Universal Mobile Telecommunications System (UMTS);
LTE;
5G;
Unstructured Supplementary Service Data (USSD)
using IP Multimedia (IM) Core Network (CN) subsystem IMS;
Stage 3
(3GPP TS 24.390 version 15.1.0 Release 15)
Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can", and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
C.2.2.1 3GPP PS data off 43
C.2.2 Procedures at the USSI AS 43
C.2.1.1.1 General 42
C.2.1.1 3GPP PS data off 42
C.2.1 Procedures at the UE 42
C.2 Application usage of SIP 42
C.1 Scope 42
Annex C (normative): IP-Connectivity Access Network specific concepts when using GPRS
A.1 UE sending USSD request, no further information required ... 26
A.2 UE sending USSD request, further information required from network... 28
A.3 USSI AS sending USSD request, no further information required ... 32
A.4 USSI AS sending USSD request, further information required from network 36
Annex A (informative): Signalling flows ... 26
A.1 UE sending USSD request, no further information required ... 26
A.2 UE sending USSD request, further information required from network... 28
A.3 USSI AS sending USSD request, no further information required ... 32
A.4 USSI AS sending USSD request, further information required from network 36
Annex B (normative): Media feature tags defined within the current document 41
B.1 General 41
B.2 Definition of media feature tag g.3gpp.nw-init-ussi ... 41
Annex C (normative): IP-Connectivity Access Network specific concepts when using GPRS
to access IM CN subsystem .. 42
C.1 Scope 42
C.2 Application usage of SIP ... 42
C.2.1 Procedures at the UE ... 42
C.2.1.1 3GPP PS data off 42
C.2.1.1.1 General 42
C.2.1.1.2 Enforcement 42
C.2.2 Procedures at the USSI AS ... 43
C.2.2.1 3GPP PS data off 43
Annex D (normative): IP-Connectivity Access Network specific concepts when using EPS to
access IM CN subsystem .. 44
D.1 Scope ... 44
D.2 Application usage of SIP .. 44
D.2.1 Procedures at the UE .. 44
D.2.1.1 3GPP PS data off .. 44
D.2.1.1.1 General ... 44
D.2.1.1.2 Enforcement ... 44
D.2.2 Procedures at the USSI AS .. 44
D.2.2.1 3GPP PS data off .. 44

Annex E (normative): IP-Connectivity Access Network specific concepts when using 5GS to access IM CN subsystem .. 45

E.1 Scope ... 45
E.2 Application usage of SIP .. 45
E.2.1 Procedures at the UE .. 45
E.2.1.1 3GPP PS data off .. 45
E.2.1.1.1 General ... 45
E.2.1.1.2 Enforcement ... 45
E.2.2 Procedures at the USSI AS .. 45
E.2.2.1 3GPP PS data off .. 45

Annex F (informative): Change history .. 46
History .. 48
Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:
 1 presented to TSG for information;
 2 presented to TSG for approval;
 3 or greater indicates TSG approved document under change control.

Y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document describes the procedures for using Unstructured Supplementary Service Data (USSD) operations for mobile initiated MMI mode over IP Multimedia Core Network Subsystem (IMS) and for network initiated MMI mode over IP Multimedia Core Network Subsystem (IMS). MMI mode is for the transparent transport of MMI strings entered by the user to the Application Servers (AS) and for the transparent transport of text strings back to the User Equipment (UE) to be displayed for user information. Support of either mode of USSD service is optional and only applicable for an operator's Public Land Mobile Network (PLMN).

The current version of the document describes procedures for USSD operation over IMS where the USSD application in the network resides on an AS. Signalling from the AS to other core network functional entities is left out of scope.

The present document is applicable to UE and AS which are intended to support USSD operations over IMS in mobile initiated MMI mode and network initiated MMI mode.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[3] 3GPP TS 24.090: "Unstructured Supplementary Service Data (USSD); Stage 3".
[4] 3GPP2 X.S0065-0 v1.0 (April 2012): "Unstructured Supplementary Service Data (USSD) Support".
[5] 3GPP TS 24.080: "Mobile radio interface layer 3 supplementary services specification; Formats and coding".
[6] 3GPP TS 24.229: "IP multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3".
[8] 3GPP TS 24.238: "Session Initiation Protocol (SIP) based user configuration; Stage 3".
[9] IETF RFC 4288 (December 2005): "Media Type Specifications and Registration Procedures".
[10] IETF RFC 3023: "XML Media Types".
[14] 3GPP TS 23.221: "Architectural requirements".
3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

For the purposes of the present document, the following terms and definitions given in 3GPP TS 22.011 [17] apply:

- 3GPP PS data off
- 3GPP PS data off exempt service

For the purposes of the present document, the following terms and definitions given in 3GPP TS 24.229 [6] apply:

- 3GPP PS data off status

For the purposes of the present document, the following terms and definitions given in 3GPP TS 23.122 [19] apply:

- Equivalent Home (EHPLMN)
- Home PLMN (HPLMN)
- Visited PLMN (VPLMN)

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

- AS Application Server
- IMS IP Multimedia core network Subsystem
- PS Packet Switched
- UE User Equipment
- USSD Unstructured Supplementary Service Data
- USSII Unstructured Supplementary Service Data over IM CN subsystem

4 USSD using IMS

4.1 Introduction

This service provides the support for UE initiated MMI-mode USSD operations and network initiated MMI-mode USSD operations, which enables the transparent transport of MMI strings entered by the user to the IM core network and enables the transparent transport of text strings from the IM core network which are displayed by the UE for user information.

Support of the UE initiated MMI-mode USSD operations, the network initiated MMI-mode USSD operations or both is optional.

The network initiated USSD can be:

- a single network initiated USSD notification;
- a single network initiated USSD request;
- a dialog consisting of multiple network initiated USSD notifications only;
- a dialog consisting of multiple network initiated USSD requests only; or
- a dialog consisting of one or more network initiated USSD notifications and one or more network initiated
 USSD requests in any order.

4.2 Description

There is no service description.

4.3 Operational requirements

There are no operational requirements.

4.4 Coding requirements

There are no coding requirements over and above those specified in 3GPP TS 24.229[6].

4.5 Signalling requirements

4.5.1 General

In the IM CN subsystem USSD messages can be transported in SIP INFO requests, SIP INVITE requests and SIP BYE
requests, using a application/vnd.3gpp.ussd+xml MIME body.

Figure 4.1, figure 4.2, figure 4.3 and figure 4.4 give an overview of the supported USSD operations:

<table>
<thead>
<tr>
<th>UE</th>
<th>USSI AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVITE</td>
<td>language, ussd-String</td>
</tr>
<tr>
<td></td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>BYE</td>
</tr>
<tr>
<td></td>
<td>language, ussd-String</td>
</tr>
<tr>
<td></td>
<td>BYE</td>
</tr>
<tr>
<td></td>
<td>Error</td>
</tr>
</tbody>
</table>

Figure 4.1: UE initiated USSD operation, network does not request further information
UE

INVITE

language, ussd-String

INFO

language, ussd-String

INFO

language, ussd-String

INFO

Error

BYE

BYE

Error

Figure 4.2: UE initiated USSD operation, network requests further information

UE

INVITE

language, UnstructuredSS-Request, ussd-String, alertingPattern

INFO

language, UnstructuredSS-Request, ussd-String

INFO

Error

BYE

Figure 4.3: Single network initiated USSD request
UE

INVITE

<---
language, UnstructuredSS-Request, ussd-String, alertingPattern

INFO

--->
language, UnstructuredSS-Request, ussd-String

INFO

--->
Error

INFO

--->
language, UnstructuredSS-Request, ussd-String, alertingPattern

INFO

--->
language, UnstructuredSS-Request, ussd-String

INFO

--->
Error

BYE

--->

Figure 4.4: Multiple Network initiated USSD request

NOTE: The second USSD operation can also be an USSD notification. Only one additional USSD request is shown.

INVITE

<---
language, UnstructuredSS-Notification, ussd-String, alertingPattern

INFO

UnstructuredSS-Notification

INFO

--->
Error

INFO

--->
BYE

--->

Figure 4.5: Single network initiated USSD notification
NOTE: The second USSD operation can also be an USSD request. Only one additional USSD notification is shown.

4.5.2 SDP Offer/Answer (user initiated)

When a UE sends an initial INVITE request, in order to establish a USSD session, it shall include an SDP offer with one media description, according to subclause 6.1.2 of 3GPP TS 24.229 [6]. The UE shall add a zero port number value to the media descriptions of the SDP offer, in order to inform network entities that media resources are not requested for the session.

A pre-existing network initiated USSD session cannot be used to carry a user initiated USSD session.

When the USSI AS sends an SDP answer, it shall also add a zero port number value to any media description received in the associated SDP offer.

4.5.2A SDP offer/answer (network initiated)

When a USSI AS sends an initial INVITE request, in order to establish a USSD session, it shall include an SDP offer with one media description, according to subclause 6.6.1 of 3GPP TS 24.229 [6], but also in accordance with the UE procedures in subclause 6.1.2 of 3GPP TS 24.229 [6]. The USSI AS shall add a zero port number value to the media descriptions of the SDP offer, in order to inform the user that media resources are not requested for the session.

A pre-existing user initiated USSD session cannot be used to carry a network initiated USSD session.
When the UE sends an SDP answer, it shall also add a zero port number value to any media description received in the associated SDP offer.

4.5.3 Activation/deactivation

If:

1) the domain selection for originating voice calls specified in 3GPP TS 23.221 determines that the UE uses the IMS to originate voice calls; and

2) the UE is not configured with HPLMN operator preference for invocation of originating USSD requests using CS domain (e.g. see 3GPP TS 24.391); or if the UE does not support the CS domain, then the UE can invoke the procedures in subclause 4.5.4, otherwise the UE shall not invoke the procedures in subclause 4.5.4.

If the network initiated USSD over IMS is supported by the UE, then when the UE registers to IM CN subsystem the UE shall include a g.3gpp.nw-init-ussi media feature tag in the Contact header field.

NOTE: The g.3gpp.nw-init-ussi media feature tag is specified in annex B.2.

For this version of this document, network domain selection procedures for network initiated USSD requests is outside the scope.

4.5.4 Invocation and operation (user initiated)

4.5.4.1 Actions at the originating UA

NOTE 1: The Content-Language SIP header field is not used to determine the language of the USSD string. Only the <language> XML element is used.

