

ETSI TS 104 002 V1.1.1 (2023-08)

Publicly Available Specification (PAS);
DASH-IF Forensic A/B Watermarking

An interoperable watermarking integration schema

CAUTION

The present document has been submitted to ETSI as a PAS produced by DASH-IF and
approved by the Joint Technical Committee (JTC) Broadcast of the European Broadcasting Union (EBU), Comité Européen de

Normalisation ELECtrotechnique (CENELEC) and the European Telecommunications Standards Institute (ETSI).

DASH-IF is owner of the copyright of the document DASH-IF CPIX and/or had all relevant rights and had assigned said rights to
ETSI on an "as is basis". Consequently, to the fullest extent permitted by law, ETSI disclaims all warranties whether express,

implied, statutory or otherwise including but not limited to merchantability, non-infringement of any intellectual property rights of
third parties. No warranty is given about the accuracy and the completeness of the content of the present document.

TECHNICAL SPECIFICATION

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)2

Reference
DTS/JTC-118

Keywords
broadband, CDN, DASH, DRM, internet, PAS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2023.

© European Broadcasting Union 2023.
All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 6

Executive summary .. 6

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 7

3 Definition of terms, symbols and abbreviations ... 8

3.1 Terms .. 8

3.2 Symbols .. 8

3.3 Abbreviations ... 8

4 OTT Watermarking Using Variants ... 9

5 Server-Driven Architecture and Workflows .. 10

5.1 Introduction .. 10

5.2 Functional Architecture .. 10

5.3 System Configuration ... 11

5.4 WM Token ... 12

5.5 WMPaceInfo .. 14

5.5.1 Introduction... 14

5.5.2 WMPaceInfo Data .. 14

5.5.3 Conveying WMPaceInfo .. 14

5.5.3.1 Introduction ... 14

5.5.3.2 Sidecar File ... 15

5.5.3.3 HTTP Header .. 16

5.5.3.4 ISOBMFF Box .. 17

5.5.3.5 SEI Message .. 18

5.5.3.6 TS Adaptation Field .. 18

5.6 Content Preparation .. 18

5.6.1 Introduction... 18

5.6.2 Encoding Recommendations .. 19

5.6.3 Delivering Content and WMPaceInfo from the Encoder to the Packager .. 19

5.6.4 Segment Ingress Path Structure on the Origin .. 20

5.6.4.1 Introduction ... 20

5.6.4.2 Locating the Variants .. 20

5.6.4.3 Locating the Sidecar File .. 23

5.6.5 Packaging Recommendations ... 24

5.7 Content Playback .. 25

5.7.1 Introduction... 25

5.7.2 Dynamic Ad Insertion ... 25

5.7.3 WM Token, DASH Manifest and HLS Playlists Acquisition ... 26

5.7.4 Initialization Segment Acquisition ... 27

5.7.5 Media Segments and WMPaceInfo Acquisition ... 27

5.7.5.1 General Requirements ... 27

5.7.5.2 WMPaceInfo Acquisition .. 28

5.7.5.3 Discrete Files... 28

5.7.5.4 Byterange .. 31

5.8 Monitoring and Watermark Detection .. 33

Annex A (normative): Vendor Specific Core API ... 34

A.1 Introduction .. 34

A.2 Edge-Vendor Specific API ... 34

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)4

Annex B (informative): Examples of Workflows ... 35

B.1 Introduction .. 35

B.2 Live Content Flows .. 35

B.3 VOD Content Flows ... 37

Annex C (normative): Registration Requests .. 38

C.1 General ... 38

C.2 IANA Considerations ... 38

C.3 MP4RA Registration .. 40

Annex D (informative): Code for Web Sequence Diagram .. 41

D.1 Introduction .. 41

D.2 Figure 3 .. 41

D.3 Figure 5 .. 41

D.4 Figure 6 .. 42

D.5 Figure 7 .. 42

Annex E (informative): Change History .. 44

History .. 45

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

The present document had initially been prepared by DASH-IF (http://dashif.org) and was sent to ETSI under the PAS
agreement.

Comments on the present document may be provided at https://github.com/Dash-Industry-Forum/Watermarking/issues.

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about
60 countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

https://ipr.etsi.org/
http://dashif.org/
https://github.com/Dash-Industry-Forum/Watermarking/issues

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)6

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary
The present document describes proposed architecture and API for supporting forensic watermarking for Over The Top
(OTT) on content that is delivered in an Adaptive Bit Rate (ABR) format. To the possible extend, the proposed
solutions do not make assumptions on the ABR technology that is being used, it can be for example, DASH or HLS.

While digital watermarking can be used for different use cases, the present document focuses on forensic use cases. In
this context, it is used to define the origin of content leakage. the watermarking technology modifies media content in a
robust and invisible way in order to encode a unique identifier, e.g. a unique session ID. The embedded watermark
provides means to identify where the media content, that has been redistributed without authorization, is coming from.
In other words, the watermark is used to forensically trace the origin of content leakage.

https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)7

1 Scope
The present document specifies DASH-IF Forensic A/B Watermarking.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] ISO/IEC 23009-1:2022: "Information technology -- Dynamic adaptive streaming over HTTP
(DASH) -- Part 1: Media presentation description and segment formats".

[2] ISO/IEC 13818-1:2019: "Information technology -- Generic coding of moving pictures and
associated audio information -- Part 1: Systems".

[3] IETF Internet Draft draft-pantos-hls-rfc8216bis-12: "HTTP Live Streaming 2nd Edition",
R. Pantos.

[4] IETF RFC 8949: "Concise Binary Object Representation (CBOR)", C. Bormann, P. Hoffman,
December 2020.

[5] IETF RFC 8610: Concise Data Definition Language (CDDL): A Notational Convention to Express
Concise Binary Object Representation (CBOR) and JSON Data Structures", H. Birkholz, C.
Vigano, C. Bormann, June 2019.".

[6] IETF RFC 8392: "CBOR Web Token (CWT)", M. Jones, E. Wahlstroem, S. Erdtman, H.
Tschofenig. May 2018.

[7] IETF RFC 4648: "The Base16, Base32, and Base64 Data Encodings", S. Josefsson, October 2006.

[8] UHD Forum: "Watermarking API for Encoder Integration, version 1.0.1", March 2021.

[9] IEEE Std 1003.1™ 2018 Edition, The Open Group Base Specifications Issue 7, 31 January 2018.

[10] DASH-IF registry of watermarking technology vendors IDs.

[11] IETF RFC 9053: "CBOR Object Signing and Encryption (COSE): Initial Algorithms", J. Schaad,
August 2022.

[12] IANA: "CBOR Web Token (CWT) Claims".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

https://docbox.etsi.org/Reference
https://www.iso.org/standard/83314.html
https://www.iso.org/standard/75928.html
https://datatracker.ietf.org/doc/html/draft-pantos-hls-rfc8216bis-12
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc4648
https://ultrahdforum.org/guidelines/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://dashif.org/identifiers/watermarking/
https://www.rfc-editor.org/info/rfc9053
https://www.iana.org/assignments/cwt/cwt.xhtml

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)8

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] DASH-IF Live Media Ingest Protocol.

[i.2] Web Sequence Diagram.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

client-driven watermarking: action of watermarking content when the user device is performing some actions
allowing it to make unique requests for content

NOTE: The user device embeds a watermarking agent that is integrated with the application.

client-side watermarking: action of watermarking when the user device is the sole responsible for doing the actual
watermarking of content

NOTE: The user device embeds a watermarking agent that is integrated with the audio-visual rendering engine.

server-driven watermarking: action of watermarking content when the user device is not performing any other
operation than conveying information such as tokens, between servers that are responsible for doing the actual
watermarking of content that is delivered to the user device

sequencing: action of returning a Variant of a segment when it is requested, based on a watermark token

NOTE: Typically, this action is performed on a CDN edge server and is thus referred to as "edge sequencing".

variant: alternative representation of a given segment of a multimedia asset

NOTE: Typically, a Variant is a pre-watermarked version of the segment.

WaterMark (WM) pattern: series of A/B decisions for every segment that is unique per user device

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ABR Adaptive Bit Rate
AES Advanced Encryption Standard
AF Adaptation Field
API Application Programming Interface
AVC Advanced Video Codec
CBOR Concise Binary Object Representation
CDDL Concise Data Definition Language
CDN Content Delivery Network
CMAF Common Media Application Format
COSE CBOR Object Signing and Encryption
CPU Central Processing Unit
CWT CBOR Web Token
DAI Dynamic Ad Insertion
DASH Dynamic Adaptive Streaming over HTTP
DRM Digital Rights Management

https://dashif-documents.azurewebsites.net/Ingest/master/DASH-IF-Ingest.html
https://websequencediagrams.com/

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)9

ECDH Elliptic Curve Diffie-Hellman
HEVC High Efficiency Video Coding
HLS HTTP Live Streaming
HMAC keyed-Hashing for Message AuthentiCation
HTTP Hypertext Transfer Protocol
IANA Internet Assigned Numbers Authority
IOP InterOPerability
IP Internet Protocol
ISOBMFF ISO Base Media File Format
JITP Just In Time Packager
JSON JavaScript Object Notation
JWT JSON Web Token
MPD Media Presentation Description
NAL Network Abstraction Layer
OTT Over The Top
RIST Reliable Internet Stream Transport
RTMP Real-Time Messaging Protocol
RTP Real Time Protocol
SEI Supplemental Enhancement Information
SRT Secure Reliable Transport
TS Transport Stream
TV TeleVision
UDP User Datagram Protocol
UHD Ultra-High Definition
URI Uniform Resource Identifier
URL Uniform Resource Locator
UUID Universally Unique IDentifier
VOD Video On Demand
WM WaterMark
WMID WaterMark IDentifier
WMT WaterMark Token

4 OTT Watermarking Using Variants
The objective of forensic watermarking is to deliver a unique version of a media asset to the different users consuming
the asset. This is somewhat in opposition with media delivery mechanisms that aim at delivering the same asset to all
users for efficiency purposes. As a result, in the broadcast era, a typical approach was to perform the watermarking
operation at the very last step of the media delivery pipeline, within the end user device e.g. a set-top box. This solution
has the virtue of leaving the whole media delivery pipeline unaltered but raises security and interoperability challenges
when a large variety of devices owned and operated by the end user shall be supported. This is for instance the case
with Over The Top (OTT) media delivery where content is consumed on mobile phones, tablets, laptops, connected
TVs, etc. As a result, new forensic watermarking solutions have gained momentum that do not perform security-
sensitive and complex operations in the end user realm. While such approaches require minimal changes in the end-user
devices, they do mandate the media delivery pipeline to be modified accordingly.

