
Io, Note 1	dBm/ 3.84 MHz	-50	-50	-80	-81	
Propagation condition	-	AW	GN	AW	GN	

NOTE 1: PCCPCH RSCP, CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.2.1.2 Test Requirements

The CPICH RSCP measurement accuracy shall meet the requirements in section 9.1.1.2.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.2.2 CPICH Ec/lo

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.3 exists.

A.9.1.3 Timeslot ISCP

A.9.1.3.1 Test Purpose and Environment

The purpose of this test is to verify that the Timeslot ISCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.3.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12.

A.9.1.3.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2.

The Timeslot ISCP intra frequency absolute accuracy requirements are tested by using test parameters in Table A.9.4.

Table A.9.4: Timeslot ISCP Intra frequency test parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3
raiailielei	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
DL timeslot number		0	0	0	0	0	0
UTRA RF Channel number		Char	nel 1	Char	nel 1	Char	nel 1
PCCPCH_Ec/lor	dB	-	3	-	3	-	3
SCH_Ec/lor	dB	-	-9		-9		9
SCH_t _{offset}		0	5	0	5	0	5
OCNS_Ec/lor	dB	-3,12		-3,12		-3,12	
loc	dBm / 3.84 MHz	-7	5.7	-59	9.8	-98	3.7
Îor/loc	dB	5	2	9	2	3	0
Timeslot ISCP, Note 1	dBm	-73.7	-70.7	-57.8	-50.8	-98.7	-95.7
Io, Note 1	dBm / 3.84 MHz	-69		-50		-94	
Propagation condition		AWGN		AWGN		AWGN	

NOTE 1: Timeslot ISCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.3.2 Test Requirements

The Timeslot ISCP measurement accuracy shall meet the requirements in section 9.1.1.3.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.4 UTRA Carrier RSSI

A.9.1.4.1 Test Purpose and Environment

The purpose of this test is to verify that the UTRA Carrier RSSI measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.4.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12.

A.9.1.4.1.1 Inter frequency test parameters

In this case both cells are on different frequencies. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

Both UTRA Carrier RSSI absolute and relative accuracy requirements are tested by using test parameters in Table A.9.5.

Test 1 Test 2 Test 3 **Parameter** Unit Cell 2 Cell 1 Cell 1 Cell 2 Cell 1 Cell 2 DL timeslot number 0 2 0 UTRA RF Channel Channel 1 Channel 2 Channel 1 Channel 2 Channel 1 Channel 2 number PCCPCH_Ec/lor dB -3 -3 -3 SCH_Ec/lor dB -9 -9 -9 SCH_toffset 0 5 0 5 0 5 OCNS_Ec/lor -3.12 dB -3.12 -3.12 dBm/ loc -75.2 -75.2 -57.8 -54.1 -98.7 -97 3.84 MHz Îor/loc dB 5 5 2 3 0 dBm / Io, Note 1 -69 -50 -94 3.84 MHz Propagation **AWGN AWGN AWGN**

Table A.9.5: UTRA Carrier RSSI Inter frequency tests parameters

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.4.2 Test Requirements

condition

The UTRA Carrier RSSI absolute measurement accuracy shall meet the requirements in section 9.1.1.4.

The UTRA Carrier RSSI relative measurement accuracy shall meet the requirements in Table A.9.6 by taking into account the effect of thermal noise and noise added by the receiver.

		Accur	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
	dBm	-45.2	-78.2	-9487
UTRA Carrier RSSI	dBm	± 4	± 7	-8770
	dBm	± 6	+ 9	-7050

Table A.9.6: UTRA Carrier RSSI relative accuracy

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.5 GSM carrier RSSI

A.9.1.5.1 Test Purpose and Environment

The purpose of this test is to verify that the GSM Carrier RSSI measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.5.

Cell 1 is a UTRA TDD cell and cell 2 is a GSM cell. The Beacon timeslot shall be provided in timeslot 0 and no second Beacon timeslot shall be provided for cell 1. In the measurement control information it is indicated to the UE that periodic reporting of the GSM carrier RSSI measurement is used. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3.

A.9.1.5.1.1 Inter frequency test parameters

GSM carrier RSSI accuracy requirements are tested by using test parameters in Table A.9.6A and A.9.6B.

The limits of the GSM test parameters are defined in [21].

Table A.9.6A: General GSM Carrier RSSI test parameters

Parameter	Unit	Value	Comment
DCH parameters		DL reference measurement channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Inter-RAT measurement quantity		GSM carrier RSSI	
BSIC verification required		No	
Monitored cell list size		6 GSM neighbours including ARFCN 1	

Table A.9.6B: Cell 1 specific GSM Carrier RSSI test parameters

Parameter	Unit	Cell 1					
DL timeslot number		0	1				
UTRA RF Channel number		Chan	nel 1				
PCCPCH_Ec/lor	dB	-3	n.a.				
SCH_Ec/lor	dB	-9	n.a.				
SCH_t _{offset}		0	n.a.				
OCNS_Ec/lor	dB	-3,12	Note 2				
DPCH_Ec/lor	dB	n.a.	Note 1				
Îor/loc	dB	6	6				
Io, Note 1	dBm / 3.84 MHz	-70					
Propagation condition		AW	AWGN				
Note 1: The DPCH level is controlled by the power control loop Note 2: The power of the OCNS channel that is added shall make							

the total power from the cell to be equal to lor.

A.9.1.5.2 Test Requirements

The GSM Carrier RSSI measurement accuracy shall meet the requirements in section 9.1.5.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.6 SIR

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.6 exists.

A.9.1.7 Transport channel BLER

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.7 exists.

A.9.1.8 SFN-SFN observed time difference

A.9.1.8.1 SFN-SFN observed time difference type 1

A.9.1.8.1.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-SFN observed time difference type 1 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.8.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. During the test, the timing difference between cell 1 and cell 2 can be set to any value from 0...9830400 chip.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

A.9.1.8.1.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The SFN-SFN observed time difference type 1 accuracy requirements in the intra-frequency case are tested by using test parameters in Table A.9.7.

Table A.9.7: SFN-SFN observed time difference type 1 Intra frequency test parameters

Parameter	Unit	Tes	st 1	Te	st 2	Test 3		
i alailletei	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
DL timeslot number		0	2	0	2	0	2	
UTRA RF Channel number		Channel 1		Char	Channel 1		Channel 1	
PCCPCH_Ec/lor	dB	-:	3	-	·3	-	-3	
SCH_Ec/lor	dB	-9		-9		-9		
SCH_t _{offset}		0	5	0	5	0	5	
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12		
loc	dBm / 3.84 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7	
Îor/loc	dB	5	5	7	3	3	3	
Io, Note 1	dBm / 3.84 MHz	-69		-50		-94		
Propagation condition		AW	GN	AW	/GN	AW	/GN	

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.8.1.1.2 Inter frequency test parameters

In this case both cells are on different frequencies. The SFN-SFN observed time difference type 2 accuracy requirements in the inter-frequency case are tested by using test parameters in Table A.9.8.

Table A.9.8: SFN-SFN observed time difference type 1 Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Test 3		
raiailletei	Onit	Cell 1 Cell 2 Cell 1 Cell 2		Cell 1	Cell 2			
DL timeslot number		0	2	0	2	0	2	
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	
PCCPCH_Ec/lor	dB	-:	3	-;	3	-	-3	
SCH_Ec/lor	dB	-	9	-9		-9		
SCH_t _{offset}		0	5	0	5	0	5	
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12		
loc	dBm / 3.84 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7	
Îor/loc	dB	5	5	7	3	3	3	
Io, Note 1	dBm / 3.84 MHz	-69		-50		-94		
Propagation condition		AW	GN	AWGN		AWGN		

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.8.1.2 Test Requirements

The SFN-SFN observed time difference type 1 measurement accuracy shall meet the requirements in section 9.1.1.8.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.8.2 SFN-SFN observed time difference type 2

A.9.1.8.2.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-SFN observed time difference type 2 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.8.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. During the test, the timing difference between cell 1 and cell 2 can be set to any value from $-1280 \dots +1280$ chip.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

A.9.1.8.2.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The SFN-SFN observed time difference type 2 accuracy requirements in the intra-frequency case are tested by using test parameters in Table A.9.8A.

