Speech and multimedia Transmission Quality (STQ); Transmission requirements for narrowband mobile wireless terminals (hands-free) from a QoS perspective as perceived by the user
Contents

Intellectual Property Rights ... 5
Foreword ... 5
Modal verbs terminology ... 5

Introduction ... 5

1 Scope .. 7

2 References .. 7
2.1 Normative references ... 7
2.2 Informative references ... 8

3 Definitions of terms, symbols and abbreviations .. 9
3.1 Terms ... 9
3.2 Symbols .. 10
3.3 Abbreviations .. 10

4 Void ... 11

5 Test Configurations .. 11
5.1 Set-up interface .. 11
5.2 Set-up for terminals ... 12
5.2.0 General ... 12
5.2.1 Handheld terminal ... 12
5.2.2 Vehicle mounted hands-free .. 12
5.2.3 Desktop hands-free terminal ... 13
5.2.4 Additional test setup for hands-free function with softphone ... 13
5.2.4.0 General .. 13
5.2.4.1 Softphone including speakers and microphone .. 14
5.2.4.2 Softphone with separate speakers .. 15
5.2.5 Test setup for variable echo path .. 16
5.3 Acoustical environment .. 16
5.4 Test signals .. 17
5.5 Calibration .. 17
5.5.1 Send .. 17
5.5.2 Receive ... 18
5.5.3 Setup of background noise simulation ... 18
5.6 Environmental conditions for tests .. 19
5.7 Accuracy of test equipment ... 19
5.8 Power feeding conditions .. 20
5.9 Influence of terminal delay on measurements .. 20

6 Codec independent Requirements and associated Measurement Methodologies 20
6.1 Send and receive frequency response ... 20
6.1.1 Send frequency response .. 20
6.1.2 Receive frequency response ... 21
6.1.2.1 Handheld terminal ... 21
6.1.2.2 Void ... 22
6.1.2.3 Softphone (computer-based terminals) .. 22
6.1.2.4 Desktop Terminal ... 23
6.2 Send and receive loudness ratings .. 23
6.2.1 Send Loudness Ratings .. 23
6.2.2 Microphone (Mic) mute ... 24
6.2.3 Receive Loudness Ratings ... 24
6.2.4 Send Loudness Level ... 25
6.2.5 Receive Loudness Level .. 25
6.3 Send and receive noise .. 26
6.3.1 Send Noise ... 26
6.3.2 Receive Noise ... 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Send and receive distortion</td>
<td>27</td>
</tr>
<tr>
<td>6.4.0</td>
<td>General</td>
<td>27</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Send distortion</td>
<td>27</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Receive distortion</td>
<td>28</td>
</tr>
<tr>
<td>6.5</td>
<td>Terminal Coupling Loss weighted (TCLw)</td>
<td>28</td>
</tr>
<tr>
<td>6.6</td>
<td>Stability Loss (or similar parameters)</td>
<td>29</td>
</tr>
<tr>
<td>7.0</td>
<td>Double talk performance</td>
<td>29</td>
</tr>
<tr>
<td>7.1</td>
<td>Objective listening speech quality</td>
<td>30</td>
</tr>
<tr>
<td>7.2</td>
<td>Void</td>
<td>30</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Jitter- and Error-Free Condition</td>
<td>41</td>
</tr>
<tr>
<td>7.3.2.2</td>
<td>Packet Impairments</td>
<td>42</td>
</tr>
<tr>
<td>7.3.0</td>
<td>Overview</td>
<td>40</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Speech Codecs</td>
<td>40</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Codec dependent requirements and associated Measurement Methodologies</td>
<td>40</td>
</tr>
<tr>
<td>6.7</td>
<td>Switching parameters</td>
<td>33</td>
</tr>
<tr>
<td>6.8</td>
<td>Background noise performance</td>
<td>33</td>
</tr>
<tr>
<td>6.9</td>
<td>Quality of echo cancellation</td>
<td>34</td>
</tr>
<tr>
<td>6.10</td>
<td>Quality of echo cancellation</td>
<td>34</td>
</tr>
<tr>
<td>6.10.1</td>
<td>Temporal echo effects</td>
<td>37</td>
</tr>
<tr>
<td>6.10.2</td>
<td>Spectral Echo Attenuation</td>
<td>37</td>
</tr>
<tr>
<td>6.10.3</td>
<td>Occurrence of Artefacts</td>
<td>38</td>
</tr>
<tr>
<td>6.10.4</td>
<td>Variable echo path</td>
<td>38</td>
</tr>
<tr>
<td>6.11</td>
<td>Send and receive delay - round-trip delay</td>
<td>38</td>
</tr>
<tr>
<td>6.12</td>
<td>Void</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>Codec dependent requirements and associated Measurement Methodologies</td>
<td>40</td>
</tr>
<tr>
<td>7.1</td>
<td>Speech Codecs</td>
<td>40</td>
</tr>
<tr>
<td>7.2</td>
<td>Void</td>
<td>40</td>
</tr>
<tr>
<td>7.3</td>
<td>Objective listening speech quality</td>
<td>40</td>
</tr>
<tr>
<td>7.3.0</td>
<td>Overview</td>
<td>40</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Objective listening speech quality MOS-LQO in send direction</td>
<td>41</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Objective listening quality MOS-LQO in receive direction</td>
<td>41</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Jitter- and Error-Free Condition</td>
<td>41</td>
</tr>
<tr>
<td>7.3.2.2</td>
<td>Packet Impairments</td>
<td>42</td>
</tr>
<tr>
<td>Annex A (informative):</td>
<td>Bibliography</td>
<td>44</td>
</tr>
</tbody>
</table>

History

45
Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for [ETSI members and non-members](https://ipr.etsi.org/), and can be found in ETSI SR 000 314: “Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards”, which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

BLUETOOTH® is a trademark registered and owned by Bluetooth SIG, Inc.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Speech and multimedia Transmission Quality (STQ).

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the [ETSI Drafting Rules](https://www.etsi.org/drafting-rules) (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction

The present document covers mobile wireless speech terminals. It aims to enhance the interoperability and end-to-end quality with all other types of terminals.

The advanced signal processing of terminals is targeted to speech signals. Therefore, wherever possible speech signals are used for testing in order to achieve the most realistic test conditions and meaningful results.

It is the aim to optimize the listening and talking quality, conversational performance, as well as the use in noisy environments. Related requirements and test methods are defined in the present document.

In contrast to other standards which define minimum performance requirements, it is the intention of the present document to specify terminal equipment requirements, which enable manufacturers and service providers to ensure good end-to-end speech quality as perceived by the user.
Most of the requirements available in the present document are codec-independent and ensure a high compatibility across access networks with all types of terminals.

For all the functions, the present document considers the limitations in audio performance due to different form factors (e.g. size, shape).
1 Scope

The present document provides speech transmission performance requirements for wireless terminals; it addresses several types of mobile wireless terminals, including softphones. The present document addresses hands-free functionality of narrowband wireless terminals.

Test methods and performance requirements apply (but are not limited) to wireless terminals equipped with the following mobile network access functionalities:

- Circuit-switched telephony in mobile networks like e.g. GSM/2G, 3G/UMTS.
- Packet-switched mobile networks like e.g. LTE/4G, NR/5G, WLAN and WIMAX™ in conjunction with the associated telephony services like e.g. VoLTE, VoNR or VoWiFi.

The terminal may include additional analogue (e.g. electrical headset connection) or digital (e.g. Bluetooth®) interfaces (wired or wireless) between POI and acoustic test equipment. Requirements and test methods only apply to the whole terminal, i.e. the full electro-acoustic path between talker/listener and network access. Specific requirements and test methods exclusively on such additional interfaces are for further study and out of scope for the present document.

Terminals equipped with the following network access functionalities are out of scope:

- DECT - corresponding tests and requirements can be found in ETSI EN 300 176-2 [i.8]
- Wired VoIP telephony - corresponding tests and requirements can be found in ETSI ES 202 738 [i.9]
- Wireless VoIP telephony like e.g. OTT applications - corresponding tests and requirements can be found in ETSI ES 202 738 [i.9]

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 126 171 (V6.0.0): "Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); AMR speech codec; wideband; General description (3GPP TS 26.171 version 6.0.0 Release 6)".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
3 Definitions of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

artificial ear: device for the calibration of earphones incorporating an acoustic coupler and a calibrated microphone for the measurement of the sound pressure and having an overall acoustic impedance similar to that of the median adult human ear over a given frequency band

codec: combination of an analogue-to-digital encoder and a digital-to-analogue decoder operating in opposite directions of transmission in the same equipment

ear-Drum Reference Point (DRP): point located at the end of the ear canal, corresponding to the ear-drum position

freefield equalization: artificial head equalized flat for frontal sound incidence in anechoic conditions

handsfree telephony terminal: telephony terminal using a loudspeaker associated with an amplifier as a telephone receiver and which can be used without a handset

HATS Hands-Free Reference Point (HATS HFRP): reference point “n” from Recommendation ITU-T P.58 [10]: “n” is one of the points numbered from 11 to 17 and defined in table 6a of Recommendation ITU-T P.58 [10] (coordinates of far field front point)

NOTE: The HATS HFRP depends on the location(s) of the microphones of the terminal under test: the appropriate axis lip-ring/HATS HFRP is to be as close as possible to the axis lip-ring/HFT microphone under test.