In order to send the initial USSD message, the UE shall send an initial INVITE request, according to 3GPP TS 24.229. The UE shall populate the request as follows:

1) Request-URI set to a SIP URI with user part including the USSD string and a "phone-context" parameter set to the home network domain name used in REGISTER request according to TS 24.229, a host part set to the home network domain name used in REGISTER request as defined in TS 24.229 a "user" URI parameter set to value "dialstring" as specified in RFC 4967;

2) Recv-Info header field containing the g.3gpp.ussd info-package name;

3) Accept header field containing the application/vnd.3gpp.ussd+xml, application/sdp and multipart/mixed MIME types;

4) the Content-Type header, which shall contain "multipart/mixed";

5) SDP offer as described in subclause 4.5.2; and

6) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3 with a Content-Disposition header field set to "render" and with "handling" header field parameter set to "optional". The XML document shall contain a single <ussd-string> element and may contain a <language> element.

When receiving an INFO request with Info-Package header field containing the g.3gpp.ussd info-package and containing application/vnd.3gpp.ussd+xml MIME body associated with the info package according to IETF RFC 6086, the UE shall, in addition to the procedures specified in 3GPP TS 24.229:

1) if the UE is able to process the received information, send an INFO request within the dialog, according to 3GPP TS 24.229. The UE shall populate the INFO request as follows:

 a) Info-Package header field containing the g.3gpp.ussd info-package name; and

 b) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 containing the user's response in a <ussd-string> element and optionally a <language> element; and
2) if the UE is not able to process the received information or rejects the received information, send an INFO request within the dialog, according to 3GPP TS 24.229 [6]. The UE shall populate the INFO request as follows:
 a) Info-Package header field containing the g.3gpp.ussd info-package name; and
 b) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2] containing an <error-code> element.

When receiving a BYE request containing application/vnd.3gpp.ussd+xml MIME body, the UE shall, in addition to the procedures specified in 3GPP TS 24.229 [6], handle the application/vnd.3gpp.ussd+xml MIME body.

NOTE 2: According to 3GPP TS 24.229 [6], the UE can receive a BYE request without the application/vnd.3gpp.ussd+xml MIME body and in this case the dialog is terminated immediately.

When receiving a 404 (Not Found) response to INVITE request, the UE shall determine that an attempt to deliver the USSD request using IMS fails due to missing network support.

NOTE 3: 3GPP TS 23.221 [14] gives requirements related to failure of the USSD request using IMS due to missing network support.

4.5.4.2 Actions at the USSI AS

In addition to the procedures specified in this subclause, the USSI AS shall support the procedures specified in 3GPP TS 24.229 [6] for an AS.

NOTE 1: The Content-Language SIP header field is not used to determine the language of the USSD string. Only the <language> XML element is used.

Upon receiving an initial INVITE request with Request-URI containing the SIP URI including the USSD string and a "user" URI parameter set to value "dialstring" as specified in RFC 4967 [7], if the application/vnd.3gpp.ussd+xml MIME body contained in the request is accepted by the USSI AS, the USSI AS shall:

1) pass the USSD data received in the body of the SIP INVITE request to the USSD application handling and wait for the response of the application;

NOTE 2: How the USSD data are processed at the USSI AS is outside the scope of this specification. The USSI AS can handle the USSD dialogs or forward the USSD requests and responses to/from a legacy USSD server.

NOTE 3: The USSD string in the request-URI is not passed to the USSD application handling. In case of discrepancy between this string and the <ussd-string> element contained in the MIME body, the behaviour of the USSI AS is determined by the <ussd-string> in the MIME body.

2) send 200 (OK) response to the request following the procedures specified for AS acting as a terminating UA in 3GPP TS 24.229 [6]. The USSI AS shall populate the 200 (OK) response to the request as follows:
 a) Recv-Info header field containing the g.3gpp.ussd info-package name;
 b) Accept header field containing the application/vnd.3gpp.ussd+xml, application/sdp and multipart/mixed MIME types; and
 c) SDP answer as described in subclause 4.5.2.

Upon receiving an ACK request associated with the INVITE request, the USSI AS shall:

1) if the network requests further information in order to perform the USSD operation, send an INFO request within the dialog created by the INVITE request. The USSI AS shall populate the INFO request as follows:
 a) Info-Package header field containing the g.3gpp.ussd info-package name; and
 b) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2] including a <ussd-string> element and a <language> element;

2) if the network successfully performed the USSD information and does not need any further information, send a BYE request in order to terminate the dialog. The USSI AS shall populate the BYE request with application/vnd.3gpp.ussd+xml MIME body, as described in subclause 5.1.3 including a <ussd-string> element and a <language> element; and
3) if the network informs the UE that the network is unable to process the USSD request or the network informs the UE that the network rejects the USSD request, send a BYE request in order to terminate the dialog. The USSI AS shall populate the BYE request with application/vnd.3gpp.ussd+xml MIME body, as described in subclause 5.1.3, including a <error-code> element.

Upon receiving a SIP INFO request with Info-Package header field containing the g.3gpp.ussd info-package and a application/vnd.3gpp.ussd+xml MIME body associated with the info package according to IETF RFC 6086 [2], the USSI AS shall handle the SIP INFO request following the procedures specified for AS acting as a terminating UA in 3GPP TS 24.229 [6] and generate a SIP response as described in 3GPP TS 24.229 [6]. If the SIP response is a 2xx response, the USSI AS shall:

1) pass the USSD data received in the body of the SIP INFO request to the USSD application handling and wait for the response of the application;

NOTE 4: How the USSD data are processed at the USSI AS is outside the scope of this specification. The USSI AS can handle the USSD dialogs or forward the USSD requests and responses to/from a legacy USSD server.

2) if the network requests further information in order to perform the USSD operation, send an INFO request within the dialog. The USSI AS shall populate the INFO request as follows:
 a) Info-Package header field containing the g.3gpp.ussd info-package name; and
 b) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2] including a <ussd-string> element and a <language> element;

3) if the network successfully performed the USSD information and does not need any further information, send a BYE request in order to terminate the dialog. The USSI AS shall populate the BYE request with application/vnd.3gpp.ussd+xml MIME body, as described in subclause 5.1.3 including a <ussd-string> element and a <language> element; and

4) if the network informs the UE that the network is unable to process the USSD request, or the network informs the UE that the network rejects the USSD request, send a BYE request in order to terminate the dialog. The USSI AS shall populate the BYE request with application/vnd.3gpp.ussd+xml MIME body, as described in subclause 5.1.3, including, a <error-code> element.

4.5.5 Invocation and operation (network initiated USSD request and network initiated USSD notification)

4.5.5.1 Actions at the originating USSI AS

NOTE 1: The Content-Language SIP header field is not used to determine the language of the USSD string. Only the <language> XML element is used.

In order to send the initial USSD message, the USSI AS shall send an initial INVITE request, according to 3GPP TS 24.229 [6]. The USSI AS shall populate the request as follows:

NOTE 2: Any received g.3gpp.nw-init-ussi media feature tag can be used for the USSI AS to determine whether to send the USSD message towards the UE.

1) Request-URI set to the an identity of the target UE;
2) Recv-Info header field containing the g.3gpp.ussd info-package name;
3) Accept header field containing the application/vnd.3gpp.ussd+xml, application/sdp and multipart/mixed MIME types;
4) the Content-Type header, which shall contain "multipart/mixed";
5) SDP offer as described in subclause 4.5.2A; and
6) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3. The XML document:
 - shall contain a single <ussd-string> element;
 - shall contain an <UnstructuredSS-Request> element or an <UnstructuredSS-Notify> element;
The USSI AS should not include an Alert-Info header field into the initial INVITE request.

NOTE 3: Information provided in the Alert-Info header field can be in conflict with the content of the <alertingPattern> element of the application/vnd.3gpp.ussd+xml MIME body of the initial INVITE request.

When receiving an INFO request with Info-Package header field containing the g.3gpp.ussd info-package and containing application/vnd.3gpp.ussd+xml MIME body associated with the info package according to IETF RFC 6086 [2], if the application/vnd.3gpp.ussd+xml MIME body contains:
- the <UnstructuredSS-Request> element; or
- the <UnstructuredSS-Notify> element;
the USSI AS shall, in addition to the procedures specified in 3GPP TS 24.229 [6]:

1) if the USSI AS is able to process the received information and needs to send further information, send an INFO request within the dialog, according to 3GPP TS 24.229 [6]. The USSI AS shall populate the INFO request as follows:
 a) Info-Package header field containing the g.3gpp.ussd info-package name; and
 b) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2], containing:
 - the further information to be sent to the US in a <ussd-string> element;
 - optionally a <language> element; and
 - optionally an <alertingPattern> element.

If the USSI AS considers the USSD procedure complete, then the USSI AS shall generate a BYE request.

When receiving a 415 (Unsupported Media Type) response to the initial INVITE request, the USSI AS shall determine that an attempt to deliver the USSD request using IMS fails due to missing UE support.

4.5.5.2 Actions at the UE

In addition to the procedures specified in this subclause, the UE shall support the procedures specified in 3GPP TS 24.229 [6] for an UE.

NOTE 1: The Content-Language SIP header field is not used to determine the language of the USSD string. Only the <language> XML element is used.

Upon receiving an initial INVITE request with the application/vnd.3gpp.ussd+xml MIME body, if the body contains:
- the <UnstructuredSS-Request> element; or
- the <UnstructuredSS-Notify> element;
and if the request is accepted by the UE, the UE shall:

1) pass the USSD data received in the body of the SIP INVITE request to the USSD application handling and wait for the response of the application; and
2) send 200 (OK) response to the request following the procedures specified for AS acting as a terminating UA in 3GPP TS 24.229 [6]. The UE shall populate the 200 (OK) response to the request as follows:
 a) Recv-Info header field containing the g.3gpp.ussd info-package name;
b) Accept header field containing the application/vnd.3gpp.ussd+xml, application/sdp and multipart/mixed MIME types; and

c) SDP answer as described in subclause 4.5.2A.

