ETSI TS 102 822-3-2 vi.3.1 (2006-01)

Technical Specification

Broadcast and On-line Services: Search, select, and

rightful use of content on personal storage systems
("TV-Anytime");

Part 3: Metadata;

Sub-part 2: System aspects in a uni-directional environment

D

2 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Reference
RTS/JTC-TVA-PH1-14-03-02

Keywords
broadcasting, content, data, TV, video

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.
© European Broadcasting Union 2006.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Contents

Intellectual Property RIGNES.........oo et 6
0 Yo (o SRS 6
gLl [N o1 o] o [OOSR 7
1 o010 PR 8
2 L= £ 101 9
3 Definitions, abbreviations and MNEMIONICScveeee e eeeeee e e eere e e s saeeessareeessaseeessaaeeeessarseeessareeessas 10
31 (D= T o T] (0] TPV PRT USRS 10
3.2 ADDIEVIBLIONS ...ttt et e bt b e ae et e e e eE e b e e bt e he e b e et et e bt eh e e Rt e e e b e eb e bt eneene e e re e 11
3.3 Y TS0 o ot TSRS S 11
4 System mechanismsin aunidirectiona eNVIFONMENTccouiiriiirerene s 12
41 OVEIVIBW ...ttt ettt sttt et e ae et ese e e seeeE e e st eaeeneeaeembesEeeEeeaeeaeemee s enteeeeebeaneemeeneensensesaessesneeneeneensas 12
41.1 Main features of aunidirectional eNVIFONMENTooiii i et 12
41.2 ALCCESS MELNOMS ...ttt bttt b e bbbt et e e e ee e b e s bt eb e e e e e e b e sbeebesreene e e ennees 12
4.1.3 Definition of a TV-Anytime metadata deSCripLioN.........coce e iee e e 13
414 TV-Anytime metadata deSCriPtiON SIZE.........ccveiieeiie ettt te et e e steeaeseesraesreenseenneans 13
4.2 Metadata general delivery framMEWOTKcoiue e e ste e re e e enee e 13
42.1 INtroduction tO fragMENtaLioNcueiie it e st et e et e e reeteennesneeenes 14
422 (1ol [N Toit o] TR (o = 1o |1 s RS 14
4.2.3 INtrOdUCEION TO ENCAPSUIALTON. ..ottt ettt b e et b e et b e 14
4.2.4 INEFOAUCEION TO TNAEXING ...ttt bbb et b e e b e et b e bbb 14
4.2.5 Logical deCOder @rChitECIUNE.........cceuiiieeeteitee ettt ettt b e et st n et st 14
4.3 Metadata description fragMmENTALIONcccciiiiiiee bbb 16
431 TVA MEtadata fragMENTS. ..ottt b et b et b bt benne e 17
4311 IR 2N TN = o 01 17
4312 M etadataOriginationl Nformation Fragmentcceeceecieieie e 19
4313 Programinformation fragmeNL............cccueiieieiie ettt aesnaesnaesreennees 19
4314 GrouplNformation fFragMeNtcooe et e e s eseeeaaesnaesreesnees 20
4315 OnDemandProgram and OnDemandService fragMmentccvecveeveeieeseese e 20
4316 BroadCastEVENt fragiMENtccueiieiie ettt e e e teeaeeaeeneeeneeenaennaesreesnens 21
4.3.1.7 SCHEAUIE FrAgMENT ...ttt b bbbt e eb st b e b nn e e 21
4.3.1.8 Servicel NFOrmMation FragMENTooiiiiiee bbb 23
4319 Creditlnformati ON fFraMENLS. ..ottt b e b e sn s 23
43191 PErsONNEIME FrAOIMENLieieiitie ettt bbb bbb nb b ens 23
43192 OrganizatiONNAME FrAgMENToviuiiiiee bbb e 24
4.3.1.10 PUFCHESE FrAgMENT ...ttt e b e et b e e eb e e e b b e b b neenea 24
43111 e VLS T =T | 1= | SR 24
43.1.12 User DesCription iNfOrMIBLION.cceeiieie e et et e e s e steeeesee e e sreesseesteeneeenseenaesneesneeseeas 25
43.1.13 ClassificationSCheme fragmENtS.........ocveieiee e e saesnaesraennees 25
431131 (@S LRSS 25
4.3.1.13.2 ClasSifiCAIONSCNEIME ..ot b e bttt e b et bt b e e e ennennen 25
4.3.1.14 S o 141 01 0] o FO SO PSPPI 25
4.3.1.14.1 SEGMENEINFOIMBLIONttt bbbt b e e 25
4.3.1.14.2 SegMENtGIOUPINFOIMBLTONcvieeiiieie ettt ettt b e 26
4.3.1.15 PACKBGE FTBOIMENLoeeiiiteieeietere ettt b et b bt b b e bt b e se bt beseebese e e et e sae e ebesbennenens 27
4.3.1.16 Interstitial CampPaign FragMmENT..........coooiieiieee ettt bbb e 27
4.3.1.17 RMPI FFAgMENT ... e e s e e s 27
4.3.1.18 Coupon DESCIPLION FIAgMENLecieiieieeeee e see st sie et e et e st e st e e seeeeeseesaeesae e seenseeseesnaesseeseens 27
4.3.1.19 TargetingINformation FragMmENtcoceo ettt snee e e e e neeneesneeenes 28
4.3.1.20 Interstitial Break FragMentc.voiieiieece ettt et e st e e e e e stessaesseesneesneesseeseenneans 29
43121 U1 10 | 0 1= 1 S 29

ETSI

4 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

43.1.22 Recording Cache FIragmEntSc.oiieiie ettt te et e e re e s ne e te e teeneessaesnaesreesnens 29
431221 S 0 0L =0 11 o | PP TOPRPRN 29
431222 e o = Tor = | 30
431223 o = =T = | 30
432 Fragment Identification @nd VErSIONINGccveiuieiriieie et ee et e e e e eaeeeesneeenes 30
4.3.3 LI 007010 £ L= oo S 30
434 B I N 0o =5 5] 0 RS 30
4.35 Use of TVAIDType, TVAIDRefType and TVAIDREFSTYPEooeiriiiiirieereeesie e 30
4.3.6 Use of ID, IDRef, XPath @and Xml:Iang......c.eoeeieeee e st 31
4.4 FragmENt @NCOOINGcveueetireeeetert ettt b e st b e s b b s bt b e e e bt s e st b e s e s e bt b e ne b s enenns 31
441 TV AN MNESSAGE ...ttt ettt ettt ettt b st b e bt b e a b e b e h e b e s e st b e b e ae e he e b e e e st eb et et ebenn e eee 31
4411 OVEBIVIBW ...ttt et bt h e b st e e et e ee e b e e bt e b e e ae e s e e e e e e e be SRt eb e e et eh e e e e e e b e seeebesaeebeeneennenens 31
442 Y S Y (= g o) 1 ST 33
4421 (D= o0 0 = o 1 | USSP ORURTPRPSOSOPIN 33
44211 UNIESIZECOUE. ...ttt bbbttt e e e bt se e bt e bt e bt e e et e besbeebesaeene e e ennees 33
44212 TR =S o o] o 33
4422 FragmentUpdate@COomIMaNdecceiieiee e ste et ete e e st et teeeesaesreesneesneesseenteensesseesseesseeseens 34
44221 Guidelines for the use of the FragmentUpdateUNItooeiririeininieeneeesee e 34
4423 L0011 11/ oo LSS 37
4424 TV-ANYEIME COOEC ...ttt s bbbt bbbt b bt b b e e 37
44241 ClassifiCation SChEME WIADPETc.ciuiieiriiie ettt ettt b e 37
44242 (012 =] T (YO0 o (= oSSR 37
44243 (0= L= o010 L= oSSR 38
44244 AT oo o) (N0 11r4= o o (= oTo ' [LSS 38
45 Carriage Of TV-ANYLIME UBLA..........cciueieeiieieeieeie e see st e et et e e e et e e te e tesseesaeesaeesseeseenseensenseenseessennsen 40
451 (@00 1172 111 £ F ST STRTOUTUR RPN 40
4511 (O T ATz o oY o ol] 1= 11 = S 40
4512 ClassifiCation Of CONLAINEYS.........ccuiiiie ittt sttt et e sbeese e et e se e besaesbe e e enneneen 40
45.1.3 CoNtaiNEY TABNEITICAIION. ...ttt ettt eb et r b e b sbe e e e eneen 40
4.5.2 CONLBINET VEFSIONING ... tteeetteteseeieete ettt et seese et e se e st ebeseeaeebesees e ebese e bt e b e se e st ebeseeseebesbe e ebesbeneenenbennenen 41
4521 CONLBINEY SYNEBX ..c.vereeteetereeteeteseeseete sttt e ettt se et ebese e ebese e e ebe s s e e eb e re e s ebe s b e s e bt e b e s eseeb e s esesb e b ene b e nnenennis 41
4522 1000 g =] o= g 107 TSSOSO 42
45221 CoNntaiNer MAP FEOUITEMENTS.eeueieireeieteriee ettt ettt b et b et s b et b e e e 42
4.6 Fragment @NCAPSUIBLION...........ooueuiiiieeiit et bbb bbbt b st b e bt e e eb b ens 43
46.1 [gT0r= 10 S U1 = o T (] 0 T 43
46.1.1 ENCADSUIALION SETUCLUNEeeveeeieeie ettt ettt ettt e e teeste s esaaesreesneenneenseenseanseeneenseesseensnns 43
46.1.2 MoOVed fragMENtS SITUCTUIEocuieiecee ettt et esae e s ne e neenteenneenaesneesreenneas 44
46.1.3 Fragment_ REfErenCe FONMELS.........viieee ettt sae e ae et e saesnaesnaesreesneas 45
46.1.31 Referencing a BiM encoded fragmentcovoieeieeie ettt e 45
46.1.4 (D= Itz =010 1] (] YRS 45
4.6.14.1 Binary data FEPOSITOIYcoueueiuirieieiertieet sttt ettt b et b bbb bt n st b et eb e e e e 45
4.6.1.5 Alternative ENCOdING FOMMALSooiiiiieieieiteiete ettt sttt st b e 46
4.7 Fragment ManagemMeNnT.......... ..o e s 46
4.7.1 L =0 1107 0 o TSSOSO PSPPSR PSP 46
4.7.2 FragmENT AGG ... bbbt b e bbbt b b et b et b bbb 46
4.7.3 FragmeEnt UPOELEooveueieeieeeiee ettt ettt st b et b e bbbt et b e et b e b et b b 46
474 FragMENnt MOVE. ..ottt sttt et e be e et e e e be e et e e e s bee e s b be e s ateenabeesareenates 47
475 FragmeEnt DEIELE..........ocee ettt et e s e s e e s aeesaeeeeeneeeneeeseensaesteeste e reeteeneeeneeenns 47
4.8 1070 1= o S 47
481 1100 (0o (o] o FEO OO STOTPRURTURURPRRRI 47
482 S0 LU= 101 1S 47
4.8.3 Carriage of Indexing INfOrMELIONcccueiieiie ettt e esre e re e teeneeneeenes 48
484 (D o= (01] (oY OSSPSRV TSP 49
484.1 S 1T (= 0103] (o SO PSPPI 49
485 110 Lo Qs (W o (1 =PSRN 50
485.1 [dentification Of INQICES.......c.o ettt n e e e e e 50
48511 LU LS o) oL 51
4.85.1.2 USE OF XPAEN ... bbbt b e bt bt e e 51
485.2 Introduction to the MUILI-KEY INAEX............ocieiie e re e ne e 52
4.85.3 100 (o I OO PP UPURPRRT 53
4854 10 > OO U PP UPUPPRRP 56
48541 L= Lo IV T L= @ o (= g g o 56

ETSI

5 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4855 MUILE_FIEld SUD TNOEX .ttt ettt sttt sae e b e sbeneenens 59
4855.1 SINGIE LAYES SITUCIUIMES ..o ceeeceeeeiee et ettt ettt e st e e e e tessaesaeesreesseenseennesneenneenseensenns 59
4855.2 U = Y s 1 o (= 59
4.85.6 Fragment |0CALOIS SETUCTUNE.........ecieeie ettt te ettt et e e te e ste e s aeesreesaeeneeneeenseensesnaesneesreennens 64
4.85.7 Fragment_[OCALOr FOMMIBESccuveiieie ettt et e e s e s e e s ne e teenteensesnaesneesneesnnes 64
48571 Referencing fragmentsin another CONLAINETccvecivecieeierie e 64
4.85.7.2 Referencing a fragment within the Same CoNtaiNeY ..o 65
4.8.6 Binary representation Of SIMPIE TYPES......couii ittt et 65
487 Indexes based 0N Classification SCHEMES.........coiiiiiieee e neen 66
49 [N o1 0T e B 2= o (o o SRR 66
4.10 Extensibility of the TV-ANYLIME SChEMAL........couiiiieiiie e 66
4.10.1 1100 0o 1ol OO TP PSSO TP URTURURPSRI 66
4.10.2 1 o LY = 67
Annex A (informative): Bibliograpny ... 69
[1T (TSR P PSPPSR 73

ETSI

6 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation EL ECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standardsin the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became atripartite body
by including in the Memorandum of Understanding also CENELEC, which isresponsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active membersin about
60 countries in the European broadcasting area; its headquartersisin Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland

Tel: +41227172111
Fax: +4122717 2481

The present document is part 3, sub-part 2 of a multi-part deliverable covering Broadcast and On-line Services. Search,
select and rightful use of content on personal storage systems (" TV-Anytime"), as identified below:

Part1: "Benchmark Features';

Part2: "System description”;

Part 3: "Metadata";
Sub-part 1: "Phase 1 - Metadata schemas’;
Sub-part 2: " System aspectsin a uni-directional environment" ;
Sub-part 3: "Phase 2 - Extended Metadata Schema’;
Sub-part 4: "Phase 2 - Intergtitial metadata’;

Part 4: "Content referencing”;

Part5: "Rights Management and Protection (RMP)";

Part6: "Délivery of metadata over a bi-directiona network";

Part 7. "Bi-directional metadata delivery protection™;

Part8: "Phase 2 - Interchange Data Format";

Part 9: "Phase 2 - Remote Programming".

ETSI

http://webapp.etsi.org/IPR/home.asp

7 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Introduction

The present document is based on a submission by the TV-Anytime forum (http://www.TV-Anytime.org).

"TV-Anytime" (TVA) isafull and synchronized set of specifications established by the TV-Anytime Forum. TVA
features enable the search, selection, acquisition and rightful use of content on local and/or remote personal storage
systems from both broadcast and online services.

TS 102 822-1[7] and TS 102 822-2 [8] set the context and system architecture in which the standards for M etadata,
Content referencing, Bi-directional metadata and Metadata protection are to be implemented in the TV-Anytime
environment. TS 102 822-1 [7] provides benchmark business models against which the TV-Anytime system architecture
is evaluated to ensure that the specification enable key business applications. TS 102 822-2 [8] presents the TV-Anytime
System Architecture. These two documents are placed ahead of the others for their obvious introductory value. Note
that these first two documents are largely informative, while the remainder of the seriesis normative.

The features are supported and enabled by the specifications for Metadata (TS 102 822-3-1 [9], TS 102 822-3-2 (the
present document), TS 102 822-3-3[10] and TS 102 822-3-4 [11]), Content Referencing (TS 102 822-4[12]), Rights
Management (TS 102 822-5-1 [13] and TS 102 822-5-2 [14]), Bi-directional Metadata Delivery (TS 102 822-6-1 [15],
TS 102 822-6-2 [16] and TS 102 822-6-3 [17]) and Protection (TS 102 822-7 [18]), Interchange Data Format

(TS 102 822-8 [19]) and Remote Programming (TS 102 822-9 [20]). All Phase 1 and 2 Featureslisted in

TS 102 822-1 [7] are enabled by the normative TV-Anytime tools specifications.

The metadata specifications TS 102 822-3-1 [9], TS 102 822-3-3[10], TS 102 822-3-4 [11], TS 102 822-8 [19] and

TS 102 822-9 [20] address the description language, structure and semantics of TV-Anytime metadata descriptions. The
present document introduces new network agnostic technol ogies used to process these descriptions for the purpose of
transmission in a unidirectional environment.

ETSI

http://www.tv-anytime.org/

8 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

1 Scope

The present document is one in a series of Technical Specification documents produced by the TV-Anytime Forum.
These documents establish the fundamental specifications for the services, systems and devices that will conform to the
TV-Anytime standard, to alevel of detail that isimplementable for compliant products and services.

TS 102 822-1[7] and TS 102 822-2 [8] set the context and system architecture in which the standards for M etadata,
Content referencing, Bi-directional metadata and M etadata protection are to be implemented in the TV-Anytime
environment. TS 102 822-1 [7] provides benchmark business models against which the TV-Anytime system architecture
is evaluated to ensure that the specification enable key business applications. TS 102 822-2 [8] presents the TV-Anytime
System Architecture. These first two documents are largely informative, while the remainder of the seriesis normative.

Although each in the series of documentsisintended to stand alone, a complete and coherent sense of the TV-Anytime
system standard can be gathered by reading all the specification documentsin numerical order.

The following diagram depicts the combined scope of the TV-Anytime Specifications on Metadata TS 102 822-3-1 [9],
TS 102 822-3-3[10], TS 102 822-3-4 [11], TS 102 822-8 [19], TS 102 822-9 [20] and the present document " System
Aspectsin aUnidirectional Environment”.

» Metadata access interfaces for applications

» Description language for metadata types

» Metadata types and associated semantics
_______ E ncodi_h_g and_é_ncapsal_ati on of metadatafor
uni-directional delivery

» Requirements on delivery layer

Scope of the TVA metadata standard

» Format and semantics of delivery layer

Figure 1. Overview of the scope of TVA Specification on Metadata and System

The metadata specifications TS 102 822-3-1 [9], TS 102 822-3-3[10], TS 102 822-3-4 [11], TS 102 822-8 [19] and

TS 102 822-9 [20] address the description language, structure and semantics of TV-Anytime metadata descriptions. The
present document introduces new network agnostic technol ogies used to process these descriptions for the purpose of
transmission in a unidirectional environment.

The actual format and semantics of the delivery layer are specific to the particular uni-directional environment in which
TV-Anytime is deployed. However, in order for the encoding and encapsul ation mechanisms to operate as intended the
delivery layer must meet certain requirements. These normative requirements are defined in annex B of

TS 102 822-2 [§].