Table A.9.8A: SFN-SFN observed time difference type 2 Intra frequency test parameters

Parameter	Unit	Tes	st 1	Te	Test 2		Test 3	
Parameter	Cell 1 Cell 2 Cell 1 Cell 2		Cell 2	Cell 1	Cell 2			
DL timeslot number		0	2	0	2	0	2	
UTRA RF Channel number		Channel 1 Channel 1		Char	Channel 1			
PCCPCH_Ec/lor	dB	-;	3	-	3	-	-3	
SCH_Ec/lor	dB	-!	9	-9		-9		
SCH_t _{offset}		0	5	0	5	0	5	
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12		
loc	dBm / 3.84 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7	
Îor/loc	dB	5	5	7	3	3	3	
Io, Note 1	dBm / 3.84 MHz	-69		-50		-94		
Propagation condition		AW	GN	AWGN AWGN		AW	AWGN	

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.8.2.1.2 Inter frequency test parameters

In this case both cells are on different frequencies. The SFN-SFN observed time difference type 2 accuracy requirements in the inter-frequency case are tested by using test parameters in Table A.9.8B.

Table A.9.8B: SFN-SFN observed time difference type 2 Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Test 3	
Farameter	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
DL timeslot number		0	2	0	2	0	2
UTRA RF Channel		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
number		Chamilei	Charline 2	Chamilei	Charmerz	Chamilei	Chamber 2
PCCPCH_Ec/lor	dB	-	3	-	3	-3	
SCH_Ec/lor	dB	-	-9 -9		9	-9	
SCH_t _{offset}		0	5	0	5	0	5
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12	
loc	dBm / 3.84 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7
Îor/loc	dB	5	5	7	3	3	3
Io, Note 1	dBm / 3.84 MHz	-69		-50		-94	
Propagation condition		AW	GN	AWGN		AWGN	

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.8.2.2 Test Requirements

The SFN-SFN observed time difference type 2 measurement accuracy shall meet the requirements in section 9.1.1.8.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.9 Observed time difference to GSM cell

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.9 exists.

A.9.1.10 SFN-CFN observed time difference

A.9.1.10.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-CFN observed time difference measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.10.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. During the test, the timing difference between cell 1 and cell 2 can be set to any value from 0...256 frames.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

A.9.1.10.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The SFN-CFN observed time difference accuracy requirements in the intra-frequency case are tested by using test parameters in Table A.9.9.

Table A.9.9: SFN-CFN observed time difference Intra frequency test parameters

Parameter	Unit	Tes	st 1	Tes	Test 2		Test 3	
Farameter	Offic	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
DL timeslot number		0	2	0	2	0	2	
UTRA RF Channel		Char	nol 1	Char	nnel 1	Channel 1		
number		Chai	iriei i	Criai	iriei i	Cital	iriei i	
PCCPCH_Ec/lor	dB		3	-	3	-	-3	
SCH_Ec/lor	dB	-	9	-	-9		-9	
SCH_t _{offset}		0	5	0	5	0	5	
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12		
loc	dBm / 3.84 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7	
Îor/loc	dB	5	5	7	3	3	3	
Io, Note 1	dBm / 3.84 MHz	-69		-50		-94		
Propagation condition		AW	GN	AW	/GN	AW	/GN	

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.10.1.2 Inter frequency test parameters

In this case both cells are on different frequencies. The SFN-CFN observed time difference accuracy requirements in the inter-frequency case are tested by using test parameters in Table A.9.10.

Table A.9.10: SFN-CFN observed time difference Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Test 2		Test 3		
Parameter	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
DL timeslot number		0	2	0	2	0	2	
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	
PCCPCH_Ec/lor	dB	-	3	-:	3	-	-3	
SCH_Ec/lor	dB	-	9	-9		-9 -9		.9
SCH_t _{offset}		0	5	0	5	0	5	
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12		
loc	dBm / 3.84 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7	
Îor/loc	dB	5	5	7	3	3	3	
Io, Note 1	dBm / 3.84 MHz	-69		-50		-94		
Propagation condition		AW	GN	AWGN		AWGN		

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.1.10.2 Test Requirements

The SFN-CFN observed time difference measurement accuracy shall meet the requirements in section 9.1.1.10.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.11 UE transmitted power

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.11 exists.

A.9.2 Measurement Performance for UE for 1.28 Mcps TDD

A.9.2.1 P-CCPCH RSCP

A.9.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the P-CCPCH RSCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.1.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

A.9.2.1.1.1 Intra frequency test parameters

Both P-CCPCH RSCP intra frequency absolute and relative accuracy requirements are tested by using test parameters in Table A.9.11.

Table A.9.11: P-CCPCH RSCP Intra frequency test parameters

			Test 1			
Parameter	Unit		II 1		II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Char	nnel 1	Channel 1		
Number (NOTE 2)					1	
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0	0	0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB		5		2	
I_{oc}	dBm/ 1.28 MHz		-76.6			
PCCPCH RSCP, Note 1	dBm	-74.6		-77.6		
Io, Note 1	dBm/ 1.28 MHz		-	69		
Propagation condition			AW	/GN		
Condition			Test 2			
Parameter	Unit	Ce	ell 1	Ce	II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		_			•	
Number (NOTE 2)		Channel 1		Channel 1		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	9 2			2	
I_{oc}	dBm/ 1.28 MHz		-60.2			
PCCPCH RSCP, Note 1	dBm	-54.2		-61.2		
Io, Note 1	dBm/ 1.28 MHz		-	50		
Propagation condition			AW	/GN		
Condition			Test 3			
Parameter	Unit	Ce	ell 1	Ce	II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel Number (NOTE 2)		Char	nnel 1	Char	nnel 1	
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB		5	:	3	
I_{oc}	dBm/ 1.28 MHz		-10)1.9		
PCCPCH RSCP, Note 1	dBm	-99.9		-101.9		
Io, Note 1	dBm/ 1.28 MHz		-	94		
Propagation		AWGN				

purposes. They are not settable parameters themselves.

NOTE2: In the case of multi-frequecny network, the UTRA RF Channel Number can be set for the primary frequency in this test.

A.9.2.1.1.2 Inter frequency test parameters

P-CCPCH RSCP inter frequency relative accuracy requirements are tested by using test parameters in Table A.9.12.

Table A.9.12: P-CCPCH RSCP Inter frequency tests parameters

			Test 1			
Parameter	Unit	Се	II 1	Ce	II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Char	nnel 1	Char	nnel 2	
Number (NOTE 2)					1	
PCCPCH_Ec/lor	dB	-3		-3	_	
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	Į.	5	į į	5	
I_{oc}	dBm/ 1.28 MHz	-75	5.2	-75	5.2	
PCCPCH RSCP, Note 1	dBm	-73.2		-73.2		
Io, Note 1	dBm/ 1.28 MHz		-1	69		
Propagation condition			AW	/GN		
			Test 2			
Parameter	Unit	Ce	II 1	Се	II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Channel 1		Channel 2		
Number (NOTE 2)		_				
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB	- 0	0	0	0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	7 2			2	
I_{oc}	dBm/ 1.28 MHz	-57	7.8	-54.1		
PCCPCH RSCP, Note 1	dBm	-53.8		-55.1		
Io, Note 1	dBm/ 1.28 MHz			50		
Propagation condition			AW	/GN		
Condition			Test 3			
Parameter	Unit	Ce	II 1	Ce	II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Char	nnel 1	Char	nnel 2	
Number (NOTE 2) PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB	-0	0	-5	0	
OCNS_Ec/lor	dB	-3	, , ,	-3	Ĭ	
\hat{I}_{or}/I_{oc}	dB		3)	
I_{oc}	dBm/ 1.28 MHz	-98	8.7	-9	97	
PCCPCH RSCP, Note 1	dBm	-98.7		-100		
Io, Note 1	dBm/ 1.28 MHz	-94				
Propagation condition		AWGN				

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE2: In the case of multi-frequency network,the UTRA RF Channel Number can be set for the primary frequency in this test.

