

ETSI TS 123 127 V3.4.0 (2001-06)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Virtual Home Environment / Open Service Architecture

(3GPP TS 23.127 version 3.4.0 Release 1999)

1

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)3GPP TS 23.127 version 3.4.0 Release 1999

Reference
RTS/TSGS-0223127UR4

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.

All rights reserved.

http://www.etsi.org/
http://www.etsi.org/tb/status
editor@etsi.fr

2

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)3GPP TS 23.127 version 3.4.0 Release 1999

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key .

http://www.etsi.org/ipr
http://www.etsi.org/key

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)33GPP TS 23.127 version 3.4.0 Release 1999

Contents

Foreword .. 5

1 Scope.. 6

2 References.. 6
2.1 Normative references... 6
2.2 Informative references... 7

3 Definitions and abbreviations .. 7
3.1 Definitions ... 7
3.2 Abbreviations .. 8

4 Virtual Home Environment ... 8

5 Open Service Architecture... 9
5.1 Overview of the Open Service Architecture.. 9
5.2 Basic mechanisms in the Open Service Architecture .. 12
5.3 Handling of end-user related security.. 12
5.3.1 End-user authorisation to applications... 13
5.3.2 Application authorisation to end-users .. 13
5.3.3 End-user's privacy.. 13
5.4 Base interfaces... 13
5.4.1 Base Interface .. 14
5.4.2 Base Service Interface ... 14

6 Framework service capability features .. 15
6.1 Trust and Security Management SCFs .. 15
6.1.1 Initial Contact .. 15
6.1.2 Authentication.. 17
6.1.3 OSA Access ... 19
6.2 Discovery... 26
6.3 Integrity Management SCFs.. 29
6.3.1 Load Manager .. 29
6.3.2 Fault Manager.. 33
6.3.3 Heartbeat Management .. 36
6.3.4 OAM.. 39

7 Network service capability features... 40
7.1 Call Control ... 40
7.1.1 Call Manager ... 40
7.1.2 Call... 44
7.1.2.1 Sequence Diagrams.. 51
7.1.2.2 Enable Call notification ... 51
7.1.2.3 Number translation .. 51
7.1.2.4 Call barring .. 52
7.1.2.5 Pre-paid with advice of charge .. 53
7.2 Data Session Control ... 55
7.2.1 Data Session Manager ... 55
7.2.2 Data Session... 58
7.2a Network User Location.. 64
7.3 User Status... 70
7.4 Terminal Capabilities .. 74
7.5 Message Transfer .. 74
7.5.1 Generic User Interaction.. 74
7.5.1.1 User Interaction Manager .. 75
7.5.1.2 Generic User Interaction.. 78
7.5.2 Call User Interaction.. 82
7.6 User Profile Management.. 83

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)43GPP TS 23.127 version 3.4.0 Release 1999

8 OSA Internal API... 84
8.1 OSA Access and Discovery... 84
8.2 Registration of network service capability features at the framework... 84
8.2.1 Service Registration... 84
8.2.1.1 Sequence Diagram ... 87
8.2.2 Service Factory .. 89

Annex A (informative): Change History.. 90

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)53GPP TS 23.127 version 3.4.0 Release 1999

Foreword
This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)63GPP TS 23.127 version 3.4.0 Release 1999

1 Scope
The present document specifies the stage 2 of the Virtual Home Environment and Open Service Architecture.

Virtual Home Environment (VHE) is defined as a concept for personal service environment (PSE) portability across
network boundaries and between terminals. The concept of the VHE is such that users are consistently presented with
the same personalised features, User Interface customisation and services in whatever network and whatever terminal
(within the capabilities of the terminal and the network), wherever the user may be located. For Release 1999,
e.g. CAMEL, MExE and SAT are considered the mechanisms supporting the VHE concept.

The Open Service Architecture (OSA) defines an architecture that enables operator and third party applications to make
use of network functionality through an open standardised API (the OSA API). OSA provides the glue between
applications and service capabilities provided by the network. In this way applications become independent from the
underlying network technology. The applications constitute the top level of the Open Service Architecture (OSA). This
level is connected to the Service Capability Servers (SCSs) via the OSA API. The SCSs map the OSA API onto the
underlying telecom specific protocols (e.g. MAP, CAP etc.) and are therefore hiding the network complexity from the
applications.

Applications can be network/server centric applications or terminal centric applications. Terminal centric applications
reside in the Mobile Station (MS). Examples are MExE and SAT applications. Network/server centric applications are
outside the core network and make use of service capability features offered through the OSA API. (Note that
applications may belong to the network operator domain although running outside the core network. Outside the core
network means that the applications are executed in Application Servers that are physically separated from the core
network entities).

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

2.1 Normative references
[1] GSM 01.04 (ETR 350): "Digital cellular telecommunication system (Phase 2+); Abbreviations and

acronyms".

[2] GSM 02.57: "Digital cellular telecommunication system (Phase 2+); Mobile Station Application
Execution Environment (MExE); Service description".

[3] 3G TS 23.057: "Mobile Station Application Execution Environment (MExE); Functional
description - Stage2".

[4] 3G TS 22.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL)
(Phase3); Service description - Stage 1".

[5] 3G TS 23.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL)
(Phase3); Functional description - Stage 2".

 [6] GSM 11.14: "Digital cellular telecommunication system (Phase 2+); Specification of the SIM
Application Toolkit for the Subscriber Identity Module - Mobile Equipment; (SIM - ME)
interface".

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)73GPP TS 23.127 version 3.4.0 Release 1999

[7] 3G TS 22.101: "Universal Mobile Telecommunications System (UMTS): Service Aspects; Service
Principles".

[8] 3G TS 22.105: "Universal Mobile Telecommunications System (UMTS); Services and Service
Capabilities".

[9] 3G TS 22.121: "Universal Mobile Telecommunications System (UMTS); Virtual Home
Environment".

[10] 3GPP TR 22.905: "3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; Vocabulary for 3GPP Specifications".

[11] IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996].

[12] World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation (http://www.w3.org).

[13] Wireless Application Protocol, User Agent Profile Specification (http://www.wapforum.org/).

[14] The Object Management Group, The Complete CORBA/IIOP 2.3.1 Specification, OMG document
formal/99-10-07 (http://www.omg.org/corba/corbaiiop.html).

[15] The World Wide Web Consortium (W3C), Simple Object Access Protocol (SOAP) 1.1
(http://www.w3.org/TR/2000/NOTE-SOAP-20000508/)

2.2 Informative references
[1] 3GPP TR 22.970: "Universal Mobile Telecommunications System (UMTS); Virtual Home

Environment".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

Applications: software components providing services to end-users by utilising service capability features.

HE-VASP: see [9].

Home Environment: responsible for overall provision of services to users.

Interface: listing and semantics of the methods and attributes provided by an object that belongs to a Service Capability
Feature.

Local Service: see[9].

OSA API: standardised API used by applications to access service capability features.

OSA Internal API: standardised API between framework and service capability servers.

Personal Service Environment: contains personalised information defining how subscribed services are provided and
presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Service Capabilities: see [9].

Service Capability Feature: see [9].

Service Capability Server: Functional Entity providing OSA interfaces towards an application.

Services: see [9].

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)83GPP TS 23.127 version 3.4.0 Release 1999

User Interface Profile: see [9].

User Profile: see [9].

User Services Profile: see [9].

Value Added Service Provider: see [9].

Virtual Home Environment: see [9].

Further UMTS related definitions are given in 3G TS 22.101 and 3G TR 22.905.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
CAMEL Customised Application For Mobile Network Enhanced Logic
CSE Camel Service Environment
HE Home Environment
HE-VASP Home Environment Value Added Service Provider
HLR Home Location Register
IDL Interface Description Language
MAP Mobile Application Part
ME Mobile Equipment
MExE Mobile Station (Application) Execution Environment
MS Mobile Station
MSC Mobile Switching Centre
OSA Open Service Architecture
PLMN Public Land Mobile Network
PSE Personal Service Environment
SAT SIM Application Tool-Kit
SCF Service Capability Feature
SCS Service Capability Server
SIM Subscriber Identity Module USIM User Service Identity Module
SOAP Simple Object Access Protocol
VASP Value Added Service Provider
VHE Virtual Home Environment
WGW WAP Gateway
WPP WAP Push Proxy

Further GSM related abbreviations are given in GSM 01.04. Further UMTS related abbreviations are given in
3G TR 22.905.

4 Virtual Home Environment
The Virtual Home Environment (VHE) is an important portability concept of the 3G mobile systems. It enables end
users to bring with them their personal service environment whilst roaming between networks, and also being
independent of terminal used.

The Personal Service Environment (PSE) describes how the user wishes to manage and interact with her
communication services. It is a combination of a list of subscribed to services, service preferences and terminal
interface preferences. PSE also encompasses the user management of multiple subscriptions, e.g. business and private,
multiple terminal types and location preferences. The PSE is defined in terms of one or more User Profiles.

The user profiles consist of two kinds of information:

- interface related information (User Interface Profile); and

- service related information (User Services profile).

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)93GPP TS 23.127 version 3.4.0 Release 1999

Please see TS22.121 [9] for more details.

5 Open Service Architecture
In order to implement not known end user services/applications today, a highly flexible Open Service Architecture
(OSA) is required. The Open Service Architecture (OSA) is the architecture enabling applications to make use of
network capabilities. The applications will access the network through the OSA API that is specified in this Technical
Specification.

Network functionality offered to applications is defined as a set of Service Capability Features (SCFs) in the OSA API,
which are supported by different Service Capability Servers (SCS). These SCFs provide access to the network
capabilities on which the application developers can rely when designing new applications (or enhancements/variants of
already existing ones). The different features of the different SCSs can be combined as appropriate. The exact
addressing (parameters, type and error values) of these features is described in stage 3 descriptions. These descriptions
(defined using OMG Interface Description Language™) are open and accessible to application developers, who can
design services in any programming language, while the underlying core network functions use their specific protocols.

The aim of OSA is to provide an extendible and scalable architecture that allows for inclusion of new service capability
features and SCSs in future releases of UMTS with a minimum impact on the applications using the OSA API.

The standardised OSA API shall be secure, it is independent of vendor specific solutions and independent of
programming languages, operating systems etc used in the service capabilities. Furthermore, the OSA API is
independent of the location within the home environment where service capabilities are implemented and independent
of supported server capabilities in the network.

To make it possible for application developers to rapidly design new and innovative applications, an architecture with
open interfaces is imperative. By using object-oriented techniques, for example CORBA, SOAP, etc., it is possible to
use different operating systems and programming languages in application servers and service capability servers. The
service capability servers serve as gateways between the network entities and the applications.

The OSA API is based on lower layers using main stream information technology and protocols. The middleware and
protocols (for example CORBA/IIOP, SOAP/XML, other XML based protocols etc.) and lower layer protocols (for
example TCP, IP, etc.) should provide security mechanisms to encrypt data (for example TLS, IP sec, etc.).

5.1 Overview of the Open Service Architecture
The Open Service Architecture consists of three parts:

- Applications: e.g. VPN, conferencing, location based applications. These applications are implemented in one
or more Application Servers;

- Framework: providing applications with basic mechanisms that enable them to make use of the service
capabilities in the network. Examples of framework service capability features are Authentication and
Discovery. Before an application can use the network functionality made available through Service Capability
Features, authentication between the application and framework is needed. After authentication, the discovery
service capability feature enables the application to find out which network service capability features are
provided by the Service Capability Servers. The network service capability features are accessed by the methods
defined in the OSA interfaces;

- Service Capability Servers: providing the applications with service capability features, which are abstractions
from underlying network functionality. Examples of service capability features offered by the Service Capability
Servers are Call Control and User Location. Similar service capability features may possibly be provided by
more than one Service Capability Server. For example, Call Control functionality might be provided by SCSs on
top of CAMEL and MExE.

The OSA service capability features are specified in terms of a number of interfaces and their methods. The interfaces
are divided into two groups:

- framework interfaces;

- network interfaces.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)103GPP TS 23.127 version 3.4.0 Release 1999

The interfaces are further divided into methods. For example, the Call Manager interface might contain a method to
create a call (which realises one of the Service capability features 'Initiate and create session' as specified in [9]).

Note that the CAMEL Service Environment does not provide the service logic execution environment for applications
using the OSA API, since these applications are executed in Application Servers.

framework User Location Call control

HLR CSE WGW
WPP

Servers

E.g. Location server
 MExE server
 SAT server

Service capability server(s)

Interface
class

OSA API

Open
Service

Architecture

discovery Application

Application
server

OSA internal API

Figure 1: Overview of Open Service Architecture

This specification, together with the associated stage 3 specification, defines the OSA API and the OSA internal API
between the framework and the service capability servers. OSA does not mandate any specific platform or
programming language.

The Service Capability Servers that provide the OSA interfaces are functional entities that can be distributed across one
or more physical nodes. For example, the User Location interfaces and Call Control interfaces might be implemented on
a single physical entity or distributed across different physical entities. Furthermore, a service capability server can be
implemented on the same physical node as a network functional entity or in a separate physical node. For example, Call
Control interfaces might be implemented on the same physical entity as the CAMEL protocol stack (i.e. in the CSE) or
on a different physical entity.