A notable example of such network-side watermarking solutions is OTT watermarking using Variants for Adaptive Bit
Rate (ABR) content. In this case, the content is delivered by segments. The baseline idea is then to generate
pre-watermarked Variants of each segment and to modify the delivery protocol so that each end user receives a unique
sequence of Variants depending on a watermark pattern that has been assigned to the end user. The semantic of this
pattern is context dependent and can be, for instance, a device identifier, an account identifier, a session identifier, etc.
Figure 1 illustrates a particular case of this strategy, coined as A/B watermarking, where there are two Variants
generated for each segment, each Variant containing a watermark that either encodes the information '0' or '1'. As a
result, the watermarking system will require the transmission of a sequence of Variants as long as the length of the
pattern to successfully recover the whole unique identifier.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)10

Figure 1: A/B watermarking concept with (a) ABR content delivery and (b) A/B Variants delivery

When using Variants, the serialization process essentially boils down to delivering a unique sequence of Variants to
each individual end user. There are two main families of methods to achieve this:

1) Server-driven methods, wherein the client does perform no operation related to watermarking. It simply
fetches and forwards a token to the CDN that is responsible for delivering a unique sequence of Variants.

2) Client-driven methods, wherein the client is responsible for the serialization operation. For instance, it relies
on some session-based digital object to tamper the URI ABR segments and thereby directly query a unique
sequence of Variants from the CDN.

The present document is describing the server-driven methods. Client-driven methods are not part of the present
document.

5 Server-Driven Architecture and Workflows

5.1 Introduction
In the server-driven architecture, the device is unaware that content it consumes is watermarked. The device only
exchanges a token with servers allowing these servers, usually CDN edges, to make the decision on which A or B
Variant it delivers to the device. In the present document, an end-to-end system is presented. It includes the definition of
watermarking metadata that limits the need for naming conventions by allowing the encoder to send this metadata all
the way to the edge through origins to enable the sequencing of bits. The following goes through the functional
architecture and describes the workflows when preparing content and when consuming content.

In the following, it is assumed that the edge is a CDN edge. There are optional architectures, but this does impact the
overall functional architecture and workflows. It is also assumed that multi-track content (audio and video multiplexed
in one segment) is out of the scope of the present document. In addition, all the workflows are only examples of
possible implementations.

5.2 Functional Architecture
Figure 2 shows the simplified high-level functional architecture and the different interaction between the components
that are involved in the flows when a device consumes watermarked content. Note that this also shows that content is
encrypted, as watermarking will likely be added for premium content that is also encrypted and protected by a DRM
system.

Original asset

ABR segments at different
bitrates Sequence of ABR segments

received by three users (a)

Original asset

A/B Variants of ABR segments at
different bitrates

Unique sequence of A/B Variants
received by three users (b)

Ingest Deliver

Alice

Bob

Charlie

Alice

Bob

Charlie

Ingest Deliver

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)11

Figure 2: Functional architecture

To consume content, a device needs, at minimum, to have an authorization token (for getting a DRM license) and a
WM token that contains a WM pattern, a series of A or B decisions. The device is responsible for obtaining the required
data before requesting segments to the CDN.

5.3 System Configuration
Enabling or disabling the edge sequencing logic is set through the configuration to the edge. As an example, this can be
useful for a service of live sporting events where only premium events require watermarking enforcement. Other
moments of the day do not require it. In this case, content is still watermarked but the edge is only configured to
sequence during the limited period of time of the premium event. When sequencing is disabled, the edge shall consume
segments on the endpoint for Variant A. If this endpoint is not working properly, the origin shall deliver any available
Variant on this endpoint.

NOTE 1: When enabling watermarking, all devices that do not have a WM token will receive an error when
requesting content, hence they are then forced to request such token.

NOTE 2: As an example, enabling and disabling sequencing can be done with an API enable (true/false).

Watermarked objects names shall include a pattern that the CDN can match to differentiate these objects from
non-watermarked objects (initialization segments, subtitles, trickplay images). As an example, for a DASH manifest
located at https://edge.hostname/path/to/endpoint/index.mpd that references video segments as:

<SegmentTemplate timescale="60000" media="video_segment_$RepresentationID$_$Time$.mp4"
initialization="video_init_$RepresentationID$.mp4" startNumber="10967120"
presentationTimeOffset="903486496960">

The pattern for the differentiation of these objects from non-watermarked objects is video_segment_.

One of the following identification schemes, referred as variantId in the present document, shall be used for the
identification of the Variants:

- A lower-case letter beginning with 'a'. Variants are then 'a', 'b' and so on.

- A number beginning with 0. Variants are then 0, 1 and so on.

When addressing content, variantId shall be translated into variantPath as follows:

- variantPath = ${variantId} followed by '/' with the exception, that if ${variantId} is 'a' or '0' then
${variantPath} may be empty.

Device

Edge

Encoder/
Watermarker

Packager

Origin

A and B Variants

A and B Variants

A and B Variants

WMT
Generator DRM Server Authorization

Server

WM tokens ;
A or B Variant

WM token

Content keys &
DRM information

Authz token ;
License

Authz token

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)12

5.4 WM Token
A WM token provides a WM pattern which is unique (for example per streaming session or per user). This pattern
allows the sequencing of A/B Variants.

Two tokenization schemes are defined in the present document. The first, named direct, embeds the WM pattern in the
token and can be opened and interpreted by an edge irrespective of the underlying WM technology and provider. The
second, named indirect, requires integration of a WM technology provider's edge sequencing software at the edge.

The following are requirements on the WM token:

- The token shall be a CWT token, the basic structural requirements are defined in IETF RFC 8392 [6].

- The token shall be with integer keys in "deterministically encoded CBOR" as specified in IETF RFC 8949 [4],
clause 4.2.

- Recipients shall process claims listed in IETF RFC 8392 [6], clause 3.1 when they are present. exp and iat
shall be present.

- The token shall include either a WM pattern (direct mode) or data for deriving the WM pattern (indirect
mode). Absence of a wmpattern claim implies that the token is in indirect mode.

- Recipients shall support direct mode and may support indirect mode.

- The token shall be signed as described in clause 7 of IETF RFC 8392 [6]. Recipients shall support the HMAC
256/256 (kty number 5) and ES256 (kty number -7) algorithms.

- The token shall be base64url-encoded as described in clause 5 of IETF RFC 4648 [7].

The following claims are defined and Table 1 provides the integer claim keys:

wmtoken = {
 wmver-label ^ => wmver-value,
 wmvnd-label ^ => wmvnd-value,
 wmpatlen-label ^ => wmpatlen-value,
 ? wmsegduration-label ^ => wmsegduration-value,
 wmtoken-direct // wmtoken-indirect,
 * wmext-label => any
}

wmver-value = uint .size 1
wmvnd-value = uint .size 1
wmpatlen-value = uint .size 2
wmsegduration-value = [(wmtimeticks : uint, wmtimescale : uint)]
wmext-label = int

; direct mode
wmtoken-direct = {
 wmpattern-label ^ => wmpattern-value
}
wmpattern-value = COSE_Encrypt0 // COSE_Encrypt // bytes

; indirect mode
wmtoken-indirect = {
 wmid-label ^ => wmid-value
 wmopid-label ^ => wmopid-value
 wmkeyver-label ^ => wmkeyver-value
}
wmid-value = text
wmopid-value = uint
wmkeyver-value = uint

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)13

Table 1: Integer Claim key values for the WM token

Claim label Integer key
wmver-label 300
wmvnd-label 301
wmpatlen-label 302
wmsegduration-label 303
wmpattern-label 304
wmid-label 305
wmopid-label 306
wmkeyver-label 307

wmver
The version of the WM Token. Recipients shall support this claim. The present document describes version 1.

wmvnd
The WM technology vendor. Recipients shall support this claim. This provides the context for the key material needed
for signature verification. In the direct mode, it also provides the context for the key material needed for decrypting
wmpattern if needed. In the indirect mode, it identifies the vendor specific core to use. A list of WM technology
vendor identifiers is available at [10].

wmpatlen
The length in bits of the WM pattern. Recipients shall support this claim.

wmpattern
The WM pattern. Recipients shall support this claim in direct mode. It is recommended to encrypt the pattern.
Recipients shall support ECDH-SS+A128KW (key type -32) as defined in IETF RFC 9053 [11].

wmsegduration

The nominal duration of a segment. This claim is optional. Recipients may support this claim. When WMPaceInfo data
is not available, this may allow the edge to define the index to be considered in the WM pattern. If WMPaceInfo is
available, this claim shall be ignored. The array contains exactly 2 values. The first value is a duration in time ticks
where its base unit is defined by the second value. The second value is the scale in number of time ticks per second. As
an example, [60'000, 10'000] means that the segments are 60'000 ticks long while the scale is 10'000 ticks per second,
wmsegduration is then equal to 6 seconds.

wmid
Used as input to derive the WM pattern for indirect mode. Recipients shall support this claim in indirect mode. The
derivation algorithm is not defined in the present document and is vendor specific.

wmopid
Used as additional input to derive the WM pattern for indirect mode. Recipients shall support this claim in indirect
mode.

wmkeyver
The key to use for derivation of the WM pattern in indirect mode. Recipients shall support this claim in indirect mode.

Once the WM pattern is obtained from the token (either directly, decrypted or calculated), the CDN edge shall enforce
big-endian convention to address a single bit in it when using the value of position (defined in clause 5.5.2).

The following is an example with a WM pattern equal to 0x0A0B0C0D.

Byte 0 1 2 3

bit offset 01234567 01234567 01234567 01234567

binary 00001010 00001011 00001100 00001101

hex 0A 0B 0C 0D

For a value of position equal to 3, the bit to consider is highlighted in green (equal to 0). This is not any other bit,
especially, those highlighted in red.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)14

For the indirect mode, there is a vendor specific core (identified by wmvnd). It is recommended that, performance-wise
and software-stack-wise, it is comparable with the direct case. In other words, the vendors specific core should be based
on the crypto operations which are used in the direct mode, and its performance should be equivalent. For example, the
direct mode relies on one decryption operation when wmpattern is encrypted, the vendor specific core should be
consisting of the similar operations to preserve the quantity of operations comparable between these two modes.

