

ETSI TS 118 140 V4.0.0 (2022-09)

oneM2M Modbus Interworking
(oneM2M TS-0040 version 4.0.0 Release 4)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)2oneM2M TS-0040 version 4.0.0 Release 4

Reference
DTS/oneM2M-000040v4

Keywords
interworking, M2M

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022.

All rights reserved.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)3oneM2M TS-0040 version 4.0.0 Release 4

Contents
Intellectual Property Rights .. 4

Foreword ... 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definition of terms, symbols and abbreviations ... 6

3.1 Terms .. 6

3.2 Symbols .. 6

3.3 Abbreviations ... 6

4 Conventions .. 6

5 Architecture Model... 7

5.1 Reference model ... 7

5.2 Composition of the IPE .. 7

6 Architecture Aspects .. 8

6.1 Introduction .. 8

6.2 oneM2M resource mapping structure ... 8

6.2.1 Introduction... 8

6.2.2 Mapping Modbus devices into SDT schemas ... 9

6.2.3 Mapping SDT schemas into oneM2M resources .. 9

6.3 Modbus IPE registration ... 10

6.4 Modbus service mapping .. 11

6.5 Modbus interworking procedures ... 12

6.5.1 Retrieve data from a Modbus device .. 12

6.5.2 Write data to a Modbus device ... 13

Annex A (informative): Introduction to Modbus .. 14

A.1 Background .. 14

A.2 Architecture and protocol stack .. 14

A.3 Key feature ... 16

A.4 Data model ... 17

Annex B (informative): Resource mapping examples ... 18

B.1 Introduction .. 18

B.2 Example for thermometer device ... 18

B.2.1 Example for Device model 'deviceThermometer' .. 18

B.2.2 Example for ModuleClass 'temperature' ... 18

History .. 20

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)4oneM2M TS-0040 version 4.0.0 Release 4

Intellectual Property Rights
Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Technical Specification (TS) has been produced by ETSI Partnership Project oneM2M (oneM2M).

https://ipr.etsi.org/

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)5oneM2M TS-0040 version 4.0.0 Release 4

1 Scope
The present document specifies the oneM2M and Modbus interworking technologies that enable Modbus devices and
oneM2M entities produce/consume services.

Clause 5 defines the interworking architecture model that describes where the Modbus IPE is hosted and how the IPE is
composed with.

Clause 6 defines the architecture aspects that mainly describes Modbus services to oneM2M resource mapping structure
and rules. Furthermore, this explains the IPE registration and interworking procedures.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 118 101: "oneM2M; Functional Architecture (oneM2M TS-0001)".

[2] ETSI TS 118 104: "oneM2M; Service Layer Core Protocol Specification (oneM2M TS-0004)".

[3] ETSI TS 118 123: "oneM2M; Home Appliances Information Model and Mapping
(oneM2M TS-0023)".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

[i.2] Modbus website.

NOTE: Available at http://www.modbus.org/.

[i.3] Modbus-Application-Protocol-V1-1b3, Modbus Organization.

[i.4] Modbus-Messaging-Implementation-Guide-V1-0b, Modbus Organization.

[i.5] Modbus-over-serial-line-V1-02, Modbus Organization.

[i.6] IETF RFC 4180: "Common Format and MIME Type for Comma-Separated Values (CSV) Files".

NOTE: Available at https://www.ietf.org/rfc/rfc4180.txt#page-1.

https://docbox.etsi.org/Reference/
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://www.modbus.org/
https://www.ietf.org/rfc/rfc4180.txt

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)6oneM2M TS-0040 version 4.0.0 Release 4

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

Modbus Master: software running on a computer or a server as a host to access Modbus Slaves by issuing unicast
requests

Modbus Slave/Device: peripheral device that provides a Modbus interface and responds by supplying the requested
data to the master, or by taking the action requested in the query

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ADU Application Data Unit
AE Application Entity
ASCII American Standard Code for Information Interchange
ASN/MN Application Service Node/Middle Node
CSE Common Services Entity
CSV Comma-Separated Values
HDLC High-level Data Link Control
I/O Input/Output
IP Internet Protocol
IPE Interworking Proxy Entity
MB Modbus
MBAP Modbus Application Protocol
MBP Modbus Plus
MN/IN Middle Node/Infrastructure Node
noDN Non-oneM2M Device Node
PC Personal Computer
PDU Protocol Data Unit
PLC Programmable Logic Controller
RS Recommended Standard
RTU Remote Terminal Unit
RTU/IP Remote Terminal Unit/Internet Protocol
SDT Smart Device Template
TCP Transmission Control Protocol
UDP User Datagram Protocol

4 Conventions
The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be
interpreted as described in the oneM2M Drafting Rules [i.1].

