

ETSI TS 102 558 V1.1.1 (2006-12)

Technical Specification

Methods for Testing and Specification (MTS);
Internet Protocol Testing (IPT);

IPv6 Security;
Requirements Catalogue

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 2

Reference
DTS/MTS-IPT-008-IPV6-SecReq

Keywords
IP, IPv6, security, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 3

Contents

Intellectual Property Rights ..4

Foreword...4

1 Scope ..5

2 References ..5

3 Abbreviations ...6

4 Requirements Catalogue...6
4.1 Requirements extracted from RFC 4301 ..7
4.2 Requirements extracted from RFC 4302 ..9
4.3 Requirements extracted from RFC 4303 ..42
4.4 Requirements extracted from RFC 4305 ..87
4.5 Requirements extracted from RFC 4306 ..98
4.6 Requirements extracted from RFC 2405 ..476

History ..477

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS).

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 5

1 Scope
The present document is a catalogue of all of the security-related IPv6 requirements extracted from the following IETF
specifications:

RFC 4301 [1]: "Security Architecture for the Internet Protocol".

RFC 4302 [2]: "IP Authentication Header".

RFC 4303 [3]: "IP Encapsulating Security Payload (ESP)".

RFC 4305 [4]: "Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload
(ESP) and Authentication Header (AH)".

RFC 4306 [5] "Internet Key Exchange (IKEv2) Protocol".

RFC 2405 [6]: "The ESP DES-CBC Cipher Algorithm With Explicit IV".

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

[1] IETF RFC 4301: "Security Architecture for the Internet Protocol".

[2] IETF RFC 4302: "IP Authentication Header".

[3] IETF RFC 4303: "IP Encapsulating Security Payload (ESP)".

[4] IETF RFC 4305: "Cryptographic Algorithm Implementation Requirements for Encapsulating
Security Payload (ESP) and Authentication Header (AH)".

[5] IETF RFC 4306 "Internet Key Exchange (IKEv2) Protocol".

[6] IETF RFC 2405: "The ESP DES-CBC Cipher Algorithm With Explicit IV".

http://docbox.etsi.org/Reference

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 6

3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AH Authentication Header
CBC Cipher Block Chaining
DES Data Encryption Standard
DHCP Dynamic Host Configuration Protocol
EAP Extensible Authentication Procedure
ESN Extended Sequence Number
ESP Encapsulated Security Payload
IANA Internet Assigned Number Association
ICMP Internet Control Message Protocol
ICV Integrity Check Value
IETF Internet Engineering Task Force
IKEv2 Internet Key Exchange protocol version 2
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IV Initialization Vector
MAC Message Authentication Code
PMTU Path Maximum Transmission Unit
RFC Request For Comments

NOTE: IETF terminology for a draft standard.

SA Security Association
SAD Security Association Database
SPD Security Policies Database
SPI Security Parameters Index
TCP Transport Control Protocol
UDP User Datagram Protocol

4 Requirements Catalogue
The security requirements related to Internet Protocol version 6 (IPv6) are specified in a number of IETF documents.
These documents include requirements for the overall IPv6 security architecture [1], the use of the IP Authentication
Header (AH) [2], IP Encapsulating Security Payload (ESP) [3], the use of cryptographic algorithms [4], [6] and the
Internet Key Exchange (IKEv2) [5]. The present document is a catalogue of all of the normative requirements from
these security specifications. Each requirement is given a unique identifier (for example, RQ_002_1234) and the
following information is included with each:

• the clause number in the RFC from which the requirement has been extracted;

• the type of requirement (Mandatory, Optional or Recommended);

• the type of device to which the requirement applies (for example, Host or Router);

• the actual text from which the requirement was extracted.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 7

4.1 Requirements extracted from RFC 4301

Identifier: RQ_002_1004
RFC Clause: 3.2
Type: Mandatory
Applies to: IPsec host

Requirement:
IPsec implementations MUST support ESP

RFC Text:
IPsec implementations MUST support ESP and MAY support AH.

Identifier: RQ_002_1005
RFC Clause: 3.2
Type: Optional
Applies to: IPsec host

Requirement:
IPsec implementations MAY support AH.

RFC Text:
IPsec implementations MUST support ESP and MAY support AH.

Identifier: RQ_002_1010
RFC Clause: 3.2
Type: Mandatory
Applies to: IPsec host

Requirement:
Manual distribution of keys MUST be supported

RFC Text:
Because most of the security services provided by IPsec require the use of cryptographic keys, IPsec
relies on a separate set of mechanisms for putting these keys in place. This document requires
support for both manual and automated distribution of keys. It specifies a specific public-key
based approach (IKEv2 [Kau05]) for automated key management, but other automated key distribution
techniques MAY be used.

Identifier: RQ_002_1011
RFC Clause: 3.2
Type: Mandatory
Applies to: IPsec host

Requirement:
Automatic distribution of keys MUST be supported

RFC Text:
Because most of the security services provided by IPsec require the use of cryptographic keys, IPsec
relies on a separate set of mechanisms for putting these keys in place. This document requires
support for both manual and automated distribution of keys. It specifies a specific public-key based
approach (IKEv2 [Kau05]) for automated key management, but other automated key distribution
techniques MAY be used.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 8

Identifier: RQ_002_1014
RFC Clause: 4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
A Security Association MUST apply to exactly one of ESP or AH

RFC Text:
An SA is a simplex "connection" that affords security services to the traffic carried by it.
Security services are afforded to an SA by the use of AH, or ESP, but not both. If both AH and ESP
protection are applied to a traffic stream, then two SAs must be created and coordinated to effect
protection through iterated application of the security protocols. To secure typical, bi-directional
communication between two IPsec-enabled systems, a pair of SAs (one in each direction) is required.
IKE explicitly creates SA pairs in recognition of this common usage requirement.

Identifier: RQ_002_1020
RFC Clause: 4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
A host implementation of IPsec MUST support transport mode

RFC Text:
In summary,

 a) A host implementation of IPsec MUST support both transport and tunnel mode. This is true for
native, BITS, and BITW implementations for hosts.

 b) A security gateway MUST support tunnel mode and MAY support transport mode. If it supports
transport mode, that should be used only when the security gateway is acting as a host, e.g., for
network management, or to provide security between two intermediate systems along a path.

Identifier: RQ_002_1021
RFC Clause: 4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
A host implementation of IPsec MUST support tunnel mode

RFC Text:
In summary,

 a) A host implementation of IPsec MUST support both transport and tunnel mode. This is true for
native, BITS, and BITW implementations for hosts.

 b) A security gateway MUST support tunnel mode and MAY support transport mode. If it supports
transport mode, that should be used only when the security gateway is acting as a host, e.g., for
network management, or to provide security between two intermediate systems along a path.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 9

Identifier: RQ_002_1022
RFC Clause: 4.1
Type: Mandatory
Applies to: IPsec gateway

Requirement:
A gateway implementation of IPsec MUST support tunnel mode

RFC Text:
In summary,

 a) A host implementation of IPsec MUST support both transport and tunnel mode. This is true for
native, BITS, and BITW implementations for hosts.

 b) A security gateway MUST support tunnel mode and MAY support transport mode. If it supports
transport mode, that should be used only when the security gateway is acting as a host, e.g., for
network management, or to provide security between two intermediate systems along a path.

Identifier: RQ_002_1023
RFC Clause: 4.1
Type: Optional
Applies to: IPsec gateway

Requirement:
A gateway implementation of IPsec MAY support transport mode

RFC Text:
In summary,

 a) A host implementation of IPsec MUST support both transport and tunnel mode. This is true for
native, BITS, and BITW implementations for hosts.

 b) A security gateway MUST support tunnel mode and MAY support transport mode. If it supports
transport mode, that should be used only when the security gateway is acting as a host, e.g., for
network management, or to provide security between two intermediate systems along a path.

4.2 Requirements extracted from RFC 4302

Identifier: RQ_002_2000
RFC Clause: 2
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IP packet containing an Authentication Header (AH), it MUST set the
appropriate Next Header field (either in the IPv6 Header or in the previous Extension Header) to the
value fifty-one (51)

RFC Text:
The protocol header (IPv4, IPv6, or IPv6 Extension) immediately
preceding the AH header SHALL contain the value 51 in its Protocol
(IPv4) or Next Header (IPv6, Extension) fields [DH98]. Figure 1
illustrates the format for AH.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Header | Payload Len | RESERVED |
+-+
| Security Parameters Index (SPI) |
+-+
| Sequence Number Field |
+-+
| |
+ Integrity Check Value-ICV (variable) |
| |
+-+

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 10

 Figure 1. AH Format

Identifier: RQ_002_2001
RFC Clause: 2
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IP packet containing an Authentication Header (AH), it MUST construct
the Authentication Header in the following format:

 Octet Field

 1 Next Header
 2 Payload Length
 3 & 4 Reserved
 5 to 8 Security Parameters Index (SPI)
 9 to 12 Sequence Number
 13 to end Integrity Check Value (ICV)

RFC Text:
The protocol header (IPv4, IPv6, or IPv6 Extension) immediately
preceding the AH header SHALL contain the value 51 in its Protocol
(IPv4) or Next Header (IPv6, Extension) fields [DH98]. Figure 1
illustrates the format for AH.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Header | Payload Len | RESERVED |
+-+
| Security Parameters Index (SPI) |
+-+
| Sequence Number Field |
+-+
| |
+ Integrity Check Value-ICV (variable) |
| |
+-+

 Figure 1. AH Format

Identifier: RQ_002_2002
RFC Clause: 2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IP packet containing an Authentication Header (AH), it MUST set the AH
Next Header field to the appropriate value as defined in IETF RFC 1700

RFC Text:
The Next Header is an 8-bit field that identifies the type of the
next payload after the Authentication Header. The value of this
field is chosen from the set of IP Protocol Numbers defined on the
web page of Internet Assigned Numbers Authority (IANA). For example,
a value of 4 indicates IPv4, a value of 41 indicates IPv6, and a
value of 6 indicates TCP.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 11

Identifier: RQ_002_2003
RFC Clause: 2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IP packet containing an Authentication Header (AH), it MUST set the AH
Payload Length field to a value equal to two less than the length in 32-bit words of the
Authentication Header

RFC Text:
This 8-bit field specifies the length of AH in 32-bit words (4-byte
units), minus "2". Thus, for example, if an integrity algorithm
yields a 96-bit authentication value, this length field will be "4"
(3 32-bit word fixed fields plus 3 32-bit words for the ICV, minus
2). For IPv6, the total length of the header must be a multiple of
8-octet units. (Note that although IPv6 [DH98] characterizes AH as
an extension header, its length is measured in 32-bit words, not the
64-bit words used by other IPv6 extension headers.) See Section 2.6,
"Integrity Check Value (ICV)", for comments on padding of this field,
and Section 3.3.3.2.1, "ICV Padding".

Identifier: RQ_002_2004
RFC Clause: 2.3
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IP packet containing an Authentication Header (AH), it MUST set to zero
the octets identified as "Reserved" in the Authentication Header.

RFC Text:
This 16-bit field is reserved for future use. It MUST be set to
"zero" by the sender, and it SHOULD be ignored by the recipient.
(Note that the value is included in the ICV calculation, but is
otherwise ignored by the recipient.)

Identifier: RQ_002_2005
RFC Clause: 2.3
Type: Recommended
Applies to: IPsec host

Requirement:
When an IPsec Host receives an IP packet containing an Authentication Header (AH), it SHOULD ignore
the octets identified as "Reserved" in the Authentication Header.

RFC Text:
This 16-bit field is reserved for future use. It MUST be set to
"zero" by the sender, and it SHOULD be ignored by the recipient.
(Note that the value is included in the ICV calculation, but is
otherwise ignored by the recipient.)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 12

Identifier: RQ_002_2006
RFC Clause: 2.4
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends a unicast IP packet containing an Authentication Header (AH), it MUST set
the AH Security Parameters Index (SPI) to the SPI value provided by the other IPsec Security
Association (SA) endpoint when the SA was established.

RFC Text:
The SPI is an arbitrary 32-bit value that is used by a receiver to
identify the SA to which an incoming packet is bound. For a unicast
SA, the SPI can be used by itself to specify an SA, or it may be used
in conjunction with the IPsec protocol type (in this case AH).
Because for unicast SAs the SPI value is generated by the receiver,
whether the value is sufficient to identify an SA by itself or
whether it must be used in conjunction with the IPsec protocol value
is a local matter. The SPI field is mandatory, and this mechanism
for mapping inbound traffic to unicast SAs described above MUST be
supported by all AH implementations.

Identifier: RQ_002_2007
RFC Clause: 2.4
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends a multicast IP packet containing an Authentication Header (AH), it MUST
set the AH Security Parameters Index (SPI) to the value assigned to it.

RFC Text:
In many secure multicast architectures, e.g., [RFC3740], a central
Group Controller/Key Server unilaterally assigns the group security
association's SPI. This SPI assignment is not negotiated or
coordinated with the key management (e.g., IKE) subsystems that
reside in the individual end systems that comprise the group.
Consequently, it is possible that a group security association and a
unicast security association can simultaneously use the same SPI. A
multicast-capable IPsec implementation MUST correctly de-multiplex
inbound traffic even in the context of SPI collisions.

Identifier: RQ_002_2008
RFC Clause: 2.4
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host receives a multicast IP packet containing an Authentication Header (AH), it MUST
use the AH Security Parameters Index field to identify correctly Security Association related to the
incoming packet.

RFC Text:
In many secure multicast architectures, e.g., [RFC3740], a central
Group Controller/Key Server unilaterally assigns the group security
association's SPI. This SPI assignment is not negotiated or
coordinated with the key management (e.g., IKE) subsystems that
reside in the individual end systems that comprise the group.
Consequently, it is possible that a group security association and a
unicast security association can simultaneously use the same SPI. A
multicast-capable IPsec implementation MUST correctly de-multiplex
inbound traffic even in the context of SPI collisions.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 13

Identifier: RQ_002_2009
RFC Clause: 2.4
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec Host receives a multicast IP packet containing an Authentication Header (AH) but is
unable to relate the header to an established Security |Association, it MUST discard the incoming
packet.

RFC Text:
Each entry in the Security Association Database (SAD) [Ken-Arch] must
indicate whether the SA lookup makes use of the destination, or
destination and source, IP addresses, in addition to the SPI. For
multicast SAs, the protocol field is not employed for SA lookups.
For each inbound, IPsec-protected packet, an implementation must
conduct its search of the SAD such that it finds the entry that
matches the "longest" SA identifier. In this context, if two or more
SAD entries match based on the SPI value, then the entry that also
matches based on destination, or destination and source, address
comparison (as indicated in the SAD entry) is the "longest" match.
This implies a logical ordering of the SAD search as follows:

 1. Search the SAD for a match on {SPI, destination
 address, source address}. If an SAD entry
 matches, then process the inbound AH packet with that
 matching SAD entry. Otherwise, proceed to step 2.

 2. Search the SAD for a match on {SPI, destination
 address}. If an SAD entry matches, then process
 the inbound AH packet with that matching SAD
 entry. Otherwise, proceed to step 3.

 3. Search the SAD for a match on only {SPI} if the receiver
 has chosen to maintain a single SPI space for AH and ESP,
 or on {SPI, protocol} otherwise. If an SAD
 entry matches, then process the inbound AH packet with
 that matching SAD entry. Otherwise, discard the packet
 and log an auditable event.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 14

Identifier: RQ_002_2010
RFC Clause: 2.4
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec Host receives a multicast IP packet containing an Authentication Header (AH) but is
unable to relate the header to an established Security |Association, it SHOULD record in the audit
log the SPI value, date/time, Source Address, Destination Address, and (in IPv6) the Flow ID

RFC Text:
Each entry in the Security Association Database (SAD) [Ken-Arch] must
indicate whether the SA lookup makes use of the destination, or
destination and source, IP addresses, in addition to the SPI. For
multicast SAs, the protocol field is not employed for SA lookups.
For each inbound, IPsec-protected packet, an implementation must
conduct its search of the SAD such that it finds the entry that
matches the "longest" SA identifier. In this context, if two or more
SAD entries match based on the SPI value, then the entry that also
matches based on destination, or destination and source, address
comparison (as indicated in the SAD entry) is the "longest" match.
This implies a logical ordering of the SAD search as follows:

 1. Search the SAD for a match on {SPI, destination
 address, source address}. If an SAD entry
 matches, then process the inbound AH packet with that
 matching SAD entry. Otherwise, proceed to step 2.

 2. Search the SAD for a match on {SPI, destination
 address}. If an SAD entry matches, then process
 the inbound AH packet with that matching SAD
 entry. Otherwise, proceed to step 3.

 3. Search the SAD for a match on only {SPI} if the receiver
 has chosen to maintain a single SPI space for AH and ESP,
 or on {SPI, protocol} otherwise. If an SAD
 entry matches, then process the inbound AH packet with
 that matching SAD entry. Otherwise, discard the packet
 and log an auditable event.

Identifier: RQ_002_2011
RFC Clause: 2.4
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IP packet containing an Authentication Header (AH), it MUST NOT set a
value in the range 0 to 255 into the Security Parameters Index field of the Authentication Header

RFC Text:
The set of SPI values in the range 1 through 255 is reserved by the
Internet Assigned Numbers Authority (IANA) for future use; a reserved
SPI value will not normally be assigned by IANA unless the use of the
assigned SPI value is specified in an RFC. The SPI value of zero (0)
is reserved for local, implementation-specific use and MUST NOT be
sent on the wire. (For example, a key management implementation
might use the zero SPI value to mean "No Security Association Exists"
during the period when the IPsec implementation has requested that
its key management entity establish a new SA, but the SA has not yet
been established.)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 15

Identifier: RQ_002_2012
RFC Clause: 2.5
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IP packet containing an Authentication Header (AH) on a unicast or
single-sender multicast Security Association (SA), it MUST set the value in the Sequence Number
field to one more than the value set in the same field of the previous packet sent to the same SA

RFC Text:
This unsigned 32-bit field contains a counter value that increases by
one for each packet sent, i.e., a per-SA packet sequence number. For
a unicast SA or a single-sender multicast SA, the sender MUST
increment this field for every transmitted packet. Sharing an SA
among multiple senders is permitted, though generally not
recommended. AH provides no means of synchronizing packet counters
among multiple senders or meaningfully managing a receiver packet
counter and window in the context of multiple senders. Thus, for a
multi-sender SA, the anti-reply features of AH are not available (see
Sections 3.3.2 and 3.4.3).

The field is mandatory and MUST always be present even if the
receiver does not elect to enable the anti-replay service for a
specific SA. Processing of the Sequence Number field is at the
discretion of the receiver, but all AH implementations MUST be
capable of performing the processing described in Section 3.3.2,
"Sequence Number Generation", and Section 3.4.3, "Sequence Number
Verification". Thus, the sender MUST always transmit this field, but
the receiver need not act upon it.

The sender's counter and the receiver's counter are initialized to 0
when an SA is established. (The first packet sent using a given SA
will have a sequence number of 1; see Section 3.3.2 for more details
on how the sequence number is generated.) If anti-replay is enabled
(the default), the transmitted sequence number must never be allowed
to cycle. Thus, the sender's counter and the receiver's counter MUST
be reset (by establishing a new SA and thus a new key) prior to the
transmission of the 2^32nd packet on an SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 16

Identifier: RQ_002_2013
RFC Clause: 2.5
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends the first IP packet containing an Authentication Header (AH) on a
particular unicast or single-sender multicast Security Association (SA), it MUST set the value in
the Sequence Number field to one (1)

RFC Text:
This unsigned 32-bit field contains a counter value that increases by
one for each packet sent, i.e., a per-SA packet sequence number. For
a unicast SA or a single-sender multicast SA, the sender MUST
increment this field for every transmitted packet. Sharing an SA
among multiple senders is permitted, though generally not
recommended. AH provides no means of synchronizing packet counters
among multiple senders or meaningfully managing a receiver packet
counter and window in the context of multiple senders. Thus, for a
multi-sender SA, the anti-reply features of AH are not available (see
Sections 3.3.2 and 3.4.3).

The field is mandatory and MUST always be present even if the
receiver does not elect to enable the anti-replay service for a
specific SA. Processing of the Sequence Number field is at the
discretion of the receiver, but all AH implementations MUST be
capable of performing the processing described in Section 3.3.2,
"Sequence Number Generation", and Section 3.4.3, "Sequence Number
Verification". Thus, the sender MUST always transmit this field, but
the receiver need not act upon it.

The sender's counter and the receiver's counter are initialized to 0
when an SA is established. (The first packet sent using a given SA
will have a sequence number of 1; see Section 3.3.2 for more details
on how the sequence number is generated.) If anti-replay is enabled
(the default), the transmitted sequence number must never be allowed
to cycle. Thus, the sender's counter and the receiver's counter MUST
be reset (by establishing a new SA and thus a new key) prior to the
transmission of the 2^32nd packet on an SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 17

Identifier: RQ_002_2014
RFC Clause: 2.5
Type: Mandatory
Applies to: IPsec host

Requirement:
If incrementing the value in the Sequence Number field of an Authentication Header would cause it to
overflow as a 32-bit value (i.e., return to zero) prior to sending the associated IP packet and if
the anti-replay service is also enabled, an IPsec Host MUST delete the corresponding Security
Association and establish a new one to replace it.

RFC Text:
This unsigned 32-bit field contains a counter value that increases by
one for each packet sent, i.e., a per-SA packet sequence number. For
a unicast SA or a single-sender multicast SA, the sender MUST
increment this field for every transmitted packet. Sharing an SA
among multiple senders is permitted, though generally not
recommended. AH provides no means of synchronizing packet counters
among multiple senders or meaningfully managing a receiver packet
counter and window in the context of multiple senders. Thus, for a
multi-sender SA, the anti-reply features of AH are not available (see
Sections 3.3.2 and 3.4.3).

The field is mandatory and MUST always be present even if the
receiver does not elect to enable the anti-replay service for a
specific SA. Processing of the Sequence Number field is at the
discretion of the receiver, but all AH implementations MUST be
capable of performing the processing described in Section 3.3.2,
"Sequence Number Generation", and Section 3.4.3, "Sequence Number
Verification". Thus, the sender MUST always transmit this field, but
the receiver need not act upon it.

The sender's counter and the receiver's counter are initialized to 0
when an SA is established. (The first packet sent using a given SA
will have a sequence number of 1; see Section 3.3.2 for more details
on how the sequence number is generated.) If anti-replay is enabled
(the default), the transmitted sequence number must never be allowed
to cycle. Thus, the sender's counter and the receiver's counter MUST
be reset (by establishing a new SA and thus a new key) prior to the
transmission of the 2^32nd packet on an SA

Identifier: RQ_002_2015
RFC Clause: 2.6
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IP packet containing an Authentication Header (AH), it MUST set the
value in the Integrity Check Value (ICV) field to a check value which is computed according to the
integrity algorithm negotiated during the establishment of the corresponding Security Association

RFC Text:
This is a variable-length field that contains the Integrity Check
Value (ICV) for this packet. The field must be an integral multiple
of 32 bits (IPv4 or IPv6) in length. The details of ICV processing
are described in Section 3.3.3, "Integrity Check Value Calculation",
and Section 3.4.4, "Integrity Check Value Verification". This field
may include explicit padding, if required to ensure that the length
of the AH header is an integral multiple of 32 bits (IPv4) or 64 bits
(IPv6). All implementations MUST support such padding and MUST
insert only enough padding to satisfy the IPv4/IPv6 alignment
requirements. Details of how to compute the required padding length
are provided below in Section 3.3.3.2, "Padding". The integrity
algorithm specification MUST specify the length of the ICV and the
comparison rules and processing steps for validation.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 18

Identifier: RQ_002_2016
RFC Clause: 2.6
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IPv4 packet containing an Authentication Header (AH), it MUST include up
to 31 padding bits within the Integrity Check Value (ICV) field if these are necessary to ensure
that the field is an integral multiple of 32 bits in length

RFC Text:
This is a variable-length field that contains the Integrity Check
Value (ICV) for this packet. The field must be an integral multiple
of 32 bits (IPv4 or IPv6) in length. The details of ICV processing
are described in Section 3.3.3, "Integrity Check Value Calculation",
and Section 3.4.4, "Integrity Check Value Verification". This field
may include explicit padding, if required to ensure that the length
of the AH header is an integral multiple of 32 bits (IPv4) or 64 bits
(IPv6). All implementations MUST support such padding and MUST
insert only enough padding to satisfy the IPv4/IPv6 alignment
requirements. Details of how to compute the required padding length
are provided below in Section 3.3.3.2, "Padding". The integrity
algorithm specification MUST specify the length of the ICV and the
comparison rules and processing steps for validation.

Identifier: RQ_002_2017
RFC Clause: 2.6
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends an IPv6 packet containing an Authentication Header (AH), it MUST include up
to 63 padding bits within the Integrity Check Value (ICV) field if these are necessary to ensure
that the field is an integral multiple of 64 bits in length

RFC Text:
This is a variable-length field that contains the Integrity Check
Value (ICV) for this packet. The field must be an integral multiple
of 32 bits (IPv4 or IPv6) in length. The details of ICV processing
are described in Section 3.3.3, "Integrity Check Value Calculation",
and Section 3.4.4, "Integrity Check Value Verification". This field
may include explicit padding, if required to ensure that the length
of the AH header is an integral multiple of 32 bits (IPv4) or 64 bits
(IPv6). All implementations MUST support such padding and MUST
insert only enough padding to satisfy the IPv4/IPv6 alignment
requirements. Details of how to compute the required padding length
are provided below in Section 3.3.3.2, "Padding". The integrity
algorithm specification MUST specify the length of the ICV and the
comparison rules and processing steps for validation.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 19

Identifier: RQ_002_2018
RFC Clause: 3.1.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host uses Transport Mode to send an IPv4 packet containing an Authentication Header
(AH), it MUST insert the Authentication Header after the IPv4 Header (and any options that it
contains) but before the next layer protocol.

RFC Text:
In transport mode, AH is inserted after the IP header and before a
next layer protocol (e.g., TCP, UDP, ICMP, etc.) or before any other
IPsec headers that have already been inserted. In the context of
IPv4, this calls for placing AH after the IP header (and any options
that it contains), but before the next layer protocol. (Note that
the term "transport" mode should not be misconstrued as restricting
its use to TCP and UDP.) The following diagram illustrates AH
transport mode positioning for a typical IPv4 packet, on a "before
and after" basis.
 BEFORE APPLYING AH

 IPv4 |orig IP hdr | | |
 |(any options)| TCP | Data |

 AFTER APPLYING AH

 IPv4 |original IP hdr (any options) | AH | TCP | Data |

 |<- mutable field processing ->|<- immutable fields ->|
 |<----- authenticated except for mutable fields ----->|

Identifier: RQ_002_2019
RFC Clause: 3.1.1
Type: Recommended
Applies to: IPsec host

Requirement:
When an IPsec Host uses Transport Mode to send an IPv6 packet containing an Authentication Header
(AH), it SHOULD insert the Authentication Header after the IPv6 Hop-By-Hop, Routing and
Fragmentation Extension Headers

RFC Text:
In the IPv6 context, AH is viewed as an end-to-end payload, and thus
should appear after hop-by-hop, routing, and fragmentation extension
headers. The destination options extension header(s) could appear
before or after or both before and after the AH header depending on
the semantics desired. The following diagram illustrates AH
transport mode positioning for a typical IPv6 packet.

 BEFORE APPLYING AH

 IPv6 | | ext hdrs | | |
 | orig IP hdr |if present| TCP | Data |

 AFTER APPLYING AH
 --
 IPv6 | |hop-by-hop, dest*, | | dest | | |
 |orig IP hdr |routing, fragment. | AH | opt* | TCP | Data |
 --
 |<--- mutable field processing -->|<-- immutable fields -->|
 |<---- authenticated except for mutable fields ----------->|

 * = if present, could be before AH, after AH, or both

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 20

Identifier: RQ_002_2020
RFC Clause: 3.1.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host uses Tunnel Mode to send an IPv4 packet containing an Authentication Header (AH)
within the payload of an "outer" IP packet, it MUST insert the Authentication Header after the
"inner" IPv4 Header (and any options that it contains) but before the next layer protocol.

RFC Text:
In tunnel mode, the "inner" IP header carries the ultimate (IP)
source and destination addresses, while an "outer" IP header contains
the addresses of the IPsec "peers," e.g., addresses of security
gateways. Mixed inner and outer IP versions are allowed, i.e., IPv6
over IPv4 and IPv4 over IPv6. In tunnel mode, AH protects the entire
inner IP packet, including the entire inner IP header. The position
of AH in tunnel mode, relative to the outer IP header, is the same as
for AH in transport mode. The following diagram illustrates AH
tunnel mode positioning for typical IPv4 and IPv6 packets.

 --
IPv4 | | | orig IP hdr* | | |
 |new IP header * (any options) | AH | (any options) |TCP| Data |
 --
 |<- mutable field processing ->|<------ immutable fields ----->|
 |<- authenticated except for mutable fields in the new IP hdr->|

 --
IPv6 | | ext hdrs*| | | ext hdrs*| | |
 |new IP hdr*|if present| AH |orig IP hdr*|if present|TCP|Data|
 --
 |<--- mutable field -->|<--------- immutable fields -------->|
 | processing |
 |<-- authenticated except for mutable fields in new IP hdr ->|

 * = if present, construction of outer IP hdr/extensions and
 modification of inner IP hdr/extensions is discussed in
 the Security Architecture document.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 21

Identifier: RQ_002_2021
RFC Clause: 3.1.1
Type: Recommended
Applies to: IPsec host

Requirement:
When an IPsec Host uses Tunnel Mode to send an IPv6 packet containing an Authentication Header (AH)
within an "outer" IP packet, it SHOULD insert the Authentication Header after the "inner" IPv6 Hop-
By-Hop, Routing and Fragmentation Extension Headers

RFC Text:
In tunnel mode, the "inner" IP header carries the ultimate (IP)
source and destination addresses, while an "outer" IP header contains
the addresses of the IPsec "peers," e.g., addresses of security
gateways. Mixed inner and outer IP versions are allowed, i.e., IPv6
over IPv4 and IPv4 over IPv6. In tunnel mode, AH protects the entire
inner IP packet, including the entire inner IP header. The position
of AH in tunnel mode, relative to the outer IP header, is the same as
for AH in transport mode. The following diagram illustrates AH
tunnel mode positioning for typical IPv4 and IPv6 packets.

 --
IPv4 | | | orig IP hdr* | | |
 |new IP header * (any options) | AH | (any options) |TCP| Data |
 --
 |<- mutable field processing ->|<------ immutable fields ----->|
 |<- authenticated except for mutable fields in the new IP hdr->|

 --
IPv6 | | ext hdrs*| | | ext hdrs*| | |
 |new IP hdr*|if present| AH |orig IP hdr*|if present|TCP|Data|
 --
 |<--- mutable field -->|<--------- immutable fields -------->|
 | processing |
 |<-- authenticated except for mutable fields in new IP hdr ->|

 * = if present, construction of outer IP hdr/extensions and
 modification of inner IP hdr/extensions is discussed in
 the Security Architecture document.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 22

Identifier: RQ_002_2022
RFC Clause: 3.3.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host sends the first IP packet containing an Authentication Header (AH) on a
particular unicast or single-sender multicast Security Association (SA), it MUST set the value in
the Sequence Number field to one (1)

RFC Text:
The sender's counter is initialized to 0 when an SA is established.
The sender increments the sequence number (or ESN) counter for this
SA and inserts the low-order 32 bits of the value into the Sequence
Number field. Thus, the first packet sent using a given SA will
contain a sequence number of 1.

If anti-replay is enabled (the default), the sender checks to ensure
that the counter has not cycled before inserting the new value in the
Sequence Number field. In other words, the sender MUST NOT send a
packet on an SA if doing so would cause the sequence number to cycle.
An attempt to transmit a packet that would result in sequence number
overflow is an auditable event. The audit log entry for this event
SHOULD include the SPI value, current date/time, Source Address,
Destination Address, and (in IPv6) the cleartext Flow ID.

The sender assumes anti-replay is enabled as a default, unless
otherwise notified by the receiver (see Section 3.4.3) or if the SA
was configured using manual key management. Thus, typical behavior
of an AH implementation calls for the sender to establish a new SA
when the Sequence Number (or ESN) cycles, or in anticipation of this
value cycling.

If anti-replay is disabled (as noted above), the sender does not need
to monitor or reset the counter, e.g., in the case of manual key
management (see Section 5). However, the sender still increments the
counter and when it reaches the maximum value, the counter rolls over
back to zero. (This behavior is recommended for multi-sender,
multicast SAs, unless anti-replay mechanisms outside the scope of
this standard are negotiated between the sender and receiver.)

If ESN (see Appendix B) is selected, only the low-order 32 bits of
the sequence number are transmitted in the Sequence Number field,
although both sender and receiver maintain full 64-bit ESN counters.
However, the high-order 32 bits are included in the ICV calculation.
Note: If a receiver chooses not to enable anti-replay for an SA, then
the receiver SHOULD NOT negotiate ESN in an SA management protocol.
Use of ESN creates a need for the receiver to manage the anti-replay
window (in order to determine the correct value for the high-order
bits of the ESN, which are employed in the ICV computation), which is
generally contrary to the notion of disabling anti-replay for an SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 23

Identifier: RQ_002_2023
RFC Clause: 3.3.2
Type: Mandatory
Applies to: IPsec host

Requirement:
If incrementing the value in the Sequence Number field of an Authentication Header would cause it to
overflow as a 32-bit value (i.e., return to zero) prior to sending the associated IP packet and if
the anti-replay service is also enabled, an IPsec Host MUST delete the corresponding Security
Association and establish a new one to replace it.

RFC Text:
The sender's counter is initialized to 0 when an SA is established.
The sender increments the sequence number (or ESN) counter for this
SA and inserts the low-order 32 bits of the value into the Sequence
Number field. Thus, the first packet sent using a given SA will
contain a sequence number of 1.

If anti-replay is enabled (the default), the sender checks to ensure
that the counter has not cycled before inserting the new value in the
Sequence Number field. In other words, the sender MUST NOT send a
packet on an SA if doing so would cause the sequence number to cycle.
An attempt to transmit a packet that would result in sequence number
overflow is an auditable event. The audit log entry for this event
SHOULD include the SPI value, current date/time, Source Address,
Destination Address, and (in IPv6) the cleartext Flow ID.

The sender assumes anti-replay is enabled as a default, unless
otherwise notified by the receiver (see Section 3.4.3) or if the SA
was configured using manual key management. Thus, typical behavior
of an AH implementation calls for the sender to establish a new SA
when the Sequence Number (or ESN) cycles, or in anticipation of this
value cycling.

If anti-replay is disabled (as noted above), the sender does not need
to monitor or reset the counter, e.g., in the case of manual key
management (see Section 5). However, the sender still increments the
counter and when it reaches the maximum value, the counter rolls over
back to zero. (This behavior is recommended for multi-sender,
multicast SAs, unless anti-replay mechanisms outside the scope of
this standard are negotiated between the sender and receiver.)

If ESN (see Appendix B) is selected, only the low-order 32 bits of
the sequence number are transmitted in the Sequence Number field,
although both sender and receiver maintain full 64-bit ESN counters.
However, the high-order 32 bits are included in the ICV calculation.
Note: If a receiver chooses not to enable anti-replay for an SA, then
the receiver SHOULD NOT negotiate ESN in an SA management protocol.
Use of ESN creates a need for the receiver to manage the anti-replay
window (in order to determine the correct value for the high-order
bits of the ESN, which are employed in the ICV computation), which is
generally contrary to the notion of disabling anti-replay for an SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 24

Identifier: RQ_002_2024
RFC Clause: 3.3.2
Type: Recommended
Applies to: IPsec host

Requirement:
If incrementing the value in the Sequence Number field of an Authentication Header would cause it to
overflow as a 32-bit value (i.e., return to zero) prior to sending the associated IP packet and if
the anti-replay service is also enabled, an IPsec Host SHOULD record in the audit log for this
event, the SPI value, current date/time, Source Address, Destination Address, and (in IPv6) the
cleartext Flow ID

RFC Text:
The sender's counter is initialized to 0 when an SA is established.
The sender increments the sequence number (or ESN) counter for this
SA and inserts the low-order 32 bits of the value into the Sequence
Number field. Thus, the first packet sent using a given SA will
contain a sequence number of 1.

If anti-replay is enabled (the default), the sender checks to ensure
that the counter has not cycled before inserting the new value in the
Sequence Number field. In other words, the sender MUST NOT send a
packet on an SA if doing so would cause the sequence number to cycle.

An attempt to transmit a packet that would result in sequence number
overflow is an auditable event. The audit log entry for this event
SHOULD include the SPI value, current date/time, Source Address,
Destination Address, and (in IPv6) the cleartext Flow ID.

The sender assumes anti-replay is enabled as a default, unless
otherwise notified by the receiver (see Section 3.4.3) or if the SA
was configured using manual key management. Thus, typical behavior
of an AH implementation calls for the sender to establish a new SA
when the Sequence Number (or ESN) cycles, or in anticipation of this
value cycling.

If anti-replay is disabled (as noted above), the sender does not need
to monitor or reset the counter, e.g., in the case of manual key
management (see Section 5). However, the sender still increments the
counter and when it reaches the maximum value, the counter rolls over
back to zero. (This behavior is recommended for multi-sender,
multicast SAs, unless anti-replay mechanisms outside the scope of
this standard are negotiated between the sender and receiver.)

If ESN (see Appendix B) is selected, only the low-order 32 bits of
the sequence number are transmitted in the Sequence Number field,
although both sender and receiver maintain full 64-bit ESN counters.
However, the high-order 32 bits are included in the ICV calculation.
Note: If a receiver chooses not to enable anti-replay for an SA, then
the receiver SHOULD NOT negotiate ESN in an SA management protocol.
Use of ESN creates a need for the receiver to manage the anti-replay
window (in order to determine the correct value for the high-order
bits of the ESN, which are employed in the ICV computation), which is
generally contrary to the notion of disabling anti-replay for an SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 25

Identifier: RQ_002_2025
RFC Clause: 3.3.2
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec Host which has the anti-replay service enabled sends an IP packet containing an
Authentication Header (AH) on a particular unicast or single-sender multicast Security Association
(SA) on which the use of Extended Sequence Numbers (ESN) has been established, it MUST set the value
in the Sequence Number field to the low-order 32 bits of the ESN

RFC Text:
The sender's counter is initialized to 0 when an SA is established.
The sender increments the sequence number (or ESN) counter for this
SA and inserts the low-order 32 bits of the value into the Sequence
Number field. Thus, the first packet sent using a given SA will
contain a sequence number of 1.

If anti-replay is enabled (the default), the sender checks to ensure
that the counter has not cycled before inserting the new value in the
Sequence Number field. In other words, the sender MUST NOT send a
packet on an SA if doing so would cause the sequence number to cycle.
An attempt to transmit a packet that would result in sequence number
overflow is an auditable event. The audit log entry for this event
SHOULD include the SPI value, current date/time, Source Address,
Destination Address, and (in IPv6) the cleartext Flow ID.

The sender assumes anti-replay is enabled as a default, unless
otherwise notified by the receiver (see Section 3.4.3) or if the SA
was configured using manual key management. Thus, typical behavior
of an AH implementation calls for the sender to establish a new SA
when the Sequence Number (or ESN) cycles, or in anticipation of this
value cycling.

If anti-replay is disabled (as noted above), the sender does not need
to monitor or reset the counter, e.g., in the case of manual key
management (see Section 5). However, the sender still increments the
counter and when it reaches the maximum value, the counter rolls over
back to zero. (This behavior is recommended for multi-sender,
multicast SAs, unless anti-replay mechanisms outside the scope of
this standard are negotiated between the sender and receiver.)

If ESN (see Appendix B) is selected, only the low-order 32 bits of
the sequence number are transmitted in the Sequence Number field,
although both sender and receiver maintain full 64-bit ESN counters.
However, the high-order 32 bits are included in the ICV calculation.
Note: If a receiver chooses not to enable anti-replay for an SA, then
the receiver SHOULD NOT negotiate ESN in an SA management protocol.
Use of ESN creates a need for the receiver to manage the anti-replay
window (in order to determine the correct value for the high-order
bits of the ESN, which are employed in the ICV computation), which is
generally contrary to the notion of disabling anti-replay for an SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 26

Identifier: RQ_002_2026
RFC Clause: 3.3.2
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host SHOULD NOT negotiate the use of Extended Sequence Numbers (ESN) on a Security
Association for which the anti-replay service is not enabled.

RFC Text:
The sender's counter is initialized to 0 when an SA is established.
The sender increments the sequence number (or ESN) counter for this
SA and inserts the low-order 32 bits of the value into the Sequence
Number field. Thus, the first packet sent using a given SA will
contain a sequence number of 1.

If anti-replay is enabled (the default), the sender checks to ensure
that the counter has not cycled before inserting the new value in the
Sequence Number field. In other words, the sender MUST NOT send a
packet on an SA if doing so would cause the sequence number to cycle.
An attempt to transmit a packet that would result in sequence number
overflow is an auditable event. The audit log entry for this event
SHOULD include the SPI value, current date/time, Source Address,
Destination Address, and (in IPv6) the cleartext Flow ID.

The sender assumes anti-replay is enabled as a default, unless
otherwise notified by the receiver (see Section 3.4.3) or if the SA
was configured using manual key management. Thus, typical behavior
of an AH implementation calls for the sender to establish a new SA
when the Sequence Number (or ESN) cycles, or in anticipation of this
value cycling.

If anti-replay is disabled (as noted above), the sender does not need
to monitor or reset the counter, e.g., in the case of manual key
management (see Section 5). However, the sender still increments the
counter and when it reaches the maximum value, the counter rolls over
back to zero. (This behavior is recommended for multi-sender,
multicast SAs, unless anti-replay mechanisms outside the scope of
this standard are negotiated between the sender and receiver.)

If ESN (see Appendix B) is selected, only the low-order 32 bits of
the sequence number are transmitted in the Sequence Number field,
although both sender and receiver maintain full 64-bit ESN counters.
However, the high-order 32 bits are included in the ICV calculation.

Note: If a receiver chooses not to enable anti-replay for an SA, then
the receiver SHOULD NOT negotiate ESN in an SA management protocol.
Use of ESN creates a need for the receiver to manage the anti-replay
window (in order to determine the correct value for the high-order
bits of the ESN, which are employed in the ICV computation), which is
generally contrary to the notion of disabling anti-replay for an SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 27

Identifier: RQ_002_2027
RFC Clause: 3.3.3
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host sends an IP packet containing an Authentication Header (AH), it MUST set a value
in the Integrity Check Value field which has been calculated over the following other fields using
the algorithm negotiated during SA establishment:

 * all immutable or predictable (at the receiving endpoint) IP and extension headers prior
 to the Authentication Header
 * the Authentication Header (Next Header field, Payload Length field, Reserved field, SPI
 field, Sequence Number field, ICV field - set to zero for the purposes of the calculation
 - and any explicit padding bytes)
 * all mutable and unpredictable fields with their values assumed to be zero
 * all information following the Authentication Header
 * the high-order 32 bits of the Extended Sequence Number (if enabled)
 * all implicit padding bytes required by the integrity algorithm

RFC Text:
The AH ICV is computed over:

 o IP or extension header fields before the AH header that are
 either immutable in transit or that are predictable in value
 upon arrival at the endpoint for the AH SA
 o the AH header (Next Header, Payload Len, Reserved, SPI,
 Sequence Number (low-order 32 bits), and the ICV (which is set
 to zero for this computation), and explicit padding bytes (if
 any))
 o everything after AH is assumed to be immutable in transit
 o the high-order bits of the ESN (if employed), and any implicit
 padding required by the integrity algorithm

Identifier: RQ_002_2028
RFC Clause: 3.3.3
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host receives an IP packet containing an Authentication Header (AH), it MUST calculate
an Integrity Check Value over the following fields in the incoming packet using the algorithm
negotiated during SA establishment:

 * all immutable or predictable (at the receiving endpoint) IP and extension headers
 prior to the Authentication Header
 * the Authentication Header (Next Header field, Payload Length field, Reserved field,
 SPI field, Sequence Number field, ICV field - set to zero for the purposes of the
 calculation - and any explicit padding bytes)
 * all mutable and unpredictable fields with their values assumed to be zero
 * all information following the Authentication Header
 * the high-order 32 bits of the Extended Sequence Number (if enabled)
 * all implicit padding bytes required by the integrity algorithm

RFC Text:
The AH ICV is computed over:

 o IP or extension header fields before the AH header that are
 either immutable in transit or that are predictable in value
 upon arrival at the endpoint for the AH SA
 o the AH header (Next Header, Payload Len, Reserved, SPI,
 Sequence Number (low-order 32 bits), and the ICV (which is set
 to zero for this computation), and explicit padding bytes (if
 any))
 o everything after AH is assumed to be immutable in transit
 o the high-order bits of the ESN (if employed), and any implicit
 padding required by the integrity algorithm

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 28

Identifier: RQ_002_2029
RFC Clause: 3.3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When sending an IPv4 packet which contains an Authentication Header (AH), an IPsec host MUST include
explicit padding bytes in the Integrity Check Value field if these are required to ensure that the
header is a multiple of 32 bits.

RFC Text:
As mentioned in Section 2.6, the ICV field may include explicit
padding if required to ensure that the AH header is a multiple of 32
bits (IPv4) or 64 bits (IPv6). If padding is required, its length is
determined by two factors:

 - the length of the ICV
 - the IP protocol version (v4 or v6)

For example, if the output of the selected algorithm is 96 bits, no
padding is required for IPv4 or IPv6. However, if a different length
ICV is generated, due to use of a different algorithm, then padding
may be required depending on the length and IP protocol version. The
content of the padding field is arbitrarily selected by the sender.
(The padding is arbitrary, but need not be random to achieve
security.) These padding bytes are included in the ICV calculation,
counted as part of the Payload Length, and transmitted at the end of
the ICV field to enable the receiver to perform the ICV calculation.
Inclusion of padding in excess of the minimum amount required to
satisfy IPv4/IPv6 alignment requirements is prohibited

Identifier: RQ_002_2030
RFC Clause: 3.3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When sending an IPv6 packet which contains an Authentication Header (AH), an IPsec host MUST include
explicit padding bytes in the Integrity Check Value field if these are required to ensure that the
header is a multiple of 64 bits.

RFC Text:
As mentioned in Section 2.6, the ICV field may include explicit
padding if required to ensure that the AH header is a multiple of 32
bits (IPv4) or 64 bits (IPv6). If padding is required, its length is
determined by two factors:

 - the length of the ICV
 - the IP protocol version (v4 or v6)

For example, if the output of the selected algorithm is 96 bits, no
padding is required for IPv4 or IPv6. However, if a different length
ICV is generated, due to use of a different algorithm, then padding
may be required depending on the length and IP protocol version. The
content of the padding field is arbitrarily selected by the sender.
(The padding is arbitrary, but need not be random to achieve
security.) These padding bytes are included in the ICV calculation,
counted as part of the Payload Length, and transmitted at the end of
the ICV field to enable the receiver to perform the ICV calculation.
Inclusion of padding in excess of the minimum amount required to
satisfy IPv4/IPv6 alignment requirements is prohibited

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 29

Identifier: RQ_002_2031
RFC Clause: 3.3.3.2.1
Type: Optional
Applies to: IPsec host

Requirement:
When sending an IP packet which contains an Authentication Header (AH) with explicit padding bytes
in the Integrity Check Value field, an IPsec Host MAY set each padding byte to any 8-bit value

RFC Text:
As mentioned in Section 2.6, the ICV field may include explicit
padding if required to ensure that the AH header is a multiple of 32
bits (IPv4) or 64 bits (IPv6). If padding is required, its length is
determined by two factors:

 - the length of the ICV
 - the IP protocol version (v4 or v6)

For example, if the output of the selected algorithm is 96 bits, no
padding is required for IPv4 or IPv6. However, if a different length
ICV is generated, due to use of a different algorithm, then padding
may be required depending on the length and IP protocol version. The
content of the padding field is arbitrarily selected by the sender.
(The padding is arbitrary, but need not be random to achieve
security.) These padding bytes are included in the ICV calculation,
counted as part of the Payload Length, and transmitted at the end of
the ICV field to enable the receiver to perform the ICV calculation.
Inclusion of padding in excess of the minimum amount required to
satisfy IPv4/IPv6 alignment requirements is prohibited

Identifier: RQ_002_2032
RFC Clause: 3.3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When sending an IP packet which contains an Authentication Header (AH) with explicit padding bytes
in the Integrity Check Value field, an IPsec Host MUST include the padding bytes in the calculation
of the Integrity Check Value

RFC Text:
As mentioned in Section 2.6, the ICV field may include explicit
padding if required to ensure that the AH header is a multiple of 32
bits (IPv4) or 64 bits (IPv6). If padding is required, its length is
determined by two factors:

 - the length of the ICV
 - the IP protocol version (v4 or v6)

For example, if the output of the selected algorithm is 96 bits, no
padding is required for IPv4 or IPv6. However, if a different length
ICV is generated, due to use of a different algorithm, then padding
may be required depending on the length and IP protocol version. The
content of the padding field is arbitrarily selected by the sender.
(The padding is arbitrary, but need not be random to achieve
security.) These padding bytes are included in the ICV calculation,
counted as part of the Payload Length, and transmitted at the end of
the ICV field to enable the receiver to perform the ICV calculation.
Inclusion of padding in excess of the minimum amount required to
satisfy IPv4/IPv6 alignment requirements is prohibited

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 30

Identifier: RQ_002_2033
RFC Clause: 3.3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When sending an IP packet which contains an Authentication Header (AH) with explicit padding bytes
in the Integrity Check Value field, an IPsec Host MUST include the padding bytes in the calculation
of the value to be set in the Payload Length field

RFC Text:
As mentioned in Section 2.6, the ICV field may include explicit
padding if required to ensure that the AH header is a multiple of 32
bits (IPv4) or 64 bits (IPv6). If padding is required, its length is
determined by two factors:

 - the length of the ICV
 - the IP protocol version (v4 or v6)

For example, if the output of the selected algorithm is 96 bits, no
padding is required for IPv4 or IPv6. However, if a different length
ICV is generated, due to use of a different algorithm, then padding
may be required depending on the length and IP protocol version. The
content of the padding field is arbitrarily selected by the sender.
(The padding is arbitrary, but need not be random to achieve
security.) These padding bytes are included in the ICV calculation,
counted as part of the Payload Length, and transmitted at the end of
the ICV field to enable the receiver to perform the ICV calculation.
Inclusion of padding in excess of the minimum amount required to
satisfy IPv4/IPv6 alignment requirements is prohibited

Identifier: RQ_002_2034
RFC Clause: 3.3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When sending an IP packet which contains an Authentication Header (AH) which requires the inclusion
of explicit padding bytes in the Integrity Check Value field, an IPsec Host MUST insert the padding
bytes at the end of the Integrity Check Value field

RFC Text:
As mentioned in Section 2.6, the ICV field may include explicit
padding if required to ensure that the AH header is a multiple of 32
bits (IPv4) or 64 bits (IPv6). If padding is required, its length is
determined by two factors:

 - the length of the ICV
 - the IP protocol version (v4 or v6)

For example, if the output of the selected algorithm is 96 bits, no
padding is required for IPv4 or IPv6. However, if a different length
ICV is generated, due to use of a different algorithm, then padding
may be required depending on the length and IP protocol version. The
content of the padding field is arbitrarily selected by the sender.
(The padding is arbitrary, but need not be random to achieve
security.) These padding bytes are included in the ICV calculation,
counted as part of the Payload Length, and transmitted at the end of
the ICV field to enable the receiver to perform the ICV calculation.
Inclusion of padding in excess of the minimum amount required to
satisfy IPv4/IPv6 alignment requirements is prohibited

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 31

Identifier: RQ_002_2035
RFC Clause: 3.3.3.2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
When sending an IP packet containing an Authentication Header (AH) and the use of Extended Sequence
Number (ESN) option is selected, an IPsec Host MUST include the high-order 32-bits of the ESN in the
computation of the value to be inserted in the Integrity Check Value field of the packet

RFC Text:
If the ESN option is elected for an SA, then the high-order 32 bits of the ESN must be included in
the ICV computation. For purposes of ICV computation, these bits are appended (implicitly)
immediately after the end of the payload, and before any implicit packet padding.

For some integrity algorithms, the byte string over which the ICV computation is performed must be a
multiple of a blocksize specified by the algorithm. If the IP packet length (including AH and the
32 high-order bits of the ESN, if enabled) does not match the blocksize requirements for the
algorithm, implicit padding MUST be appended to the end of the packet, prior to ICV computation.
The padding octets MUST have a value of zero. The blocksize (and hence the length of the padding)
is specified by the algorithm specification. This padding is not transmitted with the packet. The
document that defines an integrity algorithm MUST be consulted to determine if implicit padding is
required as described above. If the document does not specify an answer to this, then the default
is to assume that implicit padding is required (as needed to match the packet length to the
algorithm's blocksize.) If padding bytes are needed but the algorithm does not specify the padding
contents, then the padding octets MUST have a value of zero.

Identifier: RQ_002_2036
RFC Clause: 3.3.3.2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
When sending an IP packet containing an Authentication Header (AH) and the packet length does not
match the requirements of the selected integrity algorithm, an IPsec Host MUST include the number of
bytes necessary to satisfy the algorithm requirements, each with the value zero (0), in the
calculation of the value to be set in the Integrity Check Value field

RFC Text:
If the ESN option is elected for an SA, then the high-order 32 bits of the ESN must be included in
the ICV computation. For purposes of ICV computation, these bits are appended (implicitly)
immediately after the end of the payload, and before any implicit packet padding.

For some integrity algorithms, the byte string over which the ICV computation is performed must be a
multiple of a blocksize specified by the algorithm. If the IP packet length (including AH and the
32 high-order bits of the ESN, if enabled) does not match the blocksize requirements for the
algorithm, implicit padding MUST be appended to the end of the packet, prior to ICV computation.
The padding octets MUST have a value of zero. The blocksize (and hence the length of the padding)
is specified by the algorithm specification. This padding is not transmitted with the packet. The
document that defines an integrity algorithm MUST be consulted to determine if implicit padding is
required as described above. If the document does not specify an answer to this, then the default
is to assume that implicit padding is required (as needed to match the packet length to the
algorithm's blocksize.) If padding bytes are needed but the algorithm does not specify the padding
contents, then the padding octets MUST have a value of zero.

Identifier: RQ_002_2037
RFC Clause: 3.3.4
Type: Mandatory
Applies to: IPsec host

Requirement:
When sending an IP packet which needs to be fragmented, an IPsec Host MUST apply Authentication
Header processing to the packet before fragmenting it

RFC Text:

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 32

If required, IP fragmentation occurs after AH processing within an IPsec implementation. Thus,
transport mode AH is applied only to whole IP datagrams (not to IP fragments). An IPv4 packet to
which AH has been applied may itself be fragmented by routers en route, and such fragments must be
reassembled prior to AH processing at a receiver. (This does not apply to IPv6, where there is no
router- initiated fragmentation.) In tunnel mode, AH is applied to an IP packet, the payload of
which may be a fragmented IP packet. For example, a security gateway or a "bump-in-the-stack" or
"bump-in- the-wire" IPsec implementation (see the Security Architecture document for details) may
apply tunnel mode AH to such fragments.

Identifier: RQ_002_2038
RFC Clause: 3.3.4
Type: Optional
Applies to: IPsec host

Requirement:
An IPsec host MAY support the fragmentation of packets containing an Authentication Header

RFC Text:
Fragmentation, whether performed by an IPsec implementation or by routers along the path between
IPsec peers, significantly reduces performance. Moreover, the requirement for an AH receiver to
accept fragments for reassembly creates denial of service vulnerabilities. Thus, an AH
implementation MAY choose to not support fragmentation and may mark transmitted packets with the DF
bit, to facilitate Path MTU (PMTU) discovery. In any case, an AH implementation MUST support
generation of ICMP PMTU messages (or equivalent internal signaling for native host implementations)
to minimize the likelihood of fragmentation. Details of the support required for MTU management
are contained in the Security Architecture document.

Identifier: RQ_002_2039
RFC Clause: 3.3.4
Type: Optional
Applies to: IPsec host

Requirement:
An IPsec host that does not support the fragmentation of IPv4 packets containing an Authentication
Header MAY set the "Do not Fragment (DF)" flag in the packet header.

RFC Text:
Fragmentation, whether performed by an IPsec implementation or by routers along the path between
IPsec peers, significantly reduces performance. Moreover, the requirement for an AH receiver to
accept fragments for reassembly creates denial of service vulnerabilities. Thus, an AH
implementation MAY choose to not support fragmentation and may mark transmitted packets with the DF
bit, to facilitate Path MTU (PMTU) discovery. In any case, an AH implementation MUST support
generation of ICMP PMTU messages (or equivalent internal signaling for native host implementations)
to minimize the likelihood of fragmentation. Details of the support required for MTU management
are contained in the Security Architecture document.

Identifier: RQ_002_2040
RFC Clause: 3.3.4
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host that supports the use of Authentication Headers MUST also support the generation of
ICMP Path MTU messages

RFC Text:
Fragmentation, whether performed by an IPsec implementation or by routers along the path between
IPsec peers, significantly reduces performance. Moreover, the requirement for an AH receiver to
accept fragments for reassembly creates denial of service vulnerabilities.
Thus, an AH implementation MAY choose to not support fragmentation and may mark transmitted packets
with the DF bit, to facilitate Path MTU (PMTU) discovery. In any case, an AH implementation MUST
support generation of ICMP PMTU messages (or equivalent internal signaling for native host
implementations) to minimize the likelihood of fragmentation. Details of the support required for
MTU management are contained in the Security Architecture document.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 33

Identifier: RQ_002_2041
RFC Clause: 3.4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host that supports Authentication Headers receives packets which are fragments of a
larger packet, it MUST reassemble the fragments into a single packet before processing the
Authentication Header if present

RFC Text:
If required, reassembly is performed prior to AH processing. If a packet offered to AH for
processing appears to be an IP fragment, i.e., the OFFSET field is nonzero or the MORE FRAGMENTS
flag is set, the receiver MUST discard the packet; this is an auditable event. The audit log entry
for this event SHOULD include the SPI value, date/time, Source Address, Destination Address, and (in
IPv6) the Flow ID.

Identifier: RQ_002_2042
RFC Clause: 3.4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host processes the Authentication Header of a received IPv6 packet, it MUST discard
the packet if the Offset field in the IPv6 Fragmentation Extension Header contains a non-zero value.

RFC Text:
If required, reassembly is performed prior to AH processing. If a packet offered to AH for
processing appears to be an IP fragment, i.e., the OFFSET field is nonzero or the MORE FRAGMENTS
flag is set, the receiver MUST discard the packet; this is an auditable event. The audit log entry
for this event SHOULD include the SPI value, date/time, Source Address, Destination Address, and (in
IPv6) the Flow ID.

Identifier: RQ_002_2043
RFC Clause: 3.4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host processes the Authentication Header of a received IPv4 packet, it MUST discard
the packet if the More Fragments flag is set in the IPv4 packet header.

RFC Text:
If required, reassembly is performed prior to AH processing. If a packet offered to AH for
processing appears to be an IP fragment, i.e., the OFFSET field is nonzero or the MORE FRAGMENTS
flag is set, the receiver MUST discard the packet; this is an auditable event. The audit log entry
for this event SHOULD include the SPI value, date/time, Source Address, Destination Address, and (in
IPv6) the Flow ID.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 34

Identifier: RQ_002_2044
RFC Clause: 3.4.1
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec host discards an IPv6 packet because it contains an Authentication Header and the
Fragmentation Offset field in the Fragmentation Extension Header contains a non-zero value, it
SHOULD record the event in a log along with the following parameters:

 - SPI value
 - date and time of the event
 - Source Address
 - Destination Address
 - the Flow label

RFC Text:
If required, reassembly is performed prior to AH processing. If a packet offered to AH for
processing appears to be an IP fragment, i.e., the OFFSET field is nonzero or the MORE FRAGMENTS
flag is set, the receiver MUST discard the packet; this is an auditable event. The audit log entry
for this event SHOULD include the SPI value, date/time, Source Address, Destination Address, and (in
IPv6) the Flow ID.

Identifier: RQ_002_2045
RFC Clause: 3.4.1
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec host discards an IPv4 packet because it contains an Authentication Header and the More
Fragments flag is set in the packet header, it SHOULD record the event in a log along with the
following parameters:

 - SPI value
 - date and time of the event
 - Source Address
 - Destination Address

RFC Text:
If required, reassembly is performed prior to AH processing. If a packet offered to AH for
processing appears to be an IP fragment, i.e., the OFFSET field is nonzero or the MORE FRAGMENTS
flag is set, the receiver MUST discard the packet; this is an auditable event. The audit log entry
for this event SHOULD include the SPI value, date/time, Source Address, Destination Address, and (in
IPv6) the Flow ID.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 35

Identifier: RQ_002_2046
RFC Clause: 3.4.2
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host receives an IPv6 packet containing an Authentication Header but no valid Security
Association exists, it MUST discard the packet

RFC Text:
Upon receipt of a packet containing an IP Authentication Header, the receiver determines the
appropriate (unidirectional) SA via lookup in the SAD. For a unicast SA, this determination is
based on the SPI or the SPI plus protocol field, as described in Section 2.4. If an implementation
supports multicast traffic, the destination address is also employed in the lookup (in addition to
the SPI), and the sender address also may be employed, as described in Section 2.4. (This process
is described in more detail in the Security Architecture document.) The SAD entry for the SA also
indicates whether the Sequence Number field will be checked and whether 32- or 64-bit sequence
numbers are employed for the SA. The SAD entry for the SA also specifies the algorithm(s) employed
for ICV computation, and indicates the key required to validate the ICV.

If no valid Security Association exists for this packet the receiver MUST discard the packet; this
is an auditable event. The audit log entry for this event SHOULD include the SPI value, date/time,
Source Address, Destination Address, and (in IPv6) the Flow ID.

(Note that SA management traffic, such as IKE packets, does not need to be processed based on SPI,
i.e., one can de-multiplex this traffic separately based on Next Protocol and Port fields, for
example.)

Identifier: RQ_002_2047
RFC Clause: 3.4.2
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec host receives an IPv6 packet containing an Authentication Header but no valid Security
Association exists, it SHOULD record the event in a log along with the following parameters:

 - SPI value
 - date and time of the event
 - Source Address
 - Destination Address
 - the Flow label

RFC Text:
Upon receipt of a packet containing an IP Authentication Header, the receiver determines the
appropriate (unidirectional) SA via lookup in the SAD. For a unicast SA, this determination is
based on the SPI or the SPI plus protocol field, as described in Section 2.4. If an implementation
supports multicast traffic, the destination address is also employed in the lookup (in addition to
the SPI), and the sender address also may be employed, as described in Section 2.4. (This process
is described in more detail in the Security Architecture document.) The SAD entry for the SA also
indicates whether the Sequence Number field will be checked and whether 32- or 64-bit sequence
numbers are employed for the SA. The SAD entry for the SA also specifies the algorithm(s) employed
for ICV computation, and indicates the key required to validate the ICV.

If no valid Security Association exists for this packet the receiver MUST discard the packet; this
is an auditable event. The audit log entry for this event SHOULD include the SPI value, date/time,
Source Address, Destination Address, and (in IPv6) the Flow ID.

(Note that SA management traffic, such as IKE packets, does not need to be processed based on SPI,
i.e., one can de-multiplex this traffic separately based on Next Protocol and Port fields, for
example.)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 36

Identifier: RQ_002_2048
RFC Clause: 3.4.2
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec host receives an IPv4 packet containing an Authentication Header but no valid Security
Association exists, it SHOULD record the event in a log along with the following parameters:

 - SPI value
 - date and time of the event
 - Source Address
 - Destination Address

RFC Text:
Upon receipt of a packet containing an IP Authentication Header, the receiver determines the
appropriate (unidirectional) SA via lookup in the SAD. For a unicast SA, this determination is
based on the SPI or the SPI plus protocol field, as described in Section 2.4. If an implementation
supports multicast traffic, the destination address is also employed in the lookup (in addition to
the SPI), and the sender address also may be employed, as described in Section 2.4. (This process
is described in more detail in the Security Architecture document.) The SAD entry for the SA also
indicates whether the Sequence Number field will be checked and whether 32- or 64-bit sequence
numbers are employed for the SA. The SAD entry for the SA also specifies the algorithm(s) employed
for ICV computation, and indicates the key required to validate the ICV.

If no valid Security Association exists for this packet the receiver MUST discard the packet; this
is an auditable event. The audit log entry for this event SHOULD include the SPI value, date/time,
Source Address, Destination Address, and (in IPv6) the Flow ID.

(Note that SA management traffic, such as IKE packets, does not need to be processed based on SPI,
i.e., one can de-multiplex this traffic separately based on Next Protocol and Port fields, for
example.)

Identifier: RQ_002_2049
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host that supports the use of Authentication Headers MUST also support the anti-replay
service

RFC Text:
All AH implementations MUST support the anti-replay service, though its use may be enabled or
disabled by the receiver on a per-SA basis. Anti-replay is applicable to unicast as well as
multicast SAs. However, this standard specifies no mechanisms for providing anti- replay for a
multi-sender SA (unicast or multicast). In the absence of negotiation (or manual configuration) of
an anti-replay mechanism for such an SA, it is recommended that sender and receiver checking of the
Sequence Number for the SA be disabled (via negotiation or manual configuration), as noted below.

If the receiver does not enable anti-replay for an SA, no inbound checks are performed on the
Sequence Number. However, from the perspective of the sender, the default is to assume that anti-
replay is enabled at the receiver. To avoid having the sender do unnecessary sequence number
monitoring and SA setup (see Section 3.3.2, "Sequence Number Generation"), if an SA establishment
protocol such as IKE is employed, the receiver SHOULD notify the sender, during SA establishment, if
the receiver will not provide anti-replay protection.

If the receiver has enabled the anti-replay service for this SA, the receive packet counter for the
SA MUST be initialized to zero when the SA is established. For each received packet, the receiver
MUST verify that the packet contains a Sequence Number that does not duplicate the Sequence Number
of any other packets received during the life of this SA. This SHOULD be the first AH check applied
to a packet after it has been matched to an SA, to speed rejection of duplicate packets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 37

Identifier: RQ_002_2050
RFC Clause: 3.4.3
Type: Optional
Applies to: IPsec host

Requirement:
An IPsec host that supports the use of Authentication Headers MAY enable or disable the anti-replay
service on a per-Security Association basis.

RFC Text:
All AH implementations MUST support the anti-replay service, though its use may be enabled or
disabled by the receiver on a per-SA basis. Anti-replay is applicable to unicast as well as
multicast SAs. However, this standard specifies no mechanisms for providing anti- replay for a
multi-sender SA (unicast or multicast). In the absence of negotiation (or manual configuration) of
an anti-replay mechanism for such an SA, it is recommended that sender and receiver checking of the
Sequence Number for the SA be disabled (via negotiation or manual configuration), as noted below.

If the receiver does not enable anti-replay for an SA, no inbound checks are performed on the
Sequence Number. However, from the perspective of the sender, the default is to assume that anti-
replay is enabled at the receiver. To avoid having the sender do unnecessary sequence number
monitoring and SA setup (see Section 3.3.2, "Sequence Number Generation"), if an SA establishment
protocol such as IKE is employed, the receiver SHOULD notify the sender, during SA establishment, if
the receiver will not provide anti-replay protection.

If the receiver has enabled the anti-replay service for this SA, the receive packet counter for the
SA MUST be initialized to zero when the SA is established. For each received packet, the receiver
MUST verify that the packet contains a Sequence Number that does not duplicate the Sequence Number
of any other packets received during the life of this SA. This SHOULD be the first AH check applied
to a packet after it has been matched to an SA, to speed rejection of duplicate packets.

Identifier: RQ_002_2051
RFC Clause: 3.4.3
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec host that supports Authentication Headers receives a request to establish a Security
Association with another IPsec host (using the IKEv2 protocol for instance) but is unable to provide
anti-replay protection, it SHOULD include a notification of this fact in its response to the SA
initiator

RFC Text:
All AH implementations MUST support the anti-replay service, though its use may be enabled or
disabled by the receiver on a per-SA basis. Anti-replay is applicable to unicast as well as
multicast SAs. However, this standard specifies no mechanisms for providing anti- replay for a
multi-sender SA (unicast or multicast). In the absence of negotiation (or manual configuration) of
an anti-replay mechanism for such an SA, it is recommended that sender and receiver checking of the
Sequence Number for the SA be disabled (via negotiation or manual configuration), as noted below.

If the receiver does not enable anti-replay for an SA, no inbound checks are performed on the
Sequence Number. However, from the perspective of the sender, the default is to assume that anti-
replay is enabled at the receiver. To avoid having the sender do unnecessary sequence number
monitoring and SA setup (see Section 3.3.2, "Sequence Number Generation"), if an SA establishment
protocol such as IKE is employed, the receiver SHOULD notify the sender, during SA establishment, if
the receiver will not provide anti-replay protection.

If the receiver has enabled the anti-replay service for this SA, the receive packet counter for the
SA MUST be initialized to zero when the SA is established. For each received packet, the receiver
MUST verify that the packet contains a Sequence Number that does not duplicate the Sequence Number
of any other packets received during the life of this SA. This SHOULD be the first AH check applied
to a packet after it has been matched to an SA, to speed rejection of duplicate packets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 38

Identifier: RQ_002_2052
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host that supports Authentication Headers accepts a request to establish a Security
Association with another IPsec host (using the IKEv2 protocol for instance) and it enables the anti-
replay service for this SA, it MUST set the received packet counter to zero (0) when the SA is
established.

RFC Text:
All AH implementations MUST support the anti-replay service, though its use may be enabled or
disabled by the receiver on a per-SA basis. Anti-replay is applicable to unicast as well as
multicast SAs. However, this standard specifies no mechanisms for providing anti- replay for a
multi-sender SA (unicast or multicast). In the absence of negotiation (or manual configuration) of
an anti-replay mechanism for such an SA, it is recommended that sender and receiver checking of the
Sequence Number for the SA be disabled (via negotiation or manual configuration), as noted below.

If the receiver does not enable anti-replay for an SA, no inbound checks are performed on the
Sequence Number. However, from the perspective of the sender, the default is to assume that anti-
replay is enabled at the receiver. To avoid having the sender do unnecessary sequence number
monitoring and SA setup (see Section 3.3.2, "Sequence Number Generation"), if an SA establishment
protocol such as IKE is employed, the receiver SHOULD notify the sender, during SA establishment, if
the receiver will not provide anti-replay protection.

If the receiver has enabled the anti-replay service for this SA, the receive packet counter for the
SA MUST be initialized to zero when the SA is established. For each received packet, the receiver
MUST verify that the packet contains a Sequence Number that does not duplicate the Sequence Number
of any other packets received during the life of this SA. This SHOULD be the first AH check applied
to a packet after it has been matched to an SA, to speed rejection of duplicate packets.

Identifier: RQ_002_2053
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host that supports Authentication Headers receives a packet which includes an
Authentication Header, it MUSTY reject the packet if the value in the AH Sequence Number field of
the received packet is the same as the value in a previous packet received on the same Security
Association.

RFC Text:
All AH implementations MUST support the anti-replay service, though its use may be enabled or
disabled by the receiver on a per-SA basis. Anti-replay is applicable to unicast as well as
multicast SAs. However, this standard specifies no mechanisms for providing anti- replay for a
multi-sender SA (unicast or multicast). In the absence of negotiation (or manual configuration) of
an anti-replay mechanism for such an SA, it is recommended that sender and receiver checking of the
Sequence Number for the SA be disabled (via negotiation or manual configuration), as noted below.

If the receiver does not enable anti-replay for an SA, no inbound checks are performed on the
Sequence Number. However, from the perspective of the sender, the default is to assume that anti-
replay is enabled at the receiver. To avoid having the sender do unnecessary sequence number
monitoring and SA setup (see Section 3.3.2, "Sequence Number Generation"), if an SA establishment
protocol such as IKE is employed, the receiver SHOULD notify the sender, during SA establishment, if
the receiver will not provide anti-replay protection.

If the receiver has enabled the anti-replay service for this SA, the receive packet counter for the
SA MUST be initialized to zero when the SA is established. For each received packet, the receiver
MUST verify that the packet contains a Sequence Number that does not duplicate the Sequence Number
of any other packets received during the life of this SA. This SHOULD be the first AH check applied
to a packet after it has been matched to an SA, to speed rejection of duplicate packets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 39

Identifier: RQ_002_2054
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host that supports Authentication Headers receives a packet which includes an
Authentication Header, it MUST be able to check the Sequence Number in that header against the
Sequence Numbers of the previous 32 received packets

RFC Text:
Duplicates are rejected through the use of a sliding receive window. How the window is implemented
is a local matter, but the following text describes the functionality that the implementation must
exhibit.

........

A MINIMUM window size of 32 packets MUST be supported, but a window size of 64 is preferred and
SHOULD be employed as the default. Another window size (larger than the MINIMUM) MAY be chosen by
the receiver. (The receiver does NOT notify the sender of the window size.) The receive window
size should be increased for higher-speed environments, irrespective of assurance issues. Values
for minimum and recommended receive window sizes for very high-speed (e.g., multi-gigabit/second)
devices are not specified by this standard.

Identifier: RQ_002_2055
RFC Clause: 3.4.3
Type: Recommended
Applies to: IPsec host

Requirement:
When an IPsec host that supports Authentication Headers receives a packet which includes an
Authentication Header, it SHOULD be able to check the Sequence Number in that header against the
Sequence Numbers of the previous 64 received packets

RFC Text:
Duplicates are rejected through the use of a sliding receive window. How the window is implemented
is a local matter, but the following text describes the functionality that the implementation must
exhibit.

........

A MINIMUM window size of 32 packets MUST be supported, but a window size of 64 is preferred and
SHOULD be employed as the default. Another window size (larger than the MINIMUM) MAY be chosen by
the receiver. (The receiver does NOT notify the sender of the window size.) The receive window
size should be increased for higher-speed environments, irrespective of assurance issues. Values
for minimum and recommended receive window sizes for very high-speed (e.g., multi-gigabit/second)
devices are not specified by this standard.

Identifier: RQ_002_2056
RFC Clause: 3.4.3
Type: Optional
Applies to: IPsec host

Requirement:
When an IPsec host that supports Authentication Headers receives a packet which includes an
Authentication Header, it MAY check the Sequence Number in that header against the Sequence Numbers
of more than the previous 64 received packets

RFC Text:
Duplicates are rejected through the use of a sliding receive window. How the window is implemented
is a local matter, but the following text describes the functionality that the implementation must
exhibit.

........

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 40

A MINIMUM window size of 32 packets MUST be supported, but a window size of 64 is preferred and
SHOULD be employed as the default. Another window size (larger than the MINIMUM) MAY be chosen by
the receiver. (The receiver does NOT notify the sender of the window size.) The receive window
size should be increased for higher-speed environments, irrespective of assurance issues. Values
for minimum and recommended receive window sizes for very high-speed (e.g., multi-gigabit/second)
devices are not specified by this standard.

Identifier: RQ_002_2057
RFC Clause: 3.4.4
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host that supports Authentication headers receives an IP packet which includes an
Authentication Header, it MUST calculate the Integrity Check Value for the packet using the
integrity algorithm specified during the establishment of the relevant Security Association and
accept the received packet if this calculated value is the same as the value held in the Integrity
Check Value field of the packet

RFC Text:
The receiver computes the ICV over the appropriate fields of the packet, using the specified
integrity algorithm, and verifies that it is the same as the ICV included in the ICV field of the
packet. Details of the computation are provided below.

If the computed and received ICVs match, then the datagram is valid, and it is accepted. If the
test fails, then the receiver MUST discard the received IP datagram as invalid. This is an
auditable event. The audit log entry SHOULD include the SPI value, date/time received, Source
Address, Destination Address, and (in IPv6) the Flow ID.

Identifier: RQ_002_2058
RFC Clause: 3.4.4
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host that supports Authentication headers receives an IP packet which includes an
Authentication Header, it MUST calculate the Integrity Check Value for the packet using the
integrity algorithm specified during the establishment of the relevant Security Association and
reject the received packet as invalid if this calculated value is not the same as the value held in
the Integrity Check Value field of the packet

RFC Text:
The receiver computes the ICV over the appropriate fields of the packet, using the specified
integrity algorithm, and verifies that it is the same as the ICV included in the ICV field of the
packet. Details of the computation are provided below.

If the computed and received ICVs match, then the datagram is valid, and it is accepted. If the
test fails, then the receiver MUST discard the received IP datagram as invalid. This is an
auditable event. The audit log entry SHOULD include the SPI value, date/time received, Source
Address, Destination Address, and (in IPv6) the Flow ID.

Identifier: RQ_002_2059
RFC Clause: 4
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host that supports both Authentication Headers and auditing MUST support auditing of
Authentication Headers

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 41

RFC Text:
Not all systems that implement AH will implement auditing. However, if AH is incorporated into a
system that supports auditing, then the AH implementation MUST also support auditing and MUST allow
a system administrator to enable or disable auditing for AH. For the most part, the granularity of
auditing is a local matter. However, several auditable events are identified in this specification,
and for each of these events a minimum set of information that SHOULD be included in an audit log is
defined. Additional information also MAY be included in the audit log for each of these events, and
additional events, not explicitly called out in this specification, also MAY result in audit log
entries. There is no requirement for the receiver to transmit any message to the purported sender
in response to the detection of an auditable event, because of the potential to induce denial of
service via such action.

Identifier: RQ_002_2060
RFC Clause: 4
Type: Optional
Applies to: IPsec host

Requirement:
When recording an auditable event in its log, an IPsec host MAY include additional parameters to
those recommended for the particular event

RFC Text:
Not all systems that implement AH will implement auditing. However, if AH is incorporated into a
system that supports auditing, then the AH implementation MUST also support auditing and MUST allow
a system administrator to enable or disable auditing for AH. For the most part, the granularity of
auditing is a local matter. However, several auditable events are identified in this specification,
and for each of these events a minimum set of information that SHOULD be included in an audit log is
defined. Additional information also MAY be included in the audit log for each of these events, and
additional events, not explicitly called out in this specification, also MAY result in audit log
entries. There is no requirement for the receiver to transmit any message to the purported sender
in response to the detection of an auditable event, because of the potential to induce denial of
service via such action.

Identifier: RQ_002_2061
RFC Clause: 4
Type: Optional
Applies to: IPsec host

Requirement:
An IPsec host MAY include AH-related events in its audit log in addition to those specifically
required in the support of Authentication Headers

RFC Text:
Not all systems that implement AH will implement auditing. However, if AH is incorporated into a
system that supports auditing, then the AH implementation MUST also support auditing and MUST allow
a system administrator to enable or disable auditing for AH. For the most part, the granularity of
auditing is a local matter. However, several auditable events are identified in this specification,
and for each of these events a minimum set of information that SHOULD be included in an audit log is
defined. Additional information also MAY be included in the audit log for each of these events, and
additional events, not explicitly called out in this specification, also MAY result in audit log
entries. There is no requirement for the receiver to transmit any message to the purported sender
in response to the detection of an auditable event, because of the potential to induce denial of
service via such action.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 42

4.3 Requirements extracted from RFC 4303

Identifier: RQ_002_3000
RFC Clause: 1
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host MUST support the ESP security service of integrity only

RFC Text:
Although confidentiality and integrity can be offered independently, ESP typically will employ both
services, i.e., packets will be protected with regard to confidentiality and integrity. Thus, there
are three possible ESP security service combinations involving these services:

 - confidentiality-only (MAY be supported)
 - integrity only (MUST be supported)
 - confidentiality and integrity (MUST be supported)

Identifier: RQ_002_3001
RFC Clause: 1
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host MUST support the ESP security service of confidentiality and integrity

RFC Text:
Although confidentiality and integrity can be offered independently, ESP typically will employ both
services, i.e., packets will be protected with regard to confidentiality and integrity. Thus, there
are three possible ESP security service combinations involving these services:

 - confidentiality-only (MAY be supported)
 - integrity only (MUST be supported)
 - confidentiality and integrity (MUST be supported)

Identifier: RQ_002_3002
RFC Clause: 1
Type: Optional
Applies to: IPsec host

Requirement:
An IPsec host MAY support the ESP security service of confidentiality only

RFC Text:
Although confidentiality and integrity can be offered independently, ESP typically will employ both
services, i.e., packets will be protected with regard to confidentiality and integrity. Thus, there
are three possible ESP security service combinations involving these services:

 - confidentiality-only (MAY be supported)
 - integrity only (MUST be supported)
 - confidentiality and integrity (MUST be supported)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 43

Identifier: RQ_002_3003
RFC Clause: 2.1
Type: Optional
Applies to: IPsec host

Requirement:
An IPsec ESP implementation MAY use the destination address of the received packet in addition to
the SPI for SA identification

RFC Text:
Each entry in the SA Database (SAD) (Section 4.4.2) must indicate whether the SA lookup makes use of
the destination IP address, or the destination and source IP addresses, in addition to the SPI. For
multicast SAs, the protocol field is not employed for SA lookups. For each inbound, IPsec-protected
packet, an implementation must conduct its search of the SAD such that it finds the entry that
matches the "longest" SA identifier. In this context, if two or more SAD entries match based on the
SPI value, then the entry that also matches based on destination address, or destination and source
address (as indicated in the SAD entry) is the "longest" match.

Identifier: RQ_002_3004
RFC Clause: 2
Type: Mandatory
Applies to: IPsec host

Requirement:
The (outer) protocol header (IPv4, IPv6, or Extension) that immediately precedes the ESP header
SHALL contain the value 50 in its Protocol (IPv4) or Next Header (IPv6, Extension) field

RFC Text:
The (outer) protocol header (IPv4, IPv6, or Extension) that immediately precedes the ESP header
SHALL contain the value 50 in its Protocol (IPv4) or Next Header (IPv6, Extension) field (see IANA
web page at http://www.iana.org/assignments/protocol-numbers). Figure 1 illustrates the top-level
format of an ESP packet. The packet begins with two 4-byte fields (Security Parameters Index (SPI)
and Sequence Number). Following these fields is the Payload Data, which has substructure that
depends on the choice of encryption algorithm and mode, and on the use of TFC padding, which is
examined in more detail later. Following the Payload Data are Padding and Pad Length fields, and
the Next Header field. The optional Integrity check Value (ICV) field completes the packet.

Identifier: RQ_002_3005
RFC Clause: 2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host sends an ESP packet to an established Security Association, it MUST set a non-
zero value in the SPI field of the packet

RFC Text:
The set of SPI values in the range 1 through 255 are reserved by the Internet Assigned Numbers
Authority (IANA) for future use; a reserved SPI value will not normally be assigned by IANA unless
the use of the assigned SPI value is specified in an RFC. The SPI value of zero (0) is reserved for
local, implementation-specific use and MUST NOT be sent on the wire. (For example, a key management
implementation might use the zero SPI value to mean "No Security Association Exists" during the
period when the IPsec implementation has requested that its key management entity establish a new
SA, but the SA has not yet been established.)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 44

Identifier: RQ_002_3006
RFC Clause: 2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host sends ESP packets across a unicast Security Association, it MUST increment the
value in the sequence number field for every transmitted packet

RFC Text:
This unsigned 32-bit field contains a counter value that increases by one for each packet sent,
i.e., a per-SA packet sequence number. For a unicast SA or a single-sender multicast SA, the sender
MUST increment this field for every transmitted packet. Sharing an SA among multiple senders is
permitted, though generally not recommended. ESP provides no means of synchronizing packet counters
among multiple senders or meaningfully managing a receiver packet counter and window in the context
of multiple senders. Thus, for a multi-sender SA, the anti-replay features of ESP are not available
(see Sections 3.3.3 and 3.4.3.)

