Digital cellular telecommunications system (Phase 2+);
Universal Mobile Telecommunications System (UMTS);
Universal Geographical Area Description (GAD)
(3GPP TS 23.032 version 7.0.0 Release 7)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.15</td>
<td>Coding of Horizontal with Vertical Velocity and Uncertainty</td>
<td>25</td>
</tr>
<tr>
<td>Annex A (informative):</td>
<td>Element description in compact notation</td>
<td>27</td>
</tr>
<tr>
<td>Annex B (informative):</td>
<td>Change history</td>
<td>29</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>
Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The present document defines an intermediate universal Geographical Area Description within the 3GPP system.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:
 1 presented to TSG for information;
 2 presented to TSG for approval;
 3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document defines an intermediate universal Geographical Area Description which subscriber applications, GSM or UMTS services can use and the network can convert into an equivalent radio coverage map.

For GSM or UMTS services which involve the use of an "area", it can be assumed that in the majority of cases the Service Requester will be forbidden access to data on the radio coverage map of a particular PLMN and that the Service Requester will not have direct access to network entities (e.g. BSC/BTS or RNC/Node B).

The interpretation by the PLMN operator of the geographical area in terms of cells actually used, cells that are partly within the given area and all other technical and quality of service aspects are out of the scope of the present document.

This specification also provides a description of velocity that may be associated with a universal Geographical Area Description when both are applied to a common entity at a common time.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same 3GPP document release as the present document.

[1] GSM 01.04: "Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms".

[2] GSM 04.07: "Digital cellular telecommunications system (Phase 2+); Mobile radio interface signalling layer 3 General aspects".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following definitions apply.

Service Requester: Entity, which uses the Geographical Area Description in any protocol to inform the network about a defined area.

Target: Entity whose precise geographic position is to be described.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in GSM 01.04 [1] and the following apply.

- **GAD**: Geographical Area Description
- **GPS**: Global Positioning System
- **WGS**: World Geodetic System
4 Reference system

The reference system chosen for the coding of locations is the World Geodetic System 1984, (WGS 84), which is also used by the Global Positioning System, (GPS). The origin of the WGS 84 co-ordinate system is the geometric centre of the WGS 84 ellipsoid. The ellipsoid is constructed by the rotation of an ellipse around the minor axis which is oriented in the North-South direction. The rotation axis is the polar axis of the ellipsoid, and the plane orthogonal to it and including the centre of symmetry is the equatorial plane.

The relevant dimensions are as follows:

Major Axis (a) = 6378137 m
Minor Axis (b) = 6356752,314 m

First eccentricity of the ellipsoid $\frac{a^2 - b^2}{b^2} = 0.0066943800668$

Co-ordinates are then expressed in terms of longitude and latitude relevant to this ellipsoid. The range of longitude is -180° to +180°, and the range of latitude is -90° to +90°. 0° longitude corresponds to the Greenwich Meridian, and positive angles are to the East, while negative angles are to the West. 0° latitude corresponds to the equator, and positive angles are to the North, while negative angles are to the South. Altitudes are defined as the distance between the ellipsoid and the point, along a line orthogonal to the ellipsoid.

5 Shapes

The intention is to incorporate a number of different shapes, that can be chosen according to need.

- Ellipsoid Point;
- Ellipsoid point with uncertainty circle;
- Ellipsoid point with uncertainty ellipse;
- Polygon;
- Ellipsoid point with altitude;
- Ellipsoid point with altitude and uncertainty ellipsoid;
- Ellipsoid Arc.

Each shape is discussed individually.

5.1 Ellipsoid Point

The description of an ellipsoid point is that of a point on the surface of the ellipsoid, and consists of a latitude and a longitude. In practice, such a description can be used to refer to a point on Earth’s surface, or close to Earth’s surface, with the same longitude and latitude. No provision is made in this version of the standard to give the height of a point.

Figure 1 illustrates a point on the surface of the ellipsoid and its co-ordinates.