Head And Torso Simulator (HATS) for telephonometry: manikin extending downward from the top of the head to the waist, designed to simulate the sound pick-up characteristics and the acoustic diffraction produced by a median human adult and to reproduce the acoustic field generated by the human mouth

loudspeaking function: function of a handset telephone using an external loudspeaker associated with an amplifier as a telephone receiver
Mouth Reference Point (MRP): point located on axis and 25 mm in front of the lip plane of a mouth simulator

nominal setting of the volume control: volume control setting which yields the RLR value closest to the nominal RLR

NOTE: If no user operable volume control is available, this should be noted in the test report.

softphone: speech communication system based upon a computer

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

- a.c.: alternative current
- $A_{H.S,dt}$: attenuation range in send direction during double talk
- AM-FM: Amplitude Modulation Frequency Modulation
- AMR: Adaptive Multi-Rate codec
- CS: Composite Source
- CSS: Composite Source Signal
- DECT: Digital Enhanced Cordless Telecommunications
- DRP: Drum Reference Point
- DUT: Device Under Test
- EC: Echo Cancellation
- EFR: Enhanced Full Rate
- EL: Echo Loss
- EVS-NB: Enhanced Voice Services - Narrowband
- FFT: Fast Fourier Transform
- G-MOS-LQOn: Overall transmission quality narrowband
- GSM: Global System for Mobile communication
- HATS: Head And Torso Simulator
- HF: Handsfree
- HFRP: Handsfree Reference Point
- HFT: Handsfree Telephone
- IEC: International Electrotechnical Commission
- ITU-T: International Telecommunication Union - Telecommunication standardization sector
- LQO: Listening Quality Objective
- LTE: Long Term Evolution (3GPP)
- MOS: Mean Opinion Score
- MRP: Mouth Reference Point
- NB: Narrow Band
- NLP: Non Linear Processing
- N-MOS-LQOn: Transmission quality of the background noise narrowband
- NR/5G: New Radio/5G
- OTT: Over The Top
- PDA: Personal Data Analyser
- PMRP: sound Pressure at MRP
- PN: Pseudo random Noise
- POI: Point Of Interconnect
- QoS: Quality of Service
- RF: Radio Frequency
- RLL: Receive Loudness Level
- RLR: Receive Loudness Rating
- RMS: Root Mean Square
- SLL: Send Loudness Level
- SLR: Send Loudness Rating
- S-MOS-LQOn: Transmission quality of the speech narrowband
- TCL$_w$: Terminal Coupling Loss (weighted)
4 Void

5 Test Configurations

5.1 Set-up interface

The generic schematic as defined in figure 5.1-1 is applicable to any wireless link.

NOTE: The "whole" terminal includes all the components from "RF interface" to the transducers and may include an additional (radio) link. The air interface considered in figure 5.1-1 is not the additional radio link.

Figure 5.1-1: Set-up interface
5.2 Set-up for terminals

5.2.0 General

For electroacoustical testing, HATS as described in Recommendation ITU-T P.58 [10] shall be used, which is equipped with a mouth simulator and two artificial ears. In general, most measurements described in the present document can be conducted with one artificial ear. However, for some measurements, the usage of both artificial ears is required.

The preferred way of testing a terminal is to connect it to a network simulator with exact defined settings and access points. The test sequences are fed in either electrically, using a reference codec or using the direct signal processing approach or acoustically using ITU-T specified devices.

When a codec with variable bit rate is used for testing terminal electroacoustical parameters, the bit rate giving the best characteristics or the most commonly used should be selected, e.g.:

- AMR-NB (ETSI TS 126 171 [1]): 12.2 kbit/s;
- EVS-NB (ETSI TS 126 441 [24]): 13.2 kbit/s.

For packet-switched network access, prior to the actual measurements, the clock skew between terminal and test system shall be compensated by adjusting the clock of the test equipment to match the clock of the terminal. The inaccuracy of the clock skew adjustment shall be less than 1 ppm measured according to the procedure in Annex D of ETSI TS 126 132 [27].

5.2.1 Handheld terminal

HATS measurement equipment shall be configured to the handheld hands-free UE according to figure 5.2.1-1. The HATS should be positioned so that the HATS Reference Point is at a distance d_{HF} from the centre point of the visual display of the Mobile Station. The distance d_{HF} is specified by the manufacturer. A vertical angle θ_{HF} may be specified by the manufacturer. In case it is not specified the distance d_{HF} shall be 42 cm and θ_{HF} shall be 0.

NOTE: The nominal distance of 42 cm corresponds to lip plane-HATS reference point distance (12 cm) with an additional 30 cm giving a realistic figure as a reference usage of handheld terminals.

![Figure 5.2.1-1: Configuration of handheld hands-free UE relative to the HATS](image)

5.2.2 Vehicle mounted hands-free

Test arrangement, test methods and performance requirements are according to Recommendation ITU-T P.1100 [i.2].

![Figure 5.2.2-1: Void](image)
5.2.3 Desktop hands-free terminal

Definition of hands-free terminals and setup for desktop hands-free terminals are based on Recommendation ITU-T P.581 [16].

![Position diagram for desktop hands-free terminal side view](image1)

Figure 5.2.3-1: Position for test of desktop hands-free terminal side view

![Position diagram for desktop hands-free terminal top view](image2)

Figure 5.2.3-2: Position for test of desktop hands-free terminal top sight

5.2.4 Additional test setup for hands-free function with softphone

5.2.4.0 General

Two types of softphones are to be considered:

- Type 1 is to be used as a desktop type (e.g. notebook).
- Type 2 is to be used as a handheld type (e.g. PDA).

When manufacturer gives conditions of use, they will apply for test. If no other requirement is given by manufacturer softphone will be positioned according the following conditions.
5.2.4.1 Softphone including speakers and microphone

Figure 5.2.4.1-1: Configuration of softphone relative to the HATS side view

Figure 5.2.4.1-2: Configuration of softphone relative to the HATS-top sight
5.2.4.2 Softphone with separate speakers

When separate loudspeakers are used, system will be positioned as in figure 5.2.4.2-1.

![Figure 5.2.4.2-1: Configuration of softphone using external speakers relative to the HATS-top sight](image1)

When external microphone and speakers are used, system will be positioned as in figure 5.2.4.2-2.

![Figure 5.2.4.2-2: Configuration of softphone using external speakers and microphone relative to the HATS-top sight](image2)
5.2.5 Test setup for variable echo path

Test setup for desktop hands-free terminals: A notebook is positioned at least 20 cm in front of the device (or devices) with the transducers, as shown in figure 5.2.5-1. The notebook lid is moved during the measurement.

![Figure 5.2.5-1: Positioning of DUT](image)

Test setup for softphone: The test setup is described in clause 6.2. The notebook lid is moved during the measurement, as shown in figure 5.2.5-2. This setup is valid for all combinations of notebook with or without external speakers or microphone:

![Figure 5.2.5-2: Positioning of DUT](image)

Test setup for other hands-free devices is for further study.

5.3 Acoustical environment

In general, different acoustical environments have to be taken into account: either room noise and background noise are an inherent part of the test environment or room noise and background noise shall be eliminated to such an extent that their influence on the test results can be neglected.

Unless stated otherwise measurements shall be conducted under quiet and “anechoic” conditions.

Considering this, the test laboratory, in the case where its test room does not conform to anechoic conditions as given in Recommendation ITU-T P.342 [13], has to present difference in results for measurements due to its test room. In case where an anechoic room is not available the test room has to be an acoustically treated room with few reflections and a low noise level.

In cases where real or simulated background noise is used as part of the testing environment, the original background noise shall not be noticeably influenced by the acoustical properties of the room.

In all cases where the performance of acoustic echo cancellers shall be tested, a realistic room, which represents the typical user environment for the terminal shall be used.
5.4 Test signals

Modern wireless terminals often deploy nonlinear and time-varying processing. As such terminals are designed for speech transmission, the most appropriate test signal is real speech. Appropriate test signals (general description) are defined in Recommendation ITU-T P.501 [14].

For testing the narrowband telephony service provided by a terminal the test signal used shall be band limited between 100 Hz and 4 kHz with a bandpass filter providing a minimum of 24 dB/Oct. filter roll off, when feeding into the receive direction.

Unless specified otherwise, the test signal levels are referred to the average level of the (band limited in receive direction) test signal, averaged over the complete test sequence. Unless specified otherwise, the active speech level calculation according to Recommendation ITU-T P.56 [9] shall be used.

5.5 Calibration

5.5.1 Send

Unless specified otherwise, the test signal level shall be -4,7 dBPa at the MRP.

The various steps for calibration of the artificial mouth are described in Recommendation ITU-T P.581 [16]. The spectrum of acoustic signal produced by the artificial mouth is equalized under freefield conditions at the MRP.

The test setup shall be in conformance with figure 5.5.1-1 but depending on the type of terminal, the appropriate distance and level will be used. When using this calibration method, send sensitivity shall be calculated as follows:

\[
S_{nf} = 20 \log V_s - 20 \log P_{MRP} + \text{Corr} - D_{corr}
\]

where:

- \(V_s\) is the measured voltage across the appropriate termination (unless stated otherwise, a 600 \(\Omega\) termination).
- \(P_{MRP}\) is the applied sound pressure at the MRP.
- \(\text{Corr}\) is 20 log (\(P_{MRP}/P_{HFRP}\)) of the used artificial mouth.
- The value of \(\text{Corr}\) is the value required to calibrate the artificial mouth to the exact value of \(D_{corr}\) (e.g. 24,0 dB for 50 cm distance).
- \(D_{corr}\) is the correction to achieve the target sound pressure level at the intended distance (see below).

NOTE: Reason for this procedure of calibration in two steps is to take into account the different variation of signal with distance by using different implementations of HATS.

Figure 5.5.1-1: Calibration at HFRP for HATS

The distance used for level calibration corresponds to the following values:

- Desktop terminal: 50 cm and level to adjust -28,7 dBPa, \(D_{corr} = 24\) dB
- Handheld terminal: 30 cm with -24,3 dBPa, \(D_{corr} = 19.6\) dB
Softphone: 36 cm with -25.8 dBPa, $D_{\text{con}} = 21.1$ dB

5.5.2 Receive

Unless specified otherwise, the applied test signal level at the digital input shall be -16 dBm0, measured according to Recommendation ITU-T P.56 [9] at the digital reference point or the equivalent analogue point.

All measurement values produced by HATS are intended to be free-field equalized according Recommendation ITU-T P.581 [16].

5.5.3 Setup of background noise simulation

A setup for simulating realistic background noises in a lab-type environment is described in ETSI TS 103 224 [25].

ETSI TS 103 224 [25] contains a description of the recording arrangement for realistic background noises, a description of the setup for a loudspeaker arrangement suitable to simulate a background noise field in a lab-type environment and a database of realistic background noises, which can be used for testing the terminal performance with a variety of different background noises.