A.9.2.1.2 Test Requirements

The P-CCPCH RSCP measurement accuracy shall meet the requirements in section 9.1.1.1.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.2.2 CPICH measurements

A.9.2.2.1 CPICH RSCP

A.9.2.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the CPICH RSCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.2 and applies to UE"s supporting this capability.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

A.9.2.2.1.1.1 Inter frequency test parameters

Cell 1 is a UTRA TDD cell and cell 2 is a UTRA FDD cell.

CPICH RSCP inter frequency absolute accuracy requirements are tested by using test parameters in Table A.9.13.

Table A.9.13: CPICH RSCP Inter frequency tests parameters

Parameter	Unit		Tes	st 1	Test 2		
Parameter	Offic	Cell 1		Cell 2	Ce	ell 1	Cell 2
DL timeslot number		0	DwP TS	n.a.	0	DwP TS	n.a.
UTRA RF Channel number (NOTE 3)		Char	nel 1	Channel 2	Char	nnel 1	Channel 2
CPICH_Ec/lor	dB	n.	a.	-10	n	.a.	-10
PCCPCH_Ec/lor	dB	-3		-12	-3		-12
DwPCH_Ec/lor	dB		0	n.a.		0	n.a.
SCH_Ec/lor	dB	n.	a.	-12	n	.a.	-12
PICH_Ec/lor	dB	n.	a.	-15	n	.a.	-15
OCNS_Ec/lor	dB	-3		-0.94	-3		-0.94
loc, Note 2	dBm/ 3.84 MHz	n.	a.	-60	n	.a.	-84
loc, Note 2	dBm/ 1.28 MHz	-5	7.7	n.a.	-8	4.7	n.a.
Îor/loc	dB	-	7	9.54		3	0
PCCPCH RSCP, Note 1	dBm	-53.7		n.a.	- 84.7		n.a.
CPICH RSCP, Note 1	dBm	n.	a.	-60.46	n	.a.	-94
Io, Notes 1, 2	dBm/3.84 MHz	n.	a.	-50	n	.a.	-81
Io, Notes 1, 2	dBm/1.28 MHz	-5	50	n.a.	-8	80	n.a.
Propagation condition	-		AW	SN AV		AW	'GN

NOTE 1: PCCPCH RSCP, CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE 2: loc and lo are given independently for TDD and FDD cells.

NOTE 3: In the case of multi-frequency network of 1.28 Mcps TDD, the UTRA RF Channel Number can be set for the primary frequency in this test.

A.9.2.2.1.2 Test Requirements

The CPICH RSCP measurement accuracy shall meet the requirements in section 9.1.1.2.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.2.2.2 CPICH Ec/lo

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.3 exists.

A.9.2.3 Timeslot ISCP

A.9.2.3.1 Test Purpose and Environment

The purpose of this test is to verify that the Timeslot ISCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.3.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

A.9.2.3.1.1 Intra frequency test parameters

The Timeslot ISCP intra frequency absolute accuracy requirements are tested by using test parameters in Table A.9.14.

Table A.9.14: Timeslot ISCP Intra frequency test parameters

			Test 1			
Parameter	Unit	Ce	ell 1	Ce	II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Char	nnel 1	Char	anal 1	
Number (NOTE 2)		Char	ineri	Channel 1		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB		5	:	2	
I_{oc}	dBm/1.28 MHz		-7	76.6		
TS ISCP, Note 1	dBm	-74.6		-71.6		
Io, Note 1	dBm/1.28 MHz		-	69		
Propagation condition			AV	VGN		
00.10.10.1			Test 2			
Parameter	Unit	Ce	ell 1	Ce	II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Ob -		Ol		
Number (NOTE 2)		Char	nnel 1	Channel 1		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	,	9	:	2	
I_{oc}	dBm/1.28 MHz		-6	60.2		
TS ISCP, Note 1	dBm	-58.2		-51.2		
Io, Note 1	dBm/1.28 MHz		-	50		
Propagation condition			AV	VGN		
CONDITION			Test 3			
Parameter	Unit	Ce	ell 1	Ce	II 2	
Timeslot Number	- Onne	0	DwPTS	0	DwPTS	
UTRA RF Channel						
Number (NOTE 2)		Char	nnel 1	Char	nnel 1	
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3	-	-3		
\hat{I}_{or}/I_{oc}	dB		5		3	
I_{oc}	dBm/1.28		-1	01.9		
TS ISCP, Note 1	MHz dBm	-98.9		-96.9		
	dBm/1.28	-30.3			I	
Io, Note 1	MHz		-	94		
Propagation condition			AV	VGN		

NOTE 1: TS ISCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE 2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency in this test.

A.9.2.3.2 Test Requirements

The Timeslot ISCP measurement accuracy shall meet the requirements in section 9.1.1.3.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.2.4 UTRA carrier RSSI

A.9.2.4.1 Test Purpose and Environment

The purpose of this test is to verify that the UTRA Carrier RSSI measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.4.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

A.9.2.4.1.1 Inter frequency test parameters

Both UTRA Carrier RSSI absolute and relative accuracy requirements are tested by using test parameters in Table A.9.15.

Table A.9.15: UTRA Carrier RSSI Inter frequency tests parameters

			Test 1		
Parameter	Unit		ell 1		ell 2
Timeslot Number		0	DwPTS	0	DwPTS
UTRA RF Channel		Channel 1		Channel 2	
Number (NOTE 2)		Cila	IIIIEI I	Channel 2	
PCCPCH_Ec/lor	dB	-3		-3	
DwPCH_Ec/lor	dB		0		0
OCNS_Ec/lor	dB	-3		-3	
\hat{I}_{or}/I_{oc}	dB		5		5
I_{oc}	dBm/1.28 MHz	-7	75.2		75.2
Io, Note 1	dBm/1.28 MHz		-6	9	
Propagation condition			AW	GN	
CONDITION			Test 2		
Parameter	Unit	<u></u>	ell 1	^	ell 2
Timeslot Number	Oill	0	DwPTS	0	DwPTS
UTRA RF Channel	-		•		- I
		Cha	nnel 1	Cha	annel 2
Number (NOTE 2)r PCCPCH_Ec/lor	dB	2		-3	
DwPCH_Ec/lor	dВ	-3	0	-3	0
OCNS_Ec/lor	dB	-3	U	-3	0
		-ა		-3	
\hat{I}_{or}/I_{oc}	dB	7 2			2
I_{oc}	dBm/1.28 MHz	-5	57.8		54.1
Io, Note 1	dBm/1.28 MHz		-5	0	
Propagation condition			AW	GN	
CONGRETA			Test 3		
Parameter	Unit	C	ell 1	С	ell 2
Timeslot Number		0	DwPTS	0	DwPTS
UTRA RF Channel	-		•		
Number (NOTE 2)]	Cha	nnel 1	Cha	annel 2
PCCPCH_Ec/lor	dB	-3		-3	
DwPCH_Ec/lor	dB		0		0
OCNS_Ec/lor	dB	-3	<u> </u>	-3	
\hat{I}_{or}/I_{oc}	dB	-	3	<u> </u>	0
I_{oc}	dBm/1.28 MHz	-9	98.7		-97
Io, Note 1	dBm/1.28 MHz		-9	4	
Propagation condition			AW	GN	

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE 2: In the case of multi-frequecny network, the UTRA RF Channel Number is the primary frequency s channel number.

A.9.2.4.2 Test Requirements

The UTRA Carrier RSSI absolute and relative measurement accuracy shall meet the requirements in section 9.1.1.4.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.2.5 GSM carrier RSSI

A.9.2.5.1 Test Purpose and Environment

The purpose of this test is to verify that the GSM Carrier RSSI measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.5.