The latitude is the angle between the equatorial plane and the perpendicular to the plane tangent to the ellipsoid surface at the point. Positive latitudes correspond to the North hemisphere. The longitude is the angle between the half-plane determined by the Greenwich meridian and the half-plane defined by the point and the polar axis, measured Eastward.
5.2 Ellipsoid point with uncertainty circle

The "ellipsoid point with uncertainty circle" is characterised by the co-ordinates of an ellipsoid point (the origin) and a distance r. It describes formally the set of points on the ellipsoid which are at a distance from the origin less than or equal to r, the distance being the geodesic distance over the ellipsoid, i.e., the minimum length of a path staying on the ellipsoid and joining the two points, as shown in figure 2.

As for the ellipsoid point, this can be used to indicate points on the Earth surface, or near the Earth surface, of same latitude and longitude.

The typical use of this shape is to indicate a point when its position is known only with a limited accuracy.

5.3 Ellipsoid point with uncertainty ellipse

The "ellipsoid point with uncertainty ellipse" is characterised by the co-ordinates of an ellipsoid point (the origin), distances $r1$ and $r2$ and an angle of orientation A. It describes formally the set of points on the ellipsoid which fall within or on the boundary of an ellipse with semi-major axis of length $r1$ oriented at angle A (0 to 180°) measure clockwise from north and semi-minor axis of length $r2$, the distances being the geodesic distance over the ellipsoid, i.e., the minimum length of a path staying on the ellipsoid and joining the two points, as shown in figure 2a.
As for the ellipsoid point, this can be used to indicate points on the Earth’s surface, or near the Earth’s surface, of same latitude and longitude. The confidence level with which the position of a target entity is included within this set of points is also included with this shape.

The typical use of this shape is to indicate a point when its position is known only with a limited accuracy, but the geometrical contributions to uncertainty can be quantified.

![Figure 2a: Description of an uncertainty Ellipse](image)

5.4 Polygon

A polygon is an arbitrary shape described by an ordered series of points (in the example pictured in the drawing, A to E). The minimum number of points allowed is 3, and the maximum number of points allowed is 15. The points shall be connected in the order that they are given. A connecting line is defined as the line over the ellipsoid joining the two points and of minimum distance (geodesic). The last point is connected to the first. The list of points shall respect a number of conditions:

- a connecting line shall not cross another connecting line;
- two successive points must not be diametrically opposed on the ellipsoid.

The described area is situated to the right of the lines with the downward direction being toward the Earth’s centre and the forward direction being from a point to the next.

NOTE: This definition does not permit connecting lines greater than roughly 20 000 km. If such a need arises, the polygon can be described by adding an intermediate point.

Computation of geodesic lines is not simple. Approximations leading to a maximum distance between the computed line and the geodesic line of less than 3 metres are acceptable.
5.5 Ellipsoid Point with Altitude

The description of an ellipsoid point with altitude is that of a point at a specified distance above or below a point on the earth’s surface. This is defined by an ellipsoid point with the given longitude and latitude and the altitude above or below the ellipsoid point. Figure 3a illustrates the altitude aspect of this description.

5.6 Ellipsoid point with altitude and uncertainty ellipsoid

The "ellipsoid point with altitude and uncertainty ellipsoid" is characterised by the co-ordinates of an ellipsoid point with altitude, distances r1 (the "semi-major uncertainty"), r2 (the "semi-minor uncertainty") and r3 (the "vertical uncertainty") and an angle of orientation θ (the "angle of the major axis"). It describes formally the set of points which fall within or on the surface of a general (three dimensional) ellipsoid centred on an ellipsoid point with altitude whose real semi-major, semi-mean and semi-minor axis are some permutation of r1, r2, r3 with $r_1 \geq r_2$. The r3 axis is aligned vertically, while the r1 axis, which is the semi-major axis of the ellipse in a horizontal plane that bisects the ellipsoid, is oriented at an angle θ (0 to 180 degrees) measured clockwise from north, as illustrated in Figure 3b.
5.7 Ellipsoid Arc

An ellipsoid arc is a shape characterised by the co-ordinates of an ellipsoid point \(o \) (the origin), inner radius \(r1 \), uncertainty radius \(r2 \), both radii being geodesic distances over the surface of the ellipsoid, the offset angle (\(\theta \)) between the first defining radius of the ellipsoid arc and North, and the included angle (\(\beta \)) being the angle between the first and second defining radii. The offset angle is within the range of 0° to 359,999…° while the included angle is within the range from 0,000…1° to 360°. This is to be able to describe a full circle, 0° to 360°.

