Reconfigurable Radio Systems (RRS);
Radio Equipment (RE) information models and protocols
for generalized software reconfiguration architecture;
Part 1: generalized Multiradio Interface (gMURI)
Contents

Intellectual Property Rights .. 4
Foreword .. 4
Modal verbs terminology ... 4
1 Scope .. 5
2 References .. 5
2.1 Normative references .. 5
2.2 Informative references ... 5
3 Definition of terms, symbols and abbreviations .. 6
3.1 Terms .. 6
3.2 Symbols ... 7
3.3 Abbreviations ... 7
4 Introduction ... 8
5 System Identification ... 9
5.1 Radio Computer Structure .. 9
5.2 gMURI System Requirement Mapping .. 10
6 Notational Tools .. 11
6.1 Notational Tool for Information Model Classes ... 11
6.2 Notational Tool for Interface Classes .. 11
7 Information Model for Radio Computer ... 12
7.1 General ... 12
7.2 Radio Computer .. 13
7.3 Class Definitions for Information Model .. 15
8 Interface Definition ... 21
8.1 Interface Overview ... 21
8.2 Administrative Services .. 22
8.2.1 Overview on Administrative Services ... 22
8.2.2 Messages for Administrative Services ... 23
8.3 Access Control Services ... 24
8.3.1 Overview on Access Control Services ... 24
8.3.2 Messages for Access Control Services ... 24
8.4 Data Flow Services .. 25
8.4.1 Overview on Data Flow Services ... 25
8.4.2 Messages for Data Flow Services ... 25
8.5 Class Definitions for Interface ... 26
Annex A (informative): Abstract Data Definitions ... 28
Annex B (informative): gMURI Qualification Methods for Validation ... 32
History ... 33
Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Reconfigurable Radio Systems (RRS).

The present document is part 1 of a multi-part deliverable covering the Radio Equipment (RE) information models and protocols, as identified below:

- **Part 1**: "generalized Multiradio Interface (gMURI)"
- **Part 2**: "generalized Reconfigurable Radio Frequency Interface (gRRFI)"
- **Part 3**: "generalized Unified Radio Application Interface (gURAI)"
- **Part 4**: "generalized Radio Programming Interface (gRPI)"

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
1 Scope

The present document defines an information model and protocol for multiradio interface for reconfigurable RE. The work is based on the Use Cases defined in ETSI TR 103 585 [i.1], on the system requirements defined in ETSI TS 103 641 [1] and on the radio reconfiguration related architecture for reconfigurable RE defined in ETSI TS 103 648 [i.2].

The present document is based on ETSI EN 303 146-1 [i.6] and provide a generalized interface definition for the generalized Software Reconfiguration Architecture.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

[1] ETSI TS 103 641: "Reconfigurable Radio Systems (RRS); Radio Equipment (RE) reconfiguration requirements".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1] ETSI TR 103 585: "Reconfigurable Radio Systems (RRS); Radio Equipment (RE) reconfiguration use cases".

[i.2] ETSI TS 103 648: "Reconfigurable Radio Systems (RRS); Radio Equipment (RE) reconfiguration architecture".

[i.6] ETSI EN 303 146-1: "Reconfigurable Radio Systems (RRS); Mobile Device (MD) information models and protocols; Part 1: Multiradio Interface (MURI)".
3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

association: logical communication link to a Radio Access Network or a peer equipment

NOTE 1: Typically, some control signalling is necessary to maintain the association. No user data transfer may occur with only an association present, but a data flow may be established into an association for this purpose.

NOTE 2: Peer equipment is any communication counterpart of a reconfigurable Radio Equipment. It can be reached by establishing a logical communication link (i.e. an association) between the reconfigurable Radio Equipment and peer equipment.

channel: designated part of the information transfer capability having specified characteristics, provided at the user network interface

NOTE: It is the over-the-air wireless propagation channel which is used to convey an information signal from transmitter to receiver. This definition is specified in ETSI TS 103 648 [i.2].

Communication Services Layer (CSL): layer related to communication services supporting generic applications

NOTE: A communication services layer supports generic applications like Internet access. In the present document, it consists of Administrator, Mobility Policy Manager (MPM), Networking stack and Monitor.

link: connecting one location to another through a given Radio Access Technology for the purpose of transmitting and receiving digital information

NOTE: Each link is conveyed over a given Channel.

Radio Application (RA): software which enforces the generation of the transmit RF signals or the decoding of the receive RF signals

NOTE 1: The Software is executed on a particular radio platform or an RVM as part of the radio platform.

NOTE 2: RAs might have different forms of representation. They are represented as:

- source codes including Radio Library calls of Radio Library native implementation and Radio HAL calls;
- IRs including Radio Library calls of Radio Library native implementation and radio HAL calls;
- executable codes for a particular radio platform.

radio computer: part of Radio Equipment working under ROS control and on which RAs are executed

NOTE: A radio computer typically includes programmable processors, hardware accelerators, peripherals, software, etc. RF part is considered to be part of peripherals.
Radio Control Framework (RCF): control framework which, as a part of the OS, extends OS capabilities in terms of radio resource management

NOTE: RCF is a control framework which consists of Configuration Manager (CM), Radio Connection Manager (RCM), Flow Controller (FC) and MultiRadio Controller (MRC). The Resource Manager (RM) is typically part of OS.

Radio Equipment (RE): "an electrical or electronic product, which intentionally emits and/or receives radio waves for the purpose of radio communication and/or radiodetermination, or an electrical or electronic product which must be completed with an accessory, such as antenna, so as to intentionally emit and/or receive radio waves for the purpose of radio communication and/or radiodetermination".

NOTE: The definition above is as defined in the Radio Equipment Directive, Article 2(1)(1) [i.5].

reconfigurable Radio Equipment: Radio Equipment with radio communication capabilities providing support for radio reconfiguration

NOTE: Reconfigurable Radio Equipment includes Smartphones, Feature phones, Tablets, Laptops, Connected Vehicle communication platform, Network platform, IoT device, etc.

routing entity: entity which directs network packets from their source toward their destination through intermediate network nodes by specific packet forwarding mechanisms

NOTE 1: In the present document, source and destination relate either to CSL or radio computers.

NOTE 2: Note that the directing of packets may include decision making and physical routing.