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)7oneM2M TS-0040 version 4.0.0 Release 4

5 Architecture Model

5.1 Reference model
The architecture model followed in the present document is based on the architecture model in ETSI TS 118 101 [1]
that describes how interworking between oneM2M CSEs and non-oneM2M systems using specialized Interworking
Proxy application Entities (IPEs). The present document describes the Modbus IPE that supports the following
reference model.

Figure 5.1-1: Modbus interworking reference model

5.2 Composition of the IPE
As shown in Figure 5.2-1, the Modbus IPE consists of AE and Modbus Master [i.2]. To provide the interworking
functions to other oneM2M entities, the IPE shall register to a CSE and communicate with Modbus devices using
Modbus protocol. The IPE registration is mandatory in oneM2M systems. Modbus discovery and session establishment
are needed for the IPE to communicate with other Modbus applications. A single Modbus IPE may expose Modbus
functions provided by one or more Modbus devices to the oneM2M System.

Modbus device

CSE

Modbus Protocol

Modbus IPE

Mca

Mca

ASN/MN/IN

CSE
Mcc/Mcc’

MN/IN

AE

AE

Mca

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)8oneM2M TS-0040 version 4.0.0 Release 4

Figure 5.2-1: Composition of Modbus-IPE

6 Architecture Aspects

6.1 Introduction
The present document specifies the functions for Modbus interworking in the following aspects:

• oneM2M resource mapping structure;

• Modbus IPE registration;

• Modbus service mapping;

• Modbus interworking procedures.

6.2 oneM2M resource mapping structure

6.2.1 Introduction

In this clause, the overall resource mapping structure for exposing services between Modbus devices and oneM2M
entities is introduced. Firstly, Modbus devices are modelled according to the oneM2M SDT described in ETSI
TS 118 123 [3]. The oneM2M SDT offers a generic and flexible modeling structure for describing functionalities of
non-oneM2M devices including Modbus devices. After the SDT schemas of the Modbus devices are created, they are
mapped to oneM2M resources.

Resource instances representing

exposed Modbus functions

CSE hosting interworking functionality

Mca

Modbus-IPE

Create & manage

oneM2M resources &

exposed Modbus

functions

Initiate discovery &

execution of Modbus

functions

oneM2M AE

Modbus

device 1

Modbus

device 2

Modbus

device 3

Modbus device(s)

Modbus

Modbus

Master

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)9oneM2M TS-0040 version 4.0.0 Release 4

6.2.2 Mapping Modbus devices into SDT schemas

Each Modbus device shall be modelled as a Device component. The Modules of the Device shall be created according
to the functionality of the Modbus device as defined in ETSI TS 118 123 [3].

For representing data objects of a Modbus device, the mapping between a Modbus device's registers [i.2], [i.3] and SDT
DataPoints is defined. Every Modbus register has the following properties: slave id, register type, address, length. The
information of these registers is typically provided by a manufacturer in a device's datasheet. Register type and length
are used to define the following SDT DataPoint attributes: DataType, writable, readable, and optional. The rules to
perform the mapping are shown in Table 6.2.2-1. A holding register and input register of length 2 can be mapped into
either xs:integer or xs:float DataType depending on data context. As an example mapping, a coil register can
be mapped to a DataPoint with DataType (xs:boolean), Readable (True), and Writable (True). The optional
attribute depends on a Modbus device and application logic and is supposed to be defined by the system integrator.