The principle loudspeaker setup for the simulation arrangement is shown in figure 5.5.3-1.

![Figure 5.5.3-1: Loudspeaker arrangement for background noise simulation](image)

The equalization and calibration procedure for the setup is described in detail in ETSI TS 103 224 [25].

If not stated otherwise this setup is used in all measurements where background noise simulation is required.

The following noises of ETSI TS 103 224 [25] in table 5.5.3-1 shall be used.
Table 5.5.3-1: Noises used for background noise simulation

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Length</th>
<th>Handsfree Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-size car 130 km/h</td>
<td>HATS and microphone array at co-drivers position</td>
<td>30 s</td>
<td>1: 69.5 dB 2: 68.6 dB 3: 68.6 dB 4: 68.7 dB 5: 68.8 dB 6: 68.8 dB 7: 69.2 dB 8: 69.7 dB</td>
</tr>
<tr>
<td>(FullSizeCar_130)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cafeteria (Cafeteria)</td>
<td>HATS and microphone array inside a cafeteria</td>
<td>30 s</td>
<td>1: 69.0 dB 2: 69.7 dB 3: 69.6 dB 4: 69.8 dB 5: 69.5 dB 6: 69.5 dB 7: 69.7 dB 8: 70.0 dB</td>
</tr>
<tr>
<td>Roadnoise (Roadnoise)</td>
<td>HATS and microphone array standing outside near a road</td>
<td>30 s</td>
<td>1: 69.9 dB 2: 70.7 dB 3: 70.9 dB 4: 71.0 dB 5: 70.8 dB 6: 70.8 dB 7: 70.9 dB 8: 71.0 dB</td>
</tr>
<tr>
<td>Pub Noise (Pub)</td>
<td>HATS and microphone array in a Pub</td>
<td>30 s</td>
<td>1: 75.2 dB 2: 75.1 dB 3: 74.9 dB 4: 75.1 dB 5: 74.8 dB 6: 74.8 dB 7: 74.8 dB 8: 75.0 dB</td>
</tr>
<tr>
<td>Airport departure</td>
<td>HATS and microphone array in an airport gate area</td>
<td>30 s</td>
<td>1: 77.2 dB 2: 77.4 dB 3: 77.6 dB 4: 77.7 dB 5: 78.1 dB 6: 77.9 dB 7: 77.8 dB 8: 77.9 dB</td>
</tr>
</tbody>
</table>

5.6 Environmental conditions for tests

The following conditions shall apply for the testing environment:

a) Ambient temperature: 15 °C to 35 °C (inclusive);
b) Relative humidity: 5 % to 85 %;
c) Air pressure: 86 kPa to 106 kPa (860 mbar to 1 060 mbar).

5.7 Accuracy of test equipment

Unless specified otherwise, the accuracy of measurements made by test equipment shall be better than:

Table 5.7-1: Accuracy of measurements

<table>
<thead>
<tr>
<th>Item</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Signal Level</td>
<td>±0.2 dB for levels ≥ -50 dBV</td>
</tr>
<tr>
<td>Sound pressure</td>
<td>±0.7 dB</td>
</tr>
<tr>
<td>Frequency</td>
<td>±0.2 %</td>
</tr>
<tr>
<td>Time</td>
<td>±0.2 %</td>
</tr>
<tr>
<td>Measured maximum frequency</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Clock Accuracy</td>
<td>< 2 ppm</td>
</tr>
</tbody>
</table>

NOTE: The measured maximum frequency is required for free-field correction in Recommendation ITU-T P.58 [10].
Unless specified otherwise, the accuracy of the signals generated by the test equipment shall be better than:

<table>
<thead>
<tr>
<th>Table 5.7-2: Accuracy of generated signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>Sound pressure level at MRP</td>
</tr>
<tr>
<td>Electrical excitation levels</td>
</tr>
<tr>
<td>Frequency generation</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>NOTE:</td>
</tr>
</tbody>
</table>

NOTE: This tolerance may be used to avoid measurements at critical frequencies, e.g. those due to sampling and coding operations within the terminal under test.

The measurements results shall be corrected for the measured deviations from the nominal level.

The sound level measurement equipment shall comply with class 1 accuracy according to IEC 61672 [i.3].

5.8 Power feeding conditions

For terminal equipment, which is directly powered from the mains supply, all tests shall be carried out within ±5 % of the rated voltage of that supply. If the equipment is powered by other means and those means are not supplied as part of the apparatus, all tests shall be carried out within the power supply limit declared by the supplier. If the power supply is a.c., the test shall be conducted within ±4 % of the rated frequency.

5.9 Influence of terminal delay on measurements

As delay is introduced by the terminal, care shall be taken for all measurements where exact position of the analysis window is required. It shall be checked that the test is performed on the test signal and not any other signal.

6 Codec independent Requirements and associated Measurement Methodologies

6.1 Send and receive frequency response

6.1.1 Send frequency response

Requirement

The send sensitivity frequency response from the MRP to the measurement output (digital or analogue output according measurement system used) shall be within the mask which can be drawn with straight lines between the breaking points in table 6.1.1-1 on a logarithmic (frequency) - linear (dB sensitivity) scale.

<table>
<thead>
<tr>
<th>Table 6.1.1-1: Hands-free send sensitivity/frequency response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>1 000</td>
</tr>
<tr>
<td>2 000</td>
</tr>
<tr>
<td>3 000</td>
</tr>
<tr>
<td>3 400</td>
</tr>
<tr>
<td>4 000</td>
</tr>
</tbody>
</table>

NOTE: The limits for intermediate frequencies lie on a straight line drawn between the given values on a linear (dB) - logarithmic (Hz) scale.
6.1.1 Measurement method

The test signal to be used for the measurements shall be the British-English single talk sequence described in clause 7.3.2 of Recommendation ITU-T P.501 [14].

The terminal is set up as described in clause 5.2 and calibration is realized as explained in clause 5.5.1.

Measurements shall be made at 1/3rd octave intervals as given by IEC 61260-1 [18] for frequencies from 100 Hz to 4 kHz inclusive. For the calculation the averaged measured level at each frequency band is referred to the averaged test signal level measured in each frequency band.

The sensitivity is expressed in terms of dBV/Pa.

6.1.2 Receive frequency response

6.1.2.1 Handheld terminal

Requirement

The receive sensitivity frequency response from the measurement input (digital or analogue input according measurement system used) to ear of HATS free field corrected shall be within the mask which can be drawn with straight lines between the breaking points in table 6.1.2.1-1 on a logarithmic (frequency) - linear (dB sensitivity) scale.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Upper limit (dB)</th>
<th>Lower limit (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6</td>
<td>-9</td>
</tr>
<tr>
<td>500</td>
<td>6</td>
<td>-9</td>
</tr>
<tr>
<td>630</td>
<td>6</td>
<td>-6</td>
</tr>
<tr>
<td>3 150</td>
<td>6</td>
<td>-6</td>
</tr>
<tr>
<td>4 000</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The limits for intermediate frequencies lie on a straight line drawn between the given values on a linear (dB) - logarithmic (kHz) scale.
Figure 6.1.2.1-1: Handheld receive sensitivity/frequency response

Measurement method

Receive frequency response is the ratio of the measured sound pressure and the input level. (dB relative Pa/V).

\[
S_{\text{Jeff}} = 20 \log \left(\frac{p_{\text{eff}}}{v_{\text{RCV}}} \right) \text{ dB rel 1 Pa / V}
\]

- \(S_{\text{Jeff}} \) Receive Sensitivity: Junction to HATS Ear with freefield correction
- \(p_{\text{eff}} \) DRP Sound pressure measured by ear simulator Measurement data are converted from the Drum Reference Point to freefield
- \(v_{\text{RCV}} \) Equivalent RMS input voltage

The test signal to be used for the measurements shall be the British-English single talk sequence described in clause 7.3.2 of Recommendation ITU-T P.501 [14].

The terminal is set up as described in clause 5.2.

The measurement is conducted at nominal value of volume control.

Measurements shall be made at 1/3rd octave intervals as in IEC 61260-1 [18] for frequencies from 100 Hz to 4 kHz inclusive. For the calculation the averaged measured level at each frequency band is referred to the averaged test signal level measured in each frequency band.

The sensitivity is expressed in terms of dBPa/V.

6.1.2.2 Void

6.1.2.3 Softphone (computer-based terminals)

Requirements

Type 1 or softphone with external speakers: The requirement as for desktop terminal shall apply.

Type 2: The requirement as for handheld terminal shall apply.
6.1.2.4 Desktop Terminal

Requirement

The receive sensitivity frequency response from the measurement input (digital or analog input according measurement system used) to ear of HATS freefield corrected shall be within the mask which can be drawn with straight lines between the breaking points in table 6.1.2.4-1 on a logarithmic (frequency) - linear (dB sensitivity) scale.

Table 6.1.2.4-1: Desktop terminal receive sensitivity/frequency response

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Upper limit (dB)</th>
<th>Lower limit (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6</td>
<td>-9</td>
</tr>
<tr>
<td>315</td>
<td>6</td>
<td>-9</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
<td>-6</td>
</tr>
<tr>
<td>3150</td>
<td>6</td>
<td>-6</td>
</tr>
<tr>
<td>4000</td>
<td>6</td>
<td>-6</td>
</tr>
</tbody>
</table>

NOTE: The limits for intermediate frequencies lie on a straight line drawn between the given values on a linear (dB) - logarithmic (kHz) scale.

Figure 6.1.2.4-1: Desktop terminal receive sensitivity/frequency response

Measurement method

The terminal is positioned as described in clause 5.2.

Measurements methods defined in clause 6.1.2.1 shall apply.

6.2 Send and receive loudness ratings

6.2.1 Send Loudness Ratings

Requirement

The nominal values of SLR shall be:

$$SLR = +13 \pm 3 \text{ dB}$$

Measurement method

The test signal to be used for the measurements shall be the British-English single talk sequence described in clause 7.3.2 of Recommendation ITU-T P.501 [14].