Cell 1 is a UTRA TDD cell and cell 2 is a GSM cell. In the measurement control information it is indicated to the UE that periodic reporting of the GSM carrier RSSI measurement is used.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

A.9.2.5.1.1 Inter RAT test parameters

GSM carrier RSSI accuracy requirements are tested by using test parameters in Table A.9.16A and A.9.16B.

The limits of the GSM test parameters are defined in [21].

Table A.9.16A: General GSM Carrier RSSI test parameters

Parameter	Unit	Value	Comment
DCH parameters		DL reference measurement channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Inter-RAT measurement quantity		GSM carrier RSSI	
BSIC verification required		No	
Monitored cell list size		6 GSM neighbours including ARFCN 1	

Table A.9.16B: Cell 1 specific GSM Carrier RSSI test parameters

Parameter	Unit	Cell 1				
DL timeslot number		0	DwPTS			
UTRA RF Channel number (NOTE)		Char	nnel 1			
PCCPCH_Ec/lor	dB	-3				
DwPCH_Ec/lor	dB		0			
OCNS_Ec/lor	dB	-3				
Îor/loc	dB	;	3			
loc	dBm / 1.28MHz	-70				
Propagation condition		AW	'GN			
	NOTE: In the case of multi-frequency, the UTRA RF Channel Number can be set for the primary frequency in this test.					

A.9.2.5.2 Test Requirements

The GSM Carrier RSSI measurement accuracy shall meet the requirements in section 9.1.5.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.2.6 SIR

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.6 exists.

A.9.2.7 Transport channel BLER

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.7 exists.

A.9.2.8 SFN-SFN observed time difference

A.9.2.8.1 SFN-SFN observed time difference type 1

A.9.2.8.1.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-SFN observed time difference type 1 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.8.

Cell 1 and cell 2 shall be synchronised. During the test, the timing difference between cell 1 and cell 2 can be set to valid values in the range 0...3276800 chip.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

A.9.2.8.1.1.1 Intra frequency test parameters

The SFN-SFN observed time difference type 1 accuracy requirements in the intra-frequency case are tested by using test parameters in Table A.9.17.

Table A.9.17: SFN-SFN observed time difference type 1 Intra frequency test parameters

	Test 1					
Parameter	Unit	Cell 1		Cell 2		
Timeslot Number		0 DwPTS		0 DwPTS		
UTRA RF Channel		Char	anal 1	Channel 1		
Number (NOTE 2)		Channel 1		Channel		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	5 2				
I_{oc}	dBm/1. 28 MHz	-76.6				
PCCPCH RSCP, Note 1	dBm	-74.6		-77.6		
Io, Note 1	dBm/1. 28 MHz	-69				
Propagation condition			AV	VGN		
		Test 2				
Parameter	Unit	Ce	ell 1	Cell 2		
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel Number (NOTE 2)		Channel 1		Channel 1		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	9 2		2		
I_{oc}	dBm/1. 28 MHz		-60.2			
PCCPCH RSCP, Note 1	dBm	-54.2		-61.2		
Io, Note 1	dBm/1. 28 MHz	-50				
Propagation condition		AWGN				
		Test 3				
Parameter	Unit	Ce	ell 1	Cell 2		
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel Number (NOTE 2)		Channel 1		Channel 1		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	5		;	3	
I_{oc}	dBm/1. 28 MHz	-101.9				
PCCPCH RSCP, Note 1	dBm	-99.9		-101.9		
Io, Note 1	dBm/1. 28 MHz	-94				
Propagation condition		AWGN				
	•					

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE 2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency in this test.

A.9.2.8.1.1.2 Inter frequency test parameters

The SFN-SFN observed time difference type 1 accuracy requirements in the inter-frequency case are tested by using test parameters in Table A.9.18.

Table A.9.18: SFN-SFN observed time difference type 1 Inter frequency tests parameters

	Test 1				
Parameter	Unit	Ce	II 1	Cell 2	
Timeslot Number		0	DwPTS	0	DwPTS
UTRA RF Channel		Char	anol 1	Channel 2	
Number (NOTE 2)		Channel 1		Channel 2	
PCCPCH_Ec/lor	dB	-3		-3	
DwPCH_Ec/lor	dB		0		0
OCNS_Ec/lor	dB	-3		-3	
\hat{I}_{or}/I_{oc}	dB	5		5	
I_{oc}	dBm/1.28 MHz	-75.2		-75.2	
PCCPCH RSCP, Note 1	dBm	-73.2		-73.2	
Io, Note 1	dBm/1.28 MHz	-69			
Propagation condition		AWGN			
		Test 2			
Parameter	Unit	Ce	II 1	Cell 2	
Timeslot Number		0	DwPTS	0	DwPTS
UTRA RF Channel Number (NOTE 2)		Channel 1		Channel 2	
PCCPCH_Ec/lor	dB	-3		-3	
DwPCH_Ec/lor	dB		0		0
OCNS_Ec/lor	dB	-3		-3	Ŭ
\hat{I}_{or}/I_{oc}	dB		7		<u>. </u>
I_{oc}	dBm/1.28 MHz	-57.8		-54.1	
PCCPCH RSCP, Note 1	dBm	-53.8		-55.1	
Io, Note 1	dBm/1.28 MHz	-50			
Propagation condition		AWGN			
Condition		Test 3			
Parameter	Unit	Ce	II 1	Cell 2	
Timeslot Number		0	DwPTS	0	DwPTS
UTRA RF Channel				Channel 2	
Number (NOTE 2)		Channel 1		Channel 2	
PCCPCH_Ec/lor	dB	-3		-3	
DwPCH_Ec/lor	dB		0		0
OCNS_Ec/lor	dB	-3		-3	
\hat{I}_{or}/I_{oc}	dB	3		0	
I_{oc}	dBm/1.28 MHz	-98.7		-97	
PCCPCH RSCP, Note 1	dBm	-98.7		-100	
Io, Note 1	dBm/1.28 MHz	-94			
Propagation condition		AWGN			
NOTE 1: PCCPCH F	Ol box 9029	lavals hava haan	calculated from	other parameters	for information

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE 2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency.

A.9.2.8.1.2 Test Requirements

The SFN-SFN observed time difference type 1 measurement accuracy shall meet the requirements in section 9.1.1.8.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.2.8.2 SFN-SFN observed time difference type 2

A.9.2.8.2.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-SFN observed time difference type 2 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.8.

Cell 1 and cell 2 shall be synchronised and share the same frame timing. During the test, the timing difference between cell 1 and cell 2 can be set to valid values in the rang from -432 to 432 chip.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

A.9.2.8.2.1.1 Intra frequency test parameters

The SFN-SFN observed time difference type 2 accuracy requirements in the intra-frequency case are tested by using test parameters in Table A.9.18A.

Table A.9.18A: SFN-SFN observed time difference type 2 Intra frequency test parameters

	Test 1					
Parameter	Unit	Се	II 1	Cell 2		
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Char	nol 1	Channel 1		
Number (NOTE 2)		Channel 1				
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	5 2				
I_{oc}	dBm/1. 28 MHz	-76.6				
PCCPCH RSCP, Note 1	dBm	-74.6		-77.6		
Io, Note 1	dBm/1. 28 MHz	-69				
Propagation condition		AWGN				
			Test 2			
Parameter	Unit	Ce	II 1	Cell 2		
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel Number (NOTE 2)		Channel 1		Channel 1		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB	-	0		0	
OCNS_Ec/lor	dB	-3		-3	-	
\hat{I}_{or}/I_{oc}	dB	9		2		
I_{oc}	dBm/1. 28 MHz	-60		0.2		
PCCPCH RSCP, Note 1	dBm	-54.2		-61.2		
Io, Note 1	dBm/1. 28 MHz	-50				
Propagation condition		AWGN				
			Test 3			
Parameter	Unit	Се	II 1	Cell 2		
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel Number (NOTE 2)		Channel 1		Channel 1		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB	-	0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	5 3		3		
I_{oc}	dBm/1. 28 MHz	-101.9				
PCCPCH RSCP, Note 1	dBm	-99.9		-101.9		
Io, Note 1	dBm/1. 28 MHz	-94				
Propagation condition		AWGN				
NOTE 1: PCCPCH RS	CD and lo	ovole have been			for information	

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency in this test.