This shape-definition can also be used to describe a sector (inner radius equal to zero), a circle (included angle equal to 360°) and other circular shaped areas. The confidence level with which the position of a target entity is included within the shape is also included.

6 Coding

6.1 Point

The co-ordinates of an ellipsoid point are coded with an uncertainty of less than 3 metres.
The latitude is coded with 24 bits: 1 bit of sign and a number between 0 and $2^{23}-1$ coded in binary on 23 bits. The relation between the coded number N and the range of (absolute) latitudes X it encodes is the following (X in degrees):

$$ N \leq \frac{2^{23}}{90} X < N + 1 $$

except for $N=2^{23}-1$, for which the range is extended to include $N+1$.

The longitude, expressed in the range -180°, +180°, is coded as a number between -2^{23} and $2^{23}-1$, coded in 2"s complement binary on 24 bits. The relation between the coded number N and the range of longitude X it encodes is the following (X in degrees):

$$ N \leq \frac{2^{24}}{360} X < N + 1 $$

6.2 Uncertainty

A method of describing the uncertainty for latitude and longitude has been sought which is both flexible (can cover wide differences in range) and efficient. The proposed solution makes use of a variation on the Binomial expansion. The uncertainty r, expressed in metres, is mapped to a number K, with the following formula:

$$ r = C \left((1 + x)^K - 1 \right) $$

with $C = 10$ and $x = 0.1$. With $0 \leq K \leq 127$, a suitably useful range between 0 and 1800 kilometres is achieved for the uncertainty, while still being able to code down to values as small as 1 metre. The uncertainty can then be coded on 7 bits, as the binary encoding of K.

<table>
<thead>
<tr>
<th>Value of K</th>
<th>Value of uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 m</td>
</tr>
<tr>
<td>1</td>
<td>1 m</td>
</tr>
<tr>
<td>2</td>
<td>2.1 m</td>
</tr>
<tr>
<td>20</td>
<td>57.3 m</td>
</tr>
<tr>
<td>40</td>
<td>443 m</td>
</tr>
<tr>
<td>60</td>
<td>3 km</td>
</tr>
<tr>
<td>80</td>
<td>20 km</td>
</tr>
<tr>
<td>100</td>
<td>138 km</td>
</tr>
<tr>
<td>120</td>
<td>927 km</td>
</tr>
<tr>
<td>127</td>
<td>1800 km</td>
</tr>
</tbody>
</table>

6.3 Altitude

Altitude is encoded in increments of 1 meter using a 15 bit binary coded number N. The relation between the number N and the range of altitudes a (in metres) it encodes is described by the following equation:

$$ N \leq a < N + 1 $$

except for $N=2^{15}-1$ for which the range is extended to include all greater values of a.

The direction of altitude is encoded by a single bit with bit value 0 representing height above the WGS84 ellipsoid surface and bit value 1 representing depth below the WGS84 ellipsoid surface.
6.4 Uncertainty Altitude

The uncertainty in altitude, \(h \), expressed in metres is mapped from the binary number \(K \), with the following formula:

\[
h = C((1 + x)^K - 1)
\]

with \(C = 45 \) and \(x = 0.025 \). With \(0 \leq K \leq 127 \), a suitably useful range between 0 and 990 meters is achieved for the uncertainty altitude. The uncertainty can then be coded on 7 bits, as the binary encoding of \(K \).