The terminal is set up as described in clause 5.2 and calibration is realized as explained in clause 5.5.1.
The send sensitivity shall be calculated for each of the 14 frequency bands given in table 1 of Recommendation ITU-T P.79 [11] (bands 4 to 17). For the calculation the averaged measured level at the electrical reference point for each frequency band is referred to the averaged test signal level measured in each frequency band at the MRP.

The sensitivity is expressed in terms of dBV/Pa and the SLR shall be calculated according to Recommendation ITU-T P.79 [11], formula (A-23b), over bands 4 to 17 and the send weighting factors from Recommendation ITU-T P.79 [11], table 1.

6.2.2 Microphone (Mic) mute

Requirement

The SLR (Send Loudness Rating) with mic mute on shall be at least 50 dB higher than with mic mute off.

Measurement method

The terminal will be positioned as described in clause 6.2.1, but its microphone shall be configured to be muted.

Measurement and calculation method are the same as in clause 6.2.1.

6.2.3 Receive Loudness Ratings

Requirements

Handheld terminal

Nominal value of RLR shall be +9 dB ± 3 dB. This value has to be fulfilled for at least one volume setting.
Value of RLR at maximum volume setting shall be less than (louder) or equal to +5 dB.
Range of volume control (RLR measured at minimum and maximum volume setting) shall be larger than or equal to 15 dB.

Desktop Terminal

Nominal value of RLR shall be +5 dB ± 3 dB. This value has to be fulfilled for at least one volume setting.
Value of RLR at maximum volume setting shall be less than (louder) or equal to -2 dB.
Range of volume control (RLR measured at minimum and maximum volume setting) shall be larger than or equal to 15 dB.

Softphone (computer-based terminals)

Type 1 or softphone with external speakers: requirement as for desktop terminal.
Type 2: requirement as for handheld terminal.

Measurement method

The terminal is set up as described in clause 5.2.
The test signal to be used for the measurements shall be the British-English single talk sequence described in clause 7.3.2 of Recommendation ITU-T P.501 [14].
The receive sensitivity shall be calculated for each of the 14 frequency bands given in table 1 of Recommendation ITU-T P.79 [11] (bands 4 to 17). For the calculation, the averaged measured level at each frequency band is referred to the averaged test signal level measured in each frequency band.
The sensitivity is expressed in terms of dB Pa/V and the RLR shall be calculated according to Recommendation ITU-T P.79 [11], formula (A-23c), over bands 4 to 17 and the receive weighting factors from table 1 of Recommendation ITU-T P.79 [11]. No leakage correction shall be applied.
For binaural measurements, the individual sensitivities for left and right ears are energetically summed up. The hands-
free RLR based on this overall sensitivity is then calculated with a correction factor of -8 dB.

The test shall be repeated for maximum and minimum volume control setting.

6.2.4 Send Loudness Level

Requirements

The nominal value of Send Loudness Level (SLL) shall be:

\[
SLL = 71 \text{ phon } \pm 4 \text{ phon}
\]

Measurement method

The test signal to be used for the measurements shall be the British-English single talk sequence described in
clause 7.3.2 of Recommendation ITU-T P.501 [14].

The terminal is set up as described in clause 5.2 and calibration is realized as explained in clause 5.5.1.

The loudness (in sone) of the recorded signal is calculated according to Recommendation ITU-T P.700 [26] and noted
in the test report. The loudness level (in phon) is calculated according to clause 9 of Recommendation ITU-T
P.700 [26].

6.2.5 Receive Loudness Level

Requirements

Handheld terminal

The nominal value of Receive Loudness Level (RLL) shall be 67 ± 4 phon. This value has to be fulfilled for at least one
volume setting.

Value of RLL at maximum volume setting shall be louder than or equal to 71 phon.

Range of volume control (RLL measured at minimum and maximum volume setting) shall be larger than or equal to
15 phon.

Desktop terminal

The nominal value of Receive Loudness Level (RLL) shall be 71 ± 4 phon. This value has to be fulfilled for at least one
volume setting.

Value of RLL at maximum volume setting shall be louder than or equal to 78 phon.

Range of volume control (RLL measured at minimum and maximum volume setting) shall be larger than or equal to
15 phon.

Softphone (computer-based terminal)

Type 1 or softphone with external speakers: requirement as for desktop terminal.

Type 2: requirement as for handheld terminal.

Measurement method

The terminal is set up as described in clause 5.2.

The test signal to be used for the measurements shall be the British-English single talk sequence described in
clause 7.3.2 of Recommendation ITU-T P.501 [14].

For each recorded artificial ear signal, the loudness (in sone) of the recorded signal is calculated according to
Recommendation ITU-T P.700 [26] and noted in the test report. The loudness level (in phon) is determined as follows
for binaural measurements: the resulting loudnesses for left and right ears are first halved (individual loudness per ear).
Both loudnesses are added (assuming perfect loudness summation). With this overall loudness level is finally determined according to clause 8.2 of Recommendation ITU-T P.700 [26].

6.3 Send and receive noise

6.3.1 Send Noise

Requirement

The send noise level shall not exceed -64 dBm0(p).

No peaks in the frequency domain higher than 10 dB above the average noise spectrum shall occur.

Requirement as for other tests is identical for all types of terminals.

NOTE: Softphones with cooling devices (fans) can produce a rather high level of noise, furthermore largely dependent of activity of system.

Measurement method

The terminal is set up as described in clause 5.2.

For the actual measurement no test signal is used. In order to reliably activate the terminal an activation signal is introduced before the actual measurement. The activation signal shall be the female speaker of the short conditioning sequence described in clause 7.3.7 of Recommendation ITU-T P.501 [14]. Level of this activation signal shall be -4,7 dBPa, measured at the MRP. The activation signal level is averaged over the complete activation signal sequence.

The psophometric noise level at the output of the test setup is measured. The psophometric filter is described in Recommendation ITU-T O.41 [17]. The send noise is measured at the POI in the frequency range from 100 Hz to 4 kHz. The analysis window is applied directly after stopping the activation signal but taking into account the influence of all acoustical components (reverberations). The averaging time is 1 s. The test house has to ensure (e.g. by monitoring the time signal) that during the test the terminal remains in activated condition. If the terminal is deactivated during the measurement, the measurement time has to be reduced to the period where the terminal remains in activated condition.

Spectral peaks are measured in the frequency domain from 100 Hz to 3,4 kHz. The frequency spectrum of the A-weighted idle channel noise is measured by a spectral analysis having a noise bandwidth of 8,79 Hz (determined using FFT 8 k samples/48 kHz sampling rate with Hanning window or equivalent). The idle channel noise spectrum is stated in dB. A smoothed average idle channel noise spectrum is calculated by a moving average (arithmetic mean) 1/3rd octave wide across the idle noise channel spectrum stated in dB (linear average in dB of all FFT bins in the range from 2^(−1/6)f to 2^(+1/6)f). Peaks in the idle channel noise spectrum are compared against a smoothed average idle channel noise spectrum.

6.3.2 Receive Noise

Requirements

The receive noise level shall not exceed -54 dBP(a) at nominal setting of the volume control.

The level in any 1/3rd octave band, between 100 Hz and 10 kHz shall not exceed a value of -64 dBP(a).

No peaks in the frequency domain higher than 10 dB above the average noise spectrum shall occur.

NOTE 1: For softphone the test condition excludes fan noise.
Measurement method

The terminal is set up as described in clause 5.2.

For the actual measurement no test signal is used. In order to reliably activate the terminal an activation signal is introduced before the actual measurement. The activation signal shall be the female speaker of the short conditioning sequence described in clause 7.3.7 of Recommendation ITU-T P.501 [14]. Level of this activation signal shall be -16 dBm0.

The A-weighted noise level shall be measured at DRP of the artificial ear with the freefield equalization active. The level in any 1/3rd octave band, between 100 Hz and 10 kHz shall be measured at DRP of the artificial ear, including free-field equalization.

The noise shall be measured just after interrupting the activation signal.

Spectral peaks are measured in the frequency domain in the frequency range from 100 Hz to 3.4 kHz. The frequency spectrum of the A-weighted idle channel noise is measured by a spectral analysis having a noise bandwidth of 8.79 Hz (determined using FFT 8 k samples/48 kHz sampling rate with Hanning window or equivalent). The idle channel noise spectrum is stated in dB. A smoothed average idle channel noise spectrum is calculated by a moving average (arithmetic mean) 1/3rd octave wide across the idle noise channel spectrum stated in dB (linear average in dB of all FFT bins in the range from $2^{(-1/6)f}$ to $2^{(+1/6)f}$). Peaks in the idle channel noise spectrum are compared against a smoothed average idle channel noise spectrum.

NOTE 2: Care should be taken that only the noise is windowed out by the analysis and the analysis window is not impaired by any remaining reverberance or room noise.

6.4 Send and receive distortion

6.4.0 General

It is not intended to provide codec-dependant requirements but to assess the electro acoustic performances of the terminal.

6.4.1 Send distortion

Measurement method

The terminal is set up as described in clause 5.2.

After the correct activation of the system, a sinewave signal at frequencies of 315 Hz, 400 Hz, 500 Hz, 630 Hz, 800 Hz and 1 000 Hz is applied. The duration of the sine wave shall be less than 1 s. The sinusoidal signal level shall be calibrated to -4,7 dBPa at the MRP.

The signal to harmonic distortion ratio is measured selectively up to 3,15 kHz.
The female speaker signal of the short conditioning sequence described in clause 7.3.7 of Recommendation ITU-T P.501 [14] shall be used for activation. Level of this activation signal shall be -4.7 dBPa at the MRP.

NOTE: Depending on the type of codec the test signal used may need to be adapted.

