5G;
Procedures for the 5G System
(3GPP TS 23.502 version 15.2.0 Release 15)
Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
4.3.2.2.3 SMF selection
4.3.2.3 Secondary authorization/authentication by an DN-AAA server during the PDU Session establishment
4.3.3 PDU Session Modification
4.3.3.1 General
4.3.3.2 UE or network requested PDU Session Modification (non-roaming and roaming with local breakout)
4.3.3.3 UE or network requested PDU Session Modification (home-routed roaming)
4.3.4 PDU Session Release
4.3.5 Session continuity, service continuity and UP path management
4.3.5.1 Change of SSC mode 2 PDU Session Anchor with different PDU Sessions
4.3.5.2 Change of SSC mode 3 PDU Session Anchor with multiple PDU Sessions
4.3.5.3 Change of SSC mode 3 PDU Session Anchor with IPv6 Multi-homed PDU Session
4.3.5.4 Addition of additional PDU Session Anchor and Branching Point or UL CL
4.3.5.5 Removal of additional PDU Session Anchor and Branching Point or UL CL
4.3.5.6 Change of additional PDU Session Anchor for IPv6 multi-homing or UL CL
4.3.5.7 Simultaneous change of Branching Point or UL CL and additional PSA for a PDU Session
4.3.6 Application Function influence on traffic routing
4.3.6.1 General
4.3.6.2 Processing AF requests to influence traffic routing for Sessions not identified by an UE address
4.3.6.3 Notification of User Plane Management Events
4.3.6.4 Transferring an AF request targeting an individual UE address to the relevant PCF
4.3.7 CN-initiated selective deactivation of UP connection of an existing PDU Session
4.4 SMF and UPF interactions
4.4.1 N4 node level procedures
4.4.1.1 General
4.4.1.2 N4 Session Establishment procedure
4.4.1.3 N4 Session Modification procedure
4.4.1.4 N4 Session Release procedure
4.4.2 N4 Reporting Procedures
4.4.2.1 General
4.4.2.2 N4 Session Level Reporting Procedure
4.4.3 N4 Node Level Procedures
4.4.3.1 N4 Association Setup Procedure
4.4.3.2 N4 Association Update Procedure
4.4.3.3 N4 Association Release Procedure
4.4.3.4 N4 Report Procedure
4.4.3.5 N4 PFD management Procedure
4.4.4 SMF Pause of Charging procedure
4.5 User Profile management procedures
4.5.1 Subscriber Data Update Notification to AMF
4.5.2 Session Management Subscriber Data Update Notification to SMF
4.5.3 Purge of subscriber data in AMF
4.6 Security procedures
4.7 ME Identity check procedure
4.8 RAN-CN interactions
4.8.1 Connection Inactive procedure
4.8.2 Connection Resume procedure
4.8.3 N2 Notification procedure
4.9 Handover procedures
4.9.1 Handover procedures in 3GPP access
4.9.1.1 General
4.9.1.2 Xn based inter NG-RAN handover
4.9.1.2.1 General
4.9.1.2.2 Xn based inter NG-RAN handover without User Plane function re-allocation
4.9.1.2.3 Xn based inter NG-RAN handover with insertion of intermediate UPF
4.9.1.2.4 Xn based inter NG-RAN handover with re-allocation of intermediate UPF
4.9.1.3 Inter NG-RAN node N2 based handover
3GPP TS 23.502 version 15.2.0 Release 15

4.9.1.3.1 General ... 117
4.9.1.3.2 Preparation phase ... 118
4.9.1.3.3 Execution phase .. 122
4.9.1.4 Inter NG-RAN node N2 based handover, Cancel ... 125
4.9.2 Handover of a PDU Session procedure between 3GPP and untrusted non-3GPP access 125
4.9.2.1 Handover of a PDU Session procedure from 3GPP to non-3GPP access (non-roaming and roaming with local breakout) .. 125
4.9.2.2 Handover of a PDU Session procedure from 3GPP to untrusted non-3GPP access (non-roaming and roaming with local breakout) .. 125
4.9.2.3 Handover of a PDU Session procedure from untrusted non-3GPP to 3GPP access (home routed roaming) ... 126
4.9.2.3.1 The target AMF is in the PLMN of the N3IWF ... 126
4.9.2.3.2 The target AMF is not in the PLMN of the N3IWF (i.e. N3IWF in HPLMN) 127
4.9.2.4 Handover of a PDU Session procedure from 3GPP to untrusted non-3GPP access (home routed roaming) ... 127
4.9.2.4.1 The selected N3IWF is in the registered PLMN .. 127
4.9.2.4.2 The UE is roaming and the selected N3IWF is in the home PLMN 128
4.10 NG-RAN Location reporting procedures .. 128
4.11 System interworking procedures with EPC ... 130
4.11.0 General ... 130
4.11.0a Impacts to EPS Procedures ... 130
4.11.0a.1 General .. 130
4.11.0a.2 Interaction with PCC ... 130
4.11.1 N26 based Interworking Procedures ... 130
4.11.1.1 General .. 130
4.11.1.2 Handover procedures ... 131
4.11.1.2.1 5GS to EPS handover using N26 interface ... 131
4.11.1.2.2 EPS to 5GS handover using N26 interface ... 135
4.11.1.2.3 Handover Cancel ... 140
4.11.1.3 Idle Mode Mobility procedures .. 141
4.11.1.3.1 General ... 141
4.11.1.3.2 5GS to EPS Idle mode mobility using N26 interface .. 141
4.11.1.3.3 EPS to 5GS Mobility Registration Procedure (Idle and Connected State) using N26 interface ... 143
4.11.1.4 Procedures for EPS bearer ID allocation ... 147
4.11.1.4.1 EPS bearer ID allocation .. 147
4.11.1.4.2 EPS bearer ID transfer ... 150
4.11.1.4.3 EPS bearer ID revocation ... 150
4.11.1.5 Impacts to EPS Procedures ... 151
4.11.1.5.1 General ... 151
4.11.1.5.2 E-UTRAN Initial Attach .. 151
4.11.1.5.3 Tracking Area Update ... 151
4.11.1.5.4 Session Management ... 152
4.11.1.5.5 5GS to EPS handover using N26 interface ... 154
4.11.2 Interworking procedures without N26 interface ... 154
4.11.2.1 General .. 154
4.11.2.2 5GS to EPS Mobility .. 154
4.11.2.3 EPS to 5GS Mobility .. 156
4.11.2.4 Impacts to EPS Procedures ... 158
4.11.2.4.1 E-UTRAN Attach ... 158
4.11.3 Handover procedures between EPS and 5GC-N3IWF .. 159
4.11.3.1 Handover from EPS to 5GC-N3IWF .. 159
4.11.3.2 Handover from 5GC-N3IWF to EPS .. 160
4.11.4 Handover procedures between EPC/ePDG and 5GS ... 160
4.11.4.1 Handover from EPC/ePDG to 5GS .. 160
4.11.4.2 Handover from 5GS to EPC/ePDG .. 161
4.12 Procedures for non-3GPP access ... 161
4.12.1 General ... 161
4.12.2 Registration via Untrusted non-3GPP Access ... 161
4.12.2.1 General .. 161
4.12.2.2 Registration procedure for untrusted non-3GPP access ... 162
4.12.2.3 Emergency registration for untrusted non-3GPP Access ... 164
4.12.3 Deregistration procedure for untrusted non-3gpp access ... 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13.7</td>
<td>Location continuity for Handover of an Emergency session from NG-RAN</td>
<td>189</td>
</tr>
<tr>
<td>4.13.6</td>
<td>Support of IMS Voice</td>
<td>191</td>
</tr>
<tr>
<td>4.13.5</td>
<td>Location Services procedures</td>
<td>183</td>
</tr>
<tr>
<td>4.13.4</td>
<td>Emergency Services Fallback</td>
<td>182</td>
</tr>
<tr>
<td>4.13.3</td>
<td>Registration procedures for SMS over NAS</td>
<td>177</td>
</tr>
<tr>
<td>4.13.2</td>
<td>General</td>
<td>174</td>
</tr>
<tr>
<td>4.13.1</td>
<td>General</td>
<td>174</td>
</tr>
<tr>
<td>4.12.5</td>
<td>UE Requested PDU Session Establishment via Untrusted non-3GPP Access</td>
<td>168</td>
</tr>
<tr>
<td>4.12.4</td>
<td>N2 procedures via Untrusted non-3GPP Access</td>
<td>165</td>
</tr>
<tr>
<td>4.12.3</td>
<td>CN-initiated selective deactivation of UP connection of an existing PDU Session associated with</td>
<td>166</td>
</tr>
<tr>
<td>4.12.2</td>
<td>Procedure for the UE context release in the N3IWF</td>
<td>166</td>
</tr>
<tr>
<td>4.12.1</td>
<td>Service Request procedures via Untrusted non-3GPP Access</td>
<td>165</td>
</tr>
<tr>
<td>4.12.</td>
<td>Procedures and flows for Policy Framework</td>
<td>205</td>
</tr>
<tr>
<td>4.11.</td>
<td>Support for Dual Connectivity</td>
<td>194</td>
</tr>
<tr>
<td>4.10.5</td>
<td>5GC-MT-LR Procedure</td>
<td>185</td>
</tr>
<tr>
<td>4.10.4</td>
<td>Emergency Services</td>
<td>182</td>
</tr>
<tr>
<td>4.10.3</td>
<td>5GC-NI-LR Procedure</td>
<td>184</td>
</tr>
<tr>
<td>4.10.2</td>
<td>General</td>
<td>174</td>
</tr>
<tr>
<td>4.10.1</td>
<td>General</td>
<td>174</td>
</tr>
<tr>
<td>4.9.2</td>
<td>External Exposure of Network Capabilities</td>
<td>196</td>
</tr>
<tr>
<td>4.9.1</td>
<td>General</td>
<td>195</td>
</tr>
<tr>
<td>4.8.2</td>
<td>External Parameter Provisioning</td>
<td>203</td>
</tr>
<tr>
<td>4.8.1</td>
<td>General</td>
<td>203</td>
</tr>
<tr>
<td>4.7.6</td>
<td>Expected UE Behaviour parameters</td>
<td>204</td>
</tr>
<tr>
<td>4.7.5</td>
<td>NEF service operations information flow</td>
<td>200</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Exposure with bulk subscription</td>
<td>201</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Monitoring Events</td>
<td>196</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Information flows</td>
<td>198</td>
</tr>
<tr>
<td>4.7.1</td>
<td>AMF service operations information flow</td>
<td>198</td>
</tr>
<tr>
<td>4.6.2</td>
<td>CN-initiated selective deactivation of UP connection of an existing PDU Session associated with</td>
<td>166</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Service Request procedures via Untrusted non-3GPP Access</td>
<td>165</td>
</tr>
<tr>
<td>4.6</td>
<td>Procedures and flows for Policy Framework</td>
<td>205</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Expected UE Behaviour parameters</td>
<td>205</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Void</td>
<td>203</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Exposure of Mobility Events from AMF</td>
<td>203</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Event Exposure using NEF</td>
<td>196</td>
</tr>
<tr>
<td>4.5.2</td>
<td>External Exposure of Network Capabilities</td>
<td>196</td>
</tr>
<tr>
<td>4.5.1</td>
<td>General</td>
<td>195</td>
</tr>
<tr>
<td>4.5</td>
<td>Network Exposure</td>
<td>195</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Core Network Internal Event Exposure</td>
<td>203</td>
</tr>
<tr>
<td>4.4.4</td>
<td>General</td>
<td>203</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Exposure of Mobility Events from AMF</td>
<td>203</td>
</tr>
<tr>
<td>4.4.2</td>
<td>General</td>
<td>203</td>
</tr>
<tr>
<td>4.4.1</td>
<td>General</td>
<td>203</td>
</tr>
<tr>
<td>4.4</td>
<td>Support for Dual Connectivity</td>
<td>194</td>
</tr>
<tr>
<td>4.3.6</td>
<td>EPS fallback for IMS voice</td>
<td>191</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Inter RAT Fallback in 5GC for IMS voice</td>
<td>193</td>
</tr>
<tr>
<td>4.3.4</td>
<td>General</td>
<td>192</td>
</tr>
<tr>
<td>4.3.3</td>
<td>MO SMS over NAS in CM-IDLE (baseline)</td>
<td>179</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Deregistration procedures for SMS over NAS</td>
<td>178</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Void</td>
<td>180</td>
</tr>
<tr>
<td>4.2.5</td>
<td>MO SMS over NAS in CM-CONNECTED</td>
<td>180</td>
</tr>
<tr>
<td>4.2.4</td>
<td>UDM service operations information flow</td>
<td>198</td>
</tr>
<tr>
<td>4.2.3</td>
<td>CN-initiated selective deactivation of UP connection of an existing PDU Session associated with</td>
<td>166</td>
</tr>
<tr>
<td>4.2.2</td>
<td>General</td>
<td>174</td>
</tr>
<tr>
<td>4.2.1</td>
<td>General</td>
<td>174</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Location continuity for Handover of an Emergency session from NG-RAN</td>
<td>189</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Support of IMS Voice</td>
<td>191</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Network Exposure</td>
<td>195</td>
</tr>
<tr>
<td>4.1.4</td>
<td>General</td>
<td>195</td>
</tr>
<tr>
<td>4.1.3</td>
<td>General</td>
<td>174</td>
</tr>
<tr>
<td>4.1.2</td>
<td>General</td>
<td>174</td>
</tr>
<tr>
<td>4.1.1</td>
<td>General</td>
<td>174</td>
</tr>
<tr>
<td>4.1</td>
<td>Network Exposure</td>
<td>195</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Location continuity for Handover of an Emergency session from NG-RAN</td>
<td>189</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Support of IMS Voice</td>
<td>191</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Support for Dual Connectivity</td>
<td>194</td>
</tr>
<tr>
<td>3.8.1</td>
<td>General</td>
<td>195</td>
</tr>
</tbody>
</table>
4.16.1.3 AM Policy Association Establishment with the old PCF .. 208
4.16.2 AM Policy Association Modification ... 209
4.16.2.0 General .. 209
4.16.2.1 AM Policy Association Modification initiated by the AMF .. 209
4.16.2.2 AM Policy Association Modification initiated by the PCF .. 211
4.16.3 AM Policy Association Termination .. 212
4.16.3.1 General .. 212
4.16.3.2 AMF-initiated AM Policy Association Termination ... 213
4.16.3.3 PCF-initiated Policy Association Termination .. 214
4.16.4 SM Policy Association Establishment ... 215
4.16.5 SM Policy Association Modification .. 216
4.16.5.0 General .. 216
4.16.5.1 SMF initiated SM Policy Association Modification ... 216
4.16.5.2 PCF initiated SM Policy Association Modification ... 217
4.16.6 SM Policy Association Termination .. 218
4.16.7 Negotiations for future background data transfer ... 219
4.16.7.1 General .. 219
4.16.7.2 Procedures for future background data transfer ... 220
4.16.8 Procedures on interaction between PCF and CHF .. 221
4.16.8.0 General .. 221
4.16.8.1 Initial Spending Limit Retrieval .. 221
4.16.8.2 Intermediate Spending Limit Report Retrieval ... 222
4.16.8.3 Final Spending Limit Report Retrieval ... 222
4.16.8.4 Spending Limit Report ... 223
4.16.9 Update of the subscription information in the PCF ... 224
4.16.10 Providing AF request to PCFs using UDR .. 224
4.17 Network Function Service Framework Procedure ... 226
4.17.1 NF service Registration ... 226
4.17.2 NF service update .. 226
4.17.3 NF service deregistration ... 227
4.17.4 NF/NF service discovery in the same PLMN ... 227
4.17.5 NF/NF service discovery across PLMNs .. 228
4.17.6 SMF Provisioning of available UPFs using the NRF ... 229
4.17.6.0 General .. 229
4.17.6.1 SMF provisioning of UPF instances using NRF ... 229
4.17.7 NF/NF service status subscribe/notify in the same PLMN .. 230
4.17.8 NF/NF service status subscribe/notify across PLMNs .. 230
4.18 Procedures for Management of PFDs .. 231
4.18.1 General .. 231
4.18.2 PFD management via NEF (PFDF) .. 232
4.18.3 PFD management in the SMF ... 232
4.18.3.1 PFD Retrieval by the SMF .. 232
4.18.3.2 Management of PFDs in the SMF .. 233
4.19 Network Data Analytics ... 233
4.19.1 Network data analytics Subscribe/Unsubscribe .. 233
4.19.2 Network data analytics Request ... 234
<table>
<thead>
<tr>
<th>Section</th>
<th>Service</th>
<th>Service Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2.2.7A</td>
<td>Namf_Communication_N1N2TransferFailureNotification</td>
<td>service operation</td>
<td>241</td>
</tr>
<tr>
<td>5.2.2.2.8</td>
<td>Namf_Communication_N2InfoSubscribe</td>
<td>service operation</td>
<td>241</td>
</tr>
<tr>
<td>5.2.2.2.9</td>
<td>Namf_Communication_N2InfoUnsubscribe</td>
<td>service operation</td>
<td>241</td>
</tr>
<tr>
<td>5.2.2.2.10</td>
<td>Namf_Communication_N2InfoNotify</td>
<td>service operation</td>
<td>242</td>
</tr>
<tr>
<td>5.2.2.2.11</td>
<td>Namf_Communication_CreateUEContext</td>
<td>service operation</td>
<td>242</td>
</tr>
<tr>
<td>5.2.2.2.12</td>
<td>Namf_Communication_ReleaseUEContext</td>
<td>service operation</td>
<td>242</td>
</tr>
<tr>
<td>5.2.2.2.13</td>
<td>Namf_Communication_EBIAssignment</td>
<td>service operation</td>
<td>242</td>
</tr>
<tr>
<td>5.2.2.3</td>
<td>Namf_EventExposure</td>
<td>service operation</td>
<td>244</td>
</tr>
<tr>
<td>5.2.2.3.1</td>
<td>General</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>5.2.2.3.2</td>
<td>Namf_EventExposure_Subscribe</td>
<td>service operation</td>
<td>244</td>
</tr>
<tr>
<td>5.2.2.3.3</td>
<td>Namf_EventExposure_UnSubscribe</td>
<td>service operation</td>
<td>245</td>
</tr>
<tr>
<td>5.2.2.3.4</td>
<td>Namf_EventExposure_Notify</td>
<td>service operation</td>
<td>245</td>
</tr>
<tr>
<td>5.2.2.4</td>
<td>Namf_MT</td>
<td>service</td>
<td>246</td>
</tr>
<tr>
<td>5.2.2.4.1</td>
<td>General</td>
<td></td>
<td>246</td>
</tr>
<tr>
<td>5.2.2.4.2</td>
<td>Namf_MT_EnableUEReachability</td>
<td>service operation</td>
<td>246</td>
</tr>
<tr>
<td>5.2.2.4.3</td>
<td>Namf_MT_ProvideDomainSelectionInfo</td>
<td></td>
<td>246</td>
</tr>
<tr>
<td>5.2.2.5</td>
<td>Namf_Location</td>
<td>service</td>
<td>247</td>
</tr>
<tr>
<td>5.2.2.5.1</td>
<td>General</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>5.2.2.5.2</td>
<td>Namf_Location_ProvidePositioningInfo</td>
<td>service operation</td>
<td>247</td>
</tr>
<tr>
<td>5.2.2.5.3</td>
<td>Namf_Location_EventNotify</td>
<td>service operation</td>
<td>247</td>
</tr>
<tr>
<td>5.2.2.5.4</td>
<td>Namf_Location_ProvideLocationInfo</td>
<td>service operation</td>
<td>247</td>
</tr>
<tr>
<td>5.2.3</td>
<td>UDM Services</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>5.2.3.1</td>
<td>General</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>5.2.3.2</td>
<td>Nudm_UEContextManagement (UECM)</td>
<td>service</td>
<td>248</td>
</tr>
<tr>
<td>5.2.3.2.1</td>
<td>Nudm_UECM_Registration</td>
<td>service operation</td>
<td>248</td>
</tr>
<tr>
<td>5.2.3.2.2</td>
<td>Nudm_UECM_DERegistrationNotification</td>
<td>service operation</td>
<td>248</td>
</tr>
<tr>
<td>5.2.3.2.3</td>
<td>Nudm_UECM_DERegistration</td>
<td>service operation</td>
<td>249</td>
</tr>
<tr>
<td>5.2.3.2.4</td>
<td>Nudm_UEContextManagement_Get</td>
<td>service operation</td>
<td>249</td>
</tr>
<tr>
<td>5.2.3.2.5</td>
<td>Nudm_UECM_Update</td>
<td>service operation</td>
<td>249</td>
</tr>
<tr>
<td>5.2.3.2.6</td>
<td>Nudm_UECM_PCscfRestoration</td>
<td>service operation</td>
<td>250</td>
</tr>
<tr>
<td>5.2.3.3</td>
<td>Nudm_SubscriberDataManagement (SDM)</td>
<td>Service</td>
<td>250</td>
</tr>
<tr>
<td>5.2.3.3.2</td>
<td>Nudm_SDG_Get</td>
<td>service operation</td>
<td>250</td>
</tr>
<tr>
<td>5.2.3.3.3</td>
<td>Nudm_SDG_Notification</td>
<td>service operation</td>
<td>250</td>
</tr>
<tr>
<td>5.2.3.3.4</td>
<td>Nudm_SDG_Subscribe</td>
<td>service operation</td>
<td>255</td>
</tr>
<tr>
<td>5.2.3.3.5</td>
<td>Nudm_SDG_Unsubscribe</td>
<td>service operation</td>
<td>255</td>
</tr>
<tr>
<td>5.2.3.3.6</td>
<td>Nudm_SDG_Info</td>
<td>service operation</td>
<td>255</td>
</tr>
<tr>
<td>5.2.3.4</td>
<td>Nudm_UEAuthentication</td>
<td>Service</td>
<td>256</td>
</tr>
<tr>
<td>5.2.3.4.1</td>
<td>General</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>5.2.3.4.2</td>
<td>Nudm_UEAuthentication_Get</td>
<td>service operation</td>
<td>256</td>
</tr>
<tr>
<td>5.2.3.4.3</td>
<td>Nudm_UEAuthentication_ResultConfirmation</td>
<td>service operation</td>
<td>256</td>
</tr>
<tr>
<td>5.2.3.5</td>
<td>Nudm_EventExposure</td>
<td>service operation</td>
<td>256</td>
</tr>
<tr>
<td>5.2.3.5.1</td>
<td>General</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>5.2.3.5.2</td>
<td>Nudm_EventExposure_Subscribe</td>
<td>service operation</td>
<td>256</td>
</tr>
<tr>
<td>5.2.3.5.3</td>
<td>Nudm_EventExposure_Unsubscribe</td>
<td>service operation</td>
<td>256</td>
</tr>
<tr>
<td>5.2.3.5.4</td>
<td>Nudm_EventExposure_Notify</td>
<td>service operation</td>
<td>256</td>
</tr>
<tr>
<td>5.2.3.6</td>
<td>Nudm_ParameterProvision</td>
<td>service</td>
<td>257</td>
</tr>
<tr>
<td>5.2.3.6.1</td>
<td>General</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>5.2.3.6.2</td>
<td>Nudm_ParameterProvision_Update</td>
<td>service operation</td>
<td>257</td>
</tr>
<tr>
<td>5.2.4</td>
<td>5G-EIR Services</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>5.2.4.1</td>
<td>General</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>5.2.4.2</td>
<td>N5g-eir_EquipmentIdentityCheck</td>
<td>service</td>
<td>257</td>
</tr>
<tr>
<td>5.2.4.2.1</td>
<td>General</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>5.2.4.2.2</td>
<td>N5g-eir_EquipmentIdentityCheck_Get</td>
<td>service operation</td>
<td>257</td>
</tr>
<tr>
<td>5.2.5</td>
<td>PCF Services</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>5.2.5.1</td>
<td>General</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>5.2.5.2</td>
<td>Npcf_AMPolicyControl</td>
<td>Service</td>
<td>258</td>
</tr>
<tr>
<td>5.2.5.2.1</td>
<td>General</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>5.2.5.2.2</td>
<td>Npcf_AMPolicyControl_Create</td>
<td>service operation</td>
<td>258</td>
</tr>
<tr>
<td>5.2.5.2.3</td>
<td>Npcf_AMPolicyControl_UpdateNotify</td>
<td>service operation</td>
<td>259</td>
</tr>
<tr>
<td>5.2.5.2.4</td>
<td>Npcf_AMPolicyControl_Delete</td>
<td>service operation</td>
<td>259</td>
</tr>
<tr>
<td>5.2.5.2.5</td>
<td>Npcf_AMPolicyControl_Update</td>
<td>service operation</td>
<td>259</td>
</tr>
<tr>
<td>5.2.5.3</td>
<td>Npcf_PolicyAuthorization</td>
<td>Service</td>
<td>260</td>
</tr>
</tbody>
</table>
5.2.8.1 General ... 272
5.2.8 SMF Services ... 272
5.2.7.3.2 Nnrf_NFDiscovery service operation 271
5.2.7.3.1 General .. 271
5.2.7.2.7 Nnrf_NFManagement_NFStatusUnsubscribe service operation ... 271
5.2.7.2.4 Nnrf_NFManagement_NFDeregister service operation .. 270
5.2.7.2.3 Nnrf_NFManagement_NFUpdate service operation ... 269
5.2.7.2.1 General .. 269
5.2.7 NRF Services .. 269
5.2.6.7.2 Nnef_TrafficInfluence_Create operation 268
5.2.6.7.1 General .. 267
5.2.6.7 Nnef_TrafficInfluence service ... 267
5.2.6.6.3 Nnef_BDTPNegotiation_Update service operation .. 267
5.2.6.6.2 Nnef_BDTPNegotiation_Create service operation ... 267
5.2.6.6 Nnef_BDTPNegotiation service 267
5.2.6.5.3 Nnef_Trigger_DeliveryNotify service operation 267
5.2.6.5.2 Nnef_Trigger_Deliveryrequest service operation 267
5.2.6.5.1 General .. 265
5.2.6.5 Nnef_PFDManagement service .. 265
5.2.6.4.2 Nnef_ParameterProvision_Update service operation .. 266
5.2.6.4.1 General .. 266
5.2.6.4 Nnef_ParameterProvision service 266
5.2.6.3.6 Nnef_PFDManagement_Create service operation .. 266
5.2.6.3.4 Nnef_PFDManagement_Notify service operation .. 266
5.2.6.3.3 Nnef_PFDManagement_Subscribe service operation ... 265
5.2.6.3.2 Nnef_PFDManagement_Fetch service operation .. 265
5.2.6.3.1 General .. 265
5.2.6.3 Nnef_PFDManagement service .. 265
5.2.6.2.4 Nnef_EventExposure_Notify service operation 265
5.2.6.2.2 Nnef_EventExposure_Subscribe operation 265
5.2.6.2.1 General .. 265
5.2.6.2 Nnef_EventExposure service ... 265
5.2.6.5.2 Npcf_BDTPolicyControl_Create service operation .. 264
5.2.6.5.1 General .. 264
5.2.6.5 Npcf_BDTPolicyControlService ... 264
5.2.6.4.1 General .. 263
5.2.6.4 Nnef_ParameterProvision service 263
5.2.6.3.1 Npcf_BDTPolicyControl_Create service operation .. 262
5.2.6.3.2 Npcf_BOACPolicyControl_UpdateNotify service operation ... 263
5.2.6.3.1 General .. 262
5.2.6.3 Npcf_SMPolicyControl service .. 262
5.2.6.2.2 Npcf_SMPolicyControl_UpdateNotify service operation ... 262
5.2.6.2.1 General .. 261
5.2.6.2 Npcf_SMPolicyControl service .. 261
5.2.6.1 General ... 260
5.2.6.1 Npcf_PolicyAuthorization service 260
5.2.5.5.2 Npcf_BDTPolicyControl_Create service operation .. 264
5.2.5.4.5 Npcf_SMPolicyControl_Update service operation ... 263
5.2.5.4.4 Npcf_SMPolicyControl_Delete service operation .. 263
5.2.5.4.3 Npcf_SMPolicyControl_UpdateNotify service operation ... 263
5.2.5.4.2 Npcf_SMPolicyControl_Create service operation .. 262
5.2.5.3.7 Npcf_PolicyAuthorization_Unsubscribe service operation ... 262
5.2.5.3.6 Npcf_PolicyAuthorization_Subscribe service operation ... 261
5.2.5.3.5 Npcf_PolicyAuthorization_Notify service operation ... 261
5.2.5.3.4 Npcf_PolicyAuthorization_Delete service operation 260
5.2.5.3.3 Npcf_PolicyAuthorization_Create service operation 260
5.2.5.3.2 Npcf_PolicyAuthorization_Delete service operation 260
5.2.5.3.1 General .. 260
5.2.5.3 Npcf_PolicyAuthorization service 260
5.2.5.2.7 Npcf_BDTPolicyControl_Update service operation .. 264
5.2.5.2.6 Npcf_BDTPolicyControl_Delete service operation .. 264
5.2.5.2.5 Npcf_BDTPolicyControl_Subscribe service operation ... 264
5.2.5.2.4 Npcf_BDTPolicyControl_Notify service operation .. 264
5.2.5.2.3 Npcf_BDTPolicyControl_Create service operation .. 264
5.2.5.2.2 Npcf_BDTPolicyControl_UpdateNotify service operation ... 264
5.2.5.2.1 General .. 264
5.2.5.2 Npcf_BDTPolicyControl service 264
5.2.5 NEF Services ... 264
5.2.4.7.2 Nnef_TrafficInfluence_Create operation 268
5.2.4.7.1 General .. 268
5.2.4.7 Nnef_TrafficInfluence service ... 268
5.2.4.6.3 Nnef_BDTPNegotiation_Update service operation .. 267
5.2.4.6.2 Nnef_BDTPNegotiation_Create service operation ... 267
5.2.4.6.1 General .. 267
5.2.4.6 Nnef_BDTPNegotiation service 267
5.2.4.5.4 Npcf_SMPolicyControl_Update service operation ... 263
5.2.4.5.3 Npcf_SMPolicyControl_Delete service operation .. 263
5.2.4.5.2 Npcf_SMPolicyControl_Delete service operation .. 263
5.2.4.5.1 General .. 263
5.2.4.5 Npcf_SMPolicyControl service 263
5.2.4.4.4 Npcf_SMPolicyControl_Delete service operation .. 262
5.2.4.4.3 Npcf_SMPolicyControl_Delete service operation .. 262
5.2.4.4.2 Npcf_SMPolicyControl_Create service operation .. 262
5.2.4.4.1 General .. 262
5.2.4.4 Npcf_SMPolicyControl service 262
5.2.4.3.6 Nnef_PFDManagement_Create service operation .. 266
5.2.4.3.4 Nnef_PFDManagement_Notify service operation .. 266
5.2.4.3.3 Nnef_PFDManagement_Subscribe service operation ... 265
5.2.4.3.2 Nnef_PFDManagement_Fetch service operation .. 265
5.2.4.3.1 General .. 265
5.2.4.3 Nnef_PFDManagement service .. 265
5.2.4.2.4 Nnef_EventExposure_Notify service operation 265
5.2.4.2.2 Nnef_EventExposure_Subscribe operation 265
5.2.4.2.1 General .. 265
5.2.4.2 Nnef_EventExposure service ... 265
5.2.4.1 General ... 264
5.2.4.1 Nnef_ParameterProvision service 264
5.2.4.3 Nnef_PFDManagement service .. 264
5.2.4.2 Nnef_PFDManagement service .. 264
5.2.4.1 General ... 264
5.2.4 NEF Services ... 264
5.2.3.7 Npcf_BDTPolicyControl_Create service operation .. 262
5.2.3.6 Npcf_BDTPolicyControl_Delete service operation .. 262
5.2.3.5 Npcf_BDTPolicyControl_Subscribe service operation ... 262
5.2.3.4 Npcf_BDTPolicyControl_Create service operation .. 262
5.2.3.3 Npcf_BDTPolicyControl_Delete service operation .. 262
5.2.3.2 Npcf_BDTPolicyControl_Subscribe service operation ... 262
5.2.3.1 General .. 262
5.2.3.1 Npcf_BDTPolicyControl service 262
5.2.3 NRF Services ... 262
5.2.2.7 Nnrf_NFManagement_service ... 269
5.2.2.6 Nnrf_NFManagement_NFStatusNotify service operation ... 269
5.2.2.5 Nnrf_NFManagement_NFStatusSubscribe service operation .. 269
5.2.2.4 Nnrf_NFManagement_NFDereregister service operation .. 269
5.2.2.3 Nnrf_NFManagement_NFUpdate service operation ... 269
5.2.2.2 Nnrf_NFManagement_NFRegister service operation ... 269
5.2.2.1 General .. 269
5.2.2.1 Nnrf_NFManagement service .. 269
5.2.2 SMF Services ... 272
5.2.1 General ... 272
5.2.1 SMF Services ... 272
5.2 NRF Services ... 270
5.1.9 Nnrf_NFDiscovery service ... 271
5.1.8 Nnrf_NFDiscovery service ... 271
5.1.1 General ... 271
5.2.8.2 Nsmf_PDUSession Service

5.2.8.2.1 General

5.2.8.2.2 Nsmf_PDUSession_Create service operation

5.2.8.2.3 Nsmf_PDUSession_Update service operation

5.2.8.2.4 Nsmf_PDUSession_Release service operation

5.2.8.2.5 Nsmf_PDUSession_CreateSMContext service operation

5.2.8.2.6 Nsmf_PDUSession_UpdateSMContext service operation

5.2.8.2.7 Nsmf_PDUSession_ReleaseSMContext service operation

5.2.8.2.8 Nsmf_PDUSession_SMContextStatusNotify service operation

5.2.8.2.9 Nsmf_PDUSession_StatusNotify service operation

5.2.8.2.10 Nsmf_PDUSession_ContextRequest service operation

5.2.8.3 Nsmf_EventExposure Service

5.2.8.3.1 General

5.2.8.3.2 Nsmf_EventExposure_Notify service operation

5.2.8.3.3 Nsmf_EventExposure_Subscribe service operation

5.2.8.3.4 Nsmf_EventExposure_Unsubscribe service operation

5.2.9 SMSF Services

5.2.9.1 General

5.2.9.2 Nsmsf_SMService service

5.2.9.2.1 General

5.2.9.2.2 Nsmsf_SMService_Activate service operation

5.2.9.2.3 Nsmsf_SMService_Deactivate service operation

5.2.9.2.4 Nsmsf_SMService_UplinkSMS service operation

5.2.10 AUSF Services

5.2.10.1 General

5.2.10.2 Nausf_UEAuthentication service

5.2.10.2.1 General

5.2.10.2.2 Nausf_UEAuthentication_Authenticate service operation

5.2.10.2.3 Void

5.2.11 NWDAF Services

5.2.11.1 General

5.2.11.2 Nnwdaf_EventsSubscription Service

5.2.11.2.1 General

5.2.11.2.2 Nnwdaf_EventsSubscription_Subscribe service operation

5.2.11.2.3 Nnwdaf_EventsSubscription_Unsubscribe service operation

5.2.11.2.4 Nnwdaf_EventsSubscription_NOTIFY service operation

5.2.11.3 Nnwdaf_Analytics_Info service

5.2.11.3.1 General

5.2.11.3.2 Nnwdaf_AnalyticsInfo_Request service operation

5.2.12 UDR Services

5.2.12.1 General

5.2.12.2 Nudr_DataManagement (DM) service

5.2.12.2.1 General

5.2.12.2.2 Nudr_DM_Query service operation

5.2.13 BSF Services

5.2.13.1 General

5.2.13.2 Nbsf_Management service

5.2.13.2.1 General

5.2.13.2.2 Nbsf_Management_Register service operation

5.2.13.2.3 Nbsf_Management_Deregister service operation

5.2.13.2.4 Nbsf_Management_Discovery service operation

5.2.14 UDSF Services

5.2.14.1 General

5.2.14.2 Nuds UnstructuredDataManagement service

5.2.14.2.1 General

5.2.14.2.2 Nuds UnstructuredDataManagement_Query service operation

5.2.14.2.3 Nuds UnstructuredDataManagement_Create service operation

5.2.14.2.4 Nuds UnstructuredDataManagement_Delete service operation

5.2.14.2.5 Nuds UnstructuredDataManagement_Update service operation

5.2.15 LMF Services

5.2.15.1 General

5.2.15.2 Nlmf_Location service
Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document defines the Stage 2 procedures and Network Function Services for the 5G system architecture which is described in the TS 23.501 [2] and for the policy and charging control framework which is described in TS 23.503 [20].

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[7] 3GPP TS 23.040: "Technical realization of the Short Message Service (SMS)".
[8] IETF RFC 4862: "IPv6 Stateless Address Autoconfiguration".
[9] 3GPP TS 38.300: "NR and NG-RAN Overall Description; Stage 2".
[10] 3GPP TS 38.413: "NG-RAN; NG Application Protocol (NGAP)".
[11] 3GPP TS 23.335: "User Data Convergence (UDC); Technical realization and information flows; Stage 2".
[12] 3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol Specification".
[14] 3GPP TS 23.221: "Architectural requirements".
[16] 3GPP TS 36.331: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification".
[17] 3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".
[18] 3GPP TS 29.518: "5G System; Access and Mobility Management Services; Stage 3".
[19] 3GPP TS 29.519: "5G System; Usage of the Unified Data Repository service for Policy Control Data and Structured Data; Stage 3".
[21] IETF RFC 4191: "Default Router Preferences and More-Specific Routes".
3 Definitions, symbols and abbreviations

3.1 Definitions

3.2 Abbreviations

4 System procedures

4.1 General

The clause 4 describes the procedures and Network Function services for the 5GS by end-to-end information flows, and these information flows make use of NF service operations, defined in clause 5, for the communication within the 5GC Control Plane.
4.2 Connection, Registration and Mobility Management procedures

4.2.1 General

The Connection Management is used to establish and release the Control Plane signalling connection between the UE and the AMF. The Registration Management is used to register or deregister a UE/user with the 5GS, and establish the user context in the 5GS. The Mobility Management functions are used to keep track of the current location of a UE. The procedures in clause 4.2 provides Connection, Registration and Mobility Management functionality.

4.2.2 Registration Management procedures

4.2.2.1 General

The Registration and Deregistration procedures in clause 4.2.2 provides the required functionality to register or deregister a UE/user with the 5GS. Additional functionality to support Registration Management for non-3GPP access is defined in clause 4.12. Additional functionality to support Registration Management for specific services such as SMS over NAS is defined in clause 4.13.

4.2.2.2 Registration procedures

4.2.2.2.1 General

A UE needs to register with the network to get authorized to receive services, to enable mobility tracking and to enable reachability. The Registration procedure is used when the UE needs to perform:

- Initial Registration to the 5GS;
- Mobility Registration Update upon changing to a new Tracking Area (TA) outside the UE's Registration Area in both CM-CONNECTED and CM-IDLE state, or when the UE needs to update its capabilities or protocol parameters that are negotiated in Registration procedure with or without changing to a new TA; or
- Periodic Registration Update (due to a predefined time period of inactivity).

The General Registration call flow in clause 4.2.2.2.2 applies on all these Registration procedures, but the periodic registration need not include all parameters that are used in other registration cases.

Aspects related to dual registration in 3GPP and non-3GPP access are described in clause 4.12. The general Registration call flow in clause 4.2.2.2.2 is also used for the case of registration in 3GPP access when the UE is already registered in a non-3GPP access, and vice versa. Registration in 3GPP access when the UE is already registered in a non-3GPP access scenario may require an AMF change, as further detailed in clause 4.12.8.

The general Registration call flow in clause 4.2.2.2.2 is also used for emergency registration by UEs requiring to perform emergency services but cannot gain normal services from the network. These UEs are in limited service state as defined in TS 23.122 [22].

During the initial registration the PEI is obtained from the UE. The AMF operator may check the PEI with an EIR. The AMF passes the PEI (IMEISV) to the UDM, to the SMF and the PCF, then UDM may store this data in UDR by Nudr_SDM_Update.

NOTE 1: The use of NSI ID in the 5GC is optional and depends on the deployment choices of the operator.

During the registration the Home Network can provide Steering of Roaming information to the UE via the AMF (i.e. a list of preferred PLMN/access technology combinations or HPLMN indication that 'no change of the "Operator Controlled PLMN Selector with Access Technology" list stored in the UE is needed). The Home Network can include an indication for the UE to send an acknowledgement of the reception of this information. Details regarding the handling of Steering of Roaming information including how this information is managed between the AMF and the UE are defined in TS 23.122 [22].
4.2.2.2.2 General Registration

1. UE to (R)AN: AN message (AN parameters, Registration Request (Registration type, SUCI or 5G-GUTI or PEI, last visited TAI (if available), Security parameters, Requested NSSAI, [Mapping Of Requested NSSAI], UE Radio Capability Update, UE MM Core Network Capability, PDU Session status, List Of PDU Sessions To Be

Figure 4.2.2.2.2-1: Registration procedure
Activated, Follow on request, MICO mode preference, Requested DRX parameters) and UE Policy Container (the list of PSIs)).

In the case of NG-RAN, the AN parameters include e.g. SUCI or the 5G-GUTI, the Selected PLMN ID and Requested NSSAI, the AN parameters also include Establishment cause. The Establishment cause provides the reason for requesting the establishment of an RRC connection.

The Registration type indicates if the UE wants to perform an Initial Registration (i.e. the UE is in RM-DEREGISTERED state), a Mobility Registration Update (i.e. the UE is in RM-REGISTERED state and initiates a Registration procedure due to mobility or due to the UE needs to update its capabilities or protocol parameters, or to request a change of the set of network slices it is allowed to use), a Periodic Registration Update (i.e. the UE is in RM-REGISTERED state and initiates a Registration procedure due to the Periodic Registration Update timer expiry, see clause 4.2.2.2.1) or an Emergency Registration (i.e. the UE is in limited service state).

When the UE is performing an Initial Registration (i.e., the UE is in RM-DEREGISTERED state) the UE shall indicate its UE identity as follows:

- If the UE is in RM-DEREGISTERED state, the UE shall include a native 5G-GUTI assigned by the same or an equivalent PLMN, if available; otherwise, the UE shall include a native 5G-GUTI assigned by other PLMNs (if available).
- If the UE is already in RM-REGISTERED state via another access in the same or equivalent PLMN, it shall indicate a native 5G-GUTI (if available) allocated by the AMF during the previous Registration procedure.
- If the UE is already in RM-REGISTERED state via another access in a PLMN (e.g. PLMN A) not equivalent to the PLMN the UE is trying to register with (e.g. PLMN B), the UE shall include a native 5G-GUTI (if available) assigned by a PLMN (e.g. PLMN C) that is not the same or equivalent to the PLMN in which the UE is already in RM-REGISTERED state (PLMN A).
- Otherwise, the UE shall include its SUCI in the Registration Request as defined in TS 33.501 [15].

When the UE is performing an Initial Registration (i.e., the UE is in RM-DEREGISTERED state) with a native 5G-GUTI then the UE shall indicate the related GUAMI information in the AN parameters. When the UE is performing an Initial Registration with its SUCI, the UE shall not indicate any GUAMI information in the AN parameters.

If the UE previously received a UE Configuration Update Command indicating that the UE needs to re-register and that it shall not provide the 5G-GUTI in access stratum signalling when performing the Registration procedure, the UE performs a Mobility Registration and shall not include any GUAMI information in the AN parameters. For an Emergency Registration, the SUCI shall be included if the UE does not have a valid 5G-GUTI available; the PEI shall be included when the UE has no SUPI and no valid 5G-GUTI. In other cases, the 5G-GUTI is included and it indicates the last serving AMF.

The UE may provide the UE's usage setting based on its configuration as defined in TS 23.501 [2] clause 5.16.3.7. In case of Initial Registration or Mobility Registration Update, the UE includes the Mapping Of Requested NSSAI (if available), which is the mapping of each S-NSSAI of the Requested NSSAI to the S-NSSAIo of the Configured NSSAI for the HPLMN, to ensure that the network is able to verify whether the S-NSSAI(s) in the Requested NSSAI are permitted based on the Subscribed S-NSSAI.

In the case of Mobility Registration Update, the UE includes in the "List of PDU Sessions To Be Activated" the PDU Sessions for which there are pending uplink data. In some cases (see TS 24.501 [25]) the UE may include PDU Sessions in the "List of PDU Sessions To Be Activated" even if there are no pending uplink data for those PDU Sessions.

The UE MM Core Network Capability is provided by the UE and handled by AMF as defined in TS 23.501 [2] clause 5.4.4a The UE includes in the UE MM Core Network Capability an indication if it supports Request Type flag "handover" for PDN connectivity request during the attach procedure as defined in clause 5.17.2.3.1 of TS 23.501 [2].

If available, the last visited TAI shall be included in order to help the AMF produce Registration Area for the UE.

The Security parameters are used for Authentication and integrity protection, see TS 33.501 [15]. Requested NSSAI indicates the Network Slice Selection Assistance Information (as defined in clause 5.15 of TS 23.501 [2]). The PDU Session status indicates the previously established PDU Sessions in the UE. When the
UE is connected to the two AMFs belonging to different PLMN via 3GPP access and non-3GPP access then the PDU Session status indicates the established PDU Session of the current PLMN in the UE. The List Of PDU Sessions To Be Activated is included to indicate the PDU Session(s) for which the UE intends to activate UP connections. A PDU Session corresponding to a LADN shall not be included in the List Of PDU Sessions To Be Activated when the UE is outside the area of availability of the LADN. The Follow on request is included when the UE has pending uplink signalling and the UE doesn't include List Of PDU Sessions To Be Activated, or the Registration type indicates the UE wants to perform an Emergency Registration. In Initial Registration and Mobility Registration Update, UE provides the UE Requested DRX parameters, as defined in clause 5.4.5 of TS 23.501 [2].

The UE provides UE Radio Capability Update indication as described in TS 23.501 [2].

The UE access selection and PDU session selection identifies the list of UE access selection and PDU session selection policy information stored in the UE, defined in clause 6.6 of TS 23.503 [20]. They are used by the PCF to determine if the UE has to be updated with new PSIs or if some of the stored ones are no longer applicable and have to be removed.

2. If a 5G-GUTI is not included or the 5G-GUTI does not indicate a valid AMF the (R)AN, based on (R)AT and Requested NSSAI, if available, selects an AMF.

The (R)AN selects an AMF as described in TS 23.501 [2], clause 6.3.5. If UE is in CM-CONNECTED state, the (R)AN can forward the Registration Request message to the AMF based on the N2 connection of the UE.

If the (R)AN cannot select an appropriate AMF, it forwards the Registration Request to an AMF which has been configured, in (R)AN, to perform AMF selection.

3. (R)AN to new AMF: N2 message (N2 parameters, Registration Request (as described in step 1) and UE access selection and PDU session selection information, UE Context request).

When NG-RAN is used, the N2 parameters include the Selected PLMN ID, Location Information and Cell Identity related to the cell in which the UE is camping.

When NG-RAN is used, the N2 parameters also include the Establishment cause.

Mapping Of Requested NSSAI is provided only if available.

If the Registration type indicated by the UE is Periodic Registration Update, then steps 4 to 20 may be omitted.

4. [Conditional] new AMF to old AMF: Namf_Communication_UEContextTransfer (complete Registration Request) or new AMF to UDSF: Nudsf_Unstructured Data Management_Query().

(With UDSF Deployment): If the UE's 5G-GUTI was included in the Registration Request and the serving AMF has changed since last Registration procedure, new AMF and old AMF are in the same AMF Set and UDSF is deployed, the new AMF retrieves the stored UE's SUPI and UE context directly from the UDSF using Nudsf_UnstructuredDataManagement_Query service operation or they can share stored UE context via implementation specific means if UDSF is not deployed. This includes also event subscription information by each NF consumer for the given UE. In this case, the new AMF uses integrity protected complete Registration request NAS message to perform and verify integrity protection.

(Without UDSF Deployment): If the UE's 5G-GUTI was included in the Registration Request and the serving AMF has changed since last Registration procedure, the new AMF may invoke the Namf_Communication_UEContextTransfer service operation on the old AMF including the complete Registration Request NAS message, which may be integrity protected, to request the UE's SUPI and UE Context. See clause 5.2.2.2.2 for details of this service operation. In this case, the old AMF uses either 5G-GUTI and the integrity protected complete Registration request NAS message, or the SUPI and an indication that the UE is validated from the new AMF, to verify integrity protection if the context transfer service operation invocation corresponds to the UE requested. The old AMF also transfers the event subscriptions information by each NF consumer, for the UE, to the new AMF.

NOTE 1: The new AMF sets the indication that the UE is validated according to step 9a, in case the new AMF has performed successful UE authentication after previous integrity check failure in the old AMF.

NOTE 2: The NF consumers does not need to subscribe for the events once again with the new AMF after the UE is successfully registered with the new AMF.
If the new AMF has already received UE contexts from the old AMF during handover procedure, then step 4, 5 and 10 shall be skipped.

For an Emergency Registration, if the UE identifies itself with a 5G-GUTI that is not known to the AMF, steps 4 and 5 are skipped and the AMF immediately requests the SUPI from the UE. If the UE identifies itself with PEI, the SUPI request shall be skipped. Allowing Emergency Registration without a user identity is dependent on local regulations.

5. [Conditional] old AMF to new AMF: Response to Namf_Communication_UEContextTransfer (SUPI, UE Context in AMF (as per Table 5.2.2.2.2-1)) or UDSF to new AMF: Nudsf_Unstructured Data Management_Query().

If the UDSF was queried in step 4, the UDSF responds to the new AMF for the Nudsf_Unstructured Data Management_Query invocation with the related contexts including established PDU Sessions, the old AMF includes SMF information DNN, S-NSSAI(s) and PDU Session ID, active NGAP UE-TNLA bindings to N3IWF, the old AMF includes information about the NGAP UE-TNLA bindings. If the Old AMF was queried in step 4, Old AMF responds to the new AMF for the Namf_Communication_UEContextTransfer invocation by including the UE's SUPI and UE Context.

If old AMF holds information about established PDU Session(s), the old AMF includes SMF information, DNN(s), S-NSSAI(s) and PDU Session ID(s).

If old AMF holds information about active NGAP UE-TNLA bindings to N3IWF, the old AMF includes information about the NGAP UE-TNLA bindings.

If old AMF fails the integrity check of the Registration Request NAS message, the old AMF shall indicate the integrity check failure.

If old AMF holds information about AM Policy Association, the old AMF includes the information about the AM Policy Association including the policy control request trigger and PCF ID. In the roaming case, V-PCF ID and H-PCF ID are included.

NOTE 3: When new AMF uses UDSF for context retrieval, interactions between old AMF, new AMF and UDSF due to UE signaling on old AMF at the same time is implementation issue.

6. [Conditional] new AMF to UE: Identity Request ().

If the SUCI is not provided by the UE nor retrieved from the old AMF the Identity Request procedure is initiated by AMF sending an Identity Request message to the UE requesting the SUCI.

7. [Conditional] UE to new AMF: Identity Response ().

The UE responds with an Identity Response message including the SUCI. The UE derives the SUCI by using the provisioned public key of the HPLMN, as specified in TS 33.501 [15].

8. The AMF may decide to initiate UE authentication by invoking an AUSF. In that case, the AMF selects an AUSF based on SUPI or SUCI, as described in TS 23.501 [2], clause 6.3.4.

If the AMF is configured to support Emergency Registration for unauthenticated SUPIs and the UE indicated Registration type Emergency Registration, the AMF skips the authentication or the AMF accepts that the authentication may fail and continues the Registration procedure.

9a. Upon request from the AMF, the AUSF shall execute authentication of the UE. The authentication is performed as described in TS 33.501 [15]. The AUSF selects a UDM as described in TS 23.501 [2], clause 6.3.8 and gets the authentication data from UDM.

Once the UE has been authenticated the AUSF provides relevant security related information to the AMF. In case the AMF provided a SUCI to AUSF, the AUSF shall return the SUPI to AMF only after the authentication is successful.

After successful authentication in new AMF, which is triggered by the integrity check failure in old AMF at step 5, the new AMF invokes step 4 above again and indicates that the UE is validated (i.e. through the reason parameter as specified in clause 5.2.2.2.2).

The AMF decides if the Registration Request needs to be rerouted as described in clause 4.2.2.2.3, where the initial AMF refers to the AMF.
9b. The NAS security initiation is performed as described in TS 33.501 [15].

9c. Upon completion of NAS security function setup, the AMF initiates NGAP procedure to provide the 5G-AN with security context as specified in TS 38.413 [10] if the 5G-AN had requested for UE Context or if there is a need for AMF to provide this.

9d. The 5G-AN stores the security context and acknowledges to the AMF. The 5G-AN uses the security context to protect the messages exchanged with the UE as described in TS 33.501 [15].

10. [Conditional] new AMF to old AMF: Namf_Communication_RegistrationCompleteNotify ()

If the AMF has changed the new AMF notifies the old AMF that the registration of the UE in the new AMF is completed by invoking the Namf_Communication_RegistrationCompleteNotify service operation.

If the authentication/security procedure fails, then the Registration shall be rejected, and the new AMF invokes the Namf_Communication_RegistrationCompleteNotify service operation with a reject indication reason code towards the old AMF. The old AMF continues as if the UE context transfer service operation was never received.

If one or more of the S-NSSAIs used in the old Registration Area cannot be served in the target Registration Area, the new AMF determines which PDU Session cannot be supported in the new Registration Area. The new AMF invokes the Namf_Communication_RegistrationCompleteNotify service operation including the rejected PDU Session ID and a reject cause (e.g. the S-NSSAI becomes no longer available) towards the old AMF. Then the new AMF modifies the PDU Session Status correspondingly. The old AMF informs the corresponding SMF(s) to locally release the UE's SM context by invoking the Nsmf_PDUSession_ReleaseSMContext service operation.

See clause 5.2.2.2.3 for details of Namf_Communication_RegistrationCompleteNotify service operation.

If the PEI was not provided by the UE nor retrieved from the old AMF the Identity Request procedure is initiated by AMF sending an Identity Request message to the UE to retrieve the PEI. The PEI shall be transferred encrypted unless the UE performs Emergency Registration and cannot be authenticated.

For an Emergency Registration, the UE may have included the PEI in the Registration Request. If so, the PEI retrieval is skipped.

12. Optionally the new AMF initiates ME identity check by invoking the N5g-eir_EquipmentIdentityCheck_Get service operation (see clause 5.2.4.2.2).

The PEI check is performed as described in clause 4.7.

For an Emergency Registration, if the PEI is blocked, operator policies determine whether the Emergency Registration procedure continues or is stopped.

13. If step 14 is to be performed, the new AMF, based on the SUPI, selects a UDM, then UDM may select a UDR instance. See TS 23.501 [2], clause 6.3.9.

The AMF retrieves the Access and Mobility Subscription data, SMF Selection Subscription data and UE context in SMF data using Nudm_SDM_Get. This requires that UDM may retrieve this information from UDR by Nudr_UDM_Query. After a successful response is received, the AMF subscribes to be notified using Nudm_SDMSubscribe when the data requested is modified, UDM may subscribe to UDR by Nudr_UDM_Subscribe. The GPSI is provided to the AMF in the Access and Mobility Subscription data from the UDM if the GPSI is available in the UE subscription data. The UDM may provide indication that the
subscription data for network slicing is updated for the UE. If the UE is subscribed to MPS in the serving PLMN, "MPS priority" is included in the Access and Mobility Subscription data provided to the AMF.

The new AMF provides the Access Type it serves for the UE to the UDM and the Access Type is set to "3GPP access". The UDM stores the associated Access Type together with the serving AMF in UDR by Nudr_UDM_Update.

The new AMF creates an UE context for the UE after getting the Access and Mobility Subscription data from the UDM.

For an Emergency Registration in which the UE was not successfully authenticated, the AMF shall not register with the UDM.

For an Emergency Registration, the AMF shall not check for access restrictions, regional restrictions or subscription restrictions. For an Emergency Registration, the AMF shall ignore any unsuccessful registration response from UDM and continue with the Registration procedure.

14d. When the UDM stores the associated Access Type (e.g. 3GPP) together with the serving AMF as indicated in step 14a, it will cause the UDM to initiate a Nudm_UECM_DeregistrationNotification (see clause 5.2.3.2.2) to the old AMF corresponding to the same (e.g. 3GPP) access, if one exists. The old AMF removes the UE context of the UE. If the serving NF removal reason indicated by the UDM is Initial Registration, then, as described in clause 4.2.3.2, the old AMF invokes the Nsmf_PDUSession_ReleaseSMContext (SUPI, PDU Session ID) service operation towards all the associated SMF(s) of the UE to notify that the UE is deregistered from old AMF. The SMF(s) shall release the PDU Session on getting this notification.

14e. The Old AMF unsubscribes with the UDM for subscription data using Nudm_SDM_unsubscribe.

15. If the AMF decides to initiate PCF communication, e.g. the AMF has not yet obtained Access and Mobility policy for the UE or if the Access and Mobility policy in the AMF are no longer valid, the AMF acts as follows.

If the new AMF receives PCF ID(s) included in UE context from the old AMF in step 5, the AMF contacts the (V-)PCF identified by the (V-)PCF ID.

If the (V-)PCF identified by the (V-)PCF ID cannot be used (e.g. no response from the (V-)PCF) or there is no PCF ID received from the old AMF in step 5, the AMF selects a (V)-PCF and may select an H-PCF (for roaming scenario) as described in TS 23.501 [2], clause 6.3.7.1 and according to the V-NRF to H-NRF interaction described in clause 4.3.2.2.3.3.

16. [Optional] new AMF performs an AM Policy Association Establishment as defined in clause 4.16.1.2. For an Emergency Registration, this step is skipped.

If the new AMF contacts the PCF identified by the (V-)PCF ID received during inter-AMF mobility in step 5, the new AMF shall include the PCF ID(s) in the Npcf_AMPolicyControl Create operation. This indication is not included by the AMF during initial registration procedure.

If the AMF notifies the Mobility Restrictions (e.g. UE location) to the PCF for adjustment, or if the PCF updates the Mobility Restrictions itself due to some conditions (e.g. application in use, time and date), the PCF shall provide the updated Mobility Restrictions to the AMF.

17. [Conditional] AMF to SMF: Nsmf_PDUSession_UpdateSMContext ()

For an Emergency Registered UE, this step is applied when the Registration Type is Mobility Registration Update.

The AMF invokes the Nsmf_PDUSession_UpdateSMContext (see clause 5.2.8.2.6) in the following scenario(s):

- If the "List Of PDU Sessions To Be Activated" is included in the Registration Request in step 1, the AMF sends Nsmf_PDUSession_UpdateSMContext Request to SMF(s) associated with the PDU Session(s) in order to activate User Plane connections of these PDU Session(s). Steps from step 5 onwards described in clause 4.2.3.2 are executed to complete the User Plane connection activation without sending MM NAS Service Accept from the AMF to (R)AN described in step 12 of clause 4.2.3.2.

When the serving AMF has changed, the new serving AMF notifies the SMF for each PDU Session that it has taken over the responsibility of the signalling path towards the UE: the new serving AMF invokes the
Nsmf_PDUSession_UpdateSMContext service operation using SMF information received from the old AMF at step 5. It also indicates whether the PDU Session is to be re-activated.

Steps from step 5 onwards described in clause 4.2.3.2 are executed. In the case that the intermediate UPF insertion, removal, or change is performed for the PDU Session(s) not included in "PDU Session(s) to be re-activated", the procedure is performed without N11 and N2 interactions to update the N3 user plane between (R)AN and 5GC.

The AMF invokes the Nsmf_PDUSession_ReleaseSMContext service operation towards the SMF in the following scenario:

- If any PDU Session status indicates that it is released at the UE, the AMF invokes the Nsmf_PDUSession_ReleaseSMContext service operation towards the SMF in order to release any network resources related to the PDU Session.

If the serving AMF is changed, the new AMF shall wait until step 18 is finished with all the SMFs associated with the UE. Otherwise, steps 19 to 22 can continue in parallel to this step.

18. New AMF to N3IWF: N2 AMF Mobility Request ().

If the AMF has changed and the old AMF has indicated an existing NGAP UE association towards a N3IWF, the new AMF creates an NGAP UE association towards the N3IWF to which the UE is connected. This automatically releases the existing NGAP UE association between the old AMF and the N3IWF.

19. N3IWF to new AMF: N2 AMF Mobility Response ().

If the old AMF previously initiated a Policy Association to the PCF, and the old AMF did not transfer the PCF ID(s) to the new AMF (e.g. new AMF is in different PLMN), the old AMF performs an AMF-initiated Policy Association Termination procedure, as defined in clause 4.16.3.2, to delete the association with the PCF.

21. New AMF to UE: Registration Accept (5G-GUTI, Registration Area, Mobility restrictions, PDU Session status, Allowed NSSAI, [Mapping Of Allowed NSSAI], [Configured NSSAI for the Serving PLMN], [Mapping Of Configured NSSAI], Periodic Registration Update timer, LADN Information and accepted MICO mode, IMS Voice over PS session supported Indicator, Emergency Service Support indicator, Accepted DRX parameters, Network support of Interworking without N26), Network Slicing Subscription Change Indication. The Allowed NSSAI for the Access Type for the UE is included in the N2 message carrying the Registration Accept message.

The AMF sends a Registration Accept message to the UE indicating that the Registration Request has been accepted. 5G-GUTI is included if the AMF allocates a new 5G-GUTI. If the UE is already in RM-REGISTERED state via another access in the same or equivalent PLMN, the UE shall use the 5G-GUTI received in the Registration Accept for both registrations. If no 5G-GUTI is included in the Registration Accept, then the UE uses the 5G-GUTI assigned for the existing registration also for the new registration. If the AMF allocates a new Registration area, it shall send the Registration area to the UE via Registration Accept message. If there is no Registration area included in the Registration Accept message, the UE shall consider the old Registration Area as valid. Mobility Restrictions is included in case mobility restrictions applies for the UE and Registration Type is not Emergency Registration. The AMF indicates the established PDU Sessions to the UE in the PDU Session status. The UE removes locally any internal resources related to PDU Sessions that are not marked as established in the received PDU Session status. If the AMF invokes the Nsmf_PDUSession_UpdateSMContext procedure for UP activation of PDU Session(s) in step 18 and receives rejection from the SMF, then the AMF indicates to the UE the PDU Session ID and the cause why the User Plane resources were not activated. When the UE is connected to the two AMFs belonging to different PLMN via 3GPP access and non-3GPP access then the UE removes locally any internal resources related to the PDU Session of the current PLMN that are not marked as established in received PDU Session status. If the PDU Session status information was in the Registration Request, the AMF shall indicate the PDU Session status to the UE. The Mapping Of Allowed NSSAI is the mapping of each S-NSSAI of the Allowed NSSAI to the S-NSSAIs of the Configured NSSAI for the HPLMN. The Mapping Of Configured NSSAI is the mapping of each S-NSSAI of the Configured NSSAI for the Serving PLMN to the S-NSSAIs of the Configured NSSAI for the HPLMN. The AMF shall include in the Registration Accept message the LADN Information for LADNs, defined in TS 23.501 [2] clause 5.6.5, that are available within the Registration area determined by the AMF for the UE. If the UE included MICO mode in the request, then AMF responds whether MICO mode should be used.
In the case of registration over 3GPP access, the AMF sets the IMS Voice over PS session supported Indication as described in clause 5.16.3.2 of TS 23.501 [2]. In order to set the IMS Voice over PS session supported Indication the AMF may need to perform the UE/RAN Radio information and Compatibility Request procedure in clause 4.2.8a to check the compatibility of the UE and NG-RAN radio capabilities related to IMS Voice over PS. If the AMF hasn't received Voice Support Match Indicator from the NG-RAN on time then, based on implementation, AMF may set IMS Voice over PS session supported Indication and update it at a later stage.

In the case of registration over non-3GPP access, the AMF sets the IMS Voice over PS session supported Indication as described in clause 5.16.3.2a of TS 23.501 [2].

The Emergency Service Support indicator informs the UE that emergency services are supported, i.e. the UE is allowed to request PDU Session for emergency services. If the AMF received "MPS priority" from the UDM as part of Access and Mobility Subscription data, based on operator policy, "MPS priority" is included in the Registration Accept message to the UE to inform the UE whether configuration of Access Identity 1 is valid within the selected PLMN, as specified in TS 24.501 [25]. The Accepted DRX parameters are defined in clause 5.4.5 of TS 23.501 [2]. The AMF sets the Interworking without N26 parameter as described in clause 5.17.2.3.1 of TS 23.501 [2].

RRC Inactive Assistance Information might be provided to NG-RAN (see TS 23.501 [2] clause 5.3.3.2.5) in this step.

If the UDM intends to indicate the UE that subscription has changed, the Network Slicing Subscription Change Indication is included. If the AMF includes Network Slicing Subscription Change Indication, then the UE shall locally erase all the network slicing configuration for all PLMNs and, if applicable, update the configuration for the current PLMN based on any received information.

22. [Conditional] UE to new AMF: Registration Complete ().

The UE sends a Registration Complete message to the AMF when it has successfully updated itself after receiving a Network Slicing Subscription Change Indication in step 22.

The UE sends a Registration Complete message to the AMF to acknowledge if a new 5G-GUTI was assigned.

When the "List Of PDU Sessions To Be Activated" is not included in the Registration Request, the AMF releases the signalling connection with UE, according to clause 4.2.6.

When the Follow on request is included in the Registration Request, the AMF should not release the signalling connection after the completion of the Registration procedure.

If the AMF is aware that some signalling is pending in the AMF or between the UE and the 5GC, the AMF should not release the signalling connection immediately after the completion of the Registration procedure.

23. [Conditional] AMF to UDM: If the Access and Mobility Subscription data provided by UDM to AMF in 14b includes Steering of Roaming information with an indication that the UDM requests an acknowledgement of the reception of this information from the UE, the AMF provides the UE acknowledgement to UDM using Nudm_SDM_Info. For more details regarding the handling of Steering of Roaming information refer to TS 23.122 [22].

The mobility related event notifications towards the NF consumers are triggered at the end of this procedure for cases as described in clause 4.15.4.

4.2.2.2.3 Registration with AMF re-allocation

When an AMF receives a Registration request, the AMF may need to reroute the Registration request to another AMF, e.g. when the initial AMF is not the appropriate AMF to serve the UE. The Registration with AMF re-allocation procedure, described in figure 4.2.2.2.3-1, is used to reroute the NAS message of the UE to the target AMF during a Registration procedure.
Figure 4.2.2.2.3-1: Registration with AMF re-allocation procedure

The initial AMF and the target AMF register their capability at the NRF.

1. Steps 1 and 2 of figure 4.2.2.2.2-1 have occurred, and the (R)AN sends the Registration request message within an Initial UE message to the initial AMF.

2. If the AMF needs the SUPI and/or UE's subscription information to decide whether to reroute the Registration Request or if the Registration Request was not sent integrity protected or integrity protection is indicated as failed, then AMF performs steps 4 to 9a of figure 4.2.2.2.2-1.

3a. [Conditional] Initial AMF to UDM: Nudm_SDM_Get (SUPI, Slice Selection Subscription data).

If the initial AMF needs UE's subscription information to decide whether to reroute the Registration Request and UE's slice selection subscription information was not provided by old AMF, then initial AMF request UE's Slice Selection Subscription data from UDM by invoking the Nudm_SDM_Get service operation. UDM may get this information from UDR by Nudr_UDM_Query(SUPI, Subscribed S-NSSAIs).

3b. UDM to initial AMF: Response to Nudm_SDM_Get. The AMF gets the Slice Selection Subscription data including Subscribed S-NSSAIs. The UDM may provide indication that the subscription data for network slicing is updated for the UE.
UDM responds with slice selection data to initial AMF.

4a. [Conditional] Initial AMF to NSSF: Nnssf_NSSelection_Get (Requested NSSAI, [Mapping Of Requested NSSAI], Subscribed S-NSSAI(s) with the default S-NSSAI indication, TAI, Allowed NSSAI for the other access type (if any), [Mapping of Allowed NSSAI], PLMN ID of the SUPI).

If there is a need for slice selection, (see clause 5.15.2.1 of TS 23.501 [2]), e.g. the initial AMF cannot serve all the S-NSSAI(s) from the Requested NSSAI permitted by the subscription information, the initial AMF invokes the Nnssf_NSSelection_Get service operation from the NSSF by including Requested NSSAI, optionally Mapping Of Requested NSSAI, Subscribed S-NSSAI(s) with the default S-NSSAI indication, Allowed NSSAI for the other access type (if any), Mapping of Allowed NSSAI, PLMN ID of the SUPI and the TAI of the UE.

4b. [Conditional] NSSF to Initial AMF: Response to Nnssf_NSSelection_Get (AMF Set or list of AMF addresses, Allowed NSSAI for the first access type, [Mapping Of Allowed NSSAI], [Allowed NSSAI for the second access type], [Mapping of Allowed NSSAI], [NSI ID(s)], [NRF(s)], [List of rejected (S-NSSAI(s), cause value(s))], [Configured NSSAI for the Serving PLMN], [Mapping Of Configured NSSAI]).

The NSSF performs the steps specified in point (B) in clause 5.15.2.1 of TS 23.501 [2]. The NSSF returns to initial AMF the Allowed NSSAI for the first access type, optionally the Mapping Of Allowed NSSAI, the Allowed NSSAI for the second access type (if any), optionally the Mapping of Allowed NSSAI and the target AMF Set or, based on configuration, the list of candidate AMF(s). The NSSF may return NSI ID(s) associated to the Network Slice instance(s) corresponding to certain S-NSSAI(s). The NSSF may return the NRF(s) to be used to select NFs/services within the selected Network Slice instance(s). It may return also information regarding rejection causes for S-NSSAI(s) not included in the Allowed NSSAI. The NSSF may return Configured NSSAI for the Serving PLMN, and possibly the associated mapping of the Configured NSSAI.

NOTE 1: The NRF(s) returned by the NSSF, if any, belong to any level of NRF (see clause 6.2.6 of TS 23.501 [2]) according to the deployment decision of the operator.

5. [Conditional] Initial AMF to old AMF: Namf_Communication_RegistrationCompleteNotify (failure cause).

The initial AMF decides to reroute the NAS message to another AMF. The initial AMF sends a reject indication to the old AMF telling that the UE Registration procedure did not fully complete at the initial AMF. The old AMF continues as if the Namf_Communication_UEContextTransfer had never been received.

6a. [Conditional] Initial AMF to NRF: Nnrf_NFDiscovery_Request (NF type, AMF Set).

If the initial AMF does not locally store the target AMF address, and if the initial AMF intends to use direct reroute to target AMF or the reroute via (NG-R)AN message needs to include AMF address, then the initial AMF invokes the Nnrf_NFDiscovery_Request service operation from the NRF to find a proper target AMF which has required NF capabilities to serve the UE. The NF type is set to AMF. The AMF Set is included in the Nnrf_NFDiscovery_Request.

6b. [Conditional] NRF to AMF: Response to Nnrf_NFDiscovery_Request (list of (AMF pointer, AMF address, plus additional selection rules and NF capabilities)).

The NRF replies with the list of potential target AMF(s). The NRF may also provide the details of the services offered by the candidate AMF(s) along with the notification end-point for each type of notification service that the selected AMF had registered with the NRF, if available. As an alternative, it provides a list of potential target AMFs and their capabilities, and optionally, additional selection rules. Based on the information about registered NFs and required capabilities, a target AMF is selected by the initial AMF.

If the initial AMF is not part of the target AMF set, and is not able to get a list of candidate AMF(s) by querying the NRF with the target AMF set (e.g. the NRF locally pre-configured on AMF does not provide the requested information, the query to the appropriate NRF provided by the NSSF is not successful, or the initial AMF has knowledge that the initial AMF is not authorized as serving AMF etc.) then the initial AMF shall forward the NAS message to the target AMF via (R)AN executing step 7(B); the Allowed NSSAI and the AMF Set are included to enable the (R)AN to select the target AMF.

7(A). If the initial AMF, based on local policy and subscription information, decides to forward the NAS message to the target AMF directly, the initial AMF invokes the Namf_Communication_N1MessageNotify to the target AMF, carrying the rerouted NAS message. The Namf_Communication_N1MessageNotify service operation includes the information enabling (R)AN to identify the N2 terminating point and the NAS message carried at step 1, and the UE's SUPI and MM Context if available. If the initial AMF has obtained the information from the
NSSF as described at step 4b, that information except the AMF Set or list of AMF addresses is included. The target AMF then updates the (R)AN with a new updated N2 termination point for the UE (step 7b), the (R)AN acknowledges the updated N2 termination point (step 7c). Step 7(B) is skipped.

NOTE 2: Steps 7b and 7c can occur separately or as part of the first subsequently required N2 interaction.

7(B). If the initial AMF, based on local policy and subscription information, decides to forward the NAS message to the target AMF via (R)AN, the initial AMF sends a Reroute NAS message to the (R)AN (7a). The Reroute NAS message includes the information about the target AMF and the Registration Request message carried at step 1. If the initial AMF has obtained the information as described at step 4b, that information is included. The (R)AN sends the Initial UE message to the target AMF (7b) indicating reroute due to slicing including the information from step 4b that the NSSF provided.

8. After receiving the Registration Request message transmitted at step 7(A)a or step 7(B)b, if no UE context is received from the initial AMF, the target AMF, based on rerouting due to slicing, continues with the Registration procedure from step 4 until 22 of figure 4.2.2.2.2-1 (with the target AMF corresponding to the new AMF). If the UE context is received from the initial AMF, the target AMF continues with the Registration procedure from step 8 or 9b (depending on whether it decides to reauthenticate the UE) until step 22 of figure 4.2.2.2.2-1, skipping step 10.

4.2.2.3 Deregistration procedures

4.2.2.3.1 General

The Deregistration procedure allows:
- the UE to inform the network that it does not want to access the 5GS any longer, and
- the network to inform the UE that it does not have access to the 5GS any longer.

The Deregistration request by the UE and Deregistration request by the network include whether the Deregistration applies to the 3GPP access, to the non-3GPP access, or to both. When the UE is registered to both accesses in the same PLMN, the Deregistration message can be sent over any access regardless of the access the Deregistration is applied to.

4.2.2.3.2 UE-initiated Deregistration

The UE uses this procedure to deregister from the registered PLMN as shown in Figure 4.2.2.3.2-1.

![Figure 4.2.2.3.2-1: UE-initiated Deregistration](image-url)
1. The UE sends NAS message Deregistration Request (5G-GUTI, Deregistration type (e.g. Switch off), Access Type) to the AMF. Access type indicates whether the Deregistration procedure applies to the 3GPP access, to the non-3GPP access, or to both if the 3GPP access and non-3GPP access of the UE are served by the same AMF (refer to TS 23.501 [2]). The AMF shall invoke the Deregistration procedure for the target access indicated by the UE.

2. [Conditional] AMF to SMF: Nsmf_PDUSession_ReleaseSMContext (SUPI, PDU Session ID). If the UE has no established PDU Session over the target access indicated in step 1, then steps 2 to 5 are not executed. All PDU Sessions over the target access(es), which belong to the UE are released by the AMF sending Nsmf_PDUSession_ReleaseSMContext Request (SUPI, PDU Session ID) message to the SMF for each PDU Session.

3. [Conditional] The SMF releases all resources e.g. the IP address / Prefix(es) that were allocated to the PDU Session and releases the corresponding User Plane resources:
 3a. [Conditional] The SMF sends N4 Session Release Request (N4 Session ID) message to the UPF(s) of the PDU Session. The UPF(s) shall drop any remaining packets of the PDU Session and release all tunnel resource and contexts associated with the N4 Session.
 3b. [Conditional] The UPF(s) acknowledges the N4 Session Release Request by the transmission of an N4 Session Release Response (N4 Session ID) message to the SMF.

5a. [Conditional] If dynamic PCC applied to this session the SMF performs an SM Policy Association Termination procedure as defined in clause 4.16.6.

5b-c. [Conditional] If it is the last PDU Session the SMF is handling for the UE for the associated (DNN, S-NSSAI), the SMF unsubscribes from Session Management Subscription data changes notification with the UDM by means of the Nudm_SDMD_Unknown service operation. The SMF invokes the Nudm_SDMD_Deregistration service operation so that the UDM removes the association it had stored between the SMF identity, SMF address and the associated DNN and PDU Session ID.

6. [Conditional] If there is any association with the PCF for this UE and the UE is no more registered over any access, the AMF performs a AMF-initiated AM Policy Association Termination procedure as defined in clause 4.16.3.2 delete the association with the PCF.

7. [Conditional] The AMF sends NAS message Deregistration Accept to UE depending on the Deregistration type i.e. if Deregistration type is switch-off, AMF does not send Deregistration Accept message.

8. [Conditional] AMF to AN: N2 UE Context Release Request (Cause)

 If the target access for Deregistration procedure is 3GPP access or both 3GPP access and non-3GPP access, and there is N2 signalling connection to NG-RAN, the AMF sends N2 UE Release command to NG-RAN with Cause set to Deregistration to release N2 signalling connection. The details of this step are covered by steps 2 to 4 in the AN Release procedure, as described in clause 4.2.6.

 If the target access for Deregistration procedure is non-3GPP access or both 3GPP access and non-3GPP access, and there is N2 signalling connection to the N3IWF, the AMF sends N2 UE Release command to N3IWF with Cause set to Deregistration to release N2 signalling connection. The details of this step are covered by steps 2 to 5 in the "Deregistration procedure for untrusted non-3gpp access”, as described in clause 4.12.3.

4.2.2.3.3 Network-initiated Deregistration

The procedure depicted in Figure 4.2.2.3.3-1 shows Network-initiated Deregistration procedure. The AMF can initiate this procedure for either explicit (e.g. by O&M intervention) or implicit (e.g. expiring of Implicit Deregistration timer). The UDM can trigger this procedure for operator-determined purposes to request the removal of a subscriber’s RM context and PDU Session(s) of the UE.
Figure 4.2.2.3.3-1: Network-initiated Deregistration

1. [Conditional] If the UDM wants to request the immediate deletion of a subscriber's RM contexts and PDU Sessions, the UDM shall send a Nudm_UECM_DeregistrationNotification (SUPI, Access Type, Removal Reason) message with Removal Reason set to Subscription Withdrawn to the registered AMF. The Access Type may indicate 3GPP Access, non-3GPP Access or both.

2. If the AMF receives Nudm_UECM_DeregistrationNotification in Step 1 with Removal Reason as Subscription Withdrawn, the AMF executes Deregistration procedure over the access(es) the Access Type indicates.

 The AMF-initiated Deregistration procedure is either explicit (e.g. by O&M intervention) or implicit. The AMF does not send the Deregistration Request message to the UE for Implicit Deregistration. If the UE is in CM-CONNECTED state, the AMF may explicitly deregister the UE by sending a Deregistration Request message (Deregistration type, Access Type) to the UE. The Deregistration type may be set to Re-registration in which case the UE should re-register at the end of the Deregistration procedure. Access Type indicates whether Deregistration procedure applies to the 3GPP access or non-3GPP access, or both. If the Deregistration Request message is sent over 3GPP access and the UE is in CM-IDLE state in 3GPP access, the AMF pages the UE.

3. [Conditional] If the Deregistration procedure is triggered by UDM (Step 1), the AMF acknowledges the Nudm_UECM_DeregistrationNotification to the UDM. The AMF also unsubscribes with the UDM using Nudm_SDM_Unsubscribe service operation.

4. [Conditional] If the UE has any established PDU Session over the target access for deregistration indicated in step 2, then step 2 ~ step 5 of UE-initiated Deregistration procedure in clause 4.2.2.3.2 is performed.

5. [Conditional] As in step 6 of Figure 4.2.2.3.2-1.

6. [Conditional] If the UE receives the Deregistration Request message from the AMF in step 2, the UE sends a Deregistration Accept message to the AMF any time after step 2. The NG-RAN forwards this NAS message to the AMF along with the TAI+ Cell identity of the cell which the UE is using.

7. [Conditional] AMF to AN: N2 UE Context Release Request (Cause): as in step 8 of Figure 4.2.2.3.2.

4.2.3 Service Request procedures

4.2.3.1 General

The Service Request procedure is used by a UE in CM-IDLE state or the 5GC to request the establishment of a secure connection to an AMF. The Service Request procedure is also used both when the UE is in CM-IDLE and in CM-CONNECTED to activate a User Plane connection for an established PDU Session.

The UE shall not initiate a Service Request procedure if there is an ongoing Service Request procedure.
4.2.3.2 UE Triggered Service Request

The UE in CM-IDLE state initiates the Service Request procedure in order to send uplink signalling messages, user data, or as a response to a network paging request. After receiving the Service Request message, the AMF may perform authentication. After the establishment of the signalling connection to an AMF, the UE or network may send signalling messages, e.g. PDU Session establishment from UE to the SMF, via the AMF.

The Service Request procedure is used by a UE in CM-CONNECTED to request activate User Plane connection for PDU Sessions and to respond to a NAS Notification message from the AMF.

For any Service Request, the AMF responds with a Service Accept message to synchronize PDU Session status between UE and network, if necessary. The AMF responds with a Service Reject message to UE, if the Service Request cannot be accepted by network. The Service Reject message may include an indication or cause code requesting the UE to perform Registration Update procedure.

For this procedure, the impacted SMF and UPF are all under control of the PLMN serving the UE, e.g. in Home Routed roaming case the SMF and UPF in HPLMN are not involved.

For Service Request due to user data, network may take further actions if User Plane connection activation is not successful.

The procedure in this clause 4.2.3.2 is applicable to the scenarios with or without intermediate UPF, and with or without intermediate UPF reselection.
Figure 4.2.3.2-1: UE Triggered Service Request procedure

1. UE to (R)AN: AN message (AN parameters, Service Request (List Of PDU Sessions To Be Activated, List Of Allowed PDU Sessions, security parameters, PDU Session status)).
The List Of PDU Sessions To Be Activated is provided by UE when the UE wants to re-activate the PDU Session(s). The List Of Allowed PDU Sessions is provided by the UE when the Service Request is a response of a Paging or a NAS Notification for the PDU Session associated with non-3GPP access, and identifies the PDU Sessions that can be transferred to 3GPP access.

In case of NG-RAN:
- The AN parameters include Selected PLMN ID and Establishment cause. The Establishment cause provides the reason for requesting the establishment of an RRC connection.
- The UE sends Service Request message towards the AMF encapsulated in an RRC message to the NG-RAN. The RRC message(s) that can be used to carry the 5G-S-TMSI and this NAS message are described in TS 38.331 [12] and TS 36.331 [16].

If the Service Request is triggered for user data, the UE identifies, using the List Of PDU Sessions To Be Activated, the PDU Session(s) for which the UP connections are to be activated in Service Request message. If the Service Request is triggered for signalling only, the UE doesn't identify any List Of PDU Sessions To Be Activated. If this procedure is triggered for paging response, and the UE has at the same time some user data to be transferred, the UE identifies the PDU Session(s) whose UP connections are to be activated in Service Request message, by the List Of PDU Sessions To Be Activated. Otherwise the UE does not identify any PDU Session(s) in the Service Request message for paging response. In some cases (see TS 24.501 [25]) the UE may include PDU Sessions in the PDU Sessions To Be Activated even if there are no pending uplink data for those PDU Sessions or when the Service Request is triggered for signalling only or when the Service Request is triggered for paging response.

If the Service Request over 3GPP access is triggered in response to the paging or NAS Notification indicating non-3GPP access, the Service Request message shall identify the list of PDU Sessions associated with the non-3GPP access that can be re-activated over 3GPP in the List Of Allowed PDU Sessions, as described in clause 4.2.3.3 (step 6) of this specification and in clause 5.6.8 of TS 23.501 [2].

The PDU Session status indicates the PDU Sessions available in the UE.

The UE shall not trigger a Service Request procedure for a PDU Session corresponding to a LADN when the UE is outside the area of availability of the LADN. And the UE shall not identify such PDU Session(s) in the List Of PDU Sessions To Be Activated, if the Service Request is triggered for other reasons.

For UE in CM-CONNECTED state, only the List Of PDU Sessions To Be Activated and List Of Allowed PDU Sessions need to be included in the Service Request.

2. (R)AN to AMF: N2 Message (N2 parameters, Service Request, UE Context request).

Details of this step are described in TS 38.413 [10]. If the AMF can't handle the Service Request it will reject it.

When NG-RAN is used, the N2 parameters include the 5G-S-TMSI, Selected PLMN ID, Location information and Establishment cause.

If the UE is in CM-IDLE state, the NG-RAN obtains the 5G-S-TMSI in RRC procedure. NG-RAN selects the AMF according to 5G-S-TMSI. The Location Information relates to the cell in which the UE is camping.

Based on the PDU Session status, the AMF may initiate PDU Session Release procedure in the network for the PDU Sessions whose PDU Session ID(s) were indicated by the UE as not available.

3a) AMF to (R)AN: N2 Request (security context, Handover Restriction List, list of recommended cells / TAs / NG-RAN node identifiers). If the 5G-AN had requested for UE Context or there is a requirement for AMF to provide this e.g. the AMF needs to initiate fallback procedure as in clause 4.13.4.2 for Emergency services, AMF initiates NGAP procedure as specified in TS 38.413 [10]. For UE in CM-IDLE state, 5G-AN stores the Security Context in the UE AN context. Handover Restriction List is described in TS 23.501 [2] clause 5.3.4.1 "Mobility Restrictions".

The 5G-AN uses the Security Context to protect the messages exchanged with the UE as described in TS 33.501 [15].

If the NG-RAN node had provided the list of recommended cells / TAs / NG-RAN node identifiers during the AN Release procedure (see clause 4.2.6), the AMF shall include it in the N2 Request. The RAN may use this
3GPP TS 23.502 Version 15.2.0 Release 15

ETSI TS 123 502 V15.2.0 (2018-06)

information to allocate the RAN Notification Area when the RAN decides to enable RRC Inactive state for the UE.

3. If the Service Request was not sent integrity protected or integrity protection verification failed, the AMF shall initiate NAS authentication/security procedure as defined in clause 4.6.

If the UE in CM-IDLE state triggered the Service Request to establish a signalling connection only, after successful establishment of the signalling connection the UE and the network can exchange NAS signalling and steps 4 to 11 and 15 to 22 are skipped.

4. [Conditional] AMF to SMF: Nsmf_PDUSession_UpdateSMContext Request (PDU Session ID(s), Operation Type, UE location information, Access Type, RAT Type, UE presence in LADN service area).

The Nsmf_PDUSession_UpdateSMContext Request is invoked:

- If the UE identifies List Of PDU Sessions To Be Activated in the Service Request message;
- This procedure is triggered by the SMF but the PDU Session(s) identified by the UE correlates to other PDU Session ID(s) than the one triggering the procedure; or
- If this procedure is triggered by the SMF but the current UE location is outside the "Area of validity for the N2 SM information" provided by the SMF in step 3a of clause 4.2.3.3. In this case the AMF shall not send the N2 information provided by the SMF in step 3a of clause 4.2.3.3. If the current UE location is in the "Area of validity for the N2 SM information", steps 4 to 11 are skipped.

If the DNN corresponds to an LADN then the "UE presence in LADN service area" indicates if the UE is IN or OUT of the LADN service area. If the AMF does not provide the "UE presence in LADN service area" indication and the SMF determines that the DNN corresponds to a LADN, then the SMF considers that the UE is OUT of the LADN service area.

The AMF determines the PDU Session(s) to be activated and sends an Nsmf_PDUSession_UpdateSMContext Request to SMF(s) associated with the PDU Session(s) with Operation Type set to "UP activate" to indicate establishment of user plane resources for the PDU Session(s). The AMF determines Access Type and RAT Type based on the Global RAN Node ID associated with the N2 interface.

If the procedure was triggered in response to paging or NAS Notification indicating non-3GPP access, and the PDU Session for which the UE was paged or notified is not in the List Of Allowed PDU Sessions provided by the UE, the AMF notifies the SMF that the User Plane for the PDU Session cannot be re-activated. For other PDU Sessions in the List Of Allowed PDU Sessions the Service Request Procedure succeeds without re-activating the User Plane of any PDU Sessions.

The AMF may receive a Service Request to establish another NAS signalling connection via a NG-RAN while it has maintained an old NAS signalling connection for UE still via NG-RAN. In this case, AMF shall trigger the AN release procedure toward the old NG-RAN to release the old NAS signalling connection as defined in clause 4.2.6 with following logic:

- For the PDU Sessions indicated in the "List Of PDU Sessions To Be Activated", the AMF requests the SMF to activate the PDU Session(s) immediately by performing this step 4.
- For the PDU Sessions indicated in the "List of PDU Session ID(s) with active N3 user plane" but not in the "List Of PDU Sessions To Be Activated", the AMF requests the SMF to deactivate the PDU Session(s).

5. If the PDU Session ID corresponds to a LADN and the SMF determines that the UE is outside the area of availability of the LADN based on the "UE presence in LADN service area" from the AMF, the SMF decides to (based on local policies) either:

- keep the PDU Session, but rejects the activation of user plane connection for the PDU Session and informs the AMF about it. If the procedure has been triggered by a Network Triggered Service Request as described in clause 4.3.2.3, the SMF may notify the UPF that originated the Data Notification to discard downlink data for the PDU Sessions and/or to not provide further Data Notification messages; or
- to release the PDU Session: the SMF releases the PDU Session and informs the AMF that the PDU Session is released.
In any case of the two cases above the SMF answers to the AMF (step10) with an appropriate reject cause and the User Plane Activation of PDU Session is stopped.

Otherwise, based on the location info received from the AMF, the SMF checks the UPF Selection Criteria according to clause 6.3.3 of TS 23.501 [2], and determines to perform one of the following:

- accepts the activation of UP connection and continue using the current UPF(s);
- accepts the activation of UP connection and selects a new intermediate UPF (or add/remove an intermediate UPF), if the UE has moved out of the service area of the UPF that was previously connecting to the AN, while maintaining the UPF(s) acting as PDU Session Anchor. The steps to perform I-UPF addition/change/removal are described as conditional steps in the following of the current procedure; or

NOTE 1: If the old and/or new I-UPF implements an UL CL or BP functionality and a PDU Session Anchor for connectivity to the local access to the Data Network as described in TS 23.501 [2] clause 5.6.4.2, the signalling described in the current clause is intended as the signalling to add, remove or change the PDU Session Anchor, and must be complemented by the signalling to add, release or change the UL CL or BP as described respectively in clauses 4.3.5.4, 4.3.5.5 and 4.3.5.7.

- rejects the activation of UP connection of a PDU Session of SSC mode 2, and trigger re-establishment of the PDU Session after Service Request procedure to perform the allocation of a new UPF to act as PDU Session Anchor, e.g. the UE has moved out of the service area of the anchor UPF which is connecting to NG-RAN.

6a. [Conditional] SMF to new UPF (intermediate): N4 Session Establishment Request

If the SMF selects a new UPF to act as intermediate UPF for the PDU Session, or if the SMF selects to insert an intermediate UPF for a PDU Session which did not have an intermediate UPF, an N4 Session Establishment Request message is sent to the new UPF, providing Packet detection, Data forwarding, enforcement and reporting rules to be installed on the intermediate UPF. The PDU Session Anchor addressing information (on N9) for this PDU Session is also provided to the intermediate UPF.

If the Service Request is triggered by the network and a new UPF is selected by the SMF to replace the old (intermediate) UPF, SMF includes the Data forwarding indication. The Data Forwarding Indication indicates to the UPF that a second tunnel endpoint needs to be reserved for buffered DL data from the old I-UPF.

6b. new UPF (intermediate) to SMF: N4 Session Establishment Response

The new intermediate UPF sends an N4 Session Establishment Response message to the SMF. In case the UPF allocates CN Tunnel Info, it provides DL CN Tunnel Info for the UPF acting as PDU Session Anchor and UL Tunnel Info of the new intermediate UPF to the SMF. If the Data forwarding indication is received, the new (intermediate) UPF acting as N3 terminating point also sends DL Tunnel Info of the new intermediate UPF for data forwarding from the old (intermediate) UPF to the SMF. The SMF starts a timer, to be used in step 22a to release the resource in old intermediate UPF if there is one.

7a. [Conditional] SMF to UPF (PSA): N4 Session Modification Request

If the SMF selects a new UPF to act as intermediate UPF for the PDU Session, the SMF sends N4 Session Modification Request message to PDU Session Anchor UPF, providing DL Tunnel Info from new intermediate UPF. If the new intermediate UPF was added for the PDU Session, the UPF (PSA) begins to send the DL data to the new I-UPF as indicated in the DL Tunnel Info.

If the Service Request is triggered by the network, and the SMF removes the old I-UPF but does not replace it with a new I-UPF, the SMF includes the Data Forwarding indication to the request. The Data Forwarding Indication indicates to the UPF (PSA) that a second tunnel endpoint needs to be reserved for buffered DL data from the old I-UPF. In this case, the UPF (PSA) begins to buffer the DL data it may receive at the same time from the N6 interface.

7b. The UPF (PSA) sends N4 Session Modification Response message to SMF.

If the Data Forwarding Indication is received, the UPF (PSA) becomes as N3 Terminating Point and sends CN DL tunnel info for the old (intermediate) UPF to the SMF. The SMF starts a timer, to be used in step 22a to release the resource in old intermediate UPF if there is one.

