
# ETSI TS 102 550 V1.2.1 (2007-01)

Technical Specification

Satellite Earth Stations and Systems (SES); Satellite Digital Radio (SDR) Systems; Outer Physical Layer of the Radio Interface



## Reference

RTS/SES-00286

Keywords digital, layer 1, radio, satellite

#### **ETSI**

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

#### Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

<a href="http://portal.etsi.org/tb/status/status.asp">http://portal.etsi.org/tb/status/status.asp</a></a>

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI\_support.asp

#### **Copyright Notification**

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2007.
All rights reserved.

**DECT**<sup>TM</sup>, **PLUGTESTS**<sup>TM</sup> and **UMTS**<sup>TM</sup> are Trade Marks of ETSI registered for the benefit of its Members. **TIPHON**<sup>TM</sup> and the **TIPHON logo** are Trade Marks currently being registered by ETSI for the benefit of its Members. **3GPP**<sup>TM</sup> is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

# Contents

| Forew          | vord                 |                                            |    |
|----------------|----------------------|--------------------------------------------|----|
| 1              |                      |                                            |    |
|                | •                    |                                            |    |
| 2              | References           |                                            |    |
| 3              | Symbols and abbrevi  | ations                                     |    |
| 3.1            |                      |                                            |    |
| 3.2            | Abbreviations        |                                            |    |
| 4              | Outer physical laver |                                            | f  |
| 4.0            |                      | initions                                   |    |
| 4.0.1          |                      | and transmission order                     |    |
| 4.0.2          |                      | on                                         |    |
| 4.1            |                      |                                            |    |
| 4.2            | Interfacing to Servi | ce Layer (SL)                              | 8  |
| 4.3            |                      | ation layer: S-TS encapsulation            |    |
| 4.3.1          |                      | mat for S-TS stream type 0 (dummy packet)  |    |
| 4.3.2          |                      | mat for S-TS stream type 1 (transparent)   |    |
| 4.3.3          |                      | mat for S-TS stream type 2 (MPEG-TS)       |    |
| 4.3.4          |                      | mat for S-TS stream type 3 (IP stream)     |    |
| 4.4            |                      | 2                                          |    |
| 4.4.1          |                      | _ encapsulation                            |    |
| 4.4.2          |                      |                                            |    |
| 4.4.3          |                      | nination                                   |    |
| 4.4.4          |                      | ers                                        |    |
| 4.4.5          |                      | encoder                                    |    |
| 4.4.6<br>4.4.7 |                      | signallingning                             |    |
| 4.4.7<br>4.4.8 |                      | s for the signalling pipe                  |    |
| 4.4.6<br>4.5   |                      | s for the signaturing pipe                 |    |
| 4.6            |                      | demultiplexer                              |    |
| 4.7            |                      | demutupiexet                               |    |
| 4.8            |                      |                                            |    |
| 4.9            |                      |                                            |    |
| 4.10           |                      | e OPL                                      |    |
| 4.10.1         | _                    |                                            |    |
| 4.10.1         | .1 Encoding an       | d interleaving of signalling pipe          | 26 |
| 4.10.1         | .2 SOF Preamb        | ole                                        | 26 |
| 4.10.1         |                      | e signalling pipe infoword                 | 27 |
| 4.10.2         |                      | he C-TS multiplex                          |    |
| 4.10.3         |                      | and slot allocation                        |    |
| 4.10.4         |                      | ing and slot re-allocation                 |    |
| 4.10.5         |                      | -TS                                        |    |
| 4.10.6         |                      |                                            |    |
| 4.10.7         |                      | he disperser profile                       |    |
| 4.10.8         | C                    | f the tail pipe                            |    |
| 4.10.9         | Pipe reconfigura     | ation                                      | 32 |
| Anne           | x A (informative):   | Time slicing can be achieved on two layers | 38 |
| Anne           | x B (informative):   | Bibliography                               | 39 |
| Histor         | rv                   |                                            | 40 |

# Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

#### **Foreword**

This Technical Specification (TS) has been produced by ETSI Technical Committee Satellite Earth Stations and Systems (SES).

TC SES is producing standards and other deliverables for Satellite Digital Radio (SDR) systems. An SDR system enables broadcast to fixed and mobile receivers through satellites and complementary terrestrial transmitters. Functionalities, architecture and technologies of such systems are described in TR 102 525.

Several existing and planned ETSI standards specify parts of the SDR system, with the aim of interoperable implementations. The physical layer of the radio interface (air interface) is divided up into the outer physical layer, the inner physical layer with a single carrier transmission, and the inner physical layer with multiple carriers transmission. These parts can be used all together in SDR compliant equipment, or in conjunction with other existing and future specifications.

The present document specifies the outer physical layer. The inner physical layer with single carrier transmission is specified in TS 102 551-1, and with multiple carriers transmission in TS 102 551-2.

# 1 Scope

The present document concerns the radio interface of SDR broadcast receivers. It specifies the functionality of the outer physical layer. It allows implementing this part of the system in an interoperable way.

## 2 References

Void.

# 3 Symbols and abbreviations

## 3.1 Symbols

For the purposes of the present document, the following symbols apply:

R Code rate

#### 3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AWGN Additive White Gaussian Noise

BCH Bose, Ray-Chaudhuri, Hocquenghem code

CRC Cyclic Redundancy Checksum
C-TS Channel-Transport Stream

CU Capacity Unit

FEC Forward Error Correction

ID **IDentifier** IΡ Internet Protocol **IPL** Inner Physical Layer IU Interleaving Unit LSB Least Significant Bit MPEG-TS MPEG Transport Stream Most Significant Bit MSB Maximum Transfer Unit MTU OPL Outer Physical Layer Physical layer FEC

PFIW Physical layer FEC Info Word

PL PayLoad

QoS Quality of Service RFU Reserved for Future Use

SL Service Layer SOF Start Of Frame

S-TS Service-TransportStream TS ETSI Technical Specification

VBR Variable Bit Rate WER Word Error Rate

# 4 Outer physical layer

### 4.0 Number format definitions

#### 4.0.1 Number format and transmission order

Unless otherwise stated, all bit/symbol streams and values are transmitted with the following convention:

- In a stream, bits/symbols with a lower index are transmitted temporally earlier than those with a higher index.
- A prefix of a block of bits/symbols is transmitted temporally first, whereas a suffix is transmitted temporally last.
- Signed integer and signed fixed-point values are stored in two's complement format.
- If a value is represented by N bits, the Most Significant Bit (MSB), i.e. bit N-1, is transmitted temporally first followed by bits N-2 down to bit 0, the Least Significant Bit (LSB). This order is referred to as Big Endian.
- For Bytes, the MSB, bit 7, is transmitted temporally first and the LSB, bit 0, last.
- Parity symbols of a BCH, Reed-Solomon or CRC-code are transmitted temporally in the following order: the symbol with highest degree in polynomial representation comes first and the symbol with degree 0 comes last.
- The format of integer and fix-point values are specified in the following way: the first letter is U for unsigned and S for signed values, the following value following that letter states the number of integer bits. In the case of fixed-point values, this value is followed by a dot "." and another value, which specifies the number of fractional bits. Examples: U8, S3.2.

#### 4.0.2 SI-Prefix Notation

The present document uses the prefix notation as defined by the "Système International d'Unités", i.e. M (mega) represents 1 000 000 units, k (kilo) represents 1 000 units and m (milli) represents 0,001 units.

#### 4.1 Overview

The functionality of the Outer Physical Layer (in the following denoted OPL) is to provide Forward Error Correction and time interleaving for resistance against a variety of transmission channel conditions. Different transport channels are used in the OPL to offer the requested performance for different types of services. These transport channels are called pipes in the scope of the present document. The OPL is configurable in terms of error protection, outage mitigation in case of signal losses, end-to-end delay, zapping time, payload throughput and receiver complexity.

Multiple pipes can be used as described above. Each of them contains FEC, Mixer and Disperser. One special pipe exists whose functionality is to transmit all relevant parameters to decode the other pipes. The so-called signalling pipe is always transmitted at the lowest coderate which is 1/5. The modulation of the signalling pipe is equal to the modulation of the data pipes.

The general block diagram of the OPL functionality is given in Figure 1.

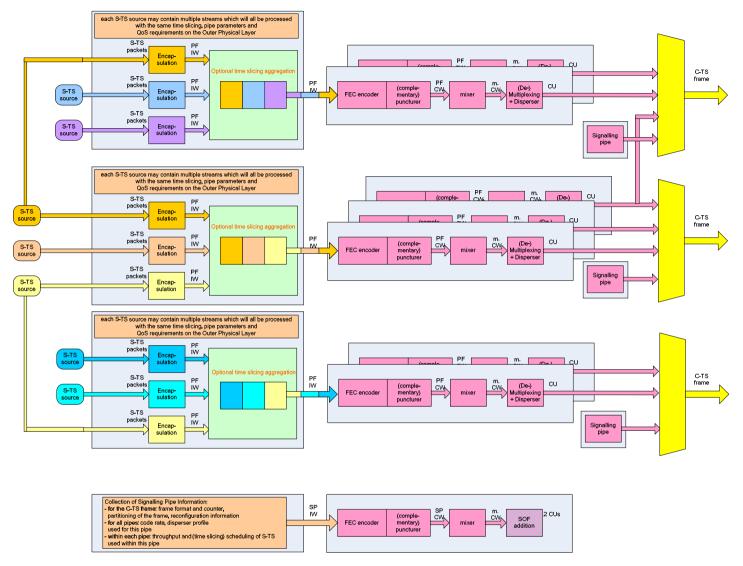



Figure 1: General overview of the OPL functionality

The processing, multiplexing and demultiplexing of the data in the OPL is displayed in Figure 2.

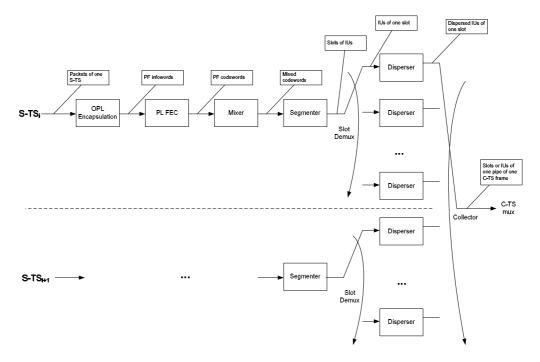



Figure 2: Definition of the different blocks involved in the OPL processing

## 4.2 Interfacing to Service Layer (SL)

The interface to the service layer is the so-called Service-Transport Stream (S-TS). For the OPL, each S-TS source is the smallest granularity which can be processed independently.

The interface may work synchronously or asynchronously. In the case of asynchronous interface, the PL must be able to accept at least the average data rate that is provided by the SL. Any data buffering shall be done inside the SL, such that no data from the S-TS is lost at this interface. When the PL requests new data for transmission, the SL can either provide the requested data to the PL or it can signal that no data is currently available. If no data is available for transmission, the PL instead transmits dummy data that is discarded in the receiver.

Inside an S-TS, multiplexing and de-multiplexing of information shall be carried out by the service layer.

Each pipe provides a different set of transmission parameters (e.g. FEC code rate and disperser profile), and achieves a different QoS in terms of protection against transmission errors and end-to-end delay. One pipe of the OPL may carry several S-TS, all with the same QoS parameters.

If PL time slicing is used, each time slice is associated with one S-TS. The scheduling of the S-TS, i.e. their start instants and lengths, inside a pipe can be adapted frequently (once per schedule/time slicing period). This opens the possibility of handling Variable Bit Rate (VBR) transmission.

The maximum allowed payload throughput per S-TS is 3,2 Mbit/s (this corresponds to approximately 8 to 10 video services inside one S-TS). This is the throughput that the processing chain inside the receiver (e.g. the turbo decoder) must be able to handle at least.