<table>
<thead>
<tr>
<th>Value of K</th>
<th>Value of uncertainty altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 m</td>
</tr>
<tr>
<td>1</td>
<td>1,13 m</td>
</tr>
<tr>
<td>2</td>
<td>2,28 m</td>
</tr>
<tr>
<td>20</td>
<td>28,7 m</td>
</tr>
<tr>
<td>40</td>
<td>75,8 m</td>
</tr>
<tr>
<td>60</td>
<td>153,0 m</td>
</tr>
<tr>
<td>80</td>
<td>279,4 m</td>
</tr>
<tr>
<td>100</td>
<td>486,6 m</td>
</tr>
<tr>
<td>120</td>
<td>826,1 m</td>
</tr>
<tr>
<td>127</td>
<td>990,5 m</td>
</tr>
</tbody>
</table>

6.5 Confidence

The confidence by which the position of a target entity is known to be within the shape description, (expressed as a percentage) is directly mapped from the 7 bit binary number \(K \), except for \(K=0 \) which is used to indicate "no information", and \(100 < K \leq 128 \) which should not be used but may be interpreted as "no information" if received.

6.6 Radius

Inner radius is encoded in increments of 5 meters using a 16 bit binary coded number \(N \). The relation between the number \(N \) and the range of radius \(r \) (in metres) it encodes is described by the following equation:

\[
5N \leq r < 5(N+1)
\]

Except for \(N=2^{16}-1 \) for which the range is extended to include all greater values of \(r \). This provides a true maximum radius of 327,675 meters.

The uncertainty radius is encoded as for the uncertainty latitude and longitude.

6.7 Angle

Offset and Included angle are encoded in increments of 2\(^\circ\) using an 8 bit binary coded number \(N \) in the range 0 to 179. The relation between the number \(N \) and the range offset (\(ao \)) and included (\(ai \)) of angles (in degrees) it encodes is described by the following equations:

Offset angle (\(ao \))

\[2N \leq ao < 2(N+1) \quad \text{Accepted values for } ao \text{ are within the range from 0 to 359,9...9 degrees.} \]

Included angle (\(ai \))
7 General message format and information elements coding

This clause describes a coding method for geographical area descriptions. A geographical area description is coded as a finite bit string. In the figures, the bit string is described by octets from top downward, and in the octet from left to right. Number encoding strings start with the most significant bit.

7.1 Overview

A bit string encoding a geographical description shall consist of the following parts:

- Type of Shape;
- Shape Description.

Such a bit string is usually part of an information element. The structure of the information element (e.g., element identifier, length) depends on the protocol in which the message containing the description is defined, and is specified in the protocol specification.

This organisation is illustrated in the example shown in figure 4.

7.2 Type of Shape

The Type of Shape information field identifies the type which is being coded in the Shape Description. The Type of Shape is coded as shown in table 2a.
7.3 Shape description

The shape description consists of different elements.

7.3.1 Ellipsoid Point

The coding of a point is described in figure 5.

![Figure 5: Shape description of a point](image)

<table>
<thead>
<tr>
<th>S</th>
<th>Degrees of latitude</th>
<th>Degrees of longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Octet 1</td>
<td>Octet 2</td>
</tr>
<tr>
<td></td>
<td>Octet 3</td>
<td>Octet 4</td>
</tr>
<tr>
<td></td>
<td>Octet 5</td>
<td>Octet 6</td>
</tr>
<tr>
<td></td>
<td>Octet 7</td>
<td>Octet 8</td>
</tr>
</tbody>
</table>

S: Sign of latitude

- Bit value 0: North
- Bit value 1: South

Degrees of latitude

- Bit 1 of octet 4 is the low order bit

Degrees of longitude

- Bit 1 of octet 7 is the low order bit

Table 2a: Coding of Type of Shape

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>Ellipsoid Point</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>Ellipsoid point with uncertainty</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>Ellipsoid point with uncertainty</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>Polygon</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>Ellipsoid point with altitude</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>Ellipsoid point with altitude and uncertainty</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>Ellipsoid Arc</td>
</tr>
<tr>
<td>other values</td>
<td>reserved for future use</td>
</tr>
</tbody>
</table>
7.3.2 Ellipsoid Point with uncertainty Circle

