ETSI TS 103 523-2 vi1.1.1 @021-02)

——

TECHNICAL SPECIFICATION

CYBER;
Middlebox Security Protocol;
Part 2. Transport layer MSP, profile for fine
grained access control

2 ETSI TS 103 523-2 V1.1.1 (2021-02)

Reference
DTS/CYBER-0027-2

Keywords
cyber security

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ |ogo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI TS 103 523-2 V1.1.1 (2021-02)

Contents

INtellectual Property RIGNES.... ..ottt b e n e n e e 7
01 Yo (o PSS 7
Modal VErDS TEMINOIOQY.......ccveeieiieeeite ettt e e e e s te e e e s besbeentesbeese e tesaeensessesneenseseeeseesenaeas 7
EXECULIVE SUIMIMAIYooiiieieie ettt ettt et e st e et e st e s te e besaeeseeebeeaeeseesaeeatesteeasesbeeseantesaeeneesteeneenseseeensensesneensesnennns 7
0100 [0 Tox A o o PSS 8
1 o0 0L SR 9
2 REFEIBINCES ...ttt ettt a bt b e s e et e £ et et e e e Rt e be e b e s b et e b et et e neenenbeebenrens 9
21 NOIMBLIVE FEFEIBINCESccueeeeiteite sttt ettt sttt h et e e e s bt e bt s bt eb e e it e s e e as e b e besh e e bt s aeeheene e s e besn e besneebenneennennen 9
2.2 INFOIMELIVE FEFEIEINCES. ... ettt bttt e et et e bRt e h et e e e b sheebeeneene e e e b es 10
3 Definition of terms, symbols and abbrevialiOns............ccovveierieneenisee e 11
31 L= 00O UU PP P PPPTOPPTPPRTRPRTN 11
3.2 SYIMDIOIS. ... ettt b et b e et b e e R b e Rt E e R R SRR Rt E e e Rt R e e Rt bRt bbb n e 12
33 F N o] o 1= V= o] 12
4 TLIMSP SPECITICALION.ccueeiiiiticie ettt ettt eb et e b e e e st e s aeeaesteeneebesreennenresrnenes 13
4.1 (T 0o Wi (o] o B RTP PR PR USOSPP 13
4.2 QI TSN (= oo o [o] SR 14
421 OVEIVIBIW ..ttt ettt sttt st et s e et et s ae et e st e st et e s b e e et e s b et eb e e b et e b e e b et e b e e Ee e eb e sbeneebesbe e ebenbeneebenbenensens 14
4211 LT 0T P RRRSUSR 14
4212 Records, CONtaiNErS @A CONEEXESc.uiiiveeeiiciteeceeecteeetee st e e este e eebeeeteessbeseseeesbeeessesesseeenseeebesensenenns 14
4213 Record and container construction and ProCeSSING OVENVIEWccceereeererieerenieiesieseenesse e seseessenens 15
4.2.2 Message unit and record processing: cryptographic state and Synchronization............cccooeveeerenenenenienenn 17
4221 GBNEYEL ...ttt a et et et et e EeeRe e Re e Rt ea e et et e eEeeReeEeeaeeneeneenteaeeeeeeteeaeeseenneneearens 17
4222 IVIAIC OVEIVIBIW ...ttt ettt et e e et ettt s et eaeem e e e e tesee et e saeeaeemeeneenteseeebesaeeneensesenbeseeeseeneenseneens 17
42221 LC T g1 = | ST 17
42222 MAC author detErMINGLION.........oouiieiiie bbb e bt 18
4223 SEOUENCE NUMIEIS.......eeiecie ettt te et e e e s e s te e te e teeteeneesneesneesseenseenseeneenneesneesenns 19
42231 LC T g1 = | ST 19
42232 Outgoing Message UNItS @N FECOINTScueeureeeeiesieesteesieesteseesee s e st e e s e e e e e eseesaesseesneesseenseenseens 21
42233 INncomMing MeSSage UNItS @NA FECOITS.........eeiuieieeieeeee et e st et sae et e st et e st et e reesreenaesnensnnesnes 22
4.2.3 Processing of SPeCific MESSAgE UNIT LYPESc.coi ittt 22
4231 CONtEINEY MESSAPE UNITS......cueetieeieetirteeetertee ettt st e e e st b e s sb s e se bt rb e e e bt ss e e eb e s esesb e b e e ebenaeneens 22
42311 CONEBINEY USAEcueeveteneetesteeetesteseeie et seesesbeseese et e seeseebese e s e ebeseeaeeb e sbeaseb e b e s ebe bt s e bt s e st e bt nbeneebene e e enis 22
42312 Koo [1 To= o] P 23
4.2.31.3 INSEIIONS GENETAITY ...ovieeiite bbbt b e b e e b b se b b neene 23
42314 Deletion iNdiCatioN CONTAINEYS........ciiieierere ettt sttt e et e e e eesaesresbesaeeneeneeneeees 24
42315 F B (o [e =] L= U TP PP URORRPP 25
4.2.3.1.6 ALEIT CONTAINELS ...ttt bbbt h et e b e bt e b e eb e s heehe e e e e e e e sb e e besaees e e e ennenes 26
4232 RECOI MESSAGE UNITS.....eevieiiceieceie et ste e ste et et e st e st e e e e e e e stesstessaesaeesneesseeseenseanseenaesnensseesnnns 26
42321 Handshake MESSAgE UNITS.......cceeiieiieie ettt sttt esae e re e be e e eteenaeeneennes 26
42322 ChangeCipherSPec MESSAE UNITS........ccecieiieiere e seeseesteesteeeeeaeerae e e steeseesseeaesnnesseesseenseenseans 26
4.2.3.3 MiddleoX ProCESSING SUMIMAIYc.civirieiiiiereeieie ettt sttt sbe et b e bbb e bt s bese e et sbe e e 26
4234 MAC USBGE SUMIMEAIYc.veveeieeaie sttt e et et sttt se s sr e r e it se e e e s s e resaeeb e ese e s e nnenn e resreerenanennennea 27
424 (@0 1= 1 o 0= PSR 29
425 PLaiNtEXT FECOIT FOMMIBL ..ottt sttt ettt et e e e beseesbesseeneeseeseesbesaeeseeneeneeseea 29
4.2.6 ComMPressed rECOIT FONMMEBL.c.ciireeiete ettt ettt eb e et b e ettt se et bt sb e et s b e e ebesbe e ebesbennenen 30
4.2.7 Applying message unit and reCord ProtECLION.cuiirieiririeeres et 30
4271 LC T o1 | TSRS 30
4272 YO0 0 = 1 o o TSR 31
42721 LC T g1 | OSSR 31
42722 Reader, deleter and WHTEr MACSoii ettt bbb eae e e e s 31
42723 HOP-DY-NOP MAC ...ttt et se et st et et seebesee e ebenteneenens 33
4.2.7.3 CIPNEr SUITE SPECITICS ..uiuviciieeiieiee ettt et e s e sre e sae e teeeeeneesseeneeenseeneeeneesreesnees 34

ETSI

42731
42732
4.2.7.3.3
4.2.73.4
4.3
431
4311
4312
4.3.2
4321
4322
4323
43231
43232
43233
4324
43241
4.3.24.2
4.3.25
4.3.3
4331
4332
434
4.3.5
4.3.6
436.1
4.3.6.2
4.3.6.3
4.3.64
4.3.6.5
4.3.6.6
4.3.6.7
4.3.6.8
4.3.6.9
4.3.6.10
4.3.7
43.7.1
4.3.7.2
4.3.7.3
4.3.8
4381
4382
43821
43822
4.3.9
4391
4.39.2
4.3.9.3
4394
4.3.95
4.3.10
4.3.10.1
4.3.10.2
4.3.10.3
4.3.10.4
4.3.10.5
4.3.10.6
4.4
441
4.4.2
4.5

4 ETSI TS 103 523-2 V1.1.1 (2021-02)

LT 0T SRS 34

NUIT OF SEFEBIM CIPNES ...ttt bbb bbbt et b et nb e nn e ens 34
GENENIC DIOCK CIPNEN ...ttt 35
ABAD CIPRENS ..ot bbb et b e et b e a e b e neene s 35

The Handshake ProtOCOLou ittt b et b b e b b ne b b snene s 35
OVEBIVIBI ..ttt ettt et bt h et e e bt e h e b e bt e h e e ae e s e b e SR e e E e ehe ek e e e e e e b e oh e eb e e Rt eheeae et e besheebesneennennennas 35
GBNENEL ...tk bbb E bR bR e R e e R e R e R SRR e Rt R e e e e e e be R e bt eReebe e e nnennens 35
Piggy-backing of handshake MESSAgESccveieiie i ne e 38
Middlebox configuration, QiISCOVEIYucvieiuieieieeisieseeseesteetesee e s esre e s e e aeesteeseessaessaesreenseenseeneesnnesnes 39
GBNENEL ...ttt b bbb E R bt b h e R e R e R e bR e R e Rt eheeRe e e e Re R e besheebe e e ennennens 39
SEAtiC Pre-CONFIGUILTION.eeeeiitieeiirte ettt b e bbb nn s 40
DYNAMIC ISCOVEIY ...ttt sttt sttt sttt b e et b e b e b s e e e eb e s b e st e bt s b e seebesb e e ebesbe e ebesbeneeneas 40
GENENEL ...ttt ettt Rt a e et et e EeeReeEe Rt eteene et e teeteeteeneeneeeenteaeens 40
Non-transparent MiddIEOXES..........coiiriiiiie e e b e 41
Transparent MIAAIEDOXES.c.cierieieteree et b e et b et b e et sb e e 42
COMDINED TISCOVENY......citieeiiitireeeet ettt ettt b e st eb e s bbbt s b e e e b e s s e b e b e e b e nn e e ens 43
0] 0 LU o= 43
PractiCal CONSIAEIALIONS........coueiuiitieieeieei ettt bbbt se bt sh et saesr e b e saeene e e e e s 44
Middlebox 1€ave and SUSPENGcceeiiieiieieee ettt s s e e saeenteeneeenaeenaesnaesreenrees 44
Session resumption and reNEQOLIALIONccueieeiieiiere et re e re e e e sneeenes 44
L2000 o o S 44

LS 10) = e o IS 45
HaNASNAKE MESSAGE TYPES.cv e ettt sttt b e et b et b e et b e e et b e et b e et b e e et ebe b 45
TLMSP HaNdShake EXIENSIONS........c.coiieieiieeieee ettt st st seesee et e s e seeseeseesseseesneeneeneeneees 46
MiddIEDOX relaleO MESSAGES.cce ettt ettt b e bbbt se et b e bbb 50
1070 = o 3SR 50

0 T0 (@< 1) o= (= SO SRRSN 51
MDOXCErtifi CAEREQUESLcveeiecteiteet ettt et et e e b b nnene s 51
CartifICAIEZ2IMIION ...ttt bbbttt e e e b aeeb e nne 51
MBDOXKEYEXCNANGE. ... eeiieie ettt te et ettt e s s e s taesseesseesseeneesanesaeenseenseensenns 52
IMIDOXHEITODONE...... ettt bbb bt b e he b et e e e b e sbenbesaeebe e e e e es 52
CertifiCaEV EITTY2IMBOXot esre e teeneeenaesnaesreesneas 52
MBDOXHETOREOUESEeoeeeeeee ettt s e te et et e e s re et e be e teesteeneesneesaeesneesseenseensenns 53
SEIVEIUNSUDPOIT ...ttt sttt e s bt r et e e e n e b e s et bt et e e s e nesnesr e e resreere e e enneneean 53
YT T TE g1 o PSR 53
TLMSPKeyMaterial and TLMSPKEYCONTcc.coiiiieiiiierieieeree bbb 54
KeyMaterial CONLITIDULIONcceuiiiieciiiteeet sttt b e et sa e b b seene 54
TLIMSPKEYMELEITALeeeeeeeeeesee ettt st s e et e e et e s e e e eeseesbesbesreebeeneeneeneeneas 55
TLMSPKEYCONT ...ttt b bbbt b b e et b bbb 56
MboxLeaveNotify and MBDOXLEAVEACKc.oieeiiee ettt 57
Y SS2o Tc N o = S 57

M ESSAGE PIrOCESSING. .. eeveeuveeureeuteeteesieesteesteesteesteesseateasseasaeasaessaesseesseesseeseanssanesaseeaseesseenseessesssessenssenssns 57
GENENEL ...t E e h bt e bR E e Rt b e Rt et be Rt b b ehe e e enennen 57

(D= 1= o o o 1= (o] o 58

T SSs a To TS TS 59
ClientHello and ServerHello value SUDSHITULTONSc.ciiiiciiiccrscese s 59
LT TES 1= o 7= L o TSP 59
MBOXFINISNEA NASN ...t sttt et e e e et e st e stesaeere e e eneees 60
ClientHello hash (following dynamic diSCOVENY)........coeiiireiririeerierieesie e 62
TLM SPServerKeyEXChange hash..... ... 62
KBY GENEIBLTON.....eeeteeeet ettt et b bbbt b e et b e b et bt s b et b e s bbb e et bbb e 62
TLM SPSErVErKEYEXCNANGE.....cc.eeieieitieie et stees et e e e see e st ste e aesa e s e e sseeteenteeneesaeesteenteeeeeneesneesnes 62
GBNENE ...ttt bbb E e E bRt h e e E e R e R e AR SRt R e Rt R e e R e e e e bR e beeheehe e e ennennen 63
Premaster secret and master SECret gENEralioNccveieererreriesee e seeeseeesee e e e e e e ssaesreeseees 63
Pairwise encryption and integrity Ky generationccuccveeerieeieeseeseesieesee e seeseeseesse e sreesseeseees 64
CONLEXE SPECIHTIC KEYS ..ttt e st st e e te e e e sneesseenteenteenteeneesraesanas 65
KIBY EXITBCEION ...ttt ettt b e et b e e b bt e bt b e s et b et eb e s b e e eb e nbene bt ebenneneas 67
THE ATEIT PIOIOCO ...ttt ettt b et b e et b e e s bt se e s e e bt s e e st ekt s b et eb e sb e e ek e s b e e ebesbennenens 68
(€77 | PSR 68
ALEIT MESSAGE TYPES ...ttt ettt ettt b sttt e h b e s b e b e s bt b e st bt b e e e bt e b e b e st b e et b e n e 68
The ChangeCipherSPEC PrOtOCOLcoieiiiieeeete ettt ettt b e bbb se bt se e eb e s b e e ebesreseeneas 69

ETSI

5 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex A (normative): Defined CIPher SUILES........ceeiiiice e e 70
y N €= o1 SRS 70
A2 KEBY EXCRANGE ...ttt b b e e et h bbb R e e et n e bR e n e 70
A.3 AES {128,256} GCM_SHA{ 256,384}ooiiieeeiitieiesiesieesie e eeestesieeee e seessesseensestesseensesseeneessesnens 70
A31 GENENAL ...ttt et e e et e et e e te e be e eeeeesheeeheebeebe ettt eheeeheebeeteebeeateateaaeeaheeateebeenteenteeaeeeneenheenres 70
A.3.2 Additional MAC COMPULBLIONSueiveueeterieieete sttt sttt sttt sttt sbe et st e st sbeseebesbeseebesbeseesesee e ebesbeneebesbennenens 71
A4 AES {128,256} CBC SHA{ 256,384}ccceiieeeitiitieieite s se st s e ste st e te e sresreeaestesaeentesreeneestesneens 71
A5 AES {128,256} CTR_SHA{ 256,384}cceeiiieeiinieeierie st sesteeee et eeeste e see s naestesseeneesseeneessesneens 71
A6 AdAItIONal CIPNEN SUITES......ceieieeeeeee ettt e e e et s e b bt en e e e e e s e nbeane e 71
A7 SUMMAry Of SECUMLY PAIraMELEIS......ccceiiiiieiiecieeie sttt et e et te e ae st e e e e be s e e sresbe e tesreeasesrebesreesenneens 72
A8 CIPNEr SUITE IAENTITIENS ...ttt b bbbt n b n e e e e 72
YN T U (01 = =1] SRR 73
Annex B (normative): Alternative CIPhEr SUITES.........ocviiiiiieeee s 74
2 R 7= 0T | PSSP 74
B.2 Defined aternative CIPNEr SUIES.........cciiiiie ettt s beeaa e besreennesneens 74
B.2.1 N £ PRSPPSO 74
B.2.2 PrESNAIEH KEYS. ...ttt ettt et e et e e e et e saee s e e saeesse e teenteentesatesee e teenteensenneesneenneenneareenteans 74
B.2.2.1 LT 0T | P 74
B.2.2.2 TECHNICAl DELAIIS ...ttt bbbt bbbt ae et e e e s b e b e b b e st ene e e ennas 74
B.2.2.21 ClientHello and SEIVEIHEIIOcoeieeee e et e et aa e s reesreas 74
B.222.2 MBOXKEYEXCNBINGE. ...ttt ettt sttt b e et b e bbbt et se et b e et sb e b 75
B.2.2.2.3 TLIMSPKEYIMELEITALceeeeeeeeeeeee ettt ettt e aeeae e st e e e teseeeesbesreesesneeneenennees 75
B.2.3 L] SRR 75
B.2.3.1 GBNEI@... ettt ettt et e et e st e et e e teeaeeeaeeehe e be e teeateeheeaheeaheebeebeeteeaeeaheebeereeaeeeteeeheesteeareereenreenes 75
B.2.3.2 TECHNICAl AELAIIS ... ccei ettt et e e s bee s beesbe e beeatesaeesaeesbeentesateeatesseesraesaeas 75
B.2.3.21 LT 0T U SS 75
B.2.3.2.2 L1 TT= 011 1= 1 o S 76
B.2.3.2.3 MBDOXKEYEXCNANGE. ... eeeeeee ettt sttt ettt aa e s s e sseesteesseesesneesnnesneenseenseenseans 76
B.2.3.24 I S S= YLV = = 76
Annex C (normative): TLMSP alterNative MOOESccecveeiieiieiie ettt 77
LRt R = 1 1 o= ot G o T I R T O 77
C.2 FallbaCk 10 TLM SP-PIrOXYING «.veeueeieeiieeiesiesieesesieeeesteseeseesseseeseesseesseseesseessessessssssesssessesseensessessessesses 78
cz21l GENENAl ...ttt et e st e et e be e teeee et e aheeateebeebeeateeheeaheeaheeabeeabeateaaeeaaeeaheebeenteenteeateeneesteenres 78
C22 FaAlTDBCK PIrOCEAUIE ...ttt bbbt bbbt b et b et b et eb e et 78
c.23 Message and ProCesSiNg ELAIIS.coui e bbbt b et b e 81
c231 TLMSP proxying and delegate extension and message specifiCations...........cccveveeieeiescesce e seeseeniens 8l
Cc.232 Delegate Message SPECITICALIONccuvcii et et e e e aeste e te e teeneenneeneeenes 8l
Cc233 (000 oo P 81
C.3 Middiebox security poliCy enfOrCEMENL..........ccciiieierieiere sttt esae e eneenaenneas 82
C3l GENENAl ...ttt et e st e et e be e teeee et e aheeateebeebeeateeheeaheeaheeabeeabeateaaeeaaeeaheebeenteenteeateeneesteenres 82
C3.2 IMIESSAGE FOMMIBES. ...ttt bbb bbb st b e et b bbbt b st b et nb e e 83
Annex D (informative): Contextsand application layer interaction............ccocceveveervseeseneseennneens 84
D.1 Application layer interaCtion MOGE!ooiiiriiieieee e e 84
D.2 EXGMPIE CONEXE USAQE. ...c.uiiueeriitieieiteeueestesteetesteeitestesaeestesteesessesseessesssessesseensestesssessessseseessessesnsessesneens 84
Annex E (informative): SECUNitY CONSIAEN ALIONS.....ccviiuieieiecie ettt sre e 86
T T I o 1T o L= RSOSSN 86
E.2 CryptographiC PriMITIVES..........couiieiiiiiiiniesest sttt et b b n e e e nneene e 87

ETSI

6 ETSI TS 103 523-2 V1.1.1 (2021-02)

E21 LT 0T PSSR 87
E.2.2 HaNAShaKe VEITTICELION........c.eoiiie ettt sttt a et e e e teseeebesneene e e eneees 88
E.3 Protection agaiNSt MCTLS @tACKS.......ccuiiieiiceee et ettt be e ne s ne e 89
B4 INLEr-SESSION BSSUMBICE. ...utiveeueeteeeiestesueetesteeseestesseestesseeeesseaneessesseensesseeseeseaneessesseensestesseensensenseensessenns 20
E5 Useof the default CONTEXE ZEIO.........covieeeceeese ettt sttt e teseesneeneesreeneens 90
E.6 Remova of MiddlehoX INSEITIONS........cccuiiiiiiriiieeeesie s st se e 90
E.7 Removal of support fOr renegotialionc.cceeeiriiiresese e 91
Annex F (informative): TLMSP design rationaleccoeeeevieieeiececeese e 92
N R €= 1= OSSPSR 92
T O = 1 PSRRI 92
F.3 Sequence numbers and re-ordering/del etion attaCks...........cocvvererereenieniines e 92
F.4 MAC for Synchronization PUMPOSEScieruiriereerieeeesessesiessesseseessessessesessessessessessessessessessensssessessessens 93
F.5 Remova of support fOr renNegotiationc.cceceiieieneniere ettt eeesne e 93
Annex G (informative): Mapping M SP desired capabilitieSto TLM SP.......ccccocevviiiie v 9
LT R €7 0 - SRS 9
G.2 MSP Requirements - Data ProtECLIONcceeiiiiiieii ettt sttt st eaeenrenre s 95
G.3 MSP ReqUIrEMENES - TIANSPAIENCYecveireerieteitiestesteeitesteeseestesseesesseeeestesseessesseesesreessessessesssessessenees 96
G.4 MSP Requirements - ACCESS CONIOLcueiiieiriieiirie sttt enes 99
G.5 MSP Requirements - GOOU CItIZEN.......cciiueieeieieieeeie sttt ene s nne e 101
Annex H (infor mative): TLMSP COMPIESSION ISSUES......coueiuiriiriinresiesteeeeeesiessesse e sse s sseseeseeessessens 103
Annex | (informative): [ANA CONSIAEN ALIONS.......ceeieiieieeieeieeie sttt 104
[11 (PO P PRSP 105

ETSI

7 ETSI TS 103 523-2 V1.1.1 (2021-02)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. Theinformation
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, |PRs notified to ETS in
respect of ETS standards’, which isavailable from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which areindicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Cyber Security (CYBER).

The present document is part 2 of amulti-part deliverable covering Middlebox Security Protocols (MSP), defining a
generic security blueprint for afamily of profiles of MSP, asidentified below:

Part 1: "MSP Framework and Template Requirements’;
Part 2. "Transport layer MSP, profilefor fine grained access control”;

Part 3: "Enterprise Transport Security".

Modal verbs terminology

In the present document "shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto be interpreted as described in clause 3.2 of the ETS| Drafting Rules (Verbal formsfor the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary

Requirements exist for network operators, service providers, users, enterprises, and small businesses, to be able to grant
varied (fine grained) permissions and to enable visibility of middleboxes, where the middleboxesin turn gain
observability of the content and metadata of encrypted sessions. Various cyber defence techniques motivate these
requirements. At present, the solutions used often break security mechanisms and/or ignore the desire for explicit
authorization by the endpoints. Man-In-The-Middle (MITM) proxies frequently used by enterprises prevent the use of
certificate pinning and EV (Extended Validation) certificates. Where no such mechanisms exist, some encryption
protocols can even be blocked altogether at the enterprise gateway, forcing users to revert to insecure protocols. As
more datagram network traffic is encrypted, the problems for cyber defence will grow (IETF RFC 8404 [i.4]).

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

8 ETSI TS 103 523-2 V1.1.1 (2021-02)

The present document is one of a series of implementation profiles to achieve these visibility and observability goals,
putting the user in control of the access to their data for cyber defence purposes and protecting against unauthorized
access. It setsforth a" Transport layer MSP (TLM SP), profile for fine grained access control" that meets the capability
requirements found in Middlebox Security Protocol MSP Part 1 (ETSI TS 103 523-1 [i.5]).

Authorized middleboxes rarely need full read and write access to both the headers and full content of both directions of
a communication session to perform their function. TLM SP provides means for classification of the communication
between the endpoints into different so-called "contexts', each of which can have different read, delete, and write
permissions associated with it, following the security principle of least privilege. This subdivision isfor the application
to determine and is under endpoint control.

TLMSPismodelled similarly to the TLS protocol (IETF RFC 5246 [1]) and composed of the TLM SP Record Protocol
for the encapsulation of datafrom higher level protocols, and the TL M SP Handshake Protocol for the agreement of
keys and the authentication of all parties with access to the communication prior to the sending of any application data.
Alert and ChangeCipherSpec Protocols are also provided with similar functionalities astheir TLS counterparts. These
protocols: satisfy the same basic properties described in IETF RFC 5077 [2], they give visibility and control of the
security of the entire communication pathway to the endpoints, and they allow the principle of least privilege to be
enforced.

TLMSPisderived from mcTLS[i.1] with added features that include: additional metadata fields that allow
middleboxes to perform not only read and modification operations, but also auditable insertions (of new data,
originating at the middlebox) and deletions; a more flexible message format, allowing adaptation to varying network
conditions; on-path middlebox discovery; improved sequence number handling; fallback to TLS; and additional security
measures against recently discovered security vulnerabilities. Three normative annexes are included that contain
defined cipher suites, TLS fallback mechanisms, and authentication extensions.

Introduction

There are many uses of middiebox technologies. Some examples are: providing a better user experience (content
caching to reduce latency, network prefetching of content); providing user protection and cyber defence (firewalls,
intrusion and malware detection, child protection); providing business protection (data loss prevention and audit).

These middlebox systems rarely require both read and write access to all communication content to function, though
current security protocols necessitate an all-or-nothing approach, forcing to break the security assurances that
underlying encrypted protocols are intended to provide.

EXAMPLE: Man-In-The-Middle proxies used for gateway defence do not provide any assurance of the final
endpoint identity, breaking certificate pinning and violating PK1 trust models. They aso fail to
provide assurance that the connection beyond the gateway to the endpoint is even encrypted.

On most non-enterprise networks, users generally desire control of their own data - to choose whether to grant access or
not to another party. Users wishing to protect themselves from malicious software on their own systems stealing their
data (or including software that harvests user data without user consent) are not currently well-positioned to insist that
datais forwarded through their own cyber-defence systems or to grant access to the content. Any system that prevents
this can be used as ameans of stealing the user data, which isa privacy failure.

To avoid these issues, users need to layer their security architecture and not be forced to rely on endpoint defence alone,
asthere will be some platforms where thisis not optimal, hard, or even impossible. The best defence is always expected
to be alayered approach and not reliant on a single mechanism at a single location/layer. Thisis expected to be
particularly true for those low power |0T devices that lack capability of running endpoint protection, where endpoint
protection does not even exist, and where patches are slow or non-existent. Unpatched devices can be protected from
vulnerabilities only by preventing malicious payloads reaching the 10T device at all; thisis arequirement that can only
be satisfied by network-based defence.

However, for privacy reasons, network defence ought not to require disabling of data encryption, and maintaining end-
to-end encrypted datais a requirement. In the present document, a protocol profileis defined to allow endpointsin a
session to authenticate, create an end-to-end encrypted session, and then authorize additional parties to access portions
of the encrypted traffic. This profile provides full visibility of all additional middieboxes and their permissions to both
parties prior to the sending of any application layer traffic. Additionally, no middleboxes can be added or have
permissions granted by this protocol without the both endpoints agreeing to both their presence and their permission
level. These requirements assure the fundamental principle that the endpoints are in control of their own data and who
can have accessto it.

ETSI

9 ETSI TS 103 523-2 V1.1.1 (2021-02)

1 Scope

The present document specifies a protocol to enable secure transparent communication sessions between network
endpoints with one or more middleboxes between these endpoints, using data encryption and integrity protection, as
well as authentication of the identity of the endpoints and the identity of any middlebox present. This protocol can be
mapped to the abstract M SP protocol capability requirementsin ETSI TS 103 523-1 [i.5].

The Middlebox Security Protocol buildson TLS 1.2 [1] and is an extensively modified version of the mcTL S protocol
[i.1]. Whilst basic concepts are inherited from the mcTL S variant, the protocol specified in the present document also
contains significant additional functionality and feature changes that would render it incompatible with the original
version published.

The present document focuses on TLM SP usage with TCP asit is the most common usage. Usages with other transport
protocols are possible but left out of scope. In the remainder of the present document, unless otherwise noted, the word
TLSrefersto TLS 1.2 [1].

The present document defines a set of five sub-protocols for specific purposes: Handshake (authenticating endpoints
and middleboxes and negotiating cryptographic configuration among those entities); Alert (signalling errors and
notifications); Application (carrying data generated by higher layers); ChangeCipherSpec (signalling the activation of
the negotiated cryptographic configuration) and a Record protocol, (responsible for applying the activated security
configuration to all of the other af orementioned sub-protocols).

Since TLMSP is ageneric protocol, usable with awide range of applications, issues related to mapping of application-
specific security policy to explicit configurations of TLMSPislargely left out of scope. Further, out-of-band
provisioning aspects relating to policies, pre-configuration of the client, details on actionsin error situations are also out
of scope. While some informal discussion on the security properties of TLMSP is provided, a complete (formal)
security analysis of the protocol is currently left out of scope.

A reference implementation of TLMSP is being developed and can be accessed at [i.7].

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected |ocation might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

[2] IETF RFC 5077: "Transport Layer Security (TLS) Session Resumption without Server-side State”.

[3] IETF RFC 5116: "An Interface and Algorithms for Authenticated Encryption".

[4] IETF RFC 5746: "Transport Layer Security (TLS) Renegotiation Indication Extension".

[5] IETF RFC 7748: "Elliptic Curvesfor Security".

[6] IETF RFC 7919: "Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport
Layer Security (TLS)".

[7] IETF RFC 8449: "Record Size Limit Extension for TLS".

ETSI

https://docbox.etsi.org/Reference/

(8]
[9]
[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

2.2

10 ETSI TS 103 523-2 V1.1.1 (2021-02)

IETF RFC 5288: "AES Galois Counter Mode (GCM) Cipher Suitesfor TLS".
NIST FIPS PUB 186-4: "Digital Signature Standard (DSS)".

NIST SP 800-38D: "Recommendation for Block Cipher Modes of Operation: Gal ois/Counter
Mode (GCM) and GMAC".

ETSI TS 133 220: "Digita cellular telecommunications system (Phase 2+); Universal Maobile
Telecommunications System (UMTS); LTE; Generic Authentication Architecture (GAA); Generic
Bootstrapping Architecture (GBA)".

IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

IETF RFC 1983: "Internet Users Glossary".

IETF RFC 1123: "Requirements for Internet Hosts -- Application and Support”.
IETF RFC 793: "Transmission Control Protocol”.

IETF RFC 791: "Internet Protocol".

IETF RFC 8200: "Internet Protocol, Version 6 (IPv6) Specification".

|EEE 802-2014: "|EEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture".

Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE:

While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1]

NOTE:

[i.2]

NOTE:

[i.3]

[i.4]
[i.5]

[i.6]

[i.7]

NOTE:

[i.8]
[i.9]

D. Naylor et al.: "Multi-Context TLS (mcTLS): Enabling Secure In-Network Functionality in
TLS', SSIGCOMM 15, August 17 - 21, 2015, London, United Kingdom.

http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p199.pdf.

D. Naylor: "Architectural Support for Managing Privacy Tradeoffsin the Internet”, Carnegie
Mellon University, August 2017, PhD Thesis.

http://reports-archive.adm.cs.cmu.edu/anon/2017/CMU-CS-17-116.pdf.

K. Bhargavan et a.: "A Formal Treatment of Accountable Proxying over TLS", IEEE™
Symposium on Security and Privacy (SP) (2018), May 20 - 24, San Francisco, United States.

IETF RFC 8404: "Effects of Pervasive Encryption on Operators’.

ETSI TS103523-1: "CYBER; Middlebox Security Protocol; Part 1: MSP Framework and
Template Requirements”.

D. McGrew, D. Wing, Y. Nir, and P. Gladstone: "TLS Proxy Server Extension”, draft-mcgrew-tls-
proxy-server-01, IETF.

"TLMSP reference implementation”.

Available at https://forge.etsi.org/rep/cyber.

IETF RFC 8446: "The Transport Layer Security (TLS) Protocol Version 1.3".
IETF RFC 8447: "|ANA Registry Updatesfor TLSand DTLS".

ETSI

http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p199.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2017/CMU-CS-17-116.pdf
https://forge.etsi.org/rep/cyber

11 ETSI TS 103 523-2 V1.1.1 (2021-02)

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

1-sided authorization: middlebox traffic observability enabled unilaterally by one endpoint such that the other
endpoint is not able to reject or negotiate the traffic observability, other than by ceasing the communication

NOTE: See[i.5].

2-sided authorization: middlebox traffic observability enabled only when both endpoints agree to it
NOTE: See[i.5].

(access) privilege level: per context access rights given to an entity, amongst the four possible options:
. "none" meaning no access rights,
. "read" meaning read access rights only;
. "delete” meaning read and delete access rights only; and
. "write" meaning full access rights - the ability to read, delete, and write (including modify).

NOTE: These access privilege levels are mutually exclusive and each middlebox will have precisely one of the
above privilege levels per context.

deleter: for agiven context, entity having delete access privilege level with respect to that context

deleter author: for a given context, entity with at least delete access privilege that was the most recent entity to process
and forward the message

NOTE 1. Deleter author is considered undefined for contexts when there does not exist any middlebox with
explicitly granted delete access.

NOTE 2: TLM SP messages corresponding to context zero never has a deleter author since this context never has
explicitly granted delete access.

downstream entity: when sending a TLM SP message in a certain direction, any entity located topologically, relative to
the sender, in the direction of the sent message, including the enpoint in that direction

fragment: Service Data Unit (SDU), delivered from one of the higher level TLMSP protocols (Application, Alert,
ChangeCipherSpec or Handshake) to the TLM SP Record protocol for protection

(message) author: entity (endpoint or middlebox) making the most recent modification to a message or part thereof

NOTE 1: In TLMSP, there can be up to three distinct authors of a given message. The term author in itself refersto
the author of the (possibly encrypted) payload. The other types of authors are the "deleter author" and
"writer author", see adjacent definitions. The author, deleter author, and writer author can all be the same
entity, or, can all be separate, distinct entities.

NOTE 2: Madification above includes re-encrypting a message using new security parameters of the author, even if
the content of the message is unchanged.

(message) originator: entity (endpoint or middlebox) where a new message was first generated and forwarded toward
the destination endpoint

NOTE 1: The message originator isinvariant. The message author can change as the message is being forwarded.

NOTE 2. The originator and author are only guaranteed to be the same entity at the moment when the messageis
transmitted by the originator.

reader: for agiven context, entity having at least read access privilege level with respect to that context

ETSI

12 ETSI TS 103 523-2 V1.1.1 (2021-02)

(TLMSP) context: part of the fragments governed by specific, application dependent access policy
NOTE 1. Here, "part” can refer to a header, a payload, a specific implicitly or explicitly "tagged" part of the
payload, or other section of the communication. A special context is defined for non-application data such
as handshake and control messages.
NOTE 2: The original mcTLS specification uses the term "dlice" instead of "context".

NOTE 3: A context has associated cryptographic keys, made available to those entities that are allowed certain
access ("read" and possibly "delete" or "write") to the corresponding context.

(TLM SP) container: order-preserving sub-division of fragments belonging to the Application or Alert protocol, where
each sub-division is associated with a specific context or part thereof

(TLM SP) entity: client, server or middlebox engaged in a TLM SP session or the negotiation of such session

(TLMSP) record: Packet Data Unit (PDU) resulting from applying TLM SP security processing directly, either to an
entire fragment or to one or more containers, while preserving the inter-container ordering

NOTE: Therecord isdelivered as SDU to lower layer (typicaly TCP).

upstream entity: when receiving a TLM SP message, any entity located topologically, relative to the receiver, in the
direction from which the message is received, including the endpoint in that direction

writer: for agiven context, entity having write access privilege level with respect to that context

writer author: for a given context, entity with write access privilege that was the most recent entity to process and
forward the message

NOTE: A writer author is aways defined and is considered to be the endpoint if no middlebox with write access
exists for the given context.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

Al B concatenation of binary strings A and B
b" the n-bit string consisting of the binary value b (0 or 1), repeated n times
B-TID GBA-defined B-TID value (obtained during GBA bootstrapping)
CTXT_ID Container Context |dentifier
FLAGS TLMSP container flag field
Ks NAF Network Access Function Key
LEN Length
m _d Middlebox list, extended by dynamically discovered middleboxes
m _i Middlebox list (initia)

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

3DES Triple Data Encryption Standard

3GPP Third Generation Partnership Project

AAD Additional Authenticated Data

AEAD Authenticated Encryption Additional Data

AES Advanced Encryption Standard

AES-CBC Advanced Encryption Standard - Cipher Blocker Chaining
AES-GCM Advanced Encryption Standard - Galois Counter Mode
BSF Bootstrapping Server Function

CBC Cipher Block Chaining

CTR Counter (mode)

DH Diffie-Hellman

DHE_DSS Ephemeral Diffie Hellman Digital Signature Standard

ETSI

13 ETSI TS 103 523-2 V1.1.1 (2021-02)

DNS Domain Name System

EV Extended Validation

FIPS Federal Information Processing Standard
GBA Generic Bootstrapping Architecture

GCM Galois Counter Mode

GMAC Galois Message Authentication Code
HMAC Hash-based Message Authentication Code
HTTP Hypertext Transfer Protocol

|IEEE Institute for Electrical and Electronic Engineers
loT Internet of Things

IP Internet Protocol

v Initialization Vector

MAC Message Authentication Code

MC Middlebox key Confirmation message
mcTLS Multi-Context TLS

MITM Man In The Middle

MK Middlebox Key material message

MNO Mobile Network Operator

MSP Middlebox Security Protocol

NAF Network Application Function

NAF-Id Network Application Function Identifier
NAI Network Access Identifier

NAT Network Adress Trandation

NIST National Institute of Standards and Technology
PDU Packet Data Unit

PKI Public Key Infrastructure

PRF Pseudorandom Function

RFC Request for Comments

RSA Rivest-Shamir-Adleman

SDbuU Service Data Unit

SHA Secure Hash Algorithm

SP Special Publication

TCAL TLMSP Context Adaptation Layer

TCP Transmission Control Protocol

TLMSP Transport Layer Middlebox Security Protocol
TLS Transport Layer Security

TR Technical Report

TS Technical Specification

USIM Universal Subscriber Identity Module
UTF Unicode Transformation Format

4 TLMSP specification

4.1 Introduction

The Transport Layer Middlebox Security Protocol (TLMSP) specified in the present document is derived from the
published mcTLS protocoal [i.1], [i.2]. The objective isto provide data privacy, data integrity and authentication controls
of communication similar to that provided by TLS whilst also providing access to the content (with fine grained access
control) to additional authorized and authenticated middleboxes, with visibility of these middleboxes and endpoint
control over the permissions granted to middleboxes. Authorized middleboxes rarely need full read and write access to
all parts of data and/or to both directions of a communication session to perform their function. TLM SP dividesthe
communication between the endpoints into different contexts, each of which can have different permissions associated
with it, following the security principle of least privilege with regards to read and write access. This division of
communication is for the application to determine and under endpoint control.