## 4.3 S-TS to OPL adaptation layer: S-TS encapsulation

The OPL is prepared to transport different types of S-TS, and a mixture of different S-TS types may be transported simultaneously over one C-TS multiplex.

The following parameters have to be determined for each S-TS (for parameters, refer to signalling pipe in clause 4.10.1):

- S-TS ID: identifier for the transported S-TS, that is unique for each network operator (i.e. for each Operator\_ID); observe that one S-TS may be transported over multiple instances of the PL and still have a single unique S-TS ID; this helps, for example, for diversity combining of one S-TS transmitted over satellite and simultaneously over terrestrial repeaters. Several rules apply for the S-TS:
  - S-TS ID 0 plays a special role: this is the Service Layer configuration S-TS (the SL can signal its own configuration via this S-TS).
  - An S-TS may be fed to several C-TS multiplexes. The S-TS IDs in all of these C-TS multiplexes are identical.
  - An S-TS may not be fed to several pipes inside the same C-TS multiplex.
  - S-TS IDs must be unique over the complete network of one operator except for S-TS ID 0 which is allowed on every C-TS multiplex.
  - S-TS with an identical Operator\_ID and S-TS ID can always be diversity combined (except for S-TS ID 0).
  - The length of an S-TS can be configured in a granularity of one PL infoword per C-TS frame.
- Pipe number that this S-TS is transported over.

Moreover, for the ensemble of S-TS contained inside a complete C-TS multiplex, the following parameters have to be fixed (for parameters, refer also to signalling pipe in clause 4.10.1):

- Operator\_ ID: unique identifier for the network operator.
- Partitioning of the C-TS multiplex into pipes and scheduling of the S-TS inside the pipes, i.e. what is the data rate of one S-TS and when are the bursts of one S-TS transported.

Each S-TS is partitioned into packets to match the length of the PL FEC information word (PF infoword). The packet size is individual for each type of S-TS. The OPL encapsulation inside the S-TS to OPL adaptation layer adapts the length of the S-TS packets to the PF infoword length by appending a suffix to the S-TS packet. Table 1 defines the S-TS packet length and the suffix length for different S-TS types.

S-TS Type ID S-TS payload packet Suffix length Comment S-TS Type in bits Size in bytes **Dummy packet** 0 26 Used for asynchronous SL/PL 0 interface. Is discarded in receiver. **Transparent** 26 SL has to decide what to do with this 1 1 532 data. **MPEG-TS** 2 250 Payload packet is 8 MPEG packets 1 504 of 188 bytes each; additionally, a BCH code of 196 bits is applied. IP stream 3 1 504 250 MTU of IP = 4 095 bytes with 2 bytes additional header per packet. RFU 4 to 7 Reserved for future S-TS types.

Table 1: Defined S-TS type IDs

The detailed format for the different types of S-TS is given in the following clauses.

### 4.3.1 PF infoword format for S-TS stream type 0 (dummy packet)

The format of the dummy packet is given in Table 2. The insertion of a dummy packet is performed if no data was available at the instant of processing the actual packet in the OPL.

Table 2: PF infoword format for S-TS stream type 0 (dummy packet)

| Start bit index | Parameter Description                                    |                                             | Wordsize (bits) | Format                    | Comment                                                |
|-----------------|----------------------------------------------------------|---------------------------------------------|-----------------|---------------------------|--------------------------------------------------------|
| 0               | Dummy data                                               | To be filled with zeros                     | 12 256          | 1 532×U8<br>(1 532 bytes) |                                                        |
| 12 256          | RFU                                                      | FU 4 bits reserved for future use           |                 |                           | Helps to bit-align the payload to byte boundaries.     |
| 12 260          | STS_ID S-TS ID                                           |                                             | 8               | U8                        | Can be chosen arbitrarily.                             |
| 12 268          | STS_Stream_Type_ID                                       | S-TS stream type identifier                 | 3               | U3                        | Fixed to 0 for dummy packets.                          |
| 12 271          | Encap_Ver Version number of the OPL encapsulation format |                                             | 3               | U3                        | Fixed to 0.                                            |
| 12 274          | IHeader(:R(:                                             | CRC over the 18 relevant bits of the header | 8               | U8                        | The light grey marked bits are included in the header. |
|                 |                                                          | Total length of PFIW                        | 12 282          |                           |                                                        |

## 4.3.2 PF infoword format for S-TS stream type 1 (transparent)

The format of the transparent mode is given in Table 3. It provides a transparent transmission of whatever payload. The throughput capability of the transparent stream type is 1 532 bytes per PF infoword. No additional error correction or detection except the turbo code is used; therefore, data integrity and flow control needs to be performed by the link layer. The definition of such protocol is not included in the present document.

Table 3: PF infoword format for S-TS stream type 1 (transparent)

| Start bit index | Parameter Description |                                                | Wordsize (bits) | Format | Comment                                                     |
|-----------------|-----------------------|------------------------------------------------|-----------------|--------|-------------------------------------------------------------|
| 0               | Payload_Packet        | Transparent payload packet                     | 12 256          |        | May include counters, error correction and error detection. |
| 12 256          | RFU                   | 4 bits reserved for future use                 |                 |        | Helps to bit-align the payload to byte boundaries.          |
| 12 260          | STS_ID                | S-TS ID                                        | 8               | U8     |                                                             |
| 12 268          | STS_Stream_Type_ID    | S-TS stream type identifier                    | 3               | 113    | Fixed to 1 for transparent packets.                         |
| 12 271          | Encap_Ver             | Version number of the OPL encapsulation format | 3               | U3     | Fixed to 0.                                                 |
| 12 274          | HeaderCRC             | CRC over the 18 relevant bits of the header    | 8               | U8     | The light grey marked bits are included in the CRC check.   |
|                 |                       | Total length of PFIW                           | 12 282          |        |                                                             |

## 4.3.3 PF infoword format for S-TS stream type 2 (MPEG-TS)

The format of the MPEG-TS stream mode is given in Table 4. It provides a transparent transmission of up to 8 MPEG-TS packets according to ISO/IEC 13818-1, each having a size of 188 bytes. If less than 8 packets are available for transport, the missing packets are filled by MPEG-TS null packets. Additional error correction and detection is performed by using one shortened BCH (3 057, 3 008) code each 2 MPEG-TS packets. Therefore, each PF infoword contains 4 sections of BCH parity of 49 bits each.

As this BCH-code is a systematic code, the parity may be discarded in the receiver if this additional parity check is not desired; however, performance is supposed to degrade in this case. On the contrary, it is a mandatory requirement on the transmitter side to include this parity.

Table 4: PF infoword format for S-TS stream type 2 (MPEG-TS)

| Start bit index | Parameter          | Description                                                       | Wordsize (bits) | Format                    | Comments                                                                                                                   |
|-----------------|--------------------|-------------------------------------------------------------------|-----------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 0               | Payload_Packet     | Payload packet                                                    | 12 032          | 1 504×U8<br>(1 504 bytes) |                                                                                                                            |
| 12 032          |                    | Reserved for Error<br>Detection or Outer Error<br>Correction Code | 196             | 4×U49                     | E.g. 4 times the 49 parity bits for a shortened BCH(3 057,3 008)-code with dmin=10, which each protects 2 MPEG-TS packets. |
| 12 228          | RFU                | 32 bits reserved for future use                                   | 32              | U32                       | Helps to bit-align the payload to byte boundaries.                                                                         |
| 12 260          | STS_ID             | S-TS ID                                                           | 8               | U8                        |                                                                                                                            |
| 12 268          | STS_Stream_Type_ID | S-TS stream type identifier                                       | 3               | U3                        | Fixed to 2 for MPEG-TS.                                                                                                    |
| 12 271          | Encap_Ver          | Version number of the OPL encapsulation format                    | 3               | U3                        | Fixed to 0.                                                                                                                |
| 12 274          | CRC_Bits           | CRC over the 46 relevant bits of the header                       | 8               | U8                        | The light grey marked bits are included in the CRC check.                                                                  |
|                 |                    | Total length of PFIW                                              | 12 282          |                           |                                                                                                                            |

## 4.3.4 PF infoword format for S-TS stream type 3 (IP stream)

The format of the IP stream mode is given in Table 5. It provides a transparent transmission of IP packets, each having a maximum size (MTU) of 4 095 bytes. Each IP packet to be transmitted is preceded by a header of 2 bytes that is defined in Table 6 and contains information about the IP packet format and length.

The payload size of one PF infoword is 1 504 bytes, but the amount of header information needs to be taken into account. Each header consumes 2 bytes of the total payload available.

The address of the first available header within one PF infoword is contained in the parameter First\_Header\_Address. Only this first header is announced; if more than one IP packets are present in one PF infoword, the address of the headers can be incrementally derived from the preceding ones.

If no header was available in this PF infoword, the value 0xFFF is set to indicate the absence of any header. See Figure 3 for clarification.

If not enough payload is available for transport, the missing bytes are filled with <code>OxFF</code> bytes. Any <code>First\_Header\_Address</code> larger than 1 502 is not allowed as splitting of headers is not permitted. In this case, the last byte(s) of the payload packet is (are) padded with <code>OxFF</code> bytes.

Additional error correction and detection is performed by using one shortened BCH (3 057, 3 008) code each 376 bytes. Therefore, each PF infoword contains 4 sections of BCH parity of 49 bits each (equal to stream type 2).

As this BCH-code is a systematic code, the parity may be discarded in the receiver if this additional parity check is not desired; however, performance is supposed to degrade in this case. On the contrary, it is a mandatory requirement on the transmitter side to include this code.

Table 5: PF infoword format for S-TS stream type 3 (IP stream)

| Start bit index | Parameter            | Description                                                                                              | Wordsize (bits) | Format                    | Comment                                                                                                                                                                                                                  |
|-----------------|----------------------|----------------------------------------------------------------------------------------------------------|-----------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0               | Payload_Packet       | Payload packet                                                                                           | 12 032          | 1 504×U8<br>(1 504 bytes) | See Table 6 for further details.                                                                                                                                                                                         |
| 12 032          | RFU_Error_Correction | Reserved for Error Detection<br>or Outer Error Correction<br>Code                                        | 196             |                           | E.g. 4 times the 49 parity bits<br>for a shortened<br>BCH(3 057,3 008)-code with<br>dmin=10, which each protects<br>376 payload bytes.                                                                                   |
| 12 228          | RFU                  | 20 bits reserved for future use                                                                          | 20              |                           | Helps to bit-align the payload to byte boundaries.                                                                                                                                                                       |
| 12 248          | First_Header_Address | Byte address where the first<br>header of the first IP packet<br>can be found; counting is<br>zero-based | 12              | U12                       | This value gives the start address of the first header to be found. If no header is present, the address is set to 0xFFF. Any First_Header_Address larger than 1 502 needs to be discarded while 1 502 is still allowed. |
| 12 260          | STS_ID               | S-TS ID                                                                                                  | 8               | U8                        |                                                                                                                                                                                                                          |
| 12 268          | STS_Stream_Type_ID   | S-TS stream type identifier                                                                              | 3               | U3                        | Fixed to 3 for IP stream.                                                                                                                                                                                                |
| 12 271          | Encap_Ver            | Version number of the OPL encapsulation format                                                           | 3               | U3                        | Fixed to 0.                                                                                                                                                                                                              |
| 12 274          | CRC_Bits             | CRC over the 46 relevant bits of the header                                                              | 8               | U8                        | The light grey marked bits are included in the CRC check.                                                                                                                                                                |
|                 |                      | Total length of PFIW                                                                                     | 12 282          |                           |                                                                                                                                                                                                                          |