<table>
<thead>
<tr>
<th>Octet</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>spare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>spare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6: Shape description of an ellipsoid point with uncertainty circle
7.3.3 Ellipsoid Point with uncertainty Ellipse

<table>
<thead>
<tr>
<th>Octet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>spare</td>
</tr>
<tr>
<td>3</td>
<td>spare</td>
</tr>
<tr>
<td>2</td>
<td>spare</td>
</tr>
<tr>
<td>1</td>
<td>spare</td>
</tr>
<tr>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>Degrees of latitude</td>
</tr>
<tr>
<td>4</td>
<td>Degrees of longitude</td>
</tr>
<tr>
<td>5</td>
<td>Degrees of longitude</td>
</tr>
<tr>
<td>6</td>
<td>Degrees of longitude</td>
</tr>
<tr>
<td>7</td>
<td>Degrees of longitude</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Uncertainty semi-minor</td>
</tr>
<tr>
<td>11</td>
<td>Orientation of major axis</td>
</tr>
<tr>
<td>12</td>
<td>Confidence</td>
</tr>
</tbody>
</table>

Figure 6a: Shape description of an ellipsoid point with uncertainty ellipse

Orientation of major axis

- angle in degrees between the major axis and north
 - (0 = north, 90 = east, values of 180 and above are not used)
7.3.4 Polygon

<table>
<thead>
<tr>
<th>Octet 8</th>
<th>Octet 7</th>
<th>Octet 6</th>
<th>Octet 5</th>
<th>Octet 4</th>
<th>Octet 3</th>
<th>Octet 2</th>
<th>Octet 1</th>
<th>Number of points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S1

- Degrees of latitude of point 1
- Degrees of longitude of point 1

Sn

- Degrees of latitude of point n
- Degrees of longitude of point n

Figure 7: Shape description of a polygon

The number of points field encodes in binary on 4 bits the number n of points in the description, and ranges from 3 to 15.
7.3.5 Ellipsoid Point with Altitude

The coding of an ellipsoid point with altitude is described in figure 8.

![Figure 8: Shape description of an ellipsoid point with altitude](image)

D: Direction of Altitude

- Bit value 0: Altitude expresses height
- Bit value 1: Altitude expresses depth

Altitude

- Bit 1 of octet 9 is the low order bit
7.3.6 Ellipsoid Point with altitude and uncertainty ellipsoid

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Degrees of latitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Degrees of longitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>spare</td>
<td>Uncertainty semi-major</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>spare</td>
<td>Uncertainty semi-minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orientation of major axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>spare</td>
<td>Uncertainty altitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>spare</td>
<td>Confidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9: Shape description of an ellipsoid point with altitude and uncertainty ellipsoid
7.3.7 Ellipsoid Arc

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
<th>Octet 5</th>
<th>Octet 6</th>
<th>Octet 7</th>
<th>Octet 8</th>
<th>Octet 9</th>
<th>Octet 10</th>
<th>Octet 11</th>
<th>Octet 12</th>
<th>Octet 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Spare</td>
<td>S</td>
<td>Degrees of latitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Degrees of longitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inner radius</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uncertainty radius</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offset angle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Included angle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confidence</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 10: Shape description of an Ellipsoid arc](image)

Inner radius

- Bit 8 of octet 8 is the high order bit.
- Bit 1 of octet 9 is the low order bit.

8 Description of Velocity

A description of velocity is applicable to any target entity on or close to the surface of the WGS84 ellipsoid.

8.1 Horizontal Velocity

Horizontal velocity is characterised by the horizontal speed and bearing. The horizontal speed gives the magnitude of the horizontal component of the velocity of a target entity. The bearing provides the direction of the horizontal component of velocity taken clockwise from North.
8.2 Horizontal and Vertical Velocity

Horizontal and vertical velocity is characterised by horizontal speed, bearing, vertical speed and direction. The horizontal speed and bearing characterise the horizontal component of velocity. The vertical speed and direction provides the component of velocity of a target entity in a vertical direction.