EXAMPLE 1: Application-layer headers and content can be handled as two separate contexts with different
associated permissions to each context, described further in annex D.

ETSI

14 ETSI TS 103 523-2 V1.1.1 (2021-02)

The TLMSP protocol model builds on the TLS protocol model with a similar presentation language [1]. It is composed
mainly of the TLMSP Record Protocol, for the encapsulation of datafrom higher level TLM SP protocols, and the
TLMSP Handshake Protocol, for the agreement of keys and the authentication of all parties with accessto the
communication prior to the sending of any application data. Alert and ChangeCipherSpec Protocols are also provided
with similar functionalities asthe TL S counterparts. These protocols satisfy the same basic properties described in the
TL S protocol [1]; additionally allowing visibility and control of the security of the entire communication pathway to the
endpoints and allowing the principle of least privilege to be enforced.

Fomm e e e + +----+ +----+ +----+ Fomm e e e +
| dient | <-->| M| <-->| M| <->... <->| M| <->| Server |
R R + R R R R R +

Figure 1. The TLMSP network architecture with client, server and middleboxes M1, M2, ...

Unlike the original mcTLS[i.1], the protocol specified here includes:

. additional metadata fields to allow middleboxes to perform not only read and modification operations, but also
auditable insertions (of new data, originating at the middlebox) and deletions;

e amore flexible message format, allowing adaptation to varying network conditions;
. on-path middlebox discovery;
o afalback mechanism to standard TLS; and

. improved robustness of sequence number handling and additional security measures against discovered
security vulnerabilitiesin the original mcTLS specification.

On the topic of TLS-fallback, there could be situationsin which a standard TLS client initiatesa TLS connection to a
server supporting both TLS and TLM SP, but where this server, for whatever reason, has a policy to only allow TLMSP
for this particular client. It is out of scope of the present document to specify use-cases for such policies.

EXAMPLE 2: Thepolicy could state that additional 3™ party content filtering is necessary.

4.2 The Record protocol

421 Overview

4211 General

Akinto TLS, the Recor d protocol isalayered protocol that fragments data from higher level protocols (e.g.
Handshake protocol, Appl i cati on protocol), into TLMSP records, applies the agreed data integrity checks and
encryption, and then transmits the resultant records over the transport layer.

EXAMPLE: TCP can be used for transport. Each TLMSP record delivered to TCP is split across several TCP
segments before transmission. Received records (after TCP re-assembly) are decrypted, integrity
verified, decompressed, reassembled and then delivered to the higher protocol levels.

The current version of TLM SP does not define or make use of any (non-trivial) compression method, due to several
foreseen issues as discussed in annex H. Future versions of TLMSP may specify usage of compression.

4212 Records, containers and contexts

For TLMSP to alow the traffic optimizations it seeks to enable, TLM SP allows data fragments associated with multiple
contexts to be "packaged" into one single TLM SP record and also allows for data associated with a single context to be
split across records. Thus, a TLMSP record comprises protected data corresponding to one or more TLMSP contexts.
Within arecord, a (contiguous) fragment of data associated with a context is called a TLMSP container (or simply
container). An explicit container format shall be used for the Al ert and Appl i cat i on protocols, but not for the
Handshake and ChangeCi pher Spec protocols, both of which are associated with a default context called context
zero.

ETSI

15 ETSI TS 103 523-2 V1.1.1 (2021-02)

42.1.3 Record and container construction and processing overview
Fo-m - - - R Fommm e e o B e T et &
| type | version | tot_length |hbh_id | fragment | hm
Foemm - - e R e S s

S TLMSP header ------- >

NOTE: The field hmis the hop-by-hop MAC and is present only for Handshake records occurring after
ChangeCipherSpec.

Figure 2a: TLMSP record format not using containers used by the Handshake
and ChangeCipherSpec protocol

F--- - - - R Fom - et S S s et &
| type | version | tot _length |hbh_id]| C1 | C|...| Cn |
e R R B et T L G Rt =
S TLMSP header ~— ------- > <- container(s) ->

NOTE: C1, C2, ... Cn represents containers, whose format is defined in Figure 3.

Figure 2b: TLMSP record format using containers (as used by Application
and Alert protocols after server confirmation of TLMSP support)

Thefirst five octets of the TLM SP header comprisingt ype, ver si on, andt ot _| engt h shall be formatted asa
TLS 1.2 header as per clause 6.2.1 of IETF RFC 5246 [1].

EXAMPLE 1. type =0x15isusedto signal the Al ert protocol.

Inthe Server Hel | o, confirming TLMSP extension support, and in all records thereafter, there shall after the

t ot _| engt h field follow the hbh_i d field which is a variable length (possibly zero length) identifier for the TLMSP
session, valid on a particular hop (between neighbouring entities). The hbh_i d shall be chosen by the transmitting
entity for each hop as defined in clause 4.3.5 and shall be used as defined in clauses 4.2.2.1 and 4.3.5.

Thefieldt ot _| engt h shall define the total (octet) length of the record following thet ot _| engt h field itself,

i.e. including the length indicator portion of hbh_i d plus the indicated number of octets (which may be zero). TLMSP
alows record lengths up to 226 -1. However, if a TLMSP client iswilling to accept lengths above the normal

IETF RFC 5246 maximum of 214 octets [1], this shall be signalled using the extension of IETF RFC 8449 [7]. The
server and middleboxes, observing the client extension may accept or limit the length by including their corresponding
maximum acceptable lengthsin their extensions. The maximum length to be used shall be the minimum over the
lengths occurring in al entities extensions.

After the TLMSP record header, there shall follow the actual container(s) for those TLM SP protocols that use
containers, i.e. Al ert and Appl i cati on. For al other TLMSP protocols, a single fragment shall follow (see
clause 4.2.7.1 for details). When record protection is active, all protocols except ChangeCi pher Spec shall then
include a hop-by-hop MAC tag, denoted hmand computed according to clause 4.2.7.2.3, added at the end of the record
in order to integrity protect the entire record (excluding hmitself).

R IS +- - - - - e +o ~4- -+

| ctxt_id |[flags|minfo (OPTIONAL)|length |fragment |dm wn

Fom e +omm - - s L T T T i S +- ~+- -+
<------ cont ai ner header ~ ------ >

Figure 3: TLMSP container format

A container consists of a header, a (data) fragment (including a reader MAC) and one or two additional MAC values,
dm (conditionally optional), and wm Specifically, each container shall start with a container header which shall
include al of the following: the associated one-octet context identifier ct xt _i d (wherect xt _i d =0isreserved),
two bytesreserved for f | ags, and a16-bit| engt h field, indicating the length up to the end of the f r agnent field.

ETSI

16 ETSI TS 103 523-2 V1.1.1 (2021-02)

Each container shall have amaximum size of 214-1 octets, with the additional requirement that the total size of the entire
TLMSP record (defined by thet ot _| engt h field of the TLMSP header) shall be limited to maximum default (i.e. 21
octets), or, a maximum negotiated value (up to 2 -1 octets).

oo e oo +
| 1| D] A| RESERVED |
i +

Bit 15 14 13 12 0

Figure 4: f | ags field of the container header

Thef | ags field isused for signalling purposes, 3 bits are currently used and the remaining 13 are reserved for future
versions of TLMSP. Thel- and D- bits shall always be set to "0" for containers originating at the transmitting endpoint.
These hits shall be set to "1" by authorized middleboxes if the container was inserted by the middiebox (only the |l bit
shall then be set to "1"), or, if the container isadeletion indication (both | and D bits shall be set to "1") inserted by that
middlebox, as defined in clauses 4.2.3.1.3 and 4.2.3.1.4.1. The A-bit is used to additionally signal that an inserted
container has auditing content, as defined in clause 4.2.3.1.3.5. Thus, the |- and D-bits always have value "10"
whenever the A-bit has the value "1". Application data containers are those whose D- and A-bits are zero and that are
transmitted in Appl i cat i on protocol records.

If, and only if, the I-bit is set to 1, the middlebox information field (m_i nf o) shall be present, with format defined in
clause 4.2.3.1.3. The container header is followed by the protected data fragment associated with the indicated context.
Them i nf o field, when present, shall not be encrypted, but shall be integrity protected by including it when
computing the MAC values as defined in clause 4.2.7.2.

Thef r agnent field shall comprise the protected data fragment, including areader MAC (r m) value as defined by
clause 4.2.7.2.2 (not explicitly shown). After thef r agnent , one deleter MAC (dm) may be present, followed by a
writer MAC (w) defined by clause 4.2.7.2.2, where the writer MACs shall be present. The deleter MAC is used to
signal that a deleter middlebox has inspected an application data container and decided whether to forward it or not and
shall be present on such containersif, and only if, at least one middlebox has delete access to the associated context.
The fact that an application data container with avalid deleter MAC is forwarded implies that the container has passed
ingpection by deleter middleboxes. The deleter MAC shall also be present on delete indication containers, see

clause 4.2.3.1.4.1, and serves to authenticate auhorized deletions. The writer MAC field, similarly, is used to
authenticate authorized changes (or absence of changes) and insertions.

EXAMPLE 2: If only read accessis granted for a particular context, then only reader and writer MACs are
present in containers associated with that context.

The above container format of Figure 3 shall also be used for the Al er t protocol (t ype = 0x15), following a

Ser ver Hel | o confirming TLMSP support. Since the server's support for TLMSP can not be detected until the

Ser ver Hel | o hasbeen received, Al ert messages sent prior to the Ser ver Hel | o shall be formatted as standard
TLS 1.2 records, and TLMSP entities shall be implemented to be able to handleinitial Al er t messages sent by the
server without the container format.

For message witht ype = 0x14 or 0x16, indicating ChangeCi pher Spec or Handshake, these messages are
implicitly associated with the reserved context zero as defined in clause 4.2.1.2, and containers shall not be used. That
is, asingle fragment without container header, carrying the protocol message content shall follow directly after the
TLMSP header, as defined in clause 4.2.3.2. These messages are control messages and their semantics shall apply to all
contexts associated with the TLM SP session.

EXAMPLE 3: A ChangeCi pher Spec message is communicated as logically belonging to context zero, but
the effect of ChangeCi pher Spec will be to activate security for all contextsin use, not just
context zero (see clause 4.5 for details).

ETSI

17 ETSI TS 103 523-2 V1.1.1 (2021-02)

4.2.2 Message unit and record processing: cryptographic state and
synchronization

4221 General

In the sequel, the term message unit shall denote a TLM SP record, for protocols that do not use containers
(Handshake and ChangeC pher Spec), and shall denote a container, for protocols that do use containers
(ApplicationandAl ert).

Each TLMSP session is associated with a state, i.e. cryptographic parameters that include a chosen PRF and cipher
suite, current sequence numbers, replay protection list (e.g. window-based list of already received sequence numbers),
master keys, the set of contexts and their associated key material. Further, the session is associated with non-
cryptographic configuration parameters, such asthe list of middieboxes and their access rights. When several TLMSP
sessions are active, the correct current state and configuration can be identified at an entity (endpoint or middlebox) by
the TCP socket information (IP address, port) of the local hop and, if configured, the hbh_i d field of the record header
asdefined in clause 4.2.1.3.

NOTE: Since each hop of the path from sender to receiver uses a separate, locally created TCP session (defined in
clause 4.3.2), the identifier for the state information is local to that hop.

Unless server support for TLMSP on a particular service port is known in advance, TLM SP should use the relevant,
well-known port for TLS usage for the given application layer protocol.

A TLMSP state comprises severa sub-states relating to the different entities (endpoints share certain unique parameters
with different middleboxes) and certain parameters are unique to each TLM SP contexts (e.g. keys). Thus, within the
state, entity identities and context identities shall be used to further retrieve relevant state information.

Clauses 4.2.2.3.3.2 and 4.2.2.2.2 describe how to determine the entity identities of the message unit originator and
MAC authors, respectively, (from which relevant state information can be retrieved), and clauses 4.3.7 and 4.3.10
describe how to manage context-specific key material.

42272 MAC overview

42221 General

This clause provides an overview of the presence and processing of various MACs on message units and records. Prior
to ChangeCi pher Spec, no message unit or record (hop-by-hop) MACs shall be present. This can be viewed
equivalently as either being due to no message unit or record protection yet being active, or as being due to the cipher
suite TLMSP_NULL_W TH_NULL_NULL being active.

After security activation, message units shall include up to three MAC fields:
o areader MAC field (using the key shared with the other readers, see clause 4.2.7.2.2);
o adeeter MAC (using the key shared with the other deleters, see clause 4.2.7.2.2);

o awriter MAC field (using the key shared with the other writers or the pairwise key shared with the
downstream endpoint, see clause 4.2.7.2.2).

Thereader MAC is used for the detection of changes made by unauthorized parties (which includes middleboxes that
have no granted access to a particular context). Successful reader MAC verification implies that the data has not been
corrupted in transit (inadvertently or maliciously). When reliable transport is used, an incorrect MAC strongly suggests
adversarial attack. The deleter MAC serves to detect deletions (or tampering with deletions) by unauthorized parties
(including middleboxes with less than delete privilege level). A failure of the deleter MAC verification while the reader
MAC passes verification can only happen if amiddliebox with read but no delete access has modified the datain transit,
or, if an entity with no access has modified the deleter MAC. The writer MAC similarly serves to detect unauthorized
changes by parties with less than write privilege level. A failure of the writer MAC verification while the reader MAC
passes verification can only happen if a middlebox with read but no write access has modified the datain transit, or, if
an entity with no access has modified the writer MAC. Generation of the reader, deleter, and writer MACsis defined in
clause 4.2.7.2.2.

ETSI

18 ETSI TS 103 523-2 V1.1.1 (2021-02)

Records shall include a hop-by-hop MAC field (using the pairwise key shared by the sending and receiving neighbours,
see clause 4.2.7.2.3). Generation of the hop-by-hop MAC isdefined in clause 4.2.7.2.3.

When generating a new message unit, the reader MAC shall first be computed. The plaintext data and the reader MAC
shall then be encrypted and placed together with the explicit part of theinitialization vector (1V) inthef r agnent
component of the message unit.

NOTE 1. If an AEAD transform is used, the MAC encryption step is typically integrated into that transform [4].

Then, if adeleter MAC isto be present according to clause 4.2.1.3, the deleter MAC shall be computed and added. The
writer MAC shall then be computed and added, except for message units so indicated in Table 2.

Finally, when completing the generation of anew record carrying the message unit (for containers, after adding the last
container), a hop-by-hop MAC shall be computed and added regardiess of whether the record is composed of multiple
containers or is a message unit itself.

When a middlebox forwards a message unit, if it contains a deleter MAC and the middlebox has delete access, the
middlebox shall recompute the deleter MAC. If the middlebox has write access, it may choose to re-cal cul ate the reader
MAC and re-encrypt the message unit even if it does not perform any modifications. If the writer middliebox did modify
the message, it shall recompute the reader MACs. Regardless of whether the middlebox made a modification, it shall re-
compute the writer MAC.

When a middlebox forwards arecord, it shall always recompute the hop-by-hop MAC regardless of whether it made
modifications to the record.

When an entity computes anew MAC in preparation for transmission of a message unit, or computes a new hop-by-hop
MAC in preparation for transmission of arecord, it always usesits own entity identity (to indicate itself asthe MAC
author), and as described in clause 4.2.2.3.2, the current transmit sequence number values.

NOTE 2: Re-computation of certain MACs for otherwise unmodified message units and records as described above
is necessary to prevent reader middleboxes or unauthorized 3™ parties from "undoing" changes and
deletetions performed by upstream writer or deleter middleboxes, see annex E.

On the receiving side, the order of the steps described previoudy in this clause shall be reversed: all MAC calculation
steps shall be replaced by MAC verifications and the encryption step shall be replaced by decryption. As described in
clause 4.2.7.2, verification of the reader MAC requires decryption to first take place, whereas verification of the hop-
by-hop, writer, and deleter MACs shall be done based on the encrypted data.

MAC verification by a middliebox shall be done for those MACs for which the middlebox possesses the corresponding
key, and only for those MACs. The key used for the hop-by-hop MAC is always known by both adjacent entities, which
allows for robust sequence number handling by middleboxes lacking any read or write access at al for a given context.
Thisisdescribed in clause 4.2.7.2.3.

If any of the performed MAC verificationsfail, further processing of the received message unit or record shall be
aborted. On verification failure, a corresponding bad_r eader _mac, bad_del et er _mac,orbad_writer_mac
aert shall be raised in the corresponding context. For the hop-by-hop MAC, abad_r ecor d_mac aert shall be raised
in context zero. An application-dependent action shall be taken in response to the alert. Defining this action is however
out of scope of the present document.

EXAMPLE: In an example system, aMAC verification failure is recorded in alog and the session is
terminated.

Anincorrect MAC on any of the bad MAC alerts above should result inissuing abad_r ecor d_nac alert in context
zero and terminating the session.

42222 MAC author determination

Each received record has a hop-by-hop MAC, and each received message unit has up to three additional MACs: reader,
deleter, and writer MAC. The author (entity identity) of areceived MAC, which in general can be distinct from the
originator of the message unit and can also be distinct for different MACs, is determined as follows:

. For hop-by-hop MACs, the author is the current upstream neighbour, as defined in clause 4.2.7.3. Any

indication in the received record of the author associated with the received MAC (e.g. included inan 1V) is
ignored.

ETSI

19 ETSI TS 103 523-2 V1.1.1 (2021-02)

For writer MACs, the author is the nearest upstream entity that has write access to the message unit's context.
Any indication in the received message unit of the author associated with the received MAC message unit is
ignored.

For deleter MACs, the author is the nearest upstream entity that has delete access to the message unit's context.
Any indication in the received message unit of the author associated with the received MAC message unit is
ignored.

For reader MACs, the author is the entity indicated by the explicit 1V associated with the received MAC.

NOTE: For an application data container in aparticular context, the potential authors of each of itsreader, deleter,

4223

4.2.2.3.

and writer MACs are those entities with corresponding access rights to the context. It is not possible to
distinguish among the potential authors of each of these MACsin an assured way as they all have access
to the same keys.

Sequence numbers

1 General

Sequence numbers shall be used for security processing, for the purposes of cryptographic synchronization and replay
protection. Under TLM SP, sequence numbers are not defined or maintained prior to ChangeCi pher Spec, except for
two specific Handshak e messages as described later in this clause. Following ChangeCi pher Spec, when anon-

NULL ci

pher suited is selected (offering at least one of confidentiality or integrity) at each entity, each message unit is

associated with unique context-independent and context-dependent sequence numbers.

NOTE 1. Even though reliable transport such as TCP is assumed, the fact that middleboxes may delete or insert

message units could, without due consideration, make TLMSP vulnerable to replay, reorder, or deletion
attacks.

NOTE 2: Thereisin genera no one-to-one correspondence between TLM SP protocol messages, TLM SP records,

and sequence numbers. For example, a single TLM SP Handshake protocol record can contain more than
one TLM SP Handshake message, al being protected as a single message unit and thus all being
associated with the same sequence number. Likewise, a TLMSP Appl i cat i on protocol record may
comprise multiple containers, each to be processed and protected with a distinct sequence number.

In this section TLM SP entities are numbered starting frome = 0 attheclient,thene = 1, 2, .., nwithn
corresponding to the number of middieboxesand finally e = n+1 corresponding to the server. Each entity, i ,

involved
numbers

ina TLMSP session shall maintain six arrays of 64-bit sequence numbers and two individual 64-bit sequence
asfollows:

seqg_client _to_server_rx[j], for j rangingover al entitieswhich are topologically upstreamin
the client to server direction,i.e.for 0 < j < i, andseq_server_to_client _rx[j], forentities
located upstream in the server to client direction, i.e. for i < j < n+1. Thesevaluesshall be used to
record the total number (over all contexts) of valid (i.e. integrity verified) message units that have been
received by, or originated at, the respective entity j for the direction of transmission;

seq_client_to_server_rx_{j][c], for j rangingover al entities which are topologically
upstream in the client to server direction,i.e.for 0 < j < i, and

seqg_server _to_client_rx Cj][c], forentitieslocated upstream inthe server to client direction,
i.e.for i < j < n+1.Inboth cases, ¢ rangesover the set of all contexts. These values shall be used to
record the total number of valid message units that have been received by, or originated at, the respective
entity j in each context c;

seqg_client _to_server _tx, counting the total number of message units sent (either originated or
forwarded) by entity i in any context in the client to server direction, and, seq_server _to_client _tx
similarly counting the total number sent in the other direction;

seqg_client _to_server_tx_(c], counting the total number of message units sent by entity i in
context c in the client to server direction, and, seq_server _to_client _tx_(c] having the equivalent
counting functionality, but in the other direction of transmission. In both cases, ¢ ranges over the set of all
contexts.

ETSI

20 ETSI TS 103 523-2 V1.1.1 (2021-02)

NOTE 3: It will always hold that the sum over al contextsc of seq_cl i ent _to_server _rx_C[j][c]will
beequal to seq_client_to_server_rx[]]. Likewise, thesum over al contextsc of
seqg_client _to_server_tx_ (] c]willequal seq_client_to_server_tx.Anaogous
relations will hold for the other direction of transmission.

The context-independent sequence numbers defined above are also referred to as global sequence numbers, asthey are
used to maintain aglobal ordering among al message units. The TLMSP session shall be terminated if any of the above
defined sequence numbersis incremented to the reserved sequence number 264-1.

In the sequel, for brevity, only a specific direction of transmission from client to server is considered. Therefore, the
direction aspect is omitted from notation, and only valuesseq_rx[j],seq_rx_dj][c], seq_tx, and,

seq_t x_(c] areconsidered, bearing in mind that processing of messages in the other direction shall be completey
analogous, but using the sequence number(s) associated with that direction. When [] isused as part of an array
reference, it represents the set of sequence numbers referred to by all values of that array index. For example,
seq_rx_(][] referstoal per-context receive sequence numbers an entity maintains for upstream entity j ina
given direction.

When entity i receives a message unit in context ¢, if no tampering has occurred, seq_r x[j] and
seq_rx_dj][c],wherej rangesover the set of MAC authors for this message unit (different MACs can have
different authors), respectively correspondtotheseq_t x and seq_t x_([c] valuesof each MAC author at the
point when they authored the given MAC. Maintenance of these sequence numbersis essential for processing the
MAC(s) of received message units.

After amessage unit has been received and processed, only the applicable context-independent receive sequence
numbers and the applicable receive sequence humbers associated with the specific context, ¢, of the message unit shall
be updated. Likewise, after amessage unit has been transmitted, only the context-independent transmit sequence
number and the transmit sequence number associated with the specific context, ¢, of the message unit shall be updated.

EXAMPLE: In aTLMSP session with three contexts, c1, ¢2, and ¢3, when computing any of the writer or
deleter MACs for an application data container associated with context ¢ 2 that isto be
transmitted, all threevaluesseq_tx_(C cl] ,seq_tx_(c2],andseq_t x_(¢3] areused
asinputsto the MAC calculations (by contcatenating them, as explained below). After the
message has been passed on downstream, however, only thevaluesseq_t x and
seq_t x_(] c2] areincreased by one. For the reader MAC of this container, only the global
valueseq_t x isused and increased by one after the container is processed. The hop-by-hop
MAC of the entire record in which this container is transmitted al so uses only the global value
seq_t x, and uses the same value as used when processing the reader MAC of the first container
to beincluded in the record. More precise details are given below. This seemingly complex
sequence number handling is needed to protect against attacks which would otherwise be possible
on protocols which selectively alow insert and delete operations in multiple contexts by multiple
entities. Essentially, it is necessary to use both context-specific sequence numbers (viathe
individual seq_([c] values), aswell as asession-unique identifier for each message unit (here,
formed by the set of all seq_([c¢] values). Annex E and in particular F.3 gives detailed rationale
for this handling.

Usage of sequence numbers generally begins after the ChangeCi pher Spec message. There are however two
Handshake messages occurring before ChangeCi pher Spec, TLMSPKeyMat er i al and TLMSPKey Conf ,
which require sequence numbers for the security processing of their contents. These messages contain areader MAC
internally, and the reserved sequence number 2%4-1 shall be used in the generation and verification of that reader MAC.

NOTE 4: Asall these messages contain a verification payload, computed with pairwise disitinct keys shared only
between pairs of entities, it does not matter from a security point of view that the record layer processes
them with the same sequence number.

When an entity transmits the ChangeCi pher Spec message, the pending write state in the associated direction of
communication shall become the active state, setting seq_t x to zeroand seq_t x_(C[c] to zerofor al contextsc.
When an entity receivesthe ChangeCi pher Spec message, the pending read state in the associated direction of
communication shall become the active state, settingseq_rx[j] andseq_rx_C[j][c] tozerofor al upstream
entitiesj and contextsc.

ETSI

21 ETSI TS 103 523-2 V1.1.1 (2021-02)

NOTES5: Thisisadifferenceto TLS 1.2, [1], which uses sequence numbers also for unprotected messages, before
ChangeGi pher Spec. Messages occurring before ChangeCi pher Spec are till protected against
modification and reordering by their inclusion in the Fi ni shed and MooxFi ni shed verification
hashes. Further, since TLM SP does not support renegotiation, Handshak e messages occuring before
ChangeCi pher Spec cannot be protected in any other way. This approach greatly simplifies message
insertions/del etions by middleboxes that may occur during intial stages of the TLM SP handshake.

At this point, regular sequence number maintanenance is performed for all message units sent or received, and all
records include a hop-by-hop MAC. The author of each MAC, depending on its type, includes either the context-
independent transmit sequence number or a context-based sequence number formed by concatenating the transmit
sequence numbers for al contexts as follows:

s =seq_tx O] || seq_tx 1] || -..-1| seq_tx_n_ctxt-1]
wheren_ct xt isthetotal number of contextsin usein the TLMSP session.
NOTE 7: Sinceeachseq[]j] is64 bitg8 octets, s isan 8*n_ct xt octet value.

Further details of handling of sequence number values are found in clauses 4.2.2.3.2 and 4.2.2.3.3, below.

42232 Outgoing message units and records

After ChangeCi pher Spec issent, when an entity j prepares a message unit for transmission in context ¢, it usesthe
current values of seq_t x andseq_t x[c] , asrequired, for the security processing defined in clauses4.2.3 and 4.2.7.
Immediately after completing processing of the message unit (before processing any further message unit for
transmission), the entity shall update its own sequence numbers asfollows: seq_tx = seq_tx + 1 and
seq_tx_(Cc] = seq_tx_(Cc] + 1.Ifthemessageunitisadeletionindication container, seq_t x and

seq_t x[c] shall befurther updated as described in clause 4.2.3.1.4.2.

An entity preparing a message unit for transmission that does not require any security processing, for example an entity
forwarding a container in a context to which is has no access rights, shall still update the transmission sequence
numbers as described above.

When generating the hop-by-hop MAC (see clause 4.2.7.2.3) for arecord that is composed of one or more containers,
the sequence number used isthe value of seq_t x when the first container in the record was being prepared. That is,
when creating a new record for transmission that will consist of one or more containers, prior to processing the first
container for that record, entity j temporarily records the current value of seq_t x and then later uses that value when
computing the final MAC, the record's hop-by-hop MAC.

EXAMPLE: Consider a TLMSP session with three contexts, c1, ¢c2, and ¢ 3. Entity j preparesasingle record
with three containers for transmission (corresponding to three message units for contextsc1, c2,
and c3, in that order). Each container will be processed with particular values of seq_tx and the set
of per-context sequence numbersseq_C[] = {seq_tx_C[cl], seq_tx _(Cc2],
seq_tx_(c3]}.Givenseq_t x = s prior tothe processing of the first container, the first
container will be processed withseq_t x = s,thesecondwithseq_tx = s + 1,andthe
thirdwithseq_tx = s + 2,withseq_t x havingthevaueseq_tx = s + 3 following
the processing of the final container. Givenseq_C[] = {nl, n2, n3} priortothe
processing of the first container, the first container will be processed withseq_C[] = {nl,
n2, n3},thesecondwithseq_C[] = {nl + 1, n2, n3}, andthethird container with
seq_C[] ={nl + 1, n2 + 1, n3},withseq_Chavingthevalueseq_C[] = {nl1 +
1, n2 + 1, n3 + 1} following the processing of the final container. Thevalueseq_t x =
s isused to compute the hop-by-hop MAC of the record. If there would have been addititional
contexts in the session, their corresponding sequence numbers would have been included in each
seq_C[] vaue, but would remain constant, throughout the processing.

ETSI

22 ETSI TS 103 523-2 V1.1.1 (2021-02)

42233 Incoming message units and records

4.2.2.33.1 General

Each received record has a hop-by-hop MAC which shall be verified, and each received message unit has up to three
MACsthat may need to be verified, depending on accessrights: reader, writer, and deleter. Verification of these MACs
depends on using correct sequence numbers, which requires first determining the author of each MAC according to
clause 4.2.2.2.2. For agiven MAC that isto be verified, once the identity, e_i d, of the MAC author is determined, the
current value of seq_r x[e_i d] orvauesof seq_rx_(e_id][] arethenused asrequired to perform the
verification.

After al required MAC verifications are successfully performed for a message unit, the receive sequence number state
isupdated. Thisrequiresfirst determining the message unit originator according to clause 4.2.2.3.3.2. Once the message
unit originator, i , is determined, the receive sequence number state of receiving entity k shall be updated as follows:

. seq_rx[j] = seq_rx[j] + landseq_rx_Cj][c] =seq_rx _dj][c] + 1,forj =1,
i +1, .., k-1, andwherecisthe context with which the message unit is associated;

. If the message unit isadeletion indication, seq_r x[] andseq_rx_([] shal be further updated as
described in clause 4.2.3.1.4.2.

NOTE: An entity that receives a message unit in a context to which is has no access rights still updates the
receive sequence numbers as described above. In this case, only the hop-by-hop MAC of the associated
record is possible to be verified, but thisis sufficient to ensure correct modification of the receive
sequence number state.

42.2.33.2 Message unit originator determination

For all containers, areceiving entity determines the originating entity by examining the container header. If the header
containsthem i nf o field (see clause 4.2.3.1.3), then the container originator isindicated by thee_i d subfield.
Otherwise, the originator is the upstream endpoint.

Handshake records are the only record message unit type that require originator determination. In general, the originator
of a handshake record can be determined by examining the Handshak e message(s) within. However, there is no need
to determine the originator of handshake records that are received prior to ChangeCi pher Spec. For handshake
records that may be received after ChangeCi pher Spec:

3 If the record contains at least one Fi ni shed or MooxFi ni shed message, the originator is the upstream
endpoint.

. If the record consists of an MboxLeaveNot i f y message (such messages cannot be sent any other way), the
originator isthembox_entity_ i d present in the message.

. If the record contains an MooxLeaveAck message, the originator is the upstream endpoint.

4.2.3 Processing of specific message unit types

4231 Container message units

42311 Container usage
The following appliesto the Appl i cati on and Al ert protocols.

Containers may be re-distributed between records of the same content type. A single container shall never be split
across more than one record. However, for traffic flow optimization purposes:

1) Middieboxes (both readers and writers) may split asingle received TLM SP record comprisingC > 1
containersintoR (1 < R < Q) digtinct records before forwarding.

2) Middleboxes may combine TLMSP containersfrom R > 1 separate TLMSP records into a single record.

ETSI

23 ETSI TS 103 523-2 V1.1.1 (2021-02)
In both cases, the original order between containers shall always be strictly preserved and the middliebox shall construct

the TLMSP record header, specifically thet ot _| engt h field, to correctly reflect the total length.

This splitting and combining applies also to the sending endpoint: the sender may buffer fragments, corresponding to
several containers, received from the application layer and place those containersin one or more records before
submitting them to the transport layer.

The present document specifies the production and deletions of containersin clauses 4.2.3.1.3t04.2.3.1.6.

Whenever there is anew container originated by an entity or a modified container generated by a middlebox (change/re-
write, insert or delete):

e Theresulting container shall be processed with anew IV that contains the author e_i d and is otherwise
compliant with the IV format of the used cipher suite, see annex A.

. For Appl i cat i on protocol containers other than audit containers, the resulting container shall include two
or three MAC fields:

1) amandatory reader MAC field (using the key shared with the other readers, see clause 4.2.7.2.2);

2) adeeter MAC (using the key shared with the other deleters, see clause 4.2.7.2.2) on all containers of
contexts with granted del ete access; and

3) amandatory writer MAC field (using the key shared with the other writers, see clause 4.2.7.2.2 del eter,
the deleter key).

. For audit and alert containers, the resulting container shall include exactly two MAC fields:
1) areader MACfield (using the key shared with the downstream endpoint, see clause 4.2.7.2.2); and
2) awriter MAC field (using the key shared with the downstream endpoint, see clause 4.2.7.2.2).
Application data containers shall not be transmitted in context zero.

NOTE: Deleteindications are considered part of Appl i cat i on protocol and processing is therefore covered by
the second bullet, except that they do not have awriter MAC.

42312 Modifications

In certain cases, a middlebox can modify the contents of a container that it is forwarding. The only containers that
support modification of their contents are application data containers. Only writer middleboxes with access to the
associated context may modify the contents of such a container. When doing so, the writer middiebox shall leave the A,
[, and D flag bits unchanged. If them i nf o field is present, thee_i d shall be left unmodified, see clause 4.2.3.1.3.
Following the madification, the middlebox shall update the container MACs as described in clause 4.2.2.2.1.

Modifying content at an endpoint is an application layer issue and is out of scope of the present document.

42313 Insertions generally

Insertions are the introduction of new containers into the session by middleboxes. Containers originating at endpoints
are not considered to be insertions. When inserting a container, the middlebox shall set the I-bit of thef | ags container
header-field to 1.

A middlebox that inserts a container shall awaysadd an m i nf o field to the container header, which provides
information required by each downstream entity to maintain its sequence number state. Them i nf o field shall have
the structure shown in Figure 5.

I } } }

Figure 5: m.i nf o field

ETSI

24 ETSI TS 103 523-2 V1.1.1 (2021-02)

Every m_i nf o shall contain the one-octet subfield e_i d, which isthe entity identity of the middlebox that performed
theinsertion. Asisexplained in clause 4.2.3.1.4.1, deletion indication containers also include the sr c and del _c
subfields, which are one and two octets, respectively.

42314 Deletion indication containers

423.14.1 General

Deletion indication containersare Appl i cat i on protocol message units that signal the deletion of a continguous set
of application data containers, associated with a particular context, to all downstream entities. Application data
containers may be deleted by middleboxes having del ete access to the corresponding contexts. No other type of
container may be deleted. If one or more contiguous containers originated by the same entity in a given context are
deleted, they shall be replaced by at least one deletion indication container in that same context.

The transmission of adeletion indication may be postponed, but shall occur at the latest immediately before another
container is forwarded to the destination endpoint. When inserting a deletion indication container, a middlebox shall:

. setthect xt _i d field of the container header to the context of the deleted containers;
. set the D-bit of thef | ags container header field to 1; and

. includethesr c anddel _c subfieldsinthem i nf o field, setting sr ¢ to the entity identity of the originator
of the deleted container(s) and del _c to the number of containers deleted. The value of del _c¢ shall not be
zero, i.e. delete indications shall only be generated if at least one deletion has been performed.

A deletion indication container may contain apayload in thef r agnment field. It is application dependent and out of
scope of the present document how to create such payloads and, as the receiving entity of such payloads, how to take
action in response to them. An example may be the following.

EXAMPLE 1: The payload comprises the human readable string: "Malicious content removed”. The endpoint
acts on this by terminating the session.

Deletion indication containers shall have areader and deleter MAC, but shall not have awriter MAC.

The following approach should be used when signalling deletions. A sequence of delete indication containers are sent at
different pointsin time during the "window" of deletions. When the last deletion indicator has been sent, the normal
flow of containers resumes, via the middlebox. This approach simplifies handling and is more preserving to the audit
history of deletions. Alternatively, if n consecutive containers originated by the same entity are deleted from the same
context, a single delete indication container may be transmitted after the nth deletion.

EXAMPLE 2: Assume amiddlebox has write access to context 1, but has no access to context 3, and assume the
middlexbox isin progress of deleting some messages relating to context 1, and which it has not yet
reported. At this point a container isreceived relating to context 3. The middlebox reports al
outstanding deletions from context 1, before forwarding the container relating to context 3.

EXAMPLE 3: Assumean entity withe_i d = | hasfirst generated 5 containers and that a middlebox with
e id = k (k >) deletesthelast 3 of them. Entity j then generates 7 additional containers,
out of which the 2 last are deleted by middliebox k. Middlebox k forwards the two first containers
but does not forward (i.e, "disposes of") containers 3, 4, and 5. Middlebox k then generates afirst
delete indication to replace containers 3-5, containing avaluepairsrc = j, del _c = 3.
Then, middlebox k forwards containers 6-10, but disposes of containers 11 and 12. After the 12
received container from entity j , a second delete indication will be generated by middlebox k,
now containing avalue-pairsrc = j, del _c¢ = 2. Thereforeatotal of two deleteindication
containers are produced by middlebox k.

EXAMPLE 4: Inthe same scenario as above, middlebox k could alternatively replace each deleted container by
exactly one delete indication container, each havingsrc = j, del _c= 1, resultinginatotal
of 5 delete indication containers.