Table 6: IP Header definition for each IP packet processed by the OPL encapsulation

| Start bit index | Parameter        | Parameter Description                                          |    | Format | Comment                                                                                 |
|-----------------|------------------|----------------------------------------------------------------|----|--------|-----------------------------------------------------------------------------------------|
| 0               | IP_Packet_Type   | Defines the type of the encapsulated packet                    | 2  | U2     | The following definitions apply:  0: reserved  1: IPv4;  2: IPv6;  3: Padding/Stuffing. |
| 2               | IP_Packet_Error  | Is set if the IP packet is erroneous                           | 1  | U1     | 0 if no error occurred.                                                                 |
| 3               | IP_Packet_Length | P_Packet_Length Defines the length of the IP Packet (in bytes) |    | U12    | This enables a maximum transfer unit (MTU) size of 4 095 bytes.                         |
| 14              | RFU              | 1 bit reserved for future use                                  | 1  | U1     |                                                                                         |
|                 |                  | Total length of one header                                     | 16 |        |                                                                                         |

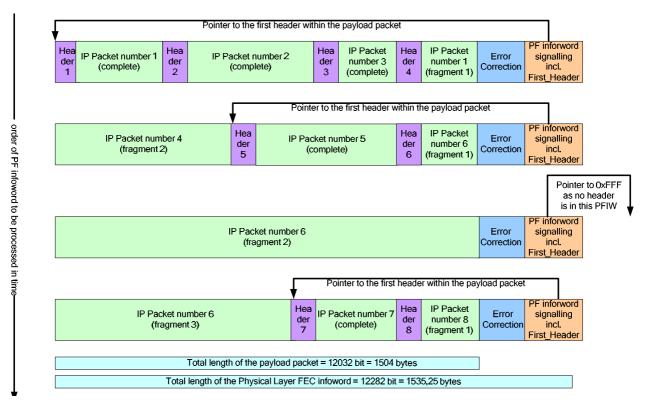



Figure 3: Description of IP packet encapsulation

#### 4.4 PL FEC: turbo code

As PL FEC scheme, the Turbo Code as standardized by the 3GPP2 organization has been chosen.

## 4.4.1 Interface to OPL encapsulation

The turbo encoder encodes blocks of 12 282 bits, which are referred to as PL FEC information words (PF infoword), for the payload transmission.

For each S-TS, these PF infowords are sequentially input to the turbo encoder after OPL encapsulation.

#### 4.4.2 Turbo encoder

Besides the PF infowords for the S-TS payload of length 12 282 bits, the turbo encoder is also able to encode blocks of 762 bits for the signalling pipe. During encoding, an encoder output tail sequence is added.  $N_{turbo}$  is the total number of data excluding the tail bits. The turbo encoder generates  $N_{turbo}/R$  encoded data output symbols followed by 6/R tail output symbols, where R is the code rate.

The turbo encoder employs two systematic, recursive, convolutional encoders connected in parallel, with an interleaver, the turbo interleaver, preceding the second recursive convolutional encoder. The two recursive convolutional codes are called the constituent codes of the turbo code. The outputs of the constituent encoders are punctured to achieve the  $(N_{turbo} + 6)/R$  output symbols.

A common constituent code is used for all turbo code rates. The transfer function for the constituent code is:

$$G(D) = \begin{bmatrix} 1 & \frac{n_0(D)}{d(D)} & \frac{n_1(D)}{d(D)} \end{bmatrix}$$

where  $d(D) = 1 + D^2 + D^3$ ,  $n_0(D) = 1 + D + D^3$ , and  $n_1(D) = 1 + D + D^2 + D^3$ .

The turbo encoder generates an output symbol sequence that is identical to the one generated by the encoder shown in Figure 4. Initially, the states of the constituent encoder registers in this figure are set to zero. Then, the constituent encoders are clocked with the switches in the positions noted.

Using the turbo encoder, the constituent encoder output symbols are generated by clocking the constituent encoders  $N_{turbo}$  times with the switches in the up positions and puncturing as specified in Table 7. Within a puncturing pattern, a "0" means that the symbol shall be deleted and a "1" means that a symbol shall be passed. The puncturing patterns shall be read from left to right and continuously from one text line to the next one. The patterns are displayed with a partitioning into groups of 5 symbols. The 5 symbols of a group represent the outputs X;  $Y_0$ ;  $Y_1$ ;  $Y_0$ ; and  $Y_1$  of the encoder shown in Figure 4, respectively. Each puncturing pattern consists of one such group or of a sequence of several groups. The displayed pattern is repeated cyclically, until 12 282 groups have been processed (one group per infoword bit). Hence, the last period of the pattern remains incomplete for some puncturing patterns.

According to Table 7, some examples for puncturing are given.

The turbo encoder shall generate symbols for rate 1/2 turbo codes as follows:

- The symbols output by the encoder for even-indexed data bit periods shall be XY<sub>0</sub>.
- The symbols output by the encoder for odd-indexed data bit periods shall be XY'<sub>0</sub>.

The turbo encoder shall generate symbols for rate 1/3 turbo codes as follows:

• The symbols output by the encoder for all data bit periods shall be  $XY_0Y_0'$ .

The turbo encoder shall generate symbols for rate 1/4 turbo codes as follows:

- The symbols output by the encoder for even-indexed data bit periods shall be  $XY_0Y_1Y_1'$ .
- The symbols output by the encoder for odd-indexed data bit periods shall be  $XY_0Y_0'Y_1'$ .

The turbo encoder shall generate symbols for rate 1/5 turbo codes as follows:

• The symbols output by the encoder for all data bit periods shall be  $XY_0Y_1Y_0Y_1$ .

Symbol repetition is not used in generating the encoded data output symbols.

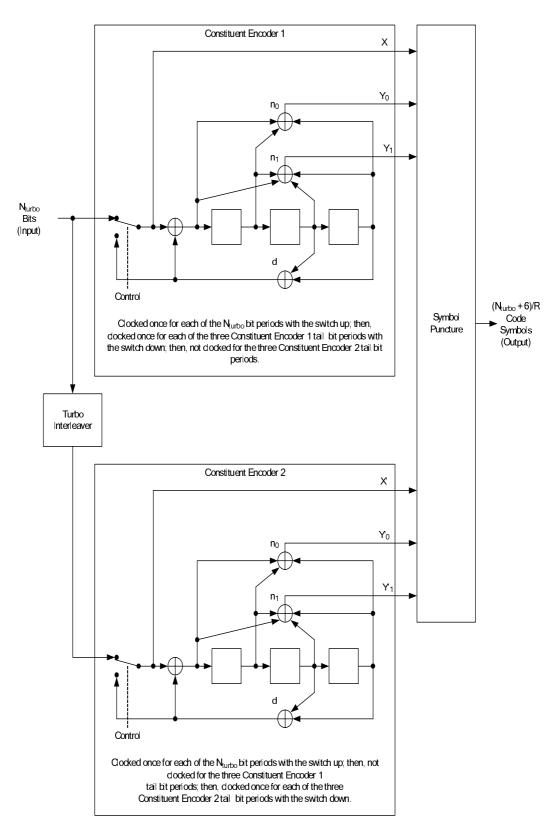



Figure 4: Turbo encoder

Table 7: Puncturing patterns for the turbo encoder during the data bit periods

| Punct_Pat_ID | Code<br>Rate | Pattern Name   | Puncturing Pattern (X; Y0; Y1; Y'0; Y'1; X; Y0;)                                                                                             |  |
|--------------|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0            | 1/5          | Standard       | 1;1;1;1;1                                                                                                                                    |  |
| 1            | 2/9          | Standard       | 1;0;1;1;1; 1;1;1;1; 1;1;1;0;1; 1;1;1;1;1                                                                                                     |  |
| 2            | 1/4          | Standard       | 1;1;1;0;1; 1;1;0;1;1                                                                                                                         |  |
| 3            | 2/7          | Standard       | 1;0;1;0;1; 1;0;1;1;1; 1;0;1;0;1; 1;1;1;0;1                                                                                                   |  |
| 4            | 3/10         | Standard       | 1;1;0;1;0; 1;1;0;1;0; 1;1;0;1;0;<br>1;1;0;1;0; 1;1;0;1;0; 1;1;1;1;1                                                                          |  |
| 5            | 1/3          | Standard       | 1;1;0;1;0                                                                                                                                    |  |
| 6            | 1/3          | Complementary1 | 1;0;1;0;1                                                                                                                                    |  |
| 7            | 3/8          | Standard       | 0;1;0;1;0; 1;1;0;1;0; 1;1;0;1;0                                                                                                              |  |
| 8            | 3/8          | Complementary1 | 1;0;1;0;1; 0;0;1;0;1; 1;0;1;0;1                                                                                                              |  |
| 9            | 2/5          | Standard       | 1;0;0;0;0; 1;0;1;0;1; 0;0;1;0;1;<br>1;0;1;0;1; 1;0;1;0;1; 0;0;1;0;1;<br>1;0;1;0;1; 1;0;1;0;1; 0;0;1;0;1;<br>1;0;1;0;1; 1;0;1;0;1; 0;0;1;0;1  |  |
| 10           | 2/5          | Complementary1 | 1;1;0;1;0; 0;1;0;1;0; 1;1;0;1;0;<br>1;1;0;1;0; 0;1;0;1;0; 1;0;0;0;0;<br>1;1;0;1;0; 0;1;0;1;0; 1;1;0;1;0;<br>1;1;0;1;0; 0;1;0;1;0; 1;1;0;1;0  |  |
| 11           | 3/7          | Standard       | 1;0;0;0;0; 1;1;0;1;0; 0;1;0;1;0;<br>1;1;0;1;0; 0;1;0;1;0; 1;1;0;1;0                                                                          |  |
| 12           | 3/7          | Complementary1 | 1;0;1;0;1; 0;0;1;0;1; 1;0;1;0;1;<br>1;0;0;0;0; 1;0;1;0;1; 0;0;1;0;1                                                                          |  |
| 13           | 1/2          | Standard       | 1;1;0;0;0; 1;0;0;1;0                                                                                                                         |  |
| 14           | 1/2          | Complementary1 | 1;0;0;1;0; 1;1;0;0;0                                                                                                                         |  |
| 15           | 1/2          | Complementary2 | 1;0;1;0;0; 1;0;0;0;1                                                                                                                         |  |
| 16           | 3/5          | Standard       | 1;0;0;0;0; 1;0;0;1;0; 1;1;0;0;0                                                                                                              |  |
| 17           | 3/5          | Complementary1 | 1;0;0;1;0; 1;1;0;0;0; 1;0;0;0;0                                                                                                              |  |
| 18           | 3/5          | Complementary2 | 1;1;0;0;0; 1;0;0;0;0; 1;0;0;1;0                                                                                                              |  |
| 19           | 2/3          | Standard       | 1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0; 1;0;1;0;                                                                                                    |  |
| 20           | 2/3          | Complementary1 | 1;0;0;0;0; 1;0;1;0;1; 1;0;0;0;0; 1;0;0;0;0                                                                                                   |  |
| 21           | 2/3          | Complementary2 | 1;0;0;0;0; 1;0;0;0;0; 1;0;1;0;1; 1;0;0;0;0                                                                                                   |  |
| 22           | 3/4          | Standard       | 1;0;0;0;0; 1;0;0;0;0; 1;1;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;1;0                                                                          |  |
| 23           | 3/4          | Complementary1 | 1;0;0;0;0; 1;0;0;1;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;1;0;0;0;0;0                                                                                 |  |
| 24           | 3/4          | Complementary2 | 1;1;0;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;1;0; 1;0;0;0;0; 1;0;0;0;0                                                                          |  |
| 25           | 6/7          | Standard       | 1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;1;0;0;0;1         |  |
| 26           | 6/7          | Complementary1 | 1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;1;0;0; 1;0;0;0;1; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0; |  |

| Punct_Pat_ID | Code<br>Rate | Pattern Name   | Puncturing Pattern (X; Y0; Y1; Y'0; Y'1; X; Y0;)                                                                                            |
|--------------|--------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 27           | 6/7          | Complementary2 | 1;0;0;0;0; 1;0;0;0;0; 1;0;1;0;0;<br>1;0;0;0;1; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0 |
| 28 to 63     | RFU          |                |                                                                                                                                             |

## 4.4.3 Turbo code termination

The turbo encoder shall generate 6/R tail output symbols following the encoded data output symbols. This tail output symbols sequence shall be identical to the one generated by the encoder shown in Figure 4. The tail output symbols are generated after the constituent encoders have been clocked  $N_{turbo}$  times with the switches in the up position. The first 3/R tail output symbols are generated by clocking Constituent Encoder 1 three times with its switch in the down position while Constituent Encoder 2 is not clocked and puncturing the resulting constituent encoder output symbols. The last 3/R tail output symbols are generated by clocking Constituent Encoder 2 three times with its switch in the down position while Constituent Encoder 1 is not clocked and puncturing the resulting constituent encoder output symbols. The constituent encoder outputs for each bit period shall be output in the sequence X,  $Y_0$ ,  $Y_1$ , X',  $Y'_0$ ,  $Y'_1$  with the X output first.