Identifier: RQ_002_3007
RFC Clause: 2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host sends ESP packets across a single sender multicast Security Association, it MUST
increment the value in the sequence number field for every transmitted packet

RFC Text:
This unsigned 32-bit field contains a counter value that increases by one for each packet sent,
i.e., a per-SA packet sequence number. For a unicast SA or a single-sender multicast SA, the sender
MUST increment this field for every transmitted packet. Sharing an SA among multiple senders is
permitted, though generally not recommended. ESP provides no means of synchronizing packet counters
among multiple senders or meaningfully managing a receiver packet counter and window in the context
of multiple senders. Thus, for a multi-sender SA, the anti-replay features of ESP are not available
(see Sections 3.3.3 and 3.4.3.)

Identifier: RQ_002_3008
RFC Clause: 2.2
Type: Recommended
Applies to: IPsec host

Requirement:
The sharing of an SA among multiple IPsec ESP senders is NOT RECOMMENDED

RFC Text:
This unsigned 32-bit field contains a counter value that increases by one for each packet sent,
i.e., a per-SA packet sequence number. For a unicast SA or a single-sender multicast SA, the sender
MUST increment this field for every transmitted packet. Sharing an SA among multiple senders is
permitted, though generally not recommended. ESP provides no means of synchronizing packet counters
among multiple senders or meaningfully managing a receiver packet counter and window in the context
of multiple senders. Thus, for a multi-sender SA, the anti-replay features of ESP are not available
(see Sections 3.3.3 and 3.4.3.)

Identifier: RQ_002_3009
RFC Clause: 2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host sends an ESP packet across an established Security Association, it MUST include a
non-zero value in the Sequence Number field of the packet

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 45

RFC Text:
The field is mandatory and MUST always be present even if the receiver does not elect to enable the
anti-replay service for a specific SA. Processing of the Sequence Number field is at the discretion
of the receiver, but all ESP implementations MUST be capable of performing the processing described
in Sections 3.3.3 and 3.4.3. Thus, the sender MUST always transmit this field, but the receiver need
not act upon it (see the discussion of Sequence Number Verification in the "Inbound Packet
Processing" section (3.4.3) below).

Identifier: RQ_002_3012
RFC Clause: 2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
The value of the sequence number field in the header of the first ESP packet sent across a newly
established IPsec Security Association MUST be set to one (1)

RFC Text:
The sender's counter and the receiver's counter are initialized to 0 when an SA is established.
(The first packet sent using a given SA will have a sequence number of 1; see Section 3.3.3 for more
details on how the sequence number is generated.) If anti-replay is enabled (the default), the
transmitted sequence number must never be allowed to cycle. Thus, the sender's counter and the
receiver's counter MUST be reset (by establishing a new SA and thus a new key) prior to the
transmission of the 2^32nd packet on an SA.

Identifier: RQ_002_3013
RFC Clause: 2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host increments an ESP packet sequence number to a value greater than can be held in 32
bits, it MUST delete the corresponding Security Association and establish a new one to replace it

RFC Text:
The sender's counter and the receiver's counter are initialized to 0 when an SA is established.
(The first packet sent using a given SA will have a sequence number of 1; see Section 3.3.3 for more
details on how the sequence number is generated.) If anti-replay is enabled (the default), the
transmitted sequence number must never be allowed to cycle. Thus, the sender's counter and the
receiver's counter MUST be reset (by establishing a new SA and thus a new key) prior to the
transmission of the 2^32nd packet on an SA.

Identifier: RQ_002_3014
RFC Clause: 2.2.1
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec ESP implementation SHOULD implement Extended Sequence Numbers (ESNs)

RFC Text:
To support high-speed IPsec implementations, Extended Sequence Numbers (ESNs) SHOULD be implemented,
as an extension to the current, 32-bit sequence number field. Use of an ESN MUST be negotiated by
an SA management protocol. Note that in IKEv2, this negotiation is implicit; the default is ESN
unless 32-bit sequence numbers are explicitly negotiated. (The ESN feature is applicable to
multicast as well as unicast SAs.)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 46

Identifier: RQ_002_3015
RFC Clause: 2.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host MUST use a Security Association management protocol to negotiate the use of an
Extended Sequence Number (ESN) on a particular ESP SA

RFC Text:
To support high-speed IPsec implementations, Extended Sequence Numbers (ESNs) SHOULD be implemented,
as an extension to the current, 32-bit sequence number field. Use of an ESN MUST be negotiated by
an SA management protocol. Note that in IKEv2, this negotiation is implicit; the default is ESN
unless 32-bit sequence numbers are explicitly negotiated. (The ESN feature is applicable to
multicast as well as unicast SAs.)

Identifier: RQ_002_3016
RFC Clause: 3.4.3
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host SHOULD record in the audit log entry SHOULD the SPI value, date/time received, Source
Address, Destination Address, the Sequence Number, and the Flow ID for each failed integrity check
event during Sequence Number verification

RFC Text:
If the received packet falls within the window and is not a duplicate, or if the packet is to the
right of the window, and if a separate integrity algorithm is employed, then the receiver proceeds
to integrity verification. If a combined mode algorithm is employed, the integrity check is
performed along with decryption. In either case, if the integrity check fails, the receiver MUST
discard the received IP datagram as invalid; this is an auditable event. The audit log entry for
this event SHOULD include the SPI value, date/time received, Source Address, Destination Address,
the Sequence Number, and (in IPv6) the Flow ID. The receive window is updated only if the integrity
verification succeeds. (If a combined mode algorithm is being used, then the integrity protected
Sequence Number must also match the Sequence Number used for anti-replay protection.)

Identifier: RQ_002_3017
RFC Clause: 2.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When using an Extended Sequence Number (ESN) on a particular ESP Security Association, an IPsec host
MUST set the Sequence Number field in the ESP packet of each ESP packet to the low-order 32 bits of
the ESN

RFC Text:
The ESN facility allows use of a 64-bit sequence number for an SA. (See Appendix A, "Extended (64-
bit) Sequence Numbers", for details.) Only the low-order 32 bits of the sequence number are
transmitted in the plaintext ESP header of each packet, thus minimizing packet overhead. The high-
order 32 bits are maintained as part of the sequence number counter by both transmitter and receiver
and are included in the computation of the ICV (if the integrity service is selected). If a
separate integrity algorithm is employed, the high order bits are included in the implicit ESP
trailer, but are not transmitted, analogous to integrity algorithm padding bits. If a combined
mode algorithm is employed, the algorithm choice determines whether the high-order ESN bits are
transmitted or are included implicitly in the computation. See Section 3.3.2.2 for processing
details.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 47

Identifier: RQ_002_3018
RFC Clause: 2.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP if a separate integrity algorithm is employed the high order bits of the ESN MUST be
included in the implicit ESP trailer

RFC Text:
The ESN facility allows use of a 64-bit sequence number for an SA. (See Appendix A, "Extended (64-
bit) Sequence Numbers", for details.) Only the low-order 32 bits of the sequence number are
transmitted in the plaintext ESP header of each packet, thus minimizing packet overhead. The high-
order 32 bits are maintained as part of the sequence number counter by both transmitter and receiver
and are included in the computation of the ICV (if the integrity service is selected). If a
separate integrity algorithm is employed, the high order bits are included in the implicit ESP
trailer, but are not transmitted, analogous to integrity algorithm padding bits. If a combined
mode algorithm is employed, the algorithm choice determines whether the high-order ESN bits are
transmitted or are included implicitly in the computation. See Section 3.3.2.2 for processing
details.

Identifier: RQ_002_3019
RFC Clause: 2.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP the implicit ESP trailer MUST NOT be transmitted

RFC Text:
The ESN facility allows use of a 64-bit sequence number for an SA. (See Appendix A, "Extended (64-
bit) Sequence Numbers", for details.) Only the low-order 32 bits of the sequence number are
transmitted in the plaintext ESP header of each packet, thus minimizing packet overhead. The high-
order 32 bits are maintained as part of the sequence number counter by both transmitter and receiver
and are included in the computation of the ICV (if the integrity service is selected). If a
separate integrity algorithm is employed, the high order bits are included in the implicit ESP
trailer, but are not transmitted, analogous to integrity algorithm padding bits. If a combined
mode algorithm is employed, the algorithm choice determines whether the high-order ESN bits are
transmitted or are included implicitly in the computation. See Section 3.3.2.2 for processing
details.

Identifier: RQ_002_3021
RFC Clause: 2.3
Type: Mandatory
Applies to: IPsec host

Requirement:
The Payload Data field in an ESP packet MUST be an integral number of bytes in length

RFC Text:
Payload Data is a variable-length field containing data (from the original IP packet) described by
the Next Header field. The Payload Data field is mandatory and is an integral number of bytes in
length. If the algorithm used to encrypt the payload requires cryptographic synchronization data,
e.g., an Initialization Vector (IV), then this data is carried explicitly in the Payload field, but
it is not called out as a separate field in ESP, i.e., the transmission of an explicit IV is
invisible to ESP. (See Figure 2.) Any encryption algorithm that requires such explicit, per-packet
synchronization data MUST indicate the length, any structure for such data, and the location of this
data as part of an RFC specifying how the algorithm is used with ESP. (Typically, the IV
immediately precedes the ciphertext. See Figure 2.) If such synchronization data is implicit, the
algorithm for deriving the data MUST be part of the algorithm definition RFC. (If included in the
Payload field, cryptographic synchronization data, e.g., an Initialization Vector (IV), usually is
not encrypted per se (see Tables 1 and 2), although it sometimes is referred to as being part of the
ciphertext.)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 48

Identifier: RQ_002_3022
RFC Clause: 2.3
Type: Mandatory
Applies to: IPsec host

Requirement:
If the algorithm used to encrypt the payload data in an ESP packet requires cryptographic
synchronization data this data MUST be carried explicitly in the Payload field

RFC Text:
Payload Data is a variable-length field containing data (from the original IP packet) described by
the Next Header field. The Payload Data field is mandatory and is an integral number of bytes in
length. If the algorithm used to encrypt the payload requires cryptographic synchronization data,
e.g., an Initialization Vector (IV), then this data is carried explicitly in the Payload field, but
it is not called out as a separate field in ESP, i.e., the transmission of an explicit IV is
invisible to ESP. (See Figure 2.) Any encryption algorithm that requires such explicit, per-packet
synchronization data MUST indicate the length, any structure for such data, and the location of this
data as part of an RFC specifying how the algorithm is used with ESP. (Typically, the IV
immediately precedes the ciphertext. See Figure 2.) If such synchronization data is implicit, the
algorithm for deriving the data MUST be part of the algorithm definition RFC. (If included in the
Payload field, cryptographic synchronization data, e.g., an Initialization Vector (IV), usually is
not encrypted per se (see Tables 1 and 2), although it sometimes is referred to as being part of the
ciphertext.)

Identifier: RQ_002_3023
RFC Clause: 2.3
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPv4 the beginning of the next layer protocol header MUST be aligned relative to the beginning of
the ESP header a multiple of 4 bytes

RFC Text:
Note that the beginning of the next layer protocol header MUST be aligned relative to the beginning
of the ESP header as follows. For IPv4, this alignment is a multiple of 4 bytes. For IPv6, the
alignment is a multiple of 8 bytes.

Identifier: RQ_002_3024
RFC Clause: 2.3
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPv6 the beginning of the next layer protocol header MUST be aligned relative to the beginning of
the ESP header a multiple of 8 bytes

RFC Text:
Note that the beginning of the next layer protocol header MUST be aligned relative to the beginning
of the ESP header as follows. For IPv4, this alignment is a multiple of 4 bytes. For IPv6, the
alignment is a multiple of 8 bytes.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 49

Identifier: RQ_002_3025
RFC Clause: 2.4
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec ESP implementation MUST be able to insert up to 255 bytes of padding immediately after the
Payload Data field in an ESP packet

RFC Text:
The sender MAY add 0 to 255 bytes of padding. Inclusion of the Padding field in an ESP packet is
optional, subject to the requirements noted above, but all implementations MUST support generation
and consumption of padding.

 o For the purpose of ensuring that the bits to be encrypted are a multiple of the algorithm's
block size (first bullet above), the padding computation applies to the Payload Data exclusive of
any IV, but including the ESP trailer fields. If a combined algorithm mode requires transmission
of the SPI and Sequence Number to effect integrity, e.g., replication of the SPI and Sequence Number
in the Payload Data, then the replicated versions of these data items, and any associated, ICV-
equivalent data, are included in the computation of the pad length. (If the ESN option is selected,
the high-order 32 bits of the ESN also would enter into the computation, if the combined mode
algorithm requires their transmission for integrity.)

 o For the purposes of ensuring that the ICV is aligned on a 4-byte boundary (second bullet
above), the padding computation applies to the Payload Data inclusive of the IV, the Pad Length, and
Next Header fields. If a combined mode algorithm is used, any replicated data and ICV-equivalent
data are included in the Payload Data covered by the padding computation.

Identifier: RQ_002_3026
RFC Clause: 2.4
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec ESP implementation MUST be able to receive and process ESP packets containing up to 255
bytes of padding immediately following the Payload Data field

RFC Text:
The sender MAY add 0 to 255 bytes of padding. Inclusion of the Padding field in an ESP packet is
optional, subject to the requirements noted above, but all implementations MUST support generation
and consumption of padding.

 o For the purpose of ensuring that the bits to be encrypted are a multiple of the algorithm's
block size (first bullet above), the padding computation applies to the Payload Data exclusive of
any IV, but including the ESP trailer fields. If a combined algorithm mode requires transmission
of the SPI and Sequence Number to effect integrity, e.g., replication of the SPI and Sequence Number
in the Payload Data, then the replicated versions of these data items, and any associated, ICV-
equivalent data, are included in the computation of the pad length. (If the ESN option is selected,
the high-order 32 bits of the ESN also would enter into the computation, if the combined mode
algorithm requires their transmission for integrity.)

 o For the purposes of ensuring that the ICV is aligned on a 4-byte boundary (second bullet
above), the padding computation applies to the Payload Data inclusive of the IV, the Pad Length, and
Next Header fields. If a combined mode algorithm is used, any replicated data and ICV-equivalent
data are included in the Payload Data covered by the padding computation.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 50

Identifier: RQ_002_3027
RFC Clause: 2.5
Type: Mandatory
Applies to: IPsec host

Requirement:
When sending an ESP packet across an established Security Association, an IPsec host MUST include in
the packet a value indicating the number of padding bytes inserted in the packet

RFC Text:
The Pad Length field indicates the number of pad bytes immediately preceding it in the Padding
field. The range of valid values is 0 to 255, where a value of zero indicates that no Padding bytes
are present. As noted above, this does not include any TFC padding bytes. The Pad Length field is
mandatory.

Identifier: RQ_002_3029
RFC Clause: 2.6
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host sends a dummy ESP packet, it MUST set the Next Header field to the value fifty-nine
(59)

RFC Text:
To facilitate the rapid generation and discarding of the padding traffic in support of traffic flow
confidentiality (see Section 2.4), the protocol value 59 (which means "no next header") MUST be used
to designate a "dummy" packet. A transmitter MUST be capable of generating dummy packets marked
with this value in the next protocol field, and a receiver MUST be prepared to discard such packets,
without indicating an error. All other ESP header and trailer fields (SPI, Sequence Number,
Padding, Pad Length, Next Header, and ICV) MUST be present in dummy packets, but the plaintext
portion of the payload, other than this Next Header field, need not be well-formed, e.g., the rest
of the Payload Data may consist of only random bytes. Dummy packets are discarded without prejudice.

Identifier: RQ_002_3030
RFC Clause: 2.6
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host receives a packets marked with the protocol value 59 in the next protocol field it
MUST discard the packet without indicating an error

RFC Text:
To facilitate the rapid generation and discarding of the padding traffic in support of traffic flow
confidentiality (see Section 2.4), the protocol value 59 (which means "no next header") MUST be used
to designate a "dummy" packet. A transmitter MUST be capable of generating dummy packets marked
with this value in the next protocol field, and a receiver MUST be prepared to discard such packets,
without indicating an error. All other ESP header and trailer fields (SPI, Sequence Number,
Padding, Pad Length, Next Header, and ICV) MUST be present in dummy packets, but the plaintext
portion of the payload, other than this Next Header field, need not be well-formed, e.g., the rest
of the Payload Data may consist of only random bytes. Dummy packets are discarded without prejudice.

Identifier: RQ_002_3031
RFC Clause: 2.6
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP a dummy packet MUST contain all ESP header and trailer fields (SPI, Sequence Number,
Padding, Pad Length, Next Header, and ICV) and the payload field

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 51

RFC Text:
To facilitate the rapid generation and discarding of the padding traffic in support of traffic flow
confidentiality (see Section 2.4), the protocol value 59 (which means "no next header") MUST be used
to designate a "dummy" packet. A transmitter MUST be capable of generating dummy packets marked
with this value in the next protocol field, and a receiver MUST be prepared to discard such packets,
without indicating an error. All other ESP header and trailer fields (SPI, Sequence Number,
Padding, Pad Length, Next Header, and ICV) MUST be present in dummy packets, but the plaintext
portion of the payload, other than this Next Header field, need not be well-formed, e.g., the rest
of the Payload Data may consist of only random bytes. Dummy packets are discarded without prejudice.

Identifier: RQ_002_3032
RFC Clause: 2.7
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec implementation SHOULD be capable of padding traffic by adding bytes after the end of the
ESP Payload Data prior to the beginning of the Padding field

RFC Text:
An IPsec implementation SHOULD be capable of padding traffic by adding bytes after the end of the
Payload Data, prior to the beginning of the Padding field. However, this padding (hereafter
referred to as TFC padding) can be added only if the Payload Data field contains a specification of
the length of the IP datagram. This is always true in tunnel mode, and may be true in transport mode
depending on whether the next layer protocol (e.g., IP, UDP, ICMP) contains explicit length
information. This length information will enable the receiver to discard the TFC padding, because
the true length of the Payload Data will be known. (ESP trailer fields are located by counting back
from the end of the ESP packet.) Accordingly, if TFC padding is added, the field containing the
specification of the length of the IP datagram MUST NOT be modified to reflect this padding. No
requirements for the value of this padding are established by this standard.

Identifier: RQ_002_3033
RFC Clause: 2.7
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host sends an ESP packet in which TFC padding is added, the field containing the
specification of the length of the encapsulated IP datagram MUST NOT be modified to reflect this
padding

RFC Text:
An IPsec implementation SHOULD be capable of padding traffic by adding bytes after the end of the
Payload Data, prior to the beginning of the Padding field. However, this padding (hereafter
referred to as TFC padding) can be added only if the Payload Data field contains a specification of
the length of the IP datagram. This is always true in tunnel mode, and may be true in transport mode
depending on whether the next layer protocol (e.g., IP, UDP, ICMP) contains explicit length
information. This length information will enable the receiver to discard the TFC padding, because
the true length of the Payload Data will be known. (ESP trailer fields are located by counting back
from the end of the ESP packet.) Accordingly, if TFC padding is added, the field containing the
specification of the length of the IP datagram MUST NOT be modified to reflect this padding. No
requirements for the value of this padding are established by this standard.

Identifier: RQ_002_3035
RFC Clause: 2.7
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec ESP implementation SHOULD provide local management controls to enable the use of the
traffic flow confidentiality capability on a per-SA basis

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 52

RFC Text:
Implementations SHOULD provide local management controls to enable the use of this capability on a
per-SA basis. The controls should allow the user to specify if this feature is to be used and also
provide parametric controls for the feature.

Identifier: RQ_002_3037
RFC Clause: 2.8
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host icludes an Integrity Check Value (ICV) in an ESP packet it MUST be compute the ICV
over the ESP header, Payload, and ESP trailer (implicit and explicit) fields

RFC Text:
The Integrity Check Value is a variable-length field computed over the ESP header, Payload, and ESP
trailer fields. Implicit ESP trailer fields (integrity padding and high-order ESN bits, if
applicable) are included in the ICV computation. The ICV field is optional. It is present only if
the integrity service is selected and is provided by either a separate integrity algorithm or a
combined mode algorithm that uses an ICV. The length of the field is specified by the integrity
algorithm selected and associated with the SA. The integrity algorithm specification MUST specify
the length of the ICV and the comparison rules and processing steps for validation.

Identifier: RQ_002_3039
RFC Clause: 3.1
Type: Optional
Applies to: IPsec host

Requirement:
ESP MAY be employed in transport mode

RFC Text:
ESP may be employed in two ways: transport mode or tunnel mode.

Identifier: RQ_002_3040
RFC Clause: 3.1
Type: Optional
Applies to: IPsec host

Requirement:
ESP MAY be employed in tunnel mode.

RFC Text:
ESP may be employed in two ways: transport mode or tunnel mode.

Identifier: RQ_002_3041
RFC Clause: 3.1.1
Type: Recommended
Applies to: IPsec host

Requirement:
When an IPsec host sends an ESP packet it SHOULD place the ESP header in the IPv6 packet after the
hop-by-hop, routing, and fragmentation extension headers.

RFC Text:
In the IPv6 context, ESP is viewed as an end-to-end payload, and thus should appear after hop-by-
hop, routing, and fragmentation extension headers. Destination options extension header(s) could
appear before, after, or both before and after the ESP header depending on the semantics desired.
However, because ESP protects only fields after the ESP header, it generally will be desirable to
place the destination options header(s) after the ESP header. The following diagram illustrates ESP
transport mode positioning for a typical IPv6 packet.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 53

Identifier: RQ_002_3042
RFC Clause: 3.1.1
Type: Recommended
Applies to: IPsec host

Requirement:
When an IPsec host sends an ESP packet it SHOULD place the ESP header in the IPv6 packet before any
destination options header(s)

RFC Text:
In the IPv6 context, ESP is viewed as an end-to-end payload, and thus
 should appear after hop-by-hop, routing, and fragmentation extension
 headers. Destination options extension header(s) could appear
 before, after, or both before and after the ESP header depending on
 the semantics desired. However, because ESP protects only fields
 after the ESP header, it generally will be desirable to place the
 destination options header(s) after the ESP header. The following
 diagram illustrates ESP transport mode positioning for a typical IPv6
 packet.

Identifier: RQ_002_3043
RFC Clause: 3.2
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host MUST select one, or both, of the confidentiality service and integrity service

RFC Text:
The mandatory-to-implement algorithms for use with ESP are described
 in a separate RFC, to facilitate updating the algorithm requirements
 independently from the protocol per se. Additional algorithms,
 beyond those mandated for ESP, MAY be supported. Note that although
 both confidentiality and integrity are optional, at least one of
 these services MUST be selected, hence both algorithms MUST NOT be
 simultaneously NULL.

Identifier: RQ_002_3044
RFC Clause: 3.2
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP the algorithms for confidentiality and integrity MUST NOT be simultaneously NULL.

RFC Text:
The mandatory-to-implement algorithms for use with ESP are described
 in a separate RFC, to facilitate updating the algorithm requirements
 independently from the protocol per se. Additional algorithms,
 beyond those mandated for ESP, MAY be supported. Note that although
 both confidentiality and integrity are optional, at least one of
 these services MUST be selected, hence both algorithms MUST NOT be
 simultaneously NULL.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 54

Identifier: RQ_002_3045
RFC Clause: 3.2
Type: Optional
Applies to: IPsec host

Requirement:
In IPsec ESP additional algorithms beyond those mandated in RFC4305 for ESP MAY be supported

RFC Text:
The mandatory-to-implement algorithms for use with ESP are described
 in a separate RFC, to facilitate updating the algorithm requirements
 independently from the protocol per se. Additional algorithms,
 beyond those mandated for ESP, MAY be supported. Note that although
 both confidentiality and integrity are optional, at least one of
 these services MUST be selected, hence both algorithms MUST NOT be
 simultaneously NULL.

Identifier: RQ_002_3046
RFC Clause: 3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
Each IPv6 packet protected by the ESP confidentiality service MUST carry any data required to allow
the receiver to establish cryptographic synchronization for decryption.

RFC Text:
The encryption algorithm employed to protect an ESP packet is
 specified by the SA via which the packet is transmitted/received.
 Because IP packets may arrive out of order, and not all packets may
 arrive (packet loss), each packet must carry any data required to
 allow the receiver to establish cryptographic synchronization for
 decryption. This data may be carried explicitly in the payload
 field, e.g., as an IV (as described above), or the data may be
 derived from the plaintext portions of the (outer IP or ESP) packet
 header. (Note that if plaintext header information is used to derive
 an IV, that information may become security critical and thus the
 protection boundary associated with the encryption process may grow.
 For example, if one were to use the ESP Sequence Number to derive an
 IV, the Sequence Number generation logic (hardware or software) would
 have to be evaluated as part of the encryption algorithm
 implementation. In the case of FIPS 140-2 [NIST01], this could
 significantly extend the scope of a cryptographic module evaluation.)
 Because ESP makes provision for padding of the plaintext, encryption
 algorithms employed with ESP may exhibit either block or stream mode
 characteristics. Note that because encryption (confidentiality) MAY
 be an optional service (e.g., integrity-only ESP), this algorithm MAY
 be "NULL" [Ken-Arch].

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 55

Identifier: RQ_002_3047
RFC Clause: 3.2.1
Type: Optional
Applies to: IPsec host

Requirement:
IPsec ESP synchronsation data MAY be carried explicitly in the payload field

RFC Text:
The encryption algorithm employed to protect an ESP packet is
 specified by the SA via which the packet is transmitted/received.
 Because IP packets may arrive out of order, and not all packets may
 arrive (packet loss), each packet must carry any data required to
 allow the receiver to establish cryptographic synchronization for
 decryption. This data may be carried explicitly in the payload
 field, e.g., as an IV (as described above), or the data may be
 derived from the plaintext portions of the (outer IP or ESP) packet
 header. (Note that if plaintext header information is used to derive
 an IV, that information may become security critical and thus the
 protection boundary associated with the encryption process may grow.
 For example, if one were to use the ESP Sequence Number to derive an
 IV, the Sequence Number generation logic (hardware or software) would
 have to be evaluated as part of the encryption algorithm
 implementation. In the case of FIPS 140-2 [NIST01], this could
 significantly extend the scope of a cryptographic module evaluation.)
 Because ESP makes provision for padding of the plaintext, encryption
 algorithms employed with ESP may exhibit either block or stream mode
 characteristics. Note that because encryption (confidentiality) MAY
 be an optional service (e.g., integrity-only ESP), this algorithm MAY
 be "NULL" [Ken-Arch].

Identifier: RQ_002_3048
RFC Clause: 3.2.1
Type: Optional
Applies to: IPsec host

Requirement:
IPsec ESP synchronisaton data may be derived from the plaintext portions of the (outer IP or ESP)
packet header.

RFC Text:
The encryption algorithm employed to protect an ESP packet is
 specified by the SA via which the packet is transmitted/received.
 Because IP packets may arrive out of order, and not all packets may
 arrive (packet loss), each packet must carry any data required to
 allow the receiver to establish cryptographic synchronization for
 decryption. This data may be carried explicitly in the payload
 field, e.g., as an IV (as described above), or the data may be
 derived from the plaintext portions of the (outer IP or ESP) packet
 header. (Note that if plaintext header information is used to derive
 an IV, that information may become security critical and thus the
 protection boundary associated with the encryption process may grow.
 For example, if one were to use the ESP Sequence Number to derive an
 IV, the Sequence Number generation logic (hardware or software) would
 have to be evaluated as part of the encryption algorithm
 implementation. In the case of FIPS 140-2 [NIST01], this could
 significantly extend the scope of a cryptographic module evaluation.)
 Because ESP makes provision for padding of the plaintext, encryption
 algorithms employed with ESP may exhibit either block or stream mode
 characteristics. Note that because encryption (confidentiality) MAY
 be an optional service (e.g., integrity-only ESP), this algorithm MAY
 be "NULL" [Ken-Arch].

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 56

Identifier: RQ_002_3049
RFC Clause: 3.2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
Any integrity algorithm employed with ESP MUST make provisions to permit processing of packets that
arrive out of order and to accommodate packet loss

RFC Text:
The integrity algorithm employed for the ICV computation is specified
 by the SA via which the packet is transmitted/received. As was the
 case for encryption algorithms, any integrity algorithm employed with
 ESP must make provisions to permit processing of packets that arrive
 out of order and to accommodate packet loss. The same admonition
 noted above applies to use of any plaintext data to facilitate
 receiver synchronization of integrity algorithms. Note that because
 the integrity service MAY be optional, this algorithm may be "NULL".

Identifier: RQ_002_3050
RFC Clause: 3.3.3
Type: Mandatory
Applies to: IPsec host

Requirement:
When establishing an ESP Security Association, an IPsec HOST MUST set the value zero (0) into the
Sequence Number field of the ESP packet

RFC Text:
The sender's counter is initialized to 0 when an SA is established. The sender increments the
sequence number (or ESN) counter for this SA and inserts the low-order 32 bits of the value into the
Sequence Number field. Thus, the first packet sent using a given SA will contain a sequence number
of 1.

Identifier: RQ_002_3051
RFC Clause: 3.3.3
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host increments an ESP packet sequence number to a value greater than can be held in 32
bits AND if Extended Sequence Numbers (ESN) are NOT employed, it MUST delete the corresponding
Security Association and establish a new one to replace it.

RFC Text:
If anti-replay is enabled (the default), the sender checks to ensure
 that the counter has not cycled before inserting the new value in the
 Sequence Number field. In other words, the sender MUST NOT send a
 packet on an SA if doing so would cause the sequence number to cycle.
 An attempt to transmit a packet that would result in sequence number
 overflow is an auditable event. The audit log entry for this event
 SHOULD include the SPI value, current date/time, Source Address,
 Destination Address, and (in IPv6) the cleartext Flow ID.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 57

Identifier: RQ_002_3052
RFC Clause: 3.3.3
Type: Recommended
Applies to: IPsec host

Requirement:
When an ESP sequence number overflows the IPsec host SHOULD record in the audit log the SPI value,
current date/time, Source Address, Destination Address, and the cleartext Flow ID.

RFC Text:
If anti-replay is enabled (the default), the sender checks to ensure
 that the counter has not cycled before inserting the new value in the
 Sequence Number field. In other words, the sender MUST NOT send a
 packet on an SA if doing so would cause the sequence number to cycle.
 An attempt to transmit a packet that would result in sequence number
 overflow is an auditable event. The audit log entry for this event
 SHOULD include the SPI value, current date/time, Source Address,
 Destination Address, and (in IPv6) the cleartext Flow ID.

Identifier: RQ_002_3053
RFC Clause: 3.3.3
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec host manually distributes the key used to compute an ESP ICV it SHOULD NOT provide anti-
replay service.

RFC Text:
If the key used to compute an ICV is manually distributed, a
 compliant implementation SHOULD NOT provide anti-replay service. If
 a user chooses to employ anti-replay in conjunction with SAs that are
 manually keyed, the sequence number counter at the sender MUST be
 correctly maintained across local reboots, etc., until the key is
 replaced. (See Section 5.)

Identifier: RQ_002_3054
RFC Clause: 3.3.3
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host is configure to use anti-replay in conjunction with ESP SAs that are manually
keyed, it MUST correctly maintain the sequence number counter across local reboots, etc., until the
key is replaced.

RFC Text:
If the key used to compute an ICV is manually distributed, a
 compliant implementation SHOULD NOT provide anti-replay service. If
 a user chooses to employ anti-replay in conjunction with SAs that are
 manually keyed, the sequence number counter at the sender MUST be
 correctly maintained across local reboots, etc., until the key is
 replaced. (See Section 5.)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 58

Identifier: RQ_002_3055
RFC Clause: 3.3.3
Type: Optional
Applies to: IPsec host

Requirement:
If the anti-replay service is disabled an IPsec host MAY not need to monitor or reset the Sequence
Number counter used in ESP packets.

RFC Text:
If anti-replay is disabled (as noted above), the sender does not need to monitor or reset the
counter. However, the sender still increments the counter and when it reaches the maximum value,
the counter rolls over back to zero. (This behavior is recommended for multi-sender, multicast SAs,
unless anti-replay mechanisms outside the scope of this standard are negotiated between the sender
and receiver.)

Identifier: RQ_002_3056
RFC Clause: 3.3.3
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec host receives a request to establish an ESP Security Association but is configured such
that the anti-replay service is not enabled, it SHOULD NOT attempt to negotiate ESN in an SA
management protocol

RFC Text:
Note: If a receiver chooses to not enable anti-replay for an SA, then the receiver SHOULD NOT
negotiate ESN in an SA management protocol. Use of ESN creates a need for the receiver to manage the
anti-replay window (in order to determine the correct value for the high-order bits of the ESN,
which are employed in the ICV computation), which is generally contrary to the notion of disabling
anti-replay for an SA.

Identifier: RQ_002_3057
RFC Clause: 3.3.4
Type: Optional
Applies to: IPsec host

Requirement:
An ESP implementation MAY choose not to support fragmentation and may mark transmitted packets with
the DF bit to facilitate Path MTU discovery

RFC Text:
Fragmentation, whether performed by an IPsec implementation or by routers along the path between
IPsec peers, significantly reduces performance. Moreover, the requirement for an ESP receiver to
accept fragments for reassembly creates denial of service vulnerabilities. Thus, an ESP
implementation MAY choose to not support fragmentation and may mark transmitted packets with the DF
bit, to facilitate Path MTU (PMTU) discovery. In any case, an ESP implementation MUSTsupport
generation of ICMP PMTU messages (or equivalent internal signaling for native host implementations)
to minimize the likelihood of fragmentation. Details of the support required for MTU management are
contained in the Security Architecture document.

Identifier: RQ_002_3058
RFC Clause: 3.3.4
Type: Mandatory
Applies to: IPsec host

Requirement:
An ESP implementation MUSTsupport generation of ICMP PMTU messages to minimize the likelihood of
fragmentation.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 59

RFC Text:
Fragmentation, whether performed by an IPsec implementation or by routers along the path between
IPsec peers, significantly reduces performance. Moreover, the requirement for an ESP receiver to
accept fragments for reassembly creates denial of service vulnerabilities. Thus, an ESP
implementation MAY choose to not support fragmentation and may mark transmitted packets with the DF
bit, to facilitate Path MTU (PMTU) discovery. In any case, an ESP implementation MUSTsupport
generation of ICMP PMTU messages (or equivalent internal signaling for native host implementations)
to minimize the likelihood of fragmentation. Details of the support required for MTU management are
contained in the Security Architecture document.

Identifier: RQ_002_3059
RFC Clause: 3.4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
If a packet offered to ESP for processing appears to be an IP fragment the receiver MUST discard the
packet

RFC Text:
If required, reassembly is performed prior to ESP processing. If a packet offered to ESP for
processing appears to be an IP fragment, i.e., the OFFSET field is non-zero or the MORE FRAGMENTS
flag is set, the receiver MUST discard the packet; this is an auditable event. The audit log entry
for this event SHOULD include the SPI value, date/time received, Source Address, Destination
Address, Sequence Number, and (in IPv6) the Flow ID.

Identifier: RQ_002_3060
RFC Clause: 3.4.1
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host SHOULD record in the audit log the SPI value, date/time received, Source Address,
Destination Address, Sequence Number, and the Flow ID for each packet defragmentation event

RFC Text:
If required, reassembly is performed prior to ESP processing. If a packet offered to ESP for
processing appears to be an IP fragment, i.e., the OFFSET field is non-zero or the MORE FRAGMENTS
flag is set, the receiver MUST discard the packet; this is an auditable event. The audit log entry
for this event SHOULD include the SPI value, date/time received, Source Address, Destination
Address, Sequence Number, and (in IPv6) the Flow ID.

Identifier: RQ_002_3061
RFC Clause: 3.4.2
Type: Mandatory
Applies to: IPsec host

Requirement:
If no valid Security Association exists for a received ESP packet the receiving IPsec host MUST
discard the packet

RFC Text:
If no valid Security Association exists for this packet, the receiver MUST discard the packet; this
is an auditable event. The audit log entry for this event SHOULD include the SPI value, date/time
received, Source Address, Destination Address, Sequence Number, and (in IPv6) the cleartext Flow ID.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 60

Identifier: RQ_002_3062
RFC Clause: 3.4.2
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host SHOULD record in the audit log the SPI value, date/time received, Source Address,
Destination Address, Sequence Number, and (in IPv6) the cleartext Flow ID for each Security
Association lookup failure event

RFC Text:
If no valid Security Association exists for this packet, the receiver MUST discard the packet; this
is an auditable event. The audit log entry for this event SHOULD include the SPI value, date/time
received, Source Address, Destination Address, Sequence Number, and (in IPv6) the cleartext Flow ID.

Identifier: RQ_002_3063
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
All ESP implementations MUST support the anti-replay service

RFC Text:
All ESP implementations MUST support the anti-replay service, though
 its use may be enabled or disabled by the receiver on a per-SA basis.
 This service MUST NOT be enabled unless the ESP integrity service
 also is enabled for the SA, because otherwise the Sequence Number
 field has not been integrity protected. Anti-replay is applicable to
 unicast as well as multicast SAs. However, this standard specifies
 no mechanisms for providing anti-replay for a multi-sender SA
 (unicast or multicast). In the absence of negotiation (or manual
 configuration) of an anti-replay mechanism for such an SA, it is
 recommended that sender and receiver checking of the sequence number
 for the SA be disabled (via negotiation or manual configuration), as
 noted below.

Identifier: RQ_002_3064
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host ESP MUST NOT enable the anti-replay service unless the ESP integrity service also is
enabled for the SA

RFC Text:
All ESP implementations MUST support the anti-replay service, though its use may be enabled or
disabled by the receiver on a per-SA basis. This service MUST NOT be enabled unless the ESP
integrity service also is enabled for the SA, because otherwise the Sequence Number field has not
been integrity protected. Anti-replay is applicable to unicast as well as multicast SAs. However,
this standard specifies no mechanisms for providing anti-replay for a multi-sender SA (unicast or
multicast). In the absence of negotiation (or manual configuration) of an anti-replay mechanism for
such an SA, it is recommended that sender and receiver checking of the sequence number for the SA be
disabled (via negotiation or manual configuration), as noted below.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 61

Identifier: RQ_002_3065
RFC Clause: 3.4.3
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host SHOULD disable the checking of sequence numbers on multi-sender ESP SAs (unicast or
multicast)

RFC Text:
All ESP implementations MUST support the anti-replay service, though its use may be enabled or
disabled by the receiver on a per-SA basis. This service MUST NOT be enabled unless the ESP
integrity service also is enabled for the SA, because otherwise the Sequence Number field has not
been integrity protected. Anti-replay is applicable to unicast as well as multicast SAs. However,
this standard specifies no mechanisms for providing anti-replay for a multi-sender SA (unicast or
multicast). In the absence of negotiation (or manual configuration) of an anti-replay mechanism for
such an SA, it is recommended that sender and receiver checking of the sequence number for the SA be
disabled (via negotiation or manual configuration), as noted below.

Identifier: RQ_002_3066
RFC Clause: 3.4.3
Type: Recommended
Applies to: IPsec host

Requirement:
When an IPsec host receives a request to establish an ESP Security Association it SHOULD notify the
initiator if it is unable to provide anti-replay protection.

RFC Text:
If the receiver does not enable anti-replay for an SA, no inbound checks are performed on the
Sequence Number. However, from the perspective of the sender, the default is to assume that anti-
replay is enabled at the receiver. To avoid having the sender do unnecessary sequence number
monitoring and SA setup (see section 3.3.3), if an SA establishment protocol is employed, the
receiver SHOULD notify the sender, during SA establishment, if the receiver will not provide anti-
replay protection.

Identifier: RQ_002_3067
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP during sequence number verification if the receiver has enabled the anti-replay service
for this SA the receive packet counter for the SA MUST be initialized to zero when the SA is
established.

RFC Text:
If the receiver has enabled the anti-replay service for this SA, the receive packet counter for the
SA MUST be initialized to zero when the SA is established. For each received packet, the receiver
MUST verify that the packet contains a Sequence Number that does not duplicate the Sequence Number
of any other packets received during the life of this SA. This SHOULD be the first ESP check
applied to a packet after it has been matched to an SA, to speed rejection of duplicate packets.

Identifier: RQ_002_3068
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host that has anti-replay service enabled receives an ESP packet, it MUST verify that
the value set in the Sequence Number field of the incoming ESP header does not duplicate the
Sequence Number of any other packets received during the life of the corresponding SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 62

RFC Text:
If the receiver has enabled the anti-replay service for this SA, the receive packet counter for the
SA MUST be initialized to zero when the SA is established. For each received packet, the receiver
MUST verify that the packet contains a Sequence Number that does not duplicate the Sequence Number
of any other packets received during the life of this SA. This SHOULD be the first ESP check
applied to a packet after it has been matched to an SA, to speed rejection of duplicate packets.

Identifier: RQ_002_3070
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host that has the anti-replay service enabled MUST support a minimum window size of 32
packets when 32-bit sequence numbers are employed (i.e. when ESN is NOTenabled)

RFC Text:
A minimum window size of 32 packets MUST be supported when 32-bit sequence numbers are employed; a
window size of 64 is preferred and SHOULD be employed as the default. Another window size (larger
than the minimum) MAY be chosen by the receiver. (The receiver does NOT notify the sender of the
window size.) The receive window size should be increased for higher-speed environments,
irrespective of assurance issues. Values for minimum and recommended receive window sizes for very
high-speed (e.g., multi-gigabit/second) devices are not specified by this standard.

Identifier: RQ_002_3071
RFC Clause: 3.4.3
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host that has enabled the anti-replay service SHOULD implement a default window size of 64
packets

RFC Text:
A minimum window size of 32 packets MUST be supported when 32-bit sequence numbers are employed; a
window size of 64 is preferred and SHOULD be employed as the default. Another window size (larger
than the minimum) MAY be chosen by the receiver. (The receiver does NOT notify the sender of the
window size.) The receive window size should be increased for higher-speed environments,
irrespective of assurance issues. Values for minimum and recommended receive window sizes for very
high-speed (e.g., multi-gigabit/second) devices are not specified by this standard.

Identifier: RQ_002_3072
RFC Clause: 3.4.3
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP during sequence number verification where anti-replay is enabled duplicate ESP packet
MUST be detected and rejected through the use of a sliding receive window

RFC Text:
Duplicates are rejected through the use of a sliding receive window. How the window is implemented
is a local matter, but the following text describes the functionality that the implementation must
exhibit.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 63

Identifier: RQ_002_3077
RFC Clause: 3.4.4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP during Integrity Check Value verification where separate confidentiality and integrity
algorithms are employed the receiver MUST compute the ICV over the ESP packet minus the ICV (using
the specified integrity algorithm) and verify that it is the same as the ICV carried in the packet

RFC Text:
3.4.4. Integrity Check Value Verification

 As with outbound processing, there are several options for inbound
 processing, based on features of the algorithms employed.

3.4.4.1. Separate Confidentiality and Integrity Algorithms

 If separate confidentiality and integrity algorithms are employed
 processing proceeds as follows:

 1. If integrity has been selected, the receiver computes the
 ICV over the ESP packet minus the ICV, using the specified
 integrity algorithm and verifies that it is the same as the
 ICV carried in the packet. Details of the computation are
 provided below.

 If the computed and received ICVs match, then the datagram
 is valid, and it is accepted. If the test fails, then the
 receiver MUST discard the received IP datagram as invalid;
 this is an auditable event. The log data SHOULD include the
 SPI value, date/time received, Source Address, Destination
 Address, the Sequence Number, and (for IPv6) the cleartext
 Flow ID.

 Implementation Note:

 Implementations can use any set of steps that results in the
 same result as the following set of steps. Begin by
 removing and saving the ICV field. Next check the overall
 length of the ESP packet minus the ICV field. If implicit
 padding is required, based on the block size of the
 integrity algorithm, append zero-filled bytes to the end of
 the ESP packet directly after the Next Header field, or
 after the high-order 32 bits of the sequence number if ESN
 is selected. Perform the ICV computation and compare the
 result with the saved value, using the comparison rules
 defined by the algorithm specification.

 2. The receiver decrypts the ESP Payload Data, Padding, Pad
 Length, and Next Header using the key, encryption algorithm,
 algorithm mode, and cryptographic synchronization data (if
 any), indicated by the SA. As in Section 3.3.2, we speak
 here in terms of encryption always being applied because of
 the formatting implications. This is done with the
 understanding that "no confidentiality" is offered by using
 the NULL encryption algorithm (RFC 2410).

 - If explicit cryptographic synchronization data, e.g.,
 an IV, is indicated, it is taken from the Payload
 field and input to the decryption algorithm as per
 the algorithm specification.

 - If implicit cryptographic synchronization data is
 indicated, a local version of the IV is constructed
 and input to the decryption algorithm as per the
 algorithm specification.

 3. The receiver processes any Padding as specified in the
 encryption algorithm specification. If the default padding
 scheme (see Section 2.4) has been employed, the receiver
 SHOULD inspect the Padding field before removing the padding
 prior to passing the decrypted data to the next layer.

 4. The receiver checks the Next Header field. If the value is
 "59" (no next header), the (dummy) packet is discarded
 without further processing.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 64

 5. The receiver reconstructs the original IP datagram from:

 - for transport mode -- outer IP header plus the
 original next layer protocol information in the ESP
 Payload field
 - for tunnel mode -- the entire IP datagram in the ESP
 Payload field.

 The exact steps for reconstructing the original datagram
 depend on the mode (transport or tunnel) and are described
 in the Security Architecture document. At a minimum, in an
 IPv6 context, the receiver SHOULD ensure that the decrypted
 data is 8-byte aligned, to facilitate processing by the
 protocol identified in the Next Header field. This
 processing "discards" any (optional) TFC padding that has
 been added for traffic flow confidentiality. (If present,
 this will have been inserted after the IP datagram (or
 transport-layer frame) and before the Padding field (see
 Section 2.4).)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 65

Identifier: RQ_002_3078
RFC Clause: 3.4.4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host receives an ESP packet and is using separate confidentiality and integrity
algorithms it MUST discard the received IP datagram if the value in the ICV field of the received
packet does NOTmatch its own computed value

RFC Text:
3.4.4. Integrity Check Value Verification

 As with outbound processing, there are several options for inbound
 processing, based on features of the algorithms employed.

3.4.4.1. Separate Confidentiality and Integrity Algorithms

 If separate confidentiality and integrity algorithms are employed
 processing proceeds as follows:

 1. If integrity has been selected, the receiver computes the
 ICV over the ESP packet minus the ICV, using the specified
 integrity algorithm and verifies that it is the same as the
 ICV carried in the packet. Details of the computation are
 provided below.

 If the computed and received ICVs match, then the datagram
 is valid, and it is accepted. If the test fails, then the
 receiver MUST discard the received IP datagram as invalid;
 this is an auditable event. The log data SHOULD include the
 SPI value, date/time received, Source Address, Destination
 Address, the Sequence Number, and (for IPv6) the cleartext
 Flow ID.

 Implementation Note:

 Implementations can use any set of steps that results in the
 same result as the following set of steps. Begin by
 removing and saving the ICV field. Next check the overall
 length of the ESP packet minus the ICV field. If implicit
 padding is required, based on the block size of the
 integrity algorithm, append zero-filled bytes to the end of
 the ESP packet directly after the Next Header field, or
 after the high-order 32 bits of the sequence number if ESN
 is selected. Perform the ICV computation and compare the
 result with the saved value, using the comparison rules
 defined by the algorithm specification.

 2. The receiver decrypts the ESP Payload Data, Padding, Pad
 Length, and Next Header using the key, encryption algorithm,
 algorithm mode, and cryptographic synchronization data (if
 any), indicated by the SA. As in Section 3.3.2, we speak
 here in terms of encryption always being applied because of
 the formatting implications. This is done with the
 understanding that "no confidentiality" is offered by using
 the NULL encryption algorithm (RFC 2410).

 - If explicit cryptographic synchronization data, e.g.,
 an IV, is indicated, it is taken from the Payload
 field and input to the decryption algorithm as per
 the algorithm specification.

 - If implicit cryptographic synchronization data is
 indicated, a local version of the IV is constructed
 and input to the decryption algorithm as per the
 algorithm specification.

 3. The receiver processes any Padding as specified in the
 encryption algorithm specification. If the default padding
 scheme (see Section 2.4) has been employed, the receiver
 SHOULD inspect the Padding field before removing the padding
 prior to passing the decrypted data to the next layer.

 4. The receiver checks the Next Header field. If the value is
 "59" (no next header), the (dummy) packet is discarded
 without further processing.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 66

 5. The receiver reconstructs the original IP datagram from:

 - for transport mode -- outer IP header plus the
 original next layer protocol information in the ESP
 Payload field
 - for tunnel mode -- the entire IP datagram in the ESP
 Payload field.

 The exact steps for reconstructing the original datagram
 depend on the mode (transport or tunnel) and are described
 in the Security Architecture document. At a minimum, in an
 IPv6 context, the receiver SHOULD ensure that the decrypted
 data is 8-byte aligned, to facilitate processing by the
 protocol identified in the Next Header field. This
 processing "discards" any (optional) TFC padding that has
 been added for traffic flow confidentiality. (If present,
 this will have been inserted after the IP datagram (or
 transport-layer frame) and before the Padding field (see
 Section 2.4).)

Identifier: RQ_002_3079
RFC Clause: 3.4.4.1
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec host receives an ESP packet and is using separate confidentiality and integrity
algorithms it SHOULD record the SPI value, date/time received, Source Address, Destination Address,
the Sequence Number, and the cleartext Flow ID in the audit log for each ICV mismatch event

RFC Text:
3.4.4. Integrity Check Value Verification

 As with outbound processing, there are several options for inbound
 processing, based on features of the algorithms employed.

3.4.4.1. Separate Confidentiality and Integrity Algorithms

 If separate confidentiality and integrity algorithms are employed
 processing proceeds as follows:

 1. If integrity has been selected, the receiver computes the
 ICV over the ESP packet minus the ICV, using the specified
 integrity algorithm and verifies that it is the same as the
 ICV carried in the packet. Details of the computation are
 provided below.

 If the computed and received ICVs match, then the datagram
 is valid, and it is accepted. If the test fails, then the
 receiver MUST discard the received IP datagram as invalid;
 this is an auditable event. The log data SHOULD include the
 SPI value, date/time received, Source Address, Destination
 Address, the Sequence Number, and (for IPv6) the cleartext
 Flow ID.

 Implementation Note:

 Implementations can use any set of steps that results in the
 same result as the following set of steps. Begin by
 removing and saving the ICV field. Next check the overall
 length of the ESP packet minus the ICV field. If implicit
 padding is required, based on the block size of the
 integrity algorithm, append zero-filled bytes to the end of
 the ESP packet directly after the Next Header field, or
 after the high-order 32 bits of the sequence number if ESN
 is selected. Perform the ICV computation and compare the
 result with the saved value, using the comparison rules
 defined by the algorithm specification.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 67

 2. The receiver decrypts the ESP Payload Data, Padding, Pad
 Length, and Next Header using the key, encryption algorithm,
 algorithm mode, and cryptographic synchronization data (if
 any), indicated by the SA. As in Section 3.3.2, we speak
 here in terms of encryption always being applied because of
 the formatting implications. This is done with the
 understanding that "no confidentiality" is offered by using
 the NULL encryption algorithm (RFC 2410).

 - If explicit cryptographic synchronization data, e.g.,
 an IV, is indicated, it is taken from the Payload
 field and input to the decryption algorithm as per
 the algorithm specification.

 - If implicit cryptographic synchronization data is
 indicated, a local version of the IV is constructed
 and input to the decryption algorithm as per the
 algorithm specification.

 3. The receiver processes any Padding as specified in the
 encryption algorithm specification. If the default padding
 scheme (see Section 2.4) has been employed, the receiver
 SHOULD inspect the Padding field before removing the padding
 prior to passing the decrypted data to the next layer.

 4. The receiver checks the Next Header field. If the value is
 "59" (no next header), the (dummy) packet is discarded
 without further processing.

 5. The receiver reconstructs the original IP datagram from:

 - for transport mode -- outer IP header plus the
 original next layer protocol information in the ESP
 Payload field
 - for tunnel mode -- the entire IP datagram in the ESP
 Payload field.

 The exact steps for reconstructing the original datagram
 depend on the mode (transport or tunnel) and are described
 in the Security Architecture document. At a minimum, in an
 IPv6 context, the receiver SHOULD ensure that the decrypted
 data is 8-byte aligned, to facilitate processing by the
 protocol identified in the Next Header field. This
 processing "discards" any (optional) TFC padding that has
 been added for traffic flow confidentiality. (If present,
 this will have been inserted after the IP datagram (or
 transport-layer frame) and before the Padding field (see
 Section 2.4).)

Identifier: RQ_002_3080
RFC Clause: 3.4.4.1
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host receives an ESP packet and is using separate confidentiality and integrity
algorithms it MUST complete integrity checking before the decrypted packet is passed on for further
processing

RFC Text:
If integrity checking and encryption are performed in parallel,
 integrity checking MUST be completed before the decrypted packet is
 passed on for further processing. This order of processing
 facilitates rapid detection and rejection of replayed or bogus
 packets by the receiver, prior to decrypting the packet, hence
 potentially reducing the impact of denial of service attacks.

 Note: If the receiver performs decryption in parallel with integrity
 checking, care must be taken to avoid possible race conditions with
 regard to packet access and extraction of the decrypted packet.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 68

Identifier: RQ_002_3083
RFC Clause: 3.4.4.2
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host receives an ESP packet and is using combined confidentiality and integrity
algorithms it MUST discard the received IP datagram if the value in the ICV field of the received
packet DOES NOT match its own computed value

RFC Text:
3.4.4.2. Combined Confidentiality and Integrity Algorithms

 If a combined confidentiality and integrity algorithm is employed,
 then the receiver proceeds as follows:

 1. Decrypts and integrity checks the ESP Payload Data, Padding,
 Pad Length, and Next Header, using the key, algorithm,
 algorithm mode, and cryptographic synchronization data (if
 any), indicated by the SA. The SPI from the ESP header, and
 the (receiver) packet counter value (adjusted as required
 from the processing described in Section 3.4.3) are inputs
 to this algorithm, as they are required for the integrity
 check.

 - If explicit cryptographic synchronization data, e.g.,
 an IV, is indicated, it is taken from the Payload
 field and input to the decryption algorithm as per
 the algorithm specification.

 - If implicit cryptographic synchronization data, e.g.,
 an IV, is indicated, a local version of the IV is
 constructed and input to the decryption algorithm as
 per the algorithm specification.

 2. If the integrity check performed by the combined mode
 algorithm fails, the receiver MUST discard the received IP
 datagram as invalid; this is an auditable event. The log
 data SHOULD include the SPI value, date/time received,
 Source Address, Destination Address, the Sequence Number,
 and (in IPv6) the cleartext Flow ID.

 3. Process any Padding as specified in the encryption algorithm
 specification, if the algorithm has not already done so.

 4. The receiver checks the Next Header field. If the value is
 "59" (no next header), the (dummy) packet is discarded
 without further processing.

 5. Extract the original IP datagram (tunnel mode) or
 transport-layer frame (transport mode) from the ESP Payload
 Data field. This implicitly discards any (optional) padding
 that has been added for traffic flow confidentiality. (If
 present, the TFC padding will have been inserted after the
 IP payload and before the Padding field (see Section 2.4).)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 69

Identifier: RQ_002_3084
RFC Clause: 3.4.4.2
Type: Recommended
Applies to: IPsec host

Requirement:
If an IPsec host receives an ESP packet and is using combined confidentiality and integrity
algorithms it SHOULD record the SPI value, date/time received, Source Address, Destination Address,
the Sequence Number, and the cleartext Flow ID values in the audit log for each ICV verification
failure event

RFC Text:
3.4.4.2. Combined Confidentiality and Integrity Algorithms

 If a combined confidentiality and integrity algorithm is employed,
 then the receiver proceeds as follows:

 1. Decrypts and integrity checks the ESP Payload Data, Padding,
 Pad Length, and Next Header, using the key, algorithm,
 algorithm mode, and cryptographic synchronization data (if
 any), indicated by the SA. The SPI from the ESP header, and
 the (receiver) packet counter value (adjusted as required
 from the processing described in Section 3.4.3) are inputs
 to this algorithm, as they are required for the integrity
 check.

 - If explicit cryptographic synchronization data, e.g.,
 an IV, is indicated, it is taken from the Payload
 field and input to the decryption algorithm as per
 the algorithm specification.

 - If implicit cryptographic synchronization data, e.g.,
 an IV, is indicated, a local version of the IV is
 constructed and input to the decryption algorithm as
 per the algorithm specification.

 2. If the integrity check performed by the combined mode
 algorithm fails, the receiver MUST discard the received IP
 datagram as invalid; this is an auditable event. The log
 data SHOULD include the SPI value, date/time received,
 Source Address, Destination Address, the Sequence Number,
 and (in IPv6) the cleartext Flow ID.

 3. Process any Padding as specified in the encryption algorithm
 specification, if the algorithm has not already done so.

 4. The receiver checks the Next Header field. If the value is
 "59" (no next header), the (dummy) packet is discarded
 without further processing.

 5. Extract the original IP datagram (tunnel mode) or
 transport-layer frame (transport mode) from the ESP Payload
 Data field. This implicitly discards any (optional) padding
 that has been added for traffic flow confidentiality. (If
 present, the TFC padding will have been inserted after the
 IP payload and before the Padding field (see Section 2.4).)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 70

Identifier: RQ_002_3085
RFC Clause: 4
Type: Mandatory
Applies to: IPsec host

Requirement:
If an IPsec host supports auditing then an ESP implementation within that host MUST also support
auditing

RFC Text:
4. Auditing

 Not all systems that implement ESP will implement auditing. However,
 if ESP is incorporated into a system that supports auditing, then the
 ESP implementation MUST also support auditing and MUST allow a system
 administrator to enable or disable auditing for ESP. For the most
 part, the granularity of auditing is a local matter. However,
 several auditable events are identified in this specification and for
 each of these events a minimum set of information that SHOULD be
 included in an audit log is defined.

 - No valid Security Association exists for a session. The
 audit log entry for this event SHOULD include the SPI value,
 date/time received, Source Address, Destination Address,
 Sequence Number, and (for IPv6) the cleartext Flow ID.

 - A packet offered to ESP for processing appears to be an IP
 fragment, i.e., the OFFSET field is non-zero or the MORE
 FRAGMENTS flag is set. The audit log entry for this event
 SHOULD include the SPI value, date/time received, Source
 Address, Destination Address, Sequence Number, and (in IPv6)
 the Flow ID.

 - Attempt to transmit a packet that would result in Sequence
 Number overflow. The audit log entry for this event SHOULD
 include the SPI value, current date/time, Source Address,
 Destination Address, Sequence Number, and (for IPv6) the
 cleartext Flow ID.

 - The received packet fails the anti-replay checks. The audit
 log entry for this event SHOULD include the SPI value,
 date/time received, Source Address, Destination Address, the
 Sequence Number, and (in IPv6) the Flow ID.

 - The integrity check fails. The audit log entry for this
 event SHOULD include the SPI value, date/time received,
 Source Address, Destination Address, the Sequence Number, and
 (for IPv6) the Flow ID.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 71

Identifier: RQ_002_3086
RFC Clause: 4
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host that supports ESP auditing MUST allow a system administrator to enable or disable
auditing for ESP.

RFC Text:
4. Auditing

 Not all systems that implement ESP will implement auditing. However,
 if ESP is incorporated into a system that supports auditing, then the
 ESP implementation MUST also support auditing and MUST allow a system
 administrator to enable or disable auditing for ESP. For the most
 part, the granularity of auditing is a local matter. However,
 several auditable events are identified in this specification and for
 each of these events a minimum set of information that SHOULD be
 included in an audit log is defined.

 - No valid Security Association exists for a session. The
 audit log entry for this event SHOULD include the SPI value,
 date/time received, Source Address, Destination Address,
 Sequence Number, and (for IPv6) the cleartext Flow ID.

 - A packet offered to ESP for processing appears to be an IP
 fragment, i.e., the OFFSET field is non-zero or the MORE
 FRAGMENTS flag is set. The audit log entry for this event
 SHOULD include the SPI value, date/time received, Source
 Address, Destination Address, Sequence Number, and (in IPv6)
 the Flow ID.

 - Attempt to transmit a packet that would result in Sequence
 Number overflow. The audit log entry for this event SHOULD
 include the SPI value, current date/time, Source Address,
 Destination Address, Sequence Number, and (for IPv6) the
 cleartext Flow ID.

 - The received packet fails the anti-replay checks. The audit
 log entry for this event SHOULD include the SPI value,
 date/time received, Source Address, Destination Address, the
 Sequence Number, and (in IPv6) the Flow ID.

 - The integrity check fails. The audit log entry for this
 event SHOULD include the SPI value, date/time received,
 Source Address, Destination Address, the Sequence Number, and
 (for IPv6) the Flow ID.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 72

Identifier: RQ_002_3087
RFC Clause: 4
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host that supports ESP auditing SHOULD audit the following events:

 - No valid Security Association exists for a session.
 - A packet offered to ESP for processing appears to be an IP fragment,
 - Attempt to transmit a packet that would result in Sequence Number overflow.
 - The received packet fails the anti-replay checks.
 - The integrity check fails

RFC Text:
4. Auditing

 Not all systems that implement ESP will implement auditing. However,
 if ESP is incorporated into a system that supports auditing, then the
 ESP implementation MUST also support auditing and MUST allow a system
 administrator to enable or disable auditing for ESP. For the most
 part, the granularity of auditing is a local matter. However,
 several auditable events are identified in this specification and for
 each of these events a minimum set of information that SHOULD be
 included in an audit log is defined.

 - No valid Security Association exists for a session. The
 audit log entry for this event SHOULD include the SPI value,
 date/time received, Source Address, Destination Address,
 Sequence Number, and (for IPv6) the cleartext Flow ID.

 - A packet offered to ESP for processing appears to be an IP
 fragment, i.e., the OFFSET field is non-zero or the MORE
 FRAGMENTS flag is set. The audit log entry for this event
 SHOULD include the SPI value, date/time received, Source
 Address, Destination Address, Sequence Number, and (in IPv6)
 the Flow ID.

 - Attempt to transmit a packet that would result in Sequence
 Number overflow. The audit log entry for this event SHOULD
 include the SPI value, current date/time, Source Address,
 Destination Address, Sequence Number, and (for IPv6) the
 cleartext Flow ID.

 - The received packet fails the anti-replay checks. The audit
 log entry for this event SHOULD include the SPI value,
 date/time received, Source Address, Destination Address, the
 Sequence Number, and (in IPv6) the Flow ID.

 - The integrity check fails. The audit log entry for this
 event SHOULD include the SPI value, date/time received,
 Source Address, Destination Address, the Sequence Number, and
 (for IPv6) the Flow ID.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 73

Identifier: RQ_002_3088
RFC Clause: 2
Type: Mandatory
Applies to: IPsec host

Requirement:
An ESP packet MUST be formatted by concatenating the following named fields: Security Parameters
Index (SPI) (4 Bytes); Sequence Number (4 Bytes); Payload Data (variable length); Padding (0-255
bytes); Pad Length (1 Byte); Next Header (1 Byte); optional Integrity Check Value (ICV) (Variable
length).

 Octet Length (Octets) Field
 --

 1 to 4 4 Security Parameters Index
 5 to 8 4 Sequence Number
 Varies Payload data
 Varies Padding
 1 Pad length
 1 Next header
 Varies Integrity check value

RFC Text:
The (outer) protocol header (IPv4, IPv6, or Extension) that
 immediately precedes the ESP header SHALL contain the value 50 in its
 Protocol (IPv4) or Next Header (IPv6, Extension) field (see IANA web
 page at http://www.iana.org/assignments/protocol-numbers). Figure 1
 illustrates the top-level format of an ESP packet. The packet begins
 with two 4-byte fields (Security Parameters Index (SPI) and Sequence
 Number). Following these fields is the Payload Data, which has
 substructure that depends on the choice of encryption algorithm and
 mode, and on the use of TFC padding, which is examined in more detail
 later. Following the Payload Data are Padding and Pad Length fields,
 and the Next Header field. The optional Integrity Check Value (ICV)
 field completes the packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+ ----
| Security Parameters Index (SPI) | ^Int.
+-+ |Cov-
| Sequence Number | |ered
+-+ | ----
| Payload Data* (variable) | | ^
~ ~ | |
| | |Conf.
+ +-+ |Cov-
| | Padding (0-255 bytes) | |ered*
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| | Pad Length | Next Header | v v
+-+ ------
| Integrity Check Value-ICV (variable) |
~ ~
| |
+-+

 Figure 1. Top-Level Format of an ESP Packet

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 74

Identifier: RQ_002_3089
RFC Clause: 2
Type: Mandatory
Applies to: IPsec host

Requirement:
if there are concerns about backward compatibility they MUST be addressed by using a signaling
mechanism between the two IPsec peers to ensure compatible versions of ESP (e.g., Internet Key
Exchange (IKEv2) or an out-of-band configuration mechanism.

RFC Text:
ESP does not contain a version number, therefore if there are
 concerns about backward compatibility, they MUST be addressed by
 using a signaling mechanism between the two IPsec peers to ensure
 compatible versions of ESP (e.g., Internet Key Exchange (IKEv2)
 [Kau05]) or an out-of-band configuration mechanism.

Identifier: RQ_002_3091
RFC Clause: 2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
When an IPsec host receives an ESP packet, it MUST use the Security Parameter Index in the first
four octets of the packet (and previously shared with the packet initiator using IKEv2 or another
key exchange protocol) to identify the SA to which the incoming packet is bound

RFC Text:
The SPI is an arbitrary 32-bit value that is used by a receiver to
 identify the SA to which an incoming packet is bound. The SPI field
 is mandatory.

Identifier: RQ_002_3092
RFC Clause: 3.3
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP transport mode the sender MUST encapsulate the next layer protocol information between
the ESP header and the ESP trailer fields, and retain the specified IP header (and any IP extension
headers in the IPv6 context)

RFC Text:
In transport mode, the sender encapsulates the next layer protocol
 information between the ESP header and the ESP trailer fields, and
 retains the specified IP header (and any IP extension headers in the
 IPv6 context). In tunnel mode, the outer and inner IP
 header/extensions can be interrelated in a variety of ways. The
 construction of the outer IP header/extensions during the
 encapsulation process is described in the Security Architecture
 document.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 75

Identifier: RQ_002_3093
RFC Clause: 2.1
Type: Optional
Applies to: IPsec host

Requirement:
For a unicast SA the SPI can be used by itself to specify an SA

RFC Text:
For a unicast SA, the SPI can be used by itself to specify an SA, or
 it may be used in conjunction with the IPsec protocol type (in this
 case ESP). Because the SPI value is generated by the receiver for a
 unicast SA, whether the value is sufficient to identify an SA by
 itself or whether it must be used in conjunction with the IPsec
 protocol value is a local matter. This mechanism for mapping inbound
 traffic to unicast SAs MUST be supported by all ESP implementations.

Identifier: RQ_002_3094
RFC Clause: 2.1
Type: Optional
Applies to: IPsec host

Requirement:
For a unicast SA, the SPI MAY be used in conjunction with the IPsec protocol type (in this case ESP)

RFC Text:
For a unicast SA, the SPI can be used by itself to specify an SA, or
 it may be used in conjunction with the IPsec protocol type (in this
 case ESP). Because the SPI value is generated by the receiver for a
 unicast SA, whether the value is sufficient to identify an SA by
 itself or whether it must be used in conjunction with the IPsec
 protocol value is a local matter. This mechanism for mapping inbound
 traffic to unicast SAs MUST be supported by all ESP implementations.

Identifier: RQ_002_3095
RFC Clause: 2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
The mechanism for mapping inbound traffic to unicast SAs using either 'SPI' or 'SPI+IPsec protocol
type' MUST be supported by all ESP implementations

RFC Text:
For a unicast SA, the SPI can be used by itself to specify an SA, or
 it may be used in conjunction with the IPsec protocol type (in this
 case ESP). Because the SPI value is generated by the receiver for a
 unicast SA, whether the value is sufficient to identify an SA by
 itself or whether it must be used in conjunction with the IPsec
 protocol value is a local matter. This mechanism for mapping inbound
 traffic to unicast SAs MUST be supported by all ESP implementations.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 76

Identifier: RQ_002_3099
RFC Clause: 2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
The indication of whether source and destination address matching is required to map inbound IPsec
traffic to SAs MUST be set either as a side effect of manual SA configuration or via negotiation
using an SA management protocol

RFC Text:
The indication of whether source and destination address matching is
 required to map inbound IPsec traffic to SAs MUST be set either as a
 side effect of manual SA configuration or via negotiation using an SA
 management protocol, e.g., IKE or Group Domain of Interpretation
 (GDOI) [RFC3547]. Typically, Source-Specific Multicast (SSM) [HC03]
 groups use a 3-tuple SA identifier composed of an SPI, a destination
 multicast address, and source address. An Any-Source Multicast group
 SA requires only an SPI and a destination multicast address as an
 identifier.

Identifier: RQ_002_3100
RFC Clause: 2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP a reserved SPI value (in the range 1 through 255) MUST NOT be used unless its use is
specified in an RFC for a specific protocol

RFC Text:
The set of SPI values in the range 1 through 255 are reserved by the
 Internet Assigned Numbers Authority (IANA) for future use; a reserved
 SPI value will not normally be assigned by IANA unless the use of the
 assigned SPI value is specified in an RFC. The SPI value of zero (0)
 is reserved for local, implementation-specific use and MUST NOT be
 sent on the wire. (For example, a key management implementation
 might use the zero SPI value to mean "No Security Association Exists"
 during the period when the IPsec implementation has requested that
 its key management entity establish a new SA, but the SA has not yet
 been established.)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 77

Identifier: RQ_002_3102
RFC Clause: 3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP transport mode where separate confidentiality and integrity algorithms are employed the
Sender MUST proceed for encryption as follows:

1. Encapsulate (into the ESP Payload field) the original next layer protocol information.
2. Add any necessary padding (both pptional TFC padding and (encryption) Padding)
3. Encrypt the result using the key, encryption algorithm, and algorithm mode specified for the SA
and using any required cryptographic synchronization data.

RFC Text:
If separate confidentiality and integrity algorithms are employed,
 the Sender proceeds as follows:

 1. Encapsulate (into the ESP Payload field):
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- Optional TFC padding and
 (encryption) Padding

 3. Encrypt the result using the key, encryption algorithm,
 and algorithm mode specified for the SA and using any
 required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 encryption algorithm per the algorithm specification
 and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - If integrity is selected, encryption is performed
 first, before the integrity algorithm is applied, and
 the encryption does not encompass the ICV field.
 This order of processing facilitates rapid detection
 and rejection of replayed or bogus packets by the
 receiver, prior to decrypting the packet, hence
 potentially reducing the impact of denial of service
 (DoS) attacks. It also allows for the possibility of
 parallel processing of packets at the receiver, i.e.,
 decryption can take place in parallel with integrity
 checking. Note that because the ICV is not protected
 by encryption, a keyed integrity algorithm must be
 employed to compute the ICV.

 4. Compute the ICV over the ESP packet minus the ICV field.
 Thus, the ICV computation encompasses the SPI, Sequence
 Number, Payload Data, Padding (if present), Pad Length, and
 Next Header. (Note that the last 4 fields will be in
 ciphertext form, because encryption is performed first.) If
 the ESN option is enabled for the SA, the high-order 32
 bits of the sequence number are appended after the Next
 Header field for purposes of this computation, but are not
 transmitted.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 78

Identifier: RQ_002_3103
RFC Clause: 3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP tunnel mode where separate confidentiality and integrity algorithms are employed the
Sender MUST proceed for encryption as follows:

1. Encapsulate (into the ESP Payload field) the original IP datagram.
2. Add any necessary padding (both pptional TFC padding and (encryption) Padding)
3. Encrypt the result using the key, encryption algorithm, and algorithm mode specified for the SA
and using any required cryptographic synchronization data.

RFC Text:
If separate confidentiality and integrity algorithms are employed,
 the Sender proceeds as follows:

 1. Encapsulate (into the ESP Payload field):
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- Optional TFC padding and
 (encryption) Padding

 3. Encrypt the result using the key, encryption algorithm,
 and algorithm mode specified for the SA and using any
 required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 encryption algorithm per the algorithm specification
 and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - If integrity is selected, encryption is performed
 first, before the integrity algorithm is applied, and
 the encryption does not encompass the ICV field.
 This order of processing facilitates rapid detection
 and rejection of replayed or bogus packets by the
 receiver, prior to decrypting the packet, hence
 potentially reducing the impact of denial of service
 (DoS) attacks. It also allows for the possibility of
 parallel processing of packets at the receiver, i.e.,
 decryption can take place in parallel with integrity
 checking. Note that because the ICV is not protected
 by encryption, a keyed integrity algorithm must be
 employed to compute the ICV.

 4. Compute the ICV over the ESP packet minus the ICV field.
 Thus, the ICV computation encompasses the SPI, Sequence
 Number, Payload Data, Padding (if present), Pad Length, and
 Next Header. (Note that the last 4 fields will be in
 ciphertext form, because encryption is performed first.) If
 the ESN option is enabled for the SA, the high-order 32
 bits of the sequence number are appended after the Next
 Header field for purposes of this computation, but are not
 transmitted.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 79

Identifier: RQ_002_3104
RFC Clause: 3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP where separate confidentiality and integrity algorithms are employed the Sender MUST
proceed for integrity as follows: Compute the ICV over the SPI, Sequence Number, Payload Data,
Padding (if present), Pad Length, and Next Header.

RFC Text:
If separate confidentiality and integrity algorithms are employed,
 the Sender proceeds as follows:

 1. Encapsulate (into the ESP Payload field):
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- Optional TFC padding and
 (encryption) Padding

 3. Encrypt the result using the key, encryption algorithm,
 and algorithm mode specified for the SA and using any
 required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 encryption algorithm per the algorithm specification
 and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - If integrity is selected, encryption is performed
 first, before the integrity algorithm is applied, and
 the encryption does not encompass the ICV field.
 This order of processing facilitates rapid detection
 and rejection of replayed or bogus packets by the
 receiver, prior to decrypting the packet, hence
 potentially reducing the impact of denial of service
 (DoS) attacks. It also allows for the possibility of
 parallel processing of packets at the receiver, i.e.,
 decryption can take place in parallel with integrity
 checking. Note that because the ICV is not protected
 by encryption, a keyed integrity algorithm must be
 employed to compute the ICV.

 4. Compute the ICV over the ESP packet minus the ICV field.
 Thus, the ICV computation encompasses the SPI, Sequence
 Number, Payload Data, Padding (if present), Pad Length, and
 Next Header. (Note that the last 4 fields will be in
 ciphertext form, because encryption is performed first.) If
 the ESN option is enabled for the SA, the high-order 32
 bits of the sequence number are appended after the Next
 Header field for purposes of this computation, but are not
 transmitted.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 80

Identifier: RQ_002_3105
RFC Clause: 3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP where separate confidentiality and integrity algorithms are employed with the ESN
option enabled the high-order 32 bits of the sequence number MUST be appended after the Next Header
field for purposes of ICV computation

RFC Text:
If separate confidentiality and integrity algorithms are employed,
 the Sender proceeds as follows:

 1. Encapsulate (into the ESP Payload field):
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- Optional TFC padding and
 (encryption) Padding

 3. Encrypt the result using the key, encryption algorithm,
 and algorithm mode specified for the SA and using any
 required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 encryption algorithm per the algorithm specification
 and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - If integrity is selected, encryption is performed
 first, before the integrity algorithm is applied, and
 the encryption does not encompass the ICV field.
 This order of processing facilitates rapid detection
 and rejection of replayed or bogus packets by the
 receiver, prior to decrypting the packet, hence
 potentially reducing the impact of denial of service
 (DoS) attacks. It also allows for the possibility of
 parallel processing of packets at the receiver, i.e.,
 decryption can take place in parallel with integrity
 checking. Note that because the ICV is not protected
 by encryption, a keyed integrity algorithm must be
 employed to compute the ICV.

 4. Compute the ICV over the ESP packet minus the ICV field.
 Thus, the ICV computation encompasses the SPI, Sequence
 Number, Payload Data, Padding (if present), Pad Length, and
 Next Header. (Note that the last 4 fields will be in
 ciphertext form, because encryption is performed first.) If
 the ESN option is enabled for the SA, the high-order 32
 bits of the sequence number are appended after the Next
 Header field for purposes of this computation, but are not
 transmitted.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 81

Identifier: RQ_002_3106
RFC Clause: 3.3.2.1
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP where separate confidentiality and integrity algorithms are employed with the ESN
option enabled the high-order 32 bits of the sequence number MUST NOT be transmitted

RFC Text:
If separate confidentiality and integrity algorithms are employed,
 the Sender proceeds as follows:

 1. Encapsulate (into the ESP Payload field):
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- Optional TFC padding and
 (encryption) Padding

 3. Encrypt the result using the key, encryption algorithm,
 and algorithm mode specified for the SA and using any
 required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 encryption algorithm per the algorithm specification
 and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - If integrity is selected, encryption is performed
 first, before the integrity algorithm is applied, and
 the encryption does not encompass the ICV field.
 This order of processing facilitates rapid detection
 and rejection of replayed or bogus packets by the
 receiver, prior to decrypting the packet, hence
 potentially reducing the impact of denial of service
 (DoS) attacks. It also allows for the possibility of
 parallel processing of packets at the receiver, i.e.,
 decryption can take place in parallel with integrity
 checking. Note that because the ICV is not protected
 by encryption, a keyed integrity algorithm must be
 employed to compute the ICV.

 4. Compute the ICV over the ESP packet minus the ICV field.
 Thus, the ICV computation encompasses the SPI, Sequence
 Number, Payload Data, Padding (if present), Pad Length, and
 Next Header. (Note that the last 4 fields will be in
 ciphertext form, because encryption is performed first.) If
 the ESN option is enabled for the SA, the high-order 32
 bits of the sequence number are appended after the Next
 Header field for purposes of this computation, but are not
 transmitted.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 82

Identifier: RQ_002_3107
RFC Clause: 3.3.2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP transport mode where combined confidentiality and integrity algorithms are employed the
Sender MUST proceed for encryption as follows:

1. Encapsulate (into the ESP Payload field) the original next layer protocol information.
2. Add any necessary padding (both pptional TFC padding and (encryption) Padding)
3. Encrypt the result using the key, encryption algorithm, and algorithm mode specified for the SA
and using any required cryptographic synchronization data.

RFC Text:
If a combined confidentiality/integrity algorithm is employed, the
 Sender proceeds as follows:

 1. Encapsulate into the ESP Payload Data field:
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- includes optional TFC padding
 and (encryption) Padding.

 3. Encrypt and integrity protect the result using the key
 and combined mode algorithm specified for the SA and using
 any required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 combined mode algorithm per the algorithm
 specification and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - The Sequence Number (or Extended Sequence Number, as
 appropriate) and the SPI are inputs to the
 algorithm, as they must be included in the integrity
 check computation. The means by which these values
 are included in this computation are a function of
 the combined mode algorithm employed and thus not
 specified in this standard.
 - The (explicit) ICV field MAY be a part of the ESP
 packet format when a combined mode algorithm is
 employed. If one is not used, an analogous field
 usually will be a part of the ciphertext payload.
 The location of any integrity fields, and the means
 by which the Sequence Number and SPI are included in
 the integrity computation, MUST be defined in an RFC
 that defines the use of the combined mode algorithm
 with ESP.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 83

Identifier: RQ_002_3108
RFC Clause: 3.3.2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP tunnel mode where combined confidentiality and integrity algorithms are employed the
Sender MUST proceed for encryption as follows:

1. Encapsulate (into the ESP Payload field) the original IP datagram.
2. Add any necessary padding (both pptional TFC padding and (encryption) Padding)
3. Encrypt the result using the key, encryption algorithm, and algorithm mode specified for the SA
and using any required cryptographic synchronization data.

RFC Text:
If a combined confidentiality/integrity algorithm is employed, the
 Sender proceeds as follows:

 1. Encapsulate into the ESP Payload Data field:
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- includes optional TFC padding
 and (encryption) Padding.

 3. Encrypt and integrity protect the result using the key
 and combined mode algorithm specified for the SA and using
 any required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 combined mode algorithm per the algorithm
 specification and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - The Sequence Number (or Extended Sequence Number, as
 appropriate) and the SPI are inputs to the
 algorithm, as they must be included in the integrity
 check computation. The means by which these values
 are included in this computation are a function of
 the combined mode algorithm employed and thus not
 specified in this standard.
 - The (explicit) ICV field MAY be a part of the ESP
 packet format when a combined mode algorithm is
 employed. If one is not used, an analogous field
 usually will be a part of the ciphertext payload.
 The location of any integrity fields, and the means
 by which the Sequence Number and SPI are included in
 the integrity computation, MUST be defined in an RFC
 that defines the use of the combined mode algorithm
 with ESP.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 84

Identifier: RQ_002_3109
RFC Clause: 3.3.2.2
Type: Optional
Applies to: IPsec host

Requirement:
In IPsec ESP where combined confidentiality and integrity algorithms are employed the explicit ICV
field MAY be a part of the ESP packet format.

RFC Text:
If a combined confidentiality/integrity algorithm is employed, the
 Sender proceeds as follows:

 1. Encapsulate into the ESP Payload Data field:
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- includes optional TFC padding
 and (encryption) Padding.

 3. Encrypt and integrity protect the result using the key
 and combined mode algorithm specified for the SA and using
 any required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 combined mode algorithm per the algorithm
 specification and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - The Sequence Number (or Extended Sequence Number, as
 appropriate) and the SPI are inputs to the
 algorithm, as they must be included in the integrity
 check computation. The means by which these values
 are included in this computation are a function of
 the combined mode algorithm employed and thus not
 specified in this standard.
 - The (explicit) ICV field MAY be a part of the ESP
 packet format when a combined mode algorithm is
 employed. If one is not used, an analogous field
 usually will be a part of the ciphertext payload.
 The location of any integrity fields, and the means
 by which the Sequence Number and SPI are included in
 the integrity computation, MUST be defined in an RFC
 that defines the use of the combined mode algorithm
 with ESP.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 85

Identifier: RQ_002_3110
RFC Clause: 3.3.2.2
Type: Optional
Applies to: IPsec host

Requirement:
In IPsec ESP where combined confidentiality and integrity algorithms are employed and where the
explicit ICV field is not provided the ICV MAY be a part of the ESP payload field.

RFC Text:
If a combined confidentiality/integrity algorithm is employed, the
 Sender proceeds as follows:

 1. Encapsulate into the ESP Payload Data field:
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- includes optional TFC padding
 and (encryption) Padding.