5.5 WMPaceInfo

5.5.1 Introduction

When a device requests a segment, the edge sequencing logic needs to know which bit in the unique WM pattern to
consider for retrieving either A or B Variant of the requested segment before delivering it to the device. WMPaceInfo
contains this mapping in addition to some data needed for content preparation. It is transmitted from the encoder (that is
combined with the watermarking pre-processor) to the following servers that may need it (packager, origin, or edge).

5.5.2 WMPaceInfo Data

WMPaceInfo is as shown in Table 2.

Table 2: WMPaceInfo data

Attribute Producer Consumers Purpose
variant Encoder Edge Integration, debugging
position Encoder Edge Bit position in the WM pattern
firstpart Encoder Packager, Origin Egress packaging
lastpart Encoder Packager, Origin Egress packaging

Where

- variant gives the Variant identification, 0, 1 and so on. This information can be useful up to the edge for
verifying that the right Variant has been obtained.

- position is the index in the WM pattern to consider for this segment. Positions are zero-based. When it is
equal to -1, the corresponding segment is not watermarked. For example, position=33 indicates that this
segment refers to position 34 of the WM pattern.

- firstpart informs whether this segment is the first one with this position value. It is equal to true if this is
the case, otherwise it is equal to false. See clause 5.6.2 for further details.

- lastpart informs whether this segment is the last one with this position value. It is equal to true if this is
the case, otherwise it is equal to false. See clause 5.6.2 for further details.

5.5.3 Conveying WMPaceInfo

5.5.3.1 Introduction

WMPaceInfo is delivered from the encoder to other servers. There is no unique mechanism for this. The present
document does not recommend one preferred option applicable for all protocols, Table 3 only presents some possible
options for conveying WMPaceInfo with a preferred option for some protocols (in bold in the table). The following
goes through these different options.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)15

Table 3: Possible options for conveying WMPaceInfo information

Ingest protocol WMPaceInfo delivery options
RTMP SEI
RTP/UDP/RIST/SRT SEI, TS adaptation field
HLS/TS over HTTP POST HTTP header, SEI
CMAF-based protocols/formats (HLS/fMP4, DASH) over HTTP POST HTTP header, ISOBMFF box, SEI
File access protocol ISOBMFF box, SEI, sidecar file

5.5.3.2 Sidecar File

When segments (discrete files or byteranges) are delivered with a file transfer protocol, it may be convenient to have
WMPaceInfo data in a sidecar file. For efficiency, the WMPaceInfo data is not copied directly as some would be
included multiple times.

The sidecar file is of the following format (using CDDL representation in IETF RFC 8610 [5]), following
recommendation of clause 5 of IETF RFC 8949 [4] and shall be encoded using deterministically encoded CBOR as
specified in IETF RFC 8949 [4], clause 4.2 with integer keys.

;---------------------------------------+
; Maps Integer Keys
version = 1
segments = 2
fileSize = 3
startRange = 4
segmentRegex = 5
position = 6
firstpart = 7
lastpart = 8
;---------------------------------------+

discrete-segment = {
 ?segmentRegex : text,
 position : int .size 2 .ge -1,
 ?firstpart : bool,
 ?lastpart : bool
}

byterange-segment = {
 startRange : uint .size 8,
 position : int .size 2 .ge -1
}

sidecar-discrete = {
 version : uint .size 1,
 segments : [+ discrete-segment]
}

sidecar-byterange = {
 version : uint .size 1,
 fileSize : uint .size 8,
 segments : [+ byterange-segment]
}

sidecar = (sidecar-byterange // sidecar-discrete)

When segments are discrete files:

- sidecar shall contain only sidecar-discrete elements.

- version is set to 1 for sidecar files compliant to the present document.

- segmentRegex is a POSIX extended regular expression as described in clause 9 of [9]. It allows to define the
filename of the segments for which the data applies. segmentRegex is optional.

- position, firstpart and lastpart are defined in clause 5.5.2. firstpart and lastpart are optional.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)16

NOTE 1: Using regular expressions and file naming conventions allows reducing the number of required side car
files. The same side car file could be used for all renditions for example. This allows the origin to reduce
the number of sidecar files, but the edge will always receive several copies of the same data as caching is
done on the exact filename. It is recommended to balance the advantages and disadvantages of regular
expressions, because of its Central Processing Unit (CPU) load on the origin.

The following is an example for a set of segments where the filenames satisfy the segmentRegex expression. In this
example, the filenames are in the form of video_segment_[repID]_123.mp4,
video_segment_[repID]_124.mp4 and so on, allowing to have one sidecar file for all Representations (for DASH).

sidecar (
 /version/ 1,
 /segments/ [{/segmentRegex/ "video_segment_ .*?_123.mp4", /position/ 21},
 {/segmentRegex/ "video_segment_ .*?_124.mp4", /position/ 22}]
)

When segments are byteranges:

- sidecar shall contain only sidecar-byterange elements.

- version is set to 1 for sidecar files compliant to the present document.

- fileSize is the size of the track in bytes.

- startRange defines the position of the first byte in the byterange. This expressed as a byte offset from the
beginning of the track sidecar-byterange elements in the array shall be ordered in increasing
startRange values.

- position is defined in clause 5.5.2.

NOTE 2: The first byterange of a track contains the initialization segment. When segments are delivered with
byteranges, it is not possible to differentiate the request for this part of the file from a request for a media
segment when using a pattern as described in clause 5.3. The initialization segment is not watermarked,
therefore position equal -1 for this segment.

The following is an example of a file with an initialization segment part of the byterange from 0 to 1117 and two
segments.

Sidecar (
 /version/ 1,
 /fileSize/ 262445216,
 /segments/ [{/startRange/ 0, /position/ -1},
 {/startRange/ 1118, /position/ 0},
 {/startRange/ 1701212, /position/ 1},
 …
 {/startRange/ 261083393, /position/ 118},
 {/startRange/ 262073936, /position/ 119}]
)

5.5.3.3 HTTP Header

When content is pushed, in the request header, under the WMPaceInfoIngest HTTP header field, the following JSON
object is added:

WMPaceInfoIngest : {
 "version": version,
 "variant": variant,
 "position": position,
 "firstpart": firstpart,
 "lastpart": lastpart
}

Where

- version is set to 1 for WMPaceInfoIngest compliant to the present document.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)17

- variant, position, firstpart and lastpart are defined in clause 5.5.2.

When content is pulled, in the response header, under the WMPaceInfoEgress HTTP header field, the following
CBOR object, base64url-encoded as described in clause 5 of IETF RFC 4648 [7], is added:

WMPaceInfoEgress : <sidecar-discrete>

Where

- sidecar-discrete is defined in clause 5.5.3.2 and contains exactly one discrete-segment object with
data for that segment.

Below is an example of the JSON element added in a WMPaceInfoIngest header field where the payload of the HTTP
request contains the full segment of Variant A.

{
 "version": 1,
 "variant": 0,
 "position": 33,
 "firstpart": true,
 "lastpart": true
}

5.5.3.4 ISOBMFF Box

The format of WMPaceInfo class shall be:

class WMPaceInfo {
 unsigned int(8) version;
 unsigned int(8) variant;
 unsigned int(1) emulation_1;
 unsigned int(15) position;
 unsigned int(1) emulation_2;
 unsigned int(1) firstpart;
 unsigned int(1) lastpart;
 unsigned int(5) reserved;
}

Where

- version is set to 1 for WMPaceInfo compliant to the present document.

- variant, position, firstpart and lastpart are defined in clause 5.5.2.

- emulation_1, and emulation_2 are set to 1.

Within an ISOBMFF file, the WMPaceInfo class shall be carried in the following box:

Box Type: 'wmpi'

Container: Top level box

Mandatory: No

Quantity: Zero or one

aligned(8) class WMPaceInfoBox extends Box('wmpi')
{
 WMPaceInfo();
}

This box should be inserted only at the beginning of a segment, after the styp box and before the moof box, in order to
facilitate content manipulation when padding it (see clause 5.7.5.1).

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)18

5.5.3.5 SEI Message

SEI messages are inserted in the stream with a specific syntax depending on the codec. [8] provides the syntax for
AVC, HEVC and AV1 video codecs in Annex B. In these messages:

- The UUID shall be equal to 0xbec4f824-170d-47cf-a826-ce008083e355.

- The watermarking metadata is the WMPaceInfo data with the format defined for the class WMPaceInfo() in
clause 5.5.3.4.

This message should be inserted for the first frame of a segment to facilitate content manipulation when padding it (see
clause 5.7.5.1).

5.5.3.6 TS Adaptation Field

Following clause U of [2], the format of the private adaptation field descriptor carrying the WMPaceInfo data is defined
in Table 4.

Table 4: WMPaceInfo descriptor

Syntax No. of bits Mnemonic
temi_WMPaceInfo_descriptor {
 af_descr_tag
 af_descr_length
 WMPaceInfo()
}

8
8
40

uimsbf
uimsbf
uimsbf

Where

- af_descr_tag is an 8-bit field that identifies this AF descriptor. It is equal to 0xDF.

- af_descr_length is an 8-bit field specifying the number of bytes of the AF descriptor immediately
following af_descr_length field.

- WMPaceInfo() is a 40-bit field that carries the information defined for the class WMPaceInfo() in
clause 5.5.3.4.

This message should be inserted for the first frame of a segment to facilitate content manipulation when padding it (see
clause 5.7.5.1).