Several options exist:

Option 1

The OSA interfaces are implemented in one or more physical entity, but separate from the physical network entities.
Figure 2 shows the case where the OSA interfaces are implemented in one physical entity, called "gateway" in the
figure. Figure 3 shows the case where the SCSs are distributed across several 'gateways'.

SCS ‘Gateway’

OSA API

Non- standardised
Interfaces

CSE …. HLR

Physical entity Functional entity

Figure 2: SCSs and network functional entities implemented in separate physical entities

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)113GPP TS 23.127 version 3.4.0 Release 1999

SCS ‘Gateway’

OSA API

Non- standardised
Interfaces

CSE …. HLR

SCS SCS

Figure 3: SCSs and network functional entities implemented in separate physical entities,
SCSs distributed across several 'gateways'

Option 2

The OSA interfaces are implemented in the same physical entities as the traditional network entities (e.g. HLR, CSE),
see figure 4.

SCS
OSA API

CSE …. HLR

SCS SCS

Figure 4: SCSs and network functional entities implemented in same physical entities

Option 3

Option 3 is the combination of option 1 and option 2, i.e. a hybrid solution.

‘Gateway’

OSA API

Non- standardised
Interfaces

CSE …. HLR

SCS SCS

Figure 5: Hybrid implementation (combination of option 1 and 2)

It shall be noted that in all cases there is only one framework. This framework may reside within one of the physical
entities containing an SCS or in a separate physical entity.

From the application point of view, it shall make no difference which implementation option is chosen, i.e. in all cases
the same network functionality is perceived by the application. The applications shall always be provided with the same
set of interfaces and a common access to framework and service capability feature interfaces. It is the framework that
will provide the applications with an overview of available service capability features and how to make use of them.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)123GPP TS 23.127 version 3.4.0 Release 1999

5.2 Basic mechanisms in the Open Service Architecture
This subclause explains which basic mechanisms are executed in OSA prior to offering and activating applications.

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model. The application must authenticate the
framework and vice versa. The application must be authenticated before it is allowed to use any other OSA
interface.

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

- Discovery of framework and network service capability features: After successful authentication,
applications can obtain available framework interfaces and use the discovery interface to obtain information on
authorised network service capability features. The Discovery interface can be used at any time after successful
authentication.

- Establishment of service agreement: Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically exchanging documents) and an on-line part. The application has to sign the on-line part of the service
agreement before it is allowed to access any network service capability feature.

- Access to network service capability features: The framework must provide access control functions to
authorise the access to service capability features or service data for any API method from an application, with
the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

- Registering of network service capability features. SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon request about
available service capability features (Discovery). For example, this mechanism is applied when installing or
upgrading a Service Capability Server. See clause 8 for details.

Basic mechanisms between Application Server and Service Capability Server:

- Request of event notifications. This mechanism is applied when a user has subscribed to an application and that
application needs to be invoked upon receipt of events from the network related to the user. For example, when a
user subscribes to an incoming call screening application, the application needs to be invoked when the user
receives a call. It will therefore request to be notified when a call setup is performed, with the user number as
Called Party Number.

5.3 Handling of end-user related security
Once OSA basic mechanisms have ensured that an application has been authenticated and authorised to use network
service capability features, it is important to also handle end-user related security aspects. These aspects consist of the
following.

- End-user authorisation to applications, limiting the access of end-users to the applications they are subscribed to.

- Application authorisation to end-users, limiting the usage by applications of network capabilities to authorised
(i.e. subscribed) end-users.

- End-user's privacy, allowing the user to set privacy options.

These aspects are addressed in the following subclauses.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)133GPP TS 23.127 version 3.4.0 Release 1999

5.3.1 End-user authorisation to applications

An end-user is authorised to use an application only when he or she is subscribed to it.

In the case where the end-user has subscribed to the application before the application accesses the network SCFs, then
the subscription is part of the Service Level Agreement signed between the HE and the HE-VASP.

After the application has been granted access to network SCFs, subscriptions are controlled by the Home Environment.
Depending on the identity of an authenticated and authorised end-user, the Home Environment may use any relevant
policy to define and possibly restrict the list of services to which a particular end-user can subscribe. At any time, the
Home Environment may decide, unilaterally or after agreement with the HE-VASP, to cancel a particular subscription.

Service subscription and activation information need to be shared between the Home Environment and the HE-VASP,
so that the HE-VASP knows which end-users are entitled to use its services. Appropriate online and/or offline
synchronisation mechanisms (e.g. SLA re-negotiation) can be used between the HE and the HE-VASP, which are not
specified in OSA release 1999.

End-to-end interaction between a subscribed end-user and an application may require the usage of appropriate
authentication and authorisation mechanisms between the two, which are independent from the OSA API, and therefore
not in the scope of OSA standardisation.

5.3.2 Application authorisation to end-users

The Home Environment is entitled to provide service capabilities to an application with regard to a specific end-user if
the following conditions are met:

1) the end-user is subscribed to the application;

2) the end-user has activated the application;

3) the usage of this network service capability does not violate the end-users privacy settings (see next subclause).

The service capability server ensures that the above conditions are met whenever an application attempts to use a
service capability feature for a given end-user, and to respond to the application accordingly, possibly using relevant
error parameters (USER_NOT_SUBSCRIBED, APPLICATION_NOT_ACTIVATED,
USER_PRIVACY_VIOLATION). The mechanism used by the SCS to ensure this is internal to the HE (e.g. access to
user profile) and is not standardised in OSA release 1999.

5.3.3 End-user's privacy

The Home Environment may permit an end-user to set privacy options. For instance, it may permit the end-user to
decide whether his or her location may be provided to 3rd parties, or whether he or she accepts information to be pushed
to his or her terminal. Such privacy settings may have an impact on the ability of the network to provide service
capability features to applications (e.g. user location, user interaction). Thus, even if an application is authorised to use
an SCF and the end-user is subscribed to this application and this application is activated, privacy settings may still
prevent the HE from fulfilling an application request.

The service capability server ensures that a given application request does not violate an end-users privacy settings or
that the application has relevant privileges to override them (e.g. for emergency reasons). The mechanism used by the
SCS to ensure this is internal to the HE and is not standardised in OSA release 1999.

5.4 Base interfaces
The base interfaces described in this subclause are provided for completeness of the documentation.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)143GPP TS 23.127 version 3.4.0 Release 1999

5.4.1 Base Interface

This interface is the foundation of all the other interfaces and shall be inherited by all of them. It does not contain any
method.

Name Base_Interface

Method

Parameters

Returns

Errors

5.4.2 Base Service Interface

This interface provides the base for all interfaces described in the following clauses. It allows an application to set an
interface reference to be used by the OSA interfaces for requests and asynchronous responses to the application. For
example, when an application wants to be notified upon the receipt of the "called party busy" event, the Service
Capability Server must know where to send the notification. This reference can be provided by the application with the
setCallBack method across the OSA API.

Name Base_Service_Interface

Method setCallback()

This method specifies the reference address of the callback interface that an SCF uses to invoke
methods on the application.

Direction Application to Framework

Parameters appInterface

Specifies a reference to the application interface which is used for callbacks.

Returns

Errors

Name Base_Service_Interface

Method setCallbackWithSessionID ()

This method specifies the reference address of the application’s callback interface that a service
uses for interactions associated with a specific session ID: e.g. a specific call.

Direction Application to Framework

Parameters appInterface

Specifies a reference to the application interface which is used for callbacks.

sessionID

Specifies the session for which the service can invoke the application’s callback interface.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)153GPP TS 23.127 version 3.4.0 Release 1999

6 Framework service capability features
Note: when the direction of a method in an interface is "application to network", this means that the method is invoked
from the application to an SCS residing on the network side of the OSA API.

6.1 Trust and Security Management SCFs
The Trust and Security Management service capability features provide:

- the first point of contact for an application to access a Home Environment;

- the authentication methods for the application and Home Environment to perform an authentication protocol;

- the application with the ability to select a network service capability feature to make use of;

- the application with a portal to access other framework service capability features.

The process by which the application accesses the Home Environment has been separated into 3 stages, each supported
by a different framework service capability feature:

1) Initial Contact with the framework;

2) Authentication to the framework;

3) Access to framework and network service capability features.

6.1.1 Initial Contact

The application gains a reference to the Initial Contact SCF for the Home Environment that they wish to access. This
may be gained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc.
At this stage, the application has no guarantee that this is a reference to the Home Environment.

The application uses this reference to initiate the authentication process with the Home Environment.

Initial Contact supports the initiateAuthentication method to allow the authentication process to take place (using the
Authentication SCF defined in subclause 6.1.2). This method must be the first invoked by the application. Invocations
of other methods will fail until authentication has been successfully completed.

Once the application has authenticated with the provider, it can gain access to other framework and network service
capability features. This is done by invoking the requestAccess method, by which the application requests a certain type
of access service capability feature. The OSA Access service capability feature is defined in subclause 6.1.3.

The Initial Contact framework SCF is defined by a unique interface, consisting of the following methods.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)163GPP TS 23.127 version 3.4.0 Release 1999

Method initiateAuthentication()

The application uses this method to initiate the authentication process.

Direction Application to Framework

Parameters This identifies the application domain to the framework, and provides a reference to the domain’s
authentication interface.

appDomain

The authInterface parameter is a reference to call the authentication interface of the client
application. The type of this interface is defined by the authType parameter. If the interface
reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

authType

This identifies the type of authentication mechanism requested by theapplication. It provides
operators and HE-VASPss with the opportunity to use an alternative to the OSA Authentication
interface, for example CORBA/IIOP Security, SOAP/XML security etc.

Returns fwDomain

This provides the application domain with a framework identifier, and a reference to call the
authentication interface of the framework.

Errors

Method requestAccess ()

Once application and framework are authenticated, the former invokes the requestAccess method on
the Initial Contact SCF. This allows the application to request the type of access it requires. If it
requests OSA_ACCESS, then a reference to the OSA Access interface is returned. (Home
Environments can define their own access interfaces to satisfy application requirements for different
types of access.)

Direction Application to network

Parameters accessType

This identifies the type of access SCF requested by the application.

appAccessInterface

This provides the reference for the framework to call the access interface of the application.

Returns fwAccessInterface

This provides the reference for the application to call the access SCF of the framework.

Errors INVALID_AUTHENTICATION

The application is not authenticated.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)173GPP TS 23.127 version 3.4.0 Release 1999

6.1.2 Authentication

Once the application has made initial contact with the Home Environment, authentication of the application and Home
Environment may be required.

The API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given
situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide
confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital
signatures in the authentication procedure depends on the type of authentication technique selected. In some cases
strong authentication may need to be enforced by the Home Environment to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The application must authenticate with the framework before it is able to use any of the other interfaces supported by
the framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) The application calls initiateAuthentication on the Home Environment's framework Initial interface. This allows
the application to specify the type of authentication process. This authentication process may be specific to the
Home Environment, or the implementation technology used. The initiateAuthentication method can be used to
specify the specific process (for example CORBA/IIOP security, SOAP/XML security, etc.). OSA defines a
generic authentication service capability feature (Authentication), which can be used to perform the
authentication process. The initiateAuthentication method allows the application to pass a reference to its own
authentication interface to the Framework, and receive a reference to the Authentication interface supported by
the framework, in return.

2) The application invokes the selectAuthMethod on the framework's Authentication SCF. This includes the
authentication capabilities of the application. The framework then chooses an authentication method based on
the authentication capabilities of the application and the framework. If the application is capable of handling
more than one authentication method, then the framework chooses one option, defined in the prescribedMethod
parameter. In some instances, the authentication capability of the application may not fulfil the demands of the
framework, in which case, the authentication will fail.

3) The application and framework interact to authenticate each other. Depending on the method prescribed, this
procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol
is performed using the authenticate method on the Authentication interface. Depending on the authentication
method selected, the protocol may require invocations on the Authentication SCF supported by the framework;
or on the application counterpart; or on both.

The Authentication framework SCF is defined by a single interface, consisting of the following methods.

Method selectAuthMethod ()

The application uses this method to initiate the authentication process. The mechanism returned by
the framework is the mechanism it prefers. This should be within capability of the application. If a
mechanism that is acceptable to the framework within the capability of the application cannot be
found, the framework returns an error code (INVALID_AUTH_CAPABILITY).

Direction Application to network

Parameters authCaps

This is the means by which the authentication mechanisms supported by the application are
conveyed to the framework.

Returns prescribedMethod

This is returned by the framework to indicate the mechanism it prefers for the authentication
process. If the value of the prescribedMethod returned by the framework is not understood by the
application, it is considered a fatal error and the application must abort.