If the UPF that connects to RAN is the UPF (PSA), and if the SMF finds that the PDU Session is activated when receiving the Nsmf_PDUSession_UpdateSMContext Request in step 4 with Operation Type set to "UP activate"
to indicate establishment of user plane resources for the PDU Session(s), it deletes the AN Tunnel Info and initiates an N4 Session Modification procedure to remove Tunnel Info of AN in the UPF.

8a. [Conditional] SMF to old UPF (intermediate): N4 Session Modification Request (New UPF address, New UPF DL Tunnel ID)

If the service request is triggered by the network, and the SMF removes the old (intermediate) UPF, the SMF sends the N4 Session Modification Request message to the old (intermediate) UPF, providing the DL Tunnel Info for the buffered DL data. If the SMF allocated new I-UPF, the DL Tunnel Info is from the new (intermediate) UPF acting as N3 terminating point. If the SMF did not allocate a new I-UPF, the DL Tunnel Info is from the new UPF (PSA) acting as N3 terminating point. The SMF starts a timer to monitor the forwarding tunnel as step 6b or 7b.

If the SMF find the PDU Session is activated when receiving the Nsmf_PDUSession_UpdateSMContext Request in step 4 with Operation Type set to "UP activate" to indicate establishment of user plane resources for the PDU Session(s), it deletes the AN Tunnel Info and initiates an N4 Session Modification procedure to remove Tunnel Info of AN in the UPF.

8b. old UPF (intermediate) to SMF: N4 Session Modification Response

The old (intermediate) UPF sends N4 Session Modification Response message to SMF.

9. [Conditional] old UPF (intermediate) to new UPF (intermediate): buffered downlink data forwarding

If the I-UPF is changed and forwarding tunnel was established to the new I-UPF, the old (intermediate) UPF forwards its buffered data to the new (intermediate) UPF acting as N3 terminating point.

10. [Conditional] old UPF (intermediate) to UPF (PSA): buffered downlink data forwarding

If the old I-UPF is removed and no new I-UPF is assigned for the PDU Session and forwarding tunnel was established to the UPF (PSA), the old (intermediate) UPF forwards its buffered data to the UPF (PSA) acting as N3 Terminating Point.

11. [Conditional] SMF to AMF: Nsmf_PDUSession_UpdateSMContext Response (N2 SM information (PDU Session ID, QFI(s), QoS profile(s), CN N3 Tunnel Info, S-NSSAI, User Plane Security Enforcement, UE Integrity Protection Maximum Data Rate), Cause) to the AMF. If the UPF that connects to RAN is the UPF (PSA), the CN N3 Tunnel Info is the UL Tunnel Info of the UPF (PSA). If the UPF that connects to RAN is the new intermediate UPF, the CN N3 Tunnel Info is the UL Tunnel Info of the intermediate UPF.

For a PDU Session that the SMF has determined to accept the activation of UP connection in step 5, the SMF generates only N2 SM information and sends Nsmf_PDUSession_UpdateSMContext Response to the AMF to establish the User Plane(s). The N2 SM information contains information that the AMF shall provide to the NG-RAN. If the SMF decided to change the PSA UPF for the SSC mode 3 PDU Session, the SMF triggers the change of SSC mode 3 PDU Session anchor as an independent procedure described in clause 4.3.5.2 or clause 4.3.5.3 after accepting the activation of UP of the PDU Session.

The SMF can reject the activation of UP of the PDU Session by including a cause in the Nsmf_PDUSession_UpdateSMContext Response. Following are some of the cases:

- If the PDU Session corresponds to a LADN and the UE is outside the area of availability of the LADN as described in step 5;
- If the AMF notified the SMF that the UE is reachable only for regulatory prioritized service, and the PDU Session to be activated is not for a regulatory prioritized service; or
- If the SMF decided to change the PSA UPF for the requested PDU Session as described in step 5. In this case, after sending Nsmf_PDUSession_UpdateSMContext Response, the SMF triggers another procedure to instruct UE to re-establish the PDU Session as described in clause 4.3.5.1 for SSC mode 2.
- If the SMF received negative response in Step 6b due to UPF resource unavailability.

If the PDU session has been assigned any EPS bearer ID, the SMF also includes the mapping between EPS bearer ID(s) and QFI(s) into the N2 SM information to be sent to the NG-RAN.

The User Plane Security Enforcement information is determined by the SMF upon PDU session establishment as described in clause 5.10.3 of TS 23.501 [2]. If the User Plane Security Enforcement information indicates that
Integrity Protection is "Preferred" or "Required", the SMF also includes the UE Integrity Protection Maximum Data Rate.

12. AMF to (R)AN: N2 Request (N2 SM information received from SMF, security context, Handover Restriction List, Subscribed UE-AMBR, MM NAS Service Accept, list of recommended cells / TAs / NG-RAN node identifiers, UE Radio Capability). The Allowed NSSAI for the Access Type for the UE is included in the N2 message.

If the UE triggered the Service Request while in CM-CONNECTED state, only N2 SM information received from SMF and MM NAS Service Accept are included in the N2 Request.

If the Service Request procedure is triggered by the Network (as described in clause 4.2.3.3) while the UE is in CM-CONNECTED state, only N2 SM information received from SMF is included in the N2 Request.

For a UE that was in CM-IDLE state when the Service Request was triggered, the NG-RAN stores the Security Context, AMF Signalling Connection Id. If the Service Request is not triggered by UE for a signalling connection only, RAN also stores QoS Information for the QoS Flows of the PDU Sessions that are activated and N3 Tunnel IDs in the UE RAN context and Handover Restriction List (as described in TS 23.501 [2] clause 5.3.4.1).

MM NAS Service Accept includes PDU Session status in AMF. Any local PDU Session Release during the Session Request procedure is indicated to the UE via the Session Status. PDU Session Reactivation Result is provided in Service Accept for the PDU sessions in the List of PDU Sessions To Be Activated, and the PDU session in the List of Allowed PDU Sessions which has caused paging or NAS notification. If the PDU Session Reactivation Result of a PDU session is failure, the cause of the failure is also provided.

If there are multiple PDU Sessions that involves multiple SMFs, AMF does not need to wait for responses from all SMFs in step 11 before it send N2 SM information to the RAN. However, the AMF shall wait for all responses from the SMFs before it sends MM NAS Service Accept message to the UE.

AMF shall include at least one N2 SM information from SMF if this step is triggered for PDU Session User Plane activation. AMF may send additional N2 SM information from SMFs in separate N2 message(s) (e.g. N2 tunnel setup request), if there is any. Alternatively, if multiple SMFs are involved, the AMF may send one N2 Request message to (R)AN after all the Nsmf_PDUSession_UpdateSMContext Response service operations from all the SMFs associated with the UE are received.

If the NG-RAN node had provided the list of recommended cells / TAs / NG-RAN node identifiers during the AN Release procedure (see clause 4.2.6), the AMF shall include it in the N2 Request. The NG-RAN may use this information to allocate the RAN Notification Area when the NG-RAN decides to enable RRC Inactive state for the UE.

The AMF based on network configuration, may include the UE's "RRC Inactive Assistance Information" as defined in TS 23.501 [2].

The AMF shall include the UE Radio Capability information, if available, to the NG-RAN node as described in TS 23.501 [2].

13. (R)AN to UE: The NG-RAN performs RRC Connection Reconfiguration with the UE depending on the QoS Information for all the QoS Flows of the PDU Sessions whose UP connections are activated and Data Radio Bearers. For a UE that was in CM-IDLE state, if the Service Request is not triggered by UE for a signalling connection only, the User Plane security is established at this step, which is described in detail in TS 38.331 [12] and TS 36.331 [16]. For a UE that was in CM-IDLE state, if the Service Request is triggered by UE for a signaling connection only, AS security context may be established in this step, which is described in detail in TS 38.331 [12] and TS 36.331 [16].

If the N2 Request includes a NAS message, the NG-RAN forwards the NAS message to the UE. The UE locally deletes context of PDU Sessions that are not available in 5GC.

NOTE 2: The reception of the Service Accept message does not imply the successful activation of the User Plane radio resources.

NOTE 3: In case not all the requested User Plane AN resources are successfully activated, TS 38.413 [10] will define how to handle this.
After the User Plane radio resources are setup, the uplink data from the UE can now be forwarded to NG-RAN. The NG-RAN sends the uplink data to the UPF address and Tunnel ID provided in the step 11.

14. [Conditional] (R)AN to AMF: N2 Request Ack (N2 SM information (AN Tunnel Info, List of accepted QoS Flows for the PDU Sessions whose UP connections are activated, List of rejected QoS Flows for the PDU Sessions whose UP connections are activated), PDU Session ID).

The message may include N2 SM information(s), e.g. AN Tunnel Info. NG-RAN may respond N2 SM information with separate N2 message (e.g. N2 tunnel setup response) if AMF sends separate N2 message in step 11.

If multiple N2 SM information are included in the N2 Request message in step 12, the N2 Request Ack includes multiple N2 SM information and information to enable the AMF to associate the responses to relevant SMF.

15. [Conditional] AMF to SMF: Nsmf_PDUSession_UpdateSMContext Request (N2 SM information, RAT Type, Access Type) per PDU Session to the SMF. The AMF determines Access Type and RAT Type based on the Global RAN Node ID associated with the N2 interface.

If the AMF received N2 SM information (one or multiple) in step 14, then the AMF shall forward the N2 SM information to the relevant SMF per PDU Session ID. If the UE Time Zone has changed compared to the last reported UE Time Zone then the AMF shall include the UE Time Zone IE in this message.

Procedure for unpausing a charging pause initiated earlier is specified in clause 4.3.x.

16. [Optional] SMF to PCF: If dynamic PCC is deployed, SMF may initiate notification about new location information to the PCF (if subscribed) by performing an SMF initiated SM Policy Modification procedure as defined in clause 4.16.5.1. The PCF may provide updated policies.

17a. [Conditional] SMF to new intermediate UPF: N4 Session Modification Request (AN Tunnel Info and List of accepted QFI(s)).

If the SMF selected a new UPF to act as intermediate UPF for the PDU Session in step 5, the SMF initiates a N4 Session Modification procedure to the new I-UPF and provides AN Tunnel Info. The Downlink Data from the new I-UPF can now be forwarded to NG-RAN and UE.

17b. [Conditional] UPF to SMF: N4 Session Modification Response.

If a User Plane is to be setup or modified and after the modification there is no I-UPF, the SMF initiates a N4 Session Modification procedure to UPF (PSA) and provides AN Tunnel Info. The Downlink Data from the UPF (PSA) can now be forwarded to NG-RAN and UE.

For QoS Flows in the List of rejected QoS Flows, the SMF shall instruct the UPF to remove the rules (e.g., Packet Detection Rules etc.) which are associated with the QoS Flows.

18b. [Conditional] UPF to SMF: N4 Session Modification Response.

20a. [Conditional] SMF to new UPF (intermediate): N4 Session Modification Request.

If forwarding tunnel has been established to the new I-UPF and if the timer SMF set for forwarding tunnel at step 8a has expired, SMF sends N4 Session modification request to new (intermediate) UPF acting as N3 terminating point to release the forwarding tunnel.

20b. [Conditional] new UPF (intermediate) to SMF: N4 Session modification response.

New (intermediate) UPF acting as N3 terminating point sends N4 Session Modification response to SMF.

21a. [Conditional] SMF to UPF (PSA): N4 Session Modification Request.

If forwarding tunnel has been established to the UPF (PSA) and if the timer SMF set for forwarding tunnel at step 7b has expired, SMF sends N4 Session modification request to UPF (PSA) acting as N3 Terminating Point to release the forwarding tunnel.
21b. [Conditional] UPF (PSA) to SMF: N4 Session Modification Response.

UPF (PSA) acting as N3 Terminating Point sends N4 Session Modification Response to SMF.

22a. [Conditional] SMF to old UPF: N4 Session Modification Request or N4 Session Release Request.

If the SMF decided to continue using the old UPF in step 5, the SMF sends an N4 Session Modification Request, providing AN Tunnel Info.

If the SMF decided to select a new UPF to act as intermediate UPF in step 5, and the old UPF is not PSA UPF, the SMF initiates resource release, after timer in step 6b or 7b expires, by sending an N4 Session Release Request (Release Cause) to the old intermediate UPF.

22b. Old intermediate UPF to SMF: N4 Session Modification Response or N4 Session Release Response.

The old UPF acknowledges with an N4 Session Modification Response or N4 Session Release Response message to confirm the modification or release of resources.

For the mobility related events described in clause 4.15.4, the AMF invokes the Namf_EventExposure_Notify service operation after step 4.

Upon reception of the Namf_EventExposure_Notify with an indication that the UE is reachable, if the SMF has pending DL data the SMF invokes the Namf_Communication_N1N2MessageTransfer service operation to the AMF to establish the User Plane(s) for the PDU Sessions, otherwise the SMF resumes sending DL data notifications to the AMF in case of DL data.

4.2.3.3 Network Triggered Service Request

This procedure is used when the network needs to signal (e.g. N1 signalling to UE, Mobile-terminated SMS, User Plane connection activation for PDU Session(s) to deliver mobile terminating user data) with a UE. When the procedure is triggered by SMSF, PCF, LMF, GMLC, NEF or UDM, the SMF in the following figure should be replaced by the respective NF. If the UE is in CM-IDLE state or CM-CONNECTED state in 3GPP access, the network initiates a Network Triggered Service Request procedure. If the UE is in CM-IDLE state, and asynchronous type communication is not activated, the network sends a Paging Request to (R)AN/UE. The Paging Request triggers the UE Triggered Service Request procedure in the UE. If asynchronous type communication is activated, the network stores the received message and forward the message to the (R)AN and/or the UE (i.e. synchronizes the context with the (R)AN and/or the UE) when the UE enters CM-CONNECTED state.

If the UE is in CM-IDLE state in non-3GPP access and if the UE is simultaneously registered over 3GPP and non-3GPP accesses in a PLMN, the network shall initiate a Network Triggered Service Request procedure over 3GPP access.

If the UE is in CM-IDLE state in 3GPP access and in CM-CONNECTED state in non-3GPP access, and if the UE is simultaneously registered over 3GPP and non-3GPP accesses in the same PLMN, the network may initiate a Network Triggered Service Request procedure for 3GPP access via non-3GPP access.

For this procedure, the impacted SMF and UPF are all under control of the PLMN serving the UE, e.g. in Home Routed roaming case the SMF and UPF in HPLMN are not involved.

The procedure below covers the following non exhaustive list of use-cases for 3GPP access (detailed conditions of when the steps apply are stated in the procedure below):

- The SMF needs to setup N3 tunnel to deliver downlink packet to the UE for a PDU Session and the UE is in CM-IDLE state: Step 3a contains an N2 message and Step 4b (paging) is performed.

- The SMF needs to setup N3 tunnel to deliver downlink packet to the UE for a PDU Session and the UE is in CM-CONNECTED state: Step 3a contains an N2 message and Step 4a (UP reactivation) is performed.

- NF (eg. SMF, SMSF, LMF or NEF) needs to send an N1 message to the UE and the UE is in CM-IDLE state: Step 3a contains an N1 message, Step 3b contains cause "Attempting to reach UE", and Step 4b (paging) occurs.

- NF (eg. SMSF, PCF, UDM) triggers AMF to setup a NAS connection with the UE and the UE is in CM-IDLE state: The trigger is specific to the procedure and Step 4b (paging) occurs.
1. When a UPF receives downlink data for a PDU Session and there is no AN Tunnel Info stored in UPF for the PDU Session, based on the instruction from the SMF, the UPF may buffer the downlink data, or forward the downlink data to the SMF as described in the TS 23.501 [2], clause 5.8.3.

2a. UPF to SMF: Data Notification (N4 Session ID, Information to identify the QoS Flow for the DL data packet, DSCP).
 - On arrival of the first downlink data packet for any QoS Flow, the UPF shall send Data Notification message to the SMF, if the SMF has not previously notified the UPF to not send the Data Notification to the SMF (in which case the next steps are skipped).
 - If the UPF receives downlink data packets for another QoS Flow in the same PDU Session, the UPF shall send another Data Notification message to the SMF.
 - If the Paging Policy Differentiation feature (as specified in TS 23.501 [2] clause 5.4.3) is supported by the UPF and if the PDU Session type is IP, the UPF shall also include the DSCP in TOS (IPv4) / TC (IPv6) value from the IP header of the downlink data packet and the information to identify the QoS Flow for the DL data packet.

2b. SMF to UPF: Data Notification Ack.

2c. The UPF may forward the downlink data packets towards the SMF if the SMF instructed the UPF that the SMF will buffer the data packets.
 - If the Paging Policy Differentiation feature is supported by the SMF, the SMF determines the Paging Policy Indication based on the DSCP in TOS (IPv4) / TC (IPv6) value from the IP header of the received downlink data packet and identifies the corresponding QFI of the QoS Flow for the DL data packet.

3a. [Conditional] SMF to AMF: Namf_Communication_N1N2MessageTransfer (SUPI, PDU Session ID, N2 SM information (QFI(s), QoS profile(s), CN N3 Tunnel Info, S-NSSAI, Paging Policy Indication), Area of validity for N2 SM information, ARP, Paging Policy Indication, 5QI, N1N2TransferFailure Notification Target Address), or NF to AMF: Namf_Communication_N1N2MessageTransfer (SUPI, N1 message).

 Upon reception of a Data Notification message, for a PDU Session corresponding to a LADN, the SMF takes actions as specified in TS 23.501 [2], clause 5.6.5. The SMF may notify the UPF that originated the Data Notification to discard downlink data for the PDU Sessions and/or to not provide further Data Notification messages.
Otherwise, the SMF determines whether to contact the AMF. The SMF does not contact the AMF:

- if the SMF had previously been notified that the UE is unreachable; or
- if the UE is reachable only for regulatory prioritized service and the PDU Session is not for regulatory prioritized service.

The SMF determines the AMF and invokes the Namf_Communication_N1N2MessageTransfer to the AMF including the PDU Session ID derived from the N4 Session ID received in step 2a.

If the SMF, while waiting for the User Plane Connection to be activated, receives any additional Data Notification message or the downlink data packets in case the SMF buffers the data packets for a QoS Flow associated with a higher priority (i.e., ARP priority level) than the priority associated with the previous Data Notification message or the downlink data packets, the SMF invokes a new Namf_Communication_N1N2MessageTransfer indicating the higher priority ARP and PDU Session ID to the AMF.

If the SMF, while waiting for the User Plane to be activated, receives a message from a new AMF other than the one to which the SMF invoked the Namf_Communication_N1N2MessageTransfer, the SMF re-invokes the Namf_Communication_N1N2MessageTransfer towards the new AMF.

When supporting Paging Policy Differentiation, the SMF indicates in the Namf_Communication_N1N2MessageTransfer the 5QI associated to the QFI in step 2a, or packet received in step 2c, the ARP, the Paging Policy Indication related to the downlink data that received from UPF or triggered the Data Notification message, as described in TS 23.501 [2] clause 5.4.3.

NOTE 1: AMF may receive request message(s) from other network functions which leads to signalling towards UE/RAN, e.g. Network-initiated Deregistration, SMF initiated PDU Session Modification. If the UE is in CM-CONNECTED state and the AMF only delivers N1 message towards UE, the flow continues in step 6 below.

The N2 SM information is optional, e.g. in case the SMF wants to send a PDU Session Modification Command with only updating the UE with a PCO.

3b. [conditional] The AMF responds to the SMF.

If the UE is in CM-IDLE state at the AMF, and the AMF is able to page the UE the AMF sends a Namf_Communication_N1N2MessageTransfer response to the SMF immediately with a cause "Attempting to reach UE" which indicates the SMF that the N2 SM information provided in step 3a, may be ignored by the AMF once the UE is reachable and the SMF may be asked to provide the N2 SM information again.

While waiting for the UE to respond to a previous paging request, if the AMF receives an Namf_Communication_N1N2MessageTransfer Request message with the same or a lower priority than the previous message triggering the paging, or if the AMF has determined not to trigger additional paging requests for this UE based on local policy, the AMF rejects the Namf_Communication_N1N2MessageTransfer Request message.

If the UE is in CM-CONNECTED state at the AMF then the AMF sends a Namf_Communication_N1N2MessageTransfer response to the SMF immediately with a cause "N1/N2 transfer success".

If the UE is in CM-IDLE state, and the AMF determines that the UE is not reachable for paging, the AMF shall send an Namf_Communication_N1N2MessageTransfer response either to the SMF, or to other network functions from which AMF received the request message in step 3a, or the AMF performs asynchronous type communication and stores the UE context based on the received message. If asynchronous type communication is invoked, the AMF initiates communication with the UE and (R)AN when the UE is reachable e.g. when the UE enters CM-CONNECTED state.

If the AMF has determined the UE is unreachable for the SMF (e.g., due to the UE in MICO mode or the UE is only registered over non-3GPP access and its state is CM-IDLE), then the AMF rejects the request from the SMF. The AMF may include in the reject message an indication that the SMF need not trigger the Namf_Communication_N1N2MessageTransfer Request to the AMF, if the SMF has not subscribed to the event of the UE reachability. The AMF stores an indication that the SMF has been informed that the UE is unreachable.
If the UE is not in MICO mode and the AMF detects the UE is in a Non-Allowed Area unless the request from the SMF is for regulatory prioritized service, the AMF rejects the request from the SMF and notifies the SMF that the UE is reachable only for regulatory prioritized service. The AMF stores an indication that the SMF has been informed that the UE is reachable only for regulatory prioritized service.

If the Registration procedure with AMF change is in progress when the old AMF receives the Namf_Communication_N1N2MessageTransfer, the old AMF may reject the request with an indication that the Namf_Communication_N1N2MessageTransfer has been temporarily rejected.

Upon reception of an Namf_Communication_N1N2MessageTransfer response with an indication that its request has been temporarily rejected, the SMF shall start a locally configured guard timer and wait for any message to come from an AMF. Upon reception of a message from an AMF, the SMF shall re-invoke the Namf_Communication_N1N2MessageTransfer (with N2 SM info) to the AMF from which it received the message. Otherwise the SMF takes the step 3c at expiry of the guard timer. If the SMF decides that the control plane buffering applies, the SMF shall request UPF to start forwarding the downlink data PDU towards the SMF.

3c. [Conditional] SMF responds to the UPF

SMF may notify the UPF about the User Plane setup failure.

If the SMF receives an indication from the AMF that the UE is unreachable or reachable only for regulatory prioritized service, the SMF may, based on network policies, either:

- indicate to the UPF to stop sending Data Notifications;
- indicate to the UPF to stop buffering DL data and discard the buffered data;
- indicate to the UPF to stop sending Data Notifications and stop buffering DL data and discard the buffered data; or
- refrains from sending further Namf_Communication_N1N2MessageTransfer message for DL data to the AMF while the UE is unreachable.

Based on operator policies, the SMF applies the pause of charging procedure as specified in clause 4.4.4.

If the SMF receives an indication from the AMF that the Namf_Communication_N1N2MessageTransfer message requested from an SMF has been temporarily rejected, the SMF may, based on network policies, indicate to the UPF to apply temporary buffering.

4a. [Conditional] If the UE is in CM-CONNECTED state in the access associated with the PDU Session ID received from the SMF in step 3a, the steps 12 to 22 in UE Triggered Service Request procedure (see clause 4.2.3.2) are performed to activate the User Plane Connection for this PDU Session (i.e. establish the radio resources and N3 tunnel) without sending a Paging message to the (R)AN node and the UE. In step 12 of clause 4.2.3.2, the AMF does not send the NAS Service Accept message to the UE. The rest of this procedure is omitted.

4b. [Conditional] If the UE is in CM-IDLE state in 3GPP access and the PDU Session ID received from the SMF in step 3a has been associated with 3GPP access and based on local policy the AMF decides to notify the UE through 3GPP access even when UE is in CM-CONNECTED state for non-3GPP access, the AMF may send a Paging message to NG-RAN node(s) via 3GPP access.

If the UE is simultaneously registered over 3GPP and non-3GPP accesses in the same PLMN, the UE is in CM-IDLE state in both 3GPP access and non-3GPP access, and the PDU Session ID in step 3a is associated with non-3GPP access, the AMF sends a Paging message with associated access "non-3GPP" to NG-RAN node(s) via 3GPP access.

If the UE is in RM-REGISTERED state and CM-IDLE and reachable in 3GPP access, the AMF sends a Paging message (NAS ID for paging, Registration Area list, Paging DRX length, Paging Priority indication, access associated to the PDU Session) to (R)AN node(s) belonging to the Registration Area(s) in which the UE is registered, then the NG-RAN node pages the UE, including the access associated to the PDU Session in the paging message if received from the AMF, see TS 38.331 [12].

When supporting Paging Policy Differentiation, paging strategies may be configured in the AMF for different combinations of DNN, Paging Policy Indication, ARP and 5QI.

For RRC-inactive state, the paging strategies may be configured in the (R)AN for different combinations of Paging Policy Indication, ARP and 5QI.

Paging Priority indication is included only:
- if the AMF receives an Namf_Communication_N1N2MessageTransfer message with an ARP value associated with priority services (e.g., MPS, MCS), as configured by the operator.
- One Paging Priority level can be used for multiple ARP values. The mapping of ARP values to Paging Priority level (or levels) is configured by operator policy in the AMF and in NG-RAN.

The (R)AN may prioritise the paging of UEs according to the Paging Priority indication.

If the AMF, while waiting for a UE response to the Paging Request message sent without Paging Priority indication, receives an Namf_Communication_N1N2MessageTransfer message, which indicates an ARP value associated with priority services (e.g., MPS, MCS), as configured by the operator, the AMF shall send another paging message with the suitable Paging Priority. For subsequent received Namf_Communication_N1N2MessageTransfer messages with the same or higher priority, the AMF may determine whether to send the Paging message with suitable Paging Priority based on local policy.

Paging strategies may include:
- paging retransmission scheme (e.g. how frequently the paging is repeated or with what time interval);
- determining whether to send the Paging message to the (R)AN nodes during certain AMF high load conditions;
- whether to apply sub-area based paging (e.g. first page in the last known cell-id or TA and retransmission in all registered TAs).

NOTE 3: Setting of Paging Priority in the Paging message is independent from any paging strategy.

The AMF and the (R)AN may support further paging optimisations in order to reduce the signalling load and the network resources used to successfully page a UE by one or several of the following means:
- by the AMF implementing specific paging strategies (e.g. the N2 Paging message is sent to the (R)AN nodes that served the UE last);
- by the AMF considering Information On Recommended Cells And NG-RAN nodes provided by the (R)AN at transition to CM-IDLE state. The AMF takes the (R)AN nodes related part of this information into account to determine the (R)AN nodes to be paged, and provides the information on recommended cells within the N2 Paging message to each of these (R)AN nodes;
- by the (R)AN considering the Paging Attempt Count Information provided by the AMF at paging.

If the UE Radio Capability for Paging Information is available in the AMF, the AMF adds the UE Radio Capability for Paging Information in the N2 Paging message to the (R)AN nodes.

If the Information On Recommended Cells And (R)AN nodes For Paging is available in the AMF, the AMF shall take that information into account to determine the (R)AN nodes for paging and, when paging a (R)AN node, the AMF may transparently convey the information on recommended cells to the (R)AN node.

The AMF may include in the N2 Paging message(s) the paging attempt count information. The paging attempt count information shall be the same for all (R)AN nodes selected by the AMF for paging.

4c. [Conditional] If the UE is simultaneously registered over 3GPP and non-3GPP accesses in the same PLMN, and the UE is in CM-CONNECTED state in 3GPP access and the PDU Session ID in step 3a is associated with non-3GPP access, the AMF sends a NAS Notification message containing the non-3GPP Access Type to the UE over 3GPP access and sets a Notification timer. Step 5 is omitted.

If the UE is simultaneously registered over 3GPP and non-3GPP accesses in the same PLMN, and the UE is in CM-CONNECTED state for non-3GPP access and in CM-IDLE for 3GPP access, and if the PDU Session ID in step 3a is associated with 3GPP access, and based on local policy the AMF decides to notify the UE through
non-3GPP access, the AMF may send a NAS Notification message containing the 3GPP Access Type to the UE over non-3GPP access and sets a Notification timer.

5. [Conditional] AMF to SMF: Namf_Communication_N1N2TransferFailure Notification.

The AMF supervises the paging procedure with a timer. If the AMF receives no response from the UE to the Paging Request message, the AMF may apply further paging according to any applicable paging strategy described in step 4b.

The AMF notifies the SMF by sending Namf_Communications_N1N2MessageTransfer Failure Notification to the Notification Target Address provided by the SMF in step 3a if the UE does not respond to paging, unless the AMF is aware of an ongoing MM procedure that prevents the UE from responding, i.e. the AMF receives an N14 Context Request message indicating that the UE performs Registration procedure with another AMF.

When a Namf_Communication_N1N2TransferFailure Notification is received, SMF informs the UPF.

Procedure for pause of charging at SMF is specified in clause 4.4.4.

6. If the UE is in CM-IDLE state in 3GPP access, upon reception of paging request for a PDU Session associated to 3GPP access, the UE shall initiate the UE Triggered Service Request procedure (clause 4.2.3.2). In step 4 of clause 4.2.3.2, the AMF invokes Nsmf_PDUSession_UpdateSMContext request to the SMF(s) associated with the PDU Session identified in Service Request message if there is any, except for the PDU Session ID included in the Namf_Communication_N1N2MessageTransfer in step 3a. To support the buffered data forwarding, the SMF instruct the UPF to establish a Data forwarding tunnel between the old UPF and the new UPF or to the PSA as described at steps 6a, 7a, 8a of clause 4.2.3.

If the UE is in CM-IDLE state in both non-3GPP and 3GPP accesses, upon reception of paging request for a PDU Session associated to non-3GPP access, the UE shall initiate the UE Triggered Service Request procedure (clause 4.2.3.2) which shall contain the List Of Allowed PDU Sessions that, according to UE policies and whether the S-NSSAI of these PDU Sessions are within the Allowed NSSAI for 3GPP access, can be re-activated over the 3GPP access. If there is no PDU Session that can be re-activated over the 3GPP access, the UE includes an empty List Of Allowed PDU Sessions. If the AMF receives a Service Request message from the UE via non-3GPP access as described in clause 4.12.4.1 (e.g. because the UE successfully connects to a non-3GPP access), the AMF stops the paging procedure and processes the received Service Request procedure. If the AMF receives the Service Request message and the List Of Allowed PDU Sessions provided by the UE does not include the PDU Session for which the UE was paged, the AMF notifies the SMF that the UE was reachable but did not accept to re-activate the PDU Session by invoking Namf_EventExposure_Notify service as described in step 4 of clause 4.2.3.

If the UE is in CM-IDLE state in 3GPP access and in CM-CONNECTED state in non-3GPP access, upon reception of NAS Notification message over 3GPP access containing the non-3GPP Access Type, the UE shall initiate the UE Triggered Service Request procedure (clause 4.2.3.2) with the List Of Allowed PDU Sessions that, according to UE policies and whether the S-NSSAI of these PDU Sessions are within the Allowed NSSAI for 3GPP access, can be re-activated over the 3GPP access. If there is no PDU Session that can be re-activated over the 3GPP access, the UE include an empty List Of Allowed PDU Sessions. When the AMF receives the Service Request message and the List of Allowed PDU Sessions provided by the UE does not include the PDU Session for which the UE was notified, the AMF notifies the SMF that the UE was reachable but did not accept to re-activate the PDU Session by invoking Namf_EventExposure_Notify service. If the AMF receives a Service Request message from the UE via non-3GPP access as described in clause 4.12.4.1 (e.g. because the UE successfully connects to a non-3GPP access), the AMF stops the Notification timer and processes the received Service Request procedure.

If the UE is in CM-IDLE state in non-3GPP access and in CM-CONNECTED state in 3GPP access, upon reception of NAS Notification message over non-3GPP access identifying the 3GPP access type, the UE shall initiate the UE triggered Service Request procedure over the 3GPP access when 3GPP access is available. If the AMF does not receive the Service Request message before Notification timer expires, the AMF may either page the UE through 3GPP access or notify the SMF that the UE was not able to re-activate the PDU Session.

7. The UPF transmits the buffered downlink data toward UE via (R)AN node which performed the Service Request procedure.

Network sends downlink signalling if the procedure is triggered due to request from other network entities described in step 3a.
4.2.4 UE Configuration Update

4.2.4.1 General

UE configuration may be updated by the network at any time using UE Configuration Update procedure. UE configuration includes:

- Access and Mobility Management related parameters decided and provided by the AMF. This includes the Configured NSSAI and its mapping to the Subscribed S-NSSAIs, the Allowed NSSAI and its mapping to Subscribed S-NSSAIs.

- UE Policy provided by the PCF.

When AMF wants to change the UE configuration for access and mobility management related parameters the AMF initiates the procedure defined in clause 4.2.4.2. When the PCF wants to change or provide new UE Policies in the UE, the PCF initiates the procedure defined in clause 4.2.4.3.

4.2.4.2 UE Configuration Update procedure for access and mobility management related parameters

This procedure is initiated by the AMF when the AMF wants to update access and mobility management related parameters in the UE configuration.

This procedure is also used to trigger UE to perform, based on network indication, either Registration Update procedure while the UE is in CM-CONNECTED state to modify parameters that require negotiation (e.g. MICO mode) or Registration Update procedure after the UE enters CM-IDLE state (e.g. for changes to Allowed NSSAI that require re-registration).

If the AMF wants to update NAS parameters in the UE which require UE acknowledgement, then the AMF provides an indication to the UE of whether the UE shall acknowledge the command or not. The AMF should not request acknowledgement of the NITZ command. The AMF shall request acknowledgement for NSSAI information (e.g. Allowed NSSAI), 5G-GUTI, TAI List, and Mobility Restrictions, LADN Information, MICO.
0. AMF determines the necessity of UE configuration change due to various reasons (e.g., UE mobility change, NW policy, reception of Subscriber Data Update Notification from UDM, change of Network Slice configuration) or that the UE needs to perform a Registration Procedure. If a UE is in CM-IDLE, the AMF triggers Network Triggered Service Request (in clause 4.2.3.3).

The AMF may include Handover Restriction List in N2 message that delivers UE Configuration Update Command to the UE if the service area restriction for the UE is updated.

1. The AMF sends UE Configuration Update Command containing one or more UE parameters (5G-GUTI, TAI List, Allowed NSSAI, Mapping Of Allowed NSSAI, Configured NSSAI for the Serving PLMN, Mapping Of Configured NSSAI, rejected S-NSSAIs, NITZ, Mobility Restrictions, LADN Information, MICO, Configuration Update Indication) to UE. Optionally, the AMF may update the rejected S-NSSAIs in the UE Configuration Update command.

The AMF includes one or more of 5G-GUTI, TAI List, Allowed NSSAI, Mapping Of Allowed NSSAI, Configured NSSAI for the Serving PLMN, Mapping Of Configured NSSAI, rejected S-NSSAIs, NITZ (Network Identity and Time Zone), Mobility Restrictions parameters or LADN Information if the AMF wants to update these NAS parameters without triggering a UE Registration procedure.

The AMF may include in the UE Configuration Update Command also Configuration Update Indication parameters indicating whether:

- Network Slicing Subscription Change has occurred; and
- the UE shall acknowledge the command and;
- (optional) a Registration procedure is requested; and
- The 5G-GUTI shall be used in access stratum signalling for the Registration procedure.

If the AMF indicates Network Slicing Subscription Change, then the UE shall locally erase all the network slicing configuration for all PLMNs and, if applicable, update the configuration for the current PLMN based on any received information. If the AMF indicates Network Slicing Subscription Change, the UE shall also be requested to acknowledge in step 2.

2. If the UE Configuration Update Indication requires acknowledgment of the UE Configuration Update Command, then the UE shall send a UE Configuration Update complete message to the AMF. The AMF should request acknowledgement for all UE Configuration Updates, except for NITZ. If Registration procedure is not required, steps 3a, 3b, 3c, 3d and step 4 are skipped.

If the Configuration Update Indication requires a Registration procedure, depending on the parameters included in the UE Configuration Update command steps 3a or 3b+4 or 3c+4 or 3d+4 are executed.

3a. If MICO is included in the UE Configuration Update Command message, UE shall initiate a Registration procedure immediately after the acknowledgement to re-negotiate MICO mode with the network. Steps 3b, 3c, 3d and step 4 are skipped.

3b. If a new Allowed NSSAI and/or a new Mapping Of Allowed NSSAI provided by the AMF to the UE does not affect the existing connectivity to slices (i.e. any S-NSSAI(s) the UE is connected to), the AMF needs not release the NAS signalling connection for the UE after receiving the acknowledgement in step 2, and immediate registration is not required. The UE can start immediately using the new Allowed NSSAI and/or the new Mapping Of Allowed NSSAI. The UE cannot connect to an S-NSSAI included in the new Configured NSSAI for the Serving PLMN but not included in the new Allowed NSSAI until the UE performs a Registration procedure and includes a Requested NSSAI based on the new Configured NSSAI. Steps 3c and 3d are skipped.

3c. If a new Allowed NSSAI and/or a new Mapping Of Allowed NSSAI and/or a new Configured NSSAI provided by the AMF to the UE affects ongoing existing connectivity to Network Slices, then the AMF also includes in the UE Configuration Update Command message a new Allowed NSSAI with, if available, the associated Mapping Of Allowed NSSAI, and an indication that the UE shall not provide the 5G-GUTI in Access Stratum signalling when performing a Registration procedure. After receiving the acknowledgement in step 2, the AMF shall release the NAS signalling connection for the UE, unless there are established PDU Session(s) associated with emergency services. Step 3d is skipped.

3d. If the AMF cannot determine the new Allowed NSSAI after the Subscribed S-NSSAI(s) are updated, then the AMF does not include in the UE Configuration Update Command message any Allowed NSSAI, but an indication that the UE shall not provide the 5G-GUTI in Access Stratum signalling when performing a Registration procedure. After receiving the acknowledgement in step 2, the AMF shall release the NAS signalling connection for the UE, unless there are established PDU Session(s) associated with emergency services.

4. The UE initiates a Registration procedure after the UE enters CM-IDLE state and includes the 5G-GUTI in Access Stratum signalling depending on the indication received from the AMF. If there is an established PDU Session associated with emergency service and the UE has received an indication to perform the Registration procedure, the UE shall initiate the Registration procedure only after the PDU Session associated with emergency service is released.

The AMF shall reject any NAS Message from the UE carrying PDU Session Establishment Request for a non-emergency PDU Session before the required Registration procedure has been successfully completed by the UE.

NOTE: Receiving UE Configuration Update command without an indication requesting to perform re-registration, can still trigger Registration Update procedure by the UE for other reasons.

4.2.4.3 UE Configuration Update procedure for transparent UE Policy delivery

This procedure is initiated when the PCF wants to update UE Access and PDU Session selection information (i.e. UE policy) in the UE configuration.
Figure 4.2.4.3-1 UE Configuration Update procedure for transparent UE Policy delivery

1a. As defined in clause 4.16.1.2, AMF may receive in the Npcf_AMPolicyControl_Create Response (Access and mobility related information or the UE Policy container (UE Access and PDU Session selection related information) or both) from the PCF.

1b. Alternatively to 1a, as defined in clause 4.16.2.2, AMF receives in the Npcf_AMPolicyControl_UpdateNotify (Access and mobility related information or the UE Policy container (UE Access and PDU Session selection related information) or both) from the PCF.

2. If a UE is in CM-IDLE, the AMF triggers Network Triggered Service Request (in clause 4.2.3.3), if the UE is not reachable the AMF report to the PCF that the UE Policy container could not be delivered to the UE. If the UE is in CM-CONNECTED, the AMF transfers transparently the UE Policy container (UE Access and PDU Session selection related information) received from the PCF to the UE. The UE Policy container includes the list of PSIs to notify the UE that one or more PSIs were added, removed or modified, as described in TS 23.503 [20].

3. The UE performs the PSI operations and sends the result to the AMF. The AMF transfers transparently the result to the PCF. If one or several PSI operations failed the UE includes the UE Policy container (the list of stored PSIs).

4. If the AMF received the UE Policy container and the PCF subscribed to be notified of the reception of the UE Policy container then the AMF forwards the response of the UE to the PCF using Npcf_AMPolicyControl_Update including Information on the Policy Control Request Trigger condition that has been met “Policy container received” and EventInformation including the UE Policy container.

5. The PCF confirms the reception of the Npcf_AMPolicyControl_Update to the AMF.

4.2.5 Reachability procedures

4.2.5.1 General

Elements of this procedure are used for UDM/NF initiated UE Reachability Notification requests, e.g. for "SMS over NAS".

The procedure applies to UEs that are in RRC-Idle, RRC-Inactive and RRC-Connected states.

There are two procedures necessary for any service related entity that would need to be notified by the reachability of the UE:

- UE Reachability Notification Request procedure; and
4.2.5.2 UE Reachability Notification Request procedure

The UE Reachability Notification Request procedure is illustrated in figure 4.2.5.2-1.

Figure 4.2.5.2-1: UE Reachability Notification Request Procedure

0. During the Registration or subscription update procedure, the UDM informs the AMF of the identities (e.g. FQDNs) of the Network Functions that are authorized to request notifications on this UE's reachability via Nudm_UECM_Registration or Nudm_SubscriberData_Update service operation. By default, the UDM is always authorized.

1. If a service-related entity requests the UDM to provide an indication regarding UE reachability, the UDM checks that that entity is authorized to perform this request on this subscriber.

 If the entity is not authorized, the request may be rejected (e.g. if the requesting entity is recognized as being a valid entity, but not authorized for that subscriber) or silently discarded (e.g. if the requesting entity is not recognized). Appropriate O&M reports are generated.

2a. The UDM stores the identity of the service-related entity and sets the URRP-AMF parameter to indicate that such request is received. If the value of URRP-AMF parameter has changed from "not set" to "set", the UDM initiates Namf_EventExposure_Subscribe_service operation towards the AMF. The UDM may indicate if direct notification to NF shall be used.

2b. Other NFs request notifications on this UE's reachability via Namf_EventExposure_Subscribe_service operation towards the AMF.

NOTE: The UDM may trigger UE Reachability Notification Request procedure with two different AMFs for a UE which is connected to 5G Core Network over 3GPP access and non-3GPP access simultaneously. Also, the UDM may trigger UE Reachability Notification Request procedure with MME as described in TS 23.401 [13].

3. The AMF checks that the requesting entity is authorized to perform this request on this subscriber.

 If the entity is not authorized, the request may be rejected (e.g. if the requesting entity is recognized as being a valid entity, but not authorized for that subscriber) or silently discarded (e.g. if the requesting entity is not recognized). Appropriate O&M reports are generated.

 If the AMF has a MM Context for that user, the AMF sets URRP-AMF to indicate the need to report to the UDM or other NF with a UE Activity Notification (see clause 4.2.5.3).

4. [Conditional] If the UE state in AMF is in CM-CONNECTED state and the Access Type is 3GPP access, the AMF initiates N2 Notification procedure (see clause 4.8.3) with reporting type set to Single RRC-Connected state notification.
4.2.5.3 UE Activity Notification procedure

The UE Activity Notification procedure is illustrated in figure 4.2.5.3-1.

1a. For a UE in CM-IDLE, the AMF receives (N1) NAS signalling implying UE reachability, e.g. a Registration Request or Service Request message from the UE or the UE’s reachability state changes from reachable to unreachable, or

1b. For a UE in CM-CONNECTED, if the AMF has initiated the N2 Notification procedure in Step 4 of clause 4.2.5.2 and the AMF receives a (N2) UE Notification (see clause 4.8.3) or a (N2) Path Switch Request (see clause 4.9.1.2) from the NG-RAN. Otherwise (i.e. UE is in CM-CONNECTED and AMF has not initiated N2 Notification procedure), AMF performs step 2.

2. If the AMF has an MM context for the UE and the URRP-AMF is set to report once that the UE is reachable, the AMF initiates the Namf_EventExposure_Notify service operation (SUPI, UE-Reachable) message to the UDM or directly to the NF (if previously indicated to AMF in step 2 in clause 4.2.5.2). The AMF clears the corresponding URRP-AMF for the UE. If the UE was in CM-IDLE and the UE’s reachability state changes from reachable to unreachable, the AMF initiates the Namf_EventExposure_Notify service operation (SUPI, UE-Unreachable).

2a. When the UDM receives the Namf_EventExposure_Notify service operation (SUPI, UE-Reachable) message or Nudm_UECM_Registration service for a UE that has URRP-AMF set, it triggers appropriate notifications to the NFs (e.g. SMSF or SMS-GMSC) that have subscribed to the UDM for this notification. UDM clears the URRP-AMF for the UE.

2b. When the AMF receives Namf_EventExposure_Subscribe_service operation directly from the NF, or the UDM indicates that the notification needs to be sent to the NF, the AMF initiates the Namf_EventExposure_Notify service operation (SUPI, UE-Reachable) message directly to the NF.

4.2.6 AN Release

This procedure is used to release the logical NG-AP signalling connection and the associated N3 User Plane connections, and (R)AN RRC signalling and resources.

When the NG-AP signalling connection is lost due to (R)AN or AMF failure, the AN release is performed locally by the AMF or the (R)AN as described in the procedure flow below without using or relying on any of the signalling shown between (R)AN and AMF. The AN release causes all UP connections of the UE to be deactivated.

The initiation of AN release may be due to:

- (R)AN-initiated with cause e.g. O&M Intervention, Unspecified Failure, (R)AN (e.g. Radio) Link Failure, User Inactivity, Inter-System Redirection, request for establishment of QoS Flow for IMS voice, Release due to UE generated signalling connection release, mobility restriction etc.; or
AMF-initiated with cause e.g. Unspecified Failure, etc.

Both (R)AN-initiated and AMF-initiated AN Release procedures are shown in Figure 4.2.6-1.

For this procedure, the impacted SMF and UPF are all under control of the PLMN serving the UE, e.g. in Home Routed roaming case the SMF and UPF in HPLMN are not involved.

- **3GPP TS 23.502 version 15.2.0 Release 15**

Figure 4.2.6-1: AN Release procedure

1. If there is some confirmed (R)AN conditions (e.g. Radio Link Failure) or for other (R)AN internal reason, the (R)AN may decide to initiate the UE context release in the (R)AN. In this case, the (R)AN sends an N2 UE Context Release Request (Cause, List of PDU Session ID(s) with active N3 user plane) message to the AMF. Cause indicates the reason for the release (e.g. AN Link Failure, O&M intervention, unspecified failure, etc.). The List of PDU Session ID(s) indicates the PDU Sessions served by (R)AN of the UE. This step is described in TS 38.413 [10], clause 8.3.2 "UE Context Release Request (gNB initiated)".

2. AMF to (R)AN: If the AMF receives the N2 UE Context Release Request message or due to an internal AMF event, including the reception of Service Request or Registration Request to establish another NAS signalling connection still via NG-RAN, the AMF sends an N2 UE Context Release Command (Cause) to the (R)AN. The Cause indicates either the Cause from (R)AN in step 1 or the Cause due to an AMF internal event. In case the (R)AN is a NG-RAN this step is described in detail in TS 38.413 [10], clause 8.3.3 "UE Context Release (AMF initiated)". In case the (R)AN is an N3IWF this step is described in clause 4.12.

 If the AMF receives Service Request or Registration Request to establish another NAS signalling connection still via NG-RAN, after successfully authenticating the UE, the AMF releases the old NAS signalling connection, and then continues the Service Request or Registration Request procedure.

3. [Conditional] If the (R)AN connection (e.g. RRC connection or NWu connection) with the UE is not already released (step 1), the (R)AN requests the UE to release the (R)AN connection. Upon receiving (R)AN connection release confirmation from the UE, the (R)AN deletes the UE's context.

4. The (R)AN confirms the N2 Release by returning an N2 UE Context Release Complete (List of PDU Session ID(s) with active N3 user plane, UE Radio Capability) message to the AMF. The List of PDU Session ID(s) indicates the PDU Sessions served by (R)AN of the UE. The AMF stores always the latest UE Radio Capability information received from the NG-RAN node. The N2 signalling connection between the AMF and the (R)AN for that UE is released. The (R)AN provides the list of recommended cells / TAs / NG-RAN node identifiers for paging to the AMF.
This step shall be performed promptly after step 2, i.e. it shall not be delayed, for example, in situations where the UE does not acknowledge the RRC Connection Release.

5. [Conditional] AMF to SMF: For each of the PDU Sessions in the N2 UE Context Release Complete, the AMF invokes Nsmf_PDUSession_UpdateSMContext Request (PDU Session ID, PDU Session Deactivation, Cause, Operation Type). The Cause in step 5 is the same Cause in step 2. If List of PDU Session ID(s) with active N3 user plane is included in step 1b, the step 5 to 7 are performed before step 2. The Operation Type is set to "UP deactivate" to indicate deactivation of user plane resources for the PDU Session.

6a [Conditional] SMF to UPF: N4 Session Modification Request (AN or N3 UPF Tunnel Info to be removed, Buffering on/off).

The SMF initiates an N4 Session Modification procedure indicating the need to remove Tunnel Info of AN or UPF terminating N3. Buffering on/off indicates whether the UPF shall buffer incoming DL PDU or not.

If multiple UPFs are used in the PDU Session and the SMF determines to release the UPF terminating N3, step 6a is performed towards the UPF (e.g. PSA) terminating N9 towards the current N3 UPF. The SMF then releases the N4 session towards the N3 UPF (the N4 release is not shown on the call flow).

See clause 4.4 for more details.

If the cause of AN Release is because of User Inactivity, or UE Redirection, the SMF shall preserve the GBR QoS Flows. Otherwise, the SMF shall trigger the PDU Session Modification procedure (see clause 4.3.3) for the GBR QoS Flows of the UE after the AN Release procedure is completed.

6b. [Conditional] UPF to SMF: N4 Session Modification Response acknowledging the SMF request.

See clause 4.4 for more details.

Upon completion of the procedure, the AMF considers the N2 and N3 as released and enters CM-IDLE state.

After completion of the procedure, the AMF reports towards the NF consumers are triggered for cases in clause 4.15.4.

4.2.7 N2 procedures

4.2.7.1 N2 Configuration

At power up, restart and when modifications are applied, the 5G-AN node and AMF use non-UE related N2 signalling to exchange configuration data. Full details of this configuration data are specified in TS 38.300 [9], but the following highlights some aspects.

The AMF supplies the 5G-AN node with information about:

a) the AMF Name and the GUAMI(s) configured on that AMF Name;

b) the set of TNL associations to be established between the NG-RAN node and the AMF;

c) weight factor associated with each of the TNL association within the AMF; and

d) weight factor for each AMF Name within the AMF set; and

e) (optional) for each GUAMI(s) configured on that AMF the corresponding backup AMF Name.

The weight factors are used for load distribution of the initial N2 messages. The AMF chooses whether or not to use the same TNL association for the initial N2 message and subsequent messages for that UE. TNL associations configured with a weight factor set to zero are not permitted for the initial N2 message, but can be used for subsequent N2 messages.

Deployments that rely solely on 5GC-based load balancing can set the weight factors associated with TNL associations that are permitted for the initial N2 message to the same value.
4.2.7.2 NGAP UE-TNLA-binding related procedures

4.2.7.2.1 Creating NGAP UE-TNLA-bindings during Registration and Service Request

When a UE connects to the 5GC via a 5G-AN node without a GUAMI or with a GUAMI not associated with the 5G-AN node, the following steps are performed:

1. The 5G-AN node selects an AMF as defined in TS 23.501 [2] clause 6.3.5.

2. The 5G-AN node creates an NGAP UE-TNLA-binding for the UE by selecting a TNL association from the available TNL associations permitted for the initial message e.g. N2 INITIAL UE MESSAGE for the selected AMF, as defined in TS 23.501 [2] clause 5.21.1.3, and forwards the UE message to the AMF via the selected TNL association.

3. The AMF may decide to use the TNL association selected by the 5G-AN or the AMF may modify the NGAP UE-TNLA-binding by triangular redirection.

NOTE 1: This process could take place during the Registration procedure (for Initial Registration, Mobility Registration Update).

4. The AMF may decide to modify the NGAP UE-TNLA-binding toward other 5G-AN nodes such as N3IWF. This is done in case AMF is changed and old AMF have existing NGAP UE-TNLA-bindings toward other 5G-AN nodes.

When a UE connects to the 5GC via a 5G-AN node with a 5G-S-TMSI or GUAMI associated with the AMF usable by the 5G-AN node, the following steps are performed:

1. The 5G-AN node creates an NGAP UE-TNLA-binding for the UE by selecting a TNL association from the available TNL associations permitted for the initial N2 message for the AMF identified by the UE’s 5G-S-TMSI or GUAMI.

2. The AMF may decide to use the TNL association selected by the 5G-AN or the AMF may modify the NGAP UE-TNLA-binding by triangular redirection.

NOTE 2: This process could take place during the Registration procedure or Service Request procedure.

4.2.7.2.2 Creating NGAP UE-TNLA-bindings during handovers

During an Xn-based inter NG-RAN node handover, the following applies:

- If an NGAP UE-TNLA-binding exists for a UE, the source 5G-AN node supplies the target 5G-AN node with the corresponding TNL address of the AMF for the currently used TNL association.

- If the target 5G-AN receives the TNL address of the AMF from the source 5G-AN node, the target 5G-AN node establishes a TNL association towards the TNL address received from the source 5G-AN node, creates an NGAP UE-TNLA-binding to this TNL association and sends the N2 Path Switch Request via this TNL association.

- If the target 5G-AN does not receive the TNL address of the AMF from the source 5G-AN node, the 5G-AN node creates an NGAP UE-TNLA-binding for the UE by selecting a TNL association from the available TNL associations permitted for the initial N2 message for the AMF identified by the UE’s GUAMI.

- The AMF may decide to use the TNL association selected by the 5G-AN or the AMF may modify the NGAP UE-TNLA-binding by triangular redirection.

During an inter NG-RAN node handover without Xn interface (i.e. during an N2 handover) the following applies:

- If an NGAP UE-TNLA-binding exists for a UE, the source 5G-AN node sends the N2 Handover Required message using the corresponding TNL address of the AMF.

- Otherwise the 5G-AN node creates an NGAP UE-TNLA-binding for the UE by selecting a TNL association from the available TNL associations permitted for the initial N2 message for the AMF identified by the UE’s GUAMI.

- The target AMF selects a TNL association from the available TNL associations for the target 5G-AN node and sends the N2 Handover Request message via this TNL association. The target 5G-AN node creates an NGAP UE-TNLA-binding for the UE based on the TNL association selected by the target AMF.
4.2.7.2.3 Re-Creating NGAP UE-TNLA-bindings subsequent to NGAP UE-TNLA-binding release

If the AMF has released the NGAP UE-TNLA-binding in the 5G-AN node for a UE, and the 5G-AN node needs to send an N2 message for this UE, the following applies:

- The 5G-AN node checks the GUAMI stored in the UE context and the associated AMF:
 - If the GUAMI is available, 5G-AN selects the AMF which owns that GUAMI.
 - If GUAMI has been marked as unavailable (i.e. based on AMF unavailable status indication received from AMF) but one corresponding target AMF has been indicated, 5G-AN selects that target AMF even if the GUAMI has not been updated as available by the target AMF.
 - If GUAMI has been marked as unavailable (i.e. based on AMF unavailable status indication received from AMF) and no corresponding target AMF has been indicated, the 5G-AN selects an AMF from the AMF Set based on AMF Set ID of the GUAMI, as defined in TS 23.501 [2] clause 6.3.5.
- The 5G-AN node creates an NGAP UE-TNLA-binding for the UE by selecting a TNL association from the available TNL associations permitted for the initial N2 message with the selected AMF, as defined in TS 23.501 [2] clause 5.21.1.3, and sends the N2 message to the AMF via the selected TNL association.
- The AMF may decide to use the TNL association selected by the 5G-AN or the AMF may modify the NGAP UE-TNLA-binding by triangular redirection.

If the NGAP UE-TNLA-binding has been released for a UE and the AMF needs to send an N2 message for this UE, the following applies:

- The AMF selects a TNL association from the available TNL associations for the target 5G-AN node and sends the N2 message via this TNL association. The target 5G-AN node creates an NGAP UE-TNLA-binding for the UE based on the TNL association selected by the AMF.

The TNL association chosen by the AMF always takes precedence.

NOTE: This addresses situations where 5G-AN node and AMF select a TNL association for a UE concurrently.

4.2.7.2.4 NGAP UE-TNLA-binding update procedure

At any time the AMF may decide to re-bind the NGAP UE association to a new TNL association either:

- by sending a UE-specific NGAP message on a new TNL association (triangular redirection), or
- by sending a UE-specific NGAP UE-TNLA binding release message to 5G-AN and the 5G-AN node updates the NGAP UE-TNLA binding with the new TNL association.

4.2.7.2.5 NGAP UE-TNLA-binding per UE Release procedure

At any time the AMF may decide to release the NGAP UE-TNLA binding while keeping the UE in CM-CONNECTED state while keeping the corresponding N3 interface. The AMF releases the NGAP UE-TNLA binding by sending a UE-specific NGAP UE-TNLA binding release message on the current TNL association.

If the AMF releases the NGAP UE-TNLA-binding without sending AMF unavailable status indication, then the AN may immediately trigger creation of a new NGAP-UE-TNLA-binding with the same AMF for subsequent N2 messages or may leave the NGAP UE association without NGAP UE-TNLA-binding. In the latter case the new NGAP UE-TNLA-binding is re-created upon the subsequent AN-initiated or AMF-initiated UE-specific N2 signalling as specified in clause 4.2.7.2.3.

If the AMF releases the NGAP UE-TNLA-binding after AMF unavailable status indication, then the AN has to re-create the NGAP-UE-TNLA-binding with a different AMF. The 5G-AN re-creates N2AP UE-TNLA-binding for subsequent N2 messages for the given UE as specified in clause 4.2.7.2.3.

4.2.7.3 AMF Failure or Planned Maintenance handling procedure

For UE(s) in CM-CONNECTED state:

- If AMF failure is detected by 5G-AN, all NGAP UE TNLA binding for UEs served by that AMF are released.
- If AMF becomes unavailable due to planned maintenance, the AMF notifies the 5G-AN about the unavailable GUAMI(s) and provides optionally a target AMF Name corresponding to each unavailable GUAMI. The 5G-AN releases all NGAP UE TNLA binding of the UEs related to the indicated unavailable GUAMI(s) unless the notification from the AMF includes an indicator that the AMF will rebind or release the NGAP UE TNLA binding on a per UE-basis. In that case, if 5G-AN supports, the 5G-AN waits the release until the timer expires so that the AMF may release or rebind the N2AP UE-TNLA binding on per UE-basis.

- For the release NGAP TNLA binding, the affected UE is kept in CM-CONNECTED state and the corresponding N3 interface is also kept.

For UE(s) in CM-IDLE state, when it subsequently returns from CM-IDLE state and the 5G-AN receives an initial NAS message with a 5G S-TMSI or GUAMI, the 5G-AN uses 5G S-TMSI or GUAMI to select the target AMF, the 5G-AN forwards N2 message.

4.2.8 Void

4.2.8a UE Capability Match Request procedure

If the AMF requires more information on the UE radio capabilities support to be able to set the IMS voice over PS Session Supported Indication (see TS 23.501 [2] clause 5.16.3), then the AMF may send a UE Radio Capability Match Request message to the NG-RAN. This procedure is typically used during the registration procedure or when AMF has not received the Voice Support Match Indicator (as part of the 5GMM Context).

<table>
<thead>
<tr>
<th>UE</th>
<th>(R)AN</th>
<th>AMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. N2: UE Capability Match Request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. RRC: UE Capability Enquiry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. RRC: UE Capability Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. N2: UE Capability Match Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 N2 UE Capability Info Indication</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.2.8a-1: UE Capability Match Request

1. The AMF indicates whether the AMF wants to receive Voice support match indicator. The AMF may include the UE radio capability information it has previously received from NG-RAN.

2. Upon receiving the UE Capability Match Request message, if the NG-RAN has not already received the UE radio capabilities from the UE or from AMF in step 1, the NG-RAN requests the UE to upload the UE radio capability information.

3. The UE provides the NG-RAN with its UE radio capabilities sending the RRC UE Capability Information.

4. The NG-RAN checks whether the UE radio capabilities are compatible with the network configuration for ensuring voice service continuity of voice calls initiated in IMS.

 For determining the appropriate UE Radio Capability Match Response, the NG-RAN is configured by the operator to check whether the UE supports certain capabilities required for Voice continuity of voice calls using IMS PS. In a shared network, the NG-RAN keeps a configuration separately per PLMN.

NOTE 1: What checks to perform depends on network configuration, i.e. following are some examples of UE capabilities to be taken into account:
- UTRAN/E-UTRAN Voice over PS capabilities;
- the Radio capabilities for UTRAN/E-UTRAN FDD and/or TDD; and/or
- the support of UTRAN/E-UTRAN frequency bands.

NOTE 2: The network configuration considered in the decision for the Voice Support Match Indicator is homogenous within a certain area (e.g. AMF set) in order to guarantee that the Voice Support Match Indicator from the NG-RAN is valid within such area.

The NG-RAN provides a Voice Support Match Indicator to the AMF to indicate whether the UE capabilities and networks configuration are compatible for ensuring voice service continuity of voice calls initiated in IMS.

The AMF stores the received Voice support match indicator in the 5GMM Context and uses it as an input for setting the IMS voice over PS Session Supported Indication.

5. If NG-RAN requested radio capabilities from UE in step 2 and 3, the NG-RAN also sends the UE radio capabilities to the AMF. The AMF stores the UE radio capabilities without interpreting them for further provision to the NG-RAN according to TS 23.501 [2], clause 5.4.4.1.

NOTE 3: Steps 4 and 5 could be received by the AMF in any order.

4.3 Session Management procedures

4.3.1 General

Clause 4.3 defines the Session Management related procedures. It refers to clause 4.4 for the N4 interactions.

As defined in 23.501 [2] clause 5.6.3, considering the case of Home Routed PDU Session, the NAS SM information processing by SMF considers following kind of NAS SM information:

- Information that both the V-SMF and H-SMF process: indication of the nature of the NAS SM signalling (e.g. PDU Session Establishment Request), PDU Session Type, Session-AMBR, UE addressing information (allocated IPv4 address, interface identifier).
- Information that is not visible to the V-SMF, only processed by the H-SMF: SSC mode, Protocol Configuration Options, SM PDU DN Request Container, QoS Rule(s) and QoS Flow level QoS parameters if any for the QoS Flow(s) associated with the QoS rule(s).

NOTE 1: "Information that is not visible to the V-SMF" refers to information that the V-SMF is to relay between the UE and the H-SMF (and that it can store in CDR) but that the V-SMF is not assumed to process otherwise.

The NAS SM information processing split between V-SMF and H-SMF is transparent to the UE.

Both V-SMF and H-SMF process information interpreted by the AMF as the PDU Session ID, the DNN, the S-NSSAI (with values for the Serving PLMN and HPLMN processed by the V-SMF, and with a value for the HPLMN processed by the H-SMF).

In the case of Home Routed PDU Session the H-SMF provides also the V-SMF with the IPv6 Prefix allocated to the PDU Session.

NOTE 2: IPv6 Prefix allocated to the PDU Session is provided to allow the V-SMF fulfilling regulatory requirements for data storage in the visited country.

In non roaming and LBO cases the SMF processes all NAS SM information.

In HR roaming scenarios, in order to support SM features only requiring support from the H-SMF without impacting the V-SMF, as specified in detail in TS 29.502 [36]:

- The V-SMF transfers NAS SM information, which is not visible to the V-SMF, in a container towards the H-SMF;
- The V-SMF transfers NAS SM information which it does not comprehend (unknown IEs or IEs with an unknown value not set to "reserved" according to the release to which the V-SMF complies), in a different container towards the H-SMF;

- The H-SMF transfers NAS SM information which the V-SMF does not need to interpret, in one container towards the V-SMF;

- The V-SMF appends unknown NAS SM information received in the N16 container at the end of the NAS SM message it sends to the UE.

4.3.2 PDU Session Establishment

4.3.2.1 General

A PDU Session establishment may correspond to:

- a UE initiated PDU Session Establishment procedure.
- a UE initiated PDU Session handover between 3GPP and non-3GPP.
- a UE initiated PDU Session handover from EPS to 5GS.
- a Network triggered PDU Session Establishment procedure. In this case the network sends the device trigger message to application(s) on the UE side. The payload included in Device Trigger Request message contains information on which application on the UE side is expected to trigger the PDU Session establishment request. Based on that information, the application(s) on the UE side trigger the PDU Session Establishment procedure. For more detail refer to clause 4.13.2.

If the UE is simultaneously registered to a non-3GPP access via a N3IWF located in a PLMN different from the PLMN of the 3GPP access, the functional entities in the following procedures are located in the PLMN of the access used to exchange NAS with the UE for the PDU Session.

4.3.2.2 UE Requested PDU Session Establishment

4.3.2.2.1 Non-roaming and Roaming with Local Breakout

Clause 4.3.2.2.1 specifies PDU Session establishment in the non-roaming and roaming with local breakout cases. The procedure is used to:

- Establish a new PDU Session;
- Handover a PDN Connection in EPS to PDU Session in 5GS without N26 interface;
- Switching an existing PDU Session between non-3GPP access and 3GPP access. The specific system behaviour in this case is further defined in clause 4.9.2; or
- Request a PDU Session for Emergency services.

In case of roaming, the AMF determines if a PDU Session is to be established in LBO or Home Routing. In the case of LBO, the procedure is as in the case of non-roaming with the difference that the AMF, the SMF, the UPF and the PCF are located in the visited network. PDU Sessions for Emergency services are never established in Home Routed mode.

NOTE 1: UE provides both the home and visited PLMN S-NSSAIs to the network as described in clause 5.15.5.3 of TS 23.501 [2].
The procedure assumes that the UE has already registered on the AMF thus unless the UE is Emergency registered the AMF has already retrieved the user subscription data from the UDM.

Figure 4.3.2.2.1-1: UE-requested PDU Session Establishment for non-roaming and roaming with local breakout

The procedure assumes that the UE has already registered on the AMF thus unless the UE is Emergency registered the AMF has already retrieved the user subscription data from the UDM.
1. From UE to AMF: NAS Message (S-NSSAI(s), DNN, PDU Session ID, Request type, Old PDU Session ID, N1 SM container (PDU Session Establishment Request)).

In order to establish a new PDU Session, the UE generates a new PDU Session ID.

The UE initiates the UE Requested PDU Session Establishment procedure by the transmission of a NAS message containing a PDU Session Establishment Request within the N1 SM container. The PDU Session Establishment Request includes a PDU session ID, Requested PDU Session Type, a Requested SSC mode, 5GSM Capability PCO, SM PDU DN Request Container, Number Of Packet Filters.

The Request Type indicates "Initial request" if the PDU Session Establishment is a request to establish a new PDU Session and indicates "Existing PDU Session" if the request refers to an existing PDU Session switching between 3GPP access and non-3GPP access or to a PDU Session handover from an existing PDN connection in EPC. If the request refers to an existing PDN connection in EPC, the S-NSSAI is set as described in TS 23.501 [2] clause 5.15.7.2

When Emergency service is required and an Emergency PDU Session is not already established, a UE shall initiate the UE Requested PDU Session Establishment procedure with a Request Type indicating 'Emergency Request'.

The Request Type indicates "Emergency Request" if the PDU Session Establishment is a request to establish a PDU Session for Emergency services. The Request Type indicates "Existing Emergency PDU Session" if the request refers to an existing PDU Session for Emergency services switching between 3GPP access and non-3GPP access or to a PDU Session handover from an existing PDN connection for Emergency services in EPC.

The 5GSM Core Network Capability is provided by the UE and handled by SMF as defined in TS 23.501 [2] clause 5.4.4b. The 5GSM Capability also includes the UE Integrity Protection Maximum Data Rate.

The Number Of Packet Filters indicates the number of supported packet filters for signalled QoS rules for the PDU Session that is being established. The number of packet filters indicated by the UE is valid for the lifetime of the PDU Session.

The NAS message sent by the UE is encapsulated by the AN in a N2 message towards the AMF that should include User location information and Access Type Information.

The PDU Session Establishment Request message may contain SM PDU DN Request Container containing information for the PDU Session authorization by the external DN.

The UE includes the S-NSSAI from the Allowed NSSAI of the current access type. If the Mapping of Allowed NSSAI was provided to the UE, the UE shall provide both the S-NSSAI from the Allowed NSSAI and the corresponding S-NSSAI from the Mapping Of Allowed NSSAI.

If the procedure is triggered for SSC mode 3 operation, the UE shall also include the Old PDU Session ID which indicates the PDU Session ID of the on-going PDU Session to be released, in NAS message. The Old PDU Session ID is an optional parameter which is included only in this case.

The AMF receives from the AN the NAS SM message (built in step 1) together with User Location Information (e.g. Cell Id in case of the NG-RAN).

The UE shall not trigger a PDU Session establishment for a PDU Session corresponding to a LADN when the UE is outside the area of availability of the LADN.

If the UE is establishing a PDU session for IMS, and the UE is configured to discover the P-CSCF address during connectivity establishment, the UE shall include an indicator that it requests a P-CSCF IP address(es) within the SM container.

The PS Data Off status is included in the PCO in the PDU Session Establishment Request message.

2. The AMF determines that the message corresponds to a request for a new PDU Session based on that Request Type indicates “initial request” and that the PDU Session ID is not used for any existing PDU Session(s) of the UE. If the NAS message does not contain an S-NSSAI, the AMF determines a default S-NSSAI for the requested PDU Session either according to the UE subscription, if it contains only one default S-NSSAI, or based on operator policy. When the NAS Message contains an S-NSSAI but it does not contain a DNN, the AMF determines the DNN for the requested PDU Session by selecting the default DNN for this S-NSSAI if the default DNN is present in the UE's Subscription Information; otherwise the serving AMF selects a locally
configured DNN for this S-NSSAI. If the DNN provided by the UE is not supported by the network and AMF
can not select an SMF by querying NRF, based on operator policy, the AMF shall reject the NAS Message
containing PDU Session Establishment Request from the UE with an appropriate cause.

The AMF selects an SMF as described in clause 6.3.2 of TS 23.501 [2] and clause 4.3.2.2.3. If the Request Type
indicates "Initial request" or the request is due to handover from EPS or from non-3GPP access serving by a
different AMF, the AMF stores an association of the S-NSSAI(s), the DNN, the PDU Session ID, the SMF ID as
well as the Access Type of the PDU Session.

If the Request Type is "initial request" and if the Old PDU Session ID indicating the existing PDU Session is
also contained in the message, the AMF selects an SMF as described in clause 4.3.5.2 and stores an association
of the new PDU Session ID, the S-NSSAI, the selected SMF ID as well as Access Type of the PDU Session.

If the Request Type indicates "Existing PDU Session", the AMF selects the SMF based on SMF-ID received
from UDM. The case where the Request Type indicates "Existing PDU Session", and either the AMF does not
recognize the PDU Session ID or the subscription context that the AMF received from UDM during the
Registration or Subscription Profile Update Notification procedure does not contain an SMF ID corresponding to
the PDU Session ID constitutes an error case. The AMF updates the Access Type stored for the PDU Session.

If the Request Type indicates "Existing PDU Session" referring to an existing PDU Session moved between
3GPP access and non-3GPP access, then if the S-NSSAI of the PDU Session is present in the Allowed NSSAI of
the target access type, the PDU Session Establishment procedure can be performed in the following cases:
- the SMF ID corresponding to the PDU Session ID and the AMF belong to the same PLMN;
- the SMF ID corresponding to the PDU Session ID belongs to the HPLMN;

Otherwise the AMF shall reject the PDU Session Establishment Request with an appropriate reject cause.

NOTE 2: The SMF ID includes the PLMN ID that the SMF belongs to.

The AMF shall reject a request coming from an UE when the UE is registered for Emergency services and the
Request Type indicates neither "Emergency Request" nor "Existing Emergency PDU Session". When the
Request Type indicates "Emergency Request", the AMF is not expecting any S-NSSAI and DNN value provided
by the UE and uses locally configured values instead. The AMF stores the Access Type of the PDU Session.

If the Request Type indicates "Emergency Request" or "Existing Emergency PDU Session", the AMF selects the
SMF as described in TS 23.501 [2], clause 5.16.4.

3. From AMF to SMF: Either Nsmf_PDUSession_CreateSMContext Request (SUPI, DNN, S-NSSAI(s), PDU
Session ID, AMF ID, Request Type, PCF ID, Priority Access, N1 SM container (PDU Session Establishment
Request), User location information, Access Type, PEI, GPSI, UE presence in LADN service area, Subscription
For PDU Session Status Notification, DNN Selection Mode) or Nsmf_PDUSession_UpdateSMContext Request
(SUPI, DNN, S-NSSAI(s), PDU Session ID, AMF ID, Request Type, N1 SM container (PDU Session
Establishment Request), User location information, Access Type, RAT type, PEI).

If the AMF does not have an association with an SMF for the PDU Session ID provided by the UE (e.g. when
Request Type indicates "initial request"), the AMF invokes the Nsmf_PDUSession_CreateSMContext Request,
but if the AMF already has an association with an SMF for the PDU Session ID provided by the UE (e.g. when
Request Type indicates "existing PDU Session"), the AMF invokes the Nsmf_PDUSession_UpdateSMContext
Request.

The AMF sends the S-NSSAI from the Allowed NSSAI to the SMF. For roaming scenario, the AMF also sends
the corresponding S-NSSAI from the Mapping Of Allowed NSSAI to the SMF.

The AMF ID is the UE's GUAMI which uniquely identifies the AMF serving the UE. The AMF forwards the
PDU Session ID together with the N1 SM container containing the PDU Session Establishment Request received
from the UE. The GPSI shall be included if available at AMF.

The AMF determines Access Type and RAT Type based on the Global RAN Node ID associated with the N2
interface.

The AMF provides the PEI instead of the SUPI when the UE has registered for Emergency services without
providing a SUPI. The PEI is defined in TS 23.501 [2] clause 5.9.3. In case the UE has registered for Emergency
services with a SUPI but has not been authenticated the AMF indicates that the SUPI has not been authenticated.
The SMF determines that the UE has not been authenticated when it does not receive a SUPI for the UE or when the AMF indicates that the SUPI has not been authenticated.

If the AMF determines that the DNN corresponds to an LADN then the AMF provides the "UE presence in LADN service area" that indicates if the UE is IN or OUT of the LADN service area.

If the Old PDU Session ID is included in step 1, and if the SMF is not to be reallocated, the AMF also includes Old PDU Session ID in the Nsmf_PDUSession_CreateSMContext Request.

DNN Selection Mode is determined by the AMF. It indicates whether an explicitly subscribed DNN has been provided by the UE in its PDU Session Establishment Request.

The SMF may use DNN Selection Mode when deciding whether to accept or reject the UE request.

The AMF includes Priority Access indication if it received an Establishment Cause as part of AN parameters during the Registration procedure or Service Request procedure where the Establishment Cause indicates high priority access. The SMF uses Priority Access indication to determine if the UE request is subject to exemption from NAS level congestion control.

In the local breakout case, if the SMF (in the VPLMN) is not able to process some part of the N1 SM information that Home Routed Roaming is required, and the SMF responds to the AMF that it is not the right SMF to handle the N1 SM message by invoking Nsmf_PDUSession_CreateSMContext Response service operation. The SMF includes a proper N11 cause code triggering the AMF to proceed with home routed case. The procedure starts again at step 2 of clause 4.3.2.2.2.

The AMF may include a PCF ID in the Nsmf_PDUSession_CreateSMContext Request. This PCF ID identifies the H-PCF in the non-roaming case and the V-PCF in the local breakout roaming case.

4. If Request Type in step 3 indicates neither "Emergency Request" nor "Existing Emergency PDU Session" and, if the SMF has not yet registered for this PDU Session ID, then the SMF registers with the UDM using Nudm_UECM_Registration (SUPI, DNN, PDU Session ID) for a given PDU Session. As a result, the UDM stores following information: SUPI, SMF identity, SMF address and the associated DNN and PDU Session ID. The UDM may further store this information in UDR by Nudr_DM_Update (SUPI, Subscription Data, UE context in SMF data). If Session Management Subscription data for corresponding SUPI, DNN and S-NSSAI is not available, then SMF retrieves the Session Management Subscription data using Nudm_SDM_Get (SUPI, Session Management Subscription data, DNN, S-NSSAI) and subscribes to be notified when this subscription data is modified using Nudm_SDM_Subscribe (SUPI, Session Management Subscription data, DNN, S-NSSAI). The S-NSSAI used with the UDM is the S-NSSAI with value for the HPLMN.

The SMF may use DNN Selection Mode when deciding whether to retrieve the Session Management Subscription data e.g. in case the (DNN, S-NSSAI) is not explicitly subscribed, the SMF may use local configuration instead of Session Management Subscription data.

If the Request Type received in step 3 indicates "Emergency Request"

- For an authenticated non-roaming UE, based on operator configuration (e.g. related with whether the operator uses a fixed SMF for Emergency calls, etc.), the SMF may register in the UDM using Nudm_UECM_Registration (SUPI, PDU Session ID, Indication of Emergency Services) for a given PDU Session that is applicable for emergency services. As a result, the UDM shall store the SMF address and the applicable PDU Session for Emergency services.

- For an unauthenticated UE or a roaming UE, the SMF shall not register in the UDM for a given PDU Session.

If the Request Type in step 3 indicates "Existing PDU Session" or "Existing Emergency PDU Session" the SMF determines that the request is due to switching between 3GPP access and non-3GPP access or due to handover from EPS. The SMF identifies the existing PDU Session based on the PDU Session ID. In such a case, the SMF does not create a new SM context but instead updates the existing SM context and provides the representation of the updated SM context to the AMF in the response.

If the Request Type is "Initial request" and if the Old PDU Session ID is included in Nsmf_PDUSession_CreateSMContext Request, the SMF identifies the existing PDU Session to be released based on the Old PDU Session ID.
Subscription data includes the Allowed PDU Session Type(s), Allowed SSC mode(s), default 5QI and ARP, subscribed Session-AMBR.

Static IP address/prefix may be included in the subscription data if the UE has subscribed to it.

The SMF checks the validity of the UE request: it checks
- Whether the UE request is compliant with the user subscription and with local policies;
- (If the DNN corresponds to an LADN), whether the UE is located within the LADN service area based on the "UE presence in LADN service area" indication from the AMF. If the AMF does not provide the "UE presence in LADN service area" indication and the SMF determines that the DNN corresponds to a LADN, then the SMF considers that the UE is OUT of the LADN service area

If the UE request is considered as not valid, the SMF decides to not accept to establish the PDU Session.

5. From SMF to AMF: Either Nsmf_PDUSession_CreateSMContext Response (Cause, SM Context ID or N1 SM container (PDU Session Reject (Cause))) or an Nsmf_PDUSession_UpdateSMContext Response depending on the request received in step 3.

If the SMF received Nsmf_PDUSession_CreateSMContext Request in step 3 and the SMF is able to process the PDU Session establishment request, the SMF creates an SM context and responds to the AMF by providing an SM Context Identifier.

In case the UP Security Policy for the PDU Session is determined to have Integrity Protection set to "Required", the SMF may, based on local configuration, decide whether to accept or reject the PDU Session request based on the UE Integrity Protection Maximum Data Rate.

NOTE 3: The SMF can e.g. be configured to reject a PDU Session if the UE Integrity Protection Maximum Data Rate has a very low value, in case the services provided by the DN would require higher bitrates.

When the SMF decides to not accept to establish a PDU Session, the SMF rejects the UE request via NAS SM signalling including a relevant SM rejection cause by responding to the AMF with Nsmf_PDUSession_CreateSMContext Response. The SMF also indicates to the AMF that the PDU Session ID is to be considered as released, the SMF proceeds to step 20 and the PDU Session Establishment procedure is stopped.

If the Request Type in step 3 indicates "Existing PDU Session", the SMF does not perform secondary authorization/authentication.

If the Request Type received in step 3 indicates "Emergency Request" or "Existing Emergency PDU Session", the SMF shall not perform secondary authorization/authentication.

If the SMF needs to perform secondary authorization/authentication during the establishment of the PDU Session by a DN-AAA server as described in TS 23.501 [2] clause 5.6.6, the SMF triggers the PDU Session establishment authentication/authorization as described in clause 4.3.2.3.

7a. If dynamic PCC is deployed and a PCF ID is provided by the AMF, the SMF performs PCF selection as described in TS 23.501 [2], clause 6.3.7.1. If the Request Type indicates "Existing PDU Session" or "Existing Emergency PDU Session", the SMF shall use the PCF already selected for the PDU Session.

If dynamic PCC is not deployed, the SMF may apply local policy.

7b. The SMF may perform an SM Policy Association Establishment procedure as defined in clause 4.16.4 to establish a PDU Session with the PCF and get the default PCC Rules for the PDU Session. The GPSI shall be included if available at SMF. If the Request Type in step 3 indicates "Existing PDU Session", the SMF may provide information on the Policy Control Request Trigger condition(s) that have been met by an SMF initiated SM Policy Association Modification procedure as defined in clause 4.16.5.1. The PCF may provide policy information defined in clause 5.2.5.4 (and in TS 23.503 [20]) to SMF.

The PCF, based on the Emergency DNN, sets the ARP of the PCC rules to a value that is reserved for Emergency services as described in TS 23.503 [20].
NOTE 4: The purpose of step 7 is to receive PCC rules before selecting UPF. If PCC rules are not needed as input for UPF selection, step 7 can be performed after step 8.

8. If the Request Type in step 3 indicates "Initial request", the SMF selects an SSC mode for the PDU Session as described in TS 23.501 [2] clause 5.6.9.3. The SMF also selects one or more UPFs as needed as described in TS 23.501 [2] clause 6.3.3. In case of PDU Session Type IPv4 or IPv6 or IPv4v6, the SMF allocates an IP address/prefix for the PDU Session as described in TS 23.501 [2] clause 5.8.1. In case of PDU Session Type IPv6 or IPv4v6, the SMF also selects an interface identifier to the UE for the UE to build its link-local address. For Unstructured PDU Session Type the SMF may allocate an IPv6 prefix for the PDU Session and N6 point-to-point tunnelling (based on UDP/IPv6) as described in TS 23.501 [2] clause 5.6.10.3. For Ethernet PDU Session Type, neither a MAC nor an IP address is allocated by the SMF to the UE for this PDU Session.

If the Request Type in step 3 is "Existing PDU Session", the SMF maintains the same IP address/prefix that has already been allocated to the UE in the source network.

If the Request Type in step 3 indicates "Existing PDU Session" referring to an existing PDU Session moved between 3GPP access and non-3GPP access the SMF maintains the SSC mode of the PDU Session, the current PDU Session Anchor and IP address.

NOTE 5: The SMF may decide to trigger e.g. new intermediate UPF insertion or allocation of a new UPF as described in step 5 in clause 4.2.3.2.

If the Request Type indicates "Emergency Request", the SMF selects the UPF as described in TS 23.501 [2], clause 5.16.4 and selects SSC mode 1.

9. SMF may perform an SMF initiated SM Policy Association Modification procedure as defined in clause 4.16.5.1 to provide information on the Policy Control Request Trigger condition(s) that have been met. If Request Type is "initial request" and dynamic PCC is deployed and PDU Session Type is IPv4 or IPv6 or IPv4v6, SMF notifies the PCF (if the Policy Control Request Trigger condition is met) with the allocated UE IP address/prefix(es).

When PCF is deployed, the SMF shall further report the PS Data Off status to PCF if the PS Data Off Policy Control Request Trigger is provisioned, the additional behaviour of SMF and PCF for 3GPP PS Data Off is defined in TS 23.503 [20].

NOTE 6: If an IP address/prefix has been allocated before step 7 (e.g. subscribed static IP address/prefix in UDM/UDR) or the step 7 is perform after step 8, the IP address/prefix can be provided to PCF in step 7, and the IP address/prefix notification in this step can be skipped.

PCF may provide updated policies to the SMF. The PCF may provide policy information defined in clause 5.2.5.4 (and in TS 23.503 [20]) to SMF.

10. If Request Type indicates "initial request", the SMF initiates an N4 Session Establishment procedure with the selected UPF, otherwise it initiates an N4 Session Modification procedure with the selected UPF:

10a. The SMF sends an N4 Session Establishment/Modification Request to the UPF and provides Packet detection, enforcement and reporting rules to be installed on the UPF for this PDU Session. If CN Tunnel Info is allocated by the SMF, the CN Tunnel Info is provided to UPF in this step. If the selective User Plane deactivation is required for this PDU Session, the SMF determine the Inactivity Timer and it provides to the UPF.

10b. The UPF acknowledges by sending an N4 Session Establishment/Modification Response. If CN Tunnel Info is allocated by the UPF, the CN Tunnel Info is provided to SMF in this step.

If multiple UPFs are selected for the PDU Session, the SMF initiate N4 Session Establishment/Modification procedure with each UPF of the PDU Session in this step.

If the Request Type indicates "Existing PDU Session", and the SMF creates CN Tunnel Info, then this step is skipped. Otherwise, this step is performed to obtain the CN Tunnel Info from the UPF using the N4 Session Modification Procedure.

11. SMF to AMF: Namf_Communication_N1N2MessageTransfer (PDU Session ID, N2 SM information (PDU Session ID, QFI(s), QoS Profile(s), CN Tunnel Info, S-NSSAI from the Allowed NSSAI, Session-AMBR, PDU Session Type, User Plane Security Enforcement information, UE Integrity Protection Maximum Data Rate), N1 SM container (PDU Session Establishment Accept (QoS Rule(s) and QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s), selected SSC mode, S-NSSAI(s), DNN, allocated IPv4
address, interface identifier, Session-AMBR, selected PDU Session Type, Reflective QoS Timer (if available), P-CSCF address(es)). If multiple UPFs are used for the PDU Session, the CN Tunnel Info contain tunnel information related with the UPF that terminates N3.

The N2 SM information carries information that the AMF shall forward to the (R)AN which includes:

- The CN Tunnel Info corresponds to the Core Network address of the N3 tunnel corresponding to the PDU Session.
- One or multiple QoS profiles and the corresponding QFIs can be provided to the (R)AN. This is further described in TS 23.501 [2] clause 5.7.
- The PDU Session ID may be used by AN signalling with the UE to indicate to the UE the association between (R)AN resources and a PDU Session for the UE.
- A PDU Session is associated to an S-NSSAI and a DNN. The S-NSSAI provided to the (R)AN, is the S-NSSAI with the value for the serving PLMN.
- User Plane Security Enforcement information is determined by the SMF as described in clause 5.10.3 of TS 23.501 [2].
- If the User Plane Security Enforcement information indicates that Integrity Protection is "Preferred" or "Required", the SMF also includes the UE Integrity Protection Maximum Data Rate as received in the 5GSM Capability.

The N1 SM container contains the PDU Session Establishment Accept that the AMF shall provide to the UE. If the UE requested P-CSCF discovery then the message shall also include the P-CSCF IP address(es) as determined by the SMF. The PDU Session Establishment Accept includes S-NSSAI from the Allowed NSSAI. For roaming scenario, the PDU Session Establishment Accept also includes corresponding S-NSSAI from the Mapping Of Allowed NSSAI that SMF received in step 3.

Multiple QoS Rules, QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with those QoS rule(s) and QoS Profiles may be included in the PDU Session Establishment Accept within the N1 SM and in the N2 SM information.

The Namf_Communication_N1N2MessageTransfer contains the PDU Session ID allowing the AMF to know which access towards the UE to use.

12. AMF to (R)AN: N2 PDU Session Request (N2 SM information, NAS message (PDU Session ID, N1 SM container (PDU Session Establishment Accept))).

The AMF sends the NAS message containing PDU Session ID and PDU Session Establishment Accept targeted to the UE and the N2 SM information received from the SMF within the N2 PDU Session Request to the (R)AN.

13. (R)AN to UE: The (R)AN may issue AN specific signalling exchange with the UE that is related with the information received from SMF. For example, in case of a NG-RAN, an RRC Connection Reconfiguration may take place with the UE establishing the necessary NG-RAN resources related to the QoS Rules for the PDU Session request received in step 12.

(R)AN also allocates (R)AN N3 Tunnel Info for the PDU Session. In case of Dual Connectivity, the Master RAN node may assign some (zero or more) QFIs to be setup to a Master RAN node and others to the Secondary RAN node. The AN Tunnel Info includes a tunnel endpoint for each involved (R)AN node, and the QFIs assigned to each tunnel endpoint. A QFI can be assigned to either the Master RAN node or the Secondary RAN node and not to both.

(R)AN forwards the NAS message (PDU Session ID, N1 SM container (PDU Session Establishment Accept)) provided in step 12 to the UE. (R)AN shall only provide the NAS message to the UE if the necessary (R)AN resources are established and the allocation of (R)AN Tunnel Info are successful.

If MICO mode is active and the NAS message Request Type in step 1 indicated "Emergency Request", then the UE and the AMF shall locally deactivate MICO mode.

14. (R)AN to AMF: N2 PDU Session Response (PDU Session ID, Cause, N2 SM information (PDU Session ID, AN Tunnel Info, List of accepted/rejected QFI(s), User Plane Enforcement Policy Notification)).
The AN Tunnel Info corresponds to the Access Network address of the N3 tunnel corresponding to the PDU Session.

If the (R)AN rejects QFI(s) the SMF is responsible of updating the QoS rules and QoS Flow level QoS parameters if needed for the QoS Flow associated with the QoS rule(s) in the UE accordingly.

The NG-RAN rejects the establishment of UP resources for the PDU Session when it cannot fulfill User Plane Security Enforcement information with a value of Required. In this case the SMF releases the PDU session. The NG-RAN notifies the SMF when it cannot fulfill a User Plane Security Enforcement with a value of Preferred.

15. AMF to SMF: Nsmf_PDUSession_UpdateSMContext Request (N2 SM information, Request Type).

The AMF forwards the N2 SM information received from (R)AN to the SMF.

If the list of rejected QFI(s) is included in N2 SM information, the SMF shall release the rejected QFI(s) associated QoS profiles.

If the User Plane Enforcement Policy Notification in the N2 SM information indicates that no user plane resources could be established, and the User Plane Enforcement Policy indicated ”required” as described in clause 5.10.3 of TS 23.501 [2], the SMF shall release the PDU session.

16a. The SMF initiates an N4 Session Modification procedure with the UPF. The SMF provides AN Tunnel Info to the UPF as well as the corresponding forwarding rules.

NOTE 7: If the PDU Session Establishment Request was due to mobility between 3GPP and non-3GPP access or mobility from EPC, the downlink data path is switched towards the target access in this step.

16b. The UPF provides an N4 Session Modification Response to the SMF.

If multiple UPFs are used in the PDU Session, the UPF in step 16 refers to the UPF terminating N3.

After this step, the UPF delivers any down-link packets to the UE that may have been buffered for this PDU Session.

17. SMF to AMF: Nsmf_PDUSession_UpdateSMContext Response (Cause).

The SMF may subscribe to the UE mobility event notification from the AMF (e.g. location reporting, UE moving into or out of Area Of Interest), after this step by invoking Namf_EventExposure_Subscribe service operation as specified in clause 5.2.2.3.2. For LADN, the SMF subscribes to the UE moving into or out of LADN service area event notification by providing the LADN DNN as an indicator for the Area Of Interest (see clause 5.6.5 and 5.6.11 of TS 23.501 [2]).

After this step, the AMF forwards relevant events subscribed by the SMF.

18. [Conditional] SMF to AMF: Nsmf_PDUSession_SMContextStatusNotify (Release)

If during the procedure, any time after step 5, the PDU Session establishment is not successful, the SMF informs the AMF by invoking Nsmf_PDUSession_SMContextStatusNotify (Release). The SMF also releases any N4 session(s) created, any PDU Session address if allocated (e.g IP address) and releases the association with PCF, if any.

19. SMF to UE, via UPF: In case of PDU Session Type IPv6 or IPv4v6, the SMF generates an IPv6 Router Advertisement and sends it to the UE via N4 and the UPF.

20. If the PDU Session establishment failed after step 4, the SMF shall perform the following:

a) The SMF unsubscribes to the modifications of Session Management Subscription data for the corresponding (SUPI, DNN, S-NSSAI), using Nudm_SDM_Unsubscribe (SUPI, Session Management Subscription data, DNN, S-NSSAI), if the SMF is no more handling a PDU Session of the UE for this (DNN, S-NSSAI). The UDM may unsubscribe to the modification notification from UDR by Nudr_DM_Unsubscribe (SUPI, Subscription Data, Session Management Subscription data, S-NSSAI, DNN).

b) The SMF deregisters for the given PDU Session using Nudm_UECM_Deregistration (SUPI, DNN, PDU Session ID). The UDM may update corresponding UE context by Nudr_DM_Update (SUPI, Subscription Data, UE context in SMF data).
4.3.2.2.2 Home-routed Roaming

This procedure is used in case of home-routed roaming scenarios.

Figure 4.3.2.2.2-1: UE-requested PDU Session Establishment for home-routed roaming scenarios
1. This step is the same as step 1 in clause 4.3.2.2.1.

2. As in step 2 of clause 4.3.2.2.1 with the addition that the AMF also selects an SMF in HPLMN using the S-NSSAI with the value defined by the HPLMN, as described in clause 4.3.2.2.3. The AMF stores the association of the S-NSSAI, the DNN, the PDU Session ID, the SMF ID in VPLMN as well as Access Type of the PDU Session.