6.4.2 Receive distortion

Requirement

Handheld terminal

The ratio of signal to harmonic distortion shall be above the following mask.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Signal to distortion ratio limit, receive for vehicle mounted or desktop terminal at nominal volume</th>
<th>Signal to distortion ratio limit, receive for handheld terminal at nominal volume</th>
<th>Signal to distortion ratio limit, receive for all terminals at maximum volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>315 Hz</td>
<td>26 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 Hz</td>
<td>30 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 Hz</td>
<td>30 dB</td>
<td>20 dB</td>
<td></td>
</tr>
<tr>
<td>800 Hz</td>
<td>30 dB</td>
<td>30 dB</td>
<td>20 dB</td>
</tr>
<tr>
<td>1 kHz</td>
<td>30 dB</td>
<td>30 dB</td>
<td>20 dB</td>
</tr>
</tbody>
</table>

NOTE: The limits for intermediate frequencies lie on a straight line drawn between the given values on a linear (dB) - logarithmic (kHz) scale.

Desktop terminal

The ratio of signal to harmonic distortion is given in table 6.4.2-1.

Softphone (computer-based terminal)

For a type 1 or softphone with external speakers, the requirements given in table 6.4.2-1 (desktop terminal) shall apply.

Type 2 requirement given in table 6.4.2-1 (handheld terminal) shall apply.

Measurement method

The terminal is set up as described in clause 5.2.

The signal used is an activation signal followed by a sine-wave signal at frequencies at 315 Hz, 400 Hz, 500 Hz, 630 Hz, 800 Hz and 1 000 Hz is applied at the digital interface. The duration of the sine-wave shall be less than 1 s. The sinusoidal signal level shall be -16 dBm0.

The female speaker signal of the short conditioning sequence described in clause 7.3.7 of Recommendation ITU-T P.501 [14] shall be used for activation. Level of this activation signal shall be -16 dBm0.

The signal to harmonic distortion ratio is measured selectively up to 10 kHz.

NOTE: Depending on the type of codec the test signal used may need to be adapted.

6.5 Terminal Coupling Loss weighted (TCLw)

Requirement

In order to meet talker echo objective requirements, the recommended weighted terminal coupling loss during single talk (TCLw) should be greater than 55 dB at nominal setting of volume control.

The weighted Terminal Coupling loss TCLw shall be ≥ 46 dB for all volume settings (if supplied).

NOTE 1: A TCLw ≥ 55 dB is recommended as a performance objective. Depending on the idle channel noise in the send direction, it may not always be possible to measure an echo loss greater than 50 dB.
Measurement method

The setup for terminal is described in clause 5.2.

The test signal is the compressed real speech signal described in clause 7.3.3 of Recommendation ITU-T P.501 [14]. The signal level shall be -10 dBm0.

The TCLw is calculated according to Recommendation ITU-T G.122 [2], clause B.4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The first 17.0s of the test signal (6 sentences) are discarded from the analysis to allow for convergence of the acoustic echo canceller. The analysis is performed over the remaining length of the test sequence (last 6 sentences).

The ambient noise level shall be < -64 dBPa(A).

NOTE 2: Care should be taken when measuring TCLw so that the echo return is not to be masked by the residual noise or the comfort noise when implemented.

6.6 Stability Loss (or similar parameters)

Requirement

For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The attenuation shall exceed 6 dB for all frequencies and for all settings of volume control.

Measurement method

Test set-up is identical as for TCLw as described in clause 6.5.

Before the actual test a training sequence consisting of the British-English single talk sequence described in clause 7.3.2 of Recommendation ITU-T P.501 [14] shall be applied. The training sequence level shall be -16 dBm0 in order not to overload the codec.

The test signal is a PN sequence complying with Recommendation ITU-T P.501 [14] with a length of 4 096 points (for the 48 kHz sampling rate) and a crest factor of 6 dB. The duration of the test signal is 250 ms. With an input signal of -3 dBm0, the attenuation from digital input to digital output shall be measured for frequencies from 200 Hz to 4 kHz.

6.7 Double talk performance

6.7.0 General

During double talk the speech is mainly determined by 2 parameters: impairment caused by echo during double talk and level variation between single and double talk (attenuation range).

In order to guarantee sufficient quality under double talk conditions the Talker Echo Loudness Rating should be high and the attenuation inserted should be as low as possible. Terminals which do not allow double talk in any case should provide a good echo attenuation which is realized by a high attenuation range in this case.

The most important parameters determining the speech quality during double talk are (see Recommendations ITU-T P.340 [12] and P.502 [15]):

- Attenuation range in send direction during double talk \(A_{H,S,dt} \);
- Attenuation range in receive direction during double talk \(A_{H,R,dt} \);
- Echo attenuation during double talk.

The categorization of a terminal is based on the three categories defined in clauses 6.7.1 to 6.7.3 and this categorization is given by the "lowest" of the three parameters e.g. if \(A_{H,S,dt} \) provides 2a, \(A_{H,R,dt} \) 2b and echo loss 1, the categorization of the terminal is 2b.
6.7.1 Attenuation Range in Send Direction during Double Talk $A_{H,S,dt}$

Requirement

Based on the level variation in send direction during double talk $A_{H,S,dt}$ the behaviour of the terminal can be classified according to Table 6.7.1-1.

The terminal should have full duplex capability (category 1). For desktop type terminals, category 1 shall be achieved. For handheld type terminals, category 2a shall be achieved.

<table>
<thead>
<tr>
<th>Category (according to Recommendation ITU-T P.340 [12])</th>
<th>1</th>
<th>2a</th>
<th>2b</th>
<th>2c</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{H,S,dt}$ [dB]</td>
<td>≤ 3</td>
<td>≤ 6</td>
<td>≤ 9</td>
<td>≤ 12</td>
<td>> 12</td>
</tr>
</tbody>
</table>

The requirement applies with nominal setting of the volume control for nominal signal levels in send and receive directions as well as for the level combinations +6 dB (relative to nominal level) in send/-6 dB (relative to nominal level) in receive and +6 dB (relative to nominal level) in receive/-6 dB (relative to nominal level) in send. The requirement also applies for maximum setting of the volume control with nominal signal levels in send and receive directions.

In general, Table 6.7.1-1 provides a quality classification of terminals regarding double talk performance. However, this does not mean that a terminal which is category 1 based on the double talk performance is of high quality concerning the overall quality as well.

The measurement shall be repeated for desktop type terminals with variable echo path.

Measurement method

The terminal is set up as described in clause 5.2.

The long conditioning sequence described in clause 7.3.7 of Recommendation ITU-T P.501 [14] shall be used for conditioning of the terminal, with the female speaker in the receive direction. The test signal to determine the attenuation range during double talk is the double talk speech sequence as defined in clause 7.3.5 of Recommendation ITU-T P.501 [14] as shown in Figure 6.7.1-1. The competing speaker (upper signal in Figure 6.7.1-1) is always inserted as the double talk sequence in send direction and is used for analysis. The test signals are synchronized in time at the acoustical interface.
Figure 6.7.1-1: Double Talk Test Sequence with overlapping speech sequences in send and receive direction

The attenuation range during double talk is determined as described in Appendix III of Recommendation ITU-T P.502 [15]. The double talk performance is analysed for the sequences of words (first 20 s) and sentences (from 20 s to 35 s) produced by the competing speaker. The requirements have to be met for both sequences.

Table 6.7.1-2: Void

6.7.2 Attenuation Range in Receive Direction during Double Talk $A_{H,R,dt}$

Requirement

Based on the level variation in receive direction during double talk $A_{H,R,dt}$ the behaviour of the terminal can be classified according to Table 6.7.2-1.

The terminal shall have full duplex capability (category 1).

Table 6.7.2-1: Double talk categories for receive direction

<table>
<thead>
<tr>
<th>Category (according to Recommendation ITU-T P.340 [12])</th>
<th>1</th>
<th>2a</th>
<th>2b</th>
<th>2c</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{H,R,dt} [\text{dB}]$</td>
<td>≤ 3</td>
<td>≤ 5</td>
<td>≤ 8</td>
<td>≤ 10</td>
<td>> 10</td>
</tr>
</tbody>
</table>

The requirement applies with nominal setting of the volume control for nominal signal levels in send and receive directions as well as for the level combinations +6 dB (re. nominal level) in send/-6 dB (re. nominal level) in receive and +6 dB (re. nominal level) in receive/-6 dB (re. nominal level) in send. The requirement also applies for maximum setting of the volume control with nominal signal levels in send and receive directions.

In general, Table 6.7.2-1 provides a quality classification of terminals regarding double talk performance. However, this does not mean that a terminal which is category 1 based on the double talk performance is of high quality concerning the overall quality as well.
Measurement method

Test setup is described in clause 5.2.

The long conditioning sequence described in clause 7.3.7 of Recommendation ITU-T P.501 [14] shall be used for conditioning the terminal, with the female speaker in the receive direction. The test signal to determine the attenuation range during double talk is shown in figure 6.7.1-1. The competing speaker (upper signal in figure 6.7.1-1) is always inserted as the double talk sequence in receive direction and is used for analysis. The test signals are synchronized in time at the acoustical interface.

Table 6.7.2-2: Void

The attenuation range during double talk is determined as described in Appendix III of Recommendation ITU-T P.502 [15]. The double talk performance is analysed for the sequences of words (first 20 s) and sentences (from 20 s to 35 s) produced by the competing speaker. The requirements have to be met for both sequences.

6.7.3 Detection of echo components during double Talk

Requirement

“Echo Loss” (EL) is the echo suppression provided by the terminal measured at the electrical reference point.

Table 6.7.3-1: Echo loss during double talk categories

<table>
<thead>
<tr>
<th>Category (according to Recommendation ITU-T P.340 [12])</th>
<th>1</th>
<th>2a</th>
<th>2b</th>
<th>2c</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Duplex Capability</td>
<td>Partial Duplex Capability</td>
<td>No Duplex Capability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echo Loss [dB]</td>
<td>≥ 27</td>
<td>≥ 23</td>
<td>≥ 17</td>
<td>≥ 11</td>
<td>< 11</td>
</tr>
</tbody>
</table>

NOTE: The echo attenuation during double talk is based on the parameter Talker Echo Loudness Rating (TELRA). It is assumed that the terminal at the opposite end of the connection provides nominal Loudness Rating (SLR + RLR = 10 dB).

The terminal shall have full duplex capability (category 1).

In general table 6.7.3-1 provides a quality classification of terminals regarding double talk performance. However, this does not mean that a terminal which is category 1 or 2 based on the double talk performance is of high quality concerning the overall quality as well.