Errors INVALID_AUTH_CAPABILITY

No acceptable authentication mechanism could be found by the framework.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)183GPP TS 23.127 version 3.4.0 Release 1999

Method authenticate () (application to network)

This method is used by the application to authenticate the framework using the mechanism indicated
in prescribed Method. The framework must respond with the correct responses to the challenges
presented by the application. The clientAppID received in the initiateAuthentication()
can be used by the framework to reference the correct public key for the application (the key
management system is currently outside of the scope of the OSA specification). The number of
interactions and the order of the interactions is dependent on the prescribedMethod.

Direction Application to network

Parameters prescribedMethod

This parameter contains the method that the framework has specified as acceptable for
authentication (see selectAuthMethod).

challenge

The challenge presented by the application to be responded to by the framework. The challenge
mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge
Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with
the mechanism prescribed by selectAuthMethod().

Returns response

This is the response of the framework to the challenge of the application in the current sequence.
The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectAuthMethod().

Errors

Method authenticate() (network to application)

This method is used by the framework to authenticate the application using the mechanism indicated
in prescibedMechanism. The application must respond with the correct responses to the challenges
presented by the framework. The number of interactions and the order of the interactions is
dependant on the prescribedMethod. (These may be interleaved with authenticate() calls by the
application on the Authentication interface. This is defined by the prescribedMethod.)

Direction Network to application

Parameters prescribedMethod

This parameter contains the agreed method for authentication (see selectAuthMethod on the
Authentication interface.)

challenge

The challenge presented by the framework to be responded to by the application. The challenge
mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge
Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with
the mechanism prescribed by selectAuthMethod().

Returns response

This is the response of the application to the challenge of the framework in the current sequence.
The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectAuthMethod().

Errors INVALID_AUTHENTICATION

The application could not be authenticated.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)193GPP TS 23.127 version 3.4.0 Release 1999

Method abortAuthentication()(application to network)

The application uses this method to abort the authentication process. This method is invoked if the
application no longer wishes to continue the authentication process, (e.g. if the framework responds
incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess method on
Initial Contact will return an error code (INVALID_AUTHENTICATION) until the application has
been properly authenticated.

Direction Application to network

Parameters

Returns

Errors

Method abortAuthentication()(network to application)

The framework uses this method to abort the authentication process. This method is invoked if the
framework wishes to abort the authentication process, (e.g. if the application responds incorrectly to
a challenge.) If this method has been invoked, calls to the requestAccess method on Initial will
return an error code (INVALID_AUTHENTICATION), until the application has been properly
authenticated.

Direction Network to application

Parameters

Returns

Errors

6.1.3 OSA Access

During an authenticated session accessing the Framework, the application will be able to select and access an instance
of a framework or network service capability feature.

Access to framework SCFs is gained by invoking the obtainInterface, or obtainInterfaceWithCallback methods. The
latter is used when a callback reference is supplied to the framework. For example, a network SCF discovery interface
reference is returned when invoking obtainInterface with "discovery" as the SCF name.

In order to use network SCFs, the application must first be authorised to do so by establishing a service agreement with
the Home Environment. The application uses the discovery SCF to retrieve the ID of the network SCF they wish to
use.They may then use the accessCheck method to check that they are authorised to use the network SCF. The
selectService method is used to tell the Home Environment that the application wishes to use the network SCF. The
signServiceAgreement method is used to digitally sign the agreement, and provide non-repudiation for both parties in
agreeing that the SCF would be available for use.

Establishing a service agreement is a business level transaction, which requires the HE-VASP that owns the application
to agree terms for the use of an SCF with the Home Environment. Service agreements can be reached using either off-
line or on-line mechanisms. Off-line agreements will be reached outside of the scope of OSA interactions, and so are
not described here. However, applications can make use of service agreements that are made off-line. Some Home
Environments may only offer off-line mechanisms to reach service agreements.

After a service agreement has been established between the application and the Home Environment domains, the
application will be able to make use of this agreement to access the network SCF.

The accessCheck method allows the application to check whether it has permission to access (read, write, etc) to a
specified SCF, and specific SCF features. The application defines the security domain and context of access to the SCF.
The access control policy is based on a number of conditions, events and permissions that determine whether the
application is authorised to access the SCF/feature.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)203GPP TS 23.127 version 3.4.0 Release 1999

The accessCheck method is optional, in that can be called by the application to check that it has permission to use
specific SCF features, before starting an SCF instance. It is not compulsory for the application to make this check
before selecting a network SCF and signing a service agreement to use an instance of the SCF. If the accessCheck
method confirms that the application has permission to use a specific SCF feature, then this feature should be available
to the application when using the SCF instance. The Home Environment may include the results of the accessCheck as
part of the service agreement, that is signed before using an SCF instance, thereby assuring the application that the SCF
features will be available.

The selectService method is used to identify the SCF that the application wishes to use. A list of service properties
initialises the SCF, and an SCF token is returned. The application and Home Environment must sign a copy of the
service agreement to confirm the use of the SCF. The framework invokes signServiceAgreement method on the
applications's Access callback interface with the service agreement text to be signed. The application uses its digital
signature key to sign the agreement text, and return the signed text to the framework. The application then calls the
signServiceAgreement method on the OSA Access SCF. The framework signs the agreement text, retrieves a reference
to a network manager interface for the selected SCF (using the getServiceManager method defined in clause 8), and
returns this reference to the client application. In addition, the OSA Access interface may be invoked by SCSs in the
context of SCF registration, see subclause 8.1.

The OSA Access framework SCF is defined by a single interface, which consists of the following methods.

Method obtainInterface ()

The application uses this method to obtain interface references to other framework SCFs (e.g.
discovery, load manager). (The obtainInterfacesWithCallback method should be used if the
application is required to supply a callback interface to the framework.)

Direction Application to network

Parameters interfaceName

The name of the framework SCF to which a reference to the interface is requested.

Returns fwInterface

This is the reference to the SCF interface requested.

Errors INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)213GPP TS 23.127 version 3.4.0 Release 1999

Method obtainInterfaceWithCallback ()

The application uses this method to obtain interface references to other framework SCFs (e.g.
discovery, load manager), when they are required to supply a callback interface to the framework.
(The obtainInterface method should be used when no callback interface needs to be supplied.)

Direction Application to network

Parameters interfaceName

The name of the framework SCF to which a reference to the interface is requested.

appInterface

This is the reference to the application interface which is used for callbacks. If an application
interface is not needed, then this method should not be used. (The obtainInterface method should be
used when no callback interface needs to be supplied.)

Returns fwInterface

This is the reference to the SCF requested.

Errors INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

Method accessCheck()

This method may be used by the application to check whether it has been granted permission to
access the specified SCF. The response is used to indicate whether the request for access has been
granted or denied and if granted the level of trust that will be applied.

Direction Application to network

Parameters ServiceToken

The serviceToken identifies the specific SCF that the client application wishes to access. The
service Token identifies the service type and service properties selected by the client application
when it invoked selectService().

securityContext

A context is a group of security relevant attributes that may have an influence on the result of the
accessCheck request.

securityDomain

The security domain in which the application is operating may influence the access control
decisions and the specific set of features that the requestor is entitled to use.

group

A group can be used to define the access rights associated with all applications that belong to that
group. This simplifies the administration of access rights.

serviceAccessTypes

These are defined by the specific Security Model in use but are expected to include: Create, Read,
Update, Delete as well as those specific to SCFs.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)223GPP TS 23.127 version 3.4.0 Release 1999

Returns serviceAccessControl

This is a structure containing:

• policy: indicates whether access has been granted or denied. If granted then the parameter
trustLevel must also have a value.

• trustLevel: The trustLevel parameter indicates the trust level that the Home Environment has
assigned to the application.

Errors

Method selectService ()

This method is used by the application to identify the network SCF that the application wishes to
use.

Direction Application to network

Parameters serviceID

This identifies the SCF required.

serviceProperties

This is a list of the properties that the SCF should support. These properties (names and values) are
used to initialise the SCF instance for use by the application.

Returns serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service
agreement. This will contain operator specific information relating to the service level agreement.
The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method
accepting the serviceToken will return an error code (INVALID_Service_TOKEN). Service
Tokens will automatically expire if the application or framework invokes the endAccess method on
the other's corresponding access interface.

Errors INVALID_SERVICE_ID

Returned if the serviceID is not recognised by the framework

INVALID_SERVICE_PROPERTY

Returned if a property is not recognised by the framework

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)233GPP TS 23.127 version 3.4.0 Release 1999

Method signServiceAgreement()(application to network)

This method is used by the application to request that the framework sign an agreement on the SCF,
which allows the application to use the SCF. If the framework agrees, both parties sign the service
agreement, and a reference to the manager interface of the SCF is returned to the application.

Direction Application to network

Parameters serviceToken

This is the token returned by the framework in a call to the selectService() method. This
token is used to identify the SCF instance requested by the application.

agreementText

This is the agreement text that is to be signed by the framework using the private key of the
framework.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the framework for the service
agreement, and a reference to the manager interface of the SCF:

• The digitalSignature is the signed version of a hash of the service token and agreement text
given by the application.

• The serviceMgrInterface is a reference to the manager interface for the selected SCF.

Errors INVALID_SERVICE_TOKEN

Returned if the serviceToken is not recognised by the framework

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)243GPP TS 23.127 version 3.4.0 Release 1999

Method signServiceAgreement()(network to application)

This method is used by the framework to request that the application sign an agreement on the SCF.
It is called in response to the application calling the selectService() method on the Access SCF of
the framework. The framework provides the service agreement text for the application to sign. If the
application agrees, it signs the service agreement, returning its digital signature to the framework.

Direction Network to application

Parameters serviceToken

This is the token returned by the framework in a call to the selectService() method. This
token is used to identify the SCF instance to which this service agreement corresponds. (If the
application selects many SCFs, it can determine which selected SCF corresponds to the service
agreement by matching the service token.)

agreementText

This is the agreement text that is to be signed by the application using the private key of the
application.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns digitalSignature

The digitalSignature is the signed version of a hash of the service token and agreement text given by
the framework.

Errors

Method terminateServiceAgreement()(application to network)

This method is used by the application to terminate a service agreement for the SCF.

Direction Application To Network

Parameters serviceToken

This is the token passed back from the framework in a previous selectService() method call.
This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing
algorithm used is the same as the signing algorithm given when the service agreement was signed
using signServiceAgreement().The framework uses this to check that the
terminationText has been signed by the application. If a match is made, the service agreement
is terminated, otherwise an error is returned.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)253GPP TS 23.127 version 3.4.0 Release 1999

Method terminateServiceAgreement() (network to application)

This method is used by the framework to terminate a service agreement for the SCF.

Direction Network to application

Parameters serviceToken

This is the token passed back from the framework in a previous selectService() method call.
This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing
algorithm used is the same as the signing algorithm given when the service agreement was signed
using signServiceAgreement(). The framework uses this to confirm its identity to the
application. The application can check that the terminationText has been signed by the
framework.

Returns

Errors

Method endAccess()

The endAccess method is used to end the application's access session with the framework. The
application requests that its access session be ended. After it is invoked, the application will not
longer be authenticated with the framework. The application will not be able to use the references to
any of the framework SCFs gained during the access session. Any calls to these SCF interfaces will
fail.

Direction Application To Network

Parameters endAccessProperties

This is a list of properties that can be used to tell the framework the actions to perform when ending
the access session (e.g. existing service sessions may be stopped, or left running). If a property is
not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)263GPP TS 23.127 version 3.4.0 Release 1999

Method terminateAccess ()

The terminateAccess method is used to end the application's access session with the framework
(e.g. this may be done if the framework believes the application is masquerading as someone else.
Using this method will force the application to re-authenticate if it wishes to continue using the
framework SCFs.)

After terminateAccess() is invoked, the application will not longer be authenticated with the
framework. The application will not be able to use the references to any of the framework SCFs
gained during the access session. Any calls to these interfaces will fail.

Direction Network to application

Parameters terminationText

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm

This is the algorithm used to compute the digital signature.

digitalSignature

This is a signed version of a hash of the termination text. The framework uses this to confirm its
identity to the application. The application can check that the terminationText has been
signed by the framework.

Returns

Errors

6.2 Discovery
The discovery SCF consists of a single interface. Before a network SCF can be discovered, the application must know
what "types" of SCFs are supported by the Framework and what "properties" are applicable to each SCF type. The
listServiceType() method returns a list of all "SCF types" that are currently supported by the framework and the
"describeServiceType()" returns a description of each SCF type. The description of SCF type includes the "SCF-
specific properties" that are applicable to each SCF type. Then the application can discover a specific set of registered
SCFs that belong to a given type and possess the desired "property values", using the "discoverService() method.

Once the HE-VASP finds out the desired set of SCFs supported by the network, it subscribes (a sub-set of) these SCFs
using the Subscription framework SCF. The HE-VASP (or the applications in its domain) can find out the set of SCFs
available to it (i.e., the SCFs that it can use) by invoking "listSubscriberServices()".