Unified Radio Application (URA): Radio Application which complies with the reconfigurable RE framework defined in the present document

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASN.1</td>
<td>Abstract Syntax Notation One</td>
</tr>
<tr>
<td>BLER</td>
<td>BLock Error Rate</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Manager</td>
</tr>
<tr>
<td>CSL</td>
<td>Communication Services Layer</td>
</tr>
<tr>
<td>FC</td>
<td>Flow Controller</td>
</tr>
<tr>
<td>gMURI</td>
<td>generalized Multiradio Interface</td>
</tr>
<tr>
<td>gRPI</td>
<td>generalized Radio Programming Interface</td>
</tr>
<tr>
<td>gRRFI</td>
<td>generalized Reconfigurable Radio Frequency Interface</td>
</tr>
<tr>
<td>gURAI</td>
<td>generalized Unified Radio Applications Interface</td>
</tr>
<tr>
<td>ID</td>
<td>IDentification</td>
</tr>
<tr>
<td>IR</td>
<td>Intermediate Representation</td>
</tr>
<tr>
<td>ITU-T</td>
<td>International Telecommunication Union Telecommunication Standardization Sector</td>
</tr>
<tr>
<td>MPM</td>
<td>Mobility Policy Manager</td>
</tr>
<tr>
<td>MRC</td>
<td>MultiRadio Controller</td>
</tr>
<tr>
<td>MURI</td>
<td>Multiradio Interface</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>RA</td>
<td>Radio Application</td>
</tr>
<tr>
<td>RAN</td>
<td>Radio Access Network</td>
</tr>
<tr>
<td>RAP</td>
<td>Radio Application Package</td>
</tr>
<tr>
<td>RAT</td>
<td>Radio Access Technology</td>
</tr>
<tr>
<td>RCF</td>
<td>Radio Control Framework</td>
</tr>
<tr>
<td>RCID</td>
<td>Radio Computer Identification</td>
</tr>
<tr>
<td>RCM</td>
<td>Radio Connection Manager</td>
</tr>
<tr>
<td>RE</td>
<td>Radio Equipment</td>
</tr>
</tbody>
</table>
4 Introduction

A reconfigurable RE is capable of running multiple radios simultaneously, changing the set of radios by loading new Radio Application Packages (RAP) and setting their parameters. All Radio Applications (RAs) are called Unified Radio Applications (URAs) when they exhibit a common behaviour from the reconfigurable RE’s point of view in ETSI TS 103 648 [i.2]. In order to run multiple URAs, the reconfigurable RE will include Communication Services Layer (CSL), Radio Control Frameworks (RCFs), Radio Platforms and 4 sets of interfaces for their interconnection.

Figure 4.1 illustrates the Reconfigurable RE architecture with the 4 sets of interfaces, i.e.:

- gMURI for interfacing CSL and RCF which is the scope of the present document.
- gRRFI for interfacing URA and RF Transceiver (in ETSI EN 303 681-2 [i.7]).
- gURAI for interfacing URA and RCF (in ETSI EN 303 681-3 [i.8]).
- gRPI for allowing an independent and uniform production of RAs (in ETSI EN 303 681-4 [i.9]).

The present document defines gMURI.

Abbreviations

- RERC: Radio Equipment Reconfiguration Class
- RF: Radio Frequency
- RM: Resource Manager
- ROS: Radio Operating System
- SINR: Signal to Interference plus Noise Ratio
- SW: Software
- UML: Unified Modeling Language
- URA: Unified Radio Applications

Figure 4.1: Four sets of interfaces for Reconfigurable RE
Figure 4.2: UML class diagram for Radio Computer interfaces

Figure 4.2 illustrates UML class diagram for Radio Computer interfaces. The reconfigurable RE may be seen as a set of multiple Radio Computers where individual URAs are engineered as software entities in ETSI TS 103 648 [i.2].

The present document is organized as follows:

- clause 5 describes the system identification;
- clause 6 describes the notational tool for defining both information model classes and interface classes;
- clause 7 describes the information model for radio computer; and
- clause 8 describes the interface definition.

While UML is used for defining the information model and protocol related to gMURI, other modeling languages could be used as well.

5 System Identification

5.1 Radio Computer Structure

Figure 5.1 illustrates how CSL and RCFs interact with each other using gMURI.
As shown in figure 5.1, gMURI supports 3 kinds of services:

- **Administrative Services**
 - These services are used by some device configuration application i.e. Administrator which is included in the CSL, to (un)install a new URA into the Reconfigurable RE and create/delete an instance of the URA. Installation and loading may take place both at device start-up time to set up the network connection as well as during run-time, whenever reconfiguration of available URAs is needed. gMURI does not make any assumption on how and when the Radio Equipment will detect the need of the reconfiguration.

- **Access Control Services**
 - These services are used by the MPM to maintain the user policies and preferences related to the usage of different RATs and to make a selection between them. Modelling of such preferences and selection algorithms is not in the scope of the present document; however, the gMURI specification covers the information exchange of RAT selection decisions between CSL and RCF. The preferences themselves may originate either locally from applications or end user settings as well as in a distributed manner from network operator or from a cognitive radio management framework.

- **Data Flow Services**
 - These services are used by the networking stack of the Reconfigurable RE, such as the TCP/IP stack. Therefore data flow services represent the set of (logical) link layer services, which are provided in a uniform manner regardless of which URAs are active.

The Communication Services Layer (CSL) and Radio Control Framework (RCF) are defined in ETSI TS 103 648 [i.2].

5.2 gMURI System Requirement Mapping

The Radio Computer components above described shall support the gMURI system requirements shown in table 5.1 and described in clauses 6.1 and 6.2 of ETSI TS 103 641 [1].