The requirement applies with nominal setting of the volume control for nominal signal levels in send and receive directions as well as for the level combinations +6 dB (re. nominal level) in send/-6 dB (re. nominal level) in receive and +6 dB (re. nominal level) in receive/-6 dB (re. nominal level) in send. The requirement also applies for maximum setting of the volume control with nominal signal levels in send and receive directions.

The measurement shall be repeated for desktop type terminals with variable echo path.

Measurement method

The terminal is set up as described in clause 5.2.

The double talk signal consists of a sequence of orthogonal signals which are realized by voice-like modulated sine waves spectrally shaped similar to speech. A detailed description can be found in Recommendation ITU-T P.501 [14].

The signals are fed simultaneously in Send and Receive direction. The level in Send direction shall be -4,7 dBPa at the MRP (nominal level), the level in Receive direction is -16 dBm0 at the electrical reference point (nominal level).

The signal settings are given in table 6.7.3-2.
Table 6.7.3-2: Parameters of the two Test Signals for Double Talk Measurement based on AM-FM modulated sine waves

<table>
<thead>
<tr>
<th>Send direction</th>
<th>Receive direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{A}^{(1)}$ (Hz)</td>
<td>$f_{A}^{(2)}$ (Hz)</td>
</tr>
<tr>
<td>$\pm \Delta f_{A}^{(1)}$ (Hz)</td>
<td>$\pm \Delta f_{A}^{(2)}$ (Hz)</td>
</tr>
<tr>
<td>250</td>
<td>270</td>
</tr>
<tr>
<td>500 ± 5</td>
<td>540 ± 5</td>
</tr>
<tr>
<td>750 ± 10</td>
<td>810 ± 15</td>
</tr>
<tr>
<td>1 000 ± 15</td>
<td>1 080 ± 20</td>
</tr>
<tr>
<td>1 250 ± 20</td>
<td>1 350 ± 25</td>
</tr>
<tr>
<td>1 500 ± 25</td>
<td>1 620 ± 30</td>
</tr>
<tr>
<td>1 750 ± 30</td>
<td>1 890 ± 35</td>
</tr>
<tr>
<td>2 000 ± 35</td>
<td>2 160 ± 40</td>
</tr>
<tr>
<td>2 250 ± 40</td>
<td>2 400 ± 40</td>
</tr>
<tr>
<td>2 500 ± 40</td>
<td>2 650 ± 40</td>
</tr>
<tr>
<td>2 750 ± 40</td>
<td>2 900 ± 40</td>
</tr>
<tr>
<td>3 000 ± 40</td>
<td>3 150 ± 40</td>
</tr>
<tr>
<td>3 250 ± 40</td>
<td>3 400 ± 40</td>
</tr>
<tr>
<td>3 500 ± 40</td>
<td>3 650 ± 40</td>
</tr>
<tr>
<td>3 750 ± 40</td>
<td>3 900 ± 40</td>
</tr>
</tbody>
</table>

NOTE: Parameters of the Shaping Filter:

$\nu \geq 250$ Hz: Low Pass Filter, 5 dB/oct.

The test signal is measured at the electrical reference point (Send direction). The measured signal consists of the double talk signal which was fed in by the artificial mouth and the echo signal. The echo signal is filtered by comb filter using mid-frequencies and bandwidth according to the signal components of the signal in Receive direction (see Recommendation ITU-T P.501 [14]). The filter will suppress frequency components of the double talk signal.

In each frequency band which is used in Receive direction the echo attenuation can be measured separately. The requirement for category 1 is fulfilled if in any frequency band the echo signal is either below the signal noise or below the required limit. If echo components are detectable, the classification is based on table 6.7.3-1. The echo attenuation is to be achieved for each individual frequency band according to the different categories.

6.7.4 Minimum activation level and sensitivity of double talk detection

For further study.

6.8 Switching parameters

6.8.0 Overview

Additional requirements may be needed in order to further investigate the effect of NLP implementations on the users’ perception of speech quality.

6.8.1 Activation in Send Direction

The activation in send direction is mainly determined by the built-up time $T_{r,S,min}$ and the minimum activation level ($L_{s,min}$). The minimum activation level is the level required to remove the inserted attenuation in send direction during idle mode. The built-up time is determined for the test signal burst which is applied with the minimum activation level.

The activation level described in the following is always referred to the test signal level at the Mouth Reference Point (MRP).

Requirements

The minimum activation level $L_{s,min}$ shall be ≤ -20 dBPa.

The built-up time $T_{r,S,min}$ (measured with minimum activation level) shall be ≤ 15 ms.
Measurement method

The terminal is set up as described in clause 5.2.

The test signal is the "short words for activation" sequence described in clause 7.3.4 of Recommendation ITU-T P.501 [14] with increasing level for each single word.

The settings of the test signal are described in table 6.8.1-1.

<table>
<thead>
<tr>
<th>Single word Duration/ Pause Duration</th>
<th>Level of the Single word (active Signal Part at the MRP)</th>
<th>Level Difference between two Periods of the Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single word to Determine Switching Characteristic in Send Direction</td>
<td>~600 ms/400 ms</td>
<td>-24 dBPa (see notes)</td>
</tr>
</tbody>
</table>

NOTE 1: The level of the active signal part corresponds to an average level of -24,7 dBPa at the MRP for the test signal according to Recommendation ITU-T P.501 [14].

NOTE 2: The signal level is determined for each utterance individually according to Recommendation ITU-T P.56 [9].

It is assumed that the pause length of about 400 ms is longer than the hang-over time so that the test object is back to idle mode after each single word.

The level of the transmitted signal is measured at the electrical reference point. The test signal is filtered by the transfer function of the test object. The measured signal level is referred to the filtered test signal level and displayed vs. time. The levels are calculated from the time domain using an integration time of 5 ms.

The minimum activation level is determined from the single word which indicates the first activation of the test object. The time between the beginning of the single word and the complete activation of the test object is measured.

6.8.2 Minimum activation level and sensitivity in Receive direction

For further study.

6.8.3 Automatic level control

For further study.

6.8.4 Silence Suppression and Comfort Noise Generation

For further study.

6.9 Background noise performance

6.9.1 Performance in send direction in the presence of background noise

Requirement

The level of comfort noise, if implemented, shall be within a range of +2 dB and -5 dB compared to the original (transmitted) background noise. The noise level is calculated with psophometric weighting according to Recommendation ITU-T O.41 [17] in dBm0(p).

NOTE 1: It is advisable that the comfort noise matches the original signal as good as possible (from a perception point of view).

NOTE 2: Input for further specification necessary (e.g. on temporal matching).
The spectral difference between comfort noise and original (transmitted) background noise shall be within the mask given through straight lines between the breaking points on a logarithmic (frequency) - linear (dB sensitivity) scale as given in table 6.9.1-1.

Table 6.9.1-1: Requirements for Spectral Adjustment of Comfort Noise (Mask)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Hz</td>
<td>12 dB</td>
<td>-12 dB</td>
</tr>
<tr>
<td>800 Hz</td>
<td>12 dB</td>
<td>-12 dB</td>
</tr>
<tr>
<td>800 Hz</td>
<td>10 dB</td>
<td>-10 dB</td>
</tr>
<tr>
<td>2 000 Hz</td>
<td>10 dB</td>
<td>-10 dB</td>
</tr>
<tr>
<td>2 000 Hz</td>
<td>6 dB</td>
<td>-6 dB</td>
</tr>
<tr>
<td>4 000 Hz</td>
<td>6 dB</td>
<td>-6 dB</td>
</tr>
</tbody>
</table>

NOTE: All sensitivity values are expressed in dB on an arbitrary scale.

Measurement method

The background noise simulation as described in clause 5.5.3 is used.

The terminal is set up as described in clause 5.2.

First the background noise transmitted in send is recorded at the POI for a period of at least 20 s.

In a second step a test signal is applied in receive direction consisting of an initial pause of 10 s and a periodical repetition of the female speaker signal of the short conditioning sequence described in clause 7.3.7 of Recommendation ITU-T P.501 [14] in receive direction (duration 10 s) with nominal level to enable comfort noise injection simultaneously with the background noise. For the measurement the background noise sequence has to be started at the same point as it was started in the previous measurement.

The transmitted signal is recorded in send direction at the POI.

The power density spectra measured in send direction without far end speech simulation averaged between 10 s and 20 s is referred to the power density spectrum measured in send direction determined during the period with far end speech simulation in receive direction averaged between 10 s and 20 s. Level and spectral differences between both power density spectra are analysed and compared to the requirements.

6.9.2 Speech Quality in the Presence of Background Noise

Requirement

Speech Quality for narrowband systems shall be tested based on ETSI TS 103 106 [21]. The test method leads to three MOS-LQO quality numbers:

- N-MOS-LQOn: Transmission quality of the background noise.
- S-MOS-LQOn: Transmission quality of the speech.
- G-MOS-LQOn: Overall transmission quality.

For the background noises defined in clause 5.5.3 the following requirements apply:

- N-MOS-LQOn ≥ 3.0.
- S-MOS-LQOn ≥ 3.0.
- G-MOS-LQOn ≥ 3.0.

NOTE: It is recommended to test the terminal performance with other types of background noises if the terminal is likely to be exposed to other noises than specified in clause 5.5.3.
Measurement method
The terminal is set-up as described in clause 5.2. The background noise simulation as described in clause 5.5.3. is used. The background noise shall be applied for at least 5 s in order to adapt noise reduction algorithms in advance of the test. The near end speech signal consists of 16 sentences of speech (2 male and 2 female talkers, 4 sentences each). An appropriate measurement sequence in American English is provided in Annex C of ETSI TS 103 106 [21]. The test signal level is +1,3 dBPa at the MRP.

Three signals are required for the tests:
1) The clean speech signal is used as the undisturbed reference.
2) The speech plus undisturbed background noise signal is recorded at the terminal’s microphone position using an omni directional measurement microphone with a linear frequency response between 50 Hz and 6 kHz.
3) The send signal is recorded at the electrical reference point.