The discovery SCF is invoked by the HE-VASP or applications. In addition, the discovery interface may be invoked by
SCSs in the context of SCF registration, see subclause 8.1. Its methods are described below.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)273GPP TS 23.127 version 3.4.0 Release 1999

Method discoverService ()

The discoverService method is the means by which an application is able to obtain the IDs of the
SCFs that meet its requirements. The application passes in a list of desired properties to describe the
SCF it is looking for, in the form attribute/value pairs for the properties. The application also
specifies the maximum number of matched responses it is willing to accept. The framework must
not return more matches than the specified maximum, but it is up to the discretion of the Framework
implementation to choose to return less than the specified maximum. The discoverService() method
returns a serviceID/Property pair list for those SCFs that match the desired property list that the
application provided.

Direction Application to network

Parameters serviceTypeName

The "ServiceTypeName" parameter conveys the required SCF type. It is key to the central purpose
of "SCF trading". By stating an SCF type, the importer implies the SCF type and a domain of
discourse for talking about properties of SCF.

The framework may return an SCF of a subtype of the "type" requested. An SCF sub-type can be
described by the properties of its supertypes.

desiredPropertyList

The "desiredPropertyList"parameter is a list of property name and property value pairs of properties
that the discovered set of SCFs should satisfy. These properties deal with the non-functional and
non-computational aspects of the desired SCF. The property values in the desired property list must
be logically interpreted as "minimum", "maximum", etc. by the framework.

max

The "max" parameter states the maximum number of SCFs that are to be returned in the
"ServiceList" result.

Returns serviceList :

This parameter gives a list of matching SCFs. Each SCF is characterised by an SCF ID and a list of
property name and property value pairs associated with the SCF.

Errors ILLEGAL_SERVICE_TYPE

Returned of the string representation of the "type" does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE

Returned if the "type" is correct syntactically but is not recognised as an SCF type within the
Framework

Method listServiceTypes ()

This method returns the names of all SCF types which are in the repository. The details of the SCF
types can then be obtained using the describeServiceType() method.

Direction Application to network

Parameters

Returns listTypes

The names of the requested SCF types.

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)283GPP TS 23.127 version 3.4.0 Release 1999

Method describeServiceType()

This method lets the caller to obtain the details for a particular SCF type.

Direction Application to network

Parameters name

The name of the SCF type to be described

Returns serviceTypeDescription

The description of the specified SCF type. The description provides information about:

• the property names associated with the SCF,

• the corresponding property value types,

• the corresponding property mode (mandatory or read only) associated with each SCF property,

• the names of the super types of this type, and

• whether the type is currently enabled or disabled.

Errors ILLEGAL_SERVICE_TYPE

Returned of the string representation of the "type" does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE

Returned if the "type" is correct syntactically but is not recognised as an SCF type within the
Framework

Method listSubscribedServices ()

Returns a list of SCFs so far subscribed by the HE-VASP. The HE-VASP (or the applications in
the HE-VASP domain) can obtain a list of subscribed SCFs that they are allowed to access.

Direction Application to network

Parameters

Returns serviceList

Returns a list of IDs of the SCFs subscribed by the HE-VASP.

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)293GPP TS 23.127 version 3.4.0 Release 1999

6.3 Integrity Management SCFs

6.3.1 Load Manager

The Load Manager SCF permits to manage the load on both the application and network sides.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to a load balancing policy. The separation of the load balancing mechanism and load balancing
policy ensures the flexibility of the load balancing functionality. The load balancing policy identifies what load
balancing rules the framework should follow for the specific application. It might specify what action the framework
should take as the congestion level changes. For example, some real-time critical applications will want to make sure
continuous service is maintained, below a given congestion level, at all costs, whereas other applications will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load balancing policy is
related to the QoS level to which the application is subscribed.

The Load Manager SCF consists of a single interface. Most methods are asynchronous, in that they are one-way
invocations. Consequently, they do not lock a thread into waiting whilst a transaction performs. In this way, the
application server can handle many more calls, than one that uses synchronous message calls.

The load management methods do not exchange callback interfaces as it is assumed that the application has supplied its
Load Management callback interface at the time it obtains the Framework's Load Manager SCF, by use of the
obtainInterfaceWithCallback method on the OSA Access SCF.

Method reportLoad()

The application notifies the framework about its current load level (0,1, or 2) when the load level on
the application has changed.
At level 0 load, the application is performing within its load specifications (i.e. it is not congested or
overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severly
overloaded.

Direction Application to network

Parameters loadLevel

Specifies the load level for which the application reported.

Returns

Errors

Method enableLoadControl()

Upon detecting load condition change, (i.e. load level changing from 0 to 1, 0 to 2, 1 to 2 or 2 to 1,
for the SCFs or framework which has been registered for load control), the framework enables load
management activity at the application based on the policy.

Direction Network to application

Parameters loadStatistics

Specifies the new load statistics

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)303GPP TS 23.127 version 3.4.0 Release 1999

Method disableLoadControl()

After load level of the framework or SCF which has been registered for load control moves back to
normal, framework disables load control activity at the application based on policy.

Direction Network to application

Parameters serviceIDs

Specifies the framework and SCFs for which the load has changed to normal. The serviceIDs is null
to specify the framework only.

Returns

Errors

Method resumeNotification()

Resume the notification from an application for its load status after the detection of load level
change at the framework and the evaluation of the load balancing policy.

Direction Network to application

Parameters

Returns

Errors

Method suspendNotification()

Suspend the notification from an application for its load status after the detection of load level
change at the framework and the evaluation of the load balancing policy.

Direction Network to application

Parameters

Returns

Errors

Method queryLoadReq ()

The application requests load statistic records for the framework and specified SCFs.

Direction Application to Network

Parameters serviceIDs

Specifies the framework, SCFs or applications for which the load statistics shall be reported. The
serviceIDs is null for framework load statistics only.

timeInterval

Specifies the time interval within which the load statistics are generated.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)313GPP TS 23.127 version 3.4.0 Release 1999

Method queryLoadRes()

 Returns load statistics to the application which requested the information.

Direction Network to application

Parameters loadStatistics

Specifies the framework-supplied load statistics.

Returns

Errors

Method queryLoadErr()

Returns an error code to the application that requested load statistics.

Direction Network to application

Parameters loadStatisticsError

Specifies the framework-supplied error code.

Returns

Errors

Method queryAppLoadReq()

The framework requests for load statistic records produced by a specified application.

Direction Network to application

Parameters serviceIDs

Specifies the SCFs or applications for which the load statistics shall be reported.

timeInterval

Specifies the time interval within which the load statistics are generated.

Returns

Errors

Method queryAppLoadRes ()

Report load statistics back to the framework that requested the information.

Direction Application to network

Parameters loadStatistics

Specifies the load statistics in the application.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)323GPP TS 23.127 version 3.4.0 Release 1999

Method queryAppLoadErr()

Return an error response to the framework that requested the application's load statistics
information.

Direction Application to network

Parameters loadStatisticsError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Returns

Errors

Method registerLoadController ()

Register the application for load management under various load conditions.

Direction Application to network

Parameters serviceIDs

Specifies the framework and SCFs to be registered for load control. To register for framework load
control only, the serviceIDs is null.

Returns

Errors

Method unregisterLoadController ()

Unregister the application for load management.

Direction Application to network

Parameters serviceIDs

Specifies the framework or SCFs to be unregistered for load control.

Returns

Errors

Method resumeNotification ()

Resume load management notifications to the application for the framework and specified SCFs
after their load condition changes.

Direction Application to network

Parameters serviceIDs

Specifies the framework and SCFs for which notifications are to be resumed. The serviceIDs is null
to resume notifications for the framework only.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)333GPP TS 23.127 version 3.4.0 Release 1999

Method suspendNotification()

Suspend load management notifications to the application for the framework and specified SCFs,
while the application handles a temporary load condition.

Direction Application to network

Parameters serviceIDs

Specifies the framework and SCFs for which notifications are to be suspended. The serviceIDs is
null to suspend notifications for the framework only.

Returns

Errors

6.3.2 Fault Manager

This SCF is used by the application to inform the framework of events which affect the integrity of the framework and
SCFs, and to request information about the integrity of the system.

It consists of a single interface, with the following methods.

Method activityTestReq()

This method may be used by the application to test that the framework or an SCF is methodal. On
receipt of this request, the framework must carry out a test on the specified SCF or the framework
itself to check that it is operating correctly and report the test result.

Direction Application to network

Parameters activityTestID

The identifier provided by the application to correlate the response (when it arrives) with this
request.

svcID

This parameter identifies which SCF the application is requesting the activity test to be done for. A
null value denotes that the activity test is being requested for the framework.

Returns

Errors

Method activityTestRes()

The framework returns the result of the activity test in this method, along with a test identifier to
allow correlation of result to request within the application.

Direction Network to application

Parameters activityTestID

The identifier provided by the application (in the request), to correlate this response with the
original request.

activityTestResult

The result of the activity test.

Returns

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)343GPP TS 23.127 version 3.4.0 Release 1999

Errors

Method appActivityTestReq ()

This method is invoked by the framework to request that the application carries out an activity test
to check that is it operating correctly.

Direction Network to application

Parameters activityTestID

The identifier provided by the application (in the request), to correlate this response with the
original request.

Returns

Errors

Method appActivityTestRes ()

This method is used by the application to return the result of a previously requested activity test.

Direction Application to network

Parameters activityTestID

The identifier is used by the framework to correlate this response (when it arrives) with the original
request.

activityTestResult

The result of the activity test.

Returns

Errors

Method fwFaultReportInd ()

This method is invoked by the framework to notify the application of a failure within the
framework. The application must not continue to use the framework until it has recovered (as
indicated by a fwFaultRecoveryInd).

Direction Network to application

Parameters fault

Specifies the fault that has been detected.

Returns

Errors

Method fwFaultRecoveryInd ()

This method is invoked by the framework to notify the application that a previously reported fault
has been rectified.

Direction Network to application

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)353GPP TS 23.127 version 3.4.0 Release 1999

Parameters fault

Specifies the fault from which the framework has recovered.

Returns

Errors

Method svcUnavailableInd ()

This method is used by the application to inform the framework that it can no longer use the
indicated SCF (either due to a failure in the application or in the SCF). On receipt of this request, the
framework should take the appropriate corrective action. The framework assumes that the session
between this application and instance SCF is to be closed and updates its own records appropriately
as well as attempting to inform the SCF instance and/or its administrator. If the application then tries
to continue the use of this session it should be returned an error.

Direction Application to network

Parameters serviceID

The identity of the SCF which can no longer be used.

Returns

Errors

Method svcUnavailableInd ()

This method is used by the framework to inform the application that it can no longer use the
indicated SCF due to a failure in the SCF. On receipt of this request, the application must act to reset
its use of the specified SCF (using the normal mechanisms such as the discovery and authentication
interfaces to stop use of this SCF instance and begin use of a different SCF instance).

Direction Network to application

Parameters serviceID

The identity of the SCF which can no longer be used.

reason

The reason why the SCF is no longer available.

Returns

Errors

Method fwUnavailableInd ()

The framework invokes this method to inform the client application that it is no longer available.

Direction Network to application

Parameters reason

Identifies the reason why the framework is no longer available

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)363GPP TS 23.127 version 3.4.0 Release 1999

Method genFaultStatsRecordReq ()

This method is used by the application to solicit fault statistics from the framework. On receipt of
this request, the framework must produce a fault statistics record, which is returned to the
application. The fault statistics record must contain information about faults relating to the SCFs
specified in the serviceIDList parameter, during the specified period.

Direction Application to Network

Parameters timePeriod

The period over which the fault statistics are to be generated. A null value leaves this to the
discretion of the framework.

serviceIDList

This parameter lists the SCFs that the application would like to have included in the general fault
statistics record. If the application would like the framework fault statistics to be included it should
include the NULL serviceID.

Returns

Errors

Method genFaultStatsRecordRes ()

This method is used by the framework to provide fault statistics to an application in response to a
genFaultStatsRecordReq.

Direction Network to application

Parameters faultStatistics

The fault statistics record.

serviceIDs

This parameter lists the SCFs that have been included in the general fault statistics record. The
framework is denoted by the NULL serviceID.

6.3.3 Heartbeat Management

This SCF allows the initialisation of a heartbeat supervision of the client application. In case of SCF supervision, it is
the framework's responsibility to check the health status of the respective SCF.

Since the OSA API is inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons.

The Heartbeat Management SCF consists of a two interface classes: Heartbeat Management and Heartbeat.

Heartbeat Management

Method enableHeartBeat ()

With this method, the client application registers at the framework for heartbeat supervision of
itself.

Direction Application to network

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)373GPP TS 23.127 version 3.4.0 Release 1999

Parameters duration

The duration in milliseconds between the heartbeats.

appInterface

This parameter refers to the callback interface.

Returns session

Identifies the heartbeat session. In general, the application has only one session. In case of SCF and
framework supervision by the client application, the application may maintain more than one
session.

Errors

Method disableHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Direction Application to network

Parameters session

Identifies the heartbeat session.

Returns

Errors

Method changeTimeperiod()

Allows the administrative change of the heartbeat period.