<table>
<thead>
<tr>
<th>Entity/Component/Unit</th>
<th>System Requirements [1]</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator</td>
<td>R-FUNC-RAT-01</td>
<td>The requirement is described in clause 6.1.1 of [1].</td>
</tr>
<tr>
<td>Administrator</td>
<td>R-FUNC-RA-01</td>
<td>The requirement is described in clause 6.2.1 of [1].</td>
</tr>
<tr>
<td>Administrator</td>
<td>R-FUNC-RER-01</td>
<td>The requirement is described in clause 6.4.1 of [1].</td>
</tr>
<tr>
<td>Administrator</td>
<td>R-FUNC-RER-02</td>
<td>The requirement is described in clause 6.4.2 of [1].</td>
</tr>
<tr>
<td>Administrator</td>
<td>R-FUNC-RER-03</td>
<td>The requirement is described in clause 6.4.3 of [1].</td>
</tr>
<tr>
<td>Administrator</td>
<td>R-FUNC-RER-16</td>
<td>The requirement is described in clause 6.4.16 of [1].</td>
</tr>
<tr>
<td>Entity/Component/Unit</td>
<td>System Requirements [1]</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Mobility Policy Manager</td>
<td>R-FUNC-RAT-01 The requirement is described in clause 6.1.1 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RAT-04 The requirement is described in clause 6.1.4 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RA-03 The requirement is described in clause 6.2.3 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RER-16 The requirement is described in clause 6.4.16 of [1].</td>
<td></td>
</tr>
<tr>
<td>Networking Stack</td>
<td>R-FUNC-RAT-05 The requirement is described in clause 6.1.5 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RA-04 The requirement is described in clause 6.2.4 of [1].</td>
<td></td>
</tr>
<tr>
<td>Configuration Manager</td>
<td>R-FUNC-RAT-01 The requirement is described in clause 6.1.1 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RAT-02 The requirement is described in clause 6.1.2 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RA-01 The requirement is described in clause 6.2.1 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RER-01 The requirement is described in clause 6.4.1 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RER-02 The requirement is described in clause 6.4.2 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RER-03 The requirement is described in clause 6.4.3 of [1].</td>
<td></td>
</tr>
<tr>
<td>Radio Connection Manager</td>
<td>R-FUNC-RAT-01 The requirement is described in clause 6.1.1 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RAT-02 The requirement is described in clause 6.1.2 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RAT-03 The requirement is described in clause 6.1.3 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RAT-04 The requirement is described in clause 6.1.4 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RA-03 The requirement is described in clause 6.2.3 of [1].</td>
<td></td>
</tr>
<tr>
<td>Flow Controller</td>
<td>R-FUNC-RAT-01 The requirement is described in clause 6.1.1 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RAT-03 The requirement is described in clause 6.1.3 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RAT-05 The requirement is described in clause 6.1.5 of [1].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-FUNC-RA-04 The requirement is described in clause 6.2.4 of [1].</td>
<td></td>
</tr>
</tbody>
</table>

6 Notational Tools

6.1 Notational Tool for Information Model Classes

In the present document, information model classes are used as defined in annex B.1 of IEEE 1900.4TM-2009 [i.3].

6.2 Notational Tool for Interface Classes

Table 6.1 shows a template for defining interface classes for gMURI. Each interface class for gMURI will be defined in clause 8.5 in accordance with the template shown in table 6.1.

<table>
<thead>
<tr>
<th>Class<Class name>[abstract class]</th>
<th><Description of the class></th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATIONS</td>
<td></td>
</tr>
<tr>
<td><Operation name></td>
<td>Return type:</td>
</tr>
<tr>
<td></td>
<td><Operation return type></td>
</tr>
<tr>
<td></td>
<td>Value type:</td>
</tr>
<tr>
<td></td>
<td><Operation value type></td>
</tr>
<tr>
<td></td>
<td><Description of the operation></td>
</tr>
</tbody>
</table>

The template fields in table 6.1 are described below:

- `<Class name>` is the name of the Class as it appears in the corresponding model. Additional information is also included in case the class in question has been specified as an abstract one.
- `OPERATIONS` field describes the operations that have been defined in the class. More specifically:
 - `<Operation name>` identifies the name of an operation, as it is included in the class definition.
 - `<Return type>` identifies the type of return value at the corresponding operation. Details related to the ASN.1 module are specified in annex B of the present document.
 - `<Value type>` identifies the access levels for member functions: public, private, protected.
7 Information Model for Radio Computer

7.1 General

Figure 7.1 shows the UML class diagram for Radio Equipment which consists of one or multiple Radio Computers.

NOTE: The Routing Entity figure is responsible for transferring command/information to/from corresponding radio computers. An (external) network controller may be able to update the routing path to radio computers by accessing Routing Entity through a proper interface. An (external) network controller and an interface are vendor-specific and out of scope of the present document.

Figure 7.1: UML class diagram for Radio Equipment classes

The Radio Equipment classes are defined as follows:

- **RadioEquipment**
 - This class contains all the information about Radio Computers and RE configuration, RE capabilities, etc. Each instance of RadioEquipment class shall have only one instance of RadioEquipment class as a member.

- **RoutingEntity**
 - This class describes information related to a Routing Entity. Each instance of RoutingEntity class depends on each instance of RadioComputer class.

- **RadioComputer**
 - This class contains all URA(s) related information about resources and interactions related to hardware and software of a reconfigurable RE, for example, computational/spectral resource usage, collection of context information, channel measurement results, etc.

- **REProfile**
 - This class contains general information about the Radio Equipment, for example, equipment Identification (ID). Each instance of a "RadioEquipment" class can have only one instance of REProfile class as a member.

- **RECapabilities**
 - This class contains information about Radio Equipment capabilities including hardware, software capabilities such as computational capabilities. Each instance of RadioEquipment class shall have only one instance of RECapabilities class as a member.
- REConfiguration
 - This class contains information about the current configuration of Radio Equipment. Each instance of RadioEquipment class shall have only one instance of REConfiguration class as a member.

7.2 Radio Computer

Figure 7.2 shows the UML class diagram for Radio Computer classes related to gMURI which are required to support software reconfiguration.

Figure 7.2: UML class diagram for Radio Computer classes related to gMURI
The Radio Computer classes related to gMURI are defined as follows:

- **RCUser**
 - This class describes information related to a user of the Radio Computer. Each instance of RCUser class depends on one instance of RadioComputer class.

- **RadioApp**
 - This class describes an installed Radio Application. Each instance of a “Radio Computer” class can relate to zero or several instances of RadioApp class (0..*). Each instance of RadioApp class is associated with one instance of RadioOS class.

- **RadioOS**
 - This class describes an installed Radio OS. Each instance of a “Radio Computer” class can relate to zero or one instance of RadioOS class (0,1). Each instance of RadioOS class is associated with zero or several instances of RadioApp class (0..*).

- **RadioComputer**
 - This class contains all URA(s) related information about resources and interactions related to hardware and software of a reconfigurable RE, for example, computational/spectral resource usage, collection of context information, channel measurement results, etc.

- **RCCapabilities**
 - This class contains information about Radio Computer capabilities including hardware, software, transmission and measurement capabilities such as supported RATs and maximum transmission power. Each instance of RadioComputer class shall have only one instance of RCCapabilities class as a member.

- **Channel**
 - This class contains one radio channel that may or may not be used by an active radio link. Each instance of RadioComputer class can have zero, one or several instances of Channel class as members (0..*). In case of an active radio link, at least one Channel class is available.

- **ChannelProfile**
 - This class contains general information about the radio channel such as channel ID, center frequency, bandwidth, and used RAT. Each instance of Channel class shall have only one instance of Channel Profile class as a member.

- **ChannelMeasurements**
 - This class contains current measurements (instantaneous measurement data and related metadata) and the applied measurement configuration related to this radio channel such as interference and load measurements. Each instance of Channel class shall have only one instance of ChannelMeasurements class as a member.

- **Antenna**
 - This class contains information about antenna selection. Each instance of Channel class shall have at least one instance of Antenna class as a member. (1..*).