 3. Encrypt and integrity protect the result using the key
 and combined mode algorithm specified for the SA and using
 any required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 combined mode algorithm per the algorithm
 specification and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - The Sequence Number (or Extended Sequence Number, as
 appropriate) and the SPI are inputs to the
 algorithm, as they must be included in the integrity
 check computation. The means by which these values
 are included in this computation are a function of
 the combined mode algorithm employed and thus not
 specified in this standard.
 - The (explicit) ICV field MAY be a part of the ESP
 packet format when a combined mode algorithm is
 employed. If one is not used, an analogous field
 usually will be a part of the ciphertext payload.
 The location of any integrity fields, and the means
 by which the Sequence Number and SPI are included in
 the integrity computation, MUST be defined in an RFC
 that defines the use of the combined mode algorithm
 with ESP.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 86

Identifier: RQ_002_3111
RFC Clause: 3.3.2.2
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP where combined confidentiality and integrity algorithms are employed and where either
RQ_SEC_3109 or RQ_SEC_3110 apply the location of any integrity fields, and the means by which the
Sequence Number and SPI are included in the integrity computation, MUST be defined in an RFC that
defines the use of the combined mode algorithm with ESP .

RFC Text:
If a combined confidentiality/integrity algorithm is employed, the
 Sender proceeds as follows:

 1. Encapsulate into the ESP Payload Data field:
 - for transport mode -- just the original next layer
 protocol information.
 - for tunnel mode -- the entire original IP datagram.

 2. Add any necessary padding -- includes optional TFC padding
 and (encryption) Padding.

 3. Encrypt and integrity protect the result using the key
 and combined mode algorithm specified for the SA and using
 any required cryptographic synchronization data.
 - If explicit cryptographic synchronization data,
 e.g., an IV, is indicated, it is input to the
 combined mode algorithm per the algorithm
 specification and placed in the Payload field.
 - If implicit cryptographic synchronization data is
 employed, it is constructed and input to the
 encryption algorithm as per the algorithm
 specification.
 - The Sequence Number (or Extended Sequence Number, as
 appropriate) and the SPI are inputs to the
 algorithm, as they must be included in the integrity
 check computation. The means by which these values
 are included in this computation are a function of
 the combined mode algorithm employed and thus not
 specified in this standard.
 - The (explicit) ICV field MAY be a part of the ESP
 packet format when a combined mode algorithm is
 employed. If one is not used, an analogous field
 usually will be a part of the ciphertext payload.
 The location of any integrity fields, and the means
 by which the Sequence Number and SPI are included in
 the integrity computation, MUST be defined in an RFC
 that defines the use of the combined mode algorithm
 with ESP.

Identifier: RQ_002_3112
RFC Clause: 3.3.3
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP the sender MUST increment the sequence number (or ESN) counter for each packet in each
SA and insert the low-order 32 bits of the value into the Sequence Number field

RFC Text:

 The sender's counter is initialized to 0 when an SA is established.
 The sender increments the sequence number (or ESN) counter for this
 SA and inserts the low-order 32 bits of the value into the Sequence
 Number field. Thus, the first packet sent using a given SA will
 contain a sequence number of 1.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 87

Identifier: RQ_002_3113
RFC Clause: 3.3.3
Type: Mandatory
Applies to: IPsec host

Requirement:
In IPsec ESP the first packet sent using a given SA MUST contain a sequence number of 1

RFC Text:

 The sender's counter is initialized to 0 when an SA is established.
 The sender increments the sequence number (or ESN) counter for this
 SA and inserts the low-order 32 bits of the value into the Sequence
 Number field. Thus, the first packet sent using a given SA will
 contain a sequence number of 1.

4.4 Requirements extracted from RFC 4305

Identifier: RQ_002_5000
RFC Clause: 3
Type: Mandatory
Applies to: IPsec host

Requirement:
For IPsec implementations to interoperate they MUST have at least one security algorithms in common

RFC Text:
For IPsec implementations to interoperate, they must support one or
 more security algorithms in common. This section specifies the
 security algorithm implementation requirements for standards-
 conformant ESP and AH implementations. The security algorithms
 actually used for any particular ESP or AH security association are
 determined by a negotiation mechanism, such as the Internet Key
 Exchange (IKE [RFC2409, IKEv2]) or pre-establishment.

Identifier: RQ_002_5001
RFC Clause: 3
Type: Mandatory
Applies to: IPsec host

Requirement:
The security algorithms used for ESP or AH security association MUST be determined by negotiation
(examples of negotiation mechanisms inlcude the Internet Key Exchange)

RFC Text:
For IPsec implementations to interoperate, they must support one or
 more security algorithms in common. This section specifies the
 security algorithm implementation requirements for standards-
 conformant ESP and AH implementations. The security algorithms
 actually used for any particular ESP or AH security association are
 determined by a negotiation mechanism, such as the Internet Key
 Exchange (IKE [RFC2409, IKEv2]) or pre-establishment.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 88

Identifier: RQ_002_5002
RFC Clause: 3.1.1
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association MUST support the NULL encryption algorithm

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 89

Identifier: RQ_002_5003
RFC Clause: 3.1.1.
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association MUST support the TripleDES-CBC encryption
algorithm

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 90

Identifier: RQ_002_5004
RFC Clause: 3.1.1
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association SHOULD support the AES-CBC encryption algorithm
with 128-bit key length

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 91

Identifier: RQ_002_5005
RFC Clause: 3.1.1
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association SHOULD support the AES-CTR encryption algorithm

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 92

Identifier: RQ_002_5006
RFC Clause: 3.1.1
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association SHOULD NOT support the DES-CBC encryption
algorithm

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 93

Identifier: RQ_002_5007
RFC Clause: 3.1.1
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association MUST support the HMAC-SHA1-96 authentication
algorithm

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 94

Identifier: RQ_002_5008
RFC Clause: 3.1.1
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association MUST support the NULL authentication algorithm

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 95

Identifier: RQ_002_5009
RFC Clause: 3.1.1
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association SHOULD support the AES-XCBC-MAC-96
authentication algorithm

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 96

Identifier: RQ_002_5010
RFC Clause: 3.1.1
Type: Optional
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association MAY support the HMAC-MD5-96 authentication
algorithm

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 97

Identifier: RQ_002_5011
RFC Clause: 3.1.1
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host supporting an ESP Security Association MUST NOT deploy both the NULL authentication
algorithm and the NULL encryption algorithm

RFC Text:
These tables list encryption and authentication algorithms for the
 IPsec Encapsulating Security Payload protocol.

 Requirement Encryption Algorithm (notes)
 ----------- --------------------
 MUST NULL (1)
 MUST- TripleDES-CBC [RFC2451]
 SHOULD+ AES-CBC with 128-bit keys [RFC3602]
 SHOULD AES-CTR [RFC3686]
 SHOULD NOT DES-CBC [RFC2405] (3)

 Requirement Authentication Algorithm (notes)
 ----------- ------------------------
 MUST HMAC-SHA1-96 [RFC2404]
 MUST NULL (1)
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (2)

 Notes:

 (1) Since ESP encryption and authentication are optional, support for
 the two "NULL" algorithms is required to maintain consistency
 with the way these services are negotiated. Note that while
 authentication and encryption can each be "NULL", they MUST NOT
 both be "NULL".
 (2) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.
 (3) DES, with its small key size and publicly demonstrated and open-
 design special-purpose cracking hardware, is of questionable
 security for general use.

Identifier: RQ_002_5012
RFC Clause: 3.2
Type: Mandatory
Applies to: IPsec host

Requirement:
An IPsec host supporting an AH Security Association MUST support the HMAC-SHA1-96 authentication
algorithm

RFC Text:
The implementation conformance requirements for security algorithms
 for AH are given below. See Section 2 for definitions of the values
 in the "Requirement" column. As you would suspect, all of these
 algorithms are authentication algorithms.

 Requirement Algorithm (notes)
 ----------- ---------
 MUST HMAC-SHA1-96 [RFC2404]
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (1)

 Note:

 (1) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 98

Identifier: RQ_002_5013
RFC Clause: 3.2
Type: Recommended
Applies to: IPsec host

Requirement:
An IPsec host supporting an AH Security Association SHOULD support the AES-XCBC-MAC-96
authentication algorithm

RFC Text:
The implementation conformance requirements for security algorithms
 for AH are given below. See Section 2 for definitions of the values
 in the "Requirement" column. As you would suspect, all of these
 algorithms are authentication algorithms.

 Requirement Algorithm (notes)
 ----------- ---------
 MUST HMAC-SHA1-96 [RFC2404]
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (1)

 Note:

 (1) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.

Identifier: RQ_002_5014
RFC Clause: 3.2
Type: Optional
Applies to: IPsec host

Requirement:
An IPsec host supporting an AH Security Association MAY support the HMAC-MAC-96 authentication
algorithm

RFC Text:
The implementation conformance requirements for security algorithms
 for AH are given below. See Section 2 for definitions of the values
 in the "Requirement" column. As you would suspect, all of these
 algorithms are authentication algorithms.

 Requirement Algorithm (notes)
 ----------- ---------
 MUST HMAC-SHA1-96 [RFC2404]
 SHOULD+ AES-XCBC-MAC-96 [RFC3566]
 MAY HMAC-MD5-96 [RFC2403] (1)

 Note:

 (1) Weaknesses have become apparent in MD5; however, these should not
 affect the use of MD5 with HMAC.

4.5 Requirements extracted from RFC 4306

Identifier: RQ_002_6000
RFC Clause: 1
Type: Mandatory
Applies to: Host

Requirement:
When establishing an IKE Security Association, an IKE implementation MUST complete all IKE_SA_INIT
exchanges before initiating any other exchange type on that SA.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 99

RFC Text:
All IKE communications consist of pairs of messages: a request and a response. The pair is called
an "exchange". We call the first messages establishing an IKE_SA IKE_SA_INIT and IKE_AUTH exchanges
and subsequent IKE exchanges CREATE_CHILD_SA or INFORMATIONAL exchanges. In the common case, there
is a single IKE_SA_INIT exchange and a single IKE_AUTH exchange (a total of four messages) to
establish the IKE_SA and the first CHILD_SA. In exceptional cases, there may be more than one of
each of these exchanges. In all cases, all IKE_SA_INIT exchanges MUST complete before any other
exchange type, then all IKE_AUTH exchanges MUST complete, and following that any number of
CREATE_CHILD_SA and INFORMATIONAL exchanges may occur in any order. In some scenarios, only a
single CHILD_SA is needed between the IPsec endpoints, and therefore there would be no additional
exchanges. Subsequent exchanges MAY be used to establish additional CHILD_SAs between the same
authenticated pair of endpoints and to perform housekeeping functions.

Identifier: RQ_002_6001
RFC Clause: 1
Type: Mandatory
Applies to: Host

Requirement:
When establishing an IKE Security Association, an IKE implementation MUST complete all IKE_AUTH
exchanges before initiating any CREATE_CHILD_SA and INFORMATIONAL exchanges on that SA

RFC Text:
All IKE communications consist of pairs of messages: a request and a response. The pair is called
an "exchange". We call the first messages establishing an IKE_SA IKE_SA_INIT and IKE_AUTH exchanges
and subsequent IKE exchanges CREATE_CHILD_SA or INFORMATIONAL exchanges. In the common case, there
is a single IKE_SA_INIT exchange and a single IKE_AUTH exchange (a total of four messages) to
establish the IKE_SA and the first CHILD_SA. In exceptional cases, there may be more than one of
each of these exchanges. In all cases, all IKE_SA_INIT exchanges MUST complete before any other
exchange type, then all IKE_AUTH exchanges MUST complete, and following that any number of
CREATE_CHILD_SA and INFORMATIONAL exchanges may occur in any order. In some scenarios, only a
single CHILD_SA is needed between the IPsec endpoints, and therefore there would be no additional
exchanges. Subsequent exchanges MAY be used to establish additional CHILD_SAs between the same
authenticated pair of endpoints and to perform housekeeping functions.

Identifier: RQ_002_6002
RFC Clause: 1
Type: Optional
Applies to: Host

Requirement:
When establishing an IKE Security Association, an IKE implementation may initiate any number of
CREATE_CHILD_SA and INFORMATIONAL exchanges in any order.

RFC Text:
All IKE communications consist of pairs of messages: a request and a response. The pair is called
an "exchange". We call the first messages establishing an IKE_SA IKE_SA_INIT and IKE_AUTH exchanges
and subsequent IKE exchanges CREATE_CHILD_SA or INFORMATIONAL exchanges. In the common case, there
is a single IKE_SA_INIT exchange and a single IKE_AUTH exchange (a total of four messages) to
establish the IKE_SA and the first CHILD_SA. In exceptional cases, there may be more than one of
each of these exchanges. In all cases, all IKE_SA_INIT exchanges MUST complete before any other
exchange type, then all IKE_AUTH exchanges MUST complete, and following that any number of
CREATE_CHILD_SA and INFORMATIONAL exchanges may occur in any order. In some scenarios, only a
single CHILD_SA is needed between the IPsec endpoints, and therefore there would be no additional
exchanges. Subsequent exchanges MAY be used to establish additional CHILD_SAs between the same
authenticated pair of endpoints and to perform housekeeping functions.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 100

Identifier: RQ_002_6003
RFC Clause: 1.4.
Type: Mandatory
Applies to: Host

Requirement:
IKE INFORMATIONAL exchanges MUST ONLY occur after the initial exchanges to establish the relevant
IKE Security Associations

RFC Text:
At various points during the operation of an IKE_SA, peers may desire to convey control messages to
each other regarding errors or notifications of certain events. To accomplish this, IKE defines an
INFORMATIONAL exchange. INFORMATIONAL exchanges MUST ONLY occur after the initial exchanges and are
cryptographically protected with the negotiated keys.

Identifier: RQ_002_6004
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
An IKE endpoint in an established Security Association MUST cryptographically protect all IKE
INFORMATIONAL exchanges sent across that SA using the keys negotiated during the establishment of
the SA

RFC Text:
At various points during the operation of an IKE_SA, peers may desire to convey control messages to
each other regarding errors or notifications of certain events. To accomplish this, IKE defines an
INFORMATIONAL exchange. INFORMATIONAL exchanges MUST ONLY occur after the initial exchanges and are
cryptographically protected with the negotiated keys.

Identifier: RQ_002_6005
RFC Clause: 1.4.
Type: Mandatory
Applies to: Host

Requirement:
An endpoint in an established IKE Security Association MUST use that SA to send any Informational
exchanges pertaining to the control of the SA.

RFC Text:
Control messages that pertain to an IKE_SA MUST be sent under that IKE_SA. Control messages that
pertain to CHILD_SAs MUST be sent under the protection of the IKE_SA which generated them (or its
successor if the IKE_SA was replaced for the purpose of rekeying)

Identifier: RQ_002_6006
RFC Clause: 1.4.
Type: Mandatory
Applies to: Host

Requirement:
An endpoint in an established IKE Security Association MUST send any Informational exchanges that
pertain to the control of an associated CHILD_SA under the protection of either the IKE_SA which
generated them or its successor if the IKE_SA was replaced for the purpose of rekeying

RFC Text:
Control messages that pertain to an IKE_SA MUST be sent under that IKE_SA. Control messages that
pertain to CHILD_SAs MUST be sent under the protection of the IKE_SA which generated them (or its
successor if the IKE_SA was replaced for the purpose of rekeying).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 101

Identifier: RQ_002_6007
RFC Clause: 1.4.
Type: Mandatory
Applies to: Host

Requirement:
To avoid retransmission of Notification, Delete and Configuration messages, the recipient of an IKE
INFORMATIONAL exchange request MUST send a valid response

RFC Text:
Messages in an INFORMATIONAL exchange contain zero or more Notification, Delete, and Configuration
payloads. The Recipient of an INFORMATIONAL exchange request MUST send some response (else the
Sender will assume the message was lost in the network and will retransmit it). That response MAY
be a message with no payloads. The request message in an INFORMATIONAL exchange MAY also contain no
payloads. This is the expected way an endpoint can ask the other endpoint to verify that it is
alive

Identifier: RQ_002_6008
RFC Clause: 1.4.
Type: Optional
Applies to: Host

Requirement:
The response to an IKE INFORMATIONAL exchange request MAY be a message with no payloads

RFC Text:
Messages in an INFORMATIONAL exchange contain zero or more Notification, Delete, and Configuration
payloads. The Recipient of an INFORMATIONAL exchange request MUST send some response (else the
Sender will assume the message was lost in the network and will retransmit it). That response MAY
be a message with no payloads. The request message in an INFORMATIONAL exchange MAY also contain no
payloads. This is the expected way an endpoint can ask the other endpoint to verify that it is
alive.

Identifier: RQ_002_6009
RFC Clause: 1.4.
Type: Optional
Applies to: Host

Requirement:
As a means of verifying that the other endpoint in an IKE Security Association is alive, the request
message in an INFORMATIONAL exchange MAY contain no payloads.

RFC Text:
Messages in an INFORMATIONAL exchange contain zero or more Notification, Delete, and Configuration
payloads. The Recipient of an INFORMATIONAL exchange request MUST send some response (else the
Sender will assume the message was lost in the network and will retransmit it). That response MAY
be a message with no payloads. The request message in an INFORMATIONAL exchange MAY also contain no
payloads. This is the expected way an endpoint can ask the other endpoint to verify that it is
alive.

Identifier: RQ_002_6010
RFC Clause: 1.4.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE Security Association endpoint receives an INFORMATION exchange request with one or more
Delete payloads, it MUST close the designated Security Associations

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 102

RFC Text:
ESP and AH SAs always exist in pairs, with one SA in each direction. When an SA is closed, both
members of the pair MUST be closed. When SAs are nested, as when data (and IP headers if in tunnel
mode) are encapsulated first with IPComp, then with ESP, and finally with AH between the same pair
of endpoints, all of the SAs MUST be deleted together. Each endpoint MUST close its incoming SAs
and allow the other endpoint to close the other SA in each pair. To delete an SA, an INFORMATIONAL
exchange with one or more delete payloads is sent listing the SPIs (as they would be expected in the
headers of inbound packets) of the SAs to be deleted. The recipient MUST close the designated SAs.
Normally, the reply in the INFORMATIONAL exchange will contain delete payloads for the paired SAs
going in the other direction. There is one exception. If by chance both ends of a set of SAs
independently decide to close them, each may send a delete payload and the two requests may cross in
the network. If a node receives a delete request for SAs for which it has already issued a delete
request, it MUST delete the outgoing SAs while processing the request and the incoming SAs while
processing the response. In that case, the responses MUST NOT include delete payloads for the
deleted SAs, since that would result in duplicate deletion and could in theory delete the wrong SA.

Identifier: RQ_002_6011
RFC Clause: 1.4
Type: Mandatory
Applies to: Host

Requirement:
When a request is received to delete a Security Association which has other nested Security
Associations, the receiving endpoint MUST delete all of these related Security Associations together

RFC Text:
ESP and AH SAs always exist in pairs, with one SA in each direction. When an SA is closed, both
members of the pair MUST be closed. When SAs are nested, as when data (and IP headers if in tunnel
mode) are encapsulated first with IPComp, then with ESP, and finally with AH between the same pair
of endpoints, all of the SAs MUST be deleted together. Each endpoint MUST close its incoming SAs
and allow the other endpoint to close the other SA in each pair. To delete an SA, an INFORMATIONAL
exchange with one or more delete payloads is sent listing the SPIs (as they would be expected in the
headers of inbound packets) of the SAs to be deleted. The recipient MUST close the designated SAs.
Normally, the reply in the INFORMATIONAL exchange will contain delete payloads for the paired SAs
going in the other direction. There is one exception. If by chance both ends of a set of SAs
independently decide to close them, each may send a delete payload and the two requests may cross in
the network. If a node receives a delete request for SAs for which it has already issued a delete
request, it MUST delete the outgoing SAs while processing the request and the incoming SAs while
processing the response. In that case, the responses MUST NOT include delete payloads for the
deleted SAs, since that would result in duplicate deletion and could in theory delete the wrong SA.

Identifier: RQ_002_6012
RFC Clause: 1.4.
Type: Optional
Applies to: Host

Requirement:
An endpoint in an established IKE Security Association MAY send an IKE INFORMATIONAL exchange
request or response containing no payloads

RFC Text:
Messages in an INFORMATIONAL exchange contain zero or more Notification, Delete, and Configuration
payloads. The Recipient of an INFORMATIONAL exchange request MUST send some response (else the
Sender will assume the message was lost in the network and will retransmit it). That response MAY
be a message with no payloads. The request message in an INFORMATIONAL exchange MAY also contain no
payloads. This is the expected way an endpoint can ask the other endpoint to verify that it is
alive.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 103

Identifier: RQ_002_6013
RFC Clause: 1.4.
Type: Optional
Applies to: Host

Requirement:
An endpoint in an established IKE Security Association MAY send an IKE INFORMATIONAL exchange
request or response containing zero or more Notification payloads

RFC Text:
Messages in an INFORMATIONAL exchange contain zero or more Notification, Delete, and Configuration
payloads. The Recipient of an INFORMATIONAL exchange request MUST send some response (else the
Sender will assume the message was lost in the network and will retransmit it). That response MAY
be a message with no payloads. The request message in an INFORMATIONAL exchange MAY also contain no
payloads. This is the expected way an endpoint can ask the other endpoint to verify that it is
alive.

Identifier: RQ_002_6014
RFC Clause: 1.4.
Type: Mandatory
Applies to: Host

Requirement:
An endpoint in an established IKE Security Association MAY send an IKE INFORMATIONAL exchange
request or response containing zero or more Delete payloads

RFC Text:
Messages in an INFORMATIONAL exchange contain zero or more Notification, Delete, and Configuration
payloads. The Recipient of an INFORMATIONAL exchange request MUST send some response (else the
Sender will assume the message was lost in the network and will retransmit it). That response MAY
be a message with no payloads. The request message in an INFORMATIONAL exchange MAY also contain no
payloads. This is the expected way an endpoint can ask the other endpoint to verify that it is
alive.

Identifier: RQ_002_6015
RFC Clause: 1.4.
Type: Optional
Applies to: Host

Requirement:
An endpoint in an established IKE Security Association MAY send an IKE INFORMATIONAL exchange
request or response containing zero or more Configuration payloads

RFC Text:
Messages in an INFORMATIONAL exchange contain zero or more Notification, Delete, and Configuration
payloads. The Recipient of an INFORMATIONAL exchange request MUST send some response (else the
Sender will assume the message was lost in the network and will retransmit it). That response MAY
be a message with no payloads. The request message in an INFORMATIONAL exchange MAY also contain no
payloads. This is the expected way an endpoint can ask the other endpoint to verify that it is
alive.

Identifier: RQ_002_6016
RFC Clause: 1.4
Type: Mandatory
Applies to: Host

Requirement:
When an IKE Security Association endpoint receives an INFORMATIONAL exchange request with one or
more delete payloads, it MUST send an INFORMATION exchange response containing Delete payloads for
the corresponding Security Associations in the reverse direction but excluding any that have already
been sent in a coincidental simultaneous INFORMATION exchange request to the requesting endpoint.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 104

RFC Text:
ESP and AH SAs always exist in pairs, with one SA in each direction. When an SA is closed, both
members of the pair MUST be closed. When SAs are nested, as when data (and IP headers if in tunnel
mode) are encapsulated first with IPComp, then with ESP, and finally with AH between the same pair
of endpoints, all of the SAs MUST be deleted together. Each endpoint MUST close its incoming SAs
and allow the other endpoint to close the other SA in each pair. To delete an SA, an INFORMATIONAL
exchange with one or more delete payloads is sent listing the SPIs (as they would be expected in the
headers of inbound packets) of the SAs to be deleted. The recipient MUST close the designated SAs.
Normally, the reply in the INFORMATIONAL exchange will contain delete payloads for the paired SAs
going in the other direction. There is one exception. If by chance both ends of a set of SAs
independently decide to close them, each may send a delete payload and the two requests may cross in
the network. If a node receives a delete request for SAs for which it has already issued a delete
request, it MUST delete the outgoing SAs while processing the request and the incoming SAs while
processing the response. In that case, the responses MUST NOT include delete payloads for the
deleted SAs, since that would result in duplicate deletion and could in theory delete the wrong SA.

Identifier: RQ_002_6017
RFC Clause: 1.4.
Type: Recommended
Applies to: Host

Requirement:
In the event that one ESP or AH Security Association in a pair is closed but the other one is not,
an IKE implementation SHOULD record this fact in a log after it has persisted for a predefined
period..

RFC Text:
A node SHOULD regard half-closed connections as anomalous and audit their existence should they
persist. Note that this specification nowhere specifies time periods, so it is up to individual
endpoints to decide how long to wait}}. A node MAY refuse to accept incoming data on half-closed
connections but MUST NOT unilaterally close them and reuse the SPIs. If connection state becomes
sufficiently messed up, a node MAY close the IKE_SA; doing so will implicitly close all SAs
negotiated under it. It can then rebuild the SAs it needs on a clean base under a new IKE_SA.

Identifier: RQ_002_6018
RFC Clause: 1.4.
Type: Optional
Applies to: Host

Requirement:
In the event that one ESP or AH Security Association in a pair is closed but the other one is not,
an IKE implementation MAY refuse to accept incoming data on half-closed Security Associations.

RFC Text:
A node SHOULD regard half-closed connections as anomalous and audit their existence should they
persist. Note that this specification nowhere specifies time periods, so it is up to individual
endpoints to decide how long to wait. A node MAY refuse to accept incoming data on half-closed
connections but MUST NOT unilaterally close them and reuse the SPIs. If connection state becomes
sufficiently messed up, a node MAY close the IKE_SA; doing so will implicitly close all SAs
negotiated under it. It can then rebuild the SAs it needs on a clean base under a new IKE_SA.

Identifier: RQ_002_6019
RFC Clause: 1.4.
Type: Mandatory
Applies to: Host

Requirement:
In the event that one ESP or AH Security Association in a pair is closed but the other one is not,
an IKE implementation MUST NOT unilaterally close the half-closed Security Associations and reuse
the SPIs

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 105

RFC Text:
A node SHOULD regard half-closed connections as anomalous and audit their existence should they
persist. Note that this specification nowhere specifies time periods, so it is up to individual
endpoints to decide how long to wait. A node MAY refuse to accept incoming data on half-closed
connections but MUST NOT unilaterally close them and reuse the SPIs. If connection state becomes
sufficiently messed up, a node MAY close the IKE_SA; doing so will implicitly close all SAs
negotiated under it. It can then rebuild the SAs it needs on a clean base under a new IKE_SA.

Identifier: RQ_002_6020
RFC Clause: 1.4.
Type: Optional
Applies to: Host

Requirement:
In the event that one ESP or AH Security Association in a pair is closed but the other one is not,
an IKE implementation MAY close the IKE Security Association

RFC Text:
A node SHOULD regard half-closed connections as anomalous and audit their existence should they
persist. Note that this specification nowhere specifies time periods, so it is up to individual
endpoints to decide how long to wait. A node MAY refuse to accept incoming data on half-closed
connections but MUST NOT unilaterally close them and reuse the SPIs. If connection state becomes
sufficiently messed up, a node MAY close the IKE_SA; doing so will implicitly close all SAs
negotiated under it. It can then rebuild the SAs it needs on a clean base under a new IKE_SA.

Identifier: RQ_002_6021
RFC Clause: 1.5.
Type: Optional
Applies to: Host

Requirement:
If an endpoint in an established IKE Security Association receives an encrypted IKE packet on port
500 or 4500 with the source IP address of the other endpoint in the SA but with an unrecognized
SPI, it MAY send a notification of the wayward packet over that IKE_SA in an INFORMATIONAL exchange
containing a Notify payload set to INVALID_IKE_SPI

RFC Text:
If an encrypted IKE packet arrives on port 500 or 4500 with an unrecognized SPI, it could be because
the receiving node has recently crashed and lost state or because of some other system malfunction
or attack. If the receiving node has an active IKE_SA to the IP address from whence the packet
came, it MAY send a notification of the wayward packet over that IKE_SA in an INFORMATIONAL
exchange. If it does not have such an IKE_SA, it MAY send an Informational message without
cryptographic protection to the source IP address. Such a message is not part of an informational
exchange, and the receiving node MUST NOT respond to it. Doing so could cause a message loop.

Identifier: RQ_002_6022
RFC Clause: 1.5.
Type: Optional
Applies to: Host

Requirement:
If an encrypted IKE packet arrives on port 500 or 4500 with an unrecognized SPI, and the receiving
node does not have an active IKE_SA to the IP address from whence the packet came, it MAY send an
INFORMATIONAL exchange without cryptographic protection to the source IP address containing a
Notify payload set to INVALID_IKE_SPI

RFC Text:
If an encrypted IKE packet arrives on port 500 or 4500 with an unrecognized SPI, it could be because
the receiving node has recently crashed and lost state or because of some other system malfunction
or attack. If the receiving node has an active IKE_SA to the IP address from whence the packet
came, it MAY send a notification of the wayward packet over that IKE_SA in an INFORMATIONAL
exchange. If it does not have such an IKE_SA, it MAY send an Informational message without
cryptographic protection to the source IP address. Such a message is not part of an informational
exchange, and the receiving node MUST NOT respond to it. Doing so could cause a message loop

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 106

Identifier: RQ_002_6023
RFC Clause: 1.5
Type: Mandatory
Applies to: Host

Requirement:
If a node receives an IKE INFORMATIONAL exchange message containing a NOTIFY payload indicating an
INVALID_IKE_SPI error message, it MUST NOT send a response

RFC Text:
If an encrypted IKE packet arrives on port 500 or 4500 with an unrecognized SPI, it could be because
the receiving node has recently crashed and lost state or because of some other system malfunction
or attack. If the receiving node has an active IKE_SA to the IP address from whence the packet
came, it MAY send a notification of the wayward packet over that IKE_SA in an INFORMATIONAL
exchange. If it does not have such an IKE_SA, it MAY send an Informational message without
cryptographic protection to the source IP address. Such a message is not part of an informational
exchange, and the receiving node MUST NOT respond to it. Doing so could cause a message loop

Identifier: RQ_002_6024
RFC Clause: 2.
Type: Mandatory
Applies to: Host

Requirement:
IKE Implementations MUST be able to send IKE messages that are up to 1280 bytes long

RFC Text:
All IKEv2 implementations MUST be able to send, receive, and process IKE messages that are up to
1280 bytes long, and they SHOULD be able to send, receive, and process messages that are up to 3000
bytes long. IKEv2 implementations SHOULD be aware of the maximum UDP message size supported and MAY
shorten messages by leaving out some certificates or cryptographic suite proposals if that will keep
messages below the maximum. Use of the "Hash and URL" formats rather than including certificates in
exchanges where possible can avoid most problems. Implementations and configuration should keep in
mind, however, that if the URL lookups are possible only after the IPsec SA is established,
recursion issues could prevent this technique from working.

Identifier: RQ_002_6025
RFC Clause: 2.
Type: Mandatory
Applies to: Host

Requirement:
IKE implementations MUST be able to receive and process IKE messages that are up to 1280 bytes long

RFC Text:
All IKEv2 implementations MUST be able to send, receive, and process IKE messages that are up to
1280 bytes long, and they SHOULD be able to send, receive, and process messages that are up to 3000
bytes long. IKEv2 implementations SHOULD be aware of the maximum UDP message size supported and MAY
shorten messages by leaving out some certificates or cryptographic suite proposals if that will keep
messages below the maximum. Use of the "Hash and URL" formats rather than including certificates in
exchanges where possible can avoid most problems. Implementations and configuration should keep in
mind, however, that if the URL lookups are possible only after the IPsec SA is established,
recursion issues could prevent this technique from working.

Identifier: RQ_002_6026
RFC Clause: 2.
Type: Recommended
Applies to: Host

Requirement:
IKE implementations SHOULD be able to send IKE messages that are up to 3000 bytes long

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 107

RFC Text:
All IKEv2 implementations MUST be able to send, receive, and process IKE messages that are up to
1280 bytes long, and they SHOULD be able to send, receive, and process messages that are up to 3000
bytes long. IKEv2 implementations SHOULD be aware of the maximum UDP message size supported and MAY
shorten messages by leaving out some certificates or cryptographic suite proposals if that will keep
messages below the maximum. Use of the "Hash and URL" formats rather than including certificates in
exchanges where possible can avoid most problems. Implementations and configuration should keep in
mind, however, that if the URL lookups are possible only after the IPsec SA is established,
recursion issues could prevent this technique from working.

Identifier: RQ_002_6027
RFC Clause: 2.
Type: Recommended
Applies to: Host

Requirement:
IKE implementations SHOULD be able to receive and process IKE messages that are up to 3000 bytes
long

RFC Text:
All IKEv2 implementations MUST be able to send, receive, and process IKE messages that are up to
1280 bytes long, and they SHOULD be able to send, receive, and process messages that are up to 3000
bytes long. IKEv2 implementations SHOULD be aware of the maximum UDP message size supported and MAY
shorten messages by leaving out some certificates or cryptographic suite proposals if that will keep
messages below the maximum. Use of the "Hash and URL" formats rather than including certificates in
exchanges where possible can avoid most problems. Implementations and configuration should keep in
mind, however, that if the URL lookups are possible only after the IPsec SA is established,
recursion issues could prevent this technique from working.

Identifier: RQ_002_6028
RFC Clause: 2.
Type: Optional
Applies to: Host

Requirement:
IKE implementations MAY shorten IKE messages by leaving out some certificates or cryptographic suite
proposals in order to keep messages below the maximum UDP message size supported.

RFC Text:
All IKEv2 implementations MUST be able to send, receive, and process IKE messages that are up to
1280 bytes long, and they SHOULD be able to send, receive, and process messages that are up to 3000
bytes long. IKEv2 implementations SHOULD be aware of the maximum UDP message size supported and MAY
shorten messages by leaving out some certificates or cryptographic suite proposals if that will keep
messages below the maximum. Use of the "Hash and URL" formats rather than including certificates in
exchanges where possible can avoid most problems. Implementations and configuration should keep in
mind, however, that if the URL lookups are possible only after the IPsec SA is established,
recursion issues could prevent this technique from working.

Identifier: RQ_002_6029
RFC Clause: 2.1.
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST NOT retransmit a response to an IKE request unless it receives a
retransmission of the request

RFC Text:
All messages in IKE exist in pairs: a request and a response. The setup of an IKE_SA normally
consists of two request/response pairs. Once the IKE_SA is set up, either end of the security
association may initiate requests at any time, and there can be many requests and responses "in
flight" at any given moment. But each message is labeled as either a request or a response, and for
each request/response pair one end of the security association is the initiator and the other is the
responder.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 108

For every pair of IKE messages, the initiator is responsible for retransmission in the event of a
timeout. The responder MUST never retransmit a response unless it receives a retransmission of the
request. In that event, the responder MUST ignore the retransmitted request except insofar as it
triggers a retransmission of the response. The initiator MUST remember each request until it
receives the corresponding response. The responder MUST remember each response until it receives a
request whose sequence number is larger than the sequence number in the response plus its window
size (see section 2.3)

Identifier: RQ_002_6030
RFC Clause: 2.1.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives a retransmitted request, it MUST retransmit the associated
response but, otherwise, ignore the request.

RFC Text:
All messages in IKE exist in pairs: a request and a response. The setup of an IKE_SA normally
consists of two request/response pairs. Once the IKE_SA is set up, either end of the security
association may initiate requests at any time, and there can be many requests and responses "in
flight" at any given moment. But each message is labeled as either a request or a response, and for
each request/response pair one end of the security association is the initiator and the other is the
responder.

For every pair of IKE messages, the initiator is responsible for retransmission in the event of a
timeout. The responder MUST never retransmit a response unless it receives a retransmission of the
request. In that event, the responder MUST ignore the retransmitted request except insofar as it
triggers a retransmission of the response. The initiator MUST remember each request until it
receives the corresponding response. The responder MUST remember each response until it receives a
request whose sequence number is larger than the sequence number in the response plus its window
size (see section 2.3)

Identifier: RQ_002_6031
RFC Clause: 2.1.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation initiates a request, it must maintain sufficient information internally
to enable it to process the corresponding response correctly when it receives it

RFC Text:
All messages in IKE exist in pairs: a request and a response. The setup of an IKE_SA normally
consists of two request/response pairs. Once the IKE_SA is set up, either end of the security
association may initiate requests at any time, and there can be many requests and responses "in
flight" at any given moment. But each message is labeled as either a request or a response, and for
each request/response pair one end of the security association is the initiator and the other is the
responder.

For every pair of IKE messages, the initiator is responsible for retransmission in the event of a
timeout. The responder MUST never retransmit a response unless it receives a retransmission of the
request. In that event, the responder MUST ignore the retransmitted request except insofar as it
triggers a retransmission of the response. The initiator MUST remember each request until it
receives the corresponding response. The responder MUST remember each response until it receives a
request whose sequence number is larger than the sequence number in the response plus its window
size (see section 2.3)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 109

Identifier: RQ_002_6032
RFC Clause: 2.1.
Type: Mandatory
Applies to: Host

Requirement:
When responding to a request from another node, an IKE implementation MUST maintain sufficient
information internally to enable it to process any subsequent retransmissions of the request
correctly until it receives a further request whose sequence number is larger than the sequence
number in the response plus its window size

RFC Text:
IKE_SA is set up, either end of the security association may initiate requests at any time, and
there can be many requests and responses "in flight" at any given moment. But each message is
labeled as either a request or a response, and for each request/response pair one end of the
security association is the initiator and the other is the responder.

For every pair of IKE messages, the initiator is responsible for retransmission in the event of a
timeout. The responder MUST never retransmit a response unless it receives a retransmission of the
request. In that event, the responder MUST ignore the retransmitted request except insofar as it
triggers a retransmission of the response. The initiator MUST remember each request until it
receives the corresponding response. The responder MUST remember each response until it receives a
request whose sequence number is larger than the sequence number in the response plus its window
size (see section 2.3)

Identifier: RQ_002_6033
RFC Clause: 2.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation initiates a request, it MUST continue to retransmit the request until
either it receives a corresponding reply OR it deems the IKE security association to have failed

RFC Text:
IKE is a reliable protocol, in the sense that the initiator MUST retransmit a request until either
it receives a corresponding reply OR it deems the IKE security association to have failed and it
discards all state associated with the IKE_SA and any CHILD_SAs negotiated using that IKE_SA

Identifier: RQ_002_6034
RFC Clause: 2.2.
Type: Mandatory
Applies to: Host

Requirement:
The IKE_SA initial setup messages MUST use the values 0 (for the first exchange) and 1 (for the
second exchange) in the Message Identifier field

RFC Text:
Every IKE message contains a Message ID as part of its fixed header. This Message ID is used to
match up requests and responses, and to identify retransmissions of messages.

The Message ID is a 32-bit quantity, which is zero for the first IKE request in each direction. The
IKE_SA initial setup messages will always be numbered 0 and 1. Each endpoint in the IKE Security
Association maintains two "current" Message IDs: the next one to be used for a request it initiates
and the next one it expects to see in a request from the other end. These counters increment as
requests are generated and received. Responses always contain the same message ID as the
corresponding request. That means that after the initial exchange, each integer n may appear as the
message ID in four distinct messages: the nth request from the original IKE initiator, the
corresponding response, the nth request from the original IKE responder, and the corresponding
response. If the two ends make very different numbers of requests, the Message IDs in the two
directions can be very different. There is no ambiguity in the messages, however, because the
(I)nitiator and (R)esponse bits in the message header specify which of the four messages a
particular one is.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 110

Identifier: RQ_002_6035
RFC Clause: 2.2.
Type: Mandatory
Applies to: Host

Requirement:
Following the initial exchange values of 0 and 1, the IKE Message ID MUST be incremented with each
new request message and included in its IKE header.

RFC Text:
Every IKE message contains a Message ID as part of its fixed header. This Message ID is used to
match up requests and responses, and to identify retransmissions of messages.

The Message ID is a 32-bit quantity, which is zero for the first IKE request in each direction. The
IKE_SA initial setup messages will always be numbered 0 and 1. Each endpoint in the IKE Security
Association maintains two "current" Message IDs: the next one to be used for a request it initiates
and the next one it expects to see in a request from the other end. These counters increment as
requests are generated and received. Responses always contain the same message ID as the
corresponding request. That means that after the initial exchange, each integer n may appear as the
message ID in four distinct messages: the nth request from the original IKE initiator, the
corresponding response, the nth request from the original IKE responder, and the corresponding
response. If the two ends make very different numbers of requests, the Message IDs in the two
directions can be very different. There is no ambiguity in the messages, however, because the
(I)nitiator and (R)esponse bits in the message header specify which of the four messages a
particular one is.

Identifier: RQ_002_6036
RFC Clause: 2.2.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE endpoint sends a response to a received IKE request it MUST set the Message ID field in
the IKE Header to the value set in the IKE Header of the incoming request.

RFC Text:
Every IKE message contains a Message ID as part of its fixed header. This Message ID is used to
match up requests and responses, and to identify retransmissions of messages.

The Message ID is a 32-bit quantity, which is zero for the first IKE request in each direction. The
IKE_SA initial setup messages will always be numbered 0 and 1. Each endpoint in the IKE Security
Association maintains two "current" Message IDs: the next one to be used for a request it initiates
and the next one it expects to see in a request from the other end. These counters increment as
requests are generated and received. Responses always contain the same message ID as the
corresponding request. That means that after the initial exchange, each integer n may appear as the
message ID in four distinct messages: the nth request from the original IKE initiator, the
corresponding response, the nth request from the original IKE responder, and the corresponding
response. If the two ends make very different numbers of requests, the Message IDs in the two
directions can be very different. There is no ambiguity in the messages, however, because the
(I)nitiator and (R)esponse bits in the message header specify which of the four messages a
particular one is.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 111

Identifier: RQ_002_6037
RFC Clause: 2.2.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request message with a Message ID which is out of the
expected incrementing sequence, it MUST send a NOTIFY message containing the error value,
INVALID_MESSAGE_ID.

RFC Text:
Every IKE message contains a Message ID as part of its fixed header. This Message ID is used to
match up requests and responses, and to identify retransmissions of messages.

The Message ID is a 32-bit quantity, which is zero for the first IKE request in each direction. The
IKE_SA initial setup messages will always be numbered 0 and 1. Each endpoint in the IKE Security
Association maintains two "current" Message IDs: the next one to be used for a request it initiates
and the next one it expects to see in a request from the other end. These counters increment as
requests are generated and received. Responses always contain the same message ID as the
corresponding request. That means that after the initial exchange, each integer n may appear as the
message ID in four distinct messages: the nth request from the original IKE initiator, the
corresponding response, the nth request from the original IKE responder, and the corresponding
response. If the two ends make very different numbers of requests, the Message IDs in the two
directions can be very different. There is no ambiguity in the messages, however, because the
(I)nitiator and (R)esponse bits in the message header specify which of the four messages a
particular one is.

Identifier: RQ_002_6038
RFC Clause: 2.2.
Type: Mandatory
Applies to: Host

Requirement:
If incrementing an IKE Message ID causes it to grow too large to fit in 32 bits, an IKE endpoint
MUST close the corresponding IKE Security Association.

RFC Text:
The Message ID is a 32-bit quantity, which is zero for the first IKE request in each direction. The
IKE_SA initial setup messages will always be numbered 0 and 1. Each endpoint in the IKE Security
Association maintains two "current" Message IDs: the next one to be used for a request it initiates
and the next one it expects to see in a request from the other end. These counters increment as
requests are generated and received. Responses always contain the same message ID as the
corresponding request. That means that after the initial exchange, each integer n may appear as the
message ID in four distinct messages: the nth request from the original IKE initiator, the
corresponding response, the nth request from the original IKE responder, and the corresponding
response. If the two ends make very different numbers of requests, the Message IDs in the two
directions can be very different. There is no ambiguity in the messages, however, because the
(I)nitiator and (R)esponse bits in the message header specify which of the four messages a
particular one is.

Note that Message IDs are cryptographically protected and provide protection against message
replays. In the unlikely event that Message IDs grow too large to fit in 32 bits, the IKE_SA MUST
be closed. Rekeying an IKE_SA resets the sequence numbers.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 112

Identifier: RQ_002_6039
RFC Clause: 2.3.
Type: Optional
Applies to: Host

Requirement:
An IKE endpoint MAY issue multiple requests before getting a response to any of them if the other
endpoint has indicated its ability to handle such requests using the SET_WINDOW_SIZE status type in
a NOTIFY message.

RFC Text:
In order to maximize IKE throughput, an IKE endpoint MAY issue multiple requests before getting a
response to any of them if the other endpoint has indicated its ability to handle such requests. For
simplicity, an IKE implementation MAY choose to process requests strictly in order and/or wait for a
response to one request before issuing another. Certain rules must be followed to ensure
interoperability between implementations using different strategies.

Identifier: RQ_002_6040
RFC Clause: 2.3.
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY wait for a response to one request before issuing another

RFC Text:
In order to maximize IKE throughput, an IKE endpoint MAY issue multiple requests before getting a
response to any of them if the other endpoint has indicated its ability to handle such requests. For
simplicity, an IKE implementation MAY choose to process requests strictly in order and/or wait for a
response to one request before issuing another. Certain rules must be followed to ensure
interoperability between implementations using different strategies.

Identifier: RQ_002_6041
RFC Clause: 2.3.
Type: Mandatory
Applies to: Host

Requirement:
An IKE endpoint MUST accept and process a request while it is waiting for a response to one or more
of its own requests

RFC Text:
After an IKE_SA is set up, either end can initiate one or more requests. These requests may pass
one another over the network. An IKE endpoint MUST be prepared to accept and process a request
while it has a request outstanding in order to avoid a deadlock in this situation. An IKE endpoint
SHOULD be prepared to accept and process multiple requests while it has a request outstanding

Identifier: RQ_002_6042
RFC Clause: 2.3.
Type: Recommended
Applies to: Host

Requirement:
An IKE endpoint SHOULD be prepared to accept and process multiple requests while it is waiting for a
response to one or more of its own requests

RFC Text:
After an IKE_SA is set up, either end can initiate one or more requests. These requests may pass
one another over the network. An IKE endpoint MUST be prepared to accept and process a request
while it has a request outstanding in order to avoid a deadlock in this situation. An IKE endpoint
SHOULD be prepared to accept and process multiple requests while it has a request outstanding

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 113

Identifier: RQ_002_6043
RFC Clause: 2.3.
Type: Mandatory
Applies to: Host

Requirement:
An IKE endpoint MUST wait for a response to each of its messages before sending a subsequent message
unless it has received a SET_WINDOW_SIZE Notify message from its peer informing it that the peer is
prepared to maintain state for multiple outstanding messages

RFC Text:
An IKE endpoint MUST wait for a response to each of its messages before sending a subsequent message
unless it has received a SET_WINDOW_SIZE Notify message from its peer informing it that the peer is
prepared to maintain state for multiple outstanding messages in order to allow greater throughput.

Identifier: RQ_002_6044
RFC Clause: 2.3.
Type: Mandatory
Applies to: Host

Requirement:
An IKE endpoint MUST NOT send further IKE requests while the number of requests for which a response
has not been received is greater than its peer's window size declared in a NOTIFY message with
SET_WINDOW_SIZE status type

RFC Text:
An IKE endpoint MUST NOT exceed the peer's stated window size for transmitted IKE requests. In
other words, if the responder stated its window size is N, then when the initiator needs to make a
request X, it MUST wait until it has received responses to all requests up through request X-N. An
IKE endpoint MUST keep a copy of (or be able to regenerate exactly) each request it has sent until
it receives the corresponding response. An IKE endpoint MUST keep a copy of (or be able to
regenerate exactly) the number of previous responses equal to its declared window size in case its
response was lost and the initiator requests its retransmission by retransmitting the request.

Identifier: RQ_002_6045
RFC Clause: 2.3.
Type: Mandatory
Applies to: Host

Requirement:
An IKE endpoint MUST be able to regenerate exactly each request it has sent until it receives the
corresponding response

RFC Text:
An IKE endpoint MUST NOT exceed the peer's stated window size for transmitted IKE requests. In
other words, if the responder stated its window size is N, then when the initiator needs to make a
request X, it MUST wait until it has received responses to all requests up through request X-N. An
IKE endpoint MUST keep a copy of (or be able to regenerate exactly) each request it has sent until
it receives the corresponding response. An IKE endpoint MUST keep a copy of (or be able to
regenerate exactly) the number of previous responses equal to its declared window size in case its
response was lost and the initiator requests its retransmission by retransmitting the request.

Identifier: RQ_002_6046
RFC Clause: 2.3.
Type: Mandatory
Applies to: Host

Requirement:
An IKE endpoint MUST be able to regenerate exactly the number of previous responses equal to its
declared window size if requested to do so by its peer endpoint

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 114

RFC Text:
An IKE endpoint MUST NOT exceed the peer's stated window size for transmitted IKE requests. In
other words, if the responder stated its window size is N, then when the initiator needs to make a
request X, it MUST wait until it has received responses to all requests up through request X-N. An
IKE endpoint MUST keep a copy of (or be able to regenerate exactly) each request it has sent until
it receives the corresponding response. An IKE endpoint MUST keep a copy of (or be able to
regenerate exactly) the number of previous responses equal to its declared window size in case its
response was lost and the initiator requests its retransmission by retransmitting the request.

Identifier: RQ_002_6047
RFC Clause: 2.3.
Type: Recommended
Applies to: Host

Requirement:
An IKE endpoint supporting a window size greater than one SHOULD be capable of processing incoming
requests in any order

RFC Text:
An IKE endpoint supporting a window size greater than one SHOULD be capable of processing incoming
requests out of order to maximize performance in the event of network failures or packet reordering.

Identifier: RQ_002_6048
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
An endpoint in an established IKE Security Association MUST conclude that the other endpoint in the
SA has failed when repeated attempts to contact it have gone unanswered for a timeout period

RFC Text:
Since IKE is designed to operate in spite of Denial of Service (DoS) attacks from the network, an
endpoint MUST NOT conclude that the other endpoint has failed based on any routing information
(e.g., ICMP messages) or IKE messages that arrive without cryptographic protection (e.g., Notify
messages complaining about unknown SPIs). An endpoint MUST conclude that the other endpoint has
failed only when repeated attempts to contact it have gone unanswered for a timeout period or when a
cryptographically protected INITIAL_CONTACT notification is received on a different IKE_SA to the
same authenticated identity. An endpoint SHOULD suspect that the other endpoint has failed based on
routing information and initiate a request to see whether the other endpoint is alive. To check
whether the other side is alive, IKE specifies an empty INFORMATIONAL message that (like all IKE
requests) requires an acknowledgement (note that within the context of an IKE_SA, an "empty" message
consists of an IKE header followed by an Encrypted payload that contains no payloads). If a
cryptographically protected message has been received from the other side recently, unprotected
notifications MAY be ignored. Implementations MUST limit the rate at which they take actions based
on unprotected messages.

Identifier: RQ_002_6049
RFC Clause: 2.4.
Type: Recommended
Applies to: Host

Requirement:
If routing information indicates to an endpoint that the other endpoint in an IKE Security
Association has failed, it SHOULD initiate an empty INFORMATIONAL message to the other endpoint to
determine whether it is alive.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 115

RFC Text:
Since IKE is designed to operate in spite of Denial of Service (DoS) attacks from the network, an
endpoint MUST NOT conclude that the other endpoint has failed based on any routing information
(e.g., ICMP messages) or IKE messages that arrive without cryptographic protection (e.g., Notify
messages complaining about unknown SPIs). An endpoint MUST conclude that the other endpoint has
failed only when repeated attempts to contact it have gone unanswered for a timeout period or when a
cryptographically protected INITIAL_CONTACT notification is received on a different IKE_SA to the
same authenticated identity. An endpoint SHOULD suspect that the other endpoint has failed based on
routing information and initiate a request to see whether the other endpoint is alive. To check
whether the other side is alive, IKE specifies an empty INFORMATIONAL message that (like all IKE
requests) requires an acknowledgement (note that within the context of an IKE_SA, an "empty" message
consists of an IKE header followed by an Encrypted payload that contains no payloads). If a
cryptographically protected message has been received from the other side recently, unprotected
notifications MAY be ignored. Implementations MUST limit the rate at which they take actions based
on unprotected messages.

Identifier: RQ_002_6050
RFC Clause: 2.4.
Type: Optional
Applies to: Host

Requirement:
If an endpoint in an established IKE Security Association has recently received a cryptographically
protected message from the other endpoint in the SA, unprotected notifications from the same
endpoint MAY be ignored

RFC Text:
Since IKE is designed to operate in spite of Denial of Service (DoS) attacks from the network, an
endpoint MUST NOT conclude that the other endpoint has failed based on any routing information
(e.g., ICMP messages) or IKE messages that arrive without cryptographic protection (e.g., Notify
messages complaining about unknown SPIs). An endpoint MUST conclude that the other endpoint has
failed only when repeated attempts to contact it have gone unanswered for a timeout period or when a
cryptographically protected INITIAL_CONTACT notification is received on a different IKE_SA to the
same authenticated identity. {An endpoint SHOULD suspect that the other endpoint has failed based on
routing information and initiate a request to see whether the other endpoint is alive. To check
whether the other side is alive, IKE specifies an empty INFORMATIONAL message that (like all IKE
requests) requires an acknowledgement (note that within the context of an IKE_SA, an "empty" message
consists of an IKE header followed by an Encrypted payload that contains no payloads). If a
cryptographically protected message has been received from the other side recently, unprotected
notifications MAY be ignored. Implementations MUST limit the rate at which they take actions based
on unprotected messages.

Identifier: RQ_002_6051
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
IKE implementations MUST limit the rate at which they take actions based on unprotected messages

RFC Text:
Since IKE is designed to operate in spite of Denial of Service (DoS) attacks from the network, an
endpoint MUST NOT conclude that the other endpoint has failed based on any routing information
(e.g., ICMP messages) or IKE messages that arrive without cryptographic protection (e.g., Notify
messages complaining about unknown SPIs). An endpoint MUST conclude that the other endpoint has
failed only when repeated attempts to contact it have gone unanswered for a timeout period or when a
cryptographically protected INITIAL_CONTACT notification is received on a different IKE_SA to the
same authenticated identity. {An endpoint SHOULD suspect that the other endpoint has failed based on
routing information and initiate a request to see whether the other endpoint is alive. To check
whether the other side is alive, IKE specifies an empty INFORMATIONAL message that (like all IKE
requests) requires an acknowledgement (note that within the context of an IKE_SA, an "empty" message
consists of an IKE header followed by an Encrypted payload that contains no payloads). If a
cryptographically protected message has been received from the other side recently, unprotected
notifications MAY be ignored. Implementations MUST limit the rate at which they take actions based
on unprotected messages.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 116

Identifier: RQ_002_6052
RFC Clause: 2.4.
Type: Recommended
Applies to: Host

Requirement:
An endpoint in an established IKE Security Association SHOULD retransmit IKE messages at least
twelve (12) times over a period of at least several minutes before it determines that the other
endpoint has failed

RFC Text:
Numbers of retries and lengths of timeouts are not covered in this specification because they do not
affect interoperability. It is suggested that messages be retransmitted at least a dozen times over
a period of at least several minutes before giving up on an SA, but different environments may
require different rules. To be a good network citizen, retransmission times MUST increase
exponentially to avoid flooding the network and making an existing congestion situation worse. If
there has only been outgoing traffic on all of the SAs associated with an IKE_SA, it is essential to
confirm liveness of the other endpoint to avoid black holes. If no cryptographically protected
messages have been received on an IKE_SA or any of its CHILD_SAs recently, the system needs to
perform a liveness check in order to prevent sending messages to a dead peer. Receipt of a fresh
cryptographically protected message on an IKE_SA or any of its CHILD_SAs ensures liveness of the
IKE_SA and all of its CHILD_SAs. Note that this places requirements on the failure modes of an IKE
endpoint. An implementation MUST NOT continue sending on any SA if some failure prevents it from
receiving on all of the associated SAs. If CHILD_SAs can fail independently from one another
without the associated IKE_SA being able to send a delete message, then they MUST be negotiated by
separate IKE_SAs.

Identifier: RQ_002_6053
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE endpoint resends a request to which it has received no response, the time between
retransmissions MUST increase exponentially

RFC Text:
Numbers of retries and lengths of timeouts are not covered in this specification because they do not
affect interoperability. It is suggested that messages be retransmitted at least a dozen times over
a period of at least several minutes before giving up on an SA, but different environments may
require different rules. To be a good network citizen, retransmission times MUST increase
exponentially to avoid flooding the network and making an existing congestion situation worse. If
there has only been outgoing traffic on all of the SAs associated with an IKE_SA, it is essential to
confirm liveness of the other endpoint to avoid black holes. If no cryptographically protected
messages have been received on an IKE_SA or any of its CHILD_SAs recently, the system needs to
perform a liveness check in order to prevent sending messages to a dead peer. Receipt of a fresh
cryptographically protected message on an IKE_SA or any of its CHILD_SAs ensures liveness of the
IKE_SA and all of its CHILD_SAs. Note that this places requirements on the failure modes of an IKE
endpoint. An implementation MUST NOT continue sending on any SA if some failure prevents it from
receiving on all of the associated SAs. If CHILD_SAs can fail independently from one another
without the associated IKE_SA being able to send a delete message, then they MUST be negotiated by
separate IKE_SAs.

Identifier: RQ_002_6054
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint determines that there has only been outgoing traffic on all of the Security
Associations encompassed by a particular IKE_SA, it SHOULD initiate an empty INFORMATIONAL message
to the other endpoint in the IKE_SA to determine whether it is alive.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 117

RFC Text:
Numbers of retries and lengths of timeouts are not covered in this specification because they do not
affect interoperability. It is suggested that messages be retransmitted at least a dozen times over
a period of at least several minutes before giving up on an SA, but different environments may
require different rules. To be a good network citizen, retransmission times MUST increase
exponentially to avoid flooding the network and making an existing congestion situation worse. If
there has only been outgoing traffic on all of the SAs associated with an IKE_SA, it is essential to
confirm liveness of the other endpoint to avoid black holes. If no cryptographically protected
messages have been received on an IKE_SA or any of its CHILD_SAs recently, the system needs to
perform a liveness check in order to prevent sending messages to a dead peer. Receipt of a fresh
cryptographically protected message on an IKE_SA or any of its CHILD_SAs ensures liveness of the
IKE_SA and all of its CHILD_SAs. Note that this places requirements on the failure modes of an IKE
endpoint. An implementation MUST NOT continue sending on any SA if some failure prevents it from
receiving on all of the associated SAs. If CHILD_SAs can fail independently from one another
without the associated IKE_SA being able to send a delete message, then they MUST be negotiated by
separate IKE_SAs.

Identifier: RQ_002_6055
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint receives no cryptographically protected messages on a specific IKE_SA or any of
its CHILD_SAs within a predefined period, it SHOULD initiate an empty INFORMATIONAL message to the
other endpoint in the IKE_SA to determine whether it is alive.

RFC Text:
Numbers of retries and lengths of timeouts are not covered in this specification because they do not
affect interoperability. It is suggested that messages be retransmitted at least a dozen times over
a period of at least several minutes before giving up on an SA, but different environments may
require different rules. To be a good network citizen, retransmission times MUST increase
exponentially to avoid flooding the network and making an existing congestion situation worse. If
there has only been outgoing traffic on all of the SAs associated with an IKE_SA, it is essential to
confirm liveness of the other endpoint to avoid black holes. If no cryptographically protected
messages have been received on an IKE_SA or any of its CHILD_SAs recently, the system needs to
perform a liveness check in order to prevent sending messages to a dead peer. Receipt of a fresh
cryptographically protected message on an IKE_SA or any of its CHILD_SAs ensures liveness of the
IKE_SA and all of its CHILD_SAs. Note that this places requirements on the failure modes of an IKE
endpoint. An implementation MUST NOT continue sending on any SA if some failure prevents it from
receiving on all of the associated SAs. If CHILD_SAs can fail independently from one another
without the associated IKE_SA being able to send a delete message, then they MUST be negotiated by
separate IKE_SAs.

Identifier: RQ_002_6056
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST NOT continue sending messages on any Security Association if a failure
prevents it from receiving messages on all of the related Security Associations.

RFC Text:
Numbers of retries and lengths of timeouts are not covered in this specification because they do not
affect interoperability. It is suggested that messages be retransmitted at least a dozen times over
a period of at least several minutes before giving up on an SA, but different environments may
require different rules. To be a good network citizen, retransmission times MUST increase
exponentially to avoid flooding the network and making an existing congestion situation worse. If
there has only been outgoing traffic on all of the SAs associated with an IKE_SA, it is essential to
confirm liveness of the other endpoint to avoid black holes. If no cryptographically protected
messages have been received on an IKE_SA or any of its CHILD_SAs recently, the system needs to
perform a liveness check in order to prevent sending messages to a dead peer. Receipt of a fresh
cryptographically protected message on an IKE_SA or any of its CHILD_SAs ensures liveness of the
IKE_SA and all of its CHILD_SAs. Note that this places requirements on the failure modes of an IKE
endpoint. An implementation MUST NOT continue sending on any SA if some failure prevents it from
receiving on all of the associated Sas. If CHILD_SAs can fail independently from one another
without the associated IKE_SA being able to send a delete message, then they MUST be negotiated by
separate IKE_SAs.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 118

Identifier: RQ_002_6057
RFC Clause: 2.4.
Type: Optional
Applies to: Host

Requirement:
The initiator of an IKE Security Association MAY accept multiple responses to its first message,
treat each as potentially legitimate, respond to it, and then discard all the invalid half-open
connections when it receives a valid cryptographically protected response to any one of its
requests.

RFC Text:
There is a Denial of Service attack on the initiator of an IKE_SA that can be avoided if the
initiator takes the proper care. Since the first two messages of an SA setup are not
cryptographically protected, an attacker could respond to the initiator's message before the genuine
responder and poison the connection setup attempt. To prevent this, the initiator MAY be willing to
accept multiple responses to its first message, treat each as potentially legitimate, respond to it,
and then discard all the invalid half-open connections when it receives a valid cryptographically
protected response to any one of its requests. Once a cryptographically valid response is received,
all subsequent responses should be ignored whether or not they are cryptographically valid

Identifier: RQ_002_6058
RFC Clause: 2.4.
Type: Recommended
Applies to: Host

Requirement:
If the initiator of an IKE Security Association is accepting multiple responses to its first message
then when one of those responses is found to be cryptographically valid, all subsequent responses
SHOULD be ignored

RFC Text:
There is a Denial of Service attack on the initiator of an IKE_SA that can be avoided if the
initiator takes the proper care. Since the first two messages of an SA setup are not
cryptographically protected, an attacker could respond to the initiator's message before the genuine
responder and poison the connection setup attempt. To prevent this, the initiator MAY be willing to
accept multiple responses to its first message, treat each as potentially legitimate, respond to it,
and then discard all the invalid half-open connections when it receives a valid cryptographically
protected response to any one of its requests. Once a cryptographically valid response is received,
all subsequent responses should be ignored whether or not they are cryptographically valid

Identifier: RQ_002_6059
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint determines that the other endpoint in a Security Association is not operational,
then the IKE SA and all CHILD_SAs set up through that IKE_SA MUST be deleted

RFC Text:
There is a Denial of Service attack on the initiator of an IKE_SA that can be avoided if the
initiator takes the proper care. Since the first two messages of an SA setup are not
cryptographically protected, an attacker could respond to the initiator's message before the genuine
responder and poison the connection setup attempt. To prevent this, the initiator MAY be willing to
accept multiple responses to its first message, treat each as potentially legitimate, respond to it,
and then discard all the invalid half-open connections when it receives a valid cryptographically
protected response to any one of its requests. Once a cryptographically valid response is received,
all subsequent responses should be ignored whether or not they are cryptographically valid.

Note that with these rules, there is no reason to negotiate and agree upon an SA lifetime. If IKE
presumes the partner is dead, based on repeated lack of acknowledgement to an IKE message, then the
IKE SA and all CHILD_SAs set up through that IKE_SA are deleted.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 119

Identifier: RQ_002_6060
RFC Clause: 2.4.
Type: Optional
Applies to: Host

Requirement:
An IKE endpoint MAY delete an inactive CHILD_SA at any time

RFC Text:
An IKE endpoint may at any time delete inactive CHILD_SAs to recover resources used to hold their
state. If an IKE endpoint chooses to delete CHILD_SAs, it MUST send Delete payloads to the other
end notifying it of the deletion. It MAY similarly time out the IKE_SA. Closing the IKE_SA
implicitly closes all associated CHILD_SAs. In this case, an IKE endpoint SHOULD send a Delete
payload indicating that it has closed the IKE_SA.

Identifier: RQ_002_6061
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint chooses to delete a CHILD_SA, it MUST send a Delete payload to the other endpoint
notifying it of the deletion

RFC Text:
An IKE endpoint may at any time delete inactive CHILD_SAs to recover resources used to hold their
state. If an IKE endpoint chooses to delete CHILD_SAs, it MUST send Delete payloads to the other
end notifying it of the deletion. It MAY similarly time out the IKE_SA. Closing the IKE_SA
implicitly closes all associated CHILD_SAs. In this case, an IKE endpoint SHOULD send a Delete
payload indicating that it has closed the IKE_SA.

Identifier: RQ_002_6062
RFC Clause: 2.4.
Type: Optional
Applies to: Host

Requirement:
An IKE endpoint MAY delete an inactive IKE_SA at any time

RFC Text:
An IKE endpoint may at any time delete inactive CHILD_SAs to recover resources used to hold their
state. If an IKE endpoint chooses to delete CHILD_SAs, it MUST send Delete payloads to the other
end notifying it of the deletion. It MAY similarly time out the IKE_SA. Closing the IKE_SA
implicitly closes all associated CHILD_SAs. In this case, an IKE endpoint SHOULD send a Delete
payload indicating that it has closed the IKE_SA.

Identifier: RQ_002_6063
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
Closing an IKE_SA MUST also cause its associated CHILD_SAs to be closed

RFC Text:
An IKE endpoint may at any time delete inactive CHILD_SAs to recover resources used to hold their
state. If an IKE endpoint chooses to delete CHILD_SAs, it MUST send Delete payloads to the other
end notifying it of the deletion. It MAY similarly time out the IKE_SA. Closing the IKE_SA
implicitly closes all associated CHILD_Sas. In this case, an IKE endpoint SHOULD send a Delete
payload indicating that it has closed the IKE_SA.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 120

Identifier: RQ_002_6064
RFC Clause: 2.4.
Type: Recommended
Applies to: Host

Requirement:
When an IKE endpoint closes an IKE_SA it SHOULD send a Delete payload to the other endpoint in the
Security Association

RFC Text:
An IKE endpoint may at any time delete inactive CHILD_SAs to recover resources used to hold their
state. If an IKE endpoint chooses to delete CHILD_SAs, it MUST send Delete payloads to the other
end notifying it of the deletion. It MAY similarly time out the IKE_SA. Closing the IKE_SA
implicitly closes all associated CHILD_SAs. In this case, an IKE endpoint SHOULD send a Delete
payload indicating that it has closed the IKE_SA.

Identifier: RQ_002_6065
RFC Clause: 2.5.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint receives a message with a higher major IKE version number than its own, it MUST
drop the message

RFC Text:
The major version number should be incremented only if the packet formats or required actions have
changed so dramatically that an older version node would not be able to interoperate with a newer
version node if it simply ignored the fields it did not understand and took the actions specified in
the older specification. The minor version number indicates new capabilities, and MUST be ignored
by a node with a smaller minor version number, but used for informational purposes by the node with
the larger minor version number. For example, it might indicate the ability to process a newly
defined notification message. The node with the larger minor version number would simply note that
its correspondent would not be able to understand that message and therefore would not send it.

If an endpoint receives a message with a higher major version number, it MUST drop the message and
SHOULD send an unauthenticated notification message containing the highest version number it
supports. If an endpoint supports major version n, and major version m, it MUST support all
versions between n and m. If it receives a message with a major version that it supports, it MUST
respond with that version number. In order to prevent two nodes from being tricked into
corresponding with a lower major version number than the maximum that they both support, IKE has a
flag that indicates that the node is capable of speaking a higher major version number.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 121

Identifier: RQ_002_6066
RFC Clause: 2.5.
Type: Recommended
Applies to: Host

Requirement:
If an IKE endpoint receives a message with a higher major IKE version number than its own, it
SHOULD send an unauthenticated notification message indicating INVALID_MAJOR_VERSION and containing
the highest version number it supports ((MjVer field in the IKE Header)

RFC Text:
The major version number should be incremented only if the packet formats or required actions have
changed so dramatically that an older version node would not be able to interoperate with a newer
version node if it simply ignored the fields it did not understand and took the actions specified in
the older specification. The minor version number indicates new capabilities, and MUST be ignored
by a node with a smaller minor version number, but used for informational purposes by the node with
the larger minor version number. For example, it might indicate the ability to process a newly
defined notification message. The node with the larger minor version number would simply note that
its correspondent would not be able to understand that message and therefore would not send it.

If an endpoint receives a message with a higher major version number, it MUST drop the message and
SHOULD send an unauthenticated notification message containing the highest version number it
supports. If an endpoint supports major version n, and major version m, it MUST support all
versions between n and m. If it receives a message with a major version that it supports, it MUST
respond with that version number. In order to prevent two nodes from being tricked into
corresponding with a lower major version number than the maximum that they both support, IKE has a
flag that indicates that the node is capable of speaking a higher major version number.

Identifier: RQ_002_6067
RFC Clause: 2.5.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint supports major IKE version n and major IKE version m, it MUST support all IKE
versions between n and m

RFC Text:
The major version number should be incremented only if the packet formats or required actions have
changed so dramatically that an older version node would not be able to interoperate with a newer
version node if it simply ignored the fields it did not understand and took the actions specified in
the older specification. The minor version number indicates new capabilities, and MUST be ignored
by a node with a smaller minor version number, but used for informational purposes by the node with
the larger minor version number. For example, it might indicate the ability to process a newly
defined notification message. The node with the larger minor version number would simply note that
its correspondent would not be able to understand that message and therefore would not send it.

If an endpoint receives a message with a higher major version number, it MUST drop the message and
SHOULD send an unauthenticated notification message containing the highest version number it
supports. If an endpoint supports major version n, and major version m, it MUST support all
versions between n and m. If it receives a message with a major version that it supports, it MUST
respond with that version number. In order to prevent two nodes from being tricked into
corresponding with a lower major version number than the maximum that they both support, IKE has a
flag that indicates that the node is capable of speaking a higher major version number.

Identifier: RQ_002_6068
RFC Clause: 2.5.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint receives a message with a major IKE version that it supports in the IKE Header,
it MUST respond with that version number in the IKE Header of the response

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 122

RFC Text:
The major version number should be incremented only if the packet formats or required actions have
changed so dramatically that an older version node would not be able to interoperate with a newer
version node if it simply ignored the fields it did not understand and took the actions specified in
the older specification. The minor version number indicates new capabilities, and MUST be ignored
by a node with a smaller minor version number, but used for informational purposes by the node with
the larger minor version number. For example, it might indicate the ability to process a newly
defined notification message. The node with the larger minor version number would simply note that
its correspondent would not be able to understand that message and therefore would not send it.

If an endpoint receives a message with a higher major version number, it MUST drop the message and
SHOULD send an unauthenticated notification message containing the highest version number it
supports. If an endpoint supports major version n, and major version m, it MUST support all
versions between n and m. If it receives a message with a major version that it supports, it MUST
respond with that version number. In order to prevent two nodes from being tricked into
corresponding with a lower major version number than the maximum that they both support, IKE has a
flag that indicates that the node is capable of speaking a higher major version number.

Identifier: RQ_002_6069
RFC Clause: 2.5.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE endpoint sends an IKE message and it is able to support a higher major IKE version
number than the version indicated in the header of the message, it MUST set the V(ersion) flag in
the header.

RFC Text:
If an endpoint receives a message with a higher major version number, it MUST drop the message and
SHOULD send an unauthenticated notification message containing the highest version number it
supports. If an endpoint supports major version n, and major version m, it MUST support all
versions between n and m. If it receives a message with a major version that it supports, it MUST
respond with that version number. In order to prevent two nodes from being tricked into
corresponding with a lower major version number than the maximum that they both support, IKE has a
flag that indicates that the node is capable of speaking a higher major version number.

Thus, the major version number in the IKE header indicates the version number of the message, not
the highest version number that the transmitter supports. If the initiator is capable of speaking
versions n, n+1, and n+2, and the responder is capable of speaking versions n and n+1, then they
will negotiate speaking n+1, where the initiator will set the flag indicating its ability to speak a
higher version. If they mistakenly (perhaps through an active attacker sending error messages)
negotiate to version n, then both will notice that the other side can support a higher version
number, and they MUST break the connection and reconnect using version n+1.

Identifier: RQ_002_6070
RFC Clause: 2.5.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint has used IKE Informational messages to establish the use of a lower major IKE
version number than it is able to support on a particular Security Association and then receives a
message from the other endpoint in that Security Association with the V(ersion) Flag set in the IKE
Header, it MUST break the connection to the other endpoint and reconnect using a higher major
version

RFC Text:
If an endpoint receives a message with a higher major version number, it MUST drop the message and
SHOULD send an unauthenticated notification message containing the highest version number it
supports. If an endpoint supports major version n, and major version m, it MUST support all
versions between n and m. If it receives a message with a major version that it supports, it MUST
respond with that version number. In order to prevent two nodes from being tricked into
corresponding with a lower major version number than the maximum that they both support, IKE has a
flag that indicates that the node is capable of speaking a higher major version number.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 123

Thus, the major version number in the IKE header indicates the version number of the message, not
the highest version number that the transmitter supports. If the initiator is capable of speaking
versions n, n+1, and n+2, and the responder is capable of speaking versions n and n+1, then they
will negotiate speaking n+1, where the initiator will set the flag indicating its ability to speak a
higher version. If they mistakenly (perhaps through an active attacker sending error messages)
negotiate to version n, then both will notice that the other side can support a higher version
number, and they MUST break the connection and reconnect using version n+1.

Identifier: RQ_002_6071
RFC Clause: 2.5.
Type: Recommended
Applies to: Host

Requirement:
Whenever an IKE Version 2 implementation establishes that IKE Version 1 is to be used on a
particular Security Association it SHOULD note that fact in its logs

RFC Text:
Thus, the major version number in the IKE header indicates the version number of the message, not
the highest version number that the transmitter supports. If the initiator is capable of speaking
versions n, n+1, and n+2, and the responder is capable of speaking versions n and n+1, then they
will negotiate speaking n+1, where the initiator will set the flag indicating its ability to speak a
higher version. If they mistakenly (perhaps through an active attacker sending error messages)
negotiate to version n, then both will notice that the other side can support a higher version
number, and they MUST break the connection and reconnect using version n+1.

Note that IKEv1 does not follow these rules, because there is no way in v1 of noting that you are
capable of speaking a higher version number. So an active attacker can trick two v2-capable nodes
into speaking v1. When a v2-capable node negotiates down to v1, it SHOULD note that fact in its
logs.

Identifier: RQ_002_6072
RFC Clause: 2.5.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE Security Association endpoint receives an IKE request from the other endpoint with the
Critical flag set in the IKE payload Header but the payload type is unrecognized, the payload MUST
be rejected and the response to the request MUST include a Notify payload with the Error type set to
UNSUPPORTED_CRITICAL_PAYLOAD

RFC Text:
IKEv2 adds a "critical" flag to each payload header for further flexibility for forward
compatibility. If the critical flag is set and the payload type is unrecognized, the message MUST
be rejected and the response to the IKE request containing that payload MUST include a Notify
payload UNSUPPORTED_CRITICAL_PAYLOAD, indicating an unsupported critical payload was included. If
the critical flag is not set and the payload type is unsupported, that payload MUST be ignored

Identifier: RQ_002_6073
RFC Clause: 2.5.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE Security Association endpoint receives an IKE request from the other endpoint with the
Critical flag not set in the IKE payload Header but the payload type is unrecognized, that payload
MUST be ignored

RFC Text:
IKEv2 adds a "critical" flag to each payload header for further flexibility for forward
compatibility. If the critical flag is set and the payload type is unrecognized, the message MUST
be rejected and the response to the IKE request containing that payload MUST include a Notify
payload UNSUPPORTED_CRITICAL_PAYLOAD, indicating an unsupported critical payload was included. If
the critical flag is not set and the payload type is unsupported, that payload MUST be ignored

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 124

Identifier: RQ_002_6074
RFC Clause: 2.6.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE Security Association is first established, the initiating endpoint MUST assign an
Initiator's Security Parameters Index (SPI) as an identifier of the Security Association

RFC Text:
The term "cookies" originates with Karn and Simpson [RFC2522] in Photuris, an early proposal for key
management with IPsec, and it has persisted. The Internet Security Association and Key Management
Protocol (ISAKMP) [MSST98] fixed message header includes two eight- octet fields titled "cookies",
and that syntax is used by both IKEv1 and IKEv2 though in IKEv2 they are referred to as the IKE SPI
and there is a new separate field in a Notify payload holding the cookie. The initial two eight-
octet fields in the header are used as a connection identifier at the beginning of IKE packets.
Each endpoint chooses one of the two SPIs and SHOULD choose them so as to be unique identifiers of
an IKE_SA. An SPI value of zero is special and indicates that the remote SPI value is not yet known
by the sender.

Identifier: RQ_002_6075
RFC Clause: 2.6.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE Security Association is first established, the receiving endpoint MUST assign a
Responder's Security Parameters Index (SPI) as an identifier of the Security Association

RFC Text:
The term "cookies" originates with Karn and Simpson [RFC2522] in Photuris, an early proposal for key
management with IPsec, and it has persisted. The Internet Security Association and Key Management
Protocol (ISAKMP) [MSST98] fixed message header includes two eight- octet fields titled "cookies",
and that syntax is used by both IKEv1 and IKEv2 though in IKEv2 they are referred to as the IKE SPI
and there is a new separate field in a Notify payload holding the cookie. The initial two eight-
octet fields in the header are used as a connection identifier at the beginning of IKE packets.
Each endpoint chooses one of the two SPIs and SHOULD choose them so as to be unique identifiers of
an IKE_SA. An SPI value of zero is special and indicates that the remote SPI value is not yet known
by the sender.

Identifier: RQ_002_6076
RFC Clause: 2.6.
Type: Recommended
Applies to: Host

Requirement:
The Security Parameters Index (SPI) assigned by an IKE endpoint to identify a Security Association
SHOULD be unique within the context of the endpoint

RFC Text:
The term "cookies" originates with Karn and Simpson [RFC2522] in Photuris, an early proposal for key
management with IPsec, and it has persisted. The Internet Security Association and Key Management
Protocol (ISAKMP) [MSST98] fixed message header includes two eight- octet fields titled "cookies",
and that syntax is used by both IKEv1 and IKEv2 though in IKEv2 they are referred to as the IKE SPI
and there is a new separate field in a Notify payload holding the cookie. The initial two eight-
octet fields in the header are used as a connection identifier at the beginning of IKE packets.
Each endpoint chooses one of the two SPIs and SHOULD choose them so as to be unique identifiers of
an IKE_SA. An SPI value of zero is special and indicates that the remote SPI value is not yet known
by the sender.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 125

Identifier: RQ_002_6077
RFC Clause: 2.6.
Type: Mandatory
Applies to: Host

Requirement:
A Security Parameters Index (SPI) of zero (0) MUST only be used in the IKE Responder's SPI field in
the IKE Header when the remote SPI value is not yet known by the sender

RFC Text:
The term "cookies" originates with Karn and Simpson [RFC2522] in Photuris, an early proposal for key
management with IPsec, and it has persisted. The Internet Security Association and Key Management
Protocol (ISAKMP) [MSST98] fixed message header includes two eight- octet fields titled "cookies",
and that syntax is used by both IKEv1 and IKEv2 though in IKEv2 they are referred to as the IKE SPI
and there is a new separate field in a Notify payload holding the cookie. The initial two eight-
octet fields in the header are used as a connection identifier at the beginning of IKE packets.
Each endpoint chooses one of the two SPIs and SHOULD choose them so as to be unique identifiers of
an IKE_SA. An SPI value of zero is special and indicates that the remote SPI value is not yet known
by the sender.

Identifier: RQ_002_6078
RFC Clause: 2.6.
Type: Mandatory
Applies to: Host

Requirement:
In the first message of an initial IKE exchange the initiator MUST set the IKE Responder's SPI field
to zero (0).

RFC Text:
In the first message of an initial IKE exchange, the initiator will not know the responder's SPI
value and will therefore set that field to zero.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 126

Identifier: RQ_002_6079
RFC Clause: 2.6.
Type: Recommended
Applies to: Host

Requirement:
When an IKE endpoint detects a large number of half-open IKE_SAs it SHOULD reject further initial
IKE messages unless they contain a Notify payload of type COOKIE

RFC Text:
An expected attack against IKE is state and CPU exhaustion, where the target is flooded with session
initiation requests from forged IP addresses. This attack can be made less effective if an
implementation of a responder uses minimal CPU and commits no state to an SA until it knows the
initiator can receive packets at the address from which it claims to be sending them. To accomplish
this, a responder SHOULD -- when it detects a large number of half-open IKE_SAs -- reject initial
IKE messages unless they contain a Notify payload of type COOKIE. It SHOULD instead send an
unprotected IKE message as a response and include COOKIE Notify payload with the cookie data to be
returned. Initiators who receive such responses MUST retry the IKE_SA_INIT with a Notify payload of
type COOKIE containing the responder supplied cookie data as the first payload and all other
payloads unchanged. The initial exchange will then be as follows:

 Initiator Responder
 ----------- -----------
 HDR(A,0), SAi1, KEi, Ni -->

 <-- HDR(A,0), N(COOKIE)

 HDR(A,0), N(COOKIE), SAi1, KEi, Ni -->

 <-- HDR(A,B), SAr1, KEr, Nr, [CERTREQ]

 HDR(A,B), SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr} -->

 <-- HDR(A,B), SK {IDr, [CERT,] AUTH,
 SAr2, TSi, TSr}

The first two messages do not affect any initiator or responder state except for communicating the
cookie. In particular, the message sequence numbers in the first four messages will all be zero and
the message sequence numbers in the last two messages will be one. 'A' is the SPI assigned by the
initiator, while 'B' is the SPI assigned by the responder.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 127

Identifier: RQ_002_6080
RFC Clause: 2.6.
Type: Recommended
Applies to: Host

Requirement:
When an IKE endpoint detects a large number of half-open IKE_SAs it SHOULD send an unprotected IKE
message as a response and include COOKIE Notify payload with the cookie data to be returned

RFC Text:
An expected attack against IKE is state and CPU exhaustion, where the target is flooded with session
initiation requests from forged IP addresses. This attack can be made less effective if an
implementation of a responder uses minimal CPU and commits no state to an SA until it knows the
initiator can receive packets at the address from which it claims to be sending them. To accomplish
this, a responder SHOULD -- when it detects a large number of half-open IKE_SAs -- reject initial
IKE messages unless they contain a Notify payload of type COOKIE. It SHOULD instead send an
unprotected IKE message as a response and include COOKIE Notify payload with the cookie data to be
returned. Initiators who receive such responses MUST retry the IKE_SA_INIT with a Notify payload of
type COOKIE containing the responder supplied cookie data as the first payload and all other
payloads unchanged. The initial exchange will then be as follows:

 Initiator Responder
 ----------- -----------
 HDR(A,0), SAi1, KEi, Ni -->

 <-- HDR(A,0), N(COOKIE)

 HDR(A,0), N(COOKIE), SAi1, KEi, Ni -->

 <-- HDR(A,B), SAr1, KEr, Nr, [CERTREQ]

 HDR(A,B), SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr} -->

 <-- HDR(A,B), SK {IDr, [CERT,] AUTH,
 SAr2, TSi, TSr}

The first two messages do not affect any initiator or responder state except for communicating the
cookie. In particular, the message sequence numbers in the first four messages will all be zero and
the message sequence numbers in the last two messages will be one. 'A' is the SPI assigned by the
initiator, while 'B' is the SPI assigned by the responder.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 128

Identifier: RQ_002_6081
RFC Clause: 2.6.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE endpoint receives an unprotected response to one of its IKE_SA_INIT requests and this
response includes a COOKIE Notify payload with cookie data to be returned, it MUST retry the
IKE_SA_INIT with a Notify payload of type COOKIE containing the responder supplied cookie data as
the first payload but with all other payloads unchanged

RFC Text:
An expected attack against IKE is state and CPU exhaustion, where the target is flooded with session
initiation requests from forged IP addresses. This attack can be made less effective if an
implementation of a responder uses minimal CPU and commits no state to an SA until it knows the
initiator can receive packets at the address from which it claims to be sending them. To accomplish
this, a responder SHOULD -- when it detects a large number of half-open IKE_SAs -- reject initial
IKE messages unless they contain a Notify payload of type COOKIE. It SHOULD instead send an
unprotected IKE message as a response and include COOKIE Notify payload with the cookie data to be
returned. Initiators who receive such responses MUST retry the IKE_SA_INIT with a Notify payload of
type COOKIE containing the responder supplied cookie data as the first payload and all other
payloads unchanged. The initial exchange will then be as follows:

 Initiator Responder
 ----------- -----------
 HDR(A,0), SAi1, KEi, Ni -->

 <-- HDR(A,0), N(COOKIE)

 HDR(A,0), N(COOKIE), SAi1, KEi, Ni -->

 <-- HDR(A,B), SAr1, KEr, Nr, [CERTREQ]

 HDR(A,B), SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr} -->

 <-- HDR(A,B), SK {IDr, [CERT,] AUTH,
 SAr2, TSi, TSr}

The first two messages do not affect any initiator or responder state except for communicating the
cookie. In particular, the message sequence numbers in the first four messages will all be zero and
the message sequence numbers in the last two messages will be one. 'A' is the SPI assigned by the
initiator, while 'B' is the SPI assigned by the responder.

