

ETSI TS 103 718 V1.1.1 (2020-10)

CYBER;
External encodings for the Advanced Encryption Standard

TECHNICAL SPECIFICATION

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)2

Reference
DTS/CYBER-0044

Keywords
algorithm, encryption, security

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)3

Contents

Intellectual Property Rights .. 4

Foreword ... 4

Modal verbs terminology .. 4

Introduction .. 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definition of terms, symbols and abbreviations ... 6

3.1 Terms .. 6

3.2 Symbols .. 6

3.3 Abbreviations ... 6

4 Preliminaries ... 7

4.1 Basic mathematical concepts .. 7

4.1.1 Bits, vectors, and matrices .. 7

4.1.2 Concatenation, addition, and linear combination of vectors ... 8

4.1.3 Vector - matrix and matrix - matrix multiplication ... 8

4.2 Block ciphers .. 9

4.3 External encodings ... 9

5 External encodings specification .. 10

5.1 Basic functions ... 10

5.2 Input encoding .. 10

5.3 Output encoding ... 11

5.4 Key sizes .. 12

6 Life cycle of an external encoding key... 13

6.1 Example system .. 13

6.2 Key generation and key distribution ... 14

6.3 Key storage and key use ... 14

Annex A (informative): External encoding key generator .. 16

Annex B (informative): Test data ... 18

History .. 20

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)4

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Cyber Security (CYBER).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction
Software security techniques can be used to protect software assets in the clear-box model. An overview of such
techniques can be found in ETSI TR 103 642 [i.1].

As described in ETSI TR 103 642 [i.1], one class of security techniques is referred to as clear-box cryptography.
Clear-box cryptography aims to protect the secret key of a keyed cryptographic algorithm in the clear-box model. The
concept of clear-box cryptography and the first clear-box implementation were introduced in [i.2]. The cryptographic
algorithm considered in [i.2] is AES [1], a well-known block cipher. Today, clear-box AES implementations are widely
used in practice.

As also described in ETSI TR 103 642 [i.1], cryptanalysis, DCA, and DFA are threats to the security of a clear-box
block cipher implementation against key extraction. To the current state of knowledge, the combination of external
encodings and clear-box transformations can provide a good security measure against these threats. In particular, all
published clear-box AES implementations make use of external encodings.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)5

1 Scope
The present document specifies external encodings for AES. The external encodings specified in the present document
can also be applied to other block ciphers; in particular, they can be applied to any block cipher with a block size of
either 64 or 128 bits.

The present document does not define clear-box transformations that are applied to obfuscate the implementation of the
block cipher and the external encodings. Requirements related to the clear-box implementation of the external
encodings are also outside the scope of the present document.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] FIPS PUB 197 (November 2001): "Announcing the Advanced Encryption Standard (AES)".

NOTE: Available at: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI TR 103 642 (V1.1.1): "CYBER; Security techniques for protecting software in a white box
model".

NOTE: Available at:
https://www.etsi.org/deliver/etsi_tr/103600_103699/103642/01.01.01_60/tr_103642v010101p.pdf.

[i.2] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot: "White-box cryptography and an AES
implementation", in Selected Areas in Cryptography 2002, LNCS 2595, K. Nyberg and H. Heys,
Eds., pp. 250-270, Springer, 2003.

[i.3] A. Amadori, W. Michiels, and P. Roelse: "A DFA attack on white-box implementations of AES
with external encodings", in Selected Areas in Cryptography 2019, LNCS 11959, K.G. Paterson
and D. Stebila, Eds., pp. 591-617, Springer, 2020.

[i.4] D.E. Knuth: "The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Third
Edition", Addison-Wesley, 1997.

https://docbox.etsi.org/Reference/
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://www.etsi.org/deliver/etsi_tr/103600_103699/103642/01.01.01_60/tr_103642v010101p.pdf

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)6

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

bit: binary digit having a value of zero or one

block cipher: function that maps a plaintext to a ciphertext using a cipher key

cipher key: secret cryptographic key, used as input to a block cipher

ciphertext: sequence of bits that is the output of a block cipher or an input of an inverse block cipher

clear-box model: model in which an adversary is assumed to have full access to a software binary and its execution
environment

NOTE: Clear-box is also referred to as white-box in other documentation.

external encoding: input encoding or output encoding

external encoding key: input encoding key or output encoding key

input encoding: function that is performed before a block cipher, mapping an input vector to an output vector using an
input encoding key

input encoding key: secret cryptographic key, used as input to an input encoding

matrix: collection of bits arranged in a number of rows and a number of columns

output encoding: function that is performed after a block cipher, mapping an input vector to an output vector using an
output encoding key

output encoding key: secret cryptographic key, used as input to an output encoding

plaintext: sequence of bits that is an input to a block cipher or the output of an inverse block cipher

vector: sequence of bits

3.2 Symbols
For the purposes of the present document, the following symbols apply:

⊕ Addition of two bits, addition of two vectors.