ETSI

9 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

2

References

The following documents contain provisions which, through reference in this text, constitute provisions of the present

document.

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

For a specific reference, subsequent revisions do not apply.

For anon-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

(1]

[2]

NOTE:

(3]
[4]

(5]

6]

NOTE:

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

ISO/IEC 10646 (2003): " Information technology - Universal Multiple-Octet Coded Character Set
(ucs)".

XML Schema, W3C Recommendations (version 20010502).

Avallable at: http://www.w3.0rg/TR/2001/REC-xmlschema-0-20010502,

http://www.w3.0rg/TR/2001/REC-xmlschema-1-20010502,
http://www.w3.0rg/TR/2001/REC-xml schema-2-20010502.

|EEE Standard for Binary Floating-Point Arithmetic, Std 754-1985 Reaffirmed 1990.

ISO/IEC 15938-1 (2002): "Information technology - Multimedia content description interface -
Part 1. Systems".

ISO/IEC 15938-2 (2002): "Information technology - Multimedia content description interface -
Part 2: Description definition language”.

Zlib: "The Zlib API".

Availlable at: http://www.gzip.org/zlib.

ETSI TS 102 822-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 1: Benchmark Features'.

ETSI TS 102 822-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 2: System description".

ETSI TS 102 822-3-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 3: Metadata; Sub-part 1: Phase 1 - Metadata
schemas'.

ETSI TS 102 822-3-3: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 3: Metadata; Sub-part 3: Phase 2 - Extended
Metadata Schema’'.

ETSI TS 102 822-3-4: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 3: Metadata; Sub-part 4: Phase 2 - Interstitial
metadata'.

ETSI TS 102 822-4: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 4: Content referencing”.

ETSI TS 102 822-5-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 5: Rights Management and Protection (RMP)
Sub-part 1: Information for Broadcast Applications'.

ETSI TS 102 822-5-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 5: Rights Management and Protection (RMP)
Sub-part 2: RMPI binding".

ETSI

http://docbox.etsi.org/Reference
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
http://www.w3.org/XML/Schema
http://www.gzip.org/zlib

10 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

[15] ETSI TS 102 822-6-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 6: Delivery of metadata over a bi-directional
network; Sub-part 1: Service and transport”.

[16] ETSI TS 102 822-6-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 6: Delivery of metadata over a bi-directional
network; Sub-part 2: Phase 1 - Service discovery".

[17] ETSI TS 102 822-6-3: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 6: Delivery of metadata over a bi-directional
network; Sub-part 3: Phase 2 - Exchange of Personal Profile".

[18] ETSI TS 102 822-7: "Broadcast and On-line Services. Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 7: Bi-directional metadata delivery
protection".

[19] ETSI TS 102 822-8: "Broadcast and On-line Services. Search, select, and rightful use of content

on personal storage systems ("TV-Anytime"); Part 8: Phase 2 - Interchange data format”.

[20] ETSI TS 102 822-9: "Broadcast and On-line Services. Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 9: Phase 2 - Remote Programming'".

[21] ISO/IEC 8601: "Data elements and interchange formats - Information interchange - Representation
of dates and times'.

3 Definitions, abbreviations and mnemonics

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
application: specific set of functions running on the PDR
NOTE: Some applications use metadata, either automatically or under consumer control.
head end: source of emission of the transport stream where metadata isinserted
metadata: data about content
EXAMPLE: Thetitle, genre and summary of atelevision programme.
NOTE: Inthe context of TV-Anytime, metadata also includes consumer profile and history data.

M PEG: ongoing effort by the Motion Pictures Expert Group (working group SC29 WGL11 of 1SO/IEC) to specify a
standard set of content-related metadata applicable to a broad range of applications

NOTE: Defined by TV-Anytimein TS 102 822-3-1 [9].

partial description: reconstructed portion of the TV-Anytime metadata description in the PDR obtained after having
decoded a subset of the metadata fragment stream

NOTE: The present document instantiates the TV-Anytime schema and must therefore be schemavalid with
respect to it.

segment: continuous portion of a piece of content, for example a single news topic in a news programme
segmentation: process of creating segments from a piece of content

transport stream: transport stream is made up of the A/V and/or the TV-Anytime data streams including the metadata
TVA access unit: container which holds one or more TVA fragments when carried over the transport stream

TVA fragment: self-consistent atomic portion of a metadata description sent to the decoder

ETSI

11 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

TVA metadata description: actual document instantiating the TVA schema which isto be sent to the PDR

NOTE: The present document may be subject to partial updates in time using the fragmentation mechanism. In
any case, it must be schema valid with respect to the TVA schema.

TVA metadata fragment stream: set of the many TV A fragments constituting asingle TV A metadata description and
inserted in the transport stream received by the decoder

TVA MPEG-7 profile: implementation profile of the ISO/IEC 15938-1 [4] standard, adopted by TV-Anytime for the
encoding of the metadata description as specified in the present document

TVA schema: set of rules describing the syntax and semantics of the metadata

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AU Access Unit
BiM Binary Format of MPEG-7
CRID Content Reference |Dentifier

NOTE: Anidentifier for content that isindependent of its location.
DDL Description Definition Language
NOTE: Thelanguage used to define description schemesin MPEG-7 (see ISO/IEC 15938-2 [5]).

DL Delivery Layer
ECG Electronic Content Guide

NOTE: A meansof presenting available content to the consumer, allowing selection of desired content.

GMT Greenwich Mean Time

IPR Intellectual Property Rights

MPEG Motion Pictures Expert Group

PDR Personal Digital Recorder

TVA TV-Anytime

Ul User Interface

URI Uniform Resource Identifier

UTF Universal character set Transformation Format
XML eXtensible Markup Language

XPath XML Path Language

3.3 Mnemonics

For the purposes of the present document, the following mnemonics are defined to describe the different data types
used:

bslbf: Bit string, left bit first, where "left" isthe order in which bit strings are written. Bit strings are generally written
asastring of 1sand Os within single quote marks, e.g. 1000 0001". Blanks within a bit string are for ease of reading
and have no significance.

reserved: A binary syntax element whose length isindicated in the syntax table. The value of each bit of this field shall
be set to "1". These bits may be used in the future for TVA defined extensions.

uimsbf: Unsigned integer, most significant bit first (big-endian).

vluimsbf8: Variable length coded unsigned integer, most significant bit first. The size of viuimsbf8 isamultiple of one
byte. Thefirst bit of each byte specifiesif set to "1" that another byte is present for this viuimsbf8 code word. The
unsigned integer is encoded by the concatenation of the seven least significant bits of each byte belonging to this
viuimsbf8 code word.

ETSI

12 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

vluimsbf5: Variable length code unsigned integer, most significant bit first. The first n bits which are 1 except for the
n-th bit which is O, indicates that the integer is encoded by n times 4 bits.

4 System mechanisms in a unidirectional environment

4.1 Overview

4.1.1 Main features of a unidirectional environment

Unidirectional environments deliver content and metadata from the transmitting device (head-end) to the terminal
device Personal Digital Recorder (PDR) over a one-way link. No communication is possible from the PDR to the
head-end.

Termind
AAA
AN TVA fragments
content
Delivery Layer

Figure 2: Unidirectional environment

The restrictions imposed by a unidirectional environment mean that a TV-Anytime metadata delivery system needsto
have the following attributes.

All the TV-Anytime metadata descriptions required by the applications running on the PDR will need to be available in
the streams provided by the DL to the termina at the time when those applications need them.

Since the head-end is never advised that the PDR is connected and no acknowledgement is provided to indicate that the
data has been correctly transmitted, the data will need to be broadcast cyclically during the time that they are potentially
needed by the applications.

Unidirectional environments are in practice limited in the amount of bandwidth that can be allocated to metadata, the
size occupied by the TV-Anytime metadata description in the transport stream needs to be kept as small as possible.
4.1.2 Access methods

Resources available to PDRs will vary, as will the nature of different unidirectional environments. Because of thisit is
anticipated that there are a number of ways in which areceiver may wish to acquire and navigate TV-Anytime metadata
descriptions. The present document has been designed to support the following methods of acquisition:

. Method 1: Acquire from the metadata stream and cache the data to disk with the receiver provides its own
methods of navigation.

. Method 2: Use the TVA Indexing solution to enable online navigation of the metadata stream.

. Method 3: Cache both TV A indexing information and data to disk to provide an enhanced version of
method 2.

ETSI

13 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.1.3 Definition of a TV-Anytime metadata description

A TV-Anytime metadata description is the present document, which isto be sent to the PDR. It is produced in
accordance with the schema specified in the TV-Anytime metadata specification (see TS 102 822-3-1 [9], clause 6,

TS 102 822-3-3[10], TS 102 822-3-4 [11]11, TS 102 822-8 [19], TS 102 822-9 [20]). TV-Anytime has selected the
MPEG-7 DDL language [5], based on XML schema[2], to define its schema. MPEG-7 DDL is used to define the
syntax, the types and default values that comprise the TV-Anytime specification. A TV-Anytime description can therefore
be represented as an XML document instantiating the TV-Anytime schema and containing a single root element called
TVAMain. Within the TVAMain element any number of TV-Anytime types can be instantiated. Such a description can
then be declared schema valid with respect to the TVA schema.

4.1.4 TV-Anytime metadata description size

In many systems a TV-Anytime description can become very large. As an example, avalid TV-Anytime document could
contain al the descriptive data supplied by a single provider to feed an ECG for the next 15 days. The data-set could
consist of a set of descriptions for the whole list of programmes, series and groups of contents which are going to be
played out for this period, the full schedule of all the related events, the description of the channels on which they are
going to be broadcast, the classification scheme tables, the cast list tables, etc. This entire dataset is contained in the
same document.

Sending this dataset as an XML document isinefficient for the following reasons:

. XML isaverbose textual format, making an XML document carrying this amount of data very large. In an
environment with restricted bandwidth this will result in slow download times.

. Not all of the information carried will be relevant to the terminal at any one instance. Some part of the
description may require to be accessed often whilst other parts may only be accessed occasionally.

. Some parts of an XML document may need to be updated without affecting other parts (e.g. modification of a
single schedule event if one programme is replaced by another).

. Some parts of an XML document may need to be accessed and updated more often and more efficiently than
the rest of the data set (e.g. dynamic segmentation metadata).

In order to overcome the problems associated with delivering TV-Anytime metadata as a single, homogenous document,
TV-Anytime defines fragmentation, encoding, encapsulation and indexing mechanisms to apply to the TV-Anytime
metadata descriptions before being transmitted to the terminal in a unidirectional environment.

4.2 Metadata general delivery framework

The delivery of TV-Anytime metadata can be viewed as five distinct processes.

EncaPSU|ate

Figure 3: Processes associated with delivery of metadata

TVA
Description

ETSI

14 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.2.1 Introduction to fragmentation

Fragmentation is the generic decomposition mechanism of a TVA metadata description into self-consistent units of
data, called TVA fragments. The definition of TVA fragment types allowed by TV-Anytime can be found in clause 4.3.

The self-consistency capability of a TV A fragment means that:
. Fragments can be obtained in a random order.
. Each fragment can be transmitted and updated independently.

. After afragment has been received and decoded, the resulting partial description isvalid with respect to the
TVA schema.

The set of al TVA fragments constituting asingle TVA metadata description is transmitted to the terminal within a
unidirectional environment as a stream of data. This stream is termed a TVA metadata fragment stream.

A TVA metadata fragment stream shall always be accessed via the TV A-init message which represents the entry point,
as described in clause 4.4.1, followed by the TV A fragment containing the TV AMain root element, as described in
clause 4.3.1.1. Optionally, the TVAMain fragment may be included in the TV A-init message asindicated in
clause4.4.1.

The transport of TVA metadata shall be fragmented as defined in the present document.

4.2.2 Introduction to encoding

To enable the efficient (in terms of bandwidth, navigability and updating) delivery of datawithin a unidirectional
environment, it is necessary to represent the TVA metadata fragments in a binary format.

TV-Anytime has chosen the MPEG-7 BiM method as defined in | SO/IEC 15938-1 [4] (MPEG-7 Systems part) as the
preferred method that would facilitate wide interoperability. However TV-Anytime appreciates that in some controlled
environments, it may be desirable to enable the delivery of metadata using alternate encoding systems. To allow this,
appropriate hooks are provided where necessary and the means to indicate the method of encoding used.

4.2.3 Introduction to encapsulation

Once the fragments have been encoded they need to be encapsulated. The process of encapsulation provides further
information to enable a receiving device to manage a set of transmitted TV A fragments. A receiver needs to be able to
uniquely identify afragment within the TV A metadata fragment stream and a so to be able to identify when the data
within a fragment changes. This information is provided by the encapsulation layer.

For the transmission of fragments, the encapsulation mechanism shall be used.

4.2.4 Introduction to Indexing

Within a TV-Anytime metadata fragment stream there are likely to be many hundreds of fragments. Due to the volume
of information necessary to provide the enhanced functionality expected of aPDR it isimportant that there is an
efficient mechanism for locating information from within the TVA metadata fragment stream. Indexing provides this
functionality by allowing multiple views on the TVA metadata description. In addition to enable a device to quickly
find afragment of interest, indices can also for example be used to provide enhanced Ul functionality such asan A-Z
listing for Content Titles, Genre Listing etc.

Indexing is an optional part of the present document, however it is seen as a powerful mechanism when TV A metadata
isto be delivered to receivers that have limited processing and storage capabilities.

4.2.5 Logical decoder architecture

The components of the logical decoder architecture are shown below. Each of these components has a specific rolein
the process of reconstructing a TV A description or in the navigation of the TV A fragments via the indexing system.

ETSI

15 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

a N

PDR
TVA Application

i

Management Layer

LY LY LY
Change Fragment Search
Notification Request/Response Request/Response
\
» Metadata Manager Index Manager
fragment_version T T T
Schema fragment_id TVA fragment version Index Data
Manager
Binary Decoder Index decoder
Data Containers Index Containers
Delivery Layer

Figure 4: Functional metadata processing architecture
in a unidirectional environment

Delivery Layer: The delivery layer provides the mechanism on which the TVA metadata fragment stream is
transmitted. The system shall locate the TV A-init message within the delivery layer, to initialize the metadata
management system. The TV A-init provides information about the encoding of the TVA fragments and
whether Indexing datais available. Once the metadata management system has been configured, the system is
ready to process TV A fragments and indexing data. TVA fragments are encapsul ated within a data container.
Depending on the caching model used one or more data containers e.g. acquire container "N" or acquire all
data containers - are requested by the management system.

Binary Decoder: The binary decoder takes a data container and decodes the TVA fragment and delivers the
decoded TV A fragment along with the fragments version and unique identifier to the Metadata Manager. The
schemato which all fragments within the TV A metadata fragment stream shall conform is defined within the
Decoderlnit part of the TV A-init message.

The Schema Manager: Thisisablack box component in the terminal which provides the Binary Decoder
with details about the schemas, declared in the TV A-init message and instantiated by therelated TVA
metadata description. It is arequirement that the terminal knows the schema used to produce a TV A metadata
description prior to processing the TVA metadata fragment stream. However, the method in which a PDR
acquiresthis schemaisout of scopefor the current version of the TV-Anytime metadata standard.

M etadata M anager: This component is responsible for managing requests from the Management Layer for
TVA fragments and also for notifying the Management layer of changes to fragments previously acquired
from the TVA metadata fragment stream.

ETSI

16 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

. Management Layer: The role of the management layer is very much dependant on the functionality of the
TVA Application which isinteracting with this layer. In some instancesit will just notify the Application
when a change as occurred to the TVA fragment stream e.g. new fragment, deleted fragment takes. In other
cases it will ask for a specific fragment, which involves an index lookup. The Management Layer isthen
responsible for using the Index to locate a fragment and then using the M etadata manager to load the fragment
from the TVA metadata fragment stream.

. Index Decoder: This component takes an Index container from the delivery layer and makes the raw data
available to the Index Manager, along with the index container version.

. Index M anager: This component takes search requests from the Management Layer and returns a set of
matching references to fragments, which the Management layer then sends to the Metadata manager for
loading. To perform the search the appropriate Index containers are loaded and the search performed using the
supplied parameters.

4.3 Metadata description fragmentation

To enable the efficient delivery, updating and navigation of a TV-Anytime metadata description, a number of normative
TVA fragment types have been defined.

A fragment is the ultimate atomic part of a TV-Anytime metadata description that can be transmitted independently to a
terminal. A fragment shall be self consistent in the sense that:

. It shall be capable of being updated independently from other fragments.

. The way it is decoded, processed and accessed shall be independent from the order in which it is transmitted
relative to other fragments.

. The decoding of afragment and its addition to the partial description shall give a TV-Anytime schemavalid
description. Note that a partial description must have at least the fragment delivering the root element
(TVAMaI n).

Frament "A" (e.g. TVAMain)

Fragment "B" Fragment "C"
(e.g. Programinformation) (e.g. Servicelnformation)

Figure 5. Fragmentation of a TV-Anytime metadata description

When an update occurs to one or more elements or attributes within a previously transmitted fragment, the entire
fragment must be transmitted again i.e. no mechanisms for sub-fragment updates are provided.

ETSI

17 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.3.1 TVA metadata fragments

The TV-Anytime metadata description can be split into a number of standardized types of self contained fragments.
These TV-Anytime normative fragments are defined as follows:

4311 TVAMain fragment

The TVAMain fragment is special since every TVA fragment stream must contain one instance of this fragment type.
The TVAMain fragment containsthe TVAMain / ExtendedTVAMain root element plus a limited range of child nodes.

(ExtendedTVAMainType CH-

1 S |

Figure 6: UML-like representation of a TVAMain fragment

ETSI

18 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

As can be seen from the representation in figure 6 the TVAMai n fragment shall contain child elements down to and
including the following:

. M etadataOriginationl nformationT able.

. ClassificationSchemeT able.

. PrograminformationTable.

. GrouplnformationTable.

. ProgramLocationTable.

. ServicelnformationTable.

. CreditsinformationTable.

. ProgramReviewTable.

. SegmentinformationTable;

- SegmentList; SegmentGroupList.

. Purchasel nformationTable.

. PackageTable.

. RMPITable.

. CouponTable.

. TargetinglnformationTable.

. Interstitial TargetingTable.

- RulesTable.

RecordingCacheTable.
- Intergtitial Table.

The presence of and number of each of these types shall conform to the TV-Anytime schema. Elements that are children
of these element types form fragments of their own and so shall not be included within the TVAMaI n /
Ext endedTVAMai n fragment.

