SmartM2M;
Extension to SAREF;
Part 4: Smart Cities Domain
Contents

Intellectual Property Rights ... 4
Foreword .. 4
Modal verbs terminology ... 4

1 Scope ... 5

2 References .. 5
2.1 Normative references ... 5
2.2 Informative references .. 5

3 Definition of terms, symbols and abbreviations ... 5
3.1 Terms ... 5
3.2 Symbols .. 5
3.3 Abbreviations ... 6

4 SAREF4CITY ontology and semantics .. 6
4.1 Introduction and overview ... 6
4.2 SAREF4CITY ... 7
4.2.1 General Overview ... 7
4.2.2 Topology .. 9
4.2.3 Administrative Area ... 9
4.2.4 City Object ... 10
4.2.5 Event ... 11
4.2.6 Measurement.. 11
4.2.7 Key Performance Indicator ... 12
4.2.8 Public Service .. 14
4.3 Instantiating SAREF4CITY .. 14

Annex A (informative): Use recommendations .. 17

Annex B (informative): Bibliography ... 18

History .. 19
Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Smart Machine-to-Machine communications (SmartM2M).

The present document is part 4 of a multi-part deliverable covering SmartM2M; Extension to SAREF, as identified below:

- **Part 1:** "Energy Domain";
- **Part 2:** "Environment Domain";
- **Part 3:** "Building Domain";
- **Part 4:** "Smart Cities Domain";
- **Part 5:** "Industry and Manufacturing Domains";
- **Part 6:** "Smart Agriculture and Food Chain Domain".

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
1 Scope

The present document presents SAREF4CITY, an extension of SAREF for the Smart Cities domain.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 103 264 (V2.1.1) (2017-03): "SmartM2M; Smart Appliances; Reference Ontology and oneM2M Mapping".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1] ETSI TR 103 506 (V1.1.1) (2018-09): "SmartM2M; SAREF extension investigation; Requirements for Smart Cities".

[i.2] ETSI TS 103 264 (V3.1.1): "SmartM2M; Smart Applications; Reference Ontology and oneM2M Mapping".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

ontology: formal specification of a conceptualization, used to explicit capture the semantics of a certain reality

3.2 Symbols

Void.
3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

- API: Application Programming Interface
- DL: Description Logic
- ISA²: Interoperability solutions for public administrations, businesses and citizens
- KPI: Key Performance Indicator
- OWL: Web Ontology Language
- OWL-DL: Web Ontology Language - Description Logic
- RDF: Resource Description Framework
- RDF-S: Resource Description Framework Schema
- SAREF: Smart Applications REFerence ontology
- SAREF4CITY: SAREF extension for the Smart Cities domain
- TR: Technical Report
- TS: Technical Specification
- UML: Unified Modeling Language
- URI: Uniform Resource Identifier
- W3C: World Wide Web Consortium
- WGS84: World Geodetic System 1984

4 SAREF4CITY ontology and semantics

4.1 Introduction and overview

The present document is a technical specification of SAREF4CITY, an extension of SAREF for the Smart Cities domain. This extension has been created by investigating resources from potential stakeholders of the ontology, such as standardization bodies (e.g. Open Geospatial Consortium), associations (e.g. Spanish Federation of Municipalities and Provinces), IoT platforms (e.g. FIWARE) and European projects and initiatives (e.g. ISA² programme) as reported in ETSI TR 103 506 [i.1]. In addition, the use cases defined in [i.1] were also taken into account, namely:

- **Use case 1**: eHealth and Smart Parking
- **Use case 2**: Air Quality Monitoring and Mobility
- **Use case 3**: Street Lighting, Air Quality Monitoring and Mobility

Taking into account ontologies, data models, standards and datasets provided by the identified stakeholders, a set of requirements were identified and grouped in the following categories: Topology, Administrative Area, City Object, Event, Measurement, Key Performance Indicator, and Public Service. Such requirements and categories were validated during the "SAREF4CITY Validation Workshop" at the IoT Week in Bilbao on the 4th of June 2018. During the workshop, attendees validated the use cases proposed above and the list of requirements for the above-mentioned categories. According to the feedback and outcomes of the workshop, some actions were taken such as to discard some requirements, to eliminate duplicates, to clarify requirements, or to add new ones. The concrete decisions were reported in ETSI TR 103 506 [i.1]. The requirements listed in such document were taken as input for the ontology development. More precisely, the ontology conceptualization was done in a modular way in which one pattern was defined for each of the abovementioned categories.