Upon receiving an ACK request associated with the INVITE request, the UE shall:

1) if the application/vnd.3gpp.ussd+xml MIME body of the INVITE request contains the <UnstructuredSS-Request> element:

 a) when the application in the UE provides further information in order to perform the USSD operation, send an INFO request within the dialog created by the INVITE request. The UE shall populate the INFO request as follows:

 A) Info-Package header field containing the g.3gpp.ussd info-package name; and

 B) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2] including a <ussd-string> element, a <UnstructuredSS-Request> element, and a <language> element; and

 b) if the UE informs the network that the UE is unable to process the USSD request or the UE informs the network that the UE rejects the USSD request, send an INFO request. The UE shall populate the INFO request as follows:

 A) Info-Package header field containing the g.3gpp.ussd info-package name; and

 B) application/vnd.3gpp.ussd+xml MIME body, as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2], including a <error-code> element and a <UnstructuredSS-Request> element; and

2) if the application/vnd.3gpp.ussd+xml MIME body of the INVITE request contains the <UnstructuredSS-Notify> element:

 a) if the UE acknowledges the USSD operation, send an INFO request within the dialog created by the INVITE request. The UE shall populate the INFO request as follows:

 A) Info-Package header field containing the g.3gpp.ussd info-package name; and

 B) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2] including a <UnstructuredSS-Notify> element; and

 b) if the UE informs the network that the UE is unable to process the USSD request or the UE informs the network that the UE rejects the USSD request, send an INFO request. The UE shall populate the INFO request as follows:

 A) Info-Package header field containing the g.3gpp.ussd info-package name; and

 B) application/vnd.3gpp.ussd+xml MIME body, as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2], including a <error-code> element and a <UnstructuredSS-Notify> element.

Upon receiving a SIP INFO request with Info-Package header field containing the g.3gpp.ussd info-package and a application/vnd.3gpp.ussd+xml MIME body associated with the info package according to IETF RFC 6086 [2], if the MIME body contains:

- an <UnstructuredSS-Request> element; or

- an <UnstructuredSS-Notify> element;

the UE shall handle the SIP INFO request following the procedures specified for a terminating UE in 3GPP TS 24.229 [6] and generate a SIP response as described in 3GPP TS 24.229 [6]. If the SIP response is a 2xx response, the UE shall:

1) pass the USSD data received in the body of the SIP INFO request to the USSD application handling and wait for the response of the application;
2) if the application/vnd.3gpp.ussd+xml MIME body of the INFO request contains the <UnstructuredSS-Request> element:

 a) when the application in the UE provides further information in order to perform the USSD operation, send an INFO request within the dialog. The UE shall populate the INFO request as follows:

 A) Info-Package header field containing the g.3gpp.ussd info-package name; and

 B) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2] including a <ussd-string> element, a <UnstructuredSS-Request> element and optionally a <language> element; and

 b) if the UE informs the network that the UE is unable to process the USSD request, or the UE informs the network that the UE rejects the USSD request, send a INFO request within the dialog. The UE shall populate the INFO request as follows:

 A) Info-Package header field containing the g.3gpp.ussd info-package name; and

 B) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2], including an <error-code> element; and

3) if the application/vnd.3gpp.ussd+xml MIME body of the INFO request contains the <UnstructuredSS-Notify> element:

 a) if the UE acknowledges the USSD operation, send an INFO request within the dialog. The UE shall populate the INFO request as follows:

 A) Info-Package header field containing the g.3gpp.ussd info-package name; and

 B) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2] including a <UnstructuredSS-Notify> element; and

 b) if the UE informs the network that the UE is unable to process the USSD request, or the UE informs the network that the UE rejects the USSD request, send a INFO request within the dialog. The UE shall populate the INFO request as follows:

 A) Info-Package header field containing the g.3gpp.ussd info-package name; and

 B) application/vnd.3gpp.ussd+xml MIME body as described in subclause 5.1.3, associated with the info package according to IETF RFC 6086 [2], including an <error-code> element and a <UnstructuredSS-Notify> element.

If:

- the UE receives a USSD operation in parallel to any call independent supplementary service transaction;

- the UE receives a USSD operation while another USSD transaction (network or mobile initiated) is in progress; or

- the UE receives a USSD operation when the UE is in a state where the MMI required is not possible (e.g. during dialling);

the UE shall inform the network that the UE is unable to process the USSD request according to the preceding procedures and shall set the <error-code> element to "USSD-busy".

The UE can terminate the dialog at any time in accordance with the procedures from 3GPP TS 24.229 [6].

4.6 Interaction with other services

4.6.1 Originating Identification Presentation (OIP)

There are no interaction requirements with OIP.
4.6.2 Originating Identification Restriction (OIR)
There are no interaction requirements with OIR.

4.6.3 Terminating Identification Presentation (TIP)
There are no interaction requirements with TIP.

4.6.4 Terminating Identification Restriction (TIR)
There are no interaction requirements with TIR.

4.6.5 Communication Diversion (CDIV)
There are no interaction requirements with CDIV. CDIV is not applicable for USSI.

4.6.6 Communication Hold (HOLD)
There are no interaction requirements with HOLD.

4.6.7 Communication Barring (CB)
There are no interaction requirements with CB. CB is not applicable for USSI.

4.6.8 Message Waiting Indication (MWI)
There are no interaction requirements with MWI.

4.6.9 Conference (CONF)
There are no interaction requirements with CONF.

4.6.10 Explicit Communication Transfer (ECT)
There are no interaction requirements with ECT.

4.6.11 Advice Of Charge (AOC)
There are no interaction requirements with AOC.

4.6.12 Closed User Groups (CUG)
There are no interaction requirements with CUG.

4.6.13 Three-Party (3PTY)
There are no interaction requirements with CUG.

4.6.14 Flexible Alerting (FA)
There are no interaction requirements with FA.

4.6.15 Communication Waiting (CW)
There are no interaction requirements with CW.

4.6.16 Completion of Communications to Busy Subscriber (CCBS)
There are no interaction requirements with CCBS.
4.6.17 Completion of Communications by No Reply (CCNR)

There are no interaction requirements with CCNR.

4.6.18 Customized Alerting Tones (CAT)

There are no interaction requirements with CAT.

4.6.19 Customized Ringing Signal (CRS)

There are no interaction requirements with CRS.

4.6.20 Personal Network Management (PNM)

There are no interaction requirements with PNM.

4.6.21 Malicious Communication Identification (MCID)

There are no interaction requirements with MCID.

4.6.22 SIP based user configuration

Based on filter criteria, an initial INVITE request including a dialstring and an optional XML body as described in subclause 4.5.1 can be forwarded either to an USSI AS supporting SIP based user configuration as specified in 3GPP TS 24.238 [8] or to an AS supporting USSI as specified in this specification.

An USSI AS and SIP based user configuration as specified in 3GPP TS 24.238 [8], shall handle an initial INVITE request as described in subclause 4.5.1 according to this specification.

NOTE: If an AS supports only SIP based user configuration as specified in 3GPP TS 24.238 [8], an initial INVITE request as described in subclause 4.5.1 is handled according to 3GPP TS 24.238 [8].

4.7 Service configuration

User self configuration is not applicable to USSD using IMS.

5 Extensions within the present document

5.1 INFO Package for transport of USSD information

5.1.1 Scope

This subclause contains the information required for the IANA registration of info package g.3gpp.ussd in accordance with IETF RFC 6086 [2].

5.1.2 g.3gpp.ussd info package

5.1.2.1 Overall description

3GPP TS 24.390 describes the procedures for using Unstructured Supplementary Service Data (USSD) (3GPP TS 24.090 [3] and 3GPP2 X. S0065 [4]) operations in the IP Multimedia Core Network Subsystem (IMS). SIP INFO requests are used to carry information associated with USSD, using the g.3gpp.ussd info package.

Every SIP INFO request associated with the g.3gpp.ussd info package carries a single application/vnd.3gpp.ussd+xml MIME body associated with the info package according to IETF RFC 6086 [2].

NOTE: According to the procedures in IETF RFC 6086 [2], the SIP INFO response will not contain a MIME body. A message associated with a USSD operation is always sent in SIP INFO request.
In a given dialog, when a UA sends an INFO request associated with the g.3gpp.ussd info package, then until receiving an INFO request associated with the g.3gpp.ussd info package, the UA does not send another INFO request associated with the g.3gpp.ussd info package.

5.1.2.2 Applicability

A number of solutions were discussed for the transportation of USSD information between the UE and the USSD AS. The solutions were:

1) use of subscription to the USSD event package as specified in IETF RFC 4575;
2) use of the session related methods (e.g. SIP 200 (OK) response to the SIP INVITE request);
3) use of the SIP MESSAGE method;
4) use of media plane mechanisms; and
5) use of the SIP INFO method as described in IETF RFC 6086, by defining a new info package.

Furthermore, each of the solutions 1), 2), 3), 4) and 5) were evaluated.

The use of a USSD event package was discounted as the usage of subscribe/notify mechanism for two-way communication is not appropriate since subscribe/notify mechanism is to provide one-way communication consisting of notifications from notifier to subscriber indicating that certain events in notifier have occurred.

The use of session related methods for USSD messages other than the initial USSD message and last USSD message was discounted as it was concluded that usage of UPDATE method for transport of USSD message would have side effect of impacting dialog configuration (e.g. possibly changing the remote contact URI).

Use of the SIP MESSAGE method was discounted since USSD is dialog based and all information exchange has to be part of the related session.

Use of the media plane mechanisms was discounted because the amount of USSD messages in a dialog is normally very small (normally only 2) and overhead caused by user plane setup (e.g. if MSRP is used as transport) would be disproportionately big in comparison to the actual USSD message size.

Based on the above analyses, the SIP INFO method was chosen to transport the USSD information between the UE and the USSD AS.

5.1.2.3 Info package name

g.3gpp.ussd

5.1.2.4 Info package parameters

None defined.

5.1.2.5 SIP options tags

None defined.

5.1.2.6 INFO message body parts

The MIME type of the message body carrying the information associated with USSD is application/vnd.3gpp.ussd+xml. application/vnd.3gpp.ussd+xml MIME type is defined in 3GPP TS 24.390.

When associated with the g.3gpp.ussd info package, the Content-Disposition value of the message body carrying the information associated with USSD is "info-package".

5.1.2.7 Info package usage restrictions

None defined.

5.1.2.8 Rate of INFO Requests

No maximum rate or minimum rate is defined for sending INFO requests associated with the g.3gpp.ussd info package.
For most USSD usages, normally zero, one, or a few, SIP INFO requests are generated in the SIP session by each participating user agent.

5.1.2.9 Info package security considerations

The security is based on the generic security mechanism provided for the underlying SIP signalling. No additional security mechanism is defined.

5.1.2.10 Implementation details and examples

UAC generation of INFO requests: See 3GPP TS 24.390: "Unstructured Supplementary Service Data (USSD) using IP Multimedia (IM) Core Network (CN) subsystem IMS; Stage 3”

Examples: See 3GPP TS 24.390: "Unstructured Supplementary Service Data (USSD) using IP Multimedia (IM) Core Network (CN) subsystem IMS; Stage 3”

5.1.3 application/vnd.3gpp.ussd+xml MIME type

5.1.3.1 Scope

This subclause contains the information required for the IANA registration of the application/vnd.3gpp.ussd+xml MIME type in accordance with IANA registration procedures.