5.6 Content Preparation

5.6.1 Introduction

Content preparation means the generation of A/B Variants of the segments followed by the push of content on the
origin. It is under a workflow manager responsibility in case of VOD and fully automated for Live content. The encoder
generates the different Variants of the adaptive content. The encrypted segments, the DASH manifest and HLS playlists
are generated by the packager and pushed to the origin. A simplified flow is shown in Figure 3 for the case of Live
content if the DASH-IF ingest protocol is used [i.1] (note that content protection steps are omitted for clarity). For
encrypted content, Variants of every segment part of the same Representation may be encrypted using the same
encryption method and with the same content key, meaning the same DRM license allows decrypting the A and B
Variants. In addition to the Variants, the encoder also pushes WMPaceInfo that contain information allowing the
packager and the origin to properly associate the pieces of Variants that are pushed to a bit position on the WM pattern.
In such flow, the packager can aggregate multiple ingest segments into one egress segment, with the limitation that only
ingest segments carrying the same position value can be aggregated together.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)19

Figure 3: Example of Live DASH content preparation workflow using the DASH-IF ingest protocol

5.6.2 Encoding Recommendations

This clause contains recommendation when encoding content. The goal is to facilitate the creation and management of
A and B Variants in the delivery chain.

When segments are requested as byteranges in a file or when chunks are requested as byteranges in a segment, the
segments and chunks in A and B Variants shall have the same size as the player receives only one DASH manifest or
HLS playlist and will get byterange lengths from one sidx box only. How this is achieved in out of the scope of the
present document (as an example, bit stuffing in the encoder is an option).

NOTE 1: This solution does not allow creating aligned segment when content is delivered with HLS in the form of
MPEG-2 TS segments encrypted with AES sample encryption, because start code emulation prevention is
re-applied over the entire NAL unit after encryption with MPEG-2 TS.

NOTE 2: An alternative solution is either to not use segments requested as byteranges, but to use discrete files (in
these cases, there is no need to align Variant A and B of the same segment) or use CMAF segments with
HLS where start code emulation prevention is not re-applied after encryption.

5.6.3 Delivering Content and WMPaceInfo from the Encoder to the
Packager

Only one option for conveying WMPaceInfo information from the encoder to the origin shall be used. Multiple
concurrent formats are not allowed.

NOTE 1: When WMPaceInfo is delivered in TS adaptation field, ISOBMFF box, or SEI, it adds overhead in the
delivery from the CDN to devices. The sidecar file and HTTP header delivery methods do not.

The encoder is sending part of segments to the packager, as the output of the encoder is not necessarily aligned on the
segment length. Furthermore, when multiple streaming formats are used, it may happen that segments generated by the
packager are not of the same size for every streaming protocol (for example, 2 seconds segments for DASH and
4 seconds segments for HLS). The encoder then needs a mechanism for announcing which parts of the Variants it sends
can be aggregated in segments. This is achieved by using the firstpart and lastpart within WMPaceInfo.

NOTE 2: Where an encoder delivers additional metadata to instruct the packager how to aggregate the content into
segments, the encoder ensures that metadata and firstpart and lastpart fields are consistent.

For example, the encoder could output the series of content elements of 1 second length with WMPaceInfo as shown in
Figure 4.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)20

Figure 4: Example of output of an encoder

If the encoder pushes over HTTP these elements, each one should carry a WMPaceInfoIngest HTTP header with the
relevant data. Every server keeps the information within the header associated to the ingested segment. In some cases,
for example when the origin does additional packaging, the header may be updated. The packager can then prepare
segments according to the streaming protocol. From the example above, it can create segments of 2 or 4 seconds
keeping the consistency of the watermarking.

NOTE 3: In this case, 2 consecutive segments of 2 seconds carry the same position value, hence a larger piece of
content is required to retrieve an identifier compared to the case where 2 consecutives segments carrying
different position values.

Other options are to carry WMPaceInfo in a sidecar file or SEI or ISOBMFF box or TS adaptation field. For cases
where the origin can perform additional manipulation of the content, WMPaceInfo may be carried within the content
instead providing it is overwritten as specified in clause 5.6.5.

5.6.4 Segment Ingress Path Structure on the Origin

5.6.4.1 Introduction

The DASH manifest [1] and HLS playlist [3] served to the devices are "neutral", meaning that:

- The same playlist or manifest is served to all devices of all end-users.

- It does not expose different names for A and B Variants of a given segment.

5.6.4.2 Locating the Variants

Egress DASH manifests and HLS playlists shall be neutral, but ingest DASH manifests and HLS playlists include
information about the A and B Variants being ingested, this is:

- The ingest path.

- Some signalling elements to describe if a DASH Adaptation Set includes the A or B Variants, or if an HLS
media playlist includes A or B Variants.

The ingest of A and B Variants shall use specific ingest paths that include a Variant identification (${variantId}).

DASH Ingest manifests shall include an AdaptationSet per Variant. The contents of the AdaptationSet shall be
identical for every Variant apart from an EssentialProperty element that indicates the variantId and that the
Variants are grouped (i.e. they reference the same media). It has the @schemeIdUri attribute equal to
http://dashif.org/guidelines/watermarking_variant#${variantId} where ${variantId} identifies
the Variant with which this EssentialProperty element is associated and @value attribute identifies the group to
which the Variant belongs. If there are additional Variants (A, B and C for example), the @schemeIdUri attribute is
different for each Variant, for example, for Variant C, @schemeIdUri attribute shall be equal to
http://dashif.org/guidelines/watermarking_variant#c, if the schema with lower case letters is used.

The following is an example of a DASH ingest manifest with two Variants, A and B. The watermarking signalling is
highlighted in bold. EssentialProperty elements indicate that Variant A and Variant B belong to the same group
("tv1"). In this example, lower case letters are used for variantId.

NOTE 1: Segment file naming with template based on segment $number or $time are possible.

<AdaptationSet mimeType="video/mp4" segmentAlignment="true" startWithSAP="1"
subsegmentAlignment="true" subsegmentStartsWithSAP="1" bitstreamSwitching="true">

1 second

firstpart:0
lastpart:1
position:2

firstpart:1
lastpart:0
position:3

firstpart:0
lastpart:0
position:3

firstpart:0
lastpart:0
position:3

firstpart:0
lastpart:1
position:3

firstpart:1
lastpart:0
position:4

firstpart:0
lastpart:0
position:4

4 seconds

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)21

 <EssentialProperty schemeIdUri="http://dashif.org/guidelines/watermarking_variant#a"
value="tv1"/>
 <SegmentTemplate timescale="60000"
media="a/video_segment_$RepresentationID$_$Time$.mp4"
initialization="a/video_init_$RepresentationID$.mp4" startNumber="10967120"
presentationTimeOffset="903486496960">
 <SegmentTimeline>
 <S t="903487696960" d="240000"/>
 <S t="903487936960" d="186000"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="27" width="1920" height="1080" frameRate="30/1" bandwidth="5000000"
codecs="avc1.4D4028"/>
 <Representation id="24" width="1280" height="720" frameRate="30/1" bandwidth="3000000"
codecs="avc1.4D401F"/>
 <Representation id="26" width="640" height="360" frameRate="30/1" bandwidth="1499968"
codecs="avc1.4D401E"/>
</AdaptationSet>
<AdaptationSet mimeType="video/mp4" segmentAlignment="true" startWithSAP="1"
subsegmentAlignment="true" subsegmentStartsWithSAP="1" bitstreamSwitching="true">
 <EssentialProperty schemeIdUri="http://dashif.org/guidelines/watermarking_variant#b"
value="tv1"/>
 <SegmentTemplate timescale="60000"
media="b/video_segment_$RepresentationID$_$Time$.mp4"
initialization="b/video_init_$RepresentationID$.mp4" startNumber="10967120"
presentationTimeOffset="903486496960">
 <SegmentTimeline>
 <S t="903487696960" d="240000"/>
 <S t="903487936960" d="186000"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="27" width="1920" height="1080" frameRate="30/1" bandwidth="5000000"
codecs="avc1.4D4028"/>
 <Representation id="24" width="1280" height="720" frameRate="30/1" bandwidth="3000000"
codecs="avc1.4D401F"/>
 <Representation id="26" width="640" height="360" frameRate="30/1" bandwidth="1499968"
codecs="avc1.4D401E"/>
</AdaptationSet>

For HLS ingest playlists, the multivariant playlist shall include all the A and B Variants with a custom attribute
specifying the Variant (using ${variantId} identification as defined in clause 5.3). The attribute is WATERMARKING-
VARIANT. A combination of both audio and video watermarking can therefore be used in a single streamset. In the
media playlists, the only specific signalling is the segments paths that reflects on which ingest path the Variants are
ingested. The sub-paths in the media playlists shall use the same convention that the ${variantId}.

The following is an example of HLS ingest playlists, the watermarking signalling is highlighted in bold (this theoretical
example, both the video and audio are watermarked). In this example, lower case letters are used for variantId.

Multivariant playlist

#EXTM3U
#EXT-X-VERSION:4
#EXT-X-INDEPENDENT-SEGMENTS
#EXT-X-STREAM-INF:BANDWIDTH=5227200,AVERAGE-
BANDWIDTH=3511200,CODECS="avc1.4d401f,mp4a.40.2",RESOLUTION=1280x720,FRAME-
RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="a"
video_1.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=2719200,AVERAGE-
BANDWIDTH=1861200,CODECS="avc1.77.30,mp4a.40.2",RESOLUTION=640x360,FRAME-
RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="a"
video_2.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=8571200,AVERAGE-
BANDWIDTH=5711200,CODECS="avc1.4d4028,mp4a.40.2",RESOLUTION=1920x1080,FRAME-
RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="a"
video_3.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=5227200,AVERAGE-
BANDWIDTH=3511200,CODECS="avc1.4d401f,mp4a.40.2",RESOLUTION=1280x720,FRAME-
RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="b"
video_4.m3u8

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)22

#EXT-X-STREAM-INF:BANDWIDTH=2719200,AVERAGE-
BANDWIDTH=1861200,CODECS="avc1.77.30,mp4a.40.2",RESOLUTION=640x360,FRAME-
RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="b"
video_5.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=8571200,AVERAGE-
BANDWIDTH=5711200,CODECS="avc1.4d4028,mp4a.40.2",RESOLUTION=1920x1080,FRAME-
RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="b"
video_6.m3u8
#EXT-X-IMAGE-STREAM-INF:BANDWIDTH=55649,AVERAGE-
BANDWIDTH=23579,RESOLUTION=308x174,CODECS="jpeg",URI="trickplay_7.m3u8"
#EXT-X-MEDIA:TYPE=AUDIO,LANGUAGE="eng",NAME="Stadium
ambiance",AUTOSELECT=YES,DEFAULT=YES,GROUP-
ID="program_audio",URI="audio_8.m3u8",WATERMARKING-VARIANT="a"
#EXT-X-MEDIA:TYPE=AUDIO,LANGUAGE="eng",NAME="Stadium
ambiance",AUTOSELECT=YES,DEFAULT=YES,GROUP-
ID="program_audio",URI="audio_9.m3u8",WATERMARKING-VARIANT="b"

NOTE 2: While it is a legal signalling in HLS to have multiple EXT-X-MEDIA tags with the same GROUP_ID value,
each tag has a different NAME value. As these playlists are not for devices to consume and to minimize the
processing on the playlists, the ingest playlists do not follow this rule and multiple EXT-X-MEDIA share
the same NAME value.