It should be noted that updatesto TVAMAI n / Ext endedTVAMai n would typically be infrequent and an update to
this fragment would cause the decoder to be re-initialized.

ETSI

19 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.31.2 MetadataOriginationinformation Fragment
The MetadataOriginationlnformation element, as defined in TS 102 822-3-1 [9], shall form asingle TV A fragment.

The MetadataOriginationl nformation element is a child of the MetadataOriginationlnformationTable, which isa
member of the TVAMain fragment.

r- -: Pul:rllsr-h||s=r1.1

Figure 7: UML-like representation of a MetadataOriginationIinformation fragment

4313 Programinformation fragment

A Program nf or mat i on fragment is one of the key attractor types of a TVA system (TS 102 822-3-1[9]), it carries
an element of type Pr ogr anl nf or mat i onType and al child nodes thereof. This type contains descriptive
information about a piece of content, the content being identified by a CRID.

The Progr am nf or mat i onEl enment isachild element of the Pr ogr aml nf or nat i onTabl e, which forms part
of the TVAMai n fragment.

]
&
w
B
2
1]
']
8
=
E
[=]
=]
my
sl

|

|

|

|

|

|

_ |
Programinformation E‘T(*:E'_. _____________ EI T‘.“;f' ' |
|

|

|

|

|

|

L. DerivedFrom

-'-l-'-'r-'-- o

Figure 8: UML-like representation of a Programinformation fragment

ETSI

20 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

The Pr ogr am nf or mat i on fragment is completely self-contained with one exception. Withinthe Cr edi t sl t em
which isachild element of the Cr edi t Li st element inthe Basi cDescri pti on element, the optional

Per sonNamel DRef and Or gani zat i onNamel DRef elements use TVAI DRef Type attributes to reference
TVAI DType attributes within corresponding entries within the Cr edi t sl nf or mat i onTabl e. Thisenables
optimization in cases where a Credit Item description is common to more than one programme. In such acase, a

Cr edi t sl t emonly needsto be defined once e.g. for al the episodes of a Soap Opera. The guidelines given for the
use of TVAI DType/ TVAI DRef Type in clause 4.3.5 should however be taken into account when assigning and using
these ID values.

4314 Grouplnformation fragment

A Groupl nf or mati on fragment contains an element of type G- oupl nf or mat i onType and al child nodes
thereof. This contai ns descriptive information about a conceptual content group e.g. Series, Serial, Collection, etc. The
Groupl nf or mat i onEl errent isachild element of the Gr oupl nf or mat i onTabl e, which forms part of the
TVAMai n fragment (TS 102 822-3-1 [9]).

tva:GroupinformationType

|
|

|
|
Groupinformation E'T(* BasicDescription |
|
|
|

|
| 0.

Figure 9: UML-like representation of a GrouplInformation fragment

The G- oupl nf or mat i on fragment is completely self contained except for that described for the

Pr ogr am nf or mat i on fragment, namely within the Cr edi t sl t em the optional Per sonNanel DRef and

Or gani zat i onNanel DRef elements which the TVAI DRef Ty pe attribute which points to an entry within the
Credi t I nformati onTabl e. The guidelines given for the use of TVAI DType/ TVAI DRef Type in clause 4.3.5
should thus be taken into account when assigning and using these ID values.

4.3.15 OnDemandProgram and OnDemandService fragment

Within a unidirectional environment the OnDermandPr ogr amType and the OnDenmandSer vi ceType are seento
be of limited use.

However if abroadcaster wishes to transmit OnDermand program location information, a compl ete

OnDenmandPr ogr amor an OnDermandSer vi ce element instantiating respectively one of these types shall form a
single fragment. Both the OnDenandPr ogr amand the OnDenandSer vi ce elements are child members of the
ProgranlLocat i onTabl e, which forms part of the TVAMai n fragment.

An attribute of type TVAI DRef Type (TS 102 822-3-1[9))is used by the ser vi cel DRef attribute within the
OnDermandSer vi ceType to reference the associated service information. It points to an element of type

Servi cel nformati onType havingaser vi cel d attribute, with avalue equal to theser vi cel DRef . This
latter value shall be unique within the TV A metadata description. And the guideline in clause 4.3.5 on the assignment
and use of TVAI DType/ TVAI DRef Type values should be taken into account when dealing with these val ues.

ETSI

21 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.3.1.6 BroadcastEvent fragment

The Br oadcast Event Type has been designed to represent dynamic events in an environment where frequent
updates are required (TS 102 822-3-1[9]).

A Br oadcast Event fragment isthus an instance of the Br oadcast Event Type, achild element of the
ProgranlLocat i onTabl e, which forms part of the TVAMai n fragment.

| tva:BroadcastEvent Type

BroadcastEvent [%]—i— i .- __
|
|
|
|
|
|
|
|
L

|
|
|
: |
'r-iRepeat: |
5 |
' |
|
|
|

Figure 10: UML-like representation of a BroadcastEvent fragment

A TVAI DRef Type vaueisused by theser vi cel DRef attribute to identify the service on which the event
described by this Br oadcast Event fragment will be broadcast. It pointsto theser vi cel d attribute, of a
Servi cel nf or mat i on element in the same metadata description, whose typeis TVAI DType. Thislatter value
shall be unique within the TVA metadata description. The guideline in clause 4.3.5 on the assignment and use of
TVAI DType/ TVAI DRef Type values should be taken into account when dealing with these values.

4.3.1.7 Schedule fragment

The Schedule type provides an alternative way to that of the Br oadcast Event type for describing events within a
broadcast system. It provides a mechanism to group a number of consecutive events together, which span a given time
period on asingle service (TS 102 822-3-1[9)).

The use of the Schedul eTy pe for describing broadcast events has the following properties:
. To extract asingle event from a schedule, the entire schedule must be decoded to locate the event of interest.

. The schedul e type has been designed to aid large and collective updates. An update to a single event, within
the schedule, will cause the entire Schedule fragment to be updated. However thisis often not a problem, as
subsequent events are often affected by a single event change.

ETSI

22 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

As aresult, the Schedule fragment instantiates the Schedul eType and isa child element of the
PrograniLocat i onTabl e, which forms part of the TVAMai n fragment.

tva:ScheduleEventType

Program

|
|
|
|
|
|
|
e | : -+~ PublishedEndTime !

—————————

Figure 11: UML-like representation of a Schedule fragment

A TVAI DRef Type valueisused by theser vi cel DRef attribute to identify the service on which the events
described by the schedule will be broadcast. It should be managed the same way as described in the previous clause for
the Br oadcast Event fragment by taking into account the guidelines in clause 4.3.5 on the assignment and use of
TVAI DType/ TVAI DRef Type values.

ETSI

23 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.3.1.8 Servicelnformation fragment

A Servi cel nf or mat i on fragment contains details about a single Service within a broadcast system
(TS 102 822-3-1[9)]).

A Servi cel nformati on fragmentisaninstance of aSer vi cel nf or mati onType and achild of the
Servi cel nf or mat i onTabl e, which isamember of the TVAMai n fragment.

0.m
(SeruicellﬂormationTﬂ}e E:]—[—H-—:EI— =D
L- 4" ServiceDescription |

.
-4 ServiceGenre
.

E 0.

= n Rk
r-1 ServiceLanguage }:

P e R i S Rty a\?_'l

=]
=]

Figure 12: UML-like representation of a Servicelnformation fragment

4.3.1.9 Creditinformation fragments
The CreditsinformationTable element instantiates the CreditslnformationTableType (TS 102 822-3-1 [9]).

It gathers together details about the people and organizations involved in the production of the different content items
described in the metadata description. It is used to lighten the size of the description of each content item, by allowing
the use of a pointer reference to a PersonName or OrganizationName element contained within the
CreditsInformationTable. It may be useful, for example, where severa content items share the same credit information,
in which case the information only need to be instantiated once.

4.3.19.1 PersonName fragment

A Per sonNane element instantiates a Per sonNanmeType and shall formasingle TVA fragment
(TS 102 822-3-1[9]). The Per sonNane element isachild element of the Cr edi t sI nf or nat i onTabl e, where
theCr edi t sl nf or mat i onTabl e formsamember of the TVAMai n fragment.

Figure 13: UML-like representation of PersonNameType

ETSI

24 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.3.1.9.2 OrganizationName fragment

The Or gani zat i onNane element shall formasingle TVA fragment (TS 102 822-3-1[9]).

The Or gani zat i onNane eement isachild element of the Cr edi t sI nf or mati onTabl e, wherethe
Credi t sl nf ormati onTabl e formsamember of the TVAMai n fragment.

4.3.1.10 Purchase fragment

The Purchasel nformation element shall form asingle TVA fragment (TS 102 822-3-1 [9]).

The Purchasel nformation element is a child of the Purchasel nformationTable, which isa member of the TVAMain
fragment.

Figure 14: UML-like representation of a Purchaselnformation fragment

4.3.1.11 Review fragment

A Review element instantiates the Medi aRevi ewType and contains asingle review for a content item identified by a
CRID (TS 102 822-4 [12)).

The Review fragment is thus a child element of the Pr ogr anRevi ewTabl e, which isamember of the TVAMai n
fragment (TS 102 822-3-1[9)).

i
E---: Reviewer

|
|
|
0. |
|
|
|
|

Figure 15: UML-like representation of a ProgramReviews fragment

ETSI

25 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.3.1.12 User Description information

Thetransmission of aUser Descri pt i on element is not seen to be of any practical use within aunidirectional
environment and so ho fragmentation structure has been defined.

4.3.1.13 ClassificationScheme fragments

Cl assi fi cati onSchenes elements are used to define alist of controlled terms used by a number of TVA data
types e.g. Genre Classification, AV Coding types etc (TS 102 822-3-1[9]). In addition CSAl i as elements, used as
dliasestotheCl assi fi cati onSchenes, can be provided to reduce the size of the reference required to identify the
Classification scheme used.

43.1.13.1 CSAlias

The CSAl i as fragment instantiatesthe Cl assi fi cati onScheneAl i asType defined by MPEG-7 and isachild
of theCl assi fi cati onSchemeTabl e, which isamember of the TVAMai n fragment (TS 102 822-3-1[9]).

A single CSAl i as element shall form asingle CSAl i as fragment.

4.3.1.13.2 ClassificationScheme
The ClassificationScheme element is an instance of the ClassificationSchemeType.

The ClassificationScheme fragment is thus a ClassificationScheme element, child of the
Cl assificati onSchenmeTabl e, which isamember of the TVAMain fragment (TS 102 822-3-1 [9]).

T T R -
mpegf:ClagsificationSchemeType

) i

|

_ |

0..co |

ClassificationScheme EI:——(—'“—:EF 'E_-_-"_'-"_'-l_i':_"h; |
| 0.0 |

| _(—“-—E—| Term |

[i |

Figure 16: UML-like representation of a ClassificationScheme fragment

4.3.1.14 Segmentation

Segmentation Information can be used to enhance the users viewing experience by providing the ability to view content
in anon-linear way. Segmentation information is split up into two groups according to the two schematypes they use,
namely the Segment | nf or mat i onType and the Segnent Gr oupl nf or mat i onType.

The Segnent | nf or mat i onType provides details about the segment e.g. start offset, duration, description etc.

The Segnent Gr oupl nf or mat i onType enables the Grouping of segments so for example to define the way in
which content, should be navigated (TS 102 822-3-1 [9]).

The Segnent Gr oupl nf or mat i on and Segnent | nf or mat i on make extensive use of
TVAI DType/ TVAI DRef Type and the guideline define in clause 4.3.5 should be followed.

43.1.14.1 Segmentinformation

A Segnent | nf or mat i on element instantiates the Segnment | nf or mat i onType and describes a single segment
of acontent item. It is seen as the smallest updateable unit and so shall form a single fragment.

ETSI

26 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

A Segnent | nf or mat i on fragment isthusa Segnent | nf or mat i on element, which isachild of the
Segnent Li st element, which forms part of the TVAMai n fragment (TS 102 822-3-1[9]).

| r-+4 TimeBaseReference
i

Segmentinformation [ﬁ]—l—(—ﬂ-—

-2 Description

1.0 |

b
'
1
3
=
-
-
=
=
-
[
-
=]
o
&
=]
-
{th

Figure 17: UML-like representation of a Segmentinformation fragment

4.3.1.14.2 SegmentGrouplnformation
A SegmentGroupl nformation element instantiates the SegmentGroupl nformationType.

It allows the definition of a segment group, namely a set of references to Segmentlnformation elements, which can be
used to define a mode of navigation or avirtual piece of content e.g. Highlights of afootball match. It is aso possible
for a segment group to reference another segment group providing hierarchical navigation of the content similar to a
table of contents.

A SegmentGrouplnformation fragment is thus a SegmentGroupl nformation element, which is achild of the
SegmentGroupList element, which forms part of the TVAMain fragment (TS 102 822-3-1 [9]).

ProgramPBef

- Description [
(S-&gmemGrom}ImormationTm}e E:]—(—-H—E— O plien

Figure 18: UML-like representation of a SegmentGroup fragment

ETSI

27 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.3.1.15 Package Fragment
The Package element (TS 102 822-3-3 [10]) shall form asingle TVA fragment.

The Package element is a child of the PackageTable, which isa member of the TV AMain fragment.

-- Descriptor

o
1
1
'
-

(PackageType E:]—[—--— =]

Figure 19: UML-like representation of a Package fragment

4.3.1.16 Interstitial Campaign Fragment
The Interstitial Campaign element (TS 102 822-3-4 [11]) shall form asingle TV A fragment.

The Interstitial Campaign element is a child of the Interstitial CampaignTable, which is a member of the TVAMain
fragment.

Figure 20: UML - like representation of a InterstitialCampaign fragment

4.3.1.17 RMPI Fragment
The RMPIDescription element (TS 102 822-5-1 [13]) shall form asingle TVA fragment.

The RMPIDescription element is a child of the RMPITable, which isamember of the TVAMain fragment.

| rmpi:RMPI-MBARdMType

|
|
(RMPII]est:riptinnType I}:]-|—(—"'—j5|—

| —| ReceivingDomainRights

| —| AmyDomainRights

Figure 21: UML — like representation of a RMPIDescription fragment

4.3.1.18 Coupon Description Fragment
The Coupon Description element (TS 102 822-3-3 [10]) shall form asingle TVA fragment.

The Coupon Description element is a child of the CouponTable, which is a member of the TVAMain fragment.

ETSI

28 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

tva2:CouponbescriptionType

---; RequiredCoupon

..... ! .---E CouponWalue

|
|
|
|
|
|
(ExtendedCuupunDescriptiunType I:Tl}l '" o
|
|
|
|
|
|

+-2~CouponText !}

| i LR

! 0.«

E . UserDeviceTarget *
L

Figure 22: UML - like representation of a CouponDescription fragment

4.3.1.19 TargetingInformation Fragment
The Targetingl nformation element (TS 102 822-3-4 [11]) shall form asingle TVA fragment.

The Targetinglnformation element is a child of the TargetinglnformationTable, which is a member of the TVAMain
fragment.

Sopooooooog

I:TargetinglnfurmatiunTypE I:T']—(—-H—E- S

LT = R ‘\'? -

' 0w

- Hetworkinformation '

b Mmoo 0

i 0..co

+ - “HaturalEnvironmentinformationl... i
: pmmmmm = m = m e m e e e e e — - - '\{? =_!
i 0.0

Figure 23: UML - like representation of a Targetinformation fragment

ETSI

29 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.3.1.20 InterstitialBreak Fragment
The InterstitialBreak element (TS 102 822-3-4 [11]) shall form asingle TV A fragment.

The Interstitial Break element isachild of the Intergtitial Table, which is a member of the TVAMain fragment.

Figure 24: UML - like representation of an InterstitialBreak fragment

4.3.1.21 Rule Fragment
The Rule element (TS 102 822-3-4 [11]) shall form asingle TV A fragment.

The Rule element is a child of the RulesTable, which is a member of the TVAMain fragment.

PredicateBag

(RuleType I}:]—(—-ﬂ—jﬂ- -

LS -E OtherRulelLanguage :-'

Figure 25: UML - like representation of a Rule fragment

4.3.1.22 Recording Cache Fragments

Figure 26: UML - like representation of the ContentListType used by the following fragments

4.3.1.22.1 Request Fragment
The Request element (TS 102 822-3-4 [11]) shall form asingle TV A fragment.

The Request element isa child of the RecordingCacheTable, which is a member of the TVAMain fragment.

ETSI

30 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.3.1.22.2 Replace Fragment
The Replace element (TS 102 822-3-4 [11]) shall form asingle TVA fragment.

The Replace element isa child of the RecordingCacheTable, which is a member of the TVAMain fragment.

4.3.1.22.3 Expire Fragment
The Expire element (TS 102 822-3-4 [11]) shall form asingle TV A fragment.

The Expire element isachild of the RecordingCacheTable, which is a member of the TVAMain fragment.

4.3.2 Fragment Identification and Versioning

Many element types within the TVA schema have both af r agnent Ver si on and af r agnment | d attributes, it is
recommended not to use these attribute to identify a fragment or to indicate fragment versionsin a unidirectional
environment. Thisis becauseit is required to partially decode the fragment to extract the required information.

A means of assigning an identifier to a fragment and a version to a fragment at the appropriate level is described in
clause 4.6.
4.3.3 Element ordering

When two or more elements of the same type occur within a metadata description, it is assumed that their order within
the parent element is unimportant e.g. Pr ogr am nf or mat i on elements within the

Progr am nf or mat i onTabl e. Therefore, it is not arequirement to maintain the order of elements across the
delivery system.

Where a parent element can contain more than one element type e.g. Per sonNane and Or gani zat i onNane within
the Cr edi t sl nf or mat i onTabl e - it isthe responsibility of the receiving terminal to ensure that the order of
element typesis maintained, with respect to the TVA schema.

4.3.4 TVA access unit

The TVA access unit is defined as being a container that holds one or more TVA fragments. A TV A fragment shall be
wholly contained within asingle container. TVA fragments within a TV A access unit can be of any type, provided that
an individual s fragment type can be identified without fragment decoding.

Where BiM is used as the encoding solution a TV A access unit shall take the form of an MPEG-7 Access Unit (AU),
with the TVA fragments type being identified, using the Cont ext Pat h within BiM.

It isthe responsibility of the broadcaster to manage the number of TV A fragments within a TV A Access Unit, bearing
the following in mind:

. The overhead of transmitting a container - The smaller the container the less efficient it will bein terms of
bandwidth usage.