Direction Application to network

Parameters session

Identifies the heartbeat session. In general, the application has only one session.

duration

The time interval in milliseconds between the heartbeats.

Returns

Errors

Method enableAppHeartBeat()

With this method, the framework registers at the client application for heartbeat supervision of
itself.

Direction Network to application

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)383GPP TS 23.127 version 3.4.0 Release 1999

Parameters duration

The time interval in milliseconds between the heartbeats.

fwInterface

This parameter refers to the callback interface.

session

Identifies the heartbeat session..

Returns

Errors

Method disableAppHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Direction Network to application

Parameters session

Identifies the heartbeat session.

Returns

Errors

Method changeTimeperiod()

Allows the administrative change of the heartbeat period.

Direction Network to application

Parameters session

Identifies the heartbeat session.

duration

The time interval in milliseconds between the heartbeats.

Returns

Errors

Heartbeat

Method send()

This is the method the client application uses in case it supervises the framework or an SCF. The
sender must raise an exception if no result comes back after a certain, user-defined time.

Direction

Parameters session

Identifies the heartbeat session. In general, the application has only one session.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)393GPP TS 23.127 version 3.4.0 Release 1999

Returns

Errors

Method send()

This is the method the framework uses in case it supervises a client application. The sender must
raise an exception if no result comes back after a certain, user-defined time.

Direction

Parameters session

Identifies the heartbeat session.

Returns

Errors

6.3.4 OAM

The OAM SCF is used to query the system date and time. The application and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA API.

The OAM SCF consists of a unique interface class.

Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date
and time to the framework. The framework responds with the system date and time.

Direction Application to network

Parameters clientDateAndTime

This is the date and time of the client application.

Returns systemDateAndTime

This is the system date and time returned by the framework.

Errors INVALID_DATE_TIME_FORMAT

Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in the system date
and time to the client. The client responds with its own date and time.

Direction Network to application

Parameters systemDateAndTime

This is the system date and time of the framework.

Returns clientDateAndTime

This is the date and time returned by the client.

Errors OSA_INVALID_DATE_TIME_FORMAT

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)403GPP TS 23.127 version 3.4.0 Release 1999

7 Network service capability features
Network service capability features are provided to the applications by service capability servers to enable access to
network resources.

Note: when the direction of a method in an interface is "application to network", this means that the method is invoked
from the application to an SCS residing on the network side of the OSA API.

7.1 Call Control
The Call control network service capability feature consists of two interfaces:

1) call manager, containing management function for call related issues;

2) call, containing methods to control a call.

A call can be controlled by one Call Manager only. A Call Manager can control several calls..

1 Call
Manager

Call1 n

Figure 6: Call control interfaces usage relationship

The Call Control service capability features are described in terms of the methods in the Call Control interfaces. Table 1
gives an overview of the Call Control methods and to which interfaces these methods belong.

Table 1: Overview of Call Control interfaces and their methods

CallManager Call
enableCallNotification routeReq
changeCallNotification routeRes
disableCallNotification routeErr
getCriteria release
callEventNotify deassignCall
callNotificationInterrupted getCallInfoReq
callNotificationContinued getCallInfoRes

getCallInfoErr
superviseCallReq
superviseCallRes
superviseCallErr
callFaultDetected
callEnded
setAdviceOfCharge
setCallChargePlan

7.1.1 Call Manager

The generic call manager interface provides the management functions to the generic call Service Capability Features.
The application programmer can use this interface to enable or disable call-related event notifications.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)413GPP TS 23.127 version 3.4.0 Release 1999

Method enableCallNotification()

This method is used to enable call notifications to be sent to the application.

Direction Application to network

Parameters appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via the
setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required. Individual
addresses or address ranges may be specified for destination and/or origination. Examples of events
are "incoming call attempt reported by network", "answer", "no answer", "busy".

Returns assignmentID

Specifies the ID assigned by the generic call control manager object for this newly-enabled event
notification.

Errors USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method changeCallNotification()

This method is used to change the notification criteria initially set with enableCallNotification().

Direction Application to network

Parameters eventCriteria

Overrides the set of event criteria initially defined with enableCallNotification().

assignmentID

Specifies the ID returned with enableCallNotification().

Returns

Errors USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)423GPP TS 23.127 version 3.4.0 Release 1999

Method disableCallNotification()

This method is used by the application to disable call notifications.

Direction Application to network

Parameters assignmentID

Specifies the assignment ID given by the generic call control manager object when the previous
enableNotification() was called.

Returns -

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment IDs.

Method getCriteria()

This method is used to retrieve the call event notification criteria set with enableCallNotification()
or changeCallNotification().

Direction Application to network

Parameters assignmentID

Specifies the assignment ID given by the generic call control manager object when the previous
enableNotification() was called.

Returns eventCriteria

Specifies the event specific criteria currently set.

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)433GPP TS 23.127 version 3.4.0 Release 1999

Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction Network to application

Parameters callReference

Specifies the call session ID and the reference to the call object to which the notification relates.

eventInfo

Specifies data associated with this event. These data include originating address, original destination
address, redirecting address and application information, which consists of teleservice information,
bearer service information, calling party's category, presentation address, additional calling party
address, alerting mechanism, network access type, interworking indicators and generic info for
operator specific information.

assignmentID

Specifies the assignment ID which was returned by the enableNotification() method. The
application can use assignment ID to associate events with event-specific criteria and to act
accordingly.

appInterface

Specifies a reference to the application object which implements the callback interface for the new
call.

Returns -

Errors -

Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally.
No further communication will be possible between the call object and the application.

Direction Network to application

Parameters callReference

Specifies the call object that has aborted or terminated abnormally.

Returns -

Errors -

Method callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted
(for example, due to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Direction Network to application

Parameters -

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)443GPP TS 23.127 version 3.4.0 Release 1999

Method callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Direction Network to application

Parameters -

Returns -

Errors -

7.1.2 Call

The generic call interface provides basic call control methods for applications.

Method routeReq()

This asynchronous method requests routing of the call to the destination party (specified in the
parameter TargetAddress).

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

responseRequested

Specifies the set of observed call events that will result in a routeRes() being generated.

targetAddress

Specifies the destination party to which the call should be routed.

originatingAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress

Specifies the original destination address of the call. This parameter may be equal to the
originalDestinationAddress or Destination Address as received by the
application in the eventInfo parameter of the callEventNotify method. The latter
alternative is conventional when a new targetAddress is supplied by the application.

redirectingAddress

Specifies the last address from which the call was redirected.

appInfo

Specifies application-related information pertinent to the call: teleservice information, bearer service
information, calling party's category, presentation address, additional calling party address, alerting
mechanism, network access type, interworking indicators and generic info for operator specific
information.

assignmentID
Specifies the ID assigned to the request. The same ID will be returned in the routeRes or Err. This
allows the application to correlate the request and the result.

Returns -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)453GPP TS 23.127 version 3.4.0 Release 1999

Errors USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method routeRes()

This asynchronous method indicates that the request to route the call to the destination was
successful, and indicates the response of the destination party (for example, the call was answered,
not answered, refused due to busy, etc.).

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

eventReport

Specifies the result of the request to route the call to the destination party. It includes the network
event, date and time, monitoring mode and event specific information such as release cause.

assignmentID

Specifies the assignment ID of the routing request.

Returns -

Errors -

Method routeErr()

This asynchronous method indicates that the request to route the call to the destination party was
unsuccessful, e.g. an error detected in the network or the call was abandoned.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

assignmentID

Specifies the assignment ID of the routing request.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)463GPP TS 23.127 version 3.4.0 Release 1999

Method release()

This method requests the release of the call and associated objects.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

cause

Specifies the cause of the release.

Returns -

Errors -

Method deassignCall()

This method requests that the relationship between the application and the call and associated object
be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the
application has no further control of call processing. If a call is de-assigned that has event reports or
call information reports requested, then these reports will be disabled and any related information
discarded.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

Returns -

Errors -

Method getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the
appropriate time (for example, to calculate charging). This method must be invoked before the call
is routed to a target address.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

callInfoRequested

Specifies the call information that is requested.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)473GPP TS 23.127 version 3.4.0 Release 1999

Method getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as
release cause depending on which information has been requested by getCallInfoReq. This
information may be used e.g. for charging purposes. The call information will possibly be sent after
routeRes in all cases where the call or a leg of the call has been disconnected or a routing failure
has been encountered.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

callInfoReport

Specifies the call information requested.

Returns -

Errors -

Method getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error
condition.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)483GPP TS 23.127 version 3.4.0 Release 1999

Method superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection
time for this call. If an application calls this function before it calls a routeReq() or a user
interaction function the time measurement will start as soon as the call is answered by the B-party or
the user interaction system.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

time

Specifies the granted time in milliseconds for the connection.

treatment

Specifies how the network should react after the granted connection time expired.

Returns -

Errors -

Method superviseCallRes()

This asynchronous method responds to superviseCallReq and reports a call supervision event to the
application. The call information will be sent after possible routeRes in all cases when the call, user
interaction device or a leg of the call has been disconnected or a routing failure encountered. This
method is also invoked when a tariff switch happens in the network during an active call.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

report

Specifies the situation, which triggered the sending of the call supervision response.

usedTime

Specifies the used time for the call supervision (in milliseconds).

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)493GPP TS 23.127 version 3.4.0 Release 1999

Method superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns -

Errors -

Method callFaultDetected()

This method indicates to the application that a fault in the network has been detected which can't be
communicated by a network event, e.g., when the user aborts before any routing method is called by
the application.

The system purges the call object. Therefore, the application has no further control of call
processing. No report will be forwarded to the application.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call object in which the fault has been detected.

fault

Specifies the fault that has been detected.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)503GPP TS 23.127 version 3.4.0 Release 1999

Method callEnded()

This method indicates to the application that the call has terminated in the network. However, the
application may still receive some results (e.g. getCallInfoRes) related to the call. The application is
expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application
was monitoring for it.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call object for the call.

report

Specifies the reason why the call was terminated.

Returns -

Errors -

Method setAdviceOfCharge()

This method allows the application to supply the charging information that will be sent to the end-
users handset.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

aOCInfo

Specifies two sets of Advice of Charge parameter according to GSM

tariffSwitch

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes
valid.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)513GPP TS 23.127 version 3.4.0 Release 1999

Method setCallChargePlan()

Allows an application to include charging information in network generated CDR.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

callChargePlan

 Free Format string containing the application specific charging information Specifies the charge
plan.

Returns -

Errors -

7.1.2.1 Sequence Diagrams

The following section will describe some scenarios to illustrate the use of the methods described above.

7.1.2.2 Enable Call notification

The first task to perform in order to allow applications to provide call control related services to certain users is to
enable call-related events for these users to trigger the application. This is done with the method
enableCallNotification().

CallControlManager CallApplication

1: enableCallNotification()

Figure 7: Enable call notification

7.1.2.3 Number translation

The example in figure 8 shows a simple number translation application.

After the call is triggered (according to the criteria in a previous enableCallNotification()), the application is
notified with an eventCallNotify() message. This allows the application to perform the needed actions and
continue the call set-up via a routeReq() message. The result of the call set-up (both positive and negative) is
relayed to the application.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)523GPP TS 23.127 version 3.4.0 Release 1999

2: callEventNotify()

CallControlManager Call Application

3: 'translate number'

5: routeReq()

6: routeRes()

4: setCallback()

Figure 8: Simple number translation

7.1.2.4 Call barring

The next example (figure 9) shows how a call barring application can be implemented.

C a l l A p p l ic a t io n U IC a ll C a l lC o n tr o lM a n a g e r

8 : ro u te R e s ()

7 : ro u te R e q ()

4 : s e tC a llb a c k ()

5 : s e n d In fo A n d C o lle c t ()

6 : s e n d In fo A n d C o lle c tR e s ()

2 : c a llE v e n tN o t i fy ()

3 : s e tC a llb a c k ()

Figure 9:Call barring application

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)533GPP TS 23.127 version 3.4.0 Release 1999

7.1.2.5 Pre-paid with advice of charge

The next example shows how a pre-paid application can be implemented.

With a pre-paid application it is the application that will determine the charging for the call. This means that the
application will hold the whole tariffing scheme needed and needs to control the whole call. For the call shown the
following conditions apply:

- it is a long call;

- two tariff changes take place during the call;

- the application will inform the user about the applicable charging (UICall interface in figure 8, which belongs to
the Call User Interaction SCF described in subclause 7.5.2. Note that the UI Manager interface has been omitted
for simplicity).

After the application has been triggered, it sends a superviseCallReq() message indicating that the application will be
responsible for charging the call. Before the call is be routed to the requested destination (5), the application sends the
allowed time for the call (4) and informs the user about the charging applicable (using the Advice of Charge
functionality in the core network) for this call (3). The sent information consists of two sets of AoC information and a
tariff switch. The application will be notified via the superviseCallRes() message if the tariff switch expired during the
supervised period. This allows the application to send a new set of AoC information and a new tariff switch.

The application is notified of the expiration of the allowed time (7) and determines if the user has enough account left to
continue with the call.