A.9.2.8.2.1.2 Inter frequency test parameters

The SFN-SFN observed time difference type 2 accuracy requirements in the inter-frequency case are tested by using test parameters in Table A.9.18B.

Table A.9.18B: SFN-SFN observed time difference type 2 Inter frequency tests parameters

	Test 1					
Parameter	Unit		II 1	Cell 2		
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Channel 1		Channel 2		
Number (NOTE 2)r						
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB		5	5		
I_{oc}	dBm/1.28 MHz	-75.2		-75.2		
PCCPCH RSCP, Note 1	dBm	-73.2		-73.2		
Io, Note 1	dBm/1.28 MHz	-69				
Propagation condition		AWGN				
			Test 2			
Parameter	Unit	Ce	II 1	Cell 2		
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel Number (NOTE 2)		Channel 1		Channel 2		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	-	7		2	
I_{oc}	dBm/1.28 MHz	-57.8		-54.1		
PCCPCH RSCP, Note 1	dBm	-53.8		-55.1		
Io, Note 1	dBm/1.28 MHz	-50				
Propagation condition		AWGN				
Condition		Test 3				
Parameter	Unit	Ce	Cell 1			
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		-		•		
Number (NOTE 2)		Channel 1		Channel 2		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	3		0		
I_{oc}	dBm/1.28 MHz	-98.7		-97		
PCCPCH RSCP, Note 1	dBm	-98.7		-100		
Io, Note 1	dBm/1.28 MHz	-94				
Propagation condition		AWGN				
NOTE 4 DOODOULD	000					

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency"s channel number.

A.9.2.8.2.2 Test Requirements

The SFN-SFN observed time difference type 2 measurement accuracy shall meet the requirements in section 9.1.1.8.

The rate of correct measurement observed during repeated tests shall be at least 90%.

A.9.2.9 Observed time difference to GSM cell

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.9 exists.

A.9.2.10 SFN-CFN observed time difference

A.9.2.10.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-CFN observed time difference measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.10.

Cell 1 and cell 2 shall be synchronised. During the test, the timing difference between cell 1 and cell 2 can be set to any value from 0...256 frames.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

A.9.2.10.1.1 Intra frequency test parameters

The SFN-CFN observed time difference accuracy requirements in the intra-frequency case are tested by using test parameters in Table A.9.19.

Table A.9.19: SFN-CFN observed time difference Intra frequency test parameters

	Test 1					
Parameter	Unit	Ce	II 1	Cell 2		
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Char	nnel 1	Channel 1		
Number (NOTE 2)	ID.					
PCCPCH_Ec/lor	dB	-3	0	-3	0	
DwPCH_Ec/lor OCNS_Ec/lor	dB dB	-3	0	-3	0	
. ,			_		_	
\hat{I}_{or}/I_{oc}	dB		5	1	2	
I_{oc}	dBm/1.28 MHz	-76.6				
PCCPCH RSCP, Note 1	dBm	-74.6		-77.6		
Io, Note 1	dBm/1.28 MHz	-69				
Propagation condition		AWGN				
			Test 2			
Parameter	Unit		II 1		II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Channel 1		Channel 1		
Number (NOTE 2) PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB	-5	0	-3	0	
OCNS_Ec/lor	dB	-3	, , ,	-3	Ŭ	
\hat{I}_{or}/I_{oc}	dB		9		2	
	dBm/1.28					
I _{oc}	MHz	-60.2			T	
PCCPCH RSCP, Note 1	dBm	-54.2		-61.2		
Io, Note 1	dBm/1.28 MHz	-50				
Propagation condition		AWGN				
			Test 3			
Parameter	Unit	Cell 1		Cell 2		
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel Number (NOTE 2)		Channel 1		Channel 1		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0	_	0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	5 3				
I_{oc}	dBm/1.28 MHz	-101.9				
PCCPCH RSCP, Note 1	dBm	-99.9		-101.9		
Io, Note 1	dBm/1.28 MHz	-94				
Propagation condition		AWGN				

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the

primary frequency in this test.

A.9.2.10.1.2 Inter frequency test parameters

The SFN-CFN observed time difference accuracy requirements in the inter-frequency case are tested by using test parameters in Table A.9.20.

Table A.9.20: SFN-CFN observed time difference Inter frequency tests parameters

			Test 1			
Parameter	Unit		II 1		II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Char	nnel 1	Char	nnel 2	
Number (NOTE 2)					1	
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB	2	0	-3	0	
OCNS_Ec/lor	dB	-3	_		_	
\hat{I}_{or}/I_{oc}	dB		5	,	5	
I_{oc}	dBm/1.28 MHz	-7:	5.2	-7:	5.2	
PCCPCH RSCP, Note 1	dBm	-73.2		-73.2		
Io, Note 1	dBm/1.28 MHz		-(69		
Propagation condition				/GN		
			Test 2	T		
Parameter	Unit		II 1		II 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel Number (NOTE 2)		Char	nnel 1	Channel 2		
PCCPCH_Ec/lor	dB	-3		-3		
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB	-	7	;	2	
I_{oc}	dBm/1.28 MHz	-5	7.8	-54.1		
PCCPCH RSCP, Note 1	dBm	-53.8		-55.1		
Io, Note 1	dBm/1.28 MHz		{	50		
Propagation condition			AW	/GN		
Condition			Test 3			
Parameter	Unit	Ce	II 1	Ce	ell 2	
Timeslot Number		0	DwPTS	0	DwPTS	
UTRA RF Channel		Char	nnel 1	Char	nnel 2	
Number (NOTE 2)			IIIOI I		IIIOI Z	
PCCPCH_Ec/lor	dB	-3		-3	_	
DwPCH_Ec/lor	dB		0		0	
OCNS_Ec/lor	dB	-3		-3		
\hat{I}_{or}/I_{oc}	dB		3		0	
I_{oc}	dBm/1.28 MHz	-98	8.7	-6	97	
PCCPCH RSCP, Note 1	dBm	-98.7		-100		
Io, Note 1	dBm/1.28 MHz	-94				
Propagation condition			AW	/GN		
NOTE 4 DOODOULD	000					

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency in this test.

A.9.2.10.2 **Test Requirements**

The SFN-CFN observed time difference measurement accuracy shall meet the requirements in section 9.1.1.10.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.2.11 UE transmitted power

A.9.2.11.1 Test purpose and Environment

The purpose of the test is to verify that the UE transmitted power measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.2.1.

The test parameters are given in Table A.9.21 and A.9.22 below. In the measurement control information it shall be indicated to the UE that periodic reporting of the UE transmitted power measurement shall be used.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 2.

Table A.9.21: General test parameters for UE transmitted power

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Control		On	
Target quality value on DTCH	BLER	0.01	

Table A.9.22: Cell Specific parameters for UE transmitted power

Parameter	Unit	Co	ell 1
Timeslot Number		0	DwPTS
UTRA RF Channel		Cha	nnel 1
Number (NOTE 2)			
PCCPCH_Ec/lor	dB	-3	
DwPCH_Ec/lor	dB		0
OCNS_Ec/lor	dB	-3	
\hat{I}_{or}/I_{oc}	dB	3	
I_{oc}	dBm/1.28 MHz	-	70
PCCPCH RSCP, Note 1	dBm	-	70
Propagation Condition		AV	VGN

NOTE 1: PCCPCH RSCP level has been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE2: In the case of multi-frequency network, the UTRA RF Channel Number can be set for the primary frequency in this test.