. The updating of asingle TVA fragment within a container will cause the container to be updated.

4.3.5 Use of TVAIDType, TVAIDRefType and TVAIDRefsType

In anumber of instances within the TV A metadata schema, elements make use of the TVAI DType, TVAI DRef Type
and TVAI DRef sType datatypes.

ETSI

31 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

These replace the respective standard XML ID, IDREF and IDREFS data types. They are provided to enable elements
to reference other elements within the same TV A metadata description. However asa TV A metadata description is split
up into a number of TVA fragments and transmitted as a TVA metadata fragment stream, the following issues should
be noted:

. The synchronization of TVAIDType, TVAIDRefType and TV AIDRefsType val ues between fragment
versions.

. The possibility of changing references when dealing with partial metadata descriptions.

A TVA metadata fragment stream istreated asif it were asingle XML instance document. The value assigned to an
atribute instantiating a TVAI DTy pe shall be unique within asingle TV A metadata description. Also, all attributes
instantiating the TVAI DRef Type or the TVAI DRef sType must make references to elements containing an attribute
of type TVAI DType, only within the same TVA metadata description. No provision is currently made for referencing
elements across multiple TV A metadata descriptions.

The guidelinerulesfor useof TVAI DType, TVAI DRef Type and TVAI DRef sType are therefore:
. The value assigned to the TVAI DTy pe element must be unique within a TV A metadata description.

. In case of an update to an element with an attribute of type TVAI DType, it may be appropriate to create a
totally new element with a new TVAI DType vaue when this element changes significantly e.g. in the Credits
list when an actor dies. Thisisto ensure that the original description can till be referenced from within the
metadata description, rather than an updated one.

. Where there is a choice between an inline instantiation and the use of a reference, the broadcaster should
weigh up the added complexity of using a TVAI DTy pe/ TVAI DRef Type (additional level of indirection)
against the potential bandwidth savings.

. It isimportant when thinking about the delivery dynamics to ensure that an element being referenced is
available within the TV A metadata description, before or at the same time as the element, making the
reference. The reverseis aso true; when deleting elements, it isimportant to remove the element that makes
the reference, before the element being referenced.

4.3.6 Use of ID, IDRef, XPath and xml:lang

Asexplained in clause 4.3.5, the use of | Dand | DRef should be avoided under the following circumstances.

Some datatypes within the MPEG7 stub schema make use of these built-in XML schemas datatypes. Unless the scope
of these typesisrestricted to a single fragment, they should not be used. The reason isthat it is not possible to maintain
referential integrity across two or more fragments.

Some datatypes within the MPEG7 stub schema make use of XPath expressions. For similar reasons, the scope of
XPath resolution shall be restricted to a single fragment. The use of X Path resolution across two or more fragments
should also be avoided because canonical form of the XML source document is not preserved.

Some datatypes within the MPEG?7 stub schema make use of xml:lang attributes. The scope of this attribute should be
restricted to a single fragment.

4.4 Fragment encoding

4.4.1 TVA-init message

4411 Overview

The TVA-init message specified in this clause is used to configure parameters required for the decoding of the TVA
metadata fragment stream. There shall only be one TV A-init associated with a TVA metadata fragment stream.

A delivery layer suitable for conveying a TV A metadata fragment streams, shall provide a means of delivering the
TVA-init message to the terminal before any fragment decoding occurs.

ETSI

32 ETSI TS 102 822-3-2 V1.3.1 (2006-01)
Syntax No. of bits Mnemonic
TVA-init {
EncodingVersion 8 uimsbf
IndexingFlag 1 bslbf
reserved 7
Decoderlnitptr 8 bslbf
if([EncodingVersion == '0x01") {
BufferSizeFlag 1 bslbf
PositionCodeFlag 1 bslbf
reserved 6
CharacterEncoding 8 uimsbf
if (BufferSizeFlag=="1") {
BufferSize 24 uimsbf
}
}
if(IndexingFlag) {
IndexingVersion 8 uimsbf
}
reserved 0 or 8+
Decoderlnit() bslbf
}

EncodingVersion: Thisfield indicates the method of encoding used to represent the TV A metadata fragments. Table 1
provides the possible set of values for thisfield.

Table 1: Table of values for the EncodingVersion parameter

Value Encoding Version
0x00 Reserved
0x01 TVA MPEG_7 profile (BiM)
ISO/IEC 15938-1 [4]
0x02 - OxOF TVA reserved
0x10 - OxFF User defined

IndexingFlag: Indicatesif one or more indexes are carried within the stream.

Decoder I nitptr: Thisfield conveys a pointer, which defines the offset in bytes from the start of the TV A-init message
wherethe Decoder | ni t can be found.

Buffer SizeFlag: Indicatesif a BufferSize for the Zlib coded is defined. If not defined the decoder shall assume a
maximum of 1 000 bytes.

PositionCodeFlag: Thisflag indicatesif the BiM contextPath Position Code is used in the encoded fragment. When set
to "0" the Position Code within the contextPath shall be ignored. In that case, it must be noted that the canonical format
of the instance description is not preserved, i.e. the order of the elements within the rebuilt description is not preserved.

Character Encoding: Thisfield conveys the character encoding scheme for all textual data used withinthe TVA
metadata fragment stream. Table 2 defines the set of possible values for thisfield.

Table 2: Character encoding and their termination values

Value Description Termination Value

0x00 7 bit ASCII (ISO/IEC 10646 [1]) 0x00

0x01 UTF-8 0x00

0x02 UTF-16 0x0000

0x03 GB2312 0x00

0x04 EUC-KS 0x0000

0x05 EUC-JP 0x0000

0x06 Shift_JIS 0x0000

0x07 - OxEO TVA reserved Undefined

OXE1 - OXFF User defined Undefined

ETSI

33 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Buffer Size: This element conveys the maximum number of bytes a Zlib buffer will decompress to.

IndexingVersion: This element indicates the method used to represent TV A indices. It provides the possible set of
values for this element.

Table 3: Table of values for the IndexingVersion field

Value Indexing Version
0x00 reserved
0x01 TVA Index Version 1
0x02 - OXEF TVA reserved
0xFO0 - OXFF User defined

reserved: Variable data space for inserting future initialization parameters. In this version, the length of thisfield shall
be 0x00.

Decoder I nit: This element conveysthe Decoder | ni t . The format of the Decoder | ni t isdependant on the
encoding method used. In the case of BiM (EncodingVersion = 0x01) it shall be as defined in clause 4.4.2.1.

4.4.2 MPEG-7 system profile

Due to the characteristics of a uni-directional environment, a number of restrictions have been imposed on how the
MPEG-7 BiM profile shall be used. This clause details these restrictions.

4421 Decoderlnit

TheDecoder | ni t isused to configure parameters required for the decoding of the binary fragments. Thereis only
one Decoder | ni t associated with one TV Ametadata fragment stream. The Decoder | ni t shall take the form as
specified in ISO/IEC 15938-1 [4] with the following caveats.

4421.1 UnitSizeCode

ISO Semantics: Thisisacoded representation of Uni t Si ze. Uni t Si ze isused for the decoding of the binary
fragment update payload.

Restriction: ThisUni t Si zeCode variable shall be set to the default value: "000".

44212 InitialDescription

SO Semantics: This conveys portions of a description using the same syntax and semantics as an MPEG7 access unit.
Thel nitial Descri pti on providesan initial state for the binary description tree.

Restriction: The TVA fragment containing the TVAMaI n element and is the entry point of the TV A metadata fragment
stream. Thel ni ti al Descri pti on may be carried in two ways:

. Along with the Decoder | ni t .
. Independently from the Decoder | ni t .

Inthe case wherethel ni ti al Descri pti on issentindependently fromthe Decoder | ni t , it must be received
and decoded by the receiving terminal before processing of any other TVA fragments. The delivery layer shall provide
signaling to indicate wherethel ni ti al Descri pti on isto befound.

ETSI

34 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4422 FragmentUpdateCommand

SO Semantics: The Fr agnent Updat eComrand code word specifies the command that shall be executed on the
binary format description tree. It should be ignored when the Posi t i onCodeFl ag inthe TVA-Initisset to "0".

TVA Semantics:
Inthe TVA framework, the semantics of the Fr agnment Updat eComrand isrefined such as:
. When afragment is modified (i.e. updated or enriched), the replace command (Repl aceCont ent) is used.

. When afragment is no longer valid (the programme has been dropped), the delete command
(Del et eCont ent) is used.

. When afragment is obsolete, the fragment is no longer transmitted.

44221 Guidelines for the use of the FragmentUpdateUnit

The Fr agnment Updat eUni t usesthe Cont ext Pat h along with a Position Code to determine where the TVA
fragment being updated should be placed relative to its parent element. The Cont ext Pat h provides the absolute path
from the metadata description root (TVAMai n) to the element, of which thisfragment isachild. In aclassical BiM
implementation the Position Code is used to indicate the position of the TV A fragment among its sibling fragments, so
asto maintain the origina document order of sibling elements. Ina TV A implementation of BiM it is not a requirement
to maintain the original metadata description sibling ordering. It is not a requirement to support the use of the Position
Code withina TVA implementation. However if it is used, the Position Code provides a handle to a previously
transmitted TV A fragment.

44221.1 Position Code allocation

As described above, the Position Code provides a handle to atransmitted TVA fragment. This Position Code must be
unique for al children of a given parent element. Due to the nature of a TV A metadata fragment streami.e. aliving
description, constantly changing - over time the Position Code value will become very large. Thereforeit would be
advantageous to reuse previously allocated values that are no longer valid. However the following should be taken into
account:

. A sufficient period of time should have elapsed since the use of a specific Position Code value to ensure that
receiving terminals have automatically deleted from the cache the fragment previoudy assigned this Position
Code.

442212 Fragment Add/Update

When anew or updated fragment is transmitted the Fr agnent Updat eUni t will have the following settings:
. FragmentUpdateCommand - Set to "0010" (ReplaceContent).
. FragmentUpdateContext.

. ContextM odeCode - Set to "001" (Absolute path to fragments parent element, with no multiple payload
support).

. ContextPath Position Code - A value that identifies the fragment within a TV A metadata description and shall
be unique if used.

When the receiving terminal acquiresthe Fr agrment Updat eUni t it will use the Cont ext Pat h along with the
Position Code to seeif thereisa TV A fragment already cached with the same Position Code. If aprevious TVA
fragment is found the previous TV A fragment shall be deleted and replaced with the new TVA fragment. If a previous
TVA fragment is not found the TV A fragment is just cached along with the rest.

ETSI

35 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

442.2.1.3 Fragment Delete

When afragment is no longer valid a Delete command can be sent to the receiving terminal, to inform the device that
the fragment shall no longer be used. A Delete command will have the following settings:

. FragmentUpdateCommand - Set to "0011" (DeleteContent).
. FragmentUpdateContext.

. ContextModeCode - Set to "001" (Absolute path to fragments parent element, with no multiple payload
support).

. ContextPath Position Code - The original unique value assigned to this TV A metadata description fragment.

When the receiving terminal acquiresthe Fr agnent Updat eUni t it will usethe Cont ext Pat h aong with the
Position Code to seeif the TVA fragment is within its cache. If the TVA fragment is found it shall no longer be used
and removed from the terminal’s cache.

It is assumed that the delete command will only be transmitted for arelatively short period of time, to enable currently
listening terminals to keep their cache updated.

However due to the nature in which TVA fragments are acquired within a unidirectional environment, the Delete
command should not be relied upon to remove elements from the terminals cache. The terminal should implement a
timeout mechanism, where if a given fragment is not seen in the data stream for a specified period of time, the terminal
shall assume that the fragment is no longer valid and remove it from its cache.

442214 Example decoder behaviour

A TV A metadata fragment stream generator has an internal representation of the decoder memory. This representation
can be modelled by a buffer, which contains an infinite number of slots.

A TV-Anytime decoder contains several tables (Pr ogr anl nf or mat i onTabl e, etc.). These tables correspond to the
fragmentation specification of a TVA metadata description.

If you consider the following scenario describing the management of the pr ogr am nf or mat i on description, a
fragment unit is composed of:

. a command (ReplaceContent, DeleteContent);
. apath, which gives, element and type information (provides the type of the payload);
. a Position Code (gives the position of the element (child number) encoded in the payload);

. apayload (the encoded TVA fragment).

ETSI

36 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

At time t,
Stream content (each fragment unit being carouseled) Decoder memory
fragment unit:
. - i Empty
(ReplaceContent, a Programinformation / position 2, Payload122)
2 Payload122
3 Empty
4 Empty
fragment unit:
9 5 Empty
(ReplaceContent, a ProgramInformation / position 6, Payload12) o Payload12
7 Empty
8 Empty
fragment unit: 9 Payload56
(ReplaceContent, a Programinformation / position 9, Payload56) g Empty
11 Empty
Attime t'
Stream content (each fragment unit being carouseled) Decoder memory
fragment unit:
. - i Empty
(ReplaceContent, a Programinformation / position 2, Payload122)
2 Payload122
3 Empty
fragment unit:
4 Empty
(DeleteContent, a Programinformation / position 6)
5 Empty
. Payload12 false
fragment unit: 7 Empty
(ReplaceContent, a Programinformation / position 8, Payload6) 8 Payload6
9 Empty
10 Empty
11 Empty

Therefore, aTVA decoder can notify an application that payload 12 is not longer valid. If the application relies on
payload 12, it will be notified about the deletion. But if the TV A decoder has not received the first fragment unit, which
sets the value of the payload 12 at position 6, the TV A decoder ignores this "delete” fragment.

In addition payload 56 (position 9) is how obsolete and is no longer transmitted.

Therefore, aTVA metadata fragment stream generator manages the TV A metadata fragment stream in order to send
these notifications to the decoder.

ETSI

37 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4423 ContextMode
ISO Semantics. The Cont ext Mode specifies the addressing mode for the context path.

Restriction: The Cont ext Mode codeislimited to the value "001" (Navigate in " Absolute addressing mode" from the
selector node to the node specified by the Cont ext Pat h).

4.4.2.4 TV-Anytime codec

44241 Classification scheme wrapper

In the MPEG-7 framework, the use of a specific codec for a specific typeis signalled using the codec configuration
mechanism defined in ISO/IEC 15938-1 [4]. This mechanism associates a codec using its URI with alist of schema
types. For that purpose, a URI isassigned to each codecinacl assi fi cat i onSchene, which definesthe list of the
specific codecs.

In the present document, thislist is composed of 3 specific codecs: Zlib, dat eTi ne and dat e. The following figure
givesthe standard cl assi fi cati onSchene asused by the TVA MPEG-7 profile.

<C assi ficationSchene uri=" urn:tva: netadata: cs: CodecTypeCS: 2004" >
<Termterm D="1">
<Name xnm : | ang="en">Zl i bCodec</ Name>
<Definition xm :lang="en">Encodes using Zlib</Definition>
</ Tern»
<Termterm D="2">
<Name xnm : | ang="en" >t vadat eTi neCodec</ Nane>
<Definition xm :|ang="en">Encodes date using Mdified Julian
Date & Time in MIIlisecond</Definition>
</ Tern»
<Termterm D="3">
<Name xnl : | ang="en" >t vadat eCodec</ Nane>
<Definition xm :|lang="en">Encodes date using Mdified Julian
Dat e</ Definition>
</ Terne
</ O assificationSchene>

44242 dateTime Codec

The XML Schema primitive simple type dat eTi ne is used widely within the TVA metadata Schema and so a specific
codec has been designed for representing date time fields.

Times shall be based on GMT, with no provision provided for maintaining the local time offset information. Any
requirement to localize time values shall be performed by the receiving terminal.

The following describes how the XML Schema primitive dat eTi e shall be encoded.

4424.2.1 Encoding

The dateTime primitive is represented as an 8-byte unsigned integer number (Big-Endian), Days are represented using
thefirst 4 bytes using Modified Julian Date. Time is represented using the last 4 bytes expressed as the number of
elapsed milliseconds since 00:00:00 hours.

The origin for the Modified Julian Date shall be Midnight on 17" November 1858.

Example dates:
Date Modified Julian Date
15t April 1980 44 330
30" January 2000 51573
15t March 2001 51 969

ETSI

38 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Example dateTimes:

dateTime value Encoded value
1980-04-01T02:00:00Z 0x0000AD2A006DDD00
2000-01-30T12:10:01Z 0x0000C975029C59A8
2001-03-01T00:00:00Z 0x0000CB0100000000
4.42.4.3 date codec

The XML Schema primitive simple type date describes a date within the Gregorian calendar. The date takes the form of
astring as defined by 1SO/IEC 8601 [21].

442431 Encoding

The XML Schema date primitive shall be represented as a 4-byte unsigned integer (Big-Endian). It shall contain the
number of days using the Modified Julian Date format, as described in clause 4.4.2.4.2.1.

44244 Zlib optimized decoder

Inthe TVA MPEG-7 profile, the following Zlib codec is used by default for the encoding of strings instead of the
UTF-8 representation. This Zlib codec isreinitialized for each TVA fragment.

44244.1 Rationale

Classical lossless statistical compression algorithms (like Zip or GZip) are used in the present document to improve
character strings compression. The present document uses the Zlib library [6].

In most cases, when strings are short (fewer than 100 characters), the performance of Zlib is poor. Indeed, this statistical
compression algorithm requires a larger look ahead buffer to start eliminating redundancy. To achieve a good
compression ratio, the proposed "Zlib optimized decoder" gathers different strings into one buffer before compressing
it. The size of this buffer, noted buffer_size, allows the encoder to balance the compression ratio and the memory
needed at the decoder. The codec has to manage an input buffer of strings as described in the following clauses. The
default value of the buffer size is set to 1 000 bytes and can be overridden in the TV A-init Message.

442442 Encoding

At the encoding phase, the buffer is fed with strings. When the buffer isfull, it is compressed and the resulting
compressed chunk of datais placed in the expected position of the first string compressed using this buffer. Figure 27
represents a BiM binary stream without the " Zlib optimized decoder”. Strings (in grey) are dispersed along the entire
bitstream.

String

Figure 27: BiM bitstream without Zlib optimized decoder

Figure 28 represents only the strings to be compressed and shows how they are gathered and compressed together to
create a more compact bitstream and where the resulting compressed chunks are dispersed. The location of the
compressed chunk ensures that during the decoding process when a string is required either the Zlib codec gets a
compressed chunk, decompressit and delivers the string from the decompressed buffer or if its decompressed buffer is
not empty, it delivers the string from its decompressed buffer.