The tail output symbol puncturing shall be as specified in Table 8. Within a puncturing pattern, a "0" means that the symbol shall be deleted and a "1" means that a symbol shall be passed. The tail puncturing patterns shall be read from left to right and continuously from one text line to the next one. The patterns are displayed with a partitioning into six groups of 5 symbols. The 5 symbols of a group represent either the outputs X;  $Y_0$ ;  $Y_0$ ;  $Y_0$ ; and  $Y_1$  of the encoder shown in Figure 4 for the first three groups, or X';  $Y_0$ ;  $Y_0$ ;  $Y_0$ ;  $Y_0$ ; and  $Y_1$  for the last three groups of the pattern, respectively.

A 2 or a 3 means that two or three copies of the symbol shall be passed. E.g. for rate 1/5 turbo codes, the tail output symbols for each of the first three tail bit periods shall be  $XXXY_0Y_1$ , and the tail output symbols for each of the last three tail bit periods shall be  $X'X'X'Y'_0Y'_1$ .

Table 8: Puncturing and symbol repetition patterns for the turbo encoders during the tail bit periods

| Punct_Pat_ID | Code<br>Rate | Pattern Name   | Tail Puncturing Pattern (X; Y0; Y1; Y'0; Y'1; X; Y0; Y1; Y'0; Y'1; X; Y0; Y1; Y'0; Y'1; X'; Y0; Y1; Y'0; Y'1; X'; Y0; Y1; Y'0; Y'1) |
|--------------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0            | 1/5          | Standard       | 3;1;1;0;0; 3;1;1;0;0; 3;1;1;0;0;<br>3;0;0;1;1; 3;0;0;1;1                                                                            |
| 1            | 2/9          | Standard       | 3;1;1;0;0; 3;1;1;0;0; 2;1;1;0;0;<br>2;0;0;1;1; 2;0;0;1;1; 3;0;0;1;1                                                                 |
| 2            | 1/4          | Standard       | 2;1;1;0;0; 2;1;1;0;0; 2;1;1;0;0;<br>2;0;0;1;1; 2;0;0;1;1                                                                            |
| 3            | 2/7          | Standard       | 1;1;1;0;0; 2;1;1;0;0; 2;1;1;0;0;<br>2;0;0;1;1; 1;1;1;0;0; 1;1;1;0;0                                                                 |
| 4            | 3/10         | Standard       | 1;1;1;0;0; 1;1;1;0;0; 2;1;1;0;0;<br>1;0;0;1;1; 1;0;0;1;1; 2;0;0;1;1                                                                 |
| 5            | 1/3          | Standard       | 2;1;0;0;0; 2;1;0;0;0; 2;1;0;0;0;<br>2;0;0;1;0; 2;0;0;1;0; 2;0;0;1;0                                                                 |
| 6            | 1/3          | Complementary1 | 2;0;1;0;0; 2;0;1;0;0; 2;0;1;0;0;<br>2;0;0;0;1; 2;0;0;0;1; 2;0;0;0;1                                                                 |
| 7            | 3/8          | Standard       | 1;1;0;0;0; 1;1;1;0;0; 1;1;1;0;0;<br>1;0;0;1;0; 1;0;0;1;1; 1;0;0;1;1                                                                 |

| Punct_Pat_ID | Code<br>Rate | Pattern Name   | Tail Puncturing Pattern (X; Y0; Y1; Y'0; Y'1; X; Y0; Y1; Y'0; Y'1; X; Y0; Y1; Y'0; Y'1; X'; Y0; Y1; Y'0; Y'1) |
|--------------|--------------|----------------|---------------------------------------------------------------------------------------------------------------|
| 8            | 3/8          | Complementary1 | 1;0;1;0;0; 1;1;1;0;0; 1;1;1;0;0;<br>1;0;0;0;1; 1;0;0;1;1; 1;0;0;1;1                                           |
| 9            | 2/5          | Standard       | 1;1;1;0;0; 1;1;1;0;0; 1;0;1;0;0;<br>1;0;0;1;1; 1;0;0;1;1; 1;0;0;0;1                                           |
| 10           | 2/5          | Complementary1 | 1;1;1;0;0; 1;1;0;0;0; 1;1;1;0;0;<br>1;0;0;1;1; 1;0;0;1;0; 1;0;0;1;1                                           |
| 11           | 3/7          | Standard       | 1;1;0;0;0; 1;1;0;0;0; 1;1;1;0;0;<br>1;0;0;1;0; 1;0;0;1;0; 1;0;0;1;1                                           |
| 12           | 3/7          | Complementary1 | 1;0;1;0;0; 1;0;1;0;0; 1;1;1;0;0;<br>1;0;0;0;1; 1;0;0;0;1; 1;0;0;1;1                                           |
| 13           | 1/2          | Standard       | 1;1;0;0;0; 1;1;0;0;0; 1;1;0;0;0;<br>1;0;0;1;0; 1;0;0;1;0; 1;0;0;1;0                                           |
| 14           | 1/2          | Complementary1 | 1;0;1;0;0; 1;0;1;0;0; 1;0;1;0;0;<br>1;0;0;0;1; 1;0;0;0;1; 1;0;0;0;1                                           |
| 15           | 1/2          | Complementary2 | 1;1;0;0;0; 1;1;0;0;0; 1;1;0;0;0;<br>1;0;0;1;0; 1;0;0;1;0; 1;0;0;1;0                                           |
| 16           | 3/5          | Standard       | 1;0;1;0;0; 1;0;0;0;0; 1;1;0;0;0;<br>1;0;0;0;0; 1;0;0;1;0; 1;0;0;0;1                                           |
| 17           | 3/5          | Complementary1 | 1;0;0;0;0; 1;1;0;0;0; 1;0;1;0;0;<br>1;0;0;1;0; 1;0;0;0;1; 1;0;0;0;0                                           |
| 18           | 3/5          | Complementary2 | 1;1;0;0;0; 1;0;1;0;0; 1;0;0;0;0;<br>1;0;0;0;1; 1;0;0;0;0; 1;0;0;1;0                                           |
| 19           | 2/3          | Standard       | 1;0;0;0;0; 1;0;1;0;0; 1;0;1;0;0;<br>1;0;0;0;0; 1;0;0;0;1; 1;0;0;0;1                                           |
| 20           | 2/3          | Complementary1 | 1;0;1;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;0;1; 1;0;0;0;0; 1;0;0;0;0                                           |
| 21           | 2/3          | Complementary2 | 1;0;1;0;0; 1;0;1;0;0; 1;0;0;0;0;<br>1;0;0;0;1; 1;0;0;0;1; 1;0;0;0;0                                           |
| 22           | 3/4          | Standard       | 1;0;0;0;0; 1;0;0;0;0; 1;1;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;1;0                                           |
| 23           | 3/4          | Complementary1 | 1;0;0;0;0; 1;1;0;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;1;0; 1;0;0;0;0                                           |
| 24           | 3/4          | Complementary2 | 1;1;0;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;1;0; 1;0;0;0;0; 1;0;0;0;0                                           |
| 25           | 6/7          | Standard       | 1;0;0;0;0; 1;0;1;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;1                                           |
| 26           | 6/7          | Complementary1 | 1;0;1;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;0;1; 1;0;0;0;0                                           |
| 27           | 6/7          | Complementary2 | 1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0;<br>1;0;0;0;0; 1;0;0;0;0; 1;0;0;0;0                                           |
| 28 to 63     | RFU          |                |                                                                                                               |

#### 4.4.4 Turbo Interleavers

The turbo interleaver, which is part of the turbo encoder, shall block interleave the  $N_{turbo}$  input bits.

The turbo interleaver shall be functionally equivalent to an approach where the entire sequence of turbo interleaver input bits are written sequentially into an array at a sequence of addresses, and then the entire sequence is read out from a sequence of addresses that are defined by the procedure described below.

Let the sequence of input addresses be from 0 to  $N_{turbo}$  - 1. Then, the sequence of interleaver output addresses shall be equivalent to those generated by the procedure illustrated in Figure 5 and described below:

- 1) Determine the turbo interleaver parameter, n, where n is the smallest integer such that  $N_{turbo} \le 2^{(n+5)}$ . Table 9 gives this parameter.
- 2) Initialize an (n + 5) bit counter to 0.
- 3) Extract the n most significant bits (MSBs) from the counter and add one to form a new value. Then, discard all except the n least significant bits (LSBs) of this value.
- 4) Obtain the n-bit output of the table lookup defined in Table 10 with a read address equal to the five LSBs of the counter. Note that this table depends upon the value of n.
- 5) Multiply the values obtained in Steps 3 and 4, and discard all except the n LSBs.
- 6) Bit-reverse the five LSBs of the counter.
- 7) Form a tentative output address that has its MSBs equal to the value obtained in Step 6 and its LSBs equal to the value obtained in Step 5.
- 8) Accept the tentative output address as an output address if it is less than  $N_{turbo}$ ; otherwise, discard it.
- 9) Increment the counter and repeat Steps 3 through 8 until all  $N_{turbo}$  interleaver output addresses are obtained.