Identifier: RQ_002_6082
RFC Clause: 2.6.
Type: Optional
Applies to: Host

Requirement:
An endpoint in an IKE Security Association should frequently change the value of the randomly
generated secret that is used to compute cookies to be included in its responses

RFC Text:
An IKE implementation SHOULD implement its responder cookie generation in such a way as to not
require any saved state to recognize its valid cookie when the second IKE_SA_INIT message arrives.
The exact algorithms and syntax they use to generate cookies do not affect interoperability and
hence are not specified here. The following is an example of how an endpoint could use cookies to
implement limited DOS protection.

A good way to do this is to set the responder cookie to be:

 Cookie = <VersionIDofSecret> | Hash(Ni | IPi | SPIi | <secret>)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 129

where <secret> is a randomly generated secret known only to the responder and periodically changed
and | indicates concatenation. <VersionIDofSecret> should be changed whenever <secret> is
regenerated. The cookie can be recomputed when the IKE_SA_INIT arrives the second time and compared
to the cookie in the received message. If it matches, the responder knows that the cookie was
generated since the last change to <secret> and that IPi must be the same as the source address it
saw the first time. Incorporating SPIi into the calculation ensures that if multiple IKE_SAs are
being set up in parallel they will all get different cookies (assuming the initiator chooses unique
SPIi's). Incorporating Ni into the hash ensures that an attacker who sees only message 2 can't
successfully forge a message 3.

If a new value for <secret> is chosen while there are connections in the process of being
initialized, an IKE_SA_INIT might be returned with other than the current <VersionIDofSecret>. The
responder in that case MAY reject the message by sending another response with a new cookie or it
MAY keep the old value of <secret> around for a short time and accept cookies computed from either
one. The responder SHOULD NOT accept cookies indefinitely after <secret> is changed, since that
would defeat part of the denial of service protection. The responder SHOULD change the value of
<secret> frequently, especially if under attack.

Identifier: RQ_002_6083
RFC Clause: 2.6.
Type: Recommended
Applies to: Host

Requirement:
If an IKE endpoint in a Security Association receives an IKE_SA_INIT request with a NOTIFY payload
of type COOKIE containing a version identifier of the randomly generated secret (VersionIdofSecret)
that is not the same as its own current value, it MAY reject the message by sending another response
with a new cookie or it MAY keep the old value of the secret for a short time and accept cookies
computed from either one

RFC Text:
An IKE implementation SHOULD implement its responder cookie generation in such a way as to not
require any saved state to recognize its valid cookie when the second IKE_SA_INIT message arrives.
The exact algorithms and syntax they use to generate cookies do not affect interoperability and
hence are not specified here. The following is an example of how an endpoint could use cookies to
implement limited DOS protection.

A good way to do this is to set the responder cookie to be:

 Cookie = <VersionIDofSecret> | Hash(Ni | IPi | SPIi | <secret>)

where <secret> is a randomly generated secret known only to the responder and periodically changed
and | indicates concatenation. <VersionIDofSecret> should be changed whenever <secret> is
regenerated. The cookie can be recomputed when the IKE_SA_INIT arrives the second time and compared
to the cookie in the received message. If it matches, the responder knows that the cookie was
generated since the last change to <secret> and that IPi must be the same as the source address it
saw the first time. Incorporating SPIi into the calculation ensures that if multiple IKE_SAs are
being set up in parallel they will all get different cookies (assuming the initiator chooses unique
SPIi's). Incorporating Ni into the hash ensures that an attacker who sees only message 2 can't
successfully forge a message 3.

If a new value for <secret> is chosen while there are connections in the process of being
initialized, an IKE_SA_INIT might be returned with other than the current <VersionIDofSecret>. The
responder in that case MAY reject the message by sending another response with a new cookie or it
MAY keep the old value of <secret> around for a short time and accept cookies computed from either
one. The responder SHOULD NOT accept cookies indefinitely after <secret> is changed, since that
would defeat part of the denial of service protection. The responder SHOULD change the value of
<secret> frequently, especially if under attack.

Identifier: RQ_002_6084
RFC Clause: 2.7.
Type: Mandatory
Applies to: Host

Requirement:
When proposing a set of choices of IPSec protocols for use on an IKE Security Association, an IKE
implementation MUST include one or more proposals in an IKE SA payload.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 130

RFC Text:
An SA payload consists of one or more proposals. Each proposal includes one or more protocols
(usually one). Each protocol contains one or more transforms -- each specifying a cryptographic
algorithm. Each transform contains zero or more attributes (attributes are needed only if the
transform identifier does not completely specify the cryptographic algorithm).

This hierarchical structure was designed to efficiently encode proposals for cryptographic suites
when the number of supported suites is large because multiple values are acceptable for multiple
transforms. The responder MUST choose a single suite, which MAY be any subset of the SA proposal
following the rules below:

* Each proposal contains one or more protocols. If a proposal is
 accepted, the SA response MUST contain the same protocols in the
 same order as the proposal. The responder MUST accept a single
 proposal or reject them all and return an error. (Example: if a
 single proposal contains ESP and AH and that proposal is accepted,
 both ESP and AH MUST be accepted. If ESP and AH are included in
 separate proposals, the responder MUST accept only one of them).

* Each IPsec protocol proposal contains one or more transforms.
 Each transform contains a transform type. The accepted
 cryptographic suite MUST contain exactly one transform of each
 type included in the proposal. For example: if an ESP proposal
 includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
 w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
 suite MUST contain one of the ENCR_ transforms and one of the
 AUTH_ transforms. Thus, six combinations are acceptable.

Identifier: RQ_002_6085
RFC Clause: 2.7.
Type: Mandatory
Applies to: Host

Requirement:
When proposing a set of choices of IPSec protocols for use on an IKE Security Association, an IKE
implementation MUST include one or more protocols in each proposal in an IKE SA payload.

RFC Text:
An SA payload consists of one or more proposals. Each proposal includes one or more protocols
(usually one). Each protocol contains one or more transforms -- each specifying a cryptographic
algorithm. Each transform contains zero or more attributes (attributes are needed only if the
transform identifier does not completely specify the cryptographic algorithm).

This hierarchical structure was designed to efficiently encode proposals for cryptographic suites
when the number of supported suites is large because multiple values are acceptable for multiple
transforms. The responder MUST choose a single suite, which MAY be any subset of the SA proposal
following the rules below:

* Each proposal contains one or more protocols. If a proposal is
 accepted, the SA response MUST contain the same protocols in the
 same order as the proposal. The responder MUST accept a single
 proposal or reject them all and return an error. (Example: if a
 single proposal contains ESP and AH and that proposal is accepted,
 both ESP and AH MUST be accepted. If ESP and AH are included in
 separate proposals, the responder MUST accept only one of them).

* Each IPsec protocol proposal contains one or more transforms.
 Each transform contains a transform type. The accepted
 cryptographic suite MUST contain exactly one transform of each
 type included in the proposal. For example: if an ESP proposal
 includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
 w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
 suite MUST contain one of the ENCR_ transforms and one of the
 AUTH_ transforms. Thus, six combinations are acceptable.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 131

Identifier: RQ_002_6086
RFC Clause: 2.7.
Type: Mandatory
Applies to: Host

Requirement:
When proposing a set of choices of IPSec protocols for use on an IKE Security Association, an IKE
implementation MUST include one or more transforms for each protocol in an IKE SA payload.

RFC Text:
An SA payload consists of one or more proposals. Each proposal includes one or more protocols
(usually one). Each protocol contains one or more transforms -- each specifying a cryptographic
algorithm. Each transform contains zero or more attributes (attributes are needed only if the
transform identifier does not completely specify the cryptographic algorithm).

This hierarchical structure was designed to efficiently encode proposals for cryptographic suites
when the number of supported suites is large because multiple values are acceptable for multiple
transforms. The responder MUST choose a single suite, which MAY be any subset of the SA proposal
following the rules below:

* Each proposal contains one or more protocols. If a proposal is
 accepted, the SA response MUST contain the same protocols in the
 same order as the proposal. The responder MUST accept a single
 proposal or reject them all and return an error. (Example: if a
 single proposal contains ESP and AH and that proposal is accepted,
 both ESP and AH MUST be accepted. If ESP and AH are included in
 separate proposals, the responder MUST accept only one of them).

* Each IPsec protocol proposal contains one or more transforms.
 Each transform contains a transform type. The accepted
 cryptographic suite MUST contain exactly one transform of each
 type included in the proposal. For example: if an ESP proposal
 includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
 w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
 suite MUST contain one of the ENCR_ transforms and one of the
 AUTH_ transforms. Thus, six combinations are acceptable.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 132

Identifier: RQ_002_6087
RFC Clause: 2.7.
Type: Optional
Applies to: Host

Requirement:
When proposing a set of choices of IPSec protocols for use on an IKE Security Association, an IKE
implementation MAY include one or more attributes for each transform in an IKE SA payload.

RFC Text:
An SA payload consists of one or more proposals. Each proposal includes one or more protocols
(usually one). Each protocol contains one or more transforms -- each specifying a cryptographic
algorithm. Each transform contains zero or more attributes (attributes are needed only if the
transform identifier does not completely specify the cryptographic algorithm).

This hierarchical structure was designed to efficiently encode proposals for cryptographic suites
when the number of supported suites is large because multiple values are acceptable for multiple
transforms. The responder MUST choose a single suite, which MAY be any subset of the SA proposal
following the rules below:

* Each proposal contains one or more protocols. If a proposal is
 accepted, the SA response MUST contain the same protocols in the
 same order as the proposal. The responder MUST accept a single
 proposal or reject them all and return an error. (Example: if a
 single proposal contains ESP and AH and that proposal is accepted,
 both ESP and AH MUST be accepted. If ESP and AH are included in
 separate proposals, the responder MUST accept only one of them).

* Each IPsec protocol proposal contains one or more transforms.
 Each transform contains a transform type. The accepted
 cryptographic suite MUST contain exactly one transform of each
 type included in the proposal. For example: if an ESP proposal
 includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
 w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
 suite MUST contain one of the ENCR_ transforms and one of the
 AUTH_ transforms. Thus, six combinations are acceptable.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 133

Identifier: RQ_002_6088
RFC Clause: 2.7.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives a proposal for a set of choices of IPsec protocols to be used
within a Security Association, it must select a single suite which may be any subset of the received
proposal

RFC Text:
An SA payload consists of one or more proposals. Each proposal includes one or more protocols
(usually one). Each protocol contains one or more transforms -- each specifying a cryptographic
algorithm. Each transform contains zero or more attributes (attributes are needed only if the
transform identifier does not completely specify the cryptographic algorithm).

This hierarchical structure was designed to efficiently encode proposals for cryptographic suites
when the number of supported suites is large because multiple values are acceptable for multiple
transforms. The responder MUST choose a single suite, which MAY be any subset of the SA proposal
following the rules below:

* Each proposal contains one or more protocols. If a proposal is
 accepted, the SA response MUST contain the same protocols in the
 same order as the proposal. The responder MUST accept a single
 proposal or reject them all and return an error. (Example: if a
 single proposal contains ESP and AH and that proposal is accepted,
 both ESP and AH MUST be accepted. If ESP and AH are included in
 separate proposals, the responder MUST accept only one of them).

* Each IPsec protocol proposal contains one or more transforms.
 Each transform contains a transform type. The accepted
 cryptographic suite MUST contain exactly one transform of each
 type included in the proposal. For example: if an ESP proposal
 includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
 w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
 suite MUST contain one of the ENCR_ transforms and one of the
 AUTH_ transforms. Thus, six combinations are acceptable.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 134

Identifier: RQ_002_6089
RFC Clause: 2.7.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation selects a proposal from a received set of choices of IPsec protocols to
be used within a Security Association, its SA response MUST contain the same protocols in the same
order as the proposal

RFC Text:
An SA payload consists of one or more proposals. Each proposal includes one or more protocols
(usually one). Each protocol contains one or more transforms -- each specifying a cryptographic
algorithm. Each transform contains zero or more attributes (attributes are needed only if the
transform identifier does not completely specify the cryptographic algorithm).

This hierarchical structure was designed to efficiently encode proposals for cryptographic suites
when the number of supported suites is large because multiple values are acceptable for multiple
transforms. The responder MUST choose a single suite, which MAY be any subset of the SA proposal
following the rules below:

* Each proposal contains one or more protocols. If a proposal is
 accepted, the SA response MUST contain the same protocols in the
 same order as the proposal. The responder MUST accept a single
 proposal or reject them all and return an error. (Example: if a
 single proposal contains ESP and AH and that proposal is accepted,
 both ESP and AH MUST be accepted. If ESP and AH are included in
 separate proposals, the responder MUST accept only one of them).

* Each IPsec protocol proposal contains one or more transforms.
 Each transform contains a transform type. The accepted
 cryptographic suite MUST contain exactly one transform of each
 type included in the proposal. For example: if an ESP proposal
 includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
 w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
 suite MUST contain one of the ENCR_ transforms and one of the
 AUTH_ transforms. Thus, six combinations are acceptable.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 135

Identifier: RQ_002_6090
RFC Clause: 2.7.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives a proposal for a set of choices of IPsec protocols to be used
within a Security Association, it MUST select a single proposal or reject them all and return an IKE
INFORMATIONAL message containing a Notify payload with the Error Type set to NO_PROPOSAL_CHOSEN

RFC Text:
An SA payload consists of one or more proposals. Each proposal includes one or more protocols
(usually one). Each protocol contains one or more transforms -- each specifying a cryptographic
algorithm. Each transform contains zero or more attributes (attributes are needed only if the
transform identifier does not completely specify the cryptographic algorithm).

This hierarchical structure was designed to efficiently encode proposals for cryptographic suites
when the number of supported suites is large because multiple values are acceptable for multiple
transforms. The responder MUST choose a single suite, which MAY be any subset of the SA proposal
following the rules below:

* Each proposal contains one or more protocols. If a proposal is
 accepted, the SA response MUST contain the same protocols in the
 same order as the proposal. The responder MUST accept a single
 proposal or reject them all and return an error. (Example: if a
 single proposal contains ESP and AH and that proposal is accepted,
 both ESP and AH MUST be accepted. If ESP and AH are included in
 separate proposals, the responder MUST accept only one of them).

* Each IPsec protocol proposal contains one or more transforms.
 Each transform contains a transform type. The accepted
 cryptographic suite MUST contain exactly one transform of each
 type included in the proposal. For example: if an ESP proposal
 includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
 w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
 suite MUST contain one of the ENCR_ transforms and one of the
 AUTH_ transforms. Thus, six combinations are acceptable.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 136

Identifier: RQ_002_6091
RFC Clause: 2.7.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation selects a proposal from a received set of choices of IPsec protocols to
be used within a Security Association, the selected cryptographic suite MUST contain exactly one
transform of each type included in the proposal.

RFC Text:
An SA payload consists of one or more proposals. Each proposal includes one or more protocols
(usually one). Each protocol contains one or more transforms -- each specifying a cryptographic
algorithm. Each transform contains zero or more attributes (attributes are needed only if the
transform identifier does not completely specify the cryptographic algorithm).

This hierarchical structure was designed to efficiently encode proposals for cryptographic suites
when the number of supported suites is large because multiple values are acceptable for multiple
transforms. The responder MUST choose a single suite, which MAY be any subset of the SA proposal
following the rules below:

* Each proposal contains one or more protocols. If a proposal is
 accepted, the SA response MUST contain the same protocols in the
 same order as the proposal. The responder MUST accept a single
 proposal or reject them all and return an error. (Example: if a
 single proposal contains ESP and AH and that proposal is accepted,
 both ESP and AH MUST be accepted. If ESP and AH are included in
 separate proposals, the responder MUST accept only one of them).

* Each IPsec protocol proposal contains one or more transforms.
 Each transform contains a transform type. The accepted
 cryptographic suite MUST contain exactly one transform of each
 type included in the proposal. For example: if an ESP proposal
 includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
 w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
 suite MUST contain one of the ENCR_ transforms and one of the
 AUTH_ transforms. Thus, six combinations are acceptable.

Identifier: RQ_002_6092
RFC Clause: 2.7.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE_SA_INIT request containing an invalid Diffie-Hellman value,
it must send an IKE_SA_INIT response containing a NOTIFY payload with the Error Type set to
INVALID_KE_PAYLOAD indicating the correct Diffie-Hellman group

RFC Text:
Since the initiator sends its Diffie-Hellman value in the IKE_SA_INIT, it must guess the Diffie-
Hellman group that the responder will select from its list of supported groups. If the initiator
guesses wrong, the responder will respond with a Notify payload of type INVALID_KE_PAYLOAD
indicating the selected group. In this case, the initiator MUST retry the IKE_SA_INIT with the
corrected Diffie-Hellman group. The initiator MUST again propose its full set of acceptable
cryptographic suites because the rejection message was unauthenticated and otherwise an active
attacker could trick the endpoints into negotiating a weaker suite than a stronger one that they
both prefer.

Identifier: RQ_002_6093
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
The security keys that are used in IKE, ESP and AH Security Associations SHOULD be used only for a
limited period of time.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 137

RFC Text:
IKE, ESP, and AH security associations use secret keys that SHOULD be used only for a limited amount
of time and to protect a limited amount of data. This limits the lifetime of the entire security
association. When the lifetime of a security association expires, the security association MUST NOT
be used. If there is demand, new security associations MAY be established. Reestablishment of
security associations to take the place of ones that expire is referred to as "rekeying".

Identifier: RQ_002_6094
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
The security keys that are used in IKE, ESP and AH Security Associations SHOULD be used to protect a
limited quantity of data.

RFC Text:
IKE, ESP, and AH security associations use secret keys that SHOULD be used only for a limited amount
of time and to protect a limited amount of data. This limits the lifetime of the entire security
association. When the lifetime of a security association expires, the security association MUST NOT
be used. If there is demand, new security associations MAY be established. Reestablishment of
security associations to take the place of ones that expire is referred to as "rekeying".

Identifier: RQ_002_6095
RFC Clause: 2.8.
Type: Mandatory
Applies to: Host

Requirement:
When the lifetime of a security association expires, the security association MUST NOT be used
further

RFC Text:
IKE, ESP, and AH security associations use secret keys that SHOULD be used only for a limited amount
of time and to protect a limited amount of data. This limits the lifetime of the entire security
association. When the lifetime of a security association expires, the security association MUST NOT
be used. If there is demand, new security associations MAY be established. Reestablishment of
security associations to take the place of ones that expire is referred to as "rekeying".

Identifier: RQ_002_6096
RFC Clause: 2.8.
Type: Optional
Applies to: Host

Requirement:
When the lifetime of a security association expires and if there is demand, a new security
association MAY be established to replace the expired one

RFC Text:
IKE, ESP, and AH security associations use secret keys that SHOULD be used only for a limited amount
of time and to protect a limited amount of data. This limits the lifetime of the entire security
association. When the lifetime of a security association expires, the security association MUST NOT
be used. If there is demand, new security associations MAY be established. Reestablishment of
security associations to take the place of ones that expire is referred to as "rekeying".

Identifier: RQ_002_6097
RFC Clause: 2.8.
Type: Optional
Applies to: Host

Requirement:
An IKE endpoint MAY rekey a CHILD_SA without restarting the entire IKE_SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 138

RFC Text:
To allow for minimal IPsec implementations, the ability to rekey SAs without restarting the entire
IKE_SA is optional. An implementation MAY refuse all CREATE_CHILD_SA requests within an IKE_SA. If
an SA has expired or is about to expire and rekeying attempts using the mechanisms described here
fail, an implementation MUST close the IKE_SA and any associated CHILD_SAs and then MAY start new
ones. Implementations SHOULD support in-place rekeying of SAs, since doing so offers better
performance and is likely to reduce the number of packets lost during the transition.

Identifier: RQ_002_6098
RFC Clause: 2.8.
Type: Optional
Applies to: Host

Requirement:
An implementation MAY refuse all CREATE_CHILD_SA requests within an IKE_SA

RFC Text:
To allow for minimal IPsec implementations, the ability to rekey SAs without restarting the entire
IKE_SA is optional. An implementation MAY refuse all CREATE_CHILD_SA requests within an IKE_SA. If
an SA has expired or is about to expire and rekeying attempts using the mechanisms described here
fail, an implementation MUST close the IKE_SA and any associated CHILD_SAs and then MAY start new
ones. Implementations SHOULD support in-place rekeying of SAs, since doing so offers better
performance and is likely to reduce the number of packets lost during the transition.

Identifier: RQ_002_6099
RFC Clause: 2.8.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE Security Association has expired or is about to expire and rekeying attempts fail, an
implementation MUST close the IKE_SA and any associated CHILD_Sas

RFC Text:
To allow for minimal IPsec implementations, the ability to rekey SAs without restarting the entire
IKE_SA is optional. An implementation MAY refuse all CREATE_CHILD_SA requests within an IKE_SA. If
an SA has expired or is about to expire and rekeying attempts using the mechanisms described here
fail, an implementation MUST close the IKE_SA and any associated CHILD_Sas and then MAY start new
ones. Implementations SHOULD support in-place rekeying of SAs, since doing so offers better
performance and is likely to reduce the number of packets lost during the transition.

Identifier: RQ_002_6100
RFC Clause: 2.8.
Type: Optional
Applies to: Host

Requirement:
If an implementation has closed an IKE_SA because rekeying attempts have failed, it MAY then start
new ones

RFC Text:
To allow for minimal IPsec implementations, the ability to rekey SAs without restarting the entire
IKE_SA is optional. An implementation MAY refuse all CREATE_CHILD_SA requests within an IKE_SA. If
an SA has expired or is about to expire and rekeying attempts using the mechanisms described here
fail, an implementation MUST close the IKE_SA and any associated CHILD_SAs and then MAY start new
ones. Implementations SHOULD support in-place rekeying of SAs, since doing so offers better
performance and is likely to reduce the number of packets lost during the transition.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 139

Identifier: RQ_002_6101
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
IKE implementations SHOULD support the ability to rekey a CHILD_SA without restarting the entire
IKE_SA

RFC Text:
To allow for minimal IPsec implementations, the ability to rekey SAs without restarting the entire
IKE_SA is optional. An implementation MAY refuse all CREATE_CHILD_SA requests within an IKE_SA. If
an SA has expired or is about to expire and rekeying attempts using the mechanisms described here
fail, an implementation MUST close the IKE_SA and any associated CHILD_SAs and then MAY start new
ones. Implementations SHOULD support in-place rekeying of SAs, since doing so offers better
performance and is likely to reduce the number of packets lost during the transition.

Identifier: RQ_002_6102
RFC Clause: 2.8.
Type: Mandatory
Applies to: Host

Requirement:
In order to rekey a CHILD_SA within an existing IKE_SA, an IKE endpoint MUST create a new,
equivalent CHILD_SA and, when the new one is established, delete the old one

RFC Text:
To rekey a CHILD_SA within an existing IKE_SA, create a new, equivalent SA (see section 2.17 below),
and when the new one is established, delete the old one. To rekey an IKE_SA, establish a new
equivalent IKE_SA (see section 2.18 below) with the peer to whom the old IKE_SA is shared using a
CREATE_CHILD_SA within the existing IKE_SA. An IKE_SA so created inherits all of the original
IKE_SA's CHILD_SAs. Use the new IKE_SA for all control messages needed to maintain the CHILD_SAs
created by the old IKE_SA, and delete the old IKE_SA. The Delete payload to delete itself MUST be
the last request sent over an IKE_SA

Identifier: RQ_002_6103
RFC Clause: 2.8.
Type: Mandatory
Applies to: Host

Requirement:
In order to rekey an IKE_SA, an IKE endpoint MUST establish a new equivalent IKE_SA with the peer
with which the old IKE_SA is shared using a CREATE_CHILD_SA within the existing IKE_SA

RFC Text:
To rekey a CHILD_SA within an existing IKE_SA, create a new, equivalent SA (see section 2.17 below),
and when the new one is established, delete the old one. To rekey an IKE_SA, establish a new
equivalent IKE_SA (see section 2.18 below) with the peer to whom the old IKE_SA is shared using a
CREATE_CHILD_SA within the existing IKE_SA. An IKE_SA so created inherits all of the original
IKE_SA's CHILD_SAs. Use the new IKE_SA for all control messages needed to maintain the CHILD_SAs
created by the old IKE_SA, and delete the old IKE_SA. The Delete payload to delete itself MUST be
the last request sent over an IKE_SA

Identifier: RQ_002_6104
RFC Clause: 2.8.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE endpoint has rekeyed an IKE_SA, it MUST Use the new IKE_SA for all control messages
needed to maintain the CHILD_SAs created by the old IKE_SA and delete the old IKE_SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 140

RFC Text:
To rekey a CHILD_SA within an existing IKE_SA, create a new, equivalent SA (see section 2.17 below),
and when the new one is established, delete the old one. To rekey an IKE_SA, establish a new
equivalent IKE_SA (see section 2.18 below) with the peer to whom the old IKE_SA is shared using a
CREATE_CHILD_SA within the existing IKE_SA. An IKE_SA so created inherits all of the original
IKE_SA's CHILD_SAs. Use the new IKE_SA for all control messages needed to maintain the CHILD_SAs
created by the old IKE_SA, and delete the old IKE_SA. The payload to delete itself MUST be the last
request sent over an IKE_SA

Identifier: RQ_002_6105
RFC Clause: 2.8.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE endpoint has rekeyed an IKE_SA, the message containing the payload to delete the old
IKE_SA MUST be the last request sent over the old IKE_SA

RFC Text:
To rekey a CHILD_SA within an existing IKE_SA, create a new, equivalent SA (see section 2.17 below),
and when the new one is established, delete the old one. To rekey an IKE_SA, establish a new
equivalent IKE_SA (see section 2.18 below) with the peer to whom the old IKE_SA is shared using a
CREATE_CHILD_SA within the existing IKE_SA. An IKE_SA so created inherits all of the original
IKE_SA's CHILD_SAs. Use the new IKE_SA for all control messages needed to maintain the CHILD_SAs
created by the old IKE_SA, and delete the old IKE_SA. The payload to delete itself MUST be the last
request sent over an IKE_SA

Identifier: RQ_002_6106
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
An IKE Security Association SHOULD be rekeyed before the existing one expires and becomes unusable

RFC Text:
SAs SHOULD be rekeyed proactively, i.e., the new SA should be established before the old one expires
and becomes unusable. Enough time should elapse between the time the new SA is established and the
old one becomes unusable so that traffic can be switched over to the new SA

Identifier: RQ_002_6107
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
When rekeying an IKE Security Association, an IKE endpoint SHOULD NOT finally delete the old IKE_SA
until all of its current traffic has been switched over to the new IKE_SA.

RFC Text:
SAs SHOULD be rekeyed proactively, i.e., the new SA should be established before the old one expires
and becomes unusable. Enough time should elapse between the time the new SA is established and the
old one becomes unusable so that traffic can be switched over to the new SA

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 141

Identifier: RQ_002_6108
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
When the lifetime of an IKE_SA expires, an IKE endpoint SHOULD close it if there has been no traffic
on it since the last time the IKE_SA was rekeyed

RFC Text:
A difference between IKEv1 and IKEv2 is that in IKEv1 SA lifetimes were negotiated. In IKEv2, each
end of the SA is responsible for enforcing its own lifetime policy on the SA and rekeying the SA
when necessary. If the two ends have different lifetime policies, the end with the shorter lifetime
will end up always being the one to request the rekeying. If an SA bundle has been inactive for a
long time and if an endpoint would not initiate the SA in the absence of traffic, the endpoint MAY
choose to close the SA instead of rekeying it when its lifetime expires. It SHOULD do so if there
has been no traffic since the last time the SA was rekeyed

Identifier: RQ_002_6109
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
The timing of rekeying requests SHOULD be delayed by a random amount of time after the need for
rekeying is detected

RFC Text:
If the two ends have the same lifetime policies, it is possible that both will initiate a rekeying
at the same time (which will result in redundant SAs). To reduce the probability of this happening,
the timing of rekeying requests SHOULD be jittered (delayed by a random amount of time after the
need for rekeying is noticed).

This form of rekeying may temporarily result in multiple similar SAs between the same pairs of
nodes. When there are two SAs eligible to receive packets, a node MUST accept incoming packets
through either SA. If redundant SAs are created though such a collision, the SA created with the
lowest of the four nonces used in the two exchanges SHOULD be closed by the endpoint that created
it.

Note that IKEv2 deliberately allows parallel SAs with the same traffic selectors between common
endpoints. One of the purposes of this is to support traffic quality of service (QoS) differences
among the SAs (see [RFC2474], [RFC2475], and section 4.1 of [RFC2983]). Hence unlike IKEv1, the
combination of the endpoints and the traffic selectors may not uniquely identify an SA between those
endpoints, so the IKEv1 rekeying heuristic of deleting SAs on the basis of duplicate traffic
selectors SHOULD NOT be used.

The node that initiated the surviving rekeyed SA SHOULD delete the replaced SA after the new one is
established.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 142

Identifier: RQ_002_6110
RFC Clause: 2.8.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE endpoint has two IKE Security Associations eligible to receive packets, it MUST accept
incoming packets through either Security Association

RFC Text:
If the two ends have the same lifetime policies, it is possible that both will initiate a rekeying
at the same time (which will result in redundant SAs). To reduce the probability of this happening,
the timing of rekeying requests SHOULD be jittered (delayed by a random amount of time after the
need for rekeying is noticed).

This form of rekeying may temporarily result in multiple similar SAs between the same pairs of
nodes. When there are two SAs eligible to receive packets, a node MUST accept incoming packets
through either SA. If redundant SAs are created though such a collision, the SA created with the
lowest of the four nonces used in the two exchanges SHOULD be closed by the endpoint that created
it.

Note that IKEv2 deliberately allows parallel SAs with the same traffic selectors between common
endpoints. One of the purposes of this is to support traffic quality of service (QoS) differences
among the SAs (see [RFC2474], [RFC2475], and section 4.1 of [RFC2983]). Hence unlike IKEv1, the
combination of the endpoints and the traffic selectors may not uniquely identify an SA between those
endpoints, so the IKEv1 rekeying heuristic of deleting SAs on the basis of duplicate traffic
selectors SHOULD NOT be used.

The node that initiated the surviving rekeyed SA SHOULD delete the replaced SA after the new one is
established.

Identifier: RQ_002_6111
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
If redundant IKE Security Associations are created as a result of both endpoints rekeying the same
Security Association at the same time, the Security Association created with the lowest of the four
nonces used in the two exchanges SHOULD be closed by the endpoint that created it

RFC Text:
If the two ends have the same lifetime policies, it is possible that both will initiate a rekeying
at the same time (which will result in redundant SAs). To reduce the probability of this happening,
the timing of rekeying requests SHOULD be jittered (delayed by a random amount of time after the
need for rekeying is noticed).

This form of rekeying may temporarily result in multiple similar SAs between the same pairs of
nodes. When there are two SAs eligible to receive packets, a node MUST accept incoming packets
through either SA. If redundant SAs are created though such a collision, the SA created with the
lowest of the four nonces used in the two exchanges SHOULD be closed by the endpoint that created
it.

Note that IKEv2 deliberately allows parallel SAs with the same traffic selectors between common
endpoints. One of the purposes of this is to support traffic quality of service (QoS) differences
among the SAs (see [RFC2474], [RFC2475], and section 4.1 of [RFC2983]). Hence unlike IKEv1, the
combination of the endpoints and the traffic selectors may not uniquely identify an SA between those
endpoints, so the IKEv1 rekeying heuristic of deleting SAs on the basis of duplicate traffic
selectors SHOULD NOT be used.

The node that initiated the surviving rekeyed SA SHOULD delete the replaced SA after the new one is
established.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 143

Identifier: RQ_002_6112
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
If a redundant IKE Security Association has been closed after a simultaneous rekeying, the IKE
endpoint that initiated the surviving rekeyed Security Association SHOULD delete the replaced
Security Association after the new one is established

RFC Text:
If the two ends have the same lifetime policies, it is possible that both will initiate a rekeying
at the same time (which will result in redundant SAs). To reduce the probability of this happening,
the timing of rekeying requests SHOULD be jittered (delayed by a random amount of time after the
need for rekeying is noticed).

This form of rekeying may temporarily result in multiple similar SAs between the same pairs of
nodes. When there are two SAs eligible to receive packets, a node MUST accept incoming packets
through either SA. If redundant SAs are created though such a collision, the SA created with the
lowest of the four nonces used in the two exchanges SHOULD be closed by the endpoint that created
it.

Note that IKEv2 deliberately allows parallel SAs with the same traffic selectors between common
endpoints. One of the purposes of this is to support traffic quality of service (QoS) differences
among the SAs (see [RFC2474], [RFC2475], and section 4.1 of [RFC2983]). Hence unlike IKEv1, the
combination of the endpoints and the traffic selectors may not uniquely identify an SA between those
endpoints, so the IKEv1 rekeying heuristic of deleting SAs on the basis of duplicate traffic
selectors SHOULD NOT be used.

The node that initiated the surviving rekeyed SA SHOULD delete the replaced SA after the new one is
established.

Identifier: RQ_002_6113
RFC Clause: 2.8.
Type: Mandatory
Applies to: Host

Requirement:
The responder to a CREATE_CHILD_SA MUST be prepared to accept messages on the Security Association
before sending its response to the creation request

RFC Text:
There are timing windows -- particularly in the presence of lost packets -- where endpoints may not
agree on the state of an SA. The responder to a CREATE_CHILD_SA MUST be prepared to accept messages
on an SA before sending its response to the creation request, so there is no ambiguity for the
initiator. The initiator MAY begin sending on an SA as soon as it processes the response. The
initiator, however, cannot receive on a newly created SA until it receives and processes the
response to its CREATE_CHILD_SA request. How, then, is the responder to know when it is OK to send
on the newly created SA?

From a technical correctness and interoperability perspective, the responder MAY begin sending on an
SA as soon as it sends its response to the CREATE_CHILD_SA request. In some situations, however,
this could result in packets unnecessarily being dropped, so an implementation MAY want to defer
such sending.

The responder can be assured that the initiator is prepared to receive messages on an SA if either
(1) it has received a cryptographically valid message on the new SA, or (2) the new SA rekeys an
existing SA and it receives an IKE request to close the replaced SA. When rekeying an SA, the
responder SHOULD continue to send messages on the old SA until one of those events occurs. When
establishing a new SA, the responder MAY defer sending messages on a new SA until either it receives
one or a timeout has occurred. If an initiator receives a message on an SA for which it has not
received a response to its CREATE_CHILD_SA request, it SHOULD interpret that as a likely packet loss
and retransmit the CREATE_CHILD_SA request. An initiator MAY send a dummy message on a newly
created SA if it has no messages queued in order to assure the responder that the initiator is ready
to receive messages.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 144

Identifier: RQ_002_6114
RFC Clause: 2.8.
Type: Optional
Applies to: Host

Requirement:
The initiator of a CREATE_CHILD_SA MAY begin sending on the Security Association as soon as it
processes the response

RFC Text:
There are timing windows -- particularly in the presence of lost packets -- where endpoints may not
agree on the state of an SA. The responder to a CREATE_CHILD_SA MUST be prepared to accept messages
on an SA before sending its response to the creation request, so there is no ambiguity for the
initiator. The initiator MAY begin sending on an SA as soon as it processes the response. The
initiator, however, cannot receive on a newly created SA until it receives and processes the
response to its CREATE_CHILD_SA request. How, then, is the responder to know when it is OK to send
on the newly created SA?

From a technical correctness and interoperability perspective, the responder MAY begin sending on an
SA as soon as it sends its response to the CREATE_CHILD_SA request. In some situations, however,
this could result in packets unnecessarily being dropped, so an implementation MAY want to defer
such sending.

The responder can be assured that the initiator is prepared to receive messages on an SA if either
(1) it has received a cryptographically valid message on the new SA, or (2) the new SA rekeys an
existing SA and it receives an IKE request to close the replaced SA. When rekeying an SA, the
responder SHOULD continue to send messages on the old SA until one of those events occurs. When
establishing a new SA, the responder MAY defer sending messages on a new SA until either it receives
one or a timeout has occurred. If an initiator receives a message on an SA for which it has not
received a response to its CREATE_CHILD_SA request, it SHOULD interpret that as a likely packet loss
and retransmit the CREATE_CHILD_SA request. An initiator MAY send a dummy message on a newly
created SA if it has no messages queued in order to assure the responder that the initiator is ready
to receive messages.

Identifier: RQ_002_6115
RFC Clause: 2.8.
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation receives a CREAT_CHILD_SA request, it MAY begin sending on the Security
Association as soon as it has sent its response to the request

RFC Text:
There are timing windows -- particularly in the presence of lost packets -- where endpoints may not
agree on the state of an SA. The responder to a CREATE_CHILD_SA MUST be prepared to accept messages
on an SA before sending its response to the creation request, so there is no ambiguity for the
initiator. The initiator MAY begin sending on an SA as soon as it processes the response. The
initiator, however, cannot receive on a newly created SA until it receives and processes the
response to its CREATE_CHILD_SA request. How, then, is the responder to know when it is OK to send
on the newly created SA?

From a technical correctness and interoperability perspective, the responder MAY begin sending on an
SA as soon as it sends its response to the CREATE_CHILD_SA request. In some situations, however,
this could result in packets unnecessarily being dropped, so an implementation MAY want to defer
such sending.

The responder can be assured that the initiator is prepared to receive messages on an SA if either
(1) it has received a cryptographically valid message on the new SA, or (2) the new SA rekeys an
existing SA and it receives an IKE request to close the replaced SA. When rekeying an SA, the
responder SHOULD continue to send messages on the old SA until one of those events occurs. When
establishing a new SA, the responder MAY defer sending messages on a new SA until either it receives
one or a timeout has occurred. If an initiator receives a message on an SA for which it has not
received a response to its CREATE_CHILD_SA request, it SHOULD interpret that as a likely packet loss
and retransmit the CREATE_CHILD_SA request. An initiator MAY send a dummy message on a newly
created SA if it has no messages queued in order to assure the responder that the initiator is ready
to receive messages.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 145

Identifier: RQ_002_6116
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
When a Security Association is in the process of being rekeyed, the responding IKE endpoint SHOULD
continue to send messages on the old Security Association until either (1) it has received a
cryptographically valid message on the new Security Association, or (2) the new Security Association
rekeys an existing Security Association and it receives an IKE request to close the replaced
Security Association

RFC Text:
There are timing windows -- particularly in the presence of lost packets -- where endpoints may not
agree on the state of an SA. The responder to a CREATE_CHILD_SA MUST be prepared to accept messages
on an SA before sending its response to the creation request, so there is no ambiguity for the
initiator. The initiator MAY begin sending on an SA as soon as it processes the response. The
initiator, however, cannot receive on a newly created SA until it receives and processes the
response to its CREATE_CHILD_SA request. How, then, is the responder to know when it is OK to send
on the newly created SA?

From a technical correctness and interoperability perspective, the responder MAY begin sending on an
SA as soon as it sends its response to the CREATE_CHILD_SA request. In some situations, however,
this could result in packets unnecessarily being dropped, so an implementation MAY want to defer
such sending.

The responder can be assured that the initiator is prepared to receive messages on an SA if either
(1) it has received a cryptographically valid message on the new SA, or (2) the new SA rekeys an
existing SA and it receives an IKE request to close the replaced SA. When rekeying an SA, the
responder SHOULD continue to send messages on the old SA until one of those events occurs. When
establishing a new SA, the responder MAY defer sending messages on a new SA until either it receives
one or a timeout has occurred. If an initiator receives a message on an SA for which it has not
received a response to its CREATE_CHILD_SA request, it SHOULD interpret that as a likely packet loss
and retransmit the CREATE_CHILD_SA request. An initiator MAY send a dummy message on a newly
created SA if it has no messages queued in order to assure the responder that the initiator is ready
to receive messages.

Identifier: RQ_002_6117
RFC Clause: 2.8.
Type: Optional
Applies to: Host

Requirement:
When a new Security Association is in the process of being established, the responding IKE endpoint
MAY defer sending messages on a new SA until either it receives one itself or a timeout has occurred

RFC Text:
There are timing windows -- particularly in the presence of lost packets -- where endpoints may not
agree on the state of an SA. The responder to a CREATE_CHILD_SA MUST be prepared to accept messages
on an SA before sending its response to the creation request, so there is no ambiguity for the
initiator. The initiator MAY begin sending on an SA as soon as it processes the response. The
initiator, however, cannot receive on a newly created SA until it receives and processes the
response to its CREATE_CHILD_SA request. How, then, is the responder to know when it is OK to send
on the newly created SA?

From a technical correctness and interoperability perspective, the responder MAY begin sending on an
SA as soon as it sends its response to the CREATE_CHILD_SA request. In some situations, however,
this could result in packets unnecessarily being dropped, so an implementation MAY want to defer
such sending.

The responder can be assured that the initiator is prepared to receive messages on an SA if either
(1) it has received a cryptographically valid message on the new SA, or (2) the new SA rekeys an
existing SA and it receives an IKE request to close the replaced SA. When rekeying an SA, the
responder SHOULD continue to send messages on the old SA until one of those events occurs. When
establishing a new SA, the responder MAY defer sending messages on a new SA until either it receives
one or a timeout has occurred. If an initiator receives a message on an SA for which it has not
received a response to its CREATE_CHILD_SA request, it SHOULD interpret that as a likely packet loss
and retransmit the CREATE_CHILD_SA request. An initiator MAY send a dummy message on a newly
created SA if it has no messages queued in order to assure the responder that the initiator is ready
to receive messages.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 146

Identifier: RQ_002_6118
RFC Clause: 2.8.
Type: Recommended
Applies to: Host

Requirement:
If an IKE endpoint has sent a CREATE_CHILD_SA request and receives a message on the CHILD_SA before
it has received a response to its request, it SHOULD retransmit the CREATE_CHILD_SA request.

RFC Text:
There are timing windows -- particularly in the presence of lost packets -- where endpoints may not
agree on the state of an SA. The responder to a CREATE_CHILD_SA MUST be prepared to accept messages
on an SA before sending its response to the creation request, so there is no ambiguity for the
initiator. The initiator MAY begin sending on an SA as soon as it processes the response. The
initiator, however, cannot receive on a newly created SA until it receives and processes the
response to its CREATE_CHILD_SA request. How, then, is the responder to know when it is OK to send
on the newly created SA?

From a technical correctness and interoperability perspective, the responder MAY begin sending on an
SA as soon as it sends its response to the CREATE_CHILD_SA request. In some situations, however,
this could result in packets unnecessarily being dropped, so an implementation MAY want to defer
such sending.

The responder can be assured that the initiator is prepared to receive messages on an SA if either
(1) it has received a cryptographically valid message on the new SA, or (2) the new SA rekeys an
existing SA and it receives an IKE request to close the replaced SA. When rekeying an SA, the
responder SHOULD continue to send messages on the old SA until one of those events occurs. When
establishing a new SA, the responder MAY defer sending messages on a new SA until either it receives
one or a timeout has occurred. If an initiator receives a message on an SA for which it has not
received a response to its CREATE_CHILD_SA request, it SHOULD interpret that as a likely packet loss
and retransmit the CREATE_CHILD_SA request. An initiator MAY send a dummy message on a newly
created SA if it has no messages queued in order to assure the responder that the initiator is ready
to receive messages.

Identifier: RQ_002_6119
RFC Clause: 2.8.
Type: Optional
Applies to: Host

Requirement:
An IKE endpoint MAY send a dummy message on a Security Association that it has recently created if
there no incoming messages queued for that Security Association and none have been previously
received

RFC Text:
There are timing windows -- particularly in the presence of lost packets -- where endpoints may not
agree on the state of an SA. The responder to a CREATE_CHILD_SA MUST be prepared to accept messages
on an SA before sending its response to the creation request, so there is no ambiguity for the
initiator. The initiator MAY begin sending on an SA as soon as it processes the response. The
initiator, however, cannot receive on a newly created SA until it receives and processes the
response to its CREATE_CHILD_SA request. How, then, is the responder to know when it is OK to send
on the newly created SA?

From a technical correctness and interoperability perspective, the responder MAY begin sending on an
SA as soon as it sends its response to the CREATE_CHILD_SA request. In some situations, however,
this could result in packets unnecessarily being dropped, so an implementation MAY want to defer
such sending.

The responder can be assured that the initiator is prepared to receive messages on an SA if either
(1) it has received a cryptographically valid message on the new SA, or (2) the new SA rekeys an
existing SA and it receives an IKE request to close the replaced SA. When rekeying an SA, the
responder SHOULD continue to send messages on the old SA until one of those events occurs. When
establishing a new SA, the responder MAY defer sending messages on a new SA until either it receives
one or a timeout has occurred. If an initiator receives a message on an SA for which it has not
received a response to its CREATE_CHILD_SA request, it SHOULD interpret that as a likely packet loss
and retransmit the CREATE_CHILD_SA request. An initiator MAY send a dummy message on a newly
created SA if it has no messages queued in order to assure the responder that the initiator is ready
to receive messages.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 147

Identifier: RQ_002_6120
RFC Clause: 2.9.
Type: Mandatory
Applies to: Host

Requirement:
When an IP packet is received by an RFC4301-compliant IPsec subsystem and matches a "protect"
selector in its Security Policy Database (SPD), the subsystem MUST protect that packet with Ipsec

RFC Text:
When an IP packet is received by an RFC4301-compliant IPsec subsystem and matches a "protect"
selector in its Security Policy Database (SPD), the subsystem MUST protect that packet with Ipsec.
When no SA exists yet, it is the task of IKE to create it. Maintenance of a system's SPD is outside
the scope of IKE (see [PFKEY] for an example protocol), though some implementations might update
their SPD in connection with the running of IKE (for an example scenario, see section 1.1.3).

Identifier: RQ_002_6121
RFC Clause: 2.9.
Type: Mandatory
Applies to: Host

Requirement:
When an IP packet is received by an RFC4301-compliant IPsec subsystem and matches a "protect"
selector in its Security Policy Database (SPD) and no appropriate Security Association exists yet,
the IKE implementation MUST create it

RFC Text:
When an IP packet is received by an RFC4301-compliant IPsec subsystem and matches a "protect"
selector in its Security Policy Database (SPD), the subsystem MUST protect that packet with Ipsec.
When no SA exists yet, it is the task of IKE to create it. Maintenance of a system's SPD is outside
the scope of IKE (see [PFKEY] for an example protocol), though some implementations might update
their SPD in connection with the running of IKE (for an example scenario, see section 1.1.3).

Identifier: RQ_002_6122
RFC Clause: 2.9.
Type: Recommended
Applies to: Host

Requirement:
If an IKE implementation initiates a request for a CHILD_SA to enable it to support the particular
security requirements of an incoming data packet, the first traffic selector specified in both the
TSi and the TSr payloads of the request SHOULD identify the addresses in the packet triggering the
request

RFC Text:
It is possible for the responder's policy to contain multiple smaller ranges, all encompassed by the
initiator's traffic selector, and with the responder's policy being that each of those ranges should
be sent over a different SA. Continuing the example above, the responder might have a policy of
being willing to tunnel those addresses to and from the initiator, but might require that each
address pair be on a separately negotiated CHILD_SA. If the initiator generated its request in
response to an incoming packet from 192.0.1.43 to 192.0.2.123, there would be no way for the
responder to determine which pair of addresses should be included in this tunnel, and it would have
to make a guess or reject the request with a status of SINGLE_PAIR_REQUIRED.

To enable the responder to choose the appropriate range in this case, if the initiator has requested
the SA due to a data packet, the initiator SHOULD include as the first traffic selector in each of
TSi and TSr a very specific traffic selector including the addresses in the packet triggering the
request. In the example, the initiator would include in TSi two traffic selectors: the first
containing the address range (192.0.1.43 - 192.0.1.43) and the source port and IP protocol from the
packet and the second containing (192.0.1.0 - 192.0.1.255) with all ports and IP protocols. The
initiator would similarly include two traffic selectors in TSr.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 148

Identifier: RQ_002_6123
RFC Clause: 2.9.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint receives a CHILD_SA request and is unable to accept the entire set of traffic
selectors in the request but is able to accept the first selector of TSi and TSr, then it MUST send
a response which identifies the initiator's first choices as the Traffic Selectors it is able to
support

RFC Text:
To enable the responder to choose the appropriate range in this case, if the initiator has requested
the SA due to a data packet, the initiator SHOULD include as the first traffic selector in each of
TSi and TSr a very specific traffic selector including the addresses in the packet triggering the
request. In the example, the initiator would include in TSi two traffic selectors: the first
containing the address range (192.0.1.43 - 192.0.1.43) and the source port and IP protocol from the
packet and the second containing (192.0.1.0 - 192.0.1.255) with all ports and IP protocols. The
initiator would similarly include two traffic selectors in TSr.

If the responder's policy does not allow it to accept the entire set of traffic selectors in the
initiator's request, but does allow him to accept the first selector of TSi and TSr, then the
responder MUST narrow the traffic selectors to a subset that includes the initiator's first choices.

Identifier: RQ_002_6124
RFC Clause: 2.9.
Type: Optional
Applies to: Host

Requirement:
If an IKE implementation initiates a request for a CHILD_SA which is not in response to an incoming
packet, the first Traffic Selectors in the TSi and TSr payloads MAY specify ranges rather than
specific values

RFC Text:
If the initiator creates the CHILD_SA pair not in response to an arriving packet, but rather, say,
upon startup, then there may be no specific addresses the initiator prefers for the initial tunnel
over any other. In that case, the first values in TSi and TSr MAY be ranges rather than specific
values, and the responder chooses a subset of the initiator's TSi and TSr that are acceptable. If
more than one subset is acceptable but their union is not, the responder MUST accept some subset and
MAY include a Notify payload of type ADDITIONAL_TS_POSSIBLE to indicate that the initiator might
want to try again. This case will occur only when the initiator and responder are configured
differently from one another. If the initiator and responder agree on the granularity of tunnels,
the initiator will never request a tunnel wider than the responder will accept. Such
misconfigurations SHOULD be recorded in error logs.

Identifier: RQ_002_6125
RFC Clause: 2.9.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives a request for a CHILD_SA in which the first Traffic Selectors in
the TSi and TSr payloads specify ranges rather than specific values, it MUST respond with TSi and
TSr payloads indicating the subset of Traffic Selector values it is able to support

RFC Text:
If the initiator creates the CHILD_SA pair not in response to an arriving packet, but rather, say,
upon startup, then there may be no specific addresses the initiator prefers for the initial tunnel
over any other. In that case, the first values in TSi and TSr MAY be ranges rather than specific
values, and the responder chooses a subset of the initiator's TSi and TSr that are acceptable. If
more than one subset is acceptable but their union is not, the responder MUST accept some subset and
MAY include a Notify payload of type ADDITIONAL_TS_POSSIBLE to indicate that the initiator might
want to try again. This case will occur only when the initiator and responder are configured
differently from one another. If the initiator and responder agree on the granularity of tunnels,
the initiator will never request a tunnel wider than the responder will accept. Such
misconfigurations SHOULD be recorded in error logs.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 149

Identifier: RQ_002_6126
RFC Clause: 2.9.
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation responds to a request for a CHILD_SA and includes in the response TSi and
TSr payloads indicating the subset of Traffic Selector values it is able to support, it MAY also
include a Notify payload of type ADDITIONAL_TS_POSSIBLE

RFC Text:
If the initiator creates the CHILD_SA pair not in response to an arriving packet, but rather, say,
upon startup, then there may be no specific addresses the initiator prefers for the initial tunnel
over any other. In that case, the first values in TSi and TSr MAY be ranges rather than specific
values, and the responder chooses a subset of the initiator's TSi and TSr that are acceptable. If
more than one subset is acceptable but their union is not, the responder MUST accept some subset and
MAY include a Notify payload of type ADDITIONAL_TS_POSSIBLE to indicate that the initiator might
want to try again. This case will occur only when the initiator and responder are configured
differently from one another. If the initiator and responder agree on the granularity of tunnels,
the initiator will never request a tunnel wider than the responder will accept. Such
misconfigurations SHOULD be recorded in error logs.

Identifier: RQ_002_6127
RFC Clause: 2.10.
Type: Mandatory
Applies to: Host

Requirement:
The nonces included in both IKE_INIT_SA requests and CREATE_CHILD_SA requests MUST be randomly
chosen

RFC Text:
The IKE_SA_INIT messages each contain a nonce. These nonces are used as inputs to cryptographic
functions. The CREATE_CHILD_SA request and the CREATE_CHILD_SA response also contain nonces. These
nonces are used to add freshness to the key derivation technique used to obtain keys for CHILD_SA,
and to ensure creation of strong pseudo- random bits from the Diffie-Hellman key. Nonces used in
IKEv2 MUST be randomly chosen, MUST be at least 128 bits in size, and MUST be at least half the key
size of the negotiated prf. ("prf" refers to "pseudo-random function", one of the cryptographic
algorithms negotiated in the IKE exchange.) If the same random number source is used for both keys
and nonces, care must be taken to ensure that the latter use does not compromise the former

Identifier: RQ_002_6128
RFC Clause: 2.10.
Type: Mandatory
Applies to: Host

Requirement:
The nonces included in both IKE_INIT_SA requests and CREATE_CHILD_SA requests MUST be at least 128
bits in length

RFC Text:
The IKE_SA_INIT messages each contain a nonce. These nonces are used as inputs to cryptographic
functions. The CREATE_CHILD_SA request and the CREATE_CHILD_SA response also contain nonces. These
nonces are used to add freshness to the key derivation technique used to obtain keys for CHILD_SA,
and to ensure creation of strong pseudo- random bits from the Diffie-Hellman key. Nonces used in
IKEv2 MUST be randomly chosen, MUST be at least 128 bits in size, and MUST be at least half the key
size of the negotiated prf. ("prf" refers to "pseudo-random function", one of the cryptographic
algorithms negotiated in the IKE exchange.) If the same random number source is used for both keys
and nonces, care must be taken to ensure that the latter use does not compromise the former

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 150

Identifier: RQ_002_6129
RFC Clause: 2.10.
Type: Mandatory
Applies to: Host

Requirement:
The nonces included in both IKE_INIT_SA requests and CREATE_CHILD_SA requests MUST be at least half
the key length of the pseudo-random function (prf) negotiated in the IKE exchange.

RFC Text:
The IKE_SA_INIT messages each contain a nonce. These nonces are used as inputs to cryptographic
functions. The CREATE_CHILD_SA request and the CREATE_CHILD_SA response also contain nonces. These
nonces are used to add freshness to the key derivation technique used to obtain keys for CHILD_SA,
and to ensure creation of strong pseudo- random bits from the Diffie-Hellman key. Nonces used in
IKEv2 MUST be randomly chosen, MUST be at least 128 bits in size, and MUST be at least half the key
size of the negotiated prf. ("prf" refers to "pseudo-random function", one of the cryptographic
algorithms negotiated in the IKE exchange.) If the same random number source is used for both keys
and nonces, care must be taken to ensure that the latter use does not compromise the former

Identifier: RQ_002_6130
RFC Clause: 2.11.
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST accept incoming IKE requests by responding to the address and port from
which the request was received even if the source port is not 500 or 4500

RFC Text:
IKE runs over UDP ports 500 and 4500, and implicitly sets up ESP and AH associations for the same IP
addresses it runs over. The IP addresses and ports in the outer header are, however, not themselves
cryptographically protected, and IKE is designed to work even through Network Address Translation
(NAT) boxes. An implementation MUST accept incoming requests even if the source port is not 500 or
4500, and MUST respond to the address and port from which the request was received. It MUST specify
the address and port at which the request was received as the source address and port in the
response. IKE functions identically over IPv4 or IPv6

Identifier: RQ_002_6131
RFC Clause: 2.11.
Type: Mandatory
Applies to: Host

Requirement:
When responding to an incoming IKE request, an IKE implementation MUST specify the address and port
at which the request was received as the source address and port in the response

RFC Text:
IKE runs over UDP ports 500 and 4500, and implicitly sets up ESP and AH associations for the same IP
addresses it runs over. The IP addresses and ports in the outer header are, however, not themselves
cryptographically protected, and IKE is designed to work even through Network Address Translation
(NAT) boxes. An implementation MUST accept incoming requests even if the source port is not 500 or
4500, and MUST respond to the address and port from which the request was received. It MUST specify
the address and port at which the request was received as the source address and port in the
response. IKE functions identically over IPv4 or IPv6

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 151

Identifier: RQ_002_6132
RFC Clause: 2.12.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE Security Association is closed, each endpoint MUST NOT reuse either the keys used by the
Security Association or any information that could be used to recompute those keys (including the
secrets used in the Diffie-Hellman calculation and any data that may persist in a pseudo-random
number generator that could be used to recompute the Diffie-Hellman secrets)

RFC Text:
IKE generates keying material using an ephemeral Diffie-Hellman exchange in order to gain the
property of "perfect forward secrecy". This means that once a connection is closed and its
corresponding keys are forgotten, even someone who has recorded all of the data from the connection
and gets access to all of the long-term keys of the two endpoints cannot reconstruct the keys used
to protect the conversation without doing a brute force search of the session key space.

Achieving perfect forward secrecy requires that when a connection is closed, each endpoint MUST
forget not only the keys used by the connection but also any information that could be used to
recompute those key}. In particular, it MUST forget the secrets used in the Diffie-Hellman
calculation and any state that may persist in the state of a pseudo-random number generator that
could be used to recompute the Diffie-Hellman secrets

Identifier: RQ_002_6133
RFC Clause: 2.12.
Type: Optional
Applies to: Host

Requirement:
An IKE endpoint MAY reuse Diffie-Hellman exponentials for multiple Security Association setups

RFC Text:
Since the computing of Diffie-Hellman exponentials is computationally expensive, an endpoint may
find it advantageous to reuse those exponentials for multiple connection setups. There are several
reasonable strategies for doing this. An endpoint could choose a new exponential only periodically
though this could result in less-than- perfect forward secrecy if some connection lasts for less
than the lifetime of the exponential. Or it could keep track of which exponential was used for each
connection and delete the information associated with the exponential only when some corresponding
connection was closed. This would allow the exponential to be reused without losing perfect forward
secrecy at the cost of maintaining more state.

Decisions as to whether and when to reuse Diffie-Hellman exponentials is a private decision in the
sense that it will not affect interoperability. An implementation that reuses exponentials MAY
choose to remember the exponential used by the other endpoint on past exchanges and if one is reused
to avoid the second half of the calculation.

Identifier: RQ_002_6134
RFC Clause: 2.13.
Type: Mandatory
Applies to: Host

Requirement:
When establishing an IKE Security Association, an IKE implementation MUST specify a fixed key size
in the Transforms substructure of the Proposals payload even for algorithms that accept a variable
length key

RFC Text:
In the context of the IKE_SA, four cryptographic algorithms are negotiated: an encryption algorithm,
an integrity protection algorithm, a Diffie-Hellman group, and a pseudo-random function (prf). The
pseudo-random function is used for the construction of keying material for all of the cryptographic
algorithms used in both the IKE_SA and the CHILD_SAs.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 152

We assume that each encryption algorithm and integrity protection algorithm uses a fixed-size key
and that any randomly chosen value of that fixed size can serve as an appropriate key. For
algorithms that accept a variable length key, a fixed key size MUST be specified as part of the
cryptographic transform negotiated. For algorithms for which not all values are valid keys (such as
DES or 3DES with key parity), the algorithm by which keys are derived from arbitrary values MUST be
specified by the cryptographic transform. For integrity protection functions based on Hashed
Message Authentication Code (HMAC), the fixed key size is the size of the output of the underlying
hash function. When the prf function takes a variable length key, variable length data, and
produces a fixed-length output (e.g., when using HMAC), the formulas in this document apply. When
the key for the prf function has fixed length, the data provided as a key is truncated or padded
with zeros as necessary unless exceptional processing is explained following the formula.

Identifier: RQ_002_6135
RFC Clause: 2.13.
Type: Mandatory
Applies to: Host

Requirement:
When establishing an IKE Security Association, an IKE implementation MUST specify in the Transforms
substructure of the Proposals payload, the algorithm by which keys are derived for encryption and
integrity algorithms in which not all values are valid keys

RFC Text:
In the context of the IKE_SA, four cryptographic algorithms are negotiated: an encryption algorithm,
an integrity protection algorithm, a Diffie-Hellman group, and a pseudo-random function (prf). The
pseudo-random function is used for the construction of keying material for all of the cryptographic
algorithms used in both the IKE_SA and the CHILD_SAs.

We assume that each encryption algorithm and integrity protection algorithm uses a fixed-size key
and that any randomly chosen value of that fixed size can serve as an appropriate key. For
algorithms that accept a variable length key, a fixed key size MUST be specified as part of the
cryptographic transform negotiated. For algorithms for which not all values are valid keys (such as
DES or 3DES with key parity), the algorithm by which keys are derived from arbitrary values MUST be
specified by the cryptographic transform. For integrity protection functions based on Hashed
Message Authentication Code (HMAC), the fixed key size is the size of the output of the underlying
hash function. When the prf function takes a variable length key, variable length data, and
produces a fixed-length output (e.g., when using HMAC), the formulas in this document apply. When
the key for the prf function has fixed length, the data provided as a key is truncated or padded
with zeros as necessary unless exceptional processing is explained following the formula.

Identifier: RQ_002_6136
RFC Clause: 2.14.
Type: Mandatory
Applies to: Host

Requirement:
When generating the shared security keys required for (a) establishing CHILD_SAs, (b) authentication
and (c) encryption, the quantity, SKEYSEED, MUST be calculated from the nonces (Ni and Nr) exchanged
in the Nonce payloads of the IKE_SA_INIT exchange and the Diffie-Hellman shared secrets (g^ir)
established during that same exchange, according to the formula:

 SKEYSEED = prf(Ni | Nr, g^ir)

RFC Text:
The shared keys are computed as follows. A quantity called SKEYSEED is calculated from the nonces
exchanged during the IKE_SA_INIT exchange and the Diffie-Hellman shared secret established during
that exchange. SKEYSEED is used to calculate seven other secrets: SK_d used for deriving new keys
for the CHILD_SAs established with this IKE_SA; SK_ai and SK_ar used as a key to the integrity
protection algorithm for authenticating the component messages of subsequent exchanges; SK_ei and
SK_er used for encrypting (and of course decrypting) all subsequent exchanges; and SK_pi and SK_pr,
which are used when generating an AUTH payload.

SKEYSEED and its derivatives are computed as follows:

 SKEYSEED = prf(Ni | Nr, g^ir)

 {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = prf+
 (SKEYSEED, Ni | Nr | SPIi | SPIr)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 153

(indicating that the quantities SK_d, SK_ai, SK_ar, SK_ei, SK_er, SK_pi, and SK_pr are taken in
order from the generated bits of the prf+). g^ir is the shared secret from the ephemeral Diffie-
Hellman exchange. g^ir is represented as a string of octets in big endian order padded with zeros
if necessary to make it the length of the modulus. Ni and Nr are the nonces, stripped of any
headers. If the negotiated prf takes a fixed-length key and the lengths of Ni and Nr do not add up
to that length, half the bits must come from Ni and half from Nr, taking the first bits of each.

Identifier: RQ_002_6137
RFC Clause: 2.14.
Type: Mandatory
Applies to: Host

Requirement:
When generating the shared security keys required for (a) establishing CHILD_SAs, (b) authentication
and (c) encryption, the derivative keys of the quantity, SKEYSEED, MUST be calculated from SKEYSEED
itself, the nonces (Ni and Nr) exchanged in the Nonce payloads of the IKE_SA_INIT exchange and the
Security Parameter Indexes (SPIi and SPIr) specified in the IKE Header of the IKE_SA_INIT exchange
using the formula:

 {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = prf+
 (SKEYSEED, Ni | Nr | SPIi | SPIr)
where:
 SK_d is used for deriving new keys for the CHILD_SAs established with this IKE_SA
 SK_ai and SK_ar are used as keys to the integrity protection algorithm for authenticating
 the component messages of subsequent exchanges
 SK_ei and SK_er are used for encrypting and decrypting all subsequent exchanges
 SK_pi and SK_pr are used when generating an AUTH payload.

RFC Text:
The shared keys are computed as follows. A quantity called SKEYSEED is calculated from the nonces
exchanged during the IKE_SA_INIT exchange and the Diffie-Hellman shared secret established during
that exchange. SKEYSEED is used to calculate seven other secrets: SK_d used for deriving new keys
for the CHILD_SAs established with this IKE_SA; SK_ai and SK_ar used as a key to the integrity
protection algorithm for authenticating the component messages of subsequent exchanges; SK_ei and
SK_er used for encrypting (and of course decrypting) all subsequent exchanges; and SK_pi and SK_pr,
which are used when generating an AUTH payload.

SKEYSEED and its derivatives are computed as follows:

 SKEYSEED = prf(Ni | Nr, g^ir)

 {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = prf+
 (SKEYSEED, Ni | Nr | SPIi | SPIr)

[2.14.](indicating that the quantities SK_d, SK_ai, SK_ar, SK_ei, SK_er, SK_pi, and SK_pr are taken
in order from the generated bits of the prf+). g^ir is the shared secret from the ephemeral Diffie-
Hellman exchange. g^ir is represented as a string of octets in big endian order padded with zeros
if necessary to make it the length of the modulus. Ni and Nr are the nonces, stripped of any
headers. If the negotiated prf takes a fixed-length key and the lengths of Ni and Nr do not add up
to that length, half the bits must come from Ni and half from Nr, taking the first bits of each.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 154

Identifier: RQ_002_6138
RFC Clause: 2.13.
Type: Mandatory
Applies to: Host

Requirement:
When computing security keying material, an IKE implementation MUST use the Pseudo-Random Function
(prf) exchanged in the Transform substructure of the Proposal payload of the relevant IKE_SA_INIT
exchange

RFC Text:
Keying material will always be derived as the output of the negotiated prf algorithm. Since the
amount of keying material needed may be greater than the size of the output of the prf algorithm, we
will use the prf iteratively. We will use the terminology prf+ to describe the function that
outputs a pseudo-random stream based on the inputs to a prf as follows: (where | indicates
concatenation)

 prf+ (K,S) = T1 | T2 | T3 | T4 | ...

where:
 T1 = prf (K, S | 0x01)
 T2 = prf (K, T1 | S | 0x02)
 T3 = prf (K, T2 | S | 0x03)
 T4 = prf (K, T3 | S | 0x04)

continuing as needed to compute all required keys. The keys are taken from the output string
without regard to boundaries (e.g., if the required keys are a 256-bit Advanced Encryption Standard
(AES) key and a 160-bit HMAC key, and the prf function generates 160 bits, the AES key will come
from T1 and the beginning of T2, while the HMAC key will come from the rest of T2 and the beginning
of T3)

Identifier: RQ_002_6139
RFC Clause: 2.14.
Type: Mandatory
Applies to: Host

Requirement:
When computing the security keys for use in the establishment of CHILD_SAs, if the negotiated
pseudo-random function (prf) takes a fixed-length key which is greater than the lengths of Ni and
Nr, an IKE endpoint MUST construct the prf key with half the bits coming from the least significant
bits of Ni and half from the least significant bits of Nr

RFC Text:
The shared keys are computed as follows. A quantity called SKEYSEED is calculated from the nonces
exchanged during the IKE_SA_INIT exchange and the Diffie-Hellman shared secret established during
that exchange. SKEYSEED is used to calculate seven other secrets: SK_d used for deriving new keys
for the CHILD_SAs established with this IKE_SA; SK_ai and SK_ar used as a key to the integrity
protection algorithm for authenticating the component messages of subsequent exchanges; SK_ei and
SK_er used for encrypting (and of course decrypting) all subsequent exchanges; and SK_pi and SK_pr,
which are used when generating an AUTH payload.

SKEYSEED and its derivatives are computed as follows:

 SKEYSEED = prf(Ni | Nr, g^ir)

 {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = prf+
 (SKEYSEED, Ni | Nr | SPIi | SPIr)

(indicating that the quantities SK_d, SK_ai, SK_ar, SK_ei, SK_er, SK_pi, and SK_pr are taken in
order from the generated bits of the prf+). g^ir is the shared secret from the ephemeral Diffie-
Hellman exchange. g^ir is represented as a string of octets in big endian order padded with zeros
if necessary to make it the length of the modulus. Ni and Nr are the nonces, stripped of any
headers. If the negotiated prf takes a fixed-length key and the lengths of Ni and Nr do not add up
to that length, half the bits must come from Ni and half from Nr, taking the first bits of each.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 155

Identifier: RQ_002_6140
RFC Clause: 2.15.
Type: Mandatory
Applies to: Host

Requirement:
When not using extensible authentication, an IKE endpoint responding to an IKE_SA_INIT request MUST
authenticate the other endpoint by:

(1) using the authentication algorithm established in the initial IKE_SA_INIT exchange to compute
the security signature of the block of data which starts with the first octet of the first SPI in
the header of the second message and ends with the last octet of the last payload in the second
message with the initiator's nonce value, Ni , and the value prf(SK_pr,IDr') appended to it (where
IDr is the responding endpoint's own ID payload excluding the fixed header); and

(2) send the computed signature to the IKE_SA_INIT initiator's endpoint in the Certificate payload
of its response.

RFC Text:
When not using extensible authentication (see section 2.16), the peers are authenticated by having
each sign (or MAC using a shared secret as the key) a block of data. For the responder, the octets
to be signed start with the first octet of the first SPI in the header of the second message and end
with the last octet of the last payload in the second message. Appended to this (for purposes of
computing the signature) are the initiator's nonce Ni (just the value, not the payload containing
it), and the value prf(SK_pr,IDr') where IDr' is the responder's ID payload excluding the fixed
header. Note that neither the nonce Ni nor the value prf(SK_pr,IDr') are transmitted. Similarly,
the initiator signs the first message, starting with the first octet of the first SPI in the header
and ending with the last octet of the last payload. Appended to this (for purposes of computing the
signature) are the responder's nonce Nr, and the value prf(SK_pi,IDi'). In the above calculation,
IDi' and IDr' are the entire ID payloads excluding the fixed header. It is critical to the security
of the exchange that each side sign the other side's nonce.

Identifier: RQ_002_6141
RFC Clause: 2.15.
Type: Mandatory
Applies to: Host

Requirement:
When not using extensible authentication, an IKE endpoint initiating an IKE_SA_INIT request MUST
authenticate the other endpoint by:

(1) using the selected authentication algorithm to compute the security signature of the block of
data which starts with the first octet of the first SPI in the header of the first message and ends
with the last octet of the last payload in the first message with the nonce value, Ni , and the
value prf(SK_pr,IDr') appended to it (where IDr is the responding endpoint's own ID payload
excluding the fixed header); and

(2) send the computed signature to the other endpoint in the Certificate payload of its response.

RFC Text:
When not using extensible authentication (see section 2.16), the peers are authenticated by having
each sign (or MAC using a shared secret as the key) a block of data. For the responder, the octets
to be signed start with the first octet of the first SPI in the header of the second message and end
with the last octet of the last payload in the second message. Appended to this (for purposes of
computing the signature) are the initiator's nonce Ni (just the value, not the payload containing
it), and the value prf(SK_pr,IDr') where IDr' is the responder's ID payload excluding the fixed
header. Note that neither the nonce Ni nor the value prf(SK_pr,IDr') are transmitted. Similarly,
the initiator signs the first message, starting with the first octet of the first SPI in the header
and ending with the last octet of the last payload. Appended to this (for purposes of computing the
signature) are the responder's nonce Nr, and the value prf(SK_pi,IDi'). In the above calculation,
IDi' and IDr' are the entire ID payloads excluding the fixed header. It is critical to the security
of the exchange that each side sign the other side's nonce.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 156

Identifier: RQ_002_6142
RFC Clause: 2.15.
Type: Mandatory
Applies to: Host

Requirement:
When not using extensible authentication, if the first message of an INIT_IKE_SA exchange is sent
twice (the second time with a responder cookie and/or a different Diffie-Hellman group), the second
version of the message MUST be signed

RFC Text:
Note that all of the payloads are included under the signature, including any payload types not
defined in this document. If the first message of the exchange is sent twice (the second time with
a responder cookie and/or a different Diffie-Hellman group), it is the second version of the message
that is signed.

Optionally, messages 3 and 4 MAY include a certificate, or certificate chain providing evidence that
the key used to compute a digital signature belongs to the name in the ID payload. The signature or
MAC will be computed using algorithms dictated by the type of key used by the signer, and specified
by the Auth Method field in the Authentication payload. There is no requirement that the initiator
and responder sign with the same cryptographic algorithms. The choice of cryptographic algorithms
depends on the type of key each has. In particular, the initiator may be using a shared key while
the responder may have a public signature key and certificate. It will commonly be the case (but it
is not required) that if a shared secret is used for authentication that the same key is used in
both directions. Note that it is a common but typically insecure practice to have a shared key
derived solely from a user- chosen password without incorporating another source of randomness.

Identifier: RQ_002_6143
RFC Clause: 2.15.
Type: Optional
Applies to: Host

Requirement:
Messages 3 and 4 in an IKE_SA_INIT exchange MAY include a certificate, or certificate chain
providing evidence that the key used to compute a digital signature belongs to the name in the ID
payload.

RFC Text:
Note that all of the payloads are included under the signature, including any payload types not
defined in this document. If the first message of the exchange is sent twice (the second time with
a responder cookie and/or a different Diffie-Hellman group), it is the second version of the message
that is signed.

Optionally, messages 3 and 4 MAY include a certificate, or certificate chain providing evidence that
the key used to compute a digital signature belongs to the name in the ID payload. The signature or
MAC will be computed using algorithms dictated by the type of key used by the signer, and specified
by the Auth Method field in the Authentication payload. There is no requirement that the initiator
and responder sign with the same cryptographic algorithms. The choice of cryptographic algorithms
depends on the type of key each has. In particular, the initiator may be using a shared key while
the responder may have a public signature key and certificate. It will commonly be the case (but it
is not required) that if a shared secret is used for authentication that the same key is used in
both directions. Note that it is a common but typically insecure practice to have a shared key
derived solely from a user- chosen password without incorporating another source of randomness.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 157

Identifier: RQ_002_6144
RFC Clause: 2.15.
Type: Mandatory
Applies to: Host

Requirement:
If messages 3 and 4 in an IKE_SA_INIT exchange include a certificate, or certificate chain providing
evidence that the key used to compute a digital signature belongs to the name in the ID payload,
the signature or MAC MUST be computed using algorithms dictated by the type of key used by the
signer and the Auth Method field in the Authentication payload

RFC Text:
Note that all of the payloads are included under the signature, including any payload types not
defined in this document. If the first message of the exchange is sent twice (the second time with
a responder cookie and/or a different Diffie-Hellman group), it is the second version of the message
that is signed.

Optionally, messages 3 and 4 MAY include a certificate, or certificate chain providing evidence that
the key used to compute a digital signature belongs to the name in the ID payload. The signature or
MAC will be computed using algorithms dictated by the type of key used by the signer, and specified
by the Auth Method field in the Authentication payload. There is no requirement that the initiator
and responder sign with the same cryptographic algorithms. The choice of cryptographic algorithms
depends on the type of key each has. In particular, the initiator may be using a shared key while
the responder may have a public signature key and certificate. It will commonly be the case (but it
is not required) that if a shared secret is used for authentication that the same key is used in
both directions. Note that it is a common but typically insecure practice to have a shared key
derived solely from a user- chosen password without incorporating another source of randomness.

Identifier: RQ_002_6145
RFC Clause: 2.15.
Type: Recommended
Applies to: Host

Requirement:
When not using extensible authentication, the pre-shared key used in the IKE_SA_INIT exchanges
SHOULD contain as much unpredictability as the strongest key being negotiated.

RFC Text:
This is typically insecure because user-chosen passwords are unlikely to have sufficient
unpredictability to resist dictionary attacks and these attacks are not prevented in this
authentication method. (Applications using password-based authentication for bootstrapping and
IKE_SA should use the authentication method in section 2.16, which is designed to prevent off-line
dictionary attacks.) The pre- shared key SHOULD contain as much unpredictability as the strongest
key being negotiated. In the case of a pre-shared key, the AUTH value is computed as:

 AUTH = prf(prf(Shared Secret,"Key Pad for IKEv2"), <msg octets>)

where the string "Key Pad for IKEv2" is 17 ASCII characters without null termination. The shared
secret can be variable length. The pad string is added so that if the shared secret is derived from
a password, the IKE implementation need not store the password in cleartext, but rather can store
the value prf(Shared Secret,"Key Pad for IKEv2"), which could not be used as a password equivalent
for protocols other than IKEv2. As noted above, deriving the shared secret from a password is not
secure. This construction is used because it is anticipated that people will do it anyway. The
management interface by which the Shared Secret is provided MUST accept ASCII strings of at least 64
octets and MUST NOT add a null terminator before using them as shared secrets. It MUST also accept
a HEX encoding of the Shared Secret. The management interface MAY accept other encodings if the
algorithm for translating the encoding to a binary string is specified. If the negotiated prf takes
a fixed-size key, the shared secret MUST be of that fixed size.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 158

Identifier: RQ_002_6146
RFC Clause: 2.15.
Type: Mandatory
Applies to: Host

Requirement:
When not using extensible authentication, if a pre-shared key is used in the IKE_SA_INIT exchanges,
the associated AUTH value MUST be computed as:

 AUTH = prf(prf(Shared Secret,"Key Pad for IKEv2"), <msg octets>)

where the string "Key Pad for IKEv2" is 17 ASCII characters without null termination

RFC Text:
This is typically insecure because user-chosen passwords are unlikely to have sufficient
unpredictability to resist dictionary attacks and these attacks are not prevented in this
authentication method. (Applications using password-based authentication for bootstrapping and
IKE_SA should use the authentication method in section 2.16, which is designed to prevent off-line
dictionary attacks.) The pre- shared key SHOULD contain as much unpredictability as the strongest
key being negotiated. In the case of a pre-shared key, the AUTH value is computed as:

 AUTH = prf(prf(Shared Secret,"Key Pad for IKEv2"), <msg octets>)

where the string "Key Pad for IKEv2" is 17 ASCII characters without null termination. The shared
secret can be variable length. The pad string is added so that if the shared secret is derived from
a password, the IKE implementation need not store the password in cleartext, but rather can store
the value prf(Shared Secret,"Key Pad for IKEv2"), which could not be used as a password equivalent
for protocols other than IKEv2. As noted above, deriving the shared secret from a password is not
secure. This construction is used because it is anticipated that people will do it anyway. The
management interface by which the Shared Secret is provided MUST accept ASCII strings of at least 64
octets and MUST NOT add a null terminator before using them as shared secrets. It MUST also accept
a HEX encoding of the Shared Secret. The management interface MAY accept other encodings if the
algorithm for translating the encoding to a binary string is specified. If the negotiated prf takes
a fixed-size key, the shared secret MUST be of that fixed size.

Identifier: RQ_002_6147
RFC Clause: 2.15.
Type: Optional
Applies to: Host

Requirement:
When not using extensible authentication, a pre-shared key used in the computation of the AUTH value
for an IKE_SA_INIT exchange MAY be either fixed length or variable length.

RFC Text:
This is typically insecure because user-chosen passwords are unlikely to have sufficient
unpredictability to resist dictionary attacks and these attacks are not prevented in this
authentication method. (Applications using password-based authentication for bootstrapping and
IKE_SA should use the authentication method in section 2.16, which is designed to prevent off-line
dictionary attacks.) The pre- shared key SHOULD contain as much unpredictability as the strongest
key being negotiated. In the case of a pre-shared key, the AUTH value is computed as:

 AUTH = prf(prf(Shared Secret,"Key Pad for IKEv2"), <msg octets>)

where the string "Key Pad for IKEv2" is 17 ASCII characters without null termination. The shared
secret can be variable length. The pad string is added so that if the shared secret is derived from
a password, the IKE implementation need not store the password in cleartext, but rather can store
the value prf(Shared Secret,"Key Pad for IKEv2"), which could not be used as a password equivalent
for protocols other than IKEv2. As noted above, deriving the shared secret from a password is not
secure. This construction is used because it is anticipated that people will do it anyway. The
management interface by which the Shared Secret is provided MUST accept ASCII strings of at least 64
octets and MUST NOT add a null terminator before using them as shared secrets. It MUST also accept
a HEX encoding of the Shared Secret. The management interface MAY accept other encodings if the
algorithm for translating the encoding to a binary string is specified. If the negotiated prf takes
a fixed-size key, the shared secret MUST be of that fixed size.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 159

Identifier: RQ_002_6148
RFC Clause: 2.15.
Type: Mandatory
Applies to: Host

Requirement:
When not using extensible authentication , if the negotiated prf in an IKE_SA_INIT exchange takes a
fixed-size key, the shared secret MUST be of that fixed sizes fixed length .

RFC Text:
This is typically insecure because user-chosen passwords are unlikely to have sufficient
unpredictability to resist dictionary attacks and these attacks are not prevented in this
authentication method. (Applications using password-based authentication for bootstrapping and
IKE_SA should use the authentication method in section 2.16, which is designed to prevent off-line
dictionary attacks.) The pre- shared key SHOULD contain as much unpredictability as the strongest
key being negotiated. In the case of a pre-shared key, the AUTH value is computed as:

 AUTH = prf(prf(Shared Secret,"Key Pad for IKEv2"), <msg octets>)

where the string "Key Pad for IKEv2" is 17 ASCII characters without null termination. The shared
secret can be variable length. The pad string is added so that if the shared secret is derived from
a password, the IKE implementation need not store the password in cleartext, but rather can store
the value prf(Shared Secret,"Key Pad for IKEv2"), which could not be used as a password equivalent
for protocols other than IKEv2. As noted above, deriving the shared secret from a password is not
secure. This construction is used because it is anticipated that people will do it anyway. The
management interface by which the Shared Secret is provided MUST accept ASCII strings of at least 64
octets and MUST NOT add a null terminator before using them as shared secrets. It MUST also accept
a HEX encoding of the Shared Secret. The management interface MAY accept other encodings if the
algorithm for translating the encoding to a binary string is specified. If the negotiated prf takes
a fixed-size key, the shared secret MUST be of that fixed size.