Table 6.2.2-1: Mapping between Modbus register types and SDT Data points

Modbus Register
Mapping

SDT Data points
Modbus register type Length DataType Readable Writable
Coil (1 bit, Read-Write) 1 (1 bit) xs:boolean True True

Discrete Input (1 bit, Read-Only) 1 (1 bit) xs:boolean True False
Holding Register

(16-bit, Read-Write)
2

(4 bytes)
xs:integer / xs:float True True

Input Register
(16-bit, Read-Only)

2
(4 bytes)

xs:integer / xs:float True False

Holding Register
(16-bit, Read-Write)

1
(2 bytes)

xs:integer True True

Input Register
(16-bit, Read-Only)

1
(2 bytes)

xs:integer True False

Holding Register
(16-bit, Read-Write)

4
(8 bytes)

xs:double True True

Input Register
(16-bit, Read-Only)

4
(8 bytes)

xs:double True False

6.2.3 Mapping SDT schemas into oneM2M resources

The mapping of all SDT components follows the mapping procedure defined in clause 6.2 of ETSI TS 118 123 [3]. For
example, the ModuleClass models shall be mapped to the specializations of <flexContainer> resource and their
DataPoints to customAttributes of the corresponding <flexContainer> specializations. However, the SDT schemas do
not consider interworking options with non-oneM2M Device Nodes (noDN) such as Modbus devices. For that reason, a
nodnProperties attribute shall be added as a customAttribute of a <flexContainer> resource specialization which is
mapped from an associated ModuleClass model.

The nodnProperties attribute stores one-to-one mappings in CSV string format [i.6] between each customAttribute of
<flexContainer> resource specialization and a Modbus register with which it is associated. Each line in the
nodnProperties shall contain the name of a customAttribute and associated Modbus register properties (slave id,
register type, address, length). The order they are aligned is the following: customAttribute name, slave id, register
type, address, length. The nodnProperties shall have one record per line and each property separated by a comma. The
header line for this CSV string is mandatory and shall contain the names corresponding to the fields in the string as
defined in the section 2.3 of the CSV format specification [i.6]. Table 6.2.3-1 shows the detailed information on the
fields of the nodnProperties attribute.

An example oneM2M resource schema including nodnProperties is provided in Annex B, Figure B.2.2-2.

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)10oneM2M TS-0040 version 4.0.0 Release 4

Table 6.2.3-1: Fields of nodnProperties attribute

Field name Type Description
customAttribute name String Name of customAttribute
slave id Integer Slave id of Modbus device
register type Enumeration One of 4 register types (see Table 6.2.3-2)
address Integer Address of the first register associated with a variable
length Integer Number of registers an associated variable occupies

Table 6.2.3-2: Interpretation of register type

Value Interpretation
1 Coil
2 Discrete input
3 Holding register
4 Input register

6.3 Modbus IPE registration
Figure 6.3-1 shows the device registration call flow:

1) The IPE shall request to create an <AE> resource on the Hosting CSE to register the Modbus master
collocated on the IPE.

2) The Hosting CSE shall evaluate the request, performs the appropriate checks, and creates the <AE> resource.
The Hosting CSE shall respond with the successful result of <AE> resource creation, otherwise it responds
with an error.

3) Modbus devices are registered at Modbus IPE, in particular Modbus interworking information (slave id,
registers type, address, length) are defined in accordance with provided device datasheet.

4) Modbus IPE shall send corresponding requests to a CSE to create resources which were from SDT schemas as
described in clause 6.2.3. For all <flexContainer> resources, the containerDefinition attribute is mandatory.
The contentSize attribute is calculated by the Hosting CSE. The customAttributes of the <flexContainer>
resources should be specified if they are mandatory for that <flexContainer>. Each resource creation is
originated by the Modbus-IPE in a separate request for each resource.

5) After verifying the privileges and the given attributes, the Hosting CSE shall create each resource.

6) The Hosting CSE shall respond with the successful result for each created resource, otherwise it shall respond
with an error.

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)11oneM2M TS-0040 version 4.0.0 Release 4

Modbus IPE
Receiver

(Hosting CSE)

003: Create <AE> response

002: Create <AE>

001: Create <AE>

004: Create <flexContainer> for device

005: Create <flexContainer>

006: Create <flexContainer> response

007: Create <flexContainer> for module

For each SDT module

For each connected device

008: Create <flexContainer>

009: Create <flexContainer> response

Figure 6.3-1: Device registration call flow

6.4 Modbus service mapping
The Modbus devices can accept either read or write requests from the Master. The operation to be executed is identified
from the function code of a Modbus message. Therefore, the IPE needs to be able to map the oneM2M messages to
Modbus messages with the appropriate function code. The function code is identified from register type of the register
to be read for the read requests and from a tuple of register type and number of registers to be written (length) for the
write requests.