- **AntennaProfile**
 - This class contains general information about this antenna, such as antenna port, applicable frequency range and antenna gain. Each instance of Antenna class shall have only one instance of AntennaProfile class as a member.

- **RCConfiguration**
 - This class contains information about the current configuration of Radio Computer. Each instance of RadioComputer class shall have only one instance of RCConfiguration class as a member.
- **Link**
 - This class contains information about one active URA and the corresponding connection between the Reconfigurable RE and the Radio Access Network (RAN). Each instance of RCConfiguration class has zero, one or several instances of Link class as members (0..*). Each instance of Link class is associated with one instance of Channel class.

- **LinkProfile**
 - This class contains general information about this active connection, for example, link Identification (ID), serving cell ID, channel used, etc. Each instance of Link class shall have only one instance of LinkProfile class as a member.

- **LinkMeasurements**
 - This class contains current measurements (instantaneous measurement data and related metadata) related to this active connection, such as Block Error Rate (BLER), power, and Signal to Interference plus Noise Ratio (SINR) measurements. Each instance of Link class shall have only one instance of LinkMeasurements class as a member.

- **RFConfiguration**
 - This class contains information about the configuration of the RF transceiver. Each instance of Link class shall have only one instance of RFConfiguration class as a member.

- **TxPath**
 - This class contains information about one transmit path. Each instance of RFConfiguration class has zero or one instance of TxPath class as a member (0,1).

- **RxPath**
 - This class contains information about one receive path. Each instance of RFConfiguration class shall have only one instance of RxPath class as a member.

- **RCMeasurements**
 - This class contains current measurements (instantaneous measurement data and related metadata) related to Reconfigurable RE such as battery capacity, user mobility, RE location determination, and connection history information. Each instance of RadioComputer class shall have only one instance of RCMmeasurements class as a member.

NOTE: The Channel Class is separate from the Link Class, but the Channel Measurements may be based on any RE configuration which may or may not be used for the final Link Configuration.

7.3 Class Definitions for Information Model

Each class of Radio Computer can be defined using the template presented in clause 6.1 and in accordance with the UML diagram of figure 7.2 which specifies the relations among all the classes of Radio Computer. Radio Computer classes defined in this way are shown in tables 7.1 to 7.17.
Table 7.1: RadioComputer Class

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCID</td>
</tr>
<tr>
<td>Field: Value type:</td>
</tr>
<tr>
<td>Default value:</td>
</tr>
<tr>
<td>This attribute describes ID of a Radio Computer.</td>
</tr>
</tbody>
</table>

CONTAINED IN RCCapabilities [1], RCConfiguration [1], RCMeasurements [1], Channel [*], RadioAPP [*], RadioOS [0-1]

Table 7.2: RadioApp Class

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RadioAppID</td>
</tr>
<tr>
<td>Value type: NameType</td>
</tr>
<tr>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute describes ID of installed Radio Application.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAVersion</td>
</tr>
<tr>
<td>Value type: Version</td>
</tr>
<tr>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute describes a version of Radio Application.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>listOfSupportedOptions</td>
</tr>
<tr>
<td>Value type: RAOptionsList</td>
</tr>
<tr>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute contains a list of supported options.</td>
</tr>
</tbody>
</table>

CONTAINED IN RadioComputer

Table 7.3: RadioOS Class

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>rOSID</td>
</tr>
<tr>
<td>Value type: NameType</td>
</tr>
<tr>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute describes ID of Radio OS.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>rOSVersion</td>
</tr>
<tr>
<td>Value type: Version</td>
</tr>
<tr>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute describes a version of Radio OS.</td>
</tr>
</tbody>
</table>

CONTAINED IN RadioComputer

SUPPORTED EVENTS
Table 7.4: RCCapabilities Class

Class RCCapabilities
This class contains information about Radio Computer capabilities including hardware, software, transmission and measurement capabilities.

DERIVED FROM

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
<th>Value type</th>
<th>Possible access</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>listOfSupportedOptions</td>
<td>Value type: RCOptionsList</td>
<td>Possible access: Read-Write</td>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute describes a list of supported options.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>listOfSupportedRadioInterfaces</td>
<td>Value type: RadioInterfacesList</td>
<td>Possible access: Read-Write</td>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute describes radio interfaces supported by this Radio Computer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>listOfSupportedChannels</td>
<td>Value type: ChannelIDsList</td>
<td>Possible access: Read-Write</td>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute describes frequency channels supported by this Radio Computer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hardwareProfile</td>
<td>Value type: HardwareInfo</td>
<td>Possible access: Read-Write</td>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute describes hardware capabilities of this Radio Computer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>softwareProfile</td>
<td>Value type: SoftwareInfo</td>
<td>Possible access: Read-Write</td>
<td>Default value: Not specified</td>
</tr>
<tr>
<td>This attribute describes software capabilities of this Radio Computer.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTAINED IN | RadioComputer |

CONTAINS | SUPPORTED EVENTS |

Table 7.5: Channel Class

Class Channel
This class describes one frequency channel that may or may not have active connections on it.

DERIVED FROM

ATTRIBUTES

<table>
<thead>
<tr>
<th>CONTAINED IN</th>
<th>RadioComputer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTAINS</td>
<td>ChannelProfile [1], ChannelMeasurements [1], Antenna [+]</td>
</tr>
</tbody>
</table>

SUPPORTED EVENTS

Table 7.6: ChannelProfile Class

Class ChannelProfile
This class contains general information about this frequency channel.

DERIVED FROM

ATTRIBUTES

<table>
<thead>
<tr>
<th>CONTAINED IN</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTAINS</td>
<td>SUPPORTED EVENTS</td>
</tr>
</tbody>
</table>
Table 7.7: ChannelMeasurements Class

<table>
<thead>
<tr>
<th>Class ChannelMeasurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>This class contains current measurements related to this frequency channel.</td>
</tr>
</tbody>
</table>

DERIVED FROM

ATTRIBUTES

<table>
<thead>
<tr>
<th>listOfChannelMeasurements</th>
<th>Value type: ChannelMeasurementsList</th>
<th>Possible access: Read</th>
<th>Default value: Not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>This attribute describes a list of channel measurements.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>appliedMeasurementsConfiguration</th>
<th>Value type: ConfigurationMeasurements</th>
<th>Possible access: Read</th>
<th>Default value: Not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>This attribute describes configuration option of the RE, e.g. which Antenna(s) have been used, which RF front-end(s) have been used, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTAINED IN Channel

CONTAINS

SUPPORTED EVENTS

Table 7.8: Antenna Class

<table>
<thead>
<tr>
<th>Class Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>This class contains information about antenna selection.</td>
</tr>
</tbody>
</table>