Media playlist (A Variant)

#EXTM3U
#EXT-X-VERSION:6
#EXT-X-INDEPENDENT-SEGMENTS
#EXT-X-TARGETDURATION:6
#EXT-X-MEDIA-SEQUENCE:11352692
#EXT-X-MAP:URI="video_init_1.mp4"
#EXT-X-PROGRAM-DATE-TIME:2021-09-15T00:48:38.933Z
#EXTINF:6.000,
a/video_segment_1_11352692.mp4
#EXTINF:6.000,
a/video_segment_1_11352693.mp4
#EXTINF:6.000,
a/video_segment_1_11352694.mp4
#EXTINF:6.000,
a/video_segment_1_11352695.mp4
#EXTINF:6.000,
a/video_segment_1_11352696.mp4

Media playlist (B Variant)

#EXTM3U
#EXT-X-VERSION:6
#EXT-X-INDEPENDENT-SEGMENTS
#EXT-X-TARGETDURATION:6
#EXT-X-MEDIA-SEQUENCE:11352692
#EXT-X-MAP:URI="video_init_1.mp4"
#EXT-X-PROGRAM-DATE-TIME:2021-09-15T00:48:38.933Z
#EXTINF:6.000,
b/video_segment_1_11352692.mp4
#EXTINF:6.000,
b/video_segment_1_11352693.mp4
#EXTINF:6.000,
b/video_segment_1_11352694.mp4
#EXTINF:6.000,
b/video_segment_1_11352695.mp4
#EXTINF:6.000,
b/video_segment_1_11352696.mp4

When the ingested content is not watermarked anymore, then:

- For DASH content, the EssentialProperty elements shall be removed from the ingest manifest and a new
Period shall be created with a single AdaptationSet. The path to the segments shall be updated, removing
any information on the Variant location (in the example above, the a/ shall be removed from the @media
value of the SegmentTemplate element).

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)23

- For HLS content, the encoder shall create a new multivariant playlist that does not include WATERMARKING-
VARIANT attributes. It also stops delivering the additional media playlists for the B Variant and others if
present. The path to the segments in the media playlist delivered to devices shall be updated, removing any
information on the Variant location (in the example above, the a/ shall be removed from the media playlist).

NOTE 3: Stopping watermarking content is different from toggling edge sequencing logic (see clause 5.3).

5.6.4.3 Locating the Sidecar File

The sidecar file is part of the ingest with the DASH manifest or HLS playlist, the link to this file is added in different
places depending on the format.

DASH ingest manifests shall include an EssentialProperty element at the Representation level with a
@schemeIdUri attribute equal to http://dashif.org/guidelines/watermarking_wmpaceinfo and @value
attribute equal to the pointer to the sidecar file. The pointer is relative to the ingest manifest.

The following is an example of a DASH ingest manifest where the watermarking signalling is highlighted in bold. In
this example, the absolute path for the sidecar file for the first representation is equal to
https://dash.edgesuite.net/dash264/TestCases/1a/ElephantsDream_H264BPL30_0100.264.dash_wm_pace_info.

NOTE: This example also includes the signalling defined in clause 5.6.2 (for one Variant A). In this case, the
EssentialProperty elements are added in the Representation.

<?xml version="1.0" encoding="UTF-8"?>
<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:dash:schema:mpd:2011"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
 type="static"
 mediaPresentationDuration="PT654S"
 minBufferTime="PT4S"
 …
 <AdaptationSet mimeType="video/mp4" codecs="avc1.42401E" subsegmentAlignment="true"
subsegmentStartsWithSAP="1" contentType='video' maxWidth="480" maxHeight="360"
maxFrameRate="24" par="4:3">
 <Representation id="2" bandwidth="150000" width="480" height="360" frameRate="24">
 <EssentialProperty
schemeIdUri="http://dashif.org/guidelines/watermarking_variant#a" value="tv1"/>
 <EssentialProperty
schemeIdUri="http://dashif.org/guidelines/watermarking_wmpaceinfo"
value="ElephantsDream_H264BPL30_0100.264.dash_wm_pace_info"/>
 <BaseURL>a/ElephantsDream_H264BPL30_0100.264.dash</BaseURL>
 <SegmentBase indexRange="984-11244">
 <Initialization range="0-983"/>
 </SegmentBase>
 </Representation>
 <Representation id="3" bandwidth="250000" width="480" height="360" frameRate="24">
 <EssentialProperty
schemeIdUri="http://dashif.org/guidelines/watermarking_variant#a" value="tv1"/>
 <EssentialProperty
schemeIdUri="https://dashif.org/guidelines/watermarking_wmpaceinfo"
value="ElephantsDream_H264BPL30_0175.264.dash_wm_pace_info"/>
 <BaseURL>a/ElephantsDream_H264BPL30_0175.264.dash</BaseURL>
 <SegmentBase indexRange="984-11245">
 <Initialization range="0-983"/>
 </SegmentBase>
 </Representation>
 …
 </AdaptationSet>
</MPD>

HLS ingest playlists shall include in the media playlist a custom tag specifying the pointer to the sidecar file. The
pointer is relative to the ingest manifest. The tag is #EXT-X-WMPACEINFO:<attribute-list> where the defined
attribute is URI, a quoted-string that gives the relative pointer to the sidecar file. In the media playlist for each Variant
(A, B, C …), the sidecar file referenced by the #EXT-X-WMPACEINFO tag is the same as the variant value shall not be
considered.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)24

The following is an example of a HLS media playlist, the watermarking signalling is highlighted in bold. Note that the
multivariant playlist remains unmodified.

#EXTM3U
#EXT-X-TARGETDURATION:8
#EXT-X-VERSION:7
#EXT-X-MEDIA-SEQUENCE:1
#EXT-X-PLAYLIST-TYPE:VOD
#EXT-X-INDEPENDENT-SEGMENTS
#EXT-X-WMPACEINFO:URI="main_wm_pace_info"
#EXT-X-MAP:URI="main.mp4",BYTERANGE="1118@0"
#EXTINF:7.98333,
#EXT-X-BYTERANGE:1700094@1118
a/main.mp4
#EXTINF:8.00000,
#EXT-X-BYTERANGE:1789481@1701212
a/main.mp4
#EXTINF:8.00000,
#EXT-X-BYTERANGE:1777588@3490693
a/main.mp4
#EXTINF:8.00000,
#EXT-X-BYTERANGE:1752144@5268281
a/main.mp4
#EXTINF:7.26667,
#EXT-X-BYTERANGE:1563219@7020425
a/main.mp4

5.6.5 Packaging Recommendations

This clause contains requirements where packaged content is served to devices. The goal is to facilitate the creation and
management of A and B Variants in the delivery chain. These requirements apply even if no re-packaging process
exists.

NOTE: This implies that an encoder working against a completely passive receiver (e.g. interface 2 of [i.1])
publishes egress versions of the content directly.

The minimum segment duration should consider the embedding capabilities of the WM technology in order to ensure
that a segment contains only information for A or B Variant. A segment carrying only one bit of information (Variant A
or B) allows to match a segment to a bit value in the WM pattern.

As described in clause 5.6.3, a re-packaging process may aggregate received parts of content. It builds a segment
beginning with the part of content with firstpart=true and then aggregates until lastpart=true for creating a
segment until the targeted length has been reached. It shall begin creating a new segment if a part of content with
firstpart=true is received before reaching the targeted length. The packager shall not aggregate segments that have
inconsistent metadata, more precisely, only ingest segments carrying the same position value shall be aggregated
together.

The transformation of ingest manifest into egress manifests requires the following actions:

- All watermarking_wmpaceinfo and watermarking_variant EssentialProperty elements in DASH
manifests and EXT-X-WMPACEINFO tags in HLS playlists shall be removed from the egress manifests.

- HLS media playlists of a given rendition in HLS shall be merged into a single, neutral version of it (without
${variantPath}).

- DASH manifests shall be made neutral (without ${variantPath}).

While the manifests are made neutral when delivered to devices, the content shall remain stored with the structure
defined in the ingest manifests. Doing so, when the CDN edge requests a Variant for a given segment in applying the
logic defined in clause 5.7.5, the origin has a direct access to the requested Variant.

Additionally, when translating from ingress to egress, a re-packaging process shall:

- overwrite WMPaceInfo when carried as SEI messages, TS adaptation fields or ISOBMFF boxes. Overwriting
shall prevent start code emulation. It is recommended to overwrite with 0xFF;

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)25

- remove firstpart, lastpart, segmentRegex from sidecar-discrete elements.

5.7 Content Playback

5.7.1 Introduction

The flow for content playback is shown in the following clauses. The origin received content as explained in clause 5.5.
It has access to the A/B Variants and the WMPaceInfo data.

This clause describes only the case where the WM token is used in direct mode and does not consider the value of
wmsegduration (hence using WMPaceInfo).

This clause is also not considering the case of download of content for later offline playback. Usually, content available
for download is available in the form of byteranges and the device requests large byteranges that overlap those
announced in the MPD or HLS playlists. When content is watermarked, this is not possible as only announced
byteranges are addressable (see clause 5.7.5.4). The device shall therefore either use the announced byteranges only or a
proxy shall ensure that the edge receives requests that are for announced byteranges.

Content playback is divided in three actions:

- Acquiring the WM token, the DASH manifest, or the HLS playlists

- Acquiring the initialization segment

- Acquiring media segments

While the first action is common to all type of content, the other ones have variations depending on the packaging and
delivery mode of the content. Variation is, for example on the difference between content delivered as byterange or
discrete segments. Another possible variation appears when HLS low latency is used for the chunks requested at the
edge of live.

The following goes through the different actions by providing the expected workflows.