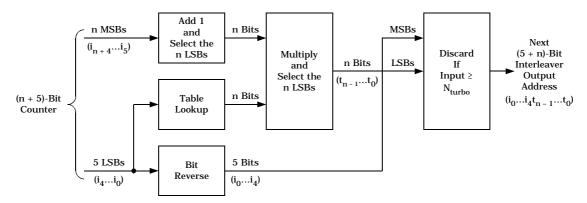



Figure 5: Turbo interleaver output address calculation procedure

**Table 9: Turbo interleaver parameters** 

| Turbo              | Turbo       |
|--------------------|-------------|
| Interleaver        | Interleaver |
| Block Size         | Parameter   |
| N <sub>turbo</sub> | n           |
| 762                | 5           |
| 12 282             | 9           |

Table 10: Turbo Interleaver lookup table definition

| Table                            | n = 5         | n = 9                          |
|----------------------------------|---------------|--------------------------------|
| Index                            | Entries       | Entries                        |
| 0                                | 27            | 13                             |
| 1                                | 3             | 335                            |
| 2                                | 27<br>3<br>1  | 87                             |
| 1<br>2<br>3                      | 15            | 15                             |
| 4                                | 13            | 15                             |
| 4<br>5<br>6<br>7                 | 17            | 1                              |
| 6                                | 23<br>13      | 333                            |
| 7                                | 13            | 11                             |
| 8                                | 9             | 11<br>13                       |
| 9                                | 3<br>15       | 1                              |
| 10                               | 15            | 121                            |
| 11                               | 3             | 155                            |
| 11<br>12<br>13<br>14<br>15<br>16 | 13<br>1<br>13 | 1                              |
| 13                               | 1             | 175                            |
| 14                               | 13            | 421                            |
| 15                               | 29            | 5                              |
| 16                               | 21<br>19      | 509                            |
| 17<br>18                         | 19            | 215<br>47<br>425<br>295<br>229 |
| 18                               | 1 3           | 47                             |
| 19                               | 3             | 425                            |
| 20                               | 29            | 295                            |
| 21                               | 17            | 229                            |
| 22                               | 25            | 427                            |
| 23                               | 29            | 83                             |
| 24                               | 9             | 409                            |
| 25                               | 13            | 387                            |
| 26                               | 23            | 193                            |
| 27                               | 13            | 57                             |
| 28                               | 13            | 501                            |
| 29                               | 1             | 313                            |
| 30                               | 1 13          | 489                            |
| 31                               | 13            | 391                            |

## 4.4.5 Output of turbo encoder

For any S-TS, the encoded bits form a block of 12 288/R bits, where R is the selected code rate. This block is referred to as the PL FEC codeword (PF codeword). The output after encoding the signalling pipe form a block of 3 840 bits.

# 4.4.6 FEC Parameter signalling

The parameter Punct\_Pat\_ID, which specifies the chosen puncturing scheme (which implicitly also defines the code rate) is transmitted in the signalling pipe. Table 11 applies.

Table 11: Definition of turbocode coderate and puncturing pattern using Punct\_Pat\_ID

| Punct_Pat_ID | Turbocode | Puncturing      |
|--------------|-----------|-----------------|
|              | coderate  | pattern         |
| 0            | 1/5       | standard        |
| 1            | 2/9       | standard        |
| 2            | 1/4       | standard        |
| 3            | 2/7       | standard        |
| 4            | 3/10      | standard        |
| 5            | 1/3       | standard        |
| 6            | 1/3       | complementary 1 |
| 7            | 3/8       | standard        |
| 8            | 3/8       | complementary 1 |
| 9            | 2/5       | standard        |
| 10           | 2/5       | complementary 1 |
| 11           | 3/7       | standard        |
| 12           | 3/7       | complementary 1 |
| 13           | 1/2       | standard        |
| 14           | 1/2       | complementary 1 |
| 15           | 1/2       | complementary 2 |
| 16           | 3/5       | standard        |
| 17           | 3/5       | complementary 1 |
| 18           | 3/5       | complementary 2 |
| 19           | 2/3       | standard        |
| 20           | 2/3       | complementary 1 |
| 21           | 2/3       | complementary 2 |
| 22           | 3/4       | standard        |
| 23           | 3/4       | complementary 1 |
| 24           | 3/4       | complementary 2 |
| 25           | 6/7       | standard        |
| 26           | 6/7       | complementary 1 |
| 27           | 6/7       | complementary 2 |
| 28 to 63     | RFU       | RFU             |

## 4.4.7 Diversity combining

Table 11 displays for several code rates more than one puncturing pattern. The "standard" pattern should be used primarily for any code rate. The "complementary" patterns (number 1 or 2) can be used for diversity combining, whenever the same PF infoword shall be transmitted over more than one propagation channel to the same terminal. The combination of a standard pattern with one or more complementary patterns leads to a combined Turbo code of lower code rate and, moreover, a higher coding gain.

In principle, any two (or even more) of the puncturing patterns of Table 11 can be combined with each other, whether they are standard, complementary 1 or complementary 2. However, the overlap of the selected patterns, i.e. the number of transmitted (non-punctured) symbols that are common to these patterns according to Table 7, should be kept as low as possible.

## 4.4.8 FEC Parameters for the signalling pipe

The signalling pipe always uses the parameter Punct\_Pat\_ID = 0, i.e. code rate 1/5.

### 4.5 Mixer

The mixer is a block interleaver that works on a codeword basis. Its task is to re-order the codeword. This is especially helpful in scenarios where the reception suffers from bursty blockages, but also helps to achieve fast access times in case of good reception conditions. Any bursty loss of data (wanted or unwanted) is then spread on the whole code word equally instead of having bursty erasures which in turn helps the FEC decoder, as the losses can then be regarded as "random puncturing".

The input of the mixer is the output of the turbo encoder, i.e. a stream of PF codewords belonging to one S-TS. The output is referred to as mixed codewords.

The following formula has to be applied to the PF codewords where a[i] denotes the input of the mixer (equal to the output of the FEC), and b[i] denotes the output of the mixer, at the bit position i, respectively.

with CILM\_Inc denoting the mixer increment as defined in Table 12, mod denoting the modulo operation, and Codeword\_Len denoting the PL codeword length, also defined in Table 12. The notation is 0-based, and the range of i is [0; codewordLen-1].

As the mixer increment only depends on the PL codeword length and hence on the code rate only, it is not signalled additionally but has to be derived from the parameter Punct\_Pat\_ID.

**Table 12: Mixer address increment definition** 

| Code Rate    | 1/5    | 2/9    | 1/4    | 2/7    | 3/10   | 1/3    | 3/8    | 2/5    | 3/7    | 1/2    | 3/5    | 2/3    | 3/4    | 6/7    |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Codeword_Len | 61 440 | 55 296 | 49 152 | 43 008 | 40 960 | 36 864 | 32 768 | 30 720 | 28 672 | 24 576 | 20 480 | 18 432 | 16 384 | 14 336 |
| CILM_Inc     | 247    | 245    | 221    | 197    | 209    | 185    | 179    | 167    | 167    | 157    | 149    | 125    | 139    | 113    |

The signalling pipe always uses  $CILM_{Inc} = 61$ .

## 4.6 Segmenter and Slot demultiplexer

The segmenter's input is a stream of mixed codewords belonging to one S-TS. The segmenter has the following task: Chop the mixed codewords into "Interleaver Units" (IU) - each of length 512 bits - which are later processed in the dispersers.

Observe that for any configurable code rate, the PF codeword length is an integer multiple of 2 048 codebits. This granule is termed a "Capacity Unit" (CU). Therefore, a codeword can always be segmented into an integer multiple of 4 TIIS

For informative purpose, Table 13 denotes the number of IUs and CUs per PF codeword (IU\_Per\_CW and CU\_Per\_CW).

Table 13: Number of CU and number of IU per code word

| Code Rate | Codeword length (in bits) | Number of CU per<br>Codeword<br>(CU Per CW) | Number of IU per<br>Codeword<br>(IU Per CW) |
|-----------|---------------------------|---------------------------------------------|---------------------------------------------|
| 1/5       | 61 440                    | 30                                          | 120                                         |
| 2/9       | 55 296                    | 27                                          | 108                                         |
| 1/4       | 49 152                    | 24                                          | 96                                          |
| 2/7       | 43 008                    | 21                                          | 84                                          |
| 3/10      | 40 960                    | 20                                          | 80                                          |
| 1/3       | 36 864                    | 18                                          | 72                                          |
| 3/8       | 32 768                    | 16                                          | 64                                          |
| 2/5       | 30 720                    | 15                                          | 60                                          |
| 3/7       | 28 672                    | 14                                          | 56                                          |
| 1/2       | 24 576                    | 12                                          | 48                                          |
| 3/5       | 20 480                    | 10                                          | 40                                          |
| 2/3       | 18 432                    | 9                                           | 36                                          |
| 3/4       | 16 384                    | 8                                           | 32                                          |
| 6/7       | 14 336                    | 7                                           | 28                                          |

After the chopping, a demultiplexer distributes these IUs codeword-wise to slots. A slot is a sub-stream of IUs that is processed by its individual disperser. The slots are sub-partitions inside a pipe of one frame, and the number of slots is hence determined by the width Pipe\_Width\_CUs of the pipe and the width CU\_Per\_CW of each slot (both in terms of CUs):

```
Pipe_Width_Slots = Pipe_Width_CUs / CU_Per_CW
```

Each slot is fed with all IUs of one codeword. The Pipe\_Width\_Slots slots of a pipe are cyclically fed with codewords from the S-TS of that pipe. The number of consecutive codewords of an S-TS that are assigned to the slots is denoted by STS\_Width\_Slots. This value is individual for every S-TS and may vary from S-TS to S-TS. The slot demultiplexer feeds exactly all IUs belonging to the same codeword to one slot, i.e. to the specific disperser for that slot. Note that neither the segmenter nor the demultiplexer change the order of the IUs inside one codeword/one slot. When all IUs of one codeword have been demultiplexed to one slot, the demultiplexer switches to the next slot and feeds it with the IUs of the next codeword. After Pipe\_Width\_Slotscodewords have been demultiplexed to the Pipe\_Width\_Slotsslots, the demultiplexer starts with the first slot again and feeds it with the Pipe\_Width\_Slots+1st codeword. This behaviour is repeated periodically. When STS\_Width\_Slots consecutive codewords of the S-TS have been fed to the slots, the slot demultiplexer continues with the codewords from the next S-TS in the pipe.

## 4.7 Disperser

For specifying memory requirements for standard-compliant receivers, examples of disperser profiles are given below that the terminals must be able to handle.

Standard-compliant receivers must be able to decode the payload in the following cases:

- S-TS payload throughput 3,2 Mbit/s (max. allowed S-TS throughput), Punct\_Pat\_ID = 2, i.e. code rate 1/4, uniform interleaving over 10 s, over static AWGN channel.
- S-TS payload throughput 1,6 Mbit/s (typical for a multiplex of 4 video services), Punct\_Pat\_ID = 0 i.e. code rate 1/5, uniform interleaving over 16 s, over static AWGN channel.
- S-TS payload throughput 0,4 Mbit/s (typical throughput for one video service), Punct\_Pat\_ID = 0 i.e. code rate 1/5, interleaving, where 50 % of the data is transmitted non-delayed and 50 % with a delay of 64 s, over static AWGN channel.

Performance requirements for the receivers for achieving successful decoding (i.e. WER  $< 10^{-3}$ ) are stated in the Implementation Guidelines document.

The dispersers work on a slot basis, i.e. each slot has its individual disperser, such that there are Pipe\_Width\_Slots parallel dispersers for one pipe. The disperser distributes the IUs of one codeword over time by interleaving them inside one slot with IUs of other codewords, which are demultiplexed to the same slot.

The core function of the disperser is an irregular convolutional block interleaver, whose smallest granularity is one IU. Figure 6 displays the principle structure of the disperser. The number of tapped delay lines (referred to as taps) is IU\_Per\_CW, i.e. there is one tap for each IU of a codeword. In the sequel, Tap\_Delay[i] denotes the delay (in terms of IUs) of tap i, with i from 0 to IU\_Per\_CW-1. The vector Tap\_Delay[0] to Tap\_Delay[IU\_Per\_CW-1] is referred to as the disperser profile. The disperser profile is configured over the signalling pipe as described in clause 4.10.1. It has the property that it is periodic with a period of 32.

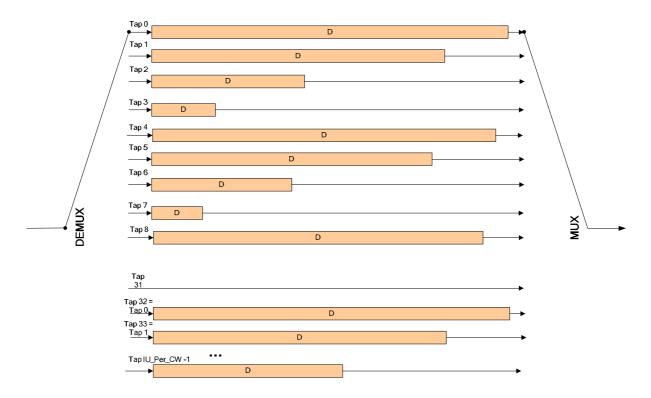



Figure 6: Example of a disperser profile

#### 4.8 Collector

For each pipe of the current C-TS frame, the collector assembles its content by IU-wise reading the output of the Pipe\_Width\_Slots of the pipe, and multiplexing these IUs together.