ETSI

25 ETSI TS 103 523-2 V1.1.1 (2021-02)

NOTE: It could be tempting to conceptually view the deletion of a single container as a modification, rewriting an
original container as a delete indication. However, this view does not extend to the multiple-deletion case,
which iswhy a delete of one or more containersis defined as the removal of those containers followed by
the insertion of a deletion indication.

42.3.1.4.2 Sequence number handling

As deletion indication containers represent more than one container, additional steps are required, beyond those
described in clause 4.2.2.3, to update the sequence number state when processing them.

When adeletion indication is prepared for transmission in context ¢, after the updatestoseq_t x andseq_t x_([c]
defined in clause 4.2.2.3.2, the following additional updates are performed:

. seq_tx = seq_tx + del _c
. seq_tx_(Cc] = seq_tx Cc] + del_c

When a deletion indication is received by entity k in context c, after the updatesto seq_rx[] andseq_rx_C[][c]
defined in clause 4.2.2.3.3, the following additional updates are performed:

. seq_rx[j] = seq_rx[j] + del_c, for j = src, src+l, ., k-1
. seq_rx_djll[c] =seq_rx_djll[c] + del_c, for j = src, src+l, ., k-1
42315 Audit containers

Audit containers are Appl i cat i on protocol message units that convey information, as a payload in the container
fragment field, pertaining to the processing of application data containers or the generation of alert containers. The
production of audit containers shall be configured on a per-context basis during the handshake, see clause 4.3.5.
Production of audit containers shall not occur prior to completion of the handshake.

If theaudi t parameter for a context is configured with thevalueaudi t _i nf o, al entitieswith at least read access to
the context may originate audit containers pertaining to application data or alert containersin that context. While the
contents of the audit payload are out of the scope of the present document, they may provide processing hints to
downstream entities for downstream entities, describe actions taken by middleboxes on the associated application data
containers, or provide supplemental information for an alert.

If theaudi t parameter for acontext is configured with thevalueaudi t _t rai | , the meaning is the same as for
audi t _i nf o, with the additional requirement that every middlebox with at least read access to the context shall insert
audit containers for all application data containers associated with the context for which a non-trivial action was taken.
Which actions to consider as non-trivial is application dependent and left oustide the scope of the present document.

EXAMPLE 1: For writer middleboxes, performing insert, modify, or delete could be considered non-trivial
actions.

When originating an audit container, an entity shall:
. setthect xt _i d field of the container header to the context of the associated containers; and
. set the A-bit of thef | ags container header field to 1.

Audit containers shall have areader and writer MAC, but shall not have adeleter MAC. Audit containers shall not be
modified or deleted by middleboxes.

Regarding placement of the audit container, if it pertains to a deleted container, the audit container should be inserted
after the delete indication corresponding to the deleted container. In all other cases, the audit container should normally
be inserted immediately after the container associated with the audit information. However, aslong as the audit
container contains enough information to identify the application data container(s) to which the audit information is
related, its may be originated in the session at any point.

EXAMPLE 2: An audit container could be placed immediately after amodified (or inserted) container or
immediately after adelete indication.

ETSI

26 ETSI TS 103 523-2 V1.1.1 (2021-02)

EXAMPLE 3: An entity could provide processing hints to downstream entities by placing the audit container
ahead of the associated application data container(s).
4.2.3.1.6 Alert containers

Alert containersare Al ert protocol message units that signal error or warning conditions to downstream entities. They
begin to be used in a session as described in clause 4.4.1. Endpoints may originate an alert container in any context, and
amiddlebox shall only insert an alert container in a context to which it has at least read access (which includes at least
context zero). Thect xt _i d field of the container header shall be set to the context to which the alert applies.

EXAMPLE: ctxt _i d =0isused for dertsrelating to the handshake itself.

Alert containers shall have areader and writer MAC, but shall not have adeleter MAC. Alert containers shall not be
modified or deleted by middleboxes.

NOTE 1: Prior to ChangeCGi pher Spec, aert containerswill have zero-length MACs.

The key selection for alert container MACs described in clause 4.2.7.2.2 allows all middleboxes, with any level of
granted context access, to verify the integrity of an alert container and also alows the endpoint(s) to verify the
authenticity.

NOTE 2: By definition, all middleboxes have write access to context zero and are therefore always authorized to
insert Al ert protocol messages/containers associated with context zero. Refer to annex E for security
considerations.

4.2.3.2 Record message units

42321 Handshake message units

A handshake record isaHandshake protocol message unit that contains one or more Handshake messages.
Middleboxes shall not:

. delete or replace Hands hake messages except under the message-specific conditions stated in clauses 4.3.6
and 4.3.7;

. modify parts of Handshake messages added by other entities, except as defined for middlebox discovery in
clause 4.3.2.3; or

. following ChangeCi pher Spec, forward the contents of an inbound handshake record using more than one
outbound record, or combine the contents of more than one inbound handshake record into one outbound
record.

Following ChangeCi pher Spec, handshake records have areader MAC, but do not have a deleter MAC or awriter
MAC, and have a hop-by-hop MAC. Handshake records are always associated with context zero.

42322 ChangeCipherSpec message units

A ChangeCi pher Spec recordisaChangeCi pher Spec protocol message unit that contains one
ChangeCi pher Spec message. There are never any MACs present on a ChangeCi pher Spec record.
4.2.3.3 Middlebox processing summary

A middlebox shall never insert, delete, or modify messages in other protocols than those described in clauses 4.2.3.1
and 4.2.3.2. Table 1 summarizes for each protocol whether containers shall be used and which operations on message
units are allowed.

ETSI

27

ETSI TS 103 523-2 V1.1.1 (2021-02)

Table 1: Middlebox processing summary

Protocol

Use of Containers

Middlebox Modifications or
Deletions Permitted

Middlebox Insertions Permitted

Handshake No

Only under the message-
specific conditions stated in
clauses 4.3.2.3, 4.3.6 and
4.3.7, and via piggy-backing as
described in clause 4.3.1.

Yes

ChangeCi pher Spec |No

No

No

Alert Yes No Yes, for contexts to which at least
read access is granted.

Application Yes Yes, by deleter and writer Yes. Application data containers may
middleboxes but only to non- be inserted by writer middleboxes.
audit containers. Only writer Deletion indication containers may
middleboxes may modifiy a be inserted by deleter middleboxes.
container in other ways than Depending on per-context audit
deletions. configuration, audit containers may
Any middlebox may abort the be inserted by reader middleboxes.
session.

4.2.3.4 MAC usage summary

Table 2 summarizes MAC usage. The value i below refersto the entity identity where a message is currently being
processed, entity i+1 then being the downstream neighbour and dest being the downstream endpoint destination.

RK (c)/DK(c)/WK(c), respectively, denote the reader/del eter/writer key for context ¢, and PK(i,j) denotes the pairwise
key shared only between entity i and j. The sets R(c)/D(c)/W(c), respectively, denote the set of entities with

read/del ete/write access to context ¢. Sequence humber usage in MAC computation isindicated in the SEQ column: G
means that the global, context-independent sequence number is used, and A means that the array of all context-

dependent sequence numbers are used.

Below, aMAC datainput is considered explicit if it is part of the information explicitly carried in the TLM SP message.
A MAC datainput is considered implicit if it isnot carried explicitly in the message. In the last column, MAC author
pertains to the author of the deleter, writer, and hop-by-hop MAC only (the author of the reader MAC isidentical to the

overall author of the message).

RM/DM/WM are used as abbreviations of reader/deleter/writer MAC respectively, and HBH MAC denotes the hop-by-

hop MAC.

The ChangeCi pher Spec protocol is not included since it is never protected as TLM SP does not support

renegotiation.

ETSI

28

Table 2: Summary of MAC usage

ETSI TS 103 523-2 V1.1.1 (2021-02)

MAC S MAC key-usage per TLMSP sub-protocol MAC calculations Explicit data coverage Implicit data coverage
type E (see note 1)
Q |Application Alert Hand- Generation | Verification
Container type shake Record Container info Author | MAC author
Normal Audit Delete-ind Header |Header Data MACs SEQ ID SEQ
fragm RM |DM | WM
(see note 2)
Reader G RK(c) RK(c) RK(c) RK(c) RK(0) W(c), but only R(c) Y Y Y N N N Y n/a n/a
MAC when (see note 3)
creating or
modifying
message unit
Deleter | A DK(c) n/a DK(c) n/a n/a D(c) D(c) Y Y Y Y N N Y Y Y
MAC (see note 4) | (see (see
note note 5)
4)
Writer A WK(c) PK(i,dest) n/a PK(i, dest) n/a W(c), for W(c), for Y Y Y Y N N Y Y Y
MAC application application (see note 4) | (see (see
data data note note 5)
containers, containers, 4)
R(c) for audit |dest for
containers, audit and
and all alert
entities for containers
alert
containers
HBH G PK(i,i+1) PK(i,i+1) PK(i,i+1) PK(i,i+1) | PK(,i+1) All entities All entities Y Y Y Y Y Y Y N Y
MAC (see (see note 4) | (see (see
note note note 6)
7) 4)
NOTE 1: Only entities that are currently participating in the session, see clause 4.3.8.
NOTE 2: The data fragment includes the explicit IV, which in turns always explicitly includes the author's entity ID and implicitly the author's SEQ. Thus, the author identity is always explicitly
included in the reader MAC and the author SEQ is implicitly included.
NOTE 3: Covers the unencrypted plaintext of the payload, before encryption was applied.
NOTE 4: Covers the encrypted value, after encryption was applied.
NOTE 5: Since the author SEQ is input to the reader MAC (2), and the reader MAC is input to this MAC, the author SEQ is implicitly input also to this MAC.
NOTE 6: While the entity ID of the MAC author is neither explicitly nor implicitly included in all cases, the MAC key used is unique to MAC author.
NOTE 7: For records composed of one more containers, the hop-by-hop MAC uses the same global sequence number value as that used by the first container of the record.

ETSI

29 ETSI TS 103 523-2 V1.1.1 (2021-02)

424 Container format

For Appl i cati on and Al er t protocols, the container format shall be defined asin the present clause. The "payload”
(or fragment) part of the container shall have atype that varies depending on whether the content is unprocessed
plaintext, compressed plaintext or protected ciphertexts. Thislast typeisready for submission to the TCP layer.

struct {
uint8 context _id;
uint16 fl ags;
sel ect (flags & 0x8000) { /* Check if I-bit =1 */
case true: struct {
uint8 e_id;
select (flags & 0x4000) { /* Check if Dbit =1 */
case true: struct {
uint8 src; /* originator of delete nessage units */
uint1l6 del _c; /* delete count */

case fal se: ’struct {}; /[* enpty */

} mi hfo;
case false: struct { }; /* enmpty */

}
uint16 | ength;
sel ect (TLMSP_internal _layer) {
case TLMSPPI ai nText: opaque;
case TLMSPConpressed: opaque;
case TLMSPC pher Text: Cont ai ner edFragment;
} fragnent;
} Contai ner;

The value of | engt h shall bethe octet length of f r agnent .

4.2.5 Plaintext record format

The plaintext record shall be defined asin the present clause:
opaque Hopl D<O0. . 16>;

struct {
Cont ent Type type;
Pr ot ocol Ver si on version;
uint1l6 tot_Ilength;
select (tlnsp_server_support_confirned) {
case true: Hopl D hbh_id;

case false: struct { }; /[* enpty */
h
select (type) {
case 0x15, 0x17: /* Application, Alert */
Cont ai ner containers[tot_length - 4];
case 0x14, 0x16: /* ChangeG pher Spec, Handshake */

opaque fragment[tot_length - tlmsp_server_support_confirnmed ? 4 : 0];

}s
} TLMSPPI ai nText ;

Prior to the confirmation of server support of TLMSP, t ot _| engt h isthe length of f r agnment for al protocols.

Following the confirmation of server support of TLMSP, for the Appl i cat i on and Al ert protocols,t ot _| ength
isthelength of hbh_i d plusthetotal length of all the containers and can be calculated as:

tot length =1 + length(hbh_id) +
>[5 + c.length + ((c.flags & 0x8000) ? 1 : 0) +
((c.flags & 0x4000) ? 3 : 0)]

wherel engt h(hbh_i d) is number of octets of hbh_i d indicated by its encoded length, and the sum is taken over
al the containers, ¢, inthe cont ai ner s vector, and for the ChangeCi pher Spec and Handshake protocols,
tot _| engt hisoneplusl engt h(hbh_i d) plusthe length of f r agnment .

NOTE: Thisensuresthat the header part (t ype, version, tot_| ength)iscompatible onrecord-level
with that of IETF RFC 5246 [1].

ETSI

30 ETSI TS 103 523-2 V1.1.1 (2021-02)

4.2.6 Compressed record format

The present document does not specify use of compression for reasons discussed in annex H and any proposed
compression method other than nul | shall be rejected by the TLM SP version defined herein. However, for possible
future extensions, a compressed record format is defined in the present clause:

struct {
Cont ent Type type;
Pr ot ocol Versi on version;
uint16 tot_| ength;
sel ect (tlmsp_server_support_confirmed) {
case true: Hopl D hbh_id;
case false: struct { }; /[* enmpty */

H
select (type) {

case 0x15, 0x17: /* Application, Alert */
Cont ai ner containers[tot_|length - 4];
case 0x14, O0x16: /* ChangeG pher Spec, Handshake */

opaque fragment[tot_length - tlmsp_server_support_confirmed ? 4 : 0];
b
} TLMSPConpr essed;

Thisisidentical in structure to TLMSPPI ai nt ext . The difference isthat the contents of f r agnent , or the contents
of each container'sf r agnent , depending on the protocol, have been been compressed, which will be reflected in their
corresponding length values.

Thevaluet ot _I engt h can be computed using the same approach as for the TLMSPPI ai nt ext structure defined in
clause 4.2.5.

4.2.7 Applying message unit and record protection

4271 General

AsinTLS1.2[1], therecord layer of TLMSP is generally responsible for applying data protection to the sub-protocols
forming the complete TLM SP protocol-suite (the Handshake, ChangeCi pher Spec, Al ert, and Appl i cati on
protocols). In TLMSP, the protection applied at the record layer can conceptually be viewed as composed of four
sub-layers: reader layer, deleter layer, writer layer, and forwarding/record layer, applied in that order, using different
keys. The reader layer applies encryption and integrity protection, whereas the other layers only apply integrity
protection. The result of thislayering isthat for payload protection, up to three additional MAC values are typically
added to the basic reader layer integrity protection, creating up to four MAC valuesin total. The exact details of which
MACsto add are defined in clause 4.2.3 and how to compute them is defined in clause 4.2.7.2.

The protected record format shall be:

struct {

Cont ent Type type;

Pr ot ocol Ver si on versi on;

uint1l6 tot_Ilength;

Hopl D hbh_i d;

sel ect (type) {

case 0x15, 0x17: struct { /* Application, Alert */

Cont ai ner cont ai ner s[TLMSPConpr essed. t ot _| engt h-4];
opaque hop_by_hop_mac[Securi t yParanet ers. nac_| engt h] ;

case 0x1’4: /* ChangeG pher Spec */
opaque fragment [TLMSPConpr essed. t ot _| engt h-4];
case 0x16: struct { /* Handshake */

opaque fragment[TLMSPConpressed. tot_| ength-4];
opaque hop_by_hop_mac[SecurityParaneters. mac_| engt h] ;

}s
} TLMSPG pher Text ;

ETSI

31 ETSI TS 103 523-2 V1.1.1 (2021-02)

wherethe cont ai ner s field shall be the result of applying the selected TLM SP cipher suite to the corresponding
TLMSPConpr essed. cont ai ner s, on aper-fragment basis. For ChangeCi pher Spec and Handshake
protocols, containers shall not be used and the f r agment data shall be of the generic type Fr agnment , which is
defined in a cipher-suite dependent way, as follows:

sel ect (SecurityParaneters. cipher_type) {

case stream Generi cSt reanCi pher;
case bl ock: Generi cBl ockG pher;
case aead: Gener i cAEADG pher ;

} Fragnent;

NOTE: Theformat of aFr agnment isbackward-compatible with the format for TLS fragments[1]. In particular,
the TLMSP reader MAC can be identified with the MAC vaue included in the output format of one of
the three generic formats.

When the fragments are part of a container (Appl i cat i on and Al er t protocols) they shall be of type
Cont ai ner edFr agnent , defined as:

struct {
Fragnent c_fragnent [TLMSPG pher Text.container.length]; /* Incl. reader_nac, |V, padding */
[opaque del et er _mac[SecurityParaneters. mac_| ength] ;]
[opaque writer_mac[SecurityParaneters. mac_| ength];]

} Cont ai ner edFr agment ;

The value of TLMSPCi pher Text . t ot _| engt h shall be computed by adding the following terms:
. The length of hbh_i d (including its encoded length field).

. The sum of the per-container values:

- TLMSPCi pher Text . cont ai ners. | engt h, which shall be calculated asin clause 4.2.7.2.2

(including the container header and fragment size, in particular the sizes of the IV, any possible padding,
and the reader MAC).

- The sum of the sizes of: writer MAC (see clause 4.2.7.2.2) if present, deleter MAC (see clause 4.2.7.2.2)
if present.

e Thelength of the hop-by-hop MAC (clause 4.2.7.2.3).
4.2.7.2 MAC generation

42721 General
An overview of the MACs used for message units and recordsis provided in clause 4.2.2.2.

For AEAD ciphers such as GCM, the integrity mechanism included in the cipher mechanism shall be used as the reader
MAC. Thereader MAC value shall for Appl i cati on and Al ert protocols be included inside the

TLMSPCi pher Text . cont ai ners. fragnent. c_fragnment field, or otherwise, inthef r agnment field of the
message, in the sameway MACs areincluded in TLS 1.2 [1].

42722 Reader, deleter and writer MACs

42.7.22.1 Container message units

For protocolsthat use containers (Al ert and Appl i cat i on), the MAC generation schemes defined in the present
clause shall be used.

For generic stream and block ciphers (using a standalone MAC), for each
TLMSPConpr essed. cont ai ners. f ragnent the corresponding reader and writer MAC values shall be
computed as follows:

MAC(mac_key, mac_input);

ETSI

32 ETSI TS 103 523-2 V1.1.1 (2021-02)

where:
mac_i nput = seq_num || TLMSPConpressed. containers.flags ||
[TLMSPConpr essed. contai ners. minfo] ||
length || data || [e_id]
wherein turn:

MAC shall be the message authentication algorithm of the selected cipher suite.

mac _key shall in all cases be the reader key for the reader MAC. For the deleter and writer MAC, there are
two cases. For Appl i cat i on protocol containers that are not audit containers, the key shall be the deleter
and writer key, respectively. The key used for the reader, deleter, and writer MACs shall furthermore be the
one applicable for the current context (asdefined by i = TLMSPConpr essed. cont ai ner. ct xt _i d)
and for the direction of transmission/reception.

EXAMPLE: Thermac_keyisclient _to_server_witer_mac_key i (definedin clause 4.3.10.5) for

awriter MAC on an application data container related to context i in the client-to-server direction,
computed by an entity with write access.

For Appl i cat i on protocol audit containers, and, for Al er t protocol containers, the key for the
writer MAC shall be the (context-independent) MAC key shared only with the destination end-
point, i.e. correspondingtoel_t o_e2_mac_key, asdefined in clause 4.3.10.4, where e2 isthe
destination end-point. There shall be no deleter MAC for these type of messages.

seq_num shall be as determined in clause 4.2.2.3, specifically, with n_ct xt being equal to the total number
of contextsin the session:

- for areader MAC:
" when generating: thevalueseq_t x;
" when verifying: thevalue seq_r x[k] , wherek isthe MAC author.
- for awriter or deleter MAC:
L] when generating: seq_num = seq_tx_C[0] || seq_tx_C[1] || ... || seq_tx_C[n_ctxt-1];

" when verifying: seq_num = seq_rx_C[K][O] || seq_rx_C[K][1] || ... || seq_rx_C[K][n_ctxt-1], where
k isthe MAC author.

length shall be a 16-bit unsigned integer and:

- when computing areader MAC value, it shall be assigned the value
LR = TLMSPConpr essed. cont ai ners. | engt h;

- when computing a deleter or writer MAC value, it shall be assigned the value
LW= LR + SecurityParanmeters.record_iv_|length +

SecurityParanet ers. paddi ng_l ength + SecurityParamneters. nac_I| engt h with
LR as above.

data shall be:
- when computing the reader MAC: TLMSPConpr essed. cont ai ners. f ragnent ;

- when computing the deleter MAC: TLMSPCi pher Text . cont ai ners. fragnent. c_fragnent,
(which includes the 1V, padding and the reader MAC);

- when computing the writer MAC: TLMSPCi pher Text . cont ai ners. fragnent . c_f ragnent
(which includes the inputs same as the deleter MAC, but not the deleter MAC itself).

the optional entity ID, e _id, shall be the entity 1D of the MAC author and shall be present only when
computing or verifying the deleter and writer MAC.

ETSI

33 ETSI TS 103 523-2 V1.1.1 (2021-02)

Thereader MAC is calculated based on the compressed plaintext, before encryption. However, the deleter and writer
MAC shall be calculated based on the result after reader security processing. Thus, the value of

TLMSPCi pher Text . cont ai ner s. | engt h shall be updated after adding the reader MAC and performing other
security processing to include the lengths of the IV, any possible padding, and the reader MAC itself. This updated
length value is used asinput, LW to the deleter and writer MAC. However, the value of

TLMSPCi pher Text . cont ai ners. | engt h shall not be further updated after calculating and appending the
deleter and writer MAC.

NOTE: InTLS, the sequence number isthe first input to the MAC. For TLM SP sub-protocols that use containers,
the sequence number varies for each container. Therefore, placing seq_numas the fourth input allows
the threefirst input fields to be a fixed prefix for all containersincluded in the record.

For AEAD transforms, following the AEAD interface specification of [4], the plaintext input, P (to be encrypted and
authenticated), shall consist of the dat a value as defined above. The so-called Additional Authenticated Data, AAD,
(not to be encrypted) shall in the case of reader MAC consist of:

AAD = seq_num || TLMSPConpressed. containers.flags ||
[TLMSPConpr essed. contai ners. minfo] || |ength,

and for the writer and deleter MAC, AAD shall be the sameasnac_i nput .

The actual computation of stand-alone MAC values (i.e. other than thefirst reader MAC) is, in the case of AEAD,
transform-dependent. MACs of AEAD transforms may also require an IV. See clause A.3.2 for the pre-defined AEAD
transform.

42.7.2.2.2 Record message units

For message units that do not use the container format, only reader MAC values shall be computed, and the details of
clause 4.2.7.2.2.1 shall apply with the following changes.

The input shall be:

mac_i nput = seq_num || TLMSPConpressed.type || TLMSPConpressed. version ||
TLMSPConpr essed. tot _| ength || TLMSPConpressed. hbh_id ||
TLMSPConpr essed. f ragnent

NOTE: A zero-length TLMSPConpr essed. hbh_i d ispresent as a one-octet length-indicator (having the
value zero).

When using AEAD transforms, the AAD, (not to be encrypted) shall consist of:

AAD = seq_num || TLMSPConpressed.type || TLMSPConpressed.version ||
TLMSPConpressed.tot | ength || TLMSPConpressed. hbh_id

42.7.2.3 Hop-by-hop MAC
This MAC shall cover the entire record excluding the hop-by-hop MAC itself.

Each entity maintains a concept of who its upstream neighbour and downstream neighbour are for each direction of
communication (client-to-server and server-to-client). In a given direction, an entity's upstream neighbour is the next
middlebox upstream who is participating (see clause 4.3.8.2.2 for the notion of participating). If thereis no such
middlebox, the upstream neighbour is the upstream endpoint (or is non-existent if the entity is the endpoint that
transmitsin that direction). Likewise, that entity's downstream neighbour is the next middlebox downstream whose
current state is participating. If there is no such middiebox, the downstream neighbour is the downstream endpoint (or is
non-existent if the entity is the endpoint that receivesin that direction).

When generating a hop-by-hop MAC for arecord that is prepared to be transmitted, an entity shall use the pairwise key
it shares only with its current downstream neighbour (with neighbour as defined above), and derived via the definitions
of clauses 4.3.10.3 and 4.3.10.4 (for non-AEAD transforms, theel t o_e2 mac_key shall be used between
transmitting entity e1 and downstream entity e2).

ETSI

34 ETSI TS 103 523-2 V1.1.1 (2021-02)

Similarly, when verifying a hop-by-hop MAC for arecord being received, an entity shall use the pairwise key it shares
with its current upstream neighbour (for non-AEAD transforms, theel t o_e2 nmac_key shall be used between
upstream entity el and receiving entity e2).

The processing shall be asin clause 4.2.7.2.2.1 with the following changes.

The MAC input shall be:

mac_i nput = seq_num || TLMSPC pher Text.type || TLMSPC pher Text.version ||
TLMSPCi pher Text . tot _l ength || TLMSPG pher Text. hbh_id ||
record_payl oad

NOTE: A zero-length TLMSPCi pher Text . hbh_i d is present as a one-octet length-indicator (having the
value zero).

where seq_numis chosen asfor reader MACs, and wherer ecor d_payl oad is
TLMSPC pher Text . cont ai ner s when the record is composed of one or more containers, and
TLMSPCi pher Text . f ragnment otherwise. The hbh_i d istheidentity chose by the sending entity.

4.2.7.3 Cipher suite specifics

42.7.3.1 General

All TLMSP cipher suites shall use an initialization vector explicitly carrying at least the one-octet entity identity of the
middlebox that generated or most recently modified the message. The selected encryption 1V shall, for the pre-defined
cipher suites, follow the definitions of annex A.

For protocols using containers, the selected cipher converts TLMSPConpr essed.cont ai ner s. f ragnment
structures to and from TLMSPCi pher Text .cont ai ners. fragment . c_f ragment structures, and for protocols
not using containers, converts TLMSPConpr essed. f ragnent to TLMSPCi pher Text . f ragnent .

The structures for enciphered data are defined for each type of cipher in the following clauses. In these clauses,
cont ent _| engt h refersto:

e thelength of the corresponding TLMSPConpr essed. cont ai ner s. f ragnment , for protocols that use
containers, and

. the length of the corresponding TLMSPConpr essed. f r agnent , for protocols that do not use containers.

If the cipher suiteis TLIMSP_NULL_W TH _NULL_NULL, then security processing consists of the identity operation
(i.e. the datais not encrypted and the MAC length is zero for reader and writer MACs). If a cipher suite of type
TLMSP_X W TH_NULL_Y isused, where X and Y are any non-null cryptographic transforms, then the data shall not
be encrypted, but areader MAC of non-zero length shall be present, and depending on the MAC algorithm, potentially
also anonce.

4.2.7.3.2 Null or stream cipher

In contrast to TLS, al TLMSP stream ciphers shall use an explicit 1V. This allows middleboxes to modify/insert/del ete
containers.

struct {
opaque | V[SecurityParaneters.record_iv_|ength];
stream ci phered struct {
opaque content[content_| ength];
opaque reader_mac[SecurityParaneters. mac_| ength];

b
} GenericStreanGi pher;

Thel Vand ther eader _mac shall be created prior to encryption. The encryption shall then be performed, using the
stream cipher to encrypt the cont ent andther eader _mac asdefined in IETF RFC 5246 [1].

ETSI

35 ETSI TS 103 523-2 V1.1.1 (2021-02)

The length of Generi cSt r eanCi pher is:

SecurityParaneters.record_iv_length + content_length +
SecurityParanet ers. mac_I engt h.

42.7.3.3 Generic block cipher

struct {
opaque | V[SecurityParaneters.record_iv_|ength];
bl ock- ci phered struct {
opaque content[content_| ength];
opaque reader_mac[SecurityParaneters. mac_| ength];
ui nt 8 paddi ng[paddi ng_I| engt h] ;
ui nt 8 paddi ng_| engt h;

} Ge%ieri cBl ockGi pher;

Thepaddi ng and paddi ng_I| engt h shall be as specified in clause 6.2.3.2 of IETF RFC 5246 [1].
Thelength of Generi cBl ockCi pher is:

SecurityParaneters.record_iv_length + content _length +
SecurityParanmeters. mac_|l ength + padding length + 1.

4.2.7.3.4 AEAD ciphers

The AEAD transform defined in the present document use a combination of explicitly signalled and locally derived
valuesto form the IV.

struct {

opaque nonce_explicit[SecurityParanmeters.record_iv_|ength];

aead- ci phered struct {

opaque content[content_length + D + SecurityParaneters. mac_| ength];

b
} Generi cAEADG pher ;
Thereader MAC isincluded inthecont ent field directly by the AEAD transform, see TLS 1.2 (IETF RFC 5077 [2]),
clause 6.2.3.3. The value D corresponds to padding and other overhead added by the AEAD transform in use.

Thelength of Gener i cAEADCI pher is:

SecurityParaneters.record_iv_length + content_length + D +
SecurityParaneters. mac_| engt h.

4.3 The Handshake protocol

4.3.1 Overview

43.1.1 General

The cryptographic parameters of the session state are produced by the TLMSP Handshake protocol, which operates
on top of the TLM SP record layer. When a TLM SP client and server first communicate, they agree on a protocol
version, the number of contexts and their purpose(s), the middlieboxes' granted access privilege level, and the
cryptographic algorithm suiteto use. The TLMSP Handshake protocol generally involves the following steps (asin
standard TL S, certain steps, marked by * in Figure 6 may be omitted if the information is aready known):

o Exchange of:

- Hello messages to establish which contexts to use, propose agorithms and middleboxes, random values,
authentication methods, and possible indications of session resumption.

- Certificates (or other credentials) and cryptographic information to alow the client, server and
middleboxes to authenticate themselves.

ETSI

36 ETSI TS 103 523-2 V1.1.1 (2021-02)

- Necessary cryptographic parameters. The server chooses one cipher suite that liesin the intersection of
those supported by the client and the server. Since, except for manipulations of extensionsto the
i ent Hel | o, middleboxes shall typically not engage in the handshake before observing the
Ser ver Hel | o, the server should be pre-configured with knowledge of the cipher suite support of al
the middleboxes in the middlebox list and choose a secure cipher suite in the intersection of those
supported by also all middieboxes. Alternatively, the server may propose a secure and mandatory-to-
support cipher suite.

e Agreeon keys shared between the client and server endpoints and between middleboxes and endpoints.
. Mutual authorization of middlebox access privilege levels by providing key-shares from both client and server.

e Allow entitiesto verify that their peer(s) have calculated the same security parameters, including the list of
middleboxes and their respective permissions requested, and that the handshake occurred without tampering
by unauthorized parties.

The TLMSP handshake shall use a TLM SP extension added to the Hel | 0 messagesin the TLS handshake to agree on
the authorized middleboxes and the contexts. An additional Handshake message, TLMSPKeyMat er i al , shall be
used to grant access rights to amiddlebox by sending the necessary contribution(s) for that middiebox to derive the
corresponding cryptographic keys.

Each middlebox shall receive such a contribution from both client and server to grant a particular accessright to a
particular context; knowledge of a contribution from only one endpoint does not weaken the level of security of the end-
to-end agreed session. The client and server shall send a TLMSPKey Mat er i al message to each middlebox
participating in the connection. A contribution shall not be present in the message destined to a particular middlebox if
the endpoints agreed to withhold the corresponding access permission to the context from the middlebox. Each
middlebox shall transform the TLMSPKey Mat er i al message destined to it into a TLMSPKey Conf message before
forwarding it to the next entity in order to provide the endpoints with key confirmation, i.e. providing cryptographic
proof to an endpoint that all middleboxes have received their shares from the other endpoint, before the data session
gtarts. This prevents an endpoint from unilaterally removing a priori agreed access rights from a certain middlebox.
TLMSP shall also add cryptographic verification messages (Moox Fi ni shed) of the handshake with each middlebox.

Until the first ChangeCi pher Spec message, there shall only be the single context with thereservedct xt _id = 0
in use, which at that point shall not use any protection (the cipher suite shall be TLIMSP_NULL_W TH_NULL_NULL).
Application data shall not be sent until after the associated contexts have been agreed and the handshake has fully
completed. After this, a cipher suite with anon-NULL integrity algorithm shall always be selected. The currently
defined cipher suites are defined in annex A. Handshake and ChangeCi pher Spec messages shall not be
transmitted in any other context than context zero.

The signalling diagram below assumes that the middlebox configuration and discovery of clause 4.3.2 has been
completed and that the server supports TLM SP, which it shall indicate by inserting the TLM SP extension, TLMSP
(including middlebox list, L), intoits Ser ver Hel | o as acknowledgement of the presence of the same extension in the
Cl i ent Hel | 0. When this extension is absent, the fallback mechanisms of clauses C.1 or C.2 may be used.

CLI ENT M DDLEBOX 1 - M DDLEBOX N SERVER

AientHell o(TLMSP(L))
------------ R D G e e e
Server Hel | o(TLMSP(L))
Certificate*
Certificat eRequest*
TLMSPSer ver KeyExchange
Server Hel | oDone

R O------------- O--------mmmo - [e T T
MooxHel | o
MooxCertificate**
<MooxCerti fi cat eRequest *
<MyoxKeyExchange>
MooxHel | oDone
S O------------- O-------------- R R e R >
MooxHel | o

MooxCertificate**
<MooxCerti fi cat eRequest *
<MooxKeyExchange>
MooxHel | oDone
S O-----mmmmmm Xemmmmmmmm e (R R >

ETSI

37 ETSI TS 103 523-2 V1.1.1 (2021-02)

MooxHel | o
MooxCertificatex*
<MooxCertificat eRequest*
<MoxKeyExchange>
MooxHel | oDone
R Xemmmmmmm o O--------mmmo - [T >

Certificate2Mox[M] *
Certificate2Mox|[.]*
Certificate2Mox[WMn] *
Certificate*
C i ent KeyExchange
CertificateVerify*
CertificateVerify2Mox[M]*
CertificateVerify2Mox[.]*
CertificateVerify2Mox[Mn]*
———————————— (o e L o e T T

TLMSPKeyMat eri al [C, ML] TLMSPKeyConf [ML]

------------ R e L o
TLMSPKeyMat erial [C, .} TLMSPKeyConf [..}

———————————— (o D G o e T T
TLMSPKeyMat eri al [C, Mn] TLMSPKey Conf [Mn]

------------ [e L
TLMSPKeyMat erial [C, S]

———————————— (o e L e e T

TLMSPKey Conf [Mn] TLMSPKeyMat eri al [S, Mn]

R [O------mmmmmm - O e T T
TLMSPKeyConf [.] TLMSPKeyMaterial [S, .]

o O------------- Xemmmmmmmm oo O------mmmmm oo
TLMSPKey Conf [ML] TLMSPKeyMat eri al [S, ML]

R R O--------mmm- - [TR
TLMSPKeyMat eri al [S, C]

S O------------- O-------------- O------mmmmm oo

ChangeC pher Spec
Fi ni shed
------------ [e S ¢ B

MooxFi ni shed[C, ML] MooxFi ni shed[ML, S]

------------ D e L T T
MooxFi ni shed[C, ..] MooxFi ni shed[.., §]

------------ [D G o e T b
MooxFi ni shed[C, Mh] MooxFi ni shed[Mh, §]

------------ (o e R T

ChangeCi pher Spec

Fi ni shed
S O------------- O-------------- [R T TR

MooxFi ni shed[Mh, C] MooxFi ni shed[S, Mh]
S O------------- O-------------- O R T TR

MooxFi ni shed[.., C] MooxFi ni shed[S, .]
R O------------- Xemmmmmmmm o O---mmmmmmm e

MooxFi ni shed[ML, C] MooxFi ni shed[S, ML]
S Xeommmmmmom - O-------------- (o R T TR

Application Data Application Data
R Xeommmmmmom - Xemommmmm oo O L R >

Figure 6: Handshake, optional messages are suffixed by *,
messages which could occur in zero, one, or two directions are suffixed by **

In Figure 6, x indicates that the middlebox inserts data and forwards the message; o indicates the middlebox is able to
read/process content, but does not modify it, and then forwards the contents. A Handshake message may always be
sent as a standal one handshake record, and where possible may instead be sent piggy-backed according to

clause 4.3.1.2.

For middleboxes, their MooxHel | o, MboxCerti fi cat e, MooxKeyExchange and MooxHel | oDone messages
may be sent piggy-backed toward the client, but shall be sent beginning with a new record toward the server. Also,
these messages shall have identical content both when sent to the server and to the client.

If sent, the MooxCerti fi cat eRequest shall be sent or piggy-backed only towards the client. When used,
MooxCerti fi cat eRequest reguests client authentication by a middlebox.

ETSI

38 ETSI TS 103 523-2 V1.1.1 (2021-02)

The MboxCerti fi cat eRequest definedin clause 4.3.6.3 can be sent independently of whether the server sends a
Certificat eRequest . Moreover, the client can in response provide different certificates to different middlieboxes.
For each middlebox to which the client sends a certificate, the client shall also send (or piggy-back) a
CertificateVerify2Miox message asdefined in clause 4.3.6.7.

NOTE: From Figure 6, it can be seen that TLM SP uses a special TLMSPSer ver KeyExchange instead of the
standard Ser ver KeyExchange in TLS[2]. Additionally, the order between
Certificat eRequest andthekey exchangeisreversed compared to TLS. This enables
authentication of the certificate requests and protects against unauthorized harvesting of the client's
certificate, see clause 4.3.10.1 for details.

The optional piggy-backing is described in more detail in clause 4.3.1.2. TLMSPKeyMat eri al [M] denotesa
message containing middlebox key shares from an endpoint directed to middieboxM and TLMSPKey Conf [M]
denotes a middlebox's key confirmation message from middiebox ei to an endpoint. As seen, these are piggy-backed
(and aggregated) into forwarded TLMSPKeyMat er i al messages. MboxFi ni shed[ei , ej] isaverification
message of the handshake exchanges dependent on messages previously exchanged between (or available to) both
entitiesei and ej , except when bothei and ej are middieboxes, in which case no MboxFi ni shed[ei , ej]
message shall be present. For messages originating at a middiebox and potentially sent to both endpoints, messages
prefixed by < (or suffixed by >) are sent only in the indicated direction. Messages embraced inside <...> are sent in
both directions, but possibly with different content. Middlebox messages shown above bi-directional signalling arrows,
but without any of these angle-brackets, are sent in identical copies to both endpoints.

For the definition of the Handshake protocol, message structures that are not defined in the present document shall be
as defined in and unchanged from structures of the same namein clauses 7.3 and 7.4 of IETF RFC 5246 [1].