 In step 3 of clause 4.3.2.2.1, in local breakout roaming case, if V-SMF responds to AMF indicating that V-SMF is not able to process some part of the N1 SM information, the AMF proceeds with home routed case from this step and may select an SMF in the VPLMN different from the V-SMF selected earlier.

3a. As in step 3 of clause 4.3.2.2.1 with the addition that:
- the AMF also provides the identity of the H-SMF it has selected in step 2 and both the S-NSSAI from the Allowed NSSAI and the corresponding Subscribed S-NSSAI. The H-SMF is provided when the PDU Session is home-routed.
- The V-SMF does not use DNN Selection Mode received from the AMF but relays this information to the H-SMF.

 The AMF may include the H-PCF ID in this step and V-SMF will pass it to the H-SMF in step 6. This will enable the H-SMF to select the same H-PCF in step 9a.

3b: This step is the same as step 5 of clause 4.3.2.2.1.

4. The V-SMF selects a UPF in VPLMN as described in TS 23.501 [2], clause 6.3.3.

5. The V-SMF initiates an N4 Session Establishment procedure with the selected V-UPF:
 5a. The V-SMF sends an N4 Session Establishment Request to the V-UPF. If CN Tunnel Info is allocated by the SMF, the CN Tunnel Info is provided to V-UPF in this step.
 5b. The V-UPF acknowledges by sending an N4 Session Establishment Response. If CN Tunnel Info is allocated by the V-UPF, the CN Tunnel Info is provided to V-SMF in this step.

6. V-SMF to H-SMF: Nsmf_PDUSession_Create Request (SUPI, GPSI (if available), DNN, S-NSSAI with the value defined by the HPLMN, PDU Session ID, V-SMF ID, V-CN-Tunnel-Info, PDU Session Type, PCO, Number Of Packet Filters, User location information, Access Type, PCF ID, SM PDU DN Request Container, DNN Selection Mode). Protocol Configuration Options may contain information that H-SMF may needs to properly establish the PDU Session (e.g. SSC mode or SM PDU DN Request Container to be used to authenticate the UE by the DN-AAA as defined in clause 4.3.2.3). The H-SMF may use DNN Selection Mode when deciding whether to accept or reject the UE request.

7-12. These steps are the same as steps 4-10 in clause 4.3.2.2.1 with the following differences:
- These steps are executed in Home PLMN;
- The H-SMF stores an association of the PDU Session and V-SMF ID for this PDU Session for this UE.
- The H-SMF does not provides the Inactivity Timer to the H-UPF as described in step 9a in clause 4.3.2.2.1.
- Step 5 of clause 4.3.2.2.1 is not executed.

 When PCF is deployed, the SMF shall further report the PS Data Off status to PCF if the PS Data Off event trigger is provisioned, the additional behaviour of SMF and PCF for 3GPP PS Data Off is defined in TS 23.503 [20].

13. H-SMF to V-SMF: Nsmf_PDUSession_Create Response (QoS Rule(s), QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s), PCO including session level information that the V-SMF is not expected to understand, selected PDU Session Type and SSC mode, H-CN Tunnel Info, QFI(s), QoS profile(s), Session-AMBR, Reflective QoS Timer (if available), information needed by V-SMF in case of EPS interworking such as the PDN Connection Type, User Plane Policy Enforcement)

 The information that the H-SMF may provide is the same than defined for step 11 of Figure 4.3.2.2.1-1.

 The H-CN Tunnel Info contains the tunnel information for uplink traffic towards H-UPF.
Multiple QoS Rules and QoS Flow level QoS parameters for the QoS Flow(s) associated with the QoS rule(s) may be included in the Nsmf_PDUSession_Create Response.

14-18. These steps are the same as steps 11-15 in clause 4.3.2.2.1 with the following differences:

- These steps are executed in Visited PLMN;
- The V-SMF stores an association of the PDU Session and H-SMF ID for this PDU Session for this UE.

19a. The V-SMF initiates an N4 Session Modification procedure with the V-UPF. The V-SMF provides Packet detection, enforcement and reporting rules to be installed on the V-UPF for this PDU Session, including AN Tunnel Info, H-CN Tunnel Info and V-CN Tunnel Info.

19b. The V-UPF provides a N4 Session Modification Response to the V-SMF.

After this step, the V-UPF delivers any down-link packets to the UE that may have been buffered for this PDU Session.

20. This step is the same as step 17 in clause 4.3.2.2.1 with the following differences:

- The SMF is a V-SMF

21. This step is same as step 18 in clause 4.3.2.2.1.

22. H-SMF to UE, via H-UPF and V-UPF in VPLMN: In case of PDU Session Type IPv6 or IPv4v6, the H-SMF generates an IPv6 Router Advertisement and sends it to the UE via N4 and the H-UPF and V-UPF.

23. If the V-SMF received in step18 an indication that the (R)AN has rejected some QFI(s) the V-SMF notifies the H-SMF via a Nsmf_PDUSession_Update Request. The H-SMF is responsible of updating accordingly the QoS rules and QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s) in the UE.

24. This step is the same as step 20 in clause 4.3.2.2.1 with the difference that this step is executed in the Home PLMN.

NOTE: The SMF in HPLMN can initiate step 21 already after step 13.

4.3.2.2.3 SMF selection

4.3.2.2.3.1 General

The SMF selection function, as described in TS 23.501 [2] clause 6.3.2, is supported by the AMF and is used to allocate an SMF that manages the PDU Session.

The SMF selection function described in this clause does not apply to the selection of an SMF for Emergency services. For SMF selection for Emergency services is described in clause 5.16.4.5 of TS 23.501 [2].

Two main branches of deployment scenarios to consider:

- Non-roaming and roaming with local breakout, see clause 4.3.2.2.3.2
- Home routed roaming, see clause 4.3.2.2.3.3

In the case of non-roaming and local breakout, there are two operational scenarios dependent on the configuration of AMF and the deployment option of NSSF in the serving PLMN.

In the case of home-routed, there are two main options dependent on the operators' choices in terms of involvement of NRF, NSSF and configuration of AMF. The decision of which option to use is part of the roaming agreements.

NOTE: The use of NSI ID and the use of multiple NRFs in the network are optional and depend on the deployment choices of the operator.
4.3.2.2.3.2 Non-roaming and roaming with local breakout

![Diagram of SMF selection for non-roaming and roaming with local breakout scenarios](image)

Figure 4.3.2.2.3.2-1: SMF selection for non-roaming and roaming with local breakout scenarios

This procedure may be skipped altogether if SMF information is available in the AMF by other means (e.g. locally configured); otherwise:

- when the serving AMF is aware of the appropriate NRF to be used to select NFs/services within the corresponding Network Slice instance based on configuration or based on the Network Slice selection information received during Registration, only steps 3 and 4 in the following procedure are executed as described in Figure 4.3.2.2.3.2-1;

- when the serving AMF is not aware of the appropriate NRF to be used to select NFs/services within the corresponding Network Slice instance, all steps in the following procedure are executed as described in Figure 4.3.2.2.3.2-1.

1. The AMF invokes the Nnssf_NSSelection_Get service operation from the NSSF in serving PLMN with the S-NSSAI from the Allowed NSSAI requested by the UE, PLMN ID of the SUPI, TAI of the UE and the indication that the request is within a procedure of PDU Session establishment in either the non-roaming or roaming with local breakout scenario.

2. The NSSF in serving PLMN selects the Network Slice instance, determines and returns the appropriate NRF to be used to select NFs/services within the selected Network Slice instance, and optionally may return a NSI ID corresponding to the Network Slice instance.

3. AMF queries the appropriate NRF in serving PLMN by issuing the Nnrf_NFDiscovery_Request including S-NSSAI from the Allowed NSSAI, PLMN ID of the SUPI, DNN and possibly NSI ID in case the AMF has stored an NSI ID for the S-NSSAI from the Allowed NSSAI.

4. The NRF in serving PLMN provides to the AMF, e.g. FQDN or IP address, of a set of the discovered SMF instance(s) or Endpoint Address(es) of SMF service instance(s) in Nnrf_NFDiscovery_Request response message, and possibly an NSI ID for the selected Network Slice instance corresponding to the S-NSSAI for subsequent NRF queries.

4.3.2.2.3.3 Home routed roaming

The selection of the SMF in VPLMN is performed in the same way as for non-roaming and roaming with local breakout (see clause 4.3.2.2.3.2). The selection of the SMF in HPLMN is performed by means of one of two main options. Which of these two options to use is decided based on Service Level Agreements between the operators.

NOTE 1: The procedures described in this clause are not limited to SMF selection but can be used to discover and select any NF/NF service in the HPLMN part of a Network Slice instance.

In the first option, requiring the use of NSSF in both the VPLMN and the HPLMN, the selection of the SMF in HPLMN is performed by means of the procedure depicted in Figure 4.3.2.2.3.3-1.
1. Based on the operator’s configuration, if the AMF is not aware of the appropriate NRF to be used to select NFs/services in the HPLMN, the AMF invokes the Nnssf_NSSelection_Get service operation from the NSSF in VPLMN with the S-NSSAI from the Allowed NSSAI requested by the UE, the S-NSSAI from the Configured NSSAI for the HPLMN that maps to the S-NSSAI from the Allowed NSSAI of the Serving PLMN, PLMN ID of the SUPI, the TAI of the UE and the indication that the request is within a procedure of PDU Session establishment in the home-routed roaming scenario.

2. If slicing configuration information for the S-NSSAI in the HPLMN is not available (e.g. the NSSF has no cached information), the NSSF of the VPLMN invokes the Nnssf_NSSelection_Get service operation from NSSF of the HPLMN according to the PLMN ID of SUPI by including the S-NSSAI from the Configured NSSAI for the HPLMN.

3. The NSSF in HPLMN may include the NSI ID, if needed, for the Network Slice instance in HPLMN selected for the corresponding S-NSSAI in the Nnssf_NSSelection_Get response. The NSSF in HPLMN also includes the appropriate hNRF to be used to select NFs/services within HPLMN in the Nnssf_NSSelection_Get response.

4. The serving NSSF includes in the Nnssf_NSSelection_Get response all the information that has been received from the NSSF in HPLMN when responding to the AMF.

5. The AMF queries the target vNRF using the Nnrf_NFDiscovery_Request by including PLMN ID of the SUPI, DNN, S-NSSAI from the Configured NSSAI for the HPLMN, and possibly an HPLMN NSI ID in case the AMF has stored an NSI ID for the selected Network Slice instance corresponding to the S-NSSAI from the Configured NSSAI for the HPLMN.

6. The NRF in serving PLMN identifies NRF in HPLMN (hNRF) based on the information provided by the NSSF in the serving PLMN, and it invokes the Nnrf_NFDiscovery_Request service from hNRF according the procedure in Figure 4.17.4-1 to get the expected SMF instance(s) deployed in the HPLMN. As the vNRF in VPLMN triggers the “NF Discovery” on behalf of the AMF, the NRF in the VPLMN shall not replace the information of the NF, i.e. AMF ID, in the Nnrf_NFDiscovery_Request message it sends to the hNRF.

7-8. The hNRF provides to the AMF, via vNRF, the information e.g. FQDN or IP address, of a set of the SMF instance(s) in Nnrf_NFDiscovery_Request response message and possibly an NSI ID for the selected Network Slice instance corresponding to the S-NSSAI for subsequent NRF queries.

When the NSSF is not deployed in HPLMN then the AMF in VPLMN relies on either the configuration to obtain the NRF in HPLMN or on the option below.

The second option for the selection of the SMF in HPLMN is performed by means of the procedure depicted in Figure 4.3.2.2.3.3-2.

Figure 4.3.2.2.3.3-1: Option 1 for SMF selection for home-routed roaming scenarios

1. **1. Nnssf_NSSelection_Get**
2. **2. Nnssf_NSSelection_Get**
5. **5. Nnrf_NFDiscovery_Request**
6. **6. Nnrf_NFDiscovery_Request response**
7. **7. Nnrf_NFDiscovery_Request response**
8. **8. Nnrf_NFDiscovery_Request response**

Figure 4.3.2.2.3.3-2: Option 2 for SMF selection for home-routed roaming scenarios

1. **1. Nnssf_NSSelection_Get**
2. **2. Nnssf_NSSelection_Get**
5. **5. Nnrf_NFDiscovery_Request**
6. **6. Nnrf_NFDiscovery_Request response**
7. **7. Nnrf_NFDiscovery_Request response**
8. **8. Nnrf_NFDiscovery_Request response**

1. Based on the operator's configuration, the AMF queries the vNRF with PLMN ID of the SUPI, PLMN ID of the serving PLMN, DNN, the S-NSSAI from the Configured NSSAI for the HPLMN that maps to the S-NSSAI from the Allowed NSSAI of the Serving PLMN the UE has requested, NSI ID (if the AMF has stored an HPLMN NSI ID for the selected Network Slice instance corresponding to the S-NSSAI) and DNN.

2. The vNRF queries, on behalf of the AMF in VPLMN, the hNRF identified by means of the PLMN ID of the SUPI. The NRF in VPLMN requests "NF Discovery" service from hNRF according the procedure in Figure 4.17.4-1 to get the expected SMF instance(s) deployed in the HPLMN. As the NRF in the serving PLMN triggers the "NF Discovery" on behalf of the AMF, the NRF in the VPLMN shall not replace the information of the NF, i.e. AMF ID, in the Nnrf_NFDiscovery_Request message it sends to the hNRF.

Depending on the available information and based on configuration, the hNRF may either execute steps in 3(A) or in 3(B).

3(A) The hNRF provides to the AMF, via vNRF, the information e.g. FQDN or IP address, of a set of the discovered SMF instance(s) and possibly an NSI ID for the selected HPLMN part of the Network Slice instance corresponding to the S-NSSAI for subsequent NRF queries in Nnrf_NFDiscovery_Request response message(steps 3a and 3b).

3(B) The hNRF queries, on behalf of the AMF, an appropriate local NRF in HPLMN (e.g. a slice level NRF); this local NRF provides the IP address or the FQDN of expected SMF instance(s) and possibly an NSI ID for the selected HPLMN part of the Network Slice instance corresponding to the S-NSSAI for subsequent NRF queries (steps 3a and 3b) that the hNRF returns, via vNRF, to the AMF (steps 3c and 3d).

4.3.2.3 Secondary authorization/authentication by an DN-AAA server during the PDU Session establishment

The PDU Session establishment authentication/authorization is optionally triggered by the SMF during a PDU Session establishment and performed transparently via a UPF or directly with the DN-AAA server without involving the UPF if the DN-AAA server is located in the 5GC and reachable directly, as described in TS 23.501 [2], clause 5.6.6.

In the case of Home Routed Roaming, unless specified otherwise, the SMF in the information flow defined in this clause is the H-SMF.
3e. Nsmf_PDUSession_UpdateSMContext (N1 SM message)

3f. Authentication/Authorization Request

4. Authentication/Authorization Response

5. Continuation of PDU session establishment as in Figure 4.3.2.2.1-1 or 4.3.2.2.2-1 up to completion of PDU session establishment

6. Notification of IP Address allocation

Figure 4.3.2.3-1: PDU Session Establishment authentication/authorization by a DN-AAA server

NOTE 1: Steps 2, 3a, 3f and 4 are not defined in this specification. Steps 3 can be repeated depending on the mechanism used.

NOTE 2: When the SMF directly communicates with the DN-AAA server without involving the UPF, Step 1 is skipped and Step 2, 3a, 3f, 4 and 6 are executed without involving the UPF.

0. The SMF determines that it needs to contact the DN-AAA server. The SMF identifies the DN-AAA server based on local configuration, possibly using the SM PDU DN Request Container provided by the UE in its NAS request.

1. If there is no existing N4 session that can be used to carry DN-related messages between the SMF and the DN, the SMF selects a UPF and triggers N4 session establishment.

2. The SMF provides a SM PDU DN Request Container received from the UE to the DN-AAA via the UPF.

 When available, the SMF provides the GPSI in the signalling exchanged with the DN-AAA.

 The UPF transparently relays the message received from the SMF to the DN-AAA server.

NOTE 2: The content of the SM PDU DN Request Container is defined in TS 33.501 [15].

3a. The DN-AAA server sends a Authentication/Authorization message towards the SMF. The message is carried via the UPF.

3b. Transfer of DN Request Container information received from DN-AAA towards the UE.
In non-roaming and LBO cases, the SMF invokes the Namf_Communication_N1N2MessageTransfer service operation on the AMF to transfer the DN Request Container information within N1 SM information sent towards the UE.

In the case of Home Routed roaming, the H-SMF initiates a Nsmf_PDUSession_Update service operation to request the V-SMF to transfer DN Request Container to the UE and the V-SMF invokes the Namf_Communication_N1N2MessageTransfer service operation on the AMF to transfer the DN Request Container information within N1 SM information sent towards the UE.

3c: The AMF sends the N1 NAS message to the UE

3d-3e. Transfer of DN Request Container information received from UE towards the DN-AAA.

When the UE responds with a N1 NAS message containing DN Request Container information, the AMF informs the SMF by invoking the Nsmf_PDUSession_UpdateSMContext service operation. The SMF issues an Nsmf_PDUSession_UpdateSMContext response.

In the case of Home Routed roaming, the V-SMF relays the N1 SM information to the H-SMF via a Nsmf_PDUSession_Update service operation.

3f: The SMF (In HR case it is the H-SMF) sends the content of the DN Request Container information (authentication message) to the DN-AAA server via the UPF.

Step 3 may be repeated until the DN-AAA server confirms the successful authentication/authorization of the PDU Session.

4. The DN-AAA server confirms the successful authentication/authorization of the PDU Session. The DN-AAA server may provide:

- an SM PDU DN Response Container to the SMF to indicate successful authentication/authorization;
- authorization information as defined in TS 23.501 [2] clause 5.6.6;
- a request to get notified with the IP address(es) allocated to the PDU Session and/or with N6 traffic routing information or MAC address(es) used by the UE for the PDU Session; and
- an IP address (or IPV6 Prefix) for the PDU Session.

The N6 traffic routing information is defined in TS 23.501 [2] clause 5.6.7.

5. The PDU Session establishment continues and completes.

6. If requested so in step 4 or if configured so by local policies, the SMF notifies the DN-AAA with the IP/MAC address(es) and/or with N6 traffic routing information allocated to the PDU Session together with the GPSI.

Later on the SMF notifies the DN-AAA if the DN-AAA had requested to get notifications about:

- allocation or release of an IPV6 Prefix for the PDU Session of IP type or addition or removal of source MAC addresses for the PDU Session of Ethernet type (e.g. using IPv6 multi-homing as defined in TS 23.501 [2] clause 5.6.4.3),
- Change of N6 traffic routing information.

When later on the PDU Session gets released as described in clause 4.3.4, the SMF notifies the DN-AAA.

The DN-AAA server may revoke the authorization for a PDU Session or update DN authorization data for a PDU Session. According to the request from DN-AAA server, the SMF may release or update the PDU Session.

At any time after the PDU Session establishment, the DN-AAA server or SMF may initiate Secondary Re-authentication procedure for the PDU Session as specified in clause 11.1.3 in TS 33.501 [15]. Step 3a to step 3f are performed to transfer the Secondary Re-authentication message between the UE and the DN-AAA server. The Secondary Re-authentication procedure may start from step 3a (DN-AAA initiated Secondary Re-authentication procedure) or step 3b (SMF initiated Secondary Re-authentication procedure).
4.3.3 PDU Session Modification

4.3.3.1 General

The procedure is used when one or several of the QoS parameters exchanged between the UE and the network are modified.

NOTE: The conditions when to use this procedure for QoS change as well as the QoS parameters exchanged between the UE and the network are defined in TS 23.501 [2] clause 5.7.

4.3.3.2 UE or network requested PDU Session Modification (non-roaming and roaming with local breakout)

The UE or network requested PDU Session Modification procedure (non-roaming and roaming with local breakout scenario) is depicted in figure 4.3.3.2-1.
Figure 4.3.3.2-1: UE or network requested PDU Session Modification (for non-roaming and roaming with local breakout)

1. The procedure may be triggered by following events:

 1a. UE initiated modification) The UE initiates the PDU Session Modification procedure by the transmission of an NAS message (N1 SM container (PDU Session Modification Request (PDU session ID, Packet Filters, Operation, Requested QoS, Segregation, 5GSM Core Network Capability)), PDU Session ID) message. Depending on the Access Type, if the UE was in CM-IDLE state, this SM-NAS message is preceded by the Service Request procedure. The NAS message is forwarded by the (R)AN to the AMF with an indication of User location Information. The AMF invokes Nsmf_PDUSession_UpdateSMContext (PDU Session ID, N1 SM container (PDU Session Modification Request)).

 When the UE requests specific QoS handling for selected SDF(s), the PDU Session Modification Request includes Packet Filters describing the SDF(s), the requested Packet Filter Operation (add, modify, delete) on the indicated Packet Filters, the Requested QoS and optionally a Segregation indication. The Segregation indication is included when the UE recommends to the network to bind the applicable SDF(s) on a distinct

[Diagram of the procedure is shown with steps numbered 1 to 13, each step described in the figure caption.]
and dedicated QoS Flow e.g. even if an existing QoS Flow can support the requested QoS. The network should abide by the UE request, but is allowed to proceed instead with binding the selected SDF(s) on an existing QoS Flow.

NOTE 1: Only one QoS Flow is used for traffic segregation. If UE makes subsequent requests for segregation of additional SDF(s), the additional SDF(s) are multiplexed on the existing QoS Flow that is used for segregation.

The UE shall not trigger a PDU Session Modification procedure for a PDU Session corresponding to a LADN when the UE is outside the area of availability of the LADN.

The PS Data Off status, if changed, shall be included in the PCO in the PDU Session Modification Request message.

When PCF is deployed, the SMF shall further report the PS Data Off status to PCF if the PS Data Off event trigger is provisioned, the additional behaviour of SMF and PCF for 3GPP PS Data Off is defined in TS 23.503 [20].

The 5GSM Core Network Capability is provided by the UE and handled by SMF as defined in TS 23.501 [2] clause 5.4.4b.

1b. (SMF requested modification) The PCF performs a PCF initiated SM Policy Association Modification procedure as defined in clause 4.16.5.2 to notify SMF about the modification of policies. This may e.g.; have been triggered by a policy decision or upon AF requests, e.g. Application Function influence on traffic routing as described in step 5 in clause 4.3.6.2.

1c. (SMF requested modification) The UDM updates the subscription data of SMF by Nudm_SDM_Notification (SUPI, Session Management Subscription Data). The SMF updates the Session Management Subscription Data and acknowledges the UDM by returning an Ack with (SUPI).

1d. (SMF requested modification) The SMF may decide to modify PDU Session. This procedure also may be triggered based on locally configured policy or triggered from the (R)AN (see clause 4.2.6).

If the SMF receives one of the triggers in step 1b ~ 1d, the SMF starts SMF requested PDU Session Modification procedure.

1e. (AN initiated modification) (R)AN shall indicate to the SMF when the AN resources onto which a QoS Flow is mapped are released irrespective of whether notification control is configured. (R)AN sends the N2 message (PDU Session ID, N2 SM information) to the AMF. The N2 SM information includes the QFI, User location Information and an indication that the QoS Flow is released. The AMF invokes Nsmf_PDUSession_UpdateSMContext (N2 SM information).

(AN initiated notification control) In case notification control is configured for a GBR Flow, (R)AN sends a N2 message (PDU Session ID, N2 SM information) to SMF when the (R)AN decides the QoS targets of the QoS Flow cannot be fulfilled or can be fulfilled again, respectively. The N2 SM information includes the QFI and an indication that the QoS targets for that QoS Flow cannot be fulfilled or can be fulfilled again, respectively. The AMF invokes Nsmf_PDUSession_UpdateSMContext (N2 SM information). If the PCF has subscribed to the event, SMF reports this event to the PCF for each PCC Rule for which notification control is set, see step 2. Alternatively, if dynamic PCC does not apply for this DNN, and dependent on locally configured policy, the SMF may start SMF requested PDU Session Modification procedure, see step 3b.

2. The SMF may need to report some subscribed event to the PCF by performing an SMF initiated SM Policy Association Modification procedure as defined in clause 4.16.5.1. This step may be skipped if PDU Session Modification procedure is triggered by step 1b or 1d. If dynamic PCC is not deployed, the SMF may apply local policy to decide whether to change the QoS profile.

Steps 3 to 7 are not invoked when the PDU Session Modification requires only action at a UPF (e.g. gating).

3a. For UE or AN initiated modification, the SMF responds to the AMF through Nsmf_PDUSession_UpdateSMContext (N2 SM information (PDU Session ID, QFI(s), QoS Profile(s), Session-AMBR), N1 SM container (PDU Session Modification Command (PDU Session ID, QoS rule(s), QoS rule operation, QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s), Session-AMBR))). See TS 23.501 [2] clause 5.7 for the QoS Profile, and QoS rule and QoS Flow level QoS parameters.
The N2 SM information carries information that the AMF shall provide to the (R)AN. It may include the QoS profiles and the corresponding QFIs to notify the (R)AN that one or more QoS flows were added, or modified. It may include only QFI(s) to notify the (R)AN that one or more QoS flows were removed. If the PDU Session Modification was triggered by the (R)AN Release in step 1e the N2 SM information carries an acknowledgement of the (R)AN Release. If the PDU Session Modification was requested by the UE for a PDU Session that has no established User Plane resources, the N2 SM information provided to the (R)AN includes information for establishment of User Plane resources.

The N1 SM container carries the PDU Session Modification Command that the AMF shall provide to the UE. It may include the QoS rules, QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s) and corresponding QoS rule operation and QoS Flow level QoS parameters operation to notify the UE that one or more QoS rules were added, removed or modified.

3b. For SMF requested modification, the SMF invokes Namf_Communication_N1N2MessageTransfer (N2 SM information (PDU Session ID, QFI(s), QoS Profile(s), Session-AMBR), N1 SM container (PDU Session Modification Command (PDU Session ID, QoS rule(s), QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s), QoS rule operation and QoS Flow level QoS parameters operation, Session-AMBR))).

If the UE is in CM-IDLE state and an ATC is activated, the AMF updates and stores the UE context based on the Namf_Communication_N1N2MessageTransfer and steps 4, 5, 6 and 7 are skipped. When the UE is reachable e.g. when the UE enters CM-CONNECTED state, the AMF forwards the N1 message to synchronize the UE context with the UE.

4. The AMF may send N2 PDU Session Request (N2 SM information received from SMF, NAS message (PDU Session ID, N1 SM container (PDU Session Modification Command))) Message to the (R)AN.

5. The (R)AN may issue AN specific signalling exchange with the UE that is related with the information received from SMF. For example, in case of a NG-RAN, an RRC Connection Reconfiguration may take place with the UE modifying the necessary (R)AN resources related to the PDU Session.

6. The (R)AN may acknowledge N2 PDU Session Request by sending a N2 PDU Session Ack (N2 SM information (List of accepted/rejected QFI(s), AN Tunnel Info, PDU Session ID), User Location Information) Message to the AMF. In case of Dual Connectivity, if one or more QFIs were added to the PDU Session, the Master RAN node may assign one or more of these QFIs to a NG-RAN node which was not involved in the PDU Session earlier. In this case the AN Tunnel Info includes a new N3 tunnel endpoint for QFIs assigned to the new NG-RAN node. Correspondingly, if one or more QFIs were removed from the PDU Session, a (R)AN node may no longer be involved in the PDU Session anymore, and the corresponding tunnel endpoint is removed from the AN Tunnel Info. The NG-RAN may reject QFI(s) if it cannot fulfill the User Plane Security Enforcement information for a corresponding QoS Profile, e.g. due to the UE Integrity Protection Maximum Data Rate being exceeded.

7. The AMF forwards the N2 SM information and the User Location Information received from the AN to the SMF via Nsmf_PDUSession_UpdateSMContext service operation. The SMF replies with a Nsmf_PDUSession_UpdateSMContext Response.

If the (R)AN rejects QFI(s) the SMF is responsible of updating the QoS rules and QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s) in the UE accordingly.

8. The SMF may update N4 session of the UPF(s) that are involved by the PDU Session Modification by sending N4 Session Modification Request message to the UPF. (see NOTE 2)

9. The UE acknowledges the PDU Session Modification Command by sending a NAS message (PDU Session ID, N1 SM container (PDU Session Modification Command Ack)) message.

10. The (R)AN forwards the NAS message to the AMF.

11. The AMF forwards the N1 SM container (PDU Session Modification Command Ack) and User Location Information received from the AN to the SMF via Nsmf_PDUSession_UpdateSMContext service operation. The SMF replies with a Nsmf_PDUSession_UpdateSMContext Response.

12. The SMF may update N4 session of the UPF(s) that are involved by the PDU Session Modification by sending N4 Session Modification Request (N4 Session ID) message to the UPF. For a PDU Session of Ethernet PDU Session Type, the SMF may notify the UPF to add or remove Ethernet Packet Filter Set(s) and forwarding rule(s).
NOTE 2: The UPFs that are impacted in the PDU Session Modification procedure depends on the modified QoS parameters and on the deployment. For example in case of the session AMBR of a PDU Session with an UL CL changes, only the UL CL is involved. This note also applies to the step 8.

13. If the SMF interacted with the PCF in step 1b or 2, the SMF notifies the PCF whether the PCC decision could be enforced or not by performing an SMF initiated SM Policy Association Modification procedure as defined in clause 4.16.5.1.

 SMF notifies any entity that has subscribed to User Location Information related with PDU Session change.

 If step 1b is triggered to perform Application Function influence on traffic routing by step 5 in clause 4.3.6.2, the SMF may reconfigure the User Plane of the PDU Session as described in step 6 in clause 4.3.6.2.

4.3.3.3 UE or network requested PDU Session Modification (home-routed roaming)

The UE or network requested PDU Session Modification procedure (home-routed roaming scenario) is depicted in figure 4.3.3.3-1.
1. The procedure is triggered by one of the following events:

1a. (UE or serving network requested) As in step 1a of clause 4.3.3.2 with the addition that:

- The V-SMF checks whether it can accept the request from the UE;

- The V-SMF invokes an Nsmf_PDUSession_Update Request (SUPI, PDU Session ID, UE request for PDU Session Modification or the QoS modification request from the VPLMN, UE location information, Time Zone, Access Type, PCO) service operation to inform the H-SMF to update the PDU Session. The H-SMF responds to the request immediately.

The PS Data Off status, if changed, shall be included in PCO (Protocol Configuration Option) in the PDU Session Modification Request message.
When PCF is deployed, the SMF shall further report the PS Data Off status to PCF if the PS Data Off event trigger is provisioned, the additional behaviour of SMF and PCF for 3GPP PS Data Off is defined in TS 23.503 [20].

1b. (HPLMN requested) This step is the same as step 1b in clause 4.3.3.2.

1c. (HPLMN requested) This step is the same as step 1c in clause 4.3.3.2.

1d. (HPLMN requested) This step is the same as step 1d in clause 4.3.3.2.

1e. As in step 1e of clause 4.3.3.2 with addition that:
 - The AMF invokes Nsmf_PDUSession_UpdateSMContext (N2 SM information) and sends it to the V-SMF;
 - The V-SMF invokes an Nsmf_PDUSession_Update Request (SUPI, PDU Session ID, ULI, AN type, QoS Flow to be released) service operation to inform the H-SMF to update the PDU Session. The H-SMF responds to the request immediately.

2. This step is the same as steps 2 in clause 4.3.3.2 with the SMF is H-SMF.

3. (UE or serving network requested or HPLMN requested) The H-SMF invokes the Nsmf_PDUSession_Update Request (PDU Session ID, QoS profiles, Session-AMBR, information needed to build the SM PDU Session Modification Command message towards the UE including the QoS rule(s) and QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s) and QoS rule operation and the QoS Flow level QoS parameters operation) service operation to the V-SMF.

 Based on operator policies, the V-SMF may decide to accept or reject the QoS information provided by the H-SMF. The V-SMF shall be able to accept a subset of the QoS flows requested to be created or modified within a single H-SMF request i.e. V-SMF can accept some QoS flows and reject other QoS flows in the same response to H-SMF.

4a-4b. These steps are the same as step 3a-3b in clause 4.3.3.2 but controlled from the V-SMF. The V-SMF uses the information received in step 3 to generate any N1 and/or N2 signalling to be sent towards the UE and/or the (R)AN.

5-7. These steps are the same as step 4-6 in clause 4.3.3.2.

8. This step is the same as step 7a in clause 4.3.3.2 with the difference that the SMF is V-SMF.

9a-9b are the same as step 11a-11b in clause 4.3.3.2 but executed in Visited PLMN.

10. This step is the same as step 7b in clause 4.3.3.2 with the difference that the SMF is V-SMF.

11-12. These steps are the same as steps 8-9 in 4.3.3.2.

13-14. These steps are the same as step 10a-10b in clause 4.3.3.2 but executed in Visited PLMN.

15. V-SMF responds to the H-SMF with an Nsmf_PDUSession_Update response carrying the information like PCO provided by the UE in the SM PDU Session Modification Command Ack message from the UE to the V-SMF. The H-SMF shall modify the PDU Session context.

 If the V-SMF has rejected QFI(s) (step3) or the (R)AN has rejected QFI(s) in step 6 of Figure 4.3.3.2-1, the H-SMF is responsible of later updating the QoS rules and QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s) in the UE.

16-17. These steps are the same as steps 11-12 in clause 4.3.3.2 with the difference that the SMF is H-SMF.

4.3.4 PDU Session Release

4.3.4.1 General

The PDU Session Release procedure is used to release all the resources associated with a PDU Session, including:

- The IP address/Prefixes allocated for an IP-based PDU Session; this may include the release of multiple Prefixes in case of Multi-homing (as defined in TS 23.501 [2]).
- Any UPF resource (including N3/N9 termination) that was used by the PDU Session.

The SMF takes care to notify any entity associated with PDU Session: PCF, DN (e.g. when DN authorization has taken place at PDU Session establishment), etc. of a PDU Session Release.

4.3.4.2 UE or network requested PDU Session Release for Non-Roaming and Roaming with Local Breakout

Figure 4.3.4.2-1 captures both the UE Requested PDU Session Release procedure and the network requested PDU Session Release procedure. The procedure allows the UE to request the release of one PDU Session. The procedure also allows the SMF or PCF to initiate the release of a PDU Session. In the case of LBO, the procedure is as in the case of non-roaming with the difference that the AMF, the SMF, the UPF and the PCF are located in the visited network.

![Figure 4.3.4.2-1: UE or network requested PDU Session Release for non-roaming and roaming with local breakout](image)

1. The procedure is triggered by one of the following events:

1a. (UE requested) The UE initiates the UE Requested PDU Session Release procedure by the transmission of an NAS message (N1 SM container (PDU Session Release Request (PDU session ID)), PDU Session ID) message. The NAS message is forwarded by the (R)AN to the AMF with an indication of User Location Information. This message is relayed to the SMF corresponding to the PDU Session ID via N2 and the AMF.
The AMF invokes the Nsmf_PDUSession_UpdateSMContext service operation and provides the N1 SM container to the SMF together with User Location Information (ULI) received from the (R)AN.

NOTE 1: Depending on the Access Type, when the UE is in CM-IDLE state, the UE can trigger a Service Request procedure before being able to release the PDU Session.

1b. (PDU Session Release initiated by the SMF) The PCF may invoke an SM Policy Association Termination procedure as defined in clause 4.16.6 to request the release of the PDU Session.

1c. The AMF may invoke the Nsmf_PDUSession_ReleaseSMContext service operation to request the release of the PDU Session in case of mismatch of PDU Session status between UE and AMF. This step may also be invoked due to a change of the set of network slices for a UE where a network slice instance is no longer available, as described in TS 23.501 [2] clause 5.15.5.2.2.

1d. (PDU Session Release initiated by the SMF) The SMF may decide to release a PDU Session under the following scenarios:
 - Based on a request from the DN (cancelling the UE authorization to access to the DN);
 - Based on a request from the UDM (subscription change) or from the OCS;
 - If the SMF received an event notification from the AMF that the UE is out of LADN service area; or
 - Based on locally configured policy (e.g. the release procedure may be related with the UPF re-allocation for SSC mode 2 / mode 3).

If the SMF receives one of the triggers in step 1a ~ d the SMF starts PDU Session Release procedure.

2. The SMF releases the IP address / Prefix(es) that were allocated to the PDU Session and releases the corresponding User Plane resources:

 2a. The SMF sends an N4 Session Release Request (N4 Session ID) message to the UPF(s) of the PDU Session. The UPF(s) shall drop any remaining packets of the PDU Session and release all tunnel resource and contexts associated with the N4 Session.

 2b. The UPF(s) acknowledges the N4 Session Release Request by the transmission of an N4 Session Release Response (N4 Session ID) message to the SMF.

NOTE 2: If there are multiple UPFs associated with the PDU Session (e.g. due to the insertion of UL CL or Branching Point, the Session Release Request procedure (steps 2a and 2b) is done for each UPF.

3 If the PDU Session Release is initiated by the PCF and SMF, and the SMF has been notified by the AMF that UE is unreachable, e.g. due to the UE is in MICO mode or periodical registration failure, the procedure continues in step 11 by SMF notifying the AMF that the PDU Session is released by invoking the Nsmf_PDUSession_SMContextStatusNotify. The rest of step 3 and the steps 4-10 are skipped.

If the PDU Session Release procedure was triggered by steps 1a, 1b or 1d above, the SMF creates an N1 SM including PDU Session Release Command message (PDU Session ID, Cause). The Cause may indicate a trigger to establish a new PDU Session with the same characteristics (e.g. when procedures related with SSC mode 2 are invoked).

3a. (If the PDU Session Release is initiated by the UE) The SMF responds to the AMF with the Nsmf_PDUSession_UpdateSMContext response (N2 SM Resource Release request, N1 SM container (PDU Session Release Command))

3b. If the PDU Session Release is initiated by the SMF, the SMF invokes the Namf_Communication_N1N2MessageTransfer service operation (N1 SM container (PDU Session Release Command), skip indicator).

If the UP connection of the PDU Session is active, the SMF shall also include the N2 Resource Release request (PDU Session ID) in the Namf_Communication_N1N2MessageTransfer, to release the (R)AN resources associated with the PDU Session.
The "skip indicator" tells the AMF whether it may skip sending the N1 SM container to the UE (e.g. when the UE is in CM-IDLE state). SMF includes the "skip indicator" in the Namf_Communication_N1N2MessageTransfer except when the procedure is triggered to change PDU Session Anchor of a PDU Session with SSC mode 2.

If the UE is in CM-IDLE state and "skip indicator" is included in the Namf_Communication_N1N2MessageTransfer service operation, the AMF acknowledges the step 3b by sending an Namf_Communication_N1N2MessageTransfer Response message ("N1 SM Message Not Transferred") to SMF and steps 4 to 10 are skipped.

3c. If the PDU Session Release is initiated by the AMF, i.e. the SMF received the Nsmf_PDUSession_ReleaseSMContext Request from the AMF by step 1c, the SMF responds to the AMF with the Nsmf_PDUSession_ReleaseSMContext response.

If the PDU Session Release is triggered due to a mismatch of the PDU Session status between UE and AMF, the AMF and SMF shall remove all contexts (including the PDU Session ID) associated with the PDU Session which are indicated as released at the UE. AMF and SMF shall remove any event subscriptions on the AMF by the SMF as well. The steps 4 to 11 are skipped.

If the PDU Session Release is triggered due to change of the set of network slices for a UE, SMF releases the PDU Session associated with the Network Slice instance that is no longer available as described in step 3b.

4. If the PDU Session Release is triggered due to change of the set of network slices for a UE, SMF releases the PDU Session associated with the Network Slice instance that is no longer available as described in step 3b.

If the UE is in CM-IDLE state and "N1 SM delivery can be skipped" is not indicated, the AMF initiates the network triggered Service Request procedure to transmit the NAS message (PDU Session ID, N1 SM container) to the UE.

If the UE is in CM-CONNECTED state, then the AMF transfers the SM information received from the SMF in step 4 (N2 SM Resource Release request, N1 SM container) to the (R)AN.

5. When the (R)AN has received an N2 SM request to release the AN resources associated with the PDU Session it issues AN specific signalling exchange(s) with the UE to release the corresponding AN resources.

In the case of a NG-RAN, an RRC Connection Reconfiguration may take place with the UE releasing the NG-RAN resources related to the PDU Session.

During this procedure, the (R)AN sends any NAS message (N1 SM container (PDU Session Release Command)) received from the AMF in step 5.

6. [Conditional] If the (R)AN had received a N2 SM request to release the AN resources, the (R)AN acknowledges the N2 SM Resource Release Request by sending an N2 SM Resource Release Ack (User Location Information) Message to the AMF.

7a. The AMF invokes the Nsmf_PDUSession_UpdateSMContext (N2 SM Resource Release Ack, User Location Information) to the SMF.

7b. The SMF responds to the AMF with an Nsmf_PDUSession_UpdateSMContext response.

8. The UE acknowledges the PDU Session Release Command by sending a NAS message (PDU Session ID, N1 SM container (PDU Session Release Ack)) message over the (R)AN.

9. [Conditional] The (R)AN forwards the NAS message from the UE by sending a N2 NAS uplink transport (NAS message (PDU Session ID, N1 SM container (PDU Session Release Ack)), User Location Information) to the AMF.

10a. The AMF invokes the Nsmf_PDUSession_UpdateSMContext (N1 SM container (PDU Session Release Ack, User Location Information) to the SMF.

10b. The SMF responds to the AMF with an Nsmf_PDUSession_UpdateSMContext response.

Steps 8-10 may happen before steps 6-7.

11. If steps 3a or 3b were performed, the SMF waits until it has received replies to the N1 and N2 information provided in step 3, as needed.
The SMF invokes Nsmf_PDUSession_SMContextStatusNotify to notify AMF that the SM context for this PDU Session is released. The AMF releases the association between the SMF ID and the PDU Session ID, DNN, as well as S-NSSAI.

NOTE 4: The UE and the 5GC will get synchronized about the status of the (released) PDU Session at the next Service Request or Registration procedure.

12. If Dynamic PCC applied to this session the SMF invokes an SM Policy Association Termination procedure as defined in clause 4.16.6 to delete the PDU Session.

SMF notifies any entity that has subscribed to User Location Information related with PDU Session change.

If it is the last PDU Session the SMF is handling for the UE for the associated (DNN, S-NSSAI), the SMF unsubscribes from Session Management Subscription data changes notification with the UDM by means of the Nudm_SDM_Unsubscribe (SUPI, DNN, S-NSSAI) service operation. The UDM may unsubscribe the subscription notification from UDR by Nudr_DM_Unsubscribe (SUPI, Subscription Data, Session Management Subscription data, DNN, S-NSSAI).

The SMF invokes the Nudm_UECM_Deregistration service operation including the SMF address, the DNN and the PDU Session Id. The UDM removes the association it had stored between the SMF identity, SMF address and the associated DNN and PDU Session Id. The UDM may update this information by Nudr_DM_Update (SUPI, Subscription Data, UE context in SMF data).

4.3.4.3 UE or network requested PDU Session Release for Home-routed Roaming

This procedure is used in case of home-routed roaming scenarios.

![Diagram of UE or network requested PDU Session Release for home-routed roaming](image-url)

Figure 4.3.4.3-1: UE or network requested PDU Session Release for home-routed roaming
1. The procedure is triggered by one of the following events:

1a. (UE initiated release) As in step 1a of clause 4.3.4.2 with the addition that the V-SMF invokes the Nsmf_PDUSession_Update Request (SUPI, PDU Session ID, information from the SM message from the UE e.g. PCO, "Trigger PDU Session Release" indication, Timezone, User Location Information) service operation to request the H-SMF to release the PDU Session. The H-SMF responds to the request immediately.

1b. (Serving network initiated release) The serving network initiates the PDU Session Release during UE or serving network initiated Deregistration procedure as specified in clause 4.2.2.3. There is no NAS SM message between the UE and the V-SMF in this case. The V-SMF initiates the release of the PDU Session at the H-SMF by invoking the Nsmf_PDUSession_Release request.

1c. (HPLMN initiated release) This step is the same as step 1b in clause 4.3.4.2.

1d. (HPLMN initiated release) This step is the same as step 1c in clause 4.3.4.2.

If the SMF receives one of the triggers in step 1a, 1c or 1d, the H-SMF starts PDU Session Release procedure.

2a-2b. These steps are the same as steps 2a-2b in clause 4.3.4.2. The SMF is the SMF in HPLMN.

3a. (UE or HPLMN initiated release) The H-SMF prepares the SM Release PDU Session Command message and initiates the PDU Session Release towards the UE by invoking the Nsmf_PDUSession_Update Request service operation towards the V-SMF. The Nsmf_PDUSession_Update Request contains necessary information to build the SM Release PDU Session Command by the V-SMF towards the UE (for example a Release Cause or PCO).

3b. (Serving network initiated release) The H-SMF responds to the PDU release request from the V-SMF with a Nsmf_PDUSession_Release response.

4a-4b. The V-SMF releases the corresponding User Plane resources. This includes the same procedure in step 2 but controlled from the SMF in VPLMN.

5-13. These steps are the same as steps 3-10 in clause 4.3.4.2.

14. (UE or HPLMN initiated release) The V-SMF responds to the Nsmf_PDUSession_Update Request invoked at step 3a and confirms the PDU Session Release. The Nsmf_PDUSession_Update response may carry information such as PCO received from the UE in SM PDU Session Release Accept, as well as User Location Information and Time Zone.

15. (UE or HPLMN or Serving network initiated release) The H-SMF releases the SM policy control association with the PCF by invoking the SM Policy Association Termination procedure defined in clause 4.16.6. For serving network initiated PDU Session Release case, this step happens between step 1b and step 3b.

16. (UE or HPLMN initiated release) The H-SMF shall remove all contexts associated with the PDU Session.

16a. The H-SMF requests the V-SMF to release all contexts associated with the PDU Session by invoking the Nsmf_PDUSession_StatusNotify (Release) operation.

16b. The V-SMF requests the AMF to release all contexts associated with the PDU Session by invoking the Nsmf_PDUSession_SMContexStatusNotify (Release). The AMF releases the association between the SMF ID and the PDU Session ID.

4.3.5 Session continuity, service continuity and UP path management

4.3.5.1 Change of SSC mode 2 PDU Session Anchor with different PDU Sessions

The following procedure is triggered by SMF in order to change the PDU Session Anchor serving a PDU Session of SSC mode 2 for a UE when neither multi-homing nor UL CL applies to the PDU Session. This procedure releases the existing PDU Session associated with an old PDU Session Anchor (i.e. UPF1 in figure 4.3.5.1-1) and immediately establishes a new PDU Session with a new PDU Session Anchor (i.e. UPF2 in figure 4.3.5.1-1) to the same DN.
1. The SMF determines that the serving UPF needs to be changed due to events that may benefit from such change.

2. The PDU Session Release procedure is initiated as described in clause 4.3.4. The SMF sends an N1 SM Information to the UE via the AMF by invoking Namf_Communication_N1N2MessageTransfer as described in Step 3b of clause 4.3.4.2. The PDU Session Release Command message in N1 SM Information contains the PDU Session ID and Cause indicating that a PDU Session re-establishment to the same DN is required.

3. Upon reception of PDU Session Release Command with Cause indicating that a PDU Session re-establishment to the same DN is required as sent in step 2, the UE generates a new PDU Session ID and initiates PDU Session Establishment procedure as described in clause 4.3.2.2. Then, the AMF selects an SMF as described in TS 23.501 [2], clause 6.4.2 and the SMF can select a new UPF (i.e. UPF2) for the re-established PDU Session of SSC mode 2.

4.3.5.2 Change of SSC mode 3 PDU Session Anchor with multiple PDU Sessions

The following procedure is triggered by SMF in order to change the PDU Session Anchor serving a PDU Session of SSC mode 3 for a UE. This procedure releases the existing PDU Session associated with an old PDU Session Anchor (i.e. UPF1 in figure 4.3.5.2-1) after having established a new PDU Session to the same DN with a new PDU Session Anchor (i.e. UPF2 in figure 4.3.5.2-1), which is controlled by the same SMF. The SMF may determine that a new SMF needs to be reallocated.
Figure 4.3.5.2-1: Change of SSC mode 3 PDU Session Anchor with multiple PDU Sessions

1. The SMF determines that the serving UPF or the SMF needs to be changed.

2. The SMF invokes the Namf_Communication_N1N2MessageTransfer (PDU Session ID, SMF Reallocation requested indication, N1 SM container (PDU Session Modification Command (Cause, PCO (PDU Session Address Lifetime value)))) where PDU Session ID indicates the existing PDU Session to be relocated and Cause indicates that a PDU Session re-establishment to the same DN is required.

 The SMF Reallocation requested indication indicates whether the SMF is requested to be reallocated.

 The PDU Session Address Lifetime value is delivered to the UE upper layers in PCO and indicates how long the network is willing to maintain the PDU Session. The SMF starts a PDU Session Release timer corresponding to the PDU Session Address Lifetime value.

3. The AMF forwards the NAS message to the UE. The UE can provide the release timer value to the upper layers if received in the PDU Session Modification Command.

4. If the UE receives PDU Session Modification Command, the UE may decide to initiate the PDU Session Establishment procedure described in clause 4.3.2.2, to the same DN with the following differences:

 In Step 1 of clause 4.3.2.2.1, according to the SSC mode, UE generates a new PDU Session ID and initiates the PDU Session Establishment Request using the new PDU Session ID. The new PDU Session ID is included as PDU Session ID in the NAS request message, and the Old PDU Session ID which indicates the existing PDU Session to be released is also provided to AMF in the NAS request message.

 In Step 2 of clause 4.3.2.2.1, if SMF reallocation was requested in Step 2 of this clause, the AMF selects a different SMF. Otherwise, the AMF sends the Nsmf_PDUSession_CreateSMContext Request to the same SMF serving the Old PDU Session ID.

 In Step 3 of clause 4.3.2.2.1, the AMF include both PDU Session ID and Old PDU Session ID in Nsmf_PDUSession_CreateSMContext Request. The SMF detects that the PDU Session establishment request is related to the trigger in step 2 based on the presence of an Old PDU Session ID in the Nsmf_PDUSession_CreateSMContext Request. The SMF stores the new PDU Session ID and selects a new PDU Session Anchor (i.e. UPF2) for the new PDU Session.

 Editor's note: The referenced step numbers in clause 4.3.2.2 may need to be further aligned according to the updates in clause 4.3.2.2.

5. After the new PDU Session is established the UE starts using the IP address/prefix associated with the new PDU Session for all new traffic and may also proactively move existing traffic flow (where possible) from the old PDU Session to the new PDU Session.
NOTE: The mechanisms used by the UE to proactively move existing traffic flows from one IP address/prefix to another are outside the scope of 3GPP specifications.

6. The old PDU Session is released as described in clause 4.3.4 either by the UE before the timer provided in step 3 expires (e.g., once the UE has consolidated all traffic on new PDU Session or if the session is no more needed) or by the SMF upon expiry of this timer.

4.3.5.3 Change of SSC mode 3 PDU Session Anchor with IPv6 Multi-homed PDU Session

Clause 4.3.5.3 describes a procedure for service continuity with SSC mode 3 that uses the multi-homed PDU Session described in TS 23.501 [2] clause 5.6.4.3. In this case the SMF prepares a new PDU Session Anchor first and then notifies the UE of the existence of a new IP prefix, as depicted in figure 4.3.5.3-1. This procedure is applicable only to PDU Sessions of IPv6 type.
The UE has an established PDU Session with the PDU Session Anchor (i.e. UPF1 in Figure 4.3.5.3-1). The PDU Session's User Plane involves at least the (R)AN and the PDU Session Anchor.

1. At some point the SMF decides to allocate to the PDU Session the PDU Session with a new PDU Session Anchor.
2. The SMF selects a new UPF and using N4 configures the UPF as a new PDU Session Anchor (i.e. UPF2 in Figure 4.3.5.3-1) of the multi-homed PDU Session. In the process a new IPv6 prefix (IP@2) is allocated for the PDU Session. If the PCF has subscribed to the IP allocation/release event, the SMF performs a Session Management Policy Modification procedure as defined in clause 4.16.5 to provide the new allocated IPv6 prefix to the PCF.

3. The SMF selects a Branching Point (BP) UPF as described in Clause of 6.3.3 of TS 23.501 [2]. The selection of BP UPF may consider the location of UPF1 and UPF2 to ensure a suitable location of the BP UPF relative to the UPF1 and the UPF2.

NOTE 1: In case BP UPF is co-located with one of PDU Session Anchors, steps between SMF and BP UPF can be skipped.

4. The SMF configures via N4 the UPF selected in step 3 (BP UPF in Figure 4.3.5.3-1) as a Branching Point for the multi-homed PDU Session. It provides the Branching Point with the necessary UL traffic forwarding rules (related with the prefix of the IPv6 source address of UL traffic). Also, the SMF provides AN Tunnel Info for N3 tunnel setup and CN Tunnel Info for N9 tunnel setup to the BP UPF and obtains CN Tunnel Info from the BP UPF.

5-6. The SMF performs N4 Session Modification procedure with PSAs. During this procedure, the SMF provides CN Tunnel Info received from the BP UPF to set up an N9 tunnel between BP and PSAs.

7. The SMF invokes the Namf_Communication_N1N2MessageTransfer service operation containing N2 SM Information with CN Tunnel Info for the N3 tunnel setup.

8. The AMF sends an N2 Request including N2 SM Information received from the SMF to the (R)AN. The (R)AN acknowledges to the AMF with an N2 Response.

9a. The AMF carries the N2 Response sent by the (R)AN to the SMF by invoking the Nsmf_PDUSession_UpdateSMContext service operation.

9b. The SMF responds to Nsmf_PDUSession_UpdateSMContext service operation from the AMF.

10-11. The SMF notifies the UE of the availability of the new IP prefix. This is performed using an IPv6 Router Advertisement message (RFC 4861 [6]). The SMF sends a Router Advertisement to the UE via the new PSA with a new prefix (IP@2) and sends another Router Advertisement to the UE via the old PSA with the old prefix (IP@1) and zero value in the preferred lifetime field and a value in the valid lifetime field according to RFC 4862 [8]. The valid lifetime value indicates the time how long the SMF is willing to keep the old prefix. The valid lifetime value may be decided by SMF based on local configuration.

The UE starts using IP@2 for all new traffic and may also proactively move existing traffic flow (where possible) from IP@1 to IP@2.

NOTE 2: The mechanisms used by the UE to proactively move existing traffic flows from one IP prefix to another are outside the scope of 3GPP specifications.

NOTE 3: The UE can update the valid lifetime of the old prefix (IP@1) to the signaled value regardless of the remaining lifetime.

12. After the timer expires, the SMF releases the UE's old IPv6 prefix (IP@1). At this point the UE implicitly releases the old IP prefix. The SMF sends an N4 Session Modification Request to the BP to release UP resource for N9 tunnel between the BP and old PSA.

13. The SMF releases the old PDU Session context with the old PDU Session Anchor (UPF1 in Figure 4.3.5.3-1). If the PCF has subscribed to the IP allocation/release event, the SMF performs a Session Management Policy Modification procedure as defined in clause 4.16.5 to notify the PCF of the IPv6 prefix release.

14-18. The SMF may optionally release the Branching Point from the User Plane path.

4.3.5.4 Addition of additional PDU Session Anchor and Branching Point or UL CL

Clause 4.3.5.4 describes a procedure to add a PDU Session Anchor and a Branching Point or UL CL for an established PDU Session.
1. UE has an established PDU session with PSA1.

2. SMF establishes PSA2.

3. SMF establishes Branching Point or UL CL.

4. SMF updates PSA1 for downlink traffic.

5. SMF updates PSA2.

6. SMF updates (R)AN for uplink traffic.

7. New UE IPv6 prefix assignment.

8. SMF re-configures UE IPv6 prefix for PSA1.

NOTE 1: In case the Branching Point or UL CL and the PSA2 are co-located in a single UPF then steps 2 and 3 can be merged. In case a Branching Point is already allocated, step 3 is skipped.
4. The SMF updates the PSA1 via N4. It provides the Branching Point or UL CL CN Tunnel Info for the downlink traffic.

NOTE 2: In case the Branching Point or UL CL and the PSA1 are co-located in a single UPF then steps 3 and 4 can be merged.

5. The SMF updates PSA2 via N4. It provides the Branching Point or UL CL CN Tunnel Info for down-link traffic.

NOTE 3: In case the Branching Point or UL CL and the PSA2 are co-located in a single UPF then step 5 is not needed.

6. The SMF updates (R)AN via N2 SM information over N11. It provides the new CN Tunnel Info corresponding to the UPF (Branching Point or UL CL). In case of UL CL, if there is an existing UPF between the (R)AN and new inserted UL CL, the SMF updates the existing UPF via N4 instead of updating the (R)AN.

7. In case of IPv6 multi-homing, the SMF notifies the UE of the availability of the new IP prefix @ PSA2. This is performed using an IPv6 Router Advertisement message (RFC 4861 [6]). Also, the SMF sends routing rule along with the IPv6 prefix to the UE using an IPv6 Router Advertisement message (RFC 4191 [21]) as described in TS 23.501 [2] clause 5.8.1.2.

8. In case of IPv6 multi-homing, the SMF may re-configure the UE for the original IP prefix @ PSA1, i.e. SMF sends routing rule along with the IPv6 prefix to the UE using an IPv6 Router Advertisement message (RFC 4191 [21]) as described in TS 23.501 [2] clause 5.8.1.2.

4.3.5.5 Removal of additional PDU Session Anchor and Branching Point or UL CL

Clause 4.3.5.5 describes a procedure to remove a PDU Session Anchor and (optionally) remove Branching Point or UL CL for an established PDU Session.

Figure 4.3.5.5-1: Removal of additional PDU Session Anchor and Branching Point or UL CL
1. UE has an established PDU Session with a UPF including the Branching Point or UL CL, the PDU Session Anchor 1 (PSA1 in Figure 4.3.5.5-1) and the PDU Session Anchor 2 (PSA2 in Figure 4.3.5.5-1).

At some point the SMF decides to remove the PDU Session Anchor 1 e.g. due to UE mobility, flow terminated.

2. In case of IPv6 multi-homing, the SMF notifies the UE to stop using the IPv6 prefix corresponding to PSA1. This is performed by IPv6 Router Advertisement message (RFC 4861 [6] and RFC 4862 [8]). Also, the SMF sends routing rule along with the IPv6 prefix corresponding to PSA2 to the UE as described in TS 23.501 [2] clause 5.8.1.2. Based on the information provided in the Router Advertisement, the UE starts using the IPv6 prefix (corresponding to PSA2) for all the traffic.

4. If the Branching Point or UL CL is to be released, the SMF updates the (R)AN with the PSA2 CN Tunnel Info. In case of UL CL, if there is an existing UPF between the (R)AN and the UL CL to be removed, the SMF updates the existing UPF via N4 instead of updating the (R)AN.

5. If the Branching Point or UL CL is to be released, the SMF updates via N4 the PSA2 providing the AN Tunnel Info. In case of UL CL, if there is an existing UPF between the (R)AN and the UL CL to be removed, the SMF updates the PSA2 providing the UPF CN tunnel Info.

6. The SMF releases via N4 the PSA1. In case of IPv6 multi-homing, the SMF also releases the corresponding IPv6 prefix and if the PCF has subscribed to the IP allocation/release event, the SMF performs the Session Management Policy Modification procedure as defined in clause 4.16.5 to notify the PCF of the IPv6 prefix release.

7. If steps 4 and 5 were executed, the SMF releases the Branching Point / UL CL.

4.3.5.6 Change of additional PDU Session Anchor for IPv6 multi-homing or UL CL

The following procedure is triggered by an SMF when the SMF needs to modify IPv6 multi-homing or UL CL rule (i.e., traffic filter in the Branching Point or the UL CL) in order to move the some or whole traffic flows of the existing additional PDU Session Anchor which was established by the IPv6 multi-homing or the UL CL operations (i.e. PSA1 in figure 4.3.5.6-1) to a new additional PDU Session Anchor (i.e. PSA2 in figure 4.3.5.6-1) which is established under the same Branching Point or UL CL for a UE where the UE already has a PDU Session Anchor which was established before the event of Branching Point or UL CL insertion (i.e., PSA0 in figure 4.3.5.6-1). This procedure establishes a new additional PDU Session Anchor (i.e., PSA2) and conditionally releases the existing additional PDU Session Anchor (i.e. PSA1), while modifying IPv6 multi-homing or UL CL rule in the same Branching Point or UL CL under controlled by the same SMF.
1. The SMF decides to change one additional PSA of a PDU Session with IPv6 multi-homing or UL CL, due to events that may benefit from such change or upon request from an Application Function.

2. The SMF sends an N4 Session Establishment Request to PSA2 and provides the tunnel ID of Branching Point or UL CL, Packet detection, enforcement and reporting rules to be installed on the PSA2 for this PDU Session. If a tunnel ID is allocated by the SMF, the tunnel ID is provided to PSA2 in this step.

 The PSA2 acknowledges by sending an N4 Session Establishment Response. The tunnel ID of PSA2 is provided to the SMF in this step.

 In case of IPv6 multi-homing PDU Session, the SMF also allocates a new IPv6 prefix corresponding to PSA2, and if the PCF has subscribed to the IP allocation/release event, the SMF performs the Session Management Policy Modification Procedure as defined in clause 4.16.5 to provide the new allocated IPv6 prefix to the PCF.

3a. The SMF sends an N4 Session Modification Request to the Branching Point or UL CL to update the UL traffic filter according to new allocated IPv6 prefix allocated to PSA2 or the UL CL rules regarding to the traffic flows that the SMF tries to move from PSA1 to PSA2. The N4 Session Modification Request message contains the identifications of traffic filter that needs to be updated and the tunnel ID of PSA2.

 NOTE: The identification of a traffic filter can be either the index of the traffic filter, or a single value of the information field in traffic filter (e.g., the tunnel ID of next hop), or a combination value of some information field in the traffic filter (e.g., the tunnel ID of next hop with source port number).

3b. The Branching Point or the UL CL acknowledges by N4 Session Modification Response the Branching Point or when the UL CL successfully updates all the traffic filters that the SMF requests to modify.

4. In case of IPv6 multi-homing PDU Session, The SMF notifies the UE of the availability of the new IP prefix @ PSA2. This is performed using an IPv6 Router Advertisement message (RFC 4861 [6]). Also, the SMF sends routing rule along with the IPv6 prefix to the UE using an IPv6 Router Advertisement message (RFC 4191 [21]) as described in TS 23.501 [2] clause 5.8.1.2.

5. In case of IPv6 multi-homing PDU Session, The SMF may re-configure the UE for the original IP prefix @ PSA0,i.e. SMF sends routing rule along with the IPv6 prefix to the UE using an IPv6 Router Advertisement message (RFC 4191 [21]) as described in TS 23.501 [2] clause 5.8.1.2.

Figure 4.3.5.6-1: Change of additional PSA for a PDU Session in IPv6 multi-homing or UL CL case
6. Step 6 occurs only if the Branching Point or UL CL does not have any traffic filter on the PDU Session which forwards a traffic flow to PSA1.

6a. The SMF sends an N4 Session Release Request with N4 session ID to PSA1. The PSA1 shall release all tunnel resources and contexts associated with the N4 session.

6b. PSA1 sends an N4 Session Release Response with N4 session ID to the SMF at the same moment that PSA1 successfully releases all tunnel resources and contexts associated with the N4 session.

4.3.5.7 Simultaneous change of Branching Point or UL CL and additional PSA for a PDU Session

Intermediate UPF re-allocation procedures have been described in Xn based handover (clause 4.9.1.2), N2 based handover (clause 4.9.1.3) and Service Request procedures (clause 4.2.3), where the I-UPF can be regarded as UL CL in case the PSA provides local access to a DN. UL CL and additional PSA can be changed simultaneously during Xn based handover, N2 based handover and Service Request procedures.

The following procedure (just an example call flow triggered by Xn based handover) is triggered by SMF in order to change the Branching Point or the UL CL and additional PSA serving a PDU Session for a UE.
Figure 4.3.5.7-1: Simultaneous change of Branching Point or UL CL and additional PSA for a PDU Session

UE has an established PDU session with a UPF including the PDU Session Anchor (Remote UPF). The PDU Session user plane involves at least the Source (R)AN, Source Branching Point or Source UL CL, local Source UPF (PSA2) and the Remote UPF (PDU Session Anchor, PSA1), where Source Branching Point or Source UL CL and PSA2 can be co-located.

1. At some point SMF decides to change the Branching Point or the UL CL due to UE mobility. This may be e.g. the AMF notifying the SMF that the target (R)AN has sent an N2 Path Switch Request message to an AMF. For more detail on Xn based inter-5G handover refer to clause 4.9.1.2.
2. The SMF selects a local Target UPF (PSA3) and using N4 establishes the local Target UPF for the PDU Session. In case of IPv6 multi-homing PDU Session, the SMF also allocates a new IPv6 prefix corresponding to PSA3, and if the PCF has subscribed to the IP allocation/release event, the SMF performs the Session Management Policy Modification procedure as defined in clause 4.16.5 to provide the new allocated IPv6 prefix to the PCF.

3. The SMF selects a UPF and using N4 establishes the Target Branching Point or Target UL CL for the PDU Session. SMF provides the necessary uplink forwarding rules towards the PSA3 and PSA1 including the Tunnel Info for each UPF. In addition, the AN Tunnel Info to target (R)AN is provided for downlink forwarding. In case of UL CL, the SMF provides traffic filters indicating what traffic shall be forwarded towards PSA3 and PSA1 respectively. In case of IPv6 multi-homing, the SMF also provides traffic filters for the IPv6 prefixes corresponding to PSA3 and PSA1 indicating what traffic shall be forwarded towards PSA3 and PSA1 respectively. Target Branching Point or Target UL CL provides the CN Tunnel Info for downlink traffic.

NOTE 1: In case the Target Branching Point or Target UL CL and the PSA3 are co-located in a single UPF then steps 2 and 3 can be merged.

4. The SMF updates the PSA1 via N4. It provides the PDU Session CN Tunnel Info for the downlink traffic.

5. The SMF updates the PSA3. It provides the CN Tunnel Info for downlink traffic.

NOTE 2: In case the Target Branching Point or the Target UL CL and the PSA3 are co-located in a single UPF then step 5 is not needed.

6. The SMF updates (R)AN via N2 SM information over N11. It provides the new CN Tunnel Info corresponding to the Target Branching Point or the Target UL CL. If there is an existing UPF between the Target (R)AN and Target Branching Point or Target UL CL, the SMF updates the existing UPF via N4 instead of updating the (R)AN.

7. In case of IPv6 multi-homing, the SMF notifies the UE of the availability of the new IP prefix @ PSA3. This is performed using an IPv6 Router Advertisement message (RFC 4861 [6]). Also, the SMF sends routing rule along with the IPv6 prefix to the UE using an IPv6 Router Advertisement message (RFC 4191 [21]) as described in TS 23.501 [2] clause 5.8.1.2.

8. In case of IPv6 multi-homing, the SMF may re-configure the UE for the original IP prefix @ PSA1, i.e. SMF sends routing rule along with the IPv6 prefix to the UE using an IPv6 Router Advertisement message (RFC 4191 [21]) as described in TS 23.501 [2] clause 5.8.1.2.

9. The SMF releases via N4 the PSA2.

10. The SMF releases the Source Branching Point or the Source UL CL.

NOTE 3: In case the Target Branching Point or Target UL CL and the PSA2 are co-located in a single UPF then steps 9 and 10 can be merged.

4.3.6 Application Function influence on traffic routing

4.3.6.1 General

Clause 4.3.6 describes the procedures between an Application Function and the SMF to maintain an efficient user plane path for Application Functions that require it. As described in TS 23.501 [2] clause 5.6.7, an Application Function may send requests to influence SMF routeing decisions for User Plane traffic of PDU Sessions. The AF requests may influence UPF (re)selection and allow routeing of user traffic to a local access (identified by a DNAI) to a Data Network. The AF may also provide in its request subscriptions to SMF events.

The following cases can be distinguished:

- AF requests targeting an individual UE address; these requests are routed (by the AF or by the NEF) to an individual PCF using the BSF. This is described in clause 4.3.6.4.

NOTE 1: Such requests target an on-going PDU Session. Whether the AF needs to use the NEF or not is according to local deployment.
AF requests targeting PDU Sessions that are not identified by an UE address: For such requests the AF shall contact the NEF and the NEF stores the AF request information in the UDR. PCF(s) receive a corresponding notification if they had subscribed to the creation / modification/ deletion of the AF request information corresponding to UDR Data Keys / Data Sub-Keys. This is defined in 23.501 [2] clause 6.3.7.2 and further described in clause 4.3.6.2.

NOTE 2: Such requests can target on-going or future PDU Sessions.

If the AF interacts with PCF via the NEF, the NEF performs the following mappings where needed:
- Map the AF-Service-Identifier into DNN and S-NSSAI combination, determined by local configuration.
- Map the AF-Service-Identifier into a list of DNAI(s) and Routing Profile ID(s) determined by local configuration.

The NEF can only provide this mapping when the DNAI(s) being used by the applications are statically defined. When the DNAI(s) where applications are instantiated vary dynamically, the AF should provide the target DNAI(s) in its request together with either Routing Profile ID(s) or with N6 traffic routing information.
- Map the GPSI in Target UE Identifier into SUPI, according to information received from UDM.
- Map the External Group Identifier in Target UE Identifier into Internal Group Identifier, according to information received from UDM.
- Map the geographic zone identifier(s) in Spatial Validity Condition into areas of validity, determined by local configuration.

Figure 4.3.6.2-1: Processing AF requests to influence traffic routing for Sessions not identified by an UE address

Diagram:

- **UPF**
- **SMF**
- **PCF(s)**
- **UDR**
- **NEF**
- **AF**

1. Creation of the AF request
2. Nnef_TrafficInfluence_Create/Update/Delete
3a. Storing/Updating/Removing the information
3b. Nnef_TrafficInfluence_Create/Update/Delete
4. Nudr_DM_Notify
5. Npcf_SMPolicyControl_UpdateNotify
6. User Plane Reconfiguration

Notes:

NOTE 1: The 5GC functions used in this scenario are assumed to all belong to the same PLMN (HPLMN in non-roaming case or VPLMN in case of a PDU Session in LBO mode).

NOTE 2: Nnef_TrafficInfluence_Create or Nnef_TrafficInfluence_Update or Nnef_TrafficInfluence_Delete service operations invoked from an AF located in the HPLMN for local breakout and home routed roaming scenarios are not supported.
1. To create a new request, the AF invokes an Nnef_TrafficInfluence_Create service operation. The content of this service operation (AF request) is defined in TS 23.501 [2] clause 5.2.6.7 and clause 5.6.7. The request contains also an AF Transaction Id. In case it subscribes to events related with PDU Sessions the AF indicates also where it desires to receive the corresponding notifications (AF notification reporting information).

To update or remove an existing request, the AF invokes an Nnef_TrafficInfluence_Update or Nnef_TrafficInfluence_Delete service operation providing the corresponding AF Transaction Id.

2. The AF sends its request to the NEF. If the request is sent directly from the AF to the PCF, the AF reaches the PCF selected for the existing PDU Session by configuration or by invoking Nbsf_management_Discovery service.

The NEF ensures the necessary authorization control, including throttling of AF requests and, as described in clause 4.3.6.1, mapping from the information provided by the AF into information needed by the 5GC.

3. (in the case of Nnef_TrafficInfluence_Create or Update): The NEF stores the AF request information in the UDR (Data Set = Application Data; Data Subset = AF traffic influence request information, Data Key = AF Transaction Internal ID, S-NSSAI and DNN and/or Internal Group Identifier or SUPI).

NOTE 3: Both the AF transaction Internal ID and, S-NSSAI and DNN and/or Internal Group Identifier or SUPI are regarded as Data Key when the AF request information are stored into the UDR, see Table 5.2.12.2.1-1.

(in the case of Nnef_TrafficInfluence_delete): The NEF deletes the AF requirements in the UDR (Data Set = Application Data; Data Subset = AF traffic influence request information, Data Key = AF transaction internal ID).

The NEF responds to the AF.

4. The PCF(s) that have subscribed to modifications of AF requests (Data Set = Application Data; Data Subset = AF traffic influence request information, Data Key = S-NSSAI and DNN and/or Internal Group Identifier or SUPI) receive(s) a Nudr_DM_Notify notification of data change from the UDR.

5. The PCF determines if existing PDU Sessions are potentially impacted by the AF request. For each of these PDU Sessions, the PCF updates the SMF with corresponding new PCC rule(s) by invoking Npcf_SMPolicyControl_UpdateNotify service operation as described in steps 5 and 6 in clause 4.16.5.

6. When a PCC rule is received from the PCF, the SMF may take appropriate actions to reconfigure the User plane of the PDU Session such as:

- Adding, replacing or removing a UPF in the data path to e.g. act as an UL CL or a Branching Point e.g. as described in clause 4.3.5.
- Allocate a new Prefix to the UE (when IPv6 multi-Homing applies)
- Updating the UPF in the target DNAl with new traffic steering rules
- Subscribe to notifications from the AMF for an Area Of Interest via Namf_EventExposure_Subscribe service operation

4.3.6.3 Notification of User Plane Management Events

The SMF may send a notification to the AF if the AF had subscribed to user plane management event notifications as described in clause 4.3.6.2 and in TS 23.501 [2] clause 5.6.7. The following are the examples of such events:

- A PDU Session Anchor identified in the AF subscription request has been established or released.
- A DNAI has changed.
- The SMF has received a request for AF notification and the on-going PDU Session meets the conditions to notify the AF.

The SMF uses notification reporting information received from PCF to issue the notification either via an NEF or directly to the AF.

The following flow depicts the sequence of events:
1. A condition for an AF notification has been met as described above.

2. In case of early notification requested by the AF, the SMF notifies the intended AF of the target DNAI of the PDU Session by invoking Nsmf_EventExposure_Notify service operation.

3. The SMF enforces the change of DNAI or addition, change, or removal of a UPF.

4. In case of late notification requested by the AF, the SMF notifies the AF of the selected target DNAI of the PDU Session by invoking Nsmf_EventExposure_Notify service operation.

4.3.6.4 Transferring an AF request targeting an individual UE address to the relevant PCF

1. The AF sends Npcf_PolicyAuthorizationCreate/Update/Delete Request targeting an individual UE address. This may correspond to an AF request to influence traffic routing that targets an individual UE address.

According to local deployment, the AF may send the AF request to PCF directly or via NEF. When NEF receives an AF request from AF, the NEF ensures the necessary authorization control and, as described in clause 4.3.6.1, mapping from the information provided by the AF into information needed by the 5GC.
2. [Conditional] AF/NEF consumes Nbsf_Management_Discovery service operation (providing at least the UE address) to find out the address of the relevant PCF if the PCF address is not available on the NEF based on local configuration.

NOTE: The AF/NEF finds the BSF based on local configuration or using the NRF.

3. BSF invokes Nbsf_Management_Discovery response with the address of PCF to NEF.

4. NEF transfers the Npcf_PolicyAuthorization service to the PCF.

4.3.7 CN-initiated selective deactivation of UP connection of an existing PDU Session

The following procedure is used to deactivate UP connection (i.e. data radio bearer and N3 tunnel) for an established PDU Session of a UE in CM-CONNECTED state.

Figure 4.3.7-1: CN-initiated deactivation of UP connection for an established PDU Session

1. The SMF determines that the UP connection of the PDU Session can be deactivated in following cases:
 - During handover procedure, if all the QoS Flows of a PDU Session are rejected by the target NG-RAN (as described in clause 4.9.1), or if a PDU Session is failed to setup indicated by the AMF (see step 7 of clause 4.9.1.3.3). SMF proceeds with step 2 and step 3, the steps 5 to 9 are skipped;
 - The UPF detects that the PDU Session has no data transfer for a specified Inactivity period as described in clause 4.4.2.2;
- For a LADN PDU Session, the AMF notifies to the SMF that the UE moved out of the LADN service area; or
- The AMF notifies to the SMF that the UE moved out of the Allowed Area.

The SMF may decide to release the UPF of N3 terminating point. In that case the SMF proceeds with step 2 and step 3. Otherwise, if the SMF decides to keep the UPF of N3 terminating points, the SMF proceeds with step 4.

2. The SMF may initiate an N4 Session Release procedure to release the intermediate UPF of N3 terminating point. If there are multiple intermediate UPFs, this step can be performed for each UPFs to be released. The SMF needs to initiate N4 Session Modification procedure to the UPF (i.e. N9 terminating point or PDU Session Anchor) connecting to the released UPF in step 3.

3. If the intermediate UPF(s) of N3 terminating point is released in step 2, the SMF initiates an N4 Session Modification procedure towards the UPF (PDU Session Anchor or another intermediate UPF) connecting to the released UPF, indicating the need to remove AN Tunnel Info for N3 tunnel of the corresponding PDU Session. In this case, the UPF connecting to the released UPF will buffer the DL packets for this PDU Session. Otherwise, N4 Session Modification procedure occurs toward N3 terminating point.

4. If the UPF of N3 terminating point is not released in step 2, the SMF initiates an N4 Session Modification procedure indicating the need to remove AN Tunnel Info for N3 tunnel of the corresponding PDU Session. When the PDU Session corresponds to a LADN, the SMF may notify the UPF to discard downlink data for the PDU Sessions and/or to not provide further Data Notification messages.

5. The SMF invokes the Namf_Communication_N1N2MessageTransfer service operation (PDU Session ID, N2 SM Information (N2 Resource Release Request (PDU Session ID))) to release the NG-RAN resources associated with the PDU Session.

6. The AMF sends the N2 PDU Session Resource Release Command including N2 SM information (N2 Resource Release Request (PDU Session ID)) received from the SMF via N2 to the NG-RAN.

7. The NG-RAN may issue NG-RAN specific signalling exchange (e.g. RRC Connection Reconfiguration) with the UE to release the NG-RAN resources related to the PDU Session received from the AMF in step 5.

8. The NG-RAN acknowledges the N2 PDU Session Resource Release Command to the AMF including N2 SM Resource Release Ack (User Location Information).

9. The AMF invokes the Nsmf_PDUSession_UpdateSMContext service operation to acknowledge the Namf service received in step 5.

4.4 SMF and UPF interactions

4.4.1 N4 session management procedures

4.4.1.1 General

N4 session management procedures are used to control the functionality of the UPF. The SMF can create, update and remove the N4 session context in the UPF, which is described in clause 5.8.2 of TS 23.501 [2].

The following N4 session management procedures exist: N4 Session Establishment procedure, N4 session Modification procedure and N4 session release procedure. All of them are initiated by the SMF.

4.4.1.2 N4 Session Establishment procedure

The N4 Session Establishment procedure is used to create the initial N4 session context for a PDU Session at the UPF. The SMF assigns a new N4 Session ID and provides it to the UPF. The N4 Session ID is stored by both entities and used to identify the N4 session context during their interaction. The SMF also stores the relation between the N4 Session ID and PDU Session for a UE.
1. SMF receives the trigger to establish a new PDU Session or change the UPF for an established PDU Session.

2. The SMF sends an N4 session establishment request message to the UPF that contains the structured control information which defines how the UPF needs to behave.

3. The UPF responds with an N4 session establishment response message containing any information that the UPF has to provide to the SMF in response to the control information received.

4. The SMF interacts with the network function which triggered this procedure (e.g. AMF or PCF).

4.4.1.3 N4 Session Modification procedure

The N4 Session Modification procedure is used to update the N4 session context of an existing PDU Session at the UPF, which is executed between SMF and UPF whenever PDU Session related parameters have to be modified.

1. SMF receives the trigger to modify the existing PDU Session.

2. The SMF sends an N4 session modification request message to the UPF that contains the update for the structured control information which defines how the UPF needs to behave.

3. The UPF identifies the N4 session context to be modified by the N4 Session ID. Then, the UPF updates the parameters of this N4 session context according to the list of parameters sent by the SMF. The UPF responds with an N4 session modification response message containing any information that the UPF has to provide to the SMF in response to the control information received.

4. The SMF interacts with the network entity which triggered this procedure (e.g. AMF or PCF).

4.4.1.4 N4 Session Release procedure

The N4 session release procedure is used to remove the N4 session context of an existing PDU Session at the UPF.
1. SMF receives the trigger to remove the N4 session context for the PDU Session.
2. The SMF sends an N4 session release request message to the UPF.
3. The UPF identifies the N4 session context to be removed by the N4 Session ID and removes the whole session context. The UPF responds with an N4 session release response message containing any information that the UPF has to provide to the SMF.
4. The SMF interacts with the network entity which triggered this procedure (e.g. AMF or PCF).

4.4.2 N4 Reporting Procedures

4.4.2.1 General

The N4 reporting procedure is used by the UPF to report events to the SMF.

4.4.2.2 N4 Session Level Reporting Procedure

This procedure is used by the UPF to report events related to an N4 session for an individual PDU Session. The triggers for event reporting were configured on the UPF during N4 Session Establishment/Modification procedures by the SMF.

1. The UPF detects that an event has to be reported. The reporting triggers include the following cases:

 (1) Usage report.

 Usage information shall be collected in the UPF and reported to the SMF as defined in clause 5.8 and clause 5.12 of TS 23.501 [2].

 (2) Start of traffic detection.
When traffic detection is requested by SMF and the start of traffic is detected for a Packet Detection Rule (PDR) as described in clause 5.8 of TS 23.501 [2], the UPF shall report the start of traffic detection to the SMF and indicate the corresponding PDR rule ID.

(3) Stop of traffic detection.

When traffic detection is requested by SMF and the end of traffic is detected for a PDR as described in clause 5.8 of TS 23.501 [2], the UPF shall report the stop of traffic detection to the SMF and indicate the corresponding PDR rule ID.

(4) Detection of 1st downlink data for UE in CM-IDLE state.

When UPF receives the downlink packet but no N3/N9 tunnel for downlink data transmission exists and the buffering is performed by the UPF, it shall report the detection of 1st downlink data to SMF for the purpose of downlink data notification. The UPF shall also report the DSCP of the packet if the PDU Session type is IP (to support the Paging Policy Differentiation feature described in clause 5.4.3 of TS 23.501 [2]).

(5) Detection of PDU Session Inactivity for a specified period.

When an Inactivity Timer for a PDU Session is provided by SMF during N4 Session Establishment/Modification procedure, and the UPF detects the PDU Session has no data transfer for a period specified by the Inactivity Timer, it shall report PDU Session Inactivity to the SMF.

2. The UPF sends an N4 report message (N4 Session ID, list of [Reporting trigger, Measurement information]) to the SMF.

The Reporting trigger parameter contains the name of the event which triggered the report and the Measurement information parameter contains the actual information that the SMF requested to be informed about.

3. The SMF identifies the N4 session context based on the received N4 Session ID and applies the reported information for the corresponding PDU Session. The SMF responds with an N4 report ACK message.

4.4.3 N4 Node Level Procedures

4.4.3.1 N4 Association Setup Procedure

The N4 Association Setup procedure is used to setup an N4 association between the SMF and the UPF, to enable the SMF to use the resources of the UPF subsequently to establish N4 Sessions. The SMF and UPF may exchange the supported functionalities on each side during this procedures.

The setup of an N4 association is initiated by the SMF.

The SMF initiates the N4 Association Setup procedure to request to setup an N4 association towards a UPF prior to establishing a first N4 session on this UPF.

When receiving an N4 Association Setup Request, the UPF shall send an N4 Association Setup Response.

![Figure 4.4.3.1-1: N4 association setup procedure](image)

4.4.3.2 N4 Association Update Procedure

The N4 Association Update procedure shall be used to modify an existing N4 association between the SMF and the UPF. It may be initiated by the UPF or by the SMF to update the supported features or available resources of the UP function.
4.4.3.3 N4 Association Release Procedure

The N4 Association Release procedure shall be used to terminate the N4 association between the SMF and the UPF due to e.g. OAM reasons. The N4 Association Release Request may be initiated by the SMF or UPF.

4.4.3.4 N4 Report Procedure

The N4 Node Report procedure shall be used by the UPF to report information to the SMF which is not related to a specific N4 session, e.g. to report a user plane path failure affecting all the N4 sessions towards a remote GTP-U peer.
Figure 4.4.3.4-1: N4 report procedure

The UPF detects that an event has to be reported and starts the procedure by sending an N4 Report message (UPF ID, list of [event, status]) to the SMF. The SMF responds with an N4 report ACK message (SMF ID). The event parameter contains the name of the event and UPF ID. The status parameter contains the actual information the control plane function is interested in.

4.4.3.5 N4 PFD management Procedure

This N4 procedure is used by the SMF to provision or remove all PFD(s) belonging to an Application ID in the UPF. PFD sets belonging to different Application IDs can be managed with the same PFD management request message.

The N4 PFD management procedure is a node level procedure, i.e. independent of any PDU Session.

1. Trigger to provision or remove the set of PFDs belonging to an Application ID

When the caching timer expires and there's no active PCC rule that refers to the corresponding application identifier, the SMF informs the UPF to remove the PFD(s) identified by the application identifier.

When a PCC rule is provided for an Application ID corresponding to the PFD(s) that are not already provided to the UPF, the SMF shall provide the PFD(s) to the UPF (if there are no PFD(s) cached, the SMF retrieves them from the UDR).

When any update of the PFD(s) is received from UDR, and there are still active PCC rules in UPF for the Application ID.

2. PFD management request

2. The SMF sends a PFD management request to the UPF to provision/remove the PFD(s) corresponding to the Application ID(s).

3. PFD management response

3. The UPF updates the PFD(s) according to the request and acknowledges by responding with a PFD management response message.

4.4.4 SMF Pause of Charging procedure

The SMF Pause of Charging procedure aims for the SMF charging and usage monitoring data to more accurately reflect the downlink traffic actually sent to the AN.
The following are example triggers for the SMF to enable the pause of charging:

- Operator specified criteria/threshold (e.g. number/fraction of packets/bytes dropped at UPF in downlink since last time the N3 tunnel towards the AN was released). The SMF requests the UPF to notify the SMF whenever the criteria/threshold is met.
- Indication of "Radio Link Failure" (see clause 4.2.6).

Based on operator policies, if the trigger for the SMF to enable the pause of charging is met, the SMF shall pause the charging. When the SMF pauses charging the following applies:

- Towards the UPF(s) where the Usage Reporting is configured, the SMF shall modify the Usage Reporting Rules for the PDU Session so that the usage collection for charging is stopped.
- The SMF may request the UPF to limit the rate of downlink traffic sent to the downstream UPF or the AN.

NOTE 1: A consequence of using this procedure is that SMF charging data does not correspond to the volume that traversed the UPF, and it is therefore not possible to count the downlink packets dropped between the PDU Session Anchor (PSA) UPF and the downstream UPF.

NOTE 2: In this release of the specification, pause of charging procedure does not address the issue of packets dropped by the NG-RAN.

In home routed roaming scenarios, based on operator's policy, the H-SMF may indicate to the V-SMF if the feature is to be enabled on a per PDU Session basis. This is indicated to the V-SMF by a "PDU Session Charging Pause Enabled" Indication in the Nsmf_PDUSession_Create Response during the PDU Session Establishment procedure. This is an indication to the V-SMF that when the criteria for pause of SMF charging are met at the VPLMN (as described further down in this clause) charging at the H-SMF can be paused.

The H-SMF shall stop any charging and usage monitoring actions for the PDU Session upon receiving a "Start Pause of Charging" Indication in a Nsmf_PDUSession_Update request from the V-SMF. When the H-SMF receives a Nsmf_PDUSession_Update request for a PDU Session with a "Stop Pause of Charging" Indication, then the H-SMF shall resume charging for the PDU Session.

Regardless of operator policy/configuration, the downlink user plane packets received at the (V-)UPF shall trigger Data Notifications as described in clause 4.2.3.4.

When the (V-)SMF receives a Nsmf_PDUSession_UpdateSMContext request or a Namf_EventExposure_Notify about UE reachability, the (V-)SMF shall consider the PDU Session charging as being unpaused if it had been paused previously.

![Figure 4.4.4-1: SMF Pause of charging procedure](image-url)

1. The UPF receives downlink data packets for a PDU Session that does not have an N3 tunnel and the UPF sends data notification to the SMF. The packets are buffered or discarded in the UPF based on operator policy.
2. Based on operator policy/configuration the SMF triggers the procedure to pause PDU Session charging. Triggering criteria are based on SMF operator policy/configuration.

3. SMF sends a N4 Session Modify Request message to the UPF where the Usage Reporting is configured, modifying the Usage Reporting Rules for the PDU Session so that the usage collection for charging is stopped. In home routed roaming scenarios, the V-SMF sends a Nsmf_PDUSession_Update request to the H-SMF with a "Start Pause of Charging" Indication. The H-SMF then requests the H-UPF to stop usage collection as mentioned before.

4. UPF confirms with a N4 Session Modify Response message.

4.5 User Profile management procedures

4.5.1 Subscriber Data Update Notification to AMF

Whenever the user profile is changed for a user in the UDM/UDR, and the changes affect the user profile in the AMF, the UDM shall notify these changes to the affected AMF by the means of invoking Nudm_SDM_UpdateNotification service operation. Then the AMF adds or modifies the user profile.

The Nudm_SDM_UpdateNotification service operation specified in clause 5.2.3.3 is used by the UDM to update subscriber data stored in the AMF.

The AMF takes appropriate action according to the changed subscriber data as follows, e.g.:

- initiating an AMF initiated Deregistration procedure if the updated subscription data indicates the UE is not allowed to roam in this network; and
- updating UE context stored at AN to modify the subscribed UE-AMBR.
- initiating UE Configuration Update procedure as defined in clause 4.2.4.2.

UDM can also use the Nudm_SDM_UpdateNotification service operation to update the Steering of Roaming information stored in the UE via the AMF (i.e. a list of preferred PLMN/access technology combinations or HPLMN indication that 'no change of the "Operator Controlled PLMN Selector with Access Technology" list stored in the UE is needed). UDM can include an indication for the UE to send an acknowledgement of the reception of this information. The AMF provides the acknowledgement sent from the UE to UDM using the Nudm_SDM_Info service operation. For more details regarding the handling of Steering of Roaming information refer to TS 23.122 [22].

4.5.2 Session Management Subscriber Data Update Notification to SMF

Whenever the session management subscriber data is changed for a user in the UDM/UDR, and if the SMF subscribed for the update of the session management subscriber data to be notified, the UDM shall notify these changes to the affected SMF by the means of invoking Nudm_SDM_Notification service operation. Then the SMF modifies the session management subscriber data in the UE SM context.

The Nudm_SDM_Notification service operation specified in clause 5.2.3.3 is used by the UDM to update session management subscriber data stored in the SMF.

The SMF initiates appropriate action according to the changed subscriber data, e.g. including:

- initiating an SMF initiated PDU Session Modification procedure; or
- initiating an SMF initiated PDU Session Release procedure.

4.5.3 Purge of subscriber data in AMF

An AMF may, as an implementation option, purge the subscriber data and MM context of a UE after the implicit or explicit Deregistration of the UE. In this case, the AMF shall unsubscribe and deregister from the UDM, where UDM may further do corresponding operation from UDR, by the means of following "Purge of subscriber data in AMF" procedure.
Figure 4.5.3-1: Purge of Subscriber Data in AMF

1. After purging the subscriber data and MM context of a deregistered UE, the AMF unsubscribes to changes to subscription data using Nudm_SDM_Unsubscribe request operation (see clause 5.2.3.3.4), for the data the AMF has previously subscribed (see clause 4.2.2.2.2, step 14b). The UDM unsubscribes the AMF from the data indicated.

The UDM may unsubscribe to changes to subscription data from UDR by using Nudr_DM_Unsubscribe for the data the UDM has previously subscribed (see clause 4.2.2.2.2, step 14b).

2. The UDM sends a response back using Nudm_SDM_Unsubscribe response operation.

3. The AMF deregisters from UDM using Nudm_UECM_Deregistration request (SUPI, NF ID, Access Type) operation (see clause 5.2.3.2.3). The UDM may update UE context in UDR by Nudr_DM_Update (SUPI, Subscription Data, UE context in AMF data).

4. The UDM sets the UE Purged flag associated with the Access Type and acknowledges with a Nudm_UECM_Deregistration response operation.

4.6 Security procedures

Security procedures for the 5GS are specified in 33.501 [15].

4.7 ME Identity check procedure

The AMF initiates Mobile Equipment Identity Check procedure by invoking the N5g-eir_MEIdentityCheck_Get service operation as defined in clause 5.2.4.2.2.

4.8 RAN-CN interactions

4.8.1 Connection Inactive procedure

This procedure may be initiated by the serving NG-RAN node when the UE is in CM-CONNECTED with RRC Connected state and has received the “RRC Inactive Assistance Information” from the AMF. NG-RAN initiates the transition to RRC Inactive state as defined in TS 38.300 [9].

4.8.2 Connection Resume procedure

The Connection Resume procedure is used by the UE to perform RRC Inactive to RRC Connected state transition. Triggers for the UE to initiate this procedure are defined in TS 23.501 [2], clause 5.3.3.2.5.
1. **UE to NG-RAN: RRC message (Resume ID).**

 The UE initiates the transition from RRC Inactive state to RRC Connected state, see TS 38.300 [9]. The UE provides its Resume ID needed by the NG-RAN to access the UE's stored Context.

2. **[Conditional] NG-RAN performs UE Context Retrieval.**

 UE Context Retrieval is performed when the UE Context associated with the UE attempting to resume its connection is not locally available at the accessed NG-RAN. The UE Context Retrieval procedure via radio access network is specified in TS 38.300 [9].