Identifier: RQ_002_6149
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
The authentication protocols defined in RFC3748 MUST be used in conjunction with a public key
signature based method in the authentication of the IKE_SA_INIT responder back to the initiator

RFC Text:
In addition to authentication using public key signatures and shared secrets, IKE supports
authentication using methods defined in RFC 3748 [EAP]. Typically, these methods are asymmetric
(designed for a user authenticating to a server), and they may not be mutual. For this reason,
these protocols are typically used to authenticate the initiator to the responder and MUST be used
in conjunction with a public key signature based authentication of the responder to the initiator.
These methods are often associated with mechanisms referred to as "Legacy Authentication"
mechanisms.

Identifier: RQ_002_6150
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
The additional IKE_AUTH exchanges associated with Extensible Authentication MUST be completed in
order to initialize an IKE_SA

RFC Text:
While this memo references [EAP] with the intent that new methods can be added in the future without
updating this specification, some simpler variations are documented here and in section 3.16. [EAP]
defines an authentication protocol requiring a variable number of messages. Extensible
Authentication is implemented in IKE as additional IKE_AUTH exchanges that MUST be completed in
order to initialize the IKE_SA.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 160

Identifier: RQ_002_6151
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If the initiator of an IKE_SA_INIT exchange is configured to use Extensible Authentication, It MUST
omit the AUTH payload from the first message.

RFC Text:
An initiator indicates a desire to use extensible authentication by leaving out the AUTH payload
from message 3. By including an IDi payload but not an AUTH payload, the initiator has declared an
identity but has not proven it. If the responder is willing to use an extensible authentication
method, it will place an Extensible Authentication Protocol (EAP) payload in message 4 and defer
sending SAr2, TSi, and TSr until initiator authentication is complete in a subsequent IKE_AUTH
exchange. In the case of a minimal extensible authentication, the initial SA establishment will
appear as follows:

 Initiator Responder
 ----------- -----------
 HDR, SAi1, KEi, Ni -->

 <-- HDR, SAr1, KEr, Nr, [CERTREQ]

 HDR, SK {IDi, [CERTREQ,] [IDr,]
 SAi2, TSi, TSr} -->

 <-- HDR, SK {IDr, [CERT,] AUTH,
 EAP }

 HDR, SK {EAP} -->

 <-- HDR, SK {EAP (success)}

 HDR, SK {AUTH} -->

 <-- HDR, SK {AUTH, SAr2, TSi, TSr }

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 161

Identifier: RQ_002_6152
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives the first message in an IKE_SA_INIT exchange with the AUTH payload
omitted and it is capable of handling Extensible Authentication as defined in RFC3748, it MUST place
an Extensible Authentication Protocol payload in message 4 of the exchange.

RFC Text:
An initiator indicates a desire to use extensible authentication by leaving out the AUTH payload
from message 3. By including an IDi payload but not an AUTH payload, the initiator has declared an
identity but has not proven it. If the responder is willing to use an extensible authentication
method, it will place an Extensible Authentication Protocol (EAP) payload in message 4 and defer
sending SAr2, TSi, and TSr until initiator authentication is complete in a subsequent IKE_AUTH
exchange. In the case of a minimal extensible authentication, the initial SA establishment will
appear as follows:

 Initiator Responder
 ----------- -----------
 HDR, SAi1, KEi, Ni -->

 <-- HDR, SAr1, KEr, Nr, [CERTREQ]

 HDR, SK {IDi, [CERTREQ,] [IDr,]
 SAi2, TSi, TSr} -->

 <-- HDR, SK {IDr, [CERT,] AUTH,
 EAP }

 HDR, SK {EAP} -->

 <-- HDR, SK {EAP (success)}

 HDR, SK {AUTH} -->

 <-- HDR, SK {AUTH, SAr2, TSi, TSr }

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 162

Identifier: RQ_002_6153
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives the first message in an IKE_SA_INIT exchange with the AUTH payload
omitted and it is capable of handling Extensible Authentication as defined in RFC3748, it MUST defer
sending SAr2, TSi, and TSr until initiator authentication is complete in a subsequent IKE_AUTH
exchange

RFC Text:
An initiator indicates a desire to use extensible authentication by leaving out the AUTH payload
from message 3. By including an IDi payload but not an AUTH payload, the initiator has declared an
identity but has not proven it. If the responder is willing to use an extensible authentication
method, it will place an Extensible Authentication Protocol (EAP) payload in message 4 and defer
sending SAr2, TSi, and TSr until initiator authentication is complete in a subsequent IKE_AUTH
exchange. In the case of a minimal extensible authentication, the initial SA establishment will
appear as follows:

 Initiator Responder
 ----------- -----------
 HDR, SAi1, KEi, Ni -->

 <-- HDR, SAr1, KEr, Nr, [CERTREQ]

 HDR, SK {IDi, [CERTREQ,] [IDr,]
 SAi2, TSi, TSr} -->

 <-- HDR, SK {IDr, [CERT,] AUTH,
 EAP }

 HDR, SK {EAP} -->

 <-- HDR, SK {EAP (success)}

 HDR, SK {AUTH} -->

 <-- HDR, SK {AUTH, SAr2, TSi, TSr }

Identifier: RQ_002_6154
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation uses an Extensible Authentication Protocol method that creates a shared key
as a side effect of authentication, that shared key MUST be used by the implementation to generate
AUTH payloads in message 7 of the IKE_SA_INIT exchange using the syntax for shared secrets specified
in section 2.15 of RFC4306

RFC Text:
For EAP methods that create a shared key as a side effect of authentication, that shared key MUST be
used by both the initiator and responder to generate AUTH payloads in messages 7 and 8 using the
syntax for shared secrets specified in section 2.15. The shared key from EAP is the field from the
EAP specification named MSK. The shared key generated during an IKE exchange MUST NOT be used for
any other purpose

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 163

Identifier: RQ_002_6155
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation uses an Extensible Authentication Protocol method that creates a shared key
as a side effect of authentication, that shared key MUST be used by the implementation to generate
AUTH payloads in message 8 of the IKE_SA_INIT exchange using the syntax for shared secrets specified
in section 2.15 of RFC4306

RFC Text:
For EAP methods that create a shared key as a side effect of authentication, that shared key MUST be
used by both the initiator and responder to generate AUTH payloads in messages 7 and 8 using the
syntax for shared secrets specified in section 2.15. The shared key from EAP is the field from the
EAP specification named MSK. The shared key generated during an IKE exchange MUST NOT be used for
any other purpose

Identifier: RQ_002_6156
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation uses an Extensible Authentication Protocol method that creates a shared key
as a side effect of authentication, that shared key MUSTNOT be used for any purpose other than the
generation of AUTH payloads in messages 7 and 8 in an IKE_SA_INIT

RFC Text:
For EAP methods that create a shared key as a side effect of authentication, that shared key MUST be
used by both the initiator and responder to generate AUTH payloads in messages 7 and 8 using the
syntax for shared secrets specified in section 2.15. The shared key from EAP is the field from the
EAP specification named MSK. The shared key generated during an IKE exchange MUST NOT be used for
any other purpose

Identifier: RQ_002_6157
RFC Clause: 2.16.
Type: Recommended
Applies to: Host

Requirement:
Extensible Authentication Protocol methods that do not establish a shared key SHOULD NOT be used to
authenticate IKE_SA endpoints

RFC Text:
EAP methods that do not establish a shared key SHOULD NOT be used, as they are subject to a number
of man-in-the-middle attacks [EAPMITM] if these EAP methods are used in other protocols that do not
use a server-authenticated tunnel. Please see the Security Considerations section for more details.
If EAP methods that do not generate a shared key are used, the AUTH payloads in messages 7 and 8
MUST be generated using SK_pi and SK_pr, respectively.

Identifier: RQ_002_6158
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If Extensible Authentication Protocol methods that do not generate a shared key are used in the
authentication of IKE endpoints, the AUTH payload in message 7 of the IK_SA_INIT exchange MUST be
generated using SK_pi

RFC Text:
EAP methods that do not establish a shared key SHOULD NOT be used, as they are subject to a number
of man-in-the-middle attacks [EAPMITM] if these EAP methods are used in other protocols that do not
use a server-authenticated tunnel. Please see the Security Considerations section for more details.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 164

If EAP methods that do not generate a shared key are used, the AUTH payloads in messages 7 and 8
MUST be generated using SK_pi and SK_pr, respectively.

Identifier: RQ_002_6159
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If Extensible Authentication Protocol methods that do not generate a shared key are used in the
authentication of IKE endpoints, the AUTH payload in message 8 of the IK_SA_INIT exchange MUST be
generated using SK_pr

RFC Text:
EAP methods that do not establish a shared key SHOULD NOT be used, as they are subject to a number
of man-in-the-middle attacks [EAPMITM] if these EAP methods are used in other protocols that do not
use a server-authenticated tunnel. Please see the Security Considerations section for more details.
If EAP methods that do not generate a shared key are used, the AUTH payloads in messages 7 and 8
MUST be generated using SK_pi and SK_pr, respectively.

Identifier: RQ_002_6160
RFC Clause: 2.16.
Type: Recommended
Applies to: Host

Requirement:
The initiator of an IKE_SA using Extensible Authentication Protocol SHOULD be capable of extending
the initial protocol exchange to at least ten IKE_AUTH exchanges if the responder sends notification
messages and/or retries the authentication prompt

RFC Text:
The initiator of an IKE_SA using EAP SHOULD be capable of extending the initial protocol exchange to
at least ten IKE_AUTH exchanges in the event the responder sends notification messages and/or
retries the authentication prompt. Once the protocol exchange defined by the chosen EAP
authentication method has successfully terminated, the responder MUST send an EAP payload containing
the Success message. Similarly, if the authentication method has failed, the responder MUST send an
EAP payload containing the Failure message. The responder MAY at any time terminate the IKE
exchange by sending an EAP payload containing the Failure message.

Identifier: RQ_002_6161
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation uses an Extensible Authentication Protocol method to authenticate the other
endpoint in an IKE_SA, the responder MUST send an EAP payload containing the Success message when
the authentication method has successfully terminated

RFC Text:
The initiator of an IKE_SA using EAP SHOULD be capable of extending the initial protocol exchange to
at least ten IKE_AUTH exchanges in the event the responder sends notification messages and/or
retries the authentication prompt. Once the protocol exchange defined by the chosen EAP
authentication method has successfully terminated, the responder MUST send an EAP payload containing
the Success message. Similarly, if the authentication method has failed, the responder MUST send an
EAP payload containing the Failure message. The responder MAY at any time terminate the IKE
exchange by sending an EAP payload containing the Failure message.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 165

Identifier: RQ_002_6162
RFC Clause: 2.16.
Type: Optional
Applies to: Host

Requirement:
If an IKE implementation uses an Extensible Authentication Protocol method to authenticate the other
endpoint in an IKE_SA, the responder MUST send a NOTIFY message containing an AUTHENTICATION_FAILED
error type in the event that the authentication method does not terminate successfully

RFC Text:
The initiator of an IKE_SA using EAP SHOULD be capable of extending the initial protocol exchange to
at least ten IKE_AUTH exchanges in the event the responder sends notification messages and/or
retries the authentication prompt. Once the protocol exchange defined by the chosen EAP
authentication method has successfully terminated, the responder MUST send an EAP payload containing
the Success message. Similarly, if the authentication method has failed, the responder MUST send an
EAP payload containing the Failure message. The responder MAY at any time terminate the IKE
exchange by sending an EAP payload containing the Failure message.

Identifier: RQ_002_6163
RFC Clause: 2.16.
Type: Optional
Applies to: Host

Requirement:
If an IKE implementation uses an Extensible Authentication Protocol method to authenticate the other
endpoint in an IKE_SA, the responder MAY send a NOTIFY message containing an AUTHENTICATION_FAILED
error type at any time to terminate the IKE exchange

RFC Text:
The initiator of an IKE_SA using EAP SHOULD be capable of extending the initial protocol exchange to
at least ten IKE_AUTH exchanges in the event the responder sends notification messages and/or
retries the authentication prompt. Once the protocol exchange defined by the chosen EAP
authentication method has successfully terminated, the responder MUST send an EAP payload containing
the Success message. Similarly, if the authentication method has failed, the responder MUST send an
EAP payload containing the Failure message. The responder MAY at any time terminate the IKE
exchange by sending an EAP payload containing the Failure message. Following such an extended
exchange, the EAP AUTH payloads MUST be included in the two messages following the one containing
the EAP Success message.

Identifier: RQ_002_6164
RFC Clause: 2.16.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation uses an Extensible Authentication Protocol method to authenticate the other
endpoint in an IKE_SA and the authentication is successful, the EAP AUTH payloads MUST be included
in the two messages following the one containing the EAP Success message

RFC Text:
The initiator of an IKE_SA using EAP SHOULD be capable of extending the initial protocol exchange to
at least ten IKE_AUTH exchanges in the event the responder sends notification messages and/or
retries the authentication prompt. Once the protocol exchange defined by the chosen EAP
authentication method has successfully terminated, the responder MUST send an EAP payload containing
the Success message. Similarly, if the authentication method has failed, the responder MUST send an
EAP payload containing the Failure message. The responder MAY at any time terminate the IKE
exchange by sending an EAP payload containing the Failure message. Following such an extended
exchange, the EAP AUTH payloads MUST be included in the two messages following the one containing
the EAP Success message.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 166

Identifier: RQ_002_6165
RFC Clause: 2.17.
Type: Mandatory
Applies to: Host

Requirement:
When a first CHILD_SA is created by an IKE endpoint as a result of an IKE_AUTH exchange, the
endpoint MUST generate the associated keying material using the algorithm:

 KEYMAT = prf+(SK_d, Ni | Nr)

Where Ni and Nr are the nonces from the IKE_SA_INIT exchange

RFC Text:
A single CHILD_SA is created by the IKE_AUTH exchange, and additional CHILD_SAs can optionally be
created in CREATE_CHILD_SA exchanges. Keying material for them is generated as follows:

 KEYMAT = prf+(SK_d, Ni | Nr)

Where Ni and Nr are the nonces from the IKE_SA_INIT exchange if this request is the first CHILD_SA
created or the fresh Ni and Nr from the CREATE_CHILD_SA exchange if this is a subsequent creation.

Identifier: RQ_002_6166
RFC Clause: 2.17.
Type: Mandatory
Applies to: Host

Requirement:
When an additional CHILD_SA is created by an IKE endpoint using a CREATE_CHILD_SA exchange, the
endpoint MUST generate the associated keying material using the algorithm:

 KEYMAT = prf+(SK_d, Ni | Nr)

Where Ni and Nr are the nonces from the CREATE_CHILD_SA exchange

RFC Text:
A single CHILD_SA is created by the IKE_AUTH exchange, and additional CHILD_SAs can optionally be
created in CREATE_CHILD_SA exchanges. Keying material for them is generated as follows:

 KEYMAT = prf+(SK_d, Ni | Nr)

Where Ni and Nr are the nonces from the IKE_SA_INIT exchange if this request is the first CHILD_SA
created or the fresh Ni and Nr from the CREATE_CHILD_SA exchange if this is a subsequent creation.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 167

Identifier: RQ_002_6167
RFC Clause: 2.17.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE endpoint initiates a CREATE_CHILD_SA exchange which includes a Diffie-Hellman exchange,
it MUST generate the necessary keying material using the following algorithm:

 KEYMAT = prf+(SK_d, g^ir (new) | Ni | Nr)

where g^ir (new) is the shared secret from the ephemeral Diffie-Hellman exchange of this
CREATE_CHILD_SA exchange (represented as an octet string in big endian order padded with zeros in
the high-order bits if necessary to make it the length of the modulus).

RFC Text:
For CREATE_CHILD_SA exchanges including an optional Diffie-Hellman exchange, the keying material is
defined as:

 KEYMAT = prf+(SK_d, g^ir (new) | Ni | Nr)

where g^ir (new) is the shared secret from the ephemeral Diffie- Hellman exchange of this
CREATE_CHILD_SA exchange (represented as an octet string in big endian order padded with zeros in
the high-order bits if necessary to make it the length of the modulus).

Identifier: RQ_002_6168
RFC Clause: 2.17.
Type: Mandatory
Applies to: Host

Requirement:
If multiple IPsec protocols have been negotiated in the establishment of an IKE Security Association
then the key sets for each protocol MUST be extracted from the keying material (KEYMAT), generated
from pre-set and transmitted parameters, in the order (big-endian) in which the protocol headers
will appear in the encapsulated IKE_SA_INIT packet

[See also RQ_SEC_6169, RQ_SEC_6170 and RQ_SEC_6171]

RFC Text:
Keying material MUST be taken from the expanded KEYMAT in the following order:

 All keys for SAs carrying data from the initiator to the responder
 are taken before SAs going in the reverse direction.

 If multiple IPsec protocols are negotiated, keying material is
 taken in the order in which the protocol headers will appear in
 the encapsulated packet.

 If a single protocol has both encryption and authentication keys,
 the encryption key is taken from the first octets of KEYMAT and
 the authentication key is taken from the next octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 168

Identifier: RQ_002_6169
RFC Clause: 2.17.
Type: Mandatory
Applies to: Host

Requirement:
For each IPsec protocol negotiated in the establishment of an IKE Security Association, the key sets
for each SA carrying data from the initiator to the responder MUST be extracted from the keying
material (KEYMAT), generated from pre-set and transmitted parameters, before (in big-endian order)
the key sets for the SAs carrying data from the responder to the initiator

[See also RQ_SEC_6168, RQ_SEC_6170 and RQ_SEC_6171]

RFC Text:
Keying material MUST be taken from the expanded KEYMAT in the following order:

 All keys for SAs carrying data from the initiator to the responder
 are taken before SAs going in the reverse direction.

 If multiple IPsec protocols are negotiated, keying material is
 taken in the order in which the protocol headers will appear in
 the encapsulated packet.

 If a single protocol has both encryption and authentication keys,
 the encryption key is taken from the first octets of KEYMAT and
 the authentication key is taken from the next octets.

Identifier: RQ_002_6170
RFC Clause: 2.17.
Type: Mandatory
Applies to: Host

Requirement:
For each established IKE Security Association, if the security protocol requires both encryption and
authentication keys, the encryption key MUST be extracted from the first octets (big-endian) of the
keying material (KEYMAT), generated from pre-set and transmitted parameters.

[See also RQ_SEC_6168, RQ_SEC_6169 and RQ_SEC_6171]

RFC Text:
Keying material MUST be taken from the expanded KEYMAT in the following order:

 All keys for SAs carrying data from the initiator to the responder
 are taken before SAs going in the reverse direction.

 If multiple IPsec protocols are negotiated, keying material is
 taken in the order in which the protocol headers will appear in
 the encapsulated packet.

 If a single protocol has both encryption and authentication keys,
 the encryption key is taken from the first octets of KEYMAT and
 the authentication key is taken from the next octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 169

Identifier: RQ_002_6171
RFC Clause: 2.17.
Type: Mandatory
Applies to: Host

Requirement:
For each established IKE Security Association, if the security protocol requires both encryption and
authentication keys, the authentication key MUST be extracted from the octets following (big-endian)
the encryption key in the keying material (KEYMAT), generated from pre-set and transmitted
parameters.

[See also RQ_SEC_6168, RQ_SEC_6169 and RQ_SEC_6170]

RFC Text:
Keying material MUST be taken from the expanded KEYMAT in the following order:

 All keys for SAs carrying data from the initiator to the responder
 are taken before SAs going in the reverse direction.

 If multiple IPsec protocols are negotiated, keying material is
 taken in the order in which the protocol headers will appear in
 the encapsulated packet.

 If a single protocol has both encryption and authentication keys,
 the encryption key is taken from the first octets of KEYMAT and
 the authentication key is taken from the next octets.

Identifier: RQ_002_6172
RFC Clause: 2.18.
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY use a CREATE_CHILD_SA exchange to rekey an existing IKE Security
Association

RFC Text:
The CREATE_CHILD_SA exchange can be used to rekey an existing IKE_SA (see section 2.8). New
initiator and responder SPIs are supplied in the SPI fields. The TS payloads are omitted when
rekeying an IKE_SA. SKEYSEED for the new IKE_SA is computed using SK_d from the existing IKE_SA as
follows:

 SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr)

where g^ir (new) is the shared secret from the ephemeral Diffie- Hellman exchange of this
CREATE_CHILD_SA exchange (represented as an octet string in big endian order padded with zeros if
necessary to make it the length of the modulus) and Ni and Nr are the two nonces stripped of any
headers.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 170

Identifier: RQ_002_6173
RFC Clause: 2.18.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation uses a CREATE_CHILD_SA exchange to rekey an existing IKE Security
Association, it MUST omit the Traffic Selector payloads from the exchange messages

RFC Text:
The CREATE_CHILD_SA exchange can be used to rekey an existing IKE_SA (see section 2.8). New
initiator and responder SPIs are supplied in the SPI fields. The TS payloads are omitted when
rekeying an IKE_SA. SKEYSEED for the new IKE_SA is computed using SK_d from the existing IKE_SA as
follows:

 SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr)

where g^ir (new) is the shared secret from the ephemeral Diffie- Hellman exchange of this
CREATE_CHILD_SA exchange (represented as an octet string in big endian order padded with zeros if
necessary to make it the length of the modulus) and Ni and Nr are the two nonces stripped of any
headers.

Identifier: RQ_002_6174
RFC Clause: 2.18.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation uses a CREATE_CHILD_SA exchange to rekey an existing IKE Security
Association, it MUST compute SKEYSEED for the new IKE_SA using SK_d from the existing IKE_SA as
follows:

 SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr)

where
 g^ir (new) is the shared secret from the ephemeral Diffie-Hellman exchange of this
 CREATE_CHILD_SA exchange (represented as an octet string in big endian order
 padded with zeros if necessary to make it the length of the modulus); and

 Ni and Nr are the two nonces stripped of any headers.

RFC Text:
The CREATE_CHILD_SA exchange can be used to rekey an existing IKE_SA (see section 2.8). New
initiator and responder SPIs are supplied in the SPI fields. The TS payloads are omitted when
rekeying an IKE_SA. SKEYSEED for the new IKE_SA is computed using SK_d from the existing IKE_SA as
follows:

 SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr)

where g^ir (new) is the shared secret from the ephemeral Diffie- Hellman exchange of this
CREATE_CHILD_SA exchange (represented as an octet string in big endian order padded with zeros if
necessary to make it the length of the modulus) and Ni and Nr are the two nonces stripped of any
headers.

Identifier: RQ_002_6175
RFC Clause: 2.18.
Type: Mandatory
Applies to: Host

Requirement:
When and IKE implementation uses the CREATE_CHILD_SA exchange to rekey an existing IKE Security
Association. it MUST reset the message counters on the rekeyed IKE_SA to zero (0)

RFC Text:
The new IKE_SA MUST reset its message counters to 0.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 171

Identifier: RQ_002_6176
RFC Clause: 2.19.
Type: Mandatory
Applies to: Host

Requirement:
In order to request a temporary IP address in a network protected by a security gateway, an IKE
endpoint MAY request the creation of a CHILD_SA to the gateway and include in this request a
Configuration Payload (CP) with the CFG Type set to CFG_REQUEST and the Attribute Type set to
INTERNAL_IP6_ADDRESS

RFC Text:
Most commonly occurring in the endpoint-to-security-gateway scenario, an endpoint may need an IP
address in the network protected by the security gateway and may need to have that address
dynamically assigned. A request for such a temporary address can be included in any request to
create a CHILD_SA (including the implicit request in message 3) by including a CP payload.

This function provides address allocation to an IPsec Remote Access Client (IRAC) trying to tunnel
into a network protected by an IPsec Remote Access Server (IRAS). Since the IKE_AUTH exchange
creates an IKE_SA and a CHILD_SA, the IRAC MUST request the IRAS-controlled address (and optionally
other information concerning the protected network) in the IKE_AUTH exchange. The IRAS may procure
an address for the IRAC from any number of sources such as a DHCP/BOOTP server or its own address
pool.

Identifier: RQ_002_6177
RFC Clause: 2.19.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE security gateway receives an IK_AUTH request containing a Configuration Payload (CP)
with the CFG Type set to CFG_REQUEST and the Attribute Type set to INTERNAL_IP6_ADDRESS from an IKE
endpoint, it MUST include in the IK_AUTH response a Configuration Payload (CP) with the CFG Type set
to CFG_REPLY, the Attribute Type set to INTERNAL_IP6_ADDRESS and the Attribute Value containing the
temporary IP address to be used by the requesting endpoint

RFC Text:
Most commonly occurring in the endpoint-to-security-gateway scenario, an endpoint may need an IP
address in the network protected by the security gateway and may need to have that address
dynamically assigned. A request for such a temporary address can be included in any request to
create a CHILD_SA (including the implicit request in message 3) by including a CP payload.

This function provides address allocation to an IPsec Remote Access Client (IRAC) trying to tunnel
into a network protected by an IPsec Remote Access Server (IRAS). Since the IKE_AUTH exchange
creates an IKE_SA and a CHILD_SA, the IRAC MUST request the IRAS-controlled address (and optionally
other information concerning the protected network) in the IKE_AUTH exchange. The IRAS may procure
an address for the IRAC from any number of sources such as a DHCP/BOOTP server or its own address
pool.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 172

Identifier: RQ_002_6178
RFC Clause: 2.19.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends either an IKE_AUTH request or an IKE_AUTH response containing a
Configuration Payload (CP), it MUST insert the CP payload before the SA payload.

RFC Text:
This function provides address allocation to an IPsec Remote Access Client (IRAC) trying to tunnel
into a network protected by an IPsec Remote Access Server (IRAS). Since the IKE_AUTH exchange
creates an IKE_SA and a CHILD_SA, the IRAC MUST request the IRAS-controlled address (and optionally
other information concerning the protected network) in the IKE_AUTH exchange. The IRAS may procure
an address for the IRAC from any number of sources such as a DHCP/BOOTP server or its own address
pool.

In all cases, the CP payload MUST be inserted before the SA payload. In variations of the protocol
where there are multiple IKE_AUTH exchanges, the CP payloads MUST be inserted in the messages
containing the SA payloads.

CP(CFG_REQUEST) MUST contain at least an INTERNAL_ADDRESS attribute (either IPv4 or IPv6) but MAY
contain any number of additional attributes the initiator wants returned in the response.

Identifier: RQ_002_6179
RFC Clause: 2.19.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation is required to send multiple IKE_AUTH messages (requests or responses) to
establish a CHILD_SA between an endpoint and a security gateway, the Configuration Payloads (CP)
MUST be included in each message containing the SA payload.

RFC Text:
This function provides address allocation to an IPsec Remote Access Client (IRAC) trying to tunnel
into a network protected by an IPsec Remote Access Server (IRAS). Since the IKE_AUTH exchange
creates an IKE_SA and a CHILD_SA, the IRAC MUST request the IRAS-controlled address (and optionally
other information concerning the protected network) in the IKE_AUTH exchange. The IRAS may procure
an address for the IRAC from any number of sources such as a DHCP/BOOTP server or its own address
pool.

In all cases, the CP payload MUST be inserted before the SA payload. In variations of the protocol
where there are multiple IKE_AUTH exchanges, the CP payloads MUST be inserted in the messages
containing the SA payloads.

CP(CFG_REQUEST) MUST contain at least an INTERNAL_ADDRESS attribute (either IPv4 or IPv6) but MAY
contain any number of additional attributes the initiator wants returned in the response.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 173

Identifier: RQ_002_6180
RFC Clause: 2.19.
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation is required to send an IKE_AUTH messages containing a Configuration
Payload (CP) with the CFG Type set to CFG_REQUEST, it MAY contain any number of attributes the
initiator wants returned in the response in addition to the mandatory INTERNAL_IP6_ADDRESS attribute
type

RFC Text:
This function provides address allocation to an IPsec Remote Access Client (IRAC) trying to tunnel
into a network protected by an IPsec Remote Access Server (IRAS). Since the IKE_AUTH exchange
creates an IKE_SA and a CHILD_SA, the IRAC MUST request the IRAS-controlled address (and optionally
other information concerning the protected network) in the IKE_AUTH exchange. The IRAS may procure
an address for the IRAC from any number of sources such as a DHCP/BOOTP server or its own address
pool.

In all cases, the CP payload MUST be inserted before the SA payload. In variations of the protocol
where there are multiple IKE_AUTH exchanges, the CP payloads MUST be inserted in the messages
containing the SA payloads.

CP(CFG_REQUEST) MUST contain at least an INTERNAL_ADDRESS attribute (either IPv4 or IPv6) but MAY
contain any number of additional attributes the initiator wants returned in the response.

Identifier: RQ_002_6181
RFC Clause: 2.19.
Type: Optional
Applies to: Host

Requirement:
When an IKE security gateway receives an IKE_AUTH request containing a Configuration Payload (CP)
with the CFG Type set to CFG_REQUEST, it MAY return additional configuration attributes that were
not included in the original request

RFC Text:
All returned values will be implementation dependent. As can be seen in the above example, the IRAS
MAY also send other attributes that were not included in CP(CFG_REQUEST) and MAY ignore the non-
mandatory attributes that it does not support.

The responder MUST NOT send a CFG_REPLY without having first received a CP(CFG_REQUEST) from the
initiator, because we do not want the IRAS to perform an unnecessary configuration lookup if the
IRAC cannot process the REPLY. In the case where the IRAS's configuration requires that CP be used
for a given identity IDi, but IRAC has failed to send a CP(CFG_REQUEST), IRAS MUST fail the request,
and terminate the IKE exchange with a FAILED_CP_REQUIRED error.

Identifier: RQ_002_6182
RFC Clause: 2.19.
Type: Optional
Applies to: Host

Requirement:
When an IKE security gateway receives an IKE_AUTH request containing a Configuration Payload (CP)
with the CFG Type set to CFG_REQUEST, it MAY ignore any requested non-mandatory attributes that it
does not support

RFC Text:
All returned values will be implementation dependent. As can be seen in the above example, the IRAS
MAY also send other attributes that were not included in CP(CFG_REQUEST) and MAY ignore the non-
mandatory attributes that it does not support.

The responder MUST NOT send a CFG_REPLY without having first received a CP(CFG_REQUEST) from the
initiator, because we do not want the IRAS to perform an unnecessary configuration lookup if the
IRAC cannot process the REPLY. In the case where the IRAS's configuration requires that CP be used
for a given identity IDi, but IRAC has failed to send a CP(CFG_REQUEST), IRAS MUST fail the request,
and terminate the IKE exchange with a FAILED_CP_REQUIRED error.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 174

Identifier: RQ_002_6183
RFC Clause: 2.19.
Type: Mandatory
Applies to: Host

Requirement:
An IKE security gateway MUST NOT send a Configuration Payload (CP) with the CFG Type set to
CFG_REPLY without having first received a CP with the CFG Type set to CFG_REQUEST from the
initiating endpoint

RFC Text:
All returned values will be implementation dependent. As can be seen in the above example, the IRAS
MAY also send other attributes that were not included in CP(CFG_REQUEST) and MAY ignore the non-
mandatory attributes that it does not support.

The responder MUST NOT send a CFG_REPLY without having first received a CP(CFG_REQUEST) from the
initiator, because we do not want the IRAS to perform an unnecessary configuration lookup if the
IRAC cannot process the REPLY. In the case where the IRAS's configuration requires that CP be used
for a given identity IDi, but IRAC has failed to send a CP(CFG_REQUEST), IRAS MUST fail the request,
and terminate the IKE exchange with a FAILED_CP_REQUIRED error.

Identifier: RQ_002_6184
RFC Clause: 2.19.
Type: Mandatory
Applies to: Host

Requirement:
If a security gateway is configured to expect an IKE_AUTH request from a particular endpoint to
include a Configuration Payload with the CFG Type set to CFG_REQUEST, it MUST terminate any IKE_AUTH
request from this endpoint if the CFG_REQUEST is not included and send a Notify payload to the
endpoint with an Error Type set to FAILED_CP_REQUIRED.

RFC Text:
All returned values will be implementation dependent. As can be seen in the above example, the IRAS
MAY also send other attributes that were not included in CP(CFG_REQUEST) and MAY ignore the non-
mandatory attributes that it does not support.

The responder MUST NOT send a CFG_REPLY without having first received a CP(CFG_REQUEST) from the
initiator, because we do not want the IRAS to perform an unnecessary configuration lookup if the
IRAC cannot process the REPLY. In the case where the IRAS's configuration requires that CP be used
for a given identity IDi, but IRAC has failed to send a CP(CFG_REQUEST), IRAS MUST fail the request,
and terminate the IKE exchange with a FAILED_CP_REQUIRED error.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 175

Identifier: RQ_002_6185
RFC Clause: 2.20.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint receives an INFORMATIONAL exchange message after the IKE_SA and first CHILD_SA
have been established and it contains a Configuration (CP) Payload with the CFG Type set to
CFG_REQUEST and the Attribute Type set to APPLICATION_VERSION, it MUST send one of the following to
the peer IKE endpoint:

(i) an INFORMATIONAL exchange message containing a CP payload with the CFG Type set to
 CFG_REPLY, the Attribute Type set to APPLICATION_VERSION and the Attribute Value set
 to a string containing information regarding the endpoint's software version;
(ii) an INFORMATIONAL exchange message containing a CP payload with the CFG Type set to
 CFG_REPLY, the Attribute Type set to APPLICATION_VERSION and the Attribute Value set
 to an empty string; or
(iii) an INFORMATIONAL exchange message containing no CP payload if CP is not supported.

RFC Text:
An IKE implementation MAY decline to give out version information prior to authentication or even
after authentication to prevent trolling in case some implementation is known to have some security
weakness. In that case, it MUST either return an empty string or no CP payload if CP is not
supported.

 Initiator Responder
 ----------------------------- --------------------------
 HDR, SK{CP(CFG_REQUEST)} -->
 <-- HDR, SK{CP(CFG_REPLY)}

 CP(CFG_REQUEST)=
 APPLICATION_VERSION("")

 CP(CFG_REPLY) APPLICATION_VERSION("foobar v1.3beta, (c) Foo Bar Inc.")

Identifier: RQ_002_6186
RFC Clause: 2.21.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request that is badly formatted or unacceptable for reasons
of policy, its response MUST contain a Notify payload indicating the error

RFC Text:
There are many kinds of errors that can occur during IKE processing. If a request is received that
is badly formatted or unacceptable for reasons of policy (e.g., no matching cryptographic
algorithms), the response MUST contain a Notify payload indicating the error. If an error occurs
outside the context of an IKE request (e.g., the node is getting ESP messages on a nonexistent SPI),
the node SHOULD initiate an INFORMATIONAL exchange with a Notify payload describing the problem

Identifier: RQ_002_6187
RFC Clause: 2.21.
Type: Recommended
Applies to: Host

Requirement:
If an IKE implementation detects an error outside the context of an IKE request (e.g., the node is
getting ESP messages on a nonexistent SPI), it SHOULD initiate an INFORMATIONAL exchange with a
Notify payload describing the problem

RFC Text:
There are many kinds of errors that can occur during IKE processing. If a request is received that
is badly formatted or unacceptable for reasons of policy (e.g., no matching cryptographic
algorithms), the response MUST contain a Notify payload indicating the error. If an error occurs
outside the context of an IKE request (e.g., the node is getting ESP messages on a nonexistent SPI),
the node SHOULD initiate an INFORMATIONAL exchange with a Notify payload describing the problem

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 176

Identifier: RQ_002_6188
RFC Clause: 2.21.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint receives an IKE exchange response on UDP port 500 or 4500 outside the context of
an IKE_SA known to it, it MUST NOT send any response to the message.

RFC Text:
If a node receives a message on UDP port 500 or 4500 outside the context of an IKE_SA known to it
(and not a request to start one), it may be the result of a recent crash of the node. If the
message is marked as a response, the node MAY audit the suspicious event but MUST NOT respond. If
the message is marked as a request, the node MAY audit the suspicious event and MAY send a response.
If a response is sent, the response MUST be sent to the IP address and port from whence it came with
the same IKE SPIs and the Message ID copied. The response MUST NOT be cryptographically protected
and MUST contain a Notify payload indicating INVALID_IKE_SPI.

A node receiving such an unprotected Notify payload MUST NOT respond and MUST NOT change the state
of any existing SAs. The message might be a forgery or might be a response the genuine
correspondent was tricked into sending. A node SHOULD treat such a message (and also a network
message like ICMP destination unreachable) as a hint that there might be problems with SAs to that
IP address and SHOULD initiate a liveness test for any such IKE_SA. An implementation SHOULD limit
the frequency of such tests to avoid being tricked into participating in a denial of service attack.

Identifier: RQ_002_6189
RFC Clause: 2.21.
Type: Optional
Applies to: Host

Requirement:
If an IKE endpoint receives an IKE exchange request on UDP port 500 or 4500 outside the context of
an IKE_SA known to it, it MAY send a response to the message.

RFC Text:
If a node receives a message on UDP port 500 or 4500 outside the context of an IKE_SA known to it
(and not a request to start one), it may be the result of a recent crash of the node. If the
message is marked as a response, the node MAY audit the suspicious event but MUST NOT respond. If
the message is marked as a request, the node MAY audit the suspicious event and MAY send a response.
If a response is sent, the response MUST be sent to the IP address and port from whence it came with
the same IKE SPIs and the Message ID copied. The response MUST NOT be cryptographically protected
and MUST contain a Notify payload indicating INVALID_IKE_SPI.

A node receiving such an unprotected Notify payload MUST NOT respond and MUST NOT change the state
of any existing SAs. The message might be a forgery or might be a response the genuine
correspondent was tricked into sending. A node SHOULD treat such a message (and also a network
message like ICMP destination unreachable) as a hint that there might be problems with SAs to that
IP address and SHOULD initiate a liveness test for any such IKE_SA. An implementation SHOULD limit
the frequency of such tests to avoid being tricked into participating in a denial of service attack.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 177

Identifier: RQ_002_6190
RFC Clause: 2.21.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint responds to IKE exchange request received on UDP port 500 or 4500 but outside the
context of an IKE_SA known to it, it MUST send the response to the IP address and port from whence
it came with the same IKE SPIs and the Message ID copied.

RFC Text:
If a node receives a message on UDP port 500 or 4500 outside the context of an IKE_SA known to it
(and not a request to start one), it may be the result of a recent crash of the node. If the
message is marked as a response, the node MAY audit the suspicious event but MUST NOT respond. If
the message is marked as a request, the node MAY audit the suspicious event and MAY send a response.
If a response is sent, the response MUST be sent to the IP address and port from whence it came with
the same IKE SPIs and the Message ID copied. The response MUST NOT be cryptographically protected
and MUST contain a Notify payload indicating INVALID_IKE_SPI.

A node receiving such an unprotected Notify payload MUST NOT respond and MUST NOT change the state
of any existing SAs. The message might be a forgery or might be a response the genuine
correspondent was tricked into sending. A node SHOULD treat such a message (and also a network
message like ICMP destination unreachable) as a hint that there might be problems with SAs to that
IP address and SHOULD initiate a liveness test for any such IKE_SA. An implementation SHOULD limit
the frequency of such tests to avoid being tricked into participating in a denial of service attack.

Identifier: RQ_002_6191
RFC Clause: 2.21.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint responds to IKE exchange request received on UDP port 500 or 4500 but outside the
context of an IKE_SA known to it, it MUST NOT cryptographically protect the response

RFC Text:
If a node receives a message on UDP port 500 or 4500 outside the context of an IKE_SA known to it
(and not a request to start one), it may be the result of a recent crash of the node. If the
message is marked as a response, the node MAY audit the suspicious event but MUST NOT respond. If
the message is marked as a request, the node MAY audit the suspicious event and MAY send a response.
If a response is sent, the response MUST be sent to the IP address and port from whence it came with
the same IKE SPIs and the Message ID copied. The response MUST NOT be cryptographically protected
and MUST contain a Notify payload indicating INVALID_IKE_SPI.

A node receiving such an unprotected Notify payload MUST NOT respond and MUST NOT change the state
of any existing SAs. The message might be a forgery or might be a response the genuine
correspondent was tricked into sending. A node SHOULD treat such a message (and also a network
message like ICMP destination unreachable) as a hint that there might be problems with SAs to that
IP address and SHOULD initiate a liveness test for any such IKE_SA. An implementation SHOULD limit
the frequency of such tests to avoid being tricked into participating in a denial of service attack.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 178

Identifier: RQ_002_6192
RFC Clause: 2.21.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint responds to IKE exchange request received on UDP port 500 or 4500 but outside the
context of an IKE_SA known to it, it MUST include a Notify payload indicating INVALID_IKE_SPI in the
response

RFC Text:
If a node receives a message on UDP port 500 or 4500 outside the context of an IKE_SA known to it
(and not a request to start one), it may be the result of a recent crash of the node. If the
message is marked as a response, the node MAY audit the suspicious event but MUST NOT respond. If
the message is marked as a request, the node MAY audit the suspicious event and MAY send a response.
If a response is sent, the response MUST be sent to the IP address and port from whence it came with
the same IKE SPIs and the Message ID copied. The response MUST NOT be cryptographically protected
and MUST contain a Notify payload indicating INVALID_IKE_SPI.

A node receiving such an unprotected Notify payload MUST NOT respond and MUST NOT change the state
of any existing SAs. The message might be a forgery or might be a response the genuine
correspondent was tricked into sending. A node SHOULD treat such a message (and also a network
message like ICMP destination unreachable) as a hint that there might be problems with SAs to that
IP address and SHOULD initiate a liveness test for any such IKE_SA. An implementation SHOULD limit
the frequency of such tests to avoid being tricked into participating in a denial of service attack.

Identifier: RQ_002_6193
RFC Clause: 2.21.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint receives a cryptographically unprotected IKE response containing a Notify payload
indicating INVALID_IKE_SPI, it MUST NOT respond in any way to this message

RFC Text:
If a node receives a message on UDP port 500 or 4500 outside the context of an IKE_SA known to it
(and not a request to start one), it may be the result of a recent crash of the node. If the
message is marked as a response, the node MAY audit the suspicious event but MUST NOT respond. If
the message is marked as a request, the node MAY audit the suspicious event and MAY send a response.
If a response is sent, the response MUST be sent to the IP address and port from whence it came with
the same IKE SPIs and the Message ID copied. The response MUST NOT be cryptographically protected
and MUST contain a Notify payload indicating INVALID_IKE_SPI.

A node receiving such an unprotected Notify payload MUST NOT respond and MUST NOT change the state
of any existing SAs. The message might be a forgery or might be a response the genuine
correspondent was tricked into sending. A node SHOULD treat such a message (and also a network
message like ICMP destination unreachable) as a hint that there might be problems with SAs to that
IP address and SHOULD initiate a liveness test for any such IKE_SA. An implementation SHOULD limit
the frequency of such tests to avoid being tricked into participating in a denial of service attack.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 179

Identifier: RQ_002_6194
RFC Clause: 2.21.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint receives a cryptographically unprotected IKE response containing a Notify payload
indicating INVALID_IKE_SPI, it MUST NOT change the state of any existing Security Associations

RFC Text:
If a node receives a message on UDP port 500 or 4500 outside the context of an IKE_SA known to it
(and not a request to start one), it may be the result of a recent crash of the node. If the
message is marked as a response, the node MAY audit the suspicious event but MUST NOT respond. If
the message is marked as a request, the node MAY audit the suspicious event and MAY send a response.
If a response is sent, the response MUST be sent to the IP address and port from whence it came with
the same IKE SPIs and the Message ID copied. The response MUST NOT be cryptographically protected
and MUST contain a Notify payload indicating INVALID_IKE_SPI.

A node receiving such an unprotected Notify payload MUST NOT respond and MUST NOT change the state
of any existing SAs. The message might be a forgery or might be a response the genuine
correspondent was tricked into sending. A node SHOULD treat such a message (and also a network
message like ICMP destination unreachable) as a hint that there might be problems with SAs to that
IP address and SHOULD initiate a liveness test for any such IKE_SA. An implementation SHOULD limit
the frequency of such tests to avoid being tricked into participating in a denial of service attack.

Identifier: RQ_002_6195
RFC Clause: 2.21.
Type: Recommended
Applies to: Host

Requirement:
If an IKE endpoint receives a cryptographically unprotected IKE response containing a Notify payload
indicating INVALID_IKE_SPI, it SHOULD initiate a liveness test for the IKE_SA on which the
unprotected response was received

RFC Text:
If a node receives a message on UDP port 500 or 4500 outside the context of an IKE_SA known to it
(and not a request to start one), it may be the result of a recent crash of the node. If the
message is marked as a response, the node MAY audit the suspicious event but MUST NOT respond. If
the message is marked as a request, the node MAY audit the suspicious event and MAY send a response.
If a response is sent, the response MUST be sent to the IP address and port from whence it came with
the same IKE SPIs and the Message ID copied. The response MUST NOT be cryptographically protected
and MUST contain a Notify payload indicating INVALID_IKE_SPI.

A node receiving such an unprotected Notify payload MUST NOT respond and MUST NOT change the state
of any existing SAs. The message might be a forgery or might be a response the genuine correspondent
was tricked into sending. A node SHOULD treat such a message (and also a network message like ICMP
destination unreachable) as a hint that there might be problems with SAs to that IP address and
SHOULD initiate a liveness test for any such IKE_SA. An implementation SHOULD limit the frequency
of such tests to avoid being tricked into participating in a denial of service attack.

Identifier: RQ_002_6196
RFC Clause: 2.21.
Type: Optional
Applies to: Host

Requirement:
If an IKE endpoint receives a cryptographically unprotected, unsolicited or otherwise unexpected
message from the other endpoint in an established IKE Security Association, it MAY send an IKE
Notify payload in an IKE INFORMATIONAL exchange over that SA

RFC Text:
A node receiving a suspicious message from an IP address with which it has an IKE_SA MAY send an IKE
Notify payload in an IKE INFORMATIONAL exchange over that SA. The recipient MUST NOT change the
state of any SA's as a result but SHOULD audit the event to aid in diagnosing malfunctions. A node
MUST limit the rate at which it will send messages in response to unprotected messages.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 180

Identifier: RQ_002_6197
RFC Clause: 2.21.
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint receives a cryptographically unprotected, unsolicited or otherwise unexpected
message from the other endpoint in an established IKE Security Association, it MUST NOT change the
state of any SA's as a result

RFC Text:
A node receiving a suspicious message from an IP address with which it has an IKE_SA MAY send an IKE
Notify payload in an IKE INFORMATIONAL exchange over that SA. The recipient MUST NOT change the
state of any SA's as a result but SHOULD audit the event to aid in diagnosing malfunctions. A node
MUST limit the rate at which it will send messages in response to unprotected messages.

Identifier: RQ_002_6198
RFC Clause: 2.21.
Type: Recommended
Applies to: Host

Requirement:
If an IKE endpoint receives a cryptographically unprotected, unsolicited or otherwise unexpected
message from the other endpoint in an established IKE Security Association, it SHOULD record the
event to aid in diagnosing malfunctions

RFC Text:
A node receiving a suspicious message from an IP address with which it has an IKE_SA MAY send an IKE
Notify payload in an IKE INFORMATIONAL exchange over that SA. The recipient MUST NOT change the
state of any SA's as a result but SHOULD audit the event to aid in diagnosing malfunctions. A node
MUST limit the rate at which it will send messages in response to unprotected messages.

Identifier: RQ_002_6199
RFC Clause: 2.22.
Type: Optional
Applies to: Host

Requirement:
An IKE endpoint requesting a CHILD_SA MAY advertise its support for one or more compression
algorithms through one or more Notify payloads of type IPCOMP_SUPPORTED

RFC Text:
Negotiation of IP compression is separate from the negotiation of cryptographic parameters
associated with a CHILD_SA. A node requesting a CHILD_SA MAY advertise its support for one or more
compression algorithms through one or more Notify payloads of type IPCOMP_SUPPORTED. The response
MAY indicate acceptance of a single compression algorithm with a Notify payload of type
IPCOMP_SUPPORTED. These payloads MUST NOT occur in messages that do not contain SA payloads.

Identifier: RQ_002_6200
RFC Clause: 2.22.
Type: Mandatory
Applies to: Host

Requirement:
An IKE endpoint receiving a CHILD_SA request advertising support for one or more compression
algorithms through one or more Notify payloads of type IPCOMP_SUPPORTED MUST NOT indicate acceptance
of more than a single compression algorithm with a Notify payload of type IPCOMP_SUPPORTED

RFC Text:
Negotiation of IP compression is separate from the negotiation of cryptographic parameters
associated with a CHILD_SA. A node requesting a CHILD_SA MAY advertise its support for one or more
compression algorithms through one or more Notify payloads of type IPCOMP_SUPPORTED. The response
MAY indicate acceptance of a single compression algorithm with a Notify payload of type
IPCOMP_SUPPORTED. These payloads MUST NOT occur in messages that do not contain SA payloads.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 181

Identifier: RQ_002_6201
RFC Clause: 2.22.
Type: Mandatory
Applies to: Host

Requirement:
An IKE endpoint MUST NOT include Notify payloads of type IPCOMP_SUPPORTED in messages that do not
contain SA payloads

RFC Text:
Negotiation of IP compression is separate from the negotiation of cryptographic parameters
associated with a CHILD_SA. A node requesting a CHILD_SA MAY advertise its support for one or more
compression algorithms through one or more Notify payloads of type IPCOMP_SUPPORTED. The response
MAY indicate acceptance of a single compression algorithm with a Notify payload of type
IPCOMP_SUPPORTED. These payloads MUST NOT occur in messages that do not contain SA payloads.

Identifier: RQ_002_6202
RFC Clause: 2.22.
Type: Mandatory
Applies to: Host

Requirement:
An endpoint in an IKE Security Association MUST NOT accept an IP compression algorithm that was not
included in the set of available algorithms proposed to the other endpoint during a CREATE_CHILD_SA
exchange

RFC Text:
Although there has been discussion of allowing multiple compression algorithms to be accepted and to
have different compression algorithms available for the two directions of a CHILD_SA,
implementations of this specification MUST NOT accept an IPComp algorithm that was not proposed,
MUST NOT accept more than one, and MUST NOT compress using an algorithm other than one proposed and
accepted in the setup of the CHILD_SA.

Identifier: RQ_002_6203
RFC Clause: 2.22.
Type: Mandatory
Applies to: Host

Requirement:
An endpoint in an IKE Security Association MUST NOT accept more than one IP compression algorithm
from the set of available algorithms proposed by the other endpoint during a CREATE_CHILD_SA
exchange

RFC Text:
Although there has been discussion of allowing multiple compression algorithms to be accepted and to
have different compression algorithms available for the two directions of a CHILD_SA,
implementations of this specification MUST NOT accept an IPComp algorithm that was not proposed,
MUST NOT accept more than one, and MUST NOT compress using an algorithm other than one proposed and
accepted in the setup of the CHILD_SA.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 182

Identifier: RQ_002_6204
RFC Clause: 2.22.
Type: Mandatory
Applies to: Host

Requirement:
An endpoint in an IKE Security Association MUST use only the IP compression algorithm proposed and
accepted during a CREATE_CHILD_SA exchange

RFC Text:
Although there has been discussion of allowing multiple compression algorithms to be accepted and to
have different compression algorithms available for the two directions of a CHILD_SA,
implementations of this specification MUST NOT accept an IPComp algorithm that was not proposed,
MUST NOT accept more than one, and MUST NOT compress using an algorithm other than one proposed and
accepted in the setup of the CHILD_SA.

Identifier: RQ_002_6205
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE request, it MUST set both the Source Port and the
Destination Port in the UDP Header to 500

RFC Text:
It is a common practice of NATs to translate TCP and UDP port numbers as well as addresses and use
the port numbers of inbound packets to decide which internal node should get a given packet. For
this reason, even though IKE packets MUST be sent from and to UDP port 500, they MUST be accepted
coming from any port and responses MUST be sent to the port from whence they came. This is because
the ports may be modified as the packets pass through NATs. Similarly, IP addresses of the IKE
endpoints are generally not included in the IKE payloads because the payloads are cryptographically
protected and could not be transparently modified by NATs.

Port 4500 is reserved for UDP-encapsulated ESP and IKE. When working through a NAT, it is generally
better to pass IKE packets over port 4500 because some older NATs handle IKE traffic on port 500
cleverly in an attempt to transparently establish IPsec connections between endpoints that don't
handle NAT traversal themselves. Such NATs may interfere with the straightforward NAT traversal
envisioned by this document, so an IPsec endpoint that discovers a NAT between it and its
correspondent MUST send all subsequent traffic to and from port 4500, which NATs should not treat
specially (as they might with port 500).

Identifier: RQ_002_6206
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST ACCEPT IKE messages with any source port number set in the UDP Header

RFC Text:
It is a common practice of NATs to translate TCP and UDP port numbers as well as addresses and use
the port numbers of inbound packets to decide which internal node should get a given packet. For
this reason, even though IKE packets MUST be sent from and to UDP port 500, they MUST be accepted
coming from any port and responses MUST be sent to the port from whence they came. This is because
the ports may be modified as the packets pass through NATs. Similarly, IP addresses of the IKE
endpoints are generally not included in the IKE payloads because the payloads are cryptographically
protected and could not be transparently modified by NATs.

Port 4500 is reserved for UDP-encapsulated ESP and IKE. When working through a NAT, it is generally
better to pass IKE packets over port 4500 because some older NATs handle IKE traffic on port 500
cleverly in an attempt to transparently establish IPsec connections between endpoints that don't
handle NAT traversal themselves. Such NATs may interfere with the straightforward NAT traversal
envisioned by this document, so an IPsec endpoint that discovers a NAT between it and its
correspondent MUST send all subsequent traffic to and from port 4500, which NATs should not treat
specially (as they might with port 500).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 183

Identifier: RQ_002_6207
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal, it must set the Destination Port number in the UDP
Header of an IKE response message to the Source Port number set in the UDP Header of the associated
received message

RFC Text:
It is a common practice of NATs to translate TCP and UDP port numbers as well as addresses and use
the port numbers of inbound packets to decide which internal node should get a given packet. For
this reason, even though IKE packets MUST be sent from and to UDP port 500, they MUST be accepted
coming from any port and responses MUST be sent to the port from whence they came. This is because
the ports may be modified as the packets pass through NATs. Similarly, IP addresses of the IKE
endpoints are generally not included in the IKE payloads because the payloads are cryptographically
protected and could not be transparently modified by NATs.

Port 4500 is reserved for UDP-encapsulated ESP and IKE. When working through a NAT, it is generally
better to pass IKE packets over port 4500 because some older NATs handle IKE traffic on port 500
cleverly in an attempt to transparently establish IPsec connections between endpoints that don't
handle NAT traversal themselves. Such NATs may interfere with the straightforward NAT traversal
envisioned by this document, so an IPsec endpoint that discovers a NAT between it and its
correspondent MUST send all subsequent traffic to and from port 4500, which NATs should not treat
specially (as they might with port 500).

Identifier: RQ_002_6208
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE endpoint determines that a Network Address Translation (NAT) gateway exists between itself
and the other endpoint in an IKE Security Association, it MUST set the Source and the Destination
Port number to 4500 in the UDP Header of all subsequent messages to the other endpoint

RFC Text:
It is a common practice of NATs to translate TCP and UDP port numbers as well as addresses and use
the port numbers of inbound packets to decide which internal node should get a given packet. For
this reason, even though IKE packets MUST be sent from and to UDP port 500, they MUST be accepted
coming from any port and responses MUST be sent to the port from whence they came. This is because
the ports may be modified as the packets pass through NATs. Similarly, IP addresses of the IKE
endpoints are generally not included in the IKE payloads because the payloads are cryptographically
protected and could not be transparently modified by NATs.

Port 4500 is reserved for UDP-encapsulated ESP and IKE. When working through a NAT, it is generally
better to pass IKE packets over port 4500 because some older NATs handle IKE traffic on port 500
cleverly in an attempt to transparently establish IPsec connections between endpoints that don't
handle NAT traversal themselves. Such NATs may interfere with the straightforward NAT traversal
envisioned by this document, so an IPsec endpoint that discovers a NAT between it and its
correspondent MUST send all subsequent traffic to and from port 4500, which NATs should not treat
specially (as they might with port 500).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 184

Identifier: RQ_002_6209
RFC Clause: 2.23
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY support NAT traversal

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 185

Identifier: RQ_002_6210
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal, an IKE implementation MUST respond to IKE messages
received on UDP port 500

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 186

Identifier: RQ_002_6211
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal , it MUST respond to IKE messages received on UDP
port 4500

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 187

Identifier: RQ_002_6212
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal, it must set the Destination Port number in the UDP
Header of an IKE response message to the Source Port number set in the UDP Header of the associated
received message

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 188

Identifier: RQ_002_6213
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal, it must set the Destination IP Address in the IPv6
Header of an IKE response message to the Source IP Address set in the IPv6 Header of the associated
received message

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 189

Identifier: RQ_002_6214
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal , it MUST include Notify payloads of type
NAT_DETECTION_SOURCE_IP and NAT_DETECTION_DESTINATION_IP in any IKE_SA_INIT request

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 190

Identifier: RQ_002_6215
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal , it MUST include Notify payloads of type
NAT_DETECTION_SOURCE_IP and NAT_DETECTION_DESTINATION_IP in any IKE_SA_INIT response

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 191

Identifier: RQ_002_6216
RFC Clause: 2.23
Type: Recommended
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal and it receives a NAT_DETECTION_DESTINATION_IP
payload that does not match the SHA-1 hash of the destination IP address in the IPv6 Header and the
port number found in the UDP Header of the packet containing the payload, it SHOULD start sending
keepalive packets as defined in RFC3948

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 192

Identifier: RQ_002_6217
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal and it receives a NAT_DETECTION_DESTINATION_IP
payload that does not match the SHA-1 hash of the destination IP address in the IPv6 Header and the
port number found in the UDP Header of the packet containing the payload, all subsequent IKE packets
associated with this Security Association MUST be inserted immediately after the UDP Header but
preceded by four bytes of zero and sent from UDP port 4500

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 193

Identifier: RQ_002_6218
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal and it receives a NAT_DETECTION_SOURCE_IP payload
that does not match the SHA-1 hash of the source IP address in the IPv6 Header and the port number
found in the UDP Header of the packet containing the payload, all subsequent IKE packets associated
with this Security Association MUST be inserted immediately after the UDP Header but preceded by
four bytes of zero and sent from UDP port 4500

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 194

Identifier: RQ_002_6219
RFC Clause: 2.23
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports NAT Traversal, any Traffic Selector MUST contain exactly one IP
address (i.e. Starting Address and Ending Address must be set to the same value)

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 195

Identifier: RQ_002_6220
RFC Clause: 2.23
Type: Recommended
Applies to: Security Association

Requirement:
If an IKE implementation supports NAT Traversal and it has not detected the presence of a NAT
between itself and the other endpoint in an IKE Security Association, it SHOULD send all packets
(including retransmission packets) to the IP address and port from the last valid authenticated
packet from the other endpoint

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 196

Identifier: RQ_002_6221
RFC Clause: 2.23
Type: Recommended
Applies to: Security Association

Requirement:
If an IKE implementation supports NAT Traversal and it has detected the presence of a NAT gateway
between itself and the other endpoint in an IKE Security Association, it SHOULD NOT send any packets
(including retransmission packets) to the IP address and port from the last valid authenticated
packet from the other endpoint

RFC Text:
The specific requirements for supporting NAT traversal [RFC3715] are listed below. Support for NAT
traversal is optional. In this section only, requirements listed as MUST apply only to
implementations supporting NAT traversal.

 * IKE MUST listen on port 4500 as well as port 500. IKE MUST
 respond to the IP address and port from which packets arrived.

 * Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to
 detect if there is NAT between the hosts, and which end is behind
 the NAT. The location of the payloads in the IKE_SA_INIT packets
 are just after the Ni and Nr payloads (before the optional CERTREQ
 payload).

 * If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the other end is
 behind NAT (i.e., someone along the route changed the source
 address of the original packet to match the address of the NAT
 box). In this case, this end should allow dynamic update of the
 other ends IP address, as described later.

 * If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind a NAT. In this case, this end SHOULD start sending
 keepalive packets as explained in [Hutt05].

 * The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE and ESP packets associated with this IKE_SA over UDP
 port 4500.

 * To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 * The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt05])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT traversal, the Traffic Selectors
 MUST contain exactly one IP address, which is then used as the
 original IP address.

 * There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts
 that are not behind a NAT SHOULD send all packets (including
 retransmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e., dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP-encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 197

Identifier: RQ_002_6222
RFC Clause: 2.24
Type: Mandatory
Applies to: Host

Requirement:
When encapsulating or decapsulating packets for all tunnel-mode Security Associations created by
IKE, an endpoint MUST support the Explicit Congestion Notification (ECN) full-functionality for
tunnels specified in RFC3168.

RFC Text:
When IPsec tunnels behave as originally specified in [RFC2401], ECN usage is not appropriate for the
outer IP headers because tunnel decapsulation processing discards ECN congestion indications to the
detriment of the network. ECN support for IPsec tunnels for IKEv1- based IPsec requires multiple
operating modes and negotiation (see [RFC3168]). IKEv2 simplifies this situation by requiring that
ECN be usable in the outer IP headers of all tunnel-mode IPsec SAs created by IKEv2. Specifically,
tunnel encapsulators and decapsulators for all tunnel-mode SAs created by IKEv2 MUST support the ECN
full- functionality option for tunnels specified in [RFC3168] and MUST implement the tunnel
encapsulation and decapsulation processing specified in [RFC4301] to prevent discarding of ECN
congestion indications.

Identifier: RQ_002_6223
RFC Clause: 2.24
Type: Mandatory
Applies to: Host

Requirement:
When encapsulating or decapsulating packets for all tunnel-mode Security Associations created by
IKE, an endpoint MUST implement the tunnel encapsulation and decapsulation processing specified in
RFC4301

RFC Text:
When IPsec tunnels behave as originally specified in [RFC2401], ECN usage is not appropriate for the
outer IP headers because tunnel decapsulation processing discards ECN congestion indications to the
detriment of the network. ECN support for IPsec tunnels for IKEv1- based IPsec requires multiple
operating modes and negotiation (see [RFC3168]). IKEv2 simplifies this situation by requiring that
ECN be usable in the outer IP headers of all tunnel-mode IPsec SAs created by IKEv2. Specifically,
tunnel encapsulators and decapsulators for all tunnel-mode SAs created by IKEv2 MUST support the ECN
full- functionality option for tunnels specified in [RFC3168] and MUST implement the tunnel
encapsulation and decapsulation processing specified in [RFC4301] to prevent discarding of ECN
congestion indications.

Identifier: RQ_002_6224
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message on UDP port 500, it MUST insert that message
immediately following the UDP Header in the packet

RFC Text:
IKE messages use UDP ports 500 and/or 4500, with one IKE message per UDP datagram. Information from
the beginning of the packet through the UDP header is largely ignored except that the IP addresses
and UDP ports from the headers are reversed and used for return packets. When sent on UDP port 500,
IKE messages begin immediately following the UDP header. When sent on UDP port 4500, IKE messages
have prepended four octets of zero. These four octets of zero are not part of the IKE message and
are not included in any of the length fields or checksums defined by IKE. Each IKE message begins
with the IKE header, denoted HDR in this memo. Following the header are one or more IKE payloads
each identified by a "Next Payload" field in the preceding payload. Payloads are processed in the
order in which they appear in an IKE message by invoking the appropriate processing routine
according to the "Next Payload" field in the IKE header and subsequently according to the "Next
Payload" field in the IKE payload itself until a "Next Payload" field of zero indicates that no
payloads follow. If a payload of type "Encrypted" is found, that payload is decrypted and its
contents parsed as additional payloads. An Encrypted payload MUST be the last payload in a packet
and an Encrypted payload MUST NOT contain another Encrypted payload

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 198

Identifier: RQ_002_6225
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message on UDP port 4500, it MUST insert that message
immediately following the UDP Header in the packet but preceded by four octets of zero, i.e.:

+---------------------+----+---+---+---+---------------------- - - -
| UDP Header | 0 : 0 : 0 : 0 | IKE Message
+---------------------+----+---+---+---+---------------------- - - -

RFC Text:
IKE messages use UDP ports 500 and/or 4500, with one IKE message per UDP datagram. Information from
the beginning of the packet through the UDP header is largely ignored except that the IP addresses
and UDP ports from the headers are reversed and used for return packets. When sent on UDP port 500,
IKE messages begin immediately following the UDP header. When sent on UDP port 4500, IKE messages
have prepended four octets of zero. These four octets of zero are not part of the IKE message and
are not included in any of the length fields or checksums defined by IKE. Each IKE message begins
with the IKE header, denoted HDR in this memo. Following the header are one or more IKE payloads
each identified by a "Next Payload" field in the preceding payload. Payloads are processed in the
order in which they appear in an IKE message by invoking the appropriate processing routine
according to the "Next Payload" field in the IKE header and subsequently according to the "Next
Payload" field in the IKE payload itself until a "Next Payload" field of zero indicates that no
payloads follow. If a payload of type "Encrypted" is found, that payload is decrypted and its
contents parsed as additional payloads. An Encrypted payload MUST be the last payload in a packet
and an Encrypted payload MUST NOT contain another Encrypted payload

Identifier: RQ_002_6226
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
Each IKE message MUST consist of one IKE header followed by one or more IKE payloads

RFC Text:
IKE messages use UDP ports 500 and/or 4500, with one IKE message per UDP datagram. Information from
the beginning of the packet through the UDP header is largely ignored except that the IP addresses
and UDP ports from the headers are reversed and used for return packets. When sent on UDP port 500,
IKE messages begin immediately following the UDP header. When sent on UDP port 4500, IKE messages
have prepended four octets of zero. These four octets of zero are not part of the IKE message and
are not included in any of the length fields or checksums defined by IKE. Each IKE message begins
with the IKE header, denoted HDR in this memo. Following the header are one or more IKE payloads
each identified by a "Next Payload" field in the preceding payload. Payloads are processed in the
order in which they appear in an IKE message by invoking the appropriate processing routine
according to the "Next Payload" field in the IKE header and subsequently according to the "Next
Payload" field in the IKE payload itself until a "Next Payload" field of zero indicates that no
payloads follow. If a payload of type "Encrypted" is found, that payload is decrypted and its
contents parsed as additional payloads. An Encrypted payload MUST be the last payload in a packet
and an Encrypted payload MUST NOT contain another Encrypted payload

Identifier: RQ_002_6227
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE message containing a payload of type "Encrypted", it MUST
decrypt that payload and parse the contents as additional payloads

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 199

RFC Text:
IKE messages use UDP ports 500 and/or 4500, with one IKE message per UDP datagram. Information from
the beginning of the packet through the UDP header is largely ignored except that the IP addresses
and UDP ports from the headers are reversed and used for return packets. When sent on UDP port 500,
IKE messages begin immediately following the UDP header. When sent on UDP port 4500, IKE messages
have prepended four octets of zero. These four octets of zero are not part of the IKE message and
are not included in any of the length fields or checksums defined by IKE. Each IKE message begins
with the IKE header, denoted HDR in this memo. Following the header are one or more IKE payloads
each identified by a "Next Payload" field in the preceding payload. Payloads are processed in the
order in which they appear in an IKE message by invoking the appropriate processing routine
according to the "Next Payload" field in the IKE header and subsequently according to the "Next
Payload" field in the IKE payload itself until a "Next Payload" field of zero indicates that no
payloads follow. If a payload of type "Encrypted" is found, that payload is decrypted and its
contents parsed as additional payloads. An Encrypted payload MUST be the last payload in a packet
and an Encrypted payload MUST NOT contain another Encrypted payload

Identifier: RQ_002_6228
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When constructing an IKE packet which is to contain an encrypted payload, an IKE implementation MUST
place the encrypted payload as the last payload in the packet

RFC Text:
IKE messages use UDP ports 500 and/or 4500, with one IKE message per UDP datagram. Information from
the beginning of the packet through the UDP header is largely ignored except that the IP addresses
and UDP ports from the headers are reversed and used for return packets. When sent on UDP port 500,
IKE messages begin immediately following the UDP header. When sent on UDP port 4500, IKE messages
have prepended four octets of zero. These four octets of zero are not part of the IKE message and
are not included in any of the length fields or checksums defined by IKE. Each IKE message begins
with the IKE header, denoted HDR in this memo. Following the header are one or more IKE payloads
each identified by a "Next Payload" field in the preceding payload. Payloads are processed in the
order in which they appear in an IKE message by invoking the appropriate processing routine
according to the "Next Payload" field in the IKE header and subsequently according to the "Next
Payload" field in the IKE payload itself until a "Next Payload" field of zero indicates that no
payloads follow. If a payload of type "Encrypted" is found, that payload is decrypted and its
contents parsed as additional payloads. An Encrypted payload MUST be the last payload in a packet
and an Encrypted payload MUST NOT contain another Encrypted payload

Identifier: RQ_002_6229
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When constructing an IKE packet, an IKE implementation MUST NOT include more than one encrypted
payload in the packet

RFC Text:
IKE messages use UDP ports 500 and/or 4500, with one IKE message per UDP datagram. Information from
the beginning of the packet through the UDP header is largely ignored except that the IP addresses
and UDP ports from the headers are reversed and used for return packets. When sent on UDP port 500,
IKE messages begin immediately following the UDP header. When sent on UDP port 4500, IKE messages
have prepended four octets of zero. These four octets of zero are not part of the IKE message and
are not included in any of the length fields or checksums defined by IKE. Each IKE message begins
with the IKE header, denoted HDR in this memo. Following the header are one or more IKE payloads
each identified by a "Next Payload" field in the preceding payload. Payloads are processed in the
order in which they appear in an IKE message by invoking the appropriate processing routine
according to the "Next Payload" field in the IKE header and subsequently according to the "Next
Payload" field in the IKE payload itself until a "Next Payload" field of zero indicates that no
payloads follow. If a payload of type "Encrypted" is found, that payload is decrypted and its
contents parsed as additional payloads. An Encrypted payload MUST be the last payload in a packet
and an Encrypted payload MUST NOT contain another Encrypted payload

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 200

Identifier: RQ_002_6230
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
All multi-octet fields representing integers in an IKE header MUST be encoded with the most
significant byte first (i.e. network byte or big-endian order)

RFC Text:
All multi-octet fields representing integers are laid out in big endian order (aka most significant
byte first, or network byte order)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 201

Identifier: RQ_002_6231
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
The header in an IKE packet MUST be in the following format:

Octets Field

1 - 8 IKE_SA Initiator's SPI
9 - 16 IKE_SA Responder's SPI
17 Next Payload indicator
18 (bits 0 - 3) Major Version number
18 (bits 4 - 7) Minor Version number
19 Exchange Type
20 Flags
21 - 24 Message Identifier
25 - 28 Length

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 202

 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 203

Identifier: RQ_002_6232
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message on an established IKE Security Association, it MUST
insert the non-zero Security Parameter Index (SPI) value (set by the initiator in the original
IKE_SA_INIT request) into the IKE_SA Initiator's SPI field of the IKE Header

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 204

 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 205

Identifier: RQ_002_6233
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message on an established IKE Security Association, it MUST
insert the non-zero Security Parameter Index (SPI) value (set by the responder in the original
IKE_SA_INIT exchange) into the IKE_SA Responder's SPI field of the IKE Header

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 206

 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 207

Identifier: RQ_002_6234
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE_SA_INIT request, it MUST insert a value of zero into the
IKE_SA Responder's SPI field of the IKE Header

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 208

 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 209

Identifier: RQ_002_6235
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message, it MUST insert a value into the Next Payload field
of the IKE Header according to the following list of permitted values:

 Next Payload Type Notation Value

 No Next Payload 0

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 210

 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 211

Identifier: RQ_002_6236
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an implementation of the IKE protocol based upon RFC4306 sends an IKE message, it MUST insert a
value of 2 into the Major Version field in the IKE Header

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 212

 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 213

Identifier: RQ_002_6237
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
If an implementation of the IKE protocol based upon RFC4306 receives an IKE message with a value
greater than 2 in the Major Version field of the IKE Header, it must either ignore it or reject it
by sending an IKE Notify payload in its response with the Error Type set to INVALID_MAJOR_VERSION

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 214

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 215

Identifier: RQ_002_6238
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an implementation of the IKE protocol based upon RFC4306 sends an IKE message, it MUST insert a
value of 0 into the Minor Version field in the IKE Header

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 216

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 217

Identifier: RQ_002_6239
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an implementation of the IKE protocol based upon RFC4306 receives an IKE message, it MUST
ignore any value set in the Minor Version field of the IKE Header

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 218

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 219

Identifier: RQ_002_6240
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message, it MUST insert one of the following values into the
Exchange Type field in the IKE Header to indicate the type of message exchange to which the message
belongs:

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 220

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 221

Identifier: RQ_002_6241
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message, it MUST clear bits 0, 1, 2, 6 and 7 of the Flags
field in the IKE Header to zero (bit 0 is the least significant bit of the octet) as they are
reserved for future use

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 222

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 223

Identifier: RQ_002_6242
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message, it MUST ignore bits 0, 1, 2, 6 and 7 of the
Flags field in the IKE Header (bit 0 is the least significant bit of the octet) as they are reserved
for future use

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 224

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 225

Identifier: RQ_002_6243
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message, it MUST clear bits 0, 1, 2, 6 and 7 of the Flags
field in the IKE Header to zero (bit 0 is the least significant bit of the octet) as they are
reserved for future use

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 226

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 227

Identifier: RQ_002_6244
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message, it MUST set bit 3 in the Flags field in the IKE
Header to 1 (bit 0 is the least significant bit of the octet) if the implementation initiated the
establishment of the IKE_SA being used

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 228

 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 229

Identifier: RQ_002_6245
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message, it MUST clear bit 3 in the Flags field in the IKE
Header to 0 (bit 0 is the least significant bit of the octet) if the implementation was the
responder to the original IKE_SA establishment request

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 230

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 231

Identifier: RQ_002_6246
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an implementation of the IKE protocol based upon RFC4306 sends an IKE message, it MUST clear
bit 4 in the Flags field in the IKE Header to 0 (bit 0 is the least significant bit of the octet)

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 232

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 233

Identifier: RQ_002_6247
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an implementation of the IKE protocol based upon RFC4306 receives an IKE message, it MUST
ignore the state of bit 4 in the Flags field in the IKE Header

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 234

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 235

Identifier: RQ_002_6248
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE request message, it MUST clear bit 5 in the Flags field in
the IKE Header to zero (bit 0 is the least significant bit of the octet)

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 236

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 237

Identifier: RQ_002_6249
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE response message, it MUST set bit 5 in the Flags field in
the IKE Header to one (bit 0 is the least significant bit of the octet)

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 238

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 239

Identifier: RQ_002_6250
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
An IKE endpoint MUST NOT generate a response to a message that is marked as being a response (bit 5
set to one in the IKE Header of the received message).

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 240

 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 241

Identifier: RQ_002_6251
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message, it MUST insert a number into the Message ID field
of the IKE Header to uniquely identify the message

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 242

 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 243

Identifier: RQ_002_6252
RFC Clause: 3.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message, it MUST insert the length of the message (header
plus payloads) in octets into the Length field of the IKE Header

RFC Text:
The format of the IKE header is shown in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - Indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the
 minor version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message and
 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 RESERVED TO IANA 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - Indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 244

 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 responder. It is used by the recipient to determine
 which eight octets of the SPI were generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.
 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 245

Identifier: RQ_002_6253
RFC Clause: 3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending an IKE message, an IKE implementation MUST include a Generic Payload Header in the
following format at the start of each Payload:

Octet Field

1 Next Payload
2 (bit 0) Critical flag
2 (bit1 to bit 7) Reserved
3 and 4 Payload Length

RFC Text:
Each IKE payload defined in sections 3.3 through 3.16 begins with a generic payload header, shown in
Figure 5. Figures for each payload below will include the generic payload header, but for brevity
the description of each field will be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+

 Figure 5: Generic Payload Header

The Generic Payload Header fields are defined as follows:

o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be 0. This field provides a
 "chaining" capability whereby additional payloads can be added to
 a message by appending it to the end of the message and setting
 the "Next Payload" field of the preceding payload to indicate the
 new payload's type. An Encrypted payload, which must always be
 the last payload of a message, is an exception. It contains data
 structures in the format of additional payloads. In the header of
 an Encrypted payload, the Next Payload field is set to the payload
 type of the first contained payload (instead of 0).

 Payload Type Values

 Next Payload Type Notation Value

 No Next Payload 0

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

 Payload type values 1-32 should not be used so that there is no
 overlap with the code assignments for IKEv1. Payload type values
 49-127 are reserved to IANA for future assignment in IKEv2
 (see section 6). Payload type values 128-255 are for private use among
 mutually consenting parties.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 246

o Critical (1 bit) - MUST be set to zero if the sender wants the
 recipient to skip this payload if it does not understand the
 payload type code in the Next Payload field of the previous
 payload. MUST be set to one if the sender wants the recipient to
 reject this entire message if it does not understand the payload
 type. MUST be ignored by the recipient if the recipient
 understands the payload type code. MUST be set to zero for
 payload types defined in this document. Note that the critical
 bit applies to the current payload rather than the "next" payload
 whose type code appears in the first octet. The reasoning behind
 not setting the critical bit for payloads defined in this document
 is that all implementations MUST understand all payload types
 defined in this document and therefore must ignore the Critical
 bit's value. Skipped payloads are expected to have valid Next
 Payload and Payload Length fields.

o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
 receipt.

o Payload Length (2 octets) - Length in octets of the current
 payload, including the generic payload header.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 247

Identifier: RQ_002_6254
RFC Clause: 3.2
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message, it MUST insert a value into the Next Payload field
of the Generic Payload Header according to the following list of permitted values:

 Next Payload Type Notation Value
--
 No Next Payload

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

RFC Text:
Each IKE payload defined in sections 3.3 through 3.16 begins with a generic payload header, shown in
Figure 5. Figures for each payload below will include the generic payload header, but for brevity
the description of each field will be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+

 Figure 5: Generic Payload Header

The Generic Payload Header fields are defined as follows:

o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be 0. This field provides a
 "chaining" capability whereby additional payloads can be added to
 a message by appending it to the end of the message and setting
 the "Next Payload" field of the preceding payload to indicate the
 new payload's type. An Encrypted payload, which must always be
 the last payload of a message, is an exception. It contains data
 structures in the format of additional payloads. In the header of
 an Encrypted payload, the Next Payload field is set to the payload
 type of the first contained payload (instead of 0).

 Payload Type Values

 Next Payload Type Notation Value

 No Next Payload 0

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 248

 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

 Payload type values 1-32 should not be used o that there is no
 overlap with the code assignments for IKEv1. Payload type values
 49-127 are reserved to IANA for future assignment in IKEv2 (see
 section 6). Payload type values 128-255 are for private use among
 mutually consenting parties.

o Critical (1 bit) - MUST be set to zero if the sender wants the
 recipient to skip this payload if it does not understand the
 payload type code in the Next Payload field of the previous
 payload. MUST be set to one if the sender wants the recipient to
 reject this entire message if it does not understand the payload
 type. MUST be ignored by the recipient if the recipient
 understands the payload type code. MUST be set to zero for
 payload types defined in this document. Note that the critical
 bit applies to the current payload rather than the "next" payload
 whose type code appears in the first octet. The reasoning behind
 not setting the critical bit for payloads defined in this document
 is that all implementations MUST understand all payload types
 defined in this document and therefore must ignore the Critical
 bit's value. Skipped payloads are expected to have valid Next
 Payload and Payload Length fields.

o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
 receipt.

o Payload Length (2 octets) - Length in octets of the current
 payload, including the generic payload header.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 249

Identifier: RQ_002_6255
RFC Clause: 3.2
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message with the Critical flag set to zero in the Generic
Payload Header, it MUST ignore the payload if it does not support the payload type indicated in the
previous Next Payload field

RFC Text:
Each IKE payload defined in sections 3.3 through 3.16 begins with a generic payload header, shown in
Figure 5. Figures for each payload below will include the generic payload header, but for brevity
the description of each field will be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+

 Figure 5: Generic Payload Header

The Generic Payload Header fields are defined as follows:

o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be 0. This field provides a
 "chaining" capability whereby additional payloads can be added to
 a message by appending it to the end of the message and setting
 the "Next Payload" field of the preceding payload to indicate the
 new payload's type. An Encrypted payload, which must always be
 the last payload of a message, is an exception. It contains data
 structures in the format of additional payloads. In the header of
 an Encrypted payload, the Next Payload field is set to the payload
 type of the first contained payload (instead of 0).

 Payload Type Values

 Next Payload Type Notation Value

 No Next Payload 0

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

 Payload type values 1-32 should not be used so that there is no
 overlap with the code assignments for IKEv1. Payload type values
 49-127 are reserved to IANA for future assignment in IKEv2 (see
 section 6). Payload type values 128-255 are for private use among
 mutually consenting parties.

o Critical (1 bit) - MUST be set to zero if the sender wants the
 recipient to skip this payload if it does not understand the
 payload type code in the Next Payload field of the previous
 payload. MUST be set to one if the sender wants the recipient to
 reject this entire message if it does not understand the payload
 type. MUST be ignored by the recipient if the recipient
 understands the payload type code. MUST be set to zero for
 payload types defined in this document. Note that the critical

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 250

 bit applies to the current payload rather than the "next" payload
 whose type code appears in the first octet. The reasoning behind
 not setting the critical bit for payloads defined in this document
 is that all implementations MUST understand all payload types
 defined in this document and therefore must ignore the Critical
 bit's value. Skipped payloads are expected to have valid Next
 Payload and Payload Length fields.

o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
 receipt.

o Payload Length (2 octets) - Length in octets of the current
 payload, including the generic payload header.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 251

Identifier: RQ_002_6256
RFC Clause: 3.2
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message with the Critical flag in the Generic Payload
Header set to one, it MUST reject the entire message by sending an IKE Notify payload with the Error
Type set to UNSUPPORTED_CRITICAL_PAYLOAD if it does not support the payload type indicated in the
previous Next Payload field

RFC Text:
Each IKE payload defined in sections 3.3 through 3.16 begins with a generic payload header, shown in
Figure 5. Figures for each payload below will include the generic payload header, but for brevity
the description of each field will be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+

 Figure 5: Generic Payload Header

The Generic Payload Header fields are defined as follows:

o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be 0. This field provides a
 "chaining" capability whereby additional payloads can be added to
 a message by appending it to the end of the message and setting
 the "Next Payload" field of the preceding payload to indicate the
 new payload's type. An Encrypted payload, which must always be
 the last payload of a message, is an exception. It contains data
 structures in the format of additional payloads. In the header of
 an Encrypted payload, the Next Payload field is set to the payload
 type of the first contained payload (instead of 0).