DERIVED FROM

ATTRIBUTES

CONTAINED IN Channel

CONTAINS AntennaProfile [1]

SUPPORTED EVENTS

Table 7.9: AntennaProfile Class

<table>
<thead>
<tr>
<th>Class AntennaProfile</th>
</tr>
</thead>
<tbody>
<tr>
<td>This class contains general information about this antenna.</td>
</tr>
</tbody>
</table>

DERIVED FROM

ATTRIBUTES

<table>
<thead>
<tr>
<th>antennaID</th>
<th>Value type: NameType</th>
<th>Possible access: Read</th>
<th>Default value: Not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>This attribute describes ID of antenna.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTAINED IN Antenna

CONTAINS

SUPPORTED EVENTS

Table 7.10: RCConfiguration Class

<table>
<thead>
<tr>
<th>Class RCConfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>This class contains information about the current configuration of Radio Computer.</td>
</tr>
</tbody>
</table>

DERIVED FROM

ATTRIBUTES

CONTAINED IN RadioComputer

CONTAINS Link [*]

SUPPORTED EVENTS
Table 7.11: Link Class

<table>
<thead>
<tr>
<th>Class</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>This class contains information about one active Radio Application and corresponding connection between Reconfigurable Radio Equipment and RANs.</td>
<td></td>
</tr>
</tbody>
</table>

DERIVED FROM

ATTRIBUTES

- CONTAINED IN: RCConfiguration
- CONTAINS: LinkProfile [1], LinkMeasurements [1], RFConfiguration [1]
- SUPPORTED EVENTS

Table 7.12: LinkProfile Class

<table>
<thead>
<tr>
<th>Class</th>
<th>LinkProfile</th>
</tr>
</thead>
<tbody>
<tr>
<td>This class contains general information about this active connection.</td>
<td></td>
</tr>
</tbody>
</table>

DERIVED FROM

ATTRIBUTES

- **linkID**
 - Value type: NameType
 - Possible access: Read
 - Default value: Not specified
 - This attribute describes ID of link about activated connection.

- **cellID**
 - Value type: NameType
 - Possible access: Read-Write
 - Default value: Not specified
 - This attribute describes ID connected cell.

- **associatedChannelID**
 - Value type: OptionalObjectName
 - Possible access: Read-Add-Remove
 - Default value: Not specified
 - This attribute describes ID of associated channel.

- **linkDirection**
 - Value type: Direction
 - Possible access: Read
 - Default value: Not specified
 - This attribute describes a direction of link.

- **carrierFrequency**
 - Value type: FrequencyRange
 - Possible access: Read-Write
 - Default value: Not specified
 - This attribute describes a value of carrier frequency.

- **nominalRFPower**
 - Value type: AnaloguePower
 - Possible access: Read
 - Default value: Not specified
 - This attribute describes a value of nominal power.

- **samplingRate**
 - Value type: SamplingRate
 - Possible access: Read-Write
 - Default value: Not specified
 - This attribute describes a value of sampling rate.

- **Bandwidth**
 - Value type: Bandwidth
 - Possible access: Read-Write
 - Default value: Not specified
 - This attribute describes a value of bandwidth.

CONTAINED IN

- Link

CONTAINS

SUPPORTED EVENTS
Table 7.13: LinkMeasurements Class

Class LinkMeasurements
This class contains current measurements related to this active connection.

DERIVED FROM

ATTRIBUTES

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value type:</th>
<th>Possible access:</th>
<th>Default value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>receiveBLER</td>
<td>RxBLER</td>
<td>Read-Write</td>
<td>Not specified</td>
</tr>
<tr>
<td>transmitPower</td>
<td>TxPower</td>
<td>Read-Write</td>
<td>Not specified</td>
</tr>
<tr>
<td>receiveSINR</td>
<td>RxSINR</td>
<td>Read-Write</td>
<td>Not specified</td>
</tr>
<tr>
<td>transmittedBits</td>
<td>TxBits</td>
<td>Read-Write</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

This attribute describes a value of BLER for received data.
This attribute describes a power of transmit signal.
This attribute describes a value of SINR for received data.
This attribute describes transmitted bits.

CONTAINED IN Link

CONTAINS

SUPPORTED EVENTS

Table 7.14: RFConfiguration Class

Class RFConfiguration
This class contains information about the configuration of RF transceiver.

DERIVED FROM

ATTRIBUTES

<table>
<thead>
<tr>
<th>Contained In</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains</td>
<td>TxPath [0-1], RxPath [1]</td>
</tr>
</tbody>
</table>

SUPPORTED EVENTS

Table 7.15: TxPath Class

Class TxPath
This class describes one transmit path.

DERIVED FROM

ATTRIBUTES

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value type:</th>
<th>Possible access:</th>
<th>Default value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>txStartTime</td>
<td>TxStartTime</td>
<td>Read-Write</td>
<td>Not specified</td>
</tr>
<tr>
<td>txStopTime</td>
<td>TxStopTime</td>
<td>Read-Write</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

This attribute defines the time when the transceiver start transmission.
This attribute defines the time when the transceiver stop transmission.

CONTAINED IN RFConfiguration

CONTAINS

SUPPORTED EVENTS
Table 7.16: RxPath Class

Class RxPath
This class describes one receive path.

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
<th>Value type: RxStartTime</th>
<th>Possible access: Read-Write</th>
<th>Default value: Not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>rxStartTime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This attribute defines the time when the transceiver start reception.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
<th>Value type: RxStopTime</th>
<th>Possible access: Read-Write</th>
<th>Default value: Not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>rxStopTime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This attribute defines the time when the transceiver stop reception.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTAINED IN RFConfiguration
CONTAINS SUPPORTED EVENTS

Table 7.17: RCMeasurements Class

Class RCMeasurements
This class contains current measurements related to Reconfigurable Radio Equipment.