8.3 Horizontal Velocity with Uncertainty

Horizontal velocity with uncertainty is characterised by a horizontal speed and bearing, giving a horizontal velocity vector \(V \), and an uncertainty speed \(s \). It describes the set of velocity vectors \(v \) related to the given velocity \(V \) as follows:

\[
|v - V| \leq s
\]

8.4 Horizontal and Vertical Velocity with Uncertainty

Horizontal and vertical velocity with uncertainty is characterised by a horizontal speed and bearing, giving a horizontal velocity vector \(V_{x,y} \), a vertical speed and direction giving a vertical velocity component \(V_z \), and uncertainty speeds \(s_1 \) and \(s_2 \). It describes the set of velocity vectors \(v \) with horizontal and vertical components \(V_{x,y} \) and \(V_z \) that are related to the given velocity components \(V_{x,y} \) and \(V_z \) as follows:

\[
|v_{x,y} - V_{x,y}| \leq s_1
\]
\[
|v_z - V_z| \leq s_2
\]

8.5 Coding Principles

Velocity is encoded as shown in Figure 13. The velocity type in bits 8-5 of octet 1 defines the type of velocity information in succeeding bits.
8.6 Coding of Velocity Type

Table 3 shows the coding of the velocity type.

Table 3: Coding of Velocity Type

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>Horizontal Velocity</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>Horizontal with Vertical Velocity</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>Horizontal Velocity with Uncertainty</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>Horizontal with Vertical Velocity and Uncertainty</td>
</tr>
<tr>
<td>Other values</td>
<td>reserved for future use</td>
</tr>
</tbody>
</table>

8.7 Coding of Horizontal Speed

Horizontal speed is encoded in increments of 1 kilometre per hour using a 16 bit binary coded number N. The relation between the number N and the horizontal speed h (in kilometres per hour) it encodes is described by the following equations:

- $N \leq h < N + 0.5$
- $N - 0.5 \leq h < N + 0.5$
- $N - 0.5 \leq h$ \((N = 2^{16} - 1)\)

8.8 Coding of Bearing

Bearing is encoded in increments of 1 degree measured clockwise from North using a 9 bit binary coded number N. The relation between the number N and the bearing b (in degrees) it encodes is described by the following equation:

- $N \leq b < N + 1$
- Except for $360 \leq N < 511$ which are not used.

8.9 Coding of Vertical Speed

Vertical speed is encoded in increments of 1 kilometre per hour using 8 bits giving a number N between 0 and $2^8 - 1$. The relation between the number N and the vertical speed v (in kilometres per hour) it encodes is described by the following equations:
8.10 Coding of Vertical Speed Direction

Vertical speed direction is encoded using 1 bit: a bit value of 0 indicates upward speed; a bit value of 1 indicates downward speed.

8.11 Coding of Uncertainty Speed

Uncertainty speed is encoded in increments of 1 kilometre per hour using an 8 bit binary coded number N. The value of N gives the uncertainty speed except for N=255 which indicates that the uncertainty is not specified.

8.12 Coding of Horizontal Velocity

The coding of horizontal velocity is described in figure 14.

8.13 Coding of Horizontal with Vertical Velocity

The coding of horizontal with vertical velocity is described in figure 15.
8.14 Coding of Horizontal Velocity with Uncertainty

The coding of horizontal velocity with uncertainty is described in figure 16.