3. **[Conditional] N2 Path switch procedure.**

 If the target NG-RAN node is different from the old NG-RAN node, the serving NG-RAN node initiates N2 Path Switch procedure, i.e. steps 1 to 8 of clause 4.9.1.2.2 and including Xn data forwarding.

 The NG-RAN sends UE Notification message to report that UE is in RRC Connected if an AMF requested N2 Notification (see clause 4.8.3) to NG-RAN.

4. **NG-RAN to UE: RRC message (Resume ID).**

 The NG-RAN confirms to the UE that the UE has entered RRC Connected state.

4.8.3 N2 Notification procedure

This procedure is used by an AMF to request the NG-RAN to report RRC state information, when the target UE is in CM-CONNECTED state. When AMF has requested reporting of subsequent state changes, the need for the NG-RAN to continue reporting ceases when the UE transitions to CM-IDLE or the AMF sends a cancel indication. This procedure may be used for services that require RRC state information (e.g. 5GC MT control and paging assistance, O&M and collection of statistics), or for subscription to the service by other NFs.

Reporting of RRC state transitions can be requested per UE by AMF. Continuous reporting of all RRC state transitions can be enabled by operator local configuration.
Figure 4.8.3-1: RRC state transition notification

1. The AMF sends a UE State Transition Notification Request message to the NG-RAN. The UE State Transition Notification Request message shall identify the UE for which notification(s) are requested, and may contain a reporting type. The reporting type either indicates subsequent state transitions shall be notified at every RRC state transition (i.e. from RRC Connected state to RRC Inactive state, or from RRC Inactive to RRC Connected state), or it indicates Single RRC-Connected state notification.

Editor's note: This request can either be sent as an indication when the UE context is established towards RAN, or after the UE context has been established. Details concerning N2 messages and the information contained in these messages will be aligned with RAN WG3.

2. The NG-RAN sends the UE Notification message to report the current RRC state for the UE (i.e. RRC Inactive state or RRC Connected state). The current UE location information (i.e. TAI + Cell Identity) is always included when RRC state information is reported.

2b. When the AMF has requested reporting about subsequent state transitions, the NG-RAN sends subsequent UE Notification messages to the AMF at every RRC state transition until the UE transitions to CM-IDLE or NG-RAN receives a Cancel UE State Notification message from the AMF.

When the AMF has requested reporting for Single RRC-Connected state notification and UE is in RRC-Connected state, the NG-RAN sends one UE Notification message but no subsequent messages. If UE is in RRC-Inactive state, the NG-RAN sends one UE Notification message plus one subsequent UE Notification message when RRC state transits to RRC-Connected.

3. The AMF can send a Cancel UE State Notification message to inform the NG-RAN that it should terminate notifications for a given UE. This message should only be used when notification(s) about subsequent state transitions was requested at every RRC state transition.

Editor's note: Details concerning RRC and N2 messages and the information contained in these messages will be aligned with RAN WG2 and RAN WG3.

4.9 Handover procedures

4.9.1 Handover procedures in 3GPP access

4.9.1.1 General

These procedures are used to hand over a UE from a source NG-RAN node to a target NG-RAN node using the Xn or N2 reference points. This can be triggered, for example, due to new radio conditions, load balancing or due to specific service e.g. in the presence of QoS Flow for voice, the source NG-RAN node being NR may trigger handover to E-UTRA connected to 5GC.

The RRC Inactive Assistance Information might be included in N2 Path Switch Request Ack message for Xn based handover or Handover Request message for N2 based handover (see TS 23.501 [2] clause 5.3.3.2.5).
4.9.1.2 Xn based inter NG-RAN handover

4.9.1.2.1 General

Clause 4.9.1.2 includes details regarding the Xn based inter NG-RAN handover with and without UPF re-allocation.

The handover preparation and execution phases are performed as specified in TS 38.300 [9], in case of handover to a shared network, source NG-RAN determines a PLMN to be used in the target network as specified by TS 23.501 [2]. If the serving PLMN changes during Xn-based handover, the source NG-RAN node shall indicate to the target NG-RAN node (in the Handover Restriction List) the selected PLMN ID to be used in the target network.

If the AMF generates the N2 downlink signalling during the ongoing handover and receives a rejection to a N2 interface procedure (e.g. Location reporting control; NAS message transfer; QoS Flow establishment/modification/release; etc.) from the NG-RAN with an indication that a Xn based handover procedure is in progress, the AMF shall reattempt the same N2 interface procedure either when the handover is complete or the handover is deemed to have failed. The failure is known by expiry of the timer guarding the N2 interface procedure.

Upon reception for an SMF initiated N2 request(s) with an indication that the request has been temporarily rejected due to handover procedure in progress, the SMF start a locally configured guard timer. Any NF (e.g. the SMF) should hold any signalling messages targeted towards AMF for a given UE during the handover preparation phase until handover execution is completed or handover has failed/cancelled. The NF (e.g. the SMF) shall re-attempt, up to a pre-configured number of times, when either it detects that the handover is completed or has failed using message reception or at expiry of the guard timer.

4.9.1.2.2 Xn based inter NG-RAN handover without User Plane function re-allocation

This procedure is used to hand over a UE from a source NG-RAN to target NG-RAN using Xn when the AMF is unchanged and the SMF decides to keep the existing UPF. The UPF referred in this clause 4.9.1.2.2 is the UPF which terminates N3 interface in the 5GC. The presence of IP connectivity between the Source UPF and Target UPF is assumed.

The call flow is shown in figure 4.9.1.2.2-1.
1. Target NG-RAN to AMF: N2 Path Switch Request (List of PDU Sessions To Be Switched with N2 SM Information, List of PDU Sessions Rejected with a rejection Cause per PDU Session, UE Location Information)

The Target NG-RAN sends an N2 Path Switch Request message to an AMF to inform that the UE has moved to a new target cell and provides a List Of PDU Sessions To Be Switched. The selected PLMN ID is included in the message. The target NG-RAN shall include the PDU Session in the PDU Sessions Rejected list:

- If none of the QoS Flows of a PDU Session are accepted by the Target NG-RAN; or
- If the corresponding network slice is not supported in the Target NG-RAN; or

When the NG-RAN cannot set up user plane resources fulfilling the User Plane Security Enforcement with a value Required, the NG-RAN rejects the establishment of user plane resources for the PDU Session.

If the NG-RAN cannot set up user plane resources fulfilling the User Plane Security Enforcement with a value Preferred, the NG-RAN establishes the user plane resources for the PDU session and shall include the PDU Session in the PDU Sessions Modified list.

PDU Sessions Rejected contains an indication of whether the PDU session was rejected because User Plane Security Enforcement is not supported in the Target NG-RAN. Depending on the type of target cell, the Target NG-RAN includes appropriate information in this message.

For the PDU Sessions to be switched to the Target NG-RAN, the N2 Path Switch Request message shall include the list of accepted QoS Flows.

2. AMF to SMF: Nsmf_PDUSession_UpdateSMContext Request (PDU Session To Be Switched with N2 SM Information, PDU Sessions Rejected with a rejection Cause, UE Location Information).

The AMF sends N2 SM information by invoking the Nsmf_PDUSession_UpdateSMContext request service operation for each PDU Session in the lists of PDU Sessions received in the N2 Path Switch Request.
The Nsmf_PDUSession_UpdateSMContext Request contains either an indication that the PDU Session Is To Be Switched (together with information on the N3 addressing to use and on the transferred QoS flows) or an indication that the PDU Session is to be Rejected (together with a rejection cause).

For a PDU Sessions to be switched to the Target NG-RAN, upon receipt of the Nsmf_PDUSession_UpdateSMContext request, the SMF determines whether the existing UPF can continue to serve the UE. If the existing UPF cannot continue to serve the UE, steps 3-11 of clause 4.9.1.2.3 or 4.9.1.2.4 are performed depending on whether the existing UPF is a PDU Session Anchor. Otherwise, the following steps 3 to 6 are performed if the existing UPFs can continue to serve the PDU Session.

If a PDU Session is indicated as a rejected PDU Session by the Target NG-RAN without an indication that the PDU session was rejected because User Plane Security Enforcement is not supported in the Target NG-RAN, the SMF deactivates the UP connections of this PDU Session.

If a PDU Session is indicated as a rejected PDU Session by the Target NG-RAN with an indication that the PDU session was rejected because User Plane Security Enforcement is not supported in the Target NG-RAN and the User Plane Enforcement Policy indicates "Required" as described in clause 5.10.3 of TS 23.501 [2], the SMF triggers the release of this PDU Session.

If only partial QoS Flows of a PDU Session are accepted by the Target NG-RAN, the SMF may initiate the PDU Session Modification procedure to remove the non-accepted QoS Flows from the PDU Session(s) after the handover procedure.

For the PDU Session(s) that do not have active UP connections before handover procedure, the SMF(s) keep the inactive status after handover procedure.

If the UE moves into a non-Allowed Area, the AMF also notifies each SMF corresponding to the list of PDU Sessions received from the N2 Path Switch Request that the UE is only reachable for regulatory prioritized services.

3. SMF to UPF: N4 Session Modification Request (AN Tunnel Info, CN Tunnel Info)

For PDUs that are modified by the Target NG-RAN, the SMF sends an N4 Session Modification Request message to the UPF. The SMF may notify the UPF that originated the Data Notification to discard downlink data for the PDUs and/or to not provide further Data Notification messages. If the CN Tunnel Info is derived by the SMF, the SMF provides the CN Tunnel Info to the UPF.

4. UPF to SMF: N4 Session Modification Response (CN Tunnel Info)

For the PDUs that are switched, the UPF returns an N4 Session Modification Response message to the SMF after requested PDUs are switched. Tunnel identifiers for UL traffic are included only for PDUs whose user plane resources are not being released and only if the UPF allocates CN Tunnel Info. For the PDUs that are deactivated, the UPF returns an N4 Session Modification Response message to the SMF after the N3 (R)AN tunnel information is released.

5. In order to assist the reordering function in the Target NG-RAN, the UPF (as specified in TS 23.501 [2], clause 5.8.2.9) sends one or more "end marker" packets for each N3 tunnel on the old path immediately after switching the path. The UPF starts sending downlink packets to the Target NG-RAN.

6. SMF to AMF: Nsmf_PDUSession_UpdateSMContext Response (CN Tunnel Info)

The SMF sends an Nsmf_PDUSession_UpdateSMContext response (CN Tunnel Info) to the AMF for PDUs which have been switched successfully. The SMF sends an Nsmf_PDUSession_UpdateSMContext response without including the CN Tunnel Info to the AMF for the PDUs for which user plane resources are deactivated or released, and then the SMF releases the PDU Session(s) which is to be released using a separate procedure as defined in clause 4.3.4.

NOTE: Step 6 can occur any time after receipt of N4 Session Modification Response at the SMF.

7. AMF to NG-RAN: N2 Path Switch Request Ack (N2 SM Information, Failed PDU Sessions)

Once the Nsmf_PDUSession_UpdateSMContext response is received from all the SMFs, the AMF aggregates received CN Tunnel Info and sends this aggregated information as a part of N2 SM Information along with the Failed PDU Sessions in N2 Path Switch Request Ack to the Target NG-RAN. If none of the requested PDU
Sessions have been switched successfully, the AMF shall send an N2 Path Switch Request Failure message to the Target NG-RAN.

8. By sending a Release Resources message to the Source NG-RAN, the Target NG-RAN confirms success of the handover. It then triggers the release of resources with the Source NG-RAN.

9. [Conditional] The UE may initiate Mobility Registration Update procedure if one of the triggers of registration procedure applies as described in clause 4.2.2.2.2. In this case, only steps 1, 2, 3, 17 and 21 in clause 4.2.2.2.2 are performed.

The SMF takes actions for the LADN PDU Session as defined in TS 23.501 [2], clause 5.6.5.

For the mobility related events as described in clause 4.15.4, the AMF invokes the Namf_EventExposure_Notify service operation.

4.9.1.2.3 Xn based inter NG-RAN handover with insertion of intermediate UPF

This procedure is used to hand over a UE from a Source NG-RAN to a Target NG-RAN using Xn when the AMF is unchanged and the SMF decides that insertion of a new additional intermediate UPF is needed. In case of using UL CL, the I-UPF can be regarded as UL CL and additional PSA providing local access to a DN. In case of using Branching Point, the I-UPF can be regarded as BP.

It is assumed that the PDU Session for the UE comprises of only one UPF that acts as a PDU Session Anchor at the time of this Handover procedure for non-roaming and local breakout roaming scenario. In case of home routed roaming scenario, the PDU Session of the UE comprises of at least one UPF in the VPLMN and one UPF in the HPLMN at the time of this handover procedure. In this case, additional insertion of an N3 terminating intermediate UPF will not have impact on the connectivity between the UPF in VPLMN and UPF in HPLMN. The presence of IP connectivity between the UPF (PDU Session Anchor) and Source NG-RAN, and between the intermediate UPF (I-UPF) and Target NG-RAN, is assumed.

The call flow is shown in figure 4.9.1.2.3-1.
Figure 4.9.1.2.3-1 - Xn based inter NG-RAN handover with insertion of intermediate UPF

Steps 1-2 are the same as described in clause 4.9.1.2.2.

3. SMF to I-UPF: N4 Session Establishment Request (Target NG-RAN Tunnel Info, CN Tunnel Info of the PDU Session Anchor)

For PDU Sessions to be updated, if the UE has moved out of the service area of UPF connecting to the serving NG-RAN node, the SMF then selects a I-UPF based on UPF Selection Criteria according to clause 6.3.3 of TS 23.501 [2]. An N4 Session Establishment Request message is sent to the I-UPF. The CN Tunnel Info of the PDU Session Anchor is included in the N4 Session Establishment Request message. If the CN Tunnel Info of the I-UPF is allocated by the SMF, the SMF also provides the UL and DL CN Tunnel Info of I-UPF to the I-UPF.

4. I-UPF to SMF: N4 Session Establishment Response.

The I-UPF sends an N4 Session Establishment Response message to the SMF. If the CN Tunnel Info of the I-UPF is allocated by the UPF, the UL and DL CN Tunnel Info of I-UPF is sent to the SMF.

5. SMF to PDU Session Anchor: N4 Session Modification Request (DL CN Tunnel Info of the I-UPF).

The SMF sends N4 Session Modification message to the PDU Session Anchor.

6. PDU Session Anchor to SMF: N4 Session Modification Response.

The PDU Session Anchor responds with the N4 Session Modification Response message after requested PDU Sessions are switched. At this point, PDU Session Anchor starts sending downlink packets to the Target NG-RAN via I-UPF.
7. In order to assist the reordering function in the Target NG-RAN, the PDU Session Anchor sends one or more "end marker" packets for each N3 tunnel on the old path immediately after switching the path, the source NG-RAN shall forward the "end marker" packets to the target NG-RAN.

8. SMF to AMF: Nsmf_PDU Session_UpdateSMContext Response (UL CN Tunnel Info of the I-UPF).
 The SMF sends an Nsmf_PDU Session_UpdateSMContext response to the AMF.
 Steps 9-11 are same as steps 7-9 defined in clause 4.9.1.2.2.

The SMF takes actions for the LADN PDU Session as defined in TS 23.501 [2], clause 5.6.5.

4.9.1.2.4 Xn based inter NG-RAN handover with re-allocation of intermediate UPF

This procedure is used to hand over a UE from a Source NG-RAN to a Target NG-RAN using Xn when the AMF is unchanged and the SMF decides that the intermediate UPF (I-UPF) is to be changed. In case of using UL CL, the I-UPF can be regarded as UL CL and additional PSA provides local access to a DN, the simultaneous change of UL-CL and the additional PSA is described in clause 4.3.5.7. In case of using Branching Point, the I-UPF can be regarded as BP.

It is assumed that the PDU Session for the UE comprises of a UPF that acts as a PDU Session Anchor and an intermediate UPF at the time of this Handover procedure for non-roaming and local breakout roaming scenario. In case of home routed roaming scenario, the PDU Session of the UE comprises of at least one UPF in the VPLMN and UPF in the HPLMN which acts as a PDU Session Anchor at the time of this handover procedure. The Source UPF referred in this clause 4.9.1.2.4 is the UPF which terminates N3 interface in the 5GC and it serves as the PDU mobility anchor for the given PDU Session. The presence of IP connectivity between the Source UPF and Source NG-RAN, and between the Target UPF and Target NG-RAN, is assumed.

The call flow is shown in figure 4.9.1.2.4-1.

Figure 4.9.1.2.4-1: Xn based inter NG-RAN handover with intermediate UPF re-allocation

Steps 1-4 are same as steps 1-4 described in clause 4.9.1.2.3 except that the I-UPF in clause 4.9.1.2.3 is replaced by Target UPF.

5. [Conditional] The SMF sends N4 Session Modification Request message to the PDU Session Anchor. The DL CN Tunnel Info of the Target UPF is included in this message. In the case of home routed roaming, if the N9 terminating V-UPF is changed, the V-SMF invokes an Nsmf_PDU Session_Update Request service operation toward the H-SMF.

6. [Conditional] The SMF associated with the PDU Session Anchor responds with the N4 Session Modification Response message. In case of home routed roaming, the H-SMF responds with the Nsmf_PDU Session_Update Response service operation toward the V-SMF once H-UPF is updated with the DL Tunnel Info of the T-UPF. At this point, PDU Session Anchor starts sending downlink packets to the Target NG-RAN via Target UPF.

Steps 7-11 are same as steps 7-11 described in clause 4.9.1.2.3 except that the I-UPF in clause 4.9.1.2.3 is replaced by Target UPF.
If the Source UPF acts as a UL CL or BP, the SMF indicates to only one of the PDU Session Anchors to send the "end marker" packets. To ensure the "end marker" is the last user plane packet on the old path, the SMF should modify the path on other PDU Session Anchors before it indicates the PDU Session Anchor to send the "end marker" packets.

11. The timer is started in step 4 if the source UPF is not the PSA UPF. When this timer is expired, the SMF initiates Source UPF Release procedure by sending an N4 Session Release Request (Release Cause).

12. The Source UPF acknowledges with an N4 Session Release Response message to confirm the release of resources.

The SMF takes actions for the LADN PDU Session as defined in TS 23.501 [2], clause 5.6.5.

4.9.1.3 Inter NG-RAN node N2 based handover

4.9.1.3.1 General

Clause 4.9.1.3 includes details regarding the inter NG-RAN node N2 based handover without Xn interface.

The source NG-RAN decides to initiate an N2-based handover to the target NG-RAN. This can be triggered, for example, due to new radio conditions or load balancing, if there is no Xn connectivity to the target NG-RAN, an error indication from the target NG-RAN after an unsuccessful Xn-based handover (i.e. no IP connectivity between T-RAN and S-UPF), or based on dynamic information learnt by the S-RAN.

The availability of a direct forwarding path is determined in the source NG-RAN and indicated to the SMFs. If IP connectivity is available between the source and target NG-RAN and security association(s) is in place between them, a direct forwarding path is available.

If a direct forwarding path is not available, indirect forwarding may be used. The SMFs use the indication from the source NG-RAN to determine whether to apply indirect forwarding.

In the case of handover to a shared network, the source NG-RAN determines a PLMN to be used in the target network as specified by TS 23.501 [2]. The source NG-RAN shall indicate the selected PLMN ID to be used in the target network to the AMF as part of the Tracking Area sent in the HO Required message.

If the AMF generates the N2 downlink signalling during the ongoing handover and receives a rejection to a N2 interface procedure (e.g. NAS message transfer; Location reporting control; QoS Flow establishment/modification/release; etc.) from the NG-RAN with an indication that an Inter NG-RAN node handover procedure is in progress, the AMF shall reattempt the same N2 interface procedure either when the handover is complete or the handover is deemed to have failed if the AMF is still the serving AMF. If the Inter NG-RAN node handover changes the serving AMF, the source AMF shall terminate any other ongoing N2 interface procedures except the handover procedure.

In order to minimize the number of procedures rejected by NG-RAN, the AMF should pause non-handover related N2 interface procedures (e.g. downlink NAS message transfer, Location report control, etc.) while a handover is ongoing (i.e. from the time that a Handover Required has been received until either the Handover procedure has succeeded (Handover Notify) or failed (Handover Failure)) and continue them once the Handover procedure has completed if the AMF is still the serving AMF.

If during the handover procedure the AMF detects that the AMF needs be changed, the AMF shall reject any SMF initiated N2 request received since handover procedure started and shall include an indication that the request has been temporarily rejected due to handover procedure in progress.

Upon reception for an SMF initiated N2 request(s) with an indication either from the NG-RAN (via N2 SM Info) or AMF that the request has been temporarily rejected due to handover procedure in progress, the SMF start a locally configured guard timer. The SMF should hold any signalling messages targeted towards AMF for a given UE during the handover preparation phase until handover execution is completed or handover has failed/cancelled. The SMF shall re-attempt, up to a pre-configured number of times, when either it detects that the handover is completed or has failed using message reception or at expiry of the guard timer.

In the case of home routed roaming scenario, the SMF in the Inter NG-RAN node N2 based handover procedure (Figure 4.9.1.3.2-1 and Figure 4.9.1.3.3-1) interacting with the S-UPF, T-UPF, S-AMF and T-AMF is the V-SMF; and the SMF (Figure 4.9.1.3.3-1) interacting with the UPF (PSA) is the H-SMF.
4.9.1.3.2 Preparation phase

1. **Handover Required** (Target ID, Source to Target transparent container, SM N2 info list, PDU Session IDs, intra system handover indication).

 Target ID includes the selected PLMN ID.

 Source to Target transparent container includes NG-RAN information created by S-RAN to be used by T-RAN, and is transparent to 5GC. It also contains for each PDU session the corresponding User Plane Security Enforcement information, QoS flows /DRBs information subject to data forwarding.

 All PDU Sessions handled by S-RAN (i.e. all existing PDU Sessions with active UP connections) shall be included in the Handover Required message, indicating which of those PDU Session(s) are requested by S-RAN to handover. The SM N2 info includes Direct Forwarding Path Availability if direct data forwarding is not available.

 Direct Forwarding Path Availability indicates whether direct forwarding is available from the S-RAN to the T-RAN. This indication from S-RAN can be based on e.g. the presence of IP connectivity and security association(s) between the S-RAN and the T-RAN.

2. **T-AMF Selection**: When the S-AMF can't serve the UE anymore, the S-AMF selects the T-AMF as described in clause 6.3.5 on "AMF Selection Function" in TS 23.501 [2].

3. **[Conditional] S-AMF to T-AMF**: Namf_Communication_CreateUEContext Request (N2 Information (Target ID, Source to Target transparent container, SM N2 information list, PDU Session IDs, Service area restriction), UE context information (SUPI, Allowed NSSAI for each Access Type if available, the list of PDU Session IDs along with the corresponding SMF information and the corresponding S-NSSAI(s), PCF ID(s) and DNN)).
The S-AMF initiates Handover resource allocation procedure by invoking the Namf_Communication_CreateUEContext service operation towards the T-AMF.

When the S-AMF can still serve the UE, this step and step 12 are not needed.

If Service area restrictions are available in the S-AMF, they may be forwarded to the T-AMF as described in clause 5.3.4.1.2 in TS 23.501 [2].

If both Home and Visited PCF ID(s) are provided by the S-AMF, the T-AMF contacts the (V-) PCF identified by the (V-)PCF ID. If the (V-)PCF identified by the (V-)PCF ID cannot be used (e.g. no response from the (V-)PCF) or there are no PCF ID(s) received from the S-AMF, the T-AMF may select the PCF(s) as described in TS 23.501 [2], clause 6.3.7.1 and according to the V-NRF to H-NRF interaction described in clause 4.3.2.2.3.3.

For each PDU Session indicated by S-RAN, the AMF invokes the Nsmf_PDUSession_UpdateSMContext Request to the associated SMF. However, if the S-NSSAI associated with PDU Session is not available in the T-AMF, the T-AMF does not invoke Nsmf_PDUSession_UpdateSMContext for this PDU Session.

PDU Session ID indicates a PDU Session candidate for N2 Handover. Target ID indicates the UE location information. SM N2 Info includes the Direct Forwarding Path Availability.

If the (T-)AMF detects that the UE moves into a non-allowed area based on Service area restrictions, the (T-)AMF notifies each SMF corresponding to the list of PDU Sessions received from the Handover Required message that the UE is only reachable for regulatory prioritized services.

5. [Conditional] Based on the Target ID, SMF checks if N2 Handover for the indicated PDU Session can be accepted. The SMF checks also the UPF Selection Criteria according to clause 6.3.3 of TS 23.501 [2]. If UE has moved out of the service area of the UPF connecting to NG-RAN, SMF selects a new intermediate UPF.

6a. [Conditional] SMF to T-UPF (intermediate): N4 Session Establishment Request.

If the SMF selects a new intermediate UPF, i.e. the target UPF (T-UPF), for the PDU Session and if CN Tunnel Info is allocated by the T-UPF, an N4 Session Establishment Request message is sent to the T-UPF, providing Packet detection, enforcement and reporting rules to be installed on the T-UPF. The PDU Session Anchor Tunnel Info for this PDU Session is also provided to the T-UPF.

6b. T-UPF (intermediate) to SMF: N4 Session Establishment Response.

The T-UPF sends an N4 Session Establishment Response message to the SMF with DL CN Tunnel Info and UL CN Tunnel Info (i.e. N3 tunnel info). The SMF starts a timer to release the resource of S-UPF, which is to be used in step 13a of the Execution Phase.

7. SMF to T-AMF: Nsmf_PDUSession_UpdateSMContext Response (PDU Session ID, N2 SM Information, Reason for non-acceptance).

If N2 handover for the PDU Session is accepted, the SMF includes in the Nsmf_PDUSession_UpdateSMContext response the N2 SM Information containing the N3 UP address and the UL CN Tunnel ID of the UPF and the QoS parameters indicating that the N2 SM Information is for the Target NG-RAN. If the Direct Forwarding Path Availability indicates direct forwarding is not available and the SMF knows that there is no indirect data forwarding connectivity between source and target, the N2 SM Information also includes a Data forwarding not possible indication.

If N2 handover for the PDU Session is not accepted as described in step 4, the SMF does not include an N2 SM Information regarding the PDU Session to avoid establishment of radio resources at the target NG-RAN. Instead of that, the SMF provides a reason for non-acceptance. If the SMF is notified that the UE is only reachable for regulatory prioritized services, the SMF does not include any N2 SM info regarding the PDU Session for non-regulatory prioritized services to avoid establishment of radio resources at the target NG-RAN.

The SMF sends an Nsmf_PDUSession_UpdateSMContext response without including the CN Tunnel Info to the AMF for the PDU Session(s) which is to be released, and then release the PDU Session(s) in a separate procedure as defined in clause 4.3.4.
8. AMF supervises the Nsmf_PDUSession_UpdateSMContext Response messages from the involved SMFs. The lowest value of the Max delay indications for the PDU Sessions that are candidates for handover gives the maximum time AMF may wait for Nsmf_PDUSession_UpdateSMContext Response messages before continuing with the N2 Handover procedure. At expiry of the maximum wait time or when all Nsmf_PDUSession_UpdateSMContext Response messages are received, AMF continues with the N2 Handover procedure (Handover Request message in step 9).

NOTE: The delay value for each PDU Session is locally configured in the AMF and implementation specific.

9. T-AMF to T-RAN: Handover Request (Source to Target transparent container, N2 MM Information, N2 SM Information list, Handover Restriction List, Non-accepted PDU Session List).

T-AMF determines T-RAN based on Target ID. T-AMF may allocate a 5G-GUTI valid for the UE in the AMF and target TAI.

Source to Target transparent container is forwarded as received from S-RAN. N2 MM Information includes e.g. security information and Handover Restriction List if available in the T-AMF.

N2 SM Information list includes N2 SM Information received from SMFs for the T-RAN in the Nsmf_PDUSession_UpdateSMContext Response messages received within allowed max delay supervised by the T-AMF mentioned in step 8.

Handover Restriction List is sent if available in the Target AMF.

Non-accepted PDU Session List is generated by the AMF and includes following PDU Session(s) with proper cause value:
- Non-accepted PDU Session(s) by the SMF(s);
- Non-accepted PDU Session(s) by the AMF due to no response from the SMF within maximum wait time; and
- Non-accepted PDU Session(s) by the AMF due to non-available S-NSSAI in the T-AMF, which is decided at step 4.

10. T-RAN to T-AMF: Handover Request Acknowledge (Target to Source transparent container, N2 SM response list, PDU Sessions failed to be setup list, T-RAN SM N3 forwarding Information list).

Target to Source transparent container includes a UE container with an access stratum part and a NAS part. The UE container is sent transparently via T-AMF, S-AMF and S-RAN to the UE.

T-RAN creates PDU Sessions failed to be setup list and reason for failure (e.g. SMF decision, SMF response too late, or T-RAN decision, S-NSSAI is not available, unable to fulfill User Plane Security Enforcement) based on Non-accepted PDU Session List and T-RAN determination. The information is provided to the S-RAN.

The N2 SM response list includes, per each received N2 SM Information, a PDU Session ID and an N2 SM response indicating the PDU Session ID and if T-RAN accepted the N2 Handover request for the PDU Session. This includes also a PDU Session Modified indication if the T-RAN could only established user plane resources for the PDU session that do not fulfill the User Plane Security Enforcement with a value Preferred. For each PDU Session accepted by the T-RAN for N2 Handover, the N2 SM response includes N3 UP address and Tunnel ID of T-RAN.

The T-RAN SM N3 forwarding info list includes, per each PDU Session accepted by the T-RAN and has at least one QoS Flow subject for data forwarding, N3 UP address and Tunnel ID of T-RAN for receiving forwarded data if necessary. The T-RAN provides data forwarding addresses for each data forwarding tunnel which it decided to setup.

11a. AMF to SMF: Nsmf_PDUSession_UpdateSMContext Request (PDU Session ID, N2 SM response, T-RAN SM N3 forwarding Information list).

For each N2 SM response received from the T-RAN (included in N2 SM response list), AMF sends the received N2 SM response to the SMF indicated by the respective PDU Session ID.

If no new T-UPF is selected, SMF stores the N3 tunnel info of T-RAN from the N2 SM response if N2 handover is accepted by T-RAN.
The SMF/UPF allocates the N3 UP address and Tunnel IDs for indirect data forwarding corresponding to the data forwarding tunnel endpoints established by T-RAN.

11b. [Conditional] SMF to T-UPF: N4 Session Modification Request (T-RAN SM N3 forwarding Information list, indication to allocate DL forwarding tunnel(s) for indirect forwarding)

If the SMF selected a T-UPF in step 6a, the SMF updates the T-UPF by providing the T-RAN SM N3 forwarding information list by sending a N4 Session Modification Request to the T-UPF.

If indirect forwarding applies based on indication from the S-RAN and the UPF is re-allocated and if the SMF decides to setup the indirect forwarding tunnel on the same T-UPF, the SMF also requests in the N4 Session Modification Request message to the T-UPF, to allocate DL forwarding tunnel(s) for indirect forwarding.

Indirect forwarding may be performed via a UPF which is different from the T-UPF, in which case the SMF selects a T-UPF for indirect forwarding.

11c. [Conditional] T-UPF to SMF: N4 Session Modification Response (T-UPF SM N3 forwarding Information list).

The T-UPF allocates Tunnel Info and returns an N4 Session Modification Response message to the SMF.

The T-UPF SM N3 forwarding info list includes T-UPF N3 address, T-UPF N3 Tunnel identifiers for forwarding data

11d. [Conditional] SMF to S-UPF: N4 Session Modification Request (T-RAN SM N3 forwarding Information list or T-UPF SM N3 forwarding Information list, indication to allocate DL forwarding tunnel(s) for indirect forwarding).

If the UPF is re-allocated, this message includes the T-UPF SM N3 forwarding info list. If the UPF is not re-allocated, this message includes the T-RAN SM N3 forwarding info list.

If indirect forwarding applies based on indication from NG-RAN and UPF allocates tunnel identities, the SMF indicates in the N4 Session Modification Request message to the S-UPF to allocate DL forwarding tunnel(s) for indirect forwarding.

Indirect forwarding may be performed via a UPF which is different from the S-UPF.

11e. [Conditional] S-UPF to SMF: N4 Session Modification Response (S-UPF SM N3 forwarding Information list).

The S-UPF allocates Tunnel Info and returns an N4 Session establishment Response message to the SMF.

The S-UPF SM N3 forwarding Information list includes S-UPF N3 address, S-UPF N3 Tunnel identifiers for DL data forwarding.

11f. SMF to T-AMF: Nsmf_PDUSession_UpdateSMContext Response (N2 SM Information).

The SMF sends an Nsmf_PDUSession_UpdateSMContext Response message per PDU Session to T-AMF.

The SMF creates an N2 SM information containing the DL forwarding Tunnel Info to be sent to the S-RAN by the AMF. The SMF includes this information in the Nsmf_PDUSession_UpdateSMContext response. The DL forwarding Tunnel Info can be one of the following information:

- If direct forwarding applies, then the SMF includes the T-RAN N3 forwarding information the SMF received in step 11a.

- If the indirect forwarding tunnel is setup in step 11b or 11d, then the SMF includes the T-UPF or S-UPF DL forwarding information containing the N3 UP address and the DL Tunnel ID of the UPF.

The SMF starts an indirect data forwarding timer, to be used to release the resource of indirect data forwarding tunnel.

12. [Conditional] T-AMF to S-AMF: Namf_Communication_CreateUEContext Response (N2 information necessary for S-AMF to send Handover Command to S-RAN including Target to Source transparent container, PDU Sessions failed to be setup list, N2 SM information (N3 DL forwarding Information)).
AMF supervises the Nsmf_PDUSession_UpdateSMContext Response message from the involved SMFs. At expiry of the maximum wait time or when all Nsmf_PDUSession_UpdateSMContext Response messages are received, T-AMF sends the Namf_Communication_CreateUEContext Response to the S-AMF.

The Target to Source transport container is received from the T-RAN. The N2 SM Information is received from the SMF in step 11f.

4.9.1.3.3 Execution phase

![Diagram](image-url)

Figure 4.9.1.3.3-1: inter NG-RAN node N2 based handover, execution phase

NOTE: Registration of serving AMF with the UDM is not shown in the figure for brevity.

1. S-AMF to S-RAN: Handover Command (Target to Source transparent container, PDU Sessions failed to be setup list, SM forwarding info list).

 Target to Source transparent container is forwarded as received from S-AMF.
The SM forwarding info list includes T-RAN SM N3 forwarding info list for direct forwarding or S-UPF SM N3 forwarding info list for indirect data forwarding.

S-RAN uses the PDU Sessions failed to be setup list and the indicated reason for failure to decide whether to proceed with the N2 Handover procedure.

2. S-RAN to UE: Handover Command (UE container).

UE container is a UE part of the Target to Source transparent container which is sent transparently from T-RAN via AMF to S-RAN and is provided to the UE by the S-RAN.

3. Uplink packets are sent from T-RAN to T-UPF and UPF (PSA). Downlink packets are sent from UPF (PSA) to S-RAN via S-UPF. The S-RAN should start forwarding of downlink data from the S-RAN towards the T-RAN for QoS Flows or DRBs subject to data forwarding. This may be either direct (step 3a) or indirect forwarding (step 3b).

4. UE to T-RAN: Handover Confirm.

After the UE has successfully synchronized to the target cell, it sends a Handover Confirm message to the T-RAN. Handover is by this message considered as successful by the UE.

5. T-RAN to T-AMF: Handover Notify.

Handover is by this message considered as successful in T-RAN.

The T-AMF notifies to the S-AMF about the N2 handover notify received from the T-RAN by invoking the Namf_Communication_N2InfoNotify.

A timer in S-AMF is started to supervise when resources in S-RAN shall be release.

6b. [Conditional] S-AMF to T-AMF: Namf_Communication_N2InfoNotify ACK.

The S-AMF acknowledges by sending the Namf_Communication_N2InfoNotify ACK to the T-AMF.

If the PDU Session(s) is not accepted by the T-AMF (e.g. S-NSSAI associated with the PDU Session is not available in the T-AMF), S-AMF triggers PDU Session Release procedure as specified in clause 4.3.4.2 after the S-AMF is notified for the reception of N2 Handover Notify in step 6a.

7. T-AMF to SMF: Nsmf_PDUSession_UpdateSMContext Request (Handover Complete indication for PDU Session ID).

Handover Complete indication is sent per each PDU Session to the corresponding SMF to indicate the success of the N2 Handover.

UDM may update UE context in registered T-AMF in UDR, by Nudr_DM_Update (SUPI, Subscription Data, UE context in AMF data).

When an Nsmf_PDUSession_UpdateSMContext Response message arrived too late during the handover preparation phase (see step 8 of clause 4.9.1.3.2), or the PDU Session with SMF involvement is not accepted by T-RAN, Nsmf_PDUSession_UpdateSMContext Request (SUPI, PDU Session ID, Operation Type) is sent to the corresponding SMF allowing the SMF to deallocate a possibly allocated N3 UP address and Tunnel ID of the selected UPF. A PDU Session handled by that SMF is considered deactivated and handover attempt is terminated for that PDU Session.

8a. [Conditional] SMF to T-UPF (intermediate): N4 Session Modification Request.

If new T-UPF is inserted or an existing intermediate S-UPF is re-allocated, the SMF shall send N4 Session Modification Request indicating DL AN Tunnel Info of T-RAN to the T-UPF.

8b. [Conditional] T-UPF to SMF: N4 Session Modification Response.

The T-UPF acknowledges by sending N4 Session Modification Response message to SMF.
9a. [Conditional] SMF to S-UPF (intermediate): N4 Session Modification Request.

If UPF is not re-allocated, the SMF shall send N4 Session Modification Request indicating DL AN Tunnel Info of T-RAN to the S-UPF.

9b. [Conditional] S-UPF to SMF: N4 Session Modification Response.

The S-UPF acknowledges by sending N4 Session Modification Response message to SMF.

10a. [Conditional] SMF to UPF (PSA): N4 Session Modification Request.

For non-roaming or local breakout roaming scenario, the SMF sends N4 Session Modification Request message to PDU Session Anchor UPF, UPF (PSA), providing N3 AN Tunnel Info of T-RAN or the DL CN Tunnel Info of T-UPF if a new T-UPF is inserted or an existing intermediate S-UPF is re-allocated. If the existing intermediate S-UPF terminating to N9 toward the H-UPF (PDU Session Anchor) is re-allocated for the home routed roaming scenario, the V-SMF invokes an Nsmf_PDUSession_Update Request service operation toward the H-SMF.

In case of the S-UPF acts as a UL CL or BP, the SMF indicates only one of the PDU Session Anchors to send the "end marker" packets. To ensure the "end marker" is the last user plane packet on the old path, the SMF should modify the path on other PDU Session Anchors before it indicates the PDU Session Anchor to send the "end marker" packets.

If T-UPF is not inserted or an existing intermediate S-UPF is not re-allocated, step 10a and step 10b are skipped.

10b. [Conditional] UPF (PSA) to SMF: N4 Session Modification Response.

The UPF (PSA) sends N4 Session Modification Response message to SMF. In order to assist the reordering function in the T-RAN, the UPF (PSA) sends one or more "end marker" packets for each N3 tunnel on the old path immediately after switching the path, the source NG-RAN shall forward the "end marker" packets to the target NG-RAN. At this point, UPF (PSA) starts sending downlink packets to the T-RAN, via T-UPF if a new T-UPF is inserted or an existing intermediate S-UPF is re-allocated. In case of home routed roaming scenario, the H-SMF responds with the Nsmf_PDUSession_Update Response service operation to V-SMF once the H-UPF (PDU Session Anchor) is updated with the UL Tunnel Info of the T-UPF.

When there are multiple UPFs(PSA), step 10a and step 10b are performed for each UPFs(PSA).

11. SMF to T-AMF: Nsmf_PDUSession_UpdateSMContext Response (PDU Session ID).

SMF confirms receipt of Handover Complete.

12. The UE initiates Mobility Registration Update procedure as described in clause 4.2.2.2.2.

The target AMF knows that it is a Handover procedure and therefore the target AMF performs only a subset of the Registration procedure, specifically the steps 4, 5, and 10 in the Registration procedure for the context transfer between source AMF and target AMF are skipped.

If there is a source intermediate UPF, the SMF initiates resource release, after timer in step 6 or indirect data forwarding timer expires, by sending an N4 Session Release Request (Release Cause) to source UPF. This message is also used to release the indirect data forwarding resource in S-UPF.

13b. S-UPF to SMF: N4 Session Release Response.

The S-UPF acknowledges with an N4 Session Release Response message to confirm the release of resources.

In case of indirect data forwarding, the resource of indirect data forwarding is also released.

14a. AMF to S-RAN: UE Context Release Command ()

After the timer in step 6a expires, the AMF sends UE Context Release Command.

14b. S-RAN to AMF: UE Context Release Complete ()

The source NG-RAN releases its resources related to the UE and responds with a UE Context Release Complete () message.
15a. [Conditional] SMF to T-UPF: N4 Session Modification Request.

If indirect forwarding applies and UPF is re-allocated, after timer of indirect data forwarding expires, the SMF sends N4 Session Modification Request to T-UPF to release the indirect data forwarding resource.

15b. [Conditional] T-UPF to SMF: N4 Session Modification Response.

The T-UPF acknowledges with an N4 Session Modification Response message to confirm the release of indirect data forwarding resources.

If the AMF is subscribed to Mobility Event by other NFs, the AMF notifies the event to the corresponding NFs by invoking the Namf_EventExposure_Notify service operation as described in clause 4.15.4.2.

The SMF takes actions for the LADN PDU Session as defined in TS 23.501 [2], clause 5.6.5.

4.9.1.4 Inter NG-RAN node N2 based handover, Cancel

Prior to sending a Handover Command to the UE, the source NG-RAN node may attempt cancellation of handover during the handover procedure. The reason for cancellation may include timer expiration, internal failure within the source NG-RAN node or UE returned to source cell etc. The handover cancelation is initiated by sending a Handover Cancel request to the source AMF. This is done in order to release the resources reserved for the handover in the target system.

The AMF shall cancel the handover resources as defined in clause 4.11.1.2.3 for case the source RAN is NG-RAN.

4.9.2 Handover of a PDU Session procedure between 3GPP and untrusted non-3GPP access

4.9.2.1 Handover of a PDU Session procedure from untrusted non-3GPP to 3GPP access (non-roaming and roaming with local breakout)

Clause 4.9.2.1 specifies how to hand over a UE from a source Untrusted non-3GPP access to a target 3GPP access and how a UE can handover a PDU Session from untrusted non-3GPP access to 3GPP access. It is based on the PDU Session Establishment procedure for 3GPP access as specified in clause 4.3.2.

1. If the UE is not registered via 3GPP access, the UE shall initiate Registration procedure as defined in clause 4.2.2.2.2.

2. The UE performs a PDU Session Establishment procedure with the PDU Session ID of the PDU Session to be moved as specified clause 4.3.2.2.1 (PDU Session Establishment for Non-roaming and Roaming with Local Breakout).

3. The V-SMF executes the release of resources in non-3GPP access by performing steps 4 to 7 specified in clause 4.12.7, followed by step 7a specified in clause 4.3.4.2 in order to release the resources over the source non-3GPP access. Because the PDU Session shall not be released, the SMF shall not send the PDU Session Release Command to the UE. Hence, in steps 4 and 7 of clause 4.12.7 as well as in step 7a of clause 4.3.4.2, the messages do not include the N1 SM container but only the N2 Resource Release Request (resp. Ack). Since the PDU Session is not to be released, the SMF shall not execute step 7b of clause 4.3.4.2 and the SM context between the AMF and the SMF is maintained.
The steps 2 and 3 shall be repeated for all PDU Sessions to be moved from to untrusted non-3GPP access to 3GPP access.

4.9.2.2 Handover of a PDU Session procedure from 3GPP to untrusted non-3GPP access (non-roaming and roaming with local breakout)

Clause 4.9.2.2 specifies how to hand over a UE from a source 3GPP access to a target Untrusted non-3GPP access and how a UE can handover a PDU Session from 3GPP access to untrusted non-3GPP access. It is based on the PDU Session Establishment procedure for non-3GPP access as specified in clause 4.12.5.

1. If the UE is not registered via untrusted non-3GPP access, the UE shall initiate Registration procedure as defined in clause 4.12.2.

2. The UE performs PDU Session Establishment procedure with the PDU Session ID of the PDU Session to be moved as specified in clause 4.12.5.

3. The V-SMF executes the release of resource in 3GPP by performing step 3b, then steps 4 to 7a specified in clause 4.3.4.2 (UE or network requested PDU Session Release for Non-Roaming and Roaming with Local Breakout) in order to release the resources over the source 3GPP access. Because the PDU Session shall not be released, the SMF shall not send the PDU Session Release Command to the UE. Hence, in steps 3b, 4, 6 and 7a of clause 4.3.4.2, messages do not include the N1 SM container but only the N2 Resource Release Request (resp. Ack). Since the PDU Session is not to be released, the SMF shall not execute step 7b of clause 4.3.4.2 and the SM context between the AMF and the SMF is maintained.

The steps 2 and 3 shall be repeated for all PDU Sessions to be moved from 3GPP access to untrusted non-3GPP access

Figure 4.9.2.2-1: Handover of a PDU Session from 3GPP access to untrusted non-3GPP access (non-roaming and roaming with local breakout)

1. If the UE is not registered via untrusted non-3GPP access, the UE shall initiate Registration procedure as defined in clause 4.2.2.2. The NG-RAN selects the same AMF as the one used via non-3GPP access.

2. The UE performs a PDU Session Establishment procedure with the PDU Session ID of the PDU Session to be moved as specified clause 4.3.2.2.2 (PDU Session Establishment for Home Routed Roaming). The AMF selects the same V-SMF as the one used via non-3GPP access.

Figure 4.9.2.3.1-1: Handover of a PDU Session procedure from untrusted non-3GPP access to 3GPP access (home routed roaming)
3. The V-SMF executes the release of resource in non-3GPP access by performing steps 4 to 7 specified in clause 4.12.7, followed by step 7 specified in clause 4.3.4.2 in order to release the resources over the source non-3GPP access. Because the PDU Session shall not be released, the SMF shall not send the PDU Session Release Command to the UE. Hence, in steps 4 and 7 of clause 4.12.7 as well as in step 7a of clause 4.3.4.2, the messages do not include the N1 SM container but only the N2 Resource Release Request (resp. Ack). Since the PDU Session is not to be released, the SMF shall not execute step 7b of clause 4.3.4.2 and the SM context between the AMF and the SMF is maintained.

The steps 2 and 3 shall be repeated for all PDU Sessions to be moved from to untrusted non-3GPP access to 3GPP access.

4.9.2.3.2 The target AMF is not in the PLMN of the N3IWF (i.e. N3IWF in HPLMN)

4.9.2.3.2.2 The target AMF is not in the PLMN of the N3IWF (i.e. N3IWF in HPLMN)

1. If the UE is not registered via 3GPP access, the UE shall initiate Registration procedure as defined in clause 4.2.2.2.2. This includes the retrieval of the SMF-IDs corresponding to each of the PDU Sessions.

2. The UE performs a PDU Session Establishment procedure with the PDU Session ID of the PDU Session to be moved as specified clause 4.3.2.2.2 (PDU Session Establishment for Home Routed Roaming).

3. The H-SMF executes the release of resources in non-3GPP AN by performing steps 3-12 specified in clause 4.12.7 with the following exceptions:
 - the H-SMF indicates in the Nsmf_PDUSession_Update Request that the UE shall not be notified. This shall result in the SMF not sending the N1 Container (PDU Session Release Command) to the UE;
 - The Npcf_SMPolicyControl_Delete service operation to PCF shall not be performed.

The steps 2 and 3 shall be repeated for all PDU Sessions to be moved from to untrusted non-3GPP access to 3GPP access.

4.9.2.4 Handover of a PDU Session procedure from 3GPP to untrusted non-3GPP access (home routed roaming)

4.9.2.4.1 The selected N3IWF is in the registered PLMN

1. If the UE is not registered via untrusted non-3GPP access, the UE shall initiate Registration procedure as defined in clause 4.12.2. The N3IWF selects the same AMF as the one used via 3GPP access.

Figure 4.9.2.3.2-1: Handover of a PDU Session procedure from untrusted non-3GPP access with N3IWF in the HPLMN to 3GPP access (home routed roaming)

1. Registration via 3GPP access
2. PDU session establishment procedure in clause 4.3.2.2
3. Release of non-3GPP access resources using clause 4.12.7 from step 3 to step 12

Figure 4.9.2.4.1-1: Handover of a PDU Session procedure from 3GPP access to untrusted non-3GPP access (home routed roaming)

1. If the UE is not registered via untrusted non-3GPP access, the UE shall initiate Registration procedure as defined in clause 4.12.2. The N3IWF selects the same AMF as the one used via 3GPP access.
2. The UE performs PDU Session Establishment procedure with the PDU Session ID of the PDU Session to be moved as specified in clause 4.12.5. The AMF selects the same V-SMF as the one used via 3GPP access.

3. The V-SMF executes the release of resources in 3GPP access by performing step 5c to 10 specified in clause 4.3.4.3 (UE or network requested PDU Session Release for Home Routed Roaming) in order to release the resources over the source 3GPP access. Because the PDU Session shall not be released, the SMF shall not send the PDU Session Release Command to the UE. Hence, in steps 5c, 6, 8 and 9 of clause 4.3.4.3, the messages do not include the N1 SM container but only the N2 Resource Release Request (resp. Ack). Since the PDU Session is not to be released, the SMF shall not execute step 7b of clause 4.3.4.2 and the SM context between the AMF and the SMF is maintained.

The steps 2 and 3 shall be repeated for all PDU Sessions to be moved from 3GPP access to untrusted non-3GPP access.

4.9.2.4.2 The UE is roaming and the selected N3IWF is in the home PLMN

![Diagram](image)

Figure 4.9.2.4.2-1: Handover of a PDU Session procedure from 3GPP access to untrusted non-3GPP access with N3IWF in the HPLMN (home routed roaming)

1. If the UE is not registered via untrusted non-3GPP access, the UE shall initiate Registration procedure as defined in clause 4.12.2. This includes the retrieval of the SMF-IDs corresponding to each of the PDU Sessions.

2. The UE performs PDU Session Establishment procedure with the PDU Session ID of the PDU Session to be moved as specified in clause 4.12.5.

3. The H-SMF executes the release of resources in source V-SMF, V-UPF, V-AMF and 3GPP AN by performing steps 5c to 10 specified in clause 4.3.4.3 with the following exceptions:
 - the H-SMF indicates in the Nsmf_PDUSession_Update Request that the UE shall not be notified. This shall result in the V-SMF not sending the N1 Container (PDU Session Release Command) to the UE;
 - The Npcf_SMPolicyControl_Delete service operation to PCF shall not be performed.

The steps 2 and 3 shall be repeated for all PDU Sessions to be moved from 3GPP access to untrusted non-3GPP access.

4.10 NG-RAN Location reporting procedures

This procedure is used by an AMF to request the NG-RAN to report where the UE is currently located when the target UE is in CM-CONNECTED state. The need for the NG-RAN to continue reporting ceases when the UE transitions to CM-IDLE or the AMF sends cancel indication to NG-RAN. This procedure may be used for services that require accurate cell identification (e.g. emergency services, lawful intercept, charging), or for subscription to the service by other NPs.
1. AMF to NG-RAN: Location Reporting Control (Reporting Type, Location Reporting Level, (Area Of Interest, Request Reference ID)).

The AMF sends a Location Reporting Control message to the NG-RAN. The Location Reporting Control message shall identify the UE for which reports are requested and may include Reporting Type, Location Reporting Level, Area Of Interest and Request Reference ID. Location Reporting Level could be TAI+ Cell Identity. Reporting Type indicates whether the message is intended to trigger a single standalone report about the current Cell Identity serving the UE or start the NG-RAN to report whenever the UE changes cell, or ask the NG-RAN to report whenever the UE moves out or into the Area Of Interest. If the Reporting Type indicates to start the NG-RAN to report when UE moves out of or into the Area Of Interest, the AMF also provides the requested Area Of Interest information (i.e. list of TAI) in the Location Reporting Control message. The AMF may include a Request Reference ID in the Location Report Control message to identify the request of reporting for an Area Of Interest. If multiple Areas Of Interest are included in the message, the Request Reference ID identifies each Area of Interest.

2. NG-RAN to AMF: Location Report (UE Location, UE Presence in Area Of Interest, Request Reference ID, Timestamp).

The NG-RAN sends a Location Report message informing the AMF about the location of the UE which shall be represented as the requested Location Reporting Level.

When UE is in CM-CONNECTED with RRC Inactive state, if NG-RAN has received Location Reporting Control message from AMF with the Reporting Type indicating single stand-alone report, the NG-RAN shall perform NG-RAN paging before reporting the location to AMF.

When UE is in CM-CONNECTED with RRC Inactive state, if NG-RAN has received Location Reporting Control message from AMF with the Reporting Type indicating continuously reporting whenever the UE changes cell, the NG-RAN shall send a Location Report message to the AMF including the UE's last known location with time stamp.

When UE is in CM-CONNECTED, if NG-RAN has received Location Reporting Control message from AMF with the Reporting Type of Area Of Interest based reporting, the NG-RAN shall track the UE presence in Area Of Interest and send a Location Report message to AMF including the UE Presence in the Area Of Interest (i.e., IN, OUT, or UNKNOWN) and the UE's current location (when the UE is in RRC Connected state) or the UE's last known location with time stamp (when the UE is in RRC Inactive state) if the NG-RAN perceives that the UE presence in the Area Of Interest is different from the last one reported. When the NG-RAN detects that the UE has moved out of or into multiple areas of interest, it sends multiple pairs of UE Presence in the Area Of Interest and the Request Reference ID in one Location Report message to AMF. If UE transitions from RRC Inactive state to RRC Connected state, NG-RAN shall check the latest location of UE and follow the rules when UE is in RRC Connected.

3. AMF to NG-RAN: Cancel Location Report (Reporting Type, Request Reference ID).

The AMF can send a Cancel Location Reporting message to inform the NG-RAN that it should terminate the location reporting for a given UE corresponding to the Reporting Type or the location reporting for Area Of Interest indicated by Request Reference ID. This message is needed when the reporting type was requested for continuously reporting or for the Area Of Interest. The AMF may include the Request Reference ID which
3GPP TS 23.502 version 15.2.0 Release 15

indicates the requested Location Reporting Control for the Area Of Interest, so that the NG-RAN should terminate the location reporting for the Area Of Interest.

NOTE: Location reporting is transferred during Xn handover, although new control signalling is not transferred during an active handover.

In this release the location reporting procedure is applicable only to 3GPP access.

4.11 System interworking procedures with EPC

4.11.0 General

This clause includes procedures for interworking with EPS based on N26 interface (clause 4.11.1) and also interworking without N26 interface (clause 4.11.2).

4.11.0a Impacts to EPS Procedures

4.11.0a.1 General

This clause captures changes to procedures in TS 23.401 [13] that are common to interworking based on N26 and interworking without N26.

4.11.0a.2 Interaction with PCC

When interworking with 5GS is supported and a "PGW-C+SMF" is selected for a UE, policy interactions between PDN GW and PCRF specified in TS 23.401 [13] are replaced by equivalent interactions between PGW-C+SMF and PCRF+PCF as follows:

- (PCEF initiated) IP-CAN Session Establishment procedure is replaced by SM Policy Association Establishment Procedure as described in clause 4.16.4.
- IP-CAN Session Modification procedure is replaced by SM Policy Association Modification procedure as described in clause 4.16.5.
- IP-CAN Session Termination procedure is replaced by SM Policy Association Termination procedure as described in clause 4.16.6.

4.11.1 N26 based Interworking Procedures

4.11.1.1 General

N26 interface is used to provide seamless session continuity for single registration mode UE.

Interworking between EPS and 5GS is supported with IP address preservation by assuming SSC mode 1.

When the UE is served by the 5GC, during PDU Session establishment and GBR QoS flow establishment, PGW-C+SMF performs EPS QoS mappings, from the 5GQoS parameters obtained from the PCF+PCRF, and allocates TFT with the PCC rules obtained from the PCF+PCRF if PCC is deployed. Otherwise, EPS QoS mappings and TFT allocation are mapped by the PGW-C+SMF locally. The PGW+SMF ignores 5G QoS parameters that are not applicable to EPC (e.g. QoS Notification control). If a TFT is to be allocated for a downlink unidirectional EPS bearer mapped from a downlink only QoS Flow, the PGW-C+SMF shall allocate a TFT packet filter that effectively disallows any useful uplink packet as specified in TS 23.401 [13]. EPS Bearer IDs are allocated by the serving AMF requested by the SMF if the SMF determines that EPS Bearer IDs need to be assigned to the QoS Flows. For each PDU Session, EPS bearer IDs are allocated to the default EPS bearer which non GBR flows are mapped to and dedicated bearers which the GBR Flows are mapped to in EPC. The SMF shall be able to determine the GBR flows to allocate EPS Bearer IDs, based on the QoS profile and operator policies. For Ethernet and Unstructured PDU Session Types, only EPS Bearer ID for the default EPS Bearer is allocated. The EPS bearer IDs for these EPS bearers are provided to the PGW-C+SMF by the AMF, and are provided to the UE and NG-RAN by the PGW-C+SMF using N1 SM NAS message and N2 SM message. The UE is also provided with the mapped QoS parameters. The UE and the PGW-C+SMF store the association between the QoS Flow and the corresponding EBI and the EPS QoS parameters. When the QoS Flow is deleted e.g. due to PDU Session status synchronization or PDU Session Modification, the UE and the PGW-C+SMF delete any possibly existing EPS QoS parameters associated with the deleted QoS Flow.
In this release, for a PDU Session for a LADN, the SMF doesn't allocate any EBI or mapped QoS parameters.

When the UE is served by the EPC, during PDN connection establishment, the UE allocates the PDU Session ID and sends it to the PGW-C+SMF via PCO. During PDN Connection establishment and dedicated bearer establishment, PGW-C+SMF performs EPS QoS mappings, from the 5G QoS parameters obtained from the PCF+PCRF, and allocates TFT with the PCC rules obtained from the PCF+PCRF if PCC is deployed. Otherwise, EPS QoS mappings and TFT allocation are mapped by the PGW-C+SMF locally. Other 5G QoS parameters corresponding to the PDN connection, e.g. Session AMBR, and QoS rules and QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s), are sent to UE in PCO. The UE and the PGW-C+SMF store the association between the EPS Context and the PDU Session Context to use it in case of handover from EPS to 5GS. During the EPS bearer establishment/Modification procedure, QoS rules corresponding to the related EPS bearers are allocated and sent to UE in PCO. The 5G QoS parameters are stored in the UE and are to be used when the UE is handed over from EPS to the 5GS. When the UE is served by the EPC, the UE sets the SSC mode of the mapped PDU Session to SSC mode 1. The UE and the PGW-C+SMF store the association between the EPS bearer and the corresponding 5G QoS Rules and QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s). When the EPS bearer is deleted e.g. due to EPS bearer status synchronization or bearer deactivation, the UE and the PGW-C+SMF delete any possibly existing 5G QoS Rule(s) and QoS Flow level QoS parameters if any for the QoS Flow(s) associated with the QoS rule(s) associated with the deleted EPS bearer.

In the roaming case, if the VPLMN supports interworking with N26, the UE shall operate in Single Registration mode.

During the 5GS-EPS handover, indirect forwarding may apply for the downlink data forwarding performed as part of the handover. From its configuration data the AMF knows whether indirect forwarding applies and it requests to allocate downlink data forwarding paths on UPFs for indirect forwarding. From its configuration data the MME knows whether indirect forwarding applies and it requests to allocate downlink data forwarding paths on Serving GWs for indirect forwarding. It is configured on AMF and MME whether indirect downlink data forwarding does not apply, applies always or applies only for inter PLMN inter RAT handovers.

4.11.1.2 Handover procedures

4.11.1.2.1 5GS to EPS handover using N26 interface

Figure 4.11.1.2.1-1 describes the handover procedure from 5GS to EPS when N26 is supported.

In the case of handover to a shared EPS network, the source NG-RAN determines a PLMN to be used in the target network as specified by TS 23.501 [2]. The source NG-RAN shall indicate the selected PLMN ID to be used in the target network to the AMF as part of the TAI sent in the HO Required message.

In the case of handover from a shared NG-RAN, the AMF may provide the MME with an indication that the 5GS PLMN is a preferred PLMN at later change of the UE to a 5GS shared networks.

During the handover procedure, as specified in clause 4.9.1.3.1, the source AMF shall reject any PGW-C+SMF initiated N2 request received since handover procedure started and shall include an indication that the request has been temporarily rejected due to handover procedure in progress.

Upon reception of a rejection for an PGW-C+SMF initiated N2 request(s) with an indication that the request has been temporarily rejected due to handover procedure in progress, the PGW-C+SMF behaves as specified in TS 23.401 [13].
The procedure involves a handover to EPC and setup of default EPS bearer and dedicated bearers for GBR QoS Flows in EPC in steps 1-16 and re-activation, if required, of dedicated EPS bearers for non-GBR QoS Flows in step 17. This procedure can be triggered, for example, due to new radio conditions, load balancing or in the presence of QoS Flow for normal voice or IMS emergency voice, the source NG-RAN node may trigger handover to EPC.

For Ethernet and Unstructured PDU Session Types, the PDN Type non-IP is used, when supported, in EPS. The SMF shall thus set the PDN Type of the EPS Bearer Context to non-IP in these cases. After the handover to EPS, the PDN Connection will have PDN Type non-IP, but it shall be locally associated in UE and SMF to PDU Session Type Ethernet or Unstructured respectively.

In the roaming home routed case, the PGW-C+SMF always provides the EPS Bearer ID and the mapped QoS parameters to UE. The V-SMF caches the EPS Bearer ID and the mapped QoS parameters obtained from H-SMF for this PDU session. This also applies in the case that the HPLMN operates the interworking procedure without N26.

NOTE 1: The IP address preservation cannot be supported, if PGW-C+SMF in the HPLMN doesn't provide the mapped QoS parameters.

1. NG-RAN decides that the UE should be handed over to the E-UTRAN. If NG-RAN is configured to perform Inter RAT mobility due to IMS voice fallback triggered by QoS flow setup and request to setup QoS flow for IMS voice was received, NG-RAN responds indicating rejection of the QoS flow establishment because of mobility due to fallback for IMS voice via N2 SM information and triggers handover to E-UTRAN. The NG-RAN sends a Handover Required (Target eNB ID, Source to Target Transparent Container, inter system handover indication, Indirect Forwarding Flag) message to the AMF. NG-RAN indicates bearers corresponding to the 5G QoS Flows for data forwarding in Source to Target Transparent Container.

If the handover is triggered due to Emergency fallback, the NG-RAN may forward the Emergency indication to the target eNB in the Source to Target Transparent Container, and the target eNB allocates radio bearer resources taking received indication into account.

The Indirect Forwarding Flag indicates the applicability of indirect data forwarding.
2. In the case of HR roaming, the AMF determines from the 'Target eNB Identifier' IE that the type of handover is Handover to E-UTRAN. The AMF selects an MME as described in TS 23.401 [13] clause 4.3.8.3.

The AMF by using Nsmf_PDUSession_Context Request requests the V-SMF for each PDU Session associated with 3GPP access to provide SM Context that also includes the mapped EPS Bearer Contexts. The AMF provides the target MME capability to SMF in the request to allow the V-SMF to determine whether to included EPS Bearer context for non-IP PDN Type or not. For PDU Sessions with PDU Session Type Ethernet or Unstructured, the SMF provides SM Context for non-IP PDN Type.

In the case of non roaming or LBO roaming, the AMF request PGW-C+SMF to provide SM Context by using Nsmf_PDUSession_ContextRequest. The PGW-C+SMF send N4 Session modification to PGW-U+UPF to establish the CN tunnel for each EPS bearer and provide EPS Bearer Contexts to AMF, as described in step 8 of clause 4.11.1.4.1.

This step is performed with all PGW-C+SMFs allocated to the UE for each PDU Session of the UE.

NOTE 2: The AMF knows the MME capability to support non-IP PDN type or not through local configuration.

NOTE 3: In home routed roaming scenario, the UE's SM EPS Contexts are obtained from the V-SMF.

3. The AMF sends a Forward Relocation Request as in Step 2 in clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13], with the following modifications and clarifications:

 - Parameter "Return preferred" may be included. Return preferred is an optional indication by the MME of a preferred return of the UE to the 5GS PLMN at a later access change to a 5GS shared network. An MME may use this information as specified by TS 23.501 [2].

 - The SGW address and TEID for both the control-plane or EPS bearers in the message are such that target MME selects a new SGW. The AMF includes the Indirect Forwarding Flag received from the source NG-RAN to inform the target MME of the applicability of indirect data forwarding.

NOTE 4: The mapped SM EPS UE Contexts are included for PDU Sessions with and without active UP connections.

4-5. Step 4 and 4a respectively in clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

6. Step 5 (Handover Request) in clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13] with the following modification:

 - Handover Request may contain information Handover Restriction List with information about PLMN IDs as specified by TS 23.251 [35], clause 5.2a for eNodeB functions.

7-9. Step 5a through 7 in clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

10a. If indirect data forwarding applies, the AMF sends the Nsmf_PDUSession_UpdateSMContext Request (Serving GW Address(es) and Serving GW DL TEID(s) for data forwarding) to the PGW-C+SMF, for creating indirect data forwarding tunnel. If multiple PGW-C+SMFs serves the UE, the AMF maps the EPS bearers for Data forwarding to the PGW-C+SMF address(es) based on the association between the EPS bearer ID(s) and PDU Session ID(s). In home-routed roaming case, the AMF requests the V-SMF to create indirect forwarding tunnel.

10b. The PGW-C+SMF may select an intermediate PGW-U+UPF for data forwarding. The PGW-C+SMF maps the EPS bearers for Data forwarding to the 5QoS flows based on the association between the EPS bearer ID(s) and QFI(s) for the QoS flow(s) in the PGW-C+SMF; and then sends the QFIs, Serving GW Address(es) and TEID(s) for data forwarding to the PGW-U+UPF. If CN Tunnel Info for Data Forwarding is allocated by the PGW-C+SMF, the CN Tunnel Info for Data Forwarding is provided to PGW-U+UPF in this step. The PGW-U+UPF acknowledges by sending a response. If CN Tunnel Info is allocated by the PGW-U+UPF, the CN Tunnel Info is provided to PGW-C+SMF in this response. In home-routed roaming case, the V-SMF selects the V-UPF for data forwarding.

10c. The PGW-C+SMF returns an Nsmf_PDUSession_UpdateSMContext Response (Cause, CN tunnel Info for Data Forwarding, QoS flows for Data Forwarding) for creating indirect data forwarding. Based on the correlation between QFI(s) and Serving GW Address(es) and TEID(s) for data forwarding, the PGW-U+UPF maps the QoS flow(s) into the data forwarding tunnel(s) in EPC.
11. The AMF sends the Handover Command to the source NG-RAN (Transparent container (radio aspect parameters that the target eNB has set-up in the preparation phase), CN tunnel info for data forwarding per PDU Session, QoS flows for Data Forwarding). The source NG-RAN commands the UE to handover to the target access network by sending the HO Command. The UE correlates the ongoing QoS Flows with the indicated EPS Bearer IDs to be setup in the HO command. The UE locally deletes the PDU Session if the QoS Flow associated with the default QoS rule in the PDU Session does not have an EPS Bearer ID assigned. If the QoS Flow associated with the default QoS rule has an EPS Bearer ID assigned, the UE keeps the PDU Session (PDN connection) and for the remaining QoS Flow(s) that do not have EPS bearer ID(s) assigned, the UE locally deletes the QoS rule(s) and the QoS Flow level QoS parameters if any associated with those QoS Flow(s). The UE deletes any UE derived QoS rules. The EPS Bearer ID that was assigned for the QoS flow of the default QoS rule in the PDU Session becomes the EPS Bearer ID of the default bearer in the corresponding PDN connection.

For the QoS Flows indicated in the “QoS Flows for Data Forwarding”, NG-RAN initiate data forwarding via to the PGW-U+UPF based on the CN Tunnel Info for Data Forwarding per PDU Session. Then the PGW-U+UPF maps data received from the data forwarding tunnel(s) in the 5GS to the data forwarding tunnel(s) in EPS, and sends the data to the target eNodeB via the Serving GW.

12-12c. Step 13 to step 14 from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

12d. The AMF acknowledges MME with Relocation Complete Ack message. A timer in AMF is started to supervise when resources in the in NG-RAN and PGW-C+SMF shall be released.

13. Step 15 from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

14. Step 16 (Modify Bearer Request) from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13] with the following clarification:

- The PGW-C+SMF deletes the PDU Session if the QoS Flow associated with the default QoS rule in the PDU Session does not have an EPS Bearer ID assigned. If the QoS Flow associated with the default QoS rule has an EPS Bearer ID assigned, the PGW-C+SMF keeps the PDU Session (PDN connection) and for the remaining QoS Flows that do not have EPS bearer ID(s) assigned, the PGW-C+SMF maintains the PCC rule(s) associated with those QoS Flows.

NOTE 5: The PGW-C+SMF initiating dedicated bearer activation for those maintained PCC rule(s) is described in step 18.

NOTE 6: If the QoS flow is deleted and the default QoS rule contains a Packet Filter Set that allows all UL packets or contains no Packet Filter Set, the IP flows of the deleted QoS rules are mapped to the default EPS bearer. If the default QoS rule contains packet filter(s), the IP flows in the deleted QoS Flow may be interrupted until step 18 of clause 5.5.1.2.2 in TS 23.401 [13].

15. The PGW-C+SMF initiates a N4 Session Modification procedure towards the UPF+PGW-U to update the User Plane path. The PGW-C+SMF releases the resource of the CN tunnel for PDU Session in UPF+PGW-U.

16. Step 16a (Modify Bearer Response) from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13]. At this stage the User Plane path is established for the default bearer and the dedicated GBR bearers between the UE, target eNodeB, Serving GW and the PGW-U+UPF. The PGW-C+SMF uses the EPS QoS parameters as assigned for the dedicated EPS GBR bearers during the QoS flow establishment. PGW-C+SMF maps all the other IP flows to the default EPS bearer.

17. Step 17 from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

18. The UE initiates a Tracking Area Update procedure as specified in TS 23.401 [13], clause 5.3.3.1 with modifications specified in clause 4.11.1.5.3.

When the old AMF decides not to maintain a UE registration for non-3GPP access anymore, the old AMF then unsubscribes from Subscription Data updates by sending an Nudm_SDM_Unsubscribe service operation to UDM and releases of all the AMF and AN resources related to the UE.

NOTE 7: The behaviour whereby the HSS+UDM cancels location of CN node of the another type, i.e. AMF is similar to HSS behaviour for MME and Gn/Gp SGSN registration (see TS 23.401 [13]). The target AMF of the cancel location by the HSS+UDM is one associated with 3GPP access.

19. The PGW-C+SMF initiates dedicated bearer activation procedure for non-GBR QoS Flows by mapping the parameters of the non-GBR Flows to EPC QoS parameters. This setup may be triggered by the PCRF+PCF, if
PCC is deployed. This procedure is specified in TS 23.401 [13], clause 5.4.1. For Ethernet PDU Session Type, using non-IP PDN Type in EPS, this step is not applicable.

20. Step 21 from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

21. If indirect forwarding was used, then the expiry of the timer at AMF started at step 12c triggers the AMF to invoke Nsmf_PDUSession_UpdateSMContext Request service operation with an indication to release the forwarding tunnels of the V-SMF, in order to release temporary resources used for indirect forwarding that were allocated at step 10. The V-SMF returns Nsmf_PDUSession_UpdateSMContext Response message.

4.11.1.2.2 EPS to 5GS handover using N26 interface

4.11.1.2.2.1 General

N26 interface is used to provide seamless session continuity for single registration mode.

The procedure involves a handover to 5GS and setup of QoS Flows in 5GS.

In the home routed roaming case, the PGW-C+ SMF in the HPLMN always receives the PDU Session ID from UE and provides other 5G QoS parameters to UE. This also applies in the case that the HPLMN operates the interworking procedure without N26.

In the case of handover to a shared 5GS network, the source E-UTRAN determines a PLMN to be used in the target network as specified by TS 23.251 [35] clause 5.2a for eNodeB functions. A supporting MME may provide the AMF via N26 with an indication that source EPS PLMN is a preferred PLMN when that PLMN is available at later change of the UE to an EPS shared network.

If the PDN Type of a PDN Connection in EPS is non-IP, and is locally associated in UE and SMF to PDU Session Type Ethernet or Unstructured, the PDU Session Type in 5GS shall be set to Ethernet or Unstructured respectively.

NOTE: The IP address continuity can’t be supported, if PGW-C+SMF in the HPLMN doesn’t provide the mapped QoS parameters.

4.11.1.2.2.2 Preparation phase

Figure 4.11.1.2.2.2-1 shows the preparation phase of the Single Registration-based Interworking from EPS to 5GS procedure.
This procedure applies to the Non-Roaming (TS 23.501 [2] Figure 4.3.1-1), Home-routed roaming (TS 23.501 [2] Figure 4.3.2-1) and Local Breakout roaming Local Breakout (TS 23.501 [2] Figure 4.3.2-2) cases.

- For non-roaming scenario, V-SMF, v-UPF and v-PCF+v-PCRF are not present.
- For home-routed roaming scenario, the PGW-C+SMF and UPF+PGW-U are in the HPLMN. v-PCF+v-PCRF are not present.
- For local breakout roaming scenario, V-SMF and v-UPF are not present. PGW-C+SMF and UPF+PGW-U are in the VPLMN.

In local-breakout roaming case, the v-PCF+v-PCRF interacts with the PGW-C+SMF.

1 - 2. Step 1 - 2 from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

3. Step 3 from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13] with the following modifications:

An additional optional parameter Return preferred. Return preferred is an optional indication provided by the MME to indicate a preferred return of the UE to the last used EPS PLMN at a later access change to an EPS shared network. Based on the Return Preferred indication, the AMF may store the last used EPS PLMN ID in the UE Context.

The AMF converts the received EPS MM Context into the 5GS MM Context. This includes converting the EPS security context into a mapped 5G security context. The MME UE context includes IMSI, ME Identity, UE security context, UE Network Capability, and EPS Bearer context(s). An EPS Bearer context includes the SMF + PGW-C address and V-CN Tunnel Info at the UPF + PGW-U for uplink traffic, and APN.

NOTE: If the AMF holds a native 5G security context for the UE, the AMF may activate this native 5G security context by initiating a NAS SMC upon completing the handover procedure.

Editor’s note: Whether 5GS Security Context can be derived from the EPS Security Context should be clarified by SA3 study.
4. The AMF invokes the Nsmf_PDUSession_CreateSMContext service operation (UE EPS PDN Connection, AMF ID, Direct Forwarding Flag) on the SMF identified by the PGW-C+SMF address and indicates HO preparation indication (to avoid switching the UP path). The AMF ID is the UE's GUAMI which uniquely identifies the AMF serving the UE. This step is performed for each PDN Connection and the corresponding PGW-C+SMF address/ID in the UE context the AMF received in step 3. The SMF finds the corresponding PDU Session based on EPS Bearer Context(s).

The AMF includes Direct Forwarding Flag to inform the SMF of the applicability of indirect data forwarding.

For home-routed roaming scenario, the AMF selects default V-SMFs per PDU Session and invokes the Nsmf_PDUSession_CreateSMContext service operation (UE PDN Connection Contexts, AMF ID, SMF + PGW-C address, S-NSSAI). The S-NSSAI is set as the default S-NSSAI value, which is associated with default V-SMF and configured in AMF.

The V-SMF selects the PGW-C+SMF using the received H-SMF address as received from the AMF, and initiates a Nsmf_PDUSession_Update service operation with the PGW-C+SMF.

5. If dynamic PCC is deployed, the SMF+ PGW-C (V-SMF via H-SMF for home-routed scenario) may initiate SMF initiated SM Policy Modification towards the PCF + PCRF.

6. The PGW-C+SMF sends N4 Session modification to PGW-U+UPF to establish the CN tunnel for PDU Session. If the CN Tunnel info is allocated by the PGW-C+SMF, the PGW-U tunnel info for PDU session is provided to PGW-U+UPF. If the CN Tunnel info is allocated by PGW-U+UPF, the PGW-U+UPF sends the PGW-U tunnel info for PDU Session to the PGW-C+SMF. This step is performed at all PGW-C+SMFs allocated to the UE for each PDU Session of the UE.

7. The PGW-C+SMF (V-SMF in the case of home-routed roaming scenario only) sends a Nsmf_PDUSession_CreateSMContextResponse (PDU Session ID, S-NSSAI, N2 SM Information (PDU Session ID, S-NSSAI, QFI(s), QoS Profile(s), EPS Bearer Setup List, CN Tunnel-Info, cause code)) to the AMF.

For home-routed roaming scenario the step 8 need be executed first. The CN Tunnel-Info provided to the AMF in N2 SM Information is the V-CN Tunnel-Info.

SMF includes mapping between QoS flows and EPS bearers as part of N2 SM Information container. If the PGW-C+SMF (H-SMF in the case of home-routed scenario) determines that seamless session continuity from EPS to 5GS is not supported for the PDU Session, then it does not provide SM information for the corresponding PDU Session but includes the appropriate cause code for rejecting the PDU Session transfer within the N2 SM Information. If the Direct Forwarding Flag indicates indirect forwarding and there is no indirect data forwarding connectivity between source and target, the SMF shall further include a "Data forwarding not possible" indication in the N2 SM information container. In home routed roaming case, the S-NSSAI included in N2 SM Information container is the default S-NSSAI received in step 2.

NG-RAN can use the source to target transparent container and N2 SM Information container to determine which QoS flows have been proposed for forwarding and decide for which of those QoS flows it accepts the data forwarding or not. AMF stores an association of the PDU Session ID, S-NSSAI and the SMF ID.

If the PDN Type of a PDN Connection in EPS is non-IP, and is locally associated in SMF to PDU Session Type Ethernet, the PDU Session Type in 5GS shall be set to Ethernet. In case the PDN type of a PDN Connection in EPS is non-IP, and is locally associated in UE and SMF to PDU Session Type Unstructured, the PDU Session Type in 5GS shall be set to Unstructured.

In the case of PDU Session Type Ethernet, that was using PDN type non-IP in EPS, the SMF creates QoS rules and QoS Flow level QoS parameters for the QoS Flow(s) associated with the QoS rule(s) based on the PCC Rules received from PCF.

8. For home-routed roaming scenario only: The V-SMF selects a v-UPF and initiates an N4 Session Establishment procedure with the selected v-UPF. The V-SMF provides the v-UPF with packet detection, enforcement and reporting rules to be installed on the UPF for this PDU Session, including H-CN Tunnel Info. If CN Tunnel Info is allocated by the SMF, the V-CN Tunnel Info is provided to the v-UPF in this step.

The v-UPF acknowledges by sending an N4 Session Establishment Response message. If CN Tunnel Info is allocated by the UPF, the V-CN Tunnel info is provided to the V-SMF in this step.

9. The AMF sends a Handover Request (Source to Target Transparent Container, N2 SM Information (PDU Session ID, S-NSSAI, QFI(s), QoS Profile(s), EPS Bearer Setup List, V-CN Tunnel Info), Handover Restriction
List) message to the NG-RAN. The AMF provides NG-RAN with a PLMN list in the Handover Restriction List containing at least the serving PLMN, taking into account the last used EPS PLMN ID and the Return preferred indication. The Handover Restriction List contain information about PLMN IDs as specified by TS 23.501 [2].

10. The NG-RAN sends a Handover Request Acknowledge (Target to Source Transparent Container, N2 SM response (PDU Session ID, list of accepted QFI(s) and AN Tunnel Info), N2 SM Information for PDU Forwarding (PDU Session ID, N3 Tunnel Info for PDU Forwarding)) message to the AMF. The NG-RAN includes one assigned TEID/TNL address per PDU Session (for which there is at least one QoS flow for which it has accepted the forwarding) within the SM Info container. It also includes the list of QoS flows for which it has accepted the forwarding.

11. The AMF sends an Nsmf_PDUSession_UpdateSMContext Request (PDU Session ID, N2 SM response (list of accepted QFI(s) and AN Tunnel Info), N2 SM Information for PDU Forwarding (PDU Session ID, N3 Tunnel Info for PDU Forwarding)) message to the SMF for updating N3 tunnel information. The PGW-C+SMF derives from this received list of QoS flows that should be mapped to the PDU Session. In home routed roaming case, N2 SM Information for PDU Forwarding (PDU Session ID, N3 Tunnel Info for PDU Forwarding) is handled by the V-SMF and will not be sent to the PGW-C+SMF.

12. PGW-C+SMF (V-SMF in home-routed roaming scenario) performs preparations for N2 Handover by indicating N3 UP address and Tunnel ID of NG-RAN to the UPF if N2 Handover is accepted by NG-RAN and by indicating the mapping between the TEID where the UPF receives data forwarded by the source SGW and the QFI and N3 Tunnel Info for PDU Forwarding where the UPF is to forward such data. In home routed roaming case, the V-SMF sends the V-UPF the mapping between the TEID where the UPF receives data forwarded by the source SGW and the QFI and N3 Tunnel Info for PDU Forwarding.

If N2 Handover is not accepted by NG-RAN, PGW-C+SMF deallocates N3 UP address and Tunnel ID of the selected UPF.

The EPS Bearer Setup list is a list of EPS bearer Identifiers successfully handover to 5GC, which is generated based on the list of accepted QFI(s).

13. PGW-C+SMF (V-SMF in home-routed roaming scenario) to AMF: Nsmf_PDUSession_UpdateSMContext Response (PDU Session ID, EPS Bearer Setup List, CN tunnel information for data forwarding). In home routed roaming case, the V-SMF provides the CN tunnel information for data forwarding.

This message is sent for each received Modify PDU Request message.

14. The AMF sends the message Forward Relocation Response (Cause, Target to Source Transparent Container, Serving GW change indication, CN Tunnel Info for data forwarding, EPS Bearer Setup List, AMF Tunnel Endpoint Identifier for Control Plane, Addresses and TEIDs). The EPS Bearer Setup list is the combination of EPS Bearer Setup list from different PGW-C+SMF(s).

15. Step 8 from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

4.11.1.2.2.3 Execution phase

Figure 4.11.1.2.2.3-1 shows the Single Registration-based Interworking from EPS to 5GS procedure.
NOTE: Step 6 P-GW-C+SMF Registration in the UDM is not shown in the figure for simplicity.

1 - 2. Step 9 - 11 from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

3. Handover Confirm: the UE confirms handover to the NG-RAN.

The UE moves from the E-UTRAN and synchronizes with the target NG-RAN. The UE may resume the uplink transmission of user plane data only for those QFI and Session IDs for which there are radio resources allocated in the NG-RAN.

Forwarding, and the v-UPF forwards the PDUs to the NG-RAN using the N3 Tunnel Info for PDU Forwarding, adding the QFI information. The target NG-RAN prioritizes the forwarded packets over the fresh packets for those QoS flows for which it had accepted data forwarding.

4. Handover Notify: the NG-RAN notifies to the AMF that the UE is handed over to the NG-RAN. The notification message includes the N2 SM Information (N3 DL AN Tunnel Info).

5. Then the AMF knows that the UE has arrived to the target side and informs the MME by sending a Forward Relocation Complete Notification message.

6. Step 14 from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

7. AMF to SMF +PGW-C (V-SMF in case of roaming and Home-routed case): Nsmf_PDUSession_UpdateSMContext Request (Handover Complete indication for PDU Session ID).

Handover Complete is sent per each PDU Session to the corresponding SMF +PGW-C to indicate the success of the N2 Handover.
8. The SMF + PGW-C (V-SMF in case of roaming and Home-routed case) updates the UPF + PGW-U with the V-CN Tunnel Info, indicating that downlink User Plane for the indicated PDU Session is switched to NG-RAN and the CN tunnels for EPS bearers corresponding to the PDU session can be released.

9. If PCC infrastructure is used, the SMF + PGW-C informs the PCF + PCRF about the change of, for example, the RAT type and UE location.

10. SMF +PGW-C to AMF: Nsmf_PDUSession_UpdateSMContext Response (PDU Session ID).
 SMF +PGW-C confirms reception of Handover Complete.
 - If the SMF has not yet registered for this PDU Session ID, then the SMF registers with the UDM using Nudm_UECM_Registration (SUPI, DNN, PDU Session ID) for a given PDU Session as in step 4 of PDU Session Establishment Procedure in clause 4.3.2.

11. For home-routed roaming scenario: The V-SMF provides to the v-UPF with the N3 DL AN Tunnel Info and the N9 UL CN Tunnel Info.

12. The UE performs the EPS to 5GS Mobility Registration Procedure from step 2 per clause 4.11.1.3.3. If the UE holds a native 5G-GUTI it also includes the native 5G-GUTI as an additional GUTI in the Registration Request. The additional GUTI enables the AMF to find the UE’s 5G security context (if available). The AMF provides NG-RAN with a PLMN list in the Handover Restriction List containing at least the serving PLMN, taking into account of the last used EPS PLMN ID and Return preferred indication as part of the Registration procedure execution and AMF signaling to NG-RAN. The Handover Restriction List contains a list of PLMN IDs as specified by TS 23.501 [2].

13. Step 20a - 20b from clause 5.5.1.2.2 (S1-based handover, normal) in TS 23.401 [13].

4.11.1.2.3 Handover Cancel

Instead of completing the handover procedure, the source RAN node (NG-RAN, E-UTRAN) may at any time, during the handover procedure, up to the time when a handover command message is sent to the UE, cancel the handover. The reason for cancelling may be e.g. due to a timer expiration or due to other events within the source RAN node and is initiated by sending a handover cancel message to the source CN node (AMF or MME).

A handover cancel message shall also be sent by the source RAN node after a handover command message is sent to the UE for the case where the handover fails and the UE returns to the old cell or radio contact with the UE is lost. This is done in order to release the resources reserved for the handover in the target system.

![Figure 4.11.1.2.3-1: Handover Cancel procedure](image-url)

1. When the source RAN (NG-RAN, E-UTRAN) decides to cancel the handover to the target system, the source RAN initiates handover cancel message to the source CN node (AMF or MME).

2. After receiving the handover cancel message from the source RAN, if the source CN node or the target CN node is MME, it sends a "Relocation Cancel Request" message to the target CN node (MME or AMF). If both the source CN node and target CN node are AMF, the source AMF invokes the
Namf_Communication_ReleaseUEContext Request (SUPI, PDU Session IDs, Relocation Cancel Indication) toward the target AMF.

3. The target CN node (MME or AMF) triggers release of resources towards target RAN node. The target RAN node releases the AN resources allocated for the handover.

4. If the target CN node is MME, the MME sends the "delete session request (IMSI, Relocation Cancel Indication) to the SGW/SGW-C (see clause 5.5.2.5.2, TS 23.401 [13]). If the target CN node is AMF, the AMF invokes the "Nsmf_PDUSession_UpdateSMContext request (SUPI, Relocation Cancel Indication) toward the SMF. Based on the Relocation Cancel Indication, the target CN node deletes the session resources established during handover preparation phase in SGW(SGW-C and SGW-U)/(SMF and UPF).

4a. [Conditional] The SGW(SGW-C)/SMF releases the corresponding resource in the SGW-U/(T-UPF and/or S-UPF) if allocated during the handover preparation.

5. The target CN node (MME or AMF) sends "Relocation Cancel Response" towards the source CN node (AMF or MME).

6. The source CN node (AMF or MME) responds with handover cancel ACK towards the source RAN.

7. If indirect forwarding tunnel is setup during handover preparation phase then cancellation of handover triggers the source CN node to release the temporary resources used for indirect forwarding.

8. If indirect forwarding tunnel is setup during handover preparation phase then cancellation of handover triggers the target CN node to release the temporary resources used for indirect forwarding.

4.11.1.3 Idle Mode Mobility procedures

4.11.1.3.1 General

When a UE moves from EPC to 5GC, the UE always performs Registration procedure.

When a UE moves from 5GC to EPC, the UE performs either Tracking Area Update or Initial Attach.

The UE performs Tracking Area Update procedure if

- Both the UE and the EPC support "attach without PDN connectivity", or
- The UE has at least one PDU Session for which Session Continuity is supported during interworking, i.e. the UE has EPS Bearer ID and mapped EPS QoS parameters received as described in clause 4.11.1.1.

The UE performs an initial attach procedure if

- The UE is registered without PDU Session in 5GC or the UE is registered only with PDU Session for which Session Continuity is not supported during interworking to EPC, and
- Either the UE or the EPC does not support attach without PDN connectivity.

4.11.1.3.2 5GS to EPS Idle mode mobility using N26 interface

In case of network sharing the UE selects the target PLMN ID according to clause 5.18.3 of TS 23.501 [2].

Clause 4.11.1.3.2 covers the case of idle mode mobility from 5GC to EPC. UE performs Tracking Area Update procedure in E-UTRA/EPS when it moves from NG-RAN/5GS to E-UTRA/EPS coverage area.

The procedure involves a Tracking Area Update to EPC and setup of default EPS bearer and dedicated bearers in EPC in steps 1-11 and re-activation, if required.
The TAU procedure in TS 23.401 [13] is used with the following 5GS interaction:

1. Step 1 from clause 5.3.3.1 (Tracking Area Update procedure with Serving GW change) in TS 23.401 [13].

2. Step 2 from clause 5.3.3.1 (Tracking Area Update procedure with Serving GW change) in TS 23.401 [13] with the modification captured in clause 4.11.1.5.3.

3-4. Steps 3-4 from clause 5.3.3.1 (Tracking Area Update procedure with Serving GW change) in TS 23.401 [13].

5a. The AMF verifies the integrity of the TAU request message and requests the PGW-C+SMF for each PDU Session associated with 3GPP access to provide SM Context by using Nsmf_PDUSession_ContextRequest that also includes the mapped EPS Bearer Contexts. The AMF provides the target MME capability to SMF in the request to allow the SMF to determine whether to include EPS Bearer context for non-IP PDN Type or not. This step is performed for each PDU Session ID and its associated SMF ID the AMF has stored during the PDU Session establishment. In this step, if the AMF correctly validates the UE, then the AMF starts a timer.

NOTE 1: The AMF knows the MME capability to support non-IP PDN type or not through local configuration.

5b. For Non-roaming or roaming with local breakout scenario, if CN Tunnel Info is allocated by the PGW-U+UPF, the SMF sends N4 Session Modification Request to PGW-U+UPF to establish the tunnel for each EPS bearers, and PGW-U+UPF provides the PGW-U Tunnel Info for each EPS bearers to PGW-C+SMF.

NOTE 2: In home routed roaming case, the CN Tunnel Info for each EPS bearer has been prepared by the PGW-C+SMF and provided to the V-SMF as specified in clause 4.11.1.4.1.

5c. SMF returns mapped EPS bearer contexts, which includes PGW-C control plane tunnel information of the PDN connection corresponding to the PDU session, EBI for each EPS bearer, PGW-U tunnel information for each EPS bearer, and EPS QoS parameters for each EPS bearer. For PDU Sessions with PDU Session Type Ethernet or Unstructured, the SMF provides SM Context for non-IP PDN Type.
6. The AMF responds with a Context Response message carrying mapped MM context (including mapped security context), Return preferred and SM EPS UE Context (default and dedicated GBR bearers) to the MME. If the verification of the integrity protection fails, the AMF returns an appropriate error cause. Return preferred is an optional indication by the AMF of a preferred return of the UE to the 5GS PLMN at a later access change to a 5GS shared network.

7 - 14. Steps 6-12 from clause 5.3.3.1 (Tracking Area Update procedure with Serving GW change) in TS 23.401 [13] are performed with following addition:

 In the step 11, the PGW-C+SMF requests the PGW-U+UPF to establish the tunnel for each EPS bearer by providing SGW-U Tunnel Info, and PGW-U Tunnel Info if the PGW-U Tunnel Info is allocated by the PGW-C+SMF.

15. The UDM invokes Nudm_UEContextManagement_DeregistrationNotification to notify the AMF associated with 3GPP access with reason as 5GS to EPS Mobility. The AMF behavior is described in step 14c of clause 4.2.2.2.

16 - 18. Steps 17-21 from clause 5.3.3.1 (Tracking Area Update procedure with Serving GW change) in TS 23.401 [13] with the following modification:

 The MME may provide the eNodeB with a PLMN list in the Handover Restriction List taking into account the last used 5GS PLMN ID and the Return preferred indication. The Handover Restriction List contains a list of PLMN IDs as specified by TS 23.251 [35] clause 5.2a for eNodeB functions.

 The MME may not release the signaling connection with the UE based on the indication received in the step 1 that the UE is moving from 5GC.

19. [conditional] Dedicated bearer setup may be triggered by the PCRF+PCF which may also provide the mapped QoS parameters, if PCC is deployed. This procedure is specified in TS 23.401 [13], clause 5.4.1.

4.11.1.3.3 EPS to 5GS Mobility Registration Procedure (Idle and Connected State) using N26 interface

Figure 4.11.1.3.3-1 describes the mobility procedure from EPS to 5GS when N26 is supported for idle and connected states.
The Registration procedure is triggered, e.g. the UE moves into NG-RAN coverage. Step 2 to 9 except step 5, 6 and 8 follow the Registration procedure in clause 4.2.2 with following enhancement.