1) If there is enough account left a new time slot is allowed.

2) Is there not enough account, the user will be notified and the call terminated after some time in order to allow the
user to finish the call graciously.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)543GPP TS 23.127 version 3.4.0 Release 1999

App lica tion
 C a llC on tro lM ana ger C all U IC a ll

1: enableCallN o tifica tion ()

2: ca llEventN otify ()

3: se tAdviceO fC harge()

5: rou teRe q()

7: su pervise Call_Res()

8: su pervise Call_Req()

9: su pervise Call_Res()

10: se tAdviceO fC harge()

11: superv iseC all_R eq()

12: superv iseC all_R es()

4: su pervise CallR eq()

13: send Info_R eq()
14: send Info_R es()

15: superv iseC all_R eq()

16: superv iseC all_R es()

17: re lease()

6: rou teRe s()

Figure 10: Pre-paid with AoC

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)553GPP TS 23.127 version 3.4.0 Release 1999

7.2 Data Session Control
The Data Session control network service capability feature consists of two interfaces:

1) Data Session manager, containing management functions for data session related issues;

2) Data Session, containing methods to control a session.

A session can be controlled by one Data Session Manager only. Data Session Manager can control several sessions.

1 Data Session
Manager

Data Session

1 n

NOTE: The term "data session" is used in a broad sense to describe a data connection/session. For example, it
comprises a PDP context in GPRS.

Figure 11: Data Session control interfaces usage relationship

The Data Session Control service capability features are described in terms of the methods in the Data Session Control
interfaces. Table 2 gives an overview of the Data Session Control methods and to which interfaces these methods
belong.

Table 2: Overview of Data Session Control interfaces and their methods

Data Session Manager Data Session
enableDataSessionNotification connectReq
disableDataSessionNotification connectRes
dataSessionNotificationInterrupted connectErr
dataSessionNotificationContinued release
dataSessionEventNotify superviseDataSessionReq
dataSessionAborted superviseDataSessionRes

superviseDataSessionErr
dataSessionFaultDetected
setAdviceofCharge
setDataSessionChargePlan

7.2.1 Data Session Manager

The session manager interface provides the management functions to the data session service capability features. The
application programmer can use this interface to enable or disable data session-related event notifications.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)563GPP TS 23.127 version 3.4.0 Release 1999

Method enableDataSessionNotification()

This method is used to enable data session-related notifications to be sent to the application.

Direction Application to network

Parameters appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via the
setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required. Individual
addresses or address ranges may be specified for destination and/or origination. Examples of events
are "Data Session set up"

Returns assignmentID

Specifies the ID assigned by the Data Session Manager object for this newly-enabled event
notification.

Errors USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method disableDataSessionNotification()

This method is used by the application to disable data session notifications.

Direction Application to network

Parameters assignmentID

Specifies the assignment ID given by the data session manager object when the previous
enableDataSessionNotification() was done.

Returns -

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)573GPP TS 23.127 version 3.4.0 Release 1999

Method dataSessionEventNotify()

This method notifies the application of the arrival of a data session-related event.

Direction Network to application

Parameters dataSessionReference

Specifies the session ID and the reference to the Data Session object to which the notification
relates.

eventInfo

Specifies data associated with this event. This data includes the destination address provided by the
end-user.

assignmentID

Specifies the assignment id which was returned by the
enableDataSessionNotification() method. The application can use assignment ID to
associate events with event-specific criteria and to act accordingly.

appInterface

Specifies a reference to the application object which implements the callback interface for the new
data session.

Returns -

Errors -

Method dataSessionAborted()

This method indicates to the application that the Data Session object has aborted or terminated
abnormally. No further communication will be possible between the Data Session object and the
application.

Direction Network to application

Parameters dataSessionID

Specifies the session ID of the data session that has aborted or terminated abnormally.

Returns -

Errors -

Method dataSessionNotificationInterrupted()

This method indicates to the application that event notifications will no longer be sent (for example,
due to faults detected).

Direction Network to application

Parameters -

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)583GPP TS 23.127 version 3.4.0 Release 1999

Method dataSessionNotificationContinued()

This method indicates to the application that all event notifications will be sent again.

Direction Network to application

Parameters -

Returns -

Errors -

7.2.2 Data Session

The Data Session interface provides basic methods for applications to control data sessions.

Method connectReq()

This asynchronous method requests the connection of a data session with the destination party
(specified in the parameter TargetAddress). The Data Session object is not automatically deleted if
the destination party disconnects from the data session.

Direction Application to network

Parameters dataSessionID

Specifies the session ID.

responseRequested

Specifies the set of observed data session events that will result in a connectRes() being
generated.

targetAddress

Specifies the address of destination party.

assignmentID
Specifies the ID assigned to the request. The same ID will be returned in the connectRes or Err. This
allows the application to correlate the request and the result.

Returns -

Errors USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)593GPP TS 23.127 version 3.4.0 Release 1999

Method connectRes()

This asynchronous method indicates that the request to connect a data session with the destination
party was successful, and indicates the response of the destination party (e.g. connected,
disconnected).

Direction Network to application

Parameters dataSessionID

Specifies the session ID of the data session.

eventReport

Specifies the result of the request to connect the data session. It includes the network event, date and
time, monitoring mode and event specific information such as release cause.

Returns -

Errors -

Method connectErr()

This asynchronous method indicates that the request to connect a data session with the destination
party was unsuccessful, e.g. an error detected in the network or the data session was abandoned.

Direction Network to application

Parameters dataSessionID

Specifies the session ID.

errorIndication

Specifies the error which led to the original request failing.

Returns -

Errors -

Method release()

This method requests the release of the data session.

Direction Application to network

Parameters dataSessionID

Specifies the session.

cause

Specifies the cause of the release.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)603GPP TS 23.127 version 3.4.0 Release 1999

Method superviseDataSessionReq()

The application calls this method to supervise a data session. The application can set a granted data
volume for this data session. If an application calls this function before it calls a connectReq()
or a user interaction function the time measurement will start as soon as the data session is
connected. The Data Session object will exist after the data session has been terminated if
information is required to be sent to the application at the end of the data session.

Direction Application to network

Parameters dataSessionID

Specifies the data session.

treatment

Specifies how the network should react after the granted data volume has been sent.

bytes

Specifies the granted number of bytes that can be transmitted for the data session.

Returns -

Errors -

Method superviseDataSessionRes()

This asynchronous method reports a data session supervision event to the application.

Direction Network to application

Parameters dataSessionID

Specifies the data session.

report

Specifies the situation, which triggered the sending of the data session supervision response.

usedVolume

Specifies the used volume for the data session supervision (in the same unit as specified in the
request).

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)613GPP TS 23.127 version 3.4.0 Release 1999

Method superviseDataSessionErr()

This asynchronous method reports a data session supervision error to the application.

Direction Network to application

Parameters dataSessionID

Specifies the data session ID.

errorIndication

Specifies the error which led to the original request failing.

Returns -

Errors -

Method dataSessionFaultDetected()

This method indicates to the application that a fault in the network has been detected which can't be
communicated by a network event, e.g., when the user aborts before any establishment method is
called by the application.

The system purges the Data Session object. Therefore, the application has no further control of data
session processing. No report will be forwarded to the application.

Direction Network to application

Parameters dataSessionID

Specifies the data session ID of the Data Session object in which the fault has been detected.

fault

Specifies the fault that has been detected.

Returns -

Errors -

Method setDataSessionChargePlan()

Allows an application to include charging information in network generated CDR.

Direction Application to network

Parameters dataSessionID

Specifies the session ID of the data session.

dataSessionChargePlan

Specifies the charge plan used.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)623GPP TS 23.127 version 3.4.0 Release 1999

Method setAdviceOfCharge()

This method allows the application to determine the charging information that will be send to the
end-users terminal.

Direction Application to network

Parameters dataSessionID

Specifies the session ID of the data session.

aoCInfo

Specifies two sets of Advice of Charge parameter according to GSM

tariffSwitch

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Returns -

Errors -

Sequence Diagrams

Application DataSession
Manager

DataSession

1: enableDataSessionNotification

Figure 12: Enable Data Session Notification

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)633GPP TS 23.127 version 3.4.0 Release 1999

Application DataSession
Manager

DataSession

2: DataSessionEventNotify()

3: 'translate address'

4: setCallback()

5: superviseDataSessionReq()

6: connectReq()

10: connectRes()

9: superviseDataSessionRes()

7: superviseDataSessionRes()

8: superviseDataSessionReq()

Figure 13: Address translation with charging

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)643GPP TS 23.127 version 3.4.0 Release 1999

7.2a Network User Location
The Network User Location service capability feature provides terminal location information, based on network-related
information. The following information is reported when requested provided that the network is able to support the
corresponding capability:

- user whom the report concerns;

- geographical position;

- VLR number;

- Cell Global Identification or Location Area Identification;

- location number (network specific, refer to ITU-T Q.763);

- time when the position information was attained.

It consists of a single interface, permitting an application to perform the following:

- user location requests;

- requests for starting (or stopping) the generation by the network of periodic user location reports;

- requests for starting (or stopping) the generation by the network of user location reports based on location
changes.

Method locationReportReq()

Request for mobile-related location information on one or several users.

Direction Application to network

Parameters appNetworkLocation

If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface, which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to OSA
Access SCF).

users

Specifies the user(s) for which the location shall be reported.

Returns assignmentID

Specifies the assignment ID of the location-report request.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)653GPP TS 23.127 version 3.4.0 Release 1999

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method locationReportRes()

Delivery of a mobile location report. The report is containing mobile-related location
information for one or several users.

Direction Network to application

Parameters assignmentID

Specifies the assignment ID of the location-report request.

locations

Specifies the location(s) of one or several users.

Returns -

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method locationReportErr()

This method indicates that the location report request has failed.

Direction Network to application

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)663GPP TS 23.127 version 3.4.0 Release 1999

Parameters assignmentID

Specifies the assignment ID of the failed location report request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure

Returns -

Errors -

Method periodicLocationReportingStartReq()

Request for periodic mobile location reports on one or several users.

Direction Application to network

Parameters appNetworkLocation

If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to OSA
Access SCF).

users

Specifies the user(s) for which the location shall be reported.

reportingInterval

Specifies the requested interval in seconds between the reports.

Returns assignmentID

Specifies the assignment ID of the periodic location-reporting request.

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)673GPP TS 23.127 version 3.4.0 Release 1999

Method periodicLocationReportingStop()

This method stops the sending of periodic mobile location reports for one or several
users.

Direction Application to network

Parameters stopRequest

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the
assignment should be stopped.

Returns -

Errors INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method periodicLocationReport()

Periodic delivery of mobile location reports. The reports are containing mobile-related
location information for one or several users.

Direction Network to application

Parameters assignmentID

Specifies the assignment ID of the periodic location-reporting request.

locations

Specifies the location(s) of one or several users.

Returns -

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)683GPP TS 23.127 version 3.4.0 Release 1999

Method periodicLocationReportErr()

This method indicates that a requested periodic location report has failed. Note that
errors only concerning individual users are reported in the ordinary
periodicLocationReport() message.

Direction Network to application

Parameters assignmentID

Specifies the assignment ID of the failed periodic location reporting start request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure.

Returns -

Errors -

Method triggeredLocationReportingStartReq()

Request for user location reports, containing mobile related information, when the
location is changed (the report is triggered by the location change, e.g. change of VLR
number, change of Cell Global Identification).

Direction Application to network

Parameters appNetworkLocation

If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to OSA
Access SCF).

users

Specifies the user(s) for which the location shall be reported.

trigger

Specifies the trigger conditions.

Returns assignmentID

Specifies the assignment ID of the triggered location-reporting request.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)693GPP TS 23.127 version 3.4.0 Release 1999

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method triggeredLocationReportingStop()

Request that triggered mobile location reporting should stop.

Direction Application to network

Parameters stopRequest

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the
assignment should be stopped.

Returns -

Errors INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment

Method triggeredLocationReport()

Delivery of a report that is indicating that one or several user's mobile location has
changed.

Direction Network to application

Parameters assignmentID

Specifies the assignment ID of the triggered location-reporting request.

location

Specifies the location of the user.

criterion

Specifies the criterion that triggered the report.

Returns -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)703GPP TS 23.127 version 3.4.0 Release 1999

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method triggeredLocationReportErr()

This method indicates that a requested triggered location report has failed. Note that
errors only concerning individual users are reported in the ordinary
triggeredLocationReport() message.

Direction Network to application

Parameters assignmentID

Specifies the assignment ID of the failed triggered location reporting start request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure.

Returns -

Errors -

7.3 User Status
The User Status service capability feature provides general user status monitoring. It allows applications to obtain the
status of the user's terminal. It consists of a single interface.

Method statusReportReq()

Request for a report on the status of one or several users.

Direction Application to network

Parameters appStatus

If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to OSA
Access SCF).

users

Specifies the user(s) for which the status shall be reported.