 Payload Type Values

 Next Payload Type Notation Value

 No Next Payload 0

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

 Payload type values 1-32 should not be used so that there is no
 overlap with the code assignments for IKEv1. Payload type values
 49-127 are reserved to IANA for future assignment in IKEv2 (see
 section 6). Payload type values 128-255 are for private use among
 mutually consenting parties.

o Critical (1 bit) - MUST be set to zero if the sender wants the
 recipient to skip this payload if it does not understand the
 payload type code in the Next Payload field of the previous
 payload. MUST be set to one if the sender wants the recipient to
 reject this entire message if it does not understand the payload
 type. MUST be ignored by the recipient if the recipient
 understands the payload type code. MUST be set to zero for

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 252

 payload types defined in this document. Note that the critical
 bit applies to the current payload rather than the "next" payload
 whose type code appears in the first octet. The reasoning behind
 not setting the critical bit for payloads defined in this document
 is that all implementations MUST understand all payload types
 defined in this document and therefore must ignore the Critical
 bit's value. Skipped payloads are expected to have valid Next
 Payload and Payload Length fields.

o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
 receipt.

o Payload Length (2 octets) - Length in octets of the current
 payload, including the generic payload header.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 253

Identifier: RQ_002_6257
RFC Clause: 3.2
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message it MUST ignore the state of the Critical flag in
the Generic Payload Header if it supports the payload type indicated in the previous Next Payload
field

RFC Text:
Each IKE payload defined in sections 3.3 through 3.16 begins with a generic payload header, shown in
Figure 5. Figures for each payload below will include the generic payload header, but for brevity
the description of each field will be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+

 Figure 5: Generic Payload Header

The Generic Payload Header fields are defined as follows:

o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be 0. This field provides a
 "chaining" capability whereby additional payloads can be added to
 a message by appending it to the end of the message and setting
 the "Next Payload" field of the preceding payload to indicate the
 new payload's type. An Encrypted payload, which must always be
 the last payload of a message, is an exception. It contains data
 structures in the format of additional payloads. In the header of
 an Encrypted payload, the Next Payload field is set to the payload
 type of the first contained payload (instead of 0).

 Payload Type Values

 Next Payload Type Notation Value

 No Next Payload 0

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

 Payload type values 1-32 should not be used so that there is no
 overlap with the code assignments for IKEv1. Payload type values
 49-127 are reserved to IANA for future assignment in IKEv2 (see
 section 6). Payload type values 128-255 are for private use among
 mutually consenting parties.

o Critical (1 bit) - MUST be set to zero if the sender wants the
 recipient to skip this payload if it does not understand the
 payload type code in the Next Payload field of the previous
 payload. MUST be set to one if the sender wants the recipient to
 reject this entire message if it does not understand the payload
 type. MUST be ignored by the recipient if the recipient
 understands the payload type code. MUST be set to zero for
 payload types defined in this document. Note that the critical

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 254

 bit applies to the current payload rather than the "next" payload
 whose type code appears in the first octet. The reasoning behind
 not setting the critical bit for payloads defined in this document
 is that all implementations MUST understand all payload types
 defined in this document and therefore must ignore the Critical
 bit's value. Skipped payloads are expected to have valid Next
 Payload and Payload Length fields.

o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
 receipt.

o Payload Length (2 octets) - Length in octets of the current
 payload, including the generic payload header.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 255

Identifier: RQ_002_6258
RFC Clause: 3.2.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message it MUST set the Critical flag in the Generic Payload
Header to zero for if the payload type is one of the following:

 Security Association
 Key Exchange
 Identification - Initiator
 Identification - Responder
 Certificate
 Certificate Request
 Authentication
 Nonce
 Notify
 Delete
 Vendor ID
 Traffic Selector - Initiator
 Traffic Selector - Responder
 Encrypted
 Configuration
 Extensible Authentication

RFC Text:
Each IKE payload defined in sections 3.3 through 3.16 begins with a generic payload header, shown in
Figure 5. Figures for each payload below will include the generic payload header, but for brevity
the description of each field will be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+

 Figure 5: Generic Payload Header

The Generic Payload Header fields are defined as follows:

o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be 0. This field provides a
 "chaining" capability whereby additional payloads can be added to
 a message by appending it to the end of the message and setting
 the "Next Payload" field of the preceding payload to indicate the
 new payload's type. An Encrypted payload, which must always be
 the last payload of a message, is an exception. It contains data
 structures in the format of additional payloads. In the header of
 an Encrypted payload, the Next Payload field is set to the payload
 type of the first contained payload (instead of 0).

 Payload Type Values

 Next Payload Type Notation Value

 No Next Payload 0

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 256

 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

 Payload type values 1-32 should not be used so that there is no
 overlap with the code assignments for IKEv1. Payload type values
 49-127 are reserved to IANA for future assignment in IKEv2 (see
 section 6). Payload type values 128-255 are for private use among
 mutually consenting parties.

o Critical (1 bit) - MUST be set to zero if the sender wants the
 recipient to skip this payload if it does not understand the
 payload type code in the Next Payload field of the previous
 payload. MUST be set to one if the sender wants the recipient to
 reject this entire message if it does not understand the payload
 type. MUST be ignored by the recipient if the recipient
 understands the payload type code. MUST be set to zero for
 payload types defined in this document. Note that the critical
 bit applies to the current payload rather than the "next" payload
 whose type code appears in the first octet. The reasoning behind
 not setting the critical bit for payloads defined in this document
 is that all implementations MUST understand all payload types
 defined in this document and therefore must ignore the Critical
 bit's value. Skipped payloads are expected to have valid Next
 Payload and Payload Length fields.

o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
 receipt.

o Payload Length (2 octets) - Length in octets of the current
 payload, including the generic payload header.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 257

Identifier: RQ_002_6259
RFC Clause: 3.2.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message it MUST set the Payload Length field in the Generic
Payload Header to the length in octets of the current payload, including the Generic Payload Header
itself.

RFC Text:
Each IKE payload defined in sections 3.3 through 3.16 begins with a generic payload header, shown in
Figure 5. Figures for each payload below will include the generic payload header, but for brevity
the description of each field will be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+

 Figure 5: Generic Payload Header

The Generic Payload Header fields are defined as follows:

o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be 0. This field provides a
 "chaining" capability whereby additional payloads can be added to
 a message by appending it to the end of the message and setting
 the "Next Payload" field of the preceding payload to indicate the
 new payload's type. An Encrypted payload, which must always be
 the last payload of a message, is an exception. It contains data
 structures in the format of additional payloads. In the header of
 an Encrypted payload, the Next Payload field is set to the payload
 type of the first contained payload (instead of 0).

 Payload Type Values

 Next Payload Type Notation Value

 No Next Payload 0

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

 Payload type values 1-32 should not be used so that there is no
 overlap with the code assignments for IKEv1. Payload type values
 49-127 are reserved to IANA for future assignment in IKEv2 (see
 section 6). Payload type values 128-255 are for private use among
 mutually consenting parties.

o Critical (1 bit) - MUST be set to zero if the sender wants the
 recipient to skip this payload if it does not understand the
 payload type code in the Next Payload field of the previous
 payload. MUST be set to one if the sender wants the recipient to
 reject this entire message if it does not understand the payload
 type. MUST be ignored by the recipient if the recipient
 understands the payload type code. MUST be set to zero for

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 258

 payload types defined in this document. Note that the critical
 bit applies to the current payload rather than the "next" payload
 whose type code appears in the first octet. The reasoning behind
 not setting the critical bit for payloads defined in this document
 is that all implementations MUST understand all payload types
 defined in this document and therefore must ignore the Critical
 bit's value. Skipped payloads are expected to have valid Next
 Payload and Payload Length fields.

o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
 receipt.

o Payload Length (2 octets) - Length in octets of the current
 payload, including the generic payload header.

Identifier: RQ_002_6260
RFC Clause: 3.3.
Type: Optional
Applies to: Host

Requirement:
A Security Association payload MAY contain multiple proposals

RFC Text:
The Security Association Payload, denoted SA in this memo, is used to negotiate attributes of a
security association. Assembly of Security Association Payloads requires great peace of mind. An SA
payload MAY contain multiple proposals. If there is more than one, they MUST be ordered from most
preferred to least preferred. Each proposal may contain multiple IPsec protocols (where a protocol
is IKE, ESP, or AH), each protocol MAY contain multiple transforms, and each transform MAY contain
multiple attributes. When parsing an SA, an implementation MUST check that the total Payload Length
is consistent with the payload's internal lengths and counts. Proposals, Transforms, and Attributes
each have their own variable length encodings. They are nested such that the Payload Length of an SA
includes the combined contents of the SA, Proposal, Transform, and Attribute information. The length
of a Proposal includes the lengths of all Transforms and Attributes it contains. The length of a
Transform includes the lengths of all Attributes it contains.

Identifier: RQ_002_6261
RFC Clause: 3.3.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends a Security Association payload containing more than one proposal,
it MUST order the proposals within the payload from most preferred to least preferred.

RFC Text:
The Security Association Payload, denoted SA in this memo, is used to negotiate attributes of a
security association. Assembly of Security Association Payloads requires great peace of mind. An SA
payload MAY contain multiple proposals. If there is more than one, they MUST be ordered from most
preferred to least preferred. Each proposal may contain multiple IPsec protocols (where a protocol
is IKE, ESP, or AH), each protocol MAY contain multiple transforms, and each transform MAY contain
multiple attributes. When parsing an SA, an implementation MUST check that the total Payload Length
is consistent with the payload's internal lengths and counts. Proposals, Transforms, and Attributes
each have their own variable length encodings. They are nested such that the Payload Length of an SA
includes the combined contents of the SA, Proposal, Transform, and Attribute information. The length
of a Proposal includes the lengths of all Transforms and Attributes it contains. The length of a
Transform includes the lengths of all Attributes it contains.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 259

Identifier: RQ_002_6262
RFC Clause: 3.3.
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST assemble Security Association Payloads with great peace of mind!

RFC Text:
The Security Association Payload, denoted SA in this memo, is used to negotiate attributes of a
security association. Assembly of Security Association Payloads requires great peace of mind. An SA
payload MAY contain multiple proposals. If there is more than one, they MUST be ordered from most
preferred to least preferred. Each proposal may contain multiple IPsec protocols (where a protocol
is IKE, ESP, or AH), each protocol MAY contain multiple transforms, and each transform MAY contain
multiple attributes. When parsing an SA, an implementation MUST check that the total Payload Length
is consistent with the payload's internal lengths and counts. Proposals, Transforms, and Attributes
each have their own variable length encodings. They are nested such that the Payload Length of an SA
includes the combined contents of the SA, Proposal, Transform, and Attribute information. The length
of a Proposal includes the lengths of all Transforms and Attributes it contains. The length of a
Transform includes the lengths of all Attributes it contains.

Identifier: RQ_002_6263
RFC Clause: 3.3.
Type: Mandatory
Applies to: Host

Requirement:
A Security Association payload in an IKE packet MUST comprise the Generic Payload Header followed by
one or more Proposal substructures

RFC Text:
 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ <Proposals> ~
 ! !
 +-+

 Figure 6: Security Association Payload

 o Proposals (variable) - One or more proposal substructures.

 The payload type for the Security Association Payload is thirty
 three (33).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 260

Identifier: RQ_002_6264
RFC Clause: 3.3.
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Security Association Payload, it MUST
set the appropriate Next Payload field (either in the IKE Header or in the Generic Header of the
payload preceding the Security Association Payload) to the value thirty-three (33)

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ <Proposals> ~
 ! !
 +-+

 Figure 6: Security Association Payload

 o Proposals (variable) - One or more proposal substructures.

 The payload type for the Security Association Payload is thirty
 three (33).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 261

Identifier: RQ_002_6265
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
A Proposal Substructure in an IKE Security Association Payload MUST be constructed in the following
format:

 Octet Field

 1 Continuation indicator
 2 Reserved
 3 & 4 Proposal Length
 5 Proposal number
 6 Protocol Identifier
 7 SPI Size
 8 Number of Transforms included in the proposal
 9 to (SPI Size + 8) SPI
 (8 + SPI Size) to End Transforms

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.
 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 262

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 263

Identifier: RQ_002_6266
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing more than one Proposal Substructure, an IKE
implementation MUST set the Continuation Indicator (octet 1) in all but the last Proposal
Substructure in the payload to the value two (2)

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.
 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 264

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

Identifier: RQ_002_6267
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure, an IKE
implementation MUST set the Continuation Indicator (octet 1) in the last Proposal Substructure in
the payload to the value zero (0)

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.
 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 265

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 266

Identifier: RQ_002_6268
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure, an IKE
implementation MUST set the Proposal Length field in each Proposal Substructure to the length of the
substructure in octets.

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.
 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 267

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

Identifier: RQ_002_6269
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure, an IKE
implementation MUST set the Proposal Number field in the any Proposal Substructure to the same value
as in the previous substructure if it is part of the same proposal.

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.
 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 268

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 269

Identifier: RQ_002_6270
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure, an IKE
implementation MUST set the Proposal Number field in the second and subsequent Proposal
Substructures to one more than the value in the previous substructure if it is not part of the same
proposal.

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.
 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 270

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 271

Identifier: RQ_002_6271
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When responding to a Security Association Payload containing one or more Proposal Substructure, an
IKE implementation MUST accept no more than one proposal by including in the Security Association
Payload response those Proposal Substructures that form the overall accepted proposal (i.e., all
those with the same Proposal Number)

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.
 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 272

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 273

Identifier: RQ_002_6272
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure, an IKE
implementation MUST set the Protocol ID field in each Proposal Substructure to one of the security
protocols that the initiator is able to support according to the following set of defined values:

Protocol Protocol ID

Reserved 0
IKE 1
AH 2
ESP 3
Reserved to IANA 4 to 200
Private Use 201 to 255

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.

 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 274

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

Identifier: RQ_002_6273
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure within an
initial IKE_SA, exchange, an IKE implementation MUST set the SPI Size field to zero (0) in each
Proposal Substructure

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.

 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 275

 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 276

Identifier: RQ_002_6274
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure subsequent
to the initial IKE_SA exchange, an IKE implementation MUST set the SPI Size field in each Proposal
Substructure to the length in octets of the SPI of the corresponding protocol

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.

 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 277

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 278

Identifier: RQ_002_6275
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure, an IKE
implementation MUST set the Number of Transforms field in each Proposal Substructure to the number
of Transform Substructures included in the Proposal Substructure

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.

 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 279

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 280

Identifier: RQ_002_6276
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure, an IKE
implementation MUST set the SPI field in each Proposal Substructure to it Security Parameter Index
value

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.

 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 281

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

Identifier: RQ_002_6277
RFC Clause: 3.3.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Security Association Payload containing one or more Proposal Substructure, an IKE
implementation MUST include one or more Transform Substructures in each Proposal Substructure

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal could
 be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first 4 octets of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal, including
 all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating an
 AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the SA
 payload MUST be the same and MUST match the number on the
 proposal sent that was accepted.

 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation. The defined values are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation, this
 field MUST be zero; the SPI is obtained from the outer header.
 During subsequent negotiations, it is equal to the size, in
 octets, of the SPI of the corresponding protocol (8 for IKE, 4
 for ESP and AH).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 282

 o # of Transforms (1 octet) - Specifies the number of transforms
 in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI Size
 is not a multiple of 4 octets, there is no padding applied to
 the payload. When the SPI Size field is zero, this field is
 not present in the Security Association payload.

 o Transforms (variable) - One or more transform substructures.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 283

Identifier: RQ_002_6278
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
A Transform Substructure within a Proposal Substructure of an IKE Security Association Payload MUST
be constructed in the following format:

 Octet Field

 1 Continuation Indicator
 2 Reserved
 3 & 4 Transform Length
 5 Transform Type
 6 Reserved
 7 & 8 Transform ID
 9 to End Transform Attributes

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0
 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

 Name Number Defined In

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 284

 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405), [DES]
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535

For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 285

Identifier: RQ_002_6279
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending a Proposal Substructure containing more than one Transform Substructure within a
Security Association Payload, an IKE implementation MUST set the Continuation Indicator (octet 1) in
all but the last Transform Substructure in the proposal Substructure to the value three (3)

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0
 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405), [DES]
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 286

 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535
For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 287

Identifier: RQ_002_6280
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending a Proposal Substructure containing one or more Transform Substructure within a Security
Association Payload, an IKE implementation MUST set the Continuation Indicator (octet 1) in the last
Transform Substructure in the proposal Substructure to the value zero (0)

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0
 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405), [DES]
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 288

 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535

For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 289

Identifier: RQ_002_6281
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending a Proposal Substructure containing one or more Transform Substructure within a Security
Association Payload, an IKE implementation MUST set the Transform Length field in each Transform
Substructure to the length of the substructure in octets

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0
 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405), [DES]
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 290

 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535

For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 291

Identifier: RQ_002_6282
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending a Proposal Substructure containing one or more Transform Substructure within a Security
Association Payload, an IKE implementation MUST set the Transform Type field in each Transform
Substructure to one of the following values according to the type of transform being specified in
the substructure:

 Transform Type Value

 Reserved 0
 Encryption Algorithm 1
 Pseudo-Random Function 2
 Integrity Algorithm 3
 Diffie-Hellman Group 4
 Extended Sequence Numbers 5
 Reserved to IANA 6 to 240
 Private Use 241 to 255

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0
 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 292

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405), [DES]
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535

For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 293

Identifier: RQ_002_6283
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending a Proposal Substructure containing one or more Transform Substructure within a Security
Association Payload, an IKE implementation MUST set the Transform ID field in each Transform
Substructure to one of the following values if the Transform Type in the same substructure is set to
1 - Encryption Algorithm (ENCR):

 Name Value

 Reserved 0
 ENCR_DES_IV64 1
 ENCR_DES 2
 ENCR_3DES 3
 ENCR_RC5 4
 ENCR_IDEA 5
 ENCR_CAST 6
 ENCR_BLOWFISH 7
 ENCR_3IDEA 8
 ENCR_DES_IV32 9
 Reserved 10
 ENCR_NULL 11
 ENCR_AES_CBC 12
 ENCR_AES_CTR 13
 Reserved to IANA 14 to 1023
 Private Use 1024 to 65535

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 294

 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405), [DES]
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535

For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 295

Identifier: RQ_002_6284
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending a Proposal Substructure containing one or more Transform Substructure within a Security
Association Payload, an IKE implementation MUST set the Transform ID field in each Transform
Substructure to one of the following values if the Transform Type in the same substructure is set to
2 - Pseudo-Random Function (PRF):

 Name Value

 None 0
 PRF_HMAC_MD5 1
 PRF_HMAC_SHA1 2
 PRF_HMAC_TIGER 3
 PRF_AES128_XCBC 4
 Reserved to IANA 5 to 1023
 Private Use 1024 to 65535

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0
 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 296

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405), [DES]
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535

For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 297

Identifier: RQ_002_6285
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending a Proposal Substructure containing one or more Transform Substructure within a Security
Association Payload, an IKE implementation MUST set the Transform ID field in each Transform
Substructure to one of the following values if the Transform Type in the same substructure is set to
3 - Integrity Algorithm:

 Name Value

 NONE 0
 AUTH_HMAC_MD5_96 1
 AUTH_HMAC_SHA1_96 2
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4
 AUTH_AES_XCBC_96 5
 Reserved to IANA 6 to 1023
 Private Use 1024 to 65535

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0
 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 298

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405), [DES]
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535

For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 299

Identifier: RQ_002_6286
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending a Proposal Substructure containing one or more Transform Substructure within a Security
Association Payload, an IKE implementation MUST set the Transform ID field in each Transform
Substructure to one of the following values if the Transform Type in the same substructure is set to
4 - Diffie-Hellman group

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 300

 Name Value
 --
 NONE 0
 Group 1 (as defined in Appendix B of RFC4306) 1
 Group 2 (as defined in Appendix B of RFC4306) 2
 Reserved 3 to 4
 Group 5 (as defined in RFC3526) 5
 Reserved to IANA 6 to 13
 Group 14 (as defined in RFC3526) 14
 Group 15 (as defined in RFC3526) 15
 Group 16 (as defined in RFC3526) 16
 Group 17 (as defined in RFC3526) 17
 Group 18 (as defined in RFC3526) 18
 Reserved to IANA 19 to 1023
 Private Use 1024 to 65535

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0
 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405), [DES]

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 301

 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535

For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 302

Identifier: RQ_002_6287
RFC Clause: 3.3.2
Type: Mandatory
Applies to: Host

Requirement:
When sending a Proposal Substructure containing one or more Transform Substructure within a Security
Association Payload, an IKE implementation MUST set the Transform ID field in each Transform
Substructure to one of the following values if the Transform Type in the same substructure is set to
5 - Extended Sequence Numbers

 Name Value
 --
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 Reserved 2 to 65535

RFC Text:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first 4 octets of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being
 specified in this transform. Different protocols support
 different transform types. For some protocols, some of the
 transforms may be optional. If a transform is optional and the
 initiator wishes to propose that the transform be omitted, no
 transform of the given type is included in the proposal. If
 the initiator wishes to make use of the transform optional to
 the responder, it includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the
 transform type being proposed.

Transform Type Values

 Transform Used In
 Type
 RESERVED 0
 Encryption Algorithm (ENCR) 1 (IKE and ESP)
 Pseudo-random Function (PRF) 2 (IKE)
 Integrity Algorithm (INTEG) 3 (IKE, AH, optional in ESP)
 Diffie-Hellman Group (D-H) 4 (IKE, optional in AH & ESP)
 Extended Sequence Numbers (ESN) 5 (AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

For Transform Type 1 (Encryption Algorithm), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 303

 ENCR_DES 2 (RFC2405), [DES]
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451), [IDEA]
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 RESERVED 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12 (RFC3602)
 ENCR_AES_CTR 13 (RFC3664)

 values 14-1023 are reserved to IANA. Values 1024-65535 are
 for private use among mutually consenting parties.

For Transform Type 2 (Pseudo-random Function), defined Transform IDs are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104), [MD5]
 PRF_HMAC_SHA1 2 (RFC2104), [SHA]
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES128_XCBC 4 (RFC3664)

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 3 (Integrity Algorithm), defined Transform IDs are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5 (RFC3566)

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 2
 RESERVED 3 - 4
 Defined in [ADDGROUP] 5
 RESERVED TO IANA 6 - 13
 Defined in [ADDGROUP] 14 - 18
 RESERVED TO IANA 19 - 1023
 PRIVATE USE 1024-65535

For Transform Type 5 (Extended Sequence Numbers), defined Transform IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 304

Identifier: RQ_002_6288
RFC Clause: 3.3.3
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST support the following transform types:

 Encryption Algorithm
 Pseudo-Random Function
 Integrity Algorithm
 Diffie-Hellman Group

RFC Text:
The number and type of transforms that accompany an SA payload are dependent on the protocol in the
SA itself. An SA payload proposing the establishment of an SA has the following mandatory and
optional transform types. A compliant implementation MUST understand all mandatory and optional
types for each protocol it supports (though it need not accept proposals with unacceptable suites).
A proposal MAY omit the optional types if the only value for them it will accept is NONE.

 Protocol Mandatory Types Optional Types
 IKE ENCR, PRF, INTEG, D-H
 ESP ENCR, ESN INTEG, D-H
 AH INTEG, ESN D-H

Identifier: RQ_002_6289
RFC Clause: 3.3.3
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation which also supports the ESP and AH protocols MUST support the Extended
Sequence Numbers transform type

RFC Text:
The number and type of transforms that accompany an SA payload are dependent on the protocol in the
SA itself. An SA payload proposing the establishment of an SA has the following mandatory and
optional transform types. A compliant implementation MUST understand all mandatory and optional
types for each protocol it supports (though it need not accept proposals with unacceptable suites).
A proposal MAY omit the optional types if the only value for them it will accept is NONE.

 Protocol Mandatory Types Optional Types
 IKE ENCR, PRF, INTEG, D-H
 ESP ENCR, ESN INTEG, D-H
 AH INTEG, ESN D-H

Identifier: RQ_002_6290
RFC Clause: 3.3.3
Type: Optional
Applies to: Host

Requirement:
When sending an ESP Proposal Substructure within a Security Association Payload, an IKE
implementation MAY omit the Integrity Transform Substructure if the only Integrity value it supports
is "None"

RFC Text:
The number and type of transforms that accompany an SA payload are dependent on the protocol in the
SA itself. An SA payload proposing the establishment of an SA has the following mandatory and
optional transform types. A compliant implementation MUST understand all mandatory and optional
types for each protocol it supports (though it need not accept proposals with unacceptable suites).
A proposal MAY omit the optional types if the only value for them it will accept is NONE.

 Protocol Mandatory Types Optional Types
 IKE ENCR, PRF, INTEG, D-H
 ESP ENCR, ESN INTEG, D-H
 AH INTEG, ESN D-H

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 305

Identifier: RQ_002_6291
RFC Clause: 3.3.3
Type: Optional
Applies to: Host

Requirement:
When sending an ESP Proposal Substructure within a Security Association Payload, an IKE
implementation MAY omit the Diffie-Hellman Group Transform Substructure if the only Diffie-Hellman
Group value it supports is "None"

RFC Text:
The number and type of transforms that accompany an SA payload are dependent on the protocol in the
SA itself. An SA payload proposing the establishment of an SA has the following mandatory and
optional transform types. A compliant implementation MUST understand all mandatory and optional
types for each protocol it supports (though it need not accept proposals with unacceptable suites).
A proposal MAY omit the optional types if the only value for them it will accept is NONE.

 Protocol Mandatory Types Optional Types
 IKE ENCR, PRF, INTEG, D-H
 ESP ENCR, ESN INTEG, D-H
 AH INTEG, ESN D-H

Identifier: RQ_002_6292
RFC Clause: 3.3.3
Type: Optional
Applies to: Host

Requirement:
When sending an AH Proposal Substructure within a Security Association Payload, an IKE
implementation MAY omit the Diffie-Hellman Group Transform Substructure if the only Diffie-Hellman
Group value it supports is "None"

RFC Text:
The number and type of transforms that accompany an SA payload are dependent on the protocol in the
SA itself. An SA payload proposing the establishment of an SA has the following mandatory and
optional transform types. A compliant implementation MUST understand all mandatory and optional
types for each protocol it supports (though it need not accept proposals with unacceptable suites).
A proposal MAY omit the optional types if the only value for them it will accept is NONE.

 Protocol Mandatory Types Optional Types
 IKE ENCR, PRF, INTEG, D-H
 ESP ENCR, ESN INTEG, D-H
 AH INTEG, ESN D-H

Identifier: RQ_002_6293
RFC Clause: 3
Type: Mandatory
Applies to: Host

Requirement:
Whenever an IKE implementation sends an IKE message, it MUST set all fields identified in RFC 4306
as "Reserved" to zero (0)

RFC Text:
*** General Text which appears in numerous locations throughout RFC 4306 Section 3 ***

 -- X(reserved) - These bits MUST be cleared when sending
 and MUST be ignored on receipt.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 306

Identifier: RQ_002_6294
RFC Clause: 3
Type: Mandatory
Applies to: Host

Requirement:
Whenever an IKE implementation receives an IKE message, it MUST ignore all fields identified in
RFC4306 as "Reserved"

RFC Text:
*** General Text which appears in numerous locations throughout RFC 4306 Section 3 ***

 -- X(reserved) - These bits MUST be cleared when sending
 and MUST be ignored on receipt.

Identifier: RQ_002_6295
RFC Clause: 3.3.4
Type: Optional
Applies to: Host

Requirement:
An IKE implementation may support suites of Transform Types (to support protocols other than ESP and
AH, for example) in addition to those mandated by RFC4306

RFC Text:
All implementations of IKEv2 MUST include a management facility that enables a user or system
administrator to specify the suites that are acceptable for use with IKE. Upon receipt of a payload
with a set of transform IDs, the implementation MUST compare the transmitted transform IDs against
those locally configured via the management controls, to verify that the proposed suite is
acceptable based on local policy. The implementation MUST reject SA proposals that are not
authorized by these IKE suite controls. Note that cryptographic suites that MUST be implemented need
not be configured as acceptable to local policy.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 307

Identifier: RQ_002_6296
RFC Clause: 3.3.5
Type: Optional
Applies to: Host

Requirement:
A Transform Substructure within a Proposal Substructure of an IKE Security Association Payload MAY
include Transform Attributes

RFC Text:
Each transform in a Security Association payload may include attributes that modify or complete the
specification of the transform. These attributes are type/value pairs and are defined below. For
example, if an encryption algorithm has a variable-length key, the key length to be used may be
specified as an attribute. Attributes can have a value with a fixed two octet length or a variable-
length value. For the latter, the attribute is encoded as type/length/value.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !A! Attribute Type ! AF=0 Attribute Length !
 !F! ! AF=1 Attribute Value !
 +-+
 ! AF=0 Attribute Value !
 ! AF=1 Not Transmitted !
 +-+

 Figure 9: Data Attributes

 o Attribute Type (2 octets) - Unique identifier for each type of
 attribute (see below).

 The most significant bit of this field is the Attribute Format
 bit (AF). It indicates whether the data attributes follow the
 Type/Length/Value (TLV) format or a shortened Type/Value (TV)
 format. If the AF bit is zero (0), then the Data Attributes
 are of the Type/Length/Value (TLV) form. If the AF bit is a
 one (1), then the Data Attributes are of the Type/Value form.

 o Attribute Length (2 octets) - Length in octets of the Attribute
 Value. When the AF bit is a one (1), the Attribute Value is
 only 2 octets and the Attribute Length field is not present.

 o Attribute Value (variable length) - Value of the Attribute
 associated with the Attribute Type. If the AF bit is a zero
 (0), this field has a variable length defined by the Attribute
 Length field. If the AF bit is a one (1), the Attribute Value
 has a length of 2 octets.

Note that only a single attribute type (Key Length) is defined, and it is fixed length. The
variable-length encoding specification is included only for future extensions. The only algorithms
defined in this document that accept attributes are the AES-based encryption, integrity, and pseudo-
random functions, which require a single attribute specifying key width.

Attributes described as basic MUST NOT be encoded using the variable-length encoding. Variable-
length attributes MUST NOT be encoded as basic even if their value can fit into two octets. NOTE:
 This is a change from IKEv1, where increased flexibility may have simplified the composer of
messages but certainly complicated the parser.

 Attribute Type Value Attribute Format
 --
 RESERVED 0-13
 Key Length (in bits) 14 TV
 RESERVED 15-17
 RESERVED TO IANA 18-16383
 PRIVATE USE 16384-32767

Values 0-13 and 15-17 were used in a similar context in IKEv1 and should not be assigned except to
matching values. Values 18-16383 are reserved to IANA. Values 16384-32767 are for private use among
mutually consenting parties.

- Key Length

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 308

 When using an Encryption Algorithm that has a variable-length key,
 this attribute specifies the key length in bits (MUST use network
 byte order). This attribute MUST NOT be used when the specified
 Encryption Algorithm uses a fixed-length key.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 309

Identifier: RQ_002_6297
RFC Clause: 3.3.5
Type: Mandatory
Applies to: Host

Requirement:
If included in a Transform Substructure within a Proposal Substructure of an IKE Security
Association Payload, Transport Attributes MUST be constructed in the following format:

 Octet Field

 1 & 2 Attribute Type
 3 & 4 Attribute Value

RFC Text:
Each transform in a Security Association payload may include attributes that modify or complete the
specification of the transform. These attributes are type/value pairs and are defined below. For
example, if an encryption algorithm has a variable-length key, the key length to be used may be
specified as an attribute. Attributes can have a value with a fixed two octet length or a variable-
length value. For the latter, the attribute is encoded as type/length/value.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !A! Attribute Type ! AF=0 Attribute Length !
 !F! ! AF=1 Attribute Value !
 +-+
 ! AF=0 Attribute Value !
 ! AF=1 Not Transmitted !
 +-+

 Figure 9: Data Attributes

 o Attribute Type (2 octets) - Unique identifier for each type of
 attribute (see below).

 The most significant bit of this field is the Attribute Format
 bit (AF). It indicates whether the data attributes follow the
 Type/Length/Value (TLV) format or a shortened Type/Value (TV)
 format. If the AF bit is zero (0), then the Data Attributes
 are of the Type/Length/Value (TLV) form. If the AF bit is a
 one (1), then the Data Attributes are of the Type/Value form.

 o Attribute Length (2 octets) - Length in octets of the Attribute
 Value. When the AF bit is a one (1), the Attribute Value is
 only 2 octets and the Attribute Length field is not present.

 o Attribute Value (variable length) - Value of the Attribute
 associated with the Attribute Type. If the AF bit is a zero
 (0), this field has a variable length defined by the Attribute
 Length field. If the AF bit is a one (1), the Attribute Value
 has a length of 2 octets.

Note that only a single attribute type (Key Length) is defined, and it is fixed length. The
variable-length encoding specification is included only for future extensions. The only algorithms
defined in this document that accept attributes are the AES-based encryption, integrity, and pseudo-
random functions, which require a single attribute specifying key width.

Attributes described as basic MUST NOT be encoded using the variable-length encoding. Variable-
length attributes MUST NOT be encoded as basic even if their value can fit into two octets. NOTE:
 This is a change from IKEv1, where increased flexibility may have simplified the composer of
messages but certainly complicated the parser.

 Attribute Type Value Attribute Format
 --
 RESERVED 0-13
 Key Length (in bits) 14 TV
 RESERVED 15-17
 RESERVED TO IANA 18-16383
 PRIVATE USE 16384-32767

Values 0-13 and 15-17 were used in a similar context in IKEv1 and should not be assigned except to
matching values. Values 18-16383 are reserved to IANA. Values 16384-32767 are for private use among
mutually consenting parties.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 310

- Key Length

 When using an Encryption Algorithm that has a variable-length key,
 this attribute specifies the key length in bits (MUST use network
 byte order). This attribute MUST NOT be used when the specified
 Encryption Algorithm uses a fixed-length key.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 311

Identifier: RQ_002_6298
RFC Clause: 3.3.5
Type: Mandatory
Applies to: Host

Requirement:
When sending a Transform Substructure containing one or more Transform Attributes within a Security
Association Payload, an IKE implementation MUST set the Attribute Value field in each Transform
Attribute either to 14 (Key Length) with the Attribute Format Flag (AF) set to 1 or to a value in
the range 18 to 32767 (for private use only between mutually consenting parties)

RFC Text:
Each transform in a Security Association payload may include attributes that modify or complete the
specification of the transform. These attributes are type/value pairs and are defined below. For
example, if an encryption algorithm has a variable-length key, the key length to be used may be
specified as an attribute. Attributes can have a value with a fixed two octet length or a variable-
length value. For the latter, the attribute is encoded as type/length/value.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !A! Attribute Type ! AF=0 Attribute Length !
 !F! ! AF=1 Attribute Value !
 +-+
 ! AF=0 Attribute Value !
 ! AF=1 Not Transmitted !
 +-+

 Figure 9: Data Attributes

 o Attribute Type (2 octets) - Unique identifier for each type of
 attribute (see below).

 The most significant bit of this field is the Attribute Format
 bit (AF). It indicates whether the data attributes follow the
 Type/Length/Value (TLV) format or a shortened Type/Value (TV)
 format. If the AF bit is zero (0), then the Data Attributes
 are of the Type/Length/Value (TLV) form. If the AF bit is a
 one (1), then the Data Attributes are of the Type/Value form.

 o Attribute Length (2 octets) - Length in octets of the Attribute
 Value. When the AF bit is a one (1), the Attribute Value is
 only 2 octets and the Attribute Length field is not present.

 o Attribute Value (variable length) - Value of the Attribute
 associated with the Attribute Type. If the AF bit is a zero
 (0), this field has a variable length defined by the Attribute
 Length field. If the AF bit is a one (1), the Attribute Value
 has a length of 2 octets.

Note that only a single attribute type (Key Length) is defined, and it is fixed length. The
variable-length encoding specification is included only for future extensions. The only algorithms
defined in this document that accept attributes are the AES-based encryption, integrity, and pseudo-
random functions, which require a single attribute specifying key width.

Attributes described as basic MUST NOT be encoded using the variable-length encoding. Variable-
length attributes MUST NOT be encoded as basic even if their value can fit into two octets. NOTE:
 This is a change from IKEv1, where increased flexibility may have simplified the composer of
messages but certainly complicated the parser.

 Attribute Type Value Attribute Format
 --
 RESERVED 0-13
 Key Length (in bits) 14 TV
 RESERVED 15-17
 RESERVED TO IANA 18-16383
 PRIVATE USE 16384-32767

Values 0-13 and 15-17 were used in a similar context in IKEv1 and should not be assigned except to
matching values. Values 18-16383 are reserved to IANA. Values 16384-32767 are for private use among
mutually consenting parties.

- Key Length

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 312

 When using an Encryption Algorithm that has a variable-length key,
 this attribute specifies the key length in bits (MUST use network
 byte order). This attribute MUST NOT be used when the specified
 Encryption Algorithm uses a fixed-length key.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 313

Identifier: RQ_002_6299
RFC Clause: 3.3.5
Type: Mandatory
Applies to: Host

Requirement:
When sending a Transform Substructure within a Security Association Payload , if the Transform Type
is set to Type 1 (Encryption Algorithm) and the Transform ID indicates an algorithm using a variable
length key (AES_CBC or AES_CTR) then an IKE implementation MUST set the Attribute Type in the
associated Transform Attribute to the value 14 (Key Length), the Attribute Format (AF) flag (most
significant bit of the Attribute Type field) to 1 and the Attribute Value to the required key
length, in bits, for the selected encryption algorithm

RFC Text:
Each transform in a Security Association payload may include attributes that modify or complete the
specification of the transform. These attributes are type/value pairs and are defined below. For
example, if an encryption algorithm has a variable-length key, the key length to be used may be
specified as an attribute. Attributes can have a value with a fixed two octet length or a variable-
length value. For the latter, the attribute is encoded as type/length/value.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !A! Attribute Type ! AF=0 Attribute Length !
 !F! ! AF=1 Attribute Value !
 +-+
 ! AF=0 Attribute Value !
 ! AF=1 Not Transmitted !
 +-+

 Figure 9: Data Attributes

 o Attribute Type (2 octets) - Unique identifier for each type of
 attribute (see below).

 The most significant bit of this field is the Attribute Format
 bit (AF). It indicates whether the data attributes follow the
 Type/Length/Value (TLV) format or a shortened Type/Value (TV)
 format. If the AF bit is zero (0), then the Data Attributes
 are of the Type/Length/Value (TLV) form. If the AF bit is a
 one (1), then the Data Attributes are of the Type/Value form.

 o Attribute Length (2 octets) - Length in octets of the Attribute
 Value. When the AF bit is a one (1), the Attribute Value is
 only 2 octets and the Attribute Length field is not present.

 o Attribute Value (variable length) - Value of the Attribute
 associated with the Attribute Type. If the AF bit is a zero
 (0), this field has a variable length defined by the Attribute
 Length field. If the AF bit is a one (1), the Attribute Value
 has a length of 2 octets.

Note that only a single attribute type (Key Length) is defined, and it is fixed length. The
variable-length encoding specification is included only for future extensions. The only algorithms
defined in this document that accept attributes are the AES-based encryption, integrity, and pseudo-
random functions, which require a single attribute specifying key width.

Attributes described as basic MUST NOT be encoded using the variable-length encoding. Variable-
length attributes MUST NOT be encoded as basic even if their value can fit into two octets. NOTE:
 This is a change from IKEv1, where increased flexibility may have simplified the composer of
messages but certainly complicated the parser.

 Attribute Type Value Attribute Format
 --
 RESERVED 0-13
 Key Length (in bits) 14 TV
 RESERVED 15-17
 RESERVED TO IANA 18-16383
 PRIVATE USE 16384-32767

Values 0-13 and 15-17 were used in a similar context in IKEv1 and should not be assigned except to
matching values. Values 18-16383 are reserved to IANA. Values 16384-32767 are for private use among
mutually consenting parties.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 314

- Key Length

 When using an Encryption Algorithm that has a variable-length key,
 this attribute specifies the key length in bits (MUST use network
 byte order). This attribute MUST NOT be used when the specified
 Encryption Algorithm uses a fixed-length key.

Identifier: RQ_002_6300
RFC Clause: 3.3.6
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives a proposal for a set of choices of IPsec protocols with
associated Transforms and Attributes to be used within a Security Association, it MUST select a
single complete proposal or reject them all and return an IKE INFORMATIONAL message containing a
Notify payload with the Error Type set to NO_PROPOSAL_CHOSEN

RFC Text:
During security association negotiation, initiators present offers to responders. Responders MUST
select a single complete set of parameters from the offers (or reject all offers if none are
acceptable). If there are multiple proposals, the responder MUST choose a single proposal number and
return all of the Proposal substructures with that Proposal number. If there are multiple Transforms
with the same type, the responder MUST choose a single one. Any attributes of a selected transform
MUST be returned unmodified. The initiator of an exchange MUST check that the accepted offer is
consistent with one of its proposals, and if not that response MUST be rejected

Identifier: RQ_002_6301
RFC Clause: 3.3.6
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation selects a proposal from a received set of choices of IPsec protocols to
be used within a Security Association, the selected cryptographic suite MUST contain exactly one
transform of each type included in the proposal.

RFC Text:
During security association negotiation, initiators present offers to responders. Responders MUST
select a single complete set of parameters from the offers (or reject all offers if none are
acceptable). If there are multiple proposals, the responder MUST choose a single proposal number and
return all of the Proposal substructures with that Proposal number. If there are multiple Transforms
with the same type, the responder MUST choose a single one. Any attributes of a selected transform
MUST be returned unmodified. The initiator of an exchange MUST check that the accepted offer is
consistent with one of its proposals, and if not that response MUST be rejected

Identifier: RQ_002_6302
RFC Clause: 3.3.6
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE response to its proposal of a possible set of choices of
IPsec protocols to be used within a Security Association, it MUST reject the response if the
parameters in the acceptance are not consistent with one of its original proposals

RFC Text:
During security association negotiation, initiators present offers to responders. Responders MUST
select a single complete set of parameters from the offers (or reject all offers if none are
acceptable). If there are multiple proposals, the responder MUST choose a single proposal number and
return all of the Proposal substructures with that Proposal number. If there are multiple Transforms
with the same type, the responder MUST choose a single one. Any attributes of a selected transform
MUST be returned unmodified. The initiator of an exchange MUST check that the accepted offer is
consistent with one of its proposals, and if not that response MUST be rejected

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 315

Identifier: RQ_002_6303
RFC Clause: 3.3.6
Type: Recommended
Applies to: Host

Requirement:
An IKE implementation SHOULD NOT reject a proposal within a Security Association Payload for the
single reason that one (or more) of the associated Transform Attribute values are outside the range
that the implementation is configured to accept but are legitimate values which would result in
greater security on the resultant SA

RFC Text:
Implementation Note:

 Certain negotiable attributes can have ranges or could have
 multiple acceptable values. These include the key length of a
 variable key length symmetric cipher. To further interoperability
 and to support upgrading endpoints independently, implementers of
 this protocol SHOULD accept values that they deem to supply
 greater security. For instance, if a peer is configured to accept
 a variable-length cipher with a key length of X bits and is
 offered that cipher with a larger key length, the implementation
 SHOULD accept the offer if it supports use of the longer key.

Support of this capability allows an implementation to express a concept of "at least" a certain
level of security -- "a key length of _at least_ X bits for cipher Y".

Identifier: RQ_002_6304
RFC Clause: 3.4
Type: Mandatory
Applies to: Host

Requirement:
A Key Exchange Payload i an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 & 6 Diffie-Hellman Group Number
 7 & 8 Reserved
 9 to End Key Exchange Data

RFC Text:
The Key Exchange Payload, denoted KE in this memo, is used to exchange Diffie-Hellman public numbers
as part of a Diffie-Hellman key exchange. The Key Exchange Payload consists of the IKE generic
payload header followed by the Diffie-Hellman public value itself.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! DH Group # ! RESERVED !
 +-+
 ! !
 ~ Key Exchange Data ~
 ! !
 +-+

 Figure 10: Key Exchange Payload Format

A key exchange payload is constructed by copying one's Diffie-Hellman public value into the "Key
Exchange Data" portion of the payload. The length of the Diffie-Hellman public value MUST be equal
to the length of the prime modulus over which the exponentiation was performed, prepending zero bits
to the value if necessary.

The DH Group # identifies the Diffie-Hellman group in which the Key Exchange Data was computed (see
section 3.3.2). If the selected proposal uses a different Diffie-Hellman group, the message MUST be
rejected with a Notify payload of type INVALID_KE_PAYLOAD.

The payload type for the Key Exchange payload is thirty four (34)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 316

Identifier: RQ_002_6305
RFC Clause: 3.4
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends a packet containing a Key Exchange Payload it MUST set the Diffie-
Hellman Group Number field to one of the following values as appropriate:

 Name Value
 --
 NONE 0
 Group 1 (as defined in Appendix B of RFC4306) 1
 Group 2 (as defined in Appendix B of RFC4306) 2
 Reserved 3 to 4
 Group 5 (as defined in RFC3526) 5
 Reserved to IANA 6 to 13
 Group 14 (as defined in RFC3526) 14
 Group 15 (as defined in RFC3526) 15
 Group 16 (as defined in RFC3526) 16
 Group 17 (as defined in RFC3526) 17
 Group 18 (as defined in RFC3526) 18
 Reserved to IANA 19 to 1023
 Private Use 1024 to 65535

RFC Text:
The Key Exchange Payload, denoted KE in this memo, is used to exchange Diffie-Hellman public numbers
as part of a Diffie-Hellman key exchange. The Key Exchange Payload consists of the IKE generic
payload header followed by the Diffie-Hellman public value itself.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! DH Group # ! RESERVED !
 +-+
 ! !
 ~ Key Exchange Data ~
 ! !
 +-+

 Figure 10: Key Exchange Payload Format

A key exchange payload is constructed by copying one's Diffie-Hellman public value into the "Key
Exchange Data" portion of the payload. The length of the Diffie-Hellman public value MUST be equal
to the length of the prime modulus over which the exponentiation was performed, prepending zero bits
to the value if necessary.

The DH Group # identifies the Diffie-Hellman group in which the Key Exchange Data was computed (see
section 3.3.2). If the selected proposal uses a different Diffie-Hellman group, the message MUST be
rejected with a Notify payload of type INVALID_KE_PAYLOAD.

The payload type for the Key Exchange payload is thirty four (34)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 317

Identifier: RQ_002_6306
RFC Clause: 3.4
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives a packet containing a Key Exchange Payload which identifies a
Diffie-Hellman Group Number which is not the same as the Group identified in the previously selected
SA proposal, it MUST reject the Key Exchange Payload with a Notify Payload with the Error Type set
to INVALID_KE_PAYLOAD

RFC Text:
The Key Exchange Payload, denoted KE in this memo, is used to exchange Diffie-Hellman public numbers
as part of a Diffie-Hellman key exchange. The Key Exchange Payload consists of the IKE generic
payload header followed by the Diffie-Hellman public value itself.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! DH Group # ! RESERVED !
 +-+
 ! !
 ~ Key Exchange Data ~
 ! !
 +-+

 Figure 10: Key Exchange Payload Format

A key exchange payload is constructed by copying one's Diffie-Hellman public value into the "Key
Exchange Data" portion of the payload. The length of the Diffie-Hellman public value MUST be equal
to the length of the prime modulus over which the exponentiation was performed, prepending zero bits
to the value if necessary.

The DH Group # identifies the Diffie-Hellman group in which the Key Exchange Data was computed (see
section 3.3.2). If the selected proposal uses a different Diffie-Hellman group, the message MUST be
rejected with a Notify payload of type INVALID_KE_PAYLOAD.

The payload type for the Key Exchange payload is thirty four (34)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 318

Identifier: RQ_002_6307
RFC Clause: 3.4
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Key Exchange Payload, it MUST set the
appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the Key Exchange Payload) to the value thirty-four (34)

RFC Text:
The Key Exchange Payload, denoted KE in this memo, is used to exchange Diffie-Hellman public numbers
as part of a Diffie-Hellman key exchange. The Key Exchange Payload consists of the IKE generic
payload header followed by the Diffie-Hellman public value itself.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! DH Group # ! RESERVED !
 +-+
 ! !
 ~ Key Exchange Data ~
 ! !
 +-+

 Figure 10: Key Exchange Payload Format

A key exchange payload is constructed by copying one's Diffie-Hellman public value into the "Key
Exchange Data" portion of the payload. The length of the Diffie-Hellman public value MUST be equal
to the length of the prime modulus over which the exponentiation was performed, prepending zero bits
to the value if necessary.

The DH Group # identifies the Diffie-Hellman group in which the Key Exchange Data was computed (see
section 3.3.2). If the selected proposal uses a different Diffie-Hellman group, the message MUST be
rejected with a Notify payload of type INVALID_KE_PAYLOAD.

The payload type for the Key Exchange payload is thirty four (34)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 319

Identifier: RQ_002_6308
RFC Clause: 3.5
Type: Mandatory
Applies to: Host

Requirement:
An Identification Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 ID Type
 6 to 8 Reserved
 9 to End Identification Data

RFC Text:
The Identification Payload consists of the IKE generic payload header followed by identification
fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! ID Type ! RESERVED |
 +-+
 ! !
 ~ Identification Data ~
 ! !
 +-+

 Figure 11: Identification Payload Format

o ID Type (1 octet) - Specifies the type of Identification being used.

o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

o Identification Data (variable length) - Value, as indicated by the Identification Type. The length
of the Identification Data is
 computed from the size in the ID payload header.

The payload types for the Identification Payload are thirty five (35) for IDi and thirty six (36)
for IDr.

The following table lists the assigned values for the Identification Type field, followed by a
description of the Identification Data which follows:

 ID Type Value
 ------- -----
 RESERVED 0

 ID_IPV4_ADDR 1

 A single four (4) octet IPv4 address.

 ID_FQDN 2

 A fully-qualified domain name string. An example of a
 ID_FQDN is, "example.com". The string MUST not contain any
 terminators (e.g., NULL, CR, etc.).

 ID_RFC822_ADDR 3

 A fully-qualified RFC822 email address string, An example of
 a ID_RFC822_ADDR is, "jsmith@example.com". The string MUST
 not contain any terminators.

 Reserved to IANA 4

 ID_IPV6_ADDR 5

 A single sixteen (16) octet IPv6 address.

 Reserved to IANA 6 - 8

 ID_DER_ASN1_DN 9

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 320

 The binary Distinguished Encoding Rules (DER) encoding of an
 ASN.1 X.500 Distinguished Name [X.501].

 ID_DER_ASN1_GN 10

 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].

 ID_KEY_ID 11

 An opaque octet stream which may be used to pass vendor-
 specific information necessary to do certain proprietary
 types of identification.

 Reserved to IANA 12-200

 Reserved for private use 201-255

Two implementations will interoperate only if each can generate a type of ID acceptable to the
other. To assure maximum interoperability, implementations MUST be configurable to send at least one
of ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, or ID_KEY_ID, and MUST be configurable to accept all of
these types. Implementations SHOULD be capable of generating and accepting all of these types. IPv6-
capable implementations MUST additionally be configurable to accept ID_IPV6_ADDR. IPv6-only
implementations MAY be configurable to send only ID_IPV6_ADDR

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 321

Identifier: RQ_002_6309
RFC Clause: 3.5
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing an Identification Payload, it MUST set the
correct value from the following table into the ID Type field to characterize the type of
identification included in the Identification Data field:

 ID Type Value Meaning
 --
 RESERVED 0
 ID_IPV4_ADDR 1 A single four (4) octet IPv4 address.
 ID_FQDN 2 A fully-qualified domain name string. An example of a
 ID_FQDN is, "example.com". The string MUST not contain any
 terminators (e.g., NULL, CR, etc.).
 ID_RFC822_ADDR 3 A fully-qualified RFC822 email address string, An example of
 a ID_RFC822_ADDR is, "jsmith@example.com". The string MUST
 not contain any terminators.
 Reserved to IANA 4
 ID_IPV6_ADDR 5 A single sixteen (16) octet IPv6 address.
 Reserved to IANA 6 to 8
 ID_DER_ASN1_DN 9 The binary Distinguished Encoding Rules (DER) encoding of an
 ASN.1 X.500 Distinguished Name [X.501].
 ID_DER_ASN1_GN 10 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].
 ID_KEY_ID 11 An opaque octet stream which may be used to pass vendor-
 specific information necessary to do certain proprietary
 types of identification.
 Reserved to IANA 12-200
 Reserved for private use 201-255

RFC Text:
The Identification Payload consists of the IKE generic payload header followed by identification
fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! ID Type ! RESERVED |
 +-+
 ! !
 ~ Identification Data ~
 ! !
 +-+

 Figure 11: Identification Payload Format

o ID Type (1 octet) - Specifies the type of Identification being used.

o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

o Identification Data (variable length) - Value, as indicated by the Identification Type. The
length of the Identification Data is
 computed from the size in the ID payload header.

The payload types for the Identification Payload are thirty five (35) for IDi and thirty six (36)
for IDr.

The following table lists the assigned values for the Identification Type field, followed by a
description of the Identification Data which follows:

 ID Type Value
 ------- -----
 RESERVED 0

 ID_IPV4_ADDR 1

 A single four (4) octet IPv4 address.

 ID_FQDN 2

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 322

 A fully-qualified domain name string. An example of a
 ID_FQDN is, "example.com". The string MUST not contain any
 terminators (e.g., NULL, CR, etc.).

 ID_RFC822_ADDR 3

 A fully-qualified RFC822 email address string, An example of
 a ID_RFC822_ADDR is, "jsmith@example.com". The string MUST
 not contain any terminators.

 Reserved to IANA 4

 ID_IPV6_ADDR 5

 A single sixteen (16) octet IPv6 address.

 Reserved to IANA 6 - 8

 ID_DER_ASN1_DN 9

 The binary Distinguished Encoding Rules (DER) encoding of an
 ASN.1 X.500 Distinguished Name [X.501].

 ID_DER_ASN1_GN 10

 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].

 ID_KEY_ID 11

 An opaque octet stream which may be used to pass vendor-
 specific information necessary to do certain proprietary
 types of identification.

 Reserved to IANA 12-200

 Reserved for private use 201-255

Two implementations will interoperate only if each can generate a type of ID acceptable to the
other. To assure maximum interoperability, implementations MUST be configurable to send at least one
of ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, or ID_KEY_ID, and MUST be configurable to accept all of
these types. Implementations SHOULD be capable of generating and accepting all of these types. IPv6-
capable implementations MUST additionally be configurable to accept ID_IPV6_ADDR. IPv6-only
implementations MAY be configurable to send only ID_IPV6_ADDR

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 323

Identifier: RQ_002_6310
RFC Clause: 3.5
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an Initiator's Identification Payload
(IDi), it MUST set the appropriate Next Payload field (either in the IKE Header or in the Generic
Header of the payload preceding the Identification Payload) to the value thirty-five (35)

RFC Text:
The Identification Payload consists of the IKE generic payload header followed by identification
fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! ID Type ! RESERVED |
 +-+
 ! !
 ~ Identification Data ~
 ! !
 +-+

 Figure 11: Identification Payload Format

o ID Type (1 octet) - Specifies the type of Identification being used.

o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

o Identification Data (variable length) - Value, as indicated by the Identification Type. The
length of the Identification Data is
 computed from the size in the ID payload header.

The payload types for the Identification Payload are thirty five (35) for IDi and thirty six (36)
for IDr.

The following table lists the assigned values for the Identification Type field, followed by a
description of the Identification Data which follows:

 ID Type Value
 ------- -----
 RESERVED 0

 ID_IPV4_ADDR 1

 A single four (4) octet IPv4 address.

 ID_FQDN 2

 A fully-qualified domain name string. An example of a
 ID_FQDN is, "example.com". The string MUST not contain any
 terminators (e.g., NULL, CR, etc.).

 ID_RFC822_ADDR 3

 A fully-qualified RFC822 email address string, An example of
 a ID_RFC822_ADDR is, "jsmith@example.com". The string MUST
 not contain any terminators.

 Reserved to IANA 4

 ID_IPV6_ADDR 5

 A single sixteen (16) octet IPv6 address.

 Reserved to IANA 6 - 8

 ID_DER_ASN1_DN 9

 The binary Distinguished Encoding Rules (DER) encoding of an
 ASN.1 X.500 Distinguished Name [X.501].

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 324

 ID_DER_ASN1_GN 10

 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].

 ID_KEY_ID 11

 An opaque octet stream which may be used to pass vendor-
 specific information necessary to do certain proprietary
 types of identification.

 Reserved to IANA 12-200

 Reserved for private use 201-255

Two implementations will interoperate only if each can generate a type of ID acceptable to the
other. To assure maximum interoperability, implementations MUST be configurable to send at least one
of ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, or ID_KEY_ID, and MUST be configurable to accept all of
these types. Implementations SHOULD be capable of generating and accepting all of these types. IPv6-
capable implementations MUST additionally be configurable to accept ID_IPV6_ADDR. IPv6-only
implementations MAY be configurable to send only ID_IPV6_ADDR

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 325

Identifier: RQ_002_6311
RFC Clause: 3.5
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Responder's Identification Payload
(IDr), it MUST set the appropriate Next Payload field (either in the IKE Header or in the Generic
Header of the payload preceding the Identification Payload) to the value thirty-six (36)

RFC Text:
The Identification Payload consists of the IKE generic payload header followed by identification
fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! ID Type ! RESERVED |
 +-+
 ! !
 ~ Identification Data ~
 ! !
 +-+

 Figure 11: Identification Payload Format

o ID Type (1 octet) - Specifies the type of Identification being used.

o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

o Identification Data (variable length) - Value, as indicated by the Identification Type. The
length of the Identification Data is
 computed from the size in the ID payload header.

The payload types for the Identification Payload are thirty five (35) for IDi and thirty six (36)
for IDr.

The following table lists the assigned values for the Identification Type field, followed by a
description of the Identification Data which follows:

 ID Type Value
 ------- -----
 RESERVED 0

 ID_IPV4_ADDR 1

 A single four (4) octet IPv4 address.

 ID_FQDN 2

 A fully-qualified domain name string. An example of a
 ID_FQDN is, "example.com". The string MUST not contain any
 terminators (e.g., NULL, CR, etc.).

 ID_RFC822_ADDR 3

 A fully-qualified RFC822 email address string, An example of
 a ID_RFC822_ADDR is, "jsmith@example.com". The string MUST
 not contain any terminators.

 Reserved to IANA 4

 ID_IPV6_ADDR 5

 A single sixteen (16) octet IPv6 address.

 Reserved to IANA 6 - 8

 ID_DER_ASN1_DN 9

 The binary Distinguished Encoding Rules (DER) encoding of an
 ASN.1 X.500 Distinguished Name [X.501].

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 326

 ID_DER_ASN1_GN 10

 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].

 ID_KEY_ID 11

 An opaque octet stream which may be used to pass vendor-
 specific information necessary to do certain proprietary
 types of identification.

 Reserved to IANA 12-200

 Reserved for private use 201-255

Two implementations will interoperate only if each can generate a type of ID acceptable to the
other. To assure maximum interoperability, implementations MUST be configurable to send at least
one of ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, or ID_KEY_ID, and MUST be configurable to accept all
of these types. Implementations SHOULD be capable of generating and accepting all of these types.
IPv6-capable implementations MUST additionally be configurable to accept ID_IPV6_ADDR. IPv6-only
implementations MAY be configurable to send only ID_IPV6_ADDR

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 327

Identifier: RQ_002_6312
RFC Clause: 3.5
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST be able to support the ID_IPV6_ADDR ID Type in an outgoing Identification
Payload

RFC Text:
The Identification Payload consists of the IKE generic payload header followed by identification
fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! ID Type ! RESERVED |
 +-+
 ! !
 ~ Identification Data ~
 ! !
 +-+

 Figure 11: Identification Payload Format

o ID Type (1 octet) - Specifies the type of Identification being used.

o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

o Identification Data (variable length) - Value, as indicated by the Identification Type. The
length of the Identification Data is
 computed from the size in the ID payload header.

The payload types for the Identification Payload are thirty five (35) for IDi and thirty six (36)
for IDr.

The following table lists the assigned values for the Identification Type field, followed by a
description of the Identification Data which follows:

 ID Type Value
 ------- -----
 RESERVED 0

 ID_IPV4_ADDR 1

 A single four (4) octet IPv4 address.

 ID_FQDN 2

 A fully-qualified domain name string. An example of a
 ID_FQDN is, "example.com". The string MUST not contain any
 terminators (e.g., NULL, CR, etc.).

 ID_RFC822_ADDR 3

 A fully-qualified RFC822 email address string, An example of
 a ID_RFC822_ADDR is, "jsmith@example.com". The string MUST
 not contain any terminators.

 Reserved to IANA 4

 ID_IPV6_ADDR 5

 A single sixteen (16) octet IPv6 address.

 Reserved to IANA 6 - 8

 ID_DER_ASN1_DN 9

 The binary Distinguished Encoding Rules (DER) encoding of an
 ASN.1 X.500 Distinguished Name [X.501].

 ID_DER_ASN1_GN 10

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 328

 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].

 ID_KEY_ID 11

 An opaque octet stream which may be used to pass vendor-
 specific information necessary to do certain proprietary
 types of identification.

 Reserved to IANA 12-200

 Reserved for private use 201-255

Two implementations will interoperate only if each can generate a type of ID acceptable to the
other. To assure maximum interoperability, implementations MUST be configurable to send at least one
of ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, or ID_KEY_ID, and MUST be configurable to accept all of
these types. Implementations SHOULD be capable of generating and accepting all of these types. IPv6-
capable implementations MUST additionally be configurable to accept ID_IPV6_ADDR. IPv6-only
implementations MAY be configurable to send only ID_IPV6_ADDR

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 329

Identifier: RQ_002_6313
RFC Clause: 3.5
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST accept all of the following ID Types in incoming Identification Payloads:

 ID_IPV4_ADDR,
 ID_IPV6_ADR,
 ID_FQDN,
 ID_RFC822_ADDR, and
 ID_KEY_ID

RFC Text:
The Identification Payload consists of the IKE generic payload header followed by identification
fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! ID Type ! RESERVED |
 +-+
 ! !
 ~ Identification Data ~
 ! !
 +-+

 Figure 11: Identification Payload Format

o ID Type (1 octet) - Specifies the type of Identification being used.

o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

o Identification Data (variable length) - Value, as indicated by the Identification Type. The
length of the Identification Data is
 computed from the size in the ID payload header.

The payload types for the Identification Payload are thirty five (35) for IDi and thirty six (36)
for IDr.

The following table lists the assigned values for the Identification Type field, followed by a
description of the Identification Data which follows:

 ID Type Value
 ------- -----
 RESERVED 0

 ID_IPV4_ADDR 1

 A single four (4) octet IPv4 address.

 ID_FQDN 2

 A fully-qualified domain name string. An example of a
 ID_FQDN is, "example.com". The string MUST not contain any
 terminators (e.g., NULL, CR, etc.).

 ID_RFC822_ADDR 3

 A fully-qualified RFC822 email address string, An example of
 a ID_RFC822_ADDR is, "jsmith@example.com". The string MUST
 not contain any terminators.

 Reserved to IANA 4

 ID_IPV6_ADDR 5

 A single sixteen (16) octet IPv6 address.

 Reserved to IANA 6 - 8

 ID_DER_ASN1_DN 9

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 330

 The binary Distinguished Encoding Rules (DER) encoding of an
 ASN.1 X.500 Distinguished Name [X.501].

 ID_DER_ASN1_GN 10

 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].

 ID_KEY_ID 11

 An opaque octet stream which may be used to pass vendor-
 specific information necessary to do certain proprietary
 types of identification.

 Reserved to IANA 12-200

 Reserved for private use 201-255

Two implementations will interoperate only if each can generate a type of ID acceptable to the
other. To assure maximum interoperability, implementations MUST be configurable to send at least one
of ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, or ID_KEY_ID, and MUST be configurable to accept all of
these types. Implementations SHOULD be capable of generating and accepting all of these types. IPv6-
capable implementations MUST additionally be configurable to accept ID_IPV6_ADDR. IPv6-only
implementations MAY be configurable to send only ID_IPV6_ADDR

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 331

Identifier: RQ_002_6314
RFC Clause: 3.5
Type: Recommended
Applies to: Host

Requirement:
In addition to ID_IPV6_ADDR, an IKE implementation SHOULD support all of the following ID Types in
outgoing Identification Payloads:

 ID_IPV4_ADDR,
 ID_FQDN,
 ID_RFC822_ADDR, and
 ID_KEY_ID

RFC Text:
The Identification Payload consists of the IKE generic payload header followed by identification
fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! ID Type ! RESERVED |
 +-+
 ! !
 ~ Identification Data ~
 ! !
 +-+

 Figure 11: Identification Payload Format

o ID Type (1 octet) - Specifies the type of Identification being used.

o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

o Identification Data (variable length) - Value, as indicated by the Identification Type. The
length of the Identification Data is
 computed from the size in the ID payload header.

The payload types for the Identification Payload are thirty five (35) for IDi and thirty six (36)
for IDr.

The following table lists the assigned values for the Identification Type field, followed by a
description of the Identification Data which follows:

 ID Type Value
 ------- -----
 RESERVED 0

 ID_IPV4_ADDR 1

 A single four (4) octet IPv4 address.

 ID_FQDN 2

 A fully-qualified domain name string. An example of a
 ID_FQDN is, "example.com". The string MUST not contain any
 terminators (e.g., NULL, CR, etc.).

 ID_RFC822_ADDR 3

 A fully-qualified RFC822 email address string, An example of
 a ID_RFC822_ADDR is, "jsmith@example.com". The string MUST
 not contain any terminators.

 Reserved to IANA 4

 ID_IPV6_ADDR 5

 A single sixteen (16) octet IPv6 address.

 Reserved to IANA 6 - 8

 ID_DER_ASN1_DN 9

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 332

 The binary Distinguished Encoding Rules (DER) encoding of an
 ASN.1 X.500 Distinguished Name [X.501].

 ID_DER_ASN1_GN 10

 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].

 ID_KEY_ID 11

 An opaque octet stream which may be used to pass vendor-
 specific information necessary to do certain proprietary
 types of identification.

 Reserved to IANA 12-200

 Reserved for private use 201-255

Two implementations will interoperate only if each can generate a type of ID acceptable to the
other. To assure maximum interoperability, implementations MUST be configurable to send at least one
of ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, or ID_KEY_ID, and MUST be configurable to accept all of
these types. Implementations SHOULD be capable of generating and accepting all of these types. IPv6-
capable implementations MUST additionally be configurable to accept ID_IPV6_ADDR. IPv6-only
implementations MAY be configurable to send only ID_IPV6_ADDR

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 333

Identifier: RQ_002_6315
RFC Clause: 3.6
Type: Recommended
Applies to: Host

Requirement:
An IKE implementation SHOULD include a Certificate payload in an IKE exchange if certificates or
other authentication-related data are available and if the IKE peer has not previously sent a Notify
Payload with the Status Type set to HTTP_CERT_LOOKUP_SUPPORTED

RFC Text:
The Certificate Payload, denoted CERT in this memo, provides a means to transport certificates or
other authentication-related information via IKE. Certificate payloads SHOULD be included in an
exchange if certificates are available to the sender unless the peer has indicated an ability to
retrieve this information from elsewhere using an HTTP_CERT_LOOKUP_SUPPORTED Notify payload. Note
that the term "Certificate Payload" is somewhat misleading, because not all authentication
mechanisms use certificates and data other than certificates may be passed in this payload.

The Certificate Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certificate Data ~
 ! !
 +-+

 Figure 12: Certificate Payload Format

 o Certificate Encoding (1 octet) - This field indicates the type
 of certificate or certificate-related information contained in
 the Certificate Data field.

 Certificate Encoding Value
 -------------------- -----
 RESERVED 0
 PKCS #7 wrapped X.509 certificate 1
 PGP Certificate 2
 DNS Signed Key 3
 X.509 Certificate - Signature 4
 Kerberos Token 6
 Certificate Revocation List (CRL) 7
 Authority Revocation List (ARL) 8
 SPKI Certificate 9
 X.509 Certificate - Attribute 10
 Raw RSA Key 11
 Hash and URL of X.509 certificate 12
 Hash and URL of X.509 bundle 13
 RESERVED to IANA 14 - 200
 PRIVATE USE 201 - 255

 o Certificate Data (variable length) - Actual encoding of
 certificate data. The type of certificate is indicated by the
 Certificate Encoding field.

The payload type for the Certificate Payload is thirty seven (37).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 334

Identifier: RQ_002_6316
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
An Identification Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 Certificate Encoding indicator
 6 to End Certificate Data

RFC Text:
The Certificate Payload, denoted CERT in this memo, provides a means to transport certificates or
other authentication-related information via IKE. Certificate payloads SHOULD be included in an
exchange if certificates are available to the sender unless the peer has indicated an ability to
retrieve this information from elsewhere using an HTTP_CERT_LOOKUP_SUPPORTED Notify payload. Note
that the term "Certificate Payload" is somewhat misleading, because not all authentication
mechanisms use certificates and data other than certificates may be passed in this payload.

The Certificate Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certificate Data ~
 ! !
 +-+

 Figure 12: Certificate Payload Format

 o Certificate Encoding (1 octet) - This field indicates the type
 of certificate or certificate-related information contained in
 the Certificate Data field.

 Certificate Encoding Value
 -------------------- -----
 RESERVED 0
 PKCS #7 wrapped X.509 certificate 1
 PGP Certificate 2
 DNS Signed Key 3
 X.509 Certificate - Signature 4
 Kerberos Token 6
 Certificate Revocation List (CRL) 7
 Authority Revocation List (ARL) 8
 SPKI Certificate 9
 X.509 Certificate - Attribute 10
 Raw RSA Key 11
 Hash and URL of X.509 certificate 12
 Hash and URL of X.509 bundle 13
 RESERVED to IANA 14 - 200
 PRIVATE USE 201 - 255

 o Certificate Data (variable length) - Actual encoding of
 certificate data. The type of certificate is indicated by the
 Certificate Encoding field.

The payload type for the Certificate Payload is thirty seven (37).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 335

Identifier: RQ_002_6317
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing an Certificate Payload, it MUST set the
correct value from the following table into the Certificate Encoding field to indicate the method
used to encode the authentication information included in the Certificate Data field:

 Certificate Encoding Value

 RESERVED 0
 PKCS #7 wrapped X.509 certificate 1
 PGP Certificate 2
 DNS Signed Key 3
 X.509 Certificate - Signature 4
 Kerberos Token 6
 Certificate Revocation List (CRL) 7
 Authority Revocation List (ARL) 8
 SPKI Certificate 9
 X.509 Certificate - Attribute 10
 Raw RSA Key 11
 Hash and URL of X.509 certificate 12
 Hash and URL of X.509 bundle 13
 RESERVED to IANA 14 - 200
 PRIVATE USE 201 - 255

RFC Text:
The Certificate Payload, denoted CERT in this memo, provides a means to transport certificates or
other authentication-related information via IKE. Certificate payloads SHOULD be included in an
exchange if certificates are available to the sender unless the peer has indicated an ability to
retrieve this information from elsewhere using an HTTP_CERT_LOOKUP_SUPPORTED Notify payload. Note
that the term "Certificate Payload" is somewhat misleading, because not all authentication
mechanisms use certificates and data other than certificates may be passed in this payload.

The Certificate Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certificate Data ~
 ! !
 +-+

 Figure 12: Certificate Payload Format

 o Certificate Encoding (1 octet) - This field indicates the type
 of certificate or certificate-related information contained in
 the Certificate Data field.

 Certificate Encoding Value
 -------------------- -----
 RESERVED 0
 PKCS #7 wrapped X.509 certificate 1
 PGP Certificate 2
 DNS Signed Key 3
 X.509 Certificate - Signature 4
 Kerberos Token 6
 Certificate Revocation List (CRL) 7
 Authority Revocation List (ARL) 8
 SPKI Certificate 9
 X.509 Certificate - Attribute 10
 Raw RSA Key 11
 Hash and URL of X.509 certificate 12
 Hash and URL of X.509 bundle 13
 RESERVED to IANA 14 - 200
 PRIVATE USE 201 - 255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 336

 o Certificate Data (variable length) - Actual encoding of
 certificate data. The type of certificate is indicated by the
 Certificate Encoding field.

The payload type for the Certificate Payload is thirty seven (37).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 337

Identifier: RQ_002_6318
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Certificate Payload, it MUST set the
appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the Certificate Payload) to the value thirty-seven (37)

RFC Text:
The Certificate Payload, denoted CERT in this memo, provides a means to transport certificates or
other authentication-related information via IKE. Certificate payloads SHOULD be included in an
exchange if certificates are available to the sender unless the peer has indicated an ability to
retrieve this information from elsewhere using an HTTP_CERT_LOOKUP_SUPPORTED Notify payload. Note
that the term "Certificate Payload" is somewhat misleading, because not all authentication
mechanisms use certificates and data other than certificates may be passed in this payload.

The Certificate Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certificate Data ~
 ! !
 +-+

 Figure 12: Certificate Payload Format

 o Certificate Encoding (1 octet) - This field indicates the type
 of certificate or certificate-related information contained in
 the Certificate Data field.

 Certificate Encoding Value
 -------------------- -----
 RESERVED 0
 PKCS #7 wrapped X.509 certificate 1
 PGP Certificate 2
 DNS Signed Key 3
 X.509 Certificate - Signature 4
 Kerberos Token 6
 Certificate Revocation List (CRL) 7
 Authority Revocation List (ARL) 8
 SPKI Certificate 9
 X.509 Certificate - Attribute 10
 Raw RSA Key 11
 Hash and URL of X.509 certificate 12
 Hash and URL of X.509 bundle 13
 RESERVED to IANA 14 - 200
 PRIVATE USE 201 - 255

 o Certificate Data (variable length) - Actual encoding of
 certificate data. The type of certificate is indicated by the
 Certificate Encoding field.

The payload type for the Certificate Payload is thirty seven (37).

Specific syntax is for some of the certificate type codes above is not defined in this document.
The types whose syntax is defined in this document are:

 X.509 Certificate - Signature (4) contains a DER encoded X.509
 certificate whose public key is used to validate the sender's AUTH
 payload.

 Certificate Revocation List (7) contains a DER encoded X.509
 certificate revocation list.

 Raw RSA Key (11) contains a PKCS #1 encoded RSA key (see [RSA] and
 [PKCS1]).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 338

 Hash and URL encodings (12-13) allow IKE messages to remain short
 by replacing long data structures with a 20 octet SHA-1 hash (see
 [SHA]) of the replaced value followed by a variable-length URL
 that resolves to the DER encoded data structure itself. This
 improves efficiency when the endpoints have certificate data
 cached and makes IKE less subject to denial of service attacks
 that become easier to mount when IKE messages are large enough to
 require IP fragmentation [KPS03].

 Use the following ASN.1 definition for an X.509 bundle:

 CertBundle
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-cert-bundle(34) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN

 IMPORTS
 Certificate, CertificateList
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-pkix1-explicit(18) } ;

Kaufman Standards Track [Page 60]

RFC 4306 IKEv2 December 2005

 CertificateOrCRL ::= CHOICE {
 cert [0] Certificate,
 crl [1] CertificateList }

 CertificateBundle ::= SEQUENCE OF CertificateOrCRL

 END

Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 339

Identifier: RQ_002_6319
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Certificate Payload with the Certificate
Encoding field set to "X.509 Certificate - Signature" (value 4), it MUST ensure that the Certificate
Data field contains a X.509 certificate encoded using the ASN.1 Distinguished Encoding Rules (DER)

RFC Text:
Specific syntax is for some of the certificate type codes above is not defined in this document. The
types whose syntax is defined in this document are:

 X.509 Certificate - Signature (4) contains a DER encoded X.509
 certificate whose public key is used to validate the sender's AUTH
 payload.

 Certificate Revocation List (7) contains a DER encoded X.509
 certificate revocation list.

 Raw RSA Key (11) contains a PKCS #1 encoded RSA key (see [RSA] and
 [PKCS1]).

 Hash and URL encodings (12-13) allow IKE messages to remain short
 by replacing long data structures with a 20 octet SHA-1 hash (see
 [SHA]) of the replaced value followed by a variable-length URL
 that resolves to the DER encoded data structure itself. This
 improves efficiency when the endpoints have certificate data
 cached and makes IKE less subject to denial of service attacks
 that become easier to mount when IKE messages are large enough to
 require IP fragmentation [KPS03].

 Use the following ASN.1 definition for an X.509 bundle:

 CertBundle
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-cert-bundle(34) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN

 IMPORTS
 Certificate, CertificateList
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-pkix1-explicit(18) }
 CertificateOrCRL ::= CHOICE {
 cert [0] Certificate,
 crl [1] CertificateList }

 CertificateBundle ::= SEQUENCE OF CertificateOrCRL

 END

Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

Identifier: RQ_002_6320
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 340

Requirement:
When an IKE implementation sends an IKE packet containing a Certificate Payload with the Certificate
Encoding field set to "Certificate Revocation List" (value 7), it MUST ensure that the Certificate
Data field contains a X.509 certificate revocation list encoded using the ASN.1 Distinguished
Encoding Rules (DER)

RFC Text:
Specific syntax is for some of the certificate type codes above is not defined in this document. The
types whose syntax is defined in this document are:

 X.509 Certificate - Signature (4) contains a DER encoded X.509
 certificate whose public key is used to validate the sender's AUTH
 payload.

 Certificate Revocation List (7) contains a DER encoded X.509
 certificate revocation list.

 Raw RSA Key (11) contains a PKCS #1 encoded RSA key (see [RSA] and
 [PKCS1]).

 Hash and URL encodings (12-13) allow IKE messages to remain short
 by replacing long data structures with a 20 octet SHA-1 hash (see
 [SHA]) of the replaced value followed by a variable-length URL
 that resolves to the DER encoded data structure itself. This
 improves efficiency when the endpoints have certificate data
 cached and makes IKE less subject to denial of service attacks
 that become easier to mount when IKE messages are large enough to
 require IP fragmentation [KPS03].

 Use the following ASN.1 definition for an X.509 bundle:

 CertBundle
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-cert-bundle(34) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN

 IMPORTS
 Certificate, CertificateList
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-pkix1-explicit(18) }
 CertificateOrCRL ::= CHOICE {
 cert [0] Certificate,
 crl [1] CertificateList }

 CertificateBundle ::= SEQUENCE OF CertificateOrCRL

 END

Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 341

Identifier: RQ_002_6321
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Certificate Payload with the Certificate
Encoding field set to "Raw RSA Key" (value 11), it MUST ensure that the Certificate Data field
contains a RSA key encoded using Public-Key Cryptography Standards (PKCS) #1

RFC Text:
Specific syntax is for some of the certificate type codes above is not defined in this document. The
types whose syntax is defined in this document are:

 X.509 Certificate - Signature (4) contains a DER encoded X.509
 certificate whose public key is used to validate the sender's AUTH
 payload.

 Certificate Revocation List (7) contains a DER encoded X.509
 certificate revocation list.

 Raw RSA Key (11) contains a PKCS #1 encoded RSA key (see [RSA] and
 [PKCS1]).

 Hash and URL encodings (12-13) allow IKE messages to remain short
 by replacing long data structures with a 20 octet SHA-1 hash (see
 [SHA]) of the replaced value followed by a variable-length URL
 that resolves to the DER encoded data structure itself. This
 improves efficiency when the endpoints have certificate data
 cached and makes IKE less subject to denial of service attacks
 that become easier to mount when IKE messages are large enough to
 require IP fragmentation [KPS03].

 Use the following ASN.1 definition for an X.509 bundle:

 CertBundle
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-cert-bundle(34) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN

 IMPORTS
 Certificate, CertificateList
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-pkix1-explicit(18) }
 CertificateOrCRL ::= CHOICE {
 cert [0] Certificate,
 crl [1] CertificateList }

 CertificateBundle ::= SEQUENCE OF CertificateOrCRL

 END

Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 342

Identifier: RQ_002_6322
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Certificate Payload with the Certificate
Encoding field set to "Hash and URL of X.509 bundle" (value 13), it MUST ensure that the Certificate
Data field contains a X.509 Bundle encoded using the Secure Hash Standard and conforming to the
following ASN.1 definition:

 CertBundle
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-cert-bundle(34) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN

 IMPORTS
 Certificate, CertificateList
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-pkix1-explicit(18) } ;

 CertificateOrCRL ::= CHOICE {
 cert [0] Certificate,
 crl [1] CertificateList }

 CertificateBundle ::= SEQUENCE OF CertificateOrCRL

 END

RFC Text:
Specific syntax is for some of the certificate type codes above is not defined in this document.
The types whose syntax is defined in this document are:

 X.509 Certificate - Signature (4) contains a DER encoded X.509
 certificate whose public key is used to validate the sender's AUTH
 payload.

 Certificate Revocation List (7) contains a DER encoded X.509
 certificate revocation list.

 Raw RSA Key (11) contains a PKCS #1 encoded RSA key (see [RSA] and
 [PKCS1]).

 Hash and URL encodings (12-13) allow IKE messages to remain short
 by replacing long data structures with a 20 octet SHA-1 hash (see
 [SHA]) of the replaced value followed by a variable-length URL
 that resolves to the DER encoded data structure itself. This
 improves efficiency when the endpoints have certificate data
 cached and makes IKE less subject to denial of service attacks
 that become easier to mount when IKE messages are large enough to
 require IP fragmentation [KPS03].

 Use the following ASN.1 definition for an X.509 bundle:

 CertBundle
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-cert-bundle(34) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN

 IMPORTS
 Certificate, CertificateList
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-pkix1-explicit(18) }

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 343

 CertificateOrCRL ::= CHOICE {
 cert [0] Certificate,
 crl [1] CertificateList }

 CertificateBundle ::= SEQUENCE OF CertificateOrCRL

 END

Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

Identifier: RQ_002_6323
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST be able to send up to four (4) X.509 certificates in Certificate Payloads
for each authentication attempt

RFC Text:
Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

Identifier: RQ_002_6324
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST be able to accept up to four (4) X.509 certificates in Certificate
Payloads for each authentication attempt

RFC Text:
Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

Identifier: RQ_002_6325
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST support the Hash and URL of X.509 certificate encoding in outgoing
Certificate Payloads

RFC Text:
Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 344

Identifier: RQ_002_6326
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST support the Hash and URL of X.509 certificate encoding in incoming
Certificate Payloads

RFC Text:
Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

Identifier: RQ_002_6327
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST support the Hash and URL of X.509 bundle encoding in outgoing Certificate
Payloads

RFC Text:
Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

Identifier: RQ_002_6328
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST support the Hash and URL of X.509 bundle encoding in incoming Certificate
Payloads

RFC Text:
Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 345

Identifier: RQ_002_6329
RFC Clause: 3.6
Type: Recommended
Applies to: Host

Requirement:
An IKE implementation SHOULD support the Raw RSA keys encoding in outgoing Certificate Payloads

RFC Text:
Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

Identifier: RQ_002_6330
RFC Clause: 3.6
Type: Recommended
Applies to: Host

Requirement:
An IKE implementation SHOULD support the Raw RSA keys encoding in incoming Certificate Payloads

RFC Text:
Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

Identifier: RQ_002_6331
RFC Clause: 3.6
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends multiple Certificate Payloads in support of a single Authentication
attempt, it MUST ensure that the first Certificate Payload contains the public key used to sign the
associated Authentication Payload

RFC Text:
Implementations MUST be capable of being configured to send and accept up to four X.509 certificates
in support of authentication, and also MUST be capable of being configured to send and accept the
first two Hash and URL formats (with HTTP URLs). Implementations SHOULD be capable of being
configured to send and accept Raw RSA keys. If multiple certificates are sent, the first certificate
MUST contain the public key used to sign the AUTH payload. The other certificates may be sent in any
order.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 346

Identifier: RQ_002_6332
RFC Clause: 3.7
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Certificate Request Payload in an IKE_INIT_SA response

RFC Text:
The Certificate Request Payload, denoted CERTREQ in this memo, provides a means to request preferred
certificates via IKE and can appear in the IKE_INIT_SA response and/or the IKE_AUTH request.
Certificate Request payloads MAY be included in an exchange when the sender needs to get the
certificate of the receiver. If multiple CAs are trusted and the cert encoding does not allow a
list, then multiple Certificate Request payloads SHOULD be transmitted.