After the first complete implementation of the ontology, a second validation workshop, the "Towards interoperability and harmonization of Smart City models with SAREF4CITY" one, took place on the 22nd of November 2018 at the European Commission premises in Brussels. During the workshop the ontology was presented to a variety of stakeholders from industry to academia and public administration. Apart from observations and comments on the reuse and alignment with other ontologies, the discussion addressed more general questions like how to promote the adoption of SAREF or which is the technological and methodological support needed to create a SAREF ecosystem of collaborative ontologies.
SAREF4CITY is an OWL-DL ontology that extends SAREF and reuses six other ontologies. SAREF4CITY includes 31 classes (13 defined in SAREF4CITY and 18 reused from the SAREF, time, geosp, geo, foaf, dcterms, org, cpsv, and time ontologies), 36 object properties (20 defined in SAREF4CITY and 16 reused from the SAREF, geosp, geo, and cpsv ontologies) and 7 data type properties (3 defined in SAREF4CITY and 4 reused from the SAREF ontology).

SAREF4CITY focuses on extending SAREF in order to create a common core of general concepts for smart city data oriented to the IoT field. The main idea is to identify the core components, as mentioned, that could be extended for particular smart city subdomains, for example, for public transport.

The prefixes and namespaces used in SAREF4CITY and in the present document are listed in Table 1.

Table 1: Prefixes and namespaces used within the SAREF4CITY ontology

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Namespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>s4city</td>
<td>https://w3id.org/def/saref4city#</td>
</tr>
<tr>
<td>saref</td>
<td>https://w3id.org/saref#</td>
</tr>
<tr>
<td>cpsv</td>
<td>http://purl.org/vocab/cpsv#</td>
</tr>
<tr>
<td>dcterms</td>
<td>http://purl.org/dc/terms/</td>
</tr>
<tr>
<td>foaf</td>
<td>http://xmlns.com/foaf/0.1/</td>
</tr>
<tr>
<td>geo</td>
<td>http://www.w3.org/2003/01/geo/wgs84_pos#</td>
</tr>
<tr>
<td>geosp</td>
<td>http://www.opengis.net/ont/geosparql#</td>
</tr>
<tr>
<td>owl</td>
<td>http://www.w3.org/2002/07/owl#</td>
</tr>
<tr>
<td>time</td>
<td>http://www.w3.org/2006/time#</td>
</tr>
<tr>
<td>rdf</td>
<td>http://www.w3.org/1999/02/22-rdf-syntax-ns#</td>
</tr>
<tr>
<td>rdfs</td>
<td>http://www.w3.org/2000/01/rdf-schema#</td>
</tr>
<tr>
<td>xsd</td>
<td>http://www.w3.org/2001/XMLSchema#</td>
</tr>
</tbody>
</table>

4.2 SAREF4CITY

4.2.1 General Overview

An overview of the SAREF4CITY ontology is provided in Figure 1. For all the entities described in the present document, it is indicated whether they are defined in the SAREF4CITY extension or elsewhere by the prefix included before their identifier, i.e. if the element is defined in SAREF4CITY, the prefix is `s4city`, while if the element is reused from another ontology it is indicated by a prefix according to Table 1.

Arrows are used to represent properties between classes and to represent some RDF, RDF-S and OWL constructs, more precisely:

- Plain arrows with white triangles represent the `rdfs:subClassOf` relation between two classes. The origin of the arrow is the class to be declared as subclass of the class at the destination of the arrow.
- Dashed arrows between two classes indicate a local restriction in the origin class, i.e. that the object property can be instantiated between the classes in the origin and the destination of the arrow. The identifier of the object property is indicated within the arrow.
- Dashed arrows with identifiers between stereotype signs (i.e. "<< >>") refer to OWL constructs that are applied to some ontology elements, that is, they can be applied to classes or properties depending on the OWL construct being used.
- Dashed arrows with no identifier are used to represent the `rdf:type` relation, indicating that the element in the origin of the arrow is an instance of the class in the destination of the arrow.

Datatype properties are denoted by rectangles attached to the classes, in an UML-oriented way. Dashed boxes represent local restrictions in the class, i.e. datatype properties that can be applied to the class they are attached to.