To obtain the possibility of PL time slicing or a high degree of diversity even in case of high code rates and high pipe throughput, two modi are available to collect the IUs filling one pipe after the dispersers, depending on the parameter Regrouping\_Flag transmitted inside the signalling pipe:

- 1) Regrouping\_Flag = 0 (Regrouping off): See Figure 7. The collector multiplexes the disperser outputs with a granularity of one slot, i.e. it first reads all IU\_Per\_CW IUs from slot 0 (i.e. from the disperser associated with this slot), then it reads IU\_Per\_CW IUs from slot 1 etc. until slot number Pipe\_Width\_Slots 1. Then the considered pipe inside the current C-TS frame is complete. This option hence preserves the slot structure of the dispersers in the transmitted pipe.
- 2) Regrouping\_Flag = 1 (Regrouping on): See Figure 7. The collector multiplexes the disperser outputs with a granularity of one IU, i.e. it first reads the first IU from slot 0 (i.e. from the disperser associated with this slot), then it reads the first IU from slot 1 etc. until slot number Pipe\_Width\_Slots 1. Then it continues with the second IU of all Pipe\_Width\_Slots slots in the same way etc. When the last IU (number IU\_Per\_CW-1) has been read from slot number Pipe\_Width\_Slots 1, the considered pipe inside the current C-TS frame is complete. This option distributes the IUs of one slot maximally over the transmitted pipe. This option is therefore particularly suitable for enlarging the time diversity inside one transmitted codeword, when the disperser alone cannot provide a sufficiently high degree of time diversity (e.g. it disperses only over very few C-TS frames).

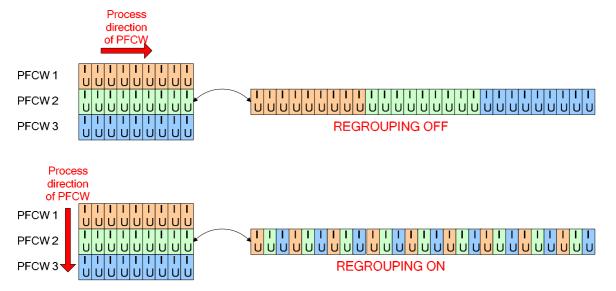



Figure 7: Demonstration of regrouping

## 4.9 C-TS multiplexer

The C-TS multiplex consists of Capacity Units (CU), where each of the CU consists of 2 048 C\_Chips. The partitioning of all available CUs of a C-TS frame into pipes is described in clause 4.10.2.

The current C-TS frame is assembled by concatenating the SOF preamble, the signalling pipe, and all payload pipes in the order 0, 1, 2 etc. If this concatenation does not fill a complete C-TS frame, then the remaining CUs are filled by zero-padding.

Figure 8 shows the sub-partitioning of a C-TS frame into its smaller units and into logical content.

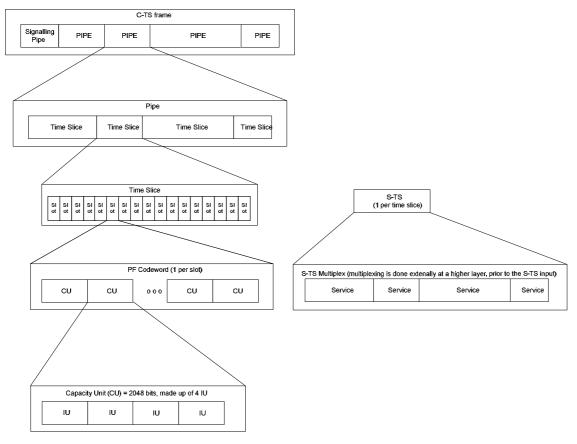



Figure 8: Overview on the C-TS multiplex

## 4.10 Configuration of the OPL

## 4.10.1 Signalling pipe

#### 4.10.1.1 Encoding and interleaving of signalling pipe

The infoword format of the signalling pipe is specified in Table 14. The infoword length is 762 bits. The signalling pipe uses a coderate of 1/5. The puncturing pattern Punct\_Pat\_ID = 0 used in the turbo encoder for the signalling pipe is defined in Table 7 and Table 8.

The codeword length of the signalling pipe is 3 840 codebits. The signalling pipe codeword is mixed in the mixer with the parameter CILM\_Inc = 61.

The signalling pipe is not dispersed, i.e. there is only one slot, the disperser profile is with delay 0 in all taps and Regrouping\_Flag = 0.

A Start-Of-Frame (SOF) preamble of length 256 bits is prepended, such that the concatenation of SOF preamble and the mixed codeword of the signalling pipe occupies exactly 2 CUs.

#### 4.10.1.2 SOF Preamble

The SOF preamble is defined as follows and transmitted row-wise with 0x53 being the first byte to be transmitted:

```
SOF = \{0x534f4620, 0x70726561, 0x6d626c65, 0x3a204e65, 0x7720432d, 0x54532066, 0x72616d65, 0xfffffffc\}
```

This represents the ASCII string "SOF preamble: New C-TS frame" plus four appended padding bytes, which equalize the number of zeros and ones in the SOF preamble. Otherwise, CUs filled with zeros could cause false detection.

In the sequence of C-TS frames, the SOF preamble is alternately transmitted in the format specified above and in bitwise inverted form, i.e. every bit value 0 is replaced by value 1 and vice versa. This alternation is a protection against repetitive patterns in the payload matching the SOF preamble by random.

## 4.10.1.3 Format of the signalling pipe infoword

Table 14: Signalling pipe infoword format

| Signalling pipe infoword format                         |                                       |                                                                                                                                                                                                             |  |  |  |
|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Contents                                                | No. of bits                           | Comments                                                                                                                                                                                                    |  |  |  |
| Parameters for the C-TS frame and pipe multiplex        | 56                                    | See Table 15 for further details.                                                                                                                                                                           |  |  |  |
| Individual parameters for pipe 1                        | 48                                    | See Table 16 for further details.                                                                                                                                                                           |  |  |  |
|                                                         |                                       |                                                                                                                                                                                                             |  |  |  |
| Individual parameters for pipe N-1                      | 48                                    | See Table 16 for further details.                                                                                                                                                                           |  |  |  |
| Individual parameters for pipe N (tail pipe)            | 16                                    | See Table 16b for further details.                                                                                                                                                                          |  |  |  |
| Individual parameters for S-TS 0                        | 16                                    | See Table 18 for further details.                                                                                                                                                                           |  |  |  |
|                                                         |                                       |                                                                                                                                                                                                             |  |  |  |
| Individual parameters for S-TS M                        | 16                                    | See Table 18 for further details.                                                                                                                                                                           |  |  |  |
| Individual parameters for disperser section 0 of pipe 1 | 12                                    | See Table 19 for further details.                                                                                                                                                                           |  |  |  |
|                                                         |                                       |                                                                                                                                                                                                             |  |  |  |
| Individual parameters for disperser section L of pipe 1 | 12                                    | See Table 19 for further details.                                                                                                                                                                           |  |  |  |
| Individual parameters for disperser section 0 of pipe 2 | 12                                    | See Table 19 for further details.                                                                                                                                                                           |  |  |  |
|                                                         |                                       |                                                                                                                                                                                                             |  |  |  |
| Individual parameters for disperser section K of pipe N | 12                                    | See Table 19 for further details.                                                                                                                                                                           |  |  |  |
| Zero-padding of the unused bits                         | 750 minus<br>sum of all bits<br>above | Need to be filled up with zeros to reach 750 bits.                                                                                                                                                          |  |  |  |
| Parity bits of CRC-12 code over preceding bits          | 12                                    | CRC over the complete 750 parameter bits and zero-padding (indicated with light grey background in the "No. of bits" column of this table); generator polynomial is $x^{12} + x^{11} + x^3 + x^2 + x + 1$ . |  |  |  |
| Total infoword length of signalling pipe                | 762                                   |                                                                                                                                                                                                             |  |  |  |

Table 15: Parameters for the C-TS frame and the pipe multiplex

|                       |                     | Parameters for the C-TS fram                                                                                                                                                             | e and the pipe     | multiple | ex                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start<br>bit<br>index | Parameter           | Description                                                                                                                                                                              | Wordsize<br>(bits) | Format   | Comments                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                     | Sig_Pipe_Ver        | Version number of the signalling pipe infoword format                                                                                                                                    | 4                  | U4       | Fixed to 0.                                                                                                                                                                                                                                                                                                                                                                                      |
| 4                     |                     | Indicator that this signalling pipe infoword contains the <i>next</i> pipe configuration (when a reconfiguration is approaching)                                                         | 1                  | U1       | This reconfiguration announcement is only used for the pipe multiplex. Reconfiguration of the S-TS scheduling inside the pipes are not announced, except when new S-TS are added to or removed from the C-TS mux. This flag is not necessarily active for all C-TS frames before a reconfiguration.                                                                                              |
| 5                     | Reconfig_Counter    | Countdown (in C-TS frames) until (a) the next pipe configuration becomes active or (b) a resynchronization needs to be carried out; if 0: no reconfiguration/resynchronization scheduled | 11                 | U11      | Announcement up to 2 047 frames in advance; i.e. over 14 minutes.                                                                                                                                                                                                                                                                                                                                |
| 16                    | Operator_ID         | Unique identifier for the network operator                                                                                                                                               | 8                  | U8       |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24                    | Resync_Flag         | Indicator that the Physical Layer<br>(IPL + OPL) must get ready for<br>resynchronization for this C-TS<br>multiplex                                                                      | 1                  | U1       | This flag is set, e.g. when a transmitter hand-over is imminent. The resynchronization shall be carried out when the Reconfig_Counter reaches 0.                                                                                                                                                                                                                                                 |
| 25                    | RFU                 |                                                                                                                                                                                          | 1                  |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                     | Cyclic index of the current C-TS Frame                                                                                                                                                   | 22                 |          | Is reset to 0 always at time 00:00 UTC. See note                                                                                                                                                                                                                                                                                                                                                 |
| 48                    | RFU                 |                                                                                                                                                                                          | 2                  |          |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 50                    |                     | Cyclic index of the current pipe configuration on this C-TS multiplex                                                                                                                    | 2                  | U2       | This index is meant as a help for the receiver to detect that its current pipe configuration is outdated and must be updated; whenever the configuration changes, this index is incremented by 1. Hence, the receiver only has to check these bits. This index does not reflect changes in the S-TS scheduling inside the pipes, except when new S-TS are added to or removed from the C-TS mux. |
| 52                    |                     | Number of pipes inside this C-TS multiplex minus 1                                                                                                                                       | 4                  | U4       | The number of pipes inside this C-TS mux is Num_Pipes_1 +1.                                                                                                                                                                                                                                                                                                                                      |
|                       | Total length for pa | rameters:                                                                                                                                                                                | 56                 |          |                                                                                                                                                                                                                                                                                                                                                                                                  |