8.15 Coding of Horizontal with Vertical Velocity and Uncertainty

The coding of horizontal with vertical velocity and uncertainty is described in figure 17.
Figure 17: Coding of Horizontal with Vertical Velocity and Uncertainty
Annex A (informative):
Element description in compact notation

The notation is the one described in GSM 04.07 [2].

```plaintext
<Geographical Area Description> ::= 
  <Point> [ 
  <Point with uncertainty circle> [ 
    <Point with uncertainty ellipse> [ 
    <Polygon> [ 
    <Point with Altitude> [ 
      <Point with altitude and uncertainty ellipsoid> [ 
      <Arc>; 

  <Point> ::= 
    0000 <spare>(4) 
    <Point horizontal co-ordinates> ; 

  <Point horizontal co-ordinates> ::= 
    <Latitude sign : bit> <Unsigned latitude : bit string(23)> 
    <Longitude : bit string(24)> ; 

  <Point with uncertainty circle> ::= 
    0001 <spare>(4) 
    <Point horizontal co-ordinates> 
    <spare bit> <Uncertainty: bit string(7)> ; 

  <Point with uncertainty ellipse> ::= 
    0011 <spare>(4) 
    <Point co-ordinates> 
    <spare bit> <Uncertainty semi-major: bit string(7)> 
    <spare bit> <Uncertainty semi-minor: bit string(7)> 
    <Orientation of major axis: bit string(8)> 
    <spare bit> <Confidence: bit string(7)> ; 

  <Polygon> ::= 
    0101 <Number of points> 
    <Point co-ordinates>(val(Number of points)) ; 

  <Number of points> ::= 
    0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 
    1011 | 1100 | 1101 | 1110 | 1111 ; 

  <Point with Altitude> ::= 
    1000 <spare>(4) 
    <Point horizontal co-ordinates> 
    <Point vertical co-ordinate>; 

  <Point with Altitude> ::= 
    1001 <spare>(4) 
    <Point horizontal co-ordinates> 
    <Point vertical co-ordinate> 
    <spare bit> <Uncertainty semi-major: bit string(7)> 
    <spare bit> <Uncertainty semi-minor: bit string(7)> 
```

<Orientation of major axis: bit string(8)>
 <spare bit> <Uncertainty altitude: bit string(7)>
 <spare bit> <Confidence: bit string(7)>;

<Ellipsoid Arc> ::=
 <1010> spare(4)
 <Point horizontal co-ordinates>
 <Inner radius: bit string(16)>
 <Spare bit> <Uncertainty radius: bit string(7)>;
 <Offset angle: bit string(8)>
 <Included angle: bit string(8)>
 <spare bit> <Confidence: bit string(7)>;

<Velocity Description> ::=
 <Horizontal Velocity> |
 <Horizontal and Vertical Velocity> |
 <Horizontal Velocity with Uncertainty> |
 <Horizontal and Vertical Velocity with Uncertainty>;

<Horizontal Velocity> ::=
 0000 <spare>(3)
 <Bearing: bit string(9)>
 <Horizontal speed: bit string(16)>;

<Horizontal and Vertical Velocity> ::=
 0001 <spare>(2)
 <Vertical direction : bit>
 <Bearing: bit string(9)>
 <Horizontal speed: bit string(16)>
 <Vertical speed: bit string(8)>;

<Horizontal Velocity with Uncertainty> ::=
 0010 <spare>(3)
 <Bearing: bit string(9)>
 <Horizontal speed: bit string(16)>
 <Uncertainty Speed: bit string(8)>;

<Horizontal and Vertical Velocity with Uncertainty> ::=
 0011 <spare>(2)
 <Vertical direction : bit>
 <Bearing: bit string(9)>
 <Horizontal speed: bit string(16)>
 <Vertical speed: bit string(8)>
 <Horizontal Uncertainty Speed: bit string(8)>
 <Vertical Uncertainty Speed: bit string(8)>;
Annex B (informative):
Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG #</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Rev</th>
<th>Subject/Comment</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-12</td>
<td>SA#26</td>
<td></td>
<td></td>
<td></td>
<td>Created version 6.0.0</td>
<td>5.0.0</td>
<td>6.0.0</td>
</tr>
<tr>
<td>2007-06</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>Update to Rel-7 version (MCC)</td>
<td>6.0.0</td>
<td>7.0.0</td>
</tr>
</tbody>
</table>
History

Document history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V7.0.0</td>
<td>June 2007</td>
<td>Publication</td>
</tr>
</tbody>
</table>