The UE sends Registration Request with registration type set to "Mobility Registration Update", including 5G-GUTI mapped from EPS GUTI as the old GUTI, the native 5G-GUTI (if available) as additional GUTI and indicating that the UE is moving from EPC. The additional native 5G-GUTI enables the AMF to retrieve the UE's MM context from the old AMF (if available). The UE includes at least the S-NSSAIs associated with the established PDN connections in the Requested NSSAI in RRC and NAS (as described in TS 23.501 [2] clause 5.15.7.2 or 5.15.7.3).

In the case of idle mode mobility the UE additionally includes a TAU request message integrity protected using the EPS security context (for further security verification by the MME) in the Registration Request. If the UE holds a native 5G-GUTI for this PLMN then the UE also includes the GUAMI part of the native 5G-GUTI in RRC to enable the NG-RAN to route the Registration Request to the same AMF (if available).

The UE integrity protects the Registration Request message using a 5G security context (if available).

Steps 2-3 of clause 4.2.2.2.2 are performed.

In the case of connected mode mobility, the AMF derives S-NSSAIs values for the Serving PLMN based on the S-NSSAIs values for the HPLMN associated with the established PDN connections, the AMF may send the S-NSSAIs values for the HPLMN to NSSF and NSSF provides corresponding S-NSSAIs values for VPLMN to AMF.

Step 5, 6 and 8 are not performed when this procedure is part of EPS to 5GS handover.
5. This step is only performed for IDLE mode mobility. The target AMF derives the MME address and 4G GUTI from the old 5G-GUTI and sends Context Request to MME including EPS GUTI mapped from 5G-GUTI and the TAU request message according to TS 23.401 [13].

6. This step is only performed for IDLE mode mobility. Step 5 from clause 5.3.3.1 (Tracking Area Update procedure with Serving GW change) in TS 23.401 [13] with the modification captured in clause 4.11.1.5.3.

The AMF converts the received EPS MM Context into the 5GS MM Context. The UE context includes IMSI, ME Identity, UE security context, UE Network Capability, and EPS Bearer context(s). An EPS Bearer context includes the SMF + PGW-C address and APN.

The Context Response may include new information Return Preferred. Return Preferred is an indication by the MME of a preferred return of the UE to the last used EPS PLMN at a later access change to an EPS shared network. Based on the Return Preferred indication, the AMF may store the last used EPS PLMN ID in UE Context.

7. Steps 8-9 of clause 4.2.2.2.2 are optionally performed.

8. This step is only performed for IDLE mode mobility. The target AMF sends Context Acknowledge (Serving GW change indication) to MME according to TS 23.401 [13].

9. Steps 11-12 of clause 4.2.2.2.2 are optionally performed.

Step 10, 12, 13 are performed only if the target AMF is different from the old AMF and the old AMF is in the same PLMN as the target AMF.

10. If the UE's additional 5G-GUTI was included in the Registration Request, the target AMF can obtain UE's SUPI and MM Context, event subscription information by each consumer NF and the list of SM PDU Session ID/associated SMF ID for the UE using one of the following three options:

- AMF may invoke the Namf_Communication_UEContextTransfer to the old AMF identified by the additional 5G-GUTI to retrieve UE context; or

- if the old AMF and the new AMF are in the same AMF Set and UDSF is deployed, AMF may invoke Nudsf_UnstructuredDataManagement_Query service operation for the UE identified by the additional 5G-GUTI from the UDSF to retrieve UE context; or

- if the old AMF and the new AMF are in the same AMF Set, AMF may use implementation specific means to share UE context.

11. Steps 13-14c of clause 4.2.2.2.2 are performed, with the following difference: if MM context retrieved indicates non-3GPP access, then the target AMF indicates to the UDM that the target AMF identity to be registered in the UDM applies to both 3GPP and non-3GPP accesses.

12. The UDM invokes Nudm_UECM_DeregistrationNotification to the old AMF. The UDM may update UE context in AMF information from UDR by Nudr_DM_Update.

13. The old AMF unsubscribes with the UDM for subscription data using Nudm_SDM_Unsubscribe. The UDM may unsubscribe to changes for the same data from UDR by using Nudr_DM_Unsubscribe.

14. Steps 16-20 of clause 4.2.2.2.2 are optionally performed (initiated by target AMF) with the following addition:

In the home-routed roaming case and idle state mobility, the AMF selects default V-SMFs and invokes Nsmf_PDUSession_CreateSMContext service operation of the V-SMF to create an association with the AMF. It includes EPS Bearer ID, H-SMF ID, default S-NSSAI and indicates all the PDU Session(s) to be re-activated as received in the Registration request message along with List Of PDU Sessions To Be Activated. The V-SMF creates the association and based on the received SMF ID, the V-SMF invokes Nsmf_PDUSession_UpdateSMContext service operation of the H-SMF and provides the information received from the AMF.

In the home-routed roaming case and connected state mobility, the AMF derives the corresponding S-NSSAI value for the Serving PLMN based on S-NSSAI value for the HPLMN received from PGW-C+SMF. If two values are different, the AMF invokes Nsmf_PDU_Session_UpdateSMContext(PDU Session ID, S-NSSAI value for the Serving PLMN). The V-SMF updates 5G AN with the new S-NSSAI of VPLMN by sending a N2 SM message to 5G AN via AMF.
3GPP TS 23.502 version 15.2.0 Release 15

- The H-SMF finds the corresponding PDU Session based on the PDN Connection Context in the request. The H-SMF initiates N4 Session modification procedure to establish the CN tunnel for the PDU Session, and for Idle state mobility registration, release the resource of the CN tunnels for EPS bearers corresponding to the PDU session as well. If the CN Tunnel info is allocated by the PGW-C+SMF, the tunnel info for PDU session is provided to PGW-U+UPF. If the CN Tunnel info is allocated by PGW-U+UPF, the tunnel info for PDU Session is provided to the PGW-C+SMF. The H-SMF responds V-SMF with the PDU Session ID corresponding to the PDN Connection Context in the request, the allocated EBI(s) information, the S-NSSAI of the PDU Session, S-NSSAI of HPLMN, and other PDU session parameters, such as PDU Session Type, Session AMBR in the Nsmf_PDUSession_Update response. The V-SMF updates its SM contexts and returns a Nsmf_PDUSession_CreateSMContextResponse message including the information received from the H-SMF. The V-SMF also includes the N2 SM Context in the response message sent to the AMF if the corresponding PDU Session is in the received List Of PDU Sessions To Be Activated. The V-SMF stores an association of the PDU Session ID and the H-SMF ID. The AMF stores the V-SMF ID and it also stores S-NSSAI and the allocated EBI(s) associated to the PDU Session ID. The AMF derives the S-NSSAI value for the Serving PLMN based on S-NSSAI value for the HPLMN, and sends the S-NSSAI value for the Serving PLMN to V-SMF by invoking Nsmf_PDUSession_UpdateSMContext service operation. The V-SMF updates NG RAN with the S-NSSAI value for the Serving PLMN via N2 SM message.

- If the SMF has not yet registered for this PDU Session ID, then the SMF registers with the UDM using Nudm_UECM_Registration (SUPI, DNN, PDU Session ID) for a given PDU Session as in step 4 of PDU Session Establishment Procedure in clause 4.3.2.

In non-roaming and LBO cases, AMF invokes Nsmf_PDUSession_CreateSMContext Request (UE EPS PDN Connection) service operation of the PGW-C+SMF and indicates all the PDU Session(s) to be re-activated as received in the Registration request message along with List Of PDU Sessions To Be Activated. This step is performed for each PDN Connection and the corresponding PGW-C+SMF address/ID in the UE context the AMF received in Step 6.

If the P-GW-C+SMF (H-SMF in case of home-routed roaming case) determines that seamless session continuity from EPS to 5GS is not supported for the PDU Session, then it does not provide SM information for the corresponding PDU Session but includes the appropriate cause code for rejecting the PDU Session transfer within the N2 SM Information. The PGW-C+SMF finds the corresponding PDU Session based on the PDN Connection Context in the request. The PGW-C+SMF initiates N4 Session modification procedure to establish the CN tunnel for the PDU Session, and for Idle state mobility registration, release the resource of the CN tunnels for EPS bearers corresponding to the PDU session as well. If the CN Tunnel info is allocated by the PGW-C+SMF, the tunnel info for PDU session is provided to PGW-U+UPF. If the CN Tunnel info is allocated by PGW-U+UPF, the tunnel info for PDU Session is provided to the PGW-C+SMF. The PGW-C+SMF updates its SM contexts and returns the AMF a Nsmf_PDUSession_UpdateSMContextResponse message including the PDU Session ID corresponding to the PDN Connection Context in the request, the allocated EBI(s) information, the S-NSSAI of the PDU Session, and the N2 SM Context if the corresponding PDU Session is in the received List Of PDU Sessions To Be Activated. The AMF stores an association of the PDU Session ID and the SMF ID, S-NSSAI, and the allocated EBI(s) associated to the PDU Session ID.

NOTE: For Connected State mobility registration, the release of CN tunnels for EPS bearers corresponding to the PDU session is performed in the handover execution phase.

If the PDN Type of a PDN Connection in EPS is non-IP, and it was originally established as Ethernet PDU Session when UE was camping in 5GS (known based on local context information that was set to PDU Session Type Ethernet in UE and SMF), the PDU Session Type in 5GS shall be set to Ethernet by the SMF and UE. In case the PDN type of a PDN Connection in EPS is non-IP, and is locally associated in UE and SMF to PDU Session Type Unstructured, the PDU Session Type in 5GS shall be set to Unstructured by the SMF and UE.

15 - 16. Step 13 - 14 from clause 5.3.3.1 (Tracking Area Update procedure with Serving GW change) in TS 23.401 [13]. Subsequently, the steps 18 - 19 from clause 5.3.3.1 (Tracking Area Update procedure with Serving GW change) in TS 23.401 [13] are also executed.

17-18. These steps follow the steps 21 and 22 of Registration procedure in clause 4.2.2.2.2.

The Registration Accept message shall include the updated 5G-GUTI to be used by the UE in that PLMN over any access. If the active flag was included in the Registration request, The AMF may provide NG-RAN with a Handover Restriction List taking into account the last used EPS PLMN ID and the Return preferred indication. The Handover Restriction List contains a list of PLMN IDs as specified by TS 23.501 [2]. The Allowed NSSAI
in the Registration Accept message shall contain at least the S-NSSAI(s) corresponding to the active PDN Connection(s) and the corresponding mapping to the HPLMN S-NSSAI(s).

If a native 5G security for 3GPP access is available in the AMF (or has been retrieved from the old AMF), the AMF may continue to use this security context. Otherwise, the AMF shall either create the mapped security context based on the EPS security context obtained from the MME or initiate an authentication of the UE.

4.11.1.4 Procedures for EPS bearer ID allocation

4.11.1.4.1 EPS bearer ID allocation

Following procedures are updated to allocate EPS bearer ID(s) towards EPS bearer(s) mapped from QoS flow(s) and provide the EPS bearer ID(s) to the NG-RAN:

- UE requested PDU Session Establishment (Non-roaming and Roaming with Local Breakout (clause 4.3.2.2.1).
- UE requested PDU Session Establishment (Home-routed Roaming (clause 4.3.2.2.2).
- UE or network requested PDU Session Modification (non-roaming and roaming with local breakout) (clause 4.3.3.2).
- UE or network requested PDU Session Modification (home-routed roaming) (clause 4.3.3.3).
1. Procedure as listed in this step is initiated as specified in the relevant clauses of this specification. The relevant steps of the procedure as specified in the figure above are executed.

2. If the PGW-C+SMF (or H-SMF in case of home routed case), determines, e.g. based on operator policies, S-NSSAI, that EPS bearer ID(s) needs to be assigned to the QoS flow(s) in the PDU Session, PGW-C+SMF invokes Namf_Communication_EBIAssignment Request (PDU Session ID, ARP list) (via V-SMF Nsmf_PDUSession_Update in case of home routed case). When V-SMF receives Nsmf_PDUSession_Update request from H-SMF for EPS bearer ID allocation request, V-SMF needs to invoke Namf_Communication_EBIAssignment Request (PDU Session ID, ARP list). If the PGW-C+SMF (or H-SMF in case of home-routed roaming) serves multiple PDU sessions for the same DNN but different S-NSSAIs for a UE then the SMF shall only request EBIs for PDU sessions served by a common UPF (PSA). In case different UPF (PSA) are serving those PDU sessions, then the SMF chooses one of the UPF (PSA) for this determination based on operator policy.

Steps 3 to 6 apply only when AMF needs to revoke EBI previously allocated for an UE in order to serve a new SMF request of EBI for the same UE.

3. [Conditional] If the AMF has no available EBIs, the AMF may revoke an EBI that was assigned to QoS flow(s) based on the ARP(s) and S-NSSAI stored during PDU Session establishment, EBIs information in the UE
context and local policies. If an assigned EBI is to be revoked, the AMF invokes Nsmf_PDUSession_UpdateSMContext (EBI(s) to be revoked) to request the related SMF (called "SMF serving the released resources") to release the mapped EPS QoS parameters corresponding to the EBI to be revoked. The AMF stores the association of the assigned EBI, ARP pair to the corresponding PDU Session ID and SMF address.

4. The "SMF serving the released resources" that receives the request in step 3 shall invoke Namf_Communication_N1N2MessageTransfer (N2 SM information (PDU Session ID, EBI(s) to be revoked), N1 SM container (PDU Session Modification Command (PDU Session ID, EBI(s) to be revoked))) to inform the (R)AN and the UE to remove the mapped EPS QoS parameters corresponding to the EBI(s) to be revoked. In home routed roaming scenario, the H-SMF includes EBI(s) to be revoked to V-SMF to inform V-SMF to remove the mapped EPS bearer context corresponding to the EBI(s) to be revoked.

NOTE 1: The SMF can also decide to remove the QoS flow if it is not acceptable to continue the service when no corresponding EPS QoS parameters can be assigned.

The "SMF serving the released resources" requests the PGW-U+UPF to release N4 Session corresponding to the revoked EBI(s).

In home routed roaming case, the V-SMF starts a VPLMN initiated QoS modification for the PDU Session and the Namf_Communication_N1N2MessageTransfer is invoked by the V-SMF based on the corresponding QoS modification message received from H-SMF.

5. If the UE is in CM-CONNECTED state, the AMF sends N2 PDU Session Request (N2 SM information received from SMF, NAS message (PDU Session ID, N1 SM container (PDU Session Modification Command))) Message to the (R)AN.

If the UE is in CM-IDLE state and an ATC is activated, the AMF updates and stores the UE context based on the Namf_Communication_N1N2MessageTransfer and step 5-6 are skipped. When the UE is reachable, e.g. when the UE enters CM-CONNECTED state, the AMF forwards the N1 message to synchronize the UE context with the UE.

6. The rest steps of the procedure are executed as specified in the figure above.

7 If the AMF successfully assigns EBI(s), it responds with the assigned EBI(s). Otherwise, it responds with a cause indicating EBI assignment failure.

If a PDU Session from another SMF already exists towards the same DNN, the AMF either rejects the EBI assignment request, or revokes the EBI(s) from the existing PDU Session(s) to the same DNN but different SMF. The AMF makes the decision based on the operator policy.

NOTE 2: The above applies only when the S-NSSAI(s) for the PDU Sessions are different, otherwise the same SMF is selected for PDU Sessions to the same DNN.

8. The PGW-C+SMF sends an N4 Session Establishment Request/modification to the PGW-U+UPF.

For home routed roaming scenario, if the EBI is assigned successfully, the PGW-C+SMF prepares the CN Tunnel Info for each EPS bearer. If the CN Tunnel info is allocated by the PGW-C+SMF, the PGW-U tunnel info for the EPS bearer may be provided to PGW-U+UPF. If the CN Tunnel info is allocated by PGW-U+UPF, the PGW-U+UPF sends the PGW-U tunnel info for the EPS bearer to the PGW-C+SMF.

NOTE 3: In the home routed roaming scenario the PGW-C+SMF prepares the CN Tunnel Info for each EPS bearer and provide it to V-SMF. Thus when the UE move to EPC network, the V-SMF does not need interact with the PGW-C+SMF to get the EPS bearer context(s).

NOTE 4: If the CN Tunnel info is allocated by the PGW-C+SMF and not provided to PGW-U+UPF at PDU Session establishment, when the UE moves to the target RAT the PGW-U+UPF cannot receive UL data until the PGW-C+SMF has provided the Tunnel Info to the PGW-U+UPF in N4 Session Modification. This causes a short interruption to the UL data during the intersystem handover execution.

9. [Conditional] If the PGW-C+SMF that invoked Namf_Communication_EBIAssignment Request receives any EBI(s) from the AMF, it needs to include the received EBI(s) into both the mapped EPS bearer context and the corresponding QoS Flow(s) to be sent to the UE in the N1 SM container. PGW-C+SMF also includes the mapping between the received EBI(s) and QFI(s) into the N2 SM information to be sent to the NG-RAN. In home routed roaming scenario, the PGW-C+SMF generates EPS bearer context which includes PGW-C control.
plane tunnel information of the PDN connection corresponding to the PDU session (in case of PDU session establishment procedure), EBI for each EPS bearer, PGW-U tunnel information for each EPS bearer, and EPS QoS parameters for each EPS bearer, and sends it to V-SMF via Nsmf_PDUSession_Create Response in case of PDU Session Establishment, or via Nsmf_PDUSession_Update Request in case of PDU Session Modification, toward the V-SMF. The V-SMF stores the EPS bearer context.

10. The EPS Bearer ID(s) is sent to the UE and NG-RAN. The relevant steps of the procedure as specified in the figure above are executed.

4.11.1.4.2 EPS bearer ID transfer

Following procedures are updated to transfer EPS bearer ID(s) allocation information to target AMF.

- step 9 in figure 4.11.1.3.3-1 in EPS to 5GS Idle mode mobility with N26 (clause 4.11.1.3.2).
- step 11/12 in figure 4.11.1.2.2.2-1 in EPS to 5GS handover using N26 interface prepare phase (clause 4.11.1.2.2.2).

Figure 4.11.1.4.2-1: Procedures for EPS bearer IDs transfer

1. The AMF sends an Nsmf_PDUSession_UpdateSMContext Request message to the SMF in above case;
2. The PGW-C+SMF to AMF: Nsmf_PDUSession_UpdateSMContext Response with the allocated EBI information.

4.11.1.4.3 EPS bearer ID revocation

Following procedures are updated to revoke the EPS bearer ID(s) assigned to the QoS flow(s):

- UE or network requested PDU Session Release for Non-roaming and Roaming with Local Breakout (clause 4.3.4.2).
- UE or network requested PDU Session Release for Home-routed Roaming (clause 4.3.4.3).
- UE or network requested PDU Session Modification (non-roaming and roaming with local breakout) (clause 4.3.3.2).
- UE or network requested PDU Session Modification (home-routed roaming) (clause 4.3.3.3).

When the PDU Session is released as described in clauses 4.3.4.2 or 4.3.4.3, and the SMF invokes Nsmf_PDUSession_StatusNotify to notify AMF that the SM context for this PDU Session is released, the AMF releases the association between the SMF ID and the PDU Session ID, and releases the EBI list for this PDU Session.

When the UE initiates a PDU Session Modification as described in clauses 4.3.3.2 or 4.3.3.3, and the SMF needs to release the assigned EBI from a QoS flow (e.g. when the QoS flow is released), the SMF can indicate the Released EBI list in the Nsmf_PDUSession_UpdateSMContext Response to the AMF. The AMF releases the corresponding EBI allocation for this PDU Session.

When the SMF initiates a PDU Session Modification as described in clauses 4.3.3.2 or 4.3.3.3, and the SMF needs to release the assigned EBI from a QoS flow (e.g. when the QoS flow is released), the SMF invokes Namf_Communication_EBIAssignment and indicates the Released EBI list to the AMF. The AMF releases the corresponding EBI allocation for this PDU Session.
4.11.1.5 Impacts to EPS Procedures

4.11.1.5.1 General

This clause captures changes to procedures in TS 23.401 [13] due to interworking with 5GS based on N26. The handover procedures between 5GS and 5GS captured in clause 4.11.1.2 capture impacts to TS 23.401 [13] clause 5.5.1.2.2 (S1-based handover, normal).

4.11.1.5.2 E-UTRAN Initial Attach

The E-UTRAN Initial Attach procedure specified in TS 23.401 [13] clause 5.3.2.1 is impacted as shown in Figure 4.11.1.5.2-1 when interworking with 5GS using N26 interface is supported.

1. The UE sends an Attach Request message as specified in TS 23.401 [13] with the following modifications:
 - If the UE was previously registered in 5GS, the UE provides EPS GUTI mapped from 5G-GUTI sent as old Native GUTI and indicates that it is moving from 5GC.
 - A UE that supports 5GC NAS procedures shall indicate its support of 5G NAS as part of its UE Core Network Capability IE.
 - If the UE includes ESM message container for PDN Connection Establishment and the Request type is “initial request”, the UE shall allocate a PDU Session ID and include it in the PCO. The PDU Session ID shall be unique across all other PDN connections of the UE.

2. The relevant steps of the procedure as specified in the figure above are executed.

3. Step 15 as specified in TS 23.401 [13] clause 5.3.2.1 with the following modification:
 - The PGW-C+SMF allocates 5G QoS parameters corresponding to PDN connection, e.g. Session AMBR, QoS rules and QoS Flow level QoS parameters if needed for the QoS Flow associated with the QoS rule(s), and then includes them in PCO.

4. The relevant steps of the procedure as specified in the figure above are executed.

5. Step 18 as specified in TS 23.401 [13] clause 5.3.2.1 with the following modification:
 - The 5G QoS parameters for the PDU session and for the QoS Flow associated with the default QoS rule are stored in the UE.

6. The relevant steps of the procedure as specified in the figure above are executed.

4.11.1.5.3 Tracking Area Update

The following changes are applied to clause 5.3.3.1 (Tracking area update procedure with Serving GW change) in TS 23.401 [13]:

Figure 4.11.1.5.2-1 Impacts to E-UTRAN Initial Attach procedure

- Step 2: UE shall include EPS GUTI that is mapped from 5G-GUTI following the mapping rules specified in TS 23.501 [2]. The UE indicates that it is moving from 5GC. The UE integrity protects the TAU request message using the 5G security context.

- Step 5 and message Context Response may include new information Return preferred.

 Return preferred is an indication by the AMF of a preferred return of the UE to the last used 5GS PLMN at a later access change to a 5GS shared network.

 The MME may store the last used 5GS PLMN ID in UE’s MM Context.

 The MME may provide E-UTRAN with a Handover Restriction List taking into account the last used 5GS PLMN ID and the Return Preferred indication. The Handover Restriction List contains a list of PLMN IDs as specified by TS 23.251 [35].

- Step 13 and HSS use of Cancel Location

 The HSS/UDM de-register any old AMF node by sending an Nudm_UECM_DeregistrationNotification service operation to the registered AMF for 3GPP access. The registered AMF for 3GPP access initiates AM Policy Association Termination procedure as defined in clause 4.16.3.2.

- Step 17: The MME may provide the eNodeB with a PLMN list as part of the TAU procedure execution and the procedure signaling from MME to eNodeB. The Handover Restriction List contain a list of PLMN IDs as specified by TS 23.251 [35] clause 5.2a for eNodeB functions.

- Step 20 and MME processing of the partial Tracking Area Update (TAU) procedure.

 The MME may use an indication Return preferred from Context Response at step 6 when deciding the PLMN list content.

 The MME may provide the eNodeB with a PLMN list. The Handover Restriction List contains a list of PLMN IDs as specified by TS 23.501 [2].

4.11.1.5.4 Session Management

4.11.1.5.4.1 PDN Connection Request

The UE Requested PDN Connectivity Procedure specified in TS 23.401 [13] clause 5.10.2 is impacted as shown in Figure 4.11.1.5.4.1-1 when interworking with 5GS is supported.

![Figure 4.11.1.5.4.1-1 Impacts to UE Requested PDN Connectivity Procedure](image)

1. UE sends a PDN connectivity Request to the MME as specified in Step 1 in TS 23.401 [13] clause 5.10.2 with the following modification:

 - If the UE is 5G NAS capable and the Request type is "initial request", the UE shall allocate a PDU Session ID and include it in the PCO. The PDU Session ID shall be unique across all other PDN connections of the UE.
2. The relevant steps of the procedure as specified in the figure above are executed.

3. Step 6 as specified in TS 23.401 [13] clause 5.10.2 is executed with the following modification:
 - If the PGW-C+SMF accepts to provide interworking of the PDN connection with 5GC, the PGW-C+SMF shall allocate 5G QoS parameters corresponding to PDN connection, e.g. Session AMBR, QoS rules and QoS Flow level QoS parameters if needed for the QoS Flow(s) associated with the QoS rule(s) and then include them in PCO.

4. The relevant steps of the procedure as specified in the figure above are executed.

5. Step 8 as specified in TS 23.401 [13] clause 5.10.2 with the following modification:
 - If 5G QoS parameters are included in the PCO, the UE shall store them. If 5G QoS parameters are not included in the PCO, the UE shall note that session continuity for this PDN connection on mobility to 5G is not provided by the network.

6. The relevant steps of the procedure as specified in the figure above are executed.

4.11.1.5.4.2 UE or MME Requested PDN Disconnection

The procedures as specified in TS 23.401 [13] clause 5.10.3 applies with the following modification:

Step 8. (RRC Connection Reconfiguration): On receiving the NAS Deactivate EPS Bearer Context Request(LBI) message, if the UE has mapped 5G parameters for the PDU session, the UE deletes the corresponding mapped 5GS PDU session.

4.11.1.5.4.3 Dedicated Bearer Activation, Bearer Modification and Bearer Deactivation

The procedures specified in TS 23.401 [13] clause 5.4.1 through 5.4.5 apply with the following modifications:

- In the step where the PDN-GW sends a Create Bearer Request, i.e.
 - Step 2 in TS 23.401 [13] clause 5.4.1 (Dedicated Bearer Activation)
 the PCO includes mapped 5GS QoS parameters for the EPS bearer being created.

- In the step where the PDN-GW sends an Update Bearer Request, i.e.,
 - Step 2 in TS 23.401 [13] clause 5.4.2.1 (PDN GW initiated bearer modification with bearer QoS update)
 - Step 5 in TS 23.401 [13] clause 5.4.2.2 (HSS Initiated Subscribed QoS Modification)
 - Step 2 in TS 23.401 [13] clause 5.4.3 (PDN GW initiated bearer modification without bearer QoS update) if TFT or APN-AMBR is being modified
 the PCO includes the modification to the mapped 5GS QoS parameters, if impacted by the modification, corresponding to the EPS bearer being modified.

- In the step where the UE receives the NAS Session Management message from the MME which contains the PCO relayed via the MME, i.e:
 - Step 5 in TS 23.401 [13] clause 5.4.1 (Dedicated Bearer Activation)
 - Step 5 in TS 23.401 [13] clause 5.4.2.1 (PDN GW initiated bearer modification with bearer QoS update)
 - Step 5 in TS 23.401 [13] clause 5.4.3 (PDN GW initiated bearer modification without bearer QoS update) if TFT or APN-AMBR is being modified
 the UE updates the mapped 5G QoS parameters as included in the PCO from the PDN-GW.

- In the step where the UE receives EPS bearer request message, i.e
 - Step 5 in TS 23.401 [13] clause 5.4.4.1 (PDN GW initiated bearer deactivation)
 the UE also deletes the mapped 5GS QoS flow and its associated parameter.
4.11.1.5.5 5GS to EPS handover using N26 interface

In step 3 of clause 4.11.1.2.1, the Forward Relocation Request may include new information Return Preferred.

Return Preferred is an indication by the AMF of a preferred return of the UE to the last used 5GS PLMN at a later access change to a 5GS shared network.

The MME may store the last used 5GS PLMN ID in UE’s MM Context.

The MME may provide E-UTRAN with a Handover Restriction List taking into account the last used 5GS PLMN ID and the Return Preferred indication. The Handover Restriction List contains a list of PLMN IDs as specified by TS 23.251 [35].

4.11.2 Interworking procedures without N26 interface

4.11.2.1 General

Clause 4.11.2 defines the procedures to support interworking between 5GS and EPS without any N26 interface between AMF and MME.

4.11.2.2 5GS to EPS Mobility

The following procedure is used by UEs in single-registration or dual registration mode on mobility from 5GS to EPS.

In the case of network sharing the UE selects the target PLMN ID according to clause 5.18.3 of TS 23.501 [2].

Figure 4.11.2.2-1: Mobility procedure from 5GS to EPS without N26 interface
The UE operating in single-registration mode can start the procedure from Step 1 or Step 5. The UE operating in dual-registration mode starts the procedure from Step 5.

NOTE: The network has indicated the "Interworking without N26" to the UE. To support IP address preservation, the UE in single-registration mode starts the procedure from Step 5. If the UE in single-registration mode starts the procedure from Step 1, the IP address preservation is not provided.

0. UE is registered in 5GS.

1. Step 1 as in clause 5.3.3.1 (Tracking Area Update) in TS 23.401 [13].

2. Step 2 as in clause 5.3.3.1 (Tracking Area Update) in TS 23.401 [13] with the following modifications:

 The UE shall provide an EPS-GUTI that is mapped from the 5G-GUTI following the mapping rules specified in TS 23.501 [2]. The UE indicates that it is moving from 5GC.

3. Step 3 as in clause 5.3.3.1 (Tracking Area Update) in TS 23.401 [13].

4. If the MME determined that the old node is an AMF based on UE’s GUTI mapped from 5G-GUTI and the MME is configured to support 5GS-EPS interworking without N26 procedure, the MME sends a TAU Reject to the UE.

5. Step 1 as in clause 5.3.2.1 (E-UTRAN Initial Attach) in TS 23.401 [13] with the modifications captured in clause 4.11.2.4.1.

6. Step 2 as in clause 5.3.2.1 (E-UTRAN Initial Attach) in TS 23.401 [13].

7. Steps 4-7 as in clause 5.3.2.1 (E-UTRAN Initial Attach) in TS 23.401 [13], with the modifications captured in clause 4.11.2.4.1.

8. Step 8 as in clause 5.3.2.1 (E-UTRAN Initial Attach) in TS 23.401 [13], with the modifications captured in clause 4.11.2.4.1.

9. Step 11 as in clause 5.3.2.1 (E-UTRAN Initial Attach) in TS 23.401 [13], with the following modifications:

 The subscription profile the MME receives from HSS+UDM includes the DNN/APN and PGW-C+SMF ID for each PDU Session established in 5GC.

10. Steps 12-24 as in clause 5.3.2.1 (E-UTRAN Initial Attach) in TS 23.401 [13], with the modifications as described in clause 4.11.2.4.1.

11. Step 25 as in clause 5.3.2.1 (E-UTRAN Initial Attach) in TS 23.401 [13].

12. Step 26 as in clause 5.3.2.1 (E-UTRAN Initial Attach) in TS 23.401 [13].

13. If the UE has remaining PDU Sessions in 5GS which it wants to transfer to EPS and maintain the same IP address/prefix, the UE performs the UE requested PDN Connectivity Procedure as specified in TS 23.401 [13] clause 5.10.2 and sets the Request Type to "handover" in Step 1 of the procedure. UE provides an APN and the PDU Session ID corresponding to the PDU Session it wants to transfer to EPS. The UE provides the PDU Session ID in PCO as described in clause 4.11.1.1.

 UEs in single-registration mode performs this step for each PDU Session immediately after completing the E-UTRAN Initial Attach procedure. UEs in dual-registration mode may perform this step any time after the completing of E-UTRAN Initial Attach procedure. Also, UEs in dual-registration mode may perform this step only for a subset of PDU Sessions.

 The MME determines the PGW-C+SMF address for the Create Session Request based on the APN received from the UE and the subscription profile received from the HSS+UDM in Step 9 or when the HSS+UDM notifies the MME for the new PGW-C+SMF ID in the updated subscription profile.

 The PGW-C+SMF uses the PDU Session ID to correlate the transferred PDN connection with the PDU Session in 5GC.

As a result of the procedure the PGW-U+UPF starts routing DL data packets to the Serving GW for the default and any dedicated EPS bearers established for this PDN connection.
14. The PGW-C+SMF initiates release of the PDU Session(s) in 5GS transferred to EPS as specified in clause 4.3.4.2.

4.11.2.3 EPS to 5GS Mobility

The following procedure is used by UEs in single-registration mode on idle mode mobility from EPS to 5GS.

In the case of network sharing the UE selects the target PLMN ID according to clause 5.18.3 of TS 23.501 [2]. This procedure is also used by UEs in dual-registration mode to perform registration in 5GS when the UE is also registered in EPC. The procedure is the General Registration procedure as captured in clause 4.2.2. Difference from that procedure are captured below.

The UE has one or more ongoing PDN connections including one or more EPS bearers. During the PDN connection establishment, the UE allocates the PDU Session ID and sends it to the PGW-C+SMF via PCO, as described in clause 4.11.1.1.

Figure 4.11.2.3-1: Mobility procedure from EPS to 5GS without N26 interface

0. The UE is attached in EPC as specified in clause 4.11.2.4.1.
1. Step 1 in clause 4.2.2.2.2 (General Registration) with the following clarifications:

 The UE indicates that it is moving from EPC. The UE in single registration mode provides the Registration type set to "mobility registration update", a 5G-GUTI mapped from the 4G-GUTI (see clause 5.17.2.2: 5G-GUTI mapped from 4G-GUTI) and a native 5G-GUTI (if available) as an Additional GUTI. The UE in dual registration mode provides the Registration type set to "initial registration", and a native 5G-GUTI or SUPI. In single registration mode, the UE also includes at least the S-NSSAIs (with values for the Serving PLMN) associated with the established PDN connections in the Requested NSSAI in RRC Connection Establishment.

2. Step 2 as in clause 4.2.2.2.

3. Step 3 as in clause 4.2.2.2.2 (General Registration), with the following modifications:

 If the Registration type is "mobility registration update" and the UE indicates that it is moving from EPC in Step 1, and the AMF is configured to support 5GS-EPS interworking procedure without N26 interface, the AMF treats this registration request as ‘initial Registration’, and the AMF skips the PDU Session status synchronization.

 NOTE 1: The UE operating in single registration mode includes the PDU Session IDs corresponding to the PDN connections to the PDU Session status.

 If the UE has provided a 5G-GUTI mapped from 4G-GUTI in Step 1 and the AMF is configured to support 5GS-EPS interworking procedure without N26 interface, the AMF does not perform Steps 4 and 5 in clause 4.2.2.2 (UE context transfer from the MME).

 NOTE 2: As the 5G-GUTI mapped from 4G-GUTI is unknown identity to the AMF, the AMF sends an Identity Request to the UE to request the SUPI. The UE responds with Identity Response (SUPI).

4. Steps 6-13 as in clause 4.2.2.2.2 (General Registration).

5. Step 14 as in clause 4.2.2.2.2 (General Registration), with the following modifications:

 If the UE indicates that it is moving from EPC in Step 1 and AMF is configured to support 5GS-EPS interworking without N26 procedure, the AMF sends an Update Location Request message to the HSS+UDM including the ULR-Flags indicating that registration of an MME at the HSS+UDM, if any, shall not be cancelled. If the HSS+UDM supports simultaneous registration of both MME and AMF, the HSS+UDM does not send cancel location to the old MME and includes an indication of support of simultaneous registration of both MME and AMF in the response to the AMF. Otherwise, the HSS+UDM sends cancel location to the old MME and in the response to the AMF there is no indication of support of simultaneous registration of both MME and AMF.

 NOTE 3: If the UE does not maintain registration in EPC, upon reachability time-out, the MME can implicitly detach the UE and release the possible remaining PDN connections in EPC.

 The subscription profile the AMF receives from HSS+UDM includes the DNN/APN and PGW-C+SMF ID for each PDN connection established in EPC.

6. Steps 15-20 as in clause 4.2.2.2.2 (General Registration).

7. Step 21 as in clause 4.2.2.2.2 (General Registration) with the following modifications:

 If the AMF received indication in step 5 that HSS+UDM supports simultaneous registration of both MME and AMF, the AMF includes a “Interworking without N26” indicator to the UE.

 If the UE had provided PDU Session Status information in Step 1, the AMF sets the PDU Session Status to not synchronized.

8. Step 22 as in clause 4.2.2.2.2 (General Registration)

9. UE requested PDU Session Establishment procedure as in clause 4.3.2.2.1.

 If the UE had setup PDN Connections in EPC which it wants to transfer to 5GS and maintain the same IP address/prefix and the UE received "Interworking without N26" indicator in step 7, the UE performs the UE requested PDU Session Establishment Procedure as in clause 4.3.2.2 and sets the Request Type to "Existing PDU Session" or "Existing Emergency PDU Session" in Step 1 of the procedure. The UE provides a DNN, the PDU Session ID and S-NSSAI received from PGW-C+SMF corresponding to the existing PDN connection it wants to transfer from EPS to 5GS.
UEs in single-registration mode performs this step for each PDN connection immediately after the Step 8. UEs in dual-registration mode may perform this step any time after Step 8. Also, UEs in dual-registration mode may perform this step only for a subset of PDU Sessions. The AMF selects the PGW-C+SMF for the Nsmf_PDUSession_CreateSMContext service based on the DNN received from the UE and the PGW-C+SMF ID in the subscription profile received from the HSS+UDM in Step 5 or when the HSS+UDM notifies the AMF for the new PGW-C+SMF ID in the updated subscription profile. AMF includes the PDU Session ID to the request sent to the PGW-C+SMF.

The PGW-C+SMF uses the PDU Session ID to determine the correct PDU Session.

After Step 16a of Figure 4.3.2.2.1-1 in clause 4.3.2.2.1, user plane is switched from EPS to 5GS.

If the SMF has not yet registered for the PDU Session ID, then the SMF registers with the UDM using Nudm_UECM_Registration (SUPI, DNN, PDU Session ID) according to clause 4.3.2 for this PDU Session.

10. The PGW-C+SMF performs release of the resources in EPC for the PDN connections(s) transferred to 5GS by performing the PDN GW initiated bearer deactivation procedure as defined in clause 5.4.4.1 of TS 23.401 [13], except the steps 4-7.

4.11.2.4 Impacts to EPS Procedures

4.11.2.4.1 E-UTRAN Attach

Impact on TS 23.401 [13], clause 5.3.2.1 from adding support for the optional network functionality dual registration mode:

- Step 1:

 The UE constructs the Attach Request message according to the following principles:

 - If UE operates in single-registration mode, the UE indicates that it is moving from 5GC, and provides a native EPS GUTI, if available, otherwise the IMSI, or
 - If the UE operates in dual-registration mode, the UE indicates that it is moving from 5GC and provides native 4G-GUTI, or
 - If the UE sent a TAU in Step 2 and it was rejected because the MME could not derive the UE identity, the UE provides IMSI.

If the UE wants to transfer a PDU Session to EPC as part of the Attach procedure, it includes a PDN CONNECTIVITY Request message in the Attach Request and provides a Request type "Handover", DNN/APN and PDU Session ID of the PDU Session (TS 23.401 [13], clause 5.3.2.1). The UE provides the PDU Session ID in PCO as described in clause 4.11.1.1.

If the TAU was rejected in Step 2 the IP address preservation is not provided. In this case the UE provides IMSI in the Attach Request and does not provide a Request Type "Handover" in the PDN CONNECTIVITY Request if included in the Attach Request.

The UE provides an EPS bearer ID for all mapped EPS bearers in the EPS bearer status. For the initial Attach Request the EPS bearer status is empty.

NOTE 1: The UE is aware the network is configured to support 5GS-EPS interworking without N26 procedure. The UE does not include the EPS bearer IDs corresponding to the 5G QoS flows to the EPS bearer status.

If the UE supports 5GC NAS procedures (see clause 5.17.2 in TS 23.501 [2]), then the UE shall indicate its support of 5G NAS in a NAS indicator.

- Step 3:

 If the UE provided a 4G-GUTI mapped from 5G-GUTI and the MME is configured to support 5GS-EPS interworking without N26 procedure, the MME does not perform Step 3, Identity request to old MME/SGSN/AMF in clause 5.3.2.1 in TS 23.401 [13].

NOTE 2: As the 4G-GUTI mapped from 5G-GUTI is unknown identity to the MME, the MME sends an Identity Request to the UE to request the IMSI. The UE responds with Identity Response (IMSI).
- Step 8:
 If the MME determined that the old node is an AMF based on the indication from the UE and the MME is configured to support 5GS-EPS interworking without N26 procedure, the MME does not include the "initial attach" indication to the HSS+UDM. The HSS+UDM does not send cancel location to the old AMF.

NOTE 3: If the UE does not maintain registration in 5GC, upon reachability time-out, the AMF can implicitly detach the UE and release the possible remaining PDU Sessions in 5GC.

- Step 12:
 The MME determines the PGW-C+SMF address for the Create Session Request based on the APN received from the UE and the subscription profile received from the HSS+UDM.

- Step 13:
 The PGW-C+SMF uses the PDU Session ID received from the UE in PCO to correlate the transferred PDN connection with the PDV Session in 5GC.

In this release, if the Handover Indication is present in the Create Session Request, and the PGW-C+SMF detects it corresponds to a PDU Session for a LADN in 5GC, the PGW-C+SMF rejects the request.

- Step 17:
 If the UE indicated support for 5GC NAS procedures (see clause 5.11.3) and the MME supports procedures for interworking with 5GC without N26, the MME may indicate in the Attach Accept, that interworking without N26 is supported. UE handling of this indicator is defined in TS 23.501 [2].

- Step 23a:
 As a result of the procedure the PGW-U+UPF starts routing DL data packets to the Serving GW for the default and any dedicated EPS bearers established for this PDN connection.

- Step 25:
 Additional condition for the trigger for this step is that the network supports the procedures for 5GC interworking without N26 and that the UE is allowed to use 5GS in the subscription data.

4.11.3 Handover procedures between EPS and 5GC-N3IWF

4.11.3.1 Handover from EPS to 5GC-N3IWF

0. Initial status: one or more PDN connections have been established in EPC between the 5G capable UE and the PGW via E-UTRAN.
1. The UE initiates Registration procedure on untrusted non-3GPP access via N3IWF (with 5G-GUTI is available or SUPI if not) per clause 4.12.2.

2. The UE initiates a UE requested PDU Session Establishment with Existing PDU Session indication in 5GC via Untrusted non-3GPP Access via N3IWF per clause 4.12.5.

The combined PGW+SMF/UPF initiates a PDN GW initiated bearer deactivation as described in TS 23.401 [13] clause 5.4.4.1 to release the EPC and E-UTRAN resources.

4.11.3.2 Handover from 5GC-N3IWF to EPS

0. Initial status: one or more PDU Sessions have been established in 5GC between the UE and the SMF/UPF via untrusted non-3GPP access and N3IWF.

2. The combined PGW+SMF/UPF initiates a network requested PDU Session Release via untrusted non-3GPP access and N3IWF per figure 4.12.7-1 steps 3 to 7 to release the 5GC and N3IWF resources with the following exception:
 - the H-SMF indicates in the Nsmf_PDUSession_Update_Request that the UE shall not be notified. This shall result in the V-SMF not sending the N1 Container (PDU Session Release Command) to the UE.

4.11.4 Handover procedures between EPC/ePDG and 5GS

4.11.4.1 Handover from EPC/ePDG to 5GS

0. PDN Connection established in EPC/ePDG

1. Registration procedure per clause 4.2.2.2.1

2. UE requested PDU Session Establishment per clause 4.3.2.2

3. EPC and ePDG resource release per TS 23.402 figure 7.9.2-1

Figure 4.11.3.2-1: Handover from 5GC-N3IWF to EPS

Figure 4.11.4.1-1: Handover from EPC/ePDG to 5GS
0. Initial status: one or more PDU Sessions have been established between the UE and the EPC/ePDG via untrusted non-3GPP access. The UE has indicated its 5G NAS capability in order for the ePDG to select a combined PGW+SMF, and has provided the PDU Session ID to the combined PGW/SMF.

1. The UE initiates Registration procedure (with 5G-GUTI if available or SUPI if 5G-GUTI is not available) according to clause 4.2.2.2.

2. The UE initiates a UE requested PDU Session Establishment via 3GPP Access according to clause 4.3.2.2 and includes the "Existing PDU Session" indication and the PDU Session ID.

3. The combined PGW+SMF/UPF initiates a PDN GW initiated Resource Allocation Deactivation with GTP on S2b as described in TS 23.402 [26] clause 7.9.2 to release the EPC and ePDG resources.

4.11.4.2 Handover from 5GS to EPC/ePDG

0. Initial status: one or more PDU Sessions have been established between the UE and the SMF/UPF via NG-RAN.

1. The UE connects to an untrusted non-3GPP access and the N3IWF-ePDG selection process results in selecting an ePDG.

2. The UE initiates a Handover Attach procedure as described in TS 23.402 [26] clause 8.6.2.1, except step 11 of referenced figure 8.2.3-1 that corresponds to the release of resources in source system.

3. The combined PGW+SMF/UPF initiates a network requested PDU Session Release via 3GPP access per figure 4.3.4.2-1 steps 1c to 7b to release the 5GC and NG-RAN resources with the following exception:
 - the H-SMF indicates in the Nsmf_PDUSession_Update Request that the UE shall not be notified. This shall result in the V-SMF not sending the N1 Container (PDU Session Release Command) to the UE.

4.12 Procedures for non-3GPP access

4.12.1 General

Clause 4.12 defines the procedures to support non-3GPP access by describing the differences compared to the defined procedures in other clauses.

4.12.2 Registration via Untrusted non-3GPP Access

4.12.2.1 General

Clause 4.12.2 specifies how a UE can register to 5GC via an untrusted non-3GPP access network. It is based on the Registration procedure specified in clause 4.2.2.2.2 and it uses a vendor-specific EAP method called "EAP-5G". The EAP-5G packets utilize the “Expanded” EAP type and the existing 3GPP Vendor-Id registered with IANA under the SMI Private Enterprise Code registry. The “EAP-5G” method is used between the UE and the N3IWF and is utilized only for encapsulating NAS messages (not for authentication). If the UE needs to be authenticated, mutual authentication is executed between the UE and AUSF. The details of the authentication procedure are specified in TS 33.501 [15].
In Registration and subsequent Registration procedures via untrusted non-3GPP access, the NAS messages are always exchanged between the UE and the AMF. When possible, the UE can be authenticated by reusing the existing UE security context in AMF.

4.12.2.2 Registration procedure for untrusted non-3GPP access

The signalling flow in Figure 4.12.2.2-1 does not show all the details of a registration procedure via untrusted non-3GPP access. It shows primarily the steps executed between the UE and N3IWF. All the details of a registration procedure, including interactions with PCF, UDM, etc. are specified in clause 4.2.2.2.2.

Figure 4.12.2.2-1: Registration via untrusted non-3GPP access

1. The UE connects to an untrusted non-3GPP access network with procedures outside the scope of 3GPP and it is assigned an IP address. Any non-3GPP authentication method can be used, e.g. no authentication (in case of a free WLAN), EAP with pre-shared key, username/password, etc. When the UE decides to attach to 5GC network, the UE selects an N3IWF in a 5G PLMN, as described in TS 23.501 [2] clause 6.3.6.
2. The UE proceeds with the establishment of an IPsec Security Association (SA) with the selected N3IWF by initiating an IKE initial exchange according to RFC 7296 [3]. After step 2 all subsequent IKE messages are encrypted and integrity protected by using the IKE SA established in this step.

3. The UE shall initiate an IKE/Auth exchange by sending an IKE/Auth request message. The Auth payload is not included in the IKE/Auth request message, which indicates that the IKE/Auth exchange shall use EAP signalling (in this case EAP-5G signalling).

4. The N3IWF responds with an IKE/Auth response message which includes an EAP-Request/5G-Start packet. The EAP-Request/5G-Start packet informs the UE to initiate an EAP-5G session, i.e. to start sending NAS messages encapsulated within EAP-5G packets.

5. The UE shall send an IKE/Auth request which includes an EAP-Response/5G-NAS packet that contains the Access Network parameters (AN parameters) and a Registration Request message. The AN parameters contain information that is used by the N3IWF for selecting an AMF in the 5G core network. This information includes e.g. the GUAMI, the Selected PLMN ID, the Requested NSSAI and the Establishment cause. The Establishment cause provides the reason for requesting a signalling connection with 5GC.

NOTE 1: The N3IWF does not send an EAP-Identity request because the UE includes its identity in the first IKE/Auth. This is in line with RFC7296, clause 3.16.

6. The N3IWF shall select an AMF based on the received AN parameters and local policy, as specified in TS 23.501 [2], clause 6.5.3. The N3IWF shall then forward the Registration Request received from the UE to the selected AMF within an N2 message. This message contains N2 parameters that include the Selected PLMN ID and the Establishment cause.

7. The selected AMF may decide to request the SUCI by sending a NAS Identity Request message to UE. This NAS message and all subsequent NAS messages are sent to UE encapsulated within EAP/5G-NAS packets.

8. The AMF may decide to authenticate the UE by invoking an AUSF. In this case, the AMF shall select an AUSF as specified in TS 23.501 [2] clause 6.3.4 based on SUPI or SUCI.

The AUSF executes the authentication of the UE as specified in TS 33.501 [15]. The AUSF selects a UDM as described in TS 23.501 [2], clause 6.3.8 and gets the authentication data from UDM. The authentication packets are encapsulated within NAS authentication messages and the NAS authentication messages are encapsulated within EAP/5G-NAS packets. After the successful authentication:

- In step 8h, the AUSF shall send the anchor key (SEAF key) to AMF which is used by AMF to derive NAS security keys and a security key for N3IWF (N3IWF key). The UE also derives the anchor key (SEAF key) and from that key it derives the NAS security keys and the security key for N3IWF (N3IWF key). The N3IWF key is used by the UE and N3IWF for establishing the IPsec Security Association (in step 11).

- In step 8h, the AUSF shall also include the SUPI, if in step 8a the AMF provided to AUSF a SUCI.

NOTE 2: EAP-AKA' or 5G-AKA are allowed for the authentication of UE via non-3GPP access, as specified in TS 33.501 [15]. Figure 4.12.2.2-1 only shows authentication flow using EAP-AKA'.

9a. The AMF shall send a NAS Security Mode Command to UE in order to activate NAS security. If an EAP-AKA' authentication was successfully executed in step 8, the AMF shall encapsulate the EAP-Success received from AUSF within the NAS Security Mode Command message.

9b. The N3IWF shall forward the NAS Security Mode Command message to UE within an EAP/5G-NAS packet.

9c. The UE completes the EAP-AKA’ authentication (if initiated in step 8), creates a NAS security context and an N3IWF key and sends the NAS Security Mode Complete message within an EAP/5G-NAS packet.

9d. The N3IWF relays the NAS Security Mode Complete message to the AMF.

10a. Upon receiving NAS Security Mode Complete, the AMF shall send an NGAP Initial Context Setup Request message that includes the N3IWF key.

10b. This triggers the N3IWF to send an EAP-Success to UE, which completes the EAP-5G session. No further EAP-5G packets are exchanged.

11. The IPsec SA is established between the UE and N3IWF by using the common N3IWF key that was created in the UE in step 9c and received by the N3IWF in step 10a. This IPsec SA is referred to as the "signalling IPsec
SA”. After the establishment of the signalling IPsec SA, the N3IWF notify the AMF that the UE context (including AN security) was created by sending a NGAP Context Setup Complete. The signalling IPsec SA shall be configured to operate in tunnel mode and the N3IWF shall assign to UE an “inner” IP address.

All subsequent NAS messages exchanged between the UE and N3IWF shall be sent via the signalling IPsec SA and shall be carried over IP. The UE shall send NAS messages within IP packets with source address the “inner” IP address of the UE and destination address the NAS_IP_ADDRESS that is received in step 11a. The N3IWF shall send NAS messages within IP packets with source address the NAS_IP_ADDRESS and destination address the “inner” IP address of the UE.

12. The AMF sends the NAS Registration Accept message to the N3IWF. The N2 Message includes the Allowed NSSAI for the access type for the UE.

13. The N3IWF forwards the NAS Registration Accept to UE via the established signalling IPsec SA. If the NAS Registration Request message is received by the N3IWF before the IPsec SA is established, the N3IWF shall store it and forward it to the UE only after the establishment of the signalling IPsec SA.

The AMF provides the Access Type set to "Non-3GPP access” to the UDM when it registers with the UDM.

4.12.2.3 Emergency registration for untrusted non-3GPP Access

Emergency registration procedure is used by UEs requiring to perform emergency services but cannot gain normal services from the network. These UEs are in limited service state as defined in TS 23.122 [22].

The regular registration procedure described in clause 4.12.2 applies with the following differences:

- If the UE has no SUPI and no valid 5G-GUTI, PEI shall be included instead of its encrypted Permanent User ID (SUPI) in the Access Network parameters.

- NSSAI shall not be included by the UE. The AMF shall not send the Allowed S-NSSAIs in the Registration Accept message.

- If the AMF is not configured to support emergency registration, the AMF shall reject any Registration Request that indicates Registration type "emergency registration”.

- If the AMF is configured to support emergency registration for unauthenticated UEs and the UE indicated Registration Type "emergency registration”, the AMF skips the authentication and security setup or the AMF accepts that the authentication may fail and continues the emergency registration procedure.

- If the authentication is performed successfully, the NAS messages will be protected by the NAS security functions (integrity and ciphering). The AMF shall derive the Access Network MSK (AN-MSK) from the Master Key obtained from AUSF during authentication, per TS 33.501 [15], and shall provide it to the N3IWF after the authentication completion using a N2 UE Context Request message as in the regular registration procedure.

- If the authentication is skipped or authentication fails, the NAS messages will not be protected by the NAS security functions (integrity and ciphering). However, the AMF shall create a Access Network MSK (AN-MSK) and shall provide it to the N3IWF after the authentication completion (whenever authentication has failed or has been skipped) using a N2 UE Context Request message. The N3IWF shall use it to complete IKE SA establishment, and shall acknowledge the AMF by sending a N2 UE Context Response message.

NOTE: Per TS 33.501 [15], the UE and the AMF independently generate the KAMF (and derived keys) in an implementation defined way and populate the 5G NAS security context with this KAMF to be used when activating a 5G NAS security context.”

- As in step 14 of figure 4.2.2.2.2-1 for emergency registration, if the UE was not successfully authenticated, the AMF shall not update the UDM. Also for an emergency registration, the AMF shall not check for access restrictions, regional restrictions or subscription restrictions.

- Step 16 of figure 4.2.2.2.2-1 is not performed since UE policy for the UE is not required for emergency registration.
4.12.3 Deregistration procedure for untrusted non-3gpp access

1. The Deregistration procedure is triggered by one of the events:

 1a. For UE-initiated Deregistration as in steps from 1 to 7 of Figures 4.2.2.3.2-1.

 1b. For network initiated deregistration as in steps from 1 to 6 of Figure 4.2.2.3.3-1.

 If the UE is in CM-CONNECTED state either in 3GPP access, non-3GPP access or both,

 - the AMF may explicitly deregister the UE by sending a Deregistration request message (Deregistration type, access type set to non-3GPP) to the UE as in step 2 of Figure 4.2.2.3.3-1.

 - the UDM may want to request the deletion of the subscribers RM contexts and PDU Sessions with the reason for removal set to subscription withdrawn to the registered AMF as in step 1 of Figure 4.2.2.3.3-1.

2. AMF to N3IWF: The AMF sends a N2 Context UE Release Command message to the N3IWF with the cause set to Deregistration to release N2 signalling as defined in step 4 of clause 4.12.4.2.

3. N3IWF to UE: The N3IWF sends INFORMATIONAL EXCHANGE (Delete payload) message to the UE. Delete payload is included to indicate the release of the IKE SA.

4. UE to N3IWF: The UE sends an empty INFORMATIONAL EXCHANGE message to acknowledge the release of the IKE SA as described in RFC 7296 [3]. Non-3GPP access specific resources are released including the IKEv2 tunnel (and the associated IPSec resources) and the local UE contexts in N3IWF (N3 tunnel Id).

5. N3IWF to AMF: The N3IWF acknowledges the N2 UE Context Release Command message by sending N2 UE Context Release Complete message to the AMF as defined in step 7 of clause 4.12.4.2.

4.12.4 N2 procedures via Untrusted non-3GPP Access

4.12.4.1 Service Request procedures via Untrusted non-3GPP Access

The Service Request procedure via Untrusted non-3GPP Access shall be used by a UE in CM-IDLE state over non-3GPP access to request the re-establishment of the NAS signalling connection and the re-establishment of the user plane for all or some of the PDU Sessions which are associated to non-3GPP access.
The Service Request procedure via Untrusted non-3GPP Access shall be used by a UE in CM-CONNECTED state over non-3GPP access to request the re-establishment of the user plane for one or more PDU Sessions which are associated to non-3GPP access.

When the UE is in CM-IDLE state over non-3GPP access, the Service Request procedure via Untrusted non-3GPP Access is as described in clause 4.2.3.2 (UE Triggered Service Request) with the following exceptions:

- The Service Request procedure is never a response to a Paging, i.e. there is no Network Triggered Service Request procedure via Untrusted non-3GPP Access.
- The (R)AN corresponds to an N3IWF.
- The UE establishes a "signalling IPsec SA" with the N3IWF by using the procedure specified in clause 4.12.2 for the registration via untrusted non-3GPP access. In particular, the UE includes the Service Request and the AN parameters in an EAP-5G packet, which is further encapsulated in an IKE_AUTH request.
- The AN parameters include the Selected PLMN ID and Establishment cause. The Establishment cause provides the reason for requesting a signalling connection with the 5GC. The UE includes GUAMI information in the AN parameters. The N3IWF selects the AMF according to GUAMI information.
- The N2 parameters sent from N3IWF to AMF include the Establishment cause.
- The user plane between the UE and N3IWF is established not with RRC signalling but with IKEv2 signalling, as specified in clause 4.12.5 (i.e. by using an IKEv2 Create_Child_SA exchange). The user plane of each PDU Session consists of one or more child SAs.

When the UE is in CM-CONNECTED state over non-3GPP access, the Service Request procedure via Untrusted non-3GPP Access is as described in clause 4.2.3.2 (UE Triggered Service Request) with the following exceptions:

- All NAS signalling exchanged between the UE and network is transferred within the established "signalling IPsec SA".
- The (R)AN corresponds to an N3IWF.
- The user plane between the UE and N3IWF is established not with RRC signalling but with IKEv2 signalling, as specified in clause 4.12.5 (i.e. by using an IKEv2 Create_Child_SA exchange). The user plane of each PDU Session consists of one or more child SAs.

When the UE is in CM-CONNECTED state over non-3GPP access and the network receives downlink data for a PDU Session over non-3GPP access that has no user plane, the steps 1-4a in clause 4.2.3.3 (Network Triggered Service Request) shall be performed with the following exceptions:

- The (R)AN corresponds to an N3IWF.
- The user plane between the UE and N3IWF is established (in step 4a) with IKEv2 signalling, as specified in clause 4.12.5 (i.e. by using an IKEv2 Create_Child_SA exchange). The user plane of each PDU Session consists of one or more child SAs.

4.12.4.2 Procedure for the UE context release in the N3IWF

This procedure is used to release the N2 signalling connection and the N3 User Plane connection. If the procedure is initiated by the AMF the IKEv2 SA for a UE is being released. The procedure will move the UE from CM-CONNECTED to CM-IDLE in AMF, and all UE related context information is deleted in the N3IWF.

Both N3IWF-initiated and AMF-initiated UE context release in the N3IWF procedures are shown in Figure 4.12.4.2-1.
1. The UE has already registered in the 5GC and may have established one or multiple PDU Sessions.

2. The N3IWF detects that the UE is not reachable.

3. The N3IWF sends a N2 UE Context Release Request message to the AMF. This step is equivalent to step 1b of Figure 4.2.6-1.

NOTE: AN Release procedure can also be triggered by an AMF internal event and in that case step 2 and step 3 do not take place.

4. AMF to N3IWF: If the AMF receives the N2 UE Context Release Request from N3IWF or if due to an internal AMF event the AMF wants to release N2 signalling, the AMF sends an N2 UE Context Release Command (Cause) to the N3IWF. The cause indicated is cause from step 3 or a cause due to internal AMF event. This step is equivalent to step 2 of Figure 4.2.6-1.

5. If the IKEv2 tunnel has not been released yet, the N3IWF performs the release of the IPsec tunnel as defined in RFC 7296 [3] indicating to release the IKE SA and any child IPSec SA if existing. The N3IWF sends to the UE the indication of the release reason if received in step 4.

6. The UE sends an empty INFORMATIONAL Response message to acknowledge the release of the IKE SA as described in RFC 7296 [3]. The N3IWF deletes the UE’s context after receiving the empty INFORMATIONAL Response message.

7. N3IWF to AMF: The N3IWF confirms the release of the UE-associated N2-logical connection by returning N2 UE Release Complete (list of PDU Session ID(s) with active N3 user plane) to the AMF as in step 4 defined in clause 4.2.6. The AMF marks the UE as CM-IDLE state in untrusted non-3GPP access.

8. For each of the PDU Sessions in the N2 UE Context Release Complete, the steps 5 to 7 in clause 4.2.6 are performed (PDU Session Update SM Context). After the AMF receives the Nsmf_PDUSession_UpdateSMContext Response as in step 7 of clause 4.2.6, the AMF considers the N3 connection as released. If list of PDU Session ID(s) with active N3 user plane is included in step 3, then this step is performed before step 4.
4.12.4.3 CN-initiated selective deactivation of UP connection of an existing PDU Session associated with Untrusted non-3GPP Access

The procedure described in clause 4.3.7 (CN-initiated selective deactivation of UP connection of an existing PDU Session) is used for CN-initiated selective deactivation of UP connection for an established PDU Session associated with non-3GPP Access of a UE in CM-CONNECTED state, with the following exceptions:

- The NG-RAN corresponds to an N3IWF.
- The user plane between the UE and N3IWF, i.e. child SA(s) for the PDU Session, is released not with RRC signalling but with IKEv2 signalling, as specified in clause 4.12.7.

4.12.5 UE Requested PDU Session Establishment via Untrusted non-3GPP Access

Clause 4.12.5 specifies how a UE can establish a PDU Session via an untrusted non-3GPP access network as well as to hand over an existing PDU Session between 3GPP access and non-3GPP access. The procedure applies in non-roaming, roaming with LBO as well as in home-routed roaming scenarios.

For non-roaming and LBO scenarios, if the UE is simultaneously registered to a 3GPP access in a PLMN different from the PLMN of the N3IWF, the functional entities in the following procedures are located in the PLMN of the N3IWF. For home-routed roaming scenarios, the AMF, V-SMF and associated UPF in VPLMN in the following procedure is located in the PLMN of the N3IWF.

The procedure below is based on the PDU Session Establishment procedure specified in clause 4.3.2.2.1 (for non-roaming and roaming with LBO) and the PDU Session Establishment procedure specified in clause 4.3.2.2.2 (for home-routed roaming).

Figure 4.12.5-1: PDU Session establishment via untrusted non-3GPP access
1. The UE shall send a PDU Session Establishment Request message to AMF as specified in step 1 of clause 4.3.2.2.1. This message shall be sent to N3IWF via the IPsec SA for NAS signalling (established as specified in clause 4.12.2) and the N3IWF shall transparently forward it to AMF in the 5GC.

2a. In case of non-roaming or roaming with Local Breakout, steps 2-11 specified in clause 4.3.2.2.1 are executed according to the PDU Session Establishment procedure over 3GPP access. In case of home-routed roaming, steps 2-14 specified in clause 4.3.2.2.2 are executed according to the PDU Session Establishment procedure over 3GPP access.

2b. As described in step 12 of clause 4.3.2.2.1, the AMF shall send a N2 PDU Session Request message to N3IWF to establish the access resources for this PDU Session.

3. Based on its own policies and configuration, and based on the QoS profiles received in the previous step, the N3IWF shall determine the number of IPsec child SAs to establish and the QoS profiles associated with each IPsec child SA. For example, the N3IWF may decide to establish one IPsec child SA and associate all QoS profiles with this IPsec child SA. In this case, all QoS Flows of the PDU Session would be transferred over one IPsec child SA.

4a. The N3IWF shall send to UE an IKE Create_Child_SA request according to the IKEv2 specification in RFC 7296 [3] to establish the first IPsec child SA for the PDU Session. The IKE Create_Child_SA request indicates that the requested IPsec child SA shall operate in tunnel mode. This request shall include a 3GPP-specific Notify payload which contains (a) the QFI(s) associated with the child SA, (b) the identity of the PDU Session associated with this child SA, (c) optionally, a DSCP value associated with the child SA and (d) an UP_IP_ADDRESS. The use of the UP_IP_ADDRESS is specified in step 8 below.

 If a DSCP value is included, then the UE and the N3IWF shall mark all IP packets sent over this child SA with this DSCP value. The IKE Create_Child_SA request also contains other information (according to RFC 7296 [3]) such as the SA payload, the Traffic Selectors (TS) for the N3IWF and the UE, etc.

4b. If the UE accepts the new IPsec child SA, the UE shall send an IKE Create_Child_SA response according to the IKEv2 specification in RFC 7296 [3]. During the IPsec child SA establishment the UE shall not be assigned an IP address.

4c-4d. If in step 3 the N3IWF determined to establish multiple IPsec child SAs for the PDU Session, then additional IPsec child SAs shall be established, each one associated with one or more QFI(s) and with a UP_IP_ADDRESS.

5. After all IPsec child SAs are established, the N3IWF shall forward to UE via the signalling IPsec SA (see clause 4.12.2.2) the PDU Session Establishment Accept message received in step 2b.

6. The N3IWF shall send to AMF an N2 PDU Session Request Ack.

7. In case of non-roaming or roaming with Local Breakout, all steps specified in clause 4.3.2.2.1 after step 14 are executed according to the PDU Session Establishment procedure over 3GPP access. In case of home-routed roaming, all steps specified in clause 4.3.2.2.2 after step 18 are executed according to the PDU Session Establishment procedure over 3GPP access.

8. On the user-plane:
 - When the UE has to transmit an UL PDU, the UE shall determine the QFI associated with the UL PDU (by using the QoS rules of the PDU Session), it shall encapsulate the UL PDU inside a GRE packet and shall forward the GRE packet to N3IWF via the IPsec child SA associated with this QFI. The header of the GRE packet carries the QFI associated with the UL PDU. The UE shall encapsulate the GRE packet into an IP packet with source address the "inner" IP address of the UE and destination address the UP_IP_ADDRESS associated with the child SA.

 - When the N3IWF receives a DL PDU via N3, the N3IWF uses the QFI and the identity of the PDU Session in order to determine the IPsec child SA to use for sending the DL PDU over NWu. The N3IWF encapsulates the DL PDU inside a GRE packet and copies the QFI in the header of the GRE packet. The N3IWF may include also in the GRE header a Reflective QoS Indicator (RQI), which shall be used by the UE to enable reflective QoS. The N3IWF shall encapsulate the GRE packet into an IP packet with source address the UP_IP_ADDRESS associated with the child SA and destination address the "inner" IP address of the UE.
4.12.6 UE or Network Requested PDU Session Modification via Untrusted non-3GPP access

The UE or network requested PDU Session Modification procedure via untrusted non-3GPP access is depicted in figure 4.12.6-1. The procedure applies in non-roaming, roaming with LBO as well as in home-routed roaming scenarios.

For non-roaming and LBO scenarios, the functional entities in the following procedures are located in the PLMN of the N3IWF.

The procedure below is based on the PDU Session Modification procedure specified in clause 4.3.3.2 (for non-roaming and roaming with LBO) and on the PDU Session Modification procedure specified in clause 4.3.3.3 (for home-routed roaming).

Figure 4.12.6-1: UE or Network Requested PDU Session Modification via untrusted non-3GPP access

1. If the PDU Session Modification procedure is initiated by the UE, the UE shall send a PDU Session Modification Request message to AMF as specified in step 1 of clause 4.3.2.2. The message shall be sent to
N3IWF via the established IPSec SA for NAS signalling. The N3IWF shall transparently forward the PDU Session Modification Request to AMF/SMF.

2. In case of non-roaming or LBO, the steps 1a (from AMF) to 1e and steps 2-3 as per the PDU Session Modification procedure in clause 4.3.3.2 are executed.

 In case of home-routed, the steps 1a (from AMF) to 1d and steps 2-3 as per the PDU Session Modification procedure in clause 4.3.3.3 are executed.

3. The AMF sends N2 PDU Session Request (N2 SM information received from SMF, NAS message) message to the N3IWF. This step is the same as step 4 in clause 4.3.3.2 (for non-roaming and roaming with Local Breakout) and step 5 in clause 4.3.3.3 (for home-routed roaming).

4. The N3IWF may issue IKEv2 signalling exchange with the UE that is related with the information received from SMF according to the IKEv2 specification in RFC 7296 [3]. For example, N3IWF may send an INFOMATIONAL Request for deleting the related child SA or the N3IWF may send an IKE_CREATE_CHILD_SA request to create a new child SA.

5. The N3IWF acknowledges N2 PDU Session Request by sending a N2 PDU Session Response Message to the AMF to acknowledge the success or failure of the request.

6. In case of non-roaming or LBO, step 7 as per the PDU Session Modification procedure in clause 4.3.3.2 is executed. In case of home-routed, the steps 8-10 as per the PDU Session Modification procedure in clause 4.3.3.3 are executed.

7. The N3IWF sends the PDU Session Modification Command to UE (if received in step 3) and receives the response message from UE. Steps 4a/4c and step 7 may happen consecutively. Steps 7b map happen before step 4b/4d.

8. The N3IWF forwards the NAS message to the AMF.

9. For non-roaming and roaming with LBO, all the steps after step 10 in clause 4.3.3.2 are executed according to the general PDU Session Modification procedure. For home-routed roaming, all steps after step 13 in clause 4.3.3.3 are executed according to the general PDU Session Modification procedure.

4.12.7 UE or network Requested PDU Session Release via Untrusted non-3GPP access

Clause 4.12.7 specifies how a UE or network can release a PDU Session via an untrusted non-3GPP access network. The UE requested PDU Session Release procedure via Untrusted non-3GPP access applies in non-roaming, roaming with LBO as well as in home-routed roaming scenarios.

For non-roaming and LBO scenarios, if the UE is simultaneously registered to a 3GPP access in a PLMN different from the PLMN of the N3IWF, the functional entities in the following procedures are located in the PLMN of the N3IWF. For home-routed roaming scenarios, the AMF, V-SMF and associated UPF in VPLMN in the following procedure is located in the PLMN of the N3IWF.

NOTE: If the UE is simultaneously registered to 3GPP access in the same PLMN as non-3GPP access, when non-3GPP access is not available to the UE (e.g. due to out of non-3GPP coverage) or UE is in CM-IDLE for non-3GPP access, the UE may perform the PDU Session Release procedure via 3GPP access as described in clause 4.3.4.
1. One or more PDU sessions are already established for the UE.

2. NAS message (PDU Session Release Request)

3. Non-roaming and LBO: PDU Session Release as per Figure 4.3.2.1-1, Steps 1a to 3
 Home-routed: PDU Session Release as per Figure 4.3.4.3-1, steps 1a to 5

4. N2 Resource Release Request

5. INFORMATIONAL EXCHANGE (Delete payload)

6. INFORMATIONAL EXCHANGE (Delete payload)

7. N2 Resource Release Ack

8. Non-roaming and LBO: PDU Session Release as per Figure 4.3.4.2-1, Step 7
 Home-routed: PDU Session Release as per Figure 4.3.4.3-1, all steps after steps 9-10

9. NAS message (PDU Session Release Command)

10. NAS message (PDU Session Release Ack)

11. N2 Uplink NAS transport

8. Non-roaming and LBO: PDU Session Release as per Figure 4.3.4.2-1, all steps after step 10
 Home-routed: PDU Session Release as per Figure 4.3.4.3-1, all steps after step 12

Figure 4.12.7-1: UE Requested PDU Session Release via Untrusted non-3GPP access

1. One or more PDU Sessions are already established for the UE using the procedure described in clause 4.12.2.

2. The UE sends a NAS message (N1 SM container (PDU Session Release Request), PDU Session ID) to the AMF via the N3IWF as defined in clause 4.3.4.

3. For non-roaming and roaming with LBO, the steps 1a (from AMF) to 4 according to the PDU Session Release procedure defined in clause 4.3.4.2 are executed. For home-routed roaming, the steps 1a (from AMF) to step 7 according to the PDU Session Release procedure defined in clause 4.3.4.3 are executed.

4. This step is the same as step 4 in clause 4.3.4.2 (non-roaming and LBO) and step 6 in clause 4.3.4.3 (home-routed roaming).

5. Upon receiving AN session release request message from the AMF, the N3IWF triggers the release of the corresponding Child SA by sending INFORMATIONAL EXCHANGE (Delete Payload) to the UE. Delete payload is included in the message listing the SPIs of the Child SAs to be deleted to this PDU Session as described in RFC 7296 [3].

6. The UE responds with INFORMATIONAL EXCHANGE (Delete Payload) message. Delete payload is included for the paired SAs going in the other direction as described in RFC 7296 [3].

7. This step is the same as step 6 in 4.3.4.2 (non-roaming and LBO) and step 8 in clause 4.3.4.3 (home-routed roaming).

8. For non-roaming and roaming with LBO, steps 7 according to the PDU Session Release procedure defined in clause 4.3.4.2 are executed. For home-routed roaming, step 9-10 according to the PDU Session Release procedure defined in clause 4.3.4.3 are executed.
9. The N3IWF delivers the NAS message (N1 SM container (PDU Session Release Command), PDU Session ID, Cause) to the UE.

10. The UE sends a NAS message (N1 SM container (PDU Session Release Ack), PDU Session ID) to the N3IWF.

11. This step is the same as step 9 in 4.3.4.2 (non-roaming and LBO) and step 11 in clause 4.3.4.3 (home-routed roaming).

 Steps 5 and 9 may happen consecutively. Step 10 may happen before step 6.

12. For non-roaming and roaming with LBO, all steps after step 10 in the PDU Session Release procedure defined in clause 4.3.4.2 are executed. In case of home-routed roaming, all steps after step 12 in the PDU Session Release procedure defined in clause 4.3.4.3 are executed.

The network requested PDU Session Release procedure via Untrusted non-3GPP access is the same as the network requested PDU Session Release Procedure specified in clause 4.3.4.2 (for Non-Roaming and Roaming with Local Breakout) with the following differences:

- The (R)AN corresponds to an N3IWF.
- In step 5 the N3IWF upon receiving N2 SM request to release the AN resources associated with the PDU Session from the AMF, the N3IWF triggers the release of the corresponding Child SA to the UE as specified in step 5 and 6, in Figure 4.12.7-1.
- User Location Information is not included in the step 6, 7a, 9, 10a and 12 of the procedure.

4.12.8 Mobility from a non-geographically selected AMF to a geographically selected AMF

This procedure describes the AMF change that takes place when an UE initially served via non-3GPP access by an AMF selected based on non-geographical criteria (e.g. because the UE had no 3GPP coverage or because only non-geographically selectable N3IWF are deployed) gets 3GPP access and is now to be served by an AMF selected in the same PLMN by the NG-RAN based on geographical criteria.

![Figure 4.12.8-1: Mobility from a non-geographically selected AMF to a geographically selected AMF](image)

1. The UE registers over non-3GPP access, as described in clause 4.12.2. During this procedure:
 a An AMF (source AMF) is selected by the N3IWF in step 6a, based on non-geographical criteria (e.g. because the UE has no 3GPP coverage or because only non-geographically selectable N3IWF are deployed).
 b The UE receives, within the Registration Accept message, a 5G-GUTI containing a GUAMI of the non-geographically selected AMF. The UE also receives an Allowed NSSAI and optionally Mapping Of Allowed NSSAI.

2. The UE may activate PDU Sessions over non-3GPP access, as described in clause 4.12.5.

3. The UE gets 3GPP access and issues a Registration Request over 3GPP access as defined in step 1 of Figure 4.2.2.2.2-1, providing its 5G-GUTI.
If the 5G-GUTI does not indicate an AMF of the same Region ID as that of the NG-RAN, the NG-RAN selects an AMF Set and an AMF in the AMF Set as described in TS 23.501 [2], clause 6.3.5.

Steps 3 to 22 of Figure 4.2.2.2.2-1 take place including following aspects:

- step 4 of Figure 4.2.2.2.2-1 takes place i.e. the new AMF invokes the Namf_Communication_UEContextTransfer service operation on the old AMF to request the UE’s SUPI and MM Context.
- in step 5 of Figure 4.2.2.2.2-1, the old AMF includes information about active NGAP association to N3IWF.
- in step 18 of Figure 4.2.2.2.2-1, the new AMF modifies the NGAP association toward N3IWF.
- in step 21 of Figure 4.2.2.2.2-1, the Registration Accept message shall include the updated 5G-GUTI that the UE will use to update its 3GPP and non-3GPP registration contexts.

4.13 Specific services

4.13.1 General

Clause 4.13 defines the additional procedures or additions to the existing procedures to support specific services such as SMS over NAS.

4.13.2 Application Triggering

4.13.2.1 General

The AF invokes the Nnrf_Trigger service to request that the network send an Application trigger to the UE.
4.13.2.2 The procedure of "Application Triggering" Service

1. The AF determines the need to trigger the device. If the AF has no contact details for the NEF, it shall discover and select NEF services.

2. The AF invokes the Nnef_Trigger_Deliveryrequest service.

3. The NEF checks that the AF is authorised to send trigger requests and that the AF has not exceeded its quota or rate of trigger submission over Nnef. If this check fails, the NEF sends an Nnef_Trigger_Request response with a cause value indicating the reason for the failure condition and the flow stops at this step. Otherwise, the flow continues with step 4.

4. The NEF invokes Nudm_SD_M_Get (Identifier Translation) to resolve the GPSI to SUPI when the AF is authorized to trigger the UE.

NOTE 1: Optionally, mapping from GPSI (External Id) to GPSI (MSISDN) is also provided for legacy SMS infrastructure not supporting MSISDN-less SMS.
5. The UDM may invoke the Nudr_DM_Query service to retrieve a list of AFs that are allowed to trigger the UE and determines, based on UDM policy, which identifier (SUPI or MSISDN) should be used to trigger the UE. The UDM provides a Nudm_SDG_Get response (SUPI, optionally MSISDN). If the AF is not allowed to send a trigger message to this UE, or there is no valid subscription information for this user, the NEF sends an Nnef_Trigger_Request response with a cause value indicating the reason for the failure condition and the flow stops at this step. Otherwise this flow continues with step 6.

NOTE 2: The presence of an MSISDN in the reply is interpreted as an indication to the NEF that MSISDN is used (instead of IMSI) to identify the UE when sending the SMS to the SMS-SC via T4.

6. The NEF invokes Nudm_UECM_Get (SUPI, SMS) to retrieve the UE SMSF identities.

7. The UDM may invoke the Nudr_DM_Query service to retrieve the UE SMSF identities. The UDM provides a Nudm_UECM_Get response with the corresponding UE SMSF identities. UDM policy (possibly dependent on the VPLMN ID) may influence which serving node identities are returned.

NOTE 3: The NEF can cache serving node information for the UE. However, this can increase the probability of trigger delivery attempt failures when the cached serving node information is stale.

8. The NEF selects a suitable SMS-SC based on configured information. The NEF acts as an MTC-IWF and sends a Submit Trigger (GPSI, SUPI, AF Identifier, trigger reference number, validity period, priority, SMSF serving node ID(s) (if available, are obtained from UDM in step 7), SMS Application port ID, trigger payload, Trigger Indication) message to the SMS-SC.

If the NEF indicates that "Absent subscriber" was received from the UDM, the SMS-SC should not submit the message, but store it directly and send Routing Information for SM to request the UDM to add the SMS-SC address to the Message Waiting List.

9. The SMS-SC sends a Submit Trigger Confirm message to the NEF to confirm that the submission of the SMS has been accepted by the SMS-SC.

10. The NEF sends a Nnef_Trigger_Delivery response to the AF to indicate if the Device Trigger Request has been accepted for delivery to the UE.

11. The SMS_SC performs MT SMS delivery as defined in clause 4.13.3. The SMS-SC may provide the routing information that it received in step 6 to SMS-GMSC to avoid UDM interrogation. The SMS-SC generates the necessary CDR information and includes the AF Identifier. The SMS Application port ID, which is included in the SM User Data Header, and the Trigger Indication are included in the CDRs in order to enable differentiated charging. The SMS-SC stores the trigger payload, without routing information. If the message delivery fails and is attempted to be delivered again, UDM interrogation will be performed. If the message delivery fails and the validity period of this trigger message is not set to zero, the SMS-SC shall send a SM Message Delivery Status Report to request the UDM to add the SMS-SC address to the Message Waiting list. When the message delivery is later re-attempted, a new UDM interrogation will be performed by the SMS-GMSC using SUPI or MSISDN. UDM interrogations using SUPI shall not be forwarded or relayed to SMS-Router or IP-SM-GWs. The UDM may include up to four serving node identities (MSC or MME, SGSN, IP-SM-GW, AMF) in the response to SMS-GMSC.

12. If the message delivery fails (either directly or when validity period of the trigger message expires) or when the message delivery succeeds, the SMS-SC shall send a Message Delivery Report (cause code, trigger reference number, AF Identifier) to the NEF.

13. The NEF provides a Nnef_Trigger_DeliveryNotify message to the AF with a Delivery Report indicating the trigger delivery outcome (e.g. succeeded, unknown or failed and the reason for the failure). The NEF generates the necessary CDR information including the GPSI and AF Identifier.

14. In response to the received device trigger, the UE takes specific actions and may take into consideration the content of the trigger payload. This action typically involves initiation of immediate or later communication with the AF.
4.13.3 SMS over NAS procedures

4.13.3.1 Registration procedures for SMS over NAS

1. During Registration procedure in 5GS defined in Figure 4.2.2.2.2-1, to enable SMS over NAS transporting, the UE includes an "SMS supported" indication in Registration Request in step 1-3 indicating the UE’s capability for SMS over NAS transport. The "SMS supported" indication indicates whether the UE supports SMS delivery over NAS.

2. Step 4 to step 14 of the Registration procedure in Figure 4.2.2.2.2-1 are performed. The AMF may retrieve the SMS Subscription data and UE Context in SMSF using Nudm_SDM_Get. This requires that UDM may retrieve this information from UDR by Nudr_UDM_Query. After a successful response is received, the AMF subscribes to be notified using Nudm_SDM_Subscribe when the SMS Subscription data is modified, and UDM may subscribe to UDR by Nudr_UDM_Subscribe.

The AMF can also receive UE context information containing SMSF Information from old AMF. When AMF re-allocation happens during the Registration procedure, the old AMF transfers SMSF Information to the new AMF as part of UE context in step 5 of Figure 4.2.2.2.2-1.

3. If the "SMS supported" indication is included in the Registration Request, the AMF checks in the SMS Subscription data that was received in step 2 whether the SMS service is allowed to the UE. If SMS service is allowed and the UE context received in step 2 includes an available SMSF of the serving PLMN, the AMF activates this SMSF Address and continues the registration procedure. If SMS service is allowed but an SMSF of
the serving PLMN was not received in step 2, the AMF discovers and selects an SMSF to serve the UE as described in clause 6.3.10 of TS 23.501 [2].

4. Step 15 to step 20 of the Registration procedure in Figure 4.2.2.2.2-1 are performed.

5. The AMF invokes Nsmsf_SMService_Activate service operation from the SMSF. The invocation includes AMF address, Access Type, GPSI (if available) and SUPI. AMF uses the SMSF Information derived from step 3.

6. The SMSF discovers a UDM as described in TS 23.501 [2], clause 6.3.8.

7a-7b. If the UE context already exists in the SMSF, the SMSF shall replace the old AMF address with the new AMF address.

Otherwise, the SMSF registers with the UDM using Nudm_UECM_Registration with Access Type. UDM may store SMSF Information by Nudr_DM_Update (SUPI, Subscription Data, SMS Subscription data). SMSF retrieves SMS Management Subscription data (e.g., SMS teleservice, SMS barring list) using Nudm_SDM_Get and this requires that UDM may get this information from UDR by Nudr_DM_Query (SUPI, Subscription Data, SMS Management Subscription data). After a successful response is received, the SMSF subscribes to be notified using Nudm_SDM_Subscribe when the SMS Management Subscription data is modified and UDM may subscribe to notifications from UDR by Nudr_DM_Subscribe.

SMSF also creates an UE context to store the SMS subscription information and the AMF address that is serving this UE.

8. The SMSF responds back to the AMF with Nsmsf_SMService_Activate service operation response message. The AMF stores the SMSF Information received as part of the UE context.

9. The AMF includes the "SMS supported" indication to the UE in the Registration Accept message of step 21 of Figure 4.2.2.2.2-1 only after step 8 in which the AMF has received a positive indication from the selected SMSF.

The "SMS supported" indication in the Registration Accept message indicates to the UE whether the network allows the SMS message delivery over NAS.

4.13.3.2 Deregistration procedures for SMS over NAS

If UE indicates to AMF that it no longer wants to send and receive SMS over NAS (e.g., not including "SMS supported" indication in subsequent Registration Request message) or AMF considers that UE is deregistered or AMF receives Deregistration Notification from UDM indicating UE Initial Registration, Subscription Withdrawn or 5GS to EPS Mobility as specified in clause 5.2.3.2.2, AMF may unsubscribe from SMS Subscription data changes notification with the UDM by means of the Nudm_SDM_Unsubscribe service operation. The UDM may remove the corresponding subscription of data change notification in UDR by Nudr_DR_Unsubscribe service operation. AMF invokes Nsmsf_SMService_Deactivate service operation to trigger the release of UE Context for SMS on SMSF based on local configurations. AMF may delete or deactivate the stored SMSF address in its UE Context. The SMSF unsubscribes from SMS Management Subscription data changes notification with the UDM by means of the Nudm_SDM_Unsubscribe service operation. The UDM may remove the corresponding subscription of data change notification in UDR by Nudr_DR_Unsubscribe service operation. The SMSF shall invoke Nudm_UECM_Deregistration (SUPI, NF ID, Access Type) service operation from UDM to trigger UDM to delete SMSF address of the UE. The UDM may update UE context in SMSF in UDR by Nudr_DR_Update (SUPI, Subscription Data, SMS Subscription data, SMSF address). The SMSF also removes the UE Context for SMS, including AMF address.
4.13.3.3 MO SMS over NAS in CM-IDLE (baseline)

1. The UE performs domain selection for UE originating SMS as defined in clause 5.16.3.8 of TS 23.501 [2] if SMS delivery via non 3GPP access is allowed and possible. If an UE under CM-IDLE state is going to send uplink SMS message, then UE and network perform the UE Triggered Service Request procedure firstly as defined in clause 4.2.3.2 to establish a NAS signalling connection to AMF.

2a. The UE builds the SMS message to be sent as defined in TS 23.040 [7] (i.e. the SMS message consists of CP-DATA/RP-DATA/TPDU/SMS-SUBMIT parts). The SMS message is encapsulated in an NAS message with an indication indicating that the NAS message is for SMS transporting. The UE send the NAS message to the AMF.

2b. The AMF forwards the SMS message and SUPI to the SMSF serving the UE over N20 message by invoking Nmsf_SMSService_UplinkSMS service operation. In order to permit the SMSF to create an accurate charging record, the AMF adds the IMEISV, the local time zone, and the UE’s current TAI and CGI.

2c. The SMSF invokes Namf_Communication_N1N2MessageTransfer service operation to forward SMS acknowledgement message to AMF.

2d. The AMF forwards the SMS acknowledgement message from the SMSF to the UE using downlink unit data message.

3-5. The SMSF checks the SMS management subscription data. If SMS delivery is allowed, the procedure defined in TS 23.040 [7] applies.

6a-6b. The SMSF forwards the submit report to AMF by invoking Namf_Communication_N1N2MessageTransfer service operation which is forwarded to UE via Downlink NAS transport. In case the SMSF knows the submit report is the last message to be transferred for UE, the SMSF shall include a last message indication in the Namf_Communication_N1N2MessageTransfer service operation so that the AMF knows no more SMS data is to be forwarded to UE.

NOTE: The behavior of AMF based on the “last message indication” is implementation specific.
If the UE has more than one SMS message to send, the AMF and SMSF forwards SMS /SMS ack/submit report the same way as described in step 2a-6b.

6c-6d. When no more SMS is to be sent, UE returns a CP-ack as defined in TS 23.040 [7] to SMSF. The AMF forwards the SMS ack message by invoking Nsmsf_SMService_UplinkSMS service operation to SMSF.

4.13.3.4 Void

4.13.3.5 MO SMS over NAS in CM-CONNECTED

MO SMS in CM-CONNECTED State procedure is specified by reusing the MO SMS in CM-IDLE State without the UE Triggered Service Request procedure.

4.13.3.6 MT SMS over NAS in CM-IDLE state via 3GPP access

![Diagram](https://via.placeholder.com/150)

Figure 4.13.3.6-1: MT SMS over NAS in CM_IDLE state via 3GPP access
1. MT SMS interaction between SC/SMS-GMSC/UDM follow the current procedure as defined in TS 23.040 [7].
 If there are two AMFs serving the UE, one is for 3GPP access and another is for non-3GPP access, there are two
 SMSF addresses stored in UDM/UDR. The UDM shall return both SMSF addresses.

4. The SMSF checks the SMS management subscription data. If SMS delivery is allowed, SMSF invokes
 Namf_MT_EnableUEReachability service operation to AMF. AMF pages the UE using the procedure defined in
 clause 4.2.3.4. The UE responds to the page with Service Request procedure.

 If the AMF indicates SMSF that UE is not reachable, the procedure of the unsuccessful Mobile terminating SMS
 delivery described in clause 4.13.3.9 is performed and the following steps are skipped.

 If the UE access to the AMF via both 3GPP access and non-3GPP access, the AMF determines the Access Type
 to transfer the MT-SMS based on operator local policy.

5a-5b. SMSF forward the SMS message to be sent as defined in TS 23.040 [7] (i.e. the SMS message consists of
 CP-DATA/RP-DATA/TPDU/SMS-DELIVER parts) to AMF by invoking
 Namf_Communication_N1N2MessageTransfer service operation. The AMF transfers the SMS message to the
 UE.

5c-5d. The UE acknowledges receipt of the SMS message to the SMSF. For uplink unitdata message toward the
 SMSF, the AMF invokes Nsmsf_SMService_UplinkSMS service operation to forward the message to SMSF. In
 order to permit the SMSF to create an accurate charging record, the AMF also includes IMEISV, the local time
 zone, CGI and UE's current TAI.

6a-6b. The UE returns a delivery report as defined in TS 23.040 [7]. The delivery report is encapsulated in an NAS
 message and sent to the AMF which is forwarded to SMSF by invoking Nsmsf_SMService_UplinkSMS service
 operation.

6c-6d. The SMSF acknowledges receipt of the delivery report to the UE. The SMSF uses
 Namf_Communication_N1N2MessageTransfer service operation to send SMS CP ack message to the AMF. The
 AMF encapsulates the SMS message via a NAS message to the UE. If SMSF has more than one SMS to send,
 the SMSF and the AMF forwards subsequent SMS /SMS ack/ delivery report the same way as described in step
 4-6c.

 In case the SMSF knows the SMS CP ack is the last message to be transferred for UE, the SMSF shall include a
 last message indication in the Namf_Communication_N1N2MessageTransfer service operation so that the AMF
 knows no more SMS data is to be forwarded to UE.

NOTE: The behavior of AMF based on the "last message indication" is implementation specific.

7. In parallel to steps 6c and 6d, the SMSF delivers the delivery report to SC as defined in TS 23.040 [7].

4.13.3.7 MT SMS over NAS in CM-CONNECTED state via 3GPP access

MT SMS in CM-CONNECTED procedure is specified by reusing the MT SMS in CM-IDLE state with the following
modification:

- There is no need for the AMF to perform Paging of the UE and can immediate continue with a message to SMSF
 via N20 to allow the SMSF to start forward the MT SMS.

- If the delivery of the NAS PDU containing the SMS fails e.g. in case the UE is in RRC Inactive and NG-RAN
 paging was not successful, the NG-RAN initiate the UE context release in the AN procedure and provide
 notification of non-delivery to the AMF. The AMF provides an indication of non-delivery to the SMSF.

4.13.3.8 MT SMS over NAS via non-3GPP access

MT SMS procedure via non-3GPP access is specified by reusing the MT SMS via 3GPP access in CM-CONNECTED
state with the following modification:

- If the UE access to the network via both 3GPP and non-3GPP accesses and the AMF determines to deliver MT-
 SMS via non-3GPP access based on operator policy in step 4, the NAS messages is transferred via non-3GPP
 access network.
4.13.3.9 Unsuccessful Mobile terminating SMS delivery attempt

The procedure of Unsuccessful Mobile terminating SMS delivery is defined as follows:

- If the UE is registered over both 3GPP access and non-3GPP access:
 - if the MT-SMS delivery over one Access Type has failed, the AMF, based on operator local policy, may re-attempt the MT-SMS delivery over the other Access Type;
 - if the MT-SMS delivery on both Access Types has failed, the AMF shall inform the SMSF immediately.
- If the AMF informs the SMSF that it cannot deliver the MT-SMS to the UE, the SMSF sends a failure report to the first SMS-GMSC (which can be co-located with IP-SM-GW or SMS Router) as defined in TS 23.040 [7].
- After the first SMS-GMSC informs the UDM/HSS that the UE is not able to receive MT-SMS, the UDM/HSS shall set its internal Mobile Station Not Reachable Flag (MNRF).
- If the UDM/HSS has not subscribed UE Reachability Notification, it immediately initiates a subscription procedure as specified in clause 4.2.5.2.
- When the AMF detects UE activities, it notifies UDM/HSS with UE Activity Notification as described in clause 4.2.5.3. The UDM/HSS clears its MNRF and alerts related SMSCs to retry MT-SMS delivery.