Table 16: Individual parameters of each pipe

|                       |                                     | Individual param                                                                                                                                    | eters of ea        | ach pipe |                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start<br>bit<br>index | Parameter                           | Description                                                                                                                                         | Wordsize<br>(bits) | Format   | Comments                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0                     | Punct_Pat_ID                        | ID number of the Turbo code puncturing pattern                                                                                                      | 6                  | U6       | Supports many additional code rates and additional complementary puncturing patterns.                                                                                                                                                                                                                                                                                                                       |
| 6                     | Pipe_Width_CUs                      | Pipe width in CUs                                                                                                                                   | 10                 | U10      | CUs are used as the unit instead of slots in order to allow receivers to know the width of this pipe, even when Punct_Pat_ID is not known (upwards compatibility).                                                                                                                                                                                                                                          |
| 16                    | Num_STS_1                           | Number of S-TS inside this pipe minus 1                                                                                                             | 5                  | U5       | The number of S-TS inside this pipe is Num_STS_1 + 1.                                                                                                                                                                                                                                                                                                                                                       |
| 21                    | Num_Disperser_<br>Sections_1        | Number of disperser sections minus 1                                                                                                                | 3                  | U3       | The number of disperser sections is Num_Disperser_Sections_1 +1.                                                                                                                                                                                                                                                                                                                                            |
| 24                    | Disperser_Inv_<br>Flag              | Disperser inversion flag                                                                                                                            | 1                  |          | Disperser profile has inverted order.                                                                                                                                                                                                                                                                                                                                                                       |
| 25                    | Regrouping_Flag                     | Regrouping flag                                                                                                                                     | 1                  |          | 1: Regrouping on.                                                                                                                                                                                                                                                                                                                                                                                           |
| 26                    | Schedule_Period_<br>Countdown_Slots | The distance in (terms of slots) the first slot of this pipe in the current C-TS frame is away from the first slot of the next S-TS schedule period | 10                 | U10      | Schedule_Period_Countdown_Slots is 0 if a new S-TS schedule period starts in the first slot of this pipe in the current C-TS frame                                                                                                                                                                                                                                                                          |
| 36                    | Tap_Diff_Mult_Int_1                 | Integer multiplier (minus 1) for all tap lengths                                                                                                    | 4                  | U4       | The multiplier value Tap_Diff_Mult_Int is Tap_Diff_Mult_Int_1 + 1                                                                                                                                                                                                                                                                                                                                           |
| 40                    | Tap_Diff_Mult_<br>Fract_1_16        | Fractional multiplier (minus 0,0625) for all tap lengths                                                                                            | 4                  | U0.4     | The multiplier value Tap_Diff_Mult_Fract is Tap_Diff_Mult_Fract_1_16 + 0,0625 (note that the number format is with 4 fractional bits)                                                                                                                                                                                                                                                                       |
| 44                    | Schedule_Index                      | Cyclic index of the current<br>S-TS schedule<br>configuration in this pipe                                                                          | 4                  | U4       | This index is meant as a help for the receiver to detect that its current S-TS schedule configuration is outdated and must be updated; whenever the S-TS schedule configuration changes, this index is incremented by 1. Hence, the receiver only has to check these bits. This index is particularly useful in on-off channels with quickly changing schedule configurations (e.g. for Variable Bit Rate). |
|                       | Total length for para               | ameters:                                                                                                                                            | 48                 |          |                                                                                                                                                                                                                                                                                                                                                                                                             |

Table 17: Individual parameters of the tail pipe

|                        | Individual parameters of tail pipe: |                                                                                                          |                    |        |                                                                                                                                                                    |  |
|------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Start bit index offset | Parameter                           | Description                                                                                              | Wordsize<br>(bits) | Format | Comment                                                                                                                                                            |  |
| 0                      | Punct_Pat_ID                        | ID number of the Turbo code puncturing pattern                                                           | 6                  | U6     | Supports many additional code rates and additional complementary puncturing patterns.                                                                              |  |
| n n                    |                                     | Indicator that the start of this<br>pipe in the current C-TS<br>frame is also the start of a<br>codeword | 1                  | 1 11   | Is 1 whenever the pipe starts with a codeword start.                                                                                                               |  |
| 6                      | Pipe_Width_CUs                      | Pipe width in CUs                                                                                        | 9                  | U9     | CUs are used as the unit instead of slots in order to allow receivers to know the width of this pipe, even when Punct_Pat_ID is not known (upwards compatibility). |  |
|                        | Total length for p                  | arameters:                                                                                               | 16                 |        |                                                                                                                                                                    |  |

Table 18: Individual parameters for each S-TS

|                        | Individual parameters for each S-TS |                                                                        |                    |        |                                                                                                                                                   |  |  |
|------------------------|-------------------------------------|------------------------------------------------------------------------|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Start bit index offset | Parameter                           | Description                                                            | Wordsize<br>(bits) | Format | Comment                                                                                                                                           |  |  |
| 0                      | STS_ID                              | S-TS identifier                                                        | 8                  |        | This ID is unique in complete network of one operator; only if two C-TS muxes carry the same S-TS (i.e. same content), their STS_ID is identical. |  |  |
| 8                      | STS Width Slate 1                   | Width within one<br>schedule period of<br>the S-TS in slots<br>minus 1 | 8                  |        | The number of slots allocated to this S-TS within one schedule period of the pipe is STS_Width_Slots_1 +1.                                        |  |  |
| 16                     | RFU                                 |                                                                        | 0                  |        |                                                                                                                                                   |  |  |
|                        | Total length for parameters:        |                                                                        |                    | ·      |                                                                                                                                                   |  |  |

Table 19: Individual parameters for each disperser section

|                        | Individual parameters for each disperser section |                                                                                             |                    |        |                                                                                                                                                 |  |  |
|------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Start bit index offset | Parameter                                        | Description                                                                                 | Wordsize<br>(bits) | Format | Comment                                                                                                                                         |  |  |
| 0                      | Num_Taps_Div2_1                                  | Number of taps of this disperser section divided by 2 minus 1                               | 4                  | U4     | The number of taps of this disperser section is (Num_Taps_Div2_1 + 1) x 2.                                                                      |  |  |
| 4                      | Tap_Diff                                         | Tap length difference                                                                       | 3                  |        | This value is multiplied by Tap_Diff_Mult to find the tap length difference in terms of C-TS frames.                                            |  |  |
| 7                      | Gap_Width                                        | Gap between the first<br>tap of this section and<br>the last tap of the<br>previous section | 5                  | U4     | This gap is multiplied by Tap_Diff_Mult to find the gap width in terms of C-TS frames; this gap is always zero for the first disperser section. |  |  |
| 12                     | RFU                                              |                                                                                             | 0                  |        |                                                                                                                                                 |  |  |
|                        | Total length for par                             | ameters:                                                                                    | 12                 |        |                                                                                                                                                 |  |  |

NOTE: Frame\_Index: The Frame\_Index is always reset to 0 for the first C-TS frame, whose first symbol of the first CU can be received anywhere in the coverage area after and including time 00:00:00.0 UTC. Note that the maximum value of the Frame\_Index before the reset event is not always the same: on some days, leap seconds are introduced in UTC such that one such day lasts 24 hours plus 1 second. On these days, the Frame\_Index counts higher than on regular days.

Note that the time offset between the start of the first C-TS frame of a UTC day and the start of that day cannot always be kept constant, if the C-TS frame duration is not an integer divisor of one second. Therefore, this time offset necessarily changes on those days, when leap seconds are introduced. The above rules for resetting the Frame\_Index ensure only that each C-TS frame with Frame\_Index 0 has a time offset between 0 and the C-TS frame duration with respect to 00:00:00.0 UTC.

## 4.10.2 Partitioning of the C-TS multiplex

Every C-TS frame is partitioned with a granularity of 1 capacity unit (CU), i.e. 2 048 C\_Chips. For every configurable code rate, any payload pipe is always a multiple integer number of CUs wide. This is ensured by the processing of each pipe presented above. The concatenation of SOF preamble with the signalling pipe is always 2 CUs wide.

The number of pipes inside the C-TS multiplex is variable, and it is configured by the value Num\_Pipes, which can be calculated from the parameter Num\_Pipes\_1 inside the signalling pipe by:

```
Num_Pipes = Num_Pipes_1 + 1
```

Inside the signalling pipe, there is a list of Num\_Pipes elements directly after the parameters for the C-TS frame and pipe multiplex. Inside this list, referred to as the pipe parameter list, element i with i from 1 to Num\_Pipes states the parameters for payload pipe i.

The width of pipe i in terms of CUs is transmitted in the parameter Pipe\_Width\_CUs inside list element i. From this parameter, the width Pipe\_Width\_Slots of pipe i in terms of slots depends on the pipe's coderate and can be calculated as follows:

```
Pipe_Width_Slots = Pipe_Width_CUs / CU_Per_CW
```

The total number of CUs inside one C-TS frame depends on the IPL used.

#### 4.10.3 S-TS schedule and slot allocation

For defining the scheduling of S-TS inside a pipe, an ordered list of S-TS is read from the signalling pipe and evaluated as follows.

For pipe i with i from 1 to Num\_Pipes, the number Num\_STS[i] of S-TS transported inside this pipe is calculated from the parameter Num\_STS\_1 inside the i-th element of the pipe parameter list by:

```
Num_STS[i] = Num_STS_1 + 1
```

Inside the signalling pipe, there is a list of Total\_Num\_STS elements, with:

```
Total_Num_STS = Num_STS[1] + Num_STS[2] + ... + Num_STS[Num_Pipes]
```

This list is referred to as the S-TS parameter list, and it is stored inside the signalling pipe directly after the pipe parameter list. Inside the S-TS parameter list, element j with j from 0 to Total\_Num\_STS - 1 states the parameters for S-TS j.

The width STS\_Width\_Slots[j] of S-TS j in terms of slots is calculated from the parameter STS\_Width\_Slots\_1 inside the j-th element of the S-TS parameter list by:

```
STS_Width_Slots [j] = STS_Width_Slots _1 + 1
```

The mapping of S-TS to pipes, which they are transported over, are done in the following way: The first Num\_STS[1] S-TS are transported over pipe 1, the next Num\_STS[2] S-TS are transported over pipe 2 etc.

There are Num\_STS[i] S-TS's inside pipe i. Pipe i transports the S-TS M, M+1, ..., M + Num\_STS[i] - 1 with M representing Num\_STS[1] + ... Num\_STS[i-1].

Without regrouping, the time scheduling of these S-TS is to transport first  $STS\_Width\_Slots[M]$  slots of S-TS M, then  $STS\_Width\_Slots[M+1]$  slots of S-TS M+1 until finally  $STS\_Width\_Slots[M+Num\_STS[i]-1]$  slots of S-TS M+  $Num\_STS[i]-1$ . This sequence of S-TS - or their constituent slots, respectively, is called one schedule period. The length of the schedule period of pipe i in terms of slots inside pipe i is:

```
Schedule_Period_Length_Slots[i] = STS_Width_Slots[M] + STS_Width_Slots[M+1] + ...
+ STS_Width_Slots[M + Num_STS[i] - 1]
```

The schedule period is partitioned into C-TS frames by the width Pipe\_Width\_Slots of the pipe in terms of slots. The pipe's schedule period is periodically repeated over time.

For a specific C-TS frame, the above rule therefore defines the allocation of the available Pipe\_Width\_Slots slots of the considered pipe to the S-TS of that pipe. The slot allocation may vary from C-TS frame to C-TS frame, but it is periodic with the schedule period (in terms of C-TS frames):

```
Schedule_Period_Length_Frames[i] = Schedule_Period_Length_Slots[i] /
    Pipe_Width_Slots[i]
```

Synchronization to the current schedule period is possible by the value <code>Schedule\_Period\_Countdown\_Slots</code> transmitted inside the signalling pipe. This value announces the distance (in terms of slots of the considered pipe) of the first slot of the current C-TS frame to the first slot of the next schedule period. If both are identical, i.e. when the next schedule period starts in the first slot of the current C-TS frame, we have <code>Schedule\_Period\_Countdown\_Slots = 0</code>. From this value together with the known S-TS schedule and the corresponding <code>Schedule\_Period\_Length\_Slots value</code>, the position inside the current schedule period can be derived.