ˑ Multiplication of two bits, multiplication of a bit with a vector, multiplication of a vector with a matrix,
multiplication of two matrices.

|| Concatenation of two vectors.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AES Advanced Encryption Standard
DCA Differential Computation Analysis
DFA Differential Fault Analysis
RNG Random Number Generator

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)7

4 Preliminaries

4.1 Basic mathematical concepts

4.1.1 Bits, vectors, and matrices

The addition of two bits is defined as: 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, and 1 ⊕ 1 = 0. The multiplication of two bits is
defined as: 0 ˑ 0 = 0, 0 ˑ 1 = 0, 1 ˑ 0 = 0, and 1 ˑ 1 = 1.

An m-bit vector is a sequence of m bits.

EXAMPLE 1: (1, 0, 1, 1) is a 4-bit vector.

The bits of an m-bit vector are numbered 1 to m from left to right in the present document.

EXAMPLE 2: (a1, a2, …, a7) with ai equal to 0 or 1 for i = 1, 2, …, 7 is a 7-bit vector.

If the value of every bit of a vector is zero, then the vector is referred to as a zero vector.

A bit can be multiplied with an m-bit vector (a1, a2, …, am). This multiplication is defined as: 0ˑ(a1, a2, …, am) =

(0, 0, …, 0) and 1ˑ(a1, a2, …, am) = (a1, a2, …, am).

An m × m matrix is a matrix with m rows and m columns.

EXAMPLE 3: The following matrix is a 3 × 3 matrix:

1 1 1
1 1 0
0 1 1

The entries of an m × m matrix A are denoted and numbered as follows in the present document:

a1,1 a1,2 … a1,m

a2,1 a2,2 … a2,m

am,1 am,2 … am,m

… … …A =

An m × m matrix A with ai,j = 1 if i = j and ai,j = 0 if i ≠ j is referred to as an identity matrix and is denoted by Im. If

ai,j = 0 for all values of i and j, then A is called a zero matrix.

If A(k) for k = 1, 2 , …, r are m × m matrices, then the entries of the (rm) × (rm) matrix A = diag(A(1), A(2), …, A(r)) are
defined as follows: for 1 ≤ k ≤ r and 1 ≤ i, j ≤ m, a(k-1)m + i, (k-1)m + j = a(k)

i,j if | i − j | < m, and ai,j = 0 if | i − j | ≥ m. In

other words, if 0m denotes an m × m zero matrix, then the matrix A is defined as:

A(1) 0m … 0m

0m A(2) … 0m

0m 0m A(r)

… … …A =

EXAMPLE 4:

1 1 0 0
0 1 0 0
0 0 0 1
0 0 1 1

0 1
1 1

diag (,) =
1 1
0 1

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)8

4.1.2 Concatenation, addition, and linear combination of vectors

The concatenation of the m-bit vector (a1, a2, …, am) and the k-bit vector (b1, b2, …, bk) is defined as:

(a1, a2, …, am) || (b1, b2, …, bk) = (a1, a2, …, am, b1, b2, …, bk).

EXAMPLE 1: The concatenation of the 3-bit vector (0, 1, 0) and the 4-bit vector (1, 1, 1, 1) is a 7-bit vector and
equals (0, 1, 0, 1, 1, 1, 1).

The addition of two m-bit vectors (a1, a2, …, am) and (b1, b2, …, bm) is defined as: (a1, a2, …, am) ⊕ (b1, b2, …, bm) =

(a1 ⊕ b1, a2 ⊕ b2, …, am ⊕ bm).

EXAMPLE 2: (0, 1, 0, 1, 1) ⊕ (0, 1, 1, 0, 1) = (0, 0, 1, 1, 0).

If X1, X2, …, Xi are m-bit vectors and if b1, b2, …, bi are bits for some value of i ≥ 1, then the linear combination of

these vectors with these scalars is b1ˑX1 ⊕ b2ˑX2 ⊕ … ⊕ biˑXi. If V is a set of m-bit vectors, then the span of V,

denoted by span(V), is defined as the set of all linear combinations of the elements of V. The span of the empty set is
the set containing only the zero vector.

EXAMPLE 3: If V = {(0, 1, 0), (1, 1, 0)}, then span(V) = {(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)}.