A.9.2.11.1.1 Test procedure

- 1) Set the UE power and Maximum allowed UL TX power to the maximum power for that UE power class specified in section 9.1.2.1.
- 2) Send continuously Up power control commands to the UE during the entire test.
- 3) Check the UE reported value
- 4) Map the UE reported value to accuracy requirement and define the test limits
- 5) Measure the output power of the UE. The output power shall be averaged over one timeslot.
- 6) Check that the measured UE transmitted power is within the limits defined in step 4).
- 7) Decrease the Maximum allowed UL TX power with 1dB and signal the new value to the UE.
- 8) Repeat from step 3) until the entire specified range for the UE transmitted power measurement has been tested, i.e. the accuracy requirement for the UE transmitted power measurement is specified 10dB below the maximum power for the UE power class specified in section 9.1.2.1.

A.9.2.11.2 Test requirements

The UE transmitted power measurement accuracy shall meet the requirements in section 9.1.2.1.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.3 Measurement Performance for UE (7.68 Mcps TDD option)

A.9.3.1 P-CCPCH RSCP

A.9.3.1.1 Test Purpose and Environment

The purpose of this test is to verify that the P-CCPCH RSCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.1.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12.

A.9.3.1.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2.

Both P-CCPCH RSCP intra frequency absolute and relative accuracy requirements are tested by using test parameters in Table A.9.23.

Table A.9.23: P-CCPCH RSCP Intra frequency test parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3
raiametei	Ollit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
DL timeslot number		0	0	0	0	0	0
UTRA RF Channel number		Char	nel 1	Char	nel 1	Char	nel 1
PCCPCH_Ec/lor	dB	-	3	-	3	-	3
SCH_Ec/lor	dB	-9		-9		-9	
SCH_t _{offset}		0	5	0	5	0	5
OCNS_Ec/lor	dB	-3,12		-3,12		-3,	12
loc	dBm / 7.68 MHz	-7	5.7	-59	9.8	-98	3.7
Îor/loc	dB	5	2	9	2	3	0
PCCPCH RSCP, Note 1	dBm	-73.7	-76.7	-53.8	-60.8	-98.7	-101.7
Io, Note 1	dBm / 7.68 MHz	7.68 MHz -69		-50		-(94
Propagation condition		AW	'GN	AW	'GN	AW	'GN

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.1.1.2 Inter frequency test parameters

In this case both cells are on different frequencies. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

P-CCPCH RSCP inter frequency relative accuracy requirements are tested by using test parameters in Table A.9.24.

Table A.9.24: P-CCPCH RSCP Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Те	st 3
Farameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
DL timeslot number		0	2	0	2	0	2
UTRA RF Channel		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
number		Chamber	Charmer 2	Chamilei	Charmer 2	Chamilei	Charmer 2
PCCPCH_Ec/lor	dB	T	3	-	3	-	3
SCH_Ec/lor	dB	ī	9	-	9	-	9
SCH_t _{offset}		0	5	0	5	0	5
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12	
loc	dBm / 7.68 MHz	-75.2	-75.2	-57.8	-54.1	-98.7	-97
Îor/loc	dB	5	5	7	2	3	0
PCCPCH RSCP, Note 1	dBm	-73.2	-73.2	-54.8	-55.1	-98.7	-100
Io, Note 1	dBm / 7.68 MHz	-69		-50		-9	94
Propagation condition		AW	GN	AWGN		AW	/GN

NOTE 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.1.2 Test Requirements

The P-CCPCH RSCP measurement accuracy shall meet the requirements in section 9.1.1.1.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.3.2 CPICH measurements

A.9.3.2.1 CPICH RSCP

A.9.3.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the CPICH RSCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.2 and applies to UE"s supporting this capability.

The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3.

A.9.3.2.1.1.1 Inter frequency test parameters

In this case both cells are on different frequencies. Cell 1 is a UTRA TDD cell and cell 2 is a UTRA FDD cell. No second Beacon timeslot shall be provided for cell 1.

CPICH RSCP inter frequency absolute accuracy requirements are tested by using test parameters in Table A.9.25.

Table A.9.25: CPICH RSCP Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Te	st 2
Parameter	Cell 1		Cell 2	Cell 1	Cell 2
DL timeslot number		0	n.a.	0	n.a.
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2
CPICH_Ec/lor	dB	n.a.	-10	n.a.	-10
PCCPCH_Ec/lor	dB	-3	-12	-3	-12
SCH_Ec/lor	dB	-9	-12	-9	-12
SCH_t _{offset}		5	n.a.	5	n.a.
PICH_Ec/lor	dB	n.a.	-15	n.a.	-15
OCNS_Ec/lor	dB	-3.12	-0.94	-3.12	-0.94
loc	dBm/ 7.68 MHz	-57.7	-60	-84.7	-84
Îor/loc	dB	7	9.54	3	0
PCCPCH RSCP, Note 1	dBm	-53.7	n.a.	-84.7	n.a.
CPICH RSCP, Note 1	dBm	n.a.	-60.46	n.a.	-94
Io, Note 1	dBm/ 7.68 MHz	-50	-50	-80	-81
Propagation condition	-		'GN		/GN

NOTE 1: PCCPCH RSCP, CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.2.1.2 Test Requirements

The CPICH RSCP measurement accuracy shall meet the requirements in section 9.1.1.2.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.3.2.2 CPICH Ec/lo

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.3 exists.

A.9.3.3 Timeslot ISCP

A.9.3.3.1 Test Purpose and Environment

The purpose of this test is to verify that the Timeslot ISCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.3.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12.

A.9.3.3.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The second Beacon timeslot shall be provided in timeslot 8 for both cell 1 and cell 2.

The Timeslot ISCP intra frequency absolute accuracy requirements are tested by using test parameters in Table A.9.26.

Table A.9.26: Timeslot ISCP Intra frequency test parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3
Farameter	Offic	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
DL timeslot number		0	0	0	0	0	0
UTRA RF Channel number		Char	nel 1	Char	nel 1	Char	nel 1
PCCPCH_Ec/lor	dB	-	3	-	3	-	3
SCH_Ec/lor	dB	-9		-9		-	9
SCH_t _{offset}		0	5	0	5	0	5
OCNS_Ec/lor	dB	-3,	12	-3,	12	-3,	12
loc	dBm / 7.68 MHz	-7	5.7	-59	9.8	-98	3.7
Îor/loc	dB	5	2	9	2	3	0
Timeslot ISCP, Note 1	dBm	-73.7	-70.7	-57.8	-50.8	-98.7	-95.7
Io, Note 1	dBm / 7.68 MHz	-69		-50		-6	94
Propagation condition		AW	GN	AW	'GN	AW	GN

NOTE 1: Timeslot ISCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.3.2 Test Requirements

The Timeslot ISCP measurement accuracy shall meet the requirements in section 9.1.1.3.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.3.4 UTRA Carrier RSSI

A.9.3.4.1 Test Purpose and Environment

The purpose of this test is to verify that the UTRA Carrier RSSI measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.4.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12.

A.9.3.4.1.1 Inter frequency test parameters

In this case both cells are on different frequencies. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

Both UTRA Carrier RSSI absolute and relative accuracy requirements are tested by using test parameters in Table A.9.27.

Parameter	Unit	Tes	st 1	Tes	Test 2		st 3	
Faiailietei	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
DL timeslot number		0	2	0	2	0	2	
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	
PCCPCH_Ec/lor	dB	-	3	-3		-3		
SCH_Ec/lor	dB	-	-9		-9		-9	
SCH_t _{offset}		0	5	0	5	0	5	
OCNS_Ec/lor	dB	-3	12	-3,12		-3,12		
loc	dBm / 7.68 MHz	-75.2	-75.2	-57.8	-54.1	-98.7	-97	
Îor/loc	dB	5	5	7	2	3	0	
Io, Note 1	dBm / 7.68 MHz	-69		-50		-!	94	
Propagation condition		AW	'GN	AWGN		AW	/GN	

Table A.9.27: UTRA Carrier RSSI Inter frequency tests parameters

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.4.2 Test Requirements

The UTRA Carrier RSSI absolute measurement accuracy shall meet the requirements in section 9.1.1.4.