N-MOS-LQOn, S-MOS-LQOn and G-MOS-LQOn are calculated as described in ETSI TS 103 106 [21].

6.9.3 Quality of Background Noise Transmission (with Far End Speech)

Requirement
The test is carried out applying a speech signal in receive direction and by comparing the noise level transmitted in the send direction under reference conditions with no far end speech, to the noise level transmitted in the send direction under test conditions including far end speech. During and after the end of the speech signal the signal level in send direction should not vary more than 10 dB (during transition to transmission of background noise without far end speech). The measurement is conducted for all types of background noise as defined in clause 5.5.3.

NOTE: The intention of this measurement is to detect impairments (modulations, switching and others) influencing the background noise transmitted from the terminal under test when a signal from the distant end (receive side of the terminal under test) is present. Under these test conditions no modulation of the transmitted signal should occur. Modulation, switching or other type of impairments might be caused by an improper behaviour of a non linear processor working in conjunction with the echo canceller and erroneously switching or modulating the transmitted background noise.

Measurement method
The terminal is set up as described in clause 5.2. The background noise simulation as described in clause 5.5.3 is used.

First the reference measurement is conducted without inserting the signal at the far end. At least 10 s of noise is analysed. The background signal level versus time is calculated using a time constant of 35 ms.

In a second step the same measurement is conducted, but with inserting the speech signal at the far end. The exactly identical background noise signal is applied. The background noise signal should start at the same point in time as was used for the reference measurement without the far end signal. The background noise should be applied for at least 5 s in order to allow adaptation of the noise reduction algorithms. After at least 5 s a series of the female speaker signal of the short conditioning sequence described in clause 7.3.7 of Recommendation ITU-T P.501 [14] is applied in receive direction with duration of at least 10 s. The test signal level in the receive direction is -16 dBm0 at the electrical reference point.

For both reference and test conditions, the send signal is recorded at the electrical reference point, and the test signal level versus time is calculated using a time constant of 35 ms.

The level variation in send direction is determined during the time interval when the speech signal is applied and after it stops. The level difference is determined from the difference of the recorded signal levels versus time between reference signal and the signal measured with far end signal.
6.10 Quality of echo cancellation

6.10.1 Temporal echo effects

Requirement

This test is intended to verify that the system will maintain sufficient echo attenuation during single talk. The measured echo attenuation during single talk shall not decrease by more than 6 dB from the maximum echo attenuation measured.

Measurement method

The terminal is set up as described in clause 5.2.

The test signal consists of periodically repeated Composite Source Signal according to Recommendation ITU-T P.501 [14], with an average level of -5 dBm0 as well as an average level of -25 dBm0. The echo signal is analysed during a period of at least 2.8 s which represents 8 periods of the CS-signal. The integration time for the level analysis shall be 35 ms, the analysis is referred to the level analysis of the reference signal.

The measurement result is displayed as attenuation vs. time. The exact synchronization between input and output signal has to be guaranteed.

The difference between the maximum attenuation and the minimum attenuation is measured.

NOTE 1: In addition, tests with more speech like signals should be made, e.g. Recommendation ITU-T P.501 [14] to see time variant behaviour of EC. However, for such tests the simple broadband attenuation based test principle as described above cannot be applied due to the time varying spectral content of the speech like signals.

NOTE 2: The analysis is conducted only during the active signal part, the pauses between the Composite Source Signals are not analysed. The analysis time is reduced by the integration time (35 ms) of the level analysis taking into account the exponential character of the integration time in any tolerance scheme.

NOTE 3: Care should be taken not to confuse noise or comfort noise with residual echo. In cases of doubt the measured echo signal should be compared to the residual noise signal measured under the same conditions without inserting the receive signal. If the level vs. time analysis leads to the identical result it can be assumed that no echo but just comfort noise is present.

6.10.2 Spectral Echo Attenuation

Requirement

The echo attenuation vs. frequency shall be below the tolerance mask given in table 6.10.2-1.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>-20 dB</td>
</tr>
<tr>
<td>200 Hz</td>
<td>-30 dB</td>
</tr>
<tr>
<td>300 Hz</td>
<td>-38 dB</td>
</tr>
<tr>
<td>800 Hz</td>
<td>-34 dB</td>
</tr>
<tr>
<td>1 500 Hz</td>
<td>-33 dB</td>
</tr>
<tr>
<td>2 600 Hz</td>
<td>-24 dB</td>
</tr>
<tr>
<td>4 000 Hz</td>
<td>-24 dB</td>
</tr>
</tbody>
</table>

NOTE 1: All sensitivity values are expressed in dB on an arbitrary scale.
NOTE 2: The limit at intermediate frequencies lies on a straight line drawn between the given values on a log (frequency) - linear (dB) scale.

During the measurement it should be ensured that the measured signal is really the echo signal and not the Comfort Noise which possibly may be inserted in send direction in order to mask the echo signal.
Measurement method

The terminal is set up as described in clause 5.2.

Before the actual measurement a training sequence is fed in consisting of the compressed real speech signal described in clause 7.3.3 of Recommendation ITU-T P.501 [14]. The level of the training sequence shall be -16 dBm0.

The test signal is the compressed real speech signal described in clause 7.3.3 of Recommendation ITU-T P.501 [14]. The average test signal level shall be -16 dBm0, averaged over the complete test signal. The power density spectrum of the measured echo signal is referred to the power density spectrum of the original test signal. The analysis is conducted using FFT analysis with 8 k points (48 kHz sampling rate, Hanning window).

The spectral echo attenuation is analysed in the frequency domain in dB.

6.10.3 Occurrence of Artefacts

For further study.

6.10.4 Variable echo path

Requirement

This test is intended to verify that the system will maintain sufficient echo attenuation during single talk with dynamic changing echo paths. The measured echo level over time during single talk shall not be more than 10 dB above the minimum noise level during the measurement.

Measurement method

The test setup is described in clause 5.2.5.

NOTE: Care should be taken to not generate noise during the movement of the notebook lid. Because of this, this measurement is not applicable for a softphone without external microphone.

As test signal the compressed real speech signal described in clause 7.3.3 of Recommendation ITU-T P.501 [14] is used. The signal level shall be -10 dBm0. The terminal volume control is set to nominal RLR. The first 4 sentences of the test signal are used to allow full convergence of the echo canceller. The next 4 sentences (from 10,75 s to 22,5 s) are used for the analysis. The echo signal level is analysed over time. The echo signal level is analysed for 11,75 s, using a time constant of 35 ms.

The measurement result is displayed as echo level versus time.

6.11 Send and receive delay - round-trip delay

Requirements

Send and receive delays are tested separately but the requirement is defined for the combination of send and receive delays (round-trip delay).

It is recognized that the end-to-end delay should be as small as possible in order to ensure high quality of the communication.

The round-trip delay of the terminal T_{rd} (sum of send and receive delay) shall be less than 100 ms (category B in Recommendation ITU-T P.1010 [i.7]).

From the user's perspective, a value less than 50 ms (Category A in Recommendation ITU-T P.1010 [i.7]) is preferred.

NOTE: The delay should in general be minimized. This can be accomplished by e.g. designing the speech decoder output, and the signal processing in a way, that sample-based processing and frame-based processing interoperate by using common buffers at their interfaces.

Measurement method

The terminal is set up as described in clause 5.2.
• **Send direction**

The delay in send direction is measured from the MRP to POI. The delay measured in send direction is \(T_s + t_{\text{system}} \).

![Diagram of different blocks contributing to the delay in send direction]

Figure 6.11-1: Different blocks contributing to the delay in send direction

The system delay \(t_{\text{system}} \) is depending on the transmission method used and the network simulator. The delay \(t_{\text{system}} \) shall be known and considered in the calculation of the delay, which is determined as follows:

1) For the measurements a Composite Source Signal (CSS) according to Recommendation ITU-T P.501 [14] is used. The pseudo random noise (pn)-part of the CSS has to be longer than the maximum expected delay. It is recommended to use a pn sequence of 16 k samples (with 48 kHz sampling rate). The test signal level is -4.7 dBPa at the MRP. The test signal level is adjusted to -28.7 dBPa at the HATS-HFRP (see Recommendation ITU-T P.581 [16]).

2) The delay is determined by cross-correlation analysis between the measured signal at the electrical access point and the original signal. The measurement is corrected by delays which are caused by the test equipment.

3) The delay is measured in ms and the maximum of the envelope of the cross-correlation function is used for the determination.

• **Receive direction**

The delay in receive direction is measured from POI to the Drum Reference Point (DRP). The delay measured in receive direction is \(T_r + t_{\text{system}} \).

![Diagram of different blocks contributing to the delay in receive direction]

Figure 6.11-2: Different blocks contributing to the delay in receive direction

The system delay \(t_{\text{system}} \) is depending on the transmission system and on the network simulator used. The delay \(t_{\text{system}} \) shall be known and considered in the calculation of the delay, which is determined as follows:

1) For the measurements a Composite Source Signal (CSS) according to Recommendation ITU-T P.501 [14] is used. The pseudo random noise (pn)-part of the CSS has to be longer than the maximum expected delay. It is recommended to use a pn sequence of 16 k samples (with 48 kHz sampling rate). The test signal level is -16 dBm0 at the electrical interface (POI).
2) Artificial head is free field adjusted according to Recommendation ITU-T P.581 [16]. The equalized output signal of the right ear is used for the measurement.

3) The delay is determined by cross-correlation analysis between the measured signal at the DRP and the original signal. The measurement is corrected by delays which are caused by the test equipment.

4) The delay is measured in ms and the maximum of the envelope of the cross-correlation function is used for the determination.

6.12 Void

7 Codec dependent requirements and associated Measurement Methodologies

7.1 Speech Codecs

The present document is intended to be applicable for different speech codecs implemented in access networks.

Table 7.1-1 defines a list of speech codecs implemented (non exhaustive).