ETSI

39 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Strings
C 100000 00 30 6 0 000 0
\ | | |

Compressed compressed compressed

Figure 28: BiM stream with Zlib optimized decoder

The decoding processis formally explained in clause 4.4.2.4.4.3.

442443 Decoding

At the decoding level, the compressed chunk of stringsis decompressed into a buffer (still limited by the buffer_size
used at the encoder side). This buffer delivers the strings to the leaves (using the separator character). In the case where
avalueis encoded over two or more chunks, the value shall be the concatenation of all characters extracted from the
buffers until the separator character.

4.42.44.4 Behaviour

Syntax No. of Bits Mnemonic

ZlibDecoder() {
ResultString=
TempChar = GiveNextCharInBuffer();

While (TempChar != separatorChar) {
ResultString = concat(ResultString, Tempchar)
Tempchar = GiveNextCharInBuffer()

return ResultString

}

Syntax No. of Bits Mnemonic

GiveNextCharlInBuffer() {

If isEmpty (charsBuffer) {
ZlibStringLength 8+ vluimsbf8
ZlibString 8* ZlibStringLength bslbf
CharsBuffer = ZlibDecompress(ZlibString)

return nextChar(charsBuffer)

}

442445 Semantics

In order to obtain the next string, the decoder readsthe char sBuf f er until it getsasepar at or Char . If the
char sBuf f er istotally consumed before reaching asepar at or Char , thechar sBuf f er isrefilled by
decompressing the next chunk available in the bitstream.

ResultString: A local variable representing the string expected.
TempChar: A local variable representing the character read in the char sBuf f er .

separator Char: A constant representing the separ at or Char as defined by the termination_value of the related
character encoding format specified in TVA-Init.

ZlibStringL ength: Indicates the size in bytes of the compressed ZIibString. A value of zero is forbidden.

ZlibString: A representation of a compressed sequence of characters. The compression algorithm used is Zlib [6].

ETSI

40 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

ZlibDecompress(aString): This decompresses a string and returns the decompressed string.

NextChar (char sBuffer): Thisfunction returnsthe first character of the char sBuf f er and removesit from the
charsBuffer.

isEmpty (charsBuffer): Thisfunction returnstrueif thechar sBuf f er isempty, otherwise false.
Concat(aString, aCharacter): This function returns the concatenation of aSt ri ng and aChar act er .

CharsBuffer: A buffer of characters. It contains alist of string separated by asepar at or Char .

4.5 Carriage of TV-Anytime data

TV-Anytime does not define the way in which the metadata should be carried within a specific delivery system.
However TV-Anytime has defined a generic mechanism called a " Container" for grouping a number of related data
structures together for transmission.

The following clauses describe the format of these containers and additional requirements on the delivery layer, to
enable the identification of containers, the type of data a container carries and the current version of a container.

45.1 Containers

A container forms the top-level storage unit in which all TVA datawithin a unidirectional environment is transmitted. A
container contains one or more related structures, which can be used to convey both data fragments and indexing
information.

451.1 Carriage of containers

TV-Anytime does not define the way in which these containers should be carried, asthisis specific to the delivery
system. However consideration has been given, to enable the container to be easily mapped on to standard delivery
methods. For example in an MPEG-2 environment, the containers may be conveyed using sections, objects within a
DSM-CC U-U Object Carousel or modules within a DSM-CC Data Carousel.

45.1.2 Classification of containers

Containers are classified depending on what type of information they carry. The type of container shall be signalled
with the delivery layer to enable areceiver to efficiently acquire containers carrying a specific type of data. Thisfor
example would enable areceiver to just acquire data containers, which it could use to populate aterminalslocal
Database cache.

Containers are classified as follows:

. Data Containers - Containers carrying TVA metadata fragments and hold the following structures -
encapsulation, dat a_r eposi t ory (Binary data).

. Index Containers- Containers carrying Indexing information and holding the following structures -
i ndex_list,index, nmulti_field sub_index, data_repository, fragnent | ocators
(optional).

It should be noted that it is possible for a single container to carry both types of data.

The use of data containers as specified in the present document for the carriage of TVA fragmentsis mandatory.

45.1.3 Container identification

To be able to identify a container, a container must be given a unique identifier (container ID). This shall take the form
of a 16 bit value and shall be conveyed at the transport delivery layer. No provision is made to insert thisidentifier at
the container level, since it should not be necessary to acquire the container to find out its container ID. The signalling
of the container ID is out of scope for TVA and shall be stipulated by other appropriate standards bodies e.g. DVB,
ATSC and ARIB.

ETSI

41 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

45.2 Container versioning

Each container must have an associated version identifier. No provision is made within the container for this, asit
should not be arequirement to load the container to seeif the version has changed. Therefore version identification
must be carried at the transport delivery layer. The definition of this version identifier is out of scope for TVA and shall
be stipulated by other appropriate standards bodies e.g. DVB, ATSC and ARIB.

The container version is not used or referenced anywhere within a container or structure and so may take any form
appropriate for the delivery mechanism.

4521 Container syntax

Syntax No. of Bits Mnemonic

container () {
container_header {
num_structures 8 uimsbf
for (j=0; j<num_structures; j++) {

structure_type 8 uimsbf
structure_id 8 uimsbf
structure_ptr 24 uimsbf
structure_length 24 uimsbf

}

}

for (j=0; j<byte_count; j++) {
structure_body

}

num_structures: An 8 bit field specifying the number of structures contained within this container. A value of 0x00 is
invalid.

structure_type: An 8 bit field identifying the type of structure being referenced, according to the following table.

Table 4: Structure_type assignments

Value Description
0x00 Reserved
0x01 Encapsulation (see clause 4.6.1.1)
0x02 Data Repository (see clause 4.6.1.4)
0x03 Index List (see clause 4.8.5.3)
0x04 Index (see clause 4.8.5.4)
0x05 Multi Field Sub Index (see clause 4.8.5.5)
0x06 Fragment Locators (see clause 4.8.5.6)
0x07 moved_fragments (see clause 4.6.1.2)
0x08 - 0xDF TVA Reserved
0xEQ - OXFF User defined

structure_id: An 8 bit value which is used to distinguish between multiple occurrences of a specific
struct ure_type.Insomecasesthisisjust aninstance identifier (e.g. index andrmul ti _fi el d_sub_i ndex
structures) and in other casesit is used to distinguish the type of data carried within the structure (e.g. data repository).

In cases where the structure_id is not used the field shall be set to Oxff.

ETSI

42 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Table 5: Structure_type and their matching valid structure_id

Structure_type structure_id Description

0x00 0x00 - OxFF Reserved

0x01 0x00 - OxFF Reserved

0x02 0x00 Data Repository of type strings, see clause 4.8.4.1

0x02 0x01 Data repository of type binary data, see clause 4.6.1.4.1

0x02 0x02 - OxFF Reserved

0x03 0x00 - OxFF Reserved

0x04 0x00 - OxFE Used to identify a specify instance of an index structure, within a
container

0x05 0x00 - OxFE Used to identify a specific instance of a multi_field_sub_index
structure within a container

0x06 0x00 - OxFE Used to identify a specific instance of a fragment_locator structure

0x07 - OXFF 0x00 - OxFF Reserved

structure_ptr: A 24 bit field giving the offset in bytes from the start of this container to the first byte of the identified
structure.

structure_length: A 24 hit field which indicates the length in bytes of the structure pointed to by st ruct ure_ptr.

Entrieswithinthe cont ai ner _header shall be ordered in ascending st ruct ure_t ype andstructure_i d.
For example all structures of typedat a_r eposi t or y shall be grouped together and items within the group ordered
in ascending structure_id. This enables a device to efficiently locate a particular structure of interest.

structure_body: Dataforming one or more structures within this container.

45.2.2 Container map

As has been mentioned above, containers do not include information such as, container Id, version or container
category. Thisinformation must be carried at the delivery layer, informing a device when containers have changed and
what the appropriate download parameters are. This higher-level messaging istermed a container map.

The concept of a container map can be found in a number of Broadcast delivery mechanisms, for instance the DSM-CC
Data Carousel DII. In these instances the standard mechanisms should be used, provided they support the following set
of requirements.

45221 Container map requirements
A specific container map implementation shall meet the following requirements:

. Signal the Id of each container - Containers are identified using their cont ai ner _i d. This shall be aunique
number within the scope of a TVA metadata fragment stream. It isrequired that the id of a container is
signalled at the Container map level, to enable the acquisition of a container with agiven cont ai ner _i d.

. Identify the version of each container - The current version of each container shall be signalled and this shall
increment whenever the contents of a container change. It shall be possible to monitor at a single point for
version changes to a container. Ideally it should be possible to monitor just data containers, or just containers
forming a single index.

. Identify the type of container i.e. Index Container, Data Container - This defines the type of data carried with a
container and can be used by areceiving device to filter for example containers carrying TVA fragments.

. The ability to download all document containers (preferably in a parallel manner).

. Enable the ability to carry multiple TVA metadata fragment streams on the same delivery channel.

ETSI

43 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.6 Fragment encapsulation

As described above a TV A-Anytime metadata description is split into a number of fragments, where afragment forms a
self-consistent unit of data. To enable areceiver to efficiently identify achangeto a TV A fragment an encapsulation
format has been defined. This provides TVA fragment Version information and an identifier specifictoaTVA
fragment. This enables areceiver to quickly identify fragments that have changed in relation to that cached on the
receiving terminal.

4.6.1 Encapsulation format

The encapsulation datais provided by the encapsulation structure defined in figure 29. This structure is then transmitted
along with the fragments using a " container" as described in clause 4.5.1.

Data Container

Container Header

Encapsulation
structure

Data Repository |«—!
(BiM fragments)

Figure 29: Schematic representation of interrelationship between
structures within a container
46.1.1 Encapsulation structure

The Encapsulation structure provides the encapsul ation mechanism for a set of TVA fragments, by providing the ability
to assign aunique identifier (f r agment _i d) for the lifetime of a TVA fragment and indicating the current version of
aTVA fragment.

Each entry references asingle TVA fragment carried within abi nary_dat a_r eposi t ory structure carried within
the same container.

There shall only ever be one encapsulation structure within a single container.

ETSI

44 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Syntax No. of Bits Mnemonic
encapsulation_structure () {
encapsulation_header {
reserved other _use 2 bslbf
reserved 6 bslbf
fragment_reference_format 8 uimsbf
}
for(j=0; j<fragment_count; j++) {
encapsulation_entry {
fragment_reference()
fragment_version 8 uimsbf
fragment_id 24 uimsbf
}
}
}

reserved_other_use: Thisfield shall be set to "11".

fragment_reference format: This 8 bit value defines the format and interpretation of thef r agnment _r ef er ence
field.

Table 6: Valid fragment_reference_formats

Value Meaning
0x00 Reference to a BiM encoded fragment (see clause 4.6.1.3.1)
0x01 - 0xEQ TVA Reserved
0xE1 - OXFF User defined

fragment_reference: A reference to afragment, the interpretation of thisfield is dependent ont he
fragnent _reference_f or mat . Please refer to table 6 to determine how this field should be interpreted.

fragment_version: An 8 bit value which identifies the version of the fragment referenced by this entry. When the data
for the fragment identified by the f r agnment _i d changes, the fragment_version shall increment modulo 255.

fragment_id: A 24 bit value which uniquely identifies a metadata fragment within the TV A metadata fragment stream.
The value assigned to a fragment shall be persistent for the life of that fragment so long as it is transmitted in the TVA
metadata fragment stream. All entrieswithintheencapsul ati on_st r uct ur e shall be ordered by ascending

f ragnent _i d. Thisenables the efficient location of afragment by using a binary search algorithm.

4.6.1.2 Moved fragments structure

Thenoved_fragnent s structure is used to signal when a fragment has moved from one container to another. Thisis
achieved by making an entry within the moved fragments structure carried within the fragments last container.

There shall be a maximum of one noved_f r agment structure within a single container.

Syntax No. of Bits Mnemonic
moved_fragments () {
for(i=0; i<num_of;i++){
fragment_id 24 uimsbf
new_container_id 16 uimsbf
}
}

fragment_id: Theid of the fragment which has moved containers. All entries within the
nmoved_fragment _struct ure shal beordered by ascending f r agnment _i d.

new_container_id: Theid of the container, to where the fragment has moved.

ETSI

45 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.6.1.3 Fragment_Reference formats

There are anumber of defined fragment locator formats to enabl e the referencing of fragments from within an
encapsulation structure.

46.1.31 Referencing a BiM encoded fragment

Syntax No. of Bits Mnemonic

BiM_fragment_reference () {
BiM_fragment_ptr 16 uimsbf
}

BiM_fragment_ptr: Offset in bytes from the start of the Binary repository within the container where the first byte of
the Fr agnment Updat eUni t () for the BiM encoded fragment can be found.

4.6.1.4 Data repository

The Data Repository forms the base structure, used to hold string data and binary data. All references to the data
repository are local i.e. from within the container. The type of data, which the data repository carries, isindicated by the
structures associated st ruct ur e_i d inthecont ai ner _header.

There may be more than one Data Repository within a container. However there shall only ever be a maximum of one
data repository of a given type.

Syntax No. of Bits Mnemonic

data_repository () {
if (structure_id == 0x00) {
string_repository()

}

else if (structure_id == 0x01) {
binary_repository()

}

else {
user_defined_data_structure()
}

}

structure_id: An 8 bit value used to specify the type of data carried within this data repository. Thest ruct ure_i d
is not defined within this structure, but forms part of the structure instantiation in the container header

(seeclause 4.5.2.1).

46.1.4.1 Binary data repository

The encoding of datain the binary repository is defined at the point of reference. Each item of data must either have a
length explicitly encoded within it, or alength implicitly understood by the decoder (i.e. fixed length). No provisionis
made to define the data length within the binary data repository structure.

All entries shall be byte aligned.

There shall only ever be one binary data repository within a single container.

Syntax No. of Bits Mnemonic

binary_repository() {
for (i=0; i<value_count; i++) {
for (j=0; j< length; j++) {
value_byte 8 bslbf
}

}

}

ETSI

46 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

value _byte: A byte of binary value data.

46.14.1.1 Carriage of BiM encoded fragments

Wherethe bi nary_dat a_r eposi t ory contains BiM encoded data, a single binary data repository shall hold a
single complete BiM Access Unit.

Syntax No. of Bits Mnemonic

binary_repository() {
BiMAccessUnit {
NumberOfFUU 8+ vluimsbf8
for(i=0; i< NumberOfFUU; i++) {
FragmentUpdateUnit()
}

}

}

4.6.1.5 Alternative Encoding formats
Where BiM is not used for the encoding of fragments, the encoding sol ution:
. Shall provide a mechanism for indicating the type of TVA fragment.

. Optionally provide a mechanism for indicating the action to be performed e.g. Update fragment, Delete
fragment, etc.

4.7 Fragment Management

In the previous clause a number of structures have been specified to enable the encapsulation of TVA fragments, within
aTVA metadata fragment stream. These TV A fragments are dynamic and may change during their lifetime. In addition
new TVA fragments will be added and old TV A fragments removed. The following describes how the defined

encapsul ation structures shall be used to enable the addition, deletion and updating of TVA fragments.

4.7.1 Fragment Id

Thefragment _i d isa24 hit value which uniquely identifiesa TV A fragment within asingle TVA metadata
fragment stream. This can be used by an application to track a TV A fragment during its lifetime within a TVA metadata
fragment stream. It isvalid to reuse af r agnent _i d value, provided that sufficient time has elapsed since the

f ragnent _i d value waslast used.

4.7.2 Fragment Add

The addition of anew TV A fragment is straightforwardly achieved by creating an entry within the encapsulation
structure having aunique f r agrment _i d and an appropriate f r agment _ver si on and inserting the fragment into
the binary data repository. The addition of a new entry into an existing container will cause the container's version
number to increment.

4.7.3 Fragment Update
An update to a previoudy transmitted TV A fragment will cause the TV A fragment within the binary data repository to

be updated. In addition the version number of the TVA fragment shall be incremented. These changes will cause the
version number of the container in which the fragment is carried to increment.

ETSI

47 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.7.4 Fragment Move

In some situations it may be required to move fragments between containers in which they are transmitted. Itis
recommended for efficiency and ease of management of fragments that thisis kept to a minimum. However when
required to move fragments between containers, the following should occur: The fragment isinserted into the new
container, along withitsoriginal f r agnent _i d and current f r agnent _ver si on. An entry isinserted into the
nmoved_fragment s structure of the fragments previous container to indicate in which container the fragment can
now be found. These operations will cause both the previous and the current container to have their version number
incremented.

4.7.5 Fragment Delete
The deletion of afragment can mean one of two things:

. The originally transmitted fragment is valid, but has been removed from the metadata fragment stream, as the
content it describesis no longer available. For example the transmission time has passed.

. The originally transmitted fragment was invalid and so should not be used and discarded.

Both of these scenarios are supported as follows: when a fragment disappears from the metadata fragment stream it
shall betreated as if the fragment has been deleted. Care should be taken when determining if a fragment is no longer in
the TVA metadata fragment stream. If afragment'sf r agnent _i d is not found in the expected containers
encapsulation structure, the noved_f r agment s structure should be searched for an entry indicating that the fragment
has moved containers. However if the metadata fragment stream is not constantly monitored for changes this
mechanism should not be relied upon, as afragment may have moved containers, but the corresponding fragment
moved entry is no longer transmitted. The deletion of afragment will cause the corresponding containers version
number to be incremented.

In addition to the above methods, if BiM is used for fragment encoding and the Posi t i onCodeFl ag within the
TVAI ni t issetto"1", the BiM Fr agment Updat e Comrand, which forms part of the Fr agrment Updat eUni t
shall be used to signal the deletion of afragment. In this case when afragment is deleted the referenced BiM fragment
will consist of aFr agnment Updat eUni t withaDel et eCont ent command and no

Fr agment Updat ePay| oad. The change of fragment will causethef r agment _ver si on within the
encapsulation structure to be incremented.

This BiM Delete fragment command (see clause 4.4.2.2.1.3) if used shall be transmitted for alimited period of time,
after which it should be removed. Receiver implementers should be aware that this mechanism should not be relied
upon, as the receiver may be switched off or tuned away from the TV A metadata fragment stream, during the
transmission of the Delete Command.