4.13.4 Emergency Services

4.13.4.1 General

If the 5GS supports Emergency Services, the support is indicated to UE via the Registration Accept message on per-TA and per-RAT basis, as described in TS 23.501 [2].

The UE shall follow the domain selection rules for emergency session attempts as described in TS 23.167 [28].

If the 5GC has indicated Emergency Services Fallback support for the TA and RAT where the UE is currently camping, and if the UE supports emergency services fallback, the UE shall initiate the Emergency Services Fallback procedure described in clause 4.13.4.2.

At QoS Flow establishment request for Emergency Services, the procedure described in clause 4.13.x.y Inter RAT Fallback in 5GC for IMS voice or the procedure described in clause 4.13.6.1 EPS fallback for IMS voice may be triggered by the network, when configured.

4.13.4.2 Emergency Services Fallback

The call flow in Figure 4.13.4.2-1 describes the procedure for emergency services fallback.
1. UE camps on E-UTRA or NR cell in the 5GS (in either CM_IDLE or CM_CONNECTED state).

2. UE has a pending IMS emergency session request (e.g. voice) from the upper layers.

3. If the AMF has indicated support for emergency services using fallback via the Registration Accept message for the current RAT, the UE sends a Service Request message indicating that it requires emergency services fallback.

4. 5GC triggers a request for Emergency Services Fallback by executing an NG-AP procedure in which it indicates to NG-RAN that this is a fallback for emergency services. The AMF based on the support of Emergency Services in EPC or 5GC may indicate the target CN for the RAN node to know whether inter-RAT fallback or inter-system fallback is to be performed. When AMF initiates Redirection for UE(s) that have been successfully authenticated, AMF includes the security context in the request to trigger fallback towards NG-RAN.

5. Based on the target CN indicated in message 4, one of the following procedures is executed by NG-RAN:

 5a. NG-RAN initiates handover (see clause 4.9.1.3) or redirection to a 5GC-connected E-UTRAN cell, if UE is currently camped on NR.

 5b. NG-RAN initiates handover (see clause 4.11.1.2.1) or redirection to E-UTRAN connected to EPS. NG-RAN uses the security context provided by the AMF to secure the redirection procedure.

 If the redirection procedure is used either in 5a or 5b the target CN is also conveyed to the UE in order to be able to perform the appropriate NAS procedures (S1 or N1 Mode).

6. After handover to the target cell the UE establishes a PDU Session / PDN connection for IMS emergency services and performs the IMS procedures for establishment of an IMS emergency session (e.g. voice) as defined in TS 23.167 [28].
4.13.5 Location Services procedures

4.13.5.1 5GC-NI-LR Procedure

Figure 4.13.5.1-1 shows a Network Induced Location Request (NI-LR) procedure for a UE in the case where the UE initiates an emergency session using NG-RAN. The procedure assumes that the serving AMF is aware of the emergency session initiation – e.g. due to supporting an emergency registration procedure or assisting in establishing an emergency PDU Session.

Figure 4.13.5.1-1: 5GC Network Induced Location Request (5GC-NI-LR) for a UE

1. The UE registers to the 5GC for emergency services or requests the establishment of an emergency PDU Session.

2. The AMF may select an LMF based on NRF query or configuration in AMF and invoke the Nlmf_Location_DetermineLocation service operation towards the LMF to request the current location of the UE. The service operation includes a LCS Correlation identifier, the serving cell identity, and an indication of a location request from an emergency services client and may include the required QoS and Supported GAD shapes.

3. If step 2 occurs, the LMF performs one or more of the positioning procedures described in clause 4.13.5.4, 4.13.5.5 and 4.13.5.6.

4. If step 3 occurs, the LMF returns the Nlmf_Location_DetermineLocation Response towards the AMF to return the current location of the UE. The service operation includes the LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.

5. The AMF selects an GMLC based on NRF query or configuration in AMF. The information regarding the endpoint in the GMLC to deliver the event notification, is obtained from the NRF as specified in clause 7.1.2 of TS 23.501 [2] or from local configuration in the AMF. AMF invokes the Namf_Location_EventNotify service operation towards the selected GMLC to notify the GMLC of an emergency session initiation. The service operation includes the SUPI or the PEI, and the GPSI if available, the identity of the AMF, an indication of an emergency session and any location obtained in step 3.

6. The GMLC forwards the location to an external emergency services client or may wait for a request for the location from the external emergency services client (not shown in Figure 4.13.5.1-1) before forwarding the location.
7. The emergency services session and emergency PDU Session are released.

8. The AMF invokes the Namf_Location_EventNotify service operation towards the GMLC to notify the GMLC that the emergency session was released to enable the GMLC and LRF to release any resources associated with the emergency session.

4.13.5.2 5GC-MT-LR Procedure without UDM Query

Figure 4.13.5.2-1 illustrates a location request for an emergency services session, where an emergency services client (e.g. a Public Safety Answering Point) identifies the target UE and the serving LRF using correlation information that was previously provided to it by the IMS Core. The signalling used to provide the correlation information to the PSAP is defined in TS 23.167 [28]. The correlation information may be used by the LRF to retrieve other information previously provided to it by the IMS Core and/or AMF as described for Figure 4.13.5.1-1. This allows the GMLC associated with the LRF to request a location from the AMF without needing to query the UDM of the target UE for the serving AMF address. This scenario therefore supports location of emergency sessions from roamers and USIM-less and other non-registered UEs, and requires that identifying information for the UE and AMF have been provided to the GMLC/LRF as described in clause 4.13.5.1 and 4.13.5.7.

Figure 4.13.5.2-1: 5GC-MT-LR Procedure without UDM Query

1. The external emergency services client (e.g. a PSAP) sends a request to the LRF for a location for the target UE and includes correlation information identifying the target UE. The request may include the required QoS, Supported GAD shapes and client type. The LRF address and the correlation information would have been previously provided to the external client when the emergency session from the UE was established.

2. The LRF/GMLC determines the AMF by associating the correlation information received from the external client with other information received previously from the LMF as described in clause 4.13.5.1 and 4.13.5.7. The GMLC invokes the Namf_Location_ProvideLocation service operation towards the AMF to request the current location of the UE. The service operation includes the SUPI or the PEI and an indication of a location request from an emergency services client and may include the required QoS and Supported GAD shapes. The AMF identifies the target UE using the SUPI or in the case of a USIM-less emergency session, or non-registered USIM emergency session, the PEI.

3. The AMF selects an LMF based on NRF query or configuration in AMF and invokes the Nlmf_Location_DetermineLocation service operation towards the LMF to request the current location of the UE. The service operation includes a LCS Correlation identifier, the serving cell identity and an indication of a location request from an emergency services client and may include the required QoS and Supported GAD shapes.

4. The LMF performs one or more of the positioning procedures described in clause 4.13.5.4, 4.13.5.5 and 4.13.5.6.

5. The LMF returns the Nlmf_Location_DetermineLocation Response towards the AMF to return the current location of the UE. The service operation includes the location estimate, its age and accuracy and may include information about the positioning method.
6. The AMF returns the Namf_Location_ProvideLocation Response towards the GMLC/LRF to return the current location of the UE. The service operation includes the LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.

7. The LRF sends the location service response to the external emergency services client.

4.13.5.3 5GC-MT-LR Procedure

Figure 4.13.5.3-1 illustrates the general network positioning for LCS clients external to the PLMN. In this scenario, it is assumed that the target UE is identified using an SUPI or GPSI. This procedure is applicable to a request from an LCS client for a current location.

1. The external location services client sends a request to the GMLC for a location for the target UE identified by an GPSI or an SUPI. The request may include the required QoS, Supported GAD shapes and client type.

2. The GMLC invokes a Nudm_UECM_Get service operation towards the home UDM of the target UE to be located with the GPSI or SUPI of this UE.

3. The UDM returns the network addresses of the current serving AMF.

4. The GMLC invokes the Namf_Location_ProvideLocation service operation towards the AMF to request the current location of the UE. The service operation includes the SUPI, and client type and may include the required QoS and Supported GAD shapes.

5. If the UE is in CM-IDLE state, the AMF initiates a network triggered Service Request procedure as defined in clause 4.2.3.4 to establish a signaling connection with the UE.

6. The AMF selects an LMF based on NRF query or configuration in AMF and invokes the Nlmf_Location_DetermineLocation service operation towards the LMF to request the current location of the UE. The service operation includes a LCS Correlation identifier, the serving cell identity and the client type and may include the required QoS and Supported GAD shapes.

7. The LMF performs one or more of the positioning procedures described in clause 4.13.5.4, 4.13.5.5 and 4.13.5.6.

8. The LMF returns the Nlmf_Location_DetermineLocation Response towards the AMF to return the current location of the UE. The service operation includes the LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.

9. The AMF returns the Namf_Location_ProvideLocation Response towards the GMLC/LRF to return the current location of the UE. The service operation includes the location estimate, its age and accuracy and may include information about the positioning method.
10. The GMLC sends the location service response to the external location services client.

4.13.5.4 UE Assisted and UE Based Positioning Procedure

Figure 4.13.5.4-1 shows a positioning procedure used by an LMF to support UE based positioning, UE assisted positioning and delivery of assistance data. The procedure is based on use of the LPP protocol defined in TS 36.355 [30] between the LMF and UE.

Figure 4.13.5.4-1: UE Assisted and UE Based Positioning Procedure

Precondition: A LCS Correlation identifier and the AMF identity has been passed to the LMF by the serving AMF.

1. The LMF invokes the Namf_Communication_N1N2MessageTransfer service operation towards the AMF to request the transfer of a Downlink (DL) Positioning message to the UE. The service operation includes the DL Positioning message. The Session ID parameter of the Namf_Communication_N1N2MessageTransfer service operation is set to the LCS Correlation identifier. The Downlink Positioning message may request location information from the UE, provide assistance data to the UE or query for the UE capabilities.

2. If the UE is in CM-IDLE state, the AMF initiates a network triggered Service Request procedure as defined in clause 4.2.3.4 to establish a signaling connection with the UE.

3. The AMF forwards the Downlink Positioning message to the UE in a DL NAS TRANSPORT message. The AMF includes a Routing identifier, in the DL NAS TRANSPORT message, identifying the LMF.

4. The UE stores any assistance data provided in the Downlink Positioning message and performs any positioning measurements and location computation requested by the Downlink Positioning message.

5. If the UE has entered CM-IDLE state during step 4, the UE instigates the UE triggered Service Request as defined in clause 4.2.3.2 in order to establish a signaling connection with the AMF.

6. The UE returns any location information obtained in step 4 or returns any capabilities requested in step 3 to the AMF in an Uplink Positioning message included in a NAS TRANSPORT message. The UE shall also include the Routing identifier in the UL NAS TRANSPORT message received in step 3.

7. The AMF invokes the Namf_Communication_N1MessageNotify service operation towards the LMF indicated by the routing identifier received in step 6. The service operation includes the Uplink Positioning message received in step 6 and the LCS Correlation identifier. Steps 6 and 7 may be repeated if the UE needs to send multiple messages to respond to the request received in Step 3. Steps 1 to 7 may be repeated to send new assistance data, and to request further location information and further UE capabilities.
4.13.5.5 Network Assisted Positioning Procedure

Figure 4.13.5.5-1 shows a procedure that may be used by an LMF to support network assisted and network based positioning. The procedure may be based on an NRPPa protocol in TS 38.455 [31] between the LMF and NG-RAN.

Precondition: A LCS Correlation identifier and the AMF identity have been passed to the LMF by the serving AMF.

1. The LMF invokes the Namf_Communication_N1N2MessageTransfer service operation towards the AMF to request the transfer of a Network Positioning message to the serving NG-RAN node (gNB or ng-eNB) for the UE. The service operation includes the Network Positioning message and the LCS Correlation identifier. The Network Positioning message may request location information for the UE from the NG-RAN.

2. If the UE is in CM-IDLE state, the AMF initiates a network triggered Service Request procedure as defined in clause 4.2.3.4, to establish a signaling connection with the UE.

3. The AMF forwards the Network Positioning message to the serving NG-RAN node in an N2 Transport message. The AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF (e.g. a global address of the LMF).

4. The serving NG-RAN node obtains any location information for the UE requested in step 3.

5. The serving NG-RAN node returns any location information obtained in step 4 to the AMF in a Network Positioning message included in an N2 Transport message. The serving NG-RAN node shall also include the Routing identifier in the N2 Transport message received in step 3.

6. The AMF invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the routing identifier received in step 5. The service operation includes the Network Positioning message received in step 5 and the LCS Correlation identifier. Steps 1 to 6 may be repeated to request further location information and further NG-RAN capabilities.

4.13.5.6 Obtaining Non-UE Associated Network Assistance Data

Figure 4.13.5.6-1 shows a procedure which may be used by an LMF to support network assisted and network based positioning. This procedure is not associated with a UE location session. It is used to obtain network assistance data from a NG-RAN node (e.g. gNB or ng-eNB). The procedure may be based on an NRPPa protocol in TS 38.455 [31] between the LMF and NG-RAN.
1. The LMF invokes the Namf_Communication_N1N2MessageTransfer service operation towards the AMF to request the transfer of a Network Positioning message to a NG-RAN node (gNB or ng-eNB) in the NG-RAN. The service operation includes the Network Positioning message and the target NG-RAN node identity. The Network Positioning message may request position related information from the NG-RAN.

2. The AMF forwards the Network Positioning message to the target NG-RAN node indicated in step 1 in an N2 Transport message. The AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF.

3. The target NG-RAN node obtains any position related information requested in step 2.

4. The target NG-RAN node returns any position related information obtained in step 3 to the AMF in a Network Positioning message included in an N2 Transport message. The target NG-RAN node shall also include the Routing identifier in the N2 Transport message received in step 2.

5. The AMF invokes the Namf_Communication_N2InfoNotify service operation towards the LMF indicated by the routing identifier received in step 4. The service operation includes the Network Positioning message received in step 4 and the UE identifier. Steps 1 to 5 may be repeated to request further position related information from the NG-RAN.

4.13.5.7 Location continuity for Handover of an Emergency session from NG-RAN

Figure 4.13.5.7-1 shows support for location continuity for handover of an emergency session from NG-RAN on the source side to either NG-RAN or another 3GPP RAN on the target side. The procedure applies when control plane location according to Figures 4.13.5.1-1 and 4.13.5.2-1 is used for location of the UE on the source side. The procedure is based on the procedures for location continuity currently defined in TS 23.271 [29] clause 9.4.5.4.

NOTE: If User Plane (SUPL) Location Protocol [27] is used on the source (NG-RAN) side, then the current procedure for location continuity in TS 23.271 [29] can be used.
1. Following the request for an emergency session, the UE establishes a PDU Session for emergency services and an IMS emergency session for NG-RAN access, during which an LRF is assigned in the serving network IMS and a source GMLC may be chosen. The 5GC-NI-LR procedure of Figure 4.13.5.1-1 is also performed which provides the source AMF identity to the GMLC and LRF and optionally an initial location for the UE.

2. At some later time, the LRF may need the UE location and requests the source GMLC to invoke the Namf_Location_ProvideLocation service operation towards the AMF to request the current location of the UE. The service operation includes the SUPI or the PEI, the required QoS and an indication of a location request from an emergency services client.

3. If step 2 occurs or if support for an NI-LR is required, the source AMF starts a location session to obtain the location of the UE as described in clause 4.13.5.2 or clause 4.13.5.1.

4. The source AMF receives a request to handover the UE to a cell associated with a different target node which may be another AMF for intra-RAN handover or a different type of node (e.g. an MME) for inter-RAN handover (e.g. to E-UTRAN connected to EPC).

5. The handover procedure is executed as specified in clause 4.9.1.3.

6. Any location session started in step 3 may terminate normally before step 6. If not, the source AMF shall abort the location session once step 5 is complete.
7a. If steps 2 and 3 has occurred, the source AMF returns the Namf_Location_ProvideLocation Response towards the GMLC to return any location estimate obtained for the UE. The service operation includes the target node identity.

7b. If steps 2 and 7a do not occur, the source AMF may invoke the Namf_Location_EventNotify service operation towards the source GMLC (i.e. the GMLC used in step 1) to indicate the handover. The service operation includes the SUPI or the PEI and the GPSI if available, an event type indicating handover and the identity of the target node.

8a. For inter-RAN handover (e.g. to E-UTRAN connected to EPC) and if control plane location will be used on the target side, the target node (e.g. MME) may send a Subscriber Location Report to a GMLC on the target side after completion of the handover in step 6. The Subscriber Location Report carries the UE identity (IMSI, MSISDN and/or IMEI), an event type indicating handover and the identity of the target node. The target node may determine the target GMLC from configuration information.

8b. For intra-RAN handover and if control plane location will be used on the target side, the target AMF may invoke the Namf_Location_EventNotify service operation towards the GMLC to indicate the handover. The service operation includes the SUPI or the PEI and the GPSI if available, an event type indicating handover and the identity of the target node.

9. Reconfiguration of the LRF and the source and target GMLCs may occur in a manner outside the scope of 3GPP.

10. If the LRF needs a location estimate for the UE after handover has occurred and if control plane location is used on the target side, the LRF may instigate an MT-LR request via the target Node.

4.13.6 Support of IMS Voice

4.13.6.1 EPS fallback for IMS voice

Figure 4.13.6.1-1 describes the EPS fallback procedure for IMS voice.

When the UE is served by the 5G System, the UE has one or more ongoing PDU Sessions each including one or more QoS Flows. The serving PLMN AMF has sent an indication towards the UE during the Registration procedure that IMS voice over PS session is supported, see clause 5.16.3.9 in TS 23.501 [2] and the UE has registered in the IMS. If N26 is not supported, the serving PLMN AMF sends an indication towards the UE during the Registration procedure that interworking without N26 is supported, see clause 5.17.2.3.1 in TS 23.501 [2].
1. UE camps on NG-RAN in the 5GS and an MO or MT IMS voice session establishment has been initiated.

2. Network initiated PDU Session modification to setup QoS flow for voice reaches the NG-RAN (see N2 PDU Session Request in clause 4.3.3).

3. NG-RAN is configured to support EPS fallback for IMS voice and decides to trigger fallback to EPS, taking into account UE capabilities, indication from AMF that "Redirection for EPS fallback for voice is possible", network configuration (e.g. N26 availability configuration) and radio conditions. If NG-RAN decides not to trigger fallback to EPS, then the procedure stops here and following steps are not executed.

NG-RAN may initiate measurement report solicitation from the UE including E-UTRAN as target.

NOTE: If AMF has indicated that "Redirection for EPS fallback for voice is not possible", then AN Release via inter-system redirection to EPS is not performed in step 5.

4. NG-RAN responds indicating rejection of the PDU Session modification to setup QoS flow for IMS voice received in step 2 by PDU Session Response message towards the PGW-C+SMF (or H-SMF+P-GW-C via V-SMF, in case of roaming scenario) via AMF with an indication that mobility due to fallback for IMS voice is ongoing.

5. NG-RAN initiates either handover (see clause 4.11.1.2.1), or AN Release via inter-system redirection to EPS (see clause 4.2.6), taking into account UE capabilities.

6. When the UE is connected to EPS:

6a. In the case of 5GS to EPS handover, see clause 4.11.1.2.1, and in the case of inter-system redirection to EPS with N26 interface, see clause 4.11.1.3.2. In either case the UE initiates TAU procedure; or

6b. In the case of inter-system redirection to EPS without N26 interface, see clause 4.11.2.2. If the UE supports Request Type flag "handover" for PDN connectivity request during the attach procedure as described in clause 5.3.2.1 of TS 23.401 [13] and has received the indication that interworking without N26 is supported, then the UE initiates Attach with PDN connectivity request with request type "handover".

7. After completion of the mobility procedure to EPS, the SMF/PGW re-initiates the setup of the dedicated bearer for IMS voice. The PGW-C+SMF behaves as specified in clause 4.9.1.3.1.
8. The IMS voice session establishment is continued.

At least for the duration of the voice call in EPS the E-UTRAN is configured to not trigger any handover to 5GS.

4.13.6.2 Inter RAT Fallback in 5GC for IMS voice

Figure 4.13.6.2-1 describes the RAT fallback procedure in 5GC for IMS voice.

When the UE is served by the 5GC, the UE has one or more ongoing PDU Sessions each including one or more QoS Flows. The serving PLMN AMF has sent an indication towards the UE during the Registration procedure that IMS voice over PS session is supported, see clause 5.16.3.10 in TS 23.501 [2] and the UE has registered in the IMS.

![Figure 4.13.6.2-1: RAT Fallback for IMS voice](image)

1. MO or MT call in 5GS; QoS flow for voice establishment initiated

2. NW initiated PDU session modification to setup QoS flow for IMS voice

3. Trigger for fallback; optional Measurement Report

4. Reject PDU session modification with mobility due to IMS voice fallback indication

5. Inter NG-RAN handover or Redirection

6. NW initiated PDU session modification to setup QoS flow for IMS voice

7. IMS voice establishment continued

1. UE camps on source NG-RAN in the 5GS and an MO or MT IMS voice session establishment has been initiated.

2. Network initiated PDU Session modification to setup QoS flow for IMS voice reaches the source NG-RAN (see N2 PDU Session Request in clause 4.3.3).

3. If source NG-RAN is configured to support RAT fallback for IMS voice, source NG-RAN decides to trigger RAT fallback, taking into account on UE capabilities, network configuration and radio conditions.

 Source NG-RAN may initiate measurement report solicitation from the UE including target NG-RAN.

4. Source NG-RAN responds indicating rejection of the PDU Session modification to setup QoS flow for IMS voice received in step 2 by PDU Session Response message towards the SMF (or V-SMF, in case of roaming scenario) via AMF with an indication that mobility due to fallback for IMS voice is ongoing.

5. Source NG-RAN initiates Xn based Inter NG-RAN handover (see clause 4.9.1.2) or N2 based inter NG-RAN handover (see clause 4.9.1.3), or redirection to E-UTRA connected to 5GC (see clause 4.2.6).

6. After completion of the Inter NG-RAN (inter-RAT) handover or redirection to E-UTRA connected to 5GC, the SMF re-initiates the PDU Session modification to setup QoS flow for IMS voice.

7. The IMS voice session establishment is continued.
At least for the duration of the IMS voice call the target NG-RAN is configured to not trigger inter NG-RAN handover back to source NG-RAN.

4.14 Support for Dual Connectivity

4.14.1 RAN Initiated QoS Flow Mobility

This procedure is used to transfer QoS Flows to and from Secondary RAN Node. During this procedure, the SMF and UPF are never re-allocated. The UPF referred in this clause 4.14.1 is the UPF which terminates N3 interface in the 5GC. The presence of IP connectivity between the UPF and the Master RAN node, as well as between the UPF and the Secondary RAN node is assumed.

If QoS Flows for multiple PDU Sessions need to be transferred to or from Secondary RAN Node, the procedure shown in the Figure 4.14.1-1 below is repeated for each PDU Session.

![Figure 4.14.1-1: NG-RAN initiated QoS Flow mobility procedure](image)

1. The Master RAN node sends a N2 QoS Flow mobility Indication (PDU Session ID, QFI(s), AN Tunnel Info) message to the AMF. AN Tunnel Info includes the new RAN tunnel endpoint for the QFI(s) for which the AN Tunnel Info shall be modified.

2. AMF to SMF: Nsmf_PDUSession_UpdateSMContext request (N2 QoS Flow mobility Indication message PDU Session ID).

3. The SMF sends an N4 Session Modification Request (PDU Session ID(s), QFI(s), AN Tunnel Info for downlink user plane) message to the UPF.

4. The UPF returns an N4 Session Modification Response (CN Tunnel Info for uplink traffic) message to the SMF after requested QFIs are switched.

NOTE: Step 7 can occur any time after receipt of N4 Session Modification Response at the SMF.
5. SMF to AMF: Nsmf_PDUSession_UpdateSMContext response (N2 SM information (CN Tunnel Info for uplink traffic)) for QFIs of the PDU Session which have been switched successfully. If none of the requested QFIs have been switched successfully, the SMF shall send an N2 QoS Flow mobility Failure message.

6. In order to assist the reordering function in the Master RAN node and/or Secondary RAN node, for each affected N3 tunnel the UPF sends one or more "end marker" packets on the old tunnel immediately after switching the tunnel for the QFI. The UPF starts sending downlink packets to the Target NG-RAN.

7. The AMF relays message 5 to the Master RAN node.

4.15 Network Exposure

4.15.1 General

The network capability exposure comprises:

- Exposure of network events externally as well as internally towards core network NFs;
- Exposure of provisioning capability towards external functions;
- Exposure of policy and charging capabilities towards external functions;
- Exposure of core network internal capabilities for analytics.

When subscribing to event reporting the NF consumer(s) provide:

- One or multiple Event ID(s). An Event ID identifies the type of event being subscribed to (e.g. PDU Session release, UE mobility out of an Area of Interest, etc.).

- Event Filter Information: Provides Event Parameter Types and Event Parameter Value(s) to be matched against, in order to meet the condition for notifying the subscribed Event ID e.g. the Event Parameter Type could be "Area of interest" and Event Parameter Value list could be list of TAs; The Event Filter depends on the Event ID. The Event Filter Information is provided per Event ID(s) being subscribed to: within a subscription different Event ID(s) may be associated with different Event Filter Information.

- Event Reporting Information described in the Table 4.15.1-1 below. Within a subscription all Event ID(s) are associated with an unique Event Reporting Information.

- The target of event reporting: this may indicate a specific UE or PDU Session, a group of UE(s) or any UE (i.e. all UEs). Within a subscription all Event ID(s) are associated with the same target of event reporting (possibly corresponding to multiple UE or multiple PDU Sessions).

- A Notification Target Address (+ Notification Correlation ID) allowing the Event Receiving NF to correlate notifications received from the Event provider with this subscription. A subscription is associated with an unique Notification Target Address (+ Notification Correlation ID). In the case that the NF consumer subscribes to the NF producer on behalf of other NF, the NF consumer includes the Notification Target Address (+ Notification Correlation ID) of other NF for the Event ID which is to be notified to other NF directly, and the Notification Target Address (+ Notification Correlation ID) of itself for the Subscription change related event notification. Each Notification Target Address (+ Notification Correlation ID) is associated with related (set of) Event ID(s).

When the subscription is accepted by the Event provider NF, the consumer NF receives from the event provider NF an identifier (Subscription Correlation ID) allowing to further manage (modify, delete) this subscription.

NOTE 1: The Notification Correlation ID is allocated by the consumer NF that subscribes to event reporting and the Subscription Correlation ID is allocated by the NF that notifies when the event is met. Both correlation identifiers can be assigned the same value, although in principle they are supposed to be different, as they are optimized for finding the subscription related context within each NF.

The consumer NF may use an operation dedicated to subscription modification to add or remove Event ID(s) to this subscription or to modify Event Filter Information.

Events are subscribed by the consumer NF(s) by providing Event Filters. The content of the Event Reporting Information is described in Table 4.15.1-1.
Table 4.15.1-1: Event Reporting Information

<table>
<thead>
<tr>
<th>Event Reporting Information Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Event reporting mode</td>
<td>Mode of reporting - e.g. reporting up to a maximum number of reports, periodic reporting along with periodicity, reporting up to a maximum duration</td>
</tr>
<tr>
<td>2) Maximum number of reports</td>
<td>Maximum number of reports after which the event subscription ceases to exist (see NOTE 2)</td>
</tr>
<tr>
<td>3) Maximum duration of reporting</td>
<td>Maximum duration after which the event subscription ceases to exist (see NOTE 2)</td>
</tr>
<tr>
<td>4) Immediate reporting flag</td>
<td>The Event provider NF notifies the current status of the subscribed event, if available, immediately to the consumer NF.</td>
</tr>
</tbody>
</table>

NOTE 2: Explicit unsubscribe by the NF consumer is still possible.

Maximum number of reports is applicable to the subscription to one UE or a group of UE(s). When the subscription is applied to a group of UE(s), the parameter is applied to each individual member UE. The count of number of report is per UE granularity regardless whether the subscription includes more than one events.

Maximum duration of reporting is applicable to the subscription to one UE, a group of UE(s) or any UE. When the subscription is applied to a group of UE(s), this parameter applies to each group member UE. When the subscription is applied to any UE, this parameter applies to all the impacted UEs.

If for a given subscription both Maximum Number of reports and Maximum duration of reporting are included then the subscription is considered to expire as soon as one of the conditions is met.

While the Event Reporting Information is generally mandatory in a subscription request, not all information above is mandatory.

Corresponding notifications contain at least the Notification Correlation ID together with the Event ID and the individual target (e.g. UE or PDU Session ID) associated with the notification.

If the NF service consumer decides to terminate the event subscription, it unsubscribes the event subscription by sending unsubscription request to the event provider NF. After receiving unsubscription request from the NF service consumer, the event provider NF terminates the event subscription.

The following clauses describe the external exposure of network capabilities and core network internal event and capability exposure.

When the immediate reporting flag is set, the first corresponding event report is included in the output message, if corresponding information is available at the reception of the subscription request of the event.

4.15.2 External Exposure of Network Capabilities

The Network Exposure Function (NEF) supports external exposure of capabilities of network functions. External exposure can be categorized as Monitoring capability, Provisioning capability, and Policy/Charging capability. The Monitoring capability is for monitoring of specific event for UE in 5GS and making such monitoring events information available for external exposure via the NEF. The Provisioning capability is for allowing external party to provision of information which can be used for the UE in 5GS. The Policy/Charging capability is for handling QoS and charging policy for the UE based on the request from external party.

4.15.3 Event Exposure using NEF

4.15.3.1 Monitoring Events

The Monitoring Events feature is intended for monitoring of specific events in 3GPP system and making such monitoring events information reported via the NEF. It is comprised of means that allow NFs in 5GS for configuring the specific events, the event detection, and the event reporting to the requested party.

To support monitoring features in roaming scenarios, a roaming agreement needs to be made between the HPLMN and the VPLMN. The set of capabilities required for monitoring shall be accessible via NEF to NFs in 5GS. Monitoring Events via the UDM and the AMF enables NEF to configure a given Monitor Event at UDM or AMF, and reporting of the event via UDM and/or AMF. Depending on the specific monitoring event or information, it is either the AMF or the UDM that is aware of the monitoring event or information and makes it reported via the NEF.
The following table illustrates the monitoring events:

Table 4.15.3.1-1: List of event for monitoring capability

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>Which NF detects the event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Connectivity</td>
<td>Network detects that the UE is no longer reachable for either signalling or user plane communication.</td>
<td>AMF</td>
</tr>
<tr>
<td>UE reachability</td>
<td>It indicates when the UE becomes reachable for sending either SMS or downlink data to the UE, which is detected when the UE transitions to CM-CONNECTED state or when the UE will become reachable for paging, e.g., Periodic Registration Update timer.</td>
<td>AMF; UDM: reachability for SMS</td>
</tr>
<tr>
<td>Location Reporting</td>
<td>It indicates either the Current Location or the Last Known Location of a UE. One-time and Continuous Location Reporting are supported for the Current Location. For Continuous Location Reporting the serving node(s) sends a notification every time it becomes aware of a location change, with the granularity depending on the accepted accuracy of location. (see NOTE 1) For One-time Reporting is supported only for the Last Known Location.</td>
<td>AMF</td>
</tr>
<tr>
<td>Change of SUPI-PEI association</td>
<td>It indicates a change of the ME’s PEI (IMEI(SV)) that uses a specific subscription (SUPI)</td>
<td>UDM</td>
</tr>
<tr>
<td>Roaming status</td>
<td>It indicates UE's current roaming status (the serving PLMN and/or whether the UE is in its HPLMN) and notification when that status changes. (see NOTE 2)</td>
<td>UDM</td>
</tr>
<tr>
<td>Communication failure</td>
<td>It is identified by RAN/NAS release code</td>
<td>AMF</td>
</tr>
<tr>
<td>Availability after DNN failure</td>
<td>It indicates when there has been some data delivery failure followed by the UE becoming reachable.</td>
<td>AMF</td>
</tr>
<tr>
<td>Number of UEs present in a geographical area</td>
<td>It indicates the number of UEs that are in the geographic area described by the AF. The AF may ask for the UEs that the system knows by its normal operation to be within the area (Last Known Location) or the AF may request the system to also actively look for the UEs within the area (Current Location).</td>
<td>AMF</td>
</tr>
</tbody>
</table>

NOTE 1: Location granularity for event request, or event report, or both could be at cell level (Cell ID), TA level or other formats e.g. shapes (e.g. polygons, circles, etc.) or civic addresses (e.g. streets, districts, etc.) which can be mapped by NEF.

NOTE 2: Roaming status means whether the UE is in HPLMN or VPLMN.
4.15.3.2 Information flows

4.15.3.2.1 AMF service operations information flow

![Diagram](image)

Figure 4.15.3.2.1-1: Namf_EventExposure_Subscribe and Notify operations

1. A NEF sends a request to subscribe to a (set of) Event ID(s) in AMF in Namf_EventExposure_Subscribe request. The NEF could be the same NF subscribing to receive the event notification reports (i.e. Event Receiving NF) or it could be a different NF. The NEF subscribes to one or several Event(s) (identified by Event ID) and provides the associated notification endpoint of the Event Receiving NF. As the NEF itself is not the Event Receiving NF, the NEF shall additionally provide the notification endpoint of itself besides the notification endpoint of Event Receiving NF. Each notification endpoint is associated with the related (set of) Event ID(s). This is to assure the NEF can receive the notification of subscription change related event (e.g. Subscription Correlation ID Change).

Event Reporting information defines the type of reporting requested. If the reporting event subscription is authorized by the AMF, the AMF records the association of the event trigger and the requester identity.

2. AMF acknowledges the execution of Namf_EventExposure_Subscribe.

3. The AMF detects the monitored event occurs and sends the event report by means of Namf_EventExposure_Notify message, to the notification endpoint of the Event Receiving NF.

4. [Conditional- depending on the Event] The AMF detects the subscription change related event occurs, e.g. Subscription Correlation ID change due to AMF reallocation, it sends the event report by means of Namf_EventExposure_Notify message to the NEF.

4.15.3.2.2 UDM service operations information flow

![Diagram](image)

Figure 4.15.3.2.2-1: Nudm_EventExposure_Subscribe and Notify operations
1. The NEF subscribes to one or several monitoring events by sending Nudm_EventExposure_Subscribe request. The NEF subscribes to one or several Event(s) (identified by Event ID) and provides the associated notification endpoint of the NEF.

 Event Reporting Information defines the type of reporting requested. If the reporting event subscription is authorized by the UDM, the UDM records the association of the event trigger and the requester identity.

 The subscription may include Maximum number of reports and/or Maximum duration of reporting IE.

2a. [Conditional] Some events (e.g. loss of connectivity), require that UDM sends Namf_EventExposure subs request to the corresponding AMF. As the UDM itself is not the Event Receiving NF, the UDM shall additionally provide the notification endpoint of itself besides the notification endpoint of NEF. Each notification endpoint is associated with the related (set of) Event ID(s). This is to assure the UDM can receive the notification of subscription change related event.

 The UDM sends the Namf_EventExposure subs request to the corresponding AMF in case subscription applied to a UE or a group of UE(s), or to all the AMF in this PLMN in case subscription applied to any UE.

2b. [Conditional] AMF acknowledges the execution of Namf_EventExposure_Subscribe.

3. UDM acknowledges the execution of Nudm_EventExposure_Subscribe.

 If the subscription is applicable to a group of UE(s) and the Maximum number of reports is included in the Event Report information in step 1, the Number of UEs within this group is included in the acknowledgement.

4a. The UDM detects the monitored event occurs and sends the event report, by means of Nudm_EventExposure_Notify message, to the associated notification endpoint of the NEF.

4b. [Conditional - depending on the Event] The AMF detects the monitored event occurs and sends the event report, by means of Namf_EventExposure_Notify message, to the associated notification endpoint of the NEF.

 If the AMF has a maximum number of reports stored for the UE, the AMF shall decrease its value by one for the reported event.

 For both step 4a and step 4b, when the maximum number of reports is reached and if the subscription is applied to a UE, The NEF unsubscribes the monitoring event(s) to the UDM and the UDM unsubscribes the monitoring event(s) to corresponding AMF for the UE.

 For both step 4a and step 4b, when the maximum number of reports is reached for an individual group member UE, the NEF uses the Number of UEs received in step 3 to determine if reporting for the group is complete. If the NEF determines that reporting for the group is complete, the NEF unsubscribes the monitoring event(s) to the UDM and the UDM unsubscribes the monitoring event(s) to corresponding AMF for each individual UE within that group.

 When the Maximum duration of reporting expires in the NEF, the UDM and the AMF, then each of these nodes shall locally unsubscribe the monitoring event.

5. [Conditional - depending on the Event] The AMF detects the subscription change related event occurs, e.g. Subscription Correlation ID change due to AMF reallocation, it sends the event report by means of Namf_EventExposure_Notify message to the the associated notification endpoint of the UDM.
4.15.3.2.3 NEF service operations information flow

1. The AS subscribes to one or several Event(s) (identified by Event ID) and provides the associated notification endpoint of the AS by sending Nnef_EventExposure_Subscribe request.

Event Reporting Information defines the type of reporting requested (e.g. one-time reporting, periodic reporting or event based reporting, for Monitoring Events). If the reporting event subscription is authorized by the NEF, the NEF records the association of the event trigger and the requester identity. The subscription may also include Maximum number of reports and/or Maximum duration of reporting IE.

2. The NEF subscribes to received Event(s) (identified by Event ID) and provides the associated notification endpoint of the NEF to UDM by sending Nudm_EventExposure_Subscribe request.

If the reporting event subscription is authorized by the UDM, the UDM/AMF records the association of the event trigger and the requester identity. Otherwise, the UDM continues in step 4 indicating failure.

3a. [Conditional] If the requested event (e.g. monitoring of Loss of Connectivity) requires AMF assistance, then the UDM sends the Namf_EventExposure_Subscribe to the AMF serving the requested user. As the UDM itself is not the Event Receiving NF, the UDM shall additionally provide the notification endpoint of itself besides the notification endpoint of NEF. Each notification endpoint is associated with the related (set of) Event ID(s). This is to assure the UDM can receive the notification of subscription change related event.

3b. [Conditional] AMF acknowledges the execution of Namf_EventExposure_Subscribe.

If the subscription in step 1 is applicable to a group of UE(s) or any UE, the UDM sends the Namf_EventExposure_sub request to the corresponding AMF in case subscription applied to a UE or a group of UE(s), or all the AMF in this PLMN in case subscription applied to any UE.

4. UDM acknowledges the execution of Nudm_EventExposure_Subscribe.

If the subscription is applicable to a group of UE(s) and the Maximum number of reports is included in the Event Report information in step 1, the Number of UEs is included in the acknowledgement.

5. NEF acknowledges the execution of Nnef_EventExposure_Subscribe to the requester that initiated the request.

6a. The UDM (depending on the Event) detects the event occurs and sends the event report, by means of Nudm_EventExposure_Notify message to the associated notification endpoint of the NEF.

6b. [Conditional - depending on the Event] The AMF detects the event occurs and sends the event report, by means of Namf_EventExposure_Notify message to associated notification endpoint of the NEF.

Figure 4.15.3.2.3-1: Nnef_EventExposure_Subscribe and Notify operations

1. The AS subscribes to one or several Event(s) (identified by Event ID) and provides the associated notification endpoint of the AS by sending Nnef_EventExposure_Subscribe request.

Event Reporting Information defines the type of reporting requested (e.g. one-time reporting, periodic reporting or event based reporting, for Monitoring Events). If the reporting event subscription is authorized by the NEF, the NEF records the association of the event trigger and the requester identity. The subscription may also include Maximum number of reports and/or Maximum duration of reporting IE.

2. The NEF subscribes to received Event(s) (identified by Event ID) and provides the associated notification endpoint of the NEF to UDM by sending Nudm_EventExposure_Subscribe request.

If the reporting event subscription is authorized by the UDM, the UDM/AMF records the association of the event trigger and the requester identity. Otherwise, the UDM continues in step 4 indicating failure.

3a. [Conditional] If the requested event (e.g. monitoring of Loss of Connectivity) requires AMF assistance, then the UDM sends the Namf_EventExposure_Subscribe to the AMF serving the requested user. As the UDM itself is not the Event Receiving NF, the UDM shall additionally provide the notification endpoint of itself besides the notification endpoint of NEF. Each notification endpoint is associated with the related (set of) Event ID(s). This is to assure the UDM can receive the notification of subscription change related event.

3b. [Conditional] AMF acknowledges the execution of Namf_EventExposure_Subscribe.

If the subscription in step 1 is applicable to a group of UE(s) or any UE, the UDM sends the Namf_EventExposure_sub request to the corresponding AMF in case subscription applied to a UE or a group of UE(s), or all the AMF in this PLMN in case subscription applied to any UE.

4. UDM acknowledges the execution of Nudm_EventExposure_Subscribe.

If the subscription is applicable to a group of UE(s) and the Maximum number of reports is included in the Event Report information in step 1, the Number of UEs is included in the acknowledgement.

5. NEF acknowledges the execution of Nnef_EventExposure_Subscribe to the requester that initiated the request.

6a. The UDM (depending on the Event) detects the event occurs and sends the event report, by means of Nudm_EventExposure_Notify message to the associated notification endpoint of the NEF.

6b. [Conditional - depending on the Event] The AMF detects the event occurs and sends the event report, by means of Namf_EventExposure_Notify message to associated notification endpoint of the NEF.
If the AMF has a maximum number of reports stored for the UE or the individual member UE the AMF shall decrease its value by one for the reported event if the UE or the individual member UE.

For both step 6a and step 6b, when the maximum number of reports is reached and if the subscription is applied to a one UE, The NEF unsubscribes the monitoring event(s) to the UDM and the UDM unsubscribes the monitoring event(s) to AMF for the UE.

For both step 6a and step 6b, when the maximum number of reports is reached for an individual group member UE, the NEF uses the Number of UEs received in step 4 to determine if reporting for the group is complete. If the NEF determines that reporting for the group is complete, the NEF unsubscribes the monitoring event(s) to the UDM and the UDM unsubscribes the monitoring event(s) to AMF for each individual UE within that group.

When the Maximum duration of reporting expires in the NEF, the UDM and the AMF, then each of these nodes shall locally unsubscribe the monitoring event.

7. The NEF forwards to the AS the reporting event received by either Nudm_EventExposure_Notify and/or Namf_EventExposure_Notify.

8. [Conditional - depending on the Event] The AMF detects the subscription change related event occurs, e.g. Subscription Correlation ID change due to AMF reallocation, it sends the event report, by means of Namf_EventExposure_Notify message to the the associated notification endpoint of the UDM.

4.15.3.2.4 Exposure with bulk subscription

Based on operator configuration NEF may perform bulk subscription with the NFs that provide necessary services. This feature is controlled by local policies of the NEF that control which events (set of Event ID(s)) and UE(s) are target of a bulk subscription.

When the NEF performs bulk subscription (subscribes for any UE (i.e. all UEs), group of UE(s) (e.g. identifying a certain type of UEs such as IoT UEs)), it subscribes to all the NFs that provide the necessary services (e.g. In a given PLMN, NEF may subscribe to all AMFs that support reachability notification for IoT UEs). Upon receiving bulk subscription from the NEF, the NFs store this information. Whenever the corresponding event(s) occur for the requested UE(s) as in bulk subscription request, NFs notify the NEF with the requested information.

The following call flow shows how network exposure can happen for one UE, groups of UE(s) (e.g. identifying a certain type of UEs such as IoT UEs) or any UE.
1. NEF registers with the NRF for any newly registered NF along with its NF services.

2. When an NF instantiates, it registers itself along with the supported NF services with the NRF.

3. NRF acknowledges the registration

4. NRF notifies the NEF with the newly registered NF along with the supported NF services.

5. NEF evaluates the NF and NF services supported against the pre-configured events within NEF. Based on that, NEF subscribes with the corresponding NF either for a single UE, group of UE(s) (e.g. identifying a certain type of UEs such as IoT UEs), any UE. NF acknowledges the subscription with the NEF.

6 - 7. When the event trigger happens, NF notifies the requested information towards NEF along with the time stamp. NEF may store the information in the UDR along with the time stamp.

8. Application registers with the NEF for a certain event identified by event filters. If the registration for the event is authorized by the NEF, the NEF records the association of the event and the requester identity.

9 - 10. When the event trigger happens, NF notifies the requested information towards NEF. NEF may store the information in the UDR.

11a-b. NEF reads from UDR and notifies the application along with the time stamp for the corresponding subscribed events.
4.15.4 Core Network Internal Event Exposure

4.15.4.1 General

The exposure of events internally within the 3GPP NFs are explained in the following sub-clauses. Only the event notifications that are independent of the ongoing system procedure are specified in this clause. For the event notifications that are part of the system procedure, see the system procedure descriptions under clause 4.2 to clause 4.14.

4.15.4.2 Exposure of Mobility Events from AMF

The AMF invokes the Namf_EventExposure_Notify to provide mobility related events to NF consumers that have subscribed for the events by invoking Namf_EventExposure_Subscribe, in the following scenarios listed below and after Namf_EventExposure_Subscribe service operation.

- During Registration procedure, Inter NG-RAN node N2 based handover procedure, when there is a change of AMF (within the same AMF Set or across the AMF Set), the new AMF receives all event subscriptions from old AMF or UDSF. The AMF in the new AMF Set allocates a new Subscription Correlation ID for each event subscription and notify the NF consumer of the new Subscription Correlation ID.

- During Registration procedure, when there is a change of AMF, the new AMF notifies each SMF of the new AMF serving the UE by informing about the UE reachability status.

- During Registration, Handover, UE Triggered Service Request procedure in CM-IDLE state, Location Reporting, N2 Notification and AN Release procedures, the AMF determines the UE presence in Area Of Interest (i.e. IN, OUT or UNKNOWN status) as described in Annex D.1 and notifies the NF Consumers of the UE presence in an Area Of Interest if the NF consumers (e.g. SMF) had subscribed for this Area Of Interest, and if the UE presence in Area Of Interest is different from the one reported earlier.

- During Registration procedure, for the PDU Sessions to be re-activated, if the UE is moving from an Allowed Area to a Non-Allowed Area, then the AMF informs all the NF consumers (e.g. SMF) that the UE is reachable only for regulatory prioritized service.

- If the AMF had notified an SMF of the UE being reachable only for regulatory prioritized service earlier, then during Registration procedure, the AMF informs the NF consumers (e.g SMF) that the UE is reachable if the UE enters into Allowed Area,

- During Registration procedure and Service Request procedure, if the AMF had notified an SMF earlier of the UE being unreachable and that SMF need not invoke Namf_Communication_N1N2MessageTransfer to the AMF due to DL data notifications, the AMF informs the SMF when the UE becomes reachable.

- During Registration procedure and Service Request procedure, if the NF consumers had subscribed for UE reachability status, the AMF notifies the UE reachability status changes.

- During Network Triggered Service Request procedure, if the UE does not respond to paging, when the AMF considers the UE as unreachable the AMF notifies the NF consumers that have subscribed for UE reachability event, that the UE is not reachable.

- If the UDM had subscribed for UE reachability event notification either to be reported to the UDM or to an NF consumer directly, then the AMF notifies the UE reachability event to the UDM or to the NF consumer as specified in clause 4.2.5.2.

4.15.5 Void

4.15.6 External Parameter Provisioning

4.15.6.1 General

Provisioning capability allows an external party to provision the expected UE behavioural information to 5G network functions. The provisioning information consists of information on expected UE movement and communication characteristics. Provisioned data can be used by the other NFs.
4.15.6.2 NEF service operations information flow

1. AF provides one or more parameter(s) to be updated in Nnef_ParameterProvision_Update Request to the NEF. The GPSI identifies the UE and the Transaction Reference ID identifies the transaction request between NEF and AF.

2. If the AF is authorised by the NEF to provision the parameters, the NEF requests to update and store the provisioned parameters as part of the subscriber data via Nudm_ParameterProvision_Update Request message, the message includes the provisioned data and NEF reference ID.

 If the requester is not authorised to provision data, then the NEF continues in step 6 indicating the reason to failure in Nnef_ParameterProvision_Update Response message.

NOTE 1: For non-roaming case and no authorisation or validation by the UDM required, the NEF can directly forward the external parameter to the UDR via Nudr_DM_Update Request message. And in this case, the UDR responds to NEF via Nudr_DM_Update Response message.

3. UDM may read from UDR, by means of Nudr_DM_Query, corresponding subscriber information in order to validate required data updates and authorize these changes for this subscriber for the corresponding AF.

4. If the AF is authorised by the UDM to provision the parameters for this subscriber, the UDM resolves the GPSI to SUPI, and requests to update and store the provisioned parameters as part of the subscriber data via Nudr_DM_Update Request message, the message includes the provisioned data.

 UDR stores the provisioned data as part of the subscription data and responds with Nudr_DM_Update Response message.

 If the requester is not authorised to provision data, then the UDM continues in step 5 indicating the reason to failure in Nudm_ParameterProvision_Update Response message and steps 7 and 8 are not executed.

5. UDM responds the request with Nudm_ParameterProvision_Update Response. If the procedure failed, the cause value indicates the reason.

6. NEF responds the request with Nnef_ParameterProvision_Update Response. If the procedure failed, the cause value indicates the reason.

7. (This step occurs only after successful 4) UDR may notify UDM the update of UE behavioural information / communication patterns via Nudr_DM_Notify message.

NOTE 2: UDM can previously subscribe to this information as part of of the registration procedure (see clause 4.2.2.2 step 14), since AMF subscribes to Access and Mobility Subscription data.
8. (This step occurs only after successful 4) UDM may notify the subscribed Network Function (e.g., AMF) of the updated subscriber data via Nudm_SDM_Notification Notify message.

NOTE 3: The NEF (in NOTE 1) or the UDM (in step 3) can also update the corresponding UDR data via Nudr_DM_Create/Delete as appropriate.

4.15.6.3 Expected UE Behaviour parameters

These Expected UE Behaviour parameters characterise the foreseen behaviour of a UE or a group of UEs. Sets of these parameters may be provided via the NEF to be stored as part of the subscriber data. Each parameter within the Expected UE Behaviour shall have an associating validity time. The validity time indicates when the Expected UE Behaviour parameter expires and shall be deleted by the related NFs. The validity time may be set to indicate that the particular Expected UE Behaviour parameter has no expiration time. When the validity time expires, the related NFs delete their local copy of the associated Expected UE Behaviour parameter(s). The provision procedure of the Expected UE Behaviour is realized by external parameter provision procedure defined in clause 4.15.6.2.

NOTE: It is expected that the format of validity time, to be defined by Stage 3, is defined in a manner which allows NFs to consistently and uniformly interpret the expiration of the associated Expected UE behaviour parameters.

Table 4.15.6.3-1: Description of Expected UE Behaviour parameters

<table>
<thead>
<tr>
<th>Expected UE Behaviour parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected UE Moving Trajectory</td>
<td>Identifies the UE's expected geographical movement</td>
</tr>
<tr>
<td></td>
<td>Example: A planned path of movement</td>
</tr>
</tbody>
</table>

4.16 Procedures and flows for Policy Framework

4.16.1 AM Policy Association Establishment

4.16.1.1 General

There are three cases considered for AM Policy Association Establishment:

1. UE initial registration with the network.
2. The AMF re-allocation without PCF change in handover procedure and registration procedure.
3. The AMF re-allocation with PCF change in handover procedure and registration procedure.

4.16.1.2 AM Policy Association Establishment with new Selected PCF

This procedure concerns the following scenarios:

1. UE initial registration with the network.
2. The AMF re-allocation with PCF change in handover procedure and registration procedure.
Figure 4.16.1.2-1: AM Policy Association Establishment with new Selected PCF

This procedure concerns both roaming and non-roaming scenarios.

In the non-roaming case the V-PCF is not involved and the role of the H-PCF is performed by the PCF. For the roaming scenarios, the V-PCF interacts with the AMF and the H-PCF interacts with the V-PCF:

1. Based on local policies, the AMF decides to establish AM Policy Association with the (V-)PCF then steps 2 to 3 are performed under the conditions described below.

2. [Conditional] If the AMF has not yet obtained Access and Mobility policy for the UE or if the Access and Mobility policy in the AMF are no longer valid, the AMF requests the PCF to apply operator policies for the UE from the PCF. The AMF sends Npcf_AMPolicyControl_Create to the (V-)PCF to establish an AM policy control association with the (V-)PCF. The request includes the following information: SUPI, Internal Group (see clause 5.9.7 of TS 23.501 [2]), subscription notification indication and, if available, Service Area Restrictions, RFSP index, the Allowed NSSAI, GPSI which are retrieved from the UDM during the update location procedure, and may include Access Type and RAT, PEI, ULI, UE time zone, Serving Network and UE Policy Container (the list of stored PSIs). In roaming scenario, based on operator policies, the AMF may provide to the V-PCF the PCF ID of the selected H-PCF. The V-PCF contacts the H-PCF.

NOTE 1: The UE provides the list of PSIs that are currently stored in the UE (UE access selection and PDU session related policies pre-configured in the UE are not included in this message).

3. The (H-)PCF gets policy subscription related information and the latest list of PSIs if either or both are not available from the UDR using Nudr_DM_Query (SUPI, Policy Data, UE context policy control data, Policy Set Entry) service operation and the list of subscribed S-NSSAI(s) using Nudr_DM_Query (SUPI, Subscriber Data, Access and Mobility Subscription data) makes a policy decision. In roaming scenario, the H-PCF responds to the V-PCF as described in clause 5.3.4 of TS 23.503 [20], then the V-PCF responds to the Npcf_AMPolicyControl_UpdateNotify service operation. The H-PCF provides UE access selection and PDU Session selection related policy information as defined in clause 6.6 of TS 23.503 [20] (optionally) and the Policy Control Request Trigger parameters. The V-PCF provides Access and mobility related policy information (e.g.
Service Area Restrictions) as defined in clause 6.5 of TS 23.503 [20]. In addition, both V-PCF and H-PCF can provide Policy Control Request Trigger of AM Policy Association to AMF.

The AMF is implicitly subscribed in the PCF to be notified of changes in the policies.

The (H-)PCF compares the list of PSIs included in the UE access selection and PDU session selection information, received from the UE with the result of the policy decision to determine whether UE access selection and PDU Session selection policy information have to be included in the answer to the AMF.

If UE access selection and PDU Session selection policies have to be sent to the UE, the (H-)PCF checks if the size of these policies exceeds a predefined limit:

NOTE 2: NAS messages from AMF to UE do not exceed the maximum size limit allowed in NG-RAN (PDCP layer), so the predefined size limit in PCF is related to that limitation.

If the size is under the limit then the UE access selection and PDU Session selection policy information is included in the answer of Npcf_AMPolicyControl_Create service operation.

If the size exceeds the predefined limit the (H-)PCF does not include UE access selection and PDU Session selection policy information in the answer and splits this information in smaller logical independent UE access selection and PDU Session selection policy information and ensuring the size of each is under the predefined limit. Each UE access selection and PDU Session selection policy information will be then sent in additional Npcf_AMPolicyControl_UpdateNotify service operations as described in steps in 5(B).

NOTE 3: The mechanism used to split the UE access selection and PDU Session selection policy information is described in TS 29.507 [32].

The (H-)PCF may request notifications from the UDR on changes in the subscription information by invoking Nudr_DM_Subscribe (Policy Data, SUPI, Notification Target Address (+ Notification Correlation Id), Event Reporting Information (continuous reporting), UE context policy control data) service, and by invoking Nudr_DM_Subscribe (SUPI, Subscriber Data, Notification Target Address (+ Notification Correlation Id), Event Reporting Information (continuous reporting), Access and Mobility Subscription Data) service.

4. [Conditional] The AMF deploys the Access and mobility related policy information which includes storing the Service Area Restrictions and Policy Control Request Trigger of AM Policy Association, provisioning Service Area Restrictions to the UE and provisioning the RFSP index and Service Area Restrictions to the NG-RAN as defined in TS 23.501 [2].

5(A). If the (H-)PCF included UE Policy Container (the list of PSIs and its content) in the answer of Npcf_AMPolicyControl_Create service operation in step 3, the AMF deploys the UE access selection and PDU selection policy information to the UE using UE Update Delivery procedure as described in clause 4.2.4.3. This UE access selection and PDU Session selection policy information indicates a new set of UE access selection and PDU Session selection policy to be added in UE or to delete/modify an existing set of UE access selection and PDU Session selection policy in UE.

The (H-)PCF maintains the latest list of UE access selection and PDU Session related information delivered to the UE and updates the latest list of PSIs in the UDR by invoking Nudr_DM_Update (SUPI, Policy Data, Policy Set Entry, updated PSI data) service operation.

Step 5(B) is skipped.

5(B). If the (H-)PCF applied splitting in step 3 it sends Npcf_AMPolicyControl_UpdateNotify service operation to the AMF including one UE Policy Container (a the list of PSIs and its content) (step 5a).

The AMF stores the information and acknowledges the operation (step 5b). This UE access selection and PDU Session selection policy information indicates a new set of UE access selection and PDU Session selection policy to be added in UE or to delete/modify an existing set of UE access selection and PDU Session selection policy in UE.

The (H-)PCF maintains the latest list of UE access selection and PDU Session related information delivered to the UE and updates the latest list of PSIs in the UDR by invoking Nudr_DM_Update (SUPI, Policy Data, Policy Set Entry, updated PSI data) service operation.

The AMF deploys the UE Policy Container to the UE using UE Policy delivery procedure as described in clause 4.2.4.3.
NOTE 4: The AMF handles transparently the UE Policy Container received from the (H-)PCF.

NOTE 5: After this step the PCF can subscribe to AMF events for the UE.

4.16.1.3 AM Policy Association Establishment with the old PCF

The procedure concerns the case that AMF relocation without PCF change in handover procedure and registration procedure.

![Diagram of AM Policy Association Establishment with the old PCF]

This procedure concerns both roaming and non-roaming scenarios.

In the non-roaming case the V-PCF is not involved. In the roaming case, the AMF interacts with the V-PCF and the H-PCF interacts with the V-PCF:

1. [Conditional] When the old AMF and the new AMF belong to the same PLMN, the old AMF transfers to the new AMF the policy control request triggers provisioned by the PCF and the PCF ID. In the roaming case, the both vPCF ID and H-PCF ID are included.

2. Based on local policies, the AMF decides to establish Policy Association with the (V-)PCF. The new AMF receives a PCF ID from the old AMF and successfully contacts the (V-)PCF identified by the PCF ID, the new AMF retrieves the Access and Mobility policy from the PCF when the policy control request trigger for these policies met.

3. The new AMF sends Npcf_AMPolicyControl_Create to the (V-)PCF to establish an AM policy control association with the (V-)PCF. The request includes the following information: UE Identity (SUPI), Internal Group (see TS 23.501 [2], clause 5.9.7), (V-)PCF ID which is received from old AMF and, if available, Subscribed Service Area Restrictions, subscribed RFSP index which are retrieved from the UDM during the update location procedure, and may include access type and RAT, PEI, ULI, UE time zone, service network.

In roaming, the V-PCF receiving the H-PCF ID from the AMF due to inter-AMF change shall include the associated H-PCF ID in the Npcf_AMPolicyControl_Create operation.

4. If the (H-)PCF has the information for the UE, the (H-)PCF updates the stored information with the information provided by the new AMF for the UE and may update the policy; otherwise the (H-)PCF gets policy subscription related information and/or the latest list of PSIs from the UDR using Nudr_DM_Query (SUPI, Policy Data, UE context policy control data, Policy Set Entry) service operation and makes a policy decision. The PCF maintains the latest list of UE access selection and PDU Session related information delivered to the UE and updates the latest list of PSIs in the UDR by invoking Nudr_DM_Update (SUPI, Policy Data, Policy Set Entry, updated PSI data) service operation. In addition, the PCF may update the Access and mobility related policy information (e.g. Service Area Restrictions). In roaming scenario, the H-PCF may update UE access selection and PDU Session selection related policy information and Policy Control Request Trigger parameters, and responds to the V-PCF, then the V-PCF responds to the Npcf_AMPolicyControl_Create service operation.
NOTE 1: The V-PCF stores the access and mobility control policy information provided to the AMF.

The new AMF is implicitly subscribed in the PCF to be notified of changes in the policies and the old AMF is implicitly unsubscribed in the PCF to be notified of changes in the policies.

The (H-)PCF determines whether the updated UE access selection and PDU Session selection policy information have to be included in the answer to the AMF and the detailed transmission about the updated UE access selection and PDU Session selection policy information refers to steps 5(A) and 5(B) in clause 4.16.1.2.

The (H-)PCF may request notifications from the UDR on changes in the subscription information by invoking Nudr_DM_Subscribe (Policy Data, SUPI, Notification Target Address (+ Notification Correlation Id), Event Reporting Information (continuous reporting), UE context policy control) service if the PCF has not subscribed yet and by invoking Nudr_DM_Subscribe (SUPI, Subscriber Data, Notification Target Address (+ Notification Correlation Id), Event Reporting Information (continuous reporting), Access and Mobility Subscription Data) service.

The AMF deploys the access and mobility control policy, which includes storing the Service Area Restrictions and Policy Control Request Trigger of AM Policy Association, provisioning the RFSP index and Service Area Restrictions to the NG-RAN.

The AMF deploys the UE access selection and PDU selection policy information to the UE using UE Policy delivery procedure as described in clause 4.2.4.3.

NOTE 2: After this step the PCF can subscribe to AMF events for the UE.

4.16.2 AM Policy Association Modification

4.16.2.0 General

There are two cases considered for AM Policy Association Modification:

- Case A: A Policy Control Request Trigger condition is met: the procedure is initiated by the AMF.
- Case B: PCF local decision or trigger from other peers of the PCF (i.e. UDR): the procedure is initiated by the PCF.

4.16.2.1 AM Policy Association Modification initiated by the AMF

This procedure is applicable to Case A.
This procedure concerns both roaming and non-roaming scenarios.

In the non-roaming case the V-PCF is not involved. In the roaming case, the AMF interacts with the V-PCF and the H-PCF interacts with the V-PCF.

1. When a Policy Control Request Trigger condition is met the AMF updates AM Policy Control Association and provides information on the conditions that have changed to the PCF by invoking Npcf_AMPolicyControl_Update.

2. The PCF stores the information received in step 1 and makes the policy decision.

3. The PCF responds to the AMF of the updated Access and Mobility related policy control information and the updated Policy Control Request Trigger parameters.

4. The AMF deploys the access and mobility control policy, which includes storing the Service Area Restrictions and Policy Control Request Trigger of AM Policy Association, provisioning the Service Area Restrictions to the NG-RAN and UE.

 The AMF deploys the UE access selection and PDU selection policy information to the UE using UE Policy delivery procedure as described in clause 4.2.4.3.

5. If the PCF included UE access selection and PDU Session selection policy information in Npcf_AMPolicyControl_Update service operation in step 3, the AMF deploys the UE access selection and PDU selection policy information to the UE as described in step 5(A) and step 5(B) of clause 4.16.2.2.
4.16.2.2 AM Policy Association Modification initiated by the PCF

This procedure is applicable to AM Policy Association modification due to Case B.

Figure 4.16.2.2-1: AM Policy Association Modification initiated by the PCF

This procedure concerns both roaming and non-roaming scenarios.

In the non-roaming case the V-PCF is not involved and the role of the H-PCF is performed by the PCF. In the roaming case, the H-PCF provides UE access selection and PDU Session selection policy decision, and provide the policy to the AMF via V-PCF. The V-PCF provides Access and mobility related policy control to the AMF based on roaming agreements, i.e. operator policies in V-PCF are configured for roamers.

NOTE 1: The V-PCF stores the access and mobility control policy information provided to the AMF.

1a. [Conditional] If (H-)PCF subscribed to notification of subscriber’s policy data change and a change is detected, the UDR notifies that the subscriber’s policy data of a UE has been changed. If (H-)PCF subscribed to notification of access and mobility subscription data in the subscriber’s data change and a change is detected, the UDR notifies the PCF.

The UDR notifies the (H-)PCF of the updated subscriber profile via Nudr_DM_Notify (Notification correlation Id, Policy Data, SUPI, updated data, UE Context Policy Control Data) service operation service operation including SUPI and the updated subscriber policy data.
1b. [Conditional] PCF determines locally that the new status of the UE context requires new policies.

2. The (H-)PCF makes the UE access selection and PDU Session selection policy decision, the H-PCF interacts with the V-PCF in roaming case. The (H-)PCF checks the latest list of PSIs to decide which UE access selection and/or PDU Session selection policies have to be sent to the UE.

3. The (H)-PCF checks if the size of the resulting UE access selection and PDU Session selection policy information exceeds a predefined limit:

 NOTE 2: NAS messages from AMF to UE do not must not exceed the maximum size limit allowed in NG-RAN (PDCP layer), so the predefined size limit in PCF is related to that limitation.

 - If the size is under the limit then UE access selection and PDU Session selection policy information are included in a single Npcf_AMPolicyControl_UpdateNotify service operation.

 - If the size exceeds the predefined limit the PCF splits the UE access selection and PDU Session selection policy information in smaller logical independent UE access selection and PDU Session selection policy information and ensuring the size of each t is under the predefined limit. Each UE access selection and PDU Session selection policy information will be then sent in separated Npcf_AMPolicyControl_UpdateNotify service operations as described in steps in 5(B).

 NOTE 3: The mechanism used to split the UE access selection and PDU Session selection policy information is described in 29.507 [32].

 The PCF identifies each UE access selection and PDU Session selection policy information sent to the UE by an ID.

 (V-)PCF may also determine locally to update the UE access and mobility control policy information in AMF.

4. [Conditional] The AMF deploys the Access and mobility related policy information, which includes storing the Service Area Restrictions and Policy Control Request Trigger of AM Policy Association, provisioning of the Service Area Restrictions and provisioning the RFSP index and Service Area Restrictions to the NG-RAN.

5(A). [Conditional] If the (H-)PCF included UE Policy Container in Npcf_AMPolicyControl_UpdateNotify service operation in step 3, the AMF deploys the UE Policy Container to the UE using UE Policy Delivery procedure as described in clause 4.2.4.3. This UE Policy Container indicates a new set of PSIs and its content to be added in UE or to delete/modify an existing set of PSIs and its content in UE. Step 5(B) is skipped.

5(B). [Conditional] If the PCF applied split in step 3 it sends Npcf_AMPolicyControl_UpdateNotify service operation to the AMF including one UE Policy Container. This UE Policy Container indicates a new PSIs and its content to be added in UE or to delete/modify an existing set of PSI(s) and its content in UE.

 The AMF deploys the UE Policy to the UE using UE Policy delivery procedure described in clause 4.2.4.3.

 NOTE 4: The AMF handles transparently the UE Policy Container received from the PCF.

6. The PCF maintains the latest list of PSIs and its content delivered to the UE updated in step 5 and updates the latest list of PSIs in the UDR by invoking Nudr_DM_Update (SUPI, Policy Data, Policy Set Entry, updated PSI data) service operation.

4.16.3 AM Policy Association Termination

4.16.3.1 General

The following case is considered for AM Policy Association Termination:

- UE Deregistration from the network.

- The mobility with change of AMF (e.g. new AMF is in different PLMN).

- UE context establishment during AMF relocation.

- Notification of removal of policy profile by UDR.
4.16.3.2 AMF-initiated AM Policy Association Termination

This procedure concerns both roaming and non-roaming scenarios.

In the non-roaming case, the V-PCF is not involved and the role of the H-PCF is performed by the PCF. For the roaming scenarios, the V-PCF interacts with the AMF. The V-PCF contacts the H-PCF to request removing AM Policy Association.

1. The AMF decides to terminate the AM Policy Association during Deregistration procedure or due to mobility with change of AMF in the registration procedure, then if a AM Policy Association was established with the (V-)PCF steps 2 to 3 are performed.

2. The AMF sends the Npcf_AMPolicyControl_Delete service operation including SUPI to the (V-)PCF.

3. The (V-)PCF removes the policy context for the UE and replies to the AMF with an Acknowledgement including success or failure. The V-PCF may interact with the H-PCF. The (H-)PCF may unsubscribe to subscriber policy data changes and to subscriber data changes with UDR by Nudr_DM_Unsubscribe (Subscription Correlation Id) for both subscriber policy changes and subscriber data changes.

4. The AMF removes the Policy Association for this UE, including the Access and Mobility Control Policy related to the UE. The AMF deletes the subscription to AMF detected events requested for that Policy Association.
4.16.3.3 PCF-initiated Policy Association Termination

This procedure concerns both roaming and non-roaming scenarios.

In the non-roaming case, the V-PCF is not involved and the role of the H-PCF is performed by the PCF. For the roaming scenarios, the H-PCF interacts with the V-PCF to request removing Policy Association.

The PCF is subscribed to notification of changes in Data Set "Policy Data" for a SUPI.

1. The Policy data is removed, either the Data Set "Policy Data" or the Data Subset "UE context policy control".
2. The UDR sends the Nudr_DM_Notify_Request (Notification correlation Id, Policy Data, SUPI, UE Context Policy Control data, updated data) including the SUPI, the Data Set Identifier, the Data Subset Identifier and the Updated Data including empty "Policy Data" or empty "UE context policy control".
3. The PCF sends the Nudr_DM_Notify_Response to confirm reception and the result to UDR.
4. The PCF may, depending on operator policies, notify the AMF of the removal of the Access and Mobility related policy control information via Npcf_AMPolicyControl_UpdateNotify service operation. Alternatively, the PCF may decide to maintain the Policy Association if a default profile is applied, in this case steps 4, 5 and 6 are not executed.
5. The AMF stores the information and acknowledges the operation.
6. Step 2-4 in clause 4.16.3.2 AMF-initiated AM Policy Association Termination are performed to remove the Policy Association for this UE including the Access and Mobility Control Policy related to the UE and the subscription to AMF detected events requested for that Policy Association.
4.16.4 SM Policy Association Establishment

This procedure concerns both roaming and non-roaming scenarios.

In the non-roaming case the V-PCF is not involved. In the local breakout roaming case, the H-PCF is not involved. In the home routed roaming case, the V-PCF is not involved and the H-PCF interacts with the H-SMF.

This procedure is used in UE requests a PDU Session Establishment as explained in clause 4.3.2.2.1, for non-roaming and local breakout roaming. For home-routed roaming, as explained in clause 4.3.2.2.2.

For local breakout roaming, the interaction with HPLMN (e.g. step 3) is not used. In local breakout roaming, the V-PCF interacts with the UDR of the VPLMN.

1. The SMF determines that the PCC authorization is required and requests to establish an SM Policy Association with the PCF by invoking Npcf_SMPolicyControl_Create operation (see clause 5.2.5.4.2). The SMF includes the following information: SUPI, PDU Session id, PDU Session Type, DNN, Access Type, AMF instance identifier and if available, the IPv4 address and/or IPv6 network prefix, PEI, User Location Information, UE Time Zone, Serving Network, RAT type, Charging Characteristics, Session AMBR, default QoS information, Internal Group Identifier (see TS 23.501 [2], clause 5.9.7).

2. If the PCF does not have the subscriber's subscription related information, it sends a request to the UDR by invoking Nudr_DM_Query (SUPI, DNN, S-NSSAI, Policy Data, PDU Session policy control data, Accumulated Usage data) service in order to receive the information related to the PDU Session. The PCF may request notifications from the UDR on changes in the subscription information by invoking Nudr_DM_Subscribe (Policy Data, SUPI, DNN, S-NSSAI, Notification Target Address (+ Notification Correlation Id), Event Reporting Information (continuous reporting), PDU Session policy control data, Accumulated Usage data) service.

3. If the PCF determines that the policy decision depends on the status of the policy counters available at the CHF and such reporting is not established for the subscriber, the PCF initiates an Initial Spending Limit Report Retrieval as defined in clause 4.16.8.2. If policy counter status reporting is already established for the subscriber, and the PCF determines that the status of additional policy counters are required, the PCF initiates an Intermediate Spending Limit Report Retrieval as defined in clause 4.16.8.3.

4. The PCF makes the authorization and the policy decision.
5. The PCF answers with a Npcf_SMPolicyControl_Create response; in its response the PCF may provide policy information defined in clause 5.2.5.4 (and in TS 23.503 [20]). The SMF enforces the decision. The SMF implicitly subscribes to changes in the policy decisions.

NOTE: After this step the PCF can subscribe to SMF events associated with the PDU Session.

4.16.5 SM Policy Association Modification

4.16.5.0 General

The following SM Policy Association Modification procedures concern both roaming and non-roaming scenarios.

In the non-roaming case the V-PCF is not involved. In the local breakout roaming case, the H-PCF is not involved. In the home routed roaming case, the V-PCF is not involved and the H-PCF interacts with the H-SMF.

The SM Policy Association Modification procedure may be initiated either by the SMF or by the PCF.

4.16.5.1 SMF initiated SM Policy Association Modification

The SMF may initiate the SM Policy Association Modification procedure in case a Policy Control Request Trigger is met.

```
| AMF | UPF | SMF | PCF | UDR | AF | CHF |
```

1. Npcf_SMPolicyControl_Update request

2. Spending Limit Report Retrieval

3. Policy Decision

4. Npcf_SMPolicyControl_Update response

Figure 4.16.5.1-1: SMF initiated SM Policy Association Modification

For local breakout roaming, the interaction with HPLMN (e.g. step 2) is not used. In local breakout roaming, the V-PCF interacts with the UDR of the VPLMN.

1. When a Policy Control Request Trigger condition is met the SMF requests to update (Npcf_SMPolicyControl_Update) the SM Policy Association and provides information on the conditions that have been met.

2. If the PCF determines a change to policy counter status reporting is required, it may alter the subscribed list of policy counters using the Initial, Intermediate or Final Spending Limit Report Retrieval procedures as defined in clause 4.16.8.

3. The PCF makes a policy decision as described in TS 23.503 [20]. The PCF may determine that updated or new policy information needs to be sent to the SMF.

 If the SMF reported accumulated usage for the PDU session in step 1 the PCF deducts the value from the total allowed usage for the subscriber, DNN, and S-NSSAI in the UDR by invoking Nudr_DM_Update (SUPI, DNN, S-NSSAI, Policy Data, Accumulated Usage data, updated data) service operation.

 If the SMF reported accumulated usage for a MK(s) in step 1 the PCF deducts the value from the total allowed usage for the MK in the UDR by invoking Nudr_DM_Update (SUPI, DNN, S-NSSAI, Policy Data, Accumulated Usage data, updated data (including MK(s)) service operation.

4. The PCF answers with a Npcf_SMPolicyControl_Update response with updated policy information about the PDU Session determined in step 3.
4.16.5.2 PCF initiated SM Policy Association Modification

The PCF may initiate SM Policy Association Modification procedure based on local decision or triggered by other peers of the PCF (AF, CHF, UDR).

1a. Alternatively, optionally, the AF provides/revokes service information to the PCF e.g. due to AF session signalling, by invoking Npcf_PolicyAuthorization_Create Request or Npcf_PolicyAuthorization_Update Request service operation. The PCF responds to the AF.

1b. Alternatively, optionally, the CHF provides a Spending Limit Report to the PCF as described in clause 4.16.8. and responds to the CHF.

1c. Alternatively, optionally, the UDR notifies the PCF about a policy subscription change by invoking Nudr_DM_Notify (Notification correlation Id, Policy Data, SUPI, updated data, "PDU Session Policy Control Data" | "Accumulated Usage"); The PCF responds to the UDR.

1d. Alternatively, optionally, some internal event (e.g. timer) occurs at the PCF.

2. If the PCF determines a change to policy counter status reporting is required, it may alter the subscribed list of policy counters using the Initial, Intermediate or Final Spending Limit Report Retrieval procedures as defined in clause 4.16.8.

NOTE: The PCF ensures that information received in step 1 and 2 can be used by later policy decisions.

3. The PCF makes a policy decision. The PCF may determine that updated or new policy information need to be sent to the SMF.

If the AF provided a Background Data Transfer Reference ID in step 1a, the PCF may retrieve it from the UDR by invoking the Nudr_DM_Query (BDT Reference Id, Policy Data, Background Data Transfer) service.
4. If the PCF has determined that SMF needs updated policy information in step 3 the PCF issues a Npcf_SMPolicyControl_UpdateNotify request with possibly updated policy information about the PDU Session.

5. The SMF acknowledges the PCF request with a Npcf_SMPolicyControl_UpdateNotify response.

4.16.6 SM Policy Association Termination

<table>
<thead>
<tr>
<th>AMF</th>
<th>UPF</th>
<th>SMF</th>
<th>PCF</th>
<th>UDR</th>
<th>CHF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Identify what PCC Rules are affected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Remove all PCC Rules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. See 23.203 clause 7.3.1 steps 6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Nchf_SpendingLimitControl unsubscribe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Npcf_SMPolicyControl_Delete response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Nudr_DM_Unsubscribe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.16.6-1: SM Policy Association Termination

This procedure concerns both roaming and non-roaming scenarios.

In the non-roaming case the V-PCF is not involved. In the local breakout roaming case, the H-PCF is not involved. In the home routed roaming case, the V-PCF is not involved and the H-PCF interacts only with the H-SMF.

The procedure for Session Management Policy Termination may be initiated by:

- (case A) the PCF.
- (case B) the SMF.

For local breakout roaming, the interaction with HPLMN (e.g. step 6) is not used. In local breakout roaming, the V-PCF interacts with the UDR of the VPLMN.

1. (Case A) The PCF may invoke the Npcf_SMPolicyControl_UpdateNotify service operation to request the release of a PDU Session. The SMF acknowledges the request.

 The rest of the procedure corresponds to both Case A &B.

2. The SMF may invoke the Npcf_SMPolicyControl_Delete service operation to request the deletion of the SM Policy Association with the PCF. The SMF provides relevant information to the PCF.

3. When receiving the request from step2, the PCF finds the PCC Rules that require an AF to be notified and removes PCC Rules for the PDU Session.
If the SMF reported accumulated usage for the PDU session in step 1 the PCF deducts the value from the total allowed usage for the subscriber, DNN, and S-NSSAI in the UDR by invoking Nudr_DM_Update (SUPI, DNN, S-NSSAI, Policy Data, Accumulated Usage data, updated data) service operation.

If the SMF reported accumulated usage for a MK(s) in step 1 the PCF deducts the value from the total allowed usage for the MK in the UDR by invoking Nudr_DM_Update (SUPI, DNN, S-NSSAI, Policy Data, Accumulated Usage data, updated data (including MK(s)) service operation.

4. The SMF removes all policy information about the PDU Session associated with the PDU Session.

5. The PCF notifies the AF as explained in clause 7.3.1 steps 6-7 of TS 23.203 [24].

 PCF may invoke Nbsf_Management_Deregister service operation to delete the binding created in BSF.

6. The PCF may invoke the procedure defined in clause 4.16.8 to unsubscribe to policy counter status reporting (If this is the last PDU Session for this subscriber requiring policy counter status reporting) or to modify the subscription to policy counter status reporting, (if any remaining existing PDU Sessions for this subscriber requires policy counter status reporting).

7. The PCF removes the information related to the terminated PDU Session and acknowledges to the SMF that the PCF handling of the PDU Session has terminated. This interaction is the response to the SMF request in step 2.

8. The PCF may (e.g. if it is the last PDU Session on the (DNN, S-NSSAI) couple) unsubscribe to the notification of the PDU Session related data modification from the UDR by invoking Nudr_DM_Unsubscribe (Subscription Correlation Id) if it had subscribed such notification.

4.16.7 Negotiations for future background data transfer

4.16.7.1 General

This procedure enables the negotiation between the NEF and the H-PCF about the transfer policies for the future background data transfer (as described in clause 6.1.2.4 in TS 23.503 [20]). The transfer policies consist of a desired time window for the background data transfer, a reference to a charging rate for the time window and optionally a maximum aggregated bitrate, as described in clause 6.1.16 in TS 23.203 [24].

This negotiation is preliminarily conducted (when AF initiates a procedure to NEF) before the UE's PDU Session establishment. At a later time, the AF invokes the Npcf_PolicyAuthorization_Create service directly with PCF, or via the NEF, to apply the background data transfer policy for an individual UE.
4.16.7.2 Procedures for future background data transfer

Figure 4.16.7.2-1: Negotiation for future background data transfer

1. The AF invokes the Nnef_BDTPNegotiation_Create service.

2. Based on an AF request, the NEF invokes the Npcf_BDTPolicyControl_Create service with the H-PCF to authorize the creation of the policy regarding the background data transfer.

 NOTE 1: The NEF does not provide any information about the identity of the UEs potentially involved in the future background data transfer.

 NOTE 2: A 3rd party application server is typically not able to provide any specific network area information and if so, the AF request is for a whole operator network.

3. The H-PCF may request from the UDR the stored transfer policies for all the ASPs using Nudr_DM_Query (Policy Data, Background Data Transfer) service operation.

 NOTE 3: In case only one PCF is deployed in the PLMN, the transfer policy can be locally stored and no interaction with UDR is required.

4. The UDR provides all the stored transfer policies and corresponding network area information to the H-PCF.

5. The H-PCF determines, based on information provided by the AF and other available information one or more transfer policies.

 NOTE 4: The maximum aggregated bitrate is not enforced in the network.

6. The H-PCF send the acknowledge message to the NEF with the acceptable transfer policies and a Background Data Transfer Reference ID.

 NOTE 5: The NEF forwards the received transfer policies to the AF and stores the Background Data Transfer Reference ID for future interaction with the PCF.

7. The NEF sends a Nnef_BDTPNegotiation_Create response to the AF to provide one or more background data transfer policies to the AF. If the NEF received only one background transfer policy from the PCF, steps 8-11 are not executed and the flow proceeds to step 12. Otherwise, the flow proceeds to step 8.
8. The AF invokes the Nnef_BDTPNegotiation_Update service to provide the NEF with the selected background data transfer policy.

9. The NEF invokes the Npcf_BDTPolicyControl_Update service to provide the H-PCF with the selected background data transfer policy and the associated Background Data Transfer Reference ID.

10. The H-PCF sends the acknowledge message to the NEF.

11. The NEF sends the acknowledge message to the AF.

NOTE 6: If the NEF receives only one transfer policy, the AF is not required to confirm.

12. The H-PCF stores the reference ID together with the new transfer policy and the corresponding network area information in the UDR by invoking Nudr_DM_Update (BDT Reference id, Policy Data, Background Data Transfer, updated data). This step is not executed, when the PCF decides to locally store the transfer policy.

13. The UDR sends a response to the H-PCF as its acknowledgement.

4.16.8 Procedures on interaction between PCF and CHF

4.16.8.1 General

The PCF may interact with the OCS to make PCC decisions based on spending limits. In Home Routed roaming and Non-roaming case, the H-PCF will interact with the OCS in HPLMN.

4.16.8.2 Initial Spending Limit Retrieval

This clause describes the signalling flow for the PCF to retrieve the status of the policy counters available at the CHF, and to subscribe to spending limit reporting (i.e. to notifications of policy counter status changes) by the CHF. If the PCF provides the list of policy counter identifier(s), the CHF returns the policy counter status per policy counter identifier provided by the PCF. If the PCF does not provide the list of policy counter identifier(s), the CHF returns the policy counter status of all policy counter(s), which are available for this subscriber.

The Initial Spending Limit Report Retrieval includes all subscriber Identifiers associated with the UE available at the PCF.

NOTE: In case the CHF returns the status of all available policy counters some of these might not be relevant for a policy decision (e.g. those used in a policy decision only when roaming).

![Diagram](attachment:figure.png)

Figure 4.16.8.2.1: Initial Spending Limit Report Retrieval

1. The PCF retrieves subscription information that indicates that policy decisions depend on the status of policy counter(s) held at the CHF and optionally the list of policy counter identifier(s).

2. The PCF sends Nchf_SpendingLimitControl_Subscribe if this is the first time policy counter status information is requested for the user identified by a SUPI. It includes: the subscriber ID (e.g. SUPI), the EventId “policy counter status change” and, optionally, the list of policy counter identifier(s) as Event Filter, the Notification Target Address, Event Reporting Information (continuous reporting).

The CHF responds to the Nchf_SpendingLimitControl_Subscribe service operation including the Subscription Correlation Id) and as Event Information provides a policy counter status, and optionally pending policy counter
statuses and their activation times, per required policy counter identifier and stores the PCF’s subscription to spending limit reports for these policy counters. If no policy counter identifier(s) was provided the CHF returns the list of the policy counter status, optionally including pending policy counter statuses and their activation times, for all policy counter(s), which are available for this subscriber and stores the PCF’s subscription to spending limit reports of all policy counters provided to the PCF.

4.16.8.3 Intermediate Spending Limit Report Retrieval

This clause describes the signalling flow for the PCF to retrieve the status of additional policy counters available at the CHF or to unsubscribe from spending limit reporting. If the PCF provides the list of policy counter identifier(s), the CHF returns the policy counter status per policy counter identifier provided by the PCF.

NOTE: In case the CHF returns the status of all available policy counters some of these might not be relevant for a policy decision, (e.g. those used in a policy decision only when roaming).

![Figure 4.16.8.3.1: Intermediate Spending Limit Report Retrieval](image)

1. The PCF determines that policy decisions depend on the status of additional policy counter(s) held at the CHF or that notifications of policy counter status changes for some policy counters are no longer required.

2. The PCF sends Nchf_SpendingLimitControl_Subscribe to the CHF, including the Subscription Correlation Id, the EventId "policy counter status change" and an updated list of policy counter identifier(s) as EventFilters, that overrides the previously stored list of policy counter identifier(s).

The CHF responds to the Nchf_SpendingLimitControl_Subscribe service operation and provides as Event Information the policy counter status, and optionally pending policy counter statuses and their activation times, per required policy counter identifier, and stores or removes the PCF’s subscription to spending limit reporting by comparing the updated list with the existing PCF subscriptions. If no policy counter identifier(s) was provided, the CHF returns the policy counter status, optionally including pending policy counter statuses and their activation times, for all policy counter(s), which are available for this subscriber and stores the PCF’s subscription to spending limit reports of all policy counters provided to the PCF.

4.16.8.4 Final Spending Limit Report Retrieval

This clause describes the signalling flow for the PCF to cancel the subscriptions to status changes for the policy counters available at the CHF.
1. The PCF decides that notifications of policy counter status changes are no longer needed.

2. The PCF sends Nchf_SpendingLimitControl_Unsubscribe including the SubscriptionCorrelationId to the CHF to cancel the subscription to notifications of policy counter status changes from the CHF.

3. The CHF removes the PCF's subscription to spending limit reporting and responds to the Nchf_SpendingLimitControl_Unsubscribe service operation to the PCF.

4.16.8.5 Spending Limit Report

This clause describes the signalling flow for the CHF to notify the change of the status of the subscribed policy counters available at the CHF for that subscriber. Alternatively, the signalling flow can be used by the CHF to provide one or more pending statuses for a subscribed policy counter together with the time they have to be applied.

1. The CHF detects that the status of a policy counter(s) has changed and the PCF subscribed to notifications of changes in the status of this policy counter. Alternatively, the CHF may detect that a policy counter status will change at a future point in time, and decides to instruct the PCF to apply one or more pending statuses for a requested policy counter.

2. The CHF sends Nchf_SpendingLimitControl_Notify with the SUPI, Notification Target Address, and in the Event Information the policy counter status, and optionally pending policy counter statuses and their activation times, for each policy counter that has changed and for which the PCF subscribed to spending limit reporting. Alternatively, the CHF sends one or more pending statuses for any of the subscribed policy counters together with the time they have to be applied.

3. The PCF acknowledges sending Nchf_SpendingLimitControl_Notify response and takes that information into account as input for a policy decision.
4.16.9 Update of the subscription information in the PCF

NOTE: The V-PCF is not used for session management related policy decisions in this procedure.

0. The PCF performs the subscription to notification to the profile modified in the UDR by invoking
 Nudr_DM_Subscribe (Policy Data, SUPI, Notification Target Address (+ Notification Correlation Id), Event Reporting Information(continuous reporting), one or several of the following: "PDU Session Policy Control data", "Accumulated Usage data" or "UE context Policy Control data") service.

1. The UDR detects that the related subscription profile has been changed.

2. If subscribed by the PCF, the UDR notifies the PCF on the changed profile by invoking Nudr_DM_Notify
 (Notification Correlation Id, Policy Data, SUPI, updated data and one or several of the following data subtypes
 "PDU Session Policy Control Data" or "Accumulated Usage Data" or "UE Context Policy Control data") service.

3. The PCF stores the updated profile.

4. If the updated subscriber profile requires the status of new policy counters available at the OCS then an
 Initial/Intermediate/Final Spending Limit Report Retrieval is initiated by the PCF as defined in clauses 4.16.8,2 and
 4.16.8.3. If the updated subscriber profile implies that no policy counter status is needed an Intermediate
 Spending Limit Report Request Retrieval is initiated by the PCF to unsubscribe or, if this is the last policy
 counter status, a Final Spending Limit Report Retrieval is initiated by the PCF as specified in clause 4.16.8.4.

5. PCF makes an authorization and policy decision.

6. The PCF provides new session management related policy decisions to the SMF, using the Policy related interaction in PDU Session Modification procedure in clause 4.16.6, new access and mobility related policy information or new UE access selection and PDU Session selection related policy information to the AMF using the UE Context Modification procedure in clause 4.16.2.

4.16.10 Providing AF request to PCFs using UDR

As described in TS 23.501 [2] clause 6.3.7.2, an authorized Application Function may provide policy requirements to multiple PCFs via the NEF using the UDR when the UDR is deployed. This clause describes the procedure between the AF and the PCF for the policy requirement provisioning.
NOTE 1: The 5GC functions used in this scenario are assumed to all belong to the same PLMN (HPLMN in non-roaming case or VPLMN in case of a PDU Session in LBO mode).

NOTE 2: AF requests received from an AF located in the HPLMN for local breakout and home routed roaming scenarios are not supported.

0. The PCF subscribes to receive notifications of AF request information from the UDR by invoking the Nudr_UDM_Subscribe service.

1. The AF creates an AF request and sends it to the NEF.

2. If necessary, the NEF performs parameter mapping as described in TS 23.501 [2] clause 6.3.7.2.

3. The NEF modifies (i.e. creates, updates, or deletes) the AF request stored in the UDR by invoking the corresponding UDR service (i.e. Nudr_UDM_Create/_Update/_Delete).

4. The NEF responds to the AF. The response indicates the acceptance of the AF request.

5. The UDR notifies the PCF of the AF request.

6. When needed, the PCF may obtain the AF request from the UDR by invoking the Nudr_UDM_Query service.
4.17 Network Function Service Framework Procedure

4.17.1 NF service Registration

Figure 4.17.1-1: Nnrf_NF Registration procedure

1. NF service consumer e.g. AMF instance sends Nnrf_NFManagement_NFRegister Request message (the NF profile of NF service consumer) to NRF to inform the NRF of its NF profile when the NF service consumer becomes operative for the first time. According to clause 6.2.6 of TS 23.501 [2], the NF profile of NF service consumer includes NF type, FQDN or IP address of NF, Names of supported services, Endpoint information of instance(s) of each supported service and other service parameter.

In case of UDR, the request message may include Range(s) of SUPIs and/or the Data Set Identifier(s) served by the UDR instance.

NOTE 1: The NF profile of NF service consumer that interacts with NRF are configured by OAM system.

2. The NRF stores the NF profile of NF service consumer and marks the NF service consumer available.

NOTE 2: Whether the NF profile sent by NF service consumer to NRF needs to be integrity protected by the NF service consumer and verified by the NRF is to be decided by SA3.

3. The NRF acknowledge NF Registration is accepted via Nnrf_NFManagement_NF Register response.

4.17.2 NF service update

Figure 4.17.2-1: Nnrf_NF Update procedure

1. NF service consumer e.g. AMF instance sends Nnrf_NFManagement_NF Update_Request message (the updated NF profile of NF service consumer) to NRF to inform the NRF of its updated NF profile (e.g. with updated capacity) when e.g. triggered after a scaling operation.
NOTE: The updated NF profile of NF instance are configured by OAM system.

2. The NRF updates the NF profile of NF service consumer.

3. The NRF acknowledge NF Update is accepted via Nnrf_NFManagement_NF Update response.

4.17.3 NF service deregistration

Figure 4.17.3-1: Nnrf_NF Deregistration procedure

1. NF service consumer e.g. AMF instance sends Nnrf_NFManagement_NFDeregister_Request message to NRF to inform the NRF of its unavailability when e.g. it's about to gracefully shut down or disconnect from the network.

2. The NRF marks the NF service consumer unavailable. NRF may remove the NF profile of NF service consumer according to NF management policy.