5.1.3.2 application/vnd.3gpp.ussd+xml

The MIME type is used to carry USSD related information between the UE and the network. It is coded as an XML document and contains one or more of the following information:

- USSD language
- USSD string
- USSD error code as defined in subclause 5.1.3.3 of this specification
- alerting pattern

NOTE: The information elements cannot be present twice in the XML body.

An instance of the XML document is shown below:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<ussd-data>
  <language>en</language>
  <ussd-string>*135#</ussd-string>
</ussd-data>
```

5.1.3.3 Data semantics

<language> is coded as defined in IETF RFC 5646 [12] and shall contain exactly one subtag.

<ussd-string> is coded as a string.

<error-code> is an integer. The following values are defined. If the received value is not listed below, it must be treated as 1.

1 error - unspecified
2 language/alphabet not supported
3 unexpected data value
4 USSD-busy

<anyExt> contains optional extension elements.

<UnstructuredSS-Request> element indicates the network initiated unstructured supplementary service data request.
<UnstructuredSS-Notify> element indicates the network initiated unstructured supplementary service data notify.

>alertingPattern> element contains alerting pattern coded as defined for AlertingPattern in 3GPP TS 29.002 [15]. This element is used by the USSD application in the UE to alert the user in a specific manner in the case of the network initiated USSD request and the network initiated USSD notification.

Entity receiving the XML body ignores any unknown XML element and any unknown XML attribute.

NOTE 1: "unexpected data value" is used in case of interworking with the MAP protocol (i.e. in case such an error is received from the MAP interface). It is not used for the case where the string sent by the UE in response to a query from the network does not match any expected response. Procedures covering such cases are part of the USSD application handling. The application will usually send back another USSD string to the UE asking for a new input from the user or indicating that the transaction cannot be completed.

NOTE 2: Alerting pattern is application level information which can be present in any network initiated USSI message, including both the initial network initiated USSI message and any later network initiated USSI message, sent in the same USSD dialog as the initial network initiated USSI message. The Alert-Info header field cannot be used as it is not allowed in SIP INFO request.

5.1.3.4 XML schema

Implementations in compliance with the present document shall implement the XML schema defined below.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified"
  attributeFormDefault="unqualified">
  <xs:element name="ussd-data">
    <xs:annotation>
      <xs:documentation>
        Unstructured Supplementary Services Data
      </xs:documentation>
    </xs:annotation>
    <xs:complexType>
      <xs:sequence>
        <xs:element name="language" type="xs:string" minOccurs="0"
          maxOccurs="1"/>
        <xs:element name="ussd-string" type="xs:string" minOccurs="0"
          maxOccurs="1"/>
        <xs:element name="error-code" type="xs:int" minOccurs="0"
          maxOccurs="1"/>
        <xs:element name="anyExt" type="anyExtType" minOccurs="0"/>
        <xs:any namespace="##other" processContents="lax" minOccurs="0"
          maxOccurs="unbounded"/>
      </xs:sequence>
      <xs:anyAttribute namespace="##any" processContents="lax"/>
    </xs:complexType>
  </xs:element>
  <xs:complexType name="anyExtType">
    <xs:sequence>
      <xs:any namespace="##any" processContents="lax" minOccurs="0"
        maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>
  <xs:element name="UnstructuredSS-Request" type="emptyType"/>
  <xs:element name="UnstructuredSS-Notify" type="emptyType"/>
  <xs:element name="alertingPattern" type="xs:unsignedByte"/>
  <xs:complexType name="emptyType"/>
</xs:schema>
```
NOTE: The USSI AS can take the information received in the MIME body, formulate a MAP USSD message and route the message over SS7 to the USSD server via the HSS. Alternatively, the USSI AS can extract the USSD information from the received MIME body, and communicate with USSD server using other protocol.

5.1.3.4A Further syntax rules of MIME bodies of application/vnd.3gpp.ussd+xml MIME type

If:
- an <UnstructuredSS-Request> element;
- an <UnstructuredSS-Notify> element; or
- an <alertingPattern> element;

is included in a MIME body of the application/vnd.3gpp.ussd+xml MIME type, the XML element is included in the <anyExt> element included in the <ussd-data> root element.

NOTE: The XML elements are validated by the <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> particle of the <anyExt> element.

5.1.3.5 IANA registration

NOTE: RFC 4288 [9], subclause 9, states the process that applies in case of changes to the registry of media types. Any changes to the format or to subclause 5.1.3.5 after the registration with IANA would invoke this procedure.

5.1.3.5.1 Name
Frederic Firmin

5.1.3.5.2 Email
frederic.firmin@etsi.org

5.1.3.5.3 MIME media type name
Application

5.1.3.5.4 MIME subtype name
Vendor Tree – vnd.3gpp.ussd+xml

5.1.3.5.5 Required parameters
None

5.1.3.5.6 Optional parameters
None

5.1.3.5.7 Encoding considerations
Binary.

5.1.3.5.8 Security considerations
Same as general security considerations for application/xml as specified in section 10 of IETF RFC 3023 [10]. In addition, this content type provides a format for exchanging information in SIP, so the security considerations from IETF RFC 3261 [11] apply.
The information transported in this MIME media type does not include active or executable content.

Mechanisms for privacy and integrity protection of protocol parameters exist. Those mechanisms as well as authentication and further security mechanisms are described in 3GPP TS 24.229 [6].

5.1.3.5.9 Interoperability considerations

The MIME type allows interoperability of USSD information between mobile networks and other systems.

5.1.3.5.10 Published specification

3GPP TS 24.390

(http://www.3gpp.org/ftp/Specs/html-info/24390.htm)

5.1.3.5.11 Applications which use this media

n/a

5.1.3.5.12 Applications that manipulate MIME typed objects (messaging, download etc.)

n/a

5.1.3.5.13 Additional information

1. Magic number(s): n/a
2. File extension(s): n/a
3. Macintosh file type code: n/a
4. Object Identifiers: n/a

5.1.3.5.14 Intended usage

Common.

The USSD is a very common service available on most mobile networks. The registration of the associated MIME type allows the USSD service to be incorporated in messages from other messaging systems.

5.1.3.5.15 Other information/general comment

n/a

5.1.3.5.16 Person to contact for further information

1. Name: Frederic Firmin
2. Email: frederic.firmin@etsi.org
3. Author/Change controller: Frederic Firmin
Annex A (informative):
Signalling flows

A.1 UE sending USSD request, no further information required

In the example flow at the figure A.1-1, UE 1 sends a USSD request. The USSD application does not require further information, the USSD operation is successful and the USSI AS sends a USSD response towards UE 1.

![Signalling Flow Diagram](image_url)

Figure A.1-1: UE sends USSD request

NOTE: For clarity, the SIP 100 (Trying) responses are not shown in the signalling flow.

1. UE-1 sends INVITE request containing the USSD request — see example in table A.1-1

UE sends the INVITE request.

By including the Recv-Info header field, the UE indicates its support for the g.3gpp.ussd.info package.

<table>
<thead>
<tr>
<th>Table A.1-1: INVITE request (UE-1 to P-CSCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVITE sip:*135%23;phone-context=home1.net@home1.net;user=dialstring SIP/2.0</td>
</tr>
<tr>
<td>Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;branch=z9hG4bKnashsd7</td>
</tr>
<tr>
<td>Max-Forwards: 70</td>
</tr>
<tr>
<td>Route: sip:pcscf1.visited1.net:7531;lr, sip:scscf1.home1.net;lr</td>
</tr>
<tr>
<td>Accept-Contact: */+g.3gpp.icsi-ref="urn%3Aurn-7%3gpp-service.ims.icsi.mmtel"</td>
</tr>
<tr>
<td>P-Preferred-Identity: "John Doe" sip:user1_public1@home1.net</td>
</tr>
<tr>
<td>P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151DGCE11</td>
</tr>
<tr>
<td>Privacy: none</td>
</tr>
<tr>
<td>From: sip:user1_public1@home1.net;tag=171828</td>
</tr>
<tr>
<td>To: sip:*135%23;phone-context=home1.net;user=dialstring</td>
</tr>
<tr>
<td>Call-ID: cb03e009a23df91kj490333</td>
</tr>
<tr>
<td>Cseq: 127 INVITE</td>
</tr>
<tr>
<td>Require: sec-agree</td>
</tr>
<tr>
<td>Supported: precondition, 100rel, gruu</td>
</tr>
<tr>
<td>Proxy-Require: sec-agree</td>
</tr>
</tbody>
</table>
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; esalg=aes-cbc; spi-c=98765432; spi-s=87654321; port-c=8642; port-s=7531
Contact: <sip:user1_public1@home1.net;gr=hdg7777ad7aflzig8sf7>; +g.3gpp.icsi-ref="urn%3Aurn-7%3gpp-service.ims.icsi.mmtel"
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE, INFO
Accept: application/sdp; application/3gpp-ims+xml; application/vnd.3gpp.ussd+xml
Recv-Info: g.3gpp.ussd
Content-Type: multipart/mixed; boundary=outer
Content-Length: (…)

--outer
Content-Type: application/sdp

v=0
o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
t=0 0
m=audio 0 RTP/AVP 97 96
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event
--outer
Content-Type: application/vnd.3gpp.ussd+xml

<?xml version="1.0" encoding="UTF-8"?>
<ussd-data>
 <language>en</language>
 <ussd-string>*135#</ussd-string>
</ussd-data>

--outer--

Request-URI: in this example, the USSD message is *135#, and is represented as a dialstring.

Application/vnd.3gpp.ussd+xml MIME body: USSD message. The content of the <ussd-string> element included in the INVITE message must be equal to the dialstring inserted in the Request-URI.

2. INVITE request (P-CSCF to S-CSCF)

The P-CSCF forwards the INVITE request based on the Route header field.

3. INVITE request (S-CSCF to USSI AS)

The S-CSCF forwards the INVITE request containing the USSD message based on iFC to the USSI AS.

4. 200 (OK) response (USSI AS to S-CSCF)

The USSI AS sends a 200 (OK) response confirming the receipt of the INVITE request and to establish the dialog. The SIP 200 (OK) response will contain a Recv-Info header field set to g.3gpp.ussd.

5. 200 (OK) response (S-CSCF to P-CSCF)

The S-CSCF forwards the 200 (OK) response along the Via header field.