4.8 Indexing

48.1 Introduction

Data originally encapsulated in an XML document is not always best accessed asif it were an XML document when in
the broadcast environment. In this environment, navigation of the document tree is relatively slow even when the
location of the datain the tree is known. If the location is hot known then the receiver must search through a set of data
looking for a node with a particular value. In most cases this will be too slow to be practical. Indexing seeks to avoid
these problems by avoiding the need to navigate the document tree. Indices provide direct access to a document TVA
fragment by listing the values of a particular node (the index's key fields) and describing where the matching
fragment(s) can be found in the carousel. Multiple indices can point to the same fragment, each using a different node
asakey field.

4.8.2 Requirements

The indexing system shall be designed for metadata available in a unidirectional environment and whose TVA metadata
fragments are carousel ed.

The indexing system shall be compatible with any specific carousel format used to carry the TV A fragments.

ETSI

48 ETSI TS 102 822-3-2 V1.3.1 (2006-01)
The indexing system shall be designed in such a way that the data it uses may be broadcast cyclically but without being
tied to a particular carousel mechanism.

The indexing system should be considered as a way to improve the navigability within the data set formed by the TVA
fragments constituting a specific TV A metadata description, however this new system shall:

. be defined and used in addition and with regard to the existing solutions already standardized by TV-Anytime;

. be optional in the sense that for some metadata description or some application such an improved navigability
may not be necessary or helpful.

The indexing system shall allow the indexing data to be used "on-line" when searching for a specific TVA fragment,
namely without needing to be necessarily cached or completely acquired.

The indexing mechanism shall be defined as a way to retrieve using a certain index key a specific TVA fragment among
al the TVA fragments constituting a metadata description and carouseled over a unidirectional stream:

. The nature of the key index may differ from one type of TVA fragment to another.

. For each of these possible standard index data type, TV-Anytime will specify what the encoded format and the
sorting order are.

. The value of the key used to index a TV A fragment shall always be available directly or viaan indirection in
this TV A fragment.

The indexing mechanism should be extensible to support the possible definition of private new indexes through the use
of hooks.

4.8.3 Carriage of Indexing Information

Indexing datais carried using the generic Container format specified in clause 4.4.2. This clause makes use of some
structures already define in clause 4.6 on fragment encapsulation.

Index Container Data Container

Container Header Container Header

Index List A Encapsulation |
> Index —
» Multi Field Sub Data Repository |«
Index (BiM fragments)

Data Repository

Figure 30: Schematic representation of interrelationship between
Index containers and Data containers

ETSI

49 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.8.4 Data repository

The data repository within the context of an Index is used to carry data used in the representing of an index e.g. key
field values. The syntax of adata repository is defined in clause 4.6.1.4 along with how binary datais carried within a
data repository. In addition to binary data the data repository is used to carry Strings, as described below.

48.4.1 String repository

The string repository is used to hold all strings used by structures within the same container.

There shall only ever be one string repository per container. References to this repository are always local (that is, from
the same container). Support is provided for identifying the string encoding system, to enable the use of non ASCI|
based character sets. The use of length fields or termination values are dependent on the string encoding used.

Syntax No. of Bits Mnemonic

string_repository() {
encoding_type 8 uimsbf
for (i=0; i<strings_count; i++) {
for (j=0; j<string(i).length; j++) {
string_character 8+
}

string_terminator 8+ bslbf
}

}

encoding_type: An 8 hit field used to define the character encoding system, according to table 2.

string_character: A character of the encoded string. The number of bytes required to represent the character will be
dependent on the string encoding system used.

string_terminator: One or more bytes which indicate the end of a string. The actual value will be dependent on the
string encoding system used.

ETSI

50 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.8.5 Index structures

Index List

Index

Index

N

Xapu| qns

Xopu| gns
Xopu| gns
Xapu| gns
Xapu| qns
Xapu| qns
Xapu| gns

Xapu| gns

Structures

8 Data Container

Index Container

Figure 31: Indexing structure

485.1 Identification of indices

Indexes are keyed on schema simple types such as dateTime, CRID. Multiple indices can reference asingle TVA
fragment. It isimportant to be able to describe what an index is keyed on.

ETSI

51 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

There are two important facts that the receiver needs to know about an index:

. Thefirst fact is where in the schema hierarchy are the document fragments that it is referencing? It is
important to know this because this describes the type and context of the fragment.

. The second fact isto know "by which key fields are these fragments indexed?' The key fields are typically
child members (e.g. an attribute or an element) of the fragment type being indexed.

The specification provides two mechanisms:
. Id based identification.

. XPath expressions.

485.1.1 Use of Ids

Ids can be used to identify both the type of TV A fragment and the el ement/attribute within the fragment, which the
index is keyed on. The set of normative TV A fragments have been mapped to aid interoperability and a mechanism
provided to enable metadata providers to define additional 1ds to enable the support of enhanced metadata services.

485.1.2 Use of XPath

W3C has defined a standard specifically for the referencing of elements and attributes within an XML document, which
is caled XPath. XPath is a syntax, which can describe a path to one or more nodes in a document.

The fragment XPath is an absolute path (i.e. it is relative to the root of the document), whilst the key XPeath is relative to
the fragment XPath. In other words, the context node of the key XPath is the node referred to by the fragment X Path.
Combined together they describe the absolute path to the node that forms a key field. The XPath syntax can describe the
location of any type of node including elements, attributes and text nodes, enabling any of these to be akey field.

The XPath syntax is rich and many parts are not hecessary to describe an index. Therefore arestricted set of syntax,
which a TVA compliant box should support has been specified:

. Absolute Location Paths only (key_xpat h isrelative, but the combined path is absol ute).
. Axes types "attribute" and "child" only are supported.

. Abbreviated Syntax only. The preceding restrictions mean that only the following two abbreviations are
permitted:

- “child::" is always omitted;
- "@" isaways used to represent "attribute::".
. "*" jsnot allowed.
. Only the following two Node tests are allowed:
- NameTest (in which "*" is not allowed);
- text().
. Predicates and Functions are not allowed.
. The union operator "[", is not allowed.

All XPath expressions will be evaluated within the following context:
. The context node is the root of an XML document containing a TVAMai n element.
. The context position and context size are both 1.

. There are no variable bindings.

. Thereisno function library.

ETSI

52 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

In addition al elementd/attributes shall be namespace qualified.

485.1.2.1 Example: Indexing by CRID and title

Considering a broadcast carousel that delivers fragments of type Pr ogr am nf or mat i on the fragment XPath (in
short form) would be:

| /tva: TVAMai n/ t va: ProgranDescri ption/tva: Program nf ormati onTabl e/t va: Program nf ormati on

The most likely key to use for searching this set of dataisthe CRID. Thef i el d_xpat h isrelative to the fragment
XPathi.e.:

| @va: program d

A broadcaster may wish to index by title, as well as by CRID, to enable the receiver to search by title. The fragment
XPathis:

| /tva: TVAMai n/ t va: ProgranDescri ption/tva: Program nf ormati onTabl e/ t va: Program nf ormati on

and the field_xpathis:

| tva: Basi cDescription/tva:Title.text()

4.85.2 Introduction to the multi-key index

Some applications in the receiver may request matching fragments for more than one query condition. In this case,
using multiple key fieldsis quite efficient to answer such requests. The multi-key consists of more than one key fields.

Multi-key values are ranked in order as follows. For amulti-key of n key fields (ky, ko, ..., k), priority of each key field
is ordered according to its position from left to right, i.e., kq has the highest priority and k,, has the lowest priority, etc.
For two multi-key values, (a4, &y, ..., &) and (by, b, ..., by):

. (aq, &y, ..., a,) islarger than (by, b, ..., b,) if and only if there exists an integer i (0 < i < n-1) such that for
every j(0<j<i-1), a = b, and g > b;.

. (aq, &y, ..., a,) issmaller than (b, b, ..., b,) if and only if there exists an integer i (0 < i < n-1) such that for
every j(O<j<i-1), a = b and g < b;.

. (aq, @y, ..., @) isequal to (by, b,, ..., b)) if and only if for every i(1<i<n), a = by.
A typical query example that can be efficiently handled by the multi-key index is as follows:

. Search target fragment:

/ TVAMai n/ ProgranDescri pti on/ Programiocati onTabl e/ Br oadcast Event
. Search condition:
100 <= Serviceld <= 110
9:00 PM <= PublishedStartTime.text() <= 10:00 PM

Inthis case, the"Br oadcast Event " fragments can be indexed by a multi-key index with key fields Ser vi cel d
and Publ i shedSt art Ti ne.

ETSI

53 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.85.3 Index List

Theindex list structure provides alist of all indices that exist for the entire TV A metadata fragment stream. A receiver
uses this structure to locate an index of interest, where an index is described using the structuresf r agnment _t ype and
field_ identifier fields.

It should be noted that entries within the structure are not of fixed size. The Index list must be searched sequentially.
Thei ndex_descri pt or _| engt h field is provided to enable a receiver to efficiently skip over index entries, which
itisunable to parse dueto unknown f ragnent _types, field_identifiers,orfield_encoding.

There shall be a maximum of one index list structure per TV A metadata fragment stream.

Syntax No. of Bits Mnemonic
index_list() {
for (j=0; j<num_indexes, j++) { ...
index_descriptor_length 8 uimsbf
fragment_type 16 uimsbf
if(fragment_type == Oxffff) {
fragment_xpath_ptr 16 uimsbf
num_fields 8 uimsbf
for(k=0; k<num_fields; k++) { ...
field_identifier 16 uimsbf
if(field_identifier == Oxffff) {
field_xpath_ptr 16 uimsbf
}
field_encoding 16 uimsbf
}
index_container 16 uimsb
index_identifier 8 uimsbf
}
}

index_descriptor_length: An 8 bit field which defines the number of bytes proceeding this field which are used to
describe the index.

fragment_type: Anid used to identify the type of TVA fragments which the index makes references to. In addition to
the identifiers defined in the table below, their may be a set of unique identifier allocated on a per application basis.

Table 7 shows the set of allocated f r agnent _t ype values. The XPath expressions are namespace qualified and use
the following namespace prefixes:

tva urn:tva:metadata:2005

tva2 urn:tva:metadata:extended:2005
mpeg7 urn:tva:mpeg7:2005

int urn:tva:metadata:interstitial:2005

ETSI

54 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Table 7: Fragment_type assignments

Value Description

0x0000 Reserved

0x0001 Programinformation fragment (/tva:TVAMain/ tva:ProgramDescription/
tva:PrograminformationTable/ tva:Programinformation)

0x0002 Grouplnformation fragment (/tva:TVAMain/ tva:ProgramDescription/
tva:GrouplnformationTable/ tva:Grouplnformation)

0x0003 OnDemandProgram fragment
(/tva:TVAMain/tva:ProgramDescription/tva:ProgramLocationTable/tva:OnDemandProgram)

0x0004 BroadcastEvent fragment (/tva:TVAMain/tva:ProgramDescription/ tva:ProgramLocationTable/
tva:BroadcastEvent)

0x0005 Schedule fragment (/tva:TVAMain/ tva:ProgramDescription/ tva:ProgramLocationTable/
tva:Schedule)

0x0006 Servicelnformation fragment (/tva:TVAMain/ tva:ProgramDescription/
tva:ServicelnformationTable/ tva:Servicelnformation)

0x0007 PersonName fragment (/tva:TVAMain/ tva:ProgramDescription/ tva:CreditinformationTable/
tva:PersonName)

0x0008 OrganizationName fragment
(/tva:TVAMain/tva:ProgramDescription/tva:CreditinformationTable/tva:OrganizationName)

0x0009 ProgramReviews fragment (/tva:TVAMain/ tva:ProgramDescription/ tva:ProgramReviewTable/
tva:Review)

0x000A CSAlias fragment
(/tva:TVAMain/ tva:ClassificationSchemeTable/tva:CSAlias)

0x000B ClassificationScheme fragment
(/tva:TVAMain/tva:ClassificationSchemeTable/tva:ClassificationScheme)

0x000C Segment Information fragment (/tva:TVAMain/ tva:ProgramDescription/
tva:SegmentationTable/ tva:SegmentList/ tva:Segmentinformation)

0x000D Segment Group Information fragment (/tva:TVAMain/ tva:ProgramDescription/
tva:SegmentationTable/ tva:SegmentGroupList/ tva:SegmentGrouplnformation)

0x000E TVAMain fragment (/tva:TVAMain)

0x000F OnDemandService fragment (/tva:TVAMain/tva:ProgramDescription/
tva:ProgramLocationTable/ tva:OnDemandServiceType)

0x0010 Purchaselnformation fragment
(/tva:TVAMain/tva:ProgramDescription/tva:PurchaselnformationTable/tva:Purchaselnformation)

0x0011 MetadataOriginationinformation fragment
(/tva:TVAMain/tva:MetadataOriginationinformationTable/tva:MetadataOriginationInformation)

0x0012 Package fragment (/tva:TVAMain/tva2:PackageTable/tva2:Package)

0x0013 InterstitialCampaign Fragment
(/tva:TVAMain/tva2:InterstitialCampaignTable/tva2:Intestitial Campaign)

0x0014 RMPIDescription Fragment (/tva:TVAMain/tva2:RMPITable/tva2:RMPIDescription)

0x0015 CouponDescription Fragment (/tva:TVAMain/tva2:CouponTable/tva2:CouponDescription)

0x0016 Targetinginformation Fragment
(/tva:TVAMain/tva2:TargetinglnformationTable/tva2: Targetinglnformation)

0x0017 Rule Fragment
(tva:TVAMain/tva2:InterstitialTargetingTable/int:RulesTable/int:Rule

0x0018 Request Fragment
(/tva:TVAMain/tva2:InterstitialTargetingTable/int:RecordingCacheTable/int:Request/int:ltem

0x0019 Replace Fragment
(/tva:TVAMain/tva2:InterstitialTargetingTable/int:RecordingCacheTable/int:Replace/int:ltem

0x0020 Expire Fragment
(/tva:TVAMain/tva2:InterstitialTargetingTable/int:RecordingCacheTable/int:Expire/int:ltem

0x0021 InterstitialBreak Fragment
(/tva:TVAMain/tva2:InterstitialTargeting Table/int:Interstitial Table/int:InterstitialBreak

0x0022 - User defined

OxFFFE

OxFFFF W3C XPath Expression

fragment_xpath_ptr: If thef r agnent _t ype isset to "Oxffff" this provides areference to the start of an XPath
string. Thisreferenceisin the form of an offset, in bytes, from the start of the string repository in the current container.
The value of this string is the XPath (in abbreviated X Path notation) to the root node of a TV A fragment.

num_fields: The number of fields which thisindex is based upon. The fields shall be defined in their order of
importance, where the first entry is the Primary field.

ETSI

55 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

field_identifier: Anid used to identify the field on which the index is ordered. The specification allows the alocation
of unique identifiers on a per application basis.

Table 8: field_identifier Assignments

Value Description
0x0000 Reserved
0x0001 - OXxFFFE User defined
OxFFFF Indicates use of a W3C XPath style expression

field_xpath_ptr: Reference to the start of the fields X Path string (in abbreviated X Path notation) within the string
repository belonging to the current container. This reference isin the form of an offset, in bytes, from the start of the
string repository in the current container. The value of this string is an X Path expression that is relative to the

f ragment _t ypes XPath, which identified the node that is used as one of the indexes key fields.

field_encoding: Defines the encoding used to represent a key field value. This encoding determines how the
“field_val ue" withinthermul ti _field_sub_index,thel ow field_val ueandhi gh_field_val ue
within the index, shall be interpreted.

Thefi el d_encodi ng value has two purposes:

. It determines whether the content of thef i el d_val ue withinthenul ti _fi el d_sub_i ndex structure,
thel ow fi el d_val ue andthehi gh_fi el d_val ue withintheindex structure, are inline or are found
within a data repository structure (see table 4).

. It defines the encoding of the data held in the field-value withintherul ti _fi el d_sub_i ndex structure,
thel ow fi el d_val ue andthehi gh_fi el d_val ue within the index structure (see table 9).

Table 9: Encoding and interpretation of the field_value,
low_field_value and high_field_value field

Encoding value value field interpretation

0x0000 - 0x00FF Field is an offset in bytes from the start of the string data repository
structure.

0x0100 - 0x01FF Field contains an inline 2-byte value.

0x0200 — 0x0201 Field contains an inline 4-byte value.

0x0300

0x0401

0x0204 — 0x0206 Field contains an inline 1-byte value.

0x0202 — 0x0203 Field is a 16 bit offset in bytes from the start of the
binary _data_repository structure

0x0302 Field contains an inline 8-byte value.

0x0400

0x0204 — 0x02FF Undefined

0x0402-0x04FF

0x0500-0xFFFF Reserved for future use.

ETSI

56 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Table 10: Encoding types and their respective sizes

field_encoding Description Encoding Size in bytes
0x0000 string type Null-terminated string variable (8+)
0x0001 - 0x00FF Reserved for custom
string types
0x0100 signed short two's complement - Big-Endian 16
0x0101 unsigned short unsigned binary - Big-Endian 16
0x0102-0x01FF Reserved for custom 16
2-byte types
0x0200 signed long two's complement - Big-Endian 32
0x0201 unsigned long unsigned binary - Big-Endian 32
0x0202 variable length signed one bit to indicate sign (0: variable (6+)
integer positive, 1: negative), followed
by abs(value) using viuimsbf5.
0x0203 variable length vluimsbf8 variable (8+)
unsigned integer
0x0204 boolean 0:False 1:True 8
0x0205 signed byte two's complement 8
0x0206 unsigned byte unsigned binary 8
0x0207-0x02FF Reserved for custom
integer types
0x0300 signed float IEEE standard 754-1985 [3] 32
Big-Endian
0x0301 Reserved
0x0302 signed double IEEE standard 754-1985 [3] 64
Big-Endian
0x0303-0x03FF Reserved for custom
rational types
0x0400 dateTime Modified Julian Date and 64
Milliseconds (TVA BiM codec,
clause 4.4.2.4.2)
0x0401 date Modified Julian Date (TVA BiM 32
codec, clause 4.4.2.4.3)
0x0402-0x04FF Reserved for custom
binary fragments
0x0500-0xFFFF Reserved for future use

index_container: Theid of the container carrying the described index.

index_identifier: Thisfield identifies the relevant index structure within the identified container. To locate the correct

index within the container (withi d = i ndex_cont ai ner)thecont ai ner _header issearched for a structure
of type"index" and withastructure_id = i ndex_identifier.
4854 Index

The index structure is the top level of anindex. It provides alist of all sub-indices and the ranges of field values that
those sub-indices carry. When considering a classic indexing system it is normal for there not to be any overlapsin the
range of field values to be found within a given set of sub indexes. Thisisto minimize the amount of searching required
to find a particular value.