3. The NRF acknowledge NF Deregistration is accepted via Nnrf_NFManagement_NF Deregister response.

4.17.4 NF/NF service discovery in the same PLMN

Figure 4.17.4-1: NF/NF service discovery in the same PLMN

1. The NF service consumer intends to discover services available in the network based on service name and target NF type. The NF service consumer invokes Nnrf_NFDiscovery_Request (Expected NF service Name, NF Type of the expected NF instance, NF type of the NF consumer) from an appropriate configured NRF in the same PLMN. The parameter may include optionally SUPI, Data Set Identifier(s), External Group ID (for UDM, UDR discovery), Routing ID part of SUCI for UDM discovery and AUSF discovery, S-NSSAI, NSI ID if available, and other service related parameters. In addition, for AMF discovery, the parameters may include AMF Region ID, AMF Set ID, TAI.

NOTE 1: The use of NSI ID within a PLMN depends on the network deployment.

NOTE 2: The need for other service related parameters depends on the NF type of the expected NF instance(s) and refer to the clause 6.3 “Principles for Network function and Network Function Service discovery and selection” in TS 23.501 [2]. It is up to NF implementation whether one or multiple NF service instances are registered in the NRF.
2. The NRF authorizes the Nnrf_NFDiscovery_Request. Based on the profile of the expected NF/NF service and the type of the NF service consumer, the NRF determines whether the NF service consumer is allowed to discover the expected NF instance(s). If the expected NF instance(s) or NF service instance(s) are deployed in a certain network slice, NRF authorizes the discovery request according to the discovery configuration of the Network Slice, e.g. the expected NF instance(s) are only discoverable by the NF in the same network slice.

3. If allowed, the NRF determines the discovered NF instance(s) or NF service instance(s) and provides the information of a set of discovered NF instance(s) or NF service instance(s) to the NF service consumer via Nnrf_NFDiscovery_Request Response message. The information includes: FQDN, IP address, or end point addresses (i.e. URLs) for the set of discovered NF instance(s) or NF service instance(s). In addition, it can include GUAMI(s), TAI(s), if available.

 In case the target NF is UDR, UDM or AUSF, if SUPI was used as optional input parameter in the request, the NRF shall provide the corresponding UDR, UDM or AUSF instance(s) that matches the optional input SUPI. Otherwise, if SUPI is not provided in the request, the NRF shall return all applicable UDR instance(s) (e.g. based on the Data Set Id, NF type), UDM instance(s) or AUSF instance(s) (e.g. based on NF type) and if applicable, the information of the range of SUPI(s) and/or Data Set Id each UDR instance is supporting.

 NOTE 3: Service consumer need not be aware if information provided by NRF is based on NF instance(s) or NF service instance(s).

4.17.5 NF/NF service discovery across PLMNs

In case that the NF service consumer intends to discover the NF/NF service in home PLMN, the NRF in serving PLMN needs to request "NF Discovery" service from NRF in the home PLMN. The procedure is depicted in the figure below:

![Figure 4.17.5-1: NF/NF service discovery across PLMNs](image)

1. The NF service consumer in the serving PLMN invokes Nnrf_NFDiscovery_Request (Expected Service Name, NF type of the expected NF, home PLMN ID, serving PLMN ID, NF type of the NF service consumer) to an appropriate configured NRF in the serving PLMN. The request may also include optionally S-NSSAI, NSI ID if available, and other service related parameters, as described in service definition in clause 5.2.7.3.2.

 NOTE: The use of NSI ID within a PLMN depends on the network deployment.

2. The NRF in serving PLMN identifies NRF in home PLMN (hNRF) based on the home PLMN ID, and it requests "NF Discovery" service from NRF in home PLMN according the procedure in Figure 4.17.4-1 to get the expected NF instance(s) or NF service instance(s) deployed in the home PLMN. As the NRF in the serving PLMN triggers the "NF Discovery" on behalf of the NF service consumer, the NRF in the serving PLMN shall not replace the information of the service requester NF, i.e. NF consumer ID, in the Discovery Request message it sends to the hNRF.

 The hNRF may further query an appropriate local NRF in the home PLMN based on the input information received from NRF of the serving PLMN. The FQDN of the local NRF or Endpoint Address of local NRF's NF Discovery service in the home PLMN may be configured in the hNRF or may need to be discovered based on the input information.

3. The NRF in serving PLMN provides the information e.g. FQDN of a set of the discovered NF or NF service instance(s) in NF Discovery Response message. Same as step 3 in clause 4.17.4 applies.
4.17.6 SMF Provisioning of available UPFs using the NRF

4.17.6.1 General

This clause describes the provisioning of available UPFs in SMF using the NRF as documented in TS 23.501 [2], clause 6.3.3.

This optional node-level step takes place prior to selecting the UPF for PDU Sessions and may be followed by N4 Node Level procedures defined in clause 4.4.3 where the UPF and the SMF exchange information such as the support of optional functionalities and capabilities.

As an option, UPF(s) may register in the NRF. This registration phase uses the Nnrf_NFManagement_NFRegister operation and hence does not use N4. For the purpose of their registration onto the NRF, UPF(s) are associated with a single service called "UPF.Management".

For the purpose of SMF provisioning of available UPFs, the SMF uses the Nnrf_NFDiscovery service to learn about available UPFs.

NOTE: The protocol used by UPF to interact with NRF is described in TS 29.510 [37].

UPFs may be associated with UPF Provisioning Information in the NRF. The UPF Provisioning Information consists of a list of (S-NSSAI, DNN) and of a SMF Area Identity the UPF can serve. The SMF Area Identity allows limiting the SMF provisioning of UPF(s) using NRF to those UPF(s) associated with a certain SMF Area Identity. This can e.g. be used in case an SMF is only allowed to control UPF(s) configured in NRF as belonging to a certain SMF Area Identity.

The SMF Area Identity is optional in the UPF Provisioning Information.

4.17.6.2 SMF provisioning of UPF instances using NRF

This procedure applies when a SMF wants to get informed about UPFs available in the network and supporting a list of parameters (S-NSSAI, DNN).

Figure 4.17.6.2-1: SMF provisioning of UPF instances using NRF procedure

The following takes place when an SMF expects to be informed of UPFs available in the network:

1. The SMF issues a Nnrf_NFDiscovery_NFStatusSubscribe Service Operation providing the target UPF Provisioning Information it is interested in.

2. The NRF issues Nnrf_NFDiscovery_NFStatusNotify with the list of all UPF that currently meet the SMF subscription. This notification indicates the subset of the target UPF Provisioning Information that is supported by each UPF.

The following takes place when a new UPF instance is deployed:

3. A new UPF instance is deployed.

4. A new UPF instance is configured.

5. The NRF issues Nnrf_NFManagement_NFRegister of NRF.

6. OAM configuration

7. The SMF issues Nnrf_NFManagement_NFStatusNotify.
3 At any time a new UPF instance is deployed.

4 The UPF instance is configured with the NRF identity to contact for registration and with its UPF Provisioning Information. An UPF is not required to understand the UPF Provisioning Information beyond usage of this information to register in step 5.

5 The UPF instance issues an Nnrf_NFManagement_NFRegister Request operation providing its NF type, the FQDN or IP address of its N4 interface, and the UPF Provisioning Information configured in step 4.

6. Alternatively (to steps 4 and 5) OAM registers the UPF on the NRF indicating the same UPF Provisioning Information as provided in step 5. This configuration mechanism is out of scope of this specification.

7. Based on the subscription in step 1, the NRF issues Nnrf_NFManagement_NFStatusNotify to all SMF with a subscription matching the UPF Provisioning Information of the new UPF

4.17.7 NF/NF service status subscribe/notify in the same PLMN

![Diagram](image_url)

Figure 4.17.7-1: NF/NF service status subscribe/notify in the same PLMN

1. The NF service consumer subscribes to be notified of newly registered/updated/deregistered NF instances along with its NF services. The NF service consumer invokes Nnrf_NFManagement_NFStatusSubscribe Request from an appropriate configured NRF in the same PLMN.

2. The NRF authorizes the Nnrf_NFManagement_NFStatusSubscribe Request. Based on the profile of the expected NF/NF service and the type of the NF service consumer, the NRF determines whether the NF service consumer is allowed to subscribe to the status of the target NF instance(s) or NF service instance(s).

3. If allowed, the NRF acknowledges the execution of Nnrf_NFManagement_NFStatusSubscribe Request.

4. NRF notifies about newly registered/updated/deregistered NF instances along with its NF services to the subscribed NF service consumer.

NOTE: The NF service consumer unsubscribes to receive NF status notifications invoking

4.17.8 NF/NF service status subscribe/notify across PLMNs

In the case that the NF service consumer intends to subscribe to the status of NF/NF service instance(s) in home PLMN, the NRF in serving PLMN needs to request "NF status subscribe" service from NRF in the home PLMN. The notification is sent from the NRF in the home PLMN to the NF service consumer in the serving PLMN without the involvement of the NRF in the serving PLMN. The procedure is depicted in the figure below:
4.17.8-1: NF/NF service status subscribe/notify across PLMNs

NOTE 1: The NRF in the home PLMN communicates with the NRF and the NF consumer in the serving PLMN via the SEPPs in the respective PLMNs. For the sake of clarity, SEPPs are not depicted in the flow.

1. The NF service consumer in the serving PLMN invokes Nnrf_NFManagement_NFStatusSubscribe Request from an appropriate configured NRF in the serving PLMN.

2. The NRF in serving PLMN identifies NRF in home PLMN (hNRF) based on the home PLMN ID, and it requests "NF status subscribe" service from NRF in home PLMN. As the NRF in the serving PLMN triggers the "NF status subscribe" on behalf of the NF service consumer, the NRF in the serving PLMN shall not replace the information of the service requester NF, i.e. NF consumer ID, in the status subscribe Request message it sends to the hNRF.

3. The NRF in serving PLMN acknowledges the execution of Nnrf_NFManagement_NFStatusSubscribe Request to the NF consumer in the serving PLMN.

4. NRF in the home PLMN notifies about newly registered/updated/deregistered NF instances along with its NF services to the subscribed NF service consumer in the serving PLMN.

NOTE 2: The NF service consumer unsubscribes to receive NF status notifications invoking Nnrf_NFManagement_NFStatusUnSubscribe service operation.

4.18 Procedures for Management of PFDs

4.18.1 General

NOTE: The PFDF service is functionality within the NEF.
4.18.2 PFD management via NEF (PFDF)

1. The AF invokes the Nnef_PFDManagment_Create service. The AF request includes a PFD operation which indicates if the PFD is to be created, updated or removed in the operator’s network. The Allowed Delay is an optional parameter. If the Allowed Delay is included, it indicates that the list of PFDs in this request should be deployed within the time interval indicated by the Allowed Delay.

2. NEF checks whether the Application is authorized to perform this request based on the operator policies.

3. The NEF (PFDF) invokes the Nudr_DM_Update (Application Identifier, one or more sets of PFDs, PFD operation, Allowed Delay) to the UDR.

4. The UDR updates the list of PFDs for the Application Identifier.

5. The UDR sends a Nudr_DM_Update Response to the NEF (PFDF).

6. The NEF sends Nnef_PFDManagement_Create Response to the Application Function.

4.18.3 PFD management in the SMF

4.18.3.1 PFD Retrieval by the SMF

This procedure enables the SMF to retrieve PFDs for an Application Identifier from the NEF (PFDF) when a PCC rule with this Application Identifier is provided/activated and PFDs are not available at the SMF.

In addition, this procedure enables the SMF to retrieve PFDs from the NEF (PFDF) when the caching timer for an Application Identifier elapses and a PCC Rule for this Application Identifier is still active.

The NEF (PFDF) retrieves the PFDs from UDR unless already available in NEF (PFDF).

The SMF may retrieve PFDs for one or more Application Identifiers in the same Request. All PFDs related to an Application Identifier are provided in the response from the UDR to NEF (PFDF).
1. SMF invokes the Nnef_PFDManagement_Fetch (Application Identifier (s)) to the NEF (PFDF).

2. NEF (PFDF) checks if the PFDs for the Application Identifier (s) are available in the NEF (PFDF), if available, the NEF (PFDF) skips to step 4. If not, the NEF (PFDF) invokes Nudr_DM_Query (Application Identifier (s)) to retrieve the PFD(s) from UDR.

3. The UDR provides a Nudr_DM_Query response (Application Identifier(s), PFD(s)) to the NEF (PFDF).

4. The NEF (PFDF) replies to the SMF with Nnef_PFDManagement_Fetch (Application Identifier(s), PFD(s)).

4.18.3.2 Management of PFDs in the SMF

This procedure enables the provisioning, modification or removal of PFDs associated with an application identifier in the SMF. Either the complete list of all PFDs of all application identifiers, the complete list of all PFDs of one or more application identifiers or a subset of PFDs for individual application identifiers may be managed.

Each PFD of an application identifier is associated with a PFD id in case a subset of the PFD(s) associated with an application identifier can be provisioned, updated or removed. In case always the full set of PFD(s) for an application identifier is managed in each transaction, PFD ids do not need to be provided.

1. The NEF (PFDF) invokes Nnef_PFD_Management_Notify (Application Identifier, PFDs, PFDs operation) to the SMF(s) to which the PFD(s) shall be provided. The NEF (PFDF) may decide to delay the distribution of PFDs to the SMF(s) for some time to optimize the signalling load. If the NEF (PFDF) received an Allowed Delay for a PFD, the NEF (PFDF) shall distribute this PFD within the indicated time interval.

4.19 Network Data Analytics

4.19.1 Network data analytics Subscribe/Unsubscribe

This procedure is used by the NF service consumer (e.g. PCF) to subscribe/unsubscribe at NWDAF to be notified on load level information of a network slice instance. Periodic notification and notification upon threshold exceeded can be
subscribed. The NF service consumer may make policy decisions based on the load level information of network slice instance.

![Network data analytics Subscribe/unsubscribe](image)

Figure 4.19.1-1: Network data analytics Subscribe/unsubscribe

1. The NF service consumer subscribes to or cancels subscription to load level information by invoking the `Nnwdaf_EventsSubscription_Subscribe/Nnwdaf_EventsSubscription_Unsubscribe` service operation with an identifier of the network slice instance.

2. If NF service consumer subscribes to load level information, the NWDAF notifies the NF service consumer with the load level information by invoking `Nnwdaf_EventsSubscription_Notify` service operation.

4.19.2 Network data analytics Request

This procedure is used by the NF service consumer (e.g. PCF) to request and get from NWDAF load level information for a particular Network Slice instance. The NF service consumer may make policy decision based on load level information for the network slice instance.

![Network data analytics Request](image)

Figure 4.19.2-1: Network data analytics Request

1. The NF service consumer requests load level information for a particular network slice instance by invoking `Nnwdaf_AnalyticsInfo_Request` service operation with an identifier of the network slice instance.

2. The NWDAF responds with load level information for the particular network slice instance.

5 Network Function Service procedures

5.1 Network Function Service framework procedures

5.1.1 Network Function Service Discovery

The network function (NF) within the core network may expose its capability as service via its service based interfaces, which can be re-used by other NFs. Unless the expected NF information is locally configured on requester NF, e.g. the expected NF is in the same PLMN, the NF service discovery is implemented via the NF discovery.
5.2 Network Function services

5.2.1 General

5.2.2 AMF Services

5.2.2.1 General

The following table shows the AMF Services and AMF Service Operations.

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantic</th>
<th>Known Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namf_Communication</td>
<td>UEContextTransfer</td>
<td>Request/Response</td>
<td>Peer AMF</td>
</tr>
<tr>
<td></td>
<td>RegistrationCompleteNotify</td>
<td>Subscribe / Notify</td>
<td>Peer AMF</td>
</tr>
<tr>
<td></td>
<td>N1MessageNotify</td>
<td>Subscribe / Notify</td>
<td>SMF, SMF, PCF, NEF, LMF</td>
</tr>
<tr>
<td></td>
<td>N1MessageSubscribe</td>
<td>SMF, SMF, PCF, NEF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N1MessageUnSubscribe</td>
<td>SMF, SMF, PCF, NEF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N1N2MessageTransfer</td>
<td>Request/Response</td>
<td>SMF, SMF, PCF, NEF, LMF</td>
</tr>
<tr>
<td></td>
<td>N1N2TransferFailureNotification</td>
<td>Subscribe / Notify</td>
<td>SMF, SMF, PCF, NEF, LMF</td>
</tr>
<tr>
<td></td>
<td>N2InfoSubscribe</td>
<td>SMF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N2InfoUnSubscribe</td>
<td>SMF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N2InfoNotify</td>
<td>SMF, LMF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBIAssignment</td>
<td>Request/Response</td>
<td>SMF</td>
</tr>
<tr>
<td></td>
<td>AMFStatusChangeSubscribe</td>
<td>SMF, PCF, NEF, SMF, UDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMFStatusChangeUnSubscribe</td>
<td>SMF, PCF, NEF, SMF, UDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMFStatusChangeNotify</td>
<td>SMF, PCF, NEF, SMF, UDM</td>
<td></td>
</tr>
<tr>
<td>Namf_EventExposure</td>
<td>Subscribe</td>
<td>SMF, NEF, UDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td>SMF, NEF, UDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notify</td>
<td>SMF, NEF, UDM</td>
<td></td>
</tr>
<tr>
<td>Namf_MT</td>
<td>EnableUEReachability</td>
<td>Request/Response</td>
<td>SMF</td>
</tr>
<tr>
<td></td>
<td>ProvideDomainSelectionInfo</td>
<td>Request/Response</td>
<td>UDM</td>
</tr>
<tr>
<td>Namf_Location</td>
<td>ProvidePositioningInfo</td>
<td>Request/Response</td>
<td>GMLC</td>
</tr>
<tr>
<td></td>
<td>EventNotify</td>
<td>GMLC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ProvideLocationInfo</td>
<td>Request/Response</td>
<td>UDM</td>
</tr>
</tbody>
</table>

5.2.2.2 Namf_Communication service

5.2.2.2.1 General

Service description: This service enables an NF to communicate with the UE through N1 NAS messages or with the AN (both UE and non UE specific). The service operations defined below allow the NF to communicate with the UE and the AN. The following are the key functionalities of this NF service.

- Provide service operations for transporting N1 messages to the UE;
- Allow NFs to subscribe and unsubscribe for notifications of specific N1 messages from the UE;
- Allow NFs to subscribe and unsubscribe for notifications about specific information from AN;
- Provide service operations for initiating N2 messages towards the AN;
- Security Context Management; and
- UE information management and transfer (including its security context);
5.2.2.2.2 Namf_Communication_UEContextTransfer service operation

Service operation name: Namf_Communication_UEContextTransfer

Description: Provides the UE context to the consumer NF.

Input, Required: 5G-GUTI or SUPI, Reason.

Input, Optional: Integrity protected message from the UE that triggers the context transfer.

Output, Required: The UE context of the identified UE. The UE context is detailed in table 5.2.2.2.2-1.

Output, Optional: Mobile Equipment Identifier (if available), Allowed NSSAI, Mapping Of Allowed NSSAI.

See clause 4.2.2.2.2 for example of usage of this service operation. If the consumer NF sent an integrity protected message from the UE, the AMF uses it to verify whether this request is permitted to retrieve the UE context of the UE. If it is permitted, the AMF provides UE context to the consumer NF in the Namf_Communication_UEContextTransfer response. The following table illustrates the UE Context:
Table 5.2.2.2-1: UE Context in AMF
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPI</td>
<td>SUPI (Subscription Permanent Identifier) is the subscriber’s permanent identity in 5GS.</td>
</tr>
<tr>
<td>SUPI-unauthenticated-indicator</td>
<td>This indicates whether the SUPI is unauthenticated.</td>
</tr>
<tr>
<td>GPSI</td>
<td>The GPSI(s) of the UE. The presence is dictated by its storage in the UDM.</td>
</tr>
<tr>
<td>5G-GUTI</td>
<td>5G Globally Unique Temporary Identifier.</td>
</tr>
<tr>
<td>PEI</td>
<td>Mobile Equipment Identity</td>
</tr>
<tr>
<td>Internal Group ID-list</td>
<td>List of the subscribed internal group(s) that the UE belongs to.</td>
</tr>
<tr>
<td>UE Specific DRX Parameters</td>
<td>UE specific DRX parameters.</td>
</tr>
<tr>
<td>UE MM Network Capability</td>
<td>Indicates the UE MM network capabilities.</td>
</tr>
<tr>
<td>5GMM Capability</td>
<td>Includes other UE capabilities related to 5GCN or interworking with EPS.</td>
</tr>
<tr>
<td>Events Subscription</td>
<td>List of the event subscriptions by other CP NFs. Indicating the events being subscribed as well as any information on how to send the corresponding notifications</td>
</tr>
<tr>
<td>AM Policy Information</td>
<td>Information on AM policy provided by PCF.</td>
</tr>
<tr>
<td>PCF ID(s)</td>
<td>The identifier of the PCF for AM Policy. In roaming, the identifier of V-PCF and H-PCF (NOTE 1).</td>
</tr>
<tr>
<td>Subscribed RFSP Index</td>
<td>An index to specific RRM configuration in the NG-RAN that is received from the UDM.</td>
</tr>
<tr>
<td>RFSP Index in Use</td>
<td>An index to specific RRM configuration in the NG-RAN that is currently in use.</td>
</tr>
<tr>
<td>MICO Mode Indication</td>
<td>Indicates the MICO Mode for the UE.</td>
</tr>
<tr>
<td>Voice Support Match Indicator</td>
<td>An indication whether the UE radio capabilities are compatible with the network configuration. The AMF uses it as an input for setting the IMS voice over PS Session Supported Indication over 3GPP access.</td>
</tr>
<tr>
<td>UE Radio Capability for Paging Information</td>
<td>Information used by the NG-RAN to enhance the paging towards the UE (see clause 5.4.4.1 of TS 23.501 [2]).</td>
</tr>
<tr>
<td>Information On Recommended Cells And RAN nodes For Paging</td>
<td>Information sent by the NG-RAN, and used by the AMF when paging the UE to help determining the NG-RAN nodes to be paged as well as to provide the information on recommended cells to each of these NG-RAN nodes, in order to optimize the probability of successful paging while minimizing the signalling load on the radio path.</td>
</tr>
<tr>
<td>UE Radio Capability Information</td>
<td>Information sent by the NG-RAN node and stored in the AMF. The AMF sends this information to the NG-RAN node within the UE context during transition to CM-CONNECTED state.</td>
</tr>
<tr>
<td>SMSF Identifier</td>
<td>The Identifier of the SMSF serving the UE in RM-REGISTERED state.</td>
</tr>
<tr>
<td>SMSF Address</td>
<td>The Address of the SMSF serving the UE in RM-REGISTERED state. (see clause 4.13.3.1).</td>
</tr>
<tr>
<td>SMS Supported</td>
<td>Indicates whether the UE supports SMS delivery over NAS via 3GPP access, or via non-3GPP access, or via both the 3GPP and non-3GPP access.</td>
</tr>
<tr>
<td>SEAF data</td>
<td>Master security information received from AUSF</td>
</tr>
<tr>
<td>Last used EPS PLMN ID</td>
<td>The identifier of the last used EPS PLMN</td>
</tr>
</tbody>
</table>

For each access type level context within the UE access and mobility context:

- **Access Type**
 - Indicates the access type for this context.
- **RM State**
 - Registration management state.
- **Registration Area**
 - Current Registration Area (a set of tracking areas in TAI List).
- **TAI of last Registration Update**
 - TAI of the TA in which the last registration request was initiated.
- **User Location Information**
 - Information on user location.
- **Mobility Restrictions**
 - Mobility Restrictions restrict mobility handling or service access of a UE. It consists of RAT restriction, Forbidden area, Service area restrictions and Core Network type restriction.
- **Expected UE Behavior Parameters for AMF**
 - Indicates per UE the Expected UE Behavior Parameters and their corresponding validity times.
- **Security Information for CP**
 - As defined in TS 33.501 [15].
- **Security Information for UP**
 - As defined in TS 33.501 [15].
- **Allowed NSSAI**
 - Allowed NSSAI consisting of one or more S-NSSAIs for serving PLMN in the present Registration Area.
- **Mapping Of Allowed NSSAI**
 - Mapping Of Allowed NSSAI is the mapping of each S-NSSAI of the Allowed NSSAI to the S-NSSAIs of the Subscribed S-NSSAIs.
- **AMF UE NGAP ID**
 - Identifies the UE association over the NG interface within the AMF as defined in TS 38.413 [10].
- **RAN UE NGAP ID**
 - Identifies the UE association over the NG interface within the NG-RAN node as defined in TS 38.413 [10].
- **Network Slice Instance(s)**
 - The Network Slice Instances selected by 5GC for this UE.

For each PDU Session level context:

- **S-NSSAI(s)**
 - The S-NSSAI(s) associated to the PDU Session.
- **DNN**
 - The associated DNN for the PDU Session.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Slice Instance id</td>
<td>The network Slice Instance information for the PDU Session.</td>
</tr>
<tr>
<td>PDU Session ID</td>
<td>The identifier of the PDU Session.</td>
</tr>
<tr>
<td>SMF Information</td>
<td>The associated SMF identifier and SMF address for the PDU Session.</td>
</tr>
<tr>
<td>Access Type</td>
<td>The current access type for this PDU Session.</td>
</tr>
<tr>
<td>EBI-ARP list</td>
<td>The allocated EBI and associated ARP pairs for this PDU session.</td>
</tr>
<tr>
<td>5GSM Core Network Capability</td>
<td>The UEs 5GSM Core Network Capability as defined in TS 23.501 [2].</td>
</tr>
</tbody>
</table>

NOTE 1: The AMF transfers the PCF ID to the SMF during PDU Session Establishment. The SMF may select the PCF identified by the PCF ID as described in TS 23.501 [2], clause 6.3.7.1. In HR roaming case, the AMF transfers the identifier of H-PCF as described in clause 4.3.2.2.2. In LBO roaming case, the AMF transfers the identifier of V-PCF as described in clause 4.3.2.2.1.

5.2.2.2.3 Namf_Communication_RegistrationCompleteNotify service operation

Service operation name: Namf_Communication_RegistrationCompleteNotify

Description: This service operation is used by the consumer NF to inform the AMF that a prior UE context transfer has resulted in the UE successfully registering with it. The UE context is marked inactive in the AMF.

NOTE 1: This notification corresponds to an implicit subscription.

Input, Required: 5G-GUTI, Reason.

Input, Optional: PDU Session ID(s) (indicates the PDU Session(s) to be released).

Output, Required: None.

Output, Optional: None.

See clause 4.2.2.2.2 step 10 for example usage of this service operation. When the consumer NF (AMF) receives this notification, it marks the UE context information as inactive since the UE context has been successfully transferred to the peer NF and the UE has successfully registered there. The AMF sends a Namf_Communication_TransferComplete ack to the consumer NF.

NOTE 2: Whether notification Ack need a separate message or be realized in the transport layer will be determined in TS 29.518 [18].

5.2.2.2.4 Namf_Communication_N1MessageNotify service operation

Service operation name: Namf_Communication_N1MessageNotify

Description: AMF notifies the N1 message received from the UE to a destination CN NF.

Input, Required: AMF ID (GUAMI), N1 Message(s)

Input, Optional: local time zone, UE's current location, AN type AN N2 terminating point, Allowed NSSAI, Mapping Of Allowed NSSAI, SUPI, MM Context.

Output, Required: None.

Output, Optional: None.

The destination NF type to be notified is determined based on one of the following:

- The N1 message type is always known to be consumed by one particular NF type; or
- An NF had explicitly subscribed for the particular N1 message type to be notified towards it.

NOTE: Whether notification Ack need a separate message or be realized in the transport layer will be determined in TS 29.518 [18].

The optional AN N2 terminating point, SUPI, MM Context, Allowed NSSAI and Mapping Of Allowed NSSAI parameters are included if the service operation is invoked towards a peer AMF.
5.2.2.2.5 Namf_Communication_N1MessageSubscribe service operation

Service operation name: Namf_Communication_N1MessageSubscribe.

Description: An NF can subscribe with the AMF to get notified of a particular N1 message type from the UE.

Input, Required: CN NF ID, N1 Message Type

Input, Optional: SUPI.

Output, Required: None.

Output, Optional: None.

The consumer NF invokes the Namf_Communication_N1MessageSubscribe service operation (NF ID, N1 message type to subscribe) on the AMF. The consumer NF shall provide a SUPI for UE associated N1 message subscriptions. If the consumer NF is allowed to subscribe for the type of N1 message requested, the AMF creates a binding for the consumer NF to deliver subsequent Namf_Communication_N1MessageNotify towards that NF.

NOTE: Whether Subscription Ack need a separate message or be realized in the transport layer will be determined in TS 29.518 [18].

5.2.2.2.6 Namf_Communication_N1MessageUnSubscribe service operation

Service operation name: Namf_Communication_N1MessageUnSubscribe.

Description: An NF can unsubscribe with the AMF to stop notifying a particular N1 message type from the UE.

Input, Required: CN NF ID, N1 Message Type

Input, Optional: None.

Output, Required: None.

Output, Optional: None.

See step 7 of clause 4.13.3.3 and step 6c of 4.13.3.6 for details on the use of this service operation.

The consumer NF invokes the Namf_Communication_N1MessageUnSubscribe service operation (NF ID, N1 message type to subscribe) on the AMF. The AMF deletes the binding for the consumer NF for the requested N1 message type.

NOTE: Whether UnSubscribe Ack need a separate message or be realized in the transport layer will be determined in TS 29.518 [18].

5.2.2.2.7 Namf_Communication_N1N2MessageTransfer service operation

Service operation name: Namf_Communication_N1N2MessageTransfer.

Description: CN NF request to transfer downlink N1 and/or N2 message to the UE and/or AN through the AMF.

Input, Required: CN NF ID, Message type (N1 or N2 or both), Message Container (s) where at least one of the message containers (N1 or N2) is required.

Input, Optional: last message indication, Session ID, Paging Policy Indication, ARP, Area of validity for the N2 SM information, 5QI, N1N2TransferFailure Notification Target Address.

Output, Required: Result indication.

Output, Optional: Redirection information.

If the UE is in CM-IDLE state, the AMF initiates the network triggered service request procedure as specified in clause 4.2.3.4 and responds to the consumer NF with a result indication, "attempting to reach UE". Otherwise, the AMF responds to the consumer NF, with a Namf_Communication_N1N2MessageTransfer response, providing a result indication of whether the AMF was able to successfully transfer the N1 and/or the N2 message towards the UE and/or the AN. A result indication of "N1/N2 transfer success" does not mean that N1 message is successfully received by the UE. It only means that the AMF is able to successfully send the N1 or N2 message towards the AN.
The "Area of validity for the N2 SM information", if included is used by the AMF to determine whether the N2 SM information provided by the consumer NF can be used towards the AN based on the current location of the UE. If the location of the UE is outside the "Area of validity for the N2 SM information" indicated, the AMF shall not send the N2 SM information to the AN.

In case the consumer NF knows that a specific downlink N1 message is the last message to be transferred in this transaction, the consumer NF shall include the last message indication in the Namf_Communication_N1N2MessageTransfer service operation so that the AMF knows that the no more downlink N1 message need to be transferred for this transaction.

The CN NF is implicitly subscribed to be notified of N1N2TransferFailure by providing the N1N2TransferFailure Notification Target Address. When AMF detects that the UE fails to response to paging, the AMF invokes the Namf_Communication_N1N2TransferFailureNotification to provide the failure notification to the location addressed by N1N2TransferFailure Notification Target Address.

If the result of the service operation fails, the AMF shall set the corresponding cause value in the result indication which can be used by the NF consumer for further action. In case the related UE is not served by AMF and the AMF knows which AMF is serving the UE, the AMF provides redirection information which can be used by the consumer NF to resend UE related message to the AMF that serves the UE.

5.2.2.2.7A Namf_Communication_N1N2TransferFailureNotification service operation

Service operation name: Namf_Communication_N1N2TransferFailureNotification.

Description: The AMF uses this notification to inform the NF service consumer that initiated an earlier Namf_Communication_N1N2MessageTransfer, that the AMF failed to deliver the N1 message to the UE as the UE failed to respond to paging.

Input, Required: Cause, N1N2MessageTransfer Notification Target Address.

Input, Optional: None.

Output, Required: None.

Output, Optional: None.

5.2.2.2.8 Namf_Communication_N2InfoSubscribe service operation

Service operation name: Namf_Communication_N2InfoSubscribe.

Description: An NF invokes this service operation to subscribe for the delivery of information contained in a specific N2 message type (e.g. notification of SMF about N3 tunnel setup information and path switch requests).

Input, Required: CN NF ID, Session ID for UE towards the NF (e.g. PDU Session ID), N2 information type to be subscribed.

Input, Optional: None.

Output, Required: None.

Output, Optional: None.

Along with transferring SM NAS message to UE using the Namf_Communication_N1MessageTransfer service operation, the SMF subscribes with AMF to get notified about the N3 tunnel setup information from the AN.

5.2.2.2.9 Namf_Communication_N2InfoUnsubscribe service operation

Service operation name: Namf_Communication_N2InfoUnSubscribe.

Description: An NF can invoke this service operation to unsubscribe for the delivery of information contained in a specific N2 message type.

Input, Required: CN NF ID, Session ID for UE towards the NF (e.g. PDU Session ID), N2 information type to unsubscribe.

Input, Optional: None.
The consumer NF invokes the Namf_Communication_N2InfoUnSubscribe service operation (CN NF ID, N2 information type to unsubscribe, Session ID for UE towards the NF (e.g. PDU Session ID)) on the AMF. The AMF deletes the binding for the consumer NF to for the requested information to unsubscribe.

5.2.2.2.10 Namf_Communication_N2InfoNotify service operation

Service operation name: Namf_Communication_N2InfoNotify.

Description: The AMF uses this service operation to notify a particular N2 message information towards the NFs that have subscribed (implicitly or explicitly) for the specific information.

Input, Required: AMF ID (GUAMI), N2 information.

Input, Optional: Session ID (e.g. PDU Session ID) if the N2 information notified is related to a session (e.g. PDU Session).

Output, Required: None.

Output, Optional: None.

5.2.2.2.11 Namf_Communication_CreateUEContext service operation

Service operation name: Namf_Communication_CreateUEContext

Description: This service operation is used by a source AMF to create the UE context in a target AMF during handover procedures.

Input, Required: 5G-GUTI, UE context of the identified UE. As described in Table 5.2.2.2.2-1, the UE context may include the SUPI, DRX parameters, AM policy information, PCF ID, UE network capability, used N1 security context information, event subscriptions by other consumer NF, and the list of SM PDU Session IDs along with the SMF handling the PDU Session, N2 information including source to target RAN transparent container, Endpoint information of S-AMF to receive N2 information notification about handover complete.

Input, Optional: allocated EBI information, PCF ID.

Output, Required: Cause, N2 information including Target to Source transparent container, N2 SM information (PDU Sessions failed to be setup list, and the N3 DL forwarding information), handle for the UE context created.

Output, Optional: None.

5.2.2.2.12 Namf_Communication_ReleaseUEContext service operation

Service operation name: Namf_Communication_ReleaseUEContext

Description: This service operation is used by a source AMF to release the UE context in a target AMF during handover cancel procedures.

Input, Required: Handle of the UE context.

Input, Optional: None.

Output, Required: Cause.

Output, Optional: None.

5.2.2.2.13 Namf_Communication_EBIAssignment service operation

Service operation name: Namf_Communication_EBIAssignment

Description: The consumer NF uses this service operation to request a bunch of EPS Bearer IDs for a PDU Session, and optionally indicate to the AMF the list of EBI(s) to be released.

Inputs, Required: SUPI, PDU Session ID, ARP list.
The consumer NF invokes the Namf_Communication_EBIAssignment service operation when it determines that one or more EPS Bearer IDs are required for EPS QoS mapping for a PDU Session. The ARP list indicates the number of the requested EBIs, and the corresponding ARP. The AMF uses the ARP list (including ARP priority level, the pre-emption capability and the pre-emption vulnerability) and the S-NSSAI to prioritize the EBI request, AMF can revoke the EBI from an ongoing lower priority PDU Session, if the maximum number of EBIs have been reached and a session with a higher priority requests an EBI. The AMF responds the consumer NF with a cause which indicates whether the assignment is successful or not. If the assignment is successful, the AMF provides a list of <ARP, EBI> pair to the consumer NF.

If the consumer NF determines that some EBIs are not needed, the consumer NF indicates the EBI(s) that can be released in the Released EBI list.

5.2.2.2.14 Namf_Communication_AMFStatusChangeSubscribe service operation

Service operation name: Namf_Communication_AMFStatusChangeSubscribe

Description: This service operation is used by an NF to subscribe for AMF Status Change notification.

Input, Required: GUAMI(s).

Input, Optional: None.

Output, Required: None.

Output, Optional: None.

See clause 5.21.2.2, TS 23.501 [2] for the example usage of this service operation. The GUAMI(s) is used to identify the AMF.

5.2.2.2.15 Namf_Communication_AMFStatusChangeUnSubscribe service operation

Service operation name: Namf_Communication_AMFStatusChangeUnSubscribe

Description: This service operation is used by an NF to unsubscribe for AMF Status Change notification.

Input, Required: GUAMI(s).

Input, Optional: None.

Output, Required: None.

Output, Optional: None.

See clause 5.21.2.2, TS 23.501 [2] for the example usage of this service operation. The GUAMI(s) is used to identify the AMF.

5.2.2.2.16 Namf_Communication_AMFStatusChangeNotify service operation

Service operation name: Namf_Communication_AMFStatusChangeNotify

Description: Report AMF Status change (e.g. AMF unavailable) notification to subscribed NFs.

Input, Required: GUAMI(s).

Input, Optional: Target AMF(s) Name associated with the indicated GUAMI.

Output, Required: None.

Output, Optional: None.
See clause 5.21.2.2, TS 23.501 [2] for the example usage of this service operation. The GUAMI(s) is used to identify the AMF. For network deployment without UDSF case, the target AMF Name which is to serve the user of the indicated GUAMI is also included.

5.2.2.3 Namf_EventExposure service

5.2.2.3.1 General

Service description: This service enables an NF to subscribe and get notified about an Event ID.

Following UE access and mobility information event are considered (Event ID is defined in clause 4.15.1):

- Location changes (TAI, Cell ID, N3IWF node, UE local IP address and optionally UDP source port number, Area Of Interest);
- UE moving in or out of a subscribed "Area Of Interest" as described in clause 5.6.11 in TS 23.501 [2];
- Time zone changes (UE Time zone);
- Access Type changes (3GPP access or non-3GPP access);
- Registration state changes (Registered or Deregistered);
- Connectivity state changes (IDLE or CONNECTED);
- UE loss of communication;
- UE reachability status;
- UE indication of switching off SMS over NAS service; and
- Subscription Correlation ID change (implicit subscription).

Event Filters are used to specify the conditions to match for notifying the event (i.e. "List of Parameter values to match"). If there are no conditions to match for a specific Event ID, then the Event Filter is not provided. The following table provides as an example how the conditions to match for event reporting can be specified for various Event IDs for AMF exposure.

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Event Filter (List of Parameter Values to Match)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Interest</td>
<td><Parameter Type = TAI, Value = TA1></td>
</tr>
<tr>
<td>Access Type</td>
<td><Parameter Type=PRA ID, Value=PRA ID value></td>
</tr>
<tr>
<td>Location</td>
<td><Parameter Type=AN Type, Value=3GPP Access”></td>
</tr>
</tbody>
</table>

The following service operations are defined for the Namf_EventExposure service:

- Namf_EventExposure_Subscribe.
- Namf_EventExposure_UnSubscribe.
- Namf_EventExposure_Notify.

5.2.2.3.2 Namf_EventExposure_Subscribe service operation

Service operation name: Namf_EventExposure_Subscribe.

Description: The consumer NF uses this service operation to subscribe to or modify event reporting for one UE, a group of UE(s) or any UE.

Input, Required: NF ID, target of the subscription: UE(s) ID (SUPI or Internal Group Identifier or indication that any UE is targeted), (set of) Event ID(s) defined in clause 5.2.2.3.1, Notification Target Address (+ Notification Correlation ID))s, Event Reporting Information defined in Table 4.15.1-1.
Input, Optional: (Event Filter(s) associated with each Event ID; Event Filter(s) are defined in clause 5.2.2.3.1, Subscription Correlation ID (in the case of modification of the event subscription).

Output, Required: When the subscription is accepted: Subscription Correlation ID (required for management of this subscription).

Output, Optional: None.

The first corresponding monitoring event is reported by invoking Namf_EventExposure_Notify, if corresponding information is available (see clause 4.15.1).

The NF consumer subscribes to the event notification by invoking Namf_EventExposure to the AMF. The AMF allocates an Subscription Correlation ID for the subscription and responds to the consumer NF with the Subscription Correlation ID. UE ID identifies the UE, SUPI and/or GPSI. Event ID (see clause 4.15.1) identifies the events that the NF consumer is interested in. The Subscription Correlation ID is unique within the AMF Set.

The ((set of) Event ID(s), Notification Target Address (+ Notification Correlation ID)) helps the Event Receiving NF to co-relate a notification against a corresponding event subscription for the indicated Event ID.

In the case that the NF consumer subscribes to the AMF on behalf of other NF, the NF consumer include the Notification Target Address(+ Notification Correlation ID) of other NF for the Event ID which is to be notified to other NF directly, and the Notification Target Address(+ Notification Correlation ID) of itself for the Subscription Correlation ID change event. Each Notification Target Address(+ Notification Correlation ID) is associated with the related (set of) Event ID(s). When the Subscription Correlation ID change due to the AMF reallocation, the notification is sent to NF consumer which triggers this subscription.

Event filter may include “AN type(s)” as part of the list of parameter values to match, and it indicates to subscribe the event per Access Type.

Event receiving NF ID identifies the NF that shall receive the event reporting.

When the consumer NF needs to modify an existing subscription previously created by itself in the AMF, it invokes Namf_EventExposure_Subscribe service operation which contains the Subscription Correlation ID and the new Event Filters with Event ID to the AMF.

5.2.2.3.3 Namf_EventExposure_UnSubscribe service operation

Service operation name: Namf_EventExposure_UnSubscribe.

Description: The NF consumer uses this service operation to unsubscribe for a specific event for one UE, group of UE(s), any UE.

Input, Required: Subscription Correlation ID.

Input, Optional: None.

Output, Required: Operation execution result indication.

Output, Optional: None.

The NF consumer unsubscribes the event notification by invoking Namf_EventExposure_Unsubscribe (Subscription Correlation ID) to the AMF.

5.2.2.3.4 Namf_EventExposure_Notify service operation

Service operation name: Namf_EventExposure_Notify.

Service operation description: Provides the previously subscribed event information to the NF Consumer which has subscribed to that event before.

Input, Required: AMF ID (GUAMI), Notification Correlation Information, Event ID, corresponding UE (SUPI and if available GPSI).

Input, Optional: Event specific parameter list.

Output, Required: None.
When the AMF detects a UE access and mobility event corresponding to a Subscription, it invokes Namf_EventExposure_Notify service operation to the NF consumer(s) which has subscribed to the UE mobility event before. The event is notified towards the consumers for which the Event filters (which may include "AN type(s)"") match. The Notification Target Address (+ Notification Correlation ID) indicates to the Event Receiving NF the specific event notification subscription. The event specific parameter indicates the type of mobility event and related information, e.g. Registration Area Update/new Registration Area.

The optional event specific parameter list provides the values that matched for generating the event notification. The parameter values to match are specified during the event subscription (see clause 5.2.2.3.2). For example if the event type reported is "AN change", the event specific parameter list contains the value of the new AN.

5.2.2.4 Namf_MT service

5.2.2.4.1 General

Service description: It provides a NF the service to request information related to capabilities that make sure UE is reachable to send MT signalling or data to a target UE. The following are the key functionalities of this NF service

- paging UE if UE is in IDLE state and respond other NF after the UE enters CM-CONNECTED state.
- response to the requester NF if UE is in CONNECTED state.
- providing the terminating domain selection information for IMS voice to the consumer NF.

5.2.2.4.2 Namf_MT_EnableUEReachability service operation

Service operation name: Namf_MT_EnableUEReachability.

Description: The consumer NF uses this service operation to request enabling UE reachability.

Inputs, Required: NF ID, UE ID.

Inputs, Optional: None.

Outputs, Required: Result indication.

Outputs, Optional: Redirection information.

See clause 4.13.3.6 for details on the usage of this service operation.

The consumer NF does not need to know UE state. The AMF accepts the request and respond the consumer NF immediately if UE is in CM-CONNECTED state. If the UE is in CM-IDLE state, the AMF may page the UE and respond to the consumer NF after the UE enters CM-CONNECTED state.

If the result of the service operation fails, the AMF shall set the corresponding cause value in the result indication which can be used by the NF consumer for further action. In case the related UE is not served by the AMF and the AMF knows which AMF is serving the UE, the AMF provides redirection information which can be used by the NF consumer to resend UE related message to the AMF that serves the UE.

5.2.2.4.3 Namf_MT_ProvideDomainSelectionInfo

Service operation name: Namf_MT_ProvideDomainSelectionInfo.

Description: Provides the UE information for terminating domain selection of IMS voice to the consumer NF.

Input, Required: SUPI.

Input, Optional: None.

Output, Required: Success/Failure indication.

Output, Optional: Indication of supporting IMS voice over PS Session or not, Time stamp of the last radio contact with the UE, Current RAT type.
5.2.2.5 Namf_Location service

5.2.2.5.1 General

Service description: This service enables an NF to request location information for a target UE. The following are the key functionalities of this NF service.

- Allow NFs to request the current geodetic and optionally civic location of a target UE.
- Allow NFs to be notified of event information related to emergency sessions.
- Allow NFs to request Network Provided Location Information (NPLI) and/or local time zone corresponding to the location of a target UE.

5.2.2.5.2 Namf_Location_ProvidePositioningInfo service operation

Service operation name: Namf_Location_ProvidePositioningInfo

Description: Provides UE positioning information to the consumer NF.

Input, Required: UE Identification (SUPI or PEI), External Client Type.

Input, Optional: Location QoS, Supported GAD shapes.

Output, Required: Success/Failure indication

Output, Optional: Geodetic Location, Civic Location, Position Methods Used, Failure Cause.

See steps 4 and 9 of clause 4.13.5.3 for example of usage of this service operation.

5.2.2.5.3 Namf_Location_EventNotify service operation

Service operation name: Namf_Location_EventNotify

Description: Provides UE location related event information related to emergency sessions to the consumer NF.

Input, Required: Type of location related event (e.g. emergency session initiation), UE Identification (SUPI or PEI).

Input, Optional: GPSI, Geodetic Location, Civic Location, Position methods used.

Output, Required: None.

Output, Optional: None.

5.2.2.5.4 Namf_Location_ProvideLocationInfo service operation

Service operation name: Namf_Location_ProvideLocationInfo

Description: Provides Network Provided Location Information (NPLI) of a target UE to the consumer NF.

Input, Required: UE Identification (SUPI).

Input, Optional: 5GS Location Information Request, Current Location Request, RAT type Requested, Local Time Zone Request.

Output, Required: Success/Failure indication.

Output, Optional: 5GS Location Information (Cell Identity, Tracking Area Identity, Geographical/Geodetic Information, Current Location Retrieved, Age of Location Information, Current RAT Type), Local Time Zone, Failure Cause. In the case of non-3GPP access: a UE local IP address (used to reach the N3IWF) and optionally UDP or TCP source port number (if NAT is detected).

5.2.3 UDM Services

5.2.3.1 General

The following table illustrates the UDM Services.
Table 5.2.3-1: NF services provided by UDM

<table>
<thead>
<tr>
<th>NF service</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscriber Data Management (SDM)</td>
<td>Get</td>
<td>Request/Response</td>
<td>AMF, SMF, SMSF</td>
</tr>
<tr>
<td></td>
<td>Subscribe</td>
<td>Subscribe/Notify</td>
<td>AMF, SMF, SMSF</td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td>Subscribe/Notify</td>
<td>AMF, SMF, SMSF</td>
</tr>
<tr>
<td></td>
<td>Notification</td>
<td>Subscribe/Notify</td>
<td>AMF, SMF, SMSF</td>
</tr>
<tr>
<td></td>
<td>Info</td>
<td>Request/Response</td>
<td>AMF</td>
</tr>
<tr>
<td></td>
<td>PCscfRestoration</td>
<td>Subscribe/Notify</td>
<td>AMF, SMF</td>
</tr>
<tr>
<td>UE Context Management (UECM)</td>
<td>Registration</td>
<td>Request/Response</td>
<td>AMF, SMF, SMSF</td>
</tr>
<tr>
<td></td>
<td>DeregistrationNotification</td>
<td>Subscribe/Notify</td>
<td>AMF</td>
</tr>
<tr>
<td></td>
<td>Deregistration</td>
<td>Request/Response</td>
<td>AMF, SMF, SMSF</td>
</tr>
<tr>
<td></td>
<td>Get</td>
<td>Request/Response</td>
<td>NEF, SMSF, GMLC</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>AMF, SMF</td>
</tr>
<tr>
<td>UE Authentication</td>
<td>Get</td>
<td>Request/Response</td>
<td>AUSF</td>
</tr>
<tr>
<td>EventExposure</td>
<td>Subscribe</td>
<td>Subscribe/Notify</td>
<td>NEF</td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td></td>
<td>NEF</td>
</tr>
<tr>
<td></td>
<td>Notify</td>
<td></td>
<td>NEF</td>
</tr>
<tr>
<td>Parameter Provision</td>
<td>Update</td>
<td>Request/Response</td>
<td>NEF</td>
</tr>
</tbody>
</table>

5.2.3.2 Nudm_UUEContextManagement (UECM) service

5.2.3.2.1 Nudm_UECM_Registration service operation

Service operation name: Nudm_UECM_Registration

Description: Register UE’s serving NF (if NF Type is AMF, SMSF) or Session’s serving NF (if NF Type is SMF) on the UDM. This operation implies the following:

- The authorization, if applicable, to register the NF service consumer in UDM for the UE (e.g. based on UE roaming/RAT restrictions applicable when NF type is AMF). If this is successful, the NF service consumer is set as a serving NF for the corresponding UE/Session context.

- When the consumer is AMF, it is implicitly subscribed to be notified when it is deregistered in UDM. This notification is done by means of Nudm_UECM_DeregistrationNotification operation.

- When the consumer is AMF or SMF, it may optionally use this operation to subscribe to be notified of the need for P-CSCF Restoration. This notification is done by means of Nudm_UECM_PCscfRestoration operation. For more information regarding P-CSCF restoration procedures see TS 23.380 [38].

Inputs, Required: NF ID, SUPI, PEI, NF Type, Access Type (if NF Type is AMF, SMSF), PDU Session ID (if NF Type is SMF). If NF Type is SMF: DNN or Indication of Emergency Services.

Inputs, Optional: P-CSCF Restoration notification information, GUAMI(s) (if NF Type is AMF).

Outputs, Required: Result indication.

Outputs, Optional: None.

See step 14 of clause 4.2.2.2.2 for an example usage of this service operation.

5.2.3.2.2 Nudm_UECM_DeregistrationNotification service operation

Service operation name: Nudm_UECM_DeregistrationNotification.

Description: UDM notifies the NF consumer which has previously registered (using Nudm_UECM_Registration operation) has been deregistered in the UDM. As a result, the consumer is no longer registered in UDM as a serving NF for that UE.

NOTE: This notification corresponds to an implicit subscription.

Inputs, Required: SUPI, Access Type, serving NF deregistration reason.
Inputs, Optional: None.

Outputs, Required: None.

Outputs, Optional: None.

See step 14c of sub-clause 4.2.2.2 for an example usage of this service operation. The serving NF deregistration reason tells the reason for sending the deregistration notification to the consumer NF.

The reason for AMF deregistration can be one of the following:
- UE Initial Registration.
- UE Registration area change.
- Subscription Withdrawn.
- 5GS to EPS Mobility.

5.2.3.2.3 Nudm_UECM_Deregistration service operation

Service operation name: Nudm_UECM_Deregistration.

Description: The NF consumer requests the UDM to delete the information related to the NF in the UE context. When the consumer is AMF, this implies that the subscriptions to be notified when the NF is deregistered in UDM (i.e. Nudm_UECM_DeregistrationNotification) are also removed.

Inputs, Required: SUPI, NF type, Access Type, DNN (if NF Type is SMF), PDU Session Id (if NF Type is SMF).
- Access Type is included only when the NF type indicates AMF or SMSF.

Outputs, Required: Result Indication.

Outputs, Optional: None.

5.2.3.2.4 Nudm_UEContextManagement_Get service operation

Service operation name: Nudm_UECM_Get.

Description: The NF consumer requests the UDM to get the NF ID or SMS address of the NF serving the UE.

Inputs, Required: UE ID, NF Type, Access Type.
- Access Type is included only when the NF type indicates AMF.

Outputs, Required: SUPI, NF ID or SMS address of the NF corresponding to the NF type requested by NF consumer.

Outputs, Optional: None.

5.2.3.2.5 Nudm_UECM_Update service operation

Service operation name: Nudm_UECM_Update.

Description: Consumer updates some UE related information (e.g. UE capabilities).

Inputs, Required: NF ID, SUPI, NF type, UE context information.

Inputs, Optional: None.

Outputs, Required: Result Indication.

Outputs, Optional: None.
5.2.3.2.6 Nudm_UECM_PCscfRestoration service operation

Service operation name: Nudm_UECM_PCscfRestoration.

Description: UDM notifies the AMF and/or SMF(s) which indicated during registration in UDM to be notified of the need for P-CSCF Restoration.

Inputs, Required: SUPI.

Inputs, Optional: None.

Outputs, Required: None.

Outputs, Optional: None.

5.2.3.3 Nudm_SubscriberDataManagement (SDM) Service

5.2.3.3.1 General

Subscription data types used in the Nudm_SubscriberDataManagement Service are defined in Table 5.2.3.3.1-1 below.
Table 5.2.3.3.1-1: UE Subscription data types
<table>
<thead>
<tr>
<th>Subscription data type</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access and Mobility Subscription data (data needed for UE Registration and Mobility Management)</td>
<td>GPSI List</td>
<td>List of the GPSI (Generic Public Subscription Identifier) used both inside and outside of the 3GPP system to address a 3GPP subscription.</td>
</tr>
<tr>
<td>Internal Group ID-list</td>
<td>List of the subscribed internal group(s) that the UE belongs to.</td>
<td></td>
</tr>
<tr>
<td>Subscribed-UE-AMBR</td>
<td>The Maximum Aggregated uplink and downlink MBRs to be shared across all Non-GBR QoS Flows according to the subscription of the user.</td>
<td></td>
</tr>
<tr>
<td>Subscribed S-NSSAIs</td>
<td>The Network Slices that the UE subscribes to.</td>
<td></td>
</tr>
<tr>
<td>Default S-NSSAIs</td>
<td>The Subscribed S-NSSAIs marked as default S-NSSAI.</td>
<td></td>
</tr>
<tr>
<td>UE Usage Type</td>
<td>As defined in TS 23.501 [2], clause 5.15.7.2.</td>
<td></td>
</tr>
<tr>
<td>RAT restriction</td>
<td>3GPP Radio Access Technology(ies) not allowed the UE to access.</td>
<td></td>
</tr>
<tr>
<td>Forbidden area</td>
<td>Defines areas in which the UE is not permitted to initiate any communication with the network.</td>
<td></td>
</tr>
<tr>
<td>Service Area Restriction</td>
<td>Indicates Allowed areas in which the UE is permitted to initiate communication with the network, and Non-allowed areas in which the UE and the network are not allowed to initiate Service Request or SM signalling to obtain user services.</td>
<td></td>
</tr>
<tr>
<td>Core Network type restriction</td>
<td>Defines whether UE is allowed to connect to 5GC for this PLMN.</td>
<td></td>
</tr>
<tr>
<td>RFSP Index</td>
<td>An Index to specific RRM configuration in the NG-RAN.</td>
<td></td>
</tr>
<tr>
<td>Subscribed Periodic Registration Timer</td>
<td>Indicates a subscribed Periodic Registration Timer value.</td>
<td></td>
</tr>
<tr>
<td>Priority Services</td>
<td>Indicates the user is subscribed to priority.service (MPS) as indicated in TS 23.501 [2], clause 5.16.5.</td>
<td></td>
</tr>
<tr>
<td>UE behavioural information / Communication patterns</td>
<td>Information on expected UE movement and communication characteristics. See clause 4.15.6.2</td>
<td></td>
</tr>
<tr>
<td>Steering of Roaming</td>
<td>List of preferred PLMN/access technology combinations or HPLMN indication that no change of the "Operator Controlled PLMN Selector with Access Technology" list stored in the UE is needed (see NOTE 3). Optionally includes an indication that the UDM requests an acknowledgement of the reception of this information from the UE.</td>
<td></td>
</tr>
<tr>
<td>Slice Selection Subscription data (data needed for Slice Selection as described in clause 4.2.2.2.3)</td>
<td>Subscribed S-NSSAIs</td>
<td>The Network Slices that the UE subscribes to. In roaming case, it indicates the subscribed network slices applicable to the serving PLMN.</td>
</tr>
<tr>
<td>AMF</td>
<td>Allocated AMF for the registered UE. Include AMF address and AMF NF Id.</td>
<td></td>
</tr>
<tr>
<td>Access Type</td>
<td>3GPP or non-3GPP access through this AMF</td>
<td></td>
</tr>
<tr>
<td>SMF Selection Subscription data contains one or more S-NSSAI level subscription data:</td>
<td>S-NSSAI</td>
<td>Indicates the value of the S-NSSAI.</td>
</tr>
<tr>
<td></td>
<td>Subscribed DNN list</td>
<td>List of the subscribed DNNs for the UE (NOTE 1).</td>
</tr>
<tr>
<td></td>
<td>Default DNN</td>
<td>The default DNN if the UE does not provide a DNN (NOTE 2).</td>
</tr>
<tr>
<td></td>
<td>LBO Roaming Information</td>
<td>Indicates whether LBO roaming is allowed per DNN, or per (S-NSSAI, subscribed DNN)</td>
</tr>
<tr>
<td>UE context in SMF data</td>
<td>SUPI</td>
<td>Key</td>
</tr>
<tr>
<td></td>
<td>PDU Session Id(s)</td>
<td>List of PDU Session Id(s) for the UE</td>
</tr>
<tr>
<td>For each PDU Session Id:</td>
<td>DNN</td>
<td>DNN for the PDU Session.</td>
</tr>
<tr>
<td>SMF</td>
<td>Allocated SMF for the PDU Session. Includes SMF IP Address and SMF NF ID.</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>SMS Management</td>
<td>Subscription data (data needed by SMSF for SMSF Registration)</td>
<td></td>
</tr>
<tr>
<td>SMS parameters</td>
<td>Indicates SMS parameters subscribed for SMS service such as SMS teleservice, SMS barring list</td>
<td></td>
</tr>
<tr>
<td>SMS Subscription data</td>
<td>(data needed in AMF)</td>
<td></td>
</tr>
<tr>
<td>SMS Subscribed</td>
<td>Indicates subscription to any SMS delivery service over NAS.</td>
<td></td>
</tr>
<tr>
<td>UE Context in SMSF data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMSF Information</td>
<td>Indicates SMSF allocated for the UE, including SMSF address and SMSF NF ID.</td>
<td></td>
</tr>
<tr>
<td>Access Type</td>
<td>3GPP or non-3GPP access through this SMSF</td>
<td></td>
</tr>
<tr>
<td>Session Management Subscription data (data needed for PDU Session Establishment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPSI List</td>
<td>List of the GPSI (Generic Public Subscription Identifier) used both inside and outside of the 3GPP system to address a 3GPP subscription.</td>
<td></td>
</tr>
<tr>
<td>Internal Group ID-list</td>
<td>List of the subscribed internal group(s) that the UE belongs to.</td>
<td></td>
</tr>
</tbody>
</table>

Session Management Subscription data contains one or more S-NSSAI level subscription data:

| **S-NSSAI** | Indicates the value of the S-NSSAI. |
| **Subscribed DNN list** | List of the subscribed DNNs for the S-NSSAI (NOTE 1). |

For each DNN in S-NSSAI level subscription data:

UE Address	Indicates the subscribed static IP address(es) for the IPv4 or IPv6 or IPv4v6 type PDU Sessions accessing the DNN, S-NSSAI.
Allowed PDU Session Types	Indicates the allowed PDU Session Types (IPv4, IPv6, IPv4v6, Ethernet, and Unstructured) for the DNN, S-NSSAI.
Default PDU Session Type	Indicates the default PDU Session Type for the DNN, S-NSSAI.
Allowed SSC modes	Indicates the allowed SSC modes for the DNN, S-NSSAI.
Default SSC mode	Indicates the default SSC mode for the DNN, S-NSSAI.
5GS Subscribed QoS profile	The QoS Flow level QoS parameter values (5QI and ARP) for the DNN, S-NSSAI (see clause 5.7.2.7 of TS 23.501 [2]).
Charging Characteristics	This information is defined in TS 32.240 [34]; it may e.g. contain information on how to contact the Charging Function. This information, when provided shall override any corresponding predefined information at the SMF
Subscribed-Session-AMBR	The maximum aggregated uplink and downlink MBRs to be shared across all Non-GBR QoS Flows in each PDU Session, which are established for the DNN, S-NSSAI.
Static IP address/prefix	Indicate the static IP address/prefix for the DNN, S-NSSAI.
User Plane Security Policy	Indicates the security policy for integrity protection and encryption for the user plane.
Identifier translation	
SUPI	Corresponding SUPI for input GPSI
(Optional) MSISDN	Corresponding G PSI (MSISDN) for input GPSI (External Identifier). This is optionally provided for legacy SMS infrastructure not supporting MSISDN-less SMS. The presence of an MSISDN should be interpreted as an indication to the NEF that MSISDN shall be used to identify the UE when sending the SMS to the SMS-SC via T4.

NOTE 1: The Subscribed DNN list can include a wildcard DNN.
NOTE 2: The default DNN shall not be a wildcard DNN.
NOTE 3: The Steering of Roaming information is protected using the mechanisms defined in TS 33.501 [15].
Table 5.2.3.3.1-2: Group Subscription data types

<table>
<thead>
<tr>
<th>Subscription data type</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Identifier translation</td>
<td>External Group Identifier</td>
<td>Identifies external group of UEs that the UE belongs to as defined in TS 23.682 [23]</td>
</tr>
<tr>
<td>(Optional) Internal Group Identifier</td>
<td>Identifies internal group of UEs that the UE belongs to as defined in TS 23.501 [2]</td>
<td></td>
</tr>
<tr>
<td>SUPI list</td>
<td>Corresponding SUPI list for input External Group Identifier</td>
<td></td>
</tr>
</tbody>
</table>

At least a mandatory key is required for each Subscription Data Type to identify the corresponding data. Depending on the use case, for some Subscription Data Types it is possible to use one or multiple sub keys to further identify the corresponding data, as defined in Tables 5.2.3.3.1-3 and 5.2.3.3.1-4 below.

Table 5.2.3.3.1-3: UE Subscription data types keys

<table>
<thead>
<tr>
<th>Subscription Data Types</th>
<th>Data Key</th>
<th>Data Sub Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access and Mobility Subscription data</td>
<td>SUPI</td>
<td>-</td>
</tr>
<tr>
<td>SMF Selection Subscription data</td>
<td>SUPI</td>
<td>-</td>
</tr>
<tr>
<td>UE context in SMF data</td>
<td>SUPI</td>
<td>S-NSSAI</td>
</tr>
<tr>
<td>SMS Management Subscription data</td>
<td>SUPI</td>
<td>DNN</td>
</tr>
<tr>
<td>SMS Subscription data</td>
<td>SUPI</td>
<td>-</td>
</tr>
<tr>
<td>UE Context in SMSf data</td>
<td>SUPI</td>
<td>-</td>
</tr>
<tr>
<td>Session Management Subscription data</td>
<td>SUPI</td>
<td>S-NSSAI</td>
</tr>
<tr>
<td>Identifier translation</td>
<td>GPSI</td>
<td>-</td>
</tr>
<tr>
<td>Slice Selection Subscription data</td>
<td>SUPI</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5.2.3.3.1-4: Group Subscription data types keys

<table>
<thead>
<tr>
<th>Subscription Data Types</th>
<th>Data Key</th>
<th>Data Sub Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Identifier translation</td>
<td>External Group Identifier</td>
<td></td>
</tr>
</tbody>
</table>

5.2.3.3.2 Nudm_SDM_Get service operation

Service Operation name: Nudm_SDM_Get

Description: Consumer NF gets the subscriber data indicated by the subscription data type input from UDM. The UDM shall check the requested consumer is authorized to get the specific subscription data requested. In case of NF consumer is SMF, the subscriber data may contain e.g. Allowed PDU Session Type(s), Allowed SSC mode(s), default 5QI/ARP

Inputs, Required: NF ID, Subscription data type(s), Key for each Subscription data type(s).

Inputs, Optional: Data Sub Key(s).

Outputs, Required: The consumer NF gets the requested subscription data.

Outputs, Optional: None.

5.2.3.3.3 Nudm_SDM_Notification service operation

Service or service operation name: Nudm_SDM_Notification

Description: The UDM notifies NF consumer of the updates of UE's Subscriber Data indicated by the "subscription data Type" input.

Inputs, Required: Subscription data type(s), Key for each Subscription data type(s).

Inputs, Optional: None.

Outputs, Required: Result Indication.
The UDM invokes this service operation under the following cases:

- When the subscriber data is updated at the UDM, the updated subscription information is notified to the serving NF that has subscribed for the specific subscription data type to be notified.

In case updates subscription information is related to session management the subscriber data may contain e.g. Allowed PDU Session Type(s), Allowed SSC mode(s), default 5QI/ARP.

Outputs, Optional:

Redirection information.

If the NF consumer is AMF, and if the result of the service operation fails, AMF shall set corresponding cause value in result indication which can be used by the UDM for further action. In case the related UE is not served by the AMF and the AMF knows which AMF is serving the UE, the AMF provides redirection information which can be used by the UDM to resend UE related message to the AMF that serves the UE.

5.2.3.3.4 Nudm_SDM_Subscribe service operation

Service operation name: Nudm_SDM_Subscribe

Description: The NF consumer subscribes for updates to UE's Subscriber Data indicated by the 'subscription data type' input. The UDM shall check the requested consumer is authorized to subscribe to requested updates.

Inputs, Required: Subscription data type(s), Key for each Subscription data type(s).

Inputs, Optional: Data Sub Key(s).

Outputs, Required: None.

Outputs, Optional: None.

5.2.3.3.5 Nudm_SDM_Unsubscribe service operation

Service operation name: Nudm_SDM_Unsubscribe

Description: The NF consumer unsubscribes from updates to UE's Subscriber Data indicated by the 'subscription data type' input.

Inputs, Required: Subscription data type(s), Key for each Subscription data type(s).

Inputs, Optional: If the NF type is SMF: DNN, S-NSSAI.

Outputs, Required: None.

Outputs, Optional: None.

5.2.3.3.6 Nudm_SDM_Info service operation

Service Operation name: Nudm_SDM_Info

Description: Consumer NF provides UDM with information about the status of the subscription data management procedures. This service operation is used for:

- providing acknowledgement from the UE to UDM about successful delivery of Steering of Roaming information via the AMF as defined in TS 23.122 [22].

Inputs, Required: SUPI, Info (e.g. UE acknowledgment of SoR information from UDM via AMF).

Inputs, Optional: None.

Outputs, Required: None.

Outputs, Optional: None.
5.2.3.4 Nudm_UEAuthentication Service

5.2.3.4.1 General

This service is used by the requester NF to get authentication data and provide UDM with the result of the authentication procedure success.

5.2.3.4.2 Nudm_UEAuthentication_Get service operation

See TS 33.501 [15].

5.2.3.4.3 Nudm_UEAuthentication_ResultConfirmation service operation

See TS 33.501 [15].

5.2.3.5 Nudm_EventExposure service

5.2.3.5.1 General

See clause 5.4.2.

5.2.3.5.2 Nudm_EventExposure_Subscribe service operation

Service operation name: Nudm_EventExposure_Subscribe

Description: The NF consumer subscribes to receive an event, or if the subscription is already defined in UDM, then the subscription is updated.

NF Consumers: NEF.

Inputs (required): GPSI or External Group Identifier, Event filter containing the Event Id(s) (see clause 4.15.3.1) and Event Reporting Information defined in Table 4.15.1-1.

Inputs (optional): None.

Outputs (required): Operation execution result indication.

Outputs (optional): First corresponding event report is included, if corresponding information is available (see clause 4.15.1), Number of UE if the External Group Identifier and Maximum Number of Reports are included in the inputs.

Number of UEs indicates the number of UEs within the group identified by the External Group Identifier. The NEF uses this value to determine whether the monitoring event has been reported for all group member UEs.

5.2.3.5.3 Nudm_EventExposure_Unsubscribe service operation

Service operation name: Nudm_EventExposure_Unsubscribe

Description: the consumer deletes the subscription of an event if already defined in UDM.

NF Consumers: NEF.

Inputs (required): GPSI or External Group Identifier, Event filter containing the Event Id(s).

Outputs (required): Operation execution result indication.

5.2.3.5.4 Nudm_EventExposure_Notify service operation

Service operation name: Nudm_EventExposure_Notify

Description: UDM reports the event to the consumer that has previously subscribed.

NF Consumers: NEF.

Inputs (required): Monitoring Indication.

Inputs (optional): None.
Outputs (required): None.

5.2.3.6 Nudm_ParameterProvision service

5.2.3.6.1 General

This service is for allowing NEF to provision of information which can be used for the UE in 5GS.

5.2.3.6.2 Nudm_ParameterProvision_Update service operation

Service operation name: Nudm_ParameterProvision_Update.

Description: the consumer updates the UE related information (e.g., Expected UE Behaviour).

Inputs (required): GPSI, AF ID, Transaction Reference ID(s).

Inputs (optional): Any combination of the Expected UE Behaviour parameters.

Outputs (required): Transaction Reference ID(s), Operation execution result indication.

Outputs (optional): Transaction specific parameters, if available.

5.2.4 5G-EIR Services

5.2.4.1 General

The following table illustrates the 5G-EIR Service.

<table>
<thead>
<tr>
<th>NF service</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N5g-eir_EquipmentIdentityCheck</td>
<td>Get</td>
<td>Request/Response</td>
<td>AMF</td>
</tr>
</tbody>
</table>

5.2.4.2 N5g-eir_EquipmentIdentityCheck service

5.2.4.2.1 General

Service Description: This service is provided by the 5G-EIR to check the PEI and check whether the PEI is in the blacklist or not. The service can be consumed by AMF. The service operations provided within this service are depicted as below.

5.2.4.2.2 N5g-eir_EquipmentIdentityCheck_Get service operation

Service operation name: N5g-eir_EquipmentIdentityCheck_Get

Description: Check the PEI and determine whether the subscriber is allowed to use the equipment.

Inputs, Required: PEI, SUPI.

Inputs, Optional: none

Outputs, Required: PEI checking result

Outputs, Optional: none

5.2.5 PCF Services

5.2.5.1 General

The following table illustrates the PCF Services.
Table 5.2.5.1-1: NF services provided by PCF

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Npcf_AMPolicyControl</td>
<td>Create</td>
<td>Request/Response</td>
<td>AMF, V-PCF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>AMF, V-PCF</td>
</tr>
<tr>
<td></td>
<td>UpdateNotify</td>
<td>Subscribe/Notify</td>
<td>AMF, V-PCF</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td>Request/Response</td>
<td>AMF, V-PCF</td>
</tr>
<tr>
<td>Npcf_PolicyAuthorization</td>
<td>Create</td>
<td>Request/Response</td>
<td>AF, NEF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>AF, NEF</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td>Request/Response</td>
<td>AF, NEF</td>
</tr>
<tr>
<td></td>
<td>Notify</td>
<td>Subscribe/Notify</td>
<td>AF, NEF</td>
</tr>
<tr>
<td></td>
<td>Subscribe</td>
<td>Request/Response</td>
<td>AF, NEF</td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td>Request/Response</td>
<td>AF, NEF</td>
</tr>
<tr>
<td>Npcf_SMPolicyControl</td>
<td>Create</td>
<td>Request/Response</td>
<td>SMF</td>
</tr>
<tr>
<td></td>
<td>UpdateNotify</td>
<td>Subscribe/Notify</td>
<td>SMF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>SMF</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td>Request/Response</td>
<td>SMF</td>
</tr>
<tr>
<td>Npcf_BDTPolicyControl</td>
<td>Create</td>
<td>Request/Response</td>
<td>NEF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>NEF</td>
</tr>
</tbody>
</table>

5.2.5.2 Npcf_AMPolicyControl service

5.2.5.2.1 General

Service description: NF Service Consumer, e.g. AMF can create and manage a AM Policy Association in the PCF through which the NF Service Consumer receives policy information for a UE.

As part of this service, the PCF may provide the NF Service Consumer, e.g. AMF with policy information about the UE that may contain:

- Access and mobility related policy information as defined in clause 6.5 of TS 23.503 [20]. In the case of roaming, this information is provided by V-PCF;
- UE access selection and PDU Session selection related policy information as defined in clause 6.6 of TS 23.503 [20]. In the case of roaming, the URSP information is provided by H-PCF and the ANDSP information can be provided by V-PCF or H-PCF or both;
- Policy Control Request Trigger of AM Policy Association. When such a Policy Control Request Trigger condition is met the NF Service Consumer, e.g. shall contact PCF and provide information on the Policy Request Trigger condition that has been met. In the case of roaming, the V-PCF may subscribe to AMF or the H-PCF may subscribe to AMF via V-PCF.

At Npcf_AMPolicyControl_Create, the NF Service Consumer, e.g. AMF requests the creation of a corresponding "AM Policy Association" with the PCF (Npcf_AMPolicyControl_Create) and provides relevant parameters about the UE context to the PCF. When the PCF has created the AM Policy Association, the PCF may provide policy information as defined above.

When a Policy Control Request Trigger condition is met the NF Service Consumer, e.g. AMF requests the update (Npcf_AMPolicyControl_Update) of the AM Policy Association by providing information on the condition(s) that have been met. The PCF may provide updated policy information to the NF Service Consumer.

The PCF may at any time provide updated policy information (Npcf_AMPolicyControl_UpdateNotify);

At UE deregistration the NF Service Consumer, e.g. AMF requests the deletion of the corresponding AM Policy Association.

5.2.5.2.2 Npcf_AMPolicyControl_Create service operation

Service operation name: Npcf_AMPolicyControl_Create

Description: NF Service Consumer can request the creation of a AM Policy Association and by providing relevant parameters about the UE context to the PCF.
Inputs, Required: SUPI (or PEI in case of emergency PDU Session without SUPI).

Inputs, Optional: Information provided by the AMF as defined in 6.2.1.2 of TS 23.503 [20], such as Access Type, Permanent Equipment Identifier, GPSI, User Location Information, UE Time Zone, Serving Network, RAT type, List of subscribed Service Area Restrictions, (V-)PCF ID (if the consumer is AMF, when receiving the PCF ID from old AMF during inter-AMF mobility), H-PCF ID (if the consumer is V-PCF, when receiving the H-PCF ID from AMF), subscribed RFSP Index, the Allowed NSSAI, UE access selection and PDU session selection policy information including the list of PSIs and Internal Group (see TS 23.501 [2], clause 5.9.7), GUAMI(s) (if NF Type is AMF).

Outputs, Required: None.

Outputs, Optional: The requested Access and mobility related policy information as defined in Clause 6.5 of TS 23.503 [20], UE access selection and PDU Session selection related policy as defined in Clause 6.6 of TS 23.503 [20], and Policy Control Request Trigger of AM Policy Association.

5.2.5.2.3 Npcf_AMPolicyControl_UpdateNotify service operation

Service operation name: Npcf_AMPolicyControl_UpdateNotify

Description: Provides to the NF Service Consumer, e.g. AMF updated Policy information for the UE context evaluated based on the information previously provided by the PCF and the UDR.

NOTE: This notification corresponds to an implicit subscription.

Inputs, Required: SUPI (or PEI in case of emergency PDU Session without SUPI).

Inputs, Optional: Either Access and Mobility related information or UE Access and PDU session related information or both or indication of Policy Association termination. Policy information for the UE context as defined in clause 5.2.5.1.

Outputs, Required: Success or failure.

Outputs, Optional: None.

5.2.5.2.4 Npcf_AMPolicyControl_Delete service operation

Service operation name: Npcf_AMPolicyControl_Delete

Description: Provides means for the NF Consumer to delete the AM policy control association.

Inputs, Required: SUPI (or PEI in case of emergency PDU Session without SUPI).

Inputs, Optional: None.

Outputs, Required: Success or Failure.

Outputs, Optional: None.

5.2.5.2.5 Npcf_AMPolicyControl_Update service operation

Service operation name: Npcf_AMPolicyControl_Update.

Description: NF Service Consumer, e.g. AMF can request the update of the AM Policy Association to receive updated Policy information for the UE context.
5.2.5.3 Npcf_PolicyAuthorization Service

5.2.5.3.1 General

Service description: This service is to authorise an AF request and to create policies as requested by the authorized AF for the PDU Session to which the AF session is bound. This service allows the NF consumer to subscribe/unsubscribe the notification of events (e.g. change of Access Type or RAT type, changes of the PLMN identifier).

5.2.5.3.2 Npcf_PolicyAuthorization_Create service operation

Service operation name: Npcf_PolicyAuthorization_Create

Description: Authorize the request, and optionally determines and installs the policy according to the information provided by the NF Consumer.

Inputs, Required: the IP address of the UE, identification of the application session context.

Inputs, Optional: UE identity if available, DNN if available, S-NSSAI if available, Media type, Media format, bandwidth requirements, sponsored data connectivity if applicable, flow description, Application identifier or traffic filtering information, AF Communication Service Identifier, AF Record Identifier, Flow status, Priority indicator, emergency indicator, Application service provider, resource allocation outcome, a list of DNAI(s) and corresponding routing profile ID(s) or N6 traffic routing information, AF Transaction Id, Early and/or late notifications about UP path management events, temporal validity condition and spatial validity condition as described in clause 5.6.7 in 23.501 [2], Background Data Transfer Reference ID.

Outputs, Required: Success or Failure.

Outputs, Optional: The service information that can be accepted by the PCF.

Authorizes the request from the application, and optionally communicates with Npcf_SMPolicyControl service to determine and install the policy according to the information provided by the NF Consumer. Creates an application context in the PCF.

5.2.5.3.3 Npcf_PolicyAuthorization_Update service operation

Service operation name: Npcf_PolicyAuthorization_Update

Description: Provides updated information to the PCF.

Inputs, Required: Identification of the application session context.

Inputs, Optional: Media type, Media format, bandwidth requirements, sponsored data connectivity if applicable, flow description, Application identifier or traffic filtering information, AF Communication Service Identifier, AF Record Identifier, Flow status, Priority indicator, Application service provider, resource allocation outcome, a list of DNAI(s) and corresponding routing profile ID(s) or N6 traffic routing information, AF Transaction Id, Early and/or late notifications about UP path management events, temporal validity condition and spatial validity condition as described in clause 5.6.7 in 23.501 [2], Background Data Transfer Reference ID.

Outputs, Required: Success or Failure.

Outputs, Optional: The service information that can be accepted by the PCF.
Provides updated application level information and communicates with Npcf_SMPolicyControl service to determine and install the policy according to the information provided by the NF Consumer. Updates an application context in the PCF.

5.2.5.3.4 Npcf_PolicyAuthorization_Delete service operation

Service operation name: Npcf_PolicyAuthorization_Delete

Description: Provides means for the NF Consumer to delete the context of application level session information.

Inputs, Required: Identification of the application session context.

Inputs, Optional: None.

Outputs, Required: None.

Outputs, Optional: None.

Provides means for the NF Consumer to delete the context of application session information.

5.2.5.3.5 Npcf_PolicyAuthorization_Notify service operation

Service operation name: Npcf_PolicyAuthorization_Notify

Description: provided by the PCF to notify NF consumers of the subscribed events, such as change of Access Type or RAT type, changes of the PLMN identifier.

Inputs, Required: Event ID, Notification Correlation Information (information to identify the application session).

The events may include:
- PDU Session Termination;
- Reporting Usage for Sponsored Data Connectivity.

Inputs, Optional: Event information (defined on a per Event ID basis).

Outputs, Required: Operation execution result indication.

Outputs, Optional: None

Notify NF consumers of the subscribed events. The following Event Ids are defined as signalling path status of AF session, Access Type and RAT type, PLMN identifier, access network information, i.e. user location and/or user timezone information, usage report, resource allocation outcome, QoS targets unfulfillment.

5.2.5.3.6 Npcf_PolicyAuthorization_Subscribe service operation

Service operation name: Npcf_PolicyAuthorization_Subscribe

Description: provided by the PCF for NF consumers to explicitly subscribe the notification of events, such as change of Access Type or RAT type, changes of the PLMN identifier.

Inputs, Required: (Set of) Event ID(s) as specified in Npcf_PolicyAuthorization_Notify service operation, target of PCF event reporting (defined below), NF ID, Event Reporting Information defined in Table 4.15.1-1, Notification Target Address (+ Notification Correlation ID).

The target of PCF event reporting may be:
- If the subscription is for an individual AF session: An UE IP address (IPv4 address or IPv6 prefix) optionally together with a (DNN, S-NSSAI) or with a UE ID (SUPI or GPSI).
- Otherwise: an Internal Group Identifier or an indication that any UE is targeted for a specific (DNN, S-NSSAI).

Inputs, Optional: Event Filter, Subscription Correlation ID (in case of modification of the event subscription).

Outputs, Required: When the subscription is accepted: Subscription Correlation ID.

Outputs, Optional: None.
5.2.5.3.7 Npcf_PolicyAuthorization_Unsubscribe service operation

Service operation name: Npcf_PolicyAuthorization_Unsubscribe

Description: Enable NF consumers to explicitly unsubscribe the notification of PCF events related to Npcf_PolicyAuthorization_Subscribe operation.

Known NF Consumers: AF/NEF.

Inputs, Required: Subscription Correlation.

Inputs, Optional: None.

Outputs, Required: Success or Failure.

Outputs, Optional: None.

5.2.5.4 Npcf_SMPolicyControl service

5.2.5.4.1 General

Service description: NF Service Consumer, e.g. SMF can create and manage a SM Policy Association in the PCF through which the NF Service Consumer receives policy information for a PDU Session.

As part of this service, the PCF may provide the NF Service Consumer, e.g. SMF with policy information about the PDU Session that may contain:

- PDU Session related policy information as defined in clause 6.4 of TS 23.503 [20].
- PCC rule information as defined in clause 6.3 of TS 23.503 [20].
- Policy Control Request Trigger information i.e. a set of Policy Request Trigger(s) as defined in clause 6.1.3.5 of TS 23.503 [20]. When a Policy Control Request Trigger condition is met the the NF Service Consumer, e.g. SMF shall contact the PCF and provide information on the Policy Control Request Trigger condition that has been met.

At PDU Session establishment the NF Service Consumer, e.g. SMF requests the creation of a corresponding SM Policy Association with the PCF (Npcf_SMPolicyControl_Create) and provides relevant parameters about the PDU Session to the PCF.

- When the PCF has created the "SM Policy Association, the PCF may provide policy information as defined above.

When a Policy Control Request Trigger condition is met the NF Service Consumer, e.g. SMF requests the update(Npcf_SMPolicyControl_Update) of the SM Policy Association by providing information on the condition(s) that have been met. The PCF may provide updated policy information to the NF Service Consumer.

The PCF may at any time provide updated policy information (Npcf_SMPolicyControl_UpdateNotify).

At PDU Session release the NF Service Consumer, e.g. SMF requests the deletion of the corresponding SM Policy Association.

5.2.5.4.2 Npcf_SMPolicyControl_Create service operation

Service operation name: Npcf_SMPolicyControl_Create.

Description: The NF Service Consumer can request the creation of a SM Policy Association and provide relevant parameters about the PDU Session to the PCF.

Inputs, Required: SUPI (or PEI in case of emergency PDU Session without SUPI), PDU Session id, DNN and S-NSSAI.

Inputs, Optional: Information provided by the SMF as defined in clause 6.2.1.2 of TS 23.503 [20], such as Access Type, the IPv4 address and/or IPv6 prefix, PEI, GPSI, User Location Information, UE Time Zone, Serving Network, RAT type, Charging Characteristics information, subscribed Session AMBR, subscribed default QoS information and Internal Group Identifier (see TS 23.501 [2], clause 5.9.7).
5.2.5.4.3 Npcf_SMPolicyControl_UpdateNotify service operation

Service operation name: Npcf_SMPolicyControl_UpdateNotify

Description: Provides to the NF Service Consumer, e.g. SMF updated Policy information for the PDU Session evaluated based on the information previously provided by the SMF, AF, CHF, UDR and NWDAF, as defined in clause 6.2.1.2 of TS 23.503 [20],

Inputs, Required: PDU Session Id and SUPI (or PEI in case of emergency PDU Session without SUPI).

Outputs, Required: Success or Failure.

See clause 4.16.4 for the detail usage of this service operation.

5.2.5.4.4 Npcf_SMPolicyControl_Delete service operation

Service operation name: Npcf_SMPolicyControl_Delete

Description: The NF Service Consumer can request the deletion of the SM Policy Association and of the associated resources.

Inputs, Required: PDU Session id, SUPI (or PEI in case of emergency PDU Session without SUPI).

Outputs, Required: Success or Failure.

See clause 4.16.5 for the usage of this service operation.

5.2.5.4.5 Npcf_SMPolicyControl_Update service operation

Service operation name: Npcf_SMPolicyControl_Update

Description: The NF Service Consumer can request the update of the SM Policy Association to receive updated Policy information for the PDU Session.

Inputs, Required: PDU Session Id and SUPI (or PEI in case of emergency PDU Session without SUPI).

Inputs, Optional: Information on the Policy Control Request Trigger condition that has been met such as Access Type, (new or removed) IPv4 address and/or IPv6 network prefix, User Location Information, UE Time Zone, Serving Network, RAT type, subscribed Session AMBR, or subscribed default QoS information.

Outputs, Required: Success or not.

Outputs, Optional: Policy information for the PDU Session as defined in clause 5.2.5.4.1.

See clause 4.16.6 for the usage of this service operation.

5.2.5.5 Npcf_BDTPolicyControl Service

5.2.5.5.1 General

Service description: This service provides background data transfer policy, which includes the following functionalities:

- Get background data transfer policies based on the request via NEF from AF; and
- Update background data transfer based on the selection provided by AF.

5.2.5.5.2 Npcf_BDTPolicyControl_Create service operation

Service operation name: Npcf_BDTPolicyControl_Create

Description: This service is to create the background data transfer policy.

Inputs, Required: ASP identifier, Volume per UE, Number of UEs, Desired time windows, network area information.

Inputs, Optional: None

Outputs, Required: one or more background data transfer policies, Background Data Transfer Reference ID.

Outputs, Optional: None.

5.2.5.5.3 Npcf_BDTPolicyControl_Update service operation

Service operation name: Npcf_BDTPolicyControl_Update

Description: This service is to update the background data transfer policy to the PCF.

Inputs, Required: ASP identifier, background data transfer policy, Background Data Transfer Reference ID.

Inputs, Optional: None

Outputs, Required: None

Outputs, Optional: None.

5.2.6 NEF Services

5.2.6.1 General

The following table shows the NEF Services and Service Operations:

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nnef_EventExposure</td>
<td>Subscribe</td>
<td>Subscribe/Notify</td>
<td>AF</td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td></td>
<td>AF</td>
</tr>
<tr>
<td></td>
<td>Notify</td>
<td></td>
<td>AF</td>
</tr>
<tr>
<td>Nnef_PFDManagement</td>
<td>Fetch</td>
<td>Request/Response</td>
<td>SMF</td>
</tr>
<tr>
<td></td>
<td>Subscribe</td>
<td>Subscribe/Notify</td>
<td>SMF</td>
</tr>
<tr>
<td></td>
<td>Notify</td>
<td></td>
<td>SMF</td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create</td>
<td>Request/Response</td>
<td>AF</td>
</tr>
<tr>
<td>Nnef_ParameterProvision</td>
<td>Update</td>
<td>Request/Response</td>
<td>AF</td>
</tr>
<tr>
<td>Nnef_Trigger</td>
<td>Delivery</td>
<td>Request/Response</td>
<td>AF</td>
</tr>
<tr>
<td></td>
<td>DeliveryNotify</td>
<td>Subscribe/Notify</td>
<td>AF</td>
</tr>
<tr>
<td>Nnef_BDTPNegotiation</td>
<td>Create</td>
<td>Request/Response</td>
<td>AF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>AF</td>
</tr>
<tr>
<td>Nnef_TrafficInfluence</td>
<td>Create</td>
<td>Request/Response</td>
<td>AF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>AF</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td>Request/Response</td>
<td>AF</td>
</tr>
</tbody>
</table>
5.2.6.2 Nnef_EventExposure service

5.2.6.2.1 General

See clause 4.15.3.1.

5.2.6.2.2 Nnef_EventExposure_Subscribe operation

Service operation name: Nnef_EventExposure_Subscribe

Description: the consumer subscribes to receive an event, or if the event is already defined in NEF, then the subscription is updated.

Inputs (required): (Set of) Event ID(s) as specified in Npcf_PolicyAuthorization_Notify service operation, target of event reporting (GPSI or External Group Identifier), Event Reporting Information defined in Table 4.15.1-1, Notification Target Address (+ Notification Correlation ID).

Inputs (optional): Event Filter, Subscription Correlation ID (in case of modification of the event subscription).

Outputs (required): When the subscription is accepted: Subscription Correlation ID.

Outputs (optional): First corresponding event report is included, if available (see clause 4.15.1).

5.2.6.2.3 Nnef_EventExposure_Unsubscribe service operation

Service operation name: Nnef_EventExposure_Unsubscribe

Description: the NF consumer deletes an event if already defined in NEF.

Inputs (required): Subscription Correlation ID.

Outputs (required): Operation execution result indication.

5.2.6.2.4 Nnef_EventExposure_Notify service operation

Service operation name: Nnef_EventExposure_Notify

Description: NEF reports the event to the consumer that has previously subscribed.

Inputs (required): Event ID, Notification Correlation Information.

Inputs (optional): Event information (defined on a per Event ID basis).

Outputs (required): Operation execution result indication.

5.2.6.3 Nnef_PFDManagement service

5.2.6.3.1 General

5.2.6.3.2 Nnef_PFDManagement_Fetch service operation

Service operation name: Nnef_PFDManagement_Fetch

Description: Provides the PFDs for Application Identifier to the NF Consumer.

Inputs (required): Application Identifier(s).

Inputs (optional): None.

Outputs (required): Application Identifier, PFDs.

5.2.6.3.3 Nnef_PFDManagement_Subscribe service operation

Service operation name: Nnef_PFDManagement_Subscribe

Description: provided by the NEF (PFDF) for NF consumers to explicitly subscribe the notification of changes of PFDs for Application Identifier.
5.2.6.3.4 Nnef_PFDManagement_Notify service operation

Service operation name: Nnef_PFDManagement_Notify

Description: Provides Update PFDs for Application Identifier to the NF Consumer.

Inputs (required): Application Identifier(s), PFDs.

Inputs (optional): None.

Outputs (required): None.

5.2.6.3.5 Nnef_PFDManagement_Unsubscribe service operation

Service operation name: Nnef_PFDManagement_Unsubscribe

Description: Provides by the NEF (PFDF) for NF Consumer to explicitly unsubscribe the notification of events.

Inputs (required): Application Identifier(s).

Inputs (optional): None.

Outputs (required): None.

5.2.6.3.6 Nnef_PFDManagement_Create service operation

Service operation name: Nnef_PFDManagement_Create.

Description: The consumer requests PFD management.

Inputs (required): AF ID, External Application Identifier and one or more sets of PFDs and PFD operation.

Inputs (optional): Allowed Delay.

Outputs (required): Transaction Reference ID.

5.2.6.4 Nnef_ParameterProvision service

5.2.6.4.1 General

This service is for allowing external party to provision of information which can be used for the UE in 5GS.

5.2.6.4.2 Nnef_ParameterProvision_Update service operation

Service operation name: Nnef_ParameterProvision_Update

Description: the consumer updates the UE related information (e.g., Expected UE Behaviour).

Inputs (required): GPSI, AF ID, Transaction Reference ID.

Inputs (optional): Any combination of the Expected UE Behaviour parameters.

Outputs (required): Operation execution result indication.

Outputs (optional): Transaction specific parameters, if available.

5.2.6.5 Nnef_Trigger service

5.2.6.5.1 General

See clause 4.13.2.
5.2.6.5.2 Nnef_Trigger_DeliveryRequest service operation

Service operation name: Nnef_Trigger_Delivery

Description: The consumer requests that a trigger be sent to an application on a UE and subscribes to be notified about the result of the trigger delivery attempt.

Inputs (required): GPSI, AF ID, Trigger Reference Number, Application Port ID

Inputs (optional): Validity Period, Priority, Trigger Payload.

Outputs (required): Transaction Reference ID, Cause.

5.2.6.5.3 Nnef_Trigger_DeliveryNotify service operation

Service operation name: Nnef_Trigger_DeliveryNotify

Description: NEF reports the status of the trigger delivery to the consumer (failure or success).

NOTE: This notification corresponds to an implicit subscription by Nnef_Trigger_Delivery request service operation.

Inputs (required): Transaction Reference ID, Delivery Report.

Inputs (optional): not applicable.

Outputs (required):

5.2.6.6 Nnef_BDTPNegotiation service

5.2.6.6.1 General

See clause 4.16.7.