Returns assignmentID

Specifies the assignment ID of the status-report request.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)713GPP TS 23.127 version 3.4.0 Release 1999

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method statusReportRes()

Delivery of a report, that is containing one or several user's status.

Direction Network to application

Parameters assignmentID

Specifies the assignment ID of the status-report request.

status

Specifies the status of one or several users.

Returns -

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method statusReportErr()

This method indicates that the status report request has failed.

Direction Network to application

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)723GPP TS 23.127 version 3.4.0 Release 1999

Parameters assignmentID

Specifies the assignment ID of the failed status report request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure.

Returns -

Errors -

Method triggeredStatusReportingStartReq()

Request for triggered status reports when one or several user's status is changed. The
user status SCF will send a report when the status changes.

Direction Application to network

Parameters appStatus

If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to OSA
Access SCF).

users

Specifies the user(s) for which the status changes shall be reported.

Returns assignmentID

Specifies the assignment ID of the triggered status-reporting request.

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)733GPP TS 23.127 version 3.4.0 Release 1999

Method triggeredStatusReportingStop()

This method stops the sending of status reports for one or several users.

Direction Application to network

Parameters stopRequest

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the
assignment should be stopped.

Returns -

Errors INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method triggeredStatusReport()

Delivery of a report that is indicating that a user's status has changed.

Direction Network to application

Parameters assignmentID

Specifies the assignment ID of the triggered status-reporting request.

status

Specifies the status of the user.

Returns -

Errors INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method triggeredStatusReportErr()

This method indicates that a requested triggered status reporting has failed. Note that
errors only concerning individual users are reported in the ordinary
triggeredStatusReport() message.

Direction Network to application

Parameters assignmentID

Specifies the assignment ID of the failed triggered status reporting start request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)743GPP TS 23.127 version 3.4.0 Release 1999

7.4 Terminal Capabilities
It shall be possible for a application to request Terminal Capabilities as defined by MExE [3]. The terminal capabilities
are provided by a MExE compliant terminal to the MExE Service Environment either on request or by the terminal
itself.

Terminal Capabilities are available only after a Capability negotiation has previously taken place between the user´s
MExE terminal and the MExE Service environment as specified in [3].

Note: for Release 99 only WAP MExE devices can supply terminal capabilities.

The Terminal Capabilities service capability feature is supported by a unique interface, which consists of the following
method.

The Terminal Capabilities service capability feature is supported by a unique interface, which consists of the following
method.

Method getTerminalCapabilities()

This method is used by an application to get the capabilities of a user´s terminal.

Direction Application to Network

Parameters terminalIdentity

Identifies the terminal. It may be a logical address known by the WAP
Gateway/PushProxy.

Returns terminalCapabilities

Specifies the latest available capabilities of the user´s terminal.
This information, if available, is returned as CC/PP headers as specified in W3C [12]
and adopted in the WAP UAProf specification [13]. It contains URLs; terminal
attributes and values, in RDF format; or a combination of both.

Errors -

7.5 Message Transfer

7.5.1 Generic User Interaction

The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of
two interfaces:

1) User Interaction Manager, containing management functions for User Interaction related issues;

2) Generic User Interaction, containing methods to interact with an end-user.

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User
Interaction interfaces.

The following table gives an overview of the Generic User Interaction methods and to which interfaces these methods
belong.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)753GPP TS 23.127 version 3.4.0 Release 1999

Table 3: Overview of Generic User Interaction interfaces and their methods

User Interaction Manager Generic User Interaction
createUI sendInfoReq
createUICall sendInfoRes
enableUINotification sendInfoErr
disableUINotification sendInfoAndCollectReq
userInteractionEventNotify sendInfoAndCollectRes
userInteractionAborted sendInfoAndCollectErr
userInteractionNotificationInterru
pted

release

userInteractionNotificationContin
ued

userInteractionFaultDetected

7.5.1.1 User Interaction Manager

Inherits from the generic service interface.

The User Interaction Manager interface provides the management functions to the User Interaction interface.

Method createUI()

This method is used to create a new (non call related) user interaction object.

Direction Application to network

Parameters appUI

Specifies the application interface for callbacks from the user interaction created.

userAddress

Indicates the end-user whom to interact with

Returns userInteraction

Specifies the interface and sessionID of the user interaction created.

Errors USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method createUICall()

This method is used to create a new call related user interaction object.

The user interaction can take place to the specified party (callLegIdentifier) or to all parties
in a call (callIdentifier). Only one of callIdentifier or callLegIdentifier may
be defined (the other should be set to NULL).

Note that for certain implementations user interaction can only be performed towards the controlling
call party, which shall be the only party in the call.

Direction Application to network

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)763GPP TS 23.127 version 3.4.0 Release 1999

Parameters appUI

Specifies the application interface for callbacks from the user interaction created.

callIdentifier

Specifies the call interface and session ID of the call associated with the send info method.

callLegIdentifier

Indicates the end-user whom to interact with

Returns userInteraction

Specifies the interface and sessionID of the user interaction created.

Errors

Method enableUINotification()

This method is used to enable the reception of user initiated user interaction.

Direction Application to network

Parameters appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via the
setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required, like user
address and service code.

Returns assignmentID

Specifies the ID assigned for this newly-enabled event notification.

Errors

Method disableUINotification()

This method allows the application to remove notification for UI related actions previously set.

Direction Application to network

Parameters assignmentID

Specifies the assignment ID given by the user interaction manager interface when the previous
enableNotification() was called. If the assignment ID does not correspond to one of the
valid assignment IDs, the framework will return an error code.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)773GPP TS 23.127 version 3.4.0 Release 1999

Method userInteractionEventNotify()

This method notifies the application of a user initiated request for user interaction.

Direction Network to Application

Parameters ui

Specifies the reference to the interface and the sessionID to which the notification relates.

eventInfo

Specifies data associated with this event.

assignmentID

Specifies the assignment ID which was returned by the enableNotification() method. The
application can use assignment ID to associate events with event specific criteria and to act
accordingly.

Returns appInterface

Specifies the application interface for callbacks from the user interaction created.

Errors

Method userInteractionAborted()

This method indicates to the application that the User Interaction SCF instance has terminated or
closed abnormally. No further communication will be possible between the User Interaction SCF
instance and application.

Direction Network to Application

Parameters userInteraction

Specifies the interface and sessionID of the user interaction SCF that has terminated.

Returns

Errors

Method userInteractionNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted
(for example, due to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Direction Network to application

Parameters -

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)783GPP TS 23.127 version 3.4.0 Release 1999

Method userInteractionNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Direction Network to application

Parameters -

Returns -

Errors -

7.5.1.2 Generic User Interaction

Inherits from the generic service interface. The Generic User Interaction interface provides functions to send
information or data to, or gather information from, the user (or call party). The information to send can be an
announcement or a text. The data downloaded in the terminal is specified by a URL.

Method sendInfoReq()

This asynchronous method sends information to the user.

Direction Application to Network

Parameters userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

info

Specifies the information to send to the user. This information can be:

- an infoID, identifying pre-defined information to be send (announcement and/or text);

- a string, defining the text to be sent;

- a URL , identifying pre-defined information or data to be sent to or downloaded into the
terminal

variableInfo

Defines the variable part of the information to send to the user.

repeatIndicator

Defines how many times the information shall be send to the end-user. In the case of a call related
user interaction, a value of zero (0) indicates that the announcement shall be repeated until the call
or call leg is released or an abortActionReq() is sent.

responseRequested

Specifies if a response is required from the call user interaction SCF, and any action the SCF should
take.

Returns assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)793GPP TS 23.127 version 3.4.0 Release 1999

Method sendInfoRes()

This asynchronous method informs the application about the start or the completion of a
sendInfoReq(). This response is called only if the application has required a response.

Direction Network to Application

Parameters userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

response

Specifies the type of response received from the user.

Returns

Errors

Method sendInfoErr()

This asynchronous method indicates that the request to send information was unsuccessful.

Direction Network to Application

Parameters userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

error

Specifies the error which led to the original request failing.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)803GPP TS 23.127 version 3.4.0 Release 1999

Method sendInfoAndCollectReq()

This asynchronous method plays an announcement or sends other information to the user and
collects some information from the user. The announcement usually prompts for a number of
characters (for example, these are digits or text strings such as "YES" if the user's terminal device is
a phone).

Direction Application to Network

Parameters userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

info

Specifies the information to send to the user.

variableInfo

Defines the variable part of the information to send to the user.

criteria

Specifies additional properties for the collection of information, such as the maximum and
minimum number of characters, end character, first character timeout and inter-character timeout.

responseRequested

Specifies if a response is required from the call user interaction SCF, and any action the SCF should
take.

Returns assignmentID

Specifies the ID assigned by the generic user interface

Errors

Method sendInfoAndCollectRes()

This asynchronous method returns the information collected to the application.

Direction Network to Application

Parameters userInteractionSessionID

Specifies the session ID of the user interaction.

assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

response

Specifies the type of response received from the user.

info

Specifies the information collected from the user.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)813GPP TS 23.127 version 3.4.0 Release 1999

Method sendInfoAndCollectErr()

This asynchronous method indicates that the request to send information and collect a response was
unsuccessful.

Direction Network to Application

Parameters userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

error

Specifies the error which led to the original request failing.

Returns

Errors

Method release()

This method requests that the relationship between the application and the user interaction object be
released. It causes the release of the used user interaction resources and interrupts any ongoing user
interaction.

Direction Application to Network

Parameters userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

Returns

Errors

Method userInteractionFaultDetected()

This method indicates to the application that a fault has been detected in the user interaction.

Direction Network to Application

Parameters userInteractionSessionID

Specifies the interface and sessionID of the user interaction SCF in which the fault has been
detected.

fault

Specifies the fault that has been detected.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)823GPP TS 23.127 version 3.4.0 Release 1999

7.5.2 Call User Interaction

The Call User Interaction service capability feature is used by applications to interact with end users participating to a
call. It consists of two interfaces:

1) User Interaction Manager, containing management functions for User Interaction related issues. This interface is
the same as the one defined in subclause 7.5.1;

2) Call User Interaction, extending Generic User Interaction for call-specific user interaction. It provides functions
to send information to, or gather information from, a user (or call party) in a call.

The Call User Interaction service capability feature is described in terms of the methods in the Call User Interaction
interfaces.

The following table gives an overview of the Call User Interaction methods and to which interfaces these methods
belong.

Table 4: Overview of Call User Interaction interfaces and their methods

User Interaction Manager Call User Interaction
As defined for the Generic User
Interaction SCF

Inherits from Generic User
Interaction and adds:
abortActionReq
abortActionRes
abortActionErr

Method abortActionReq()

This asynchronous method aborts a user interaction operation, e.g. a sendInfoCall_Req().
The call and call leg are otherwise unaffected. The call user interaction SCF interrupts the indicated
action.

Direction Application to Network

Parameters userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID

Specifies the user interaction request to be cancelled.

Returns

Errors

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)833GPP TS 23.127 version 3.4.0 Release 1999

Method abortActionRes()

This asynchronous method confirms that the request to abort a user interaction operation on a call
leg was successful.

Direction Network to Application

Parameters userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID

Specifies the user interaction request to be cancelled.

Returns

Errors

Method abortActionErr()

This asynchronous method indicates that the request to abort a user interaction operation on a call
leg resulted in an error.

Direction Network to Application

Parameters userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID

Specifies the user interaction request to be cancelled.

error

Specifies the error which led to the original request failing.

Returns

Errors

7.6 User Profile Management
User Profile information may be distributed between the Home Environment and the Home Environment Value-Added
Services Providers. The HE-VASP may manage information specific to the services supported by their OSA
applications. For this, they may use models and mechanisms, which are out of the scope of OSA release 1999.

Home Environment User Profile information consists of various user interface and service related information. Of
particular interest in the context of release 99 is the following information:

- list of services to which the end-user is subscribed;

- service status (active/inactive);

- privacy status with regards to network service capabilities (e.g. user location, user interaction);

- terminal capabilities.

Home Environment user profile information may be stored centrally, or the information may be distributed over
relevant physical entities.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)843GPP TS 23.127 version 3.4.0 Release 1999

Terminal capabilities may be accessed by OSA applications through the network Terminal Capabilities SCF.

8 OSA Internal API
The OSA internal API between framework and service capability servers supports registering of network service
capability features, and permits the framework to retrieve a network SCF manager interface when an application is
granted access to a network SCF.

8.1 OSA Access and Discovery
To support registration, the OSA Access and Discovery interfaces, as defined in clause 6, shall be supported at the OSA
internal API.

8.2 Registration of network service capability features at the
framework

The Framework needs to know the Service Capability Features provided by the SCSs, in order to make them available
to applications. For this purpose network service capability features have to be registered with the Framework, and they
need to be registered in such a way that applications can discover them as specified in clause 6.

Note: Framework and Service Capability Servers are located within the same trusted domain. Therefore no
authentication mechanisms are required between them.

The following table gives an overview of the methods defined in this subclause and to which interfaces these methods
belong.