The Certificate Request Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certification Authority ~
 ! !
 +-+

 Figure 13: Certificate Request Payload Format

o Certificate Encoding (1 octet) - Contains an encoding of the type
 or format of certificate requested. Values are listed in section 3.6.

o Certification Authority (variable length) - Contains an encoding
 of an acceptable certification authority for the type of certificate
 requested.

The payload type for the Certificate Request Payload is thirty eight (38).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 347

Identifier: RQ_002_6333
RFC Clause: 3.7
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Certificate Request Payload in an IKE_AUTH request

RFC Text:
The Certificate Request Payload, denoted CERTREQ in this memo, provides a means to request preferred
certificates via IKE and can appear in the IKE_INIT_SA response and/or the IKE_AUTH request.
Certificate Request payloads MAY be included in an exchange when the sender needs to get the
certificate of the receiver. If multiple CAs are trusted and the cert encoding does not allow a
list, then multiple Certificate Request payloads SHOULD be transmitted.

The Certificate Request Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certification Authority ~
 ! !
 +-+

 Figure 13: Certificate Request Payload Format

o Certificate Encoding (1 octet) - Contains an encoding of the type
 or format of certificate requested. Values are listed in section 3.6.

o Certification Authority (variable length) - Contains an encoding
 of an acceptable certification authority for the type of certificate
 requested.

The payload type for the Certificate Request Payload is thirty eight (38).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 348

Identifier: RQ_002_6334
RFC Clause: 3.7
Type: Recommended
Applies to: Host

Requirement:
An IKE implementation SHOULD include a separate Certificate Request Payload in the IKE_SA_INIT
response or IKE_AUTH request for each available Certification Authority

RFC Text:
The Certificate Request Payload, denoted CERTREQ in this memo, provides a means to request preferred
certificates via IKE and can appear in the IKE_INIT_SA response and/or the IKE_AUTH request.
Certificate Request payloads MAY be included in an exchange when the sender needs to get the
certificate of the receiver. If multiple CAs are trusted and the cert encoding does not allow a
list, then multiple Certificate Request payloads SHOULD be transmitted.

The Certificate Request Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certification Authority ~
 ! !
 +-+

 Figure 13: Certificate Request Payload Format

o Certificate Encoding (1 octet) - Contains an encoding of the type
 or format of certificate requested. Values are listed in section 3.6.

o Certification Authority (variable length) - Contains an encoding
 of an acceptable certification authority for the type of certificate
 requested.

The payload type for the Certificate Request Payload is thirty eight (38).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 349

Identifier: RQ_002_6335
RFC Clause: 3.7
Type: Mandatory
Applies to: Host

Requirement:
An Identification Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 Certificate Encoding indicator
 6 to end Certification Authority identifier

RFC Text:
The Certificate Request Payload, denoted CERTREQ in this memo, provides a means to request preferred
certificates via IKE and can appear in the IKE_INIT_SA response and/or the IKE_AUTH request.
Certificate Request payloads MAY be included in an exchange when the sender needs to get the
certificate of the receiver. If multiple CAs are trusted and the cert encoding does not allow a
list, then multiple Certificate Request payloads SHOULD be transmitted.

The Certificate Request Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certification Authority ~
 ! !
 +-+

 Figure 13: Certificate Request Payload Format

o Certificate Encoding (1 octet) - Contains an encoding of the type
 or format of certificate requested. Values are listed in section 3.6.

o Certification Authority (variable length) - Contains an encoding
 of an acceptable certification authority for the type of certificate
 requested.

The payload type for the Certificate Request Payload is thirty eight (38).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 350

Identifier: RQ_002_6336
RFC Clause: 3.7
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing an Certificate Request Payload, it MUST
set the correct value from the following table into the Certificate Encoding field to indicate the
method to be used by the responding IKE endpoint to encode the authentication information included
in the Certificate Data field of the returned Certificate Payload:

 Certificate Encoding Value
 --
 RESERVED 0
 PKCS #7 wrapped X.509 certificate 1
 PGP Certificate 2
 DNS Signed Key 3
 X.509 Certificate - Signature 4
 Kerberos Token 6
 Certificate Revocation List (CRL) 7
 Authority Revocation List (ARL) 8
 SPKI Certificate 9
 X.509 Certificate - Attribute 10
 Raw RSA Key 11
 Hash and URL of X.509 certificate 12
 Hash and URL of X.509 bundle 13
 RESERVED to IANA 14 - 200
 PRIVATE USE 201 - 255

RFC Text:
The Certificate Request Payload, denoted CERTREQ in this memo, provides a means to request preferred
certificates via IKE and can appear in the IKE_INIT_SA response and/or the IKE_AUTH request.
Certificate Request payloads MAY be included in an exchange when the sender needs to get the
certificate of the receiver. If multiple CAs are trusted and the cert encoding does not allow a
list, then multiple Certificate Request payloads SHOULD be transmitted.

The Certificate Request Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certification Authority ~
 ! !
 +-+

 Figure 13: Certificate Request Payload Format

o Certificate Encoding (1 octet) - Contains an encoding of the type
 or format of certificate requested. Values are listed in section 3.6.

o Certification Authority (variable length) - Contains an encoding
 of an acceptable certification authority for the type of certificate
 requested.

The payload type for the Certificate Request Payload is thirty eight (38).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 351

Identifier: RQ_002_6337
RFC Clause: 3.7
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an Certificate Request Payload (CERTREQ),
it MUST set the appropriate Next Payload field (either in the IKE Header or in the Generic Header of
the payload preceding the Certificate Request Payload) to the value thirty-eight (38)

RFC Text:
The Certificate Request Payload, denoted CERTREQ in this memo, provides a means to request preferred
certificates via IKE and can appear in the IKE_INIT_SA response and/or the IKE_AUTH request.
Certificate Request payloads MAY be included in an exchange when the sender needs to get the
certificate of the receiver. If multiple CAs are trusted and the cert encoding does not allow a
list, then multiple Certificate Request payloads SHOULD be transmitted.

The Certificate Request Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certification Authority ~
 ! !
 +-+

 Figure 13: Certificate Request Payload Format

o Certificate Encoding (1 octet) - Contains an encoding of the type
 or format of certificate requested. Values are listed in section 3.6.

o Certification Authority (variable length) - Contains an encoding
 of an acceptable certification authority for the type of certificate
 requested.

The payload type for the Certificate Request Payload is thirty eight (38).

Identifier: RQ_002_6338
RFC Clause: 3.7
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an Certificate Request Payload (CERTREQ),
it MUST set the Certification Authority field to a value constructed as a concatenated list of SHA-1
hashes of the public keys of the trusted Certification Authorities for the certificate type
indicated in the Certificate Encoding field

RFC Text:
The Certificate Encoding field has the same values as those defined in section 3.6. The
Certification Authority field contains an indicator of trusted authorities for this certificate
type. The Certification Authority value is a concatenated list of SHA-1 hashes of the public keys of
trusted Certification Authorities (CAs). Each is encoded as the SHA-1 hash of the Subject Public Key
Info element (see section 4.1.2.7 of [RFC3280]) from each Trust Anchor certificate. The twenty-octet
hashes are concatenated and included with no other formatting.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 352

Identifier: RQ_002_6339
RFC Clause: 3.7
Type: Recommended
Applies to: Host

Requirement:
If an IKE implementation is enabled to send Certificate payloads and has access to a certificate
that satisfies the criteria specified in a received Certificate Request payload, it SHOULD send a
corresponding Certificate payload back to the originator of the Certificate Request payload.

RFC Text:
If an end-entity certificate exists that satisfies the criteria specified in the CERTREQ, a
certificate or certificate chain SHOULD be sent back to the certificate requestor if the recipient
of the CERTREQ:

- is configured to use certificate authentication,

- is allowed to send a CERT payload,

- has matching CA trust policy governing the current negotiation, and

- has at least one time-wise and usage appropriate end-entity
 certificate chaining to a CA provided in the CERTREQ.

Identifier: RQ_002_6340
RFC Clause: 3.7
Type: Recommended
Applies to: Host

Requirement:
If an IKE implementation is enabled to send Certificate payloads but has no access to a certificate
that satisfies the criteria specified in a received Certificate Request payload, it SHOULD send no
response to the originator of the Certificate Request payload.

RFC Text:
Certificate revocation checking must be considered during the chaining process used to select a
certificate. Note that even if two peers are configured to use two different CAs, cross-
certification relationships should be supported by appropriate selection logic.

The intent is not to prevent communication through the strict adherence of selection of a
certificate based on CERTREQ, when an alternate certificate could be selected by the sender that
would still enable the recipient to successfully validate and trust it through trust conveyed by
cross-certification, CRLs, or other out- of-band configured means. Thus, the processing of a CERTREQ
should be seen as a suggestion for a certificate to select, not a mandated one. If no certificates
exist, then the CERTREQ is ignored. This is not an error condition of the protocol. There may be
cases where there is a preferred CA sent in the CERTREQ, but an alternate might be acceptable
(perhaps after prompting a human operator).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 353

Identifier: RQ_002_6341
RFC Clause: 3.8
Type: Mandatory
Applies to: Host

Requirement:
An Authentication Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 Authentication Method
 6 to 8 Reserved
 7 to End Authentication Data (as described in RFC 4306 section 2.15)

RFC Text:
The Authentication Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Auth Method ! RESERVED !
 +-+
 ! !
 ~ Authentication Data ~
 ! !
 +-+

 Figure 14: Authentication Payload Format

o Auth Method (1 octet) - Specifies the method of authentication used. Values defined are:

 RSA Digital Signature (1) - Computed as specified in section
 2.15 using an RSA private key over a PKCS#1 padded hash (see
 [RSA] and [PKCS1]).

 Shared Key Message Integrity Code (2) - Computed as specified in
 section 2.15 using the shared key associated with the identity
 in the ID payload and the negotiated prf function

 DSS Digital Signature (3) - Computed as specified in section
 2.15 using a DSS private key (see [DSS]) over a SHA-1 hash.

 The values 0 and 4-200 are reserved to IANA. The values 201-255
 are available for private use.

o Authentication Data (variable length) - see section 2.15.

The payload type for the Authentication Payload is thirty nine (39)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 354

Identifier: RQ_002_6342
RFC Clause: 3.8
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing an Authentication payload, it MUST set the
Authentication Method field to one of the following values:

 Value Authentication Method

 0 Reserved for IANA
 1 RSA Digital Signature
 2 Shared Key Message Integrity Code
 3 DSS Digital Signature
 4 - 200 Reserved for IANA
 201 - 255 For private use

RFC Text:
The Authentication Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Auth Method ! RESERVED !
 +-+
 ! !
 ~ Authentication Data ~
 ! !
 +-+

 Figure 14: Authentication Payload Format

o Auth Method (1 octet) - Specifies the method of authentication used. Values defined are:

 RSA Digital Signature (1) - Computed as specified in section
 2.15 using an RSA private key over a PKCS#1 padded hash (see
 [RSA] and [PKCS1]).

 Shared Key Message Integrity Code (2) - Computed as specified in
 section 2.15 using the shared key associated with the identity
 in the ID payload and the negotiated prf function

 DSS Digital Signature (3) - Computed as specified in section
 2.15 using a DSS private key (see [DSS]) over a SHA-1 hash.

 The values 0 and 4-200 are reserved to IANA. The values 201-255
 are available for private use.

o Authentication Data (variable length) - see section 2.15.

The payload type for the Authentication Payload is thirty nine (39)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 355

Identifier: RQ_002_6343
RFC Clause: 3.8
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an Authentication Payload, it MUST set
the appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the Authentication Payload) to the value thirty-nine (39)

RFC Text:

The Authentication Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Auth Method ! RESERVED !
 +-+
 ! !
 ~ Authentication Data ~
 ! !
 +-+

 Figure 14: Authentication Payload Format

o Auth Method (1 octet) - Specifies the method of authentication used. Values defined are:

 RSA Digital Signature (1) - Computed as specified in section
 2.15 using an RSA private key over a PKCS#1 padded hash (see
 [RSA] and [PKCS1]).

 Shared Key Message Integrity Code (2) - Computed as specified in
 section 2.15 using the shared key associated with the identity
 in the ID payload and the negotiated prf function

 DSS Digital Signature (3) - Computed as specified in section
 2.15 using a DSS private key (see [DSS]) over a SHA-1 hash.

 The values 0 and 4-200 are reserved to IANA. The values 201-255
 are available for private use.

o Authentication Data (variable length) - see section 2.15.

The payload type for the Authentication Payload is thirty nine (39)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 356

Identifier: RQ_002_6344
RFC Clause: 3.9
Type: Mandatory
Applies to: Host

Requirement:
A Nonce Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 to End Nonce Data

RFC Text:
The Nonce Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Nonce Data ~
 ! !
 +-+

 Figure 15: Nonce Payload Format

o Nonce Data (variable length) - Contains the random data generated
 by the transmitting entity.

The payload type for the Nonce Payload is forty (40).

The size of a Nonce MUST be between 16 and 256 octets inclusive. Nonce values MUST NOT be reused

Identifier: RQ_002_6345
RFC Clause: 3.9
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Nonce payload, it MUST set the Nonce
Data field to a random (but previously unused within the context of the current Security
Association) value of between 16 and 256 octets in length

RFC Text:
The Nonce Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Nonce Data ~
 ! !
 +-+

 Figure 15: Nonce Payload Format

o Nonce Data (variable length) - Contains the random data generated
 by the transmitting entity.

The payload type for the Nonce Payload is forty (40).

The size of a Nonce MUST be between 16 and 256 octets inclusive. Nonce values MUST NOT be reused

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 357

Identifier: RQ_002_6346
RFC Clause: 3.9
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Nonce Payload, it MUST set the
appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the Nonce Payload) to the value forty (40)

RFC Text:
The Nonce Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Nonce Data ~
 ! !
 +-+

 Figure 15: Nonce Payload Format

o Nonce Data (variable length) - Contains the random data generated
 by the transmitting entity.

The payload type for the Nonce Payload is forty (40).

The size of a Nonce MUST be between 16 and 256 octets inclusive. Nonce values MUST NOT be reused

Identifier: RQ_002_6347
RFC Clause: 3.10
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Notify Payload in an IKE response message (to specify why the
associated IKE request was rejected), in an IKE Informational Exchange (to report an error not in an
IKE request) or in any other message (to indicate sender capabilities or to modify the meaning of
the request)

RFC Text:
The Notify Payload, denoted N in this document, is used to transmit informational data, such as
error conditions and state transitions, to an IKE peer. A Notify Payload may appear in a response
message (usually specifying why a request was rejected), in an INFORMATIONAL Exchange (to report an
error not in an IKE request), or in any other message to indicate sender capabilities or to modify
the meaning of the request.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 358

Identifier: RQ_002_6348
RFC Clause: 3.10
Type: Mandatory
Applies to: Host

Requirement:
A Notify Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 Protocol Identifier
 6 Security Parameter Index (SPI) Size
 7 - 8 Notify Message Type
 9 to SPI length + 9 Security Parameter Index (SPI)
 SPI length + 10 to End Notification Length

RFC Text:
The Notify Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 Figure 16: Notify Payload Format

o Protocol ID (1 octet) - If this notification concerns an existing
 SA, this field indicates the type of that SA. For IKE_SA
 notifications, this field MUST be one (1). For notifications
 concerning IPsec SAs this field MUST contain either (2) to
 indicate AH or (3) to indicate ESP. For notifications that do not
 relate to an existing SA, this field MUST be sent as zero and MUST
 be ignored on receipt. All other values for this field are
 reserved to IANA for future assignment.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the
 IPsec protocol ID or zero if no SPI is applicable. For a
 notification concerning the IKE_SA, the SPI Size MUST be zero.

o Notify Message Type (2 octets) - Specifies the type of
 notification message.

o SPI (variable length) - Security Parameter Index.

o Notification Data (variable length) - Informational or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are type specific (see below).

The payload type for the Notify Payload is forty one (41).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 359

Identifier: RQ_002_6349
RFC Clause: 3.10
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Notify Payload, it MUST set the Protocol
Identifier field to one of the following values:

 Protocol ID Protocol

 0 Not related to an existing SA
 1 IKE (related to an IKE_SA)
 2 AH (related to an IPsec SA)
 3 ESP (related to an IPsec SA)
 4 to 255 Reserved for IANA

RFC Text:
The Notify Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 Figure 16: Notify Payload Format

o Protocol ID (1 octet) - If this notification concerns an existing
 SA, this field indicates the type of that SA. For IKE_SA
 notifications, this field MUST be one (1). For notifications
 concerning IPsec SAs this field MUST contain either (2) to
 indicate AH or (3) to indicate ESP. For notifications that do not
 relate to an existing SA, this field MUST be sent as zero and MUST
 be ignored on receipt. All other values for this field are
 reserved to IANA for future assignment.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the
 IPsec protocol ID or zero if no SPI is applicable. For a
 notification concerning the IKE_SA, the SPI Size MUST be zero.

o Notify Message Type (2 octets) - Specifies the type of
 notification message.

o SPI (variable length) - Security Parameter Index.

o Notification Data (variable length) - Informational or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are type specific (see below).

The payload type for the Notify Payload is forty one (41).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 360

Identifier: RQ_002_6350
RFC Clause: 3.10
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Notify Payload, it MUST set the SPI Size
field to the length in octets of the Security Parameter Index if an SPI is applicable

RFC Text:
The Notify Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 Figure 16: Notify Payload Format

o Protocol ID (1 octet) - If this notification concerns an existing
 SA, this field indicates the type of that SA. For IKE_SA
 notifications, this field MUST be one (1). For notifications
 concerning IPsec SAs this field MUST contain either (2) to
 indicate AH or (3) to indicate ESP. For notifications that do not
 relate to an existing SA, this field MUST be sent as zero and MUST
 be ignored on receipt. All other values for this field are
 reserved to IANA for future assignment.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the
 IPsec protocol ID or zero if no SPI is applicable. For a
 notification concerning the IKE_SA, the SPI Size MUST be zero.

o Notify Message Type (2 octets) - Specifies the type of
 notification message.

o SPI (variable length) - Security Parameter Index.

o Notification Data (variable length) - Informational or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are type specific (see below).

The payload type for the Notify Payload is forty one (41).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 361

Identifier: RQ_002_6351
RFC Clause: 3.10
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Notify Payload, it MUST set the SPI Size
field to zero if no SPI is applicable

RFC Text:
The Notify Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 Figure 16: Notify Payload Format

o Protocol ID (1 octet) - If this notification concerns an existing
 SA, this field indicates the type of that SA. For IKE_SA
 notifications, this field MUST be one (1). For notifications
 concerning IPsec SAs this field MUST contain either (2) to
 indicate AH or (3) to indicate ESP. For notifications that do not
 relate to an existing SA, this field MUST be sent as zero and MUST
 be ignored on receipt. All other values for this field are
 reserved to IANA for future assignment.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the
 IPsec protocol ID or zero if no SPI is applicable. For a
 notification concerning the IKE_SA, the SPI Size MUST be zero.

o Notify Message Type (2 octets) - Specifies the type of
 notification message.

o SPI (variable length) - Security Parameter Index.

o Notification Data (variable length) - Informational or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are type specific (see below).

The payload type for the Notify Payload is forty one (41).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 362

Identifier: RQ_002_6352
RFC Clause: 3.10
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Notify Payload, it MUST set the SPI Size
field to zero if the notification concerns the current IKE_SA

RFC Text:
The Notify Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 Figure 16: Notify Payload Format

o Protocol ID (1 octet) - If this notification concerns an existing
 SA, this field indicates the type of that SA. For IKE_SA
 notifications, this field MUST be one (1). For notifications
 concerning IPsec SAs this field MUST contain either (2) to
 indicate AH or (3) to indicate ESP. For notifications that do not
 relate to an existing SA, this field MUST be sent as zero and MUST
 be ignored on receipt. All other values for this field are
 reserved to IANA for future assignment.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the
 IPsec protocol ID or zero if no SPI is applicable. For a
 notification concerning the IKE_SA, the SPI Size MUST be zero.

o Notify Message Type (2 octets) - Specifies the type of
 notification message.

o SPI (variable length) - Security Parameter Index.

o Notification Data (variable length) - Informational or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are type specific (see below).

The payload type for the Notify Payload is forty one (41).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 363

Identifier: RQ_002_6353
RFC Clause: 3.10
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Notify Payload with the Message Type set
to INVALID_IKE_SPI or INVALID_SPI, it MUST set the Security Parameter Index (SPI) field to the value
of the invalid SPI

RFC Text:
The Notify Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 Figure 16: Notify Payload Format

o Protocol ID (1 octet) - If this notification concerns an existing
 SA, this field indicates the type of that SA. For IKE_SA
 notifications, this field MUST be one (1). For notifications
 concerning IPsec SAs this field MUST contain either (2) to
 indicate AH or (3) to indicate ESP. For notifications that do not
 relate to an existing SA, this field MUST be sent as zero and MUST
 be ignored on receipt. All other values for this field are
 reserved to IANA for future assignment.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the
 IPsec protocol ID or zero if no SPI is applicable. For a
 notification concerning the IKE_SA, the SPI Size MUST be zero.

o Notify Message Type (2 octets) - Specifies the type of
 notification message.

o SPI (variable length) - Security Parameter Index.

o Notification Data (variable length) - Informational or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are type specific (see below).

The payload type for the Notify Payload is forty one (41).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 364

Identifier: RQ_002_6354
RFC Clause: 3.10
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Notify Payload, it MUST set the
appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the Notify Payload) to the value forty-one (41)

RFC Text:
The Notify Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 Figure 16: Notify Payload Format

o Protocol ID (1 octet) - If this notification concerns an existing
 SA, this field indicates the type of that SA. For IKE_SA
 notifications, this field MUST be one (1). For notifications
 concerning IPsec SAs this field MUST contain either (2) to
 indicate AH or (3) to indicate ESP. For notifications that do not
 relate to an existing SA, this field MUST be sent as zero and MUST
 be ignored on receipt. All other values for this field are
 reserved to IANA for future assignment.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the
 IPsec protocol ID or zero if no SPI is applicable. For a
 notification concerning the IKE_SA, the SPI Size MUST be zero.

o Notify Message Type (2 octets) - Specifies the type of
 notification message.

o SPI (variable length) - Security Parameter Index.

o Notification Data (variable length) - Informational or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are type specific (see below).

The payload type for the Notify Payload is forty one (41).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 365

Identifier: RQ_002_6355
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Notify Payload, it MUST set the Notify
Message Type field to one of the following values:

 Value Message Type

 0 Reserved
 1 UNSUPPORTED_CRITICAL_PAYLOAD
 4 INVALID_IKE_SPI
 5 INVALID_MAJOR_VERSION
 7 INVALID_SYNTAX
 9 INVALID_MESSAGE_ID
 11 INVALID_SPI
 14 NO_PROPOSAL_CHOSEN
 17 INVALID_KE_PAYLOAD
 24 AUTHENTICATION_FAILED
 34 SINGLE_PAIR_REQUIRED
 35 NO_ADDITIONAL_SAS
 36 INTERNAL_ADDRESS_FAILURE
 37 FAILED_CP_REQUIRED
 38 TS_UNACCEPTABLE
 39 INVALID_SELECTORS
 40 - 8191 Reserved for IANA
 8192 - 16383 Private Use Error Types
 16384 INITIAL_CONTACT
 16385 SET_WINDOW_SIZE
 16386 ADDITIONAL_TS_POSSIBLE
 16387 IPCOMP_SUPPORTED
 16388 NAT_DETECTION_SOURCE_IP
 16389 NAT_DETECTION_DESTINATION_IP
 16390 COOKIE
 16391 USE_TRANSPORT_MODE
 16392 HTTP_CERT_LOOKUP_SUPPORTED
 16393 REKEY_SA
 16394 ESP_TFC_PADDING_NOT_SUPPORTED
 16395 NON_FIRST_FRAGMENTS_ALSO
 16396 - 40959 Reserved for IANA
 40960 - 65535 Private Use Status Types

RFC Text:
Notification information can be error messages specifying why an SA could not be established. It can
also be status data that a process managing an SA database wishes to communicate with a peer
process. The table below lists the Notification messages and their corresponding values. The number
of different error statuses was greatly reduced from IKEv1 both for simplification and to avoid
giving configuration information to probers.

Types in the range 0 - 16383 are intended for reporting errors. An implementation receiving a Notify
payload with one of these types that it does not recognize in a response MUST assume that the
corresponding request has failed entirely. Unrecognized error types in a request and status types in
a request or response MUST be ignored except that they SHOULD be logged.

Notify payloads with status types MAY be added to any message and MUST be ignored if not recognized.
They are intended to indicate capabilities, and as part of SA negotiation are used to negotiate non-
cryptographic parameters.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 366

Identifier: RQ_002_6356
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE response containing a Notify Payload with the Notify
Message Type field set to an Error Type value (between 0 and 16383) that it does not recognize, it
MUST assume that the corresponding request has failed entirely

RFC Text:
Notification information can be error messages specifying why an SA could not be established. It can
also be status data that a process managing an SA database wishes to communicate with a peer
process. The table below lists the Notification messages and their corresponding values. The number
of different error statuses was greatly reduced from IKEv1 both for simplification and to avoid
giving configuration information to probers.

Types in the range 0 - 16383 are intended for reporting errors. An implementation receiving a Notify
payload with one of these types that it does not recognize in a response MUST assume that the
corresponding request has failed entirely. Unrecognized error types in a request and status types in
a request or response MUST be ignored except that they SHOULD be logged.

Notify payloads with status types MAY be added to any message and MUST be ignored if not recognized.
They are intended to indicate capabilities, and as part of SA negotiation are used to negotiate non-
cryptographic parameters.

Identifier: RQ_002_6357
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE request containing a Notify Payload with the Notify
Message Type field set to an Error Type value (between 0 and 16383) that it does not recognize, it
MUST ignore the payload

RFC Text:
Notification information can be error messages specifying why an SA could not be established. It can
also be status data that a process managing an SA database wishes to communicate with a peer
process. The table below lists the Notification messages and their corresponding values. The number
of different error statuses was greatly reduced from IKEv1 both for simplification and to avoid
giving configuration information to probers.

Types in the range 0 - 16383 are intended for reporting errors. An implementation receiving a Notify
payload with one of these types that it does not recognize in a response MUST assume that the
corresponding request has failed entirely. Unrecognized error types in a request and status types in
a request or response MUST be ignored except that they SHOULD be logged.

Notify payloads with status types MAY be added to any message and MUST be ignored if not recognized.
They are intended to indicate capabilities, and as part of SA negotiation are used to negotiate non-
cryptographic parameters.

Identifier: RQ_002_6358
RFC Clause: 3.10.1
Type: Recommended
Applies to: Host

Requirement:
When an IKE implementation receives an IKE request containing a Notify Payload with the Notify
Message Type field set to an Error Type value (between 0 and 16383) that it does not recognize, it
SHOULD log the receipt of the unrecognized payload

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 367

RFC Text:
Notification information can be error messages specifying why an SA could not be established. It can
also be status data that a process managing an SA database wishes to communicate with a peer
process. The table below lists the Notification messages and their corresponding values. The number
of different error statuses was greatly reduced from IKEv1 both for simplification and to avoid
giving configuration information to probers.

Types in the range 0 - 16383 are intended for reporting errors. An implementation receiving a Notify
payload with one of these types that it does not recognize in a response MUST assume that the
corresponding request has failed entirely. Unrecognized error types in a request and status types in
a request or response MUST be ignored except that they SHOULD be logged.

Notify payloads with status types MAY be added to any message and MUST be ignored if not recognized.
They are intended to indicate capabilities, and as part of SA negotiation are used to negotiate non-
cryptographic parameters.

Identifier: RQ_002_6359
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message containing a Notify Payload with the Notify
Message Type field set to a Status Type value (between 16384 and 65535) that it does not recognize,
it MUST ignore the payload

RFC Text:
Notification information can be error messages specifying why an SA could not be established. It can
also be status data that a process managing an SA database wishes to communicate with a peer
process. The table below lists the Notification messages and their corresponding values. The number
of different error statuses was greatly reduced from IKEv1 both for simplification and to avoid
giving configuration information to probers.

Types in the range 0 - 16383 are intended for reporting errors. An implementation receiving a Notify
payload with one of these types that it does not recognize in a response MUST assume that the
corresponding request has failed entirely. Unrecognized error types in a request and status types in
a request or response MUST be ignored except that they SHOULD be logged.

Notify payloads with status types MAY be added to any message and MUST be ignored if not recognized.
They are intended to indicate capabilities, and as part of SA negotiation are used to negotiate non-
cryptographic parameters.

Identifier: RQ_002_6360
RFC Clause: 3.10.1
Type: Recommended
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message containing a Notify Payload with the Notify
Message Type field set to a Status Type value (between 16384 and 65535) that it does not recognize,
it SHOULD log the receipt of the unrecognized payload

RFC Text:
Notification information can be error messages specifying why an SA could not be established. It can
also be status data that a process managing an SA database wishes to communicate with a peer
process. The table below lists the Notification messages and their corresponding values. The number
of different error statuses was greatly reduced from IKEv1 both for simplification and to avoid
giving configuration information to probers.

Types in the range 0 - 16383 are intended for reporting errors. An implementation receiving a Notify
payload with one of these types that it does not recognize in a response MUST assume that the
corresponding request has failed entirely. Unrecognized error types in a request and status types in
a request or response MUST be ignored except that they SHOULD be logged.

Notify payloads with status types MAY be added to any message and MUST be ignored if not recognized.
They are intended to indicate capabilities, and as part of SA negotiation are used to negotiate non-
cryptographic parameters.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 368

Identifier: RQ_002_6361
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Notify Payload with the Notify Message Type set to a Status Type
value (16384 to 65535) in any IKE message

RFC Text:
Notification information can be error messages specifying why an SA could not be established. It can
also be status data that a process managing an SA database wishes to communicate with a peer
process. The table below lists the Notification messages and their corresponding values. The number
of different error statuses was greatly reduced from IKEv1 both for simplification and to avoid
giving configuration information to probers.

Types in the range 0 - 16383 are intended for reporting errors. An implementation receiving a Notify
payload with one of these types that it does not recognize in a response MUST assume that the
corresponding request has failed entirely. Unrecognized error types in a request and status types in
a request or response MUST be ignored except that they SHOULD be logged.

Notify payloads with status types MAY be added to any message and MUST be ignored if not recognized.
They are intended to indicate capabilities, and as part of SA negotiation are used to negotiate non-
cryptographic parameters.

Identifier: RQ_002_6362
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message with the "Critical" flag set in the IKE Header
but the payload type is not recognized, it MUST send an IKE response to the originator containing a
Notify Payload with the Notify Message Type field set to UNSUPPORTED_CRITICAL_PAYLOAD and the
Notification Data field set to the received unrecognized Payload Type value.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 UNSUPPORTED_CRITICAL_PAYLOAD 1

 Sent if the payload has the "critical" bit set and the
 payload type is not recognized. Notification Data contains
 the one-octet payload type.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 369

Identifier: RQ_002_6363
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message with an unrecognized Security Parameter Index in
the IKE_SA Responder's SPI field in the IKE Header, it MUST send an IKE response to the originator
containing a Notify Payload with the Notify Message Type field set to INVALID_IKE_SPI and the
Security Parameter Index field set to the received unrecognized SPI value.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_IKE_SPI 4

 Indicates an IKE message was received with an unrecognized
 destination SPI. This usually indicates that the recipient
 has rebooted and forgotten the existence of an IKE_SA.

Identifier: RQ_002_6364
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message with the Major Version field in the IKE Header
set to a value that is not supported by the recipient, it MUST send an IKE response to the
originator containing a Notify Payload with the Notify Message Type field set to
INVALID_MAJOR_VERSION.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_MAJOR_VERSION 5

 Indicates the recipient cannot handle the version of IKE
 specified in the header. The closest version number that
 the recipient can support will be in the reply header.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 370

Identifier: RQ_002_6365
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message with a field type, length or value which is
incorrect or out of range in the IKE Header or payload, it MUST send an IKE response to the
originator containing a Notify Payload with the Notify Message Type field set to INVALID_SYNTAX.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_SYNTAX 7

 Indicates the IKE message that was received was invalid
 because some type, length, or value was out of range or
 because the request was rejected for policy reasons. To
 avoid a denial of service attack using forged messages, this
 status may only be returned for and in an encrypted packet
 if the message ID and cryptographic checksum were valid. To
 avoid leaking information to someone probing a node, this
 status MUST be sent in response to any error not covered by
 one of the other status types. To aid debugging, more
 detailed error information SHOULD be written to a console or
 log.

Identifier: RQ_002_6366
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message which cannot be processed for a reason that does
not relate to any of the other predefined IKE Notify Message Error Type values, it MUST send an IKE
response to the originator containing a Notify Payload with the Notify Message Type field set to
INVALID_SYNTAX.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_SYNTAX 7

 Indicates the IKE message that was received was invalid
 because some type, length, or value was out of range or
 because the request was rejected for policy reasons. To
 avoid a denial of service attack using forged messages, this
 status may only be returned for and in an encrypted packet
 if the message ID and cryptographic checksum were valid. To
 avoid leaking information to someone probing a node, this
 status MUST be sent in response to any error not covered by
 one of the other status types. To aid debugging, more
 detailed error information SHOULD be written to a console or
 log.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 371

Identifier: RQ_002_6367
RFC Clause: 3.10.1
Type: Recommended
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message which cannot be processed for a reason that does
not relate to any of the predefined IKE Notify Message Error Type values, it SHOULD either record
details of the failure in a log or send these details to an operator's console.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_SYNTAX 7

 Indicates the IKE message that was received was invalid
 because some type, length, or value was out of range or
 because the request was rejected for policy reasons. To
 avoid a denial of service attack using forged messages, this
 status may only be returned for and in an encrypted packet
 if the message ID and cryptographic checksum were valid. To
 avoid leaking information to someone probing a node, this
 status MUST be sent in response to any error not covered by
 one of the other status types. To aid debugging, more
 detailed error information SHOULD be written to a console or
 log.

Identifier: RQ_002_6368
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an encrypted IKE message which requires a Notify message with
the Error Type set to the value INVALID_SYNTAX to be sent to the originator, it MUST NOT send this
response in encrypted form if either the Message ID in the received IKE Header or the Integrity
Checksum Data in the corresponding Encrypted Payload is invalid.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_SYNTAX 7

 Indicates the IKE message that was received was invalid
 because some type, length, or value was out of range or
 because the request was rejected for policy reasons. To
 avoid a denial of service attack using forged messages, this
 status may only be returned for and in an encrypted packet
 if the message ID and cryptographic checksum were valid. To
 avoid leaking information to someone probing a node, this
 status MUST be sent in response to any error not covered by
 one of the other status types. To aid debugging, more
 detailed error information SHOULD be written to a console or
 log.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 372

Identifier: RQ_002_6369
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message with the Message ID in the IKE Header set to a
value which is outside the supported window of identifiers, it MAY initiate an IKE Informational
Exchange containing a Notify Payload with the Notify Message Type field set to the value
INVALID_MESSAGE_ID and the Notification Data field containing the invalid Message ID from the
received message.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_MESSAGE_ID 9

 Sent when an IKE message ID outside the supported window is
 received. This Notify MUST NOT be sent in a response; the
 invalid request MUST NOT be acknowledged. Instead, inform
 the other side by initiating an INFORMATIONAL exchange with
 Notification data containing the four octet invalid message
 ID. Sending this notification is optional, and
 notifications of this type MUST be rate limited.

Identifier: RQ_002_6370
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message with the Message ID in the IKE Header set to a
value which is outside the supported window of identifiers, it MUST NOT send an INVALID_MESSAGE_ID
notification in an IKE response.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_MESSAGE_ID 9

 Sent when an IKE message ID outside the supported window is
 received. This Notify MUST NOT be sent in a response; the
 invalid request MUST NOT be acknowledged. Instead, inform
 the other side by initiating an INFORMATIONAL exchange with
 Notification data containing the four octet invalid message
 ID. Sending this notification is optional, and
 notifications of this type MUST be rate limited.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 373

Identifier: RQ_002_6371
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation receives an ESP or AH packet with an invalid Security Parameter Index, it
MAY initiate an IKE Informational Exchange containing a Notify Payload with the Notify Message Type
field set to the value INVALID_SPI and the Notification Data field containing the invalid Security
Parameter Index from the received packet.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_SPI 11

 MAY be sent in an IKE INFORMATIONAL exchange when a node
 receives an ESP or AH packet with an invalid SPI. The
 Notification Data contains the SPI of the invalid packet.
 This usually indicates a node has rebooted and forgotten an
 SA. If this Informational Message is sent outside the
 context of an IKE_SA, it should be used by the recipient
 only as a "hint" that something might be wrong (because it
 could easily be forged).

Identifier: RQ_002_6372
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message containing a Security Association Payload but is
unable to support any of the cryptographic suite proposals included in the Payload, it MUST send an
IKE response to the originator containing a Notify Payload with the Notify Message Type field set to
NO_PROPOSAL_CHOSEN.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 NO_PROPOSAL_CHOSEN 14

 None of the proposed crypto suites was acceptable.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 374

Identifier: RQ_002_6373
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message containing a Key Exchange Payload but the D-H
Group # field in the payload indicates a Diffie-Hellman Group Number different to the one selected
by the implementation for this exchange, it MUST send an IKE response to the originator containing a
Notify Payload with the Notify Message Type field set to INVALID_KE_PAYLOAD and the Notification
Data field containing the correct D-H Group #.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_KE_PAYLOAD 17

 The D-H Group # field in the KE payload is not the group #
 selected by the responder for this exchange. There are two
 octets of data associated with this notification: the
 accepted D-H Group # in big endian order.

Identifier: RQ_002_6374
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message containing an Authentication Payload but the
implementation is unable to authenticate the other IKE end-point using the Authentication Data
provided, it MUST send an IKE response to the originator containing a Notify Payload with the Notify
Message Type field set to AUTHENTICATION_FAILED.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 AUTHENTICATION_FAILED 24

 Sent in the response to an IKE_AUTH message when for some
 reason the authentication failed. There is no associated
 data.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 375

Identifier: RQ_002_6375
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives a CREATE_CHILD_SA request containing a Traffic Selector Payload
with multiple Traffic Selectors (and, thus, multiple Starting and Ending Address pairs) but the
implementation is only able to accept Traffic Selectors specifying a single pair of addresses, it
MUST send an IKE response to the originator containing a Notify Payload with the Notify Message Type
field set to SINGLE_PAIR_REQUIRED.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 SINGLE_PAIR_REQUIRED 34

 This error indicates that a CREATE_CHILD_SA request is
 unacceptable because its sender is only willing to accept
 traffic selectors specifying a single pair of addresses. The

 requestor is expected to respond by requesting an SA for only
 the specific traffic it is trying to forward.

Identifier: RQ_002_6376
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives a CREATE_CHILD_SA request but the implementation is unable to
establish any further CHILD_SAs on the specified IKE_SA, it MUST send an IKE response to the
originator containing a Notify Payload with the Notify Message Type field set to NO_ADDITIONAL_SAS.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 NO_ADDITIONAL_SAS 35

 This error indicates that a CREATE_CHILD_SA request is
 unacceptable because the responder is unwilling to accept any
 more CHILD_SAs on this IKE_SA. Some minimal implementations may
 only accept a single CHILD_SA setup in the context of an initial
 IKE exchange and reject any subsequent attempts to add more.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 376

Identifier: RQ_002_6377
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives a CREATE_CHILD_SA request but the implementation is unable to
resolve an internal IPv6 addresses specified in the Configuration Payload, it MUST send an IKE
response to the originator containing a Notify Payload with the Notify Message Type field set to
INTERNAL_ADDRESS_FAILURE.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INTERNAL_ADDRESS_FAILURE 36

 Indicates an error assigning an internal address (i.e.,
 INTERNAL_IP4_ADDRESS or INTERNAL_IP6_ADDRESS) during the
 processing of a Configuration Payload by a responder. If this
 error is generated within an IKE_AUTH exchange, no CHILD_SA will
 be created.

Identifier: RQ_002_6378
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation is configured to expect an IKE_AUTH request from a particular endpoint to
include a Configuration Payload with the CFG Type set to CFG_REQUEST and the CFG_REQUEST is not
included in the received IKE_AUTH request, the implementation MUST send an IKE response to the
originator containing a Notify Payload with the Notify Message Type field set to FAILED_CP_REQUIRED.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 FAILED_CP_REQUIRED 37

 Sent by responder in the case where CP(CFG_REQUEST) was expected
 but not received, and so is a conflict with locally configured
 policy. There is no associated data.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 377

Identifier: RQ_002_6379
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request containing one or more Traffic Selectors but it is
unable to accept any of the supplied address-protocol-port combinations, the implementation MUST
send an IKE response to the originator containing a Notify Payload with the Notify Message Type
field set to TS_UNACCEPTABLE.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 TS_UNACCEPTABLE 38

 Indicates that none of the addresses/protocols/ports in the
 supplied traffic selectors is acceptable.

Identifier: RQ_002_6380
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
If an IKE implementation receives an ESP or AH packet whose selectors do not match those of the SA
on which it was delivered , the implementation MAY send an IKE_INFORMATIONAL exchange to the
originator containing a Notify Payload with:

 - the Notify Message Type field set to INVALID_SELECTORS;
 - the Security Parameter Index field set to the SPI from the received AH or ESP packet; and
 - the Notification Data field containing as much of the received AH or ESP packet as will fit into
 the IKE_INFORMATIONAL exchange message without making it exceed the minimum IPv6 MTU.

RFC Text:
NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----

 INVALID_SELECTORS 39

 MAY be sent in an IKE INFORMATIONAL exchange when a node
 receives an ESP or AH packet whose selectors do not match
 those of the SA on which it was delivered (and that caused
 the packet to be dropped). The Notification Data contains
 the start of the offending packet (as in ICMP messages) and
 the SPI field of the notification is set to match the SPI of
 the IPsec SA.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 378

Identifier: RQ_002_6381
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation restarts following a system failure, it MAY include a Notify Payload with
the Notify Message Type set to INITIAL_CONTACT in the IKE_SA request for the first Security
Association to be established after the failure

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 INITIAL_CONTACT 16384

 This notification asserts that this IKE_SA is the only
 IKE_SA currently active between the authenticated
 identities. It MAY be sent when an IKE_SA is established
 after a crash, and the recipient MAY use this information to
 delete any other IKE_SAs it has to the same authenticated
 identity without waiting for a timeout. This notification
 MUST NOT be sent by an entity that may be replicated (e.g.,
 a roaming user's credentials where the user is allowed to
 connect to the corporate firewall from two remote systems at
 the same time).

Identifier: RQ_002_6382
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
If an IKE implementation is capable of processing multiple simultaneous IKE exchanges, it MAY
include in the initial IKE_SA exchange a Notify Payload with the Notify Message Type set to the
value SET_WINDOW_SIZE and the Notify Data field set to the number of simultaneous messages the
implementation is able to process in a 4-octet big-endian representation.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 SET_WINDOW_SIZE 16385

 This notification asserts that the sending endpoint is
 capable of keeping state for multiple outstanding exchanges,
 permitting the recipient to send multiple requests before
 getting a response to the first. The data associated with a
 SET_WINDOW_SIZE notification MUST be 4 octets long and
 contain the big endian representation of the number of
 messages the sender promises to keep. Window size is always
 one until the initial exchanges complete.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 379

Identifier: RQ_002_6383
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation accepts a limited subset of the Traffic Selectors offered in a received
Traffic Selector Payload but is able to handle one or more Traffic Selectors not specified in the
originator's offer, it MAY include in the IKE response indicating the accepted Traffic Selectors an
additional Notify Payload with the Notify Message Type set to the value ADDITIONAL_TS_POSSIBLE

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 ADDITIONAL_TS_POSSIBLE 16386

 This notification asserts that the sending endpoint narrowed
 the proposed traffic selectors but that other traffic
 selectors would also have been acceptable, though only in a
 separate SA (see section 2.9). There is no data associated
 with this Notify type. It may be sent only as an additional
 payload in a message including accepted TSs.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 380

Identifier: RQ_002_6384
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation that is capable of using IP Compression (IPComp) sends an IKE CHILD_SA
request, it MAY include in that message one or more Notify Payloads with the Notify Message Type set
to the value IPCOMP_SUPPORTED and the Notify Data field containing a 2-octet IPComp Compression
Parameter Index followed by a one-octet transform identifier (from the following list) and,
optionally, additional transform-dependent attributes.

 Transform ID Value

 Reserved 0
 IPCOMP_OUI 1
 IPCOMP_DEFLATE 2
 IPCOMP_LZS 3
 IPCOMP_LZJH 4

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 IPCOMP_SUPPORTED 16387

 This notification may be included only in a message
 containing an SA payload negotiating a CHILD_SA and
 indicates a willingness by its sender to use IPComp on this
 SA. The data associated with this notification includes a
 two-octet IPComp CPI followed by a one-octet transform ID
 optionally followed by attributes whose length and format
 are defined by that transform ID. A message proposing an SA
 may contain multiple IPCOMP_SUPPORTED notifications to
 indicate multiple supported algorithms. A message accepting
 an SA may contain at most one.

 The transform IDs currently defined are:

 NAME NUMBER DEFINED IN
 ----------- ------ -----------
 RESERVED 0
 IPCOMP_OUI 1
 IPCOMP_DEFLATE 2 RFC 2394
 IPCOMP_LZS 3 RFC 2395
 IPCOMP_LZJH 4 RFC 3051

 values 5-240 are reserved to IANA. Values 241-255 are
 for private use among mutually consenting parties.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 381

Identifier: RQ_002_6385
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation that is capable of using IP Compression (IPComp) sends an IKE CHILD_SA
response, it MAY include in that message only one Notify Payload with the Notify Message Type set to
the value IPCOMP_SUPPORTED and the Notify Data field containing a 2-octet IPComp Compression
Parameter Index followed by a one-octet transform identifier (from the following list) and,
optionally, additional transform-dependent attributes:

 Transform ID Value

 Reserved 0
 IPCOMP_OUI 1
 IPCOMP_DEFLATE 2
 IPCOMP_LZS 3
 IPCOMP_LZJH 4

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 IPCOMP_SUPPORTED 16387

 This notification may be included only in a message
 containing an SA payload negotiating a CHILD_SA and
 indicates a willingness by its sender to use IPComp on this
 SA. The data associated with this notification includes a
 two-octet IPComp CPI followed by a one-octet transform ID
 optionally followed by attributes whose length and format
 are defined by that transform ID. A message proposing an SA
 may contain multiple IPCOMP_SUPPORTED notifications to
 indicate multiple supported algorithms. A message accepting
 an SA may contain at most one.

 The transform IDs currently defined are:

 NAME NUMBER DEFINED IN
 ----------- ------ -----------
 RESERVED 0
 IPCOMP_OUI 1
 IPCOMP_DEFLATE 2 RFC 2394
 IPCOMP_LZS 3 RFC 2395
 IPCOMP_LZJH 4 RFC 3051

 values 5-240 are reserved to IANA. Values 241-255 are
 for private use among mutually consenting parties.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 382

Identifier: RQ_002_6386
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation sends a Notify Payload with the Status Type set to the value,
NAT_DETECTION_SOURCE_IP, it MUST set the Notification Data field to the SHA-1 digest (hash)
calculated from the Source IP Address inserted in the IPv6 header and the Port Number on which the
packet was sent.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 NAT_DETECTION_SOURCE_IP 16388

 This notification is used by its recipient to determine
 whether the source is behind a NAT box. The data associated
 with this notification is a SHA-1 digest of the SPIs (in the
 order they appear in the header), IP address, and port on
 which this packet was sent. There MAY be multiple Notify
 payloads of this type in a message if the sender does not
 know which of several network attachments will be used to
 send the packet. The recipient of this notification MAY
 compare the supplied value to a SHA-1 hash of the SPIs,
 source IP address, and port, and if they don't match it
 SHOULD enable NAT traversal (see section 2.23).
 Alternately, it MAY reject the connection attempt if NAT
 traversal is not supported.

Identifier: RQ_002_6387
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY send more than one a Notify Payload with the Status Type set to the value,
NAT_DETECTION_SOURCE_IP in a single IKE message

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 NAT_DETECTION_SOURCE_IP 16388

 This notification is used by its recipient to determine
 whether the source is behind a NAT box. The data associated
 with this notification is a SHA-1 digest of the SPIs (in the
 order they appear in the header), IP address, and port on
 which this packet was sent. There MAY be multiple Notify
 payloads of this type in a message if the sender does not
 know which of several network attachments will be used to
 send the packet. The recipient of this notification MAY
 compare the supplied value to a SHA-1 hash of the SPIs,
 source IP address, and port, and if they don't match it
 SHOULD enable NAT traversal (see section 2.23).
 Alternately, it MAY reject the connection attempt if NAT
 traversal is not supported.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 383

Identifier: RQ_002_6388
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation sends a Notify Payload with the Status Type set to the value,
NAT_DETECTION_DESTINATION_IP, it MUST set the Notification Data field to the SHA-1 digest (hash)
calculated from the Initiator's SPI followed by the Responder's SPI, the Destination IP Address
inserted in the IPv6 header and finally the Port Number to which the packet was sent.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 NAT_DETECTION_DESTINATION_IP 16389

 This notification is used by its recipient to determine
 whether it is behind a NAT box. The data associated with
 this notification is a SHA-1 digest of the SPIs (in the
 order they appear in the header), IP address, and port to
 which this packet was sent. The recipient of this
 notification MAY compare the supplied value to a hash of the
 SPIs, destination IP address, and port, and if they don't
 match it SHOULD invoke NAT traversal (see section 2.23). If
 they don't match, it means that this end is behind a NAT and
 this end SHOULD start sending keepalive packets as defined
 in [Hutt05]. Alternately, it MAY reject the connection
 attempt if NAT traversal is not supported.

Identifier: RQ_002_6389
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Notify Payload with the Status Type set to the value, COOKIE in
an IKE_SA_INIT response.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 COOKIE 16390

 This notification MAY be included in an IKE_SA_INIT
 response. It indicates that the request should be retried
 with a copy of this notification as the first payload. This
 notification MUST be included in an IKE_SA_INIT request
 retry if a COOKIE notification was included in the initial
 response. The data associated with this notification MUST
 be between 1 and 64 octets in length (inclusive).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 384

Identifier: RQ_002_6390
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE_SA_INIT response which includes a Notify Payload with the
Status Type set to the value, COOKIE, it MUST include a Notify Payload in a retry of the IKE_SA_INIT
request with the Status Type set to COOKIE and the Notification Data field set to the value in the
received Notify Payload

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 COOKIE 16390

 This notification MAY be included in an IKE_SA_INIT
 response. It indicates that the request should be retried
 with a copy of this notification as the first payload. This
 notification MUST be included in an IKE_SA_INIT request
 retry if a COOKIE notification was included in the initial
 response. The data associated with this notification MUST
 be between 1 and 64 octets in length (inclusive).

Identifier: RQ_002_6391
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation sends a Notify Payload with the Status Type set to the value, COOKIE, the
value included in the Notify Data field MUST be between 1 (one) and 64 (sixty-four) octets in
length.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 COOKIE 16390

 This notification MAY be included in an IKE_SA_INIT
 response. It indicates that the request should be retried
 with a copy of this notification as the first payload. This
 notification MUST be included in an IKE_SA_INIT request
 retry if a COOKIE notification was included in the initial
 response. The data associated with this notification MUST
 be between 1 and 64 octets in length (inclusive).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 385

Identifier: RQ_002_6392
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Notify Payload with the Status Type set to the value,
USE_TRANSPORT_MODE in a CHILD_SA request.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 USE_TRANSPORT_MODE 16391

 This notification MAY be included in a request message that
 also includes an SA payload requesting a CHILD_SA. It
 requests that the CHILD_SA use transport mode rather than
 tunnel mode for the SA created. If the request is accepted,
 the response MUST also include a notification of type
 USE_TRANSPORT_MODE. If the responder declines the request,
 the CHILD_SA will be established in tunnel mode. If this is
 unacceptable to the initiator, the initiator MUST delete the
 SA. Note: Except when using this option to negotiate
 transport mode, all CHILD_SAs will use tunnel mode.

 Note: The ECN decapsulation modifications specified in
 [RFC4301] MUST be performed for every tunnel mode SA created
 by IKEv2.

Identifier: RQ_002_6393
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives a CHILD_SA request containing a Notify Payload with the Status
Type set to the value, USE_TRANSPORT_MODE, it MUST include an identical Notify Payload in its
response if it is able to comply with the request to use transport mode rather than tunnel mode on
the new CHILD_SA.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 USE_TRANSPORT_MODE 16391

 This notification MAY be included in a request message that
 also includes an SA payload requesting a CHILD_SA. It
 requests that the CHILD_SA use transport mode rather than
 tunnel mode for the SA created. If the request is accepted,
 the response MUST also include a notification of type
 USE_TRANSPORT_MODE. If the responder declines the request,
 the CHILD_SA will be established in tunnel mode. If this is
 unacceptable to the initiator, the initiator MUST delete the
 SA. Note: Except when using this option to negotiate
 transport mode, all CHILD_SAs will use tunnel mode.

 Note: The ECN decapsulation modifications specified in
 [RFC4301] MUST be performed for every tunnel mode SA created
 by IKEv2.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 386

Identifier: RQ_002_6394
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives a CHILD_SA request containing a Notify Payload with the Status
Type set to the value, USE_TRANSPORT_MODE, it MUST NOT include an identical Notify Payload in its
response if it is unable to comply with the request to use transport mode rather than tunnel mode on
the new CHILD_SA.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 USE_TRANSPORT_MODE 16391

 This notification MAY be included in a request message that
 also includes an SA payload requesting a CHILD_SA. It
 requests that the CHILD_SA use transport mode rather than
 tunnel mode for the SA created. If the request is accepted,
 the response MUST also include a notification of type
 USE_TRANSPORT_MODE. If the responder declines the request,
 the CHILD_SA will be established in tunnel mode. If this is
 unacceptable to the initiator, the initiator MUST delete the
 SA. Note: Except when using this option to negotiate
 transport mode, all CHILD_SAs will use tunnel mode.

 Note: The ECN decapsulation modifications specified in
 [RFC4301] MUST be performed for every tunnel mode SA created
 by IKEv2.

Identifier: RQ_002_6395
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation sends a CHILD_SA request containing a Notify Payload with the Status Type
set to the value, USE_TRANSPORT_MODE, but receives a CHILD_SA response which does not include an
identical Notify Payload, it MUST delete the Child Security Association.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 USE_TRANSPORT_MODE 16391

 This notification MAY be included in a request message that
 also includes an SA payload requesting a CHILD_SA. It
 requests that the CHILD_SA use transport mode rather than
 tunnel mode for the SA created. If the request is accepted,
 the response MUST also include a notification of type
 USE_TRANSPORT_MODE. If the responder declines the request,
 the CHILD_SA will be established in tunnel mode. If this is
 unacceptable to the initiator, the initiator MUST delete the
 SA. Note: Except when using this option to negotiate
 transport mode, all CHILD_SAs will use tunnel mode.

 Note: The ECN decapsulation modifications specified in
 [RFC4301] MUST be performed for every tunnel mode SA created
 by IKEv2.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 387

Identifier: RQ_002_6396
RFC Clause: 3.10.1
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Notify Payload with the Status Type set to the value,
HTTP_CERT_LOOKUP_SUPPORTED in any IKE message that can include a Certificate Request Payload.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 HTTP_CERT_LOOKUP_SUPPORTED 16392

 This notification MAY be included in any message that can
 include a CERTREQ payload and indicates that the sender is
 capable of looking up certificates based on an HTTP-based
 URL (and hence presumably would prefer to receive
 certificate specifications in that format).

Identifier: RQ_002_6397
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST include a Notify Payload with the Status Type set to the value, REKEY_SA
in a CREATE_CHILD_SA exchanger if the purpose of the exchange is to replace an existing ESP or AH
Security Association with a new one.

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 REKEY_SA 16393

 This notification MUST be included in a CREATE_CHILD_SA
 exchange if the purpose of the exchange is to replace an
 existing ESP or AH SA. The SPI field identifies the SA
 being rekeyed. There is no data.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 388

Identifier: RQ_002_6398
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation does not support Flow Confidentiality (TFC) padding, it MUST include a
Notify Payload in an initial exchange with the Status Type set to the value
ESP_TFC_PADDING_NOT_SUPPORT

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 ESP_TFC_PADDING_NOT_SUPPORTED 16394

 This notification asserts that the sending endpoint will NOT
 accept packets that contain Flow Confidentiality (TFC)
 padding.

Identifier: RQ_002_6399
RFC Clause: 3.10.1
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation supports stateful fragment checking for a tunnel-mode Security Association
and that SA is to be used for the transmission of non-initial fragments, it MUST include a Notify
Payload in the initial exchange with the Status Type set to NON_FIRST_FRAGMENTS_ONLY

RFC Text:
NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 NON_FIRST_FRAGMENTS_ALSO 16395

 Used for fragmentation control. See [RFC4301] for
 explanation.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 389

Identifier: RQ_002_6400
RFC Clause: 1.2
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST include the following elements in an IKE_SA_INIT request:

 IKE Header
 + Initiator's Security Association Payload
 + Initiator's key Exchange Payload
 + Initiator's Nonce Payload

RFC Text:
The details of the contents of each payload are described in section 3. Payloads that may
optionally appear will be shown in brackets, such as [CERTREQ], indicate that optionally a
certificate request payload can be included.

The initial exchanges are as follows:

 Initiator Responder
 ----------- -----------
 HDR, SAi1, KEi, Ni -->

HDR contains the Security Parameter Indexes (SPIs), version numbers, and flags of various sorts.
The SAi1 payload states the cryptographic algorithms the initiator supports for the IKE_SA. The KE
payload sends the initiator's Diffie-Hellman value. Ni is the initiator's nonce.

 <-- HDR, SAr1, KEr, Nr, [CERTREQ]

Identifier: RQ_002_6401
RFC Clause: 1.2
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST include the following elements in an IKE_SA_INIT response:

 IKE Header
 + Responder's Security Association Payload
 + Responder's Key Exchange Payload
 + Responder's Nonce Payload

RFC Text:
The details of the contents of each payload are described in section 3. Payloads that may
optionally appear will be shown in brackets, such as [CERTREQ], indicate that optionally a
certificate request payload can be included.

The initial exchanges are as follows:

 Initiator Responder
 ----------- -----------
 HDR, SAi1, KEi, Ni -->

HDR contains the Security Parameter Indexes (SPIs), version numbers, and flags of various sorts.
The SAi1 payload states the cryptographic algorithms the initiator supports for the IKE_SA. The KE
payload sends the initiator's Diffie-Hellman value. Ni is the initiator's nonce.

 <-- HDR, SAr1, KEr, Nr, [CERTREQ]

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 390

Identifier: RQ_002_6402
RFC Clause: 1.2
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Certificate Request Payload in an IKE_SA_INIT response

RFC Text:
The details of the contents of each payload are described in section 3. Payloads that may
optionally appear will be shown in brackets, such as [CERTREQ], indicate that optionally a
certificate request payload can be included.

The initial exchanges are as follows:

 Initiator Responder
 ----------- -----------
 HDR, SAi1, KEi, Ni -->

HDR contains the Security Parameter Indexes (SPIs), version numbers, and flags of various sorts.
The SAi1 payload states the cryptographic algorithms the initiator supports for the IKE_SA. The KE
payload sends the initiator's Diffie-Hellman value. Ni is the initiator's nonce.

 <-- HDR, SAr1, KEr, Nr, [CERTREQ]

Identifier: RQ_002_6403
RFC Clause: 1.2
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST include the following elements in an IKE_AUTH request:

 IKE Header
 + Initiator's Identification Payload
 + Authentication Payload
 + Initiator's Security Association Payload for the first Child SA
 + Initiator's Traffic Selector Payload
 + Responder's Traffic Selector Payload

RFC Text:
At this point in the negotiation, each party can generate SKEYSEED, from which all keys are derived
for that IKE_SA. All but the headers of all the messages that follow are encrypted and integrity
protected. The keys used for the encryption and integrity protection are derived from SKEYSEED and
are known as SK_e (encryption) and SK_a (authentication, a.k.a. integrity protection). A separate
SK_e and SK_a is computed for each direction. In addition to the keys SK_e and SK_a derived from
the DH value for protection of the IKE_SA, another quantity SK_d is derived and used for derivation
of further keying material for CHILD_SAs. The notation SK { ... } indicates that these payloads are
encrypted and integrity protected using that direction's SK_e and SK_a.

 HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr} -->

The initiator asserts its identity with the IDi payload, proves knowledge of the secret
corresponding to IDi and integrity protects the contents of the first message using the AUTH payload
(see section 2.15). It might also send its certificate(s) in CERT payload(s) and a list of its
trust anchors in CERTREQ payload(s). If any CERT payloads are included, the first certificate
provided MUST contain the public key used to verify the AUTH field. The optional payload IDr
enables the initiator to specify which of the responder's identities it wants to talk to. This is
useful when the machine on which the responder is running is hosting multiple identities at the same
IP address. The initiator begins negotiation of a CHILD_SA using the SAi2 payload. The final
fields (starting with SAi2) are described in the description of the CREATE_CHILD_SA exchange.

 <-- HDR, SK {IDr, [CERT,] AUTH,
 SAr2, TSi, TSr}

The responder asserts its identity with the IDr payload, optionally sends one or more certificates
(again with the certificate containing the public key used to verify AUTH listed first),
authenticates its identity and protects the integrity of the second message with the AUTH payload,
and completes negotiation of a CHILD_SA with the additional fields described below in the
CREATE_CHILD_SA exchange.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 391

Identifier: RQ_002_6404
RFC Clause: 1.2
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include any or all of the following elements in an IKE_AUTH request:

 Certificate Payload
 Certificate Request Payload
 Responder's Identification Payload

RFC Text:
At this point in the negotiation, each party can generate SKEYSEED, from which all keys are derived
for that IKE_SA. All but the headers of all the messages that follow are encrypted and integrity
protected. The keys used for the encryption and integrity protection are derived from SKEYSEED and
are known as SK_e (encryption) and SK_a (authentication, a.k.a. integrity protection). A separate
SK_e and SK_a is computed for each direction. In addition to the keys SK_e and SK_a derived from
the DH value for protection of the IKE_SA, another quantity SK_d is derived and used for derivation
of further keying material for CHILD_SAs. The notation SK { ... } indicates that these payloads are
encrypted and integrity protected using that direction's SK_e and SK_a.

 HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr} -->

The initiator asserts its identity with the IDi payload, proves knowledge of the secret
corresponding to IDi and integrity protects the contents of the first message using the AUTH payload
(see section 2.15). It might also send its certificate(s) in CERT payload(s) and a list of its
trust anchors in CERTREQ payload(s). If any CERT payloads are included, the first certificate
provided MUST contain the public key used to verify the AUTH field. The optional payload IDr
enables the initiator to specify which of the responder's identities it wants to talk to. This is
useful when the machine on which the responder is running is hosting multiple identities at the same
IP address. The initiator begins negotiation of a CHILD_SA using the SAi2 payload. The final
fields (starting with SAi2) are described in the description of the CREATE_CHILD_SA exchange.

 <-- HDR, SK {IDr, [CERT,] AUTH,
 SAr2, TSi, TSr}

The responder asserts its identity with the IDr payload, optionally sends one or more certificates
(again with the certificate containing the public key used to verify AUTH listed first),
authenticates its identity and protects the integrity of the second message with the AUTH payload,
and completes negotiation of a CHILD_SA with the additional fields described below in the
CREATE_CHILD_SA exchange.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 392

Identifier: RQ_002_6405
RFC Clause: 1.2
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST include the following elements in an IKE_AUTH response:

 IKE Header
 + Responder's Identification Payload
 + Authentication Payload
 + Responder's Security Association Payload for the first Child SA
 + Initiator's Traffic Selector Payload
 + Responder's Traffic Selector Payload

RFC Text:
At this point in the negotiation, each party can generate SKEYSEED, from which all keys are derived
for that IKE_SA. All but the headers of all the messages that follow are encrypted and integrity
protected. The keys used for the encryption and integrity protection are derived from SKEYSEED and
are known as SK_e (encryption) and SK_a (authentication, a.k.a. integrity protection). A separate
SK_e and SK_a is computed for each direction. In addition to the keys SK_e and SK_a derived from
the DH value for protection of the IKE_SA, another quantity SK_d is derived and used for derivation
of further keying material for CHILD_SAs. The notation SK { ... } indicates that these payloads are
encrypted and integrity protected using that direction's SK_e and SK_a.

 HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr} -->

The initiator asserts its identity with the IDi payload, proves knowledge of the secret
corresponding to IDi and integrity protects the contents of the first message using the AUTH payload
(see section 2.15). It might also send its certificate(s) in CERT payload(s) and a list of its
trust anchors in CERTREQ payload(s). If any CERT payloads are included, the first certificate
provided MUST contain the public key used to verify the AUTH field. The optional payload IDr
enables the initiator to specify which of the responder's identities it wants to talk to. This is
useful when the machine on which the responder is running is hosting multiple identities at the same
IP address. The initiator begins negotiation of a CHILD_SA using the SAi2 payload. The final
fields (starting with SAi2) are described in the description of the CREATE_CHILD_SA exchange.

 <-- HDR, SK {IDr, [CERT,] AUTH,
 SAr2, TSi, TSr}

The responder asserts its identity with the IDr payload, optionally sends one or more certificates
(again with the certificate containing the public key used to verify AUTH listed first),
authenticates its identity and protects the integrity of the second message with the AUTH payload,
and completes negotiation of a CHILD_SA with the additional fields described below in the
CREATE_CHILD_SA exchange.

Identifier: RQ_002_6406
RFC Clause: 1.2
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Certificate Payload in an IKE_AUTH response

RFC Text:
At this point in the negotiation, each party can generate SKEYSEED, from which all keys are derived
for that IKE_SA. All but the headers of all the messages that follow are encrypted and integrity
protected. The keys used for the encryption and integrity protection are derived from SKEYSEED and
are known as SK_e (encryption) and SK_a (authentication, a.k.a. integrity protection). A separate
SK_e and SK_a is computed for each direction. In addition to the keys SK_e and SK_a derived from
the DH value for protection of the IKE_SA, another quantity SK_d is derived and used for derivation
of further keying material for CHILD_SAs. The notation SK { ... } indicates that these payloads are
encrypted and integrity protected using that direction's SK_e and SK_a.

 HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr} -->

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 393

The initiator asserts its identity with the IDi payload, proves knowledge of the secret
corresponding to IDi and integrity protects the contents of the first message using the AUTH payload
(see section 2.15). It might also send its certificate(s) in CERT payload(s) and a list of its
trust anchors in CERTREQ payload(s). If any CERT payloads are included, the first certificate
provided MUST contain the public key used to verify the AUTH field. The optional payload IDr
enables the initiator to specify which of the responder's identities it wants to talk to. This is
useful when the machine on which the responder is running is hosting multiple identities at the same
IP address. The initiator begins negotiation of a CHILD_SA using the SAi2 payload. The final
fields (starting with SAi2) are described in the description of the CREATE_CHILD_SA exchange.

 <-- HDR, SK {IDr, [CERT,] AUTH,
 SAr2, TSi, TSr}

The responder asserts its identity with the IDr payload, optionally sends one or more certificates
(again with the certificate containing the public key used to verify AUTH listed first),
authenticates its identity and protects the integrity of the second message with the AUTH payload,
and completes negotiation of a CHILD_SA with the additional fields described below in the
CREATE_CHILD_SA exchange.
}{{}

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 394

Identifier: RQ_002_6407
RFC Clause: 1.3
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST include the following elements in a CREATE_CHILD_SA request:

 IKE Header
 + Initiator's Security Association Payload for the Child SA
 + Initiator's Nonce Payload

RFC Text:
A CHILD_SA is created by sending a CREATE_CHILD_SA request. The CREATE_CHILD_SA request MAY
optionally contain a KE payload for an additional Diffie-Hellman exchange to enable stronger
guarantees of forward secrecy for the CHILD_SA. The keying material for the CHILD_SA is a function
of SK_d established during the establishment of the IKE_SA, the nonces exchanged during the
CREATE_CHILD_SA exchange, and the Diffie-Hellman value (if KE payloads are included in the
CREATE_CHILD_SA exchange).

In the CHILD_SA created as part of the initial exchange, a second KE payload and nonce MUST NOT be
sent. The nonces from the initial exchange are used in computing the keys for the CHILD_SA.

The CREATE_CHILD_SA request contains:

 Initiator Responder
 ----------- -----------
 HDR, SK {[N], SA, Ni, [KEi],
 [TSi, TSr]} -->

The initiator sends SA offer(s) in the SA payload, a nonce in the Ni payload, optionally a Diffie-
Hellman value in the KEi payload, and the proposed traffic selectors in the TSi and TSr payloads.
If this CREATE_CHILD_SA exchange is rekeying an existing SA other than the IKE_SA, the leading N
payload of type REKEY_SA MUST identify the SA being rekeyed. If this CREATE_CHILD_SA exchange is
not rekeying an existing SA, the N payload MUST be omitted. If the SA offers include different
Diffie-Hellman groups, KEi MUST be an element of the group the initiator expects the responder to
accept. If it guesses wrong, the CREATE_CHILD_SA exchange will fail, and it will have to retry with
a different KEi.

The message following the header is encrypted and the message including the header is integrity
protected using the cryptographic algorithms negotiated for the IKE_SA.

The CREATE_CHILD_SA response contains:

 <-- HDR, SK {SA, Nr, [KEr],
 [TSi, TSr]}

The responder replies (using the same Message ID to respond) with the accepted offer in an SA
payload, and a Diffie-Hellman value in the KEr payload if KEi was included in the request and the
selected cryptographic suite includes that group. If the responder chooses a cryptographic suite
with a different group, it MUST reject the request. The initiator SHOULD repeat the request, but
now with a KEi payload from the group the responder selected.

The traffic selectors for traffic to be sent on that SA are specified in the TS payloads, which may
be a subset of what the initiator of the CHILD_SA proposed. Traffic selectors are omitted if this
CREATE_CHILD_SA request is being used to change the key of the IKE_SA.

Identifier: RQ_002_6408
RFC Clause: 1.3
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include any or all of the following elements in a CREATE_CHILD_SA request:

 Notify Payload
 Initiator's Key Exchange Payload
 Initiator's and Responder's Traffic Selector Payloads

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 395

RFC Text:
A CHILD_SA is created by sending a CREATE_CHILD_SA request. The CREATE_CHILD_SA request MAY
optionally contain a KE payload for an additional Diffie-Hellman exchange to enable stronger
guarantees of forward secrecy for the CHILD_SA. The keying material for the CHILD_SA is a function
of SK_d established during the establishment of the IKE_SA, the nonces exchanged during the
CREATE_CHILD_SA exchange, and the Diffie-Hellman value (if KE payloads are included in the
CREATE_CHILD_SA exchange).

In the CHILD_SA created as part of the initial exchange, a second KE payload and nonce MUST NOT be
sent. The nonces from the initial exchange are used in computing the keys for the CHILD_SA.

The CREATE_CHILD_SA request contains:

 Initiator Responder
 ----------- -----------
 HDR, SK {[N], SA, Ni, [KEi],
 [TSi, TSr]} -->

The initiator sends SA offer(s) in the SA payload, a nonce in the Ni payload, optionally a Diffie-
Hellman value in the KEi payload, and the proposed traffic selectors in the TSi and TSr payloads.
If this CREATE_CHILD_SA exchange is rekeying an existing SA other than the IKE_SA, the leading N
payload of type REKEY_SA MUST identify the SA being rekeyed. If this CREATE_CHILD_SA exchange is
not rekeying an existing SA, the N payload MUST be omitted. If the SA offers include different
Diffie-Hellman groups, KEi MUST be an element of the group the initiator expects the responder to
accept. If it guesses wrong, the CREATE_CHILD_SA exchange will fail, and it will have to retry with
a different KEi.

The message following the header is encrypted and the message including the header is integrity
protected using the cryptographic algorithms negotiated for the IKE_SA.

The CREATE_CHILD_SA response contains:

 <-- HDR, SK {SA, Nr, [KEr],
 [TSi, TSr]}

The responder replies (using the same Message ID to respond) with the accepted offer in an SA
payload, and a Diffie-Hellman value in the KEr payload if KEi was included in the request and the
selected cryptographic suite includes that group. If the responder chooses a cryptographic suite
with a different group, it MUST reject the request. The initiator SHOULD repeat the request, but
now with a KEi payload from the group the responder selected.

The traffic selectors for traffic to be sent on that SA are specified in the TS payloads, which may
be a subset of what the initiator of the CHILD_SA proposed. Traffic selectors are omitted if this
CREATE_CHILD_SA request is being used to change the key of the IKE_SA.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 396

Identifier: RQ_002_6409
RFC Clause: 1.3
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST include the following elements in a CREATE_CHILD_SA response:

 IKE Header
 + Responder's Security Association Payload for the Child SA
 + Responder's Nonce Payload

RFC Text:
A CHILD_SA is created by sending a CREATE_CHILD_SA request. The CREATE_CHILD_SA request MAY
optionally contain a KE payload for an additional Diffie-Hellman exchange to enable stronger
guarantees of forward secrecy for the CHILD_SA. The keying material for the CHILD_SA is a function
of SK_d established during the establishment of the IKE_SA, the nonces exchanged during the
CREATE_CHILD_SA exchange, and the Diffie-Hellman value (if KE payloads are included in the
CREATE_CHILD_SA exchange).

In the CHILD_SA created as part of the initial exchange, a second KE payload and nonce MUST NOT be
sent. The nonces from the initial exchange are used in computing the keys for the CHILD_SA.

The CREATE_CHILD_SA request contains:

 Initiator Responder
 ----------- -----------
 HDR, SK {[N], SA, Ni, [KEi],
 [TSi, TSr]} -->

The initiator sends SA offer(s) in the SA payload, a nonce in the Ni payload, optionally a Diffie-
Hellman value in the KEi payload, and the proposed traffic selectors in the TSi and TSr payloads.
If this CREATE_CHILD_SA exchange is rekeying an existing SA other than the IKE_SA, the leading N
payload of type REKEY_SA MUST identify the SA being rekeyed. If this CREATE_CHILD_SA exchange is
not rekeying an existing SA, the N payload MUST be omitted. If the SA offers include different
Diffie-Hellman groups, KEi MUST be an element of the group the initiator expects the responder to
accept. If it guesses wrong, the CREATE_CHILD_SA exchange will fail, and it will have to retry with
a different KEi.

The message following the header is encrypted and the message including the header is integrity
protected using the cryptographic algorithms negotiated for the IKE_SA.

The CREATE_CHILD_SA response contains:

 <-- HDR, SK {SA, Nr, [KEr],
 [TSi, TSr]}

The responder replies (using the same Message ID to respond) with the accepted offer in an SA
payload, and a Diffie-Hellman value in the KEr payload if KEi was included in the request and the
selected cryptographic suite includes that group. If the responder chooses a cryptographic suite
with a different group, it MUST reject the request. The initiator SHOULD repeat the request, but
now with a KEi payload from the group the responder selected.

The traffic selectors for traffic to be sent on that SA are specified in the TS payloads, which may
be a subset of what the initiator of the CHILD_SA proposed. Traffic selectors are omitted if this
CREATE_CHILD_SA request is being used to change the key of the IKE_SA.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 397

Identifier: RQ_002_6410
RFC Clause: 1.3
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include any or all of the following elements in a CREATE_CHILD_SA
response:

 Notify Payload
 Responder's Key Exchange Payload
 Initiator's and Responder's Traffic Selector Payloads

RFC Text:
A CHILD_SA is created by sending a CREATE_CHILD_SA request. The CREATE_CHILD_SA request MAY
optionally contain a KE payload for an additional Diffie-Hellman exchange to enable stronger
guarantees of forward secrecy for the CHILD_SA. The keying material for the CHILD_SA is a function
of SK_d established during the establishment of the IKE_SA, the nonces exchanged during the
CREATE_CHILD_SA exchange, and the Diffie-Hellman value (if KE payloads are included in the
CREATE_CHILD_SA exchange).

In the CHILD_SA created as part of the initial exchange, a second KE payload and nonce MUST NOT be
sent. The nonces from the initial exchange are used in computing the keys for the CHILD_SA.

The CREATE_CHILD_SA request contains:

 Initiator Responder
 ----------- -----------
 HDR, SK {[N], SA, Ni, [KEi],
 [TSi, TSr]} -->

The initiator sends SA offer(s) in the SA payload, a nonce in the Ni payload, optionally a Diffie-
Hellman value in the KEi payload, and the proposed traffic selectors in the TSi and TSr payloads.
If this CREATE_CHILD_SA exchange is rekeying an existing SA other than the IKE_SA, the leading N
payload of type REKEY_SA MUST identify the SA being rekeyed. If this CREATE_CHILD_SA exchange is
not rekeying an existing SA, the N payload MUST be omitted. If the SA offers include different
Diffie-Hellman groups, KEi MUST be an element of the group the initiator expects the responder to
accept. If it guesses wrong, the CREATE_CHILD_SA exchange will fail, and it will have to retry with
a different KEi.

The message following the header is encrypted and the message including the header is integrity
protected using the cryptographic algorithms negotiated for the IKE_SA.

The CREATE_CHILD_SA response contains:

 <-- HDR, SK {SA, Nr, [KEr],
 [TSi, TSr]}

The responder replies (using the same Message ID to respond) with the accepted offer in an SA
payload, and a Diffie-Hellman value in the KEr payload if KEi was included in the request and the
selected cryptographic suite includes that group. If the responder chooses a cryptographic suite
with a different group, it MUST reject the request. The initiator SHOULD repeat the request, but
now with a KEi payload from the group the responder selected.

The traffic selectors for traffic to be sent on that SA are specified in the TS payloads, which may
be a subset of what the initiator of the CHILD_SA proposed. Traffic selectors are omitted if this
CREATE_CHILD_SA request is being used to change the key of the IKE_SA.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 398

Identifier: RQ_002_6411
RFC Clause: 1.4
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST include an IKE Header plus one or more of the following elements in an
IKE INFORMATIONAL request:

 Notify Payload
 Delete Payload
 Configuration Payload

RFC Text:
The INFORMATIONAL exchange is defined as:

 Initiator Responder
 ----------- -----------
 HDR, SK {[N,] [D,] [CP,] ...} -->
 <-- HDR, SK {[N,] [D,] [CP], ...}

The processing of an INFORMATIONAL exchange is determined by its component payloads.

Identifier: RQ_002_6412
RFC Clause: 1.4
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST include an IKE Header plus one or more of the following elements in an
IKE INFORMATIONAL response:

 Notify Payload
 Delete Payload
 Configuration Payload

RFC Text:
The INFORMATIONAL exchange is defined as:

 Initiator Responder
 ----------- -----------
 HDR, SK {[N,] [D,] [CP,] ...} -->
 <-- HDR, SK {[N,] [D,] [CP], ...}

The processing of an INFORMATIONAL exchange is determined by its component payloads.

Identifier: RQ_002_6413
RFC Clause: 3.11
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation sends a Delete Payload containing Multiple SPIs, each SPI MUST relate to
the same security protocol.

RFC Text:
The Delete Payload, denoted D in this memo, contains a protocol- specific security association
identifier that the sender has removed from its security association database and is, therefore, no
longer valid. Figure 17 shows the format of the Delete Payload. It is possible to send multiple
SPIs in a Delete payload; however, each SPI MUST be for the same protocol. Mixing of protocol
identifiers MUST NOT be performed in a Delete payload. It is permitted, however, to include
multiple Delete payloads in a single INFORMATIONAL exchange where each Delete payload lists SPIs for
a different protocol.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 399

Identifier: RQ_002_6414
RFC Clause: 3.11
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY send more than one Delete Payloads in a single INFORMATIONAL exchange
message.

RFC Text:
The Delete Payload, denoted D in this memo, contains a protocol- specific security association
identifier that the sender has removed from its security association database and is, therefore, no
longer valid. Figure 17 shows the format of the Delete Payload. It is possible to send multiple
SPIs in a Delete payload; however, each SPI MUST be for the same protocol. Mixing of protocol
identifiers MUST NOT be performed in a Delete payload. It is permitted, however, to include
multiple Delete payloads in a single INFORMATIONAL exchange where each Delete payload lists SPIs for
a different protocol.

Identifier: RQ_002_6415
RFC Clause: 3.11
Type: Mandatory
Applies to: Host

Requirement:
A Delete Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 Protocol Identifier
 6 Security Parameter Index (SPI) Size
 7 - 8 Number of SPIs included in the Payload
 9 to end Security Parameter Index(es)

RFC Text:
The Delete Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! # of SPIs !
 +-+
 ! !
 ~ Security Parameter Index(es) (SPI) ~
 ! !
 +-+

 Figure 17: Delete Payload Format

o Protocol ID (1 octet) - Must be 1 for an IKE_SA, 2 for AH, or 3 for ESP.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the protocol ID. It MUST be
zero for IKE (SPI is in message header)
 or four for AH and ESP.

o # of SPIs (2 octets) - The number of SPIs contained in the Delete payload. The size of each
SPI is defined by the SPI Size field.

o Security Parameter Index(es) (variable length) - Identifies the specific security
association(s) to delete. The length of this
 field is determined by the SPI Size and # of SPIs fields.

The payload type for the Delete Payload is forty two (42)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 400

Identifier: RQ_002_6416
RFC Clause: 3.11
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Delete Payload, it MUST set the Protocol
Identifier field to one of the following values:

 Protocol ID Protocol

 1 IKE (related to an IKE_SA)
 2 AH (related to an IPsec SA)
 3 ESP (related to an IPsec SA)

RFC Text:
The Delete Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! # of SPIs !
 +-+
 ! !
 ~ Security Parameter Index(es) (SPI) ~
 ! !
 +-+

 Figure 17: Delete Payload Format

o Protocol ID (1 octet) - Must be 1 for an IKE_SA, 2 for AH, or 3 for ESP.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the protocol ID. It MUST be
zero for IKE (SPI is in message header)
 or four for AH and ESP.

o # of SPIs (2 octets) - The number of SPIs contained in the Delete payload. The size of each
SPI is defined by the SPI Size field.

o Security Parameter Index(es) (variable length) - Identifies the specific security
association(s) to delete. The length of this
 field is determined by the SPI Size and # of SPIs fields.

The payload type for the Delete Payload is forty two (42)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 401

Identifier: RQ_002_6417
RFC Clause: 3.11
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Delete Payload, it MUST set the SPI Size
field to the length in octets of the Security Parameter Index(es) included in the payload.

RFC Text:
The Delete Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! # of SPIs !
 +-+
 ! !
 ~ Security Parameter Index(es) (SPI) ~
 ! !
 +-+

 Figure 17: Delete Payload Format

o Protocol ID (1 octet) - Must be 1 for an IKE_SA, 2 for AH, or 3 for ESP.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the protocol ID. It MUST be
zero for IKE (SPI is in message header)
 or four for AH and ESP.

o # of SPIs (2 octets) - The number of SPIs contained in the Delete payload. The size of each
SPI is defined by the SPI Size field.

o Security Parameter Index(es) (variable length) - Identifies the specific security
association(s) to delete. The length of this
 field is determined by the SPI Size and # of SPIs fields.