The UTRA Carrier RSSI relative measurement accuracy shall meet the requirements in Table A.9.28 by taking into account the effect of thermal noise and noise added by the receiver.

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/7.68 MHz]
	dBm	-45.2	-78.2	-9487
UTRA Carrier RSSI	dBm	± 4	± 7	-8770
	dBm	± 6	± 9	-7050

Table A.9.28: UTRA Carrier RSSI relative accuracy

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.3.5 GSM carrier RSSI

A.9.3.5.1 Test Purpose and Environment

The purpose of this test is to verify that the GSM Carrier RSSI measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.5.

Cell 1 is a UTRA TDD cell and cell 2 is a GSM cell. The Beacon timeslot shall be provided in timeslot 0 and no second Beacon timeslot shall be provided for cell 1. In the measurement control information it is indicated to the UE that periodic reporting of the GSM carrier RSSI measurement is used. The DL DPCH shall be transmitted in timeslot 1 and the UL DPCH shall be transmitted in timeslot 3.

A.9.3.5.1.1 Inter frequency test parameters

GSM carrier RSSI accuracy requirements are tested by using test parameters in Table A.9.29 and A.9.30.

The limits of the GSM test parameters are defined in [21].

Table A.9.29: General GSM Carrier RSSI test parameters

Parameter	Unit	Value	Comment
DCH parameters		DL reference measurement channel 12.2 kbps	As specified in TS 25.102 section A.2.2
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Inter-RAT measurement quantity		GSM carrier RSSI	
BSIC verification required		No	
Monitored cell list size		6 GSM neighbours including ARFCN 1	

Table A.9.30: Cell 1 specific GSM Carrier RSSI test parameters

Parameter	Unit	Cell 1				
DL timeslot number		0	1			
UTRA RF Channel number		Chan	nel 1			
PCCPCH_Ec/lor	dB	-3	n.a.			
SCH_Ec/lor	dB	-9	n.a.			
SCH_t _{offset}		0	n.a.			
OCNS_Ec/lor	dB	-3,12	Note 2			
DPCH_Ec/lor	dB	n.a.	Note 1			
Îor/loc	dB	6	6			
Io, Note 1	dBm / 7.68 MHz	-70				
Propagation condition		AW	GN			
Note 1: The DPCH level is controlled by the power control loop Note 2: The power of the OCNS channel that is added shall make						

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor.

A.9.3.5.2 Test Requirements

The GSM Carrier RSSI measurement accuracy shall meet the requirements in section 9.1.5.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.3.6 (void)

A.9.3.7 (void)

A.9.3.8 SFN-SFN observed time difference

A.9.3.8.1 SFN-SFN observed time difference type 1

A.9.3.8.1.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-SFN observed time difference type 1 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.8.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. During the test, the timing difference between cell 1 and cell 2 can be set to any value from 0...19660800 chip.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

A.9.3.8.1.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The SFN-SFN observed time difference type 1 accuracy requirements in the intra-frequency case are tested by using test parameters in Table A.9.31.

Table A.9.31: SFN-SFN observed time difference type 1 Intra frequency test parameters

Parameter	Unit	Tes	st 1	Те	st 2	Te	st 3
Parameter	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
DL timeslot number		0	2	0	2	0	2
UTRA RF Channel		Chan	nol 1	Char	nnel 1	Char	nnel 1
number		Crian	nei i	Criai	iriei i	Cital	iriei i
PCCPCH_Ec/lor	dB	-:	3	-	-3	•	3
SCH_Ec/lor	dB	-9	9	-9		-9	
SCH_t _{offset}		0	5	0	5	0	5
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12	
loc	dBm / 7.68 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7
Îor/loc	dB	5	5	7	3	3	3
Io, Note 1	dBm / 7.68 MHz	-69		-50		-9	94
Propagation condition		AW	GN	AWGN		AWGN	

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.8.1.1.2 Inter frequency test parameters

In this case both cells are on different frequencies. The SFN-SFN observed time difference type 2 accuracy requirements in the inter-frequency case are tested by using test parameters in Table A.9.32.

Table A.9.32: SFN-SFN observed time difference type 1 Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Test 3			
raiailletei	Oilit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2		
DL timeslot number		0	2	0	2	0	2		
UTRA RF Channel		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2		
number		Onamici	Onamiciz	Onamici	Onamiciz	Onamici	Onamici 2		
PCCPCH_Ec/lor	dB	T	3	=	-3		-3		
SCH_Ec/lor	dB	ī	-9		-9		.9		
SCH_t _{offset}		0	5	0	5	0	5		
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12			
loc	dBm / 7.68 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7		
Îor/loc	dB	5	5	7	3	3	3		
Io, Note 1	dBm / 7.68 MHz	-69		-50		-94			
Propagation condition		AWGN		AWGN		AWGN			

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.8.1.2 Test Requirements

The SFN-SFN observed time difference type 1 measurement accuracy shall meet the requirements in section 9.1.1.8.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.3.8.2 SFN-SFN observed time difference type 2

A.9.3.8.2.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-SFN observed time difference type 2 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.8.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. During the test, the timing difference between cell 1 and cell 2 can be set to any value from -2560 ... +2560 chip.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

A.9.3.8.2.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The SFN-SFN observed time difference type 2 accuracy requirements in the intra-frequency case are tested by using test parameters in Table A.9.33.

Table A.9.33: SFN-SFN observed time difference type 2 Intra frequency test parameters

Parameter	Unit	Test 1		Те	st 2	Test 3			
Parameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2		
DL timeslot number		0	2	0	2	0	2		
UTRA RF Channel		Chan	nol 1	Char	nnel 1	Char	anol 1		
number		Crian	illel i	Cital	illei i	Channel 1			
PCCPCH_Ec/lor	dB	-;	3	-	-3		-3		
SCH_Ec/lor	dB	-9		-9		-9			
SCH_t _{offset}		0	5	0	5	0	5		
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12			
loc	dBm / 7.68 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7		
Îor/loc	dB	5	5	7	3	3	3		
Io, Note 1	dBm / 7.68 MHz	-69		-50		-94			
Propagation condition		AW	AWGN		AWGN		AWGN		

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.8.2.1.2 Inter frequency test parameters

In this case both cells are on different frequencies. The SFN-SFN observed time difference type 2 accuracy requirements in the inter-frequency case are tested by using test parameters in Table A.9.34.

Table A.9.34: SFN-SFN observed time difference type 2 Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Test 3		
rafameter	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
DL timeslot number		0	2	0	2	0	2	
UTRA RF Channel		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	
number		Chamber	Charmerz	Chamilei	Charmer 2	Chamilei	Chamber 2	
PCCPCH_Ec/lor	dB	-	3	-	-3		3	
SCH_Ec/lor	dB	-	-9		-9		9	
SCH_t _{offset}		0	5	0	5	0	5	
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12		
loc	dBm / 7.68 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7	
Îor/loc	dB	5	5	7	3	3	3	
Io, Note 1	dBm / 7.68 MHz	-69		-50		-94		
Propagation condition		AWGN		AWGN		AWGN		

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.8.2.2 Test Requirements

The SFN-SFN observed time difference type 2 measurement accuracy shall meet the requirements in section 9.1.1.8.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.3.9 Observed time difference to GSM cell

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.9 exists.

A.9.3.10 SFN-CFN observed time difference

A.9.3.10.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-CFN observed time difference measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.10.

Cell 1 and cell 2 shall be synchronised, i.e. share the same frame and timeslot timing. During the test, the timing difference between cell 1 and cell 2 can be set to any value from 0...256 frames.

The DL DPCH shall be transmitted in timeslot 4 and the UL DPCH shall be transmitted in timeslot 12. The second Beacon timeslot shall be provided in timeslot 8 for cell 1 and in timeslot 10 for cell 2.