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
<th>Value type: ActiveMeasurementsList</th>
<th>Possible access: Read-Add-Remove</th>
<th>Default value: Not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>listOfActiveMeasurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This attribute describes a list of active measurements.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTAINED IN RadioComputer
CONTAINS SUPPORTED EVENTS

8 Interface Definition

8.1 Interface Overview

Figure 8.1: Multiradio Interface (gMURI)

Figure 8.1 illustrates the relationship among RadioComputer, RCUser, and gMURI. As shown in figure 8.1, gMURI is the provided interface to Radio Computer, while the gMURI is the required interface to RCUser. Figure 8.2 illustrates a UML diagram for gMURI. gMURI supports 3 basic services (i.e. Administrative Services, Access Control Services, and Data Flow Services) which are further detailed in clauses 8.2, 8.3 and 8.4 respectively.
8.2 Administrative Services

8.2.1 Overview on Administrative Services

Table 8.1 describes an overview on Administrative Services which are associated with Administrator. Class definition and related operations are described in clause 8.5.
Table 8.1: Overview on Administrative Services

<table>
<thead>
<tr>
<th>Administrative Services</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>installation/uninstallation of URA</td>
<td>Reconfigurable RE described in the present document sets up its configuration through software download and installation. For the support of RE reconfiguration, Administrator requests installation/uninstallation of URA to CM.</td>
</tr>
<tr>
<td>creating instance of URA</td>
<td>For activating the installed URA(s), instance(s) of the corresponding URA(s) has (have) to be created. Administrator requests CM to create instance(s) of the corresponding URA(s). CM creates the instance(s) and returns the confirmation of the instance creation to Administrator, when CM judges the instance(s) creation is valid.</td>
</tr>
<tr>
<td>deleting instance of URA</td>
<td>Since the instance(s) of instantiated URA(s) occupies (occupy) the memory resources of the Reconfigurable RE, it might be desired to delete URA(s) instance(s) that is (are) not needed. Administrator requests CM to delete instance(s) of such URA(s).</td>
</tr>
<tr>
<td>getting/configuring URA Parameters</td>
<td>Administrator requests CM to provide parameter(s) of URA(s) such as required computational/spectral resources, antenna ports, etc. in order to manage the created URA(s) instance(s).</td>
</tr>
<tr>
<td>updating instance of URA</td>
<td>Instance(s) of (an) installed URA(s) is/are replaced, typically by a SW Update. During the replacement process, the configuration is maintained.</td>
</tr>
<tr>
<td>URA List</td>
<td>In reconfigurable RE, the status of URA(s) might be installed, instantiated, or activated. In order to manage each URA properly, Administrator requests CM to provide URA list which includes ID and name as well as the status of each URA.</td>
</tr>
</tbody>
</table>

8.2.2 Messages for Administrative Services

The interfaces for Administrative Services are used to transmit the following messages:

- From CSL to RCF:
 - Request of installation/uninstallation of an URA.
 - Request of creating/deleting an instance of an URA.
 - Request of updating an instance of an URA.
 - Request of getting/configuring parameters of an URA.
 - Request of installed/instantiated/activated URA(s) list.

- From RCF to CSL:
 - Confirmation of installation/uninstallation of URA.
 - Confirmation of the creation/deletion of a URA instance.
 - Confirmation of the updating of a URA instance.
 - Failure of URA installation/uninstallation.
 - Failure of the creation/deletion of an URA instance.
 - Failure of the updating of a URA instance.
 - Information of URA parameters.
 - URA(s) list retrieving.
8.3 Access Control Services

8.3.1 Overview on Access Control Services

Table 8.2 describes an overview on Access Control Services which are associated with MPM. Class definition and related operations are described in clause 8.5.

<table>
<thead>
<tr>
<th>Access Control Services</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>URA List</td>
<td>When the MPM of reconfigurable RE activates URA(s) and/or creates association of URA(s), MPM needs to know the URA list. For this purpose, MPM requests CM to provide the URA list. Upon receiving the URA list request from MPM, CM returns the URA list which includes ID and name as well as the status of each URA.</td>
</tr>
<tr>
<td>Activation/deactivation of URAs</td>
<td>MPM requests RCM to activate/deactivate URA(s) depending upon the contents of the URA list provided from CM. RCM performs the activation/deactivation of the URA(s) and acknowledges the confirmation of the request.</td>
</tr>
<tr>
<td>Radio environments measurement</td>
<td>URA may perform a certain level of measurements autonomously or upon a trigger. In the second case, MPM requests RCM to start radio environment measurements. RCM request URA to start the radio environment measurements and acknowledges the success of start radio environment measurements. In the case of stopping radio environment measurements, MPM requests RCM to stop radio environment measurements. Then, RCM requests URA to stop radio environment measurements and sends the measurement information.</td>
</tr>
<tr>
<td>Creation/termination of associations</td>
<td>MPM requests RCM to create/terminate association of URA(s) because activated URA(s) set(s) up the association.</td>
</tr>
<tr>
<td>Creation/termination of data flows into/from associations</td>
<td>MPM requests RCM to create/terminate data flow(s) into/from association(s). When the created data flow is terminated, RCM acknowledges the termination of the data flow to MPM.</td>
</tr>
<tr>
<td>Flexible Data flow</td>
<td>In some communication environments such as Vertical Handover, the data flow of one association may have to be moved to another association or partitioned into many associations. In some other cases, the data flow of many associations may have to be combined into a single association. In those instances, MPM requests RCM to move/partition/combine of the data flow.</td>
</tr>
<tr>
<td>Errors reporting</td>
<td>During the procedure of handling multi-RAT in reconfigurable RE, various kinds of errors may take place in RCF. When the error occurs, CM has to report it to MPM. Example: In the case of spectral resource collision, MRC informs of this error to CM, which reports the error to MPM.</td>
</tr>
</tbody>
</table>

8.3.2 Messages for Access Control Services

The interfaces for Access Control Services are used to transmit the following messages:

- From CSL to RCF:
 - Request of activation/deactivation of an URA.
 - Request of update of an URA.
 - Request of installed/instantiated/activated URA(s) list.
 - Request of start/stop measurements for radio environment.
 - Request of measurements for RE capabilities.
 - Request for the creation of a data flow.
 - Request for the termination of a data flow.
 - Request for the creation of a network and logical radio link association.
 - Request for changing a data flow.
- From RCF to CSL:
 - Confirmation of an URA activation/deactivation.
 - Confirmation of an URA update.
 - Confirmation of data flow creation.
 - Confirmation of data flow termination.
 - Confirmation of the creation of a network and logical radio link association.
 - Confirmation of changing a data flow.
 - Confirmation of starting radio environment measurements.
 - Failure of an URA activation/deactivation.
 - Failure of data flow creation.
 - Failure of data flow termination.
 - Failure of the creation of a network and logical association.
 - Failure of changing a data flow.
 - Failure of starting radio environment measurements.
 - Failure of an URA update.
 - URA(s) list retrieving.
 - Information related to the radio environment.
 - Information about RE capabilities.
 - Information about errors.

8.4 Data Flow Services

8.4.1 Overview on Data Flow Services

Table 8.3 describes an overview on Data Flow Services which are associated with networking stack. Class definition and related operations are described in clause 8.5.