The signalling flow of Figure 6 should be followed since it has the property that no middlebox starts to send messages
until after the Ser ver Hel | oDone has been observed. It is only at this point that al entities can be assured that the
server really supports TLMSP so that none of the fallbacks of clause C.1 or C.2 are necessary. Also, itisonly at this
point that all entities know whether any additional middleboxes could enter into the session via dynamic discovery as
defined in clause 4.3.2. If amiddlebox has started to send messages before the above knowledge has been obtained,
thereisin general no guarantee that the handshake succeeds. Nevertheless, clause C.3 describes an aternative flow
which is useful in some scenarios and may be used when it is known that the first on-path middlebox has certain
features, see clause C.3 for details. A general exception to this ruleis that middieboxes may add or manipulate TLM SP-
specific extensions provided inthe Cl i ent Hel | o0, see clause 4.3.2 and clause C.2. Thisis safe since the server
ignores unknown extensions.

4312 Piggy-backing of handshake messages

Piggy-backing intuitively means that a middlebox appends a Hands hake message with itself as origin to an already
in-transit record comprising aHandshake message that originates from an upstream endpoint. More formally, the
piggy-back of handshake information by middleboxes shall be done as follows.

Assume without loss of generality that a middliebox, MBa, wishes to piggy-back information in a message from server
to client, such asin the server'sresponse to the Cl i ent Hel | 0. This server messageisin current TLS implementations
and typically consists of several individual messages combined into one record R:

whereMlisaServerHel | o,M2isaServerCertificate, M3isaServer KeyExchange and M4 isa
Ser ver Hel | oDone. Type will have the value 0x 16, identifying the message(s) as belonging to the Handshake
protocol. The message M1 has the form:

e R S T ~+
| nsg_type | length | nessage data |
e TS T ~+

wherensg_t ype = 0x02, signifyinga Server Hel | 0. Similar sub-structures are used for M2, M3 and M4,
each with a distinguishing MSG t ype.

ETSI

39 ETSI TS 103 523-2 V1.1.1 (2021-02)

Suppose MBa wishes to piggy-back aMboxHel | o (MH) by appending it into R. To thisend, MBashall create a new
record, R', asfollows:

wheret ot _| engt h shall have been increased by the length of MH and where VH shall follow the format of a
MooxHel | o asdefined in clause 4.3.6. In particular, IVH shall have format

e R U ~+
| msg_type | length | nessage_data |
e E SR SR ~+

wherensg_type = 0x28 (MboxHel | 0) and| engt h iscalculated in accordance with the total data length.

The format of MboxHel | o and other middlebox specific Handshak e messages specifies that the first part of
nmessage_dat a isthe middlebox ID. Thisway, identification of which middlebox that performed the piggy-backing
is straightforward at the receiving endpoint. Also, the original content (from the server) is easily identified due to
having distinct msg_t ype valuesin M1-M4 which are never re-used by a middiebox-originated Handshake

message.

It is also straightforward for amiddiebox MBato piggy-back further messagesinto R (appending them at the end of the
record). Also, it is straightforward for a second middlebox, MBDb, to perform further piggy-backing, by appending to the
record R' produced by MBa. A middlebox that piggy-backs a message part to a protected handshake record shall re-
calculate the single (reader) MAC value. This MAC value shall be based on the new (increased) total record length
value. The middiebox shall then re-encrypt the record, setting itself as author (viathe entity 1D in the V).

Use of piggy-backing shall be optional and when used, shall be according to the following principles:
a) Piggy-backing shall not be applied to messages occurring after ChangeCi pher Spec.

b) Piggy-backing shall not be performed if it resultsin data of atotal length that needs to be split into two or
more records. Instead, a new, separate record aligned with the start of the new message shall be generated.

c) Piggy-backing shall only affect the record into which piggy-backing is performed.
d) Piggy-backing shall be append-only as described above.

NOTE: Thereplacement of aTLMSPKeyMat er i al message with a corresponding TLMSPKey Conf message
described in clause 4.3.7.3 is not considered to be piggy-backing, nor is the replacement of an
MooxFi ni shed message from an endpoint to a middlebox with the Moox Fi ni shed message from
that middlebox to the other endpoint described in clause 4.3.6.10.

4.3.2 Middlebox configuration, discovery

4321 General

This clause describes alternatives of how to configure or establish the M ddl eboxLi st with the complete set of
middleboxes. There are two main cases. static pre-configuration and dynamic discovery.

Static pre-configuration shall be supported. Dynamic discovery should be supported.

For the purpose of discovery, theM ddl eboxLi st inthe TLMSP extension of theCl i ent Hel | o shall contain at
least one but may also contain two lists of middieboxes. The first list, denoted m _i , shall always be present and shall
include those middleboxes a priori known to the client: via static pre-configuration, due to dynamic discovery of
middleboxes during previous TLM SP sessions, or, combinations thereof. The order of the middleboxesinm _i shall
be according to the overall network topological order and each middlebox shall occur only onetimein thelist.

NOTE 1: Nothing precludes that the same physical server hosts two or more virtual middlebox functions.

ETSI

40 ETSI TS 103 523-2 V1.1.1 (2021-02)

If, and only if, middleboxes are dynamically discovered (and accepted), thisshall resultinanew C i ent Hel | 0 as
described below. The TLMSP extension of thissecond Cl i ent Hel | o shall contain two lists of middleboxes: an
identical copy of m _i asabove, followed by asecond list, M _d, containing also middleboxes that were dynamically
discovered.

NOTE 2: This creates cryptographic binding to the set of middleboxes that were initially proposed. Thisis obtained
viainclusion of the original list in the Fi ni shed verification hash of the second handshake.

Thelists m _i and m _d shall contain all middleboxes (including also dynamically discovered ones) according to the
overall network topological order.

4322 Static pre-configuration

In the case of static pre-configuration, the client shall be manually pre-configured with the complete set of middleboxes
asper theM ddl eboxLi st defined in clause 4.3.5. The list shall be arranged in network-topological order and each
middlebox in the list shall occur only once. All the middleboxesin theinitial list shall havethei nsert ed field set to
"static".

NOTE: Itisleft to the implementation to add robustness in the form of "loop avoidance” among the middleboxes,
i.e. to detect if one and the same middlebox occursin several places of thelist.

The client shall have obtained the | P address of the first-hop middlebox. How thisis obtained is out of scope of the
present document. Each middlebox shall know or shall be able to obtain the | P address of the next-hop middlebox and
the last middlebox shall also be able to obtain the | P address of the server. How thisis doneis out of scope of the
present document.

EXAMPLE: IP address retrieved by DNS lookup of the middlebox address (name) field.

The client shall initiate the handshake by sending the Cl i ent Hel | o including the TLMSP extension (including a

M ddl eboxLi st) to the first middiebox. Before each entity (including the client itself) forwardsthe Cl i ent Hel | o
to the next entity, it shall setthepr evi ous_entity_i d field of themiddiebox listtoitsownentity_id, for
usage as described in clause 4.3.2.3.3. The process shall be repeated at each middlebox, setting up atransport
connection with the next middlebox, until atransport connection is eventually established between the last middlebox
and the server. Messages from server to client shall be handled in the reverse network-topological order, viathe
middleboxes.

When the server receives the client's middlebox ligt, it shall decideif to authorize the proposed middleboxes and also
their suggested access privilege level to various contexts. If a middliebox cannot be authorized by the server, the server
may reject the session, or, respond with a subset of the client's proposed middleboxesin its own middlebox list, and it is
then up to the client how to proceed. Optionally, the server may return a middiebox list to the client, with the attribute

f or bi dden set for this middlebox as described in clause 4.3.2.3.2, indicating that the client should not include this
middlebox on future sessions.

4.3.2.3 Dynamic discovery

43231 General
In this case, the client and/or server does not know all middleboxes to be potentially involved in the connection.

EXAMPLE: One of the known (pre-configured asin clause 4.3.2.2) middleboxes or the server can request that
one or more additional client-unknown middleboxes are added to the M ddl eboxLi st .
Additionally, atransparent middlebox can request its own addition. To do this, the client uses
dynamic discovery.

It isat the discretion of the endpoints whether to accept additional middleboxes that were not statically pre-configured.
There are two sub-cases to consider: non-transparent and transparent middleboxes, referring to whether the middleboxes
are directly visible on the IP layer.

If adynamically discovered middlebox isrejected, it may beincluded inthem _d list, withthei nser t ed attribute
set to "forbidden”. This allows verification of the rejection without granting privileges to the rejected middlebox.

ETSI

41 ETSI TS 103 523-2 V1.1.1 (2021-02)

When an additional dynamically discovered middliebox is proposed (by the middlebox itself or the server), the
corresponding entry in the middlebox list extension shall be populated by information about which contexts the
middlebox isto be authorized to access.The functionality provided by the middlebox shall be populated into the
pur pose field of extension, as defined in clause 4.3.5.

Discovery of transparent and non-transparent middleboxes may be combined with each other as defined in
clause 4.3.2.4.

If additional middleboxes are dynamically discovered asthe Cl i ent Hel | o propagates toward the server, the list of
(proposed) middleboxes received at the server will differ from the list originally included by the client. If it turns out
that the server does not support TLM SP, the client may chose to accept fallback to TL S by one of the mechanisms
defined in annex C. Thisfallback would encounter problemsif the client's list of which middlieboxes to include does not
agree with that received at the server (for example, the computation of the Fi ni shed verification hash would fail).
Therefore, the first middlebox to detect the server's non-support for TLMSP, i.e. the middlebox closest to the server,
shall send aHandshake message of type Ser ver Unsupport and shall include, intheni ddl ebox_i nf o field,
the complete list of middlieboxes that it previously forwarded to the server, see clause 4.3.6.9. Other middleboxes shall
just forward this message unless they consider it to disagree with their own view of which middleboxes that took part of
the discovery, in which case such middiebox may additionally send itsown Ser ver Unsupport message. Thisallows
the client both to compute the correct Fi ni shed verification hash, as well as to make a decision on whether to accept
the additional middleboxes to take part in a TLS fallback.

It isagain left to implementation to add robustness in the form of "loop detection" during dynamic discovery.

Asdefined in clauses 4.3.2.3.2 and 4.3.2.3.3, dynamic discovery leads to the client restarting the handshake by sending
anew (modified) C i ent Hel | o. If amiddlebox detects that transparent middleboxes wish to join the session, or, that
a non-transparent middlebox is proposed by another entity, the middlebox shall not engage in a TLM SP specific
handshake until after it observesthe Ser ver Hel | o following the second Cl i ent Hel | o.

4.3.2.3.2 Non-transparent middleboxes
This clause applies to use cases where middleboxes visible on the I P layer are to be added.

EXAMPLE: An enterprise's security policy mandates traffic being routed via a data-1eakage prevention
function. Such middleboxes can in general not make their own presence known during the
handshake since the handshake cannot be assumed to be passing through such middleboxes. The
(enterprise) server is however likely to be aware of such middleboxes.

Therefore, when using TLM SP, the server may propose that an additional middiebox or middlieboxes are to be added.
When the server receivesthe Cl i ent Hel | o and finds that a I P-routable middlebox is missing from the

M ddl eboxLi st , the server shall return aSer ver Hel | o, including the acceptable middlieboxes from the list in the
Cl i ent Hel | o, extended by those non-transparent middleboxes that the server wishes to add. The added middleboxes
shall beinserted into the server'slistm _i (asdefined in clause 4.3.5). The server shall assign the additional
middleboxes unique entity identities and shall insert them in correct topological order.

The server's proposed middiebox entries shall havethei nsert ed field set to "dynamic" and thet r anspar ency
field set to "false".

The client shall decide whether to accept the proposed middiebox(es) (in the server's middiebox list extension). If so,
the client shall proceed asin clause 4.3.2.2, sending anew C i ent Hel | o containing hs_i d (the handshake id) from
the Ser ver Hel | o and both an identical copy of the original middiebox list, aswell asalist of all middieboxes,
including also the discovered and accepted middlebox(es) into the list M _d as defined in clause 4.3.5. The entries for
the dynamically discovered middieboxes in the discovered list shall havethei nsert ed field set to "dynamic" and the
t ranspar ency field set to "false”. The client shall now reject further middleboxes proposed for inclusion as part of
the new handshake.

If the client does not accept the middlebox with the proposed accessrights, it should send an Al ert of type

nm ddl ebox_aut hori zati on_f ai | ur e and the client should close the connection. In this case, the client may
choose to include the proposed middiebox inthe M ddl eboxLi st of the TLMSP extension in future TLM SP session
initiations with the inserted field set to "forbidden".

ETSI

42 ETSI TS 103 523-2 V1.1.1 (2021-02)

If the server proposed an additional, client-accepted non-transparent middlebox which topologicaly lies between the
server and the middlebox which was immediately before the server in the client'sinitial proposal, the server could
receivethesecond Cl i ent Hel | o over anew TCP connection. In this case, the server should usethe hs_i d (if
required, extended by cl i ent _address, server_address fromthe TLMSP extension) to associate the new
TCP-connection to the same TLM SP session (used to retrieve the correct hash-context for the handshake verification as
defined in clause 4.3.9).

If thesecond Cl i ent Hel | o isreceived over a new TCP-connection, the second Cl i ent Hel | o could be processed
by anew physical server. To alow the new physical server to take over handling of the session, the client shall (as
defined in clause 4.3.5) include the hs_i d and a hash state of the messages sent/received before this second

Cl i ent Hel | 0, inthe TLMSP extension of the second hello. The new server will be able to determine that this new
Cl i ent Hel | o isassociated with dynamic discovery of middlieboxesin an earlier session setup, since the second

d i ent Hel | o containsboththehs_i d and an additional middiebox list (M _d) in the TLMSP extension as
explained earlier in thisclause. (Thehs_i d and M _d arenot present in aninitial C i ent Hel | 0).

The two paragraphs above shall apply also when replacing "the server” by "amiddiebox", and the middiebox shall then
follow the recommendation of clause 4.3.1 and not generate any TL M SP-messages of their own until after the discovery
phase is done.

4.3.2.3.3 Transparent middleboxes

This clause appliesto use cases involving middleboxes that are not individually visible/routable on the IP layer but
which are still present on the client-server network path.

EXAMPLE: A middlebox function co-located with a default gateway, a firewall, or within a mobile operator
core network isnot visible on the IP layer but is present in the client-server path of
communication.

NOTE 1: Inprincipleit could be possible to also pre-configure certain transparent middleboxes similar to the way
described clause 4.3.2.2, if their on-path presenceis always guaranteed.

The middlebox is assumed to detect initialization of TLM SP handshakes passing through it, even if the handshake is not
explicitly addressed to the middlebox. Thus the middiebox has opportunity to make its presence known without
assistance from the server. The middlebox can propose its own inclusion by adding itself to the M ddl eboxLi st
extension of the Cl i ent Hel | 0. This proposal may initialy be done silently towards the client; the middlebox only
forwards the modified Cl i ent Hel | o toward the server. This usually alows plural transparent middleboxes to add
themselvesto thesame Cl i ent Hel | o asit propagates toward the server.

Thus, the client will be informed about all the dynamically added transparent middleboxes as it later receives the
ServerHello. Both server and client may reject any or all of the transparent middleboxes.

A transparent middlebox may intercept the Cl i ent Hel | o (either between the client and the first middiebox, between
two middleboxes, or, between the last middiebox and the server). If the intercepting middliebox wishes to propose its
own addition, it shall add itself to the M ddl eboxLi st of the client's TLMSP extension (them _i list as described
in clause 4.3.5), assigning itself a unique entity identity, settingt r anspar ency to "true" and setting i nsert ed to
"dynamic". The middlebox insertsitself in the middliebox list according to topological order. The order should be
deduced by observing the current value of pr evi ous_enti ty_i d inthe middiebox list, indicating the logical entity
identity of the previous hop. A transparent middlebox that wishes to be included may send aMboxHel | oRequest , as
defined in clause 4.3.6.8, to the client to inform the client about, for example, its provided services. How to generate
and use such information is outside the scope of the present document.

NOTE 2: Thisavoids the need for the middlebox to perform extensive (DNS) look-ups to find the previous entity's
logical identifier and thus the correct topological placement. This holdsin particular when IP addressis
not used asaddr ess of the middleboxes and may also avoid NAT issues.

The middlebox shall also include information about which contexts it seeks read/del ete/write access to and forward the
modified Cl i ent Hel | o toward the server (addressing it to the next-hop entity/middlebox).

When the server receives the (modified) Cl i ent Hel | 0, it shall authorize all middleboxes, including transparent ones
that made their presence known in the modified M ddl eboxLi st asdescribed in the present clause. All middlieboxes
shall beincluded inthe M ddl eboxLi st of the Ser ver Hel | o extension, but those transparent middleboxes that
were not authorized by the server shall have their i nser t ed attribute set to "forbidden™.

ETSI

43 ETSI TS 103 523-2 V1.1.1 (2021-02)

When the client receivesthe Ser ver Hel | o response, it will be able to tell from the attribute fields of the middlebox
list which transparent middleboxes are proposed and which ones the server accepts. The client shall decide whether to
authorize the middleboxes that were accepted by the server. If so, the client shall proceed asin clause 4.3.2.2, now with
the server'shs_i d and two middiebox listsin the extension; an identical copy of the client'sorigina m _i and the
second list m _d aso including the accepted middleboxes whose entries havethei nser t ed field set to "dynamic"
and the transparency field set to "true”, as defined in clause 4.3.5. The client and server shall now ignore and reject
further middleboxes that attempt to add themselves as part of the new handshake.

Otherwise, if the client does not accept the dynamically discovered middleboxes, it shall send an aert of type
m ddl ebox_aut hori zation_fail ure.

NOTE 3: Thisway of handling additional middleboxesimplies that the added middiebox remains
(transparently) on-path for the duration of the session.

4.3.2.4 Combined discovery

43241 Example use case

Figure 7 illustrates an example scenario with one middlebox (ML) pre-configured in the client, as defined in

clause 4.3.2.2 and thusincluded in the initial M ddl eboxLi st, m _i ¢, of the TLMSP extension in the
CientHello.Asthed i ent Hel | o traversesthe network, a transparent middliebox, mlL, detects the signalling and
wishes to add itself to the TLM SP session. It does this adding itself tom _i ¢, as defined in clause 4.3.2.3.3. With
respect to Figure 7, ml addsitself to thelist M _i ¢ before the middiebox ML. Additionally, when the server finally
receivesthe Cl i ent Hel | o, it detects that a second, non-transparent middlebox, M2, is also desired, which is handled
according to clause 4.3.2.3.2,i.e. M2 isadded to the list M _i s, just after the middlebox ML.

CLIENT m1l M1 M2 SERVER

m_ic = {M}
dientHel l o(TLMSP(n _ic))

m_ic'={ml} || m_ic
CientHell o(TLMSP(M _ic")

m_ic || {M}

ServerHel | o(TLMSP(hs_id, m _is))

Certificate*

CertificateRequest™*

/* signature includes hash of messages so far */ TLMSPServer KeyExchange
Server Hel | oDone

m _dc = {nml} || m_ic || {M}
ClientHell o(TLMSP(hs_id, m _ic, mM _dc, hash(previous_nessages)))

ServerHel | o(TLMSP(hs_id, m _is))
TLMSPSer ver KeyExchange
Ser ver Hel | oDone

...rest of TLMSP handshake as in Figure 6 ...

NOTE: All but the two last messages are not available to M2, because M2 is not on the IP path between client and
server.

Figure 7: Dynamic discovery example

ETSI

44 ETSI TS 103 523-2 V1.1.1 (2021-02)

The optional alertsand MboxHel | oRequest are not shown in Figure 7. Setting attributes of the discovered
middleboxes (i.e. i nsert ed ="dynamic" andt r anspar ent ="true" or "false") is aso omitted for simplicity.

Although anew key exchange by the server will become necessary in this case (since M2 has not been in the path
throughout the handshake), the server should still include certificate and key exchange, asit will give the client an
opportunity to authenticate the server during the discovery.

43.24.2 Practical considerations

For dynamic discovery of transparent middleboxesto work in general, and particularly if used in combination with
dynamically discovered non-transparent middleboxes, assumptions (or preferably knowledge) of the network topology
are needed.

Suppose that in the example clause 4.3.2.4.1, mL lies topologically between ML and M2. While ml is transparently on
path between ML and the server, mL could in general not be transparently present also on the path between ML and M2,
which isthe path followed on the second Cl i ent Hel | 0 and subsequent messages. Clearly, when nil attempts to add
itself to the middlebox list, mlL does not yet know that the server will change the | P routing path by adding the non-
transparent middiebox M2. Regardless of whether ml isimmediately after the client or immediately before the server,
there exist cases when an additional non-transparent middlebox addition by the server (or by another middlebox) could
remove mL from the subsequent signalling path.

Dynamic discovery by transparent middleboxes should therefore only take place when the middlebox has strong
assurance that it will remain on path for the rest of the session. How such assurance is obtained is out of scope of the
present document.

4325 Middlebox leave and suspend

Middleboxes may find it necessary, e.g. due to processing load, to step down or step out of an ongoing session. A
middlebox shall always notify other entities before doing so either by issuing one the TLM SP specific aert

m ddl ebox_suspend_noti fy (clause 4.4), or, the MooxLeaveNot i f y message (clause 4.3.8). These messages
shall not be sent prior to handshake completion (all Fi ni shed and MooxFi ni shed messages being verified).

4.3.3 Session resumption and renegotiation

4331 Resumption

Aswith TLS 1.2, TLMSP provides an abbreviated handshake to resume a previously established session, refreshing the
keys but keeping the previous cipher suite.

Similarly to TLS 1.2, the server may, in theinitial handshake, indicate a session ID in its hello message, indicating to
the client that the server may be willing to cache the session state for later resumption. (This session ID is generally not
the sasme asthe hbh_i d which may be used in the TLM SP headers, or the hs_i d assignedinthe Ser ver Hel | 0.) In
TLMSP, if resumption is enabled, the server shall allocate a session ID. Middleboxes shall obtain this session ID from
the handshake signalling and associate it with the current session. This session ID could be non-unique among al the
sessions that a middlebox is serving at once. Therefore, the middleboxes shall locally extend the session ID by aclient
identity and a server identity conditioned on that the triplets (session ID, client ID, server ID) becomes globally unique
from the middlebox point of view. Any server ID, client ID that enables such unique identification may be used, and it
isout of scope to specify details of the identity selection.

NOTE: Suchclient ID, server ID need to exist, otherwise the middlebox would confuse some TCP sessions
passing through it.

When a client wishes to resume a session, the session ID isindicated by aclientinitsCl i ent Hel | o with the server.
If the server recognizes the provided session ID, it may choose to alow resumption. When alowing session resumption,
the server shall signal the same (own) session 1D back toward the client.

If amiddlebox recognizes the session ID (in client's and server's hello) and is willing to resume the session, it shall
indicate this by adding the same session ID in its hello toward the server and client, otherwise the middlebox's session
ID shall be empty. Session resumption shall be performed if, and only if, the server and all middleboxes indicate the
same session ID for resumption.

ETSI

45 ETSI TS 103 523-2 V1.1.1 (2021-02)

TL S also supports a (server-side) stateless resumption via session tickets, [3], if the client indicated support for session
tickets viathe ticket extension to the Cl i ent Hel | 0. The client may therefore attempt to initiate resumption by
including previoudly received tickets, in the handshake toward other entities. The client shall include the server-
associated ticket inits Cl i ent Hel | o, whereas the middleboxes tickets shall be included in the middlebox list
extension. Each middlebox shall indicate toward the server, in the standard Hello extension, that it accepts the client's
resumption proposal by copying the same ticket it received from the client when generating its hello messages toward
the server. If the server received positive confirmation (tickets) from all middleboxes, the server may choose to proceed
with resumption. During resumption, the client may also receive renewed tickets, which it may store for future
resumptions of the same session.

Finally the client, the server and the set of middleboxes shall refresh keys as defined in clauses 4.3.10.4 and 4.3.10.5.

Middleboxes shall not be removed or added as part of resumption negotiation and resumption shall be done using the
same contexts, cipher suite asthe original session.

4.3.3.2 Renegotiation

In TLS 1.2, the client endpoint can initiate a renegotiation of the security parameters by sending anew Cl i ent Hel | o.
A server endpoint can, in TLS 1.2, request renegotiation by sending aHel | oRequest . The present document does
not allow a corresponding renegotiation for TLM SP, for reasons laid out in clause E.7. A TLMSP endpoint receiving an
indication to perform renegotiation shall issue an unexpect ed_nessage aert and should abort the connection.

4.3.4 Handshake message types

TLMSP employs the following Hands hake message types:

enum {
hel | o_request (0), client_hello(1l), server_hello(2), certificate(1ll),
server_key_exchange(12), certificate_request(13), server_hell o_done(14),
certificate_verify(15), client_key_exchange(16), finished(20), tlmsp_server_key_exchange(40),
nmbox_hel | o(41), nmbox_certificate(42), nmbox_certificate_request(43),
certificate_2_nbox(44), nbox_key_exchange(45), nbox_hel |l o_done(46),
certificate_verify_2 nbox(47), tlmsp_key naterial (48),
tl msp_key_conf(49), server_unsupport(50), mnbox_hello_request(51), mbox_finished(52),
tI msp_del egate(53), nbox_| eave_notify(54), nbox_| eave_ack(55), mbox_auth_request (56),
nmbox_aut h_r esponse(57), (255)

} HandshakeType;

For the messageshel | o_request (0),client_hello(1),server_hello(2),certificate(1ll),
server _key_exchange(12),certificate_request(13),server_hell o_done(14),
certificate_verify(15),client_key_exchange(16),andfi ni shed(20), clause7.4 of

IETF RFC 5246 [1] shall apply.

In addition:
. thecl i ent _hel |l o andserver _hel | o messages shall support the extensions defined in clause 4.3.5;
. the hash computation in the Fi ni shed messages shall be computed as defined in clause 4.3.9.

The present document defines the following new Handshake messages: t | nsp_server _key_ exchange(40),
nmbox_hel | o(41),nbox_certificate(42),nbox_certificate_request(43),

certificate_2 nbox(44),nbox_key exchange(45),nmbox_hel |l o_done(46),

certificate verify_ 2 nmbox(47),tlnsp_key material (48),t1nsp_key_ conf (49),

server _unsupport (50),mbox_hel l o_request (51),nmbox_fini shed(52),t!| nsp_del egat e(53),
nbox_| eave_noti fy(54),andnbox_| eave_ack(55).

Thet | msp_del egat e message and usage is described in clause C.2.3.2. Use of nbox_aut h_r equest and
nbox_aut h_r esponse isdefined in clause C.3. Details of the other new Handshak e messages and extensions
thereto are provided in clauses 4.3.5t0 4.3.9.

ETSI

46 ETSI TS 103 523-2 V1.1.1 (2021-02)

4.3.5 TLMSP Handshake extensions

Recall that a TLS extension is defined in [2] as:

enum {
server_nane(0), ..., (65535)
} ExtensionType;

struct {
Ext ensi onType extention_type;
opaque extension_dat a<0..2"16-1>;
} Extension;

TLMSP defines three new TLS handshake extensionsto the Hel | o messages, the first in the form of abasic TLMSP
extension with ext ensi on_t ype = 0x24. The other extensions are defined in clause C.2.3. The extension shall
contain aversion indication according to [2], alist of middlieboxes, and information related to the TLM SP session being
negotiated.

For the entitiesin the list of middieboxes, theent ity i d values0x00, 0x01, Oxf e, and Oxf f arereserved with
0x01 reserved for the client and Oxf e reserved for the server. Values 0x00 and Oxff are reserved for other purposes. A
middlebox may be assigned any value in the range 0x02- Oxf d. The list of middleboxes shall be ordered by the
network topology order of the connections established from client to server.

The format for the entries in the TLMSP extension and the associated M dd| eboxLi st shall be asfollows:

First, each entity (middlebox or endpoint) shall be identified by an Address value composed of a primary component
and sometimes a secondary component, the format and use of which depend on the type asfollows:

. uri - prinmary shal beaURI per [12] with a non-empty authority component. secondar y shall not be
present.

. fgdn - prinmary shal beafully qualified domain name as defined in [13], using the syntax defined in
section 2.1 of [14]. When using TCP, secondar y shall be atwo octet TCP port number per [15], otherwise it
shall not be present.

. i pv4_adr - primary shal beafour octet destination address as defined by [16]. When using TCP,
secondar y shal be atwo octet TCP port number per [15], otherwise it shall not be present.

. i pv6_adr - primary shall beal6 octet destination address as defined by [17]. When using TCP,
secondar y shall be atwo octet TCP port number per [15], otherwise it shall not be present.

. mac_adr - primary shal beasix octet MAC address as defined by [18]. secondar y shal not be
present.

enum{ tcp } TransportProtocol;

struct {
enum{ uri(0), fqgdn(1), ipv4_adr(2), ipv6_adr(3), mac_adr(4), (255) } type;
select (type) {
case uri: opaque primary<5..2"16-1>;
case fqgdn: struct {
opaque prinmary<3..253>;
sel ect (TransportProtocol) {
case tcp: opaque secondary[2];

}s

case ipv4_adr: struct {
opaque prinary[4];
sel ect (TransportProtocol) {
case tcp: opaque secondary[2];
b

case i pv6_adr: siruct {
opaque prinary[16];
sel ect (TransportProtocol) {
case tcp: opaque secondary[2];
b
b

case mac_adr: opaque primary[6];

ETSI

a7 ETSI TS 103 523-2 V1.1.1 (2021-02)

} Address;
opaque Handshakel O] 4] ;

struct {
struct {
ui nt8 maj or;
uint8 mnor;
} tlmsp_version;
CipherSuite tl msp_ci pher_suites<2..2"16-2>;
enum{ false(0) , true(l), (255) } server_anon;
Hop!l D hbh_i d;
select (is_server_hello) {
case true: struct {
Handshakel D hs_i d;
Si gnat ur eAndHashAl gorit hm supported_si g_al gs<2..2"16-2>;

case false: struct {

uint8 previous_entity_id;

enum { false(0) , true(l), (255) } discovery_ack;

sel ect (discovery_ack) {

case true: struct {

Handshakel D hs_i d;
opaque pre_di scovery<l..255>;
M ddl eboxLi st m _d;

case false: struct { };
}s
}s

Address client_address, server address;
enum { false(0) , true(l), (255) } is_client_resunption_req;
select (is_client_resunption_req) {

case true: Handshakel D hs_id;

case fal se: ContextlList cL;

}s
M ddl eboxList m _i;
} TLMSP;

Thet | nsp_ver si on hasno direct relation to thever si on field of the TLMSP record header of Figure 2. When
initiating the handshake, the ver si on field of the TLMSP record header indicates which version of TLS serves asthe
base specification from which the current version of TLMSP is derived, and thus also indicates which version of TLSto
fallback to, in case TLMSPis not supported. Thet | mps_ver si on in the extension indicates the requested version of
TLMSP. Thevaluet | nsp_version = {1, 0} shal beused for the current version of TLMSP. The (possibly
different) valuesof t | msp_ver si on inthe extension carried inthe C i ent Hel | 0 and the Ser ver Hel | o shall be
used for TLMSP version negotiation in the same way asthever si on field of the record header isused by TLS for
version negotiation as defined in [2]. Since the fixed data in the TLMSP extention (including length indicators of
variable length fields) consists of at least 38 octets and the maximum size of a TLS extension is 2°16-1, this |eaves at
most 65497 octets for any variable length fields.

The client shall include its support for TLM SP-specific cipher suitesinthefieldt | msp_ci pher _sui t es, which
shall follow the same format as defined in [2]. Thevalue ser ver _anon shall be used by the client to signal if itis
willing to accept connectionsin which the server does not authenticate.

NOTE 1. Thisfield applies only to the server and serves the same purpose as the set of anon cipher suitesin TLS,
but without the need to define a specific separate anon cipher suite for each authenticated cipher suite.

The possibility for middleboxes to skip authentication is also supported but handled via the middiebox list, as defined
below.

The server shall usethet | msp_ci pher _sui t es andser ver _anon field to indicate the selected TLM SP cipher
suiteinthe Ser ver Hel | o. The client and server shall also include their support for standard TL S cipher suitesin the
normal way, as part of the hello message body (outside the extension field), to allow TLS fallback as defined in

annex B. The currently defined TLM SP cipher suites are found in annexes A and B.

Thevalueprevi ous_entity_ i d shal beused toindicate to the next-hop-entity from which entity (client or
middlebox) an inbound Cl i ent Hel | o isbeing forwarded, as described in clause 4.3.2.3.

ETSI

48 ETSI TS 103 523-2 V1.1.1 (2021-02)

When a TLM SP connection isfirst attempted, the client shall set thefield di scovery_ack tof al se. Only thefirst
middlebox list m _i shall be present and shall include middleboxes already known to the client. During such initial
handshake, additional middleboxes may be dynamically discovered as described in clause 4.3.2.3. No hash value shall
be included.

When the new handshake following the discovery isinitiated by the client, the client shall set the field

di scovery_ack tot r ue and both theoriginal listm _i and the complete list of al authorized middieboxesm _d
shall beincluded. The server shall inthe Ser ver Hel | o includethereceivedml _d listasitsownml _i listinits
corresponding response. The value pr e_di scovery shall aso be present in the second T i ent Hel | o following
dynamically discovered middiebox(es). The pr e_di scovery field shall contain the hash of all the messages
sent/received between client and server up to, but not including, thissecond C i ent Hel | 0, see clause 4.3.9.4 for
details. Thefield is defined as variable length to limit the need to maintain state at server between first and second

d i ent Hel | o (thefield size otherwise depends on the proposed cipher suite).

Each entry in the middiebox list specifies the middlebox's address, a unique ID, and alist of contexts with the
corresponding access privilege level. For contexts not present in the list, the privilege level is"none". As

Appl i cat i on protocol containers (including deletion indication containers) cannot appear in context zero,
middleboxes shall not be assigned the "delete" access privilege level for context zero. Thelist also contains proposed
authentication methods that the endpoints propose to use with each middlebox. The ticket shall be included if the client
seeks to resume a previous session based on a previously received ticket.

struct { /* mddl ebox identification */
uint8 entity_id;
Addr ess address;

} M ddl ebox;

struct {

uint8 context _id; /* 1D of context */

enum { none(0), read(1l), delete(2), wite(3), (255) } authorization; /* privilege |level */
} Cont ext Access;

struct {
enum { anon(0), psk(1), gba(2), (255) } method_id; /* alt. key ex. nethod, see annex B */
opaque credential _hint<0..2"16-1>; /* hint to identity of the credential (psk) to use */

enum{ false(0), true(1), (255) } use_ certificate; /* true if and only if the m ddl ebox
is expected to authenticate itself
using a cerificate to other endpoint */
} MooxAl ternativeC pher Suite;

struct {
M ddl ebox mi ddl ebox; /* m ddl ebox identification */
enum { static(0), dynam c(1), forbidden(2), (255) } inserted;
enum { false(0), true(l), (255) } transparency; /* is the m ddl ebox transparent or not */

opaque ticket<0..2"16-1>; /* used during session resunption with tickets */
select (is_client_resunption_req) {
case true: struct {}; /* resune al ways use the sane contexts and accesses */
case fal se:
struct {
uint8 n_contexts; /* nunmber of contexts for this mddl ebox */

Cont ext Access contexts[2*n_contexts]; /* list of contexts for this mddl ebox */
enum { standard(0), alternative(1l), (255) } cipher_suite_options; /* see text */
sel ect (cipher_suite_options) {

case alternative: MoxAl ternativeCi pherSuite alt_cs;

case standard: struct { };

h
H
} M ddl eboxI nf o;

M ddl eboxl nfo M ddl eboxLi st <0..2"16-1>;

The (possibly empty) t i cket shall be used asdefined in IETF RFC 5077 [2]. Thefieldi nsert ed isused to
distinguish between middleboxes that are statically pre-configured or added dynamically during the handshake. The
field may also be used to prevent "black-listed" middleboxes from being dynamically added. The truth value of
resunpti on_att enpt may be established based on the presence of asessiont i cket , or on the presence of a
session IDinthed i ent Hel | o.

ETSI

49 ETSI TS 103 523-2 V1.1.1 (2021-02)

Using thefield ci pher _sui t e_opt i ons, the endpoints shall signal to each middlebox whether that middlebox
should use the standard cipher suites as defined in annex A, or, whether the middlebox should use the aternative cipher
suites as defined in annex B. The difference between the standard and alternative cipher suites are only related to the
key exchange and authentication method.

The client may further usethefield use_certifi cat e of theal t _cs field to instruct the middlebox whether it
should present and authenticate itself using a certificate to entities located downstream of the middlebox (in the
direction of the server, including the server itself), or, to only be implicitly authenticated. Implicit authentication means
that such downstream entities are assumed to trust the client and that the client will properly authenticate the middlebox.
Thisimplicit authentication should only be used when such trust exists, and, when the downstream entities can
authenticate the client. The server or any other entity may reject such proposal and terminate the connection.
Middleboxes who are not explicitly instructed to not provide their certificates shall provide them according to standard
procedures. The client shall include preferences about alternative middiebox cipher suitesinthelistm _i included in
the client's TLMSP middlebox list extension.

The above shall apply, mutatis mutandi, also when the server responds and provides its own middlebox list extension
toward the client, see below. If both the client and the server simultaneously signalsto a specific middlebox to not use a
certificate in either direction, the aternative cipher suite used with that middiebox shall provide built-in authentication
of the middlebox, e.g. through the use of pre-shared keys or similar mechanism.

The values chosen by the client and server for ci pher _suite_options anduse_certifi cat e are made
independently by the client and server endpoints and shall apply only to the point-to-point security configuration
between the endpoint and the middiebox in question. That is, the pairwise keys between pairs of middleboxes continue
to use the key exchange mechanism of the standard cipher suite regardless of the value of

ci pher _suite_options. If for agiven middliebox, an endpoint setsci pher _suite_optionstoalt _cs
aternative and setsmet hod_i d to anon, the middlebox will not provide a certificate to that endpoint. Thisimplies that
pairwise key exchange between that middlebox and any other middleboxes between it and the other endpoint will also
not be authenticated. Likewise, if for a given middiebox, an endpoint setsuse_certi fi cat e to false, the middlebox
will not provide a certificate to the other endpoint, so the pairwise key exchange between that middlebox and any other
middleboxes between it and the other endpoint will not be authenticated.