4.1.3 Vector - matrix and matrix - matrix multiplication

If X = (x1, x2, …, xm) is an m-bit vector and if the entries of the m × m matrix A are denoted as ai,j with 1 ≤ i, j ≤ m (see

also clause 4.1.1), then the product of X and A is defined as:

 XˑA = x1ˑ(a1,1, a1,2, …, a1,m) ⊕ x2ˑ(a2,1, a2,2, …, a2,m) ⊕ … ⊕ xmˑ(am,1, am,2, …, am,m).

EXAMPLE 1:

1 1 1
0 1 0
1 0 0

(1, 1, 0) ˑ = 1ˑ(1, 1, 1) ⊕ 1ˑ(0, 1, 0) ⊕ 0ˑ(1, 0, 0) = (1, 0, 1)

XˑA is an m-bit vector and XˑIm = X.

The product of two m × m matrices A and B is an m × m matrix. If C = AˑB and if:

b1,1 b1,2 … b1,m

b2,1 b2,2 … b2,m

bm,1 bm,2 … bm,m

… … …B =

c1,1 c1,2 … c1,m

c2,1 c2,2 … c2,m

cm,1 cm,2 … cm,m

… … …C =and ,

then ci,j = ai,1 b1,j ⊕ ai,2 b2,j ⊕ … ⊕ ai,m bm,j for 1 ≤ i, j ≤ m.

EXAMPLE 2:

1 0 1
0 0 1
0 1 1

ˑ =
0 1 0
1 1 1
0 0 1

1 1 0
0 0 1
1 0 1

A is called an invertible matrix if there exists a unique matrix B such that AˑB = Im. If A is an invertible matrix, then the
rows of A span the set of all m-bit vectors. The inverse of A is denoted by A-1. Efficient algorithms exist to test whether
a matrix is invertible and to compute the inverse of an invertible matrix.

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)9

4.2 Block ciphers
A block cipher is an encryption function EK that maps an n-bit plaintext to an n-bit ciphertext. The parameter n is

referred to as the block size, and in the present document, its value is either 64 or 128 (in the case of AES, n = 128). A
plaintext and a ciphertext are denoted by P and C respectively. The encryption function EK is parameterized by a key K

and EK is an invertible function for each value of K. The inverse function, referred to as the decryption function, is also

parameterized by K and is denoted by DK. The input to DK is an n-bit ciphertext and its output is an n-bit plaintext. The

encryption function EK and the decryption function DK are depicted in Figure 1.

E
K

n

n

D
K

n

n

P

C

C

P

Figure 1: Encryption of a plaintext and decryption of a ciphertext using a block cipher

4.3 External encodings
In the present document an external encoding is a function that maps an n-bit input vector to an n-bit output vector.
There are two types of external encoding:

1) The first type is referred to as an input encoding and is denoted by FK1;

2) The second type is referred to as an output encoding and is denoted by GK2.

Both type of encoding are parameterized by a key and both type of encoding are invertible functions for each value of
the key. K1 is referred to as an input encoding key and K2 is referred to as an output encoding key. In the present
document, an external encoding key K' is either an input encoding key K1 or an output encoding key K2. The size of K'
can be large compared to the size of a block cipher key; see also clause 5.4.

The external encodings are composed with the function EK to yield a new function E'K,K1,K2 that maps an n-bit input

vector to an n-bit output vector. This function is parameterized by K, K1, and K2 and defined by:

 E'K,K1,K2 (X) = GK2 (EK (FK1 (X))).

That is, first the input encoding is applied to the n-bit input vector, then EK is applied to the output vector of the input

encoding, and finally the output encoding is applied to the output of EK. If the input to EK is denoted by P, and if the

corresponding output is denoted by C (as in clause 4.1), then X = FK1
-1 (P) and E'K,K1,K2 (X) = GK2 (C).

The inverse of E'K,K1,K2 is denoted by D'K,K1,K2. If Y denotes the n-bit input vector to D'K,K1,K2, then

 D'K,K1,K2 (Y) = FK1
-1 (DK (GK2

-1 (Y))).

Further, if the input to DK is denoted by C, and if the corresponding output is denoted by P (as in clause 4.1), then Y =

GK2 (C) and D'K,K1,K2 (Y) = FK1
-1 (P). The functions E'K,K1,K2 and D'K,K1,K2 are depicted in Figure 2.