<table>
<thead>
<tr>
<th>Data Flow Services</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sending User Data</td>
<td>In order to transmit user data through a particular data flow among multiple data flows, Networking stack requests FC to perform the transmission of the user data. Then FC acknowledges the confirmation of the transmission to Networking stack.</td>
</tr>
<tr>
<td>Receiving User Data</td>
<td>When receiving user data through multiple data flows, FC transfers the received user data together with the data flow ID to the Networking stack.</td>
</tr>
</tbody>
</table>

8.4.2 Messages for Data Flow Services

Interfaces for Data Flow Services are used to transmit the following messages:

- From CSL to RCF:
 - Request of user data transfer (transmission: SendUserData, reception: ReceiveUserData).
From RCF to CSL:
- Confirmation of user data transfer.
- Failure of user data transfer.
- User data.

8.5 Class Definitions for Interface

Each interface class related to gMURI can be defined using the template presented in clause 6.2 and in accordance with the UML diagram of figure 8.2 which specifies the interface classes related to gMURI. Tables 8.4 to 8.6 specify all the operations related to the three interface classes above described.

<table>
<thead>
<tr>
<th>Table 8.4: IAdministrativeServices Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class IAdministrativeServices</td>
</tr>
<tr>
<td>This class describes interfaces supporting Administrative Services.</td>
</tr>
<tr>
<td>OPERATIONS</td>
</tr>
<tr>
<td>installRadioApps</td>
</tr>
<tr>
<td>Input type: NameType</td>
</tr>
<tr>
<td>Return type: INTEGER</td>
</tr>
<tr>
<td>Value type: public</td>
</tr>
<tr>
<td>This operation is related to the installation of an URA. RCID is provided as input.</td>
</tr>
<tr>
<td>uninstallRadioApps</td>
</tr>
<tr>
<td>Input type: NameType</td>
</tr>
<tr>
<td>Return type: INTEGER</td>
</tr>
<tr>
<td>Value type: public</td>
</tr>
<tr>
<td>This operation is related to the uninstallation of an URA. RCID is provided as input.</td>
</tr>
<tr>
<td>updateRadioApps</td>
</tr>
<tr>
<td>Input type: NameType</td>
</tr>
<tr>
<td>Return type: INTEGER</td>
</tr>
<tr>
<td>Value type: public</td>
</tr>
<tr>
<td>This operation is related to the update of an URA. RCID is provided as input.</td>
</tr>
<tr>
<td>createRadioApps</td>
</tr>
<tr>
<td>Input type: NameType</td>
</tr>
<tr>
<td>Return type: INTEGER</td>
</tr>
<tr>
<td>Value type: public</td>
</tr>
<tr>
<td>This operation is related to the creation of an instance of an URA. RCID is provided as input.</td>
</tr>
<tr>
<td>delRadioApps</td>
</tr>
<tr>
<td>Input type: NameType</td>
</tr>
<tr>
<td>Return type: INTEGER</td>
</tr>
<tr>
<td>Value type: public</td>
</tr>
<tr>
<td>This operation is related to the deletion of an instance of an URA. RCID is provided as input.</td>
</tr>
<tr>
<td>getRadioAppParameters</td>
</tr>
<tr>
<td>Input type: NameType</td>
</tr>
<tr>
<td>Return type: RadioAppParameters</td>
</tr>
<tr>
<td>Value type: public</td>
</tr>
<tr>
<td>This operation is needed for retrieving URA parameters. RCID is provided as input.</td>
</tr>
<tr>
<td>setRadioAppParameters</td>
</tr>
<tr>
<td>Input type: NameType</td>
</tr>
<tr>
<td>Return type: BOOLEAN</td>
</tr>
<tr>
<td>Value type: public</td>
</tr>
<tr>
<td>This operation is needed for setting URA parameters. RCID is provided as input.</td>
</tr>
<tr>
<td>getListOfRadioApps</td>
</tr>
<tr>
<td>Input type: NameType</td>
</tr>
<tr>
<td>Return type: RadioAppsList</td>
</tr>
<tr>
<td>Value type: public</td>
</tr>
<tr>
<td>This operation is needed for getting a list of the installed/instantiated/activated URA(s). RCID is provided as input.</td>
</tr>
</tbody>
</table>
Table 8.5: IAccessControlServices Class

<table>
<thead>
<tr>
<th>Class</th>
<th>IAccessControlServices</th>
</tr>
</thead>
<tbody>
<tr>
<td>This class describes interfaces supporting Access Control Services.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATIONS</th>
<th>Input type:</th>
<th>Return type:</th>
<th>Value type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>activateRadioApps</td>
<td>NameType</td>
<td>INTEGER</td>
<td>public</td>
</tr>
<tr>
<td>deactivateRadioApps</td>
<td>NameType</td>
<td>BOOLEAN</td>
<td>public</td>
</tr>
<tr>
<td>getListOfRadioApps</td>
<td>NameType</td>
<td>RadioAppsList</td>
<td>public</td>
</tr>
<tr>
<td>startRadioMeasurement</td>
<td>NameType</td>
<td>BOOLEAN</td>
<td>public</td>
</tr>
<tr>
<td>stopRadioMeasurement</td>
<td>NameType</td>
<td>RadioMeasurementsList</td>
<td>public</td>
</tr>
<tr>
<td>createAssociation</td>
<td>NameType</td>
<td>INTEGER</td>
<td>public</td>
</tr>
<tr>
<td>terminateAssociation</td>
<td>NameType</td>
<td>BOOLEAN</td>
<td>public</td>
</tr>
<tr>
<td>createDataFlow</td>
<td>NameType</td>
<td>INTEGER</td>
<td>public</td>
</tr>
<tr>
<td>terminateDataFlow</td>
<td>NameType</td>
<td>INTEGER</td>
<td>public</td>
</tr>
<tr>
<td>changeDataFlow</td>
<td>NameType</td>
<td>INTEGER</td>
<td>public</td>
</tr>
<tr>
<td>reportErrors</td>
<td>NameType</td>
<td>Void</td>
<td>public</td>
</tr>
</tbody>
</table>

This operation is needed for activating a URA. RCID is provided as input.

This operation is needed for deactivating a URA. RCID is provided as input.

This operation is needed for getting a list of the installed/instantiated/activated URA(s). RCID is provided as input.

This operation stops the measurements related to radio environments and RE capabilities. RCID is provided as input.

This operation creates a data flow. RCID is provided as input.

This operation terminates a network association previously created. RCID is provided as input.

This operation creates a data flow. RCID is provided as input.

This operation terminates a data flow. RCID is provided as input.

This operation move/separate/combine data flow. RCID is provided as input.

This operation is needed for reporting errors. RCID is provided as input.