Having overlapping sub-indices can lead to sequential searching of sub index structures, introducing an associated
decrease in performance. However in some circumstances it may be desirable to alow this. For example where the
indexed datais carried within the same container as the index and you wish to carousel the data out at different rates
and the set of datato be carouseled would not typically form a single sub index without overlaps.

In the case of overlapping sub indexes they shall be declared within the index structure in descending order of search
priority. Where the first declared sub index, which may contain the set of required field values has the highest priority.

48.5.4.1 Field Value Ordering

The ordering of index entries within an index is dependent on a field's primitive XML schema simple type. In the case
of strings the order may be dependent on the selected language and not necessarily in aphanumeric order.

ETSI

57 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Table 11: Defined index order for primitive simple types

Simple Type Ordering
string All string shall be ordered in increasing Lexicographical order.
Lexicographical ordering is language dependent and may not be
alphanumeric.
anyURI Increasing alphanumeric order.
boolean "False" precedes "True".
NMTOKEN Increasing binary representation order.
gYear Increasing numeric value.
integer Increasing numeric value with negative values first.
date Increasing date value.
nonNegativelnteger Increasing numeric (binary) value.
positivelnteger Increasing numeric (binary) value.
dateTime Increasing dateTime (binary) value.
duration Increasing duration (binary).
float Increasing numeric value (negative values first).
double Increasing numeric value (negative values first).
Syntax No. of Bits Mnemonic
index() {
overlapping_subindexes 1 bslbf
single_layer _sub_index 1 bslbf
reserved 6 bslbf
fragment_locator_format 8 uimsbf
for (j=0; j<num_sub_indexes, j++) { ...
for(k=0; k<num_fields; k++) { ...
if (overlapping_subindices =="1") {
low_field_value field encoding uimsbf
dependent
high_field_value field encoding uimsbf
dependent
}
sub_index_container 16 uimsbf
sub_index_identifier 8 uimsbf
}
}

Given high_field_values, (ay, a, ..., @,) and (b, b,, ..., by,), of two arbitrary sub-indexes among the sub-indices list, The
sorting of sub-indices is determined as follows:

(a1, as, ..., ap) is larger than (bq, by, ..., by) if and only if there exists an integer
i (0<i <n- 1) such that for every j(O <j <i - 1), a :bj and a; > b;.

(a1, as, ..., ap) is smaller than (bq, by, ..., by) if and only if there exists an
integer i (0 <i <n - 1) such that for every j(0O <j <i - 1), a =bj and a; < b;.

(a1, as, ..., ap) is equal to (bq, by, ..., by) if and only if for every i(1 <i <n), a

= b .
Specifically, within the index() structure, if there is no overlappi ng between
subi ndi ces, for all j between 0 and num sub_i ndexes-1 (high_field_valuel[j,O0], ..,
high_field_value[j,k]) is snaller than (high_field_value[j+1,0], ..,

hi gh_fiel d_val ue[j +1, k])

J
"k" is the field

is the sub_index

This function high_field_value[j,k] takes its value according to the |oop defined in the
i ndex() table.

ETSI

58 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

overlapping_subindexes. When set to "1", indicates that one or more of the sub indices which form thisindex, overlap
with respect to the range of values found within the sub index. Where sub indices overlap, the sub indices are declared
in descending order of search priority. When set to "0", indicates that the sub indices do not overlap and the declared
sub indices are ordered in ascending order.

single layer_sub_index: Thisfield is used to indicate the syntax used within the corresponding

mul ti _field_sub_index structuresto represent indexes with multiple key fields. When set to "1" it indicates that
all fields for agiven index entry are declared together inasinglerrul ti _fi el d_sub_i ndex structure. When set to
"0" it indicates that each key field is contained within aseparatemul ti _fi el d_sub_i ndex structure.

fragment_locator_format: Identifies the format and interpretation of the fragment locator field used within the
mul ti _field_sub_index (leaf field) to reference a TVA fragment.

Table 12: Fragment reference types

Value Meaning
0x00 local_fragment_locator (see clause 4.8.5.7.2)
0x01 remote_fragment_locator (see clause 4.8.5.7.1)
0x02 - OXEOQ TVA Reserved
OXE1 - OxFF User defined

low_field_value: The lowest field value that can be found within the sub-index. The meaning of this field depends on
thevalue of thef i el d_encodi ng member of theindex list structure. The lowest value of the field expressed may
not be the lowest field value actually present in the given fragment, it merely indicates that the referenced sub index
structure may contain entries with fields values in the given range. The type of encoding used and the interpretation of
thel ow fi el d_val ue are defined by thef i el d_encodi ng withinthei ndex_| i st structure.

high_field_value: The highest field value that can be found within the sub-index. The meaning of this field depends on
thevalue of thef i el d_encodi ng member of the relevant index list structure (see clause 4.8.5.3). The highest value
of the field expressed may not be the highest field value actually present in the given fragment, it merely indicates that
the referenced sub index structure may contain entries for key field values in the given range. The type of encoding used
and the interpretation of thehi gh_fi el d_val ue aredefinedby fi el d_encodi ng withinthei ndex_1I i st
structure.

It should be noted that the hi gh_fi el d_val ue for al but the first field may be lower than the previous
hi gh_fi el d_val ue subindex entry. Thisis caused when there is a change in the value of the parent field.

For example if we have an index keyed on channel and event time fields, we could have a set of sub indexes with the
following ranges:

. Sub index 1 - channel hi gh_fi el d_val ue ="3", eventtimehi gh_fi el d_val ue ="12:00".
. Sub index 2 - channel hi gh_fi el d_val ue ="4" eventtimehi gh_fi el d_val ue ="09:00".

Where the index uses multiple fields, the declaration order of thehi gh_fi el d_val ues shall match that defined for
theindex withinthei ndex_1i st structure.

When defining the range of values that a particular sub index shall cover, sufficient space should be left to enable the
addition of further index entries without unduly impacting other sub indices. For exampleif a sub-index can hold a
maximum of say 64K entries, it is recommended that the range of current entries should equal around half to two thirds
the space. This leaves sufficient room for additional entries without having to changing the way in which the index is
split into sub index structures.

sub_index_container: Theid of the container carrying the described mul ti _fi el d_sub_i ndex.

sub_index_identifier: Thisfield identifiesthenul ti _fi el d_sub_i ndex structure instance containing the
described sub index. To locate the sub index within the container (withid =sub_i ndex_cont ai ner) the

cont ai ner _header issearched, for astructure of type"mul ti _fi el d_sub_i ndex" with astructure_id equal
tothesub_i ndex_i dentifier.

ETSI

59 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.85.5 Multi_field _sub_index

A multi field sub index provides referencesto TV A fragments, which contain field values within the range specified for
this sub index. The structure supports indexes with both single and multiple key fields. In the case of indices with
multiple key fields, the syntax provides two methods:

. Single Layer - All key fields defined together withinasinglenul ti _fi el d_sub_i ndex.

. Multi Layer - Eachnul ti _fi el d_sub_i ndex definesasinglefield of akey.

4855.1 Single Layer Structures

Single Layer Structures provide a simple mechanism for describing multiple key field indices. As each entry in the
structure can be decoded one by one in a straightforward manner, this structure would be preferred in a situation where
the received index data need to be reorganized in the PDR beforeits use. Note that the index data can be restructured
inside the PDR according to its own storage method and query processing policy. For example, a PDR may want to
reorganize one of the received indicesin its own B-tree index.

In addition, the Single Layer Structure provides an efficient mechanism for representing multiple key field indexes,
where there istypically a one to one mapping e.g. <surname, givenname>.

4.8.5.5.2 Multi Layer Structures

Multi Layer Structures provide an efficient mechanism for describing multiple field indices with common key field
values. Thisis achieved with the use of multiplerrul ti _fi el d_sub_i ndex structures (see figure 32), where each
structure is used to describe one layer of amulti field sub index, (layer is equal to akey field of amulti field index).

Each index entry, withinthermul ti _fi el d_sub_i ndex, pointsto further mul ti _fi el d_sub_i ndex structures
(except for the leaf field), which contain index entries having the declared field value.

Thenmul ti _field_sub_index structureisformed of two parts:
. multi_field_header.
. multi_field_index_entries.

Thermul ti _field header defineshowthenulti _field i ndex _entries sub structure should be
interpreted and indirectly defines the size of each index entry.

All entrieswithintherrul ti _fi el d_i ndex_ent ri es sub structure are ordered in ascending order.
All entries are of afixed size, which enables the sub structure to be efficiently searched using a binary search algorithm.
The number of entries within the structure is not explicitly defined, but can be inferred as follows:

numentries = (structure_length -
sizeof (multi _field_header))/sizeof (nulti_field_index entry)

It should be noted that the syntax used withinnul ti _fi el d_sub_i ndex structuresis not always common across
al subindices. Therefore the header of eachmul ti _fi el d_sub_i ndex should be parsed to infer the syntax used
within a given instance.

ETSI

60 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Syntax No. of Bits Identifier
multi_field_sub_index() {
multi_field_header {
leaf field 1 bslbf
multiple_locators 1 bslbf
reserved 6 bslbf

if(single_layer_sub_index =='0") {

multi_layer_sub_index_structure()

}else {

single_layer_sub_index_structure()
}

}

ETSI

61 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

multi_field_sub_index (structure_id = 101) leaf_field = '0" child_sub_index_ref = 102

multi_field_sub_index with
Key field = Genre

range_end_offset = 2 range_end_offset = 4

N

4 [)

multi_field_sub_index (structure_id = 102) leaf_field = '0" child_sub_index_ref = 13

multi_field_sub_index with
Key field = Language

range_end_offset = 4 range_end_offset = 9 range_end_offset =1 4 range_end_offset = 17 etc
. N
multi_field_sub_index (structure_id = 13) leaf_field = '1'

multi_field_sub_index with
Key field =Title
- /

- Index Entries @ Container structures

Figure 32: Example multi_field_sub_index structure (using multi-layer syntax) for an index with three key fields (Genre, Language and Title)

ETSI

62 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Given fi el d_val ues, (aq, ay, ..., ay) and (bq, by, ..., b)), of twonul ti _fiel d_entri es, the order between the two
entries is determined as follows:

(a1, ap, ..., ap) is larger than (b4, by, ..., by) if and only if there exists an integer i (0 < i< n - 1) such that for every
j0<j<i-1), aj = bj and a; > b;.

(a1, ap, ..., ap) is smaller than (b4, by, ..., by) if and only if there exists an integer i (0 <i < n - 1) such that for every

j0<j<i-1), aj:bjandai<bi.

(a1, ay, ..., ap) is equal to (b4, by, ..., by) if and only if for every i(1 < i < n), a; = b;.

Specifically, within the nmulti_field_sub_index() structure, for all j between 0 and num_entries-1
(field_value[j,O0], .. field_value[j,k])issmallerthan (fi el d_val ue[j+1,0],...,field_value[j+1,k])

leaf field: Thisshal besetto"1" whenthemul ti _fi el d_sub_i ndex carriesthe leaf field of an index (last
indexed field). Which indicates that the structure contains references to fragments and not to further

mul ti _field_sub_index structures. Thisfield isonly used within multi layer sub indexes. When a single layer
sub index is being described this flag shall be ignored.

multiple_locators. A flag which when set to "1" indicates that there are potentially multiple referenced fragments
which have the same set of key field values. This provides a more bandwidth efficient mechanism, when multiple
fragments have the same set of key values. The actual fragment locators are carried in a separate structure within the
container and an offset is used to reference the set of relevant locators within the structure. When the flag is set to "0" it
indicatesthat f r agnment _| ocat or s aredefined inline.

Syntax No. of Bits Mnemonic
single_layer_sub_index_structure () {
multi_field_index_entries {
for (j=0; j<num_entries; j++) { ...
for(f=0; f<num_fields; f++) {
field_value field encoding uimsbf
dependent

if(multiple_locators =="1") {
locator_end_offset 16 uimsbf

else {
fragment_locator()

}

field_value: The value of the key field of the referenced fragment. The meaning of thisfield depends on the value of
thefi el d_encodi ng member of the relevant index list structure (see clause 4.8.5.4). Only values of the key field
within the range given for thissub_i ndex structure, by the relevant index structure are allowed (see clause 4.8.5.4).

fragment_locator: Whenthenul ti pl e_| ocat or s flagisset to"0" inthe multi_field header thisfield is used to
reference afragment, having the set of specified key field values. The format of this locator is dependent on the
fragment _| ocat or _f or mat defined for thisindex withinthei ndex_| i st structure. For an explanation of the
various defined locator formats please refer to clause 4.8.5.7.

locator_end_offset: Whenthenul ti pl e_| ocators flagissetto"1" inthermul ti _fi el d_header thisfieldis
used to indicate the inclusive end offset within the f r agnment _| ocat or s structure where the set of valid locators
can be found. The format of these locatorsis defined by the f r agnment _| ocat or _f or mat declared within the

i ndex_li st structure. The fragment_locator structure instance in which the locators can be found is the
fragment_locator structure with the same structure_id value as that of this sub index structure.

ETSI

63 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Thel ocat or _start _of f set isimplicit fromthe previous entry withintherul ti _fi el d_sub_i ndex, as
follows:

. If itisthefirst entry withintherul ti _fi el d_i ndex_entri es thenl ocator _start_of f set shal
equal 0.

. If it is not the first entry, the previous entries| ocat or _end_of f set + 1 shall be used as the current
entriesinclusivel ocat or _start _of fset.

if (current index !'=0) {
| ocator_start_offset = multi_field_index_entries[current index-1].|ocator_end_of fset
+ 1;
}else {
| ocator_start_offset = 0;
}

It should be noted that these references are based on fragment locator entries and not byte offsets. The actual byte offset
withinthef r agment _| ocat or s structureis calculated as follows:

byte offset = locator_end_of fset * sizeof (fragnent_| ocator);

Syntax No. of Bits Mnemonic

multi_layer_sub_index_structure () {
if (leaf_field="0") {

child_sub_index_ref 8 uimsbf

multi_field_index_entries {
for (j=0; j<num_entries; j++) { ...
field_value field encoding uimsbf
dependent

if(leaf_field=="1"{ ...
if(multiple_locators =="1") {

locator_end_offset 16 uimsbf
}
else {
fragment_locator()
}
}
else {
range_end_offset 16 uimsbf
}

}

}

For all fields not described, please refer to the semantics for thesi ngl e_| ayer _sub_i ndex_struct ur e fields
found above.

child_sub_index ref: Thisvalueidentifiesafurther mul ti _fi el d_sub_i ndex structure within the current
container which holds index entries having afield value equal to that defined within this sub index. The combination of
thisvalue and ther ange_end_of f set enables you to locate a set of index entries, which have a specific key field
value.

range_end_offset: Thisfield defines the set of entrieswithin thereferencednul ti _fi el d_sub_i ndex (a
mul ti _field_sub_index withitsstructure_idequal tochi | d_sub_i ndex_r ef) having akey field value
equal to that defined by thef i el d_val ue.

ETSI

64 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Thevaueisan inclusive offset fromthe start of themul ti _fi el d_i ndex_entri es of thetarget

mul ti _field_sub_index,wheretheend_of f set for the set of entriesthat have the declared value can be
found. Ther ange_st art _of f set isimplicit from the previous, entry withinthemul ti _fi el d_sub_i ndex, as
follows:

. Ifitisthefirst entry withinthermul ti _fi el d_i ndex_entri es thenstart_of f set shal equal 0.

. If it is not the first entry, the previous entriesr ange_end_of f set + 1 shall be used asthe current entries
inclusiver ange_start _of f set.

if (current index !'= 0) {
range_start_offset = nulti_field_index_entries[current index-1].range_end_offset +
1;
el se {
range_start_offset = 0;
}

It should be noted that these references are based on index entries and not byte offsets. So the actual byte offset within
the structure is calculated as follows:

byte offset = (range_end_offset * sizeof(rulti_field_index_entry)) +
sizeof (mul ti _field_header)

4.8.5.6 Fragment locators structure

Thefragment _| ocat or s structureisusedto carry f ragnent _I ocat or s, where there are multiple fragments
with the same set of key field values. This structureis referenced by thenul ti _fi el d_sub_i ndex structure.

There can be multiple fragment_locators structures within a single container and the structure_id is used to identify an
instance. The structure_id shall be set to the same structure_id value to that of the associated sub index structure. So for
exampleif the sub index has a structure_id of "0x03" then the corresponding fragment_locators structure will have a
structure_id of "0x03".

Syntax No. of Bits Mnemonic

fragment_locators() {
for(int i=0; i<num_locators; i++) { ...
fragment_locator()
}

}

num_locators: Thisvalueisinferred from the size of the structure which is declared within the containers
container_header.

l.e.num | ocators = structure_l ength/sizeof (fragnent _I| ocator);

fragment_locator: Thisfield isused to convey areferenceto a TV A fragment. The format of thislocator is dependent
onthef ragnent _| ocat or _f or mat defined for thisindex withinthei ndex_I i st structure. For an explanation
of the various defined locator formats please refer to clause 4.8.5.7.

4.8.5.7 Fragment_locator formats

There are anumber of defined fragment locator formats to enable the referencing of fragments from an index entry.

48.5.7.1 Referencing fragments in another container

When a data structure becomes quite large, or it is aregquirement to be able to carousel the index at a different rateto
that of the data, it is advantageous to split the index and data across independent containers. This format provides a
mechanism for an index entry to reference a TV A fragment within another container.

ETSI

65 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Syntax No. of Bits Mnemonic
remote_fragment_locator() {
target_container 16 uimsbf
target_fragment 24 uimsbf
}

target_container: The container 1D of the container holding the encapsulation structure for the target fragment.

target_fragment: A 24 hit identifier which uniquely identifies a fragment within the target container. To locate the
actual fragment, the appropriate container should be loaded and the encapsulation structure searched to find a matching
fragment i d. Oncethefragnent i d hasbeen located the appropriate TVA fragment can be found.

4.8.5.7.2 Referencing a fragment within the same container

It is quite possible to use the above method for referencing fragments within the same container, however it is not the
most efficient way. Therefore the following method is supported.