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)10

F
K1

G
K2

E
K

n

n

n

n

F
K1

-1(P)

G
K2
(C)

G
K2

-1

F
K1

-1

D
K

n

n

n

n

G
K2
(C)

F
K1

-1(P)

Figure 2: A block cipher with external encodings and its inverse

5 External encodings specification

5.1 Basic functions
The external encodings specified in the present document use two types of function. The first type of function maps an
8-bit input vector to an 8-bit output vector. The function is parameterized by the external encoding key K' (which is
either K1 or K2, depending on the type of external encoding) and the function is invertible for each value of K'. As
detailed in clauses 5.2 and 5.3, if the block size of the block cipher equals n, then one external encoding uses n/8 of
these functions, denoted by TK'

(i) for i = 1, 2, …, n/8. The present document assumes that for given K' each TK'
(i) is

represented by a look-up table.

The second type of function maps an n-bit input vector to an n-bit output vector. This function is also parameterized by
the external encoding key K' and for every choice of K', the function defines an invertible affine mapping on the vector
space consisting of all n-bit vectors. The function is denoted by HK' and the present document assumes that HK' is

represented by an n × n invertible matrix AK' and an n-bit vector bK' such that HK'(X) = XˑAK' ⊕ bK'. As detailed in

clauses 5.2 and 5.3, one external encoding uses one function HK'.

5.2 Input encoding
If the n bits of the vector X input to the input encoding FK1 are denoted by xi for i = 1, 2, …, n, and if the 8-bit vector Xj

is defined as Xj = (x8j-7, x8j-6, x8j-5, x8j-4, x8j-3, x8j-2, x8j-1, x8j) for j = 1, 2, …, n/8, then FK1 shall be as follows:

 FK1 (X) = HK1 (TK1
(1) (X1) || TK1

(2) (X2) || … || TK1
(n/8) (Xn/8))

 = (TK1
(1) (X1) || TK1

(2) (X2) || … || TK1
(n/8) (Xn/8))ˑAK1 ⊕ bK1.

This function is depicted in Figure 3.

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)11

TK1
(1)

HK1

8

n

8 8

88 8

n

n

X

FK1(X)

TK1
(2) TK1

(n/8)

Figure 3: Input encoding

Inverse input encoding: let Y denote the n-bit input vector of the inverse input encoding FK1
-1 and define the n-bit

vector Z as Z = HK1
-1 (Y) = YˑAK1

-1 ⊕ bK1ˑAK1
-1. If the n bits of Z are denoted by zi for i = 1, 2, …, n, and if the 8-bit

vector Zj is defined as Zj = (z8j-7, z8j-6, z8j-5, z8j-4, z8j-3, z8j-2, z8j-1, z8j) for j = 1, 2, …, n/8, then FK1
-1 shall be as

follows:

 FK1
-1 (Y) = (TK1

(1))-1 (Z1) || (TK1
(2))-1 (Z2) || … || (TK1

(n/8))-1 (Zn/8).

5.3 Output encoding
Let X denote the n-bit input vector of the output encoding GK2 and define the n-bit vector Z as Z = HK2 (X) =

XˑAK2 ⊕ bK2. If the n bits of Z are denoted by zi for i = 1, 2, …, n, and if the 8-bit vector Zj is defined as

Zj = (z8j-7, z8j-6, z8j-5, z8j-4, z8j-3, z8j-2, z8j-1, z8j) for j = 1, 2, …, n/8, then GK2 shall be as follows:

 GK2 (X) = TK2
(1) (Z1) || TK2

(2) (Z2) || … || TK2
(n/8) (Zn/8).

This function is depicted in Figure 4.

Inverse output encoding: if the n bits of the vector Y input to the inverse output encoding GK2
-1 are denoted by yi for

i = 1, 2, …, n, and if the 8-bit vector Yj is defined as Yj =(y8j-7, y8j-6, y8j-5, y8j-4, y8j-3, y8j-2, y8j-1, y8j) for j =

1, 2, …, n/8, then GK2
-1 shall be as follows:

 GK2
-1 (Y) = HK2

-1 ((TK2
(1))-1 (Y1) || (TK2

(2))-1 (Y2) || … || (TK2
(n/8))-1 (Yn/8))

 = ((TK2
(1))-1 (Y1) || (TK2

(2))-1 (Y2) || … || (TK2
(n/8))-1 (Yn/8))ˑAK2

-1 ⊕ bK2ˑAK2
-1.

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)12

TK2
(1)

HK2

8

n

8 8

88 8

n

n

X

GK2(X)

TK2
(2) TK2

(n/8)

Figure 4: Output encoding

5.4 Key sizes
It is assumed that each function TK'

(i) with 1 ≤ i ≤ n/8 is represented by a look-up table and that HK' is represented by an

n × n invertible matrix AK' and an n-bit vector bK' (see clause 5.1). The external encoding key K' is defined by the

contents of these look-up tables, the contents of AK', and the contents of bK'. As a result, K' can be represented using

(256 ˑ 8 ˑ n/8) + n2 + n bits = n2 + 257n bits. When n = 64, K' can be represented using 20,544 bits; when n = 128, K'
can be represented using 49,280 bits. These key sizes can be too large for certain applications.