Individuals are denoted by rectangles in which the identifier is underlined.

Note that Figure 1 aims at showing a global overview of the main classes of SAREF4CITY and their mutual relations. More details on the different parts of Figure 1 are provided from clause 4.2.2 to clause 4.2.8.
Figure 1: SAREF4CITY overview
4.2.2 Topology

In the SAREF4CITY ontology existing models have been reused when needed in order to increase interoperability and reduce effort in modelling general domains. As an example, for modelling the requirements related to the topology domain, standard ontologies already developed have been reused and connected to the SARE4CITY elements. As shown in Figure 2, for representing spatial objects the `geosp:SpatialObject` class from GeoSPARQL has been reused along with its subclasses `geosp:Feature`, `geosp:Geometry` and the properties `geosp:sfContains`, `geosp:sfWithin` and `geosp:hasGeometry`. In addition, the class `geo:Point` and the property `geo:location` have been reused from the W3C de-facto standard for geographical information "WGS84 Geo Positioning vocabulary" in order to be able to indicate that something is located at certain coordinates.

![Figure 2: Topology model](image)

Table 2 summarizes the properties that characterize the `geosp:SpatialObject` class in the context of the SAREF4CITY ontology.

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>geosp:sfContains only geosp:SpatialObject</code></td>
<td>The relation between spatial objects and the spatial objects that it might contain.</td>
</tr>
<tr>
<td><code>geosp:sfWithin only geosp:SpatialObject</code></td>
<td>The relation between spatial objects and the general spatial objects in which it is contained.</td>
</tr>
<tr>
<td><code>geo:location only geo:Point</code></td>
<td>The geographical coordinates in which a spatial object is located.</td>
</tr>
</tbody>
</table>

Table 3 summarizes the properties that characterize the `geosp:Feature` class in the context of the SAREF4CITY ontology that are locally defined in such class, that is, it does not include those inherited from the superclasses. Through the rest of the present document the same rule will be applied, that is, describing for each concept the restrictions locally defined rather than duplicating the top level ones through the hierarchy concepts.

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>geosp:hasGeometry only geosp:Geometry</code></td>
<td>The geometrical figure that defines the spatial object.</td>
</tr>
</tbody>
</table>

4.2.3 Administrative Area

The model defined to describe administrative areas is depicted in Figure 3. As it can be observed, this model heavily relies on the topology pattern described in clause 4.2.2. In this sense, the ability to connect administrative areas (e.g. a city) with their inner areas, (e.g. its neighbourhoods) is given by inheritance of the `geosp:SpatialObject` class and through the `geosp:Feature` class. That is, as `s4city:AdministrativeArea` is subclass of `geosp:SpatialObject`, the `geosp:sfContains` and `geosp:sfWithin` properties could also be applied to all the administrative areas defined, namely `s4city:City`, `s4city:Country`, `s4city:District` and `s4city:Neighbourhood`.
The properties that apply to the `s4city:AdministrativeArea` in the context of the SAREF4CITY ontology are inherited from the `geosp:SpatialObject` (see Table 2) and the `geosp:Feature` (see Table 3) classes.

4.2.4 City Object

The model developed to represent city objects is shown in Figure 4. This model also relies on the topology pattern described in clause 4.2.2, as for the administrative area case. The ability to connect city objects with the city or with the parts in which they are located is enabled by means of the properties `geosp:sfContains` and `geosp:sfWithin` inherited from the `geosp:SpatialObject` class.

The properties that apply to the `s4city:SpatialObject` in the context of the SAREF4CITY ontology are inherited from the `geosp:SpatialObject` (see Table 2) and the `geosp:Feature` (see Table 3) classes.
4.2.5 Event

Figure 5 presents the model developed to represent temporal and scheduled events. The main concept of this pattern is the class s4city:Event. Such event is linked to the agent organizing it by means of the s4city:organizedBy property. Note that a public administration is a subclass of agent; therefore, this model includes the possibility of events being organized by public administrations as well as by other types of agents. The events can take place at a particular facility (s4city:Facility) which is indicated by the s4city:takesPlaceAtFacility property and at a given time, which is represented by the s4city:takesPlaceAtTime property that links the event to temporal entities (time:TemporalEntity) defined by the W3C Time ontology. Finally, as events can be part of bigger events, this relation has been modelled by means of the property s4city:isSubEventOf.