5.7.2 Dynamic Ad Insertion

In case of Dynamic Ad Insertion (DAI), the break may happen at any time. As every segment carries watermarking
information allowing to perform the detection, there shall not be segments carrying conflicting data. While some
techniques may recover from this mix of data, it will, in all cases, impact the length of content needed for retrieving the
unique identifier.

For Live content, assuming that an ad replacement period is defined, then from the device perspective, the following
consumption modes are possible.

- The device consumes ads from an alternative edge for the full duration of the ad break

- The device consumes ads from an alternative edge for a duration shorter than the replacement period

- The device consumes the original content as no replacement ad is proposed

Devices may therefore consume content differently during the ad break.

For VOD content, ads will be inserted or stitched with ad break (cue in/out points for example) markers. The device
should consume them from an alternative edge for the full duration of the ad break.

The encoder shall watermark ads part of the original content for Live content. The watermarking technology shall
remain consistent between all these options. Some devices may receive the original content if no ad can be found for
replacement. One consequence is that these devices receive content that is meant to be watermarked following the rules
of the present document.

Devices receiving an ad for replacement shall receive it from a different edge that does not enforce watermarking. Such
edge will then gracefully ignore the WM token.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)26

The WM token is expected to be present in all playback requests during the session. In presence of a DAI manifest
manipulator, depending on its behaviour, it may be necessary to tweak the configuration of the delivery pipeline to
guarantee the propagation of the WM token. For instance, it may be required to perform some manifest manipulation at
the edge to re-introduce the WM token in the response, e.g. when the token is transported as a query parameter and the
DAI manifest manipulator is not piggybacking incoming query parameters in the rewritten manifest/playlist. Another
case is when the watermark token is incorporated to the virtual path, stripped at the edge on its way to the DAI manifest
manipulator (that remains therefore unaware of the WM token) which returns a manipulated playlist that contains
absolute URLs.

5.7.3 WM Token, DASH Manifest and HLS Playlists Acquisition

The device acquires the WM token in an implementation specific manner. It may be retrieved directly from a WM
token server, or it may be provided in a response from another server as part of other data required for playing back
content.

The WM token may be added as part of the virtual path of the requested object, as a query string attribute or as part of
the HTTP header when the device requests content to the edge. It is recommended to use the virtual path.

The WM token may be added by the device for requesting DASH manifest and HLS playlists. While these objects are
not watermarked (the pattern in the name allows the edge to know this), the edge may validate or not the token and
refuse to serve these objects if the token is not valid. The edge may also gracefully ignore the token. The origin cleans
the served objects, removing any property related to location of objects (see clause 5.6.5). The manifest and playlist are
neutral. This is summarized in Figure 5.

Figure 5: Token, DASH manifest and HLS playlist acquisition

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)27

5.7.4 Initialization Segment Acquisition

When content is delivered as byteranges, as the initialization segment is within the file, the token shall be added in the
request as the requested file has a name that matches the pattern for watermarked content. The edge will then apply the
exact same logic it applies for a media segment, it retrieves the sidecar file and extracts the WMPaceInfo for the first
part of the track that contains the initialization segment (as defined in clause 5.7.5). It can then deliver the initialization
segment to the device. As position is equal to -1 (not watermarked), it shall deliver the initialization segment from
Variant A. One or several Variants may become unavailable on the origin for any reason, such as a lost connection with
the encoder for these encoding pipelines. Such situation will result in a failed playback if Variant A is the one that is not
available. The origin shall deliver to the edge the initialization segment from any available Variant in this case on the
endpoint for Variant A.

NOTE: The token is evaluated and validated as the edge cannot make a difference between the initialization
segment and a media segment.

When content is delivered as discrete segments, the name of the initialization segment shall not match the pattern for
watermarked content as written in clause 5.3. The WM token may be added by the device for requesting the
initialization segment. The edge may validate it or not and may refuse to serve these objects if it is not valid. The edge
may also gracefully ignore it.

5.7.5 Media Segments and WMPaceInfo Acquisition

5.7.5.1 General Requirements

For the media segments, a token shall be attached to the HTTP requests. If not present, the edge shall reject the request
and shall not deliver the segment. The edge shall validate the WM token (that can include checking signed data or
decrypting some claims) which is attached to the requests and extracts the WM pattern so that the correct Variant can be
sequenced.

Watermarked objects shall include in the sub-path in the edge forward requests to the origin the value of identifying
Variants that is part of the configuration described in clause 5.3. A request received at the CDN edge for
https://edge.hostname/path/to/endpoint/video_segment_5_8353305.mp4 shall be translated into a forward request for
https://origin.hostname/path/to/endpoint/${variantPath}video_segment_5_8353305.mp4 where the value of
${variantPath} depends on the value extracted from the WM pattern for this segment. The same logic applies if the
watermarking is done through audio segments.

The connection between the origin and the edge shall be restricted to legitimate requests. How this is achieved is out of
the scope of the present document.

NOTE 1: A static secret (a shared key), dynamic signatures or access lists (based on IP addresses) are examples of
tools for restricting the access.

There may be the need to disable watermarking within or upstream of the packager at any time, for example, one or
several Variants may become unavailable on the origin for any reason, such as a lost connection with the encoder for
these encoding pipelines. As devices request all Variants, this situation will result in intermittent black screens when
requesting the affected Variants. In such case, position shall be set to -1 in WMPaceInfo, effectively announcing to
the edge sequencing logic that segments are not watermarked. The edge shall then consume segment on the endpoint for
Variant A. If this endpoint is not working properly, the origin shall deliver any available Variant on this endpoint.

NOTE 2: This is breaking the watermarking detection. The period when such contingency measure is applied is not
to be used for detection. How the end-to-end system is synchronized is out of the scope of the present
document. As an example, the origin can raise an alarm.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)28

5.7.5.2 WMPaceInfo Acquisition

For each device request for /pathname/filename, the edge shall retrieve from the origin egress WMPaceInfo data
associated to this object. The origin presents this information differently whether segments are discrete or byteranges:

- For byterange segment, the origin shall have a dedicated endpoint for delivering WMPaceInfo information as a
sidecar file. For a segment requested by a device at /pathname/filename, the origin shall have an endpoint
/pathname/WMPaceInfo/filename that makes the sidecar file available. The response payload shall
contain the sidecar file (as defined in clause 5.5.3.2 for byterange segments). The origin shall not extract data
and only provide the sidecar file to the edge. The Content-Type for this object is application/cbor.

- For discrete segment, the origin:

- Shall have a dedicated endpoint /pathname/WMPaceInfo/filename for delivering WMPaceInfo for
the requested segment. The response payload shall contain a sidecar file that contain a single
WMPaceInfo object. The Content-Type for this object is application/cbor.

- Shall add WMPaceInfo in the response header (as defined in clause 5.5.3.3) under the
WMPaceInfoEgress header field when the edge requests the segment.

- It is the edge that defines which endpoint it uses.

If WMPaceInfo was delivered to the origin in ingress form (as part of the HTTP request headers, SEI message,
ISOBMFF box, TS adaptation field or a sidecar file per track), that data shall be extracted and made available in egress
form to the edge as both a HTTP header and dedicated endpoint.

Any direct request from a device with /pathname/WMPaceInfo/filename shall receive an error code 403.

Table 5 gives examples of content flows as ingest to the origin and egress of the origin to the edge.

Table 5: Examples of content flows

 Live content VOD content

Ingest of the origin
No sidecar file, data is delivered as part of
HTTP headers, SEI messages, ISOBMFF
boxes or TS adaptation field.

For both discrete segments and byteranges,
one sidecar file per track.

Egress of the origin

One sidecar file per segment (note the special
case of HLS low latency with byterange where
multiple chunks are be linked to the same
sidecar file, see clause 5.7.5.4) and HTTP
header.

For discrete segments, one sidecar file per
segment and HTTP header.
For byterange, one sidecar file per track.

There are then three endpoints on the origin:

- WMPaceInfo: /pathname/WMPaceInfo/filename

- Variant A: /pathname/${variantPath}filename

- Variant B: /pathname/${variantPath}filename

Where ${variantPath} is as defined in clause 5.3.

NOTE: Adding Variants creates additional endpoints.

5.7.5.3 Discrete Files

For the media segments delivered as discrete files, the flow is shown in Figure 6. The edge sequences the A or B
Variant of a segment based on the WM pattern contained in the token. It has two options to know the position of the
segment within the WM pattern:

- First make a request to the origin to retrieve the WMPaceInfo data. This is done with a GET request using the
path /pathname/WMPaceInfo/filename. The origin provides the WMPaceInfo from the Variant A in the
payload of the response as a sidecar file.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)29

- Once, the data in WMPaceInfo is interpreted in conjunction with the WM pattern, the edge can request to the
origin the right Variant corresponding to the position in the WM pattern that matches the value of position
in WMPaceInfo and then deliver it to the device.

- Make a request for the A and B Variants, extract the WMPaceInfo from one response header and once, the
data in WMPaceInfo is interpreted in conjunction with the WM pattern, the edge can deliver the right Variant
to the device.

NOTE: There is a high probability that the edge will request both A and B Variants, hence adding WMPaceInfo
to the response header allows avoiding an extra request to the origin.

The edge caches the Variants of a given segment with different cache keys and it should prevent the cache keys to be
revealed through debug headers.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)30

Figure 6: Media segment, as discrete file, acquisition

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)31

5.7.5.4 Byterange

For the media segments delivered as byteranges, the flow is shown in Figure 7. The edge delivers the A or B Variant of
a segment based on the WM pattern contained in the token. To know which position in the WM pattern it has to
consider, it needs to retrieve the sidecar file associated to this track. It first makes a HTTP GET request to the origin in
order to retrieve the sidecar file.

Whilst sub ranges within segments, such as chunks, are allowed, the edge shall not deliver byteranges overlapping
several segments with different position values in WMPaceInfo.

NOTE 1: An example is content delivered with HLS using the EXT-X-PART tag are byterange requests within a
discrete segment. When the edge receives the request for this partial segment, it will request WMPaceInfo
to the origin and will receive a sidecar file with only one WMPaceInfo. This allows the edge to know that
it does not have enforce byterange validation for these requests.

NOTE 2: Only byteranges overlapping valid ranges are problematic, requests for byteranges included in an allowed
range are not breaking the WM pattern that is created by the A/B Variants and thus can be served.