6. 200 (OK) response (P-CSCF to UE-1)

The P-CSCF forwards the 200 (OK) response along the Via header field to the UE.

7. ACK request (UE-1 to P-CSCF)

The UE responds to the 200 (OK) response with an ACK request sent to the P-CSCF.

8. ACK request (P-CSCF to S-CSCF)

The P-CSCF forwards the ACK request to the S-CSCF.

9. ACK request (S-CSCF to USSI AS)

The S-CSCF forwards the ACK request to the USSI AS.
10. USSD operation

The USSI AS performs the requested USSD operation. Details of USSD processing are outside the scope of this specification.

In this example the USSD operation is successful and a response indicating success will be sent to the UE.

11. BYE request (USSI AS to S-CSCF) — see example in table A.1-2

<table>
<thead>
<tr>
<th>Table A.1-2: BYE request (USSI AS to S-CSCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYE sip:user1_public1@home1.net;gr=hdg7777ad7af1zig8af7 SIP/2.0</td>
</tr>
<tr>
<td>Via SIP/2.0/UDP sip:asl.home1.net;branch=z9hG4bK332b23.1</td>
</tr>
<tr>
<td>Max-Forwards: 70</td>
</tr>
<tr>
<td>Route: sip:scscfi.home1.net;lr, sip:pcscfi.visited1.net:7531;lr</td>
</tr>
<tr>
<td>From: <tel: +1-237-555-3333>;tag=314159</td>
</tr>
<tr>
<td>To: tel:+1-237-555-1111;tag=171828</td>
</tr>
<tr>
<td>Call-ID: cb03a009a2sdgklkj490334</td>
</tr>
<tr>
<td>Cseq: 129 BYE</td>
</tr>
<tr>
<td>Content-Type: application/vnd.3gpp.ussd+xml</td>
</tr>
<tr>
<td>Content-Length:</td>
</tr>
</tbody>
</table>

```
<?xml version="1.0" encoding="UTF-8"?>
<ussd-data>
  <language>en</language>
  <ussd-string>
    Hello, your credit is $175.50. Thanks for your query.
    We are happy to assist. Your operator
  </ussd-string>
</ussd-data>
```

Application/vnd.3gpp.ussd+xml MIME body: USSD message.

12. BYE request (S-CSCF to P-CSCF)

The S-CSCF forwards the BYE request to the P-CSCF.

13. BYE request (P-CSCF to UE-1)

The P-CSCF forwards the BYE request to the UE. The UE recognizes the application/vnd.3gpp.ussd+xml and displays the string.

14. 200 (OK) response (UE-1 to P-CSCF)

The UE sends a 200 (OK) confirming the BYE request.

15. 200 (OK) response (P-CSCF to S-CSCF)

The P-CSCF forwards the 200 (OK) to the S-CSCF.

16. 200 (OK) response (S-CSCF to USSI AS)

The S-CSCF forwards the 200 (OK) response to USSI AS.

A.2 UE sending USSD request, further information required from network

In the example flow at the figure A.2-1, UE 1 sends a USSD request. The USSD application requires further information, and UE 1 sends further information in a USSD request. After the USSD operation is successful, the USSI AS sends a USSD response towards UE 1.
Figure A.2-1: UE sends USSD request

NOTE: For clarity, the SIP 100 (Trying) responses are not shown in the signalling flow.

1. UE A sends INVITE request containing the USSD request — see example in table A.2-1

UE sends the INVITE request.

By including the Recv-Info header field, the UE indicates its support for the g.3gpp.ussd info package.

Table A.2-1: INVITE request (UE-1 to P-CSCF)

```
INVITE sip:*135%23;phone-context=home1.net@home1.net;user=dialstring SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr>, <sip:scscf1.home1.net;lr>
```

ETSI
Accept-Contact: *;g.3gpp.icsi-ref="urn%3Aurn-7%3gpp-service.ims.icsi.mmtel1"
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Privacy: none
From: <sip:user1_public1@home1.net>;tag=171828
To: <sip:*135%23;phone-context=home1.net;user=dialstring>
Call-ID: cb03a0s09a2zdflglkj490333
Cseq: 127 INVITE
Require: sec-agree
Supported: precondition, 100rel, gruu
Proxy-Require: sec-agree
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; ealg=aes-cbc; spi-c=98765432; spi-s=87654321; port-c=8642; port-s=7531
Contact: <sip:user1_public1@home1.net;gr=hdg7777ad7af1zig8sf7>; +g.3gpp.icsi-ref="urn%3Aurn-7%3gpp-service.ims.icsi.mmtel1"
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE, INFO
Accept: application/sdp; application/3gpp-ims+xml; application/vnd.3gpp.ussd+xml
Recv-Info: g.3gpp.ussd
Content-Type: multipart/mixed; boundary=outer
Content-Length: (…)

--outer
Content-Type: application/sdp
v=0
o=-- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
t=0 0
m=audio 0 RTP/AVP 97 96
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event
--outer
Content-Type: application/vnd.3gpp.ussd+xml

<?xml version="1.0" encoding="UTF-8"?>
<ussd-data>
 <language>en</language>
 <ussd-string>*135#</ussd-string>
</ussd-data>

Request-URI: in this example, the USSD message is *135#, and is represented as a dialstring.

Application/vnd.3gpp.ussd+xml MIME body: USSD message. The content of the <ussd-string> element in the INVITE message must be equal to the dialstring inserted in the Request-URI.

2. INVITE request (P-CSCF to S-CSCF)
 The P-CSCF forwards the INVITE request based on the Route header field.

3. INVITE request (S-CSCF to USSI AS)
 The S-CSCF forwards the INVITE request containing the USSD message based on iFC to the USSI AS.

4. 200 (OK) response (USSI AS to S-CSCF)
 The USSI AS sends a 200 (OK) response confirming the receipt of the INVITE request and to establish the dialog. The SIP 200 (OK) response will contain a Recv-Info header field set to g.3gpp.ussd.

5. 200 (OK) response (S-CSCF to P-CSCF)
 The S-CSCF forwards the 200 (OK) response along the Via header field.

6. 200 (OK) response (P-CSCF to UE-1)
 The P-CSCF forwards the 200 (OK) response along the Via header field to the UE.

7. ACK request (UE-1 to P-CSCF)
 The UE responds to the 200 (OK) response with an ACK request sent to the P-CSCF.
8. ACK request (P-CSCF to S-CSCF)

The P-CSCF forwards the ACK request to the S-CSCF.

9. ACK request (S-CSCF to USSI AS)

The S-CSCF forwards the ACK request to the USSI AS.

10. USSD operation

The USSI AS performs the requested USSD operation. Details of USSD processing are outside the scope of this specification.

In this example, the USSI AS requires further information from the UE.

11-13. INFO request (USSI AS to UE) - see example in table A.2-11

Table A.2-11: INFO request (USSI AS to S-CSCF)

<table>
<thead>
<tr>
<th>INFO sip:ussias.home1.net:12456 SIP/2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via: SIP/2.0/UDP [5555::aa:bb:cc:dd]:1357;branch=z9hG4bKnas7ds6565465</td>
</tr>
<tr>
<td>Max-Forwards: 70</td>
</tr>
<tr>
<td>Route: sip:pcscf1.visited1.net:7531;lr, sip:ussias.home1.net:6677;branch=z9hG4bKnas7ds6565465</td>
</tr>
<tr>
<td>From: sip:user1_public1@home1.net;tag=171828</td>
</tr>
<tr>
<td>To: sip:*135%23;phone-context=home1.net;user=dialstring;tag=t45543543</td>
</tr>
<tr>
<td>Call-ID: cb03a0s09a2sdfglkj490333</td>
</tr>
<tr>
<td>Cseq: 4665 INFO</td>
</tr>
<tr>
<td>Info-Package: g.3gpp.ussd</td>
</tr>
<tr>
<td>Content-Length: (…)</td>
</tr>
<tr>
<td>Content-Type: application/vnd.3gpp.ussd+xml</td>
</tr>
<tr>
<td>Content-Disposition: Info-Package</td>
</tr>
<tr>
<td><?xml version="1.0" encoding="UTF-8"?></td>
</tr>
<tr>
<td><ussd-data></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></ussd-data></td>
</tr>
</tbody>
</table>

14-16. 200 (OK) response (UE-1 to USSI AS)

The UE sends a SIP 200 (OK) response to the USSI AS confirming the SIP INFO request.

17-19. INFO request (UE-1 to USSI AS) - see example in table A.2-17

The UE sends the SIP INFO request containing the further USSD information required.

Table A.2-17: INFO request (UE to P-CSCF)

<table>
<thead>
<tr>
<th>INFO sip:ussias.home1.net:12456 SIP/2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via: SIP/2.0/UDP [5555::aa:bb:cc:dd]:1357;branch=z9hG4bKnas7ds6565465</td>
</tr>
<tr>
<td>Max-Forwards: 70</td>
</tr>
<tr>
<td>Route: sip:pcscf1.visited1.net:7531;lr, sip:ussias.home1.net:6677;lr, sip:ussias.home1.net:6677;lr</td>
</tr>
<tr>
<td>From: sip:user1_public1@home1.net;tag=171828</td>
</tr>
<tr>
<td>To: sip:*135%23;phone-context=home1.net;user=dialstring;tag=t45543543</td>
</tr>
<tr>
<td>Call-ID: cb03a0s09a2sdfglkj490333</td>
</tr>
<tr>
<td>Cseq: 128 INFO</td>
</tr>
<tr>
<td>Info-Package: g.3gpp.ussd</td>
</tr>
<tr>
<td>Content-Length: (…)</td>
</tr>
<tr>
<td>Content-Type: application/vnd.3gpp.ussd+xml</td>
</tr>
<tr>
<td>Content-Disposition: Info-Package</td>
</tr>
<tr>
<td><?xml version="1.0" encoding="UTF-8"?></td>
</tr>
<tr>
<td><ussd-data></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></ussd-data></td>
</tr>
</tbody>
</table>
20-21. **200 (OK) response (USSI AS to UE-1)**

The AS sends a SIP 200 (OK) response to the UE confirming the SIP INFO request.

23. USSD operation

The USSI AS performs the requested USSD operation. Details of USSD processing are outside the scope of this specification.

In this example, the USSD operation is successful and USSI AS sends a response indicating success will be sent to the UE.

24-26 BYE request (USSI AS – UE-1) — see example in table A.2-24

The AS sends a SIP BYE request towards UE containing a USSD response.