For the read requests, the IPE shall map the register type of the register to be read to the function code according to
Table 6.4-1. For the write requests, the IPE shall map the tuple of register type and the number of registers to be written
(length) to the function code according to Table 6.4-2. Both the register type and the length along with other Modbus
data needed to construct the Modbus message can be retrieved from the nodnProperties customAttribute of a
<flexContainer> specialization derived from a ModuleClass.

Table 6.4-1: Register type to function code mapping
for Modbus read request

Register type Function code
Coil 01
Discrete input 02
Holding register 03
Input register 04

Table 6.4-2: Register type and length to function code mapping
for Modbus write request

Register type Length > 1 Function code
Coil false 05
Coil true 0F
Holding register false 06
Holding register true 10

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)12oneM2M TS-0040 version 4.0.0 Release 4

6.5 Modbus interworking procedures

6.5.1 Retrieve data from a Modbus device

Suppose a scenario when current readings of a Modbus device need to be displayed at an AE application and Modbus-
IPE continuously monitors a Modbus device and uploads that data to a CSE hosted on a server in the network. Initially,
the AE shall be subscribed to the <flexContainer> resource, which is a specialization of some SDT module for a
Modbus device, using a <subscription> resource (notificationEventType A, see clause 9.6.8 in ETSI TS 118 101 [1]).
The following steps described in Figure 6.5.1-1 shall be performed for this scenario:

1) The Modbus IPE shall send a retrieve <flexContainer> request to the hosting CSE. This <flexContainer>
resource is a specialization of some Modbus module and contains nodnProperties attribute.

2) The Hosting CSE shall respond to the retrieve request with <flexContainer> data that includes nodnProperties.

3) The Modbus IPE shall use information stored in nodnProperties to compose Modbus read request. The
function code can be identified from a register type as in Table 6.4-1. Slave id, address and length should be
written in corresponding message fields. After the Modbus message is composed, the Modbus IPE sends this
message to Modbus device.

4) The Modbus device responds with requested data.

5) The Modbus IPE shall send an update <flexContainer> request (see clause 7.4.37.2.3 in ETSI TS 118 104 [2]).
The request body specifies the customAttributes to be updated and their new values read from Modbus device.

6) After verifying the privileges and the given attributes, the hosting CSE shall update <flexContainer> resource.

7) The hosting CSE shall respond with updated <flexContainer> data after successful update to the Modbus IPE,
otherwise it responds with an error.

8) The hosting CSE shall send a notification for <flexContainer> resource update to the AE (see clause 7.5.1.2.2
in ETSI TS 118 104 [2]).

9) The AE sends a confirmation message about notification receiving to the hosting CSE (see clause 7.5.1.2.2 in
ETSI TS 118 104 [2]).

Figure 6.5.1-1: Modbus Slave Device monitoring call flow

Modbus

IPE
Hosting CSE

007: Update response

Originator

(CSE or AE)

006: Update <flexContainer>

008: Notification for the

<flexContainer> update

009: Notification response

Modbus

device

003: Read register(s)

004: Read response

001: Retrieve <flexContainer>

005: Update <flexContainer>

002: Retrieve response

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)13oneM2M TS-0040 version 4.0.0 Release 4

6.5.2 Write data to a Modbus device

Suppose a scenario when it is required to update some value in a Modbus device through an AE application registered
to a CSE. Initially, the Modbus IPE shall be subscribed to the <flexContainer> resource, which is a specialization of
some SDT module for a Modbus device, using a blocking type of <subscription> resource (notificationEventType G,
see clause 9.6.8 in ETSI TS 118 101 [1]). The following steps described in Figure 6.5.2-1 shall be performed for this
scenario:

1) In order to write data to a Modbus device from the AE, the AE sends a request to update specified
customAttributes of the <flexContainer> resource which map to the Modbus Device (see clause 7.4.37.2.3 in
ETSI TS 118 104 [2]).