A.9.3.10.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. The SFN-CFN observed time difference accuracy requirements in the intra-frequency case are tested by using test parameters in Table A.9.35.

Table A.9.35: SFN-CFN observed time difference Intra frequency test parameters

Parameter	Unit	Tes	st 1	Те	st 2	Test 3		
Farameter	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
DL timeslot number		0	2	0	2	0	2	
UTRA RF Channel		Chan	nol 1	Char	nnel 1	Char	nnel 1	
number		Crian	iriei i	Criai	iriei i	Criai	iriei i	
PCCPCH_Ec/lor	dB	-;	3	-	-3		3	
SCH_Ec/lor	dB	-!	-9		-9		9	
SCH_t _{offset}		0	5	0	5	0	5	
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12		
loc	dBm / 7.68 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7	
Îor/loc	dB	5	5	7	3	3	3	
Io, Note 1	dBm / 7.68 MHz	-69		-50		-94		
Propagation condition		AWGN		AWGN		AWGN		

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.10.1.2 Inter frequency test parameters

In this case both cells are on different frequencies. The SFN-CFN observed time difference accuracy requirements in the inter-frequency case are tested by using test parameters in Table A.9.36.

Table A.9.36: SFN-CFN observed time difference Inter frequency tests parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Test 3		
Parameter	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
DL timeslot number		0	2	0	2	0	2	
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	
PCCPCH_Ec/lor	dB	-:	3	-:	-3		3	
SCH_Ec/lor	dB	-9		-9		-9		
SCH_t _{offset}		0	5	0	5	0	5	
OCNS_Ec/lor	dB	-3,	12	-3,12		-3,12		
loc	dBm / 7.68 MHz	-75.2	-75.2	-57.8	-54.7	-98.7	-98.7	
Îor/loc	dB	5	5	7	3	3	3	
Io, Note 1	dBm / 7.68 MHz	-69		-50		-94		
Propagation condition		AWGN		AWGN		AWGN		

NOTE 1: lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

A.9.3.10.2 Test Requirements

The SFN-CFN observed time difference measurement accuracy shall meet the requirements in section 9.1.1.10.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.3.11 UE transmitted power

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.1.11 exists.

Annex B (informative): Change History

Table B.1: Change History

TSG	Doc	CR	R	Title	Cat	Curr	New	Work Item
RP-31				Release 7 created following decision at RAN #31		6.6.0	7.0.0	
RP-32	RP-060313	0363		Intra frequency mobility requirement during a MBMS session	В	7.0.0	7.1.0	MBMS-RAN- RF-TDD
RP-32	RP-060311	0364		7.68 Mcps Idle Mode Cell Selection & Reselection	В	7.0.0	7.1.0	VHCRTDD-RF
	RP-060311			7.68 Mcps UTRAN Connected Mode Mobility	В	7.0.0		VHCRTDD-RF
	RP-060311			7.68 Mcps RRC Connection Control & Timing	В	7.0.0	7.1.0	VHCRTDD-RF
111 02	111 000011	0000		Characteristics		7.0.0	7.1.0	VIIORIDD IXI
RP-32	RP-060311	0367		7.68 Mcps UE Measurement Procedures	В	7.0.0	710	VHCRTDD-RF
	RP-060311			7.68 Mcps Measurements Performance	В	7.0.0	7.1.0	VHCRTDD-RF
111 02	111 000011	0000		Requirements		7.0.0	7.1.0	VIIORIDD IXI
RP-32	RP-060311	0369		7.68 Mcps Test Cases for RRM	В	7.0.0	7.1.0	VHCRTDD-RF
	RP-060313			MBMS Reception during Inter-frequency	В	7.0.0		MBMS-RAN-
111 -52	111 -000313	037 1		Measurements (3.84 Mcps)		7.0.0	7.1.0	RF-TDD
DD-32	RP-060314	0372		3.84 Mcps RX Timing Deviation range update	С	7.0.0	7.1.0	TEI7
	RP-060523		1	Correction of GSM measurement test case for	A	7.1.0	7.2.0	TEI6
			1	1.28Mcps TDD	A			
RP-33	RP-060523	0376		Removal of square brackets from requirement for	Α	7.1.0	7.2.0	TEI6
				Event Triggering and Reporting Criteria CELL_FACH state				
RP-34	RP-060808	0378		Correction to A.8.4.1 for 1.28Mcps TDD	Α	7.2.0	7.3.0	TEI4
	RP-070081			Correction to UE measurement reporting	Α	7.3.0	7.4.0	TEI6
				requirements in Annex 8				
RP-36	RP-070376	0381		MBSFN Cluster Selection/Reselection	В	7.4.0	7.5.0	MBMSE-
					_			RANPhysTDD
RP-36	RP-070377	0382		Requirements for non-HSDPA and non-EDCH	В	7.4.0	7.5.0	LCRTDD-
				transmitter carrier power	_			EDCH-RF
RP-37	RP-070733	0388	1	Introduction of multi-frequency operation for LCR	F	7.5.0	7.6.0	TEI7
DD 07	DD 070050	2005		TDD		7.5.0	7.0.0	TEIO
RP-37	RP-070652	0385		Correction to HS-SICH reception quality for	Α	7.5.0	7.6.0	TEI6
DD 27	DD 070054	0000		1.28Mcps TDD	F	7.5.0	7.6.0	TEI7
RP-37	RP-070651	0386		Inter-frequency measurement in MBMS for 7.68 Mcps TDD Option.	F	7.5.0	7.6.0	IEI/
DD 20	RP-070935	0389		Requirements for the UE transmission power	F	7.6.0	7.7.0	LCRTDD-
111 -30	111-070933	0309		headroom (UPH)	'	7.0.0	7.7.0	EDCH-RF
RP-38	RP-070935	0390		MBSFN Cluster Selection/Reselection	В	7.6.0	7.7.0	MBMSE-
111 -30	107 0000	0000		WIDO IN Cluster defection/reservation		7.0.0	7.7.0	RANPhysLCRT
								DD
RP-41	RP-080637	392		Updates of TS 25.123 to include UTRA TDD to E-	F	7.7.0	8.0.0	LTE-RF
				UTRA mobility related requirements				
RP-42	RP-080902	400	1	Modification for P-CCPCH RSCP intra frequency	Α	8.0.0	8.1.0	TEI4
				relative requirement				
RP-42	RP-080903	405	1	Correction on Intra/Inter-frequency cell power level	Α	8.0.0	8.1.0	TEI4
				for UE to correctly evaluate a better ranked cell in				
				idle state and power settings for related test cases				
RP-42	RP-080901	406		Modyfing the inter frequency monitoring ability of UE	Α	8.0.0	8.1.0	TEI7
				in TDD 1.28Mcps				
RP-42	RP-080946	408		Update of the regirement for cell re-selection in	В	8.0.0	8.1.0	RANimp-
				enhanced CELL_FACH state in 1.28Mcps TDD				EnhState1.28T
				·				DD
RP-42	RP-080944	395		Some clarifications on TD-SCDMA/E-UTRA	F	8.0.0	8.1.0	TEI8
		<u></u>		interworking in CELL_FACH state				
RP-42	RP-080944	393		RRC re-establishment requirements	F	8.0.0	8.1.0	
RP-42	RP-080938		3	Correction of UTRAN TDD to E-UTRAN TDD	F	8.0.0		LTE-RF
				mobility requirements				
RP-43	RP-090189	410		UTRA TDD - E-UTRA TDD cell reselection: E-	F	8.1.0	8.2.0	LTE-RF
				UTRA is of lower priority				
RP-43	RP-090189	411		UTRA TDD – E-UTRA TDD cell reselection: E-	F	8.1.0	8.2.0	LTE-RF
				UTRA is of higher priority				

373

RP-43 RP-090196	409	Correction of UE transmitted Power absolute	F	8.1.0	8.2.0	TEI8
		accuracy requirements				

History

	Document history						
V8.1.0	January 2009	Publication					
V8.2.0	March 2009	Publication					