EXAMPLE 1: For aspecific middlebox, the client could set use_certificate = false and cipher_suite_options =
aternative, while the server, for the same middlebox, sets use certificate = true and
cipher_suite options = standard. Thiswill not cause interoperability problems, see annex B.

NOTE 2: If, for example, the client instructs the first middiebox to not present its certificate to downstream entities,
thisimplies that no downstream entity will be able to authenticate the first middliebox. In this case, mere
trust in the client, and that the client properly authenticates the first middliebox could provide insufficient
assurance unless the client authenticates itself to all downstream entities. A converse scenario applies
when the server instructs a middlebox to not authenticate itself toward downstream entities (in the server-
to-client direction).

Thehbh_i dintheServerHel | o and i ent Hel | o TLMSP extensions may be used by entities to assign avalue
of the hbh_i d that the entity wishes to use in the header field of its outbound TLM SP messages, in both directions. If
an entity wishesto useahbh_i d, it shall ensure that any non-NULL hbh_i d selected is unique among concurrent
active TLM SP sessionsin which the entity is using the same transport connection.

EXAMPLE2: Anentity, e, participating in two TLM SP sessions s1, s2, has the same downstream entity e'
(using the same I P address and port numbers) in the client-server direction in both sessions (i.e. e
is using the same transport connection). Then e selects distinct values to include in thehbh_i d of
thed i ent Hel | o in the handshake exchanges of s1 and s2. Alternatively e can select aNULL
hbh_i d in at least one of the two sessions.

The client may originally assign any value to the hbh_i d field. The entity on each hop shall record ahbh_i d
receivedinthed i ent Hel | o from the upstream neighbour and shall replace the valueintheCl i ent Hel | o
extension with an own selected value (possibly, aNULL value, if the entity does not choose to use any hbh_i d) asit
forwardsthe Cl i ent Hel | o toward the server. Asthe Ser ver Hel | o isthen forwarded toward the client, each entity
shall record hbh_i d received from the upstream neighbour, and when forwarding the Ser ver Hel | o, includes the
same hbh_i d in the server-client direction that it previously chose in the client-server direction (conditioned by the
uniqueness reguirements) by including it in the hbh_i d field asit forwards the Ser ver Hel | o. All entities shall
support the multiplexing of multiple TLM SP sessions on a single transport connection.

ETSI

50 ETSI TS 103 523-2 V1.1.1 (2021-02)

The server shall includeinitsSer ver Hel | o responsethelist Ml _i of al middieboxesthat it received viathe

d i ent Hel | o (i.e. including additional middleboxes that have been added dynamically in-band as defined in

clause 4.3.2), and furthermore extended by any middlebox requested for addition by the server (see also clause 4.3.2).
The Ser ver Hel | o shall aso contain the server-assigned handshake ID, hs_i d, and the server's supported signature
algorithms. Thehs_i d isuseful for identifying a new TCP connection to the server, following dynamic discovery of
middleboxes as described in clause 4.3.2.3. The suppor t ed_si g_al gs list may be used by middleboxes to deduce
which certificate(s) to present: the middliebox already knows the client's support (from default values or extensions to
C i ent Hel | 0) but only knows the single server-supported algorithm indicated by the server's certificate. Thus, this
information improves the likelihood of the middliebox being able to select an appropriate certificate/algorithm. If a
middlebox does not support any of the client/server indicated algorithms, it shall send an dert of type

handshake_f ai | ur e at the point where the middlebox would otherwise send its certificate. The server shall also
includes its preferences regarding alternative cipher suitesin thelist m _d.

The second component of the extension to the Hel | o isalist of the context IDs and descriptions. A context description
comprisesapur pose string meaningful only to the application; TLMSP does not use it.

EXAMPLE 3: A pur pose string could have the value "malware removal service" for amiddliebox performing
malware removal.

struct {
uint8 context _id;
enum { unconfirmed(0), audit_info(1), audit_trail(2), (255)} audit;
opaque purpose<0. . 255>;

} Context Descri ption;

Cont ext Descri pti on Cont ext Li st<3..2"16-1>;

The Cont ext Li st shall not include an entry for the reserved context withcont ext _id = O.

Theaudi t fieldisused to request confirmation from middleboxes that the containers associated with the context have
traversed via them, allowing them to act on the content (if authorized). Thevaluesaudi t _i nfoandaudit _trail
enable the production of audit containers as described in clause 4.2.3.1.5. The value unconf i r med indicates that all
entities shall not insert any audit containers for the associated context. Additional values of audi t areintended to be
defined in the future, specifying that middleboxes add information on their processing to the audit containers.

The third and fourth extensions are related to the TLM SP proxying and their usage is described in clause C.2 of the
present document.

TLMSP puts no restrictions on which port number to use.

Further (optional) TLM SP-related extensions are defined in annexes B and C.
4.3.6 Middlebox related messages

4.3.6.1 MboxHello

The MboxHel | 0 message shall be structured as follows:

struct {
uint8 nmbox_entity_id;
Prot ocol Version client_version;
Random cl i ent _nboxhel | o_random server_nboxhel | o_random
Sessi onl D session_id;
sel ect (extensions_present) {
case fal se: struct {};
case true: Extension extensions<0..2"16-1>;

b
} MooxHel I o;

ETSI

51 ETSI TS 103 523-2 V1.1.1 (2021-02)

The MboxHello isidentical to a TLS 1.2 Hello, except for the inclusion of the mbox_ent i ty_i d, the two random
parameters, cl i ent _nboxhel | o_randomand ser ver _nboxhel | o_r andom and the two alternative cipher
suite fields. The message excludes cipher suites and compression methods (since compression is not supported and
selection of cipher suite is made by the server, before the Moox Hel | o is sent). Middleboxes shall provide the same
content in their MboxHello directed to client and server. The two random values shall be selected (pseudo)randomly
and independently. The client shall usethecl i ent _nboxhel | o_r andomto generate master keys shared with the
middlebox, whereas the server shall usetheser ver _nboxhel | o_r andomto generate master keys shared with the
middlebox. If amiddliebox does not support, or does not approve the proposed aternative cipher suite, it should raise an
unsupport ed_ext ensi on adert.

This message shall always be forwarded by middleboxes.

4.36.2 MboxCertificate

Asisshown in Figure 6, unless the server has set the extension field use_certi f i cat e to fase, this message shall
be sent from middlebox to client when the middlebox has received the Ser ver Hel | oDone. The message shall,
unless the client specified had set the extension field use_certi f i cat e to false, be simultaneously sent from the
middlebox back to the server. The MooxCer ti fi cat e shall haveidentical content when sent to both the server and
to theclient.

NOTE: Thisisidentical in format to aserver's Certificate message, but with an added entity identity field of the
middlebox.

This message shall have the following structure:

struct {
uint8 nmbox_entity_id,;
Certificate cert;

} MooxCertificate;

Thefield cert shall beformatted astheCerti fi cat e messagein clause 7.4.2 of IETF RFC 5246 [1].

The middlebox shall set mbox_entity_idtothenbox_entity_ i dvauefoundinthereceived ServerHel | o
message. The message shall always be forwarded by other middleboxes.

4.3.6.3 MboxCertificateRequest

This message shall have the following structure:

struct {
uint8 nmbox_entity_id,;
CertificateRequest cr;
} MooxCertificat eRequest;

This message shall be sent by a middliebox to the client when the middlebox wishes to authenticate the client and shall
aways be forwarded by other middleboxes.

4.3.6.4 Certificate2Mbox

This message shall have the following structure which isidentical to the MooxCer ti f i cat e message defined in
clause 4.3.6.2:

struct {
uint8 mbox_entity_id,;
Certificate cert;

} Certificate2Mox;

If, and only if, the signature verification by the client as defined in clause 4.3.10.1 is successful, this message shall be
sent by aclient in response to areceived MooxCer ti f i cat eRequest from amiddiebox with identity
nmbox_entity_i d. A middiebox receiving this message shall always forward it, unless the middlebox is the intended
receiver.

ETSI

52 ETSI TS 103 523-2 V1.1.1 (2021-02)

4.3.6.5 MboxKeyExchange

This message shall have the following structure:

struct {
uint8 mbox_entity_id,;
TLMSPSer ver KeyExchange client_exch; /* key exchange mi ddl ebox <-> client */
TLMSPSer ver KeyExchange server_exch; /* key exchange mi ddl ebox <-> server */
} MooxKeyExchange;

The security relevant parameters of cl i ent _exch and ser ver _exch shall be generated independently, but
identical copies of this message shall be sent to both server and client. If the client has not requested an alternative
cipher suite, or has requested the alternative cipher suite anon, the client shall use only thecl i ent _exch element to
establish the shared pre-master secret. If the client has requested alternative cipher suite other than anon, the
middlebox shall still provideac! i ent _exch component, but the client and the middlebox shall ignore it when
generating their pairwise master key. In this case, the middlebox closest to the client may populatethecl i ent _exch
field with a correctly formatted dummy value. Thecl i ent _exch component shall however be used by other
middleboxes situated between the middliebox in question and the client when generating master key between the
corresponding pair of middleboxes. If the client has requested an alternative cipher suite with net hod_i d = anon,
or, the server hasrequested use_certificate = fal se, neither the client, nor any middlebox situated between
the middlebox in question and the client will be able to verify the authenticity based on the MooxKeyExchange
message itself.

The paragraph above shall apply also when substituting "client" with "server", cl i ent _exch withser ver _exch.

The entire message (including both elements) shall be included by both client and server when computing the
Fi ni shed hash. TLMSPSer ver KeyExchange isdefined in clause 4.3.10.1.

Thedh_p and dh_g parameters of the Ser ver DHPar ans in the contained Ser ver KeyExchange and

TLMSPSer ver KeyExchange structures shall be identical to thosein Ser ver KeyExchange message received
earlier from the server, and they shall be ignored by the endpoints upon receipt. This message shall always be forwarded
by middleboxes.

If the middlebox, viathe MooxHel | o of clause 4.3.6.1, has accepted one or both endpoint's suggested use of
aternative cipher suites according to annex B, the part of the message directed to that endpoint shall be ignored by the
endpoint, except for the purpose of generating the Fi ni shed verification message. Non-endpoint entities, e.g. other
middleboxes located between the sender middlebox (generating the Moox Key Exchange) and the endpoint shall use
the MooxKeyExchange information in the standard way, to generate shared keys with the sender middlebox, except
that authentication of the parameters will not be possible depending on the settings of use_cert fi cat e requested by
the endpoints.

4.3.6.6 MboxHelloDone

Thisisidentical in format to aSer ver Hel | oDone of IETF RFC 5246 [1], but with an added identity field of the
middlebox. This message shall have the following structure:

struct {
uint8 nmbox_entity_id;
Server Hel | oDone hd;

} MoboxHel | oDone;

This message shall have identical content to the server and to the client and shall always be forwarded by middleboxes.

4.3.6.7 CertificateVerify2Mbox

This message shall have the following structure:

struct {
uint8 nmbox_entity_id;
CertificateVerify cv;
} CertificateVerify2Mmox;

ETSI

53 ETSI TS 103 523-2 V1.1.1 (2021-02)

This message shall be sent followingaCer ti fi cat e2Mbox asdefined in clause 4.3.6.4 that is sent to a middlebox
with the stated nbox_enti ty_i d. It allowsthat middlebox to verify the client. A middlebox receiving this message
shall always forward it, unless the middlebox is the intended receiver.

4.3.6.8 MboxHelloRequest

This message may be sent inresponseto aCl i ent Hel | o by atransparent middiebox that has added itself to the
M ddl eboxLi st intheC i ent Hel | 0. The message format shall have the following structure:

struct {
uint8 nmbox_entity_id;
M ddl eboxI nfo nb_i nfo; /* information about the to-be-added m ddl ebox */

} MooxHel | oRequest ;

The sub-fields of field mb_i nf o may be used for information about the reason for why and how the middlebox isto be
added (which contexts it wants access to and the purpose). Theci pher _sui t e_opti ons field may be used to
indicate preference for aternative cipher suites. A middlebox receiving this message shall always forward it.

4.3.6.9 ServerUnsupport

This message shall be used by the first middlebox to detect that the server does not support TLMSP, i.e. the middlebox
located closest to the server and shall be sent from that middlebox towards the client.

struct {
uint8 entity_id,; /* the identity of the middl ebox originating the message */
M ddl eboxLi st mi ddl ebox_info; /* Iist of m ddl eboxes */

} ServerUnspport;

The m ddl ebox_i nf o field shall contain the complete list of middleboxes that the originating middlebox
previously forwarded to the server, i.e. including any dynamically discovered middleboxes. Other middleboxes shall
forward this message to the client.

4.3.6.10 MboxFinished

A special handshake verification message is defined, used only between an endpoint and a middiebox. It shall have the
format:
struct {

uint8 entity_id,;

opaque verify_data[verify_data_l ength];
} MooxFi ni shed;

entity_id shal bethe entity identity of the origin/destination middlebox.

veri fy_dat a shall beformatted as specified in clause 7.4.9 of IETF RFC 5246 [1] with the deviations for the hash
computation as specified in clause 4.3.9.3.

NOTE: Different dataisincluded in hash computations for the "standard” Fi ni shed message sent between
endpoints than for the MooxFi ni shed message, since not all parties have access to the complete set of
messages exchanged during the handshake.

When a middiebox receives an Moox Fi ni shed message destined to it, after validating theincluded veri fy_dat a,
it placestheveri f y_dat a for the downstream endpoint into the record at the same location, applies the record
protection, and forwards the record to the next entity downstream. No other modifications shall be made to the received
record.

ETSI

54 ETSI TS 103 523-2 V1.1.1 (2021-02)

4.3.7 TLMSPKeyMaterial and TLMSPKeyConf

4.3.7.1 KeyMaterialContribution

The following described message generation method shall be the used when generating TLMSPKey Mat er i al and
when generating TLMSPKey Conf messages. The only difference between the two types of messagesisthat the
messages shall have different t ype identifiers and the cont ent field shall be generated differently as described
below.

With reference to Figure 6, during an initial handshake, the TLMSPKey Mat er i al and TLMSPKey Conf messages
occur before the ChangeCi pher Spec message, which will activate record protection. The content payload of each
TLMSPKeyMat eri al and TLMSPKey Conf message shall however still be protected as described in the present
clause, using the keys established between only the endpoint and the receiving entity, and using the same encryption
and integrity check mechanism that is being agreed during the ongoing handshake, see clause 4.3.1 of the present
document and clause 7.4 of IETF RFC 5246 [1].

If record size extensions of IETF RFC 8449 [7] is being negotiated, the new record sizes shall be applied to the
TLMSPKeyMat eri al and TLMSPKey Conf messages, even though they occur before the ChangeCi pher Spec
message (which would otherwise activate usage of the new record sizes).

sel ect (SecurityParaneters. cipher_type) {
case stream StreanC pherContribution;
case bl ock: Bl ockC pherContribution;
case aead: AEADCi pher Contri buti on;

} KeyMaterial Contri bution;

In the structures below, thecont r i but i ons field shall be comprised of the sequence of contributions for all contexts
to which the middlebox has at least read access (thus, ar eader _cont ri b shall be present and a
witer_contribordel ete_contrib may bepresent for each context). Specifically, a contribution shall have
the following format, wherekey | engt h isequal to Secur i t yPar anet ers. enc_key_| engt h:

struct {
uint8 context _id;
opaque reader_contrib<0..key_length> /* zero length if no read access granted */
opaque del eter_contrib<0..key_length> /* zero length if no del ete access granted */
opaque witer_contrib<0..key_length> /* zero length if no wite access granted */
} Contribution;

The maximum value of Securi t yPar anet er s. enc_key_| engt h supported by TLMSP shall be 216-1 octets.

Below, for agiven entity i , (the intended recipient of the message) the valuen_r ct xt shall equal the number of
contextsto which i isgranted the read access privilege level, n_dct xt shall equal the number of contextsto whichi is
granted the delete access privilege level, and n_wct xt similarly shall equal the number of contextsto whichi is
granted the write access privilege level. Finally, n_ct xt shall equal the number of contextsto whichi isgranted an
access privilege level greater than "none". Theenti ty_i d shall bethe entity identity, i , of the entity (middlebox or
endpoint) to which the message is directed and shall be left unencrypted.

NOTE 1. Whena del eter _contri bispresent, alsoar eader _contri b will be present, and when
writer_contrib ispresent, bothareader _contri bandadel et er _contri b will be present.

NOTE 2: Although deleter MACs are never used in context zero, as write access implies delete access generally,
del et er _cont ri b ispresent for context zero in order to maintain a regular approach across all
contexts.

struct {
uint8 entity_id;
opaque | V[SecurityParaneters.record_iv_|ength];
stream ci phered struct {
Contribution contributions[n_ctxt + (n_rctxt + 2*n_dctxt + 3*n_wctxt) * (2+key_length)];
opaque mac[SecurityParaneters. mac_| ength];

} StreanCi pherContri buti on;
struct {

uint8 entity_id;
opaque | V[SecurityParaneters.record_iv_| ength];

ETSI

55 ETSI TS 103 523-2 V1.1.1 (2021-02)

bl ock-ci phered struct {
Contribution contributions[n_ctxt + (n_rctxt + 2*n_dctxt + 3*n_wctxt) * (2+key_length)];
opaque mac[SecurityParaneters. mac_| ength];
ui nt 8 paddi ng[Bl ockCi pher Contri buti on. paddi ng_| engt h] ;
ui nt 8 paddi ng_I engt h;

b
} Bl ockGi pher Contri buti on;

struct {
uint8 entity_id;
opaque nonce_explicit[SecurityParanmeters.record_iv_|ength];
aead- ci phered struct {
Contribution contributions[n_ctxt + (n_rctxt + 2*n_wdtxt + 3*n_wctxt) * (2+key_length) +
D + SecurityParaneters. mac_| ength];

}
} AEADCI pher Contri buti on;

wherekey_| engt hiisequal to Securi t yPar anet ers. enc_key_| engt h, and the value D corresponds to
padding and other overhead added by the AEAD transformin use.

For AEAD transforms, the AAD shall be defined as:
AAD = entity_id || nonce_explicit || seq_num

where, as defined in clause 4.2.2.3, seq_num = 264- 1. A contribution received from the server granting read (delete
or write) accessto context i d = i ishereinafter notationally described asser ver _reader _contri b_i (and
server_del eter_contrib_i,server_witer_contrib_i).Similarly, acontribution received from the
client granting read (delete or write) accesstocont ext _i d = i isinthe sequel denoted

client_reader _contrib_i (andclient_deleter_ontrib_i,client_witer_contrib_i).The
contributions from client and server shall be combined according to clause 4.3.10.5intor eader _key_ bl ock_i ,

del eter _key_bl ock_i,andwiter_key bl ock_i.From these combined blocks, the actua data protection
keys (in each of the two directions) shall be derived as defined also in clause 4.3.10.5.

For messages that contain an explicit MAC (i.e. non-AEAD contributions), the MAC of the message shall be calculated
as.

MAC(el_to_e2_nmc_key, KeyMaterial Contribution.entity_id || seq_num]|
KeyMat eri al Contribution. 1V ||
KeyMat eri al Contri bution. contri butions)

with seq_numas above and whereel t o_e2 mac_key isthe MAC key shared between endpoint e1 and
middlebox (or other endpoint) e2 derived according to clause 4.3.10.4. For encryption of the messages defined in this
clause, theshared key el _to_e2_encrypti on_key generated asin clause 4.3.10.4, shall be used.

4.3.7.2 TLMSPKeyMaterial

TLMSP introduces a new Handshake message for delivering context key material to the middleboxes. During the
handshake, both the client and server shall send TLMSPKeyMat er i al messages through the chain of all middleboxes,
providing key shares for each middlebox (and the other endpoint). The message contains, for each context, a partial
secret for each access right granted to a middlebox for that context. At least one message (for context zero) shall always
be present. The final keys used to protect the context(s) can be derived only with both partial secrets (from the client
and from the server); knowledge of only one partial secret in isolation does not reveal any knowledge of the context
protection keys. Each TLMSPKey Mat er i al message shall be generated by an endpoint e (server or client) using the
defined data formats of clause 4.3.7.1, populated by parameters computed as defined in the sequel of the present clause.

Individual TLMSPKey Mat er i al messages shall be formatted in the same way asKeyMat eri al Cont ri buti on,
defined in clause 4.3.7.1.

NOTE 1. All TLMSPKeyMat eri al and TLMSPKey Conf use the same fixed sequence number. Thisisnot a
security problem since there will be at most one such message processed by any given cryptographic key.

ETSI

56 ETSI TS 103 523-2 V1.1.1 (2021-02)

Theentity_id field shal be set to the receiving middiebox and the cont ext _i d of each part of the contribution
shall be set to the context to which the contribution pertains. The value key | engt h shall beidentica to
SecurityParanet ers. enc_key_| engt h and the applicabler eader _contri b,del eter_contri b, or
writer_contri b field(s) shall be randomly generated using a cryptographically strong method. The

del eter_contribandwiter_contri b shal becryptographically independent from each other and from the
reader _contrib.

NOTE 2: Each transferred contribution has the same size as the final desired key length. Thus, when the two parts
from both client and server are combined, the resulting effective key length is sufficient for full entropy
of both encryption and MAC keys.

The endpoints may use "piggy-backing” as defined in clause 4.3.1.2 to transmit TLMSPKey Mat er i al information
elements directed to several middleboxesin the same TLMSP record.

4.3.7.3 TLMSPKeyConf

Asshown in Figure 6, the TLMSPKey Conf (Key Confirmation) message shall be generated and sent by the
middleboxes as they receive TLMSPKey Mat er i al signaling from the client towards the server, and likewise for the
other direction. The TLMSPKey Conf message provides proof to the client and server that each middlebox has
successfully obtained correct (partial) key material from the other endpoint for all contexts to which the middiebox is
granted access. For the client, the receipt of one or more TLMSPKey Conf messages also explicitly proves that the
client's own key material contributions were correctly received by the server (the server obtains this confirmation
implicitly, see below).

The TLMSPKey Conf message shall be structured asthe KeyMat er i al Cont ri but i on message (defined in
clause 4.3.7.1). That is, the same message fields shall be used, but with different usage and semantics as defined below.
An entity determines whether a message contains TLMSPKey Conf or TLMSPKeyMat er i al by using the included
message type (as defined in clause 4.3.4).

For each received TLMSPKeyMat er i al message, MK, directed to the middlebox, exactly one TLMSPKey Conf
message, MC, shall be generated as follows by the middlebox.

The middlebox shall settheent ity i d field of MC to its own identity.
The middlebox shall further generatethe cont ri but i ons field of MC, where the to-be-protected payload is either:

e theentiredecrypted cont ri but i ons field of the MK message received from the client, when forwarding
the message MC in client-to-server direction; or

. the entire decrypted cont r i but i ons field of the MK message received from the server, when forwarding
the message MC in the server-to-client direction.

ThelV, MAC, and other fields as defined in clause 4.3.7.1 shall be generated according to the selected cipher suite. The
symmetric key shared with the destination endpoint, as determined according to clause 4.3.10.4, shall be used.

The newly generated TLMSPKey Conf message MC shall then replace the corresponding received

TLMSPKeyMat er i al message MK when forwarding the message towards the destination. Any additional
TLMSPKeyMat er i al messages (not directed towards this middiebox, which is detectable by theent i ty_i d field)
shall be forwarded without further processing/action.

EXAMPLE: An original (complete) set of messages that was sent from an endpoint source that initially
contained TLMSPKeyMat er i al sharesfor middieboxese[1] ,e[2],...,e[N (innetwork
topological order) and e' (the destination endpoint, server or client), after processing by
middlebox e[j] containsthe TLMSPKeyMat eri al for middieboxese[j +1] ,e[j +2],. ..,
e[N], and destination e’ , and, in addition, TLMSPKey Conf messages from middleboxes
e[1], e[2], ..., e[]j],directedtoe’.

ETSI

57 ETSI TS 103 523-2 V1.1.1 (2021-02)

When the destination endpoint ultimately receives the single TLMSPKey Mat er i al message (from the other endpoint)
and the set of TLMSPKey Conf messages, it shall verify that it received TLMSPKey Conf messages from all
middleboxes, and for each context for which access to that middliebox was granted. The receiving endpoint shall then
decrypt, verify integrity, and finally confirm that each of the retrieved decrypted secrets matches with the expected
value. This confirmation shall be done as follows, depending on the endpoint in question:

e theserver shal verify that all the secret(s) of al the contexts (r eader _contri b,anddel ete_contrib
orwiter_contrib)of MCisequal to the corresponding values of the client's share as received directly
from the client (in its own, separate TLMSPKeyMat er i al message);

e theclient shal verify that al the secret(s) of all the contexts (r eader _contri b,anddel ete_contrib
orwiter_contrib)isequa tothe server's share(s) as received directly from the server in the
TLVSPKeyMat eri al message.

If any of these checksfail, the endpoint shall send an alert of typemi ddl ebox_key confirmation_fault and
shall abort the handshake. The event should be logged.

NOTE: The above provides explicit confirmation to the client that all middleboxes received both contributions
from the client itself and from the server. The server obtains an explicit verification of the contributions
from the client and will later obtain an implicit confirmation of its own key contributions viathe
middleboxes MooxFi ni shed messages, see clause 4.3.9.3.

4.3.8 MboxLeaveNotify and MboxLeaveAck

4381 Message format

These messages shall have the following structure:
struct {
uint8 nmbox_entity_id;
} MooxLeaveNoti fy;
struct {

uint8 nmbox_entity_id,;
} MooxLeaveAck;

These messages are sent when a middlebox wishes to leave a session and shall be processed as defined in clause 4.3.2.5.
4.3.8.2 Message processing

43.8.2.1 General

The MboxLeaveNot i fy and MooxLeaveAck messages shall only be issued after completeing the handshake, and
such messages occurring at earlier stages shall be discarded.

A simplified overview of the function of these two messages follows. When a middiebox wantsto leave a TLM SP
session, it enqueues an MooxLeaveNot i fy message to be sent in each direction. These messages are forwarded to
the endpoints, who in turn each respond with a corresponding MooxLeaveAck message. Asan MboxLeaveAck
message travels to the other endpoint, it provides the synchronization point for:

e theentity upstream of the departing middlebox to begin computing hop-by-hop MACs using the pairwise key
it shares with the entity downstream of the departing middlebox;

e thedeparting middlebox to stop participating in the protocol in that direction and begin simply forwarding all
transport packets for the remaining lifetime of the transport connections; and

. the entity downstream of the departing middlebox to begin expecting hop-by-hop MACs computed using the
pairwise key it shares with the entity upstream of the departing middlebox.

ETSI

58 ETSI TS 103 523-2 V1.1.1 (2021-02)

43822 Detailed operation

Each entity maintains a concept of the current state of each middlebox for each direction of communication (client-to-
server and server-to-client). The three states shall be: establishing, participating, and gone. The states shall have the
following meaning.

Establishing: The middiebox has not yet completed the handshake in the given direction. Thisisthe initia state.

Participating: The middlebox has completed the handshake and is fully participating in the TLMSP protocol in
the given direction.

Gone: The middlebox has reduced its participation in the given direction to forwarding unmodified
transport packets.

Each middlebox shall also maintain the single state variable| eave_not i fy_sent , which indicates whether it has
begun the departure process.

When an entity receives, or in the case of an originating endpoint, sends, an MboxFi ni shed message pertainingto a
given middlebox, it shall update that middiebox's current state for that direction to participating. Other state transitions
are described below. Middleboxes keep track of the upstream and downstream (participating) neighbours as described
in clause 4.2.7.2.3, and verify/compute the associated hop-by-hop MACs as also describe in clause 4.2.7.2.3.

When a middlebox in the participating state wishesto leavea TLMSP session, it shall set| eave_noti fy_sent to
"true” and send an MboxLeaveNot i f y message, withmbox_enti ty_i d set toitsentity identity, in each direction.
An MboxLeaveNot i fy message shall not be combined in arecord with any other messages. The middlebox shall
ensure that the second MooxLeaveNot i fy messageis sent before the MooxLeaveAck message corresponding to
the first MooxLeaveNot i fy messageisreceived and processed.

When an entity receives an MooxLeaveNot i f y message:

. If the originator of the message is an endpoint, or the origin of the message is a middlebox that is not in the
participating state in the direction the message was received, the entity shall raise afatal
unexpect ed_nessage aert and stop further processing.

. If the entity is not an endpoint, it shall forward the message.

. If the entity is an endpoint, it shall respond with an MooxLeaveAck message bearing the same
nbox_entity_i d. Theentity should send all MooxLeaveAck messagesin the same order that the
corresponding MooxLeaveNot i fy messageswere received.

An endpoint sends an MboxL eaveAck message in response to an MooxLeaveNot i f y as described under
MooxLeaveNot i fy processing above. An MboxLeaveAck message shall not be combined in arecord with any
other messages. Immediately after an endpoint sends an MboxLeaveAck message, it sets the current state of
middlebox mbox_ent i ty_i dinthat direction to gone.

When an entity receives an MooxLeaveAck message:

. If the originator of the message is not the upstream endpoint, or the current state of the middlebox indicated by
thembox_enti ty_i disnot participating in the direction the message arrived in, the entity shall raise afatal
unexpect ed_nessage aert and stop further processing.

. If the entity is not an endpoint, it shall forward the message.

. If the entity is upstream of the middlebox nbox_entity_i d, immediately after sending the message, the
entity shall set the current state of the middiebox nbox_ent i ty_i d in that direction to gone.

. If the entity is downstream of the middiebox mbox_enti ty_i d, immediately after processing the received
message, the entity shall set the current state of the middliebox mbox_entity _id in that direction to gone.

. If the entity isthe middiebox nbox_entity id,andl eave_notify_sent is"false", it shal raise an
unexpect ed_nessage aert and stop further processing. Otherwise, if leave notify_sent is "true”, it shall
forward all subsequent transport packets without performing any further processing.

ETSI

59 ETSI TS 103 523-2 V1.1.1 (2021-02)

. If the entity is an endpoint, immediately after processing the received message, the entity shall set the current
state of the middlebox mbox_entity id in that direction to gone.

Although a departing middlebox sends an MooxLeaveNot i f y message in each direction when beginning the
departure process, in general, the actual transition of the middlebox'slocal state to gone will occur at different timesin
each direction. This givesrise to the possibility that the middlebox's processing in one direction encounters an error that
requires an aert to be sent in the other direction, but that direction has transitioned to the gone state, so no such actionis
possible. In this case, the middlebox shall either send an alert only in the direction in which it is still participating or
forward the message whose processing generated the error in such away that the alert will be raised by the next
downstream entity.

When the status of awriter or deleter middlebox changes to gone, the first downstream adjacent writer or deleter
middlebox shall from this point on reconfigure to no longer having the leaving middlebox as the expected deleter/writer
author of deleter/writer MACs, and shall instead reconfigure to now verify deleter/writer MACs having the next
upstream del eter/writer middlebox as the expected author of the corresponding MACs. This could imply that the
upstream endpoint enters the role of author of these MACs.

An entity that receives a message whose originator or author is a middliebox whose current state in the direction the
message was received is gone shall raise afatal unexpect ed_nessage aert and stop further processing.

4.3.9 Message hashes

4391 ClientHello and ServerHello value substitutions

The TLMSP extension contains several fields whose values can be modified at each hop when traversing from one
endpoint to the other. Entities shall use consistent values for these fields when computing verification hashes that
includeaCl i ent Hel | o or Ser ver Hel | 0 message, asfollows.

For Cl i ent Hel | o messages:

. M ddl exbol nf o entriesinml _i with the attributei nser t ed set to dynam c shall be omitted. The
encoded size of ml _i shall not be adjusted.

. If present, the value of pr evi ous_ent i ty_i d shall bereplaced by the octet value zero.

. The encoded value of hbh_i d shall be replaced by the encoding of an empty Hopl D (that is, by a single octet
having the value zero).

For Ser ver Hel | o messages, the encoded value of hbh_i d shall be replaced as described abovefor Cl i ent Hel | 0
messages.

Omission from the verification hashes of the specific values that each entity observes for these fields does not result in a
loss of security as tampering with their values on the wire will cause session establishment to fail.

4.39.2 Finished hash

When computing the hash that isincluded in the client-server Fi ni shed messages, the processing of IETF

RFC 5246 [1], clause 7.4.9 shall be applied, the only difference being that client and server shall omit certain
information elements that were inserted by middleboxes since the client and server need not have received identical
copies of these messages. Messages that were inserted by middleboxes are recognizable via the dedicated message types
used to distinguish middiebox Handshake messages from those of client/server.

Thehandshake_rnessages input to the hash calculation shall be as defined in clause 7.4.9 of IETF RFC 5246 [1],
but with the value substitutions described in clause 4.3.9.1 applied and with the following differences.

ETSI

60 ETSI TS 103 523-2 V1.1.1 (2021-02)

Thefirst input to the hash shall be theinitial Cl i ent Hel | 0. Additionally if any middleboxes are dynamically
discovered during the handshake, the client shall complete the ongoing hash computation, and include in the TLM SP
extension of the second Cl i ent Hel | o (inthepr e_di scovery field, asdefined in clause 4.3.5), a hash of the
messages exchanged with the server up to, but not including, the second Cl i ent Hel | o following the discovery
phase. At this point, the client and server shall reset the hash calculations to re-start with the inclusion of the second
Cl i ent Hel | o, following the discovery. If there are no dynamically discovered middleboxes, the hash computation
shall just proceed.

NOTE 1: The discovery phaseitself is protected by:

L] the server's signature on the initial messages (including the M ddl eboxLi st) asdefinedin
clause 4.3.9.4; and

" the client's inclusion of messages from the discovery phaseinto the pr e_di scovery_hash
field of second Cl i ent Hel | o.

After apossible discovery phase, the inputs to the hash shall consist of the remaining set of Handshake messagesin
the order which they appeared, except the following, middlebox-related messages:

. MooxCerti fi cat eRequest (clause4.3.6.3),Certi fi cat e2Mbox (clause4.3.6.7),Certificate
sent from client to amiddliebox, Certi fi cat eVeri f y2iMbox , ChangeCi pher Spec, and
TLMSPKey Conf (clause 4.3.7.3) messages;

e TLMSPKeyMat eri al (clause 4.3.7.2) message directed to a middlebox (non-endpoint); and
o MooxFi ni shed (clause 4.3.6.10) messages.

The following middlebox-related messages shall be included (since they are always sent asidentical copies towards
both client and server):

e theMooxHel | o (clause 4.3.6.1), MooxKeyExchange (clause 4.3.6.5), and MboxHel | oDone
(clause 4.3.6.6);

e theTLMSPKeyMat eri al (clause4.3.7.2) message directed from one endpoint to the other endpoint.

NOTE 2: Asinof IETFRFC 5246 [1], Hel | oRequest (including MooxHel | oRequest) messages are not
included, asthey restart the handshake.

. MboxCerti fi cat e (clause 4.3.6.2) shall be included for middleboxes that present the certificate to both
endpoints, which is the case except when at least one endpoint has requested use_certificate =
f al se in the corresponding entry of the middiebox list.

Between client and server, the server's Fi ni shed message shall include a hash of the client's Fi ni shed message.
The client and server shall use the same labels to prefix the hash input to the PRF asin IETF RFC 5246 [1],
clause 7.4.9.

4393 MboxFinished hash

This hash computation is used for verification between an endpoint and a middiebox and shall also be done with the
prescribed processing of IETF RFC 5246 [1], clause 7.4.9, with the value substitutions described in clause 4.3.9.1 of the
present document applied as well asincluding the following items, in the order which they were sent/received. First, if
any dynamic middlebox discovery occurs, any message sent during the discovery phase shall be omitted.

NOTE 1. Thisisto ensure that all middleboxes, including dynamically discovered ones, observe the same value for
messages included in the hash. Messages exchanged during discovery are still protected by the client
including their hash in the second Cl i ent Hel | 0, as noted above.

Below, the middlebox-specific messages shall be those relating to the middlebox with which the Moox Fi ni shed
message is associated:

e All messagesfromC i ent Hel | o (the ones occurring after the discovery phase, if any, is completed) up to
and including the Ser ver Hel | oDone message.

ETSI

61 ETSI TS 103 523-2 V1.1.1 (2021-02)

o MooxHel | o, MooxCertificate, MoxKeyExchange, MdoxHel | oDone.

e theclient'sCerti fi cat e2ivbox responseto the middiebox, the Certi f i cat e response to the server and
the corresponding Certi fi cateVerify andCertificateVerify2Moox messages.

. theC i ent KeyExchange.
. thetwo TLMSPKeyMat er i al messages, directed between the endpoints.
. ChangeGi pher Spec.

e forthe MboxFi ni shed messages between middlebox and the server (only), the following items (in this
order):

- alist of received key material contributions, Lcontri b, as defined later in the present clause;

- the client's Fi ni shed message with the server;

- in the MooxFi ni shed from the server to middlebox (only), also the middiebox's Moox Fi ni shed;
. for the MooxFi ni shed message between middlebox and the client (only):

- MooxCerti fi cat eRequest

- the client's Fi ni shed message;

- in the MooxFi ni shed from middlebox to client (only), also the server's Fi ni shed and the client's
MooxFi ni shed.

For specific middleboxes where at least one of the endpoints have requested use_certificate = fal seinthe
middlebox list extension, theMboxCerti fi cat e shall be omitted. Similarly, if at least one of the endpoints have
requested al t _cs for amiddlebox, the MooxKeyExchange for that middiebox shall be omitted.

TLMSPKeyMat er i al messages from the client or server to a middiebox shall not be included. Similarly,
TLMSPKey Conf messages directed to the client and related to a specific middiebox shall not be included.

NOTE 2: These messages are explicitly verified when received.

Theinput to the hash in the Mbox Fi ni shed messages between a middliebox and the server shall additionally include
the concatenated list of al the decrypted cont ent fieldsfromall r eader Cont ri buti ons,

del eterContri butions,andwiterContributions received from client and server (as part of
TLMSPKeyMat er i al messages), ordered according to their associated cont ext _i d.

Let Cer(i),GCsr(i),Cea(i),Gsa(i),Ce(i),andCsw(i), bethedecrypted content fields from the client (c) and
the server (s) of ther eader _contri b (r) andthedel ete_contri b (d)orwiter_conti b (w) associated with
context _id=i.