2) After verifying the privileges and the given attributes, the hosting CSE shall send a notification for the
received write request to the Modbus IPE (notification shall include nodnProperties) and temporarily blocks
the <flexContainer> resource for any UPDATE operations (see clause 7.5.1.2.2 in ETSI TS 118 104 [2]).

3) The Modbus IPE shall use information stored in nodnProperties to compose Modbus write request. The
function code to be used can be identified from a register type and length as in Table 6.4-2. Slave id, address,
and length should be written in corresponding message fields. After the Modbus message is composed the
Modbus IPE shall send this message to Modbus device.

4) The Modbus device responds with written data to the Modbus IPE.

5) The Modbus IPE shall respond to the hosting CSE with successful device update message, otherwise respond
with an error (see clause 7.5.1.2.2 in ETSI TS 118 104 [2]).

6) If the device was updated successfully, the hosting CSE shall update the <flexContainer> resource internally,
otherwise discard the changes. The resource is unlocked for UPDATE operations.

7) The hosting CSE shall respond to the AE with the result of the UPDATE request.

Modbus

IPE
Hosting CSE

002: Notification for the

<flexContainer> update

Originator

(CSE or AE)

006: Update <flexContainer>

007: Update response

001: Update <flexContainer>

Modbus

device

003: Write data to the register

004: Write response

005: Notification response

Figure 6.5.2-1: Writing to a Modbus Slave Device call flow

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)14oneM2M TS-0040 version 4.0.0 Release 4

Annex A (informative):
Introduction to Modbus

A.1 Background
Modbus was first introduced by Modicon® (now part of Schneider Electric®) for process control systems. It is used to
establish master-slave/client-server communication between intelligent devices and sensors and instruments. It is a de
facto standard, truly open and the most widely used network protocol in the industrial manufacturing environment.

Modbus is easy to deploy and maintain and is used across a wide range of industries. It is also an ideal protocol for
Remote Terminal Unit (RTU) applications where wireless communication is required. Modbus is not only an industrial
protocol. Building, infrastructure, transportation and energy applications also make use of its benefits.

Originally, Modbus was implemented as an application level protocol intended to transfer data over serial port, it has
expanded to include implementations over serial, TCP/IP, and UDP. Today, it is a common protocol used by countless
devices for simple, reliable, and efficient communication across a variety of networks. Modbus was designed as a
request-response protocol with a flexible data and function model that are part of the reason it is still in use today. In
addition, support for the simple and elegant structure of Modbus continues to grow [i.4].

A.2 Architecture and protocol stack
The Modbus protocol follows a master and slave architecture where a master transmits a request to a slave and waits for
the response (as shown in Figure A.2-1). This architecture gives the master full control over the flow of information,
which has benefits on older multidrop serial networks. Even on modern TCP/IP networks, it gives the master a high
degree of control over slave behavior, which is helpful in some designs.

Figure A.2-1: The Master-Slave, Request-Response Relationship of Modbus device

The Modbus protocol allows an easy communication within all types of networks (as shown in Figure A.2-2). Every
type of devices (such as PLC, Driver, Motion control, I/O Device, etc.) can use Modbus protocol to initiate a remote
operation.

The same communication can be done as well on serial line as on an Ethernet TCP/IP network. Gateways allow a
communication between several types of buses or network using the Modbus protocol [i.5].

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)15oneM2M TS-0040 version 4.0.0 Release 4

Gateway

PLC

I/O

Device
HMI

Gateway

Device

I/O

Device I/O

Modbus on TCP/IP

M
odbus on R

S
485

M
odbus on M

B
+

Server Server

M
o

db
u

s
co

m
m

u
ni

ca
tio

n

Figure A.2-2: Modbus Network Architecture

There are many variants of Modbus protocols:

• Modbus RTU - This is used in serial communication & makes use of a compact, binary representation of the
data for protocol communication. Modbus RTU is the most common implementation available for Modbus.
A Modbus RTU message is transmitted continuously without inter-character hesitations.

• Modbus ASCII - This is used in serial communication and makes use of ASCII characters for protocol
communication.