Table 5: Overview of Registration interfaces and their methods

Service Registration Service Factory
registerService getServiceManager
announceServiceAvailability
unregisterService
describeService

8.2.1 Service Registration

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)853GPP TS 23.127 version 3.4.0 Release 1999

Method registerService()

The registerService() operation is the means by which a service capability feature is registered in the
framework, for subsequent discovery by the applications. A serviceID is returned to the service
capability server when a service capability feature is registered in the framework. The serviceID is
the handle with which the service capability server can identify the registered service capability
feature when needed (e.g. for withdrawing it). The serviceID is only meaningful in the context of
the framework that generated it.

Direction Network to network (service capability server to framework)

Parameters serviceTypeName

This parameter identifies the SCF type and a set of named property types that may be used in further
describing this service capability feature , i.e. it restricts what is acceptable in the
servicePropertyList parameter.

servicePropertyList

This parameter is a list of property name and property value pairs. They describe the SCF being
registered. This description typically covers behavioural, non-functional and non-computational
aspects of the SCF. It allows for several versions with different descriptions of the same SCF, so
that different applications may be allowed different levels of use of the same SCF.

SCF properties may be marked as "mandatory" or "readonly". These property mode attributes have
the following semantics:

mandatory – an SCF associated with this SCF type must provide an appropriate value for this
property when registering.

readonly – this modifier indicates that the property is optional, but that once given a value, it may
not be subsequently modified.

Some properties may be marked both "mandatory"and "readonly". Specifying both modifiers
indicates that a value must be provided and that it may not be subsequently modified. Examples of
such properties are those which form part of a service agreement and hence cannot be modified by
the SCS during the life time of the SCF.

Returns serviceID

This is the unique handle that is returned as a result of the successful completion of this operation.
It identifies the SCF as described in terms of properties, that is, as will be allowed to be used by a
certain application. The SCS can identify the registered SCF when attempting to access it via other
operations such as announceServiceAvailability(), etc. Applications are also returned this serviceID
when attempting to discover an SCF of this type.

Errors If the string representation of the serviceTypeName does not obey the rules for identifiers, then an
ILLEGAL_SERVICE_TYPE exception is raised.

If the serviceTypeName is correct syntactically but the framework is able to unambiguously
determine that it is not a recognized SCF type, then an UNKNOWN_SERVICE_TYPE exception is
raised.

If the type of any of the property values is not the same as the declared type (declared in the SCF
type), then a PROPERTY_TYPE_MISMATCH exception is raised.

If an attempt is made to assign a dynamic property value to a readonly property, then the
READONLY_DYNAMIC_PROPERTY exception is raised.

If the servicePropertyList parameter omits any property declared in the SCF type with a mode of
mandatory, then a MISSING_MANDATORY_PROPERTYexception is raised.

If two or more properties with the same property name are included in this parameter, the
DUPLICATE_PROPERTY_NAME exception is raised.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)863GPP TS 23.127 version 3.4.0 Release 1999

Method announceServiceAvailability()

The registerService() method described previously does not make an SCF discoverable. The
announceServiceAvailability() method is invoked after the SCF's "service factory" is instantiated at
a particular interface. This method informs the framework of the availability of a "service factory"
for the previously registered SCF, identified by its serviceID, at a specific interface. This "service
factory" is the entry point for subsequent use of the corresponding SCF, as previously described in
terms of properties. After the receipt of this information, the framework makes the corresponding
SCF (identified by the pair [serviceID, serviceFactoryRef]) discoverable.

Direction Network to network (service capability server to framework)

Parameters serviceID

The serviceID of the SCF that is being announced.

serviceFactoryRef

The interface reference at which the "service factory" of the previously registered SCF is available.

Returns

Errors If the string representation of the serviceID does not obey the rules for SCF identifiers, then an
ILLEGAL_SERVICE_ID exception is raised.

If the serviceID is legal but there is no SCF offer within the Framework with that ID, then an
UNKNOWN_SERVICE_ID exception is raised.

Method unregisterService()

The unregisterService() operation is used by the SCSs to remove a registered SCF from the
framework. The SCF is identified by the serviceID, which was originally returned by the framework
in response to the registerService() operation. After the unregisterService(), the SCF can no longer
be discovered by applications.

Direction Network to network (service capability server to framework)

Parameters serviceID

The SCF to be withdrawn is identified by the serviceID parameter, which was originally returned by
the registerService() operation.

Returns

Errors If the string representation of the serviceID does not obey the rules for SCF identifiers, then an
ILLEGAL_SERVICE_ID exception is raised.

If the serviceID is legal but there is no SCF offer within the Framework with that ID, then an
UNKNOWN_SERVICE_ID exception is raised.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)873GPP TS 23.127 version 3.4.0 Release 1999

Method describeService()

The describeService() operation returns the information about an SCF that is registered in the
framework. It comprises the type of the SCF and the properties that describe this SCF. The SCF is
identified by the serviceID parameter which was originally returned by the registerService()
operation.

This operation is intended to be used between a certain framework and the SCS that registered the
SCF, since it is only between them that the serviceID is valid. The SCS may register various
versions of the same SCF, each with a different description (more or less restrictive, for example),
and each getting a different serviceID assigned. Getting the description of these SCFs from the
framework where they have been registered helps the SCS internal maintenance.

Direction Network to network (service capability server to framework)

Parameters serviceID

The SCF to be described is identified by the serviceID parameter, which was originally returned by
the registerService() operation.

Returns serviceDescription

This consists of the information about an offered SCF that is held by the Framework. It comprises
the "type" of the SCF, and the properties that describe this SCF.

Errors If the string representation of the serviceID does not obey the rules for SCF identifiers, then an
ILLEGAL_SERVICE_ID exception is raised.

If the serviceID is legal but there is no SCF offer within the Framework with that ID, then an
UNKNOWN_SERVICE_ID exception is raised.

8.2.1.1 Sequence Diagram

The sequence diagram in figure 11 demonstrates the registration of a new service capability feature, announcing the
availability of a registered SCF to the framework, or deletion of an existing registered SCF from the framework, by the
SCS.

The SCSs can register only those SCFs, which are supported by the framework (i.e., the corresponding SCF types are
supported in the framework). The SCF registration function is supported by the Service Registration interface of the
framework. The SCS obtains the reference to the Service Registration interface of the framework by invoking
obtainInterface() on the OSA Access interface of the framework. The SCS may first obtain a list of SCF types
supported by the framework by invoking listServiceTypes() on the discovery SCF and then obtain a description of a
given SCF type by invoking describeServiceType(). Once the supported SCF types and their description (i.e., the SCF
properties applicable to each type) are obtained, the SCS can perform SCF registration.

SCF registration is a two-step process, after which a certain version of an SCF, characterised by a serviceDescription, is
assigned a serviceID for identification purposes, and a reference to a service factory interface as a first entry point for
applications.

- As a first step the SCSs invokes registerService() method on the Service Registration interface by giving the SCF
type name and the values of the SCF properties. The framework returns a serviceID, which uniquely identifies
the registered SCF within the framework.

- The second step is the instantiation of the SCF at an interface that will be registered in the framework together
with its corresponding serviceID. This implies that the SCF in now available for use. The SCSs or the SCF itself
invokes announceServiceAvailability() on the framework to announce the availability of the SCF identified by
its serviceID at a particular interface. The annouceServiceAvailability() method may associate the serviceID
either with the actual SCF interface or with the interface of the SCF manager (to achieve location transparency).

An SCF may be withdrawn from the domain by an SCS by invoking an unregisterService() on the Service Registration
interface. The SCF is identified by the serviceID, which was originally returned by the framework after registration. At
any time an SCS can obtain a description of the SCFs registered by it through the describeService() method.

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)883GPP TS 23.127 version 3.4.0 Release 1999

SCS OSA Access Discovery

obtainInterface()

listServiceTypes()

describeServiceType()

ServiceRegistration

registerService()

describeService()

unregisterService()

announceServiceAvailability()

obtainInterface()

Figure 14: SCF Registration

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)893GPP TS 23.127 version 3.4.0 Release 1999

8.2.2 Service Factory

The Service Factory interface allows the framework to get access to a manager interface of a network SCF. It is used
during the signServiceAgreement, in order to return an SCF manager interface reference to the application. Each SCF
has a manager interface that is the initial point of contact for the network SCF. E.g., the call control SCF uses the Call
Manager interface.

Method getServiceManager()

This method returns an SCF manager interface reference for the specified application. Usually, but
not necessarily, this involves the instantiation of a new SCF manager interface.

Direction Network to network (framework to service capability server)

Parameters application

Specifies the application for which the SCF manager interface is requested.

serviceProperties

Specifies the actual service property {name,value} pairs selected by the enterprise operator/client
application when it invoked the IpAccess.selectService method.

Returns serviceManager

Specifies the SCF manager interface reference for the specified application.

Errors -

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)903GPP TS 23.127 version 3.4.0 Release 1999

Annex A (informative):
Change History

Change history
TSG SA

#
Version CR Tdoc SA New

Version
Subject/Comment

SA_07 2.0.0 - - 3.0.0 Approved at SA#07 and placed under TSG SA Change Control
SA_08 3.0.0 001R1 SP-000286 3.1.0 OSA Internal API
SA_08 3.0.0 002R1 SP-000286 3.1.0 Editorial changes and improvements
SA_08 3.0.0 003R1 SP-000286 3.1.0 Alignment with stage 3 (TS 29.198)
SA_08 3.0.0 004 SP-000286 3.1.0 Removal of data-related parameters in call control SCF
SA_08 3.0.0 005 SP-000286 3.1.0 Replacement of "Camel" by "Network" in Network User
SA_08 3.0.0 006R1 SP-000286 3.1.0 Introduction of improved notification mechanism
SA_08 3.0.0 008R1 SP-000286 3.1.0 Modification of call control
SA_08 3.0.0 009 SP-000286 3.1.0 Data Session Control
SA_08 3.0.0 010 SP-000286 3.1.0 Modification of call control SCF
SA_09 3.1.0 012 SP-000452 3.2.0 CR on Parlay-OSA alignment: basic service interface
SA_09 3.1.0 013 SP-000452 3.2.0 CR on Parlay-OSA alignment: initial contact interfaces
SA_09 3.1.0 014 SP-000452 3.2.0 CR on Parlay-OSA alignment : access SCF
SA_09 3.1.0 015 SP-000452 3.2.0 CR on Parlay-OSA alignment: load manager SCF
SA_09 3.1.0 016 SP-000452 3.2.0 CR on Parlay-OSA alignment: fault manager SCF
SA_09 3.1.0 017 SP-000452 3.2.0 CR on Parlay-OSA alignment: service factory SCF
SA_09 3.1.0 018 SP-000452 3.2.0 CR on Parlay-OSA alignment: authentication interface
SA_ 10 3.2.0 019 SP-000590 3.3.0 CR on Alignement with 29.198 in getTerminalCapabilities()
SA_12 3.3.0 025 SP-010332 3.4.0 CR on addition of transport examples in addition to CORBA

91

ETSI

ETSI TS 123 127 V3.4.0 (2001-06)3GPP TS 23.127 version 3.4.0 Release 1999

History

Document history

V3.0.0 March 2000 Publication

V3.1.0 June 2000 Publication

V3.2.0 November 2000 Publication

V3.3.0 December 2000 Publication

V3.4.0 June 2001 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Virtual Home Environment
	5 Open Service Architecture
	5.1 Overview of the Open Service Architecture
	5.2 Basic mechanisms in the Open Service Architecture
	5.3 Handling of end-user related security
	5.3.1 End-user authorisation to applications
	5.3.2 Application authorisation to end-users
	5.3.3 End-user's privacy

	5.4 Base interfaces
	5.4.1 Base Interface
	5.4.2 Base Service Interface

	6 Framework service capability features
	6.1 Trust and Security Management SCFs
	6.1.1 Initial Contact
	6.1.2 Authentication
	6.1.3 OSA Access

	6.2 Discovery
	6.3 Integrity Management SCFs
	6.3.1 Load Manager
	6.3.2 Fault Manager
	6.3.3 Heartbeat Management
	6.3.4 OAM

	7 Network service capability features
	7.1 Call Control
	7.1.1 Call Manager
	7.1.2 Call
	7.1.2.1 Sequence Diagrams
	7.1.2.2 Enable Call notification
	7.1.2.3 Number translation
	7.1.2.4 Call barring
	7.1.2.5 Pre-paid with advice of charge

	7.2 Data Session Control
	7.2.1 Data Session Manager
	7.2.2 Data Session

	7.2a Network User Location
	7.3 User Status
	7.4 Terminal Capabilities
	7.5 Message Transfer
	7.5.1 Generic User Interaction
	7.5.1.1 User Interaction Manager
	7.5.1.2 Generic User Interaction

	7.5.2 Call User Interaction

	7.6 User Profile Management

	8 OSA Internal API
	8.1 OSA Access and Discovery
	8.2 Registration of network service capability features at t
	8.2.1 Service Registration
	8.2.1.1 Sequence Diagram

	8.2.2 Service Factory

	Annex A (informative): Change History
	History