5.2.6.6.2 Nnef_BDTPNegotiation_Create service operation

Service operation name: Nnef_BDTPNegotiation_Create

Description: The consumer requests a background data transfer policy.

Inputs (required): ASP Identifier, Volume per UE, Number of UEs, Desired time window

Inputs (optional): Network Area Information.

Outputs (required): Transaction Reference ID, one or more background data transfer policies.

Output, Optional: None.

5.2.6.6.3 Nnef_BDTPNegotiation_Update service operation

Service operation name: Nnef_BDTPNegotiation_Update

Description: The consumer requests the selected background data transfer policy to be set.

Inputs (required): Transaction Reference ID, ASP Identifier, background data transfer policy.

Inputs (optional): None.

Outputs (required): None.

Outputs (optional): None.

5.2.6.7 Nnef_TrafficInfluence service

5.2.6.7.1 General

Service description: This service provides:

- Request authorization of NF Service Consumer requests.
- Request parameter mapping from NF Service Consumer requests to 5GC parameters and vice versa as described in TS 23.501 [2], clause 5.6.7.
- NF Service Consumer request routing (forwarding) to actual NF Service Producer to influence traffic routing decisions as described in TS 23.501 [2], clause 5.6.7.

5.2.6.7.2 Nnef_TrafficInfluence_Create operation

Service operation name: Nnef_TrafficInfluence_Create.

Description: Authorize the request and forward the request for traffic influence.

Known NF Service Consumers: AF.

Inputs (required): AF Transaction Id.

The AF Transaction Id refers to the request.

Inputs (optional): The address (IP or Ethernet) of the UE if available, GPSI if available, DNN if available, S-NSSAI if available, External Group Identifier if available, application identifier or traffic filtering information, AF-Service-Identifier, a list of DNAI(s) and corresponding routing profile ID(s) or N6 traffic routing information, Indication of application relocation possibility, Early and/or late notifications about UP path management events, Temporal validity condition and Spatial validity condition as described in TS 23.501 [2], clause 5.6.7.

Outputs (required): Operation execution result indication.

Outputs (optional): None.

5.2.6.7.3 Nnef_TrafficInfluence_Update operation

Service operation name: Nnef_AFInfluence_Update.

Description: Authorize the request and forward the request to update the traffic influence.

Known NF Service Consumers: AF.

Inputs (required): AF Transaction Id.

The AF Transaction Id identifies the NF Service Consumer request to be updated.

Inputs (optional): Same optional information as in Nnef_TrafficInfluence_Create Input.

Outputs (required): Operation execution result indication.

Outputs (optional): None.

5.2.6.7.4 Nnef_TrafficInfluence_Delete operation

Service operation name: Nnef_TrafficInfluence_Delete.

Description: Authorize the request and forward the request to delete(s) request for traffic influence.

Known NF Service Consumers: AF.

Inputs (required): AF Transaction Id.

The AF Transaction Id identifies the NF Service Consumer request for traffic influence to be deleted.

Inputs (optional): None.

Outputs (required): Operation execution result indication.

Outputs (optional): None.
5.2.7 NRF Services

5.2.7.1 General

The following table shows the NRF Services and Service Operations:

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nnrf_NFManagement</td>
<td>NFRegister</td>
<td>Request/Response</td>
<td>AMF, SMF, UDM, AUSF, NEF, PCF, SMSF, NSSF, UPF, BSF</td>
</tr>
<tr>
<td></td>
<td>NFUpdate</td>
<td>Request/Response</td>
<td>AMF, SMF, UDM, AUSF, NEF, PCF, SMSF, NSSF, UPF, BSF</td>
</tr>
<tr>
<td></td>
<td>NFDeregister</td>
<td>Request/Response</td>
<td>AMF, SMF, UDM, AUSF, NEF, PCF, SMSF, NSSF, UPF, BSF</td>
</tr>
<tr>
<td></td>
<td>NFStatusSubscribe</td>
<td>Subscribe/Notify</td>
<td>AMF, SMF, PCF, NEF, NSSF, SMSF, AUSF</td>
</tr>
<tr>
<td></td>
<td>NFStatusNotify</td>
<td></td>
<td>AMF, SMF, PCF, NEF, NSSF, SMSF, AUSF</td>
</tr>
<tr>
<td></td>
<td>NFStatusUnSubscribe</td>
<td></td>
<td>AMF, SMF, PCF, NEF, NSSF, SMSF, AUSF</td>
</tr>
<tr>
<td>Nnrf_NFDiscovey</td>
<td>Request</td>
<td>Request/Response</td>
<td>AMF, SMF, PCF, NEF, NSSF, SMSF, AUSF</td>
</tr>
</tbody>
</table>

5.2.7.2 Nnrf_NFManagement_service

5.2.7.2.1 General

5.2.7.2.2 Nnrf_NFManagement_NFRegister service operation

Service Operation name: Nnrf_NFManagement_NFRegister.

Description: Registers the consumer NF in the NRF by providing the NF profile of the consumer NF to NRF, and NRF marks the consumer NF available.

Inputs, Required: NF profile of the NF consumer (NF type, NF ID, NF services).

NOTE 1: for the UPF, the addressing information within the NF profile corresponds to the N4 interface.

Inputs, Optional:
- If the consumer NF stores Data Set(s) (e.g. UDR): Range(s) of SUPIs, Data Set Identifier(s), Range(s) of (UE)IPv4 addresses or Range(s) of (UE) IPv6 prefixes. If the consumer is UDM, UDR or AUSF, they can include UDM Group ID, UDR Group ID, AUSF Group ID, Routing ID. If the consumer is AMF, it includes list of GUAMI(s). In addition, AMF may include list of GUAMI(s) for which it can serve as backup for failure/maintenance.

The Range(s) of UE IPv4 addresses or Range(s) of UE IPv6 prefixes may be provided if the consumer is BSF.

NOTE 2: Range of SUPI(s) is limited in this release to a SUPI type of IMSI as defined in 23.003 [33].
- For the "UPF_Management" service: UPF Provisioning Information as defined in clause 4.17.6.
- S-NSSAI(s) and the associated NSI ID(s) (if available).

Outputs, Required: Result indication.

Outputs, Optional: None.

See clause 5.21.2.1 in TS 23.501 [2], the AMF registers itself to NRF.

5.2.7.2.3 Nnrf_NFManagement_NFUpdate service operation

Service Operation name: Nnrf_NFManagement_NF Update.
Description: Provides the updated NF profile of NF consumer to NRF.

Inputs, Required: NF profile of the NF consumer.

Inputs, Optional: Same as Nnrf_NFManagement_NFRegister service operation.

Outputs, Required: Result indication.

Outputs, Optional: None.

See clause 5.21.2.1 in TS 23.501 [2], the AMF adds or updates the associated GUAMI(s).

5.2.7.2.4 Nnrf_NFManagement_NFDeregister service operation

Service Operation name: Nnrf_NFManagement_NFDeregister

Description: Inform the unavailability of NF consumer to NRF.

Inputs, Required: NF Instance ID, Reason indication.

Inputs, Optional:
- S-NSSAI(s) and the associated NSI ID(s) (if available).

Outputs, Required: Result indication.

Outputs, Optional: None.

See clause 5.21.2.1 in TS 23.501 [2], the AMF deregister itself from NRF.

5.2.7.2.5 Nnrf_NFManagement_NFStatusSubscribe service operation

Service Operation name: Nnrf_NFManagement_NFStatusSubscribe.

Description: Consumer can subscribe to be notified of the following:
- Newly registered NF along with its NF services.
- Updated NF profile.
- Deregistered NF.

Inputs, Required: NF type of the target NF, NF ID, NF services.

Inputs, Optional:
- For the "UPF_Management" service defined in clause 4.17.6: UPF Provisioning Information as defined in that clause.
- For AMF, Consumer may include list of GUAMI(s).
- S-NSSAI(s) and the associated NSI ID(s) (if available).

Outputs, Required: None.

Outputs, Optional: None.

NOTE: Alternatively, other means such as OA&M can also be used to subscribe for NF status.

5.2.7.2.6 Nnrf_NFManagement_NFStatusNotify service operation

Service Operation name: Nnrf_NFManagement_NFStatusNotify.

Description: NRF notifies subscribed consumers of the following:
- Newly registered NF along with its NF services.
- Updated NF profile.
- Deregistered NF.

Inputs, Required: NF ID, Status, NF services.

Inputs, Optional:

- For the "UPF_Management" service defined in clause 4.17.6: UPF Provisioning Information as defined in that clause.
- For AMF, list of GUAMI(s) may be included.
- S-NSSAI(s) and the associated NSI ID(s) (if available).

Outputs, Required: None.

Outputs, Optional: None.

5.2.7.2.7 Nnrf_NFManagement_NFStatusUnsubscribe service operation

Service Operation name: Nnrf_NFManagement_NFStatusUnsubscribe.

Description: Consumer can unsubscribe from being notified of newly registered NF along with its NF services.

Inputs, Required: NF type of the target NF, NF ID.

Inputs, Optional:

- S-NSSAI(s) and the associated NSI ID(s) (if available).

Outputs, Required: None.

Outputs, Optional: None.

NOTE: Alternatively, other means such as OA&M can also be used to unsubscribe for NF status.

5.2.7.3 Nnrf_NFDiscovery service

5.2.7.3.1 General

Service description: This service enables one NF to discover a set of NF instances with specific NF service or a target NF type. The service also enables one NF service to discover a specific NF service. The service operations defined below allow the NF/NF services to communicate with NRF.

5.2.7.3.2 Nnrf_NFDiscovery service operation

Service operation name: Nnrf_NFDiscovery_Request

Description: provides the IP address or FQDN of the expected NF instance(s) or the Endpoint Address(es) of NF service instance(s) to the NF service consumer.

Inputs, Required: one or more target NF service Name(s), NF type of the target NF, NF type of the NF service consumer.

If the NF service consumer intends to discover an NF service producer providing all the standardized services, it provides a wildcard NF service name.

Inputs, Optional:

- S-NSSAI and the associated NSI ID (if available), DNN, target NF/NF service PLMN ID, NRF to be used to select NFs/services within HPLMN, Serving PLMN ID, the NF service consumer ID, AMF Set.
- If the target NF stores Data Set(s) (e.g., UDR): SUPI, Data Set Identifier(s). (UE) IP address or (UE) IPV6 Prefix.

NOTE: In the context of network slicing the NF service consumer ID is a required input.

- If the target NF is UDM or AUSF, the request may include Routing ID that was part of SUCI.
- If the target NF is AMF, the request may include GUAMI.
- For the "UPF_Management" service defined in clause 4.17.6: UPF Provisioning Information as defined in that clause.

The (UE) IP address or (UE) IPV6 Prefix is provided for BSF discovery: in that case the NRF looks up for a match within one of the Range(s) of (UE) IPv4 addresses or Range(s) of (UE) IPv6 prefixes provided by BSF(s) as part of the invocation of Nnrf_NFManagement_NFRegister operation. The NRF is not meant to store individual (UE) IPv4 addresses or (UE) IPv6 prefixes.

Outputs, Required: FQDN, IP address(es) or Endpoint Addresses for the target Service Name, or all the services supported by the target NF type.

FQDN, IP address(es) belong to a set of requested target NF instance(s). Endpoint Address(es) belong to a set of of requested target, NF service instance(s).

Outputs, Optional: NSI ID associated with the S-NSSAI if the target NF stores Data Set(s) (e.g., UDR): Range(s) of SUPIs, Data Set Identifier(s) applicable for each NF (e.g. UDR) instance returned.

NOTE: Range of SUPI(s) is limited in this release to a SUPI type of IMSI as defined in 23.003 [33].

See clause 4.17.4/4.17.5 for details on the usage of this service operation.

5.2.8 SMF Services

5.2.8.1 General

The following table shows the SMF Services and SMF Service Operations.

Table 5.2.8.1-1: NF services provided by the SMF

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nsmf_PDUSession</td>
<td>Create</td>
<td>Request/Response</td>
<td>V-SMF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>V-SMF, H-SMF</td>
</tr>
<tr>
<td></td>
<td>Release</td>
<td>Request/Response</td>
<td>V-SMF</td>
</tr>
<tr>
<td>CreateSMContext</td>
<td>Request/Response</td>
<td>AMF</td>
<td></td>
</tr>
<tr>
<td>UpdateSMContext</td>
<td>Request/Response</td>
<td>AMF</td>
<td></td>
</tr>
<tr>
<td>ReleaseSMContext</td>
<td>Request/Response</td>
<td>AMF</td>
<td></td>
</tr>
<tr>
<td>SMContextStatusNotify</td>
<td>Subscribe/Notify</td>
<td>AMF</td>
<td></td>
</tr>
<tr>
<td>StatusNotify</td>
<td>Subscribe/Notify</td>
<td>V-SMF</td>
<td></td>
</tr>
<tr>
<td>Context</td>
<td>Request/Response</td>
<td>AMF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nsmf_EventExposure</td>
<td>Subscribe</td>
<td>Subscribe/Notify</td>
<td>NEF, AMF</td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td></td>
<td>NEF, AMF</td>
</tr>
<tr>
<td></td>
<td>Notify</td>
<td></td>
<td>NEF, AMF</td>
</tr>
</tbody>
</table>

5.2.8.2 Nsmf_PDUSession Service

5.2.8.2.1 General

Service description: This service operates on the PDU Sessions. The following are the key functionalities of this NF service:

- (between AMF and SMF) Creation / Deletion / Modification of AMF-SMF interactions for PDU Sessions;

 The resource handled between AMF and SMF via Create / Update / Release SM context operations corresponds to the AMF-SMF association for a PDU Session ID;

 When the AMF has got no association with an SMF to support a PDU Session ID, the AMF creates such association via the Nsmf_PDUSession_CreateSMContext operation. Otherwise (e.g. at hand-over between 3GPP and Non 3GPP access) the AMF uses the Nsmf_PDUSession_UpdateSMContext operation.

 When the UE is handed-over from an (old) AMF towards another (new) AMF, the old AMF provides the new AMF with the SMF addressing information corresponding to the AMF-SMF association related with each PDU Session ID of that UE. The new AMF can thus further act upon the association with the SMF via
Nsmf_PDUSession_UpdateSMContext and Nsmf_PDUSession_ReleaseSMContext operations. This may take place:

- at inter AMF change due to AMF planned maintenance or due to AMF failure described in TS 23.501 [2] clause 5.21.2;
- at inter AMF mobility in CM-CONNECTED state described in clause 4.9.1.3;
- at inter AMF mobility in CM-IDLE state described in clause 4.2.2.2.

- (between V-SMF and H-SMF) Creation / Deletion / Modification of PDU Sessions;

Even though the V-SMF creates the PDU Session resource onto the H-SMF, each of the V-SMF and of the H-SMF needs to be able to modify a PDU Session and/or to ask for PDU Session Release. Thus, at Nsmf_PDUSession_Create, V-SMF informs the H-SMF about addressing information for its corresponding PDU Session resource, allowing H-SMF to use later on the Nsmf_PDUSession_Update and Nsmf_PDUSession_Release and Nsmf_PDUSession_StatusNotify operations.

NOTE 1: The PDU Session resource in V-SMF is created when the AMF requests to create SM context of this PDU Session

NOTE 2: H-SMF also informs the consumer (V-SMF) about addressing information about its PDU Session resource, but this is part of normal resource creation operation in REST and not specific to this service.

5.2.8.2.2 Nsmf_PDUSession_Create service operation

Service operation name: Nsmf_PDUSession_Create.

Description: Create a new PDU Session in the H-SMF.

Input, Required: SUPI, V-SMF ID, DNN, S-NSSAI, PCO, Requested PDU Session Type, 5GSM Core Network Capability, Requested SSC mode, PDU Session ID, Number Of Packet Filters, V-CN Tunnel Info, addressing information allowing the H-SMF to request the V-SMF to issue further operations about the PDU Session.

Input, Optional: UE location information, subscription get notified of PDU Session status change, PEI, GPSI, AN type, PCF ID, DNN Selection Mode.

Output, Required: Result Indication, and if success in addition: QFI(s), QoS Profile(s), Session-AMBR, QoS Rule(s), QoS Flow level QoS parameters if any for the QoS Flow(s) associated with the QoS Rule(s), H-CN Tunnel Info, Enable pause of charging indication, Selected PDU Session Type and SSC mode.

Output, Optional: Cause, PCO, UE IP address, IPv6 Prefix allocated to the PDU Session, information needed by V-SMF in case of EPS interworking such as the PDN Connection Type, Reflective QoS Timer.

See clause 4.3.2.2.2 for details on the usage of this service operation.

5.2.8.2.3 Nsmf_PDUSession_Update service operation

Service operation name: Nsmf_PDUSession_Update.

Description: Update the established PDU Session.

This service operation is invoked by the V-SMF towards the H-SMF in case of UE or serving network requested PDU Session Modification in order for the V-SMF to transfer the PDU Session Modification request

This service operation is invoked by the H-SMF towards the V-SMF for both UE initiated and HPLMN initiated PDU Session Modification and PDU Session Release cases in order to have the SM PDU Session Modification request or SM PDU Session Release request sent to the UE. It can also be invoked by the H-SMF towards the V-SMF to release the 5GC and 5G-AN resources in e.g. handover from 5GC-N3IWF to EPS and from 5GS to EPC/ePDG, wherein the UE is not notified.

This service operation is invoked by the V-SMF and the H-SMF in case of PDU Session Establishment authentication/authorization by a DN-AAA server defined in clause 4.3.2.3: it is used to carry DN Request Container information between the DN-AAA server and the UE.

Input, Required: SUPI, PDU Session ID.
Input, Optional: UE location information (ULI), UE Time Zone, AN type, indication of PDU Session Release, QoS Rule and QoS Flow level QoS parameters if any for the QoS Flow associated with the QoS rule (from H-SMF to V-SMF), N9 Tunnel Info (from V-SMF to H-SMF), Information requested by UE for e.g. QoS (from V-SMF to H-SMF), SGSM Core Network Capability, Information necessary for V-SMF to build SM Message towards the UE (from H-SMF to V-SMF), Trigger PDU release indication (V-SMF to H-SMF), Start Pause of Charging indication, Stop Pause of Charging indication, DN Request Container information, indication that the UE shall not be notified, EBI Allocation Parameters (ARP list).

Output, Required: Result indication, <ARP, Cause> pair.

Output, Optional: UE location information, AN Type, SM information from UE (from V-SMF to H-SMF), list of Rejected QoS Flows (from V-SMF to H-SMF), a list of <ARP, EBI> pair.

See clause 4.3.3.3 for an example usage of this service operation.

5.2.8.2.4 Nsmf_PDUSession_Release service operation

Service operation name: Nsmf_PDUSession_Release.

Description: It causes the immediate and unconditional deletion of the resources associated with the PDU Session. This service operation is used by V-SMF to request the H-SMF to release the resources related to a PDU Session for the serving network initiated PDU release case (e.g. implicit De-registration of UE in the serving network).

Input, Required: SUPI, PDU Session ID.

Input, Optional: None.

Output, Required: Result Indication.

Output, Optional: None.

See clause 4.3.4.3 for an example usage of this service operation.

5.2.8.2.5 Nsmf_PDUSession_CreateSMContext service operation

Service operation name: Nsmf_PDUSession_CreateSMContext.

Description: It creates an AMF-SMF association to support a PDU Session.

Input, Required: SUPI or PEI, DNN, S-NSSAI(s), PDU Session ID, AMF ID (AMF Instance ID), N1 SM container.

Input, Optional: PEI, UE location information, UE Time Zone, AN type, H-SMF identifier/address, old PDU Session ID (if the AMF also received an old PDU Session ID from the UE as specified in clause 4.3.5.2), Subcription For PDU Session Status Notification, indication that the SUPI has not been authenticated, PCF ID, DNN Selection Mode, List Of PDU Sessions To Be Activated, UE PDN Connection Context, GPSI, UE presence in LADN service area, GUAMI(s) (if NF Type is AMF, Priority Access (if the AMF received an Establishment Cause indicating high priority access during the Registration or Service Request procedure, as specified in clause 4.3.2.2.1)).

Output, Required: Result Indication.

Output, Optional: Cause, PDU Session ID, N2 SM information, N1 SM container.

When the PDU Session is for Emergency services for a UE without USIM, the AMF provides the PEI and not the SUPI as identifier of the UE. When the PDU Session is for Emergency services of an unauthenticated UE with an USIM, the AMF shall provide both the SUPI and the PEI and shall provide an indication that the SUPI has not been authenticated.

See clause 4.3.2.2.1 and clause 4.3.2.2.2 for details on the usage of this service operation.

5.2.8.2.6 Nsmf_PDUSession_UpdateSMContext service operation

Service operation name: Nsmf_PDUSession_UpdateSMContext.

Description: It allows to update the AMF-SMF association to support a PDU Session and/or to provide SMF with N1/N2 SM information received from the UE or from the AN.

Input, Required: SUPI.
Input, Optional: PDU Session ID, N1 SM container received from the UE, N2 SM information received from the AN (e.g. N3 addressing information, notification indicating that the QoS targets cannot be fulfilled for a QFI), Operation Type (e.g. UP activate, UP deactivate, UP To Be Switched), Serving GW Address(es) and Serving GW DL TEID(s) for data forwarding during HO from 5GS to EPS, UE location information, AN type, UE Time Zone, H-SMF identifier/address, EBI(s) to be revoked, PDU Session(s) to be re-activated, Direct Forwarding Flag, ARP list, S-NSSAI, Data Forwarding Tunnel (setup/release), UE presence in LADN service area, Target ID, Target AMF ID, GUAMI(s) (if NF Type is AMF).

Output, Required: Result Indication.

Output, Optional: PDU Session ID, Cause, released EBI list, allocated EBI information, N2 SM information (e.g. QFI, UE location information, notification indication indicating that the QoS targets cannot be fulfilled), N1 SM container to be transferred to the AN/UE.

See clause 4.3.3.2 and clause 4.3.3.3 for an example usage of this service operation.

See clause 4.9.1.2.2 for the usage of the "UP To Be Switched" Operation Type.

For the use of the "EBI(s) to be revoked" information, see clause 4.11.1.4.

For the use of the "Direct Forwarding Flag", see clause 4.11.1.2.2.2.

If the consumer NF is AMF and the SMF determines that some EBIs are not needed, the SMF will put the EBIs back in the released EBI list.

If the consumer NF is AMF and Inter-system mobility happens, the SMF sends allocated EBI information to AMF.

If the ARP of Qos flow is changed, the SMF uses this operation to update EBI-ARP information in the AMF.

If the NF consumer is AMF and AMF has PDU Session ID information, the PDU Session ID is mandatory for Input parameters. If the AMF does not have PDU Session ID, the PDU Session ID is not required for Input, and is required for Output.

5.2.8.2.7 Nsmf_PDUSession_ReleaseSMContext service operation

Service operation name: Nsmf_PDUSession_ReleaseSMContext.

Description: It allows to release the AMF-SMF association for a certain PDU Session because the PDU Session has been released.

Input, Required: SUPI, PDU Session ID.

Input, Optional: UE location information, AN type, UE Time Zone.

Output, Required: Result Indication.

Output, Optional: Cause.

See clause 4.3.4.2 and clause 4.3.4.3 for an example usage of this service.

If the consumer NF is AMF and the PDU Session indicated by the PDU Session ID had been assigned some EBIs, the AMF locally determines that the corresponding EBI(s) are released.

5.2.8.2.8 Nsmf_PDUSession_SMContextStatusNotify service operation

Service operation name: Nsmf_PDUSession_SMContextStatusNotify.

Description: This service operation is used by the SMF to notify its consumers about the status of an SM context related to a PDU Session.

Input, Required: SUPI, PDU Session ID, Status information.

Input, Optional: Cause.

Output, Required: Result Indication.

Output, Optional: None.
5.2.8.2.9 Nsmf_PDUSession_StatusNotify service operation

Service operation name: Nsmf_PDUSession_StatusNotify.

Description: This service operation is used by the SMF to notify its consumers about the status of a PDU Session (e.g. PDU Session is released due to local reasons within the H-SMF).

Input, Required: SUPI, PDU Session ID, Status information.

Input, Optional: Cause.

Output, Required: Result Indication.

Output, Optional: None.

5.2.8.2.10 Nsmf_PDUSession_ContextRequest service operation

Service operation name: Nsmf_PDUSession_ContextRequest.

Description: This service operation is used by the NF Consumer to request for SM Context (e.g. during EPS IWK, HO).

Input, Required: SUPI.

Input, Optional: Target MME Capability, PDU Session ID (include PDU Session ID when available).

Output, Required: SM Context Container.

Output, Optional: None.

5.2.8.3 Nsmf_EventExposure Service

5.2.8.3.1 General

Service description: This service provides events related to PDU Sessions towards consumer NF. The service operations exposed by this service allow other NFs to subscribe and get notified of events happening on PDU Sessions. The following are the key functionalities of this NF service.

- Allow consumer NFs to Subscribe and unsubscribe for an Event ID on PDU Session(s); and
- Notifying events on the PDU Session to the subscribed NFs.

The following events can be subscribed by a NF consumer (Event ID is defined in clause 4.15.1):

- UE IP address / Prefix change The event notification may contain a new UE IP address / Prefix or an indication of which UE IP address / Prefix has been released.
- PDU Session Release;
- change of UP path toward the UE; a notification corresponding to this event is sent when the DNAI and/or N6 traffic routing information has changed.

The event notification may contain following information:

- the type of notification ("EARLY" or "LATE").
- for both the source and target UP path towards the UE, the corresponding information is provided when it has changed:
 - DNAI.
 - UE IP address / Prefix.
 - N6 traffic routing information.

NOTE 1: DNAI change notification and N6 traffic routing information are further described in TS 23.501 [2] clause 5.6.7
- Change of Access Type; The event notification contains the new Access Type for the PDU Session.
- PLMN change; The event notification contains the new PLMN Identifier for the PDU Session.

Event Filters are used to specify the conditions to match for notifying the events (i.e. "List of Parameter values to match"). If there are no conditions to match for a specific Event ID, then the Event Filter is not provided. The following table provides as an example how the conditions to match for event reporting can be specified for various Event IDs for SMF exposure.

<table>
<thead>
<tr>
<th>Event ID for SMF exposure</th>
<th>Event Filter (List of Parameter Values to Match)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNAI Change</td>
<td>None</td>
</tr>
<tr>
<td>PDU Session Release</td>
<td></td>
</tr>
</tbody>
</table>

The target of SMF event reporting may correspond to a PDU Session ID, an UE ID (SUPI) an Internal Group Identifier or an indication that any UE is targeted (on a specific DNN).

5.2.8.3.2 Nsmf_EventExposure_Notify service operation

Service operation name: Nsmf_EventExposure_Notify

Description: Report UE PDU Session related event(s) to the NF which has subscribed to the event report service.

Input Required: Event ID, Notification Correlation Information, UE ID (SUPI and if available GPSI), PDU Session ID.

Input, Optional: Event specific parameter list as described in clause 5.2.8.3.1.

Output Required: Results Indication.

Output, Optional: Redirection information.

See clause 4.3.3.2 and clause 4.3.6.3 for examples on usage of this service operation.

When the SMF detects the event subscribed by the NF consumer, the SMF reports the subscribed event together with the Notification Target Address (+ Notification Correlation ID) to the Event Receiving NF.

The optional event specific parameter list provides the values that matched for generating the event notification. The parameter values to match are specified during the event subscription (see clause 5.2.8.3.3).

See clause 4.3.6.3 for details on usage of this service operation toward Application Function.

If the NF consumer is AMF and the result of the service operation fails, the AMF shall set corresponding cause value in result indication which can be used by the SMF for further action. In case the related UE is not served by the AMF and the AMF knows which AMF is serving the UE, the AMF provides redirection information which can be used by the SMF to resend UE related message to the AMF that serves the UE.

5.2.8.3.3 Nsmf_EventExposure_Subscribe service operation

Service operation name: Nsmf_EventExposure_Subscribe.

Description: This service operation is used by an NF to subscribe or modify a subscription for event notifications on a specified PDU Session or for all PDU Sessions of one UE, group of UE(s) or any UE.

Input, Required: NF ID, target of event as defined in clause 5.2.8.3.1, (set of) Event ID(s) defined in clause 5.2.8.3.1, Notification Target Address (+ Notification Correlation ID), Event Reporting Information defined in Table 4.15.1-1.

Input, Optional: Event Filter(s) associated with each Event ID; Event Filter(s) are defined in clause 5.2.8.3.1, Subscription Correlation ID (in case of modification of the event subscription).

Output, Required: When the subscription is accepted: Subscription Correlation ID (required for modification), management of this subscription).

Output, Optional: First corresponding event report is included, if available (see clause 4.15.1).
Notification Target Address (+ Notification Correlation ID) is used to correlate Notifications sent by SMF with this subscription.

5.2.8.3.4 Nsmf_EventExposure_UnSubscribe service operation

Service operation name: Nsmf_EventExposure_UnSubscribe.

Description: This service operation is used by an NF to unsubscribe event notifications.

Input, Required: Subscription Correlation ID.

Input, Optional: None.

Output, Required: None.

Output, Optional: None.

5.2.9 SMSF Services

5.2.9.1 General

The following table illustrates the SMSF Services.

Table 5.2.9.1-1: List of SMSF Services

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nsmfsf_SMService</td>
<td>Activate</td>
<td>Request/Response</td>
<td>AMF</td>
</tr>
<tr>
<td></td>
<td>Deactivate</td>
<td>Request/Response</td>
<td>AMF</td>
</tr>
<tr>
<td></td>
<td>UplinkSMS</td>
<td>Request/Response</td>
<td>AMF</td>
</tr>
</tbody>
</table>

5.2.9.2 Nsmfsf_SMService service

5.2.9.2.1 General

This service allows AMF to authorize SMS and activate SMS for the served user on SMSF.

5.2.9.2.2 Nsmfsf_SMService_Activate service operation

Service operation name: Nsmfsf_SMService_Activate.

Description: Authorize whether the specified UE is allowed to activate SMS service.

Concurrent use: None.

Inputs, Required: SUPI, NF ID.

Inputs, Optional: GPSI, Time Zone, Access Type, GUAMI(s) (if NF Type is AMF).

Outputs, Required: SMS service activation result.

Outputs, Optional: None.

5.2.9.2.3 Nsmfsf_SMService_Deactivate service operation

Service operation name: Nsmfsf_SMService_Deactivate.

Description: Remove SMS service authorization from SMSF for a given service user.

Concurrent use: None.

Inputs, Required: SUPI.

Inputs, Optional: None.

Outputs, Required: SMS service deactivation result.
Outputs, Optional: None.

5.2.9.2.4 Nmsf_SMService_UplinkSMS service operation

Service operation name: Nmsf_SMService_UplinkSMS.

Description: transmit uplink SMS message from consumer NF to SMSF.

Concurrent use: None.

Inputs, Required: SUPI, SMS payload.

Inputs, Optional: GPSI, Time Zone.

Outputs, Required: SMS message transmission result.

Outputs, Optional: None.

5.2.10 AUSF Services

5.2.10.1 General

The following table illustrates the AUSF Services.

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausf_UEAuthentication</td>
<td>Authenticate</td>
<td>Request/Response</td>
<td>AMF</td>
</tr>
</tbody>
</table>

5.2.10.2 Nausf_UEAuthentication service

5.2.10.2.1 General

Service Description: the AUSF provides UE authentication service to the requester NF. For AKA based authentication, this operation can be also used to recover from synchronization failure situations.

5.2.10.2.2 Nausf_UEAuthentication_Authenticate service operation

See TS 33.501 [15].

5.2.10.2.3 Void

5.2.11 NWDAF Services

5.2.11.1 General

The following table illustrates the NWDAF Services.

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nnwdaf_EventsSubscription</td>
<td>Subscribe, Unsubscribe, Notify</td>
<td>Subscribe / Notify</td>
<td>PCF, NSSF</td>
</tr>
<tr>
<td>Nnwdaf_AnalyticsInfo</td>
<td>Request</td>
<td>Request / Response</td>
<td>PCF, NSSF</td>
</tr>
</tbody>
</table>
5.2.11.2 Nnwdaf_EventsSubscription Service

5.2.11.2.1 General

Service Description: this service enables the consumer to subscribe/unsubscribe for load events notification of Network Slice instance. Periodic notification and notification upon threshold exceeded can be subscribed.

Following event are considered (Event ID defined in clause 4.15.1):

- Load level information with following possible event filters:
 - Network Slice Instance.
 - Load Level Threshold value (the NWDAF report when the load level crosses the threshold provided in the event subscription); if no threshold is provided in the subscription, the reporting (Notify operation) is assumed to be periodic.

5.2.11.2.2 Nnwdaf_EventsSubscription_Subscribe service operation

Service operation name: Nnwdaf_EventsSubscription_Subscribe.

Description: Subscribes to NWDAF event with specific parameters.

Inputs Required: S-NSSAI, (Set of) Event ID(s) defined in clause 5.2.11.2.1, Notification Target Address (+ Notification Correlation ID), Event Reporting Information defined in Table 4.15.1-1.

Inputs, Optional: Event Filter(s) associated with each Event ID (e.g. Load Level Threshold value), Subscription Correlation ID (in case of modification of the event subscription), NSI ID related to the S-NSSAI.

Outputs Required: When the subscription is accepted: Subscription Correlation ID (required for management of this subscription).

Outputs, Optional: None.

Notification Target Address (+ Notification Correlation ID) is used to correlate Notifications sent by NWDAF with this subscription.

NOTE: How load level of Network Slice instance is calculated is not specified in 3GPP.

5.2.11.2.3 Nnwdaf_EventsSubscription_Unsubscribe service operation

Service operation name: Nnwdaf_EventsSubscription_Unsubscribe.

Description: unsubscribe to NWDAF event.

Inputs, Required: Subscription Correlation ID.

Inputs, Optional: None.

Outputs, Required: Confirmation of the unsubscription.

Outputs, Optional: None.

5.2.11.2.4 Nnwdaf_EventsSubscription_Notify service operation

Service operation name: Nnwdaf_EventsSubscription_Notify.

Description: NWDAF notifies the consumer instance of the event that has subscribed to the specific NWDAF service. Depending upon type of subscription this notification is either on a periodic basis or triggered whenever a threshold is crossed.

Inputs Required: Event ID, Notification Target Address (+ Notification Correlation ID), S-NSSAI, Load level information of Network Slice instance.

Inputs, Optional: NSI ID related to the S-NSSAI.

Outputs Required: None.
Outputs, Optional: None.

5.2.11.3 Nnwdaf_Analytics_Info service

5.2.11.3.1 General

Service description: this service enables the consumer to request and get from NWDAF load level information of Network Slice instance(s).

The following events are considered (Event ID defined in clause 4.15.1):

- Load level information with following possible event filters:
- Network Slice Instance(s).

Table 5.2.11.3.1-1: Services provided by NWDAF on Request

<table>
<thead>
<tr>
<th>Service Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request for load level information of particular Network Slice instance(s). These represent the information that have a meaning only in its network.</td>
<td>Request: Event ID: load level information Event Filter: network slice instance(s). Response: Requested Analytic data, including load level information of Network Slice instance(s).</td>
</tr>
</tbody>
</table>

5.2.11.3.2 Nnwdaf_AnalyticsInfo_Request service operation

Service operation name: Nnwdaf_AnalyticsInfo_Request.

Description: the consumer requests NWDAF operator specific analytics.

Inputs Required: Event ID defined in clause 5.2.11.3.1, Event Filter(s).

Inputs, Optional: None.

Outputs Required: Analysis with parameters indicated in Table 5.2.11.3.1-1.

Outputs, Optional: None.

5.2.12 UDR Services

5.2.12.1 General

The following Data Set Identifiers shall be considered in this release: Subscription Data, Policy Data, Application data and Data for Exposure. The corresponding Data Subset Identifiers and Data (Sub)Key(s) are defined in Table 5.2.12.2.1-1.

The set of Data Set Identifiers shall be extensible to cater for new identifiers as well as for operator specific identifiers and related data to be consumed.

The following table illustrates the UDR Services.

Table 5.2.12.1-1: NF services provided by UDR

<table>
<thead>
<tr>
<th>NF service</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Management (DM)</td>
<td>Query</td>
<td>Request/Response</td>
<td>UDM, PCF, NEF, BSF</td>
</tr>
<tr>
<td></td>
<td>Create</td>
<td>Request/Response</td>
<td>NEF, BSF</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td>Request/Response</td>
<td>NEF, BSF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>UDM, PCF, NEF, BSF</td>
</tr>
<tr>
<td></td>
<td>Subscribe</td>
<td>Subscribe/Notify</td>
<td>UDM, PCF, NEF</td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td></td>
<td>UDM, PCF, NEF</td>
</tr>
<tr>
<td></td>
<td>Notify</td>
<td></td>
<td>UDM, PCF, NEF</td>
</tr>
</tbody>
</table>
The following table shows the Exposure data that may be stored in the UDR along with a time stamp using Data Management (DM) Service:

NOTE: When the data in Table 5.2.12.1-2 need to be monitored in real time, they should be monitored directly at the originating NF (e.g. registration state changes may be monitored via the Namf_EventExposure service) and not use the stored information from UDR if it is not the latest. It is expected that such dynamically changing information (e.g. UE reachability status) is used for statistical purpose and analytics.

Table 5.2.12.1-2: Exposure data stored in the UDR

<table>
<thead>
<tr>
<th>Category</th>
<th>Information</th>
<th>Description</th>
<th>Data key</th>
<th>Data Sub key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access and mobility information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE location</td>
<td>Gives the Location or the last known location of a UE (e.g. Tai, Cell Id… both 3GPP and non-3GPP access location)</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE time zone</td>
<td>Current time zone for the UE</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE Access type</td>
<td>3GPP access or non-3GPP access</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE RAT type</td>
<td>E-UTRA or NR</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE registration state</td>
<td>Registered or Deregistered</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE connectivity state</td>
<td>IDLE or CONNECTED</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE reachability status</td>
<td>It indicates if the UE is reachable for sending either SMS or downlink data to the UE, which is detected when the UE transitions to CM-CONNECTED state or when the UE will become reachable for paging, e.g., Periodic Registration Update timer</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE SMS over NAS service status</td>
<td>SMS over NAS supported or not in the UE</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE Roaming status</td>
<td>It indicates UE's current roaming status (the serving PLMN and/or whether the UE is in its HPLMN)</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE Current PLMN</td>
<td>Current PLMN for the UE</td>
<td>SUPI or GPSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session management information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE IP address</td>
<td>UE IP address</td>
<td>SUPI or GPSI</td>
<td></td>
<td>PDU session ID or DNN</td>
</tr>
<tr>
<td>PDU session status</td>
<td>Active / released</td>
<td>SUPI or GPSI</td>
<td></td>
<td>PDU session ID or DNN or UE IP address</td>
</tr>
<tr>
<td>DNAI</td>
<td>DNAI</td>
<td>SUPI or GPSI</td>
<td></td>
<td>PDU session ID or DNN or UE IP address</td>
</tr>
<tr>
<td>N6 traffic routing information</td>
<td>N6 traffic routing information</td>
<td>SUPI or GPSI</td>
<td></td>
<td>PDU session ID or DNN or UE IP address</td>
</tr>
</tbody>
</table>

5.2.12.2 Nudr_DataManagement (DM) service

5.2.12.2.1 General

The operations defined for Nudr_DM service use following set of parameters defined in this clause:

- Data Set Identifier: uniquely identifies the requested set of data within the UDR (see clause 4.2.5).
- Data Subset Identifier: it uniquely identifies the data subset within each Data Set Identifier. As specified in the procedures in clause 4. e.g. subscription data can consist of subsets particularised for specific procedures like mobility, session, etc.
- Data Keys defined in Table 5.2.12.1-1
For Nudr_DM_Subscribe and Nudr_DM_Notify operations:

- The Target of event reporting is made up of a Data Key and possibly a Data Sub Key both defined in Table 5.2.12.2.1-2. When a Data Sub Key is defined in the table but not present in the Nudr_DM_Subscribe this means that all values of the Data Sub Key are targeted.

- The Data Set Identifier plus (if present) the (set of) Data Subset Identifier(s) corresponds to a (set of) Event ID(s) as defined in clause 4.15.1

An NF Service Consumer may include an indicator when it invokes Nudr_DM Query/Create/Update service operation to subscribe the changes of the data, to avoid a separate Nudr_DM_Subscribe service operation.

Depending on the use case, it is possible to use a Data Key and/or one or multiple Data sub keys to further identify the corresponding data, as defined in Table 5.2.12.2.1-1 below.
Table 5.2.12.2.1-1: Data keys

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Data Subset</th>
<th>Data Key</th>
<th>Data Sub Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription Data (see clause 5.2.3.3.1)</td>
<td>Access and Mobility Subscription data</td>
<td>SUPI</td>
<td>-</td>
</tr>
<tr>
<td>SMF Selection Subscription data</td>
<td>SUPI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UE context in SMF data</td>
<td>SUPI</td>
<td>S-NSSAI</td>
<td>DNN</td>
</tr>
<tr>
<td>SMS Management Subscription data</td>
<td>SUPI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SMS Subscription data</td>
<td>SUPI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Session Management Subscription data</td>
<td>SUPI</td>
<td>S-NSSAI</td>
<td>DNN</td>
</tr>
<tr>
<td>Slice Selection Subscription data</td>
<td>SUPI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Application data</td>
<td>Packet Flow Descriptions (PFDs)</td>
<td>Application ID</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AF traffic influence request information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(See clause 5.6.7 and clause 6.3.7.2 in 3GPP TS 23.501 [2]) (see NOTE).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AF transaction internal ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-NSSAI and DNN and/or Internal Group Identifier or SUPI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy Data</td>
<td>UE context policy control data</td>
<td>SUPI</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PDU Session policy control data</td>
<td>SUPI</td>
<td>S-NSSAI</td>
</tr>
<tr>
<td></td>
<td>Policy Set Entry data</td>
<td>SUPI</td>
<td>DNN</td>
</tr>
<tr>
<td></td>
<td>Remaining allowed Usage data</td>
<td>SUPI</td>
<td>S-NSSAI</td>
</tr>
<tr>
<td></td>
<td>(See clause 6.2.1.3 in TS 23.503 [20])</td>
<td></td>
<td>DNN</td>
</tr>
<tr>
<td></td>
<td>Sponsored data connectivity profiles</td>
<td>Sponsor Identity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(See clause 6.2.1.6 in TS 23.503 [20])</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Binding information data</td>
<td>SUPI</td>
<td>DNN</td>
</tr>
<tr>
<td></td>
<td>(See clause 6.1.1.2.2 in TS 23.503 [20])</td>
<td></td>
<td>S-NSSAI</td>
</tr>
<tr>
<td></td>
<td>Background Data Transfer data</td>
<td>Background Data Transfer Reference ID. (NOTE 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(See clause 6.2.1.6 in TS 23.503 [20])</td>
<td></td>
<td>None. (NOTE 1)</td>
</tr>
<tr>
<td>Exposure Data (see clause 5.2.12.1)</td>
<td>Access and Mobility Information</td>
<td>SUPI or GPSI</td>
<td>PDU Session ID or</td>
</tr>
<tr>
<td></td>
<td>Session Management information</td>
<td>SUPI or GPSI</td>
<td>UE IP address or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DNN</td>
</tr>
</tbody>
</table>

NOTE 2: Retrieval of the stored Background Data Transfer References for all ASP identifiers in the UDR requires Data Subset but no Data Key or Data Subkey(s).

NOTE 3: Update of a Background Data Transfer Reference in the UDR requires a Data key to refer to a Background Data Transfer Reference as input data.

The content of the UDR storage for (Data Set Id= Application Data, Data Subset Id = AF TrafficInfluence request information) is specified in Table 5.2.12.2.1-2. This information is written by the NEF and read by the PCF(s). PCF(s) may also subscribe to changes onto this information.
Table 5.2.12.2.1-2: UDR storage related with AF request to influence traffic routing (Nnef_TrafficInfluence)

<table>
<thead>
<tr>
<th>Information Name</th>
<th>Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Description</td>
<td>Defines the target traffic, represented by the combination of DNN and optionally S-NSSAI, application identifier or traffic filtering information.</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Potential Locations of Applications</td>
<td>Represented by a list of DNAI(s), and indicates potential locations of applications towards which the traffic routing should apply.</td>
<td>Conditional (NOTE 1)</td>
</tr>
<tr>
<td>Traffic Routing Requirements</td>
<td>N6 traffic routing information corresponding to each DNAI.</td>
<td>Conditional (NOTE 1)</td>
</tr>
<tr>
<td>Target UE Identifier(s)</td>
<td>Indicates the UE(s) that the request is targeting: this may be an individual UE represented by a SUPI, a group of UE represented by an Internal Group Identifier, or any UE.</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Application Relocation Possibility</td>
<td>Indicates whether an application can be relocated once a location of the application is selected by the 5GC.</td>
<td>Optional</td>
</tr>
<tr>
<td>Temporal Validity Condition</td>
<td>A time interval or duration during which the AF request is valid.</td>
<td>Optional</td>
</tr>
<tr>
<td>Spatial Validity Condition</td>
<td>The spatial validity condition indicates that the request applies only to the traffic of UE(s) located in the specified location, and is represented by areas of validity (list of Tracking Areas).</td>
<td>Optional</td>
</tr>
<tr>
<td>AF transaction identifier</td>
<td>The AF transaction identifier refers to the AF request. The PCF is not meant to use or understand this information that is for NEF usage except in notifications that the corresponding record has been deleted.</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Notification Type</td>
<td>Indicates whether the AF subscribes to notifications corresponding to AF request to influence traffic routing (DNAI change and/or N6 traffic routing information change). For each subscription it indicates whether the AF subscription to notification is for early notification and/or for late notification.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

NOTE 1: The Potential Locations of Applications and Traffic Routing Requirements may be absent only if the AF request is for subscription to notifications about UP path management events only.

5.2.12.2.2 Nudr_DM_Query service operation

Service operation name: Nudr_DM_Query.

Description: NF service consumer requests a set of data from UDR.

Inputs, Required: Data Set Identifier.

Inputs, Optional: Data Key(s), Data Subset Identifier(s), SUPI, Data Sub Key(s) (for each Data Subset, see clause 5.2.12.2.1).

The SUPI is used to identify which UE the latest list of stored PSIs belongs to.

Outputs, Required: Requested data.

Outputs, Optional: None.

5.2.12.2.3 Nudr_DM_Create service operation

Service operation name: Nudr_DM_Create.

Description: NF service consumer intends to insert a new data record into the UDR, e.g. a NF service consumer intends to insert a new application data record into the UDR.

Inputs, Required: Data Set Identifier, Data Key(s).

Inputs, Optional: Data Subset Identifier(s), Data Sub Key(s) (for each Data Subset, see clause 5.2.12.2.1).

Outputs, Required: Result.
5.2.12.2.4 Nudr_DM_Delete service operation

Service operation name: Nudr_DM_Delete.

Description: NF service consumer intends to delete user data stored in the UDR, e.g. a NF service consumer intends to delete an application data record.

Inputs, Required: Data Set Identifier, Data Key(s).

Inputs, Optional: Data Subset Identifier(s), Data Sub Key(s) (for each Data Subset, see clause 5.2.12.2.1).

Outputs, Required: Result.

Outputs, Optional: None.

5.2.12.2.5 Nudr_DM_Update service operation

Service operation name: Nudr_DM_Update.

Description: NF service consumer intends to update stored data in the UDR.

Inputs, Required: Data Set Identifier, Data Key(s), Data.

Inputs, Optional: Data Subset Identifier(s), Data Sub Key(s) (for each Data Subset, see clause 5.2.12.2.1).

Outputs, Required: Result.

Outputs, Optional: None.

5.2.12.2.6 Nudr_DM_Subscribe service operation

Service operation name: Nudr_DM_Subscribe.

Description: NF service consumer performs the subscription to notification to data modified in the UDR. The events can be changes on existing data, addition of data.

Inputs, Required: Data Set Identifier as defined in clause 5.2.12.2.1, Notification Target Address (+ Notification Correlation ID), Event Reporting Information defined in Table 4.15.1-1.

Inputs, Optional: Target of event reporting as defined in clause 5.2.12.2.1, Data Subset Identifier(s) as defined in clause 5.2.12.2.1, Subscription Correlation ID (in the case of modification of the event subscription).

Outputs, Required: When the subscription is accepted: Subscription Correlation ID.

Outputs, Optional: None.

5.2.12.2.7 Nudr_DM_Unsubscribe service operation

Service operation name: Nudr_DM_Unsubscribe

Description: NF service consumer performs the un-subscription to notification to data modified in the UDR. The events can be changes on existing data, addition of data.

Inputs, Required: Subscription Correlation ID.

Inputs, Optional: None.

Outputs, Required: Result.

Outputs, Optional: None.

5.2.12.2.8 Nudr_DM_Notify service operation

Service operation name: Nudr_DM_Notify.
Description: UDR notifies NF service consumer(s) about modification of data, when data in the UDR is added, modified or deleted, and an NF needs to be informed about this, due to a previous subscription to notifications procedure or due to a local configuration policy in the UDR.

Inputs, Required: Notification Correlation Information, Data Set Identifier as defined in clause 5.2.12.2.1, Target of event reporting as defined in clause 5.2.12.2, Updated Data.

Inputs, Optional: Data Subset Identifier as defined in clause 5.2.12.2.1.

Outputs, Required: Result.

Outputs, Optional: None.

5.2.13 BSF Services

5.2.13.1 General

The following table shows the BSF Services and Service Operations:

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nbsf_management</td>
<td>Register</td>
<td>Request/Response</td>
<td>PCF</td>
</tr>
<tr>
<td></td>
<td>Deregister</td>
<td>Request/Response</td>
<td>PCF</td>
</tr>
<tr>
<td></td>
<td>Discovery</td>
<td>Request/Response</td>
<td>NEF, AF</td>
</tr>
</tbody>
</table>

5.2.13.2 Nbsf_Management service

5.2.13.2.1 General

The Nbsf provides the Nbsf Management Register, Nbsf Management Remove and the Nbsf Management Discovery service operations.

5.2.13.2.2 Nbsf_Management_Register service operation

Service Operation name: Nbsf_Management_Register.

Description: Registers the tuple (UE address(es), SUPI, GPSI, DNN, DN information (e.g. S-NSSAI), PCF id).

Inputs, Required: UE address(es), PCF id

UE address can contain IP address/prefix or Ethernet address as defined in TS 23.501 [2].

Inputs, Optional: DNN, SUPI, GPSI, DN information (e.g. S-NSSAI)

Outputs, Required: Result indication.

Outputs, Optional: None.

5.2.13.2.3 Nbsf_Management_Deregister service operation

Service Operation name: Nbsf_Management_Deregister

Description: Removes the tuple (UE address(es), SUPI, GPSI, DNN, DN information (e.g. S-NSSAI), PCF id).

Inputs, Required: UE address(es)

UE address can contain IP address/prefix or Ethernet address as defined in TS 23.501 [2].

Inputs, Optional: DNN, SUPI, GPSI, DN information (e.g. S-NSSAI)

Outputs, Required: Result indication.

Outputs, Optional: None.
5.2.13.2.4 Nbsf_Management_Discovery service operation

Service Operation name: Nbsf_Management discovery

Description: Discovers the PCF selected for the tuple (UE IP address(es), SUPI, GPSI, DNN, DN information (e.g. S-NSSAI)).

Inputs, Required: UE IP address, DNN [Conditional], DN information (e.g. S-NSSAI) [Conditional]

Inputs, Optional: SUPI, GPSI

Outputs, Required: PCF id

Outputs, Optional: None.

5.2.14 UDSF Services

5.2.14.1 General

The following table illustrates the UDSF Services.

Table 5.2.14-1: NF Services provided by UDSF

<table>
<thead>
<tr>
<th>NF service</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstructured Data Management</td>
<td>Query</td>
<td>Request/Response</td>
<td>Any NF</td>
</tr>
<tr>
<td></td>
<td>Create</td>
<td>Request/Response</td>
<td>Any NF</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td>Request/Response</td>
<td>Any NF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>Any NF</td>
</tr>
</tbody>
</table>

NOTE: whether Nudsf is an exception as compared to other service-based interface due to dynamic data access performance requirement is per stage 3 decision.

5.2.14.2 Nudsf_UnstructuredDataManagement service

5.2.14.2.1 General

5.2.14.2.2 Nudsf_UnstructuredDataManagement_Query service operation

Service operation name: Nudsf_UnstructuredDataManagement_Query.

Description: NF service consumer intends to query data from UDSF.

Inputs, Required: Data Identifier.

Data Identifier uniquely identifies the data to be retrieved from the UDSF.

Inputs, Optional: None.

Outputs, Required: Requested data.

Outputs, Optional: None.

5.2.14.2.3 Nudsf_UnstructuredDataManagement_Create service operation

Service operation name: Nudsf_UnstructuredDataManagement_Create.

Description: NF service consumer intends to insert a new user data record into the UDSF, e.g. AMF stores the context for registered UE(s) in the UDSF.

Inputs, Required: Data Identifier, Data.

Data Identifier uniquely identifies the data, which is created in the UDSF.

Inputs, Optional: None
Outputs, Required: Result.
Outputs, Optional: None.

5.2.14.2.4 Nudsf_UnstructuredDataManagement_Delete service operation

Service operation name: Nudsf_UnstructuredDataManagement_Delete.

Description: NF service consumer intends to delete user data stored in the UDSF, e.g. when AMF deletes the context for unregistered UE(s) in the UDSF.

Inputs, Required: Data Identifier.
Inputs, Optional: None.

Data Identifier uniquely identifies the data to be deleted within the UDSF.

Outputs, Required: Result.
Outputs, Optional: None.

5.2.14.2.5 Nudsf_UnstructuredDataManagement_Update service operation

Service operation name: Nudsf_UnstructuredDataManagement_Update.

Description: NF service consumer intends to update stored data in the UDSF.

Inputs, Required: Data Identifier, Data.
Inputs, Optional: None.

Data Identifier uniquely identifies the data, which is updated in the UDSF.

Outputs, Required: Result.
Outputs, Optional: None.

5.2.15 LMF Services

5.2.15.1 General

The following table shows the LMF Services and LMF Service Operations.

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nlmf_Location</td>
<td>DetermineLocation</td>
<td>Request/Response</td>
<td>AMF</td>
</tr>
</tbody>
</table>

5.2.15.2 Nlmf_Location service

5.2.15.2.1 General

Service description: This service enables an NF to request location determination for a target UE. The following are the key functionalities of this NF service.

- Allow NFs to request the current geodetic and optionally civic location of a target UE.

5.2.15.2.2 Nlmf_Location_DetermineLocation service operation

Service operation name: Nlmf_Location_DetermineLocation

Description: Provides UE location information to the consumer NF.

Input, Required: External Client Type.
Input, Optional: LCS Correlation Identifier, Location QoS, Supported GAD shapes.

NOTE: In the context of Location Services for regulatory services, the LCS Correlation Identifier is a required input.

Output, Required: Success/Failure indication

Output, Optional: Geodetic Location, Civic Location, Position Methods Used, Failure Cause.

See steps 6 and 8 of clause 4.13.5.3 for example of usage of this service operation.

5.2.16 NSSF Services

5.2.16.1 General

The following table illustrates the NSSF Services.

<table>
<thead>
<tr>
<th>Table 5.2.16.1-1: NF Services provided by NSSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Name</td>
</tr>
<tr>
<td>Nnssf_NSSelection</td>
</tr>
<tr>
<td>NSSAI Availability</td>
</tr>
</tbody>
</table>

5.2.16.2 Nnssf_NSSelection service

5.2.16.2.1 Nnssf_NSSelection_Get service operation

Service operation name: Nnssf_NSSelection_Get

Description: This service operation enables Network Slice selection in both the Serving PLMN and HPLMN. It also enables the NSSF to provide to the AMF the Allowed NSSAI and the Configured NSSAI for the Serving PLMN.

It may be invoked during Registration procedure, during PDU Session Establishment procedure or during UE Configuration Update procedure. When invoked during Registration procedure it may possibly trigger AMF re-allocation. When invoked during PDU Session Establishment procedure it may be invoked in the VPLMN or in the HPLMN. When invoked during UE Configuration Update procedure it may be invoked in the Serving PLMN.

NOTE: The list of events, which trigger invoking of the Nnssf_NSSelection_Get service operation, is not exhaustive.

Inputs, Required: None.

Inputs, Conditional Required:

If this service operation is invoked during Registration procedure or UE Configuration Update procedure, then one or more of the following inputs are required:

- Requested NSSAI, Subscribed S-NSSAI(s) with the indication if marked as default S-NSSAI, PLMN ID of the SUPI, TAI, NF type of the NF service consumer, Requester ID.

Else, if this service operation is invoked during PDU Session Establishment procedure in the Serving PLMN then the following inputs are required:

- S-NSSAI, non-roaming/LBO roaming/HR roaming indication, PLMN ID of the SUPI, TAI, NF type of the NF service consumer, Requester ID.

Inputs, Optional:

If this service operation is invoked during Registration procedure then the following inputs are optional:

- Mapping Of Requested NSSAI.

If this service operation is invoked during PDU Session Establishment procedure then the following input is optional:
- S-NSSAI from the Configured NSSAI for the HPLMN that maps to the S-NSSAI from the Allowed NSSAI of the Serving PLMN.

Outputs, Conditional Required:

If this service operation is invoked during Registration procedure or UE Configuration Update procedure, then one or more of the following outputs are required:

- Allowed NSSAI, Configured NSSAI; Target AMF Set or, based on configuration, the list of candidate AMF(s).

Else, if this service operation is invoked during PDU Session Establishment procedure then the following outputs are required:

- The NRF to be used to select NFs/services within the selected Network Slice instance.

Outputs, conditional Optional: If this service operation is invoked during UE Registration procedure or UE Configuration Update procedure, then one or more of the following outputs are optional:

- Mapping Of Allowed NSSAI, Mapping Of Configured NSSAI, NSI ID(s) associated with the Network Slice instances of the Allowed NSSAI, NRF(s) to be used to select NFs/services within the selected Network Slice instance(s) and NRF to be used to determine the list of candidate AMF(s) from the AMF Set, rejected S-NSSAI with cause of rejection.

Else, if this service operation is invoked during PDU Session Establishment procedure, then the following output is optional:

- NSI ID associated with the S-NSSAI provided in the input.

5.2.16.3 Nnssf_NSSAIAvailability service

5.2.16.3.1 General

Service description: This service enables to update the AMFs and the NSSF on the availability of S-NSSAIs on a per TA basis.

5.2.16.3.2 Nnssf_NSSAIAvailability_Update service operation

Service operation name: Nnssf_NSSAIAvailability_Update

Description: This service operation enables the AMF to update the NSSF with the S-NSSAIs the AMF supports per TA, and get the availability of the S-NSSAIs per TA for the S-NSSAIs the AMF supports.

Inputs, Required: Supported S-NSSAIs per TAI.

The supported S-NSSAIs per TAI, is a list of TAI and for each TAI the S-NSSAIs supported by the AMF.

Inputs, Optional: None.

Outputs, Required: None.

Outputs, Optional: A list of S-NSSAIs restricted per TAI.

5.2.16.3.3 Nnssf_NSSAIAvailability_Notify service operation

Service operation name: Nnssf_NSSAIAvailability_Notify

Description: This service operation enables the NSSF to update the AMF with any S-NSSAIs restricted per TA and, if needed, subsequently lift any restriction per TA.

Inputs, Required: A list of TAI and the S-NSSAIs for which the status is changed (restricted/unrestricted) per each TAI.

Inputs, Optional: None.

Outputs, Required: None.

Outputs, Optional: None.
5.2.17 CHF Spending Limit Control Service

5.2.17.1 General

The following table illustrates the CHF Services.

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spending Limit Control</td>
<td>Subscribe</td>
<td>Subscribe/Notify</td>
<td>PCF</td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td></td>
<td>PCF</td>
</tr>
<tr>
<td></td>
<td>Notify</td>
<td></td>
<td>PCF</td>
</tr>
</tbody>
</table>

5.2.17.2 Nchf_SpendingLimitControl service

5.2.17.2.1 General

Service description: This service enables transfer of policy counter status information relating to subscriber spending limits from CHF to the NF consumer.

5.2.17.2.2 Nchf_SpendingLimitControl Subscribe service operation

Service operation name: Nchf_SpendingLimitControl_Subscribe.

Description: Subscribe to notification of changes in the status of the policy counters available at the CHF and retrieval of the status of the policy counters for which subscription is accepted by CHF.

Inputs, Required: SUPI (for the Initial Spending Limit request), SubscriptionCorrelationId (for the Intermediate Spending Limit report), Event Id "policy counter status change", Event Filter Information "List of policy counter identifier (s)".

Inputs, Optional: Notification Correlation Target (required for the Initial Spending Limit request), Event Filter Information "List of policy counter identifier (s)", Event Reporting Information (continuous reporting).

Outputs, Required: Status of the requested subscribed policy counters to the subscriber in the Event Information.

Outputs, Optional: Pending policy counter statuses and their activation times, for all policy counter(s) available for this subscriber. If list of policy counter identifier(s) was provided, the CHF returns only the pending policy counter statuses and their activation times, per required policy counter identifier in the Event Information, SubscriptionCorrelationId.

5.2.17.2.4 Nchf_SpendingLimitControl Unsubscribe service operation

Service operation name: Nchf_SpendingLimitControl_Unsubscribe.

Description: Cancel the subscription to status changes for all the policy counters available at the CHF.

Inputs, Required: SubscriptionCorrelationId.

Inputs, Optional: None.

Outputs, Required: Success or Failure.

Outputs, Optional: None.

5.2.17.2.2 Nchf_SpendingLimitControl Notify service operation

Service operation name: Nchf_SpendingLimitControl_Notify.

Description: Notify the change of the status of the subscribed policy counters available at the CHF. Alternatively, it can be used by the CHF to provide one or more pending statuses for a subscribed policy counter together with the time they have to be applied.

Inputs, Required: Notification Target Address, SUPI, policy counter status as Event Information.
Inputs, Optional: Pending policy counter statuses and their activation times as Event Information.

Outputs, Required: Success or Failure.

Outputs, Optional: None.
Annex A (informative):
Drafting rules and conventions for NF services

A.1 General

This informative Annex provides drafting rules and conventions followed in this technical specification (and TS 23.501 [2]) for the definition of NF services offered over the service-based interfaces.

A.2 Naming

A.2.1 Service naming

Each NF service provided by a service-based interface shall be named and referred to according to the following nomenclature:

- Nnfname_ServiceName, where Nnfname is the service-based interface where the NF service is invoked. See TS 23.501 [2] clause 4.2.5 for the list of service-based interfaces in the 5GS Architecture.

Example (illustrative): Namf_Registration.

A.2.2 Service operation naming

If a service contains multiple independent operations, each operation shall be named and referred to according to the following nomenclature:

- Nnfname_ServiceName_ServiceOperation[Method], where the ServiceName represents the actual NF service. The ServiceOperation itself defines the available service functionality which can be addressed by a specific operation. The Method(s) is/are the action(s), how the ServiceOperation can be used. It can be created, read, updated or deleted.

Example (illustrative): Namf_Session_Registration[Create], Namf_Session_Registration[Delete]

In general, this operation naming structure for the given example is depicted in a tree-structure diagram:
A.3 Representation in an information flow

Invoking a service or service operation within an information flow is represented using a disaggregated representation (see figure A.3-1).

The disaggregated representations on figure A.3-1 shall be used as follows:

- The `<step>` represents the actual step number in the information flow e.g. “7.”.
- Representation a) shall be used when the step is required.
- Representation b) shall be used when the step is optional or conditional.

![Disaggregated representation of a NF service or service operation in information flows](image)

a) required steps b) optional/conditional steps

NOTE: Depending on the information flow, the order of NF Producer and NF Consumer can be reversed.
A.4 Reference to services and service operations in procedures

Whenever a procedure needs to refer to the service or service operation of a service-based interface, the naming in clause A.2 shall be used, using italic font. Unless otherwise obvious in the text, the NF Consumer of the service or service operation shall be indicated within parenthesis after the service or service operation name.

- <Nnfname_ServiceName_<OperationName>> (<NF Name Consumer>)

Example: e.g. Namf_Registration_RelocationRequest (AMF)

A.5 Service and service operation description template

The description of a service or service operation in this specification shall be done according to the following template.

NOTE: The heading level should follow that of the actual clause where the service is specified.

X.x <Nnfname_ServiceName<_OperationName>>

X.x.1 Description

Service or service operation name: <Nnfname_ServiceName<_OperationName>>.

Description: <short descriptive text>.

Known NF Consumers: <list of NFs>.

Inputs, Required: <list of parameters> -- Parameters required from NF Consumer for successful completion of the service or service operation. Parameters required for the operation of the underlying protocol shall not be listed.

Inputs, Optional: <list of parameters> -- Additional parameters that may be provided by NF Consumer for execution of the service or service operation. Parameters required for the operation of the underlying protocol shall not be listed.

Outputs, Required: <list of parameters>, <Nnfname_ServiceNameX<_OperationNameY>>, <Other> -- Parameters provided to NF Consumer and/or service triggered upon successful completion of the service and/or other (e.g. procedure triggered). Parameters required for the operation of the underlying protocol shall not be listed.

Outputs, Optional: <list of parameters> -- Additional parameters provided to NF Consumer upon successful completion of the service or service operation. Parameters required for the operation of the underlying protocol shall not be listed.

X.x.2 Service/service operation information flow

<Information flow of the service or service operation offered by NF Producer to NF Consumer over the NF Producer service-based interface>.

NOTE: This information flow can require invoking other services. In this case, the invoked services are represented as described in clause A.3.

A.6 Design Guidelines for NF services

TS 23.501 [2] clause 7.1.1 defines the criteria for defining the NF services. The following clauses identify the design guidelines that shall be considered for identifying the NF services.

A.6.1 Self-Containment

The following design guidelines are used for identifying self-contained NF services.

- Each NF service operates on its own set of context(s). A context refers to a state or a software resource or an internal data storage. The NF service operations can create, read, update or delete the context(s).
- Any direct access of a context(s) owned by a NF service is be made by the service operations of that NF service. Services provided by the same NF can communicate internally within the NF.

A.6.2 Reusability

The following design guidelines are used for specifying NF services to be reusable.

- NF service operations are specified such that other NF can potentially invoke them in future, if required.
- The service operations may be usable in multiple system procedures specified in clause 4 of this specification.
- Using clause 4 of the current document, the system procedures in which the NF service operations can be used are considered, and based on that the parameters for the NF service operations are clearly listed.

NOTE: It is possible that, when mapping an end to end call flow to service based architecture, one step in the call flow may map to multiple NF service operation invocations. This specification clearly identifies each NF service operation invocation in the call flow. Protocol optimization of multiple NF service operation invocations are left for TS 29.500 [17] consideration.

A.6.3 Use Independent Management Schemes

The mechanisms for independent management schemes are not in scope of this specification.
Annex B (informative):
Drafting Rules for Information flows

The following drafting rules are recommended for information flows specified in this specification in order to ensure that the Control Plane network functions can be supported with service based interfaces:

1. Information flows should describe the end to end functionality. NF services in clause 5 shall only be derived from the information flows in clause 4.

2. Information flows should strive to use type of interactions such as REQUEST/RESPONSE (e.g. location request, location response), SUBSCRIBE/NOTIFY between Core CP NFs. Any other type of interactions described should have justifications for its use.

3. Information flows should also ensure readability thus the semantics of the REQUEST/RESPONSE should still be maintained (for instance, we need to indicate PDU Session request, PDU Session response and Subscribe for UE location reporting/Notify UE location reporting) for readers and developers to understand the need for a certain transaction.

NOTE: As stated in TS 23.501 [2], service based interface is not supported for N1, N2, N4. Thus, the rules are not meant for those interfaces.
Annex C (informative):
Generating EPS PDN Connection parameters from 5G PDU Session parameters

This annex specifies how to generate the EPS PDN connection parameters from the 5G PDU Session parameters in PGW-C+SMF.

When the PGW-C+SMF is requested to set up/modify either a PDN connection or a PDU session supporting interworking between EPS and 5GS, the PGW-C+SMF generates the PDN Connection parameters from the PDU session parameters.

When the PGW-C+SMF generates the PDN Connection parameters based on the PDU Session parameters, the following rules hold:

- **PDN type:** the PDN type is set to IPv4 or IPv6 if the PDU Session Type is IPv4 or IPv6, respectively. The PDN type is set to Non-IP for Ethernet and Unstructured PDU Session Types.

- **EPS bearer ID:** the EBI is requested from the AMF during the establishment of a QoS Flow as described in clause 4.11.1.4.1 for PDU Sessions supporting interworking between EPS and 5GS. The EBI is obtained from MME during the establishment of an EPS Bearer (that is triggered by an establishment of a QoS Flow) as defined in TS 23.401 [13] for PDN Connections hosted by PGW-C+SMF. The association between EBI and QoS Flow is stored by the SMF.

- **APN-AMBR:** APN-AMBR is set according to operator policy (e.g. taking the Session AMBR into account).

- **EPS QoS parameters (including ARP, QCI, GBR and MBR):**

 If QoS Flow is mapped to one EPS bearer, ARP, GBR and MBR of the EPS Bearer is set to the ARP, GFBR and MFBR of the corresponding QoS Flow, respectively. For standardized 5QIs, the QCI is one to one mapped to the 5QI. For non-standardized 5QIs, the PGW-C+SMF derives the QCI based on the 5QI and operator policy.

 NOTE 1: A GBR QoS Flow is mapped 1 to 1 to a GBR dedicated EPS Bearer if an EBI has been assigned. All other GBR QoS Flows will be terminated during interworking.

 If multiple QoS Flows are mapped to one EPS bearer, the EPS bearer parameters are set based on operator policy, e.g. EPS bearer QoS parameters are set according to the highest QoS of all mapped QoS Flows.

 NOTE 2: Non GBR QoS Flows for which no EBI has been assigned are mapped to the default EPS Bearer.
Annex D (normative):
UE Presence in Area of Interest

D.1 Determination of UE presence in Area of Interest by AMF

If RRC Inactive state applies to NG-RAN and the AMF has requested NG-RAN location reporting for the Area Of Interest and UE is in CM-CONNECTED state, the AMF determines the UE presence of Area of Interest as the reported value from the NG-RAN.

If RRC Inactive state applies to NG-RAN and the AMF has requested N2 Notification, the AMF determines the UE presence in Area Of Interest as follows:

- **IN:**
 - if the UE is inside the Area Of Interest service area and if the UE is in CM-CONNECTED with RRC Connected state; or

NOTE 1: The above is valid e.g. under the condition that Area Of Interest border coincides with NG-RAN node service area border or RAN Notification Area.

- if the UE is inside a Registration Area which is contained within the Area Of Interest.

- **OUT:**
 - if the UE is outside the Area Of Interest in CM-CONNECTED with RRC Connected state; or

NOTE 2: The above is valid e.g. under the condition that Area Of Interest border coincides with NG-RAN node service area border or RAN Notification Area.

- if UE is inside a Registration Area which does not contain any part of Area Of Interest;

- UNKNOWN if none of above conditions for IN or OUT is met.

Otherwise, AMF determines the UE presence of Area Of Interest as follows:

- **IN:**
 - if the UE is inside the Area Of Interest service area and if the UE is in CM-CONNECTED state; or
 - if the UE is inside a Registration Area which is contained within the Area Of Interest.

- **OUT:**
 - if the UE is outside the Area Of Interest in CM-CONNECTED; or
 - if UE is inside a Registration Area which does not contain any part of Area Of Interest;

- UNKNOWN if none of above conditions for IN or OUT is met.

D.2 Determination of UE presence in Area of Interest by NG-RAN

If the AMF has requested for the Area of Interest, NG-RAN determines the UE presence of Area Of Interest as follows:

- **IN:**
 - if the UE is inside the Area Of Interest and the UE is in RRC Connected state; or
 - if the UE is inside an RNA which is contained within the Area Of Interest.
- OUT:
 - if the UE is outside the Area Of Interest in RRC Connected state; or
 - if UE is inside an RNA which does not contain any part of Area Of Interest;
 - UNKNOWN if none of above conditions for IN or OUT is met.
Annex D (informative):
Change history
3GPP TS 23.502 version 15.2.0 Release 15

303

ETSI TS 123 502 V15.2.0 (2018-06)

Change history
Date

Meeting

TDoc

CR

2017-09

SP#77

SP-170735

2017-09

SA2#122E

2017-12

SP-78

SP-170932

-

-

-

2017-12
2018-03
2018-03

SP-78
SP-79
SP-79

SP-180092
SP-180101

0001
0002

5
2

F
F

2018-03
2018-03
2018-03
2018-03
2018-03
2018-03
2018-03

SP-79
SP-79
SP-79
SP-79
SP-79
SP-79
SP-79

SP-180101
SP-180090
SP-180101
SP-180101
SP-180101
SP-180101
SP-180090

0003
0005
0006
0008
0009
0010
0011

1
3
4
2
1
1

F
F
F
F
F
F
F

2018-03
2018-03
2018-03
2018-03

SP-79
SP-79
SP-79
SP-79

SP-180095
SP-180101
SP-180101
SP-180101

0012
0013
0014
0015

1
-

C
F
F
F

2018-03

SP-79

SP-180101

0016

-

F

2018-03
2018-03
2018-03

SP-79
SP-79
SP-79

SP-180101
SP-180101
SP-180101

0019
0020
0021

1
1
-

F
F
F

2018-03

SP-79

SP-180101

0022

-

F

2018-03
2018-03
2018-03

SP-79
SP-79
SP-79

SP-180101
SP-180101
SP-180101

0023
0024
0025

1
1
1

F
F
F

2018-03
2018-03
2018-03
2018-03
2018-03
2018-03
2018-03
2018-03
2018-03
2018-03
2018-03
2018-03

SP-79

SP-180101
SP-180101
SP-180101
SP-180093
SP-180101
SP-180101
SP-180101
SP-180101
SP-180101
SP-180102
SP-180102
SP-180095

0026
0027
0029
0030
0032
0033
0034
0035
0036
0037
0038
0040

1
1
1
1
2
-

F
F
F
F
F
F
F
F
F
F
F
C

2018-03
2018-03

SP-79
SP-79

SP-180102
SP-180102

0041
0042

1
2

F
F

2018-03
2018-03

SP-79
SP-79

SP-180102
SP-180102

0043
0044

-

F
F

2018-03

SP-79

SP-180102

0045

-

F

2018-03
2018-03
2018-03
2018-03
2018-03
2018-03
2018-03
2018-03

SP-79
SP-79
SP-79
SP-79
SP-79
SP-79
SP-79
SP-79

SP-180102
SP-180091
SP-180102
SP-180091
SP-180102
SP-180091
SP-180093
SP-180093

0046
0047
0048
0049
0050
0051
0052
0053

1
2
1
-

F
F
F
F
F
F
F
F

2018-03

SP-79

SP-180102

0054

-

F

2018-03

SP-79

SP-180102

0055

-

F

-

Rev Cat
-

-

Subject/Comment
MCC Editorial Update for presentation to TSG SA#77 for
information
Correcting implementation issues of S2-176821 and additional
clean-up.
MCC Editorial Update for presentation to TSG SA#78 for
Approval
MCC Editorial Update after TSG SA#78 Approval
Corrections on the specification of Network Exposure services
Corrections to PDU session establishment / modification
procedure
Clean-up of the registration procedure
Using NRF for UPF discovery
Allowed NSSAI and Access Type
Corrections to the Inter-system mobility procedures
QoS clarifications for EPC interworking
EPS bearer ID allocation update
Correction of Npcf_BDTPolicyControl service operation
(Backbround data transfer)
Multiple request of Location Reporting for Area of Interest
SMF behaviour based on LADN notification
Clarification on Internal Event Exposure
Clarification on 5G-GUTI in EPS to 5GS Mobility Registration
Procedure using N26
Adding missing text about UE policies related to Service
Request including the List Of Allowed PDU Sessions
Update of NEF service for background data transfer
Update of NEF service for PFD management
Clarification on handover applicability between 3GPP and non3GPP accesses
Clarification on paging when it is related with both 3GPP and
non-3GPP PDU Session
Sending EBI to the NG-RAN
Indirect data forwarding in home routed roaming case
Interaction between SMF and UPF during the inter-system
change
Direct forwarding flag for handover from EPS to 5GS
Update to N2 Handover procedure
Clarification on keeping NAS signalling connection
Clarification on SMS related Subscription data
Clarification related to Subscription data type
Clarification on PCF association
Slicing handling for EPS to 5GS Mobility without N26
Keeping EBI transfer alignment
Clarification on the Emergency HO indication for EPS fallback
Alignment of Namf_MT_EnableUEReachability service operation
Mobility from EPC to 5GC
Clarification on PDU Session Release timer provided to the UE
for 'SSC mode 3'
Generalize exposure of Mobility Events from AMF
Align the UE location presence status of LADN Session into
Network Triggered Service Request procedure
Correction on AF influence on traffic routing
Correction to RAN Initiated QoS Flow Mobility Procedure for
Dual Connectivity
Clarification on UDM service consumption order of UECM and
SDM
Cleanup of the service request procedure
UE-specific DRX parameter negotiation between UE and AMF
Update of handover cancel procedure
Control of the Messages triggering Paging at AMF
Clarification for Area of validity in NW triggered SR procedure
Revision on Service Request procedure
Correction on Notification control for GBR QoS flow
Reflective QoS Timer transmission during PDU Session
establishment
Correction on Policy association procedure during AMF
relocation
PCF selection for AMF during inter NG-RAN node N2 based
handover

ETSI

New
version
1.0.0
1.2.0
2.0.0
15.0.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0
15.1.0


Clarification on SMSF registration/deregistration with UDM
- Discussion on the impact of 5G PDU Session parameters on SMSF registration/deregistration with UDM.

MME and AMF registration in HSS+UDM
- Discussion on the registration process for MME and AMF in HSS+UDM.

Update of Npcf_SMPolicyControl service
- Discussion on the update requirements for the Npcf_SMPolicyControl service.

EPS Interworking - Fixes for EPS to 5GS Mobility
- Discussion on fixes for EPS to 5GS Mobility.

EPS Interworking - EPS Bearer ID allocation for HR session
- Discussion on EPS Bearer ID allocation for HR sessions.

Move 5GS related impact from TS 23.401 to TS 23.502
- Discussion on the migration of 5GS related impacts from TS 23.401 to TS 23.502.

A new annex for generating EPS PDU Connection parameters from 5G PDU Session parameters
- Discussion on the generation of EPS PDU Connection parameters from 5G PDU Session parameters.

SDF - NSMF_Nsmsf_SMService_Update service
- Discussion on the update requirements for the NSMF_Nsmsf_SMService_Update service.

SDF - NSMF_Nsmsf_SMService_Deactivate service
- Discussion on the deactivation requirements for the NSMF_Nsmsf_SMService_Deactivate service.

EPS Interworking - Fix for EPS QoS parameters in 5G Core
- Discussion on fixes for EPS QoS parameters in 5G Core.

EPS Interworking - Fix for EPS VRF parameters in 5G Core
- Discussion on fixes for EPS VRF parameters in 5G Core.

EPS Interworking - Fix for EPS SMS parameters in 5G Core
- Discussion on fixes for EPS SMS parameters in 5G Core.

EPS Interworking - Fix for EPS PDN Gateway parameters in 5G Core
- Discussion on fixes for EPS PDN Gateway parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.

EPS Interworking - Fix for EPS NRTM parameters in 5G Core
- Discussion on fixes for EPS NRTM parameters in 5G Core.
<table>
<thead>
<tr>
<th>Year</th>
<th>SP</th>
<th>TS</th>
<th>Issue</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarification on Location reporting procedures</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction to handovers between 3GPP and non-3GPP</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarification and alignment on the NG-RAN behavior for EPS/RAT fallback</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarification on how the AMF initiates inter or intra system handover to E-UTRAN connect to both EPC and 5GC</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarification on the SM EPS bearer context from v-SMF</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Modification on the EBI revocation and ARP change</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Fixing the wrong usage of ‘relocation’</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Corrections to NRF and NSSF services</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction of handover procedure from 4G to 5G in Single Registration mode</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction to UE Registration</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Corrections to SMF selection</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>UE support for Multi-homed IPv6 PDU Session</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Adding the missing GPSI parameter in SMF</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Transparent relay between V-SMF and H-SMF in case of different feature support</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Preservation of GBR QoS Flows upon redirection</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Handling of UE Core Network Capability and indication of UE support for Handover Attach to NG-RAN</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarification on NSSAI configuration</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>UE assisted UE policies calculation in PCF</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction of used Registration Type</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Re-use of definitions and abbreviations specified in TS 23.503.</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction to the UE Requested PDU Session Establishment via Untrusted non-3GPP Access Procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction to UE location in Xn based HO procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarification of UDR usage in policy related procedures</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction of UDR usage in MM related procedures</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction of UDR usage in specific service related procedures</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction for the invocation of Nudm_UECM_Deregistration service operation</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction of UDR usage in SM related procedures</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarification on handover procedure for home-routed roaming scenario</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction to inter NG-RAN node N2 based handover</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction on N4 Session Modification Request in Handover procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction on Service Request procedure when UE establishes a signalling connection only</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarify how to send end marker during HO procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Aligning TS 23.502 onto TS 29.244 about PPD</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>User plane security policy</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Service Request procedure corrections</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>New cause for UP reactivation failure in Service Request procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Rejection of UP activation during the Registration procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Activation of a Background Data Transfer Policy</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>P-CS-CSCF Discovery for IMS in 5GC using IP-CAN method</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarification on modification of the set of network slices for a UE</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Location reporting procedure for LADN in RRC Inactive state - TS 23.502</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Exposure of Mobility Events from AMF</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarification on AMF behaviour due to Subscriber Data Change in UMa</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Supporting 3GPP PS Data Off in 5GS</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clarifications on EPS to 5GS handover procedure using N26</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Request Type in PDN connectivity request for SRM interworking</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Alignment CR for Application Function influence on traffic routing procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>PDU session ID in PDU session management procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>UE context removal in UDM during deregistration procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Correction on non-3GPP Service request procedure</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Indication for Non-geographically selected AMF</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Updating Network Triggered Service Request to support selective re-activation of PDU session over non-3GPP access</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Editorial corrections in clause 4.2.3.3 Network Triggered Service Request</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Capturing impacts to 23.401 procedure for interworking with 5GC</td>
<td>15.1.0</td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>TS 23.502</td>
<td>Clean up for PCC related flows</td>
<td>15.1.0</td>
</tr>
<tr>
<td>Year</td>
<td>SP</td>
<td>Issue</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0219 - F Editorial modifications in procedures related to PDU session anchor addition or removal</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0223 - F S-NSSAI in the PDU Session Establishment Accept for roaming scenario</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0226 - F Clarification on Nnwdal_EventsSubscription_Unsubscribe service operation</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0227 - F Clarification on Network data analytics procedure</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0228 - 2 F Slicing configuration update</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0229 - 1 B Addition of PDU Session type IPv4v6</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0230 - 1 F Update of Reachability procedures</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180093</td>
<td>0234 - 2 C EPS Fallback for voice further enhancements</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0235 - 1 F Clarification on Use of List of Parameter Values to Match in Event Filters</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0236 - 2 F Clarification on the services for External Parameter Provisioning</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0237 - F Correction to PDU Session Establishment procedure</td>
<td></td>
</tr>
<tr>
<td>2018-03</td>
<td>SP-79</td>
<td>SP-180106</td>
<td>0238 - 1 F EPS bearer context handling for N26 case</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180491</td>
<td>0182 - 3 F TS 23.502: Xn handover and slice unavailability</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180482</td>
<td>0241 - 1 F Correction of description related to PFD management</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180484</td>
<td>0245 - F Deregistration procedure correction</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180480</td>
<td>0247 - 1 F Clarification on NG-RAN location reporting procedure</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180489</td>
<td>0249 - F TS Alignment: Perform authentication before Context Acknowledgement during 5GS to EPS idle mode mobility using N26 interface</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180482</td>
<td>0251 - 6 F Correction of UE configuration update procedure</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180481</td>
<td>0254 - 2 F Clarifications on Nudr interactions between PCF and UDR</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180484</td>
<td>0255 - F Editorial corrections</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180484</td>
<td>0258 - 1 F EPS to 5GS Mobility - Handling PDN connections that are not subject to service continuity</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180487</td>
<td>0259 - 1 F P-GW-C+SMF Registration in the UDM for the purpose of EPS interworking</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180482</td>
<td>0261 - 1 F Context retrieval for the purpose of EPS interworking</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180491</td>
<td>0262 - F Voice fallback during roaming scenarios</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180486</td>
<td>0263 - 1 F NF Discovery via the NRF</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180487</td>
<td>0265 - F Nudm UEAuthentication Service clarification</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180483</td>
<td>0266 - D Event Filters: figure caption errors in handover procedures</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180479</td>
<td>0268 - 3 F Propose to add the network Requested PDU Session Release procedure via Untrusted non-3GPP access</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180483</td>
<td>0269 - F Correction to NEF service</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180481</td>
<td>0270 - 2 F Clarify related description for Network Sharing and Interworking</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180481</td>
<td>0271 - 2 F Clarifications to Registration and UE triggered Service Request procedure</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180489</td>
<td>0273 - 1 F The interaction between PCF and AF</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180480</td>
<td>0274 - 1 F Clarification on MT SMS domain selection by SMSF</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180483</td>
<td>0275 - 2 F Correction to CN-initiated selective deactivation of UP connection of an existing PDU Session</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180479</td>
<td>0276 - 3 F Clarification of the mapping relation between PDU session ID and access type in the AMF.</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180489</td>
<td>0277 - 1 F TS 23.502: Clean-up for the RRC Inactive related procedure</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180482</td>
<td>0279 - 2 F Clean-up to PCF selection in AMF and SMF</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180484</td>
<td>0280 - 1 F Description of Policy Association</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180489</td>
<td>0281 - 2 F Wildcard DNN management</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180479</td>
<td>0284 - F Clarification on HO procedure</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180479</td>
<td>0285 - F Clarification of Data Notification in service request procedure</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180484</td>
<td>0286 - 5 F Correlation between EBI and QFI</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180479</td>
<td>0287 - 3 F Clarification on Data Keys for Application data</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180491</td>
<td>0288 - 1 F Updates on Subscribe Service Operation</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180489</td>
<td>0289 - F Alignment on the IMS voice over PS session supported indication</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180480</td>
<td>0290 - 1 F Clarification on RAT fallback</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180479</td>
<td>0293 - F Clarification on AMF deregistration by UDM in N26 based interworking from 5GS to EPS</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180480</td>
<td>0296 - F Clarification on Network-initiated Deregistration</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180488</td>
<td>0297 - F Selective deactivation of UP connection for non-3GPP PDU Session operation</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180485</td>
<td>0300 - 5 F Lack of S-NSSAI or DNN in the PDU Session Establishment Request</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180485</td>
<td>0302 - 1 F Interactions with the DN-AAA that are not for authentication</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180481</td>
<td>0303 - 1 F Clarification to handling of packet filters at PDU Session Modification</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180485</td>
<td>0304 - 1 F LADN Signaling to SMF</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180484</td>
<td>0305 - 2 F Corrections on UE configuration update procedure.</td>
<td></td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180482</td>
<td>0308 - 2 F CN tunnel handling during IRAT handover</td>
<td></td>
</tr>
</tbody>
</table>
Correction on Location continuity procedure
Nudm service update to support P-CSCF Restoration
Deregistration procedure for SMS over NAS
NF/NF service Status Subscribe/Notify Flows
Handling of maximum supported data rate per UE for integrity
Relaying of Nnef_TrafficInfluence requests to the PCF
EPC Tunnel Info reservation at the UPF for sessions interworked with
Dual registration interworking procedure
Correction to indirect forwarding at intra 5GS N2 HO
Clarification on Nbsf_Management_Deregister service operation
Proposal on the EPS Qos parameters on N7
Modification on SMF registration after EPS to 5GS mobility
Clarification on the EBI assignment, PDU session ID list in
Corrections to the selective deactivation of UP connection
S-NSSAI check in Network Triggered Service Request
Nsmf_EventExposure Service
TS 23.502 Remove access independent event trigger in
TS 23.502 Clarification on AMF Subscription Correlation ID
TS 23.502 Clarification on Access and mobility related policy
TS 23.502: Alignment of terminologies regarding PDU Session
Correction to N2 handover preparation
Update of PDU Session Establishment Procedure
N4 modification inserted during PDU Session Modification procedure
Update Nudr_DataManagement (DM) service for data triggering
Removal of one step SMS procedure
Consolidation of UE Network Capabilities
Correction on Nsmsf_SMService_Activate service operation
terminating domain selection for IMS voice
MoSf_registration afer EPS to 5GS mobility
Removal of editor’s notes in clause 4.12
Clarification on policy provision in roaming case
Removal of editor’s notes in clause 4.12
Mobility Event Subscribe Service operation correction
Update on AMF service operation to support query for terminating domain selection for IMS voice
Correction on Nmsf_SMService_Activate service operation
Correction on NGAP UE-TNLA-binding per UE Release procedure
ReAuthentication by an external DN-AAA server
Clarification on NGAP UE-TNLAbinding per UE Release procedure
Clarification on the use of shared AMF Pointer value
Clarification on Internal-Group identifier
Clarification on the use of shared AMF Pointer value
Removal of one step SMS procedure
Removal of editor’s notes in clause 4.12
Update of PDU Session Establishment Procedure
Additional DataSet and Datakey
TS 23.502 Remove access independent event trigger in
Nsmf_EventExposure Service
TS 23.502 Remove access independent event trigger in
Nsmf_EventExposure Service
Correction to N2 handover preparation
Setting indirect forwarding flag
Correction of terminology regarding PDU Session
TS 23.502 Clarification on Internal-Group identifier
TS 23.502 Clarification on Access and mobility related policy
TS 23.502 Clarification on AMF Subscription Correlation ID
Additional DataSet and Datakey
TS 23.502 Remove access independent event trigger in
Nsmf_EventExposure Service
Correction to N2 handover preparation
Setting indirect forwarding flag
Correction of terminology regarding PDU Session
TS 23.502 Clarification on Internal-Group identifier
TS 23.502 Clarification on Access and mobility related policy
TS 23.502 Clarification on AMF Subscription Correlation ID
Additional DataSet and Datakey
Correction to identifiers in Registration procedure
Clarifying UE Reachability Notification Procedure
Clarifying use-cases of network triggered service request
Removal of RAT Type from UE-associated N2 signalling configuration
Correction of having multiple S-NSSAIs for a single PDU session
Update Registration procedures
Modification
Adding number of supported packet filters in PDU Session Allowed NSSAI RAN awareness
Access Type
MT-SMS over NAS re-transmission upon delivery failure on one PCF selection during the AMF relocation
Clarification on SMSF checking SMS management subscription
Clarification on Mobility related parameters of UE Context in including GUAMI in RRC message of related procedures
some clarifications
NG-RAN node handover
Clarification on Emergency services Fallback
SMF Selection Subscriber Data clarification
SMF exemption to NAS level congestion control for high priority access
Update to AMF policy association modification procedure
UDR storage for Nnef_TrafficInfluence from AF
operation
Align Namf_Communication_N1N2TransferFailure service operation
Clarification of maximum number of reports and maximum duration of reporting
Align Nami_Communication_N1N2TransferFailure service operation
UDR storage for Nnef_TrafficInfluence from AF
Update to AMF policy association modification procedure
Support for UAC Access Identity in Visited PLMNs
SMF exemption to NAS level congestion control for high priority access
SMF Selection Subscriber Data clarification
Clarification on Emergency services Fallback
Update of the Handover procedure considering the ongoing inter NG-RAN node handover
Update of the Network Triggered Service Request procedure for some clarifications
Including NAMI in RRC message of related procedures
Clarification on Mobility related parameters of UE Context in AMF
CN tunnel handling for IRAT Idle mobility
Clarification on SMSF checking SMS management subscription data
Clarification on UE configuration update procedure
PCF selection during the AMF relocation
MT-SMS over NAS re-transmission upon delivery failure on one Access Type
Allowed NSSAI RAN awareness
UE radio capability handling in the 5GS
Adding number of supported packet filters in PDU Session Modification
Correction of having multiple S-NSSAIs for a single PDU session
Network slicing subscription change and update of UE configuration
UE support of SMS and SMS subscription
Removal of RAT Type from UE-associated N2 signalling
Clarifying use-cases of network triggered service request
Clarifying UE Reachability Notification Procedure
Correction to identifiers in Registration procedure
<table>
<thead>
<tr>
<th>Year</th>
<th>SP</th>
<th>Document ID</th>
<th>Issue</th>
<th>Type</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180483</td>
<td>0506</td>
<td>F</td>
<td>Correction to Figure 4.3.5.7-1: Simultaneous change of Branching Point or UL CL and additional PSA for a PDU Session</td>
<td>15.2.0</td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180483</td>
<td>0507</td>
<td>F</td>
<td>Correction to UDR Data Set Identifiers considered in this release</td>
<td>15.2.0</td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180490</td>
<td>0508</td>
<td>F</td>
<td>UE Policies in a UE Policy Container</td>
<td>15.2.0</td>
</tr>
<tr>
<td>2018-06</td>
<td>SP-80</td>
<td>SP-180480</td>
<td>0509</td>
<td>F</td>
<td>Clarification on single outstanding Service Request</td>
<td>15.2.0</td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V15.2.0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>