• Modbus TCP/IP or Modbus TCP - This is a Modbus variant used for communications over TCP/IP networks.
It does not require a checksum calculation as lower layers already provide checksum protection.

• Modbus over TCP/IP or Modbus over TCP or Modbus RTU/IP - This is a Modbus variant that differs
fromModbus TCP in that a checksum is included in the payload as with Modbus RTU.

• Modbus over UDP - Some have experimented with using Modbus over UDP on IP networks, which removes
the overheads required for TCP.

• Modbus Plus (Modbus+, MB+ or MBP) - Modbus Plus is proprietary to Schneider Electric® and unlike the
other variants, it supports peer-to-peer communications between multiple masters. It requires a dedicated co-
processor to handle fast HDLC-like token rotation. It uses twisted pair at 1 Mbit/s and includes transformer
isolation at each node, which makes it transition/edge triggered instead of voltage/level triggered.

At present, Modbus TCP is more efficient networking through the use of dedicated connections and identifiers for each
request and response. Modbus RTU and Modbus ASCII are older serial ADU formats with the primary difference
between the two being that RTU uses a compact binary representation while ASCII sends all requests as streams of
ASCII characters.

The Modbus protocol defines a simple Protocol Data Unit (PDU) independent of the underlying communication layers.
The mapping of Modbus protocol on specific buses or network can introduce some additional fields on the Application
Data Unit (ADU). The Modbus frame is as shown in Figure A.2-3.

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)16oneM2M TS-0040 version 4.0.0 Release 4

Figure A.2-3: Modbus Frame

A Modbus frame or Modbus Application Data Unit (ADU) consists of the following:

• Additional address field: A field containing additional addresses used by the underlying communication
protocol. It is 1 byte slave address over serial links (such as RS 232, RS 485). For Modbus TCP, it is called
Modbus Application Protocol (MBAP) Header that include transaction identifier, protocol identifier, length
and unit identifier.

• Modbus PDU: It is independent of underlying communication layer and consists of two parts: 1) 1-byte
Function code to indicate identity of the requested service, 2) Variable length data field containing payload of
the requested service. There are three types of Modbus PDUs: Modbus Request, Modbus Response and
Modbus Exception.

• An optional error check field. Modbus TCP is not needed.

A.3 Key feature
There are many devices and gateways that support Modbus, as it is a very simple protocol and convenient to transmit
and understand. Specially, Modbus TCP/IP simply takes the Modbus instruction set and wraps TCP/IP around it.
Development costs are exceptionally low. Minimum hardware is required, and development is easy under any operating
system. The following are key features of Modbus:

• Communication mode

 Modbus uses master-slave/client-server communication mode, Master issues a unicast request and slave
responds to that. In serial and MB+ networks, only the node assigned as the Master may initiate a command.
On Ethernet, any device can send out a Modbus command, although usually only one master device does so.
Modbus also supports broadcast mode where master's request is sent to all the slaves but no slave responds to
broadcast request.

• Data model

 Modbus manages the access of data simply and flexibly. Modbus data are divided into four ranges, they are
that these types of data can be provided/alterable by I/O system or an application program. In most cases,
slaves store each type of data that it supports in separate memory, and limits the number of data elements that
a master can access.

• Function code

 There are three categories of Modbus Function codes, including Public Function codes, User-Defined Function
codes and Reserved Function codes. Public Function codes can satisfy common operations, such as accessing
data in device by reading and writing data model, and simply diagnosing device. Function code is flexibility
that user can select and implement a function code by self-defining User-Defined Function codes according to
service requirements.

• Availability of many devices

 Interoperability among different vendors' devices and compatibility with a large installed base of Modbus-
compatible devices makes Modbus an excellent choice.

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)17oneM2M TS-0040 version 4.0.0 Release 4

A.4 Data model
The Modbus standard defines bit-addressable and 16-bit word addressable input and output data items. Modbus bases
its data model on a series of tables that have distinguishing characteristics. The four primary tables for data model are as
following.