<table>
<thead>
<tr>
<th>System</th>
<th>Codec</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM 850, 900, 1 800, 1 900</td>
<td>AMR-NB [1]</td>
</tr>
<tr>
<td></td>
<td>GSM Full Rate Codec [19],</td>
</tr>
<tr>
<td></td>
<td>Enhanced FullRate [20]</td>
</tr>
<tr>
<td>UMTS (WCDMA)</td>
<td>AMR-NB [1]</td>
</tr>
<tr>
<td>VoLTE</td>
<td>AMR-NB [1]</td>
</tr>
<tr>
<td></td>
<td>EVS-NB [24]</td>
</tr>
</tbody>
</table>

The objective is to minimize the impact of transcodings on the quality. Care should also be taken to avoid as far as possible to cascade different speech processing.

7.2 Void

7.3 Objective listening speech quality

7.3.0 Overview

The measurements of this clause are only applicable if the terminal supports at least one of the codecs listed in table 7.1-1.
7.3.1 Objective listening speech quality MOS-LQO in send direction

The listening speech quality tests are conducted without any packet impairments (clean network conditions).

Requirements

The requirements for the listening speech quality according to table 7.3.1-1 apply.

<table>
<thead>
<tr>
<th>Speech codec</th>
<th>MOS-LQON (P.863 or TOSQA 2001)</th>
<th>MOS-LQOM (TOSQA 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR-NB [1] @ 12.2 kbit/s, GSM Full Rate Codec (ETSI TS 146 010 [19]), Enhanced FullRate (ETSI TS 146 060 [20])</td>
<td>(ffs)</td>
<td>(ffs)</td>
</tr>
<tr>
<td>EVS-NB [24] @ 13.2 kbit/s</td>
<td>(ffs)</td>
<td>(ffs)</td>
</tr>
</tbody>
</table>

NOTE 1: Insufficient experience is available so far with Recommendation ITU-T P.863 [22] and TOSQA 2001 (ETSI EG 201 377-1 [1.6]) for measuring hands-free terminals. Therefore, the numbers for MOS-LQON and MOS-LQOM are for further study.

NOTE 2: Void.

Measurement method

The terminal is set up as described in clause 5.2.

For the assessment of objective listening speech quality, fullband mode of Recommendation ITU-T P.863 [22] shall be applied, taking Appendix III into account (see note 3).

The test signal to be used for the measurements shall be 4 sentence pairs (male/female) fulfilling the requirements of Recommendation ITU-T P.863.1 [23]. The four British English sentence pairs are taken from Recommendation ITU-T P.501 [14]. The test signal level shall be -1.7 dBPa, measured according to Recommendation ITU-T P.56 [9] at the MRP. The measurement is repeated for each pair of speech sentences. The overall result of the measurement is the averaged value of all four per-sample measurements.

NOTE 3: In narrowband acoustics, Recommendation ITU-T P.863 [22] is recommending using the fullband mode with a narrowband reference signal, resulting in a prediction on the narrowband scale (MOS-LQON).

NOTE 4: An alternative test method is TOSQA 2001 (ETSI EG 201 377-1 [1.6]). With TOSQA, terminals used in narrowband mode only should be measured based on MOS-LQON. Terminals used in narrowband and wideband mode should be measured based on MOS-LQOM.

7.3.2 Objective listening quality MOS-LQO in receive direction

7.3.2.1 Jitter- and Error-Free Condition

The listening speech quality tests are conducted without any packet impairments (clean network conditions).

Requirements

The requirements for the listening speech quality and the delay under clean network conditions according to table 7.3.2.1-1 apply.
Table 7.3.2.1-1: Requirements for speech quality in receive direction

<table>
<thead>
<tr>
<th>Speech codec</th>
<th>MOS-LQON (P.863)</th>
<th>MOS-LQOM (TOSQA 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR-NB [1] @ 12.2 kbit/s</td>
<td>(ffs)</td>
<td>(ffs)</td>
</tr>
<tr>
<td>GSM Full Rate Codec (ETSI TS 146 010 [19]), Enhanced FullRate (ETSI TS 146 060 [20])</td>
<td>(ffs)</td>
<td>(ffs)</td>
</tr>
<tr>
<td>EVS-NB [24] @ 13.2 kbit/s</td>
<td>(ffs)</td>
<td>(ffs)</td>
</tr>
</tbody>
</table>

NOTE 1: Insufficient experience is available so far with Recommendation ITU-T P.863 [22] and TOSQA 2001 (ETSI EG 201 377-1 [i.6]) for measuring hands-free terminals. Therefore, the numbers for MOS-LQON and MOS-LQOM are for further study.

NOTE 2: Void.

Measurement method

The terminal is set up as described in clause 5.2.

For the assessment of objective listening speech quality, fullband mode of Recommendation ITU-T P.863 [22] shall be applied, taking Appendix III into account (see note 3).

The test signal to be used for the measurements shall be 4 sentence pairs (male/female) fulfilling the requirements of Recommendation ITU-T P.863.1 [23]. The four British English sentence pairs are taken from Annex C of Recommendation ITU-T P.501 [14]. The test signal level is averaged over all sentence pairs (4 sentence pairs). The measurement is repeated for each pair of the speech sentences. The overall result of the measurement is the averaged value of all four measurements.

NOTE 3: In narrowband acoustics, Recommendation ITU-T P.863 [22] is recommending using the fullband mode with a narrowband reference signal, resulting in a prediction on the narrowband scale (MOS-LQON).

NOTE 4: An alternative test method is TOSQA 2001 (ETSI EG 201 377-1 [i.6]). With TOSQA, terminals used in narrowband and wideband mode should be measured based on MOS-LQOM.

7.3.2.2 Packet Impairments

The listening speech quality tests are conducted with simulated packet impairments. In addition to the listening speech quality tests, the delay is measured. The tests of this clause are only applicable to terminals providing an IP-based network access.

Requirements

The degradation between the error- and jitter-free condition (equals network condition 1) and impairment conditions shall not exceed the delta-values provided in table 7.3.2.2-1.

Table 7.3.2.2-1: Requirements for speech codecs per network condition

<table>
<thead>
<tr>
<th>Codec</th>
<th>Condition</th>
<th>MOS-LQON (P.863)</th>
<th>MOS-LQOM (TOSQA 2001)</th>
<th>Delay T_{rd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR-NB [1] @ 12.2 kbit/s, GSM Full Rate Codec (ETSI TS 146 010 [19]), Enhanced FullRate (ETSI TS 146 060 [20]) EVS-NB @ 13.2 kbps [24]</td>
<td>0</td>
<td>(ffs)</td>
<td>(ffs)</td>
<td>$T_{rd,clean} + 5 ms$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(ffs)</td>
<td>(ffs)</td>
<td>$T_{rd,clean} + 5 ms$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(ffs)</td>
<td>(ffs)</td>
<td>$T_{rd,clean} + 5 ms$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(ffs)</td>
<td>(ffs)</td>
<td>$T_{rd,clean} + 5 ms$</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(ffs)</td>
<td>(ffs)</td>
<td>$T_{rd,clean} + 5 ms$</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>(ffs)</td>
<td>(ffs)</td>
<td>$T_{rd,clean} + 50 ms$</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>(ffs)</td>
<td>(ffs)</td>
<td>$T_{rd,clean} + 50 ms$</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>(ffs)</td>
<td>(ffs)</td>
<td>$T_{rd,clean} + 50 ms$</td>
</tr>
</tbody>
</table>

NOTE: The delay requirements for conditions with network impairments are based on the measured roundtrip delay of the terminal in the absence of network impairments $T_{rd,clean}$ (see clause 6.11). A small additional tolerance takes into account the variable behaviour of the delay.
Measurement method

For the performance tests with network impairments the settings according to table 7.3.2.2-2 are used. The test setup is the same as in clause 7.3.2.1.

Table 7.3.2.2-2: Network conditions for electrical-acoustical measurements

<table>
<thead>
<tr>
<th>Condition</th>
<th>Packet Loss [%]</th>
<th>Delay Variation</th>
<th>Reordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1 (see note 2) (VAD)</td>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Yes (see note 1)</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Yes (see note 1)</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>Yes (see note 1)</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Yes (see note 1)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NOTE 1: Delay variation produced according to Annex D of ETSI ES 202 737 [i.10].
NOTE 2: VAD on, all other conditions tested with VAD off.
NOTE 3: For some network emulation tools, it is necessary to introduce a constant delay to offer the possibility to generate a delay variation distribution. This delay has to be subtracted from the measured delay before interpreting the results.
NOTE 4: When running tests with the conditions in row, it may be necessary to make one call per condition to avoid the influence of the order of the conditions to the results.
Annex A (informative):
Bibliography

- Recommendation ITU-T G.107: "The E-model, a computational model for use in transmission planning".
- Recommendation ITU-T G.109: "Definition of categories of speech transmission quality".
- ETSI TS 126 131: "Universal Mobile Telecommunications System (UMTS); LTE; 5G; Terminal acoustic characteristics for telephony; Requirements (3GPP TS 26.131)".
- ETSI ES 202 739: "Speech and multimedia Transmission Quality (STQ); Transmission requirements for wideband VoIP terminals (handset and headset) from a QoS perspective as perceived by the user".
- ETSI ES 202 740: "Speech and multimedia Transmission Quality (STQ); Transmission requirements for wideband VoIP loudspeaking and handsfree terminals from a QoS perspective as perceived by the user".
- Recommendation ITU-T G.131: "Talker echo and its control".
- Recommendation ITU-T P.50: "Artificial voices".
- Recommendation ITU-T P.64: "Determination of sensitivity/frequency characteristics of local telephone systems".
- ETSI ES 202 396-1: "Speech and multimedia Transmission Quality (STQ); Speech quality performance in the presence of background noise; Part 1: Background noise simulation technique and background noise database".
- ETSI EG 202 396-3: "Speech and multimedia Transmission Quality (STQ); Speech Quality performance in the presence of background noise; Part 3: Background noise transmission - Objective test methods".
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.1.1</td>
</tr>
<tr>
<td>V1.1.2</td>
</tr>
<tr>
<td>V1.2.1</td>
</tr>
<tr>
<td>V1.3.1</td>
</tr>
<tr>
<td>V1.4.1</td>
</tr>
</tbody>
</table>