Once the data in WMPaceInfo is interpreted in conjunction with the WM pattern, the edge can deliver the correct
Variant corresponding to the position in the WM pattern that matches the value of position in WMPaceInfo.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)32

Figure 7: Media segment, as byterange, acquisition

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)33

5.8 Monitoring and Watermark Detection
If content is found, a detection of a WM pattern can be performed. A video acquisition that includes valuable content
(no commercial breaks for example) is performed. As the unique ID is obtained by extracting information from
segments (0 or 1 in every segment), the acquired content shall be of several minutes (the longer the segments are, the
longer the acquired video is). The video is then processed by the watermarking provider in order to extract the unique
ID. This ID is then provided to the relevant entity that can match it to a device, user or streaming session and take the
desired actions.

How the detection is performed, and the revocation of the WM token is performed are out of the scope of the present
document.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)34

Annex A (normative):
Vendor Specific Core API

A.1 Introduction
In case of a token in indirect mode, it is expected that a vendor specific core (identified by wmvnd) generates the WM
pattern (referred as wmpattern). This means that this requires some interaction between the edge and this vendor
specific core. To facilitate this integration, the following defines the API made available by the vendor specific core.

A.2 Edge-Vendor Specific API
It is assumed that:

- The call to the API function is blocking and the edge waits for the vendor specific core to end its processing.

- The verification of the token is done before the call to the function. Verification includes the validation of the
signature.

The inputs are the values of the claims of the token that are relevant for the generation of the WM pattern.

const crypto = require('crypto');

function generate_wmpattern (token.wmpatlen, token.wmkeyver, token.wmid, token.wmopid)
{
 /* vendor specific processing */
 return wmpattern;
}

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)35

Annex B (informative):
Examples of Workflows

B.1 Introduction
This annex takes the DASH-IF ingest protocol [i.1] as a reference. There are two interfaces defined:

- Interface 1, where the combination of packager and origin is able to perform additional re-packaging hence the
structure of ingest and egress may differ. Each POST/PUT contains one CMAF segment. This is often referred
to an active receiving entity as a Just In Time Packager (JITP).

- Interface 2, where the combination of packager and origin does not perform additional re-packaging, the
structure of ingest and egress may be the same. The receiving entity is "passive", the source produces all
objects in form that devices can consume. Each POST/PUT implicitly refers to one addressable object in an
MPD or playlist.

Therefore, the receiving entity is either active (interface 1) or passive (interface 2) and this leads to the following
possibilities:

- CMAF ingest, active receiving entity (JITP)

- HLS/DASH ingest, active receiving entity (JITP)

- HLS/DASH ingest, passive receiving entity

Given all the options for carrying WMPaceInfo (see clause 5.5.3), the following describes some example flows for Live
and VOD content.

B.2 Live Content Flows
For an active receiving entity (JITP), the grouping is non-trivial (as defined in [i.1] clause 6.2), therefore, as described
in clause 5.6.4, the manifests are sent. The JITP may aggregate ingress segments according to (firstpart, lastpart)
and WMPaceInfoEgress will reflect the aggregated result. In addition, evidence of WM process (such as the essential
properties) is removed from egress playlists.

If using the WMPaceInfoIngest header field on interface 1, the flow from the encoder to the edge is shown in
Figure B.1.

Figure B.1: Flow when using WMPaceInfoIngest and WMPaceInfoEgress header fields

Another possible option is using sidecar file, this leads to the flow shown in Figure B.2.

PUT/ingest-segment
WMPaceInfoIngest: <json>

Active
Receiving
Entity

Edge Ingest Source

Store ingest-segment &
WMPaceInfoIngest

GET/egress-segment
WMPaceInfoEgress: <cbor>

JITP translates
WMPaceInfoIngest to
WMPaceInfoEgress upon
request from edge

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)36

Figure B.2: Flow when using WMPaceInfoIngest header field and sidecar file

Another option is using SEI data. In this case, the receiving entity, either leaves WMPaceInfo in segment when storing
and then overwrites it when serving after translating to WMPaceInfoEgress header or overwrites it before storing and
saves the WMPaceInfo data somewhere else. The flow shown in Figure B.3.

Figure B.3: Flow when using SEI data and WMPaceInfoEgress header field

With a passive receiving entity, there is no media manipulation downstream of ingest source, therefore transferring
WMPaceInfo data within the media is not an option, as it is not possible to overwrite it. Figure B.4 shows a possible
flow with sidecar files.

Figure B.4: Flow when using sidecar files

PUT/ingest-segment
WMPaceInfoIngest: <json>

Active
Receiving
Entity

Edge Ingest Source

Store ingest-segment &
WMPaceInfoIngest

GET/WMPaceInfo/egress-segment
GET/egress-segment

JITP translates
WMPaceInfoIngest to
sidecar file upon
request from edge

PUT/ingest-segment
SEI: WMPaceInfo()

Active
Receiving
Entity

Edge Ingest Source

Store ingest-segment &
SEI

GET/egress-segment
WMPaceInfoEgress: <cbor>

JITP translates SEI to
WMPaceInfoEgress upon
request from edge

PUT/egress-segment
PUT/WMPaceInfo/egress-segment

Passive
Receiving
Entity

Edge Ingest Source

Store egress-segment &
Sidecar file

GET/WMPaceInfo/egress-segment
GET/egress-segment

Encoder only sends
egress WMPaceInfo in
sidecar file when
pushing to origin

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)37

B.3 VOD Content Flows
If VOD content is prepared using live profile, then the permutations presented in clause B.2 are applicable. In addition,
another option is that a single sidecar can describe all segments using regex for segmentRegex. This latter case leads
to the flow shown in Figure B.5.

Figure B.5: Flow when using sidecar files for VOD live profile

If VOD content is prepared using on-demand profile, then the sidecar file is the only mechanism available to deliver
WMPaceInfo data. This leads to the flow shown in Figure B.6.

Figure B.6: Flow when using sidecar files for VOD on-demand profile

For each segment of each representation
PUT/segment

After
PUT/WMPaceInfo/sidecar
PUT/manifest

Receiving
Entity

Edge Ingest Source

GET/egress-segment
GET/WMPaceInfo/sidecar

Store segments,
sidecars and manifest

For each representation
PUT/trackfile
PUT/WMPaceInfo/trackfile

After
PUT/manifest

Receiving
Entity

Edge Ingest Source

Store trackfiles,
sidecars and manifest

GET/manifest
GET/WMPaceInfo/trackfile
GET/trackfile

Edge validates that
byteranges do not
overlap several
segments with different
position values

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)38

Annex C (normative):
Registration Requests

C.1 General
This annex contains the registration requests for IANA (token claims) and MP4RA (4CC code).

C.2 IANA Considerations
The present document requests IANA to register the following claims in the following registry:
https://www.iana.org/assignments/cwt/cwt.xhtml#claims-registry [12].

Version Claim

- Claim Name: wmver

- Claim Description: The version of the WM Token

- JWT Claim Name: wmver

- Claim Key: 300

- Claim Value Type: unsigned integer

- Change Controller: DASH-IF

- Specification Document(s): Clause 5.4 of the present document

Technology Vendor Claim

- Claim Name: wmvnd

- Claim Description: The WM technology vendor

- JWT Claim Name: wmvnd

- Claim Key: 301

- Claim Value Type: unsigned integer

- Change Controller: DASH-IF

- Specification Document(s): Clause 5.4 of the present document

Pattern Length Claim

- Claim Name: wmpatlen

- Claim Description: The length in bits of the WM pattern

- JWT Claim Name: wmpatlen

- Claim Key: 302

- Claim Value Type: unsigned integer

- Change Controller: DASH-IF

- Specification Document(s): Clause 5.4 of the present document

https://www.iana.org/assignments/cwt/cwt.xhtml

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)39

Segment Duration Claim

- Claim Name: wmsegduration

- Claim Description: The nominal duration of a segment

- JWT Claim Name: wmsegduration

- Claim Key: 303

- Claim Value Type: map

- Change Controller: DASH-IF

- Specification Document(s): Clause 5.4 of the present document

Pattern Claim

- Claim Name: wmpattern

- Claim Description: The WM pattern

- JWT Claim Name: wmpattern

- Claim Key: 304

- Claim Value Types: COSE_Encrypt0 or COSE_Encrypt or byte string

- Change Controller: DASH-IF

- Specification Document(s): Clause 5.4 of the present document

ID Claim

- Claim Name: wmid

- Claim Description: Used as input to derive the WM pattern for indirect mode

- JWT Claim Name: wmid

- Claim Key: 305

- Claim Value Type: text string

- Change Controller: DASH-IF

- Specification Document(s): Clause 5.4 of the present document

Operator ID Claim

- Claim Name: wmopid

- Claim Description: Used as additional input to derive the WM pattern for indirect mode

- JWT Claim Name: wmopid

- Claim Key: 306

- Claim Value Type: unsigned integer

- Change Controller: DASH-IF

- Specification Document(s): Clause 5.4 of the present document

Key Version Claim

- Claim Name: wmkeyver

- Claim Description: The key to use for derivation of the WM pattern in indirect mode

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)40

- JWT Claim Name: wmkeyver

- Claim Key: 307

- Claim Value Type: unsigned integer

- Change Controller: DASH-IF

- Specification Document(s): Clause 5.4 of the present document

C.3 MP4RA Registration
The present document requests MP4RA to register the following 4CC code.

1) The name, address, and URL of the organization requesting the code-point.

DASH-IF

3855 SW 153rd Dr., Beaverton, OR 97003, USA

https://dashif.org/

2) The kind of code-point you wish to register (please choose from the set of registered types).

Boxes (Atoms)

3) For all except object-type registrations, the suggested identifier (four-character code). Note that four-
character codes use four 8-bit printable characters, usually from the first 128 Unicode characters (commonly
thought of as plain ASCII), but at most from the first 256 Unicode characters.

wmpi

4) The specification in which this code-point is defined, if possible. A copy of the specification would be
appreciated, as it enables the authority to understand the registration better. If you are requesting a 'codec'
code-point, a reference to the definition of the coding system itself, if separate from the definition of its storage
in these files, would also be appreciated.

 Available from here (https://dashif.org/docs/IOP-Guidelines/DASH-IF-CTS-00XX-AB-Watermarking-
0.9.pdf).