EXAMPLE: The function E'K,K1,K2 (X) is implemented in a clear-box environment, and clear-box

cryptography techniques are used to protect it. The function E'K,K1,K2 (X) interfaces with an

implementation of the function DK (GK2
-1 (Y)). The function DK (GK2

-1 (Y)) is implemented

inside a security processor, and hardware security measures are used to protect the implementation
of DK (GK2

-1 (Y)). Furthermore, the amount of memory available in the security processor to store

the output encoding key K2 is less than 20,544 bits.

This clause therefore defines different key sizes. A parameter t with t ∈ {1, 2, 4, 8} if n = 64 and t ∈ {1, 2, 4, 8, 16} if
n = 128 is used to define one key size for each combination of t and n:

• TK'
(i) with 1 ≤ i ≤ t shall be randomly generated invertible functions, and TK'

(i) with t < i ≤ n/8 shall be as

follows: TK'
(j+t) = TK'

(j) for j = 1, 2, …, n/8 − t.

• If s = n/(8t), then AK'
(i) shall be randomly generated 8t × 8t invertible matrices for i = 1, 2, …, s, and AK' shall

be as follows: AK' = diag(AK'
(1), AK'

(2), …, AK'
(s)).

• The n-bit vector bK' shall be generated at random.

Tables 1 and 2 list the key sizes for each combination of t and n. The key size assumes that K' is defined as the contents
of the look-up tables representing TK'

(i) for i = 1, 2, …, t, the contents of the matrices AK'
(1), AK'

(2),…, AK'
(s), and the

contents of bK'.

An implementation of an external encoding shall support at least one of the key sizes listed in Table 1 or Table 2.

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)13

Table 1: Key sizes for n = 64

t Key size
8 20,544 bits
4 10,304 bits
2 5,184 bits
1 2,624 bits

Table 2: Key sizes for n = 128

t Key size
16 49,280 bits
8 24,704 bits
4 12,416 bits
2 6,272 bits
1 3,200 bits

NOTE 1: For a fixed value of n, the set of keys with a key size k is a subset of the set of keys with a key size k' > k.
In other words, an implementation that supports a specific key size for a value of n also supports all
smaller-sized keys for this value of n.

NOTE 2: For the largest key size there is redundancy in the representation of the key in that the addition with the
n-bit vector bK' could also be implemented by adapting the contents of the look-up tables representing the

functions TK'
(i) with 1 ≤ i ≤ n/8 accordingly. For the reduced key sizes this is not necessarily the case. For

consistency, and since the increase in key size is negligible, it is assumed that the n-bit vector bK' is also

included separately in the representation of the key with the largest key size.

NOTE 3: An attack on a specific class of clear-box implementations of AES with external encodings was presented
in [i.3]. In particular, this class of clear-box implementations uses the same output encoding as defined in
the present document for n = 128 and t = 1. For details and example measures to prevent this attack, refer
to [i.3].

6 Life cycle of an external encoding key

6.1 Example system

Clear-box

implementation

generator

External encoding

key generator

RNG 3

RNG 2

Clear-box execution

environment

Non-clear-box

execution

environment

Obfuscated implementation of the

block cipher with external encodings

Input and/or output encoding key

Obfuscated cipher key

RNG 1

Cipher key

Cipher key

Cipher key

Input and output

encoding key

Encoded ciphertext

or

encoded plaintext

Figure 5: System components

Figure 5 depicts basic components of an example system that uses a clear-box implementation of a block cipher with
external encodings. The example system is used to describe the life cycle stages of an external encoding key in
clauses 6.2 and 6.3.

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)14

6.2 Key generation and key distribution
The key generation stage shown in Figure 5 uses RNG 1 to generate cipher keys, and it uses RNG 2 and an external

encoding key generator to generate external encoding keys.

• The confidentiality of an external encoding key shall be protected during its generation.

EXAMPLE 1: Physical security measures, for instance offered by a stand-alone computer that is located in a
physically protected area, can provide this protection.

An input encoding key, an output encoding key, and a cipher key are then input to a clear-box implementation
generator.

• The confidentiality and authenticity of an external encoding key shall be protected during its distribution to the
clear-box implementation generator.

EXAMPLE 2: Cryptographic techniques such as encryption, a message authentication code, and/or a digital
signature can provide this protection. Alternatively, the distribution channel can be protected by
physical security measures.