Then thislist shall be:

Leontrinb = Ccr(' 1
Cer (i
Ccr(iS

) 1T Gr(ig) || [Cea(ia) || Ga(ia) || Celia) || Gulia) []]
) 1T Ge(i2) || [Cea(iz) || Ga(iz) || N 1]
) I Ge(ig) || .

3

N

where{ 0=i1<iz<... <im} istheset of contexts for which the middlebox has granted access and where the del eter
contributions (Cea(ij) || Gsa(ij)) areincluded only if the middlebox has delete or write access to the context, and
the writer contributions (Cew(ij) || Gsw(ij)) areincluded only if the middliebox has write access to the context.

NOTE 3: Since al middleboxes have both read and write access to context zero, Cer (0) , Csr (0) , Cea(0)
Gsa(0), Cew(0), and Csu(0) will dways be present.

The following labels shall be used to prefix the hash input to the PRF:

° from client to middlebox, "cl i ent to nbox fi ni shed"

ETSI

62 ETSI TS 103 523-2 V1.1.1 (2021-02)

° from middlebox to client, " nbox to client finished"
° from server to middlebox, " server to mbox fi ni shed"

° from middlebox to server, " nbox to server fini shed"

4.3.9.4 ClientHello hash (following dynamic discovery)

This hash, included in the TLM SP extension (the pr e_di scovery_hash asdefined in clause 4.3.5), shal be
computed as the hash of the concatenation of the following messages occurring during the discovery phase:

. Theinitia Cl i ent Hel | o and its TLMSP extension, with the value substitutions described in clause 4.3.9.1
applied.

. Ser ver Hel | o (with extensions, and with the value substitutions described in clause 4.3.9.1 applied).
. Server'sCertificateandCertifi cat eRequest (if present).
. TLMSPSer ver KeyExchange.

° Ser ver Hel | oDone.

4.3.9.5 TLMSPServerKeyExchange hash

This hash value shall beincluded in TLMSPSer ver Key Exchange messages, and shall also be included in the input
to the server's and middlebox's signature rel ated thereto, as defined in clause 4.3.10.1. The hash shall be computed as
the hash of all messages from theinitial Cl i ent Hel | o (sent prior to any possible dynamic middiebox discovery), up
to, but not including, the TLMSPSer ver Key Exhange itself, with the value substitutions described in clause 4.3.9.1

applied.

When amiddiebox generatesa TLMSPSer ver Key Exchange (asdefined in clause 4.3.10.1, it does so only directed
towards the client), it shall also include in the hash, messages that it has forwarded to the client on behalf of the server,
but not messages that it has forwarded on behalf of another middlebox.

4.3.10 Key generation

4.3.10.1 TLMSPServerKeyExchange

TLMSP uses a dightly modified server key exchange message format, compared to IETF RFC 5246 [1]. The message
shall be used by both server and middlebox when generating a key exchange message directed to the client. The
message includes a hash of previous messages in the handshake and there is further no option for RSA key transport.
The message shall have the following format.

struct {
sel ect (KeyExchangeAl gorithm {
case dhe_dss:
case dhe_rsa:
case ecdhe_dss:
case ecdhe_rsa:
Ser ver DHPar ans par ans;
select (certificate provided) {
case true:
digitally-signed struct {
sel ect (server_generated_nessage) {
case true: opaque hash[SecurityParaneters. hash_| ength];
case false: struct { };
b
opaque client_randoni 32];
opaque server _randoni 32];
Ser ver DHPar ans par ans;
} signed_parans;
case fal se:
sel ect (server_generated_nessage) {
case true: opaque hash[SecurityParaneters. hash_| ength];
case false: struct { };

ETSI

63 ETSI TS 103 523-2 V1.1.1 (2021-02)

b
b

H
} TLMSPSer ver KeyExchange;

The format difference to IETF RFC 5246 [1] is the additional hash field. This value shall be computed according to
clause 4.3.9.5 and shall be included in the input to the server's or middlebox's signature. This signature serves two
purposes. When used by a server, this signature verifies the value of the middlebox lists, both the one received in the
Cl i ent Hel | 0, aswell asthelist returned in the Ser ver Hel | o, protecting from third party modification attempts
during early phases of the handshake. Secondly, when used by the server or amiddlebox, it further authenticates any
possible MooxCerti fi cat eRequest, protecting the client's privacy from spoofed requests. When the client or
server has requested amiddlebox to not use_certi fi cat e, or, to use an aternative cipher suite with met hod_i d
= anon, verification of this message is not possible until in conjunction with the Fi ni shed hash verification.

Since this message is used by both the server and middleboxes, the (implicit) value of
server _generat ed_nessage shal be construed accordingly, based on the originator of the message.

Similar to to IETF RFC 5246 [1], certificate requests shall not be allowed from entities not providing certificates.

When the client receives a TLMSPSer ver KeyExchange, it shall calculate the hash field and verify the signature. If
the signature verification fails, this indicates the possibility of one or both of:

a) aspoofedCertificateRequest or MooxCertifi cateRequest, appearing to come from the sender;

b) an unauthorized modification of one of the middlebox lists (the original client list and/or the list claiming
to originate in the server).

In this case, the client shall send ahandshake_f ai | ur e alert and terminate the session.

4.3.10.2 General

During thefirst stage of the handshake, the server and client exchange random nonces, certificates, and signed
ephemeral public keysintheHel | o, Certi fi cat e, and Key Exchange messages respectively. These are used to
generate the client-server master secret (via a premaster secret) as per IETF RFC 5246 [1] that definesTLS 1.2. To
generate the endpoint-middlebox premaster secret, the same endpoint ephemeral public key shall be re-used but
combined with unique, per-middlebox ephemeral keys. To this end, each middiebox also sends messages

(MooxHel | o, MooxCerti fi cat e) containing the middiebox's nonce and its certificate. Different ephemeral public
keys shall be used by the middlebox for the exchange with the client and the server and both shall be included in the
MooxKeyExchange message.

NOTE 1. Thisisfor two reasons: so that the client and server see identical messages and can therefore include them
in the hash for the confirmation of the integrity of the key exchange; so both the client and the server can
verify that the middlebox has used a different key with the other endpoint.

The client-server premaster secret shall be generated as per clause 8 of IETF RFC 5246 [1].

The client-middlebox premaster secret shall be generated using the ephemeral key and nonce from the client and using
the middlebox ephemeral key and nonces exchanged between middiebox and client.

The server-middlebox premaster secret shall be generated using the ephemeral key and nonce from the server and using
the middlebox ephemeral key and nonces exchanged between middiebox and server.

NOTE 2: Inwhat follows, el and e2 correspond to a pair of entities, not necessarily endpoints. When it is of
importance that one of e1 and/or e2 is an endpint, thiswill be stressed.

4.3.10.3 Premaster secret and master secret generation

Thepre_mast er _secret _ele2 shared between entitiesel and e2 isgenerated in away specific to the cipher
suite in use; annex A describes the predefined suites. The master key shared between precisely two entities, el and e2
(two endpoints, an endpoint and a middlebox, or two middleboxes), shall be generated as:

mast er _secret_ele2 = PRF(pre_naster_secret_ele2,

"master secret”,
id_list ||

ETSI

64 ETSI TS 103 523-2 V1.1.1 (2021-02)

el_ Hello.random ||
e2_ Hello.random[O0..47];

where the PRF shall be the same asin clause 5 of IETF RFC 5246 [1] i.e. P_SHA256. Here,i d_I i st shall bethe
hash of the concatenated list of the following identities, in the stated order:

1) aclientID, when available (e.g. viaacertificate), followed by;

2) al middiebox MboxCerti fi cat e messages, as available, in the same order asin the final agreed
middlebox list, followed by;

3) theServerCertificate message, when available.

For items 2 and 3, the entire messages (including t ype and | engt h fields) shall be included. If a certificate of some
entity is not available to both entitiese 1 and e2, dueto the client and/or server having set the attribute
use_certificat e tofasefor that entity, the certificate shall be replaced by the value of the addr ess field in the
middlebox list extension corresponding to that entity. Further, when el isthe client, to resolve ambiguity (e.g. when the
client provides different certificates to different entities), a (certificate based) client ID shall be considered available to
the entity el (client) and e2 if, and only if:

. e2 isan entity who has made an explicit certificate request to the client (MooxCer ti fi cat eRequest, if
e2 isamiddlebox and Certi fi cat eRequest ,if e2 isthe server), in which case the certificate (identity)
to use shall be the onein the client's corresponding response (i.e. Cer ti fi cat e2Mbox or Certi fi cat e);

. e2 isamiddlebox who has not explicitly requested a client certificate, but the server has (via
Certificat eRequest), in which case the certificate (identity) to use shall be the one in the client's
corresponding Cer ti f i cat e response.

In all other cases, e2 shall not be considered as having any client certificate available.

EXAMPLE: If middiebox e2' isdownstream from middiebox e2 (in the client-server direction) and both
middleboxes have requested client certificates, then although both certificate responses will have
passed e2 (making both certificates "visible" to e2), e2 (and the client e1) will still only use the
certificate included in the response directed to e2, since that isthe only certificate which is
considered as being available.

Theorder of el_ Hel | 0. randomand e2_ Hel | o. r andomshall be such that el isthe entity topologically
closest to the client and e2 istopologically closest to the server.

NOTE: When one of the entitiesis the client (or server), el isidentified with the client (and e2 with the server).

The same cryptographic hash as that used in the PRF defined by the selected cipher suite shall be applied.

4.3.10.4 Pairwise encryption and integrity key generation

The encryption and integrity keys for communication between entities el and €2 when el isthe client and e2 isthe
server shall be generated from Secur i t yPar amet er s. mast er _secr et _ele2 derived asin clause 4.3.10.3
according to:

key_bl ock_ele2 = PRF(SecurityParaneters. master_secret_ele2,
"key expansi on",
SecurityParaneters. e2_random | |
SecurityParaneters.el_random[0..2*T-1];

where T shall be defined asfollows. Lete = SecurityParaneters. enc_key | engthandm =
SecurityParaneters. mac_key length and n = SecurityParaneters.fixed_iv_|engthand
define T = e+n+m Thekey_ bl ock_ele?2 shall be partitioned into:

el to_e2 encryption_key[SecurityParaneters. enc_key | ength];

e2_to_el encryption_key[SecurityParaneters. enc_key | ength];

el to e2 wite fixed |V[SecurityParaneters.fixed_ iv_|length];
e2 to el wite fixed |IV[SecurityParameters.fixed_ iv_|length];
el to_e2 mac_key[SecurityParaneters. nac_key | ength];

e2 to_el mac_key[SecurityParaneters. nac_key | ength];

ETSI

65 ETSI TS 103 523-2 V1.1.1 (2021-02)

NOTE 1. The only messages which make use of the encryption keys are the TLMSPKeyMat eri al and
TLMSPKeyConf mnessages. The only security protection that makes use of the IV are also when
protecting those two messages, and additionally, whenever computing hop-by-hop MACs.

The two last keys shall be used whenever a standalone MAC is to be computed (without encryption) between el and e2.
When an AEAD transform isin use, this shall be done by only using the MAC-part of the transform, see annex A for
the predefined cipher suites.

NOTE 2: When el and €2 are the endpoints, a message that is correctly authenticated with these keys will have
originated at the endpoint. It has not been altered by a middlebox in transit and it will not have been
accessible by anyone else. These keys are also used when the client (or server) send the
TLMSPKeyMat er i al messages between each other containing the contributions.

Keys for communication between client (or server) and each middiebox shall be generated in the above way, identifying
the entity el with the entity topologically closest to the client and €2 the entity closest to the server.

NOTE 3: These keys, known only to one endpoint and one middlebox, are used in the protection of the
TLMSPKeyMat eri al and TLMSPKey Conf messages containing the contribution. The MAC key is

also used when a middlebox modifies or inserts new containers or authenticatesit via the hop-by-hop
MAC.

When el and e2 are topologically adjacent middleboxes, keys for hop-by-hop MACs shall also be generated in the same
way, now identifying the entity el with the entity topologically closest to the client and e2 the entity closest to the
server, and now setting T = m

NOTE 4: Thisimpliesthat when el and €2 are both endpoints, or, when precisely one of €1 and e2 isisan
endpoint, but the other is a middlebox, two pairwise encryption keys and two IVswill be dways
generated, and when anon-AEAD transform is used, two further pairwise MAC keyswill aso be
generated. When el and €2 are both middleboxes only asingle pair of MAC keyswill be generated since
only keysfor the hop-by-hop MAC are needed.

On session resumption, the previously established key bl ock _ele?2 shall be refreshed by mixing the existing key
with the new client and server random values as defined here:

key_bl ock_ele2_new = PRF(key_bl ock_ele2,
"key expansion",
SecurityParaneters.client_randomnew ||
SecurityParaneters. server_randomnew)[0..2*T-1]);

which is then partitioned as stated in the preceding paragraph.

4.3.10.5 Context specific keys

For the context specific keys, the client and server shall generate two pseudorandom partial secrets for each context:
. the client shall generate a client read secret and a client write secret;
e theserver shall generate a server read secret and a server write secret.

Partial secretsfor different contexts shall be cryptographically independent.

As specified in clause 4.3.7, these partial secrets are only sent to middleboxes to which the endpoint iswilling to
authorize the corresponding access, encrypted and integrity protected with the keys derived in clause 4.3.10.4. Each
party with authorized access to a particular context, i , shall derive values associated with each context as follows:
. client _to_server_reader_enc_key_i : Encrypt/Decrypt datain direction from the client to server;
. server _to_client_reader_enc_key_i : Encrypt/Decrypt datain direction from the server to client;

e for context zeroonly,cl i ent _to_server_fixed_| V_O:fixed IV for datain direction from the client to
server;

ETSI

66 ETSI TS 103 523-2 V1.1.1 (2021-02)

e for context zeroonly, server _to_client_fixed_|V_0:fixed IV for datain direction from the server to
client;

. client_to_server_reader_mac_key_i: Compute reader MAC for datain direction from client to
server (for non-AEAD transforms only);

. server_to_client_reader_nac_key_i: Computereader MAC for datain direction from server to
client (for non-AEAD transforms only).

Encryption of messages of other contexts than context zero shall usethe samefi xed_| V val ues asthose derived
for context zero.

When also delete access is granted, two additional keys shall be derived:

. client_to_server_del eter_nac_key_i: Compute deleter MAC for datain direction from client to
server;

. server_to_client_del eter_mac_key_i: Compute deleter MAC for datain direction from server to
client.

When write access is granted, two additional keys shall be derived:

. client_to_server_writer_mac_key_i: Computewriter MAC for datain direction from client to
server;

. server_to_client_witer_nac_key_i: Computewriter MAC for datain direction from server to
client.

NOTE: In some cases (such aswhen AEAD cipher suites are used) the client/server read keys and the
client/server read MAC keys are notionally the same key.

After receiving a TLMSPKeyMat er i al message from both endpoints, for each authorized context i , all authorized
parties shall compute the context reader keys for the contexts they can access, usingcl i ent _reader_contri b_i
andserver _reader_contrib_i forcontexti . Thisshall berepeated usingcl i ent _del eter_contri b_i
andserver _del eter_contri b_i forthose entities that have delete or write access the context i , and using
client_witer_contrib_i andserver_witer_contrib_i forthoseentitiesthat have write accessto
context i . In more detail, let MRs[j] and MRc[j] bethe random valuesincluded in the MooxKeyExchange sent
directed from the j th middliebox (in network topological order) towards the server and client, respectively, i.e. the
middlebox-selected random valuesincluded intheser ver _exch and cl i ent _exch part of the
MooxKeyExchange as defined in clause 4.3.6.5. Notice that by the definition in clause 4.3.6.5 these values are
available to al entitiesin the MooxKeyExchange. For each context i , each authorized party shall use the partial
secrets from client and server to compute two blocks of key material:

reader _key_bl ock_i = PRF(server_reader_contrib_i || client_reader_contrib_i,
"reader keys",
il
MRs[1] || MRe[1] || MRs[2] || MRe[2] || .|| MRS[N| || MRC[N ||
SecurityParanet ers. server _random | |
SecurityParaneters.client_randon)[0..2*T-1];

del eter_key_bl ock_i = PRF(server_deleter_contrib_i || client_deleter_contrib_i,
"del eter keys",
il
MRs[1] || MRe[1] || MRs[2] || MRc[2] || .|| MRS[N| || MRC[N ||
SecurityParaneters. server_random | |
SecurityParaneters.client_randon[0..2*m1];

witer_key block_ i = PRF(server_witer_contrib_i || client_witer_contrib_i,
"witer keys",
il
Ms[1] || MRe[1] || MRs[2] || MRe[2] [| .|| MRS[N || MR[N []
SecurityPar anet ers. server _random | |
SecurityParaneters.client_randon))[0..2*m1];

ETSI

67 ETSI TS 103 523-2 V1.1.1 (2021-02)

where, for contexti =0, T = e+n for AEAD transforms, andt = e+mtn otherwise and for al other contextsi, T =e
for AEAD transforms, andt = e+m wherei isthe octet context identifier. Eachr eader _key_ bl ock_i above
shall be partitioned according to the valuesm and T into:

client _to_server_reader_enc_key i[SecurityParaneters. enc_key | ength];

client _to_server_reader_nac_key i[SecurityParameters. nac_key | ength];
server_to_client_reader_enc_key i[SecurityParaneters.enc_key | ength];

server_to_client_reader_nac_key i[SecurityParaneters. nac_key | ength];
client _to_server_fixed |V _O[SecurityParanmeters.fixed_iv_|ength]; (forcontextzero)
server _to client_fixed |V O] SecurityParaneters.fixed_ iv_Iength]; (forcontextzero).

Further, each del et er _key_ bl ock_i shall be partitioned into:

client _to_server_del eter_mac_key i[SecurityParaneters. mac_key | ength];
server_to_client_deleter_mac_key i[SecurityParaneters. nac_key | ength];

andeachwriter_key bl ock_i shal be partitioned into:

client _to server _witer_mac_key i[SecurityParaneters. mac_key | ength];
server _to client_witer_mac_key i[SecurityParanmeters. mac_key | ength];

Thederived f i xed_I V valuesfor context zero shall be used for all contexts, when the cryptographic transform
requires afixed V. Dueto the additional inclusion of the sequence number in thefinal 1V, collsions are till avoided.

On session resumption, the previously established keys, ther eader _key_ bl ock_i ,del et er _key_bl ock_i ,
andwriter_key bl ock_i,foreachcontexti, shal be refreshed by mixing the existing secrets with the new
client and server random values as defined here:

reader _key_bl ock_new i = PRF(reader_key_bl ock_i,
"reader keys",
il
SecurityParaneters. server_random new | |
SecurityParaneters.client_randomnew)[0..2*T-1];

del et er _key_bl ock_new_i = PRF(del eter_key_bl ock_i,
"del eter keys",
il
SecurityPar anet ers. server _random new | |
SecurityParaneters.client_randomnew)[O0..2*m1];

writer_key block_new i = PRF(witer_key_block_i,
"witer keys",
i1l
SecurityParaneters. server_random new | |
SecurityParaneters.client_randomnew)[O0..2*m1];

which are then partitioned as stated in the immediately preceding paragraph.

4.3.10.6 Key extraction

The functionality of this clause shall be optional to implement and use. When implemented, the functionality of this
clause may be used by an application to extract key material for other purposes. Specifically, one or more additional key
blocks shared uniquely between entities with a certain access right to a context i shall then be extracted as follows:

extracted_reader _keybl ock i = PRF(reader_key_ bl ock_i,
"TLMSP reader key extraction",
SecurityParaneters. server _random | |
SecurityParaneters. client_random ||
[context _value_length || context_value])[0..N1];

extracted_del eter _keybl ock_i = PRF(del eter_key_bl ock_i,
"TLMSP del eter key extraction",
SecurityParanet ers. server_random | |
SecurityParaneters.client_random ||
[context _value_length || context_value])[0..N1];

ETSI

68 ETSI TS 103 523-2 V1.1.1 (2021-02)

extracted_witer_keyblock_i = PRF(writer_key_block_i,
"TLMSP witer key extraction",
SecurityParaneters. server_random | |
SecurityParaneters. client_random ||
[context _value_length || context_value])[0..N1];

where all parameters named asin clause 4.3.10.4 are the same, and where cont ext _val ue shall be an optional string
of length cont ext _val ue_I| engt h octets. N isthe number of desired output octets. Different applications of this
function for agiven writer, deleter, or reader key block shall use distinct values of cont ext _val ue.

4.4 The Alert protocol

44.1 General

All aert messages before the Ser ver Hel | 0 message has been observed shall follow and be limited to the definitions
in [1]. After the transmission or receipt by an entity of aSer ver Hel | o containing a TLMSP extension, all aert
messages that entity originates shall use the containered format described in clause 4.2.3.1.6 and will thus indicate the
entity ID of the entity originating the aert.

4.4.2 Alert message types

The set of Al ert protocol messages extend IETF RFC 5246 [1] as follows:

enum {
cl ose_notify(0), unexpected_nessage(10),
/* the existing TLS alert codes */
m ddl ebox_route_failure(170), /* mddl ebox fails to connect to next hop */
m ddl ebox_aut hori zation_failure(171), /* endpoi nt does not accept m ddl ebox */
unknown_cont ext (172), /* entity does not recognize a context or its purpose */

unsupported_context (173), /* mddl ebox can not performrequested operation on context */
m ddl ebox_key_verify_failure(174),

bad_r eader _mac(175), /* reader MAC failed to verify */
bad_del et er _nmac(176), /* ditto, deleter MAC */
bad_writer_nmac(177), /* ditto, for witer MAC */
m ddl ebox_key_confirmation_fault(178), /* failure to verify key-share */
m ddl ebox_suspend_noti fy(179) /* m ddl ebox | eaves the session */
(255)

} AlertDescripton;

For existing Al ert messages, clause 7.2 of IETF RFC 5246 [1] shall apply. The use of thebad_r eader _mac,
bad_del eter _mac,bad_witer_nac,andbad_record_mnac aertsare described in clause 4.2.2.2.

Them ddl ebox_suspend_not i fy aert isasofter version of the MooxLeaveNot i fy message. This alert
signals that the middlebox will remain on-path, but only to verify and generate hop-by-hop MA Cs without performing
any message inspection.

Thel evel field of the additional messages shall be assigned an Al ert Level value asfollows:
e niddl ebox_suspend_notify:warning(1);

. m ddl ebox_route_failure, m ddl ebox_aut hori zati on_fai |l ure, unknown_cont ext,
unsupported_cont ext,m ddl ebox_key verify failure, bad_reader_nac,
bad_writer_nac,andm ddl ebox_key confirmation_fault:fatal (2).

Theother Al ert levelsshall be as defined in clause 7.2 of IETF RFC 5246 [1].

If amiddlebox encounters afatal TLMSP or connectivity related error which leads to it closing the connection, prior to
doing so, the middiebox shall send acl ose_not i f y alertin both directions.

ETSI

69 ETSI TS 103 523-2 V1.1.1 (2021-02)

4.5 The ChangeCipherSpec protocol
The single message of the ChangeCi pher Spec protocol shall be as specified in clause 7.1 of IETF RFC 5246 [1].
In TLMSP, there are the following differences in effects (semantics) of issuing the ChangeCi pher Spec message.

e Thenegotiated keys and cipher suite as well as any negotiated record size extention as per IETF RFC 8449 [7]
shall be applied to the contents of the TLMSPKeyMat er i al and TLMSPKey Conf messages as described in
clauses 4.3.7.2 and 4.3.7.3, even though these messages occur before ChangeCi pher Spec. No record layer
protection of these message shall however be performed.

. Sequence numbers are not defined prior to ChangeCi pher Spec, but shall come into effect in the usual way
following this message.

ETSI

70 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex A (normative):
Defined cipher suites

Al General

The cipher suites defined in this annex are only defined for TLM SP. When using the fallback mechanisms of annex C,
standard TL S 1.2 cipher suites shall be used.

A.2 Key Exchange

The cipher suites defined below in clauses A.3 to A.5 are defined for TLM SP use. One of the following key exchange
methods as defined in TLS 1.2 [1] shall be used.

. ECDHE_ECDSA. One of the following curves should be used: secp256r 1, secp384r 1,secp512rl
(defined in FIPS 186-4 [10]), x25519 or x448 (defined in IETF RFC 7748 [5]). This key exchange method
shall be supported.

. DHE_DSS. One of the following groups should be used: f f dhe2048 or f f dhe3072 (defined in IETF
RFC 7919 [6]).

A3 AES {128,256} GCM_SHA{256,384}

A.3.1 General

The cipher suiteshall be TLS * W TH_AES {128, 256} _GCM SHA{ 256, 384}, for GCM as defined in clause 3
of IETF RFC 5288 [8] (where* shall be replaced by one of ECDHE_ECDSA or DHE_DSS, key exchange mechanisms
as defined in clause A.1 of the present document) with the following exception. The IV shall instead of the format
specified in [9], be calculated as follows:

1) The 64-bit (8 octet) seq_aut hor context-independent sequence number of the author (i.e. the value
seq_t x for an entity generating an outbound message unit, or, seq_r x[e_i d] , for an entity processing a
received message unit havinge_i d asitsauthor) shall be left-padded with the one-octet entity ID of the
author, a one-octet value defining the type of MAC computed, and two zero-octets to form a 12-octet value
IV =e_id || mac_type || Ox00 || Ox00 || seq_aut hor.

2) Compute a 12-octet fixed IV-value according to clause 4.3.10.4 or 4.3.10.5 (depending on whether context
specific keys or only pairwise keys are used), let theresult bewri te_| V.

3) Formthefina IVaslV = IV XOR wite |V

For the reader MAC (i.e. the MAC built in to the AES GCM AEAD transform), mac_t ype shall have the value 0x52
(ASCII code of the character "R"). Definition of mac_t ype for the other MACs shall be as defined in clause A.3.2.
Only thee_i d part of the |V shall be explicitly signalled, thusr ecord_i v_| engt h shall be 1.

NOTE 1. ThelV format above is compatible with that of TLS 1.3 [i.8], except for the inclusion of e_i d.
NOTE 2: Internaly, AES-GCM will use the above | V asthe 96 most significant bits in the counter.

NOTE 3: In step 2, pairwise keys are used only for the TLMSPKey Mat er i al and TLMSPKey Conf messages,
and when forming the V' isdone as part of stand-alone MAC computation according to clause A.3.2. In
al other cases, context-specific keys are used.

All TLMSP entities shall support this cipher suite.

ETSI

71 ETSI TS 103 523-2 V1.1.1 (2021-02)

A.3.2 Additional MAC computations

When generating additional MAC values, i.e. the writer and hop-by-hop MAC values, only the GMAC function of
AES-GCM shall be used as per NIST SP 800-38D [11] with the appropriate key (the writer key, the MAC key shared
only with an endpoint, or the key shared with the next hop entity, respectively). The input (MAC_I NPUT) shall consist
of the input data as defined in clauses 4.2.7.2.2 and 4.2.7.2.3, depending on which MAC to compute.

When computing or verifying a deleter, writer, or hop-by-hop MAC, thevalue mac_t ype of thelV' shall havethe
values 0x44, 0x57, and 0x48, respectively. This corresponds to the ASCII codes for the letters "D", "W", and "H",
respectively.When verifying areceived deleter (or writer) MAC, thel V' shall use the entity 1D and sequence number
of the deleter (or writer) author. Thiswill always be the upstream closest entity with deleter (or writer) access to the
corresponding context.

When verifying a received hop-by-hop MAC value, thel V' shall use the entity ID and expected next global sequence
number of the upstream neighbour.

When computing the deleter or writer MAC of an outbound message unit, or the hop-by-hop MAC of an outbound
record, thel V' shall aways use the author's entity identity. For the deleter MAC, writer MAC, or the hop-by-hop
MAC of arecord for a protocol that does not use containers, seq_aut hor shall be the author's current global transmit
sequence number. For the hop-by-hop MAC of arecord for a protocol that uses containers, seq_aut hor shall bethe
author's global transmit sequence number corresponding to the first container in the record.

A4 AES {128,256} CBC_SHA{256,384}

This cipher suite shall be TLS_*_W TH_AES_{128, 256} _CBC_SHA{ 256, 384} asdefinedin clause A.5 of IETF
RFC 5246 [1] with the following exception. The | Vis carried partially explicitly in the protected fragment and shall
have the followingform: 1V = ((e_id || seq_author) << 56) XOR wite_|V where

. e_i d shall be the one-octet entity identity for the originator;
. seq_aut hor shal bethe 64-bit context-independent sequence number of the author;

. write_ |V shal beal6-octet fixed 1V-value generated according to clause 4.3.10.4 or 4.3.10.5 (depending
on whether context specific keys or only pairwise key are used).

Only the e_i d part of the IV shall be explicitly signalled, thusr ecor d_i v_| engt h shall be 1.

NOTE: Inthiscase, no IVsfor the separate deleter, writer, and hop-by-hop MACs are needed.

A5 AES {128,256} CTR SHA{256,384}

This cipher suite consists of the counter-mode encryption part of AES GCM (see clause A.2 of the present document),
in conjunction with the HMAC_SHA256 (or SHA384) MAC as defined in IETF RFC 5246 [1], for
AES CBC_SHA256. The | V for encryption shall be generated as defined in clause A.3 of the present document.

NOTE 1: This cipher suite hasno analoguein TLS 1.2.

NOTE 2: Inthiscase, no IVsfor the separate deleter, writer, and hop-by-hop MACs are needed.

A.6 Additional cipher suites

The cipher suite TLMSP_NULL_W TH_NULL_NULL may be used only for testing purposes, providing no security. In
this case no sequence number maintenance is needed. While it would be possible to omit the explicit IV (carrying the
1-octet entity ID oth the author), the 1V shall still be present, allowing a uniform message format.

ETSI

72 ETSI TS 103 523-2 V1.1.1 (2021-02)

The cipher suites TLMSP_ECDHE _ECDSA W TH _NULL_SHA256 and TLMSP_DHE DSS W TH_NULL_SHA256
provides only integrity protection using the integrity part of the cipher suite defined in clause A.5 and should not be
used without careful consideration. These cipher suites require sequence number management.

A.7 Summary of security parameters

Table A.1: Summary of security parameters

Cipher suite parameter length (*_| engt h)

(Annex ref.) enc_key mac_key fixed_iv bl ock record_iv
GCM (A.3) 16 or 32 =enc_key 12 16 1

(see note)
CBC (A.4) 16 or 32 =enc_key 16 16 1
CTR (A.5) 16 or 32 =enc_key 16 16 1
NULL SHA256 (A.6) 0 32 0 n/a 1
NULL NULL (A.6) 0 0 0 n/a 1
NOTE: For AEAD transforms, a separate MAC key is only needed for the additional deleter, writer, and
hop-by-hop MACs.

By the notation * _| engt h inthe heading of Table A.1, it isto be understood that all parameter names (e.g.
enc_key) isto be suffixed by _| engt h in order to cross-reference other parts of the present document where the
corresponding parameter is being used.

EXAMPLE: The parameter enc_key isin other parts of the present document denoted enc_key_| engt h.

A.8 Cipher suite identifiers

Table A.2: TLMSP cipher suite identifiers

Name Identifier
TLMSP_NULL_W TH_NULL_NULL {0x00, 0x00}

TLVSP_ECDHE_ECDSA_W TH_NULL_SHA256 {0x00, 0x01}

TLVSP_DHE_DSS_W TH_NULL_SHA256 {0x00, 0x02}

TLMSP_ECDHE_ECDSA W TH {0x00, 0x03}
AES_128_GCM_SHA256

TLMSP_DHE_DSS W TH {0x00, 0x04}
AES_128_GCM SHA256

TLMSP_ ECDHE_ECDSA W TH {0x00, 0x05}
AES_256_GCM SHA256

TLMSP_ DHE DSS _W TH {0x00, 0x06}
AES_256_GCM _SHA256

TLMSP_ ECDHE_ECDSA W TH {0x00, 0x07}
AES_256_GCM SHA384

TLMSP_ DHE DSS _W TH {0x00, 0x08}
AES_256_GCM SHA384

TLMSP_ ECDHE_ECDSA W TH {0x00, 0x09}
AES_128_CBC_SHA256

TLVGP_ DHE DSS _W TH {0x00, OXOA}
AES_128_CBC_SHA256

TLMSP_ ECDHE_ECDSA W TH {0x00, OXOB}
AES 256_CBC_SHA256

ETSI

73

ETSI TS 103 523-2 V1.1.1 (2021-02)

Name

Identifier

TLMSP_ DHE DSS _W TH
AES_256_CBC_SHA256

{0x00,

0x0C}

TLMSP_ ECDHE_ECDSA W TH
AES_256_CBC_SHA384

{0x00,

0x0D}

TLMSP_ DHE DSS _W TH
AES_256_CBC_SHA384

{0x00,

0x0E}

TLMSP_ ECDHE_ECDSA W TH
AES_128_CTR_SHA256

{0x00,

OxO0F}

TLMSP_ DHE_DSS _W TH
AES_128_CTR_SHA256

{ox00,

0x10}

TLMSP_ ECDHE_ECDSA_W TH
AES 256_CTR_SHA256

{ox00,

0x11}

TLMSP_ DHE DSS _W TH
AES 256_CTR_SHA256

{ox00,

0x12}

TLMSP_ ECDHE_ECDSA_W TH
AES_256_CTR SHA384

{ox00,

0x13}

TLMSP_ DHE DSS _W TH
AES_256_CTR SHA384

{0x00,

0x14}

A9

Future extensions

To provide protection against keystream reuse and vulnerabilitiesin AEAD transforms, any future extension to the
present document in the form of additionally defined cipher suites shall comply with the following rules:

a)

b)

enable determining the message unit author by areceiving entity;

Any 1V used to create a protected TLM SP message unit (arecord or a container) during a session shall:

include a per session fixed, or, per message unit variable nonce, of at least 64-bits of entropy;

never repeat, for any fixed value of (e_i d, key_i d) wheree_i d isentity identity of the message
author and key _i d issome unique identifier for the key used by the author.

For AEAD transforms, only ones that allow separation of the encryption function from the MAC-value
computation shall be used in TLMSP.

Requirements a)2) and a)3) may be implemented by including (e_i d, seq[c]) inthelV using amapping whichis
one-to-one with respect to (e_i d, seq[¢]) .The predefined cipher suites have been designed to allow the same IV
structure to be used for reader MAC, deleter MAC, writer MAC, and hop-by-hop MAC, in a secure manner. Future
extensions to the present document may instead opt to specify two separate 1Vs: one for the hop-by-hop MAC and
another 1V for the other three MACs, or, specify the use of four completely separate IVs. The IV for the reader MAC
shall always be the one included in the Fragment part of the TLM SP record/container (see clause 4.2.7.1) and the
location of any additional 1V(s) shall then be specified.

ETSI

74 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex B (normative):
Alternative cipher suites

B.1 General

The alternative cipher suites defined in this annex shall be identical to those of clauses A.3, A.4 and A.5, apart from the
key exchange and authentication during the handshake. The use of one of the alternative cipher suites shall be signalled
by using the corresponding cipher suite identifier as those defined in annex A, but additionally setting the value of

ci pher _suite_opti ons inthe middiebox list extension as defined in clause 4.3.5t0 "al t er nati ve", and, to set

the net hodl D of the al t CSfield to indicate which aternative cipher suite to use: "anon", "psk" or "gba".

Clauses B.2.1, B.2.2 and B.2.3, respectively, provide normative definitions of each of the three choices.

NOTE: Since the middlebox lists contains one individual value of ci pher _sui t e_opti ons vauefor each
middlebox, thisimplies that each middiebox's use of the alternative cipher suites can can be configured
individually. Since the only difference liesin the key exchange and authentication mechnisms toward the
endpoint, and not in the bulk data protection algorithms, this does not cause any interoperability
problems. Simililary, while the endpoints (client and server) may individually choose different alternative
cipher suites, since it only affects the key exchange and authentication between the middiebox and that
endpoint, also thisimplies no interoperability issues.

Middleboxes who are not configured by an endpoint to use aternative cipher suites, shall use the key exchange and
authentication mechanisms exactly as defined in annex A, together with certificates for communication with that
endpoint.

A middlebox which accepts the endpoint's suggested use of the aternative cipher suite shall acknowledge this by setting
thevalueof cl i ent _al t CS, and/or, server _al t CS (asapropriate) in the MooxHel | o to indicate
"al ternative".

B.2 Defined alternative cipher suites

B.2.1 Anon

The endpoint requesting this aternative cipher suite shall set themet hod_i d of theal t _cs field of the
corresponding middlebox list entry in the hello message to indicate "anon".

The key exchange corresponding to the selected cipher suites of annex A shall be used, but without authentication.
Security aspects of not authenticating the endpoint shall be considered before using this alternative cipher suite.

B.2.2 Preshared keys

B.2.2.1 General

In this case, the client is assumed to have a pre-shared key with the middlebox.

B.2.2.2 Technical Details

B.2.2.2.1 ClientHello and ServerHello

The endpoint (client or server) requesting this alternative cipher suite shall set themet hod_i d of theal t _cs field of
the corresponding middlebox list entry to indicate "psk". The endpoint shall aso includein the field
credenti al Hi nt of theal t _cs field, of the middiebox list extension, an identifier for this key.

ETSI

75 ETSI TS 103 523-2 V1.1.1 (2021-02)

B.2.2.2.2 MboxKeyExchange

This message shall be generated and used as normally, except that the endpoint that requested the alternative cipher
suite shall ignore the included key exchange information (since the keys will be used on a pre shared key instead).

B.2.2.2.3 TLMSPKeyMaterial

When generating keys, the preshared key, PSK, indicated by cr edent i al _hi nt shall take the place of the master
key of clause 4.3.10.4, i.e.:
key_bl ock_ele2 = PRF(PSK, "key expansion",

SecurityParaneters. e2_random | |
SecurityParaneters. el_randon).

From this key block encryption keys and MAC keys shall be obtained as also describein clause 4.3.10.4.
Authentication of the client toward the middlebox is then assured by successful verification of the associated MAC
values.

No other messages are affected by this extension.

B.2.3 GBA

B.2.3.1 General

This alternative cipher suite shall only be used between the client and a middlebox.

The entire clause B.2.3 specifies an additional authentication and key exchange method, specific to Mobile Network
Operators (MNO). The mutual authentication between middiebox and client (or server) obtained through this method
provides stronger assurance that the middlebox services are only provided to clients who subscribe to those MNO
services. It also, if applicable, enables more robust charging of the services.