<table>
<thead>
<tr>
<th>Table A.2-24: BYE request (USSI AS to S-CSCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYE sip:user1_public1@home1.net;gr=hdg777ad7af1zig8asf7 SIP/2.0</td>
</tr>
<tr>
<td>Via SIP/2.0/UDP sip:as1.home1.net;branch=z9hG4bK332b231</td>
</tr>
<tr>
<td>Max-Forwards: 70</td>
</tr>
<tr>
<td>Route: sip:scscf1.home1.net;lr, sip:pcscf1.visited1.net:7531;lr</td>
</tr>
<tr>
<td>From: <tel: +1-237-555-3333>;tag=314159</td>
</tr>
<tr>
<td>To: tel:+1-237-555-1111;tag=171828</td>
</tr>
<tr>
<td>Call-ID: cb03a0s09a2sdfglkj490334</td>
</tr>
<tr>
<td>Cseq: 129 BYE</td>
</tr>
<tr>
<td>Content-Type: application/vnd.3gpp.ussd+xml</td>
</tr>
<tr>
<td>Content-Length:</td>
</tr>
<tr>
<td><?xml version="1.0" encoding="UTF-8"?></td>
</tr>
<tr>
<td><ussd-data></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></ussd-data></td>
</tr>
</tbody>
</table>

Application/vnd.3gpp.ussd+xml MIME body: USSD message.

27-29. 200 (OK) response (UE to USSI AS)

The UE sends a 200 (OK) response to the USSI AS confirming the BYE request.

A.3 USSI AS sending USSD request, no further information required

In the example flow at the figure A.3-1, the USSI AS sends a USSD request. The UE does not require further information, the USSD operation is successful and the UE hosting the USSD application indicates sends a USSD response towards USSI AS.
Figure A.3-1: USSI AS sends USSD request

NOTE: For clarity, the SIP 100 (Trying) responses are not shown in the signalling flow.

1. **USSI AS sends INVITE request containing the USSD request — see example in table A.3-1**

As a result of some associated procedure between the user and the network, a need is seen to request confirmation using USSD.

USSI AS sends the INVITE request.

By including the Recv-Info header field, the USSI AS indicates its support for the g.3gpp.ussd info package.

Table A.3-1: INVITE request (USSI AS to S-CSCF)

```
INVITE sip:user1_public1@home1.net SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr>, <sip:scscf1.home1.net;lr>
Accept-Contact: *;+g.3gpp.icsi-ref="urn%3Aurn-7%3gpp-service.ims.icsi.mmtel"
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Privacy: none
From: <sip:ussias_public1@home1.net>;tag=171828
To: <sip:user1_public1@home1.net>
Call-ID: cb03a0s09a2dfgklj490333
Cseq: 127 INVITE
Supported: precondition, 100rel
Contact: <ussias_public1@home1.net>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE, INFO
Accept: application/sdp; application/3gpp-ims+xml; application/vnd.3gpp.ussd+xml
Recv-Info: g.3gpp.ussd
Content-Type: multipart/mixed; boundary=outer
Content-Length: (…)
--outer
Content-Type: application/sdp

v=0
o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
```

NOTE: For clarity, the SIP 100 (Trying) responses are not shown in the signalling flow.

1. **USSI AS sends INVITE request containing the USSD request — see example in table A.3-1**

As a result of some associated procedure between the user and the network, a need is seen to request confirmation using USSD.

USSI AS sends the INVITE request.

By including the Recv-Info header field, the USSI AS indicates its support for the g.3gpp.ussd info package.

Table A.3-1: INVITE request (USSI AS to S-CSCF)

```
INVITE sip:user1_public1@home1.net SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr>, <sip:scscf1.home1.net;lr>
Accept-Contact: *;+g.3gpp.icsi-ref="urn%3Aurn-7%3gpp-service.ims.icsi.mmtel"
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Privacy: none
From: <sip:ussias_public1@home1.net>;tag=171828
To: <sip:user1_public1@home1.net>
Call-ID: cb03a0s09a2dfgklj490333
Cseq: 127 INVITE
Supported: precondition, 100rel
Contact: <ussias_public1@home1.net>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE, INFO
Accept: application/sdp; application/3gpp-ims+xml; application/vnd.3gpp.ussd+xml
Recv-Info: g.3gpp.ussd
Content-Type: multipart/mixed; boundary=outer
Content-Length: (…)
--outer
Content-Type: application/sdp

v=0
o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
t=0 0
```
m=audio 0 RTP/AVP 97 96
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event
--outer
Content-Type: application/vnd.3gpp.ussd+xml

<?xml version="1.0" encoding="UTF-8"?>
<ussd-data>
 <language>en</language>
 <ussd-string>Please verify you want require this service. If yes please enter PIN</ussd-string>
 <anyExt>
 <UnstructuredSS-Request/>
 <alertingPattern>0</alertingPattern>
 </anyExt>
</ussd-data>
--outer

Application/vnd.3gpp.ussd+xml MIME body: USSD message. The content of the <ussd-string> element included in the INVITE message must be equal to the dialstring inserted in the Request-URI.

2. INVITE request (S-CSCF to P-CSCF)
 The S-CSCF forwards the INVITE request based on the Request-URI field.

3. INVITE request (P-CSCF to UE-1)
 The P-CSCF forwards the INVITE request containing the USSD message to the UE.

4. 200 (OK) response (UE-1 to P-CSCF)
 The UE sends a 200 (OK) response confirming the receipt of the INVITE request and to establish the dialog. The SIP 200 (OK) response will contain a Recv-Info header field set to g.3gpp.ussd.

5. 200 (OK) response (P-CSCF to S-CSCF)
 The P-CSCF forwards the 200 (OK) response along the Via header field.

6. 200 (OK) response (S-CSCF to USSI AS)
 The S-CSCF forwards the 200 (OK) response along the Via header field to the USSI AS.

7. ACK request (USSI AS to S-CSCF)
 The USSI AS responds to the 200 (OK) response with an ACK request sent to the S-CSCF.

8. ACK request (S-CSCF to P-CSCF)
 The S-CSCF forwards the ACK request to the P-CSCF.

9. ACK request (P-CSCF to UE-1)
 The P-CSCF forwards the ACK request to the UE.

10. USSD operation
 The UE performs the requested USSD operation. Details of USSD processing and associated MMI are outside the scope of this specification.

In this example the USSD operation is successful and a response indicating success will be sent to the USSI AS.

11. INFO request (UE1 to P-CSCF) — see example in table A.3-2

<table>
<thead>
<tr>
<th>Table A.1-2: INFO request (UE-1 to P-CSCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO sip:ussias_public1@home1.net SIP/2.0</td>
</tr>
<tr>
<td>Via SIP/2.0/UDP sip:user_1.home1.net;branch=z9hG4bK332b23.1</td>
</tr>
<tr>
<td>Max-Forwards: 70</td>
</tr>
<tr>
<td>Step</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>12.</td>
</tr>
<tr>
<td>13.</td>
</tr>
<tr>
<td>14.</td>
</tr>
<tr>
<td>15.</td>
</tr>
<tr>
<td>16.</td>
</tr>
<tr>
<td>17.</td>
</tr>
<tr>
<td>18.</td>
</tr>
<tr>
<td>19.</td>
</tr>
<tr>
<td>20.</td>
</tr>
<tr>
<td>21.</td>
</tr>
<tr>
<td>22.</td>
</tr>
</tbody>
</table>
In the example flow at the figure A.4-1, the USSI AS sends a USSD request. The USSD application in the UE requires further information, and the USSI AS sends further information in a USSD request. After the USSD operation is successful, the UE hosting the USSD application sends a USSD response towards the USSI AS.

![Diagram of USSI AS sending USSD request](image)

Figure A.2-1: USSI AS sends USSD request

NOTE: For clarity, the SIP 100 (Trying) responses are not shown in the signalling flow.

1. **USSI AS** sends INVITE request containing the USSD request — see example in table A.4-1
As a result of some associated procedure between the user and the network, a need is seen to request a password using USSD.

USSI AS sends the INVITE request.

By including the Recv-Info header field, the USSI AS indicates its support for the g.3gpp.ussd info package.

Table A.4-1: INVITE request (USSI AS to S-CSCF)

<table>
<thead>
<tr>
<th>INVITE sip:user1_public1@home1.net SIP/2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;branch=z9hG4bKnashds7</td>
</tr>
<tr>
<td>Max-Forwards: 70</td>
</tr>
<tr>
<td>Route: sip:pcscf1.visited1.net:7531;lr, sip:scscf1.home1.net;lr</td>
</tr>
<tr>
<td>Accept-Contact = "John Doe" sip:user1_public1@home1.net</td>
</tr>
<tr>
<td>P-Preferred-Identity: "John Doe" sip:user1_public1@home1.net</td>
</tr>
<tr>
<td>P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151DGCE11</td>
</tr>
<tr>
<td>Privacy: none</td>
</tr>
<tr>
<td>From: sip:ussias_public1@home1.net;tag=171828</td>
</tr>
<tr>
<td>To: sip:user1_public1@home1.net</td>
</tr>
<tr>
<td>Call-ID: cb03a0s09a2zdfglkys40333</td>
</tr>
<tr>
<td>Cseq: 127 INVITE</td>
</tr>
<tr>
<td>Supported: precondition, 100rel</td>
</tr>
<tr>
<td>Contact: <ussias_public1@home1.net;</td>
</tr>
<tr>
<td>Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE, INFO</td>
</tr>
<tr>
<td>Accept: application/sdp; application/3gpp-ims+xml; application/vnd.3gpp.ussd+xml</td>
</tr>
<tr>
<td>Recv-Info: g.3gpp.ussd</td>
</tr>
<tr>
<td>Content-Type: multipart/mixed; boundary=outer</td>
</tr>
<tr>
<td>Content-Length: (...)</td>
</tr>
</tbody>
</table>

Application/vnd.3gpp.ussd+xml MIME body: USSD message. The content of the <ussd-string> element in the INVITE message must be equal to the dialstring inserted in the Request-URI.

2. INVITE request (S-CSCF to P-CSCF)

The S-CSCF forwards the INVITE request based on the Route header field.

3. INVITE request (P-CSCF to UE-1)

The P-CSCF forwards the INVITE request containing the USSD message to the UE.

4. 200 (OK) response (UE-1 to P-CSCF)

The UE sends a 200 (OK) response confirming the receipt of the INVITE request and to establish the dialog. The SIP 200 (OK) response will contain a Recv-Info header field set to g.3gpp.ussd.

5. 200 (OK) response (P-CSCF to S-CSCF)
The P-CSCF forwards the 200 (OK) response along the Via header field.