The example system depicted in the figure assumes that the block cipher and the external encodings are fixed and
known to the clear-box generator. In addition to the keys, the clear-box generator takes a random number from RNG 3
as input to generate the obfuscated implementation of the block cipher with external encodings (including the external
encoding keys) and an obfuscated cipher key. Next, these two outputs are distributed to the clear-box execution
environment.

In the example system, it is assumed that multiple obfuscated cipher keys can be generated for one obfuscated
implementation of the block cipher with the same external encoding keys. If this is done, then the obfuscated
implementation of the block cipher with external encodings (including the external encoding keys) can be distributed
once to the clear-box environment, and one obfuscated cipher key can be distributed to this environment for every
cipher key. Such an implementation is referred to as a dynamic-key clear-box implementation.

If one or both external encoding keys need to be updated in the clear-box implementation, then the example system
assumes that a new obfuscated implementation of the block cipher with external encodings is generated and distributed
to the clear-box environment.

In Figure 5, the clear-box implementation interfaces with an implementation of the block cipher with one or two
external encodings that is executed in a non-clear-box environment. The corresponding input and/or output encoding
key, and the corresponding cipher key are therefore also distributed to this non-clear-box environment.

• The confidentiality and authenticity of an external encoding key shall be protected during its distribution to a
non-clear-box execution environment.

EXAMPLE 3: Cryptographic techniques such as encryption, a message authentication code, and/or a digital
signature can provide this protection. Alternatively, the distribution channel can be protected by
physical security measures.

6.3 Key storage and key use
The obfuscated implementation of the block cipher, including the obfuscated external encoding keys, is stored and used
in the clear-box environment. In addition, in the example system shown in Figure 5, the input and/or output encoding
keys are stored and used in the non-clear-box execution environment.

• The confidentiality and integrity of an external encoding key shall be protected during its storage and use in a
non-clear-box execution environment.

EXAMPLE 1: The execution environment of a security processor and its built-in security measures can provide
this protection.

• An external encoding key shall be protected against key misuse to ensure that the key can be used only for its
intended purpose. As a minimum, the purpose metadata shall include the associated block cipher, its operation
(encrypt or decrypt), the size of the external encoding key, and the type of the encoding (input or output).

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)15

EXAMPLE 2: Physical protection (tamper-resistant hardware) and/or cryptographic techniques can provide this
protection.

In a non-clear-box implementation of the block cipher with an input encoding and/or an output encoding, there are 2 or
3 different keys: a cipher key and an input encoding key and/or an output encoding key. In practice, these keys, or 2 out
of 3 keys, can be securely linked together so that they can only be used simultaneously. In general, linking keys will
reduce the number of keys of the block cipher with external encodings from 2 to 1 or from 3 to either 2 or 1 from the
adversary's perspective. Reducing the number of keys can prevent certain types of attack.

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)16

Annex A (informative):
External encoding key generator
This informative annex contains pseudo-code for an external encoding key generator. This generator can be used for
generating external encoding keys. The pseudo-code comprises three algorithms. These algorithms assume that the
following two routines are available for generating random numbers:

random-integer(i)
 INPUT: an integer 1 ≤ i ≤ 255
 OUTPUT: a random integer in the range [0,i]

random-m-bit-vector(m)
 INPUT: m ∈ {8, 16, 32, 64, 128}
 OUTPUT: a random m-bit vector

The random module of the programming language Python® contains two routines, referred to as random.randint
and random.getrandbits, that can be used to define the above mentioned routines. The routine call
random.randint(0,i) returns a random Python® integer in the range [0, i] and the routine call
random.getrandbits(m) returns a Python® integer with m random bits. For details, refer to
https://docs.python.org/3/library/random.html.

Similar but cryptographically stronger routines, referred to as secrets.randbelow and secrets.randbits are
available in the secrets module of Python®. The routine call secrets.randbelow(i+1) returns a random
Python® integer in the range [0, i] and the call secrets.randbits(m) returns a Python® integer with m random
bits. For details, refer to https://docs.python.org/3/library/secrets.html.

The first algorithm constructs a random permutation on 8-bit vectors using a modern variant of the Fisher-Yates shuffle,
also referred to as Durstenfeld's algorithm [i.4]. The routine binary-vector(i) in the first algorithm takes an
integer i with 0 ≤ i ≤ 255 as input and returns the vector (a1, a2, …, a8) such that i = Σj=0,1, …,7 a8-j 2

j.