The payload type for the Delete Payload is forty two (42)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 402

Identifier: RQ_002_6418
RFC Clause: 3.11
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Delete Payload, it MUST set the Number
of SPIs field to the number of Security Parameter Indexes included later in the payload

RFC Text:
The Delete Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! # of SPIs !
 +-+
 ! !
 ~ Security Parameter Index(es) (SPI) ~
 ! !
 +-+

 Figure 17: Delete Payload Format

o Protocol ID (1 octet) - Must be 1 for an IKE_SA, 2 for AH, or 3 for ESP.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the protocol ID. It MUST be
zero for IKE (SPI is in message header)
 or four for AH and ESP.

o # of SPIs (2 octets) - The number of SPIs contained in the Delete payload. The size of each
SPI is defined by the SPI Size field.

o Security Parameter Index(es) (variable length) - Identifies the specific security
association(s) to delete. The length of this
 field is determined by the SPI Size and # of SPIs fields.

The payload type for the Delete Payload is forty two (42)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 403

Identifier: RQ_002_6419
RFC Clause: 3.11
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE packet containing a Delete Payload, it MUST include an SPI
in the Security Parameter Index(es) field for every Security Association to be deleted

RFC Text:
The Delete Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! # of SPIs !
 +-+
 ! !
 ~ Security Parameter Index(es) (SPI) ~
 ! !
 +-+

 Figure 17: Delete Payload Format

o Protocol ID (1 octet) - Must be 1 for an IKE_SA, 2 for AH, or 3 for ESP.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the protocol ID. It MUST be
zero for IKE (SPI is in message header)
 or four for AH and ESP.

o # of SPIs (2 octets) - The number of SPIs contained in the Delete payload. The size of each
SPI is defined by the SPI Size field.

o Security Parameter Index(es) (variable length) - Identifies the specific security
association(s) to delete. The length of this field is determined by the SPI Size and # of SPIs
fields.

The payload type for the Delete Payload is forty two (42)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 404

Identifier: RQ_002_6420
RFC Clause: 3.11
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Delete Payload, it MUST set the
appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the Delete Payload) to the value forty-two (42)

RFC Text:
The Delete Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! # of SPIs !
 +-+
 ! !
 ~ Security Parameter Index(es) (SPI) ~
 ! !
 +-+

 Figure 17: Delete Payload Format

o Protocol ID (1 octet) - Must be 1 for an IKE_SA, 2 for AH, or 3 for ESP.

o SPI Size (1 octet) - Length in octets of the SPI as defined by the protocol ID. It MUST be
zero for IKE (SPI is in message header)
 or four for AH and ESP.

o # of SPIs (2 octets) - The number of SPIs contained in the Delete payload. The size of each
SPI is defined by the SPI Size field.

o Security Parameter Index(es) (variable length) - Identifies the specific security
association(s) to delete. The length of this field is determined by the SPI Size and # of SPIs
fields.

The payload type for the Delete Payload is forty two (42)

Identifier: RQ_002_6421
RFC Clause: 3.12
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends a Vendor ID Payload, it MUST set the Critical flag in the Payload
Header to zero (0)

RFC Text:
The Vendor ID Payload, denoted V in this memo, contains a vendor defined constant. The constant is
used by vendors to identify and recognize remote instances of their implementations. This mechanism
allows a vendor to experiment with new features while maintaining backward compatibility.

A Vendor ID payload MAY announce that the sender is capable to accepting certain extensions to the
protocol, or it MAY simply identify the implementation as an aid in debugging. A Vendor ID payload
MUST NOT change the interpretation of any information defined in this specification (i.e., the
critical bit MUST be set to 0). Multiple Vendor ID payloads MAY be sent. An implementation is NOT
REQUIRED to send any Vendor ID payload at all.

A Vendor ID payload may be sent as part of any message. Reception of a familiar Vendor ID payload
allows an implementation to make use of Private USE numbers described throughout this memo --
private payloads, private exchanges, private notifications, etc. Unfamiliar Vendor IDs MUST be
ignored

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 405

Identifier: RQ_002_6422
RFC Clause: 3.12
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY send zero or more Vendor ID Payloads in any IKE message

RFC Text:
The Vendor ID Payload, denoted V in this memo, contains a vendor defined constant. The constant is
used by vendors to identify and recognize remote instances of their implementations. This mechanism
allows a vendor to experiment with new features while maintaining backward compatibility.

A Vendor ID payload MAY announce that the sender is capable to accepting certain extensions to the
protocol, or it MAY simply identify the implementation as an aid in debugging. A Vendor ID payload
MUST NOT change the interpretation of any information defined in this specification (i.e., the
critical bit MUST be set to 0). Multiple Vendor ID payloads MAY be sent. An implementation is NOT
REQUIRED to send any Vendor ID payload at all.

A Vendor ID payload may be sent as part of any message. Reception of a familiar Vendor ID payload
allows an implementation to make use of Private USE numbers described throughout this memo --
private payloads, private exchanges, private notifications, etc. Unfamiliar Vendor IDs MUST be
ignored

Identifier: RQ_002_6423
RFC Clause: 3.12
Type: Mandatory
Applies to: Host

Requirement:
An IKE implementation MUST ignore any unfamiliar Vendor Identifier received in a Vendor ID Payload.

RFC Text:
The Vendor ID Payload, denoted V in this memo, contains a vendor defined constant. The constant is
used by vendors to identify and recognize remote instances of their implementations. This mechanism
allows a vendor to experiment with new features while maintaining backward compatibility.

A Vendor ID payload MAY announce that the sender is capable to accepting certain extensions to the
protocol, or it MAY simply identify the implementation as an aid in debugging. A Vendor ID payload
MUST NOT change the interpretation of any information defined in this specification (i.e., the
critical bit MUST be set to 0). Multiple Vendor ID payloads MAY be sent. An implementation is NOT
REQUIRED to send any Vendor ID payload at all.

A Vendor ID payload may be sent as part of any message. Reception of a familiar Vendor ID payload
allows an implementation to make use of Private USE numbers described throughout this memo --
private payloads, private exchanges, private notifications, etc. Unfamiliar Vendor IDs MUST be
ignored

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 406

Identifier: RQ_002_6424
RFC Clause: 3.12
Type: Mandatory
Applies to: Host

Requirement:
A Vendor ID Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 to end Vendor Identifier

RFC Text:
The Vendor ID Payload fields are defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Vendor ID (VID) ~
 ! !
 +-+

 Figure 18: Vendor ID Payload Format

o Vendor ID (variable length) - It is the responsibility of the
 person choosing the Vendor ID to assure its uniqueness in spite of
 the absence of any central registry for IDs.
 Good practice is to include a company name, a person name, or some such.
 If you want to show off, you might include the latitude and longitude
 and time where you were when you chose the ID and some random input.
 A message digest of a long unique string is preferable to the long
 unique string itself.

The payload type for the Vendor ID Payload is forty three (43)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 407

Identifier: RQ_002_6425
RFC Clause: 3.12
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends a Vendor ID Payload in an IKE message, it MUST set the Vendor ID
field to an alpha-numeric value which uniquely identifies the manufacturer of the implementation.

RFC Text:
The Vendor ID Payload fields are defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Vendor ID (VID) ~
 ! !
 +-+

 Figure 18: Vendor ID Payload Format

o Vendor ID (variable length) - It is the responsibility of the
 person choosing the Vendor ID to assure its uniqueness in spite of
 the absence of any central registry for IDs.
 Good practice is to include a company name, a person name, or some such.
 If you want to show off, you might include the latitude and longitude
 and time where you were when you chose the ID and some random input.
 A message digest of a long unique string is preferable to the long
 unique string itself.

The payload type for the Vendor ID Payload is forty three (43)

Identifier: RQ_002_6426
RFC Clause: 3.12
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Vendor ID Payload, it MUST set the
appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the Vendor ID Payload) to the value forty-three (43)

RFC Text:
The Vendor ID Payload fields are defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Vendor ID (VID) ~
 ! !
 +-+

 Figure 18: Vendor ID Payload Format

o Vendor ID (variable length) - It is the responsibility of the
 person choosing the Vendor ID to assure its uniqueness in spite of
 the absence of any central registry for IDs.
 Good practice is to include a company name, a person name, or some such.
 If you want to show off, you might include the latitude and longitude
 and time where you were when you chose the ID and some random input.
 A message digest of a long unique string is preferable to the long
 unique string itself.

The payload type for the Vendor ID Payload is forty three (43)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 408

Identifier: RQ_002_6427
RFC Clause: 3.13
Type: Mandatory
Applies to: Host

Requirement:
A Traffic Selector Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 Number of Traffic Selectors included in this payload
 6 to 8 Reserved
 9 to end Traffic Selector(s)

RFC Text:
The Traffic Selector Payload, denoted TS in this memo, allows peers to identify packet flows for
processing by IPsec security services. The Traffic Selector Payload consists of the IKE generic
payload header followed by individual traffic selectors as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Number of TSs ! RESERVED !
 +-+
 ! !
 ~ <Traffic Selectors> ~
 ! !
 +-+

 Figure 19: Traffic Selectors Payload Format

o Number of TSs (1 octet) - Number of traffic selectors being provided.

o RESERVED - This field MUST be sent as zero and MUST be ignored on
 receipt.

o Traffic Selectors (variable length) - One or more individual
 traffic selectors.

The length of the Traffic Selector payload includes the TS header and all the traffic selectors.

The payload type for the Traffic Selector payload is forty four (44) for addresses at the
initiator's end of the SA and forty five (45) for addresses at the responder's end.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 409

Identifier: RQ_002_6428
RFC Clause: 3.13
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends a Traffic Selector Payload in an IKE message, it MUST set the
Number of TSs field to the number of Traffic Selectors included in the payload

RFC Text:
The Traffic Selector Payload, denoted TS in this memo, allows peers to identify packet flows for
processing by IPsec security services. The Traffic Selector Payload consists of the IKE generic
payload header followed by individual traffic selectors as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Number of TSs ! RESERVED !
 +-+
 ! !
 ~ <Traffic Selectors> ~
 ! !
 +-+

 Figure 19: Traffic Selectors Payload Format

o Number of TSs (1 octet) - Number of traffic selectors being provided.

o RESERVED - This field MUST be sent as zero and MUST be ignored on
 receipt.

o Traffic Selectors (variable length) - One or more individual
 traffic selectors.

The length of the Traffic Selector payload includes the TS header and all the traffic selectors.

The payload type for the Traffic Selector payload is forty four (44) for addresses at the
initiator's end of the SA and forty five (45) for addresses at the responder's end.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 410

Identifier: RQ_002_6429
RFC Clause: 3.13
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends a Traffic Selector Payload in an IKE message, it MUST include in
the payload the exact number of Traffic Selector descriptors indicated by the Number of TSs field

RFC Text:
The Traffic Selector Payload, denoted TS in this memo, allows peers to identify packet flows for
processing by IPsec security services. The Traffic Selector Payload consists of the IKE generic
payload header followed by individual traffic selectors as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Number of TSs ! RESERVED !
 +-+
 ! !
 ~ <Traffic Selectors> ~
 ! !
 +-+

 Figure 19: Traffic Selectors Payload Format

o Number of TSs (1 octet) - Number of traffic selectors being provided.

o RESERVED - This field MUST be sent as zero and MUST be ignored on
 receipt.

o Traffic Selectors (variable length) - One or more individual
 traffic selectors.

The length of the Traffic Selector payload includes the TS header and all the traffic selectors.

The payload type for the Traffic Selector payload is forty four (44) for addresses at the
initiator's end of the SA and forty five (45) for addresses at the responder's end.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 411

Identifier: RQ_002_6430
RFC Clause: 3.13
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an Initiator's Traffic Selector Payload,
it MUST set the appropriate Next Payload field (either in the IKE Header or in the Generic Header of
the payload preceding the Traffic Selector Payload) to the value forty-four (44)

RFC Text:
The Traffic Selector Payload, denoted TS in this memo, allows peers to identify packet flows for
processing by IPsec security services. The Traffic Selector Payload consists of the IKE generic
payload header followed by individual traffic selectors as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Number of TSs ! RESERVED !
 +-+
 ! !
 ~ <Traffic Selectors> ~
 ! !
 +-+

 Figure 19: Traffic Selectors Payload Format

o Number of TSs (1 octet) - Number of traffic selectors being provided.

o RESERVED - This field MUST be sent as zero and MUST be ignored on
 receipt.

o Traffic Selectors (variable length) - One or more individual
 traffic selectors.

The length of the Traffic Selector payload includes the TS header and all the traffic selectors.

The payload type for the Traffic Selector payload is forty four (44) for addresses at the
initiator's end of the SA and forty five (45) for addresses at the responder's end.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 412

Identifier: RQ_002_6431
RFC Clause: 3.13
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an Responder's Traffic Selector Payload,
it MUST set the appropriate Next Payload field (either in the IKE Header or in the Generic Header of
the payload preceding the Traffic Selector Payload) to the value forty-five (45)

RFC Text:
The Traffic Selector Payload, denoted TS in this memo, allows peers to identify packet flows for
processing by IPsec security services. The Traffic Selector Payload consists of the IKE generic
payload header followed by individual traffic selectors as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Number of TSs ! RESERVED !
 +-+
 ! !
 ~ <Traffic Selectors> ~
 ! !
 +-+

 Figure 19: Traffic Selectors Payload Format

o Number of TSs (1 octet) - Number of traffic selectors being provided.

o RESERVED - This field MUST be sent as zero and MUST be ignored on
 receipt.

o Traffic Selectors (variable length) - One or more individual
 traffic selectors.

The length of the Traffic Selector payload includes the TS header and all the traffic selectors.

The payload type for the Traffic Selector payload is forty four (44) for addresses at the
initiator's end of the SA and forty five (45) for addresses at the responder's end.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 413

Identifier: RQ_002_6432
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
A Traffic Selector Substructure in an IKE Traffic Selector Payload MUST be constructed in the
following format:

 Octet Field

 1 Traffic Selector Type
 2 IP Protocol Identifier
 3 & 4 Traffic Selector Length
 5 & 6 Start Port
 7 & 8 End Port
 9 to 24 Starting IPv6 Address
 24 to 40 Ending IPv6 Address

RFC Text:
Traffic Selector

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! TS Type !IP Protocol ID*| Selector Length |
 +-+
 | Start Port* | End Port* |
 +-+
 ! !
 ~ Starting Address* ~
 ! !
 +-+
 ! !
 ~ Ending Address* ~
 ! !
 +-+

 Figure 20: Traffic Selector

* Note: All fields other than TS Type and Selector Length depend on the TS Type. The fields shown
are for TS Types 7 and 8, the only two values currently defined.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 414

Identifier: RQ_002_6433
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the TS Type field in each Traffic Selector Substructure to the value 8
(TS_IPV6_ADDR_RANGE)

RFC Text:
o TS Type (one octet) - Specifies the type of traffic selector.

o IP protocol ID (1 octet) - Value specifying an associated IP
 protocol ID (e.g., UDP/TCP/ICMP). A value of zero means that the
 protocol ID is not relevant to this traffic selector -- the SA can
 carry all protocols.

o Selector Length - Specifies the length of this Traffic Selector
 Substructure including the header

- - -
- - -

The following table lists the assigned values for the Traffic Selector Type field and the
corresponding Address Selector Data.

 TS Type Value
 ------- -----
 RESERVED 0-6

 TS_IPV4_ADDR_RANGE 7

 A range of IPv4 addresses, represented by two four-octet
 values. The first value is the beginning IPv4 address
 (inclusive) and the second value is the ending IPv4 address
 (inclusive). All addresses falling between the two
 specified addresses are considered to be within the list.

 TS_IPV6_ADDR_RANGE 8

 A range of IPv6 addresses, represented by two sixteen-octet
 values. The first value is the beginning IPv6 address
 (inclusive) and the second value is the ending IPv6 address
 (inclusive). All addresses falling between the two
 specified addresses are considered to be within the list.

 RESERVED TO IANA 9-240
 PRIVATE USE 241-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 415

Identifier: RQ_002_6434
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the IP Protocol ID in each Traffic Selector substructure to one of the
following values to indicate which IP protocol is used on the corresponding Security Association:

 Value IP Protocol

 0 The SA can carry all protocols
 1 to 255 Protocol Number as specified in IETF RFC 1700

RFC Text:
o TS Type (one octet) - Specifies the type of traffic selector.

o IP protocol ID (1 octet) - Value specifying an associated IP
 protocol ID (e.g., UDP/TCP/ICMP). A value of zero means that the
 protocol ID is not relevant to this traffic selector -- the SA can
 carry all protocols.

o Selector Length - Specifies the length of this Traffic Selector
 Substructure including the header

- - -
- - -

The following table lists the assigned values for the Traffic Selector Type field and the
corresponding Address Selector Data.

 TS Type Value
 ------- -----
 RESERVED 0-6

 TS_IPV4_ADDR_RANGE 7

 A range of IPv4 addresses, represented by two four-octet
 values. The first value is the beginning IPv4 address
 (inclusive) and the second value is the ending IPv4 address
 (inclusive). All addresses falling between the two
 specified addresses are considered to be within the list.

 TS_IPV6_ADDR_RANGE 8

 A range of IPv6 addresses, represented by two sixteen-octet
 values. The first value is the beginning IPv6 address
 (inclusive) and the second value is the ending IPv6 address
 (inclusive). All addresses falling between the two
 specified addresses are considered to be within the list.

 RESERVED TO IANA 9-240
 PRIVATE USE 241-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 416

Identifier: RQ_002_6435
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the Selector Length field in each Traffic Selector substructure to the
length in octets of the Traffic Selector Substructure (40 octets for IPv6)

RFC Text:
o TS Type (one octet) - Specifies the type of traffic selector.

o IP protocol ID (1 octet) - Value specifying an associated IP
 protocol ID (e.g., UDP/TCP/ICMP). A value of zero means that the
 protocol ID is not relevant to this traffic selector -- the SA can
 carry all protocols.

o Selector Length - Specifies the length of this Traffic Selector
 Substructure including the header

- - -
- - -

The following table lists the assigned values for the Traffic Selector Type field and the
corresponding Address Selector Data.

 TS Type Value
 ------- -----
 RESERVED 0-6

 TS_IPV4_ADDR_RANGE 7

 A range of IPv4 addresses, represented by two four-octet
 values. The first value is the beginning IPv4 address
 (inclusive) and the second value is the ending IPv4 address
 (inclusive). All addresses falling between the two
 specified addresses are considered to be within the list.

 TS_IPV6_ADDR_RANGE 8

 A range of IPv6 addresses, represented by two sixteen-octet
 values. The first value is the beginning IPv6 address
 (inclusive) and the second value is the ending IPv6 address
 (inclusive). All addresses falling between the two
 specified addresses are considered to be within the list.

 RESERVED TO IANA 9-240
 PRIVATE USE 241-255

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 417

Identifier: RQ_002_6436
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the Start Port field in each Traffic Selector substructure to the
lowest port number allowed by this Traffic Selector unless the associated IP Protocol does not
define a port number or if all ports are allowed.

RFC Text:
o Start Port (2 octets) - Value specifying the smallest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be zero.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposes of filtering based on this
 field.

o End Port (2 octets) - Value specifying the largest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be 65535.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposed of filtering based on this
 field.

o Starting Address - The smallest address included in this Traffic
 Selector (length determined by TS type).

o Ending Address - The largest address included in this Traffic
 Selector (length determined by TS type).

Systems that are complying with [RFC4301] that wish to indicate "ANY" ports MUST set the start port
to 0 and the end port to 65535; note that according to [RFC4301], "ANY" includes "OPAQUE". Systems
working with [RFC4301] that wish to indicate "OPAQUE" ports, but not "ANY" ports, MUST set the start
port to 65535 and the end port to 0.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 418

Identifier: RQ_002_6437
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the Start Port field in each Traffic Selector substructure to zero (0)
either if the associated IP Protocol does not define a port number or if all ports are allowed.

RFC Text:
o Start Port (2 octets) - Value specifying the smallest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be zero.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposes of filtering based on this
 field.

o End Port (2 octets) - Value specifying the largest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be 65535.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposed of filtering based on this
 field.

o Starting Address - The smallest address included in this Traffic
 Selector (length determined by TS type).

o Ending Address - The largest address included in this Traffic
 Selector (length determined by TS type).

Systems that are complying with [RFC4301] that wish to indicate "ANY" ports MUST set the start port
to 0 and the end port to 65535; note that according to [RFC4301], "ANY" includes "OPAQUE". Systems
working with [RFC4301] that wish to indicate "OPAQUE" ports, but not "ANY" ports, MUST set the start
port to 65535 and the end port to 0.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 419

Identifier: RQ_002_6438
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the End Port field in each Traffic Selector substructure to the highest
port number allowed by this Traffic Selector unless the associated IP Protocol does not define a
port number or if all ports are allowed.

RFC Text:
o Start Port (2 octets) - Value specifying the smallest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be zero.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposes of filtering based on this
 field.

o End Port (2 octets) - Value specifying the largest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be 65535.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposed of filtering based on this
 field.

o Starting Address - The smallest address included in this Traffic
 Selector (length determined by TS type).

o Ending Address - The largest address included in this Traffic
 Selector (length determined by TS type).

Systems that are complying with [RFC4301] that wish to indicate "ANY" ports MUST set the start port
to 0 and the end port to 65535; note that according to [RFC4301], "ANY" includes "OPAQUE". Systems
working with [RFC4301] that wish to indicate "OPAQUE" ports, but not "ANY" ports, MUST set the start
port to 65535 and the end port to 0.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 420

Identifier: RQ_002_6439
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the End Port field in each Traffic Selector substructure to 65535
either if the associated IP Protocol does not define a port number or if all ports are allowed.

RFC Text:
o Start Port (2 octets) - Value specifying the smallest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be zero.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposes of filtering based on this
 field.

o End Port (2 octets) - Value specifying the largest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be 65535.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposed of filtering based on this
 field.

o Starting Address - The smallest address included in this Traffic
 Selector (length determined by TS type).

o Ending Address - The largest address included in this Traffic
 Selector (length determined by TS type).

Systems that are complying with [RFC4301] that wish to indicate "ANY" ports MUST set the start port
to 0 and the end port to 65535; note that according to [RFC4301], "ANY" includes "OPAQUE". Systems
working with [RFC4301] that wish to indicate "OPAQUE" ports, but not "ANY" ports, MUST set the start
port to 65535 and the end port to 0.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 421

Identifier: RQ_002_6440
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the Starting Address field in each Traffic Selector substructure to the
lowest IPv6 Address included in this Traffic Selector

RFC Text:
o Start Port (2 octets) - Value specifying the smallest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be zero.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposes of filtering based on this
 field.

o End Port (2 octets) - Value specifying the largest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be 65535.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposed of filtering based on this
 field.

o Starting Address - The smallest address included in this Traffic
 Selector (length determined by TS type).

o Ending Address - The largest address included in this Traffic
 Selector (length determined by TS type).

Systems that are complying with [RFC4301] that wish to indicate "ANY" ports MUST set the start port
to 0 and the end port to 65535; note that according to [RFC4301], "ANY" includes "OPAQUE". Systems
working with [RFC4301] that wish to indicate "OPAQUE" ports, but not "ANY" ports, MUST set the start
port to 65535 and the end port to 0.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 422

Identifier: RQ_002_6441
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the Ending Address field in each Traffic Selector substructure to the
highest IPv6 Address included in this Traffic Selector

RFC Text:
o Start Port (2 octets) - Value specifying the smallest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be zero.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposes of filtering based on this
 field.

o End Port (2 octets) - Value specifying the largest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be 65535.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposed of filtering based on this
 field.

o Starting Address - The smallest address included in this Traffic
 Selector (length determined by TS type).

o Ending Address - The largest address included in this Traffic
 Selector (length determined by TS type).

Systems that are complying with [RFC4301] that wish to indicate "ANY" ports MUST set the start port
to 0 and the end port to 65535; note that according to [RFC4301], "ANY" includes "OPAQUE". Systems
working with [RFC4301] that wish to indicate "OPAQUE" ports, but not "ANY" ports, MUST set the start
port to 65535 and the end port to 0.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 423

Identifier: RQ_002_6442
RFC Clause: 3.13.1
Type: Mandatory
Applies to: Host

Requirement:
When sending a Traffic Selector Payload containing one or more Traffic Selector substructures, an
IKE implementation MUST set the Start Port field in each Traffic Selector substructure to 65535 and
the End Port field to 0 if ports are to be considered as "OPAQUE" rather than "ANY" according to the
definitions in IETF RFC 4301.

RFC Text:
o Start Port (2 octets) - Value specifying the smallest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be zero.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposes of filtering based on this
 field.

o End Port (2 octets) - Value specifying the largest port number
 allowed by this Traffic Selector. For protocols for which port is
 undefined, or if all ports are allowed, this field MUST be 65535.
 For the ICMP protocol, the two one-octet fields Type and Code are
 treated as a single 16-bit integer (with Type in the most
 significant eight bits and Code in the least significant eight
 bits) port number for the purposed of filtering based on this
 field.

o Starting Address - The smallest address included in this Traffic
 Selector (length determined by TS type).

o Ending Address - The largest address included in this Traffic
 Selector (length determined by TS type).

Systems that are complying with [RFC4301] that wish to indicate "ANY" ports MUST set the start port
to 0 and the end port to 65535; note that according to [RFC4301], "ANY" includes "OPAQUE". Systems
working with [RFC4301] that wish to indicate "OPAQUE" ports, but not "ANY" ports, MUST set the start
port to 65535 and the end port to 0.

Identifier: RQ_002_6443
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation sends an Encrypted Payload in an IKE message, that payload MUST be the last
payload in the message

RFC Text:
The Encrypted Payload, denoted SK{...} or E in this memo, contains other payloads in encrypted form.
The Encrypted Payload, if present in a message, MUST be the last payload in the message. Often, it
is the only payload in the message.

The algorithms for encryption and integrity protection are negotiated during IKE_SA setup, and the
keys are computed as specified in sections 2.14 and 2.18.

The encryption and integrity protection algorithms are modeled after the ESP algorithms described in
RFCs 2104 [KBC96], 4303 [RFC4303], and 2451 [ESPCBC]. This document completely specifies the
cryptographic processing of IKE data, but those documents should be consulted for design rationale.
We require a block cipher with a fixed block size and an integrity check algorithm that computes a
fixed-length checksum over a variable size message.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 424

Identifier: RQ_002_6444
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an Encrypted Payload, it MUST set the
appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the Encrypted Payload) to the value forty-six (46)

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 425

Identifier: RQ_002_6445
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
An Encrypted Payload in an IKE packet MUST be constructed as follows:

 Octet Field
 --
 1 to 4 IKE Generic Payload Header
 5 to (4 + block length of encryption algorithm) Initialization Vector
 followed by (variable length) Encrypted IKE payload
 followed by (between 0 and 255 octets) Sender defined padding
 followed by (1 octet) Pad Length
 followed by (algorithm-dependent length) Integrity Checksum Data

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 426

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 427

Identifier: RQ_002_6446
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MUST set the Next
Payload field in the Generic Payload header (Octet 1) to the value indicating the type of the first
encrypted payload as follows:

 Next Payload Type Notation Value

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extensible Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 428

 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 429

Identifier: RQ_002_6447
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MUST set the Payload
Length field to the total number of octets in the Payload Header, Initialization Vector field, the
Encrypted IKE Payloads, the Padding, the Pad Length field and the Integrity Checksum Data field

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 430

Identifier: RQ_002_6448
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MUST set the
Initialization Vector field to a randomly chosen value whose length is equal to the block length of
the underlying encryption algorithm.

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 431

Identifier: RQ_002_6449
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an Encrypted Payload in an IKE message, it MUST accept any value
set in the Initialization Vector field.

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 432

Identifier: RQ_002_6450
RFC Clause: 3.14
Type: Recommended
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it SHOULD select the value
to be set in the Initialization Vector field either pseudo-randomly or use the final ciphertext
block of the previous message sent.

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 433

Identifier: RQ_002_6451
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends Encrypted Payloads in a sequence of IKE messages, it MUST set
values in the Initialization Vector fields that are not:

 * the same in each message;
 * an easily deducible sequence; and
 * ciphertext from a previously received message

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 434

Identifier: RQ_002_6452
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MUST insert the required
IKE payloads encrypted with the negotiated cipher into the Encrypted IKE Payloads field.

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 435

Identifier: RQ_002_6453
RFC Clause: 3.14
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MAY insert any value in
the Padding field of the payload

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 436

Identifier: RQ_002_6454
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MUST ensure that the
combined length of the Encrypted IKE Payloads field, the Padding field and the Pad Length field is a
multiple of the chosen encryption block size.

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 437

Identifier: RQ_002_6455
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MUST set the Pad Length
field to the number of octets included in the Padding field of the same payload

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 438

Identifier: RQ_002_6456
RFC Clause: 3.14
Type: Recommended
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it SHOULD set the Pad
Length field to the minimum value that makes the combination of the Encrypted IKE Payloads field,
the Padding field, and the Pad Length a multiple of the selected encryption block size

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 439

Identifier: RQ_002_6457
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an Encrypted Payload in an IKE message, it MUST accept any value
in the Pad Length field that results in the combination of the Payloads, the Padding, and the Pad
Length being a multiple of the selected encryption block size

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 440

Identifier: RQ_002_6458
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MUST encrypt the Padding
field with the negotiated cipher.

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.
 This field is encrypted with the negotiated cipher

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 441

Identifier: RQ_002_6459
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MUST encrypt the Pad
Length field with the negotiated cipher.

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 442

Identifier: RQ_002_6460
RFC Clause: 3.14
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an Encrypted Payload in an IKE message, it MUST insert the checksum
calculated for the complete IKE message (from IKE Header through to the Pad Length field) into the
Integrity Checksum Data field of the payload using the negotiated integrity algorithm.

RFC Text:
The payload type for an Encrypted payload is forty six (46). The Encrypted Payload consists of the
IKE generic payload header followed by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ~ Encrypted IKE Payloads ~
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message and
 therefore the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

o Payload Length - Includes the lengths of the header, IV, Encrypted
 IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

o Initialization Vector - A randomly chosen value whose length is
 equal to the block length of the underlying encryption algorithm.
 Recipients MUST accept any value. Senders SHOULD either pick this
 value pseudo-randomly and independently for each message or use
 the final ciphertext block of the previous message sent. Senders
 MUST NOT use the same value for each message, use a sequence of
 values with low hamming distance (e.g., a sequence number), or use
 ciphertext from a received message.

o IKE Payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

o Padding MAY contain any value chosen by the sender, and MUST have
 a length that makes the combination of the Payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.

o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the Payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE Header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 443

Identifier: RQ_002_6461
RFC Clause: 3.15
Type: Optional
Applies to: Host

Requirement:
An IKE implementation MAY include a Configuration Payload with the CFG Type field set to either the
value CFG_REQUEST (1) or the value CFG_SET (3) in any IKE request message.

RFC Text:
The Configuration payload, denoted CP in this document, is used to exchange configuration
information between IKE peers. The exchange is for an IRAC to request an internal IP address from
an IRAS and to exchange other information of the sort that one would acquire with Dynamic Host
Configuration Protocol (DHCP) if the IRAC were directly connected to a LAN.

Configuration payloads are of type CFG_REQUEST/CFG_REPLY or CFG_SET/CFG_ACK (see CFG Type in the
payload description below). CFG_REQUEST and CFG_SET payloads may optionally be added to any IKE
request. The IKE response MUST include either a corresponding CFG_REPLY or CFG_ACK or a Notify
payload with an error type indicating why the request could not be honored. An exception is that a
minimal implementation MAY ignore all CFG_REQUEST and CFG_SET payloads, so a response message
without a corresponding CFG_REPLY or CFG_ACK MUST be accepted as an indication that the request was
not supported

Identifier: RQ_002_6462
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request containing a Configuration Payload with the CFG
Type field set to the value CFG_REQUEST (1) and the implementation supports IKE Configuration
Payloads, it MUST include in the corresponding IKE response message either:

 * a Configuration Payload with the CFG Type field set to the value CFG_REPLY (2); or
 * a Notify payload with an error type indicating why the request could not be honoured.

RFC Text:
The Configuration payload, denoted CP in this document, is used to exchange configuration
information between IKE peers. The exchange is for an IRAC to request an internal IP address from an
IRAS and to exchange other information of the sort that one would acquire with Dynamic Host
Configuration Protocol (DHCP) if the IRAC were directly connected to a LAN.

Configuration payloads are of type CFG_REQUEST/CFG_REPLY or CFG_SET/CFG_ACK (see CFG Type in the
payload description below). CFG_REQUEST and CFG_SET payloads may optionally be added to any IKE
request. The IKE response MUST include either a corresponding CFG_REPLY or CFG_ACK or a Notify
payload with an error type indicating why the request could not be honored. An exception is that a
minimal implementation MAY ignore all CFG_REQUEST and CFG_SET payloads, so a response message
without a corresponding CFG_REPLY or CFG_ACK MUST be accepted as an indication that the request was
not supported

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 444

Identifier: RQ_002_6463
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request containing a Configuration Payload with the CFG
Type field set to the value CFG_SET (3) and the implementation supports IKE Configuration Payloads,
it MUST include in the corresponding IKE response message either:

 * a Configuration Payload with the CFG Type field set to the value CFG_ACK (4); or
 * a Notify payload with an error type indicating why the request could not be honoured.

RFC Text:
The Configuration payload, denoted CP in this document, is used to exchange configuration
information between IKE peers. The exchange is for an IRAC to request an internal IP address from an
IRAS and to exchange other information of the sort that one would acquire with Dynamic Host
Configuration Protocol (DHCP) if the IRAC were directly connected to a LAN.

Configuration payloads are of type CFG_REQUEST/CFG_REPLY or CFG_SET/CFG_ACK (see CFG Type in the
payload description below). CFG_REQUEST and CFG_SET payloads may optionally be added to any IKE
request. The IKE response MUST include either a corresponding CFG_REPLY or CFG_ACK or a Notify
payload with an error type indicating why the request could not be honored. An exception is that a
minimal implementation MAY ignore all CFG_REQUEST and CFG_SET payloads, so a response message
without a corresponding CFG_REPLY or CFG_ACK MUST be accepted as an indication that the request was
not supported

Identifier: RQ_002_6464
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE response to its IKE request which contained a Configuration
Payload and the response does not contain a corresponding Configuration Payload, it MUST conclude
that the responder does not support IKE Configuration Payloads.

RFC Text:
The Configuration payload, denoted CP in this document, is used to exchange configuration
information between IKE peers. The exchange is for an IRAC to request an internal IP address from an
IRAS and to exchange other information of the sort that one would acquire with Dynamic Host
Configuration Protocol (DHCP) if the IRAC were directly connected to a LAN.

Configuration payloads are of type CFG_REQUEST/CFG_REPLY or CFG_SET/CFG_ACK (see CFG Type in the
payload description below). CFG_REQUEST and CFG_SET payloads may optionally be added to any IKE
request. The IKE response MUST include either a corresponding CFG_REPLY or CFG_ACK or a Notify
payload with an error type indicating why the request could not be honored. An exception is that a
minimal implementation MAY ignore all CFG_REQUEST and CFG_SET payloads, so a response message
without a corresponding CFG_REPLY or CFG_ACK MUST be accepted as an indication that the request was
not supported

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 445

Identifier: RQ_002_6465
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request containing a Configuration Payload with the CFG
Type field set to the value CFG_REQUEST (1), it MUST include a Configuration Payload in its
associated response with the CFG Type field set to CFG_REPLY (2) and with a valid value set in each
of the Configuration Attributes provided in the request.

RFC Text:
"CFG_REQUEST/CFG_REPLY" allows an IKE endpoint to request information from its peer. If an attribute
in the CFG_REQUEST Configuration Payload is not zero-length, it is taken as a suggestion for that
attribute. The CFG_REPLY Configuration Payload MAY return that value, or a new one. It MAY also add
new attributes and not include some requested ones. Requestors MUST ignore returned attributes that
they do not recognize.

Some attributes MAY be multi-valued, in which case multiple attribute values of the same type are
sent and/or returned. Generally, all values of an attribute are returned when the attribute is
requested. For some attributes (in this version of the specification only internal addresses),
multiple requests indicates a request that multiple values be assigned. For these attributes, the
number of values returned SHOULD NOT exceed the number requested.

If the data type requested in a CFG_REQUEST is not recognized or not supported, the responder MUST
NOT return an error type but rather MUST either send a CFG_REPLY that MAY be empty or a reply not
containing a CFG_REPLY payload at all. Error returns are reserved for cases where the request is
recognized but cannot be performed as requested or the request is badly formatted.

Identifier: RQ_002_6466
RFC Clause: 3.15
Type: Optional
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request containing a Configuration Payload with the CFG
Type field set to the value CFG_REQUEST (1), it MAY include additional Configuration Attributes not
provided in the original request.

RFC Text:
"CFG_REQUEST/CFG_REPLY" allows an IKE endpoint to request information from its peer. If an attribute
in the CFG_REQUEST Configuration Payload is not zero-length, it is taken as a suggestion for that
attribute. The CFG_REPLY Configuration Payload MAY return that value, or a new one. It MAY also add
new attributes and not include some requested ones. Requestors MUST ignore returned attributes that
they do not recognize.

Some attributes MAY be multi-valued, in which case multiple attribute values of the same type are
sent and/or returned. Generally, all values of an attribute are returned when the attribute is
requested. For some attributes (in this version of the specification only internal addresses),
multiple requests indicates a request that multiple values be assigned. For these attributes, the
number of values returned SHOULD NOT exceed the number requested.

If the data type requested in a CFG_REQUEST is not recognized or not supported, the responder MUST
NOT return an error type but rather MUST either send a CFG_REPLY that MAY be empty or a reply not
containing a CFG_REPLY payload at all. Error returns are reserved for cases where the request is
recognized but cannot be performed as requested or the request is badly formatted.

Identifier: RQ_002_6467
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives a solicited IKE response containing a Configuration Payload with
the CFG Type field set to the value CFG_REPLY (2), it MUST ignore any Configuration Attributes that
it does not recognize.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 446

RFC Text:
"CFG_REQUEST/CFG_REPLY" allows an IKE endpoint to request information from its peer. If an attribute
in the CFG_REQUEST Configuration Payload is not zero-length, it is taken as a suggestion for that
attribute. The CFG_REPLY Configuration Payload MAY return that value, or a new one. It MAY also add
new attributes and not include some requested ones. Requestors MUST ignore returned attributes that
they do not recognize.

Some attributes MAY be multi-valued, in which case multiple attribute values of the same type are
sent and/or returned. Generally, all values of an attribute are returned when the attribute is
requested. For some attributes (in this version of the specification only internal addresses),
multiple requests indicates a request that multiple values be assigned. For these attributes, the
number of values returned SHOULD NOT exceed the number requested.

If the data type requested in a CFG_REQUEST is not recognized or not supported, the responder MUST
NOT return an error type but rather MUST either send a CFG_REPLY that MAY be empty or a reply not
containing a CFG_REPLY payload at all. Error returns are reserved for cases where the request is
recognized but cannot be performed as requested or the request is badly formatted.

Identifier: RQ_002_6468
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request containing a Configuration Payload with the CFG
Type field set to the value CFG_REQUEST (1) and it is unable support one or more of the
Configuration Attribute Types included in the payload, it MUST either:

 * include a Configuration Payload in its IKE response with the CFG Type set to CFG_REPLY (2)
 and with the unsupported Configuration Attributes empty; or
 * send the appropriate IKE response without any Configuration Payload included.

RFC Text:
"CFG_REQUEST/CFG_REPLY" allows an IKE endpoint to request information from its peer. If an attribute
in the CFG_REQUEST Configuration Payload is not zero-length, it is taken as a suggestion for that
attribute. The CFG_REPLY Configuration Payload MAY return that value, or a new one. It MAY also add
new attributes and not include some requested ones. Requestors MUST ignore returned attributes that
they do not recognize.

Some attributes MAY be multi-valued, in which case multiple attribute values of the same type are
sent and/or returned. Generally, all values of an attribute are returned when the attribute is
requested. For some attributes (in this version of the specification only internal addresses),
multiple requests indicates a request that multiple values be assigned. For these attributes, the
number of values returned SHOULD NOT exceed the number requested.

If the data type requested in a CFG_REQUEST is not recognized or not supported, the responder MUST
NOT return an error type but rather MUST either send a CFG_REPLY that MAY be empty or a reply not
containing a CFG_REPLY payload at all. Error returns are reserved for cases where the request is
recognized but cannot be performed as requested or the request is badly formatted.

Identifier: RQ_002_6469
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request containing a Configuration Payload with the CFG
Type field set to the value CFG_SET (3) and it is able to implement one or more of the requested
configuration changes, it MUST include a Configuration Payload in its IKE response with the CFG Type
field set to CFG_ACK (4) and only those Configuration Attributes that it is able to accept, each
with its Length field set to zero (0)

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 447

RFC Text:
"CFG_SET/CFG_ACK" allows an IKE endpoint to push configuration data to its peer. In this case, the
CFG_SET Configuration Payload contains attributes the initiator wants its peer to alter. The
responder MUST return a Configuration Payload if it accepted any of the configuration data and it
MUST contain the attributes that the responder accepted with zero-length data. Those attributes that
it did not accept MUST NOT be in the CFG_ACK Configuration Payload. If no attributes were accepted,
the responder MUST return either an empty CFG_ACK payload or a response message without a CFG_ACK
payload. There are currently no defined uses for the CFG_SET/CFG_ACK exchange, though they may be
used in connection with extensions based on Vendor IDs. An minimal implementation of this
specification MAY ignore CFG_SET payloads.

Extensions via the CP payload SHOULD NOT be used for general purpose management. Its main intent is
to provide a bootstrap mechanism to exchange information within IPsec from IRAS to IRAC. While it
MAY be useful to use such a method to exchange information between some Security Gateways (SGW) or
small networks, existing management protocols such as DHCP [DHCP], RADIUS [RADIUS], SNMP, or LDAP
[LDAP] should be preferred for enterprise management as well as subsequent information exchanges.

Identifier: RQ_002_6470
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request containing a Configuration Payload with the CFG
Type field set to the value CFG_SET (3) and it is unable to implement any of the requested
configuration changes, it MUST either

 * send a Configuration Payload in its IKE response with the CFG Type field set to CFG_ACK (4)
 but containing no Configuration Attributes; or
 * send the appropriate IKE response to the requestor without a Configuration Payload included.

RFC Text:
"CFG_SET/CFG_ACK" allows an IKE endpoint to push configuration data to its peer. In this case, the
CFG_SET Configuration Payload contains attributes the initiator wants its peer to alter. The
responder MUST return a Configuration Payload if it accepted any of the configuration data and it
MUST contain the attributes that the responder accepted with zero-length data. Those attributes that
it did not accept MUST NOT be in the CFG_ACK Configuration Payload. If no attributes were accepted,
the responder MUST return either an empty CFG_ACK payload or a response message without a CFG_ACK
payload. There are currently no defined uses for the CFG_SET/CFG_ACK exchange, though they may be
used in connection with extensions based on Vendor IDs. An minimal implementation of this
specification MAY ignore CFG_SET payloads.

Extensions via the CP payload SHOULD NOT be used for general purpose management. Its main intent is
to provide a bootstrap mechanism to exchange information within IPsec from IRAS to IRAC. While it
MAY be useful to use such a method to exchange information between some Security Gateways (SGW) or
small networks, existing management protocols such as DHCP [DHCP], RADIUS [RADIUS], SNMP, or LDAP
[LDAP] should be preferred for enterprise management as well as subsequent information exchanges.

Identifier: RQ_002_6471
RFC Clause: 3.15
Type: Optional
Applies to: Host

Requirement:
If an IKE implementation receives an IKE request containing a Configuration Payload with the CFG
Type field set to the value CFG_SET (3), it MAY ignore the payload.

RFC Text:
"CFG_SET/CFG_ACK" allows an IKE endpoint to push configuration data to its peer. In this case, the
CFG_SET Configuration Payload contains attributes the initiator wants its peer to alter. The
responder MUST return a Configuration Payload if it accepted any of the configuration data and it
MUST contain the attributes that the responder accepted with zero-length data. Those attributes that
it did not accept MUST NOT be in the CFG_ACK Configuration Payload. If no attributes were accepted,
the responder MUST return either an empty CFG_ACK payload or a response message without a CFG_ACK
payload. There are currently no defined uses for the CFG_SET/CFG_ACK exchange, though they may be
used in connection with extensions based on Vendor IDs. An minimal implementation of this
specification MAY ignore CFG_SET payloads.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 448

Extensions via the CP payload SHOULD NOT be used for general purpose management. Its main intent is
to provide a bootstrap mechanism to exchange information within IPsec from IRAS to IRAC. While it
MAY be useful to use such a method to exchange information between some Security Gateways (SGW) or
small networks, existing management protocols such as DHCP [DHCP], RADIUS [RADIUS], SNMP, or LDAP
[LDAP] should be preferred for enterprise management as well as subsequent information exchanges.

Identifier: RQ_002_6472
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
A Configuration Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 CFG Type
 6 to 8 Reserved
 9 to end Configuration Attributes

RFC Text:

The Configuration Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! CFG Type ! RESERVED !
 +-+
 ! !
 ~ Configuration Attributes ~
 ! !
 +-+

 Figure 22: Configuration Payload Format

The payload type for the Configuration Payload is forty seven (47).

o CFG Type (1 octet) - The type of exchange represented by the
 Configuration Attributes.

 CFG Type Value
 =========== =====
 RESERVED 0
 CFG_REQUEST 1
 CFG_REPLY 2
 CFG_SET 3
 CFG_ACK 4

 values 5-127 are reserved to IANA. Values 128-255 are for private
 use among mutually consenting parties.

o RESERVED (3 octets) - MUST be sent as zero; MUST be ignored on
 receipt.

o Configuration Attributes (variable length) - These are type length
 values specific to the Configuration Payload and are defined
 below. There may be zero or more Configuration Attributes in this
 payload.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 449

Identifier: RQ_002_6473
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload, it MUST set the
appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the Configuration Payload) to the value forty-seven (47)

RFC Text:

The Configuration Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! CFG Type ! RESERVED !
 +-+
 ! !
 ~ Configuration Attributes ~
 ! !
 +-+

 Figure 22: Configuration Payload Format

The payload type for the Configuration Payload is forty seven (47).

o CFG Type (1 octet) - The type of exchange represented by the
 Configuration Attributes.

 CFG Type Value
 =========== =====
 RESERVED 0
 CFG_REQUEST 1
 CFG_REPLY 2
 CFG_SET 3
 CFG_ACK 4

 values 5-127 are reserved to IANA. Values 128-255 are for private
 use among mutually consenting parties.

o RESERVED (3 octets) - MUST be sent as zero; MUST be ignored on
 receipt.

o Configuration Attributes (variable length) - These are type length
 values specific to the Configuration Payload and are defined
 below. There may be zero or more Configuration Attributes in this
 payload.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 450

Identifier: RQ_002_6474
RFC Clause: 3.15
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload, it MUST set the
CFG Type field in the payload to one of the following values:

 Value CFG Type

 0 Reserved
 1 CFG_REQUEST
 2 CFG_REPLY
 3 CFG_SET
 4 CFG_ACK
 5 to 127 Reserved for IANA
 128 to 255 For Private Use

RFC Text:

The Configuration Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! CFG Type ! RESERVED !
 +-+
 ! !
 ~ Configuration Attributes ~
 ! !
 +-+

 Figure 22: Configuration Payload Format

The payload type for the Configuration Payload is forty seven (47).

o CFG Type (1 octet) - The type of exchange represented by the
 Configuration Attributes.

 CFG Type Value
 =========== =====
 RESERVED 0
 CFG_REQUEST 1
 CFG_REPLY 2
 CFG_SET 3
 CFG_ACK 4

 values 5-127 are reserved to IANA. Values 128-255 are for private
 use among mutually consenting parties.

o RESERVED (3 octets) - MUST be sent as zero; MUST be ignored on
 receipt.

o Configuration Attributes (variable length) - These are type length
 values specific to the Configuration Payload and are defined
 below. There may be zero or more Configuration Attributes in this
 payload.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 451

Identifier: RQ_002_6475
RFC Clause: 3.15
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload, it MAY include
zero or more Configuration Attributes in the payload.

RFC Text:

The Configuration Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! CFG Type ! RESERVED !
 +-+
 ! !
 ~ Configuration Attributes ~
 ! !
 +-+

 Figure 22: Configuration Payload Format

The payload type for the Configuration Payload is forty seven (47).

o CFG Type (1 octet) - The type of exchange represented by the
 Configuration Attributes.

 CFG Type Value
 =========== =====
 RESERVED 0
 CFG_REQUEST 1
 CFG_REPLY 2
 CFG_SET 3
 CFG_ACK 4

 values 5-127 are reserved to IANA. Values 128-255 are for private
 use among mutually consenting parties.

o RESERVED (3 octets) - MUST be sent as zero; MUST be ignored on
 receipt.

o Configuration Attributes (variable length) - These are type length
 values specific to the Configuration Payload and are defined
 below. There may be zero or more Configuration Attributes in this
 payload.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 452

Identifier: RQ_002_6476
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes
one or more Configuration Attributes, each Configuration Attribute substructure MUST be constructed
as follows:

 Octet Field

 1 (bit 0) Reserved (set to binary zero)
 1 (bits 1 to 7) & 2 Attribute Type
 3 & 4 Length
 5 to end Value

RFC Text:
Configuration Attributes

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !R| Attribute Type ! Length |
 +-+
 | |
 ~ Value ~
 | |
 +-+

 Figure 23: Configuration Attribute Format

o Reserved (1 bit) - This bit MUST be set to zero and MUST be
 ignored on receipt.

o Attribute Type (15 bits) - A unique identifier for each of the
 Configuration Attribute Types.

o Length (2 octets) - Length in octets of Value.

o Value (0 or more octets) - The variable-length value of this
 Configuration Attribute.
The following attribute types have been defined:

 Multi-
 Attribute Type Value Valued Length
 ======================= ===== ====== ==================
 RESERVED 0
 INTERNAL_IP4_ADDRESS 1 YES* 0 or 4 octets
 INTERNAL_IP4_NETMASK 2 NO 0 or 4 octets
 INTERNAL_IP4_DNS 3 YES 0 or 4 octets
 INTERNAL_IP4_NBNS 4 YES 0 or 4 octets
 INTERNAL_ADDRESS_EXPIRY 5 NO 0 or 4 octets
 INTERNAL_IP4_DHCP 6 YES 0 or 4 octets
 APPLICATION_VERSION 7 NO 0 or more
 INTERNAL_IP6_ADDRESS 8 YES* 0 or 17 octets
 RESERVED 9
 INTERNAL_IP6_DNS 10 YES 0 or 16 octets
 INTERNAL_IP6_NBNS 11 YES 0 or 16 octets
 INTERNAL_IP6_DHCP 12 YES 0 or 16 octets
 INTERNAL_IP4_SUBNET 13 YES 0 or 8 octets
 SUPPORTED_ATTRIBUTES 14 NO Multiple of 2
 INTERNAL_IP6_SUBNET 15 YES 17 octets

 * These attributes may be multi-valued on return only if multiple
 values were requested.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 453

Identifier: RQ_002_6477
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes
one or more Configuration Attributes, the Attribute Type field in each Configuration Attribute
substructure MUST be set to one of the following values:

 Attribute Type Value

 RESERVED 0
 INTERNAL_IP4_ADDRESS 1
 INTERNAL_IP4_NETMASK 2
 INTERNAL_IP4_DNS 3
 INTERNAL_IP4_NBNS 4
 INTERNAL_ADDRESS_EXPIRY 5
 INTERNAL_IP4_DHCP 6
 APPLICATION_VERSION 7
 INTERNAL_IP6_ADDRESS 8
 RESERVED 9
 INTERNAL_IP6_DNS 10
 INTERNAL_IP6_NBNS 11
 INTERNAL_IP6_DHCP 12
 INTERNAL_IP4_SUBNET 13
 SUPPORTED_ATTRIBUTES 14
 INTERNAL_IP6_SUBNET 15
 Reserved for IANA 16 to 16383
 For Private Use 16384 to 32767

RFC Text:
Configuration Attributes

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !R| Attribute Type ! Length |
 +-+
 | |
 ~ Value ~
 | |
 +-+

 Figure 23: Configuration Attribute Format

o Reserved (1 bit) - This bit MUST be set to zero and MUST be
 ignored on receipt.

o Attribute Type (15 bits) - A unique identifier for each of the
 Configuration Attribute Types.

o Length (2 octets) - Length in octets of Value.

o Value (0 or more octets) - The variable-length value of this
 Configuration Attribute.

The following attribute types have been defined:

 Multi-
 Attribute Type Value Valued Length
 ======================= ===== ====== ==================
 RESERVED 0
 INTERNAL_IP4_ADDRESS 1 YES* 0 or 4 octets
 INTERNAL_IP4_NETMASK 2 NO 0 or 4 octets
 INTERNAL_IP4_DNS 3 YES 0 or 4 octets
 INTERNAL_IP4_NBNS 4 YES 0 or 4 octets
 INTERNAL_ADDRESS_EXPIRY 5 NO 0 or 4 octets
 INTERNAL_IP4_DHCP 6 YES 0 or 4 octets
 APPLICATION_VERSION 7 NO 0 or more
 INTERNAL_IP6_ADDRESS 8 YES* 0 or 17 octets
 RESERVED 9
 INTERNAL_IP6_DNS 10 YES 0 or 16 octets
 INTERNAL_IP6_NBNS 11 YES 0 or 16 octets
 INTERNAL_IP6_DHCP 12 YES 0 or 16 octets
 INTERNAL_IP4_SUBNET 13 YES 0 or 8 octets

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 454

 SUPPORTED_ATTRIBUTES 14 NO Multiple of 2
 INTERNAL_IP6_SUBNET 15 YES 17 octets

 * These attributes may be multi-valued on return only if multiple
 values were requested.

Identifier: RQ_002_6478
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes
one or more Configuration Attributes, the Length field in each Configuration Attribute substructure
MUST be set to the length, in octets, of the Value field in the same substructure.

RFC Text:
Configuration Attributes

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !R| Attribute Type ! Length |
 +-+
 | |
 ~ Value ~
 | |
 +-+

 Figure 23: Configuration Attribute Format

o Reserved (1 bit) - This bit MUST be set to zero and MUST be
 ignored on receipt.

o Attribute Type (15 bits) - A unique identifier for each of the
 Configuration Attribute Types.

o Length (2 octets) - Length in octets of Value.

o Value (0 or more octets) - The variable-length value of this
 Configuration Attribute.

The following attribute types have been defined:

 Multi-
 Attribute Type Value Valued Length
 ======================= ===== ====== ==================
 RESERVED 0
 INTERNAL_IP4_ADDRESS 1 YES* 0 or 4 octets
 INTERNAL_IP4_NETMASK 2 NO 0 or 4 octets
 INTERNAL_IP4_DNS 3 YES 0 or 4 octets
 INTERNAL_IP4_NBNS 4 YES 0 or 4 octets
 INTERNAL_ADDRESS_EXPIRY 5 NO 0 or 4 octets
 INTERNAL_IP4_DHCP 6 YES 0 or 4 octets
 APPLICATION_VERSION 7 NO 0 or more
 INTERNAL_IP6_ADDRESS 8 YES* 0 or 17 octets
 RESERVED 9
 INTERNAL_IP6_DNS 10 YES 0 or 16 octets
 INTERNAL_IP6_NBNS 11 YES 0 or 16 octets
 INTERNAL_IP6_DHCP 12 YES 0 or 16 octets
 INTERNAL_IP4_SUBNET 13 YES 0 or 8 octets
 SUPPORTED_ATTRIBUTES 14 NO Multiple of 2
 INTERNAL_IP6_SUBNET 15 YES 17 octets

 * These attributes may be multi-valued on return only if multiple
 values were requested.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 455

Identifier: RQ_002_6479
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes
one or more Configuration Attributes, the Value field in each Configuration Attribute substructure
MUST be set to a value which conforms with the contents of both the Content Type field and the
Length field in the same substructure.

RFC Text:
Configuration Attributes

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !R| Attribute Type ! Length |
 +-+
 | |
 ~ Value ~
 | |
 +-+

 Figure 23: Configuration Attribute Format

o Reserved (1 bit) - This bit MUST be set to zero and MUST be
 ignored on receipt.

o Attribute Type (15 bits) - A unique identifier for each of the
 Configuration Attribute Types.

o Length (2 octets) - Length in octets of Value.

o Value (0 or more octets) - The variable-length value of this
 Configuration Attribute.

The following attribute types have been defined:

 Multi-
 Attribute Type Value Valued Length
 ======================= ===== ====== ==================
 RESERVED 0
 INTERNAL_IP4_ADDRESS 1 YES* 0 or 4 octets
 INTERNAL_IP4_NETMASK 2 NO 0 or 4 octets
 INTERNAL_IP4_DNS 3 YES 0 or 4 octets
 INTERNAL_IP4_NBNS 4 YES 0 or 4 octets
 INTERNAL_ADDRESS_EXPIRY 5 NO 0 or 4 octets
 INTERNAL_IP4_DHCP 6 YES 0 or 4 octets
 APPLICATION_VERSION 7 NO 0 or more
 INTERNAL_IP6_ADDRESS 8 YES* 0 or 17 octets
 RESERVED 9
 INTERNAL_IP6_DNS 10 YES 0 or 16 octets
 INTERNAL_IP6_NBNS 11 YES 0 or 16 octets
 INTERNAL_IP6_DHCP 12 YES 0 or 16 octets
 INTERNAL_IP4_SUBNET 13 YES 0 or 8 octets
 SUPPORTED_ATTRIBUTES 14 NO Multiple of 2
 INTERNAL_IP6_SUBNET 15 YES 17 octets

 * These attributes may be multi-valued on return only if multiple
 values were requested.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 456

Identifier: RQ_002_6480
RFC Clause: 3.15,1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload, it MAY include
more than one Configuration Attribute substructure for each of the following Attribute Types:

 INTERNAL_IP4_ADDRESS
 INTERNAL_IP4_DNS
 INTERNAL_IP4_NBNS
 INTERNAL_IP4_DHCP
 INTERNAL_IP6_ADDRESS
 INTERNAL_IP6_DNS
 INTERNAL_IP6_NBNS
 INTERNAL_IP6_DHCP
 INTERNAL_IP4_SUBNET
 INTERNAL_IP6_SUBNET

RFC Text:
Configuration Attributes

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !R| Attribute Type ! Length |
 +-+
 | |
 ~ Value ~
 | |
 +-+

 Figure 23: Configuration Attribute Format

o Reserved (1 bit) - This bit MUST be set to zero and MUST be
 ignored on receipt.

o Attribute Type (15 bits) - A unique identifier for each of the
 Configuration Attribute Types.

o Length (2 octets) - Length in octets of Value.

o Value (0 or more octets) - The variable-length value of this
 Configuration Attribute.

The following attribute types have been defined:

 Multi-
 Attribute Type Value Valued Length
 ======================= ===== ====== ==================
 RESERVED 0
 INTERNAL_IP4_ADDRESS 1 YES* 0 or 4 octets
 INTERNAL_IP4_NETMASK 2 NO 0 or 4 octets
 INTERNAL_IP4_DNS 3 YES 0 or 4 octets
 INTERNAL_IP4_NBNS 4 YES 0 or 4 octets
 INTERNAL_ADDRESS_EXPIRY 5 NO 0 or 4 octets
 INTERNAL_IP4_DHCP 6 YES 0 or 4 octets
 APPLICATION_VERSION 7 NO 0 or more
 INTERNAL_IP6_ADDRESS 8 YES* 0 or 17 octets
 RESERVED 9
 INTERNAL_IP6_DNS 10 YES 0 or 16 octets
 INTERNAL_IP6_NBNS 11 YES 0 or 16 octets
 INTERNAL_IP6_DHCP 12 YES 0 or 16 octets
 INTERNAL_IP4_SUBNET 13 YES 0 or 8 octets
 SUPPORTED_ATTRIBUTES 14 NO Multiple of 2
 INTERNAL_IP6_SUBNET 15 YES 17 octets

 * These attributes may be multi-valued on return only if multiple
 values were requested.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 457

Identifier: RQ_002_6481
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload, it MUST NOT
include more than one Configuration Attribute substructure for each of the following Attribute
Types:

 INTERNAL_IP4_NETMASK
 INTERNAL_ADDRESS_EXPIRY
 APPLICATION_VERSION
 SUPPORTED_ATTRIBUTES

RFC Text:
Configuration Attributes

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !R| Attribute Type ! Length |
 +-+
 | |
 ~ Value ~
 | |
 +-+

 Figure 23: Configuration Attribute Format

o Reserved (1 bit) - This bit MUST be set to zero and MUST be
 ignored on receipt.

o Attribute Type (15 bits) - A unique identifier for each of the
 Configuration Attribute Types.

o Length (2 octets) - Length in octets of Value.

o Value (0 or more octets) - The variable-length value of this
 Configuration Attribute.

The following attribute types have been defined:

 Multi-
 Attribute Type Value Valued Length
 ======================= ===== ====== ==================
 RESERVED 0
 INTERNAL_IP4_ADDRESS 1 YES* 0 or 4 octets
 INTERNAL_IP4_NETMASK 2 NO 0 or 4 octets
 INTERNAL_IP4_DNS 3 YES 0 or 4 octets
 INTERNAL_IP4_NBNS 4 YES 0 or 4 octets
 INTERNAL_ADDRESS_EXPIRY 5 NO 0 or 4 octets
 INTERNAL_IP4_DHCP 6 YES 0 or 4 octets
 APPLICATION_VERSION 7 NO 0 or more
 INTERNAL_IP6_ADDRESS 8 YES* 0 or 17 octets
 RESERVED 9
 INTERNAL_IP6_DNS 10 YES 0 or 16 octets
 INTERNAL_IP6_NBNS 11 YES 0 or 16 octets
 INTERNAL_IP6_DHCP 12 YES 0 or 16 octets
 INTERNAL_IP4_SUBNET 13 YES 0 or 8 octets
 SUPPORTED_ATTRIBUTES 14 NO Multiple of 2
 INTERNAL_IP6_SUBNET 15 YES 17 octets

 * These attributes may be multi-valued on return only if multiple
 values were requested.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 458

Identifier: RQ_002_6482
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE message containing a Configuration Payload which includes
multiple Configuration Attributes of the same Attribute Type, it MUST NOT include more Configuration
Attributes of that Attribute Type in its response

RFC Text:
Configuration Attributes

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !R| Attribute Type ! Length |
 +-+
 | |
 ~ Value ~
 | |
 +-+

 Figure 23: Configuration Attribute Format

o Reserved (1 bit) - This bit MUST be set to zero and MUST be
 ignored on receipt.

o Attribute Type (15 bits) - A unique identifier for each of the
 Configuration Attribute Types.

o Length (2 octets) - Length in octets of Value.

o Value (0 or more octets) - The variable-length value of this
 Configuration Attribute.

The following attribute types have been defined:

 Multi-
 Attribute Type Value Valued Length
 ======================= ===== ====== ==================
 RESERVED 0
 INTERNAL_IP4_ADDRESS 1 YES* 0 or 4 octets
 INTERNAL_IP4_NETMASK 2 NO 0 or 4 octets
 INTERNAL_IP4_DNS 3 YES 0 or 4 octets
 INTERNAL_IP4_NBNS 4 YES 0 or 4 octets
 INTERNAL_ADDRESS_EXPIRY 5 NO 0 or 4 octets
 INTERNAL_IP4_DHCP 6 YES 0 or 4 octets
 APPLICATION_VERSION 7 NO 0 or more
 INTERNAL_IP6_ADDRESS 8 YES* 0 or 17 octets
 RESERVED 9
 INTERNAL_IP6_DNS 10 YES 0 or 16 octets
 INTERNAL_IP6_NBNS 11 YES 0 or 16 octets
 INTERNAL_IP6_DHCP 12 YES 0 or 16 octets
 INTERNAL_IP4_SUBNET 13 YES 0 or 8 octets
 SUPPORTED_ATTRIBUTES 14 NO Multiple of 2
 INTERNAL_IP6_SUBNET 15 YES 17 octets

 * These attributes may be multi-valued on return only if multiple
 values were requested.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 459

Identifier: RQ_002_6483
RFC Clause: 3.15.1 ¶
Type: Mandatory
Applies to: Host

Requirement:
In order to request information regarding the internal IPv4 address being used by the other endpoint
in an IKE Security Association an IKE implementation MUST send an IKE message containing a
Configuration Payload which includes a Configuration Attribute with the Attribute Type set to
INTERNAL_IP4_ADDRESS and the Value field set to zero

RFC Text:
o INTERNAL_IP4_ADDRESS, INTERNAL_IP6_ADDRESS - An address on the
 internal network, sometimes called a red node address or
 private address and MAY be a private address on the Internet.
 In a request message, the address specified is a requested
 address (or zero if no specific address is requested). If a
 specific address is requested, it likely indicates that a
 previous connection existed with this address and the requestor
 would like to reuse that address. With IPv6, a requestor MAY
 supply the low-order address bytes it wants to use. Multiple
 internal addresses MAY be requested by requesting multiple
 internal address attributes. The responder MAY only send up to
 the number of addresses requested. The INTERNAL_IP6_ADDRESS is
 made up of two fields: the first is a sixteen-octet IPv6
 address and the second is a one-octet prefix-length as defined
 in [ADDRIPV6].

Identifier: RQ_002_6484
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
In order to request information regarding the internal IPv6 address being used by the other endpoint
in an IKE Security Association an IKE implementation MUST send an IKE message containing a
Configuration Payload which includes a Configuration Attribute with the Attribute Type set to
INTERNAL_IP6_ADDRESS and the Value field set to zero

RFC Text:
o INTERNAL_IP4_ADDRESS, INTERNAL_IP6_ADDRESS - An address on the
 internal network, sometimes called a red node address or
 private address and MAY be a private address on the Internet.
 In a request message, the address specified is a requested
 address (or zero if no specific address is requested). If a
 specific address is requested, it likely indicates that a
 previous connection existed with this address and the requestor
 would like to reuse that address. With IPv6, a requestor MAY
 supply the low-order address bytes it wants to use. Multiple
 internal addresses MAY be requested by requesting multiple
 internal address attributes. The responder MAY only send up to
 the number of addresses requested. The INTERNAL_IP6_ADDRESS is
 made up of two fields: the first is a sixteen-octet IPv6
 address and the second is a one-octet prefix-length as defined
 in [ADDRIPV6].

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 460

Identifier: RQ_002_6485
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
In order to propose that the other endpoint in an IKE Security Association uses a particular
internal IPv4 address, an IKE implementation MUST send an IKE message containing a Configuration
Payload which includes a Configuration Attribute with the Attribute Type set to INTERNAL_IP4_ADDRESS
and the Value field set to valid IPv4 address

RFC Text:
o INTERNAL_IP4_ADDRESS, INTERNAL_IP6_ADDRESS - An address on the
 internal network, sometimes called a red node address or
 private address and MAY be a private address on the Internet.
 In a request message, the address specified is a requested
 address (or zero if no specific address is requested). If a
 specific address is requested, it likely indicates that a
 previous connection existed with this address and the requestor
 would like to reuse that address. With IPv6, a requestor MAY
 supply the low-order address bytes it wants to use. Multiple
 internal addresses MAY be requested by requesting multiple
 internal address attributes. The responder MAY only send up to
 the number of addresses requested. The INTERNAL_IP6_ADDRESS is
 made up of two fields: the first is a sixteen-octet IPv6
 address and the second is a one-octet prefix-length as defined
 in [ADDRIPV6].

Identifier: RQ_002_6486
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
In order to propose that the other endpoint in an IKE Security Association uses a particular
internal IPv6 address, an IKE implementation MUST send an IKE message containing a Configuration
Payload which includes a Configuration Attribute with the Attribute Type set to INTERNAL_IP6_ADDRESS
and the Value field set to valid IPv6 address

RFC Text:
o INTERNAL_IP4_ADDRESS, INTERNAL_IP6_ADDRESS - An address on the
 internal network, sometimes called a red node address or
 private address and MAY be a private address on the Internet.
 In a request message, the address specified is a requested
 address (or zero if no specific address is requested). If a
 specific address is requested, it likely indicates that a
 previous connection existed with this address and the requestor
 would like to reuse that address. With IPv6, a requestor MAY
 supply the low-order address bytes it wants to use. Multiple
 internal addresses MAY be requested by requesting multiple
 internal address attributes. The responder MAY only send up to
 the number of addresses requested. The INTERNAL_IP6_ADDRESS is
 made up of two fields: the first is a sixteen-octet IPv6
 address and the second is a one-octet prefix-length as defined
 in [ADDRIPV6].

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 461

Identifier: RQ_002_6487
RFC Clause: 3.15.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to INTERNAL_IP4_ADDRESS and the Value field set
to valid IPv4 address, it MAY include an additional Configuration Attribute substructure in the
Configuration Payload with the Attribute Type field set to INTERNAL_IP4_NETMASK and the Value field
set to the internal network's netmask.

RFC Text:
 o INTERNAL_IP4_NETMASK - The internal network's netmask. Only
 one netmask is allowed in the request and reply messages (e.g.,
 255.255.255.0), and it MUST be used only with an
 INTERNAL_IP4_ADDRESS attribute.

Identifier: RQ_002_6488
RFC Clause: 3.15.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to INTERNAL_IP4_ADDRESS and the Value field set
to valid IPv4 address, it MAY include an additional Configuration Attribute substructure in the
Configuration Payload with the Attribute Type field set to INTERNAL_IP4_DNS and the Value field set
to a valid IPv4 address representing the address of a DNS server within its network.

RFC Text:
o INTERNAL_IP4_DNS, INTERNAL_IP6_DNS - Specifies an address of a
 DNS server within the network. Multiple DNS servers MAY be
 requested. The responder MAY respond with zero or more DNS
 server attributes.

Identifier: RQ_002_6489
RFC Clause: 3.15.2
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to INTERNAL_IP6_ADDRESS and the Value field set
to valid IPv6 address, it MAY include an additional Configuration Attribute substructure in the
Configuration Payload with the Attribute Type field set to INTERNAL_IP6_DNS and the Value field set
to a valid IPv6 address representing the address of a DNS server within its network.

RFC Text:
o INTERNAL_IP4_DNS, INTERNAL_IP6_DNS - Specifies an address of a
 DNS server within the network. Multiple DNS servers MAY be
 requested. The responder MAY respond with zero or more DNS
 server attributes.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 462

Identifier: RQ_002_6490
RFC Clause: 3.15.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to INTERNAL_IP4_ADDRESS and the Value field set
to valid IPv4 address, it MAY include an additional Configuration Attribute substructure in the
Configuration Payload with the Attribute Type field set to INTERNAL_IP4_NBNS and the Value field set
to a valid IPv4 address representing the address of NetBios Name Server within its network.

RFC Text:
o INTERNAL_IP4_DNS, INTERNAL_IP6_DNS - Specifies an address of a
 DNS server within the network. Multiple DNS servers MAY be
 requested. The responder MAY respond with zero or more DNS
 server attributes.

Identifier: RQ_002_6491
RFC Clause: 3.15.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to either INTERNAL_IP4_ADDRESS or
INTERNAL_IP6_ADDRESS and the Value field set to valid IP address, it MAY include an additional
Configuration Attribute substructure in the Configuration Payload with the Attribute Type field set
to INTERNAL_ADDRESS_EXPIRY and the Value field set to an integer representing the number of seconds
that the recipient can continue to use the associated internal IP address

RFC Text:
o INTERNAL_ADDRESS_EXPIRY - Specifies the number of seconds that
 the host can use the internal IP address. The host MUST renew
 the IP address before this expiry time. Only one of these
 attributes MAY be present in the reply.

Identifier: RQ_002_6492
RFC Clause: 3.15.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to INTERNAL_IP4_ADDRESS and the Value field set
to valid IP address, it MAY include an additional Configuration Attribute substructure in the
Configuration Payload with the Attribute Type field set to INTERNAL_IP4_DHCP and the Value field set
to a valid IPv4 address representing the address to which any internal DHCP requests should be sent

RFC Text:
o INTERNAL_IP4_DHCP, INTERNAL_IP6_DHCP - Instructs the host to
 send any internal DHCP requests to the address contained within
 the attribute. Multiple DHCP servers MAY be requested. The
 responder MAY respond with zero or more DHCP server attributes

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 463

Identifier: RQ_002_6493
RFC Clause: 3.15.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to INTERNAL_IP6_ADDRESS and the Value field set
to valid IP address, it MAY include an additional Configuration Attribute substructure in the
Configuration Payload with the Attribute Type field set to INTERNAL_IP6_DHCP and the Value field set
to a valid IPv6 address representing the address to which any internal DHCP requests should be sent

RFC Text:
o INTERNAL_IP4_DHCP, INTERNAL_IP6_DHCP - Instructs the host to
 send any internal DHCP requests to the address contained within
 the attribute. Multiple DHCP servers MAY be requested. The
 responder MAY respond with zero or more DHCP server attributes

Identifier: RQ_002_6494
RFC Clause: 3.15.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to either INTERNAL_IP4_ADDRESS or
INTERNAL_IP6_ADDRESS and the Value field set to valid IP address, it MAY include an additional
Configuration Attribute substructure in the Configuration Payload with the Attribute Type field set
to APPLICATION_VERSION and the Value field set to a string of printable ASCII characters that is not
NULL terminated

RFC Text:
o APPLICATION_VERSION - The version or application information of
 the IPsec host. This is a string of printable ASCII characters
 that is NOT null terminated.

Identifier: RQ_002_6495
RFC Clause: 3.15.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to INTERNAL_IP4_ADDRESSS and the Value field set
to valid IPv4 address, it MAY include an additional Configuration Attribute substructure in the
Configuration Payload with the Attribute Type field set to INTERNAL_IP4_SUBNET and the Value field
set to a valid IPv4 address followed by its associated netmask

RFC Text:
o INTERNAL_IP4_SUBNET - The protected sub-networks that this
 edge-device protects. This attribute is made up of two fields:
 the first is an IP address and the second is a netmask.
 Multiple sub-networks MAY be requested. The responder MAY
 respond with zero or more sub-network attributes.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 464

Identifier: RQ_002_6496
RFC Clause: 3.15.2
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE request containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to SUPPORTED_ATTRIBUTES, it MUST set the Length
field to zero and the Value field to zero-length

RFC Text:
o SUPPORTED_ATTRIBUTES - When used within a Request, this
 attribute MUST be zero-length and specifies a query to the
 responder to reply back with all of the attributes that it
 supports. The response contains an attribute that contains a
 set of attribute identifiers each in 2 octets. The length
 divided by 2 (octets) would state the number of supported
 attributes contained in the response.

Identifier: RQ_002_6497
RFC Clause: 3.15.1
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation receives an IKE request containing a Configuration Payload which
includes a Configuration Attribute with the Attribute Type set to SUPPORTED_ATTRIBUTES, it MUST send
an IKE response with a Configuration Payload which includes a Configuration Attribute substructure
with the Attribute Type set to SUPPORTED_ATTRIBUTES and the Value field containing the 2-octet
identifiers of all of the configuration attributes it supports

RFC Text:
o SUPPORTED_ATTRIBUTES - When used within a Request, this
 attribute MUST be zero-length and specifies a query to the
 responder to reply back with all of the attributes that it
 supports. The response contains an attribute that contains a
 set of attribute identifiers each in 2 octets. The length
 divided by 2 (octets) would state the number of supported
 attributes contained in the response.

Identifier: RQ_002_6498
RFC Clause: 3.15.1
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing a Configuration Payload which includes a
Configuration Attribute with the Attribute Type set to INTERNAL_IP6_ADDRESSS and the Value field set
to valid IPv6 address, it MAY include an additional Configuration Attribute substructure in the
Configuration Payload with the Attribute Type field set to INTERNAL_IP6_SUBNET and the Value field
set to a valid IPv6 address followed by a one-octet prefix-length

RFC Text:
o INTERNAL_IP6_SUBNET - The protected sub-networks that this
 edge-device protects. This attribute is made up of two fields:
 the first is a sixteen-octet IPv6 address and the second is a
 one-octet prefix-length as defined in [ADDRIPV6]. Multiple
 sub-networks MAY be requested. The responder MAY respond with
 zero or more sub-network attributes.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 465

Identifier: RQ_002_6499
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
An Extensible Authentication Protocol (EAP) Payload in an IKE packet MUST be constructed as follows:

 Octet Field

 1 to 4 IKE Generic Payload Header
 5 to end EAP Message

RFC Text:
The Extensible Authentication Protocol Payload, denoted EAP in this memo, allows IKE_SAs to be
authenticated using the protocol defined in RFC 3748 [EAP] and subsequent extensions to that
protocol. The full set of acceptable values for the payload is defined elsewhere, but a short
summary of RFC 3748 is included here to make this document stand alone in the common cases.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ EAP Message ~
 ! !
 +-+

 Figure 24: EAP Payload Format

 The payload type for an EAP Payload is forty eight (48).

Identifier: RQ_002_6500
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload, it MUST set the
appropriate Next Payload field (either in the IKE Header or in the Generic Header of the payload
preceding the EAP Payload) to the value forty-eight (48)

RFC Text:
The Extensible Authentication Protocol Payload, denoted EAP in this memo, allows IKE_SAs to be
authenticated using the protocol defined in RFC 3748 [EAP] and subsequent extensions to that
protocol. The full set of acceptable values for the payload is defined elsewhere, but a short
summary of RFC 3748 is included here to make this document stand alone in the common cases.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ EAP Message ~
 ! !
 +-+

 Figure 24: EAP Payload Format

 The payload type for an EAP Payload is forty eight (48).

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 466

Identifier: RQ_002_6501
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Messages, it MUST construct the EAP Message substructure as follows:

 Octet Field

 1 Code
 2 Identifier
 3 & 4 Length
 5 Type
 6 to end Type Data

RFC Text:
 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 467

Identifier: RQ_002_6502
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Message, it MUST set the Code field in the EAP Message substructure to one of the following values,
as defined in IETF RFC 3748:

 Code Value

 Request 1
 Response 2
 Success 3
 Failure 4

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 468

Identifier: RQ_002_6503
RFC Clause: 3.16
Type: Optional
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Message with the Code field set to Request (1), it MAY set the Identifier field in the EAP Message
substructure to any one-octet value

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 469

Identifier: RQ_002_6504
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Message with the Code field set to Response (2), it MUST set the Identifier field in the EAP Message
substructure to match the Identifier field in the corresponding EAP request

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 470

Identifier: RQ_002_6505
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Message, it MUST set the Length field in the EAP Message substructure to the length in octets of the
EAP Message substructure

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 471

Identifier: RQ_002_6506
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Message with the Code field set to Request (1), it MUST set the Type field in the EAP Message
substructure to one of the following values as defined in IETF RFC3748:

 Type Value

 Identity 1
 Notification 2
 MD5-Challenge 4
 One-Time Password (OTP) 5
 Generic Token Card 6

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 472

Identifier: RQ_002_6507
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Message with the Code field set to Response (2), it MUST set the Type field in the EAP Message
substructure either to the value Nak (3) or to the value set in the Type field of the associated EAP
request.

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 473

Identifier: RQ_002_6508
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Message with the Code field set to either Success (3) or Failure (4), it MUST NOT include the Type
field or the Type Data field in the EAP Message substructure

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 474

Identifier: RQ_002_6509
RFC Clause: 3.16
Type: Mandatory
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Message with the Code field set to Response (2), it MUST set the Type Data field to a value relevant
to the associated EAP request as defined in IETF RFC3748

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 475

Identifier: RQ_002_6510
RFC Clause: 3.16
Type: Recommended
Applies to: Host

Requirement:
When an IKE implementation sends an IKE message containing an EAP Payload which includes an EAP
Message with the Code field set to Request (1), it SHOULD NOT set the Type field to the value 1
(Identity)

RFC Text:
1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

o Code (1 octet) indicates whether this message is a Request (1),
 Response (2), Success (3), or Failure (4).

o Identifier (1 octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message, this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY be set
 to any value.

o Length (2 octets) is the length of the EAP message and MUST be
 four less than the Payload Length of the encapsulating payload.

o Type (1 octet) is present only if the Code field is Request (1) or
 Response (2). For other codes, the EAP message length MUST be
 four octets and the Type and Type_Data fields MUST NOT be present.
 In a Request (1) message, Type indicates the data being requested.
 In a Response (2) message, Type MUST either be Nak or match the
 type of the data requested. The following types are defined in
 RFC 3748:

 1 Identity
 2 Notification
 3 Nak (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

o Type_Data (Variable Length) varies with the Type of Request and
 the associated Response. For the documentation of the EAP
 methods, see [EAP].

Note that since IKE passes an indication of initiator identity in message 3 of the protocol, the
responder SHOULD NOT send EAP Identity requests. The initiator SHOULD, however, respond to such
requests if it receives them.

Identifier: RQ_002_6511
RFC Clause: 2.4.
Type: Mandatory
Applies to: Host

Requirement:
An endpoint in an established IKE Security Association MUST conclude that the other endpoint in the
SA has failed when a cryptographically protected INITIAL_CONTACT notification is received on a
different IKE_SA but to the same authenticated identity

RFC Text:
Since IKE is designed to operate in spite of Denial of Service (DoS) attacks from the network, an
endpoint MUST NOT conclude that the other endpoint has failed based on any routing information
(e.g., ICMP messages) or IKE messages that arrive without cryptographic protection (e.g., Notify

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 476

messages complaining about unknown SPIs). An endpoint MUST conclude that the other endpoint has
failed only when repeated attempts to contact it have gone unanswered for a timeout period or when a
cryptographically protected INITIAL_CONTACT notification is received on a different IKE_SA to the
same authenticated identity. An endpoint SHOULD suspect that the other endpoint has failed based on
routing information and initiate a request to see whether the other endpoint is alive. To check
whether the other side is alive, IKE specifies an empty INFORMATIONAL message that (like all IKE
requests) requires an acknowledgement (note that within the context of an IKE_SA, an "empty" message
consists of an IKE header followed by an Encrypted payload that contains no payloads). If a
cryptographically protected message has been received from the other side recently, unprotected
notifications MAY be ignored. Implementations MUST limit the rate at which they take actions based
on unprotected messages.

4.6 Requirements extracted from RFC 2405

Identifier: RQ_002_7000
RFC Clause: 3
Type: Mandatory
Applies to: IPsec host

Requirement:
When using DES-CBC in IPsec ESP the explicit Initialization Vector (IV) of 8 octets (64 bits) MUST
be a random value.

RFC Text:
DES-CBC requires an explicit Initialization Vector (IV) of 8 octets
 (64 bits). This IV immediately precedes the protected (encrypted)
 payload. The IV MUST be a random value.

ETSI

ETSI TS 102 558 V1.1.1 (2006-12) 477

History

Document history

V1.1.1 December 2006 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Abbreviations
	4 Requirements Catalogue
	4.1 Requirements extracted from RFC 4301
	4.2 Requirements extracted from RFC 4302
	4.3 Requirements extracted from RFC 4303
	4.4 Requirements extracted from RFC 4305
	4.5 Requirements extracted from RFC 4306
	4.6 Requirements extracted from RFC 2405

	History