5) A brief 'abstract' of the meaning of the code-point, perhaps ten to twenty words.

 wmpi stands for WaterMarkPaceInfo. It carries A/B forensic watermarking information within the ISOBMFF
file.

6) Contact information for an authorized representative for the code-point, including:

a) Contact person's name, title, and organization:

 DASH-IF Interoperability WG Chair

b) Contact email:

 admin@dashif.org

7) Date of definition or implementation (if known) or intended date (if in future).

 July 31, 2023.

8) Statement of an intention to apply (implement) the assigned code-point.

Expected to be implemented as part of DASH-IF conformance and reference tools according to the boilerplate
in the specification.

https://dashif.org/
https://dashif.org/docs/IOP-Guidelines/DASH-IF-CTS-00XX-AB-Watermarking-0.9.pdf
https://dashif.org/docs/IOP-Guidelines/DASH-IF-CTS-00XX-AB-Watermarking-0.9.pdf

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)41

Annex D (informative):
Code for Web Sequence Diagram

D.1 Introduction
This annex provides is the code for generating all workflows shown in Figures 3 to 7, excluding Figure 4 to be used on
https://websequencediagrams.com [i.2].

D.2 Figure 3
Participant Encoder
Participant Packager
Participant Origin

STEP 1: Ingest from the encoder to the packager
For instance, the segmentation is 1s long
Encoder -> Packager: Ingest manifest
Encoder -> Packager: Ingest segments Variant A\n (w/ WMPaceInfo)
Encoder -> Packager: Ingest segments Variant B\n (w/ WMPaceInfo)

STEP 2: Ingest from the Packager to the Origin (e.g. 2S long segments)
The Packager has to aggregate several DASH segments to produce the distributed segment
Packager-> Origin: Egress manifest
Packager-> Origin: Egress segments Variant A\n (w/ WMPaceInfo)
Packager-> Origin: Egress segments Variant B\n (w/ WMPaceInfo)

D.3 Figure 5
Participant Origin
Participant CDN Edge
Participant Device

STEP 1: Acquire a WM token
opt WM token acquisition
 note over Origin,Device: Implementation specific
end

STEP 2: Get the DASH manifest or HLS playlist for the viewing session
alt Obtain DASH manifest
 Device->+CDN Edge: Get MPD(WM token)
 opt Manifest cache miss
 CDN Edge->+Origin: Get MPD
 Origin->Origin: Create a neutral MPD
 Origin-->-CDN Edge: MPD
 CDN Edge->CDN Edge: Cache MPD
 end
 CDN Edge-->-Device: MPD
else Obtain HLS playlists
 Device->+CDN Edge: Get multivariant/media playlist(WM token)
 opt Multivariant/media playlist cache miss
 CDN Edge->+Origin: Get multivariant/media playlist
 Origin->Origin: Create neutral multivariant/media playlist
 Origin-->-CDN Edge: multivariant/media playlist
 CDN Edge->CDN Edge: Cache multivariant/media playlist
 end
 CDN Edge-->-Device: Multivariant/media playlist
end

https://websequencediagrams.com/

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)42

D.4 Figure 6
Participant Origin
Participant CDN Edge
Participant Device

loop Segment request for playback
 Device->+CDN Edge: GET /pathname/segment_i(WM token)
 CDN Edge->CDN Edge: Validate WM token
 alt Invalid WM token
 CDN Edge-->Device: 401 Unauthorized
 else Valid WM token
 alt Use the dedicated endpoint for WMPaceInfo
 opt WMPaceInfo cache miss
 CDN Edge->+Origin: GET /pathname/WMPaceInfo/segment_i
 note right of Origin
 Origin retrieves WMPaceInfo for this segment and delivers it
 end note
 Origin-->-CDN Edge: 200 OK response
 CDN Edge ->> CDN Edge: Cache response
 end
 else Retreive WMPaceInfo from response header
 opt Variants cache miss
 CDN Edge->+Origin: GET /pathname/${variantPath}segment_i
 Origin-->-CDN Edge: 200 OK response
 CDN Edge ->> CDN Edge: Cache response
 CDN Edge->+Origin: GET /pathname/${variantPath}segment_i
 Origin-->-CDN Edge: 200 OK response
 CDN Edge ->> CDN Edge: Cache response
 end
 end
 alt Invalid Request: no WMPaceInfo for this segment
 CDN Edge-->Device: 400 Bad Request
 else Valid Request: WMPaceInfo available for this segment
 CDN Edge ->> CDN Edge: Create WMPaceInfoObject from cache
 CDN Edge ->> CDN Edge: VAR=getVariant(WM token, WMPaceInfoObject)
 alt If using the dedicated endpoint for WMPaceInfo
 opt Segment Variant cache miss
 CDN Edge->+Origin: GET /pathname/${VAR}/segment_i
 Origin-->-CDN Edge: 200 OK /pathname/${VAR}/segment_i
 CDN Edge ->> CDN Edge: Cache /pathname/${VAR}/segment_i
 end
 end
 CDN Edge-->Device: 200 OK with /pathname/segment_i(Variant ${VAR})
 end
 end
 Device->Device: Play Content
End

D.5 Figure 7
Participant Origin
Participant CDN Edge
Participant Device

loop Segment request for playback (including init segment)
 Device->+CDN Edge: GET /pathname/filename(WM token, byterange)
 CDN Edge->>CDN Edge: Validate WM token
 alt Invalid WM token
 CDN Edge-->Device: 401 Unauthorized
 else Valid WM token
 opt WMPaceInfo cache miss
 CDN Edge->+Origin: GET /pathname/WMPaceInfo/filename
 note right of Origin
 Origin retrieves WMPaceInfo sidecar file for
 this file and delivers it

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)43

 end note
 Origin-->-CDN Edge: 200 OK response
 CDN Edge ->> CDN Edge: Cache response
 end
 alt Invalid Request: no WMPaceInfo for this file
 CDN Edge-->Device: 400 Bad Request
 else Valid Request: WMPaceInfo available for this file (one or many objects)
 CDN Edge ->> CDN Edge: Create WMPaceInfoObjects list from cache payload
 CDN Edge ->> CDN Edge: WMPaceInfoObject=getObject(WMPaceInfoObjects,
byterange)
 alt Invalid byterange request
 CDN Edge-->Device: 400 Bad Request (Invalid byterange)
 else Valid byterange request
 CDN Edge ->> CDN Edge: VAR=getVariant(WM token, WMPaceInfoObject)
 opt Byterange cache miss
 CDN Edge->+Origin: Get /pathname/${VAR}/filename(byterange)
 note right of Origin
 The returned payload may be larger than the requested
 byterange (Partial Object Caching)
 end note
 Origin-->-CDN Edge: 206 Partial Content
 CDN Edge ->> CDN Edge: Cache /pathname/${VAR}/filename(byterange)
 end
 opt Partial Object Caching
 CDN Edge->>CDN Edge: Construct byterange response from locally cached
object\n/pathname/${VAR}/filename(byterange)
 end
 CDN Edge-->Device: 206 Partial Content
 end
 end
 end
 Device->Device: Play Content
End

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)44

Annex E (informative):
Change History

Date Version Information about changes
2022-03-23 0.8.0 Version published for first community review.
2023-02-02 0.9.0 Version published for second community review.
2023-02-09 0.9.1 Added IANA and MP4RA registration annexes.

2023-05-02 0.9.2

(Editorial) Corrections on broken automatic references and few formatting issues.
(Editorial) Changed Master to Multivariant (HLS).
(IANA) Updated the sidecar file integer keys and claim keys with final values.
Removed remaining "must" from the text.
Added COSE_Encrypt option for wmpattern.
Updates on the variantPath construction options (removed the '.' possibility).
Deleted examples for token claims.
Changed the encryption algorithm for the pattern (align with CTA WAVE CAT).
Clarified the storage paths for the Variant on the origin.
Clarified the order of the bits in the WM pattern.

2023-05-03 0.9.3 Version published for IOP Review with some small editorial updates.
2023-05-09 0.9.5 Version created for IPR Review and ETSI Submission.

ETSI

ETSI TS 104 002 V1.1.1 (2023-08)45

History

Document history

V1.1.1 August 2023 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 OTT Watermarking Using Variants
	5 Server-Driven Architecture and Workflows
	5.1 Introduction
	5.2 Functional Architecture
	5.3 System Configuration
	5.4 WM Token
	5.5 WMPaceInfo
	5.5.1 Introduction
	5.5.2 WMPaceInfo Data
	5.5.3 Conveying WMPaceInfo
	5.5.3.1 Introduction
	5.5.3.2 Sidecar File
	5.5.3.3 HTTP Header
	5.5.3.4 ISOBMFF Box
	5.5.3.5 SEI Message
	5.5.3.6 TS Adaptation Field

	5.6 Content Preparation
	5.6.1 Introduction
	5.6.2 Encoding Recommendations
	5.6.3 Delivering Content and WMPaceInfo from the Encoder to the Packager
	5.6.4 Segment Ingress Path Structure on the Origin
	5.6.4.1 Introduction
	5.6.4.2 Locating the Variants
	5.6.4.3 Locating the Sidecar File

	5.6.5 Packaging Recommendations

	5.7 Content Playback
	5.7.1 Introduction
	5.7.2 Dynamic Ad Insertion
	5.7.3 WM Token, DASH Manifest and HLS Playlists Acquisition
	5.7.4 Initialization Segment Acquisition
	5.7.5 Media Segments and WMPaceInfo Acquisition
	5.7.5.1 General Requirements
	5.7.5.2 WMPaceInfo Acquisition
	5.7.5.3 Discrete Files
	5.7.5.4 Byterange

	5.8 Monitoring and Watermark Detection

	Annex A (normative): Vendor Specific Core API
	A.1 Introduction
	A.2 Edge-Vendor Specific API

	Annex B (informative): Examples of Workflows
	B.1 Introduction
	B.2 Live Content Flows
	B.3 VOD Content Flows

	Annex C (normative): Registration Requests
	C.1 General
	C.2 IANA Considerations
	C.3 MP4RA Registration

	Annex D (informative): Code for Web Sequence Diagram
	D.1 Introduction
	D.2 Figure 3
	D.3 Figure 5
	D.4 Figure 6
	D.5 Figure 7

	Annex E (informative): Change History
	History