ALGORITHM random-permutation()
 INPUT: none
 OUTPUT: a permutation on 8-bit vectors
FOR i FROM 0 TO 255 T[i] ← binary-vector(i)
FOR i FROM 255 DOWNTO 1 DO
 j ← random-integer(i)
 Exchange T[i] and T[j]
RETURN T

The second algorithm generates an m × m random invertible matrix with m ∈ {8, 16, 32, 64, 128}. It uses a brute force
method to build up the matrix row by row. In the description of the algorithm, C(i) denotes the ith row of the
m × m matrix C for i = 1, 2, …, m.

ALGORITHM random-invertible-matrix(m)
 INPUT: m ∈ {8, 16, 32, 64, 128}
 OUTPUT: an m × m invertible matrix C
i ← 1
WHILE i ≤ m DO
 C(i) ← random-m-bit-vector(m)
 IF C(i) ∉ span({C(1), C(2), …, C(i-1)}) THEN i ← i + 1
RETURN C

Since the span contains 2i-1 vectors, the probability pi that the assignment i ← i + 1 is executed equals

(2m − 2i-1) / 2m for i = 1, 2, …, m. The expected number of iterations of the WHILE loop therefore equals:

 Σi=1,2…,m 1 / pi = Σi=0,1…,m-1 2m / (2m − 2i) = Σi=0,1…,m-1 (2m − 2i + 2i) / (2m − 2i)

 = m + Σi=1,2…,m 1 / (2i − 1) < m + 1 + Σi=1,2,…,m-1 1 / 2i < m + 2.

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/secrets.html

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)17

The associated variance equals:

 Σi=1,2…,m (1 − pi) / pi
2 = Σi=0,1…,m-1 2m+i / (2m − 2i)2 = Σi=1,2…,m 1 / (2i + 2-i − 2)

 = 2 + Σi=2…,m 1 / (2i + 2-i − 2) < 2 + Σi=1…,m-1 2-i < 3.

The third algorithm uses the first and second algorithms to generate one external encoding key. The inputs to the third
algorithm are the block size n ∈ {64, 128} and the number of independently generated functions TK'

(i), denoted by t

with t ∈ {1, 2, 4, 8} if n = 64 and t ∈ {1, 2, 4, 8, 16} if n =128 (see also clause 5.4). The outputs are t random
permutations on 8-bit vectors, s = n/(8t) random invertible binary matrices of dimension 8t × 8t, and a random n-bit
vector. These permutations are TK'

(i) for i = 1, 2, …, t, the matrices are AK'
(1), AK'

(2), …, and AK'
(s), and the n-bit vector

is bK' (see also clauses 5.1 and 5.4).

ALGORITHM random-external-encoding(n,t)
 INPUTS: 1) n ∈ {64, 128}
 2) t ∈ {1, 2, 4, 8} if n = 64 and t ∈ {1, 2, 4, 8, 16} if n = 128
 OUTPUTS: 1) t permutations on 8-bit vectors T(1), T(2), …, T(t)

 2) 8t × 8t invertible binary matrices A(1), A(2), …, A(n/(8t))

 3) an n-bit vector b

FOR i = 1 to t DO
 T(i) ← random-permutation()
s ← n/(8t)
FOR i = 1 to s DO
 A(i) ← random-invertible-matrix(8t)
b ← random-m-bit-vector(n)
RETURN (T(1), T(2), …, T(t), A(1), A(2), …, A(s), b)

For completeness, the routine calls associated with the different external encoding key sizes are listed in Tables A.1 and
A.2 below.

Table A.1: Routine calls for n = 64

Key size Routine call
20,544 bits random-external-encoding-key(64,8)
10,304 bits random-external-encoding-key(64,4)

5,184 bits random-external-encoding-key(64,2)
2,624 bits random-external-encoding-key(64,1)

Table A.2: Routine calls for n = 128

Key size Routine call
49,280 bits random-external-encoding-key(128,16)
24,704 bits random-external-encoding-key(128,8)
12,416 bits random-external-encoding-key(128,4)

6,272 bits random-external-encoding-key(128,2)
3,200 bits random-external-encoding-key(128,1)

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)18

Annex B (informative):
Test data
Python® code that can be used to generate test data for the external encodings is available at:
https://forge.etsi.org/rep/cyber/103718_AES

This code uses the external encoding key generator defined in Annex A and the random module of Python® to define
the routines random-integer(i) and random-m-bit-vector(m). More precisely, as described in Annex A,
random.randint(0,i) is called to generate a random Python® integer in the range [0, i] and
random.getrandbits(m) is called to generate a Python® integer with m random bits.