Figure 5: Event model

Table 4 summarizes the properties that characterize the s4city:Event.

Table 4: Properties of s4city:Event

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>s4city:isOrganizedBy</td>
<td>The relation between events and agents, that can be persons or organizations, that organize the event.</td>
</tr>
<tr>
<td>s4city:isSubEventOf</td>
<td>The relation between an event and the general events in which they can be co-located.</td>
</tr>
<tr>
<td>s4city:takesPlaceAtFacility</td>
<td>The relation between an event and the city facility in which it takes place.</td>
</tr>
<tr>
<td>s4city:takesPlaceAtTime</td>
<td>The relation between an event and the temporal entity in which it is scheduled.</td>
</tr>
<tr>
<td>s4city:hasAccessibility</td>
<td>The relation between an event and its type of accessibility.</td>
</tr>
</tbody>
</table>

4.2.6 Measurement

As it can be observed in Figure 6, the modelling of measurements in the SAREF4CITY ontology totally relies on the measurement model proposed in SAREF. This modelling include the saref:FeatureOfInterest class that provides the means to refer to the real world phenomena that is being observed in the given measurement. In order to reduce duplication with SAREF documentation, the reader is referred to the SAREF specification for details about SAREF modelling including here details only for the new concepts. Note that a work item (RTS/SmartM2M-103264v3) [i.2] has been opened to evolve the current SAREF core specification ETSI TS 103 264 (V2.1.1) [1] according to the latest developments in various sectors, including the input from the SAREF4CITY extension in the present document. This work item will result in an updated SAREF 3.0 core ontology.

The following properties shall be included in SAREF 3.0 and reused in SAREF4CITY to complete the model of measurements:

- saref:isPropertyOf (and its inverse saref:hasProperty): to link the property being observed with the feature of interest.
• saref:hasFeatureOfInterest (and its inverse saref:isFeatureOfInterestOf): that allows linking a given measurement with the feature of interest being observed.

• saref:measurementMadeBy: this property has been included as complement of the saref:makesMeasurement, as its inverse, to link a measurement and the device that produces it.

Figure 6: Measurement model

4.2.7 Key Performance Indicator

Figure 7 provides an overview of the modelling of Key Performance Indicators (KPI). The KPI modelling involves two main concepts, namely s4city:KeyPerformanceIndicator and s4city:KeyPerformanceIndicatorAssessment. This distinction is needed to decouple the definition of a KPI in general terms, for example the mean air pollution per week, and a particular value of such KPI, for example the mean value of air pollution last week in Madrid.

A s4city:KeyPerformanceIndicator is related to a saref:FeatureOfInterest by means of the property s4city:isKPIOf. It should be noted that the inverse relation of s4city:isKPIOf is also defined, more precisely, the relation s4city:hasKPI links a given saref:FeatureOfInterest to its KPIs represented as instances of s4city:KeyPerformanceIndicator. The calculation period of a s4city:KeyPerformanceIndicator is indicated by the property s4city:hasCalculationPeriod. The name and a natural language description of the s4city:KeyPerformanceIndicator are indicated by the attributes s4city:hasName and s4city:hasDescription, respectively.

The relation between a specific assessment of a KPI (s4city:KeyPerformanceIndicatorAssessment) and the general KPI definition (s4city:KeyPerformanceIndicator) can be established by means of the property s4city:quantifiesKPI. A s4city:KeyPerformanceIndicatorAssessment is related to the saref:FeatureOfInterest by means of the property s4city:assesses. The temporal entity to which the assessment of the KPI refers to is represented by the property s4city:refersToTime. The agent assessing the KPI is linked by means of the property s4city:isAssessedBy. In order to express the administrative area or geographical location assessed by the KPI, the property s4city:refersToSpace is included in the model. In case the KPI represents a value extracted from an aggregation of measurements, the property s4city:isDerivedFrom can be used to link to such measurements (saref:Measurement). The unit of measure in which a KPI value is expressed is indicated by means of the reused property saref:isMeasuredIn while the value itself is indicated by the attribute saref:hasValue. The name and a natural language description of the s4city:KeyPerformanceIndicatorAssessment are indicated by the attributes s4city:hasName and s4city:hasDescription, respectively. The creation, expiration and last update dates of the value are represented by the attributes s4city:hasCreationDate, s4city:hasExpirationDate and s4city:hasLastUpdateDate, respectively.
Table 5 summarizes the properties that characterize the `s4city:KeyPerformanceIndicator` class.