When implementing TLM SP, clients equipped with USIM cards, such as smartphones, should implement and use the
extension described whenever it wishes to receive services by middleboxes provided by aMNO (Mobile Network
Operator).

EXAMPLE: An example use case is when connecting to an internet server viathe MNO's network.

NOTE: Theclient isassumed to have prior knowledge of those middieboxesinthe M ddl eboxLi st (or the
server) that are associated with the MNO and therefore which middleboxes can support this extension.
How the client obtains this prior knowledge is outside the scope of the present document, but it can be
done in conjunction to MNO configuration of the client. If the client incorrectly assumes a certain
middlebox supports these extensions (or not), no adverse security issues result; an error alert will be
raised or afallback to standard (certificate based) TLMSP will occur.

B.2.3.2 Technical details

B.2.3.2.1 General

A client wishing to make use of this alternative cipher suite shall first perform GBA (Generic Bootstrapping
Architecture) bootstrapping with the BSF (Bootstrapping Server Function) as defined in the GBA specification ETSI
TS 133 220, clause 4.5.2 [11].

A middlebox or server supporting this extension is viewed asa NAF (Network Application Function) in GBA
terminology and is assumed to follow the GBA-specified procedures, observing the details of this entire clause B.2.3.

ETSI

76 ETSI TS 103 523-2 V1.1.1 (2021-02)

B.2.3.2.2 ClientHello

To indicate use of the aternative cipher suite, the client shall set themet hod_i d of theal t _cs field of the
corresponding middlebox list entry to indicate "psk". The client shall also includeinthefield cr edent i al _hi nt of
theal t _cs field, of the middiebox list extension, an identifier for the key to used, as follows:

credential _hint = B-TID,

where BTl Disthe B-TID value obtained during GBA bootstrapping, defined in clause C.2.1.2 of ETSI
TS 133 220 [11], i.e. an encoded Network Access Identifier (NAI) of format:

base64encode(RAND) @BSF_ser ver s_donai n_namne
NOTE: All stringsin the GBA specification are encoded in UTF-8 format.

When thisextension is present inthe Cl i ent Hel | o but anon-empty BTID, amiddlebox supporting this extension
shall contact the BSF asindicated by the BTI D of the extension data and (unless already available) request the NAF-
key (Ks_NAF), asdefined in clause 4.5.3 [11]. When deriving or requesting the Ks_ NAF, the client, middiebox (NAF),
and the BSF shall use the same middlebox address asthe NAF- | d (the"addr ess" field, excluding the one-octet

"m ddl ebox_i d") asdescribed in the middliebox extension list defined in clause 4.3.5 of the present document.

At this point, any the client and any middlebox (or server) that supports this extension will have or be able to derive a
pairwise unique, shared key Ks__NAF. This shared key shall be used asin clause B.2.3.2.4.

B.2.3.2.3 MboxKeyExchange

This message shall be generated and used as normally, except that the client shall ignore the included key exchange
information (since the keyswill be used on a pre shared keyinstead).

B.2.3.24 TLMSPKeyMaterial

When generating keys shared between the client and the middlebox using this method, the associated Ks_ NAF shall be
used in place of the master secret of clause 4.3.10.4, i.e.:

key_bl ock_ele2 = PRF(Ks_NAF, "key expansion",
SecurityParanet ers. m ddl ebox_random | |
SecurityParaneters. client_random

where el isthe client and €2 the middlebox. From this key block encryption keys and MAC keys shall be obtained as
also describe in clause 4.3.10.4. Authentication of the client toward the middlebox is then assured by successful
verification of the associated MAC values.

GBA-produced keys have an associated lifetime that shall be respected by this TLMSP profile.

EXAMPLE: Thisimplies that the client shall not attempt to resume a session where the underlying GBA keys
(Ks_NAF) have expired.

No other messages are affected by this authentication method.

ETSI

77 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex C (normative):
TLMSP alternative modes

C.1 Fallback to TLS 1.2

The specification of this annex shall be mandatory to support fallback for TLM SP clients and middleboxes.

Where a client does not know if the server supports TLMSP, afallback to TLS 1.2 may be performed as follows. When
aserver lacks TLM SP support, another option isto fallback to TLM SP proxying, described in clause C.2 of the present
document. The fallback mechanism of the current annex shall be followed if the client has not indicated that it accepts
TLMSP proxying using the Hel | o extension in clause 4.3.5, whose usage is defined in clause C.2.

In the signalling below, the absence of the TLM SP middiebox list extension in the Ser ver Hel | o indicatesto client
and middleboxes that the server does not support TLM SP. In this case, the middleboxes shall remain on-path, but in a
passive capacity; forwarding the messages between client and server, allowing the handshake to complete, so that the
connection can be established and the client can cryptographically verify that the server does not support TLM SP.

CLI ENT M DDLEBOX 1 . M DDLEBOX N SERVER
dientHel l o(TLMSP(ni _i))

Server Hel | o()
Certificate*

Ser ver KeyExchange

Server Hel | oDone

Certificate*
Cl i ent KeyExchange
CertificateVerify*

ChangeCi pher Spec
Fi ni shed

ChangeCi pher Spec

Fi ni shed
S O------------ O------mmmmmm - O----mmmmm oo
TLMSPAl ert (cl ose_notify)*
------------ o e e o L L
New TLS Handshake*
o m o m e o e e e e e e >
Application Data Application Data
o m oo e o e e e e e e >

NOTE: The symbols *, o and x are defined in the same way as in Figure 6.

Figure C.1: Handshake for TLS 1.2 fallback

After the handshake above is complete, the client may sendaTLScl ose_not i f y aert to the server and may restart
the negotiation directly with the server, without the middleboxes now taking part in the session. The client may omit
this Alert, to indicate it permits the middleboxes to remain on-path, continuing to forward application data. However, a
middlebox on the connection may send acl ose_not i f y alert to both endpoints, even if the client does not, to start a
new, end-to-end TLS Handshake.

ETSI

78 ETSI TS 103 523-2 V1.1.1 (2021-02)

C.2 Fallback to TLMSP-proxying

C.2.1 General

The procedure defined in clause C.2.2 of the present document may be supported by TLMSP clients and may be
supported by middleboxes. The procedure shall not be used whenthe C i ent Hel | o does not containa TLMSP
proxying extension, as defined in clause 4.3.5. The server's lack of support for full TLMSP will be indicated by the
absence of the TLM SP middlebox list extension inthe Ser ver Hel | o.

If middleboxes were dynamically discovered and the client accepts these middleboxes, the client shall include the
complete list of middleboxes in the computation of the verification hash of the Fi ni shed message, exchanged with
the server. Thisisenabled viathe Ser ver Unsuppor t message from the last middlebox, see clause 4.3.2.3.1.

C.2.2 Fallback procedure

The principle behind the signalling is that the last middlebox, N, stepsin and proposesto act asa TLMSP server, S'
toward the client, while running TLS 1.2 with the server. Other middleboxes remain as normal TLM SP middleboxes.

CLI ENT ML M- 1 Mh SERVER
(= SERVER S')

dientHell o(TLMSP(L), TLMSP_proxyi ng)

Server Hel | o(TLMSP_pr oxyi ng*)
Certificate*

Ser ver KeyExchange
CertificateRequest™

Server Hel | oDone

Server Hel | o(TLMSP(L),
TLMSP_pr oxyi ng) (1)
Certificate*
MooxCerti fi cat eRequest *
Ser ver KeyExchange
Server Hel | oDone

MooxHel | o
MooxCertificate**
<MooxCerti fi cat eRequest *
<MboxKeyExchange>
MooxHel | oDone

MooxHel | o
MooxCertificate**
<MooxCerti fi cat eRequest *
<MboxKeyExchange>
MboxHel | oDone

Certificate*
C i ent KeyExchange (2)
CertificateVerify*

Certificate2Mox[M] *
Certificate2Mox[.]*

ETSI

79 ETSI TS 103 523-2 V1.1.1 (2021-02)

Certificate2Moox|[Mh-1]*
CertificateVerify2Mox[M] *
CertificateVerify2Mox|.]*
CertificateVerify2Moox[Mh-1]*

TLNBPKeyMaterial [C) TLMBPKeyConf []
TLNBPKeyMaterial [C 8] S ’
------------ O-----=-"---=-Q0---"=-==-==---->
TLMSPKeyConf [..] TLMSPKeyMaterial [S', .]
TLMSPReyConf (M A TLMSPKeyMat er i al [S , M)
S D O-----=--=-------

ChangeCi pher Spec /* To Mh=S */

Fi ni shed
------------ (R i ¢ LI I
ChangeCi pherSpec /* To S */ (3)
Fi ni shed
------------ (o e ¢ L LR R

MooxFi ni shed[C, ML] MooxFi ni shed[ML, S']

------------ R el L
MooxFi ni shed[C, .]] MooxFi ni shed[.., S']
------------ (o il GRS

(4) /* From S */ ChangeC pher Spec
Fi ni shed

ChangeCi pher Spec /* From Wh=S'" */
Fi ni shed

MooxFi ni shed[.., C MooxFi ni shed[S, ..]

O O-----=------- O-----==---=-=----
MooxFi ni shed[ML, C] MooxFi ni shed[S', ML]
S P O-----==---=-=-=---

<-Rest of TLS Handshake->
TLMSPDel egat e(ver _t oken) (8)

ETSI

80 ETSI TS 103 523-2 V1.1.1 (2021-02)

TLMSPAl ert (cl ose_notify)* (9)

------------ L L e LR R
Appl i cation Appl i cation Appl i cation
Dat a Dat a Dat a
S R R SX<--- - - - (TLS)------ >

NOTE: The symbols *, 0 and x are defined in the same way as in Figure 6.

Figure C.2: Handshake for TLMSP proxying

With reference to the numeralsin the signalling above, the following steps shall be taken:

1)

2)

3)

4)
5)

6)

7)

8)
9)

The last middiebox isthe first to receivethe Ser ver Hel | o and recognizes the absence of the TLMSP
middlebox list extension. Since the client indicated acceptance for proxying (viathe presence of the
TLMSP_pr oxyi ng extension inthe Cl i ent Hel | 0), the last middlebox offersto act asa TLMSP proxy by
echoing the client's extension in astandard TLS Ser ver Hel | o, which is sent alongside forwarding the
origina Ser ver Hel | o, from the actual server. The middiebox Mh notes the cipher suites proposed by the
client for usein step 6.

If the client accepts TLMSP_pr oxyi ng, it shall now:
- perform a standard TL S session handshake with the original server; and

- perform a TLM SP handshake with the middiebox M acting as a TLM SP server and other middleboxes
acting as standard TLM SP middleboxes.
If the client does not accept it, it may close the connection.

The client-side TL S handshake with the original server is completed. The client-side TLM SP handshake is
also completed.

Server-side also completes.

The client shall instruct the last middlebox to take care of proxying by setting up a TLS 1.2 session with the
server. Included in this message shall be a (secured) delegation token and a verification token, defined in
clause C.2.3.

The middlebox Mh shall now, acting asa TLS client, initiate TLS setup with the server. Inthe TLS
ClientHell o of M1, aTLMSP_del egati on extension shal beincluded if, and only if, the server's
previous Ser ver Hel | o (step 1) contained the TLMSP_pr oxyi ng extension. The TLMSP_del egati on
extension shall comprise the token. vh shall not propose any cipher suites of lower strength than those
observed in step 1 and should propose TL S cipher suites that are a subset (including the full set) of the TLMSP
cipher suites observed in step 1. vh should preserve the order of the cipher suites observed in step 1 in its
CientHello.

If the server understands the TLMSP_del egat i on extension, the server shall include a verification token
(ver _t oken) after completion of the TLS handshake between Vh and the server. Wh shall verify this
acknowledgement token using the verification token sent in step 5, as defined in clause C.2.3.

Ivh shall return a TLMSPDel egat e message comprising the acknowledgement token.

The client shall attempt to verify the acknowledgement token. If verification is successful, it shall close the
TL S session with the server.

If the server does not understand the TLMSP_del egat e extension/message, then the extension of message (7) will
not be present.

ETSI

81 ETSI TS 103 523-2 V1.1.1 (2021-02)

C.2.3 Message and processing details

C.2.3.1 TLMSP proxying and delegate extension and message
specifications

The TLMSP_pr oxyi ng extension shall haveext ensi on_type = 37, "0x25" andtheext ensi on_dat a
shall consist of the handshake ID: Handshakel D hs_i d.

The TLMSP_del egat e extension (used in steps 6 and 7) shall have ext ensi on_t ype = 38, "0x26" and
shall have asext ensi on_dat a

Del egat eToken t oken;

where Del egat eToken isdefined as
struct {

Handshakel D hs_i d;

ui nt 8 token_| engt h;

opaque token_val ue[token_l ength];
} Del egat eToken;

The TLMSPDel egat e message (steps 5 and 8 in clause C.2.2) shall have the following format

struct {
Del egat eToken t oken;
} TLMSPDel egat e;

C.2.3.2 Delegate message specification

Thet oken_val ue of the token included in message (5,6) and ver _t oken of message (7,8) of clause C.2.2 shall be
generated as defined in Eq. 1 and Eq.2 in the present clause.

Let mast er _secret C Sbethe TLS master secret established between client and server. Then
ver _token = PRF(nmaster_secret _C S, "ver token", ServerCertificate)[0..31] (Eql)
and:
token = PRF(ver_token, "del egate token", ServerCertificate)[O0..31] (Eq2)
Thevalue of t oken_| engt h is32. The PRF shall be the same as defined in clause 4.3.10 for the key derivations.

Thevalue Ser ver Cer ti fi cat e shall be taken from the original server's certificate message, binding thet oken
andver _t oken to the server.

C.2.3.3 Processing

When the server receives message (6) of clause C.2.2, assuming it understandsthe TLMSP_del egat e extension, the
server shall verify that the received t oken has been computed as defined in clause C.2.3.2 (Eg. 1 and Eq. 2). If thisis
the case, the server shall return ver _t oken computed asin clause C.2.3.2 (Eq. 1). If the server does not understand
the TLMSP_del egat e extension, no token will be present as defined in clause C.2.2, step 6, and even if atoken was
included, the server would ignore it.

The middlebox Vh (acting as TLS server S') shall verify that thever _t oken received from the server, together with
thet oken received from the client, satisfies relation (Eq. 2) of clause C.2.3.2. If so, it shall returnver _t oken to the
client. The client shall then verify that ver _t oken satisfies (Eg. 1) of clause C.2.3.2 and if not, it shall close the
connection.

NOTE: This provesto the server that middiebox My is authorized by the client to act as a proxy. It also provesto
the client that the middlebox is connected to the correct server.

ETSI

82 ETSI TS 103 523-2 V1.1.1 (2021-02)

Thehs_i d fields of thet oken and TLMSP_del egat e extension may be used to associate a server with the
delegated session.

C.3 Middlebox security policy enforcement

C.3.1 General

A middlebox can enforce a security policy with respect to allowing connections to traverse it.

EXAMPLE: An enterprise gateway between an enterprise intranet and the rest of the Internet, protecting against
data leakage.

In such situations, it is undesirable to allow any traffic to pass the policy enforcement in the middlebox until the client
authenticity has been established. When the signalling flow of clause 4.3.1 (Figure 6) is used, the client authenticity is
not established with certainty by any middlebox until after the client has sent the Cl i ent Hel | o to the server. An
unverified insider could leak information to the server by embedding the information in various information elements of
theClientHel |l o.

To implement such policy enforcement, a verifiable handshake with the first middlebox shall be completed before
forwarding the Cl i ent Hel | o to external network(s). This may be done by using the signalling flow in Figure C.3.

If the client proposes to use aternative (non certificate based) cipher suites according to annex B, it is still assumed that
the client also supports standard, certificate based methods, which is needed in the exchange with the first middlebox.

CLI ENT M DDLEBOX 1 . M DDLEBOX N SERVER
dientHel l o(TLMSP(ni _i))

/* cache ClientHell o nessage */
MboxAut hRequest

dientHel | o(TLMBP(ni _i))
S

/* rest of TLMSP handshake as in Figure 6 */
NOTE: The symbols *, o and x are defined in the same way as in Figure 6.

Figure C.3: Handshake, alternative policy enforcement flow

On reception of thed i ent Hel | o at middlebox ML, ML responds with an Moox Aut hRequest comprising a
signature over (parts of) the d i ent Hel | o (including the nonce), thereby authenticating ML to the client. If the
signature verifies, and the client wishes to proceed, the client responds with an Moox Aut hResponse message, which
shall contain aclient certificate and a signature over ML's Moox Aut hRequest message. The certificate provided at
this point may differ from the certificate the client usesin later Handshak e messages. ML now verifies the signature.
If it fails, it shall respond withanaccess_deni ed aert and terminate the connection.

Otherwise, after the client has been authenticated, ML forwardsthe Cl i ent Hel | o and the protocol completesasin
Figure 6, except that when computing the verification messages as part of Fi ni shed and MboxFi ni shed, the
MooxAut hRequest and MboxAut hResponse messages shall both be omitted. If ML is transparent, it may not have
been included in the client's original middlebox list. In this case, middlebox ML may choose to not actually participate in
the to-be-established TLMSP session.

ETSI

83 ETSI TS 103 523-2 V1.1.1 (2021-02)

NOTE: The security policy determination is bound to the Cl i ent Hel | o based on the signaturesincluded in the
two messages following the T i ent Hel | 0, and the correct forwarding of the Cl i ent Hel | o will
eventually be verified by the Fi ni shed messages (and thus the security policy decision is bound to the
session).

Asnoted in clause 4.3.1, this flow could encounter problems which isto be considered before using it.

C.3.2 Message formats

The formats of shall be as follows:

struct {
Certificate nbox_cert;
CertificateRequest cr;
digitally-signed struct {
CertificateRequest cr;
ClientHello client_hello;
} verify;
} MooxAut hRequest ;

Thefieldmbox_cert isaCerti fi cat e message containing a middlebox certificate and the field cr isa
Certificat eRequest, where each shal follow the formats as defined in IETF RFC 5246 [1]. Thefieldveri fy
shall contain a signature made with respect to the public signing key of thembox_cert field, over the
Certificat eRequest being sent and thereceived Cl i ent Hel | o (with the value substitutions described in
clause 4.3.9.1 applied).

struct {
Certificate client_cert;
CertificateVerify ver;

} MooxAut hResponse;

The contents shall follow IETF RFC 5246 [1], with the signed payload of the ver field comprising a signature over the
received Moox Aut hRequest . The certificate included in cer t may be a different one from the one used in the later
Handshake messages.

NOTE: There areno entity IDsin the MooxAut hRequest and MboxAut hResponse messages. In
consideration of al of the possible scenarios, such identities do not seem to convey any generally useful
information. In particular, the middiebox ML implementing the security policy may be a transparent
middlebox that was not in theinitial middiebox listinthed i ent Hel | o (and thuswould later invent its
own ID if it participated in the session), and further, could be a middlebox that may not actually include
itself to the TLM SP session. In such case the concept of entity ID is not meaningful.

ETSI

84 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex D (informative):
Contexts and application layer interaction

D.1 Application layer interaction model

Centra to TLMSP principlesisthe ability to partition data from the application layer into contexts associated with
certain privileges, delegated to middleboxes. This requires an intelligent agent that can extract parts of the application
data for which delegated access rights are granted.

EXAMPLE 1: Inasimple cases, such as header vs payload distinctions, thisis straightforward and a generic
agent could be built into TLMSP.

In other cases, the situation is more complex and only the application itself would typically have sufficient knowledge
about the sensitivity of certain parts of the data. In this case, the agent would be built into the application itself, and thus
all such applications would need to be modified to make use of TLMSP.

The layered model in Figure D.1 could be used to allow support for TLMSP in awider range of applications (rather
than limited to naive context concepts such as in example 1) without applications needing to be re-written for TLM SP

usage.

Fom e e e +
| Application |
Fom e e e +
| SDhu
v
S +
| TCAL |
S . +
| (c1, f1), (cl7, f2),
%
[R +
| TLMSP |
[R +
I
v

Figure D.1: TCAL concept

Here, a TLMSP Context Adaptation Layer (TCAL) is provided between the application and TLMSP. The principle of
operation of TCAL isto take the application layer SDUs, match them against a suitable context model, split according
to those contexts and deliver datato TLM SP as fragments, tagged by their context. On the receiving side, a mirrored
TCAL layer receives decrypted fragments from TLM SP together with a context identifier, and re-assembles these into
data readable by the application.

EXAMPLE 2: TCAL could use templates or plug-ins tailored to a specific application or a specific type of
applications.

D.2 Example context usage

How contexts are configured and used is out of scope of the present document, as to define contexts would require
knowledge of the application and use cases. However, some suggestions for how contexts can be used are given in the
present clause.

Different contexts could be associated with different, distinguishable parts of the data fragments generated by the
application.

ETSI

EXAMPLE 1:

EXAMPLE 2:

EXAMPLE 3:

85 ETSI TS 103 523-2 V1.1.1 (2021-02)

One context is associated with headers or metadata, and another context is associated with
payloads. Middlebox read access is granted to the headers and no accessis granted for payloads.
Thisisimplemented through two separate contexts. If write accessis granted to payloads, it is
write access would also be granted for the headers, as the length of messages could change as a
result of middlebox processing.

A highly trusted middlebox is allowed to insert application data into the server-client flow; another
middlebox in the connection only has (partial) read access. One context is allocated so that only
this highly trusted middlebox can perform insertions. Data inserted by the middlebox would be
recognized by the corresponding context identifier in the container headers.

A middlebox has access to the downstream server-client flow, but not to the upstream flow from
client to server. Two contexts are used: one for each direction. Generally, one middiebox is
granted read access to the upstream flow and another middlebox is granted write access to the
downstream flow.

ETSI

86 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex E (informative):
Security considerations

E.1 Trust model

During the development of TLMSP, alot of experience has been gained regarding the trust model and how different
assumptions on fair-play and honesty of both middleboxes and endpoints can lead to unanticipated security issues. The
present document reflects the summary of gained knowledge and the technical specification mitigates several attack
vectors that were not anticipated by the original mcTLS protocol, nor by earlier versions of TLMSP.

Middleboxes have many diverse applications and it is not possible to define a one-size-fits-all trust model, as it depends
on the use case.

The client and server trust each other not to attempt to include other entities beyond those middleboxes agreed in the
TLMSP handshake phase. Middleboxes cannot take part in the session without obtaining the required key material, and
said key material is provided in two halves, from each endpoint. Once the handshake is completed, both endpoints will
know the secret contribution provided by the other endpoint. At this point, no protection can be provided against an
endpoint attempting to share additional key material with additional entities after completion of the handshake. Thisis
true for al cryptographic protocols:. the protocol itself cannot ensure that the endpoints do not leak the key material. On
the other hand, the TLMSPKey Conf mechanism of TLMSP can be used to prove the converse: that no middleboxes
have been omitted from gaining intended access to keys.

In general, client and server can have varying trust levels of each other. One foreseen use case of TLMSP isfor the
middlebox(es) to filter out unwanted or malicious content transmitted from the server, or, from the client (e.g. DoS
attacks against the server). TLMSP, aswith all protocols, can provide cryptographic integrity and authentication of
content, but this does not guarantee that the content in general is safe, trustworthy, or correct. Indeed, when
middleboxes are provided by atrusted entity, such an enterprise or aMNO, trust assumptions can be moved from plural
untrusted entities on the Internet to a smaller number of trusted entities under the control of one's own organization.

Authorized parties, including middleboxes, are trusted to handle the access privilege level they have been granted (read,
delete, or write) to specific contexts. Thisis cryptographically assured through authentication, key management, and an
assumption that endpoints and middleboxes do not leak keysto other, unauthorized entities. Middleboxes with write
access can aso perform insertions and deletions; it is assumed that middleboxes do not exploit this for malicious
purposes, such as denial of service or replay attacks, as they are under the control of atrusted entity. If a middlebox
exhibits such behaviour, using the hop-by-hop MAC could be used detect such attempts, as described in clause E.3.
This can limit the trust assumptionsto only the last middlebox on path and will also allow detection of "cheating".

Parties are assumed to participate in the protocol fully; they do not drop out or refuse to forward messages passing
them. However, some measures are till taken to prevent certain types of "selective refusal" by middleboxes. One
middlebox could attempt to selectively refuse another middlebox its granted access rights by selectively choosing to not
forward TLIVSPKey Mat er i al to that specific middiebox. Thiswould however in TLMSP be detected by the
TLMSPKey Conf and the MooxFi ni shed messages (though not revealing the identity of the refusing middlebox).

Another example of such refusal was discovered during the development of TLMSP. At a point in time, a separate
delete access right was included, that falls between basic read access and the full write privilege level. It was however
realized that this delete access right could, without consideration, imply that a dishonest middiebox with delete access to
some message could actually use this capability to unnoticeably delete other messages, even if the middiebox has no
access at all to those other messages. The same analysis would of course also have applied even if a separate delete
access right had not been introduced: a malicious writer middlebox could exercise the delete access right included as
part of itswrite privilege level to achieve the same effect. Thisisaform of privilege escalation attack which is more
severe than mere denial-of-service if the attack would be allowed to go unnoticed, and is described in more detail
(including mitigation) in clause F.3

Many middlebox solutions focus on the need for endpoints to trust middleboxes.

EXAMPLE 1: A main feature of TLMSP isto ensure endpoints can include and refuse specific middleboxes,
allowing endpoints to authorize the access for each middlebox.

ETSI

87 ETSI TS 103 523-2 V1.1.1 (2021-02)

A common theme in discussionsis that the middleboxes are by default the only potential abusers to worry about. There
could, however, also be a need for middleboxes to trust and authorize the endpoints, and so authentication of the client
by the middleboxesis present but optional in TLMSP. When this option is not used, the trust model changes. It now
generally becomes necessary for middleboxes to trust the server fully. If the server is not fully trusted, the server could
be colluding with unauthorized and untrustworthy clients, allowing clients to benefit from middleboxes' services.
Omitting client-to-middlebox authentication is used only after careful consideration.

In most situations, it is not in the interest of endpoints to weaken the security on purpose, and attacks based on such
principles fall outside trust models that are typically relevant.

Cases exist, such asin enterprise environments, where the endpoints only have one path, via middleboxes, and are
forced to either accept the middleboxes fully or to not communicate. In such cases, it could become attractive for
malicious endpoints to circumvent middleboxes, either by bypassing them or undoing effects of certain middleboxes.
Clause E.3 discusses one specific case when the server ismalicious.

In general, both the server and client could collude malicioudy to affect the cryptographic keys obtained by a
middlebox, resulting in incorrect or weak keys. In this case, the TLMSPKey Conf feature is not effective when both
endpoints are malicious.

EXAMPLE 2. Dueto the way that keys are cryptographically derived from the distributed key contributions, it
would be highly unlikely that an incorrect reader MAC key verifies the packets (that were
protected by a different key) as being valid; therefore such an attack islikely to be detected by
middleboxes.

NOTE: Itisalso highly unlikely that a middlebox has obtained an incorrect reader decryption key, while the
middlebox still is able to verify reader MACs (since MAC verification is done after decryption).

To mitigate risk of weak keys, the key derivationin TLM SP is modified compared to mcTLS[i.1] so that also
middleboxes contribute to the entropy of the keys. Observe however, that when both endpoints are malicious and
assumed to collude, they would be able to insert any data into the TL M SP connection without breaking any
cryptographic primitives. The MACs (in any form) do not help in this case, since the destination endpoint is assumed
malicious and will not care about the MAC value validity. In this extreme trust model, an extension of the TLMSP
protocol with third party (or publicly) verifiable audit records would be necessary, but is out of scope of the present
document.

E.2 Cryptographic primitives

E.2.1 General

In TLMSP, it isthe client and server that propose and select the cipher suite. In comparison to back-to-back proxy
approaches (selecting cipher suite per-hop) this has the great advantage that client and server remain in charge and
mitigates the risk that one hop uses a transform that the endpoint would normally not accept. To the extent possible,
TLMSP seeks to use the same cryptographic primitivesasin TLS. To avoid the risk of failed connections due to lack of
cipher suite support in one of the middleboxes, a mandatory-to-support AES-GCM cipher suiteis defined, which is
cryptographically equivalent to the TL S counterpart.

The PRF used for key derivation and the default HMAC_SHA?256 based primitive isthe same asused in IETF
RFC 5246 [1]. The inputs to the PRF are however different TLM SP due to the inclusion of the list of the full set of
entity identities. This binds the key material to a specific session, making it less probable that key material could be
re-used in afuture connection with different middleboxes.

ETSI

88 ETSI TS 103 523-2 V1.1.1 (2021-02)

The pre-defined cipher suites of annex A are based on state-of-the-art cryptography (also used in TLS cipher suites), but
the IV formation has been changed to use partly explicit 1Vs. First, the nonce or cryptographically derived f i xed_I V
part of the IVsis expected to contain enough entropy to protect against time-memory trade-off attacks. Re-use of 1V
with the same key can compromise confidentiality, in particular for stream ciphers,[i.6]. To ensure IV-uniqueness for a
given key, al predefined transforms include both e i d and the sequence number (the global, context-independent one)
inthelV. It isimpossible for these two values to both collide for two different messages since either e_i d will differ
(for different authors), or, the sequence numbers involved will be different (for two message units from the same
author). IV reuse may also be catastrophic for the MAC in AEAD transforms. Note that the fixed part of the IV is
context-independent. When amiddlebox modifies or inserts a message, due to the fact that both the middiebox local
sequence number and entity ID are also included in the IV, IV collisions are avoided for containers associated with the
same context. The deleter and writer MACs can never re-use information from the IV of the reader MAC, and
moreover, the reader, deleter, and writer MAC keys are all different. Further, for containers belonging to different
contexts, their keys differ. The only case where the same key and 1V could be used for two different message unitsis
when generating the hop-by-hop MAC and/or when generating the writer MAC for an audit container or writer MAC
for an alert: in all these cases, the key used is independent of the context, but unique to the (author,destination) entity
pair. Thus, the only case when the same key could be used for two (or more) of these MACsis therefore on the last hop,
from the last middlebox to the destination endpoint. Note that in this case, aso the author may be the same for two
different message units, so the fact that the author entity ID is part of the IV does not ensure |V collision avoidance.
However, in this case, the IV of a hop-by-hop MAC and writer MAC can never be the same since the MAC-typeis
included in the V. (Indeed, no two MACs of different type can ever have the same 1V, since the MAC-typeisincluded
inthe IV.) Therefore, the only remaining issueisif the IV of awriter MAC of an Al ert message could be the same as
the 1V of awriter MAC on an audit container (on the last hop). But again, thisisimpossible: the alert and audit
containers (even if associated with the same context) need be carried in two different containers, and thus the sequence
number part of the IV will differ by at |east one.

Use of ephemeral (standardized) Diffie-Hellman cipher suites offers forward secrecy.

When using AEAD transforms, the computation of the reader MAC value is integrated with the encryption.
Computation of other MAC values (deleter, writer, and hop-by-hop MAC values) uses a separate application of the
MAC-part of the AEAD as defined in annex A. As mentioned in annex A, this means that only AEAD transforms that
allow such separation can be used in TLMSP. Many AEADS require nonces, both when computing the combined
AEAD transform as well as when computing stand-alone MACs. These nonces are used only once for agiven key. In
TLMSP, the MAC-value computations all uses distinct keys, thus the same nonce can be used for all reader and writer
MAC values, as long as no two MAC-value computations of the same type use the same nonce. For each key, the
corresponding nonces are, for the pre-defined transform of clause A.2, formed by an exclusive-OR of a per-message
unique | V-part (the uniqueness following from the discussion above) with afixed, pseudo-random value derived from
the master key. The exclusive-OR preserves this per-message unginuess. Further, since the only real source of nonce-
entropy is cryptographically derived from the master key there is no threat that a malicious end-point could somehow
affect nonce reuse or nonce entropy.

TLM SP supports unauthenticated cipher suites, as well as cipher suites based on non-Diffie-Hellman key exchange
mechanisms and non-signature based authentication. However, instead of defining a complete set of additional cipher
suites for this purpose, TLMSP usesindicators in the Hello messages that determine whether "standard " or
"alternative” cipher suites are to be used.

E.2.2 Handshake verification

The verification of the handshake (the keyed hash in the Fi ni shed messages) is, compared to TLS, more complex as
not all entities share the same view of all the messages. Some information added by one middiebox could be
unavailable to all other middleboxes. The verification has therefore been split in two stages: the first being an end-to-
end verification between server and client based on those message elements that are common in both endpoints. When
possible, information specific to the middleboxes is also included to create a cryptographic binding between end-to-end
and middlebox specific information. Secondly, a set of pairwise MooxFi ni shed messages are exchanged to verify
parts of the handshake which uses local information, usually known only in one of the endpoints and one of the
middleboxes. While there are no pairwise verification messages between pairs of adjacent middleboxes, modifications
of such inter-middlebox Hands hake messages (key exchange messages) will be detected at the latest when the first
protected Al ert or Appl i cati on protocol message unit (of any context) passes the corresponding pair of adjacent
middleboxes: the hop-by-hop MAC will fail as a consequence of the middleboxes having derived different keys.

An explicit verification of the middlieboxes reception of the key material contributionsis provided for the client,
whereas the server obtains an implicit verification viathe Fi ni shed message as defined in clause 4.3.9.

ETSI

89 ETSI TS 103 523-2 V1.1.1 (2021-02)

In addition to this, by modifying the Ser ver KeyExchange as defined in clause 4.3.10.1 and changing the order of
Certificat eRequest and Ser ver KeyExchange, TLMSP protects the client against unauthorized harvesting of
its certificate(s) and also enables detection of 3 party modifications to the middlebox lists as early as possible,
Modification of middliebox lists would still be detected even without these changes, but only at the end of the
handshake.

E.3 Protection against mcTLS attacks

The original mcTL S proposal suffers from a vulnerability by which a malicious endpoint, either the server or client, can
undo filtering operations performed by a middlebox [i.3].

EXAMPLE: A middlebox detecting malware content from a server could be ineffective at removing this
malware if the server can access the remaining path between middlebox and client and re-insert the
malware.

Thisis possible as the server generally has accessto all keys used by middleboxes to authenticate their
inbound/outbound containers. Similar issues exist also when considering two middleboxes with write privileges, where
one of them not ismalicious. In fact, the problem in the original mcTL S protocol is bigger than just the problem with a
malicious server: any party, hot even knowing a single cryptographic key, can copy an mcTL S message from one hop,
and inject them on another hop. None of the MACsin mcTLS (inclduing the endpoint MAC) can protect against such
attacks. Moreover, once a single modification has been done by any middlebox, the value of the endpoint MAC is
heavily reduced since nobody is able to tie the endpoint MAC to any specific change made by any specific entity.

A previous draft version of the present document used a so called forwarding MAC, computed by middieboxes using a
key known only to the middlebox and the downstream endpoint, aiming to thwart this attack. The problem with this (as
well as with the end-point MAC of the original mcTLS specification) is that at most the destination endpoint would be
able to verify such aMAC. Since no other middlebox knows the corresponding MAC key, thereisno way for a
middlebox to distinguish TLM SP messages that are really coming from the upstream neighbour from messages that
have been copied from another hop, further upstream. Thus, such forwarding MACs do not prevent a middiebox from
forwarding messages that have not been seen and processed by all upstream enitities. The endpoint would be able to
verify the forwarding MAC, but only the forwarding MAC added in conjunction to the last modification to the message.
Thisis because any subsequent modification of a message destroys the cryptographic link to a MAC that was made on
an earlier version of the same message. Thus, any modification that was made further upstream, may be undone by a
reader or even any third party attacker (without any knowledge of keys), and will remain unverifiable, even to the
destination endpoint. Therefore, the forwarding MAC mechanism did not meet itsintended purpose. Similarly,
deletions (e.g. of messages that contain malware), could be undone by any party.

TLMSP instead addresses this attack by regquesting that middleboxes perform an additional local check on inbound
containers and that they also authenticate their outbound containers by a key only known to the next-hop endpoint, via
the hop-by-hop MAC. Through this approach, each receiving entity will be able to verify that it receives containers that
were unaltered from when they left the previous middlebox. The obtained end-to-end verification isimplicit: it implies
that each middlebox received and had opportunity to act on authenticated containers, but it does not prove that the
middlebox performed the "right" action. Thisisleft as an assumption of the trustworthiness of the middlebox.

For similar reasons, it is necessary for writer middleboxes to re-compute writer MAC values (using a new 1V), even
when they did not perform any modification. If not, areader or deleter middlebox could escalate its privilege to"undo"
modifications done by upstream writer middleboxesin a similar way as described above. Likewise, deleter middleboxes
need to re-compute the deleter MAC on a container even if they choose not to delete it. Refer to clause F.3 for security
considerations on sequence number usage. TLM SP authors have noted one additional issue and one observation on the
security properties of the original mcTL S specification. The issue has to do with robustness and was a reason that led to
adding the feature of a hop-by-hop MAC, as described in clause F.4.

Another observation isthat mcTLS (and TLM SP) distributes key-shares to middleboxes before the handshake is
complete. In particular, this distribution occurs before the verification that the selected cipher suite is not subject to an
active downgrade attack. This could be argued as sub-optimal, but two arguments can be made in favour of not
addressing it:

1) Thisattack would be detected at the later completion of the handshake, which still happens before the keys
protected by the cipher suites are used.

ETSI

90 ETSI TS 103 523-2 V1.1.1 (2021-02)

2) If the handshake was modified, allowing complete verification of the selected cipher suite before distributing
key-shares, it would no longer be possible to bind those key-shares into the handshake verification.

Therefore, TLM SP authors leave this as an observation.

E.4 Inter-session assurance

Even if the original content stored in a cache was delivered via TLM SP and was thoroughly inspected by some
middlebox before it was stored, TLM SP does not propagate assurance information from one TLM SP session to another.
A different client that later downloads the cached content does not automatically obtain any assurance that the content
was previously inspected and is free of malware. Indeed, in a caching use case, later downloads of the same content
could use TLSinstead of TLMSP. On the other hand, the audit mechanism of TLMSP could be used to provide
evidence that content is trustworthy. In this case, audit records would be constructed to be universally and publicly
verifiable.

E.5 Use of the default context zero

All entities have read and write access to context zero, motivated by a common need to read and/or insert messages into
this context. Thus context zero does not have the same separation of privileges as the other contexts. The present clause
analyses potential issues caused by this lack of privilege separation.