Table 8.6: IDataFlowServices Class

<table>
<thead>
<tr>
<th>Class</th>
<th>IDataFlowServices</th>
</tr>
</thead>
<tbody>
<tr>
<td>This class describes interfaces supporting Data Flow Services.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATIONS</th>
<th>Input type:</th>
<th>Return type:</th>
<th>Value type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>sendUserData</td>
<td>NameType</td>
<td>BOOLEAN</td>
<td>public</td>
</tr>
<tr>
<td>receiveUserData</td>
<td>NameType</td>
<td>UserData</td>
<td>public</td>
</tr>
</tbody>
</table>

This operation is needed for sending user data. RCID is provided as input.

This operation is needed for receiving user data. RCID is provided as input.
Annex A (informative):
Abstract Data Definitions

The following ASN.1 in Recommendation ITU-T X.680 [i.4] module contains all necessary abstract data definitions
used in the attribute definitions in clause 7.2 and clause 8.5.

ETSI-TS-103-681-1-Type-Definitions DEFINITIONS ::= BEGIN

-- START Common Data Types

-- START Name Related Data Types

NameType ::= CHOICE {
 number INTEGER,
 string PrintableString
}

ObjectName ::= SEQUENCE OF NameType

OptionalObjectName ::= CHOICE {
 id ObjectName,
 void NULL
}

ObjectNameList ::= SEQUENCE OF ObjectName

-- END Name Related Data Types

-- START Version Related Data Types

Version ::= CHOICE {
 intVersion INTEGER,
 stringVersion PrintableString
}

-- END Version Related Data Types

-- END Common Data Types

-- START Radio Application Related Data Types

RAOptionID ::= ENUMERATED {
 lte5Mhz, lte10Mhz, lte20Mhz,
 ...
}

RAOptionsList ::= SEQUENCE OF SEQUENCE {
 rAOptionName RAOptionID,
 rAOptionValue ANY
}

-- END Radio Application Related Data Types

-- START Radio Computer Related Data Types

RCID ::= CHOICE {
 number INTEGER,
 string PrintableString
}

-- END Radio Computer Related Data Types

END
RadioApplicationIDList ::= SEQUENCE OF OptionalObjectName

RCOptionID ::= ENUMERATED {
 rerc-0, rerc-1, rerc-2, maximumTxPower, ...
}

RCOptionsList ::= SEQUENCE OF SEQUENCE {
 rCOptionName RCOptionID,
 rCOptionValue ANY
}

RadioInterfaceID ::= ENUMERATED {
 umts, hsdpa, wimax, lte, wifi, gsm, ...
}

RadioInterface ::= CHOICE {
 id RadioInterfaceID,
 void NULL
}

RadioInterfacesList ::= SEQUENCE OF RadioInterfaceID

ChannelIDsList ::= SEQUENCE OF OptionalObjectName

HardwareInfo ::= ENUMERATED {
 fixedPipeline, programmablePipeline, hybridPipeline, ...
}

SoftwareInfo ::= ENUMERATED {
 rOSVersion, compiler, ...
}

Direction ::= ENUMERATED {
 downlink, uplink
}

RxBLER ::= SEQUENCE {
 accBLER REAL,
 period REAL OPTIONAL,
 instBLER REAL OPTIONAL
}

TxPower ::= SEQUENCE {
 power REAL,
 unit CHARACTER
}

RxSINR ::= SEQUENCE {
 accSINR REAL,
 period REAL OPTIONAL,
 instSINR REAL OPTIONAL
}

TxBits ::= SEQUENCE {
 transmittedBit REAL,
 unit CHARACTER
}

ActiveMeasurementID ::= ENUMERATED {
 transmitPower, transportLoad, processingLoad, ...
}

ActiveMeasurementIDs ::= SEQUENCE OF {
 activeMeasurementID
}
ActiveMeasurementsList ::= SEQUENCE OF SEQUENCE {
 activeMeasurementName ActiveMeasurementID,
 activeMeasurementValue ANY
}

FrequencyRange ::= SEQUENCE {
 centralFrequency REAL,
 frequencyBand REAL
}

AnaloguePower ::= SEQUENCE {
 power REAL,
 unit CHARACTER
}

SamplingRate ::= SEQUENCE {
 samplingRate REAL,
 unit CHARACTER
}

Bandwidth ::= SEQUENCE {
 bandWidth REAL,
 unit CHARACTERs
}

TxStartTime ::= CHOICE {
 absoluteTime GeneralizedTime,
 relativeTime INTEGER
}

TxStopTime ::= CHOICE {
 Undefined NULL,
 absoluteTime GeneralizedTime,
 relativeTime INTEGER
}

RxStartTime ::= CHOICE {
 absoluteTime GeneralizedTime,
 relativeTime INTEGER
}

RxStopTime ::= CHOICE {
 Undefined NULL,
 absoluteTime GeneralizedTime,
 relativeTime INTEGER
}

ChannelMeasurementID ::= ENUMERATED {
 channelInterference, channelLoad, ...
}

ChannelMeasurementsList ::= SEQUENCE OF SEQUENCE {
 channelMeasurementName ChannelMeasurementID,
 channelMeasurementValue ANY
}

ConfigurationMeasurements ::= ENUMERATED {
 antennaProt, RFFrontend, ...
}

-- END Radio Computer Related Data Types

-- START Multiradio Interface Related Data Types

RadioAppParameterID ::= ENUMERATED {
 A, b, c, ...
}
RadioAppParameters ::= SEQUENCE OF SEQUENCE {
 radioAppParameterName RadioAppParameterID,
 radioAppParameterValue ANY
}

RadioAppsList ::= SEQUENCE OF SEQUENCE {
 RadioAppID INTEGER,
 RadioAppName PrintableString
}

RadioMeasurementID ::= ENUMERATED {
 A, B, C, ...
}

RadioMeasurementsList ::= SEQUENCE OF SEQUENCE {
 radioMeasurementName RadioMeasurementID,
 radioMeasurementValue ANY
}

UserData ::= SEQUENCE OF {
 userDataID INTEGER,
 userDataValue OBJECT
}

-- END Multiradio Interface Related Data Types

Annex B (informative):
gMURI Qualification Methods for Validation

The gMURI requirements are basis for qualification methods to validate that the requirements can be met. A feature list exposing gMURI capabilities is created. Qualification methods correspond to the feature list and they qualify features of a particular gMURI implementation against the feature list.

The following qualification methods might be typically applied:

- Demonstration - The operation of interfacing entities that rely on observable functional operation.
- Test - The operation of interfacing entities using specialist test equipment to collect data for analysis.
- Analysis - The processing of data obtained from methods, such as reduction, interpretation, or extrapolation of test results.
- Inspection - The visual examination of interfacing entities, documentation, etc.
- Special qualification methods - Methods for the interfacing entities, such as specialist tools, techniques, procedures, facilities, etc.
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.1.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>