The Python® code is intended to be run at the command line and provides the following help message:

$ python encoding.py -h
usage: encoding.py [-h] [-e {input,output}] [-n {64,128}] [-t {1,2,4,8,16}] [-r R] [-p P]

Generate test data sets for the external encodings specified in ETSI TS 103 718

optional arguments:
-h, --help show this help message and exit
-e {input,output} type of encoding (default = input)
-n {64,128} block size (default = 128)
-t {1,2,4,8,16} parameter defining the key size (default = 1)
-r R number of test data sets (default = 1)
-p P seed for initializing the pseudo-random number generator (default = 0)

NOTE 1: The parameter t is as defined in clause 5.4. Recall that the combination of n = 64 and t = 16 is invalid.
The code will return an error message if this combination is selected.

NOTE 2: Test data generated by the code can be reproduced by selecting the same value of the seed.

A test data set contains the following data:

Input vector: The n-bit input vector of the external encoding.
Intermediate: The n-bit input vector of the function HK’ in case of an input encoding and the n-bit

output vector of HK’ in case of an output encoding.
Output vector: The n-bit output vector of the external encoding.
External encoding key: The functions TK'

(i) for i = 1, 2, …, t; TK'
(i) is referred to as T[i] in a test data set.

The matrices AK'
(i) for i = 1, 2, …, s; AK'

(i) is referred to as A[i] in a test data set.

The n-bit vector bK' , referred to as b in a test data set.

Inverse of T[i]: The inverses of the functions TK'
(i) for i = 1, 2, …, t; the inverse of TK'

(i) is referred

to as Tinv[i] in a test data set.
Inverse of A[i]: The inverses of the matrices AK'

(i), for i = 1, 2, …, s; the inverse of AK'
(i) is referred

to as Ainv[i] in a test data set.

The n-bit input vector of the external encoding and the external encoding key are generated at random for every test
data set.

NOTE 3: A test data set of an external encoding is also a test data set for the inverse external encoding since the
Output vector of the external encoding is the Input vector of the inverse external encoding and
the Input vector of the external encoding is the Output vector of the inverse external encoding.
Moreover, the Intermediate of the external encoding is also the Intermediate of its inverse. For
completeness, the inverses of the functions TK'

(i) for i = 1, 2, …, t and the inverses of the matrices AK'
(i)

for i = 1, 2, …, s are also included in a test data set since these inverses are used during the computations
of the inverse external encoding.

https://forge.etsi.org/rep/cyber/103718_AES

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)19

All data in a test data set are displayed using hexadecimal notation:

• An n-bit vector (a1, a2, …, an), i.e. Input vector, Intermediate, Output vector, or b of an

External encoding key in a test data set, is represented using n/4 hexadecimal characters, and
displayed as h1 h2 … hn/4 with hk = Σj=0,1,2,3 a4k-j 2

j for k = 1, 2, …, n/4.

• A function T mapping an 8-bit input vector to an 8-bit output vector, i.e. T[i] or Tinv[i] in a test data set,
is displayed as 16 rows of 16 entries. If X = (x1, x2, …, x8) denotes the input vector of T, then Entry

(1 + Σj=0,1,2,3 x8-j 2
j) of Row (1 + Σj=0,1,2,3 x4-j 2

j) is T(X). T(X) is represented using 2 hexadecimal

characters: if T(X) = (y1, y2, …, y8), then T(X) is displayed as h1 h2 with hk = Σj=0,1,2,3 y4k-j 2
j for k = 1, 2.

• An m × m matrix A, i.e. A[i] or Ainv[i] in a test data set, is displayed as m rows, and each row is
represented using m/4 hexadecimal characters. If the entries of the ith row with 1 ≤ i ≤ m are ai,1, ai,2, …, ai,m,

then the ith row is displayed as hi,1 hi,2 … hi,m/4 with hi,k = Σj=0,1,2,3 ai,4k-j 2
j for k = 1, 2, …, m/4.

ETSI

ETSI TS 103 718 V1.1.1 (2020-10)20

History

Document history

V1.1.1 October 2020 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Preliminaries
	4.1 Basic mathematical concepts
	4.1.1 Bits, vectors, and matrices
	4.1.2 Concatenation, addition, and linear combination of vectors
	4.1.3 Vector - matrix and matrix - matrix multiplication

	4.2 Block ciphers
	4.3 External encodings

	5 External encodings specification
	5.1 Basic functions
	5.2 Input encoding
	5.3 Output encoding
	5.4 Key sizes

	6 Life cycle of an external encoding key
	6.1 Example system
	6.2 Key generation and key distribution
	6.3 Key storage and key use

	Annex A (informative): External encoding key generator
	Annex B (informative): Test data
	History