During theinitial phases of the handshake (before ChangeCi pher Spec has been issued), context zero and all other
contexts are not protected in any way. Thisisidentical to the situation for TLS 1.2, except that in TLMSP, thereis
further no usage of sequence numbers at this stage. When security has been activated, both endpoints and any
middlebox can generate (valid) messages with respect to context zero, but no third party to the connection can do so.
The only messages protected by context zero are Handshak e messages sent after ChangeCi pher Spec and Al er t
messages related to context zero itself.

The alerts for context zero are, in addition to the context zero reader/writer MAC-values, also using hop-by-hop MAC
values of the originator and can therefore be authenticated as originating from a specific source (endpoint or
middlebox). Therefore, whether to trust and act upon the aert is purely an issue of whether the entity that generated the
alert can be trusted. Thisisidentical to the trust model required when using point-to-point TLS. (Recall that the trust
model of clause E.1 assumes that middleboxes follow the specification and do not drop alerts by other entities.)

A handshake exchange, whether protected by context zero keys or not at all, always ends with aset of Fi ni shed
messages between each of the endpoints and the set of midddleboxes, authenticating the handshake exchanges by
pairwise keys (known only to two of the entities). Thisis therefore not dependent on the common, shared context zero
keys (though the context zero security further protects from third party eavesdroppers). Recall also that the most critical
part of the handshake, the transfer of (new) key material contributions to middleboxesis always protected
independently of the record layer (using pairwise keys) as defined in clause 4.3.7.

Finally, where ChangeCi pher Spec messages can occur in a handshake are only at the points of the handshake
defined in Figure 6. Such commands, if spoofed by middleboxes at other points, can be ignored without issue. The
message does not carry any information other than to activate the pending state. Additionally, this command is always
followed by a (set of) verification Fi ni shed message(s), using the pairwise keys.

E.6 Removal of middlebox insertions

TLMSP adds functionality for middleboxes to insert content that does not originate from an endpoint. Under the
assumption that the inserted content is there to improve security and/or improve the service experience, removal of such
insertions needs to be interpreted as an attack on the protocol.

EXAMPLE 1: A middlebox inserts cached content, avoiding need to repeatedely fetch the same content from a
server. When combined with the middiebox deletion feature, the middlebox replaces an outdated
or infected file with an updated one.

ETSI

91 ETSI TS 103 523-2 V1.1.1 (2021-02)

When this feature is used, it isintended to improve security and/or service delivery; therefore the impact of blocking
these insertions go beyond denial-of-service prevention. Just like normal TLS use, nothing can be done if an attacker is
able to drop packets.

EXAMPLE 2: In TLMSP, an attacker starts to drop packets as soon as the first insertion by a middlebox is done.
The attacker allows packet flow to resume as soon as the middlebox has done the last insertions.
TLMSP can not prevent this attack, but can help to detect it. Eventually, some additional packets
will be sent by the other endpoint or acl ose_not i f y message will be sent. When the
middlebox adds a hop-by-hop MAC value to this message, it will be done with adifferent
sequence number to that expected by the endpoint; therefore, verification of this MAC value will
fail.

The general scenario behind Example 2 isin reality somewhat more complex if one considers aso the possibility that
the attacker could actually be another (malicious) middiebox who has been granted at least some level of privilegeto
the data protected by the TLMSP session. Such a scenario is discussed in more detail clause F.3. It is however stressed
aready here that TLM SP does provide protection also against attacks of this more advanced type.

E.7 Removal of support for renegotiation

TLMSP according to the present document does not support renegotiation due to potential threats to middlebox
operations that seem to require additional mechanisms to be handled securely.

During a renegotiation handshake, application data protected by a previously established cryptographic state could
possibly be interspersed with Handshak e messages associated with the renegotiation. This could defeat the function
of middleboxes: a middiebox cannot buffer Appl i cat i on protocol containers and let Handshak e messages pass
them as that would break sequence number handling. Therefore, amiddliebox could be forced to a make a decision to let
application protocol messages pass, while having been able to examine further application messages might have led the
middlebox to block the Appl i cat i on protocol messages. Further, letting Handshak e messages pass buffered
containers could lead to problems with buffered containers winding up getting delivered only to be processed with the
wrong cryptographic state. An attacker with control of an endpoint could attempt to bypass middlebox functionality this
way, by interspersing payload with Handshak e messages as required to defeat the middlebox functionality. Even
without concern for such attacks, there isin general need for a cooperation mechanism between TLMSP and the
application layer protocol to avoid timing a renegotiate such that it can defeat middlebox functionality. Specification of
such a cooperation mechanism is however not in scope of the present document and therefore renegotiation is not
supported.

ETSI

92 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex F (informative):
TLMSP design rationale

F.1 General

This clause provides background material about design considerations when modifying mcTL S to produce the TLMSP
specification.

F.2 Containers

A driver for the original mcTL S protocol wasto provide fine grained access control to an encrypted session; contexts
could be used to provide different levels of access control to different parts of the application data.

EXAMPLE: For website whitelisting/blacklisting, granting a middlebox access to HTTP headers without
granting accessto the HTTP body.

To do this, the HTTP headers and HT TP body could belong to different contexts, protected by different keys. The
middlebox responsible for the whitelisting/blacklisting would only require access to the HT TP header context but not
the HTTP body context. Whilst the method by which an application chooses to split the data content across different
contexts/containersis not part of this protocol specification, this example does highlight some potentially undesirable
featuresin the original mcTLS design.

Thefirst isthat datain one context can relate to data in another context (HT TP headers and body are clearly related to
each other) and therefore a middlebox could need simultaneous access to data from more than one context to carry out
its function. It would be desirable to have these contexts delivered in one TLM SP record, even though they correspond
to different contexts. However mcTLS specified that the contexts be transmitted in separate records.

The second undesirable feature is related to another goal of TLM SP: to enable middieboxes to optimize traffic flow
under varying network conditions. To that end, direct cloning of the TLS record format, asis donein mcTLS[i.1],
would have drawbacks. Fragmentation could be done so that each TLM SP record contains data associated with

precisely one TLM SP context, according to a specific access policy for the middieboxes. Thus, use of contextsimpliesa
specific maximum fragment size; this size could be much smaller than the 16 kB maximum record size specified for
standard TL S, meaning datais transmitted in smaller chunks, even when larger chunks are preferred for network
performance.

It should be noted that endpoint congestion control techniques can be defeated by the presence of middleboxes, a
problem which existsin general with the use of middleboxes, and particularly with the terminate-and-reoriginate
approach. TLMSP explicitly adds middleboxes to the model but does not define or provide mechanismsto address
interworking with congestion control methods.

F.3 Sequence numbers and re-ordering/deletion attacks

A straight-forward adaptation of TL S sequence number handling does not work in a protocol which allows the
middleboxes to, independently of each other, delete or insert messages into the session.

EXAMPLE 1: Thereisachain of middleboxes entities, e[1], e[2], ..between client C(identified ase[0])
and server S (identified ase[n]). Assume an attacker can access and control the transport
network somewhere after middlebox e[j] .

Two middleboxes, e[i] ande[j],] < i,eachinsertamessagenii] andn{j] attimes
T[i] and T[j] respectively, whereT[i] and T[] are"close". At some point, n{ i] and
ni j] will reach the point in the network where the attacker is present; the attacker can now
store/buffer nii] andni j] and forward them in any order it chooses without detection.

The example above shows that context-specific sequence numbers (alone) are insufficient, asthey only provide a
binding to the inter-message order for messages from different contexts. Thus a global sequence number is required.

ETSI

93 ETSI TS 103 523-2 V1.1.1 (2021-02)

On the other hand, a single global sequence number is also insufficient asillustrated by the following attack.

EXAMPLE 2. A middlebox entity, e, has delete access to container associated with context ¢ 1. It has no access
whatsoever to context c2. It isthen possible for e to drop (i.e. delete) containers associated with
context ¢ 2 and replace them with del ete indications associated with context c 1.

For entities located downstream from e in Example 2 above, the delete indications associated with context ¢ 1 will
make the total number of containers that have passed e appear to be consistent: the dropped containers from c2 will not
be missed. It isonly if/when e startsto forward containers from c2 again that the attack will be detected due to
sequence number mismatch (and associated MAC failure). Arguably, the attack is non-persistent in this sense, but the
TLMSP design has neverthel ess added a mechanism to mitigate this (and other) attacks.

Specifically, TLMSP countersthis attack by:

a) using both global, context-independent sequence numbers as well as context-dependent sequence numbers;
and

b) using the global sequence numbers as input to reader and hop-by-hop MAC; and
c) using the complete set of al context-dependent sequence numbers as inputsto all writer and deleter MACs.

Feature (a) is obviously a pre-requisite for features (b,c). By feature (c), then, the attack of Example 2 will immediately
be discovered as soon as the malicious entity e allows any container (of any context) to be forwarded. The discovery
will be made by the closest downstream entity who has at least delete- or write access to the context of the forwarded
container. Thisisthe best protection possible to attain, as one cannot expect that a downstream middlebox with only
read access would be able to detect insider-attacks by middleboxes of higher privilege level. By feature (b), the attack of
Example 1 will be thwarted.

F.4 MAC for synchronization purposes

The mcTLS protocol [i.1] on which TLMSP is based does not specify the use of aMAC for synchronization purposes.
Thisis problematic for maintaining synchronization between entities in a connection and maintai ning sequence
numbers.

EXAMPLE: A middlebox Mhas neither read- nor write-access to a particular context, ¢. The endpoint sends a
record associated with context ¢, and the record is processed with sequence humber s at that
endpoint. When this message passes M will Mincrease itslocal sequence number?

If Mdoes not, then when a context that Mhas access to is processed, the endpoint generating the
message will processit with a sequence number s+d. However, Mwill use sequence number
s- 1+d (or lower).

If Mdoes increase the sequence number to s, thereis no way for Mto know if the message was
spoofed by an attacker since Mcannot verify the authenticity of the message. Mwill have increased
the sequence number so that it istoo high when alater, authentic container is accessed.

NOTE: Thisisaproblem aso for the original mcTL S specification.

A potential solution to this would be to use independent, per-context sequence numbers. Thiswould be aviable solution
for the mcTLS protocol which does not allow insertions or deletions, but as discussed in clause F.3, thisisnot a
sufficient solution for TLM SP; it leaves open attacks related to re-ordering of containers. Thisisthe reason for
introducing the hop-by-hop MAC which, besides preventing injection of messages from one indivudal hop to another,
also servesasa MAC for synchronization purposes that all middlieboxes can verify.

F.5 Removal of support for renegotiation

Thisismotivated in detail in clause E.7.

ETSI

94 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex G (informative):
Mapping MSP desired capabilities to TLMSP

G.1 General

Following the framework of [i.5], the clauses below state which of the M SP Requirements that have been selected for
the TLMSP Profile defined in the present document and provides conformance claims how each of the requirements are
met. The column M SP/Profile Type contains information regarding the status of each requirement. The value before the
"' dash denotes whether the Template Requirement is mandatory in all MSP profiles (MM) or whether it is optional to
certain profiles only (MO), according to [i.5]. The value after the "/" denotes the status of the requirement in the
TLMSP profile defined in the current document and can have values Profile Mandatory (PM), Profile Optional (PO),
Profile Not-applicable (PNA), or Profile Rejected (PR).

EXAMPLE: The presence of "MO/PM" in the M SP/Profile Type column means that the requirement isin
general optional for MSP protocols, but is mandatory in the TLMSP profile. Obvioudly, any of the
combinations "MM/PQO", "MM/PNA" or "MM/PR" would be incompatible with claiming
conformanceto [i.5].

For the mandatory requirements and those optional requirements that have been selected for TLM SP, a conformance
claim with motivation is provided in the last column. For requirement that are profile non-applicable or have been
rejected, it isin the last column stated why rationale for why the requirement is not applicable or not included in
TLMSP.

ETSI

95

ETSI TS 103 523-2 V1.1.1 (2021-02)

G.2

MSP Requirements - Data Protection

The present clause defines the TLM SP Data Protection Requirements, based on the M SP Template Requirementsin clause 6.2 of [i.5].

Ref Data Protection Template Requirement MSP/Profile Type Conformance and Selection Analysis

E.DP.1 Endpoints shall protect confidentiality of sensitive data that they MM/PM Provided through selection of a cipher suite

send. with non-NULL encryption. The predefined
transform of annex A is mandatory to support.
(NULL encryption may be supported but
discouraged from usage.)

E.DP.2 Endpoints may add protection to externally visible characteristics MO/PR Requirement has been rejected due to the

of application data to protect confidentiality of sensitive excess overhead it would create.
information about application activity.
(This is commonly referred to as Traffic Analysis Protection.)

E.DP.3 Endpoints shall protect integrity of application data. MM/PM Generally provided through selection of a
cipher suite with non-NULL MAC. (NULL
integrity only allowed for testing.)

E.DP.3.1 [Endpoints shall protect application datagrams from modification in MM/PM Achieved by reader- and hop-by-hop MAC.

transit between authorized participants.

E.DP.3.2 [Endpoints may protect application datagrams from unauthorized MO/PM Achieved by assigning separate contexts to

modification by a middlebox. parts of data and use of separate deleter- and
writer MAC, as well as hop-by-hop MAC.

E.DP.3.3 |Endpoints may protect the datastream from modification in transit MO/PM See E.DP.3.1 (Due to hop-by-hop MACs, even

between authorized participants. an authorized middlebox can only modify data
when the data passes the middlebox itself.)

E.DP.3.4 [Endpoints may protect the datastream from unauthorized MO/PM See E.DP.3.2. In addition inclusion of

modification by a middlebox. sequence numbers in MACs

E.DP.4 Endpoints shall protect sensitive information about session state MM/PM Compliance via sub-requirement fulfilment as

from unauthorized disclosure, discovery, manipulation and below.
creation.

E.DP.4.1 |Endpoints shall protect the sensitive cryptographic state from MM/PM Left as an implementation assumption on

unauthorized disclosure, discovery, manipulation and creation. endpoints.

E.DP.4.2 |Endpoints may protect the application state from replay and pre- MO/PM Supported by the inclusion of sequence

play of data. numbers in MACs.
M.DP.1 Middleboxes shall protect confidentiality of sensitive data that they MM/PM Cipher suite selection is under control of
send. endpoints, middleboxes assumed to follow that
choice.
M.DP.2 Middleboxes may add protection to externally visible MO/PR See E.DP.2.
characteristics of application data to protect confidentiality of
sensitive information about application activity.
(This is commonly referred to as Traffic Analysis Protection.)

ETSI

96 ETSI TS 103 523-2 V1.1.1 (2021-02)

Ref Data Protection Template Requirement MSP/Profile Type Conformance and Selection Analysis
M.DP.3 Middleboxes shall protect integrity of application data. MM/PM Compliance via sub-requirement fulfilment as
below.
M.DP.3.1 |Middleboxes shall protect application datagrams from modification MM/PM Supported by reader-, writer-, deleter- and hop-
in transit between authorized participants. by hop MACs.
M.DP.3.2 |Middleboxes may protect application datagrams from MO/PM Supported by assignment of data to different
unauthorized modification by a middlebox. context, and assumption that middleboxes do
not collude maliciously.
M.DP.3.3 |Middleboxes may protect the datastream from modification in MO/PM See M.DP.3.1. In addition inclusion of
transit between authorized participants. sequence numbers in MACs
M.DP.3.4 |Middleboxes may protect the datastream from unauthorized MO/PM See M.DP.3.2.
modification by a middlebox.
M.DP.4 Middleboxes shall protect sensitive information about session MM/PM Compliance via sub-requirement fulfilment as
state from unauthorized disclosure, discovery, manipulation and below.
creation.
M.DP.4.1 |Middleboxes shall protect the sensitive cryptographic state from MM/PM Left as an implementation assumption on
unauthorized disclosure, discovery, manipulation and creation. middleboxes.
M.DP.4.2 |Middleboxes may protect the application state from replay and MO/PM Supported by usage of sequence numbers in
pre-play of data. MACs.
M.DP.5 Middleboxes may protect against protocol data fields being used MO/PR Requirement has been reject since obtaining
as covert channels by validating the contents or otherwise. assurance that all forms of covert channels are
(This does not eliminate covert channels from externally visible avoided is deemed too difficult to verify. For
characteristics such as timings and sizes.) example, it is clear that information could be
leaked via spoofed Hello messages,
information embedded in certificates, etc.

G.3 MSP Requirements - Transparency

The present clause defines the TLM SP Transparency Requirements, based on the M SP Template Requirements defined in clause 6.3 of [i.5].

Ref Transparency Template Requirement MSP/Profile Type Conformance and Selection Analysis
ET.1 Endpoints shall receive suitable knowledge of all middlebox MM/PM Information about identity and purpose of
identities. middleboxes is available in middlebox

certificates and the mandatory middlebox list
extension. It is generally required to be able to
authenticate all middlebox identities. If one
endpoint proposes that a middlebox ought not
to present certificate to the other endpoint, it is
at the discretion of the other endpoint whether
to accept this.

ET.1.1 Both endpoints shall receive suitable knowledge about the MM/PM In addition to E.T.1, an authorized middlebox
identity of all middleboxes authorized. needs to obtain key material from both

ETSI

97 ETSI TS 103 523-2 V1.1.1 (2021-02)
Ref Transparency Template Requirement MSP/Profile Type Conformance and Selection Analysis
endpoints in order to gain access.

ET.1.2 Endpoints may receive knowledge about the identity of all MO/PM Rejected middleboxes (including dynamically
refused middleboxes. inserted ones) are available in the middlebox

list extension.

E.T.1.3 Endpoints shall be able to verify or otherwise confirm that they MM/PM Middlebox list extension included in verification
have the same knowledge as the peer endpoint of all hash at end of handshake and explicit signalling
middleboxes' identities that are authorized. verifies that middleboxes have been given

access to key material.

ET.2 Endpoints shall receive knowledge of all middlebox permissions MM/PM Endpoints choose both cipher suite and define
and knowledge of all security mechanisms for data protection. and grant access rights on a per context basis.

E.T.3 Each endpoint shall be able to verify or otherwise confirm that MM/PM Verification as stated in E.T.1.3.
they have the same knowledge (of middlebox permissions and
security mechanisms for data protection) as the other endpoint.

ET4 Endpoints may receive knowledge of the peer endpoint identity. MO/PO Compliance via sub-requirement fulfilment as

below.

ET.4.1 The initiator endpoint may authenticate or otherwise verify the MO/PO Server authentication is strongly recommended.
identity of the responder endpoint.

E.T.4.2 The responder endpoint may authenticate or otherwise verify MO/PO Client authentication is optional but
the identity of the initiator endpoint. recommended.

E.T.5 Endpoints may verifiably audit activity of middleboxes. MO/PO Compliance via sub-requirement fulfilment as

below.

E.T.5.1 The destination endpoint may verifiably audit the activity of MO/PO Endpoints have option to configure middleboxes
middleboxes. to send special audit containers, only verifiable

between a specific middlebox and destination
endpoint.

E.T.5.11 The destination endpoint may verify that data has transited and MO/PM Under the assumption that middleboxes follow
not bypassed each middlebox. the protocol, this is supported by per-entity

sequence numbers in MACs and hop-by-hop
MACs.

E.T.5.1.2 The destination endpoint may verify whether a middlebox has MO/PO Supported by optional use of audit containers.
modified data.

E.T.5.1.3 The destination endpoint may verify the full change history of MO/PO Supported if all middleboxes are requested to
received data. send audit containers.

E.T.5.2 The sending endpoint may verifiably audit the activity of MO/PR Would require feedback signalling channel.
middleboxes.

E.T.5.21 The sending endpoint may verify that data has transited and not MO/PR See E-T.5.2
bypassed each middlebox.

E.T.5.2.2 The sending endpoint may verify whether a middlebox has MO/PR See E.T.5.2
modified data.

E.T.5.2.3 The sending endpoint may verify the full change history of MO/PR See E.-T.5.2
received data.

E.T.6 Endpoints may verify or otherwise confirm that middlebox MO/PM Supported by key confirmation messages.

access and middlebox permissions have been granted or
denied.

ETSI

98

ETSI TS 103 523-2 V1.1.1 (2021-02)

Ref Transparency Template Requirement MSP/Profile Type Conformance and Selection Analysis

M.T.1 Middleboxes may receive knowledge of all middlebox identities. MO/PO Middleboxes would normally be able to verify

other middleboxes' signatures as part of the
handshake. However, some middlebox could be
requested by an endpoint to not supply a
certificate.

M.T.1.1 Middleboxes may receive knowledge about the identity of all MO/PO See M.T.1
middleboxes authorized.

M.T.1.2 Middleboxes may receive knowledge about the identity of all MO/PM This is supported by the middlebox list
refused middleboxes. extension which passes all middleboxes.

M.T.1.3 Middleboxes may be able to verify or otherwise confirm that they MO/PO Supported by verification at end of handshake.
have the same knowledge as other participants of all The inter-middlebox verifications are obtained
middleboxes' identities that are authorized. as the application datagrams start to flow

(through hop-by-hop MACs).

M.T.2 Middleboxes may receive knowledge of all middlebox MO/PO Cipher suite selection available to all
permissions and knowledge of all security mechanisms for data middleboxes. There is an exception for
protection. middleboxes' signature algorithms in case one

endpoint requests a middlebox to not provide a
certificate to downstream entities.

M.T.3 Middleboxes may be able to verify or otherwise confirm that they MO/PM See M.T.1.3.
have the same knowledge (of middlebox permissions and
security mechanisms for data protection) as the other
participants.

M.T.4 Middleboxes may receive knowledge of either or both endpoint MO/PO Compliance via sub-requirement fulfilment as
identities. below.

M.T.4.1 Middleboxes may receive knowledge about the identity of the MO/PO Server authentication is strongly recommended.
responder endpoint.

M.T.4.2 Middleboxes may receive knowledge about the identity of the MO/PO Client authentication optional.

initiator endpoint.

ETSI

99

ETSI TS 103 523-2 V1.1.1 (2021-02)

Ref Transparency Template Requirement MSP/Profile Type Conformance and Selection Analysis
M.T.5 Middleboxes may verifiably audit activity of other middleboxes. MO/PR Deemed in general to be too costly.
M.T.5.1 Middleboxes may verifiably audit activity of other participants on MO/PR See M.T.5.
received data.
M.T.5.1.1 Middleboxes may verify that received data has transited and not MO/PNA Supported for upstream middleboxes due to
bypassed each middlebox. usage of sequence numbers and hop-by-hop
MACSs, but not generally applicable due to lack
of feedback channel for downstream entities.
M.T.5.1.2 Middleboxes may verify whether another middlebox has MO/PR See M.T.5.
modified received data
M.T.5.1.3 Middleboxes may verify the full change history of received data. MO/PR See M.T.5.
M.T.5.2 Middleboxes may verifiably audit activity of other participants on MO/PR See M.T.5..
sent data.
M.T.5.2.1 Middleboxes may verify that sent data has transited and not MO/PNA See M.T.5.1.1
bypassed each middlebox.
M.T.5.2.2 Middleboxes may verify whether another middlebox has MO/PR See M.T.5.
modified sent data.
M.T.5.2.3 Middleboxes may verify the full change history of sent data. MO/PR See M.T.5.

G.4

MSP Requirements - Access Control

The present clause defines the TLM SP Access Control Requirements, based on the MSP Template Requirements defined in clause 6.4 of [i.5].

Ref Access Control Template Requirement MSP/Profile Type Conformance and Selection Analysis

E.AC.1 Only endpoints shall grant or deny middlebox access and MM/PM Assignment of contexts and key material in
middlebox permissions. control of and defined by endpoints.

E.AC.1.1 Middlebox access shall be granted by at least one endpoint. MM/PM See E.AC.1.

E.AC.1.2 Middlebox permissions shall be granted by the same endpoint or MM/PM Both endpoints involved to define per-context
endpoints that granted access. access rights.

E.AC.1.3 The profile may support multiple levels for middlebox MM/PM Read, delete, and write/modify/insert supported.
permissions.

E.AC.14 Endpoints may authorize middlebox permissions per context. MM/PM Access rights assigned per context.

E.AC.1.5 Only endpoints shall deny middlebox access or middlebox MM/PM Only an endpoint has possibility to reject access
permissions. rights proposed by other endpoint.

(A middlebox, such as a cyber defence gateway, can still block
the entire connection between suspected malicious endpoints.)

E.AC.2 The endpoint(s) that grant(s) access to a middlebox shall MM/PM Either explicit authentication of each middlebox
authenticate or otherwise confirm its identity before granting or, if acceptable, relies on trust in that the other
access. endpoint authenticates middlebox (to "otherwise

confirm" is understood to rely on trust in other
endpoint's authentication).

ETSI

100 ETSI TS 103 523-2 V1.1.1 (2021-02)
Ref Access Control Template Requirement MSP/Profile Type Conformance and Selection Analysis
E.AC.3 At least one endpoint shall choose all security mechanisms for MM/PM Endpoints negotiate cipher suites.
data protection.
E.AC.4 Endpoints may grant middlebox access and middlebox MO/PM Middlebox list extension includes permissions.
permissions only through mutual agreement with the peer The whole list is mutually agreed.
endpoint.
E.AC.5 Endpoints may authenticate or otherwise verify the identity of all MO/PM See E.AC.2 and E.AC.4
middleboxes whose access is granted by the other endpoint.
M.AC.1 Middleboxes shall authenticate or otherwise confirm any MM/PM At the transport layer, and after the session is
participant identity they use for an identity-dependent action. This established, the only applicable identity
action is not granting or denying access to an MSP connection, dependent action is to ensure to only accept
which shall fall within endpoint remit only (E.AC.1). receiving datagrams from the upstream
(This stops a middlebox unlocking access to data or services for neighbour (via hop-by-hop MAC) and to only
an identity that has not been checked by the middlebox.) forward to the downstream neighbour.
Generally, middleboxes cannot take identity
dependent actions since they cannot in general
verify which entity that was the most recent to
modify/insert data. Considering identity-
dependent actions related to the application
layer, context mappings can be used to allow
only certain entities to modify the content, which
makes actions identifiable at the granularity of
the group of entities sharing the same access
rights. Moreover, the middlebox can tell if a
participant is authenticated and could fulfil the
requirement, assuming the middlebox interface
supports combined access to both application
layer information and MSP layer information.
M.AC.2 Middleboxes may authenticate or otherwise confirm participant MO/PO Authentication is not mandatory. In general, not
identities. desired that all middleboxes would always
confirm all other middleboxes' identities.
M.AC.2.1 Middleboxes may authenticate or otherwise confirm the initiator MO/PO See M.T.4.2
endpoint identity
M.AC.2.2 Middleboxes may authenticate or otherwise confirm the MO/PO See M.T.4.1
responder endpoint identity
M.AC.2.3 Middleboxes may authenticate or otherwise confirm all middlebox MO/PO In general, not desired that all middleboxes
identities would always confirm all other middleboxes'
identities. It is however supported in case all
middleboxes provide certificates.
M.AC.3 A middlebox may know that its access has been withheld. MO/PM Can be determined from middlebox list and/or

(Meeting this requirement implies it is not possible to deceive a
middlebox into believing it has access.)

lack of received key material message.

ETSI

101

ETSI TS 103 523-2 V1.1.1 (2021-02)

G.5

MSP Requirements - Good Citizen

The present clause defines the TLM SP Good Citizen Requirements, based on the MSP Template Requirements defined in clause 6.5 of [i.5].

Ref Good Citizen Template Requirement MSP/Profile Type Conformance and Selection Analysis

E.GC.1 Resource attacks that use an endpoint action or request shall have MM/PM During handshake, an endpoint may
some attribution to the attacker. request/propose that one or more other

middleboxes take part in the session, but
participation is decided by the proposed
middlebox. After handshake, middleboxes (with
appropriate access rights) can distinguish
message units originating from the end point
from inserted message units and decide how to
handle them. Attacks to other entities
participating in the same TLMSP session are
further attributed via the hop-by-hop MAC.
However, pure DoS attacks using malformed
packets (with incorrect MACs) cannot be
attributed to a source.

E.GC.1.1 |Any party being asked to expend significant resource due to an MM/PM Supported if client authentication is enforced
endpoint request, shall have some attribution of the request to the (server authentication is as discussed strongly
endpoint. recommended).

E.GC.2 An MSP profile shall not provide a significant amplification factor MM/PM No sources of amplification have been
for a resource attack that uses an endpoint action or request. identified.

E.GC.2.1 |Where an endpoint sends MSP protocol messages that request a MM/PM No sources of amplification have been
significant amplification factor on resource expenditure, then one of identified.
the following two things shall happen: either the recipient is not
forced to accept the request or the requesting endpoint expends
commensurately amplified resource as a consumer of the result.

M.GC.1 Resource attacks that uses an endpoint action or request shall MM/PM See E.GC.1.
have some attribution to the attacker.

M.GC.1.1 |Any party being asked to expend significant resource due to a MM/PM Middleboxes cannot request resources from
middlebox request, shall have some attribution of the request to the other entities and cannot effect which type of
middlebox. processing that is needed at other entities. A

middlebox can however request another
middlebox to take part in the session, but
participation is decided by the other middlebox.

M.GC.2 An MSP profile shall not provide a significant amplification factor MM/PM See E.GC.1.
for a resource attack that uses an endpoint action or request.

M.GC.2.1 |Where a middlebox sends MSP protocol messages that request a MM/PM A middlebox that was requested to join a
significant amplification factor on resource expenditure, then one of session by another middlebox can decline to do
the following two things shall happen: either the recipient is not Sso.
forced to accept the request or the requesting middlebox expends
commensurately amplified resource as a consumer of the result.

ETSI

102 ETSI TS 103 523-2 V1.1.1 (2021-02)
Ref Good Citizen Template Requirement MSP/Profile Type Conformance and Selection Analysis
M.GC.3 Middleboxes may be able to drop out of a connection, without MO/PO There is possibility to use the middlebox leave

breaking or degrading the connection for other participants, to
counter an attempted resource attack.

protocol for this purpose.

ETSI

103 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex H (informative):
TLMSP compression issues

The current version of TLMSP does not support compression. If afuture version of TLMSP is to support compression
along the lines of TLS, anumber of considerations need to be taken into account.

First, it can be noted that TL S compressed data is allowed to be 1 024 bytes greater than the uncompressed text and this
could run into TLMSP container-length field limitations. Also, in TLS, plaintext is segmented into records, then
compressed, with the limitation that the compressed data for each record isitself sent in asingle record, and thisis again
allowed to grow up to 1 024 bytes.

If aTLMSP middlebox wants to edit data (insert/modify/delete), one faces the problems of breaking back-references
and missing dictionary symbol redefinitions, so when modification is done, one also has to recompress the entire
remainder of datafor that context.

Finally, compression was removed in the recent TLS 1.3 update [i.8] because consensus was that compression belongs

closer to the application layer, where relevant context can be taken into account to avoid/mitigate compression-based
vulnerabilities.

ETSI

104 ETSI TS 103 523-2 V1.1.1 (2021-02)

Annex | (informative):
IANA considerations

The TLMSP protocol has by IANA been assigned three values for new TL S extension types fromthe "TLS
ExtensionType Values' registry defined in IETF RFC 8446 [i.8] and IETF RFC 8447 [i.9]. They are TLMSP (36),
TLSMP_proxying (37), and TLMSP_delegate (38). See clauses 4.3.5 and C.2.3 for more information.

ETSI

105

ETSI TS 103 523-2 V1.1.1 (2021-02)

History

Document history

V111

February 2021

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 TLMSP specification
	4.1 Introduction
	4.2 The Record protocol
	4.2.1 Overview
	4.2.1.1 General
	4.2.1.2 Records, containers and contexts
	4.2.1.3 Record and container construction and processing overview

	4.2.2 Message unit and record processing: cryptographic state and synchronization
	4.2.2.1 General
	4.2.2.2 MAC overview
	4.2.2.2.1 General
	4.2.2.2.2 MAC author determination

	4.2.2.3 Sequence numbers
	4.2.2.3.1 General
	4.2.2.3.2 Outgoing message units and records
	4.2.2.3.3 Incoming message units and records

	4.2.3 Processing of specific message unit types
	4.2.3.1 Container message units
	4.2.3.1.1 Container usage
	4.2.3.1.2 Modifications
	4.2.3.1.3 Insertions generally
	4.2.3.1.4 Deletion indication containers
	4.2.3.1.5 Audit containers
	4.2.3.1.6 Alert containers

	4.2.3.2 Record message units
	4.2.3.2.1 Handshake message units
	4.2.3.2.2 ChangeCipherSpec message units

	4.2.3.3 Middlebox processing summary
	4.2.3.4 MAC usage summary

	4.2.4 Container format
	4.2.5 Plaintext record format
	4.2.6 Compressed record format
	4.2.7 Applying message unit and record protection
	4.2.7.1 General
	4.2.7.2 MAC generation
	4.2.7.2.1 General
	4.2.7.2.2 Reader, deleter and writer MACs
	4.2.7.2.3 Hop-by-hop MAC

	4.2.7.3 Cipher suite specifics
	4.2.7.3.1 General
	4.2.7.3.2 Null or stream cipher
	4.2.7.3.3 Generic block cipher
	4.2.7.3.4 AEAD ciphers

	4.3 The Handshake protocol
	4.3.1 Overview
	4.3.1.1 General
	4.3.1.2 Piggy-backing of handshake messages

	4.3.2 Middlebox configuration, discovery
	4.3.2.1 General
	4.3.2.2 Static pre-configuration
	4.3.2.3 Dynamic discovery
	4.3.2.3.1 General
	4.3.2.3.2 Non-transparent middleboxes
	4.3.2.3.3 Transparent middleboxes

	4.3.2.4 Combined discovery
	4.3.2.4.1 Example use case
	4.3.2.4.2 Practical considerations

	4.3.2.5 Middlebox leave and suspend

	4.3.3 Session resumption and renegotiation
	4.3.3.1 Resumption
	4.3.3.2 Renegotiation

	4.3.4 Handshake message types
	4.3.5 TLMSP Handshake extensions
	4.3.6 Middlebox related messages
	4.3.6.1 MboxHello
	4.3.6.2 MboxCertificate
	4.3.6.3 MboxCertificateRequest
	4.3.6.4 Certificate2Mbox
	4.3.6.5 MboxKeyExchange
	4.3.6.6 MboxHelloDone
	4.3.6.7 CertificateVerify2Mbox
	4.3.6.8 MboxHelloRequest
	4.3.6.9 ServerUnsupport
	4.3.6.10 MboxFinished

	4.3.7 TLMSPKeyMaterial and TLMSPKeyConf
	4.3.7.1 KeyMaterialContribution
	4.3.7.2 TLMSPKeyMaterial
	4.3.7.3 TLMSPKeyConf

	4.3.8 MboxLeaveNotify and MboxLeaveAck
	4.3.8.1 Message format
	4.3.8.2 Message processing
	4.3.8.2.1 General
	4.3.8.2.2 Detailed operation

	4.3.9 Message hashes
	4.3.9.1 ClientHello and ServerHello value substitutions
	4.3.9.2 Finished hash
	4.3.9.3 MboxFinished hash
	4.3.9.4 ClientHello hash (following dynamic discovery)
	4.3.9.5 TLMSPServerKeyExchange hash

	4.3.10 Key generation
	4.3.10.1 TLMSPServerKeyExchange
	4.3.10.2 General
	4.3.10.3 Premaster secret and master secret generation
	4.3.10.4 Pairwise encryption and integrity key generation
	4.3.10.5 Context specific keys
	4.3.10.6 Key extraction

	4.4 The Alert protocol
	4.4.1 General
	4.4.2 Alert message types

	4.5 The ChangeCipherSpec protocol

	Annex A (normative): Defined cipher suites
	A.1 General
	A.2 Key Exchange
	A.3 AES_{128,256}_GCM_SHA{256,384}
	A.3.1 General
	A.3.2 Additional MAC computations

	A.4 AES_{128,256}_CBC_SHA{256,384}
	A.5 AES_{128,256}_CTR_SHA{256,384}
	A.6 Additional cipher suites
	A.7 Summary of security parameters
	A.8 Cipher suite identifiers
	A.9 Future extensions

	Annex B (normative): Alternative cipher suites
	B.1 General
	B.2 Defined alternative cipher suites
	B.2.1 Anon
	B.2.2 Preshared keys
	B.2.2.1 General
	B.2.2.2 Technical Details
	B.2.2.2.1 ClientHello and ServerHello
	B.2.2.2.2 MboxKeyExchange
	B.2.2.2.3 TLMSPKeyMaterial

	B.2.3 GBA
	B.2.3.1 General
	B.2.3.2 Technical details
	B.2.3.2.1 General
	B.2.3.2.2 ClientHello
	B.2.3.2.3 MboxKeyExchange
	B.2.3.2.4 TLMSPKeyMaterial

	Annex C (normative): TLMSP alternative modes
	C.1 Fallback to TLS 1.2
	C.2 Fallback to TLMSP-proxying
	C.2.1 General
	C.2.2 Fallback procedure
	C.2.3 Message and processing details
	C.2.3.1 TLMSP proxying and delegate extension and message specifications
	C.2.3.2 Delegate message specification
	C.2.3.3 Processing

	C.3 Middlebox security policy enforcement
	C.3.1 General
	C.3.2 Message formats

	Annex D (informative): Contexts and application layer interaction
	D.1 Application layer interaction model
	D.2 Example context usage

	Annex E (informative): Security considerations
	E.1 Trust model
	E.2 Cryptographic primitives
	E.2.1 General
	E.2.2 Handshake verification

	E.3 Protection against mcTLS attacks
	E.4 Inter-session assurance
	E.5 Use of the default context zero
	E.6 Removal of middlebox insertions
	E.7 Removal of support for renegotiation

	Annex F (informative): TLMSP design rationale
	F.1 General
	F.2 Containers
	F.3 Sequence numbers and re-ordering/deletion attacks
	F.4 MAC for synchronization purposes
	F.5 Removal of support for renegotiation

	Annex G (informative): Mapping MSP desired capabilities to TLMSP
	G.1 General
	G.2 MSP Requirements - Data Protection
	G.3 MSP Requirements - Transparency
	G.4 MSP Requirements - Access Control
	G.5 MSP Requirements - Good Citizen

	Annex H (informative): TLMSP compression issues
	Annex I (informative): IANA considerations
	History