6. **200 (OK) response (S-CSCF to USSI AS)**

 The S-CSCF forwards the 200 (OK) response along the Via header field to the USSI AS.

7. **ACK request (USSI AS to S-CSCF)**

 The USSI AS responds to the 200 (OK) response with an ACK request sent to the S-CSCF.

8. **ACK request (S-CSCF to P-CSCF)**

 The S-CSCF forwards the ACK request to the P-CSCF.

9. **ACK request (P-CSCF to UE-1)**

 The P-CSCF forwards the ACK request to the UE.

10. **USSD operation**

 The UE performs the requested USSD operation. Details of USSD processing are outside the scope of this specification.

 In this example, the UE requires further information from the USSI AS.

11-13. **INFO request (UE-1 to USSI AS)** - see example in table A.4-11

<table>
<thead>
<tr>
<th>Table A.4-11: INFO request (UE-1 to P-CSCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO sip:ussias_public1@home1.net;gr=hdg7777ad7af1zig8sf7 SIP/2.0</td>
</tr>
<tr>
<td>Via: SIP/2.0/UDP ussias.home1.net:6677;branch=z9hG4bKgasds5454</td>
</tr>
<tr>
<td>Max-Forwards: 70</td>
</tr>
<tr>
<td>Route: sip:scscf1.home1.net:46545;lr, sip:pcscf1.visited1.net:7531;lr</td>
</tr>
<tr>
<td>From: sip:user1_public1@home1.net;tag=t45543543</td>
</tr>
<tr>
<td>To: sip:ussias_public1@home1.net;tag=171828</td>
</tr>
<tr>
<td>Call-ID: cb03a0s09a2adgflk4j90333</td>
</tr>
<tr>
<td>Cseq: 4665 INFO</td>
</tr>
<tr>
<td>Info-Package: g.3gpp.ussd</td>
</tr>
<tr>
<td>Content-Length: (...)</td>
</tr>
<tr>
<td>Content-Type: application/vnd.3gpp.ussd+xml</td>
</tr>
<tr>
<td>Content-Disposition: Info-Package</td>
</tr>
<tr>
<td><xml version="1.0" encoding="UTF-8"?></td>
</tr>
<tr>
<td><ussd-data></td>
</tr>
<tr>
<td><language>en</language></td>
</tr>
<tr>
<td><ussd-string></td>
</tr>
<tr>
<td>PIN:3663</td>
</tr>
<tr>
<td><anyExt><UnstructuredSS-Request/></anyExt></td>
</tr>
<tr>
<td></ussd-string></td>
</tr>
<tr>
<td></ussd-data></td>
</tr>
</tbody>
</table>

14-16. **200 (OK) response (USSI AS to UE-1)**

 The USSI AS sends a SIP 200 (OK) response to the AS confirming the SIP INFO request.

17-19. **INFO request (USSI AS to UE)** - see example in table A.4-17

 The USSI AS sends the SIP INFO request containing the further USSD information required.

<table>
<thead>
<tr>
<th>Table A.4-17: INFO request (USSI AS to S-CSCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO sip:user1_public1@home1.net SIP/2.0</td>
</tr>
<tr>
<td>Via: SIP/2.0/UDP [5555:aaaabbb:ccc:ddd]:1357;branch=z9hG4bKnasds76565465</td>
</tr>
<tr>
<td>Max-Forwards: 70</td>
</tr>
<tr>
<td>Route: sip:pcscf1.visited1.net:7531;lr, sip:scscf1.home1.net;lr, ussias.home1.net:6677;lr</td>
</tr>
<tr>
<td>From: sip:ussias_public1@home1.net;tag=171828</td>
</tr>
<tr>
<td>To: sip:user1_public1@home1.net;tag=45543543</td>
</tr>
<tr>
<td>Call-ID: cb03a0s09a2adgflk4j90333</td>
</tr>
<tr>
<td>Cseq: 128 INFO</td>
</tr>
<tr>
<td>Info-Package: g.3gpp.ussd</td>
</tr>
</tbody>
</table>
20-21. 200 (OK) response (UE-1 to USSI AS)

The UE sends a SIP 200 (OK) response to the USSI AS confirming the SIP INFO request.

23. USSD operation

The UE performs the requested USSD operation. Details of USSD processing are outside the scope of this specification.

In this example, the USSD operation is successful and the UE sends a response indicating success will be sent to the USSI AS.

24-26 INFO request (UE-1 – USSI AS) — see example in table A.4-24

The UE sends a SIP INFO request towards USSI AS containing a USSD response.

Table A.4-24: INFO request (UE-1 to P-CSCF)

```
INFO sip:ussias_public1@home1.net SIP/2.0
Via SIP/2.0/UDP sip:as1.home1.net;branch=z9hG4bK332b23.1
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net;lr>, <sip:scscf1.home1.net:7531;lr>
From: <sip:ussias_public1@home1.net>;tag=314159
To: <sip:user1_public1@home1.net>;tag=171828
Call-ID: cb03a0s09a2sdfglkj490334
Cseq: 129 INFO
Content-Type: application/vnd.3gpp.ussd+xml
Content-Length: (…)
<?xml version="1.0" encoding="UTF-8"?><ussd-data>
  <language>en</language>
  <ussd-string>
    No further business
  </ussd-string>
  <anyExt><UnstructuredSS-Request/></anyExt>
</ussd-data>
```

27-29. 200 (OK) response (USSI AS to UE-1)

The USSI AS sends a 200 (OK) response to the UE confirming the INFO request.

30. BYE request (USSI AS to S-CSCF)

The USSI AS considers the transaction complete and sends a BYE request.

31. BYE request (S-CSCF to P-CSCF)

The S-CSCF forwards the BYE request to the P-CSCF.

32. BYE request (P-CSCF to UE)

The P-CSCF forwards the BYE request to the UE.

33. 200 (OK) response (UE to P-CSCF)
The UE responds to the BYE request with a 200 (OK) response.

34. **200 (OK) response (P-CSCF to S-CSCF)**

 The P-CSCF forwards to the 200 (OK) response to the S-CSCF.

35. **200 (OK) response (S-CSCF to USSI AS)**

 The S-CSCF forwards the 200 (OK) response to the USSI AS.
Annex B (normative):
Media feature tags defined within the current document

B.1 General

This subclause describes the media feature tag definitions that are applicable for the 3GPP IM CN subsystem for the realisation of USSD using IMS.

B.2 Definition of media feature tag g.3gpp.nw-init-ussi

Media feature-tag name: g.3gpp.nw-init-ussi

ASN.1 Identifier: 1.3.6.1.8.2.26

Summary of the media feature indicated by this tag: This feature-tag indicates support of user equipment procedures for the network initiated USSD over IMS.

Value appropriate for use with this feature-tag: boolean.

The feature-tag is intended primarily for use in the following applications, protocols, services, or negotiation mechanisms: This feature-tag is most useful in a communications application, for describing the capabilities of a device, such as a phone or PDA.

Examples of typical use: Indicating that a mobile phone supports the network initiated USSD over IMS.

Related standards or documents: 3GPP TS 24.390: "Unstructured Supplementary Service Data (USSD) using IP Multimedia (IM) Core Network (CN) subsystem IMS; Stage 3".

Security Considerations: Security considerations for this media feature-tag are discussed in subclause 12.1 of IETF RFC 3840.
Annex C (normative):
IP-Connectivity Access Network specific concepts when using GPRS to access IM CN subsystem

C.1 Scope

The present annex defines IP-CAN specific requirements for a Unstructured Supplementary Service Data (USSD) using IP Multimedia (IM) Core Network (CN) subsystem IMS, where the IP-CAN is General Packet Radio Service (GPRS).

C.2 Application usage of SIP

C.2.1 Procedures at the UE

C.2.1.1 3GPP PS data off

C.2.1.1.1 General

The UE may support the 3GPP PS data off.

If the UE supports the 3GPP PS data off:

1) the UE can be configured with up to two indications whether the USSI is a 3GPP PS data off exempt service, one indication is valid for the UE camping in the HPLMN or the EHPLMN, and the other indication is valid for any VPLMN the UE is roaming in; and

2) the UE may support being configured with the indications whether the USSI is a 3GPP PS data off exempt service using one or more of the following methods:

a) the EF\textunderscore 3GPPPSDATAOFF file described in 3GPP TS 31.102 [18];

b) the USSI\textunderscore exempt node of 3GPP TS 24.391 [13], if the UE is in the HPLMN or the EHPLMN; and

c) the USSI\textunderscore roaming\textunderscore exempt node of 3GPP TS 24.391 [13], if the UE is in the VPLMN.

If the UE is configured with both the USSI\textunderscore exempt node of 3GPP TS 24.391 [13] and the EF\textunderscore 3GPPPSDATAOFF file described in 3GPP TS 31.102 [18], then EF\textunderscore 3GPPPSDATAOFF file shall take precedence.

If the UE is configured with both the USSI\textunderscore roaming\textunderscore exempt node of 3GPP TS 24.391 [13] and the EF\textunderscore 3GPPPSDATAOFF file described in 3GPP TS 31.102 [18], then EF\textunderscore 3GPPPSDATAOFF file shall take precedence.

When the UE is only configured with the indication valid for the UE camping in the HPLMN or the EHPLMN, the UE shall use this indication also when the UE is in the VPLMN.

C.2.1.1.2 Enforcement

If the 3GPP PS data off status is "active", and the UE is not configured with indication that USSI is a 3GPP PS data off exempt service:

1) the UE shall terminate according to 3GPP TS 24.229 [6] any SIP dialog established according to subclause 4.5.4 or subclause 4.5.5 with a UE’s contact address containing an IP address associated with a GPRS IP-CAN bearer;

2) the UE shall not invoke the procedures in subclause 4.5.4 with a UE’s contact address containing an IP address associated with a GPRS IP-CAN bearer; and

NOTE 1: If the UE doesn’t invoke the procedures in subclause 4.5.4 due to conditions as described in bullet 2, the UE can attempt a request for an equivalent service via the CS domain – if supported and available – and, otherwise, the UE can attempt the service according to 3GPP TS 24.229 [13] and as described in subclause 4.5.4 via non-3GPP access.

3) if the UE registered a binding with IM CN subsystem, such that:
a) the contact address of the binding contains an IP address associated with a GPRS IP-CAN bearer; and

b) the Contact header field of the binding contains the g.3gpp.nw-init-ussi media feature tag;

then:

a) the UE shall de-register the binding of a UE's contact address containing an IP address associated with a GPRS IP-CAN bearer from IM CN subsystem according to 3GPP TS 24.229 [6]; or

b) the UE shall re-register the binding of a UE's contact address containing an IP address associated with a GPRS IP-CAN bearer with IM CN subsystem with a Contact header field not including the g.3gpp.nw-init-ussi media feature tag according to 3GPP TS 24.229 [6].