Syntax No. of Bits Mnemonic

local_fragment_locator() {
fragment_offset 16 uimsbf
}

fragment_offset: The offset within the encapsulation structure, where the fragment can be found. It should be noted
that the offset is an index into the encapsulation structure and not a byte offset. The byte offset can be calculated as
follows:

byte offset = (sizeof(encapsul ation_entry) * fragnent_offset) +
encapsul ati on_header;
4.8.6 Binary representation of Simple Types

Within the Index list structure it is a requirement to define the encoding used to represent each of anindex's key fields.
Thefollowingisalist of XML Schema defined primitive simple types used within the TV-Anytime schema and how
they should be encoded, when used within the context of an index.

SimpleType field_encoding value Encoding

string 0x0000 String

anyURI 0x0000 String

boolean 0x0204 unsigned byte with false = "0x00" and
true = Non zero value e.g. Oxff

NMTOKEN 0x0000 String

gYear 0x0101 unsigned binary — Big-Endian

date 0x0401 Modified Julian Date (TVA BiM codec
clause 4.4.2.4.3)

dateTime 0x0400 Modified Julian Date and Milliseconds
(TVA BiM codec, clause 4.4.2.4.2)

duration 0x0400 Modified Julian Date and Milliseconds
(TVA BiM codec, clause 4.4.2.4.2)

integer 0x0202 one bit to indicate sign (0:positive,
1: negative), followed by abs(value) using
vluimsbf5.

unsignedShort 0x0101 unsigned binary — Big-Endian

unsignedLong 0x0203 vluimshf8

unsignedint 0x0201 unsigned binary — Big-Endian

nonNegativelnteger 0x0203 vluimsbf8

positivelnteger 0x0203 vliuimsbf8

float 0x0300 signed float

double 0x0302 signed double

ETSI

66 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

4.8.7 Indexes based on Classification Schemes

When creating an index based on a Classification Scheme it is recommended that the key field used isthe hr ef
attribute within the Cont r ol | edTer mType and that itsvalue isa full de-referenced URI i.e. not an Alias.

It is also recommended that al entries within the index use a single classification scheme. The indexing solution can
support the use of mixed classification schemes but it may present problems to an application, which wishes to search
the index. For example, there may be more than one reference value for genre " Sport”.

4.9 Notion of Validation

TV-Anytime deals with metadata and in particular with large and highly structured metadata.

An XML Schemadocument is called a schema. The TVA schemaisthus an XML schema document, namely the data
model defining the rulesto be respected to edit "valid" TV A metadata description. This includes information about
default values, element types, attributes types and type hierarchies.

The validation process ensures that the descriptions transmitted to the application respect all the rules defined in the
associated schema and thus that it is conformant to the standard having specified this schema. The nature (i.e. the type)
of each description item (element or attributes) are also determined and controlled during this process. Validationisthe
way to make data more explicit to an application. It is a transformation from raw un-typed well-formed (syntactically
correct according to the schema definitions) information into typed useful information. The generic nature of the
validation processis spelled out by W3C in the XML schema specification in [2].

Because the TV-Anytime encoding mechanism produces by nature only valid encoded metadata description and due to
the design of the TV-Anytime schema and of the associated fragmentation mechanism, each partial description shall be
valid according to the TV A schema, first, after the decoding of the TV AMain fragments and, afterwards, of any of its

associated TVA fragments.

4.10 Extensibility of the TV-Anytime schema

4.10.1 Introduction

A TVA metadata system includes a common core set of metadata as defined in TS 102 822-3-1 [9] to ensure a
minimum level of interoperability. Scalability and extensibility are key TV-Anytime features. Backward and possibly
forward compatibility shall be maintained.

The MPEG-7 Definition Description Language (DDL) that is used as the TV-Anytime representation language for
metadata is the main instrument for this extensibility.

As shown in figure 33, mechanisms need to be defined to allow the extension of the specification with new TV-Anytime
definitions, or for private extensions.

ETSI

67 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

DDL e
= JL Ny i
G ey

Tv-Anytime Not defined in the standard

Figure 33: Representation of a TV-Anytime extension

The associated TVA extensibility rules are presented in the following clause.

4.10.2 Extensibility rules

The following clause defines rules to support specification and private extensionsin a backward and forward
compatible manner:

. Forward compatibility means a decoder that is only aware of a previous version of aschemais able to partialy
decode a description conformant to an updated version of that schema.

. Backward compatibility means a decoder that is only aware of a new version of the schemais ableto partially
decode a description conformant to a previous version of that schema.

With BIM, backward compatibility is provided by the unique reference of the used schemain the Decoder I ni t .
Forward compatibility is ensured by a specific syntax defined in MPEG-7 Specification [1] clauses 7 and 8. Itsmain
principle isto use the namespace of the schema. The binary format allows one to keep parts of a description related to
different schemas in separate chunks of the binary description stream, so that parts related to an unknown schema may
be skipped by the decoder. The Decoder Initialization identifies schema versions with which compatibility is preserved
by listing their Schema URIs. A decoder that knows at Ieast one of the Schema URIs will be able to decode at least part
of the binary description stream.

The following rules shall be applied so as to define avalid extension of the standard, in particular to alow the
compatibility mechanisms described above. They constrain the extensibility of TV-Anytime schemas:

. Extension must be defined using the TV A schema representation language (i.e. MPEG-7 DDL). The way these
extended schemas are transmitted is out of the scope of the present document.

. The module definition must have a prose definition that describes the syntactic and semantic requirements of
the elements, attributes and/or content models that it declares.

. Existing element names should never be re-used. New elements names should be defined under their own
namespace (e.g. for another version of the TV A specification or for private extensions).

. The module definition's elements and attributes must be part of an XML namespace. If the module is defined
by an organization other than TVA and MPEG (for imported MPEG datatypes and description schemes), this
namespace must NOT be the same as the namespace in which other TVA and MPEG standards are defined.

. The namespace under which extensions are defined will need to be clearly identified.

. Any extensions to existing schema should not obscure existing functionality. Thus existing functionality
should not be contained within a new element that an earlier decoder will not understand.

ETSI

68 ETSI TS 102 822-3-2 V1.3.1 (2006-01)
. Wherever possible, an extended schema should only add functionality and not replace existing functionality.
Thiswill allow aversion 1 decoder to maximally understand a version 2 document.
. An application should ignore any elements or attributes they do not need, do not understand or cannot use.

Table 13 providesthelist of conditions under which the extensions of TV-Anytime metadata definitions are supported or
not.

Table 13: Types of extension permitted in future versions of TV-Anytime

Condition/Type of extension of TV-Anytime metadata
definitions

Status

Condition 1: A new global element of existing type

NOT PERMITTED

Condition 2: A new global attributes added to existing type

PERMITTED

new type (simple or complex - but see below for limitations
on derivation etc)

PERMITTED

Polymorphism of existing type by Inheritance with
restriction

PERMITTED (But see rules above)

Polymorphism of existing type by Inheritance with
extension

PERMITTED (But see rules above)

Polymorphism of existing type by Redefining types during
import

NOT PERMITTED

Substitution Groups

NOT PERMITTED.
Instead of using substitution groups,
explicit derivation can be used. This is
safer for future extensions.

ETSI

69 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Annex A (informative):
Bibliography
. XML Path Language, W3C Recommendation, 16 November 1999.

NOTE: Available at: http://www.w3.org/TR/xpath.html.

. Namespacesin XML, W3C Recommendation, 14 January 1999.
NOTE 1. Available at: http://www.w3.0rg/TR/REC-xml-names/.

NOTE 2: These documents are maintained by the W3C (http: //Aww.w3.0rg)

. IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax”.
. XML, Extensible Markup Language (XML) 1.0 second edition, October 2000.
NOTE: Awvailable at: http://www.w3.0rg/TR/2000/REC-xmI-20001006.

. IETF RFC 3629: "UTF-8, atransformation format of 1SO/I EC 10646 (2003)".
NOTE: Available at http://www.ietf.org/rfc/rfc3629.txt.

ETSI

http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.ietf.org/rfc/rfc3629.txt

70 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

List of figures

Figure 1: Overview of the scope of TVA Specification on Metadata and SYyStEM...........cceireireneinenieeneseeeseeseseseees 8
Figure 2: UnidireCtional ENVIFONIMENTccciiieiieie et ee st et e e e e e e see e e e steeseeeseesseesse e seesseenseeseessaesseesseessennsesneas 12
Figure 3: Processes associated with delivery Of MEtadatal...........c.ooveiriiieieireseee e 13
Figure 4: Functional metadata processing architecture in a unidirectional environmentccccceevveeevieesieeseecnsee e, 15
Figure 5: Fragmentation of a TV-Anytime metadata deSCriptionooceriieirineerieeeere e 16
Figure 6: UML-like representation of a TVAMaAIN fragMent.........cc.eecieiiie ettt 17
Figure 7: UML-like representation of a MetadataOriginationlnformation fragmentcccceevvevevercie e vee s, 19
Figure 8: UML-like representation of a Programlnformation fragment.............coeveiinnene e 19
Figure 9: UML-like representation of a Grouplnformation fragmentcoveeveeie e ccee s 20
Figure 10: UML-like representation of a BroadCastEVent fragmentcoeeviieeieneeenereeeseeesie e 21
Figure 11: UML-like representation of a Schedule fragment.............ocveoeie e 22
Figure 12: UML-like representation of a Servicelnformation fragmentcccoveeveeii e 23
Figure 13: UML-like representation of PerSONNEMETYPE........ccirriririeinie ettt sttt sre s ese bbb e b sae e esesne e 23
Figure 14: UML-like representation of a Purchaselnformation fragment.............ccccevv e ieesiesi e 24
Figure 15: UML-like representation of a ProgramReviews fragment ..o 24
Figure 16: UML-like representation of a ClassificationScheme fragment............ccccovvevv e, 25
Figure 17: UML-like representation of a Segmentinformation fragmentcceeriierineneneseseeese e 26
Figure 18: UML-like representation of a SegmentGroup fragMmentc.coeerereereiene st 26
Figure 19: UML-like representation of a Package fragmentcocveeieiiice e 27
Figure 20: UML —like representation of a Interstitial Campaign fragmentooeeiiinineiniencneeee e 27
Figure 21: UML — like representation of a RMPIDesCription fragmentcccocevceeve i e 27
Figure 22: UML — like representation of a CouponDeSCription fragment............ccoeveerereereneese e 28
Figure 23: UML — like representation of a Targetinformation fragmentccooceevv e 28
Figure 24: UML — like representation of an InterstitialBreak fragment...........cccovecvieece e 29
Figure 25: UML —like representation of @ RUIE Fragmentcooiiiiiiiiieer st 29
Figure 26: UML — like representation of the ContentListType used by the following fragments..........cccccvoeveecvveenen. 29
Figure 27: BiM bitstream without ZIib optimiZed dECOTENcccciiiiiiieieeree e 38
Figure 28: BiM stream with Zlib optimiZed dECOUENcoceeii e eneas 39
Figure 29: Schematic representation of interrelationship between structures within acontainer..............cccooevevererenenens 43
Figure 30: Schematic representation of interrelationship between Index containers and Data containers.............c.e..... 48
FIQUre 31 INAEXING SITUCLUIEc.viceeeeeeecties ettt st e st este et e te e e ss e s seesseesseesaeeseeenseaseeaseanseesseensenseansaesseessennsennnenneas 50
Figure 32: Example multi_field _sub_index structure (using multi-layer syntax) for an index with three key fields
(Genre, Language @0 TIlE)o.eecereeee ettt ettt b e b e bt et b bbb bttt e 61

ETSI

71 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

Figure 33: Representation Of a TV-ANYLIME EXIENSIONccceiieiieieeie e see e ste e see e s sre e se e teesteeseessaesseesseessensesnes 67

ETSI

72 ETSI TS 102 822-3-2 V1.3.1 (2006-01)

List of tables

Table 1: Table of values for the ENcodingV erSioN Parametereoveereieerienieesieieese et 32
Table 2: Character encoding and their terminalion VAIUEScceeiiieiee ittt nne s 32
Table 3: Table of values for the INdexingV ersion field...... ... 33
Table 4: SLrUCLUrE _tYPE ASSIONIMENES.ecuveieeiieeieeiteeteseesteesteeteeseesseesteeste e teseesaeesseesseenseaseeassesssesseesseesessesnsesnsessennsennes 41
Table 5: Structure_type and their matching Valid SITUCIUIE ic.ooveiiiiiiiie e 42
Table 6: Valid fragment_referenCe fOrMELS..........ccvicui ettt e teereseesneesnaenseenes 44
Table 7: Fragment_tYPe @SSIGNMIENESciueeereieesee st esteeteesseeseeste e teestesstesseesaeesseesseesseasseaseaaseesseesseessessesssesseessenssennes 54
Table 8: field_identifier ASSIONIMENES........ccciiiie bbbttt b et b bbbt nbennns 55
Table 9: Encoding and interpretation of the field_value, low_field_value and high_field valuefield..........cc.cccue....... 55
Table 10: Encoding types and their FESPECHIVE SIZESco.iieiriieirieiee et 56
Table 11: Defined index order for primitive SIMPIE tYPESocvieieieeciee ettt e e e sneenre s 57
Tabhle 12: Fragment FEfErENCE LYPESviiiee ettt ettt et e s te st e s aeesteeteeseeeseesseenseesseesseeseensesneesneennennseenes 58
Table 13: Types of extension permitted in future versions of TV-ANYEIME........coo i 68

ETSI

73

ETSI TS 102 822-3-2 V1.3.1 (2006-01)

History
Document history
V111 October 2003 Publication
V121 September 2004 | Publication
V131 January 2006 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, abbreviations and mnemonics
	3.1 Definitions
	3.2 Abbreviations
	3.3 Mnemonics

	4 System mechanisms in a unidirectional environment
	4.1 Overview
	4.1.1 Main features of a unidirectional environment
	4.1.2 Access methods
	4.1.3 Definition of a TV-Anytime metadata description
	4.1.4 TV-Anytime metadata description size

	4.2 Metadata general delivery framework
	4.2.1 Introduction to fragmentation
	4.2.2 Introduction to encoding
	4.2.3 Introduction to encapsulation
	4.2.4 Introduction to Indexing
	4.2.5 Logical decoder architecture

	4.3 Metadata description fragmentation
	4.3.1 TVA metadata fragments
	4.3.1.1 TVAMain fragment
	4.3.1.2 MetadataOriginationInformation Fragment
	4.3.1.3 ProgramInformation fragment
	4.3.1.4 GroupInformation fragment
	4.3.1.5 OnDemandProgram and OnDemandService fragment
	4.3.1.6 BroadcastEvent fragment
	4.3.1.7 Schedule fragment
	4.3.1.8 ServiceInformation fragment
	4.3.1.9 CreditInformation fragments
	4.3.1.9.1 PersonName fragment
	4.3.1.9.2 OrganizationName fragment

	4.3.1.10 Purchase fragment
	4.3.1.11 Review fragment
	4.3.1.12 User Description information
	4.3.1.13 ClassificationScheme fragments
	4.3.1.13.1 CSAlias
	4.3.1.13.2 ClassificationScheme

	4.3.1.14 Segmentation
	4.3.1.14.1 SegmentInformation
	4.3.1.14.2 SegmentGroupInformation

	4.3.1.15 Package Fragment
	4.3.1.16 Interstitial Campaign Fragment
	4.3.1.17 RMPI Fragment
	4.3.1.18 Coupon Description Fragment
	4.3.1.19 TargetingInformation Fragment
	4.3.1.20 InterstitialBreak Fragment
	4.3.1.21 Rule Fragment
	4.3.1.22 Recording Cache Fragments
	4.3.1.22.1 Request Fragment
	4.3.1.22.2 Replace Fragment
	4.3.1.22.3 Expire Fragment

	4.3.2 Fragment Identification and Versioning
	4.3.3 Element ordering
	4.3.4 TVA access unit
	4.3.5 Use of TVAIDType, TVAIDRefType and TVAIDRefsType
	4.3.6 Use of ID, IDRef, XPath and xml:lang

	4.4 Fragment encoding
	4.4.1 TVA-init message
	4.4.1.1 Overview

	4.4.2 MPEG-7 system profile
	4.4.2.1 DecoderInit
	4.4.2.1.1 UnitSizeCode
	4.4.2.1.2 InitialDescription

	4.4.2.2 FragmentUpdateCommand
	4.4.2.2.1 Guidelines for the use of the FragmentUpdateUnit

	4.4.2.3 ContextMode
	4.4.2.4 TV-Anytime codec
	4.4.2.4.1 Classification scheme wrapper
	4.4.2.4.2 dateTime Codec
	4.4.2.4.3 date codec
	4.4.2.4.4 Zlib optimized decoder

	4.5 Carriage of TV-Anytime data
	4.5.1 Containers
	4.5.1.1 Carriage of containers
	4.5.1.2 Classification of containers
	4.5.1.3 Container identification

	4.5.2 Container versioning
	4.5.2.1 Container syntax
	4.5.2.2 Container map
	4.5.2.2.1 Container map requirements

	4.6 Fragment encapsulation
	4.6.1 Encapsulation format
	4.6.1.1 Encapsulation structure
	4.6.1.2 Moved fragments structure
	4.6.1.3 Fragment_Reference formats
	4.6.1.3.1 Referencing a BiM encoded fragment

	4.6.1.4 Data repository
	4.6.1.4.1 Binary data repository

	4.6.1.5 Alternative Encoding formats

	4.7 Fragment Management
	4.7.1 Fragment Id
	4.7.2 Fragment Add
	4.7.3 Fragment Update
	4.7.4 Fragment Move
	4.7.5 Fragment Delete

	4.8 Indexing
	4.8.1 Introduction
	4.8.2 Requirements
	4.8.3 Carriage of Indexing Information
	4.8.4 Data repository
	4.8.4.1 String repository

	4.8.5 Index structures
	4.8.5.1 Identification of indices
	4.8.5.1.1 Use of Ids
	4.8.5.1.2 Use of XPath

	4.8.5.2 Introduction to the multi-key index
	4.8.5.3 Index List
	4.8.5.4 Index
	4.8.5.4.1 Field Value Ordering

	4.8.5.5 Multi_field_sub_index
	4.8.5.5.1 Single Layer Structures
	4.8.5.5.2 Multi Layer Structures

	4.8.5.6 Fragment locators structure
	4.8.5.7 Fragment_locator formats
	4.8.5.7.1 Referencing fragments in another container
	4.8.5.7.2 Referencing a fragment within the same container

	4.8.6 Binary representation of Simple Types
	4.8.7 Indexes based on Classification Schemes

	4.9 Notion of Validation
	4.10 Extensibility of the TV-Anytime schema
	4.10.1 Introduction
	4.10.2 Extensibility rules

	Annex A (informative): Bibliography
	History