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>s4city:hasCalculationPeriod</code> only <code>time:TemporalEntity</code></td>
<td>The relation between a KPI and its calculation period.</td>
</tr>
<tr>
<td><code>s4city:isKPIOf</code> only <code>saref:FeatureOfInterest</code></td>
<td>The relation between a KPI and the feature of interest it assesses.</td>
</tr>
<tr>
<td><code>saref:hasDescription</code> only <code>rdfs:Literal</code></td>
<td>The description of the KPI.</td>
</tr>
<tr>
<td><code>saref:hasName</code> only <code>rdfs:Literal</code></td>
<td>The name of the KPI.</td>
</tr>
</tbody>
</table>

Table 6 summarizes the properties that characterize the `s4city:KeyPerformanceIndicatorAssessment` class.

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>s4city:assesses</code> only <code>saref:FeatureOfInterest</code></td>
<td>The relation between a KPI assessment and the feature of interest it assesses.</td>
</tr>
<tr>
<td><code>s4city:hasCreationDate</code> only <code>xsd:dateTime</code></td>
<td>The creation date of a KPI assessment.</td>
</tr>
<tr>
<td><code>s4city:hasExpirationDate</code> only <code>xsd:dateTime</code></td>
<td>The expiration date of a KPI assessment.</td>
</tr>
<tr>
<td><code>s4city:hasLastUpdateDate</code> only <code>xsd:dateTime</code></td>
<td>The last update date of a KPI assessment.</td>
</tr>
<tr>
<td><code>s4city:isAssessedBy</code> only <code>s4city:Agent</code></td>
<td>The relation between a KPI assessment and the agent who assesses it.</td>
</tr>
<tr>
<td><code>s4city:isDerivedFrom</code> only <code>saref:Measurement</code></td>
<td>The relation between a KPI assessment and the measurement it aggregates.</td>
</tr>
<tr>
<td><code>s4city:quantifiesKPI</code> only <code>s4city:KeyPerformanceIndicator</code></td>
<td>The relation between a KPI assessment and the general description of the KPI it quantifies.</td>
</tr>
<tr>
<td><code>s4city:refersToTime</code> only <code>time:TemporalEntity</code></td>
<td>The relation between a KPI assessment and the temporal point or interval it refers to.</td>
</tr>
<tr>
<td><code>saref:hasDescription</code> only <code>rdfs:Literal</code></td>
<td>The description of the KPI assessment.</td>
</tr>
<tr>
<td><code>saref:hasName</code> only <code>rdfs:Literal</code></td>
<td>The name of the KPI assessment.</td>
</tr>
<tr>
<td><code>saref:hasValue</code> exactly 1 <code>rdfs:Literal</code></td>
<td>The value of the KPI assessment.</td>
</tr>
<tr>
<td><code>saref:isMeasuredIn</code> only <code>saref:UnitOfMeasure</code></td>
<td>The relation between a KPI assessment and the units of measure the KPI value is expressed on.</td>
</tr>
</tbody>
</table>
4.2.8 Public Service

The model developed to describe public services within the SAREF4CITY ontology is depicted in Figure 8. The main entity included is the \texttt{s4city:PublicService} class which is a specialization of the reused concept \texttt{cpsv:PublicService} class defined in the Public Service vocabulary provided by the ISA vocabularies European initiative. The facility in which the service is provided is indicated by the \texttt{s4city:involvesFacility} property. It can be also possible to indicate in which administrative area it is provided, for example a neighbourhood, by means of the property \texttt{cpsv:physicallyAvailableAt}. The public services that an agent (\texttt{s4city:Agent}) provides or uses are indicated by means of the properties \texttt{cpsv:provides} and \texttt{cpsv:uses}, respectively. The languages in which a service is provided are indicated by the property \texttt{s4city:isAvailableInLanguage}. The name and a natural language description of the \texttt{s4city:PublicService} are indicated by the attributes \texttt{s4city:hasName} and \texttt{s4city:hasDescription}, respectively.

![Figure 8: Public Service model](image)

Table 7 summarizes the properties that characterize the \texttt{s4city:PublicService} class.