NOTE 2: Which of the bullets a), and b) the UE performs is influenced by other 3GPP PS data off exempt services.

C.2.2 Procedures at the USSI AS

C.2.2.1 3GPP PS data off

An USSI AS supporting the 3GPP PS data off can be configured with up to two values of whether USSI is a 3GPP PS data off exempt service, one value is valid for non-roaming users, and the other value is valid for users roaming in the various VPLMNs with whom roaming agreements exist.

When the USSI AS is only configured with the indication whether USSI is a 3GP PS data off exempt service for the UE camping in the HPLMN or the EHPLMN, the USSI AS shall use this indication also when the UE is in the VPLMN.

If the USSI AS supports the 3GPP PS data off, the USSI AS shall support obtaining registration state information from a received third-party SIP REGISTER request including information contained in the body of the third-party SIP REGISTER request as specified in 3GPP TS 24.229 [6], of the served UE.

If a received registration state information of the served UE indicates a Contact header field with the g.3gpp.ps-data-off media feature tag with the "active" value, and the USSI AS is not configured with indication that USSI is a 3GPP PS data off exempt service for the served UE then the USSI AS shall not invoke the procedures in subclause 4.5.5 which send a SIP request towards a contact address (or via a registration flow) of the served UE such that the contact address (or the registration flow) was registered or re-registered by a SIP REGISTER request with a P-Access-Network-Info header field with "3GPP-GERAN", "3GPP-UTRAN", "3GPP-E-UTRAN" or "3GPP-NR" access class and with the "network-provided" header field parameter.
Annex D (normative):
IP-Connectivity Access Network specific concepts when using EPS to access IM CN subsystem

D.1 Scope

The present annex defines IP-CAN specific requirements for a Unstructured Supplementary Service Data (USSD) using IP Multimedia (IM) Core Network (CN) subsystem IMS, where the IP-CAN is the Evolved Packet System (EPS).

D.2 Application usage of SIP

D.2.1 Procedures at the UE

D.2.1.1 3GPP PS data off

D.2.1.1.1 General

The requirements in subclause C.2.1.1.1 apply.

D.2.1.1.2 Enforcement

If the 3GPP PS data off status is "active", and the UE is not configured with indication that USSI is a 3GPP PS data off exempt service:

1) the UE shall terminate according to 3GPP TS 24.229 [6] any SIP dialog established according to subclause 4.5.4 or subclause 4.5.5 with a UE's contact address containing an IP address associated with an EPS IP-CAN bearer;

2) the UE shall not invoke the procedures in subclause 4.5.4 with a UE's contact address containing an IP address associated with an EPS IP-CAN bearer; and

NOTE 1: If the UE doesn't invoke the procedures in subclause 4.5.4 due to conditions as described in bullet 2, the UE can attempt the service according to 3GPP TS 24.229 [13] and as described in subclause 4.5.4 via non-3GPP access.

3) if the UE registered a binding with IM CN subsystem, such that:

 a) the contact address of the binding contains an IP address associated with an EPS IP-CAN bearer; and

 b) the Contact header field of the binding contains the g.3gpp.nw-init-ussi media feature tag;

 then:

 a) the UE shall de-register the binding of a UE's contact address containing an IP address associated with an EPS IP-CAN bearer from IM CN subsystem according to 3GPP TS 24.229 [6]; or

 b) the UE shall re-register the binding of a UE's contact address containing an IP address associated with an EPS IP-CAN bearer with IM CN subsystem with a Contact header field not including the g.3gpp.nw-init-ussi media feature tag according to 3GPP TS 24.229 [6].

NOTE 2: Which of the bullets a), and b) the UE performs is influenced by other 3GPP PS data off exempt services.

D.2.2 Procedures at the USSI AS

D.2.2.1 3GPP PS data off

The requirements in subclause C.2.2.1 apply.
Annex E (normative):
IP-Connectivity Access Network specific concepts when using 5GS to access IM CN subsystem

E.1 Scope

The present annex defines IP-CAN specific requirements for a Unstructured Supplementary Service Data (USSD) using IP Multimedia (IM) Core Network (CN) subsystem IMS, where the IP-CAN is the 5G System (5GS).

E.2 Application usage of SIP

E.2.1 Procedures at the UE

E.2.1.1 3GPP PS data off

The requirements in subclause C.2.1.1.1 apply.

E.2.1.2 Enforcement

If the 3GPP PS data off status is "active", and the UE is not configured with indication that USSI is a 3GPP PS data off exempt service:

1) the UE shall terminate according to 3GPP TS 24.229 [6] any SIP dialog established according to subclause 4.5.4 or subclause 4.5.5 with a UE's contact address containing an IP address associated with a 5GS QoS flow using NG-RAN;

2) the UE shall not invoke the procedures in subclause 4.5.4 with a UE's contact address containing an IP address associated with a 5GS QoS flow using NG-RAN; and

NOTE 1: If the UE doesn't invoke the procedures in subclause 4.5.4 due to conditions as described in bullet 2, the UE can attempt a request for an equivalent service via the CS domain – if supported and available – and, otherwise, the UE can attempt the service according to 3GPP TS 24.229 [13] and as described in subclause 4.5.4 via non-3GPP access.

3) if the UE registered a binding with IM CN subsystem, such that:

 a) the contact address of the binding contains an IP address associated with a 5GS QoS flow using NG-RAN; and
 b) the Contact header field of the binding contains the g.3gpp.nw-init-ussi media feature tag;

 then:

 a) the UE shall de-register the binding of a UE's contact address containing an IP address associated with a 5GS QoS flow using NG-RAN from IM CN subsystem according to 3GPP TS 24.229 [6]; or
 b) the UE shall re-register the binding of a UE's contact address containing an IP address associated with a 5GS QoS flow using NG-RAN with IM CN subsystem with a Contact header field not including the g.3gpp.nw-init-ussi media feature tag according to 3GPP TS 24.229 [6].

NOTE 2: Which of the bullets a), and b) the UE performs is influenced by other 3GPP PS data off exempt services.

E.2.2 Procedures at the USSI AS

E.2.2.1 3GPP PS data off

The requirements in subclause C.2.2.1 apply.
Annex F (informative):
Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG #</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Rev</th>
<th>Subject/Comment</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version 0.0.0 TS Skeleton</td>
<td>0.0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2011-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contains agreed P-CRs from CT1#71: C1-112245, C1-112246</td>
<td>0.0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>2011-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contains agreed P-CRs from CT1#72: C1-112934, C1-112935, C1-112956</td>
<td>0.1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>2011-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contains agreed P-CRs from CT1#73: C1-113450, C1-113451, C1-113590, C1-114411</td>
<td>0.2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>2011-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contains agreed P-CRs from CT1#74: C1-114351</td>
<td>0.3.0</td>
<td>0.4</td>
</tr>
<tr>
<td>2012-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Changes the structure of the TS in order to allow for collection of alternative proposals: existing material in main part and Annex A (signalling flows) are shifted to new Annex B. Contains agreed P-CRs from CT1#75: C1-115144, C1-115145, C1-115146, C1-115147, C1-115148, C1-115230</td>
<td>0.4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2012-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Editorial correction</td>
<td>0.5.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2012-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contains agreed P-CRs from CT1#76: C1-120685, C1-120688, C1-120693, C1-120694, C1-120884</td>
<td>0.5.1</td>
<td>0.6</td>
</tr>
<tr>
<td>2012-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contains agreed P-CR from CT1#77: C1-121624</td>
<td>0.6.0</td>
<td>0.7</td>
</tr>
<tr>
<td>2012-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contains agreed P-CRs from CT1#78: C1-121884, C1-122234, C1-122236, C1-122237</td>
<td>0.7.0</td>
<td>0.8</td>
</tr>
<tr>
<td>2012-06</td>
<td>CT-56</td>
<td>CP-120281</td>
<td></td>
<td></td>
<td>Version 1.0.0 created by MCC for presentation to CT-56 for information</td>
<td>0.8.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2012-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contains agreed P-CRs from CT1#79: C1-122529, C1-123260, C1-123261, C1-123267, C1-123353, C1-123420</td>
<td>1.0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>2012-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Editorial cleanup</td>
<td>1.1.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>Meeting</th>
<th>TDoc</th>
<th>CR</th>
<th>Rev</th>
<th>Cat</th>
<th>Subject/Comment</th>
<th>New version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-09</td>
<td>CT#73</td>
<td>CP-160485</td>
<td>0046</td>
<td>2</td>
<td>A</td>
<td>Correcting the ussd.xsd file</td>
<td>12.2.0</td>
</tr>
<tr>
<td>2016-09</td>
<td>CT#73</td>
<td>CP-160485</td>
<td>0051</td>
<td></td>
<td>A</td>
<td>USSI phone-context parameter correction</td>
<td>12.2.0</td>
</tr>
<tr>
<td>2017-03</td>
<td>CT#75</td>
<td>CP-170109</td>
<td>0054</td>
<td>2</td>
<td>A</td>
<td>Removing editors note on registration of media feature tag “g.3gpp.nw-init-ussi”</td>
<td>12.3.0</td>
</tr>
<tr>
<td>2017-03</td>
<td>CT#75</td>
<td>CP-170130</td>
<td>0052</td>
<td>3</td>
<td>B</td>
<td>3GPP PS Data Off and USSI</td>
<td>14.0.0</td>
</tr>
<tr>
<td>2018-06</td>
<td>CT#80</td>
<td>CP-181060</td>
<td>0055</td>
<td>1</td>
<td>B</td>
<td>PS Data Off for 5GS</td>
<td>15.0.0</td>
</tr>
<tr>
<td>2018-06</td>
<td>CT#80</td>
<td>CP-181074</td>
<td>0056</td>
<td>1</td>
<td>B</td>
<td>3GPP PS Data Off2 and USSI</td>
<td>15.0.0</td>
</tr>
<tr>
<td>2018-12</td>
<td>CT#82</td>
<td>CP-183044</td>
<td>0057</td>
<td>1</td>
<td>F</td>
<td>Correct PS Data Off requirements for other accesses</td>
<td>15.1.0</td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V15.0.0</td>
</tr>
<tr>
<td>V15.1.0</td>
</tr>
</tbody>
</table>