Table A.4-1: Modbus data model table

Primary tables Object type Type of access Comments
Discretes Input Single bit Read-Only This type of data can be provided by an

I/O system, e.g. read the status of switch
Coils Single bit Read-Write This type of data can be alterable by an

application program, e.g. switch on a
transducer

Input Registers 16-bit word Read-Only This type of data can be provided by an
I/O system, e.g. read temperature on a
sensor

Holding Registers 16-bit word Read-Write This type of data can be alterable by an
application, e.g. set value to a controller

There are two ways of organizing the data in device. Each device can have its own organization of the data according to
its application. Figure A.4-1 below shows an example for data organization in a device having digital and analog, inputs
and outputs. Data block (device application memory) is accessible with different Modbus functions, such as read coils,
write holding registers. All the data elements handled via Modbus can be located in device application memory by
reference numbers form 1to n. The pre-mapping between the Modbus data model and the device application is totally
vendor device specific.

Figure A.4-1: Implementation example of Modbus data model

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)18oneM2M TS-0040 version 4.0.0 Release 4

Annex B (informative):
Resource mapping examples

B.1 Introduction
The IPE constructs oneM2M resource tree on hosting CSE from the SDT schemas derived from the set of
functionalities of Modbus devices.

The present clause gives an example of how to use the oneM2M resource tree to represent a Modbus device
(i.e. Thermometer).

The next clause explains the creation process for an arbitrary thermometer device that communicates over Modbus. As
the Modbus devices are firstly represented by SDT models, the SDT definition of the thermometer device described in
clause 5.5.45 of ETSI TS 118 123 [3] will be considered.

B.2 Example for thermometer device

B.2.1 Example for Device model 'deviceThermometer'
Mapping of the SDT Device model to oneM2M resources is performed according to the general mapping procedure
described in clause 6.2.2 of ETSI TS 118 123 [3]. Figure B.2.1-1 shows an example of the [deviceThermometer], which
is modelled as a <flexContainer> resource specialization derived from the corresponding SDT Device component.

Figure B.2.1-1: Structure of [deviceThermometer] resource

B.2.2 Example for ModuleClass 'temperature'
The SDT model of the 'temperature' ModuleClass is described in the clause 5.3.76 of ETSI TS 118 123 [3]. Assume the
DataPoints of the 'temperature' ModuleClass are created according to the mapping rule described in clause 6.2.2.

Mapping of the SDT ModuleClass model to oneM2M resources is performed according to the general mapping
procedure described in clause 6.2.3 of ETSI TS 118 123 [3]. The 'temperature' ModuleClass is mapped into
[temperature], a <flexContainer> resource specialization, and its data points are mapped into customAttributes of that
<flexContainer> resource specialization; and nodnProperties customAttribute is added the [temperature] as described
in clause 6.2.3. Figure B.2.2-1 shows the structure of [temperature].

The example contents of nodnProperties are shown on Figure B.2.2-2.

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)19oneM2M TS-0040 version 4.0.0 Release 4

Figure B.2.2-1: Structure of [temperature] resource

Figure B.2.2-2: Example contents of noDNproperties

"currentTemperature",1,4,23,2

"targetTemperature",1,3,25,2

"unit",1,4,27,2

"minValue",1,4,29,2

"maxValue",1,4,31,2

"stepValue",1,4,33,2

ETSI

ETSI TS 118 140 V4.0.0 (2022-09)20oneM2M TS-0040 version 4.0.0 Release 4

History

Document history

V4.0.0 September 2022 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Conventions
	5 Architecture Model
	5.1 Reference model
	5.2 Composition of the IPE

	6 Architecture Aspects
	6.1 Introduction
	6.2 oneM2M resource mapping structure
	6.2.1 Introduction
	6.2.2 Mapping Modbus devices into SDT schemas
	6.2.3 Mapping SDT schemas into oneM2M resources

	6.3 Modbus IPE registration
	6.4 Modbus service mapping
	6.5 Modbus interworking procedures
	6.5.1 Retrieve data from a Modbus device
	6.5.2 Write data to a Modbus device

	Annex A (informative): Introduction to Modbus
	A.1 Background
	A.2 Architecture and protocol stack
	A.3 Key feature
	A.4 Data model

	Annex B (informative): Resource mapping examples
	B.1 Introduction
	B.2 Example for thermometer device
	B.2.1 Example for Device model 'deviceThermometer'
	B.2.2 Example for ModuleClass 'temperature'

	History