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{cpsv:physicallyAvailableAt} only \texttt{s4city:AdministrativeArea}</td>
<td>The relation between a public event and the administrative area in which it is available.</td>
</tr>
<tr>
<td>\texttt{s4city:involvesFacility} only \texttt{s4city:Facility}</td>
<td>The relation between a public event and the city facility in which it is provided.</td>
</tr>
<tr>
<td>\texttt{s4city:isAvailableInLanguage} only \texttt{dcterms:LinguisticSystem}</td>
<td>The relation between a public event and the language in which it is available.</td>
</tr>
<tr>
<td>\texttt{saref:hasDescription} only \texttt{rdfs:Literal}</td>
<td>The description of the public service.</td>
</tr>
<tr>
<td>\texttt{saref:hasName} only \texttt{rdfs:Literal}</td>
<td>The name of the public service.</td>
</tr>
</tbody>
</table>

4.3 Instantiating SAREF4CITY

Figure 9 shows an example of how to instantiate the SAREF4CITY extension of SAREF. This example shows the use of different patterns included in the SAREF4CITY ontology. First of all, a camera (\texttt{ex:Camera1}) measures the speed of a car (\texttt{ex:Car35}) in the information attached to the individual \texttt{ex:Camera1Measurement200}, which provides a value of 35 Km/hour. The position of the car at that moment is captured by the instance \texttt{ex:CarLocation2018-11-20T13-30-00} with points to the geographical coordinates in which the car is located and also to the road segment in which it is included. It can be observed that such road segment might contain (see property \texttt{geosp:sf:Contains}) other city objects such as a lamppost or a building.

The KPI pattern is also instantiated in the example. The instance \texttt{ex:RoadSegment50Congestion2018-11-20T13-30-00} refer to the value (70 \%) of the road congestion on the 2018-11-20 at 13:20. Such value is assessed by the public administration \texttt{ex:City4}. In the calculation of such value the speed of the cars (\texttt{ex:CarsSpeed2018-11-20}), the pollution (\texttt{ex:Polution2018-11-20}) and the GMaps API (\texttt{ex:GMapsAPI2018-11-20}) values have been taken into account as it can be observed from the \texttt{s4ctiy:isDerivedFrom} property between the KPI value and the different \texttt{saref:Measurement} instances.
In the example the event ex:BasketMatch23, as sub event of the ex:BasketWeek2018, is described. It can be seen that the match is accessible by metro, is organized by ex:City4 and takes place at the facility ex:BasketArena7.

Finally, some examples of public services are shown. One service example is the ex:HealthService123 that involves the facility ex:BasketArena7 and is available in Spanish. Such service is available in area ex:Neighbourhood34 that is contained in ex:City4, which is the service provider organization. In addition, another service, ex:Bus33Service, is provided by another organization, in this case ex:TransportCo.
Figure 9: Public Service model
Annex A (informative): Use recommendations

From the development of the SAREF4CITY ontology it has been observed the need for including the saref:FeatureOfInterest concept in SAREF. A work item (RTS/SmartM2M-103264v3) [i.2] has been opened to evolve the current SAREF core specification ETSI TS 103 264 (V2.2.1) [1] according to the latest developments in various sectors, including the input from the SAREF4CITY extension in the present document. The RTS/SmartM2M-103264v3 [i.2] work item will result in an updated SAREF 3.0 core ontology. Due to the general nature of the Feature of Interest concept and its potential need in other extensions, such concept shall be included in the upcoming SAREF 3.0 ontology. In the same line, the property saref:measurementMadeBy shall be included into SAREF 3.0 as inverse of saref:makesMeasurement to complete such model.

No reuse for concepts representing events has been done from the ISA vocabularies as such vocabulary is under development. It should be analysed how to link to such concepts when the ISA public event vocabulary is released.

Finally, it is worth mentioning that the Lexvo dataset (http://www.lexvo.org/) is proposed to be reused when linking to languages by means of the s4city:isAvailableInLanguage property. For example, the URI for representing the Spanish language in a 3-digit ISO639 code would be http://www.lexvo.org/page/iso639-3/ spa.
Annex B (informative):
Bibliography

- ETSI TS 103 267: "SmartM2M; Smart Appliances; Communication Framework".
- ETSI TS 102 689: "Machine-to-Machine communications (M2M); M2M Service Requirements”.
- ETSI TR 103 411 (V1.1.1) (2017-02): "SmartM2M Smart Appliances SAREF extension investigation".
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.1.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>