With regrouping, the slot allocation of the S-TS is the same as described above, but after the collector all slots belonging to the same pipe and C-TS frame are re-arranged as described in clause 4.8.

### 4.10.4 S-TS re-scheduling and slot re-allocation

When the schedule of existing S-TS inside one pipe is changed, i.e. when only the widths of the S-TS in the pipe are changed and no S-TS are added to or removed from the pipe and no other parameters like pipe width, code rate and disperser profile are changed, then this re-scheduling is not considered as a reconfiguration event, and it does not have any impact on other pipes. The re-scheduling event shall become effective at the start of a schedule period.

The S-TS schedule transmitted in the signalling pipe is always valid for the current schedule period. No advance signalling is envisaged here. If the previous schedule period ends within a C-TS frame, and the next schedule period starts in the same frame, the S-TS schedule announced in the signalling pipe of that frame is valid for the next schedule period. At the first C-TS frame of the schedule period, where the new S-TS schedule is used in the considered pipe, the parameter Schedule\_Index is incremented for this pipe.

#### 4.10.5 Birth/death of S-TS

When a new S-TS is added to or an existing S-TS is removed from a pipe, this event is signalled in the signalling pipe just like a pipe reconfiguration, that is, a pipe reconfiguration is announced using the parameters Reconfig\_Flag and Reconfig\_Counter, although the announcement can be on much shorter notice than for a pipe reconfiguration. Moreover, the parameters Schedule\_Index and Config\_Index are incremented.

Hence, the configuration of every pipe, including the parameter Num\_STS\_1 that links the S-TS in the S-TS parameter list to their associated pipes, has to be reread by the terminal, even if it is receiving and decoding a different pipe that is not affected by the addition or removal of an S-TS. If the pipe width, coderate, and disperser profile of the pipes do not change, the addition or removal of an S-TS is treated like an S-TS rescheduling, i.e. the pipe's slots are re-allocated for the C-TS frames inside a scheduling period. This re-scheduling event shall become effective at the start of a schedule period.

#### 4.10.6 S-TS ID

The S-TS identifier (ID) STS\_ID of S-TS j is stored inside the j-th element of the S-TS parameter list.

Over the total ensemble of C-TS multiplexes from one network operator (i.e. one unique Operator\_ID, that is transmitted inside the signalling pipe) all S-TS that carry the same S-TS ID also carry the same content. This is for example useful, if the same S-TS is transmitted over satellite and terrestrial. The network operator shall synchronize these S-TS in such a way that they can be diversity combined in the receivers.

Only the S-TS with STS\_ID = 0 plays a different role: this S-TS is C-TS specific and may not be diversity combined with other S-TS having STS\_ID = 0 (on other C-TS multiplexes), since it carries the configuration of the Service Layer for this C-TS multiplex.

### 4.10.7 Calculation of the disperser profile

The disperser profile of each pipe is calculated based on the parameters transmitted inside the signalling pipe:

From the parameter Num\_Disperser\_Sections\_1, the number of disperser sections Num\_Disperser\_Sections is calculated by:

```
Num_Disperser_Sections = Num_Disperser_Sections_1 + 1.
```

The integer tap length difference multiplier Tap Diff Mult Int is calculated by:

```
Tap_Diff_Mult_Int = Tap_Diff_Mult_Int_1 + 1,
```

where the parameter Tap\_Diff\_Mult\_Int\_1 is transmitted in the signalling pipe.

The fractional tap length difference multiplier Tap\_Diff\_Mult\_Fract is calculated by:

```
Tap_Diff_Mult_Fract = Tap_Diff_Mult_Fract_1_16 + 0,0625
```

Observe that the parameter Tap\_Diff\_Mult\_Fract\_1\_16 is transmitted inside in the signalling pipe in format U0.4 (i.e. with 4 fractional bits).

Inside the signalling pipe, there is a list of Total\_Num\_Disperser\_Sections elements, with:

```
Total_Num_Disperser_Sections = Num_ Disperser_Sections[1] +
   Num_ Disperser_Sections[2] + ... + Num_ Disperser_Sections[Num_Pipes]
```

This list is referred to as the disperser section parameter list, and it is stored inside the signalling pipe directly after the S-TS parameter list.

```
The disperser profile of pipe k comprises the disperser sections associated with elements M, M+1, ..., M + Num_Disperser_Sections [k] - 1 of the disperser section parameter list with M representing Num_Disperser_Sections [1] + ... Num_Disperser_Sections [k-1].
```

Note that the parameters inside the signalling pipe characterize the disperser profile to be used inside the *receiver*. The disperser profile of the transmitter can be calculated from these parameters in the following steps:

For each disperser section i from 0 to Num\_Disperser\_Sections - 1 of the considered pipe (do not confuse i, which is the number of the disperser section of the considered pipe, with the index of the corresponding element inside the disperser section parameter list), the following values are calculated from the respective parameter inside the signalling pipe:

The number of taps Num\_Taps[i] inside this disperser section i are calculated by:

```
Num_Taps[i] = (Num_Taps_Div2_1 + 1) \times 2
```

For each tap j from 0 to Num\_Taps[i] - 1 of disperser section i of the considered pipe, an intermediate length is calculated by:

```
Intermed_Len[i][j] = Intermed_Len[i-1][Num_Taps[i-1]-1] + ...
Gap_Width[i] + j × Tap_Diff[i]
```

For the first disperser section i = 0, the first two terms are dropped, i.e.

```
Intermed_Len[0][j] = j \times Tap_Diff[0]
```

The total number of taps over all disperser sections is always 32. The tap lengths Tap\_Len[i][j] in terms of C-TS frames are calculated from the intermediate lengths by:

```
Tap_Length[i][j] = Tap_Diff_Mult_Int x floor(Intermed_Len[i][j] x
...Tap_Diff_Mult_Fract),
```

where floor(x) represents rounding to the largest integer <= x. The maximum delay of all disperser taps is:

```
Max_Delay = Tap_Length[Num_Disperser_Sections-1][Num_Taps[Num_Disperser_Sections-1]-1].
```

When the tap lengths Tap\_Length[i][j] have been calculated for all disperser sections, they are handled as a single vector of 32 elements in the order taps 0 to Num\_Taps[0] -1 of disperser section 0, then taps 0 to Num\_Taps[1] - 1 of disperser section 1 etc.

These 32 elements are now re-ordered as follows: They are sequentially row-wise written into a 4 row by 8 column-matrix and column-wise read out.

For the case of an inverted disperser profile, i.e. if Disperser\_Inv\_Flag = 1, the re-ordered 32 element-vector is flipped, i.e. the element of index 0 is swapped with that of index 31, the element of index 1 is swapped with that of index 30 etc.

The vector of disperser tap delays Tap\_Delay\_Rec[k] with k from 0 to IU\_Per\_CW - 1, which is actually used in the disperser of the *receiver*, is gained from this re-ordered (and possibly flipped) 32 element vector by periodically repeating it, i.e. Tap\_Delay\_Rec[k] = Tap\_Delay\_Rec[k+32] for k from 0 to IU\_Per\_CW-33. Observe that IU\_Per\_CW need not be an integer multiple of 32, such that the last period of this repetition pattern remains possibly incomplete. If IU Per\_CW <= 32, there is no periodicity at all.

The vector of disperser tap delays Tap\_Delay[k] with k from 0 to IU\_Per\_CW - 1, which is used in the disperser of the transmitter, is calculated by

```
Tap_Delay[k] = Max_Delay - Tap_Delay_Rec[k].
```

Observe that the minimum of all Tap\_Delays[k] may be larger than zero for IU\_Per\_CW < 32 because of the above equation.

## 4.10.8 Configuration of the tail pipe

The last pipe (tail pipe) is configured by a special field inside the signalling pipe. It carries always only one S-TS, it has no dispersing, cannot be time-sliced and has not the restriction that the length is an integer multiple of codewords. This may lead to rotating codeword starts inside the pipe, which in turn needs a flag Codeword\_Align\_Flag for this inside parameters of this pipe.

## 4.10.9 Pipe reconfiguration

A pipe reconfiguration is a more complex process than an S-TS re-scheduling event or the birth/death of S-TS. A pipe reconfiguration is characterized by the change of any one of the following parameters in any pipe:

- Pipe width (i.e. parameter Pipe\_Width\_CUs).
- Code rate (i.e. parameter Punct\_Pat\_ID).
- Disperser profile (any of the parameters associated with the disperser, see clause 4.7).

A pipe reconfiguration is signalled in advance using the parameters Reconfig\_Flag and Reconfig\_Counter inside the signalling pipe.

Reconfig\_Counter counts down the number of C-TS frames until the reconfiguration takes place. The C-TS frame, at which this counter reaches the value zero, is the first one using the new configuration. If no reconfiguration is approaching, this counter remains zero.

Reconfig\_Flag = 1 signals that the parameters transmitted inside the signalling pipe of the current C-TS frame are those for the next configuration and not those for the current one. By this mechanism, the receiver is able to know the next configuration in advance and can prepare for the reconfiguration event.

Whenever the pipe configuration changes, the cyclic counter Config\_Index (parameter inside the signalling pipe) is incremented at the first C-TS frame using the new configuration.

Table 20 gives an overview over the three possible reconfiguration events.

Table 20: Possible reconfiguration events

|                                | S-TS re-scheduling                                                                                     | Birth/death of an S-TS                                                                                                                                     | Pipe reconfiguration                                                                                                                                                                                                             |
|--------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Characterization               | The slot allocation of an S-TS within a scheduling period changes.                                     | At least one S-TS is added to or removed from at least one pipe.                                                                                           | The QoS (throughput, error-protection, time-interleaving/end-to-end-delay) of a pipe changes.                                                                                                                                    |
| Affects                        | S-TS scheduling of a pipe.                                                                             | S-TS scheduling of a pipe.                                                                                                                                 | Configuration of a pipe.                                                                                                                                                                                                         |
| Changes inside signalling pipe | Only values of parameter STS_Width_Slots_1 change; structure of signalling pipe infoword is unchanged. | Parameter value Num_STS_1 changes and possibly length of S-TS parameter list changes (in this case the structure of the signalling pipe infoword changes). | Parameters Pipe_Width_CU, Punct_Pat_ID and/or the disperser-related parameters change; possibly the length of the disperser section parameter list changes (in this case the structure of the signalling pipe infoword changes). |
| Signalization                  | No advance signalling; event increments the parameter Schedule_Index in the concerned pipe.            | Advance Signalization as for pipe reconfiguration; event increments the parameters Schedule_Index in all pipes and Config_Index.                           | Advance Signalization by the parameters Reconfig_Flag and Reconfig_Counter; event increments the parameter Config_Index.                                                                                                         |

Disperser profile of pipe changes: The disperser profile is switched abruptly at the reconfiguration instant. The transmitter must in all cases keep the position of the latest IU, which remains non-delayed in the receiver, in the same grid after the reconfiguration event as it was before. The positions of all other IUs are changed abruptly at the reconfiguration event according to the new disperser profile. Following these rules, some transmitted codewords may have a lower number of transmitted IUs than IU\_Per\_CW (since some IUs are jumped over in positive time by the reconfiguration event and are not transmitted), whereas others may have a higher number (they are jumped over in negative time and are transmitted twice). This behaviour is illustrated in three examples in Figures 9, 10 and 11. The first two figures display codewords with 2 IUs, the third one a codeword with 3 IUs. IUs belonging to the old disperser profile are numbered e.g. 1a, whereas those of the new interleaver profile are numbered e.g. 1b. Hatched IUs are not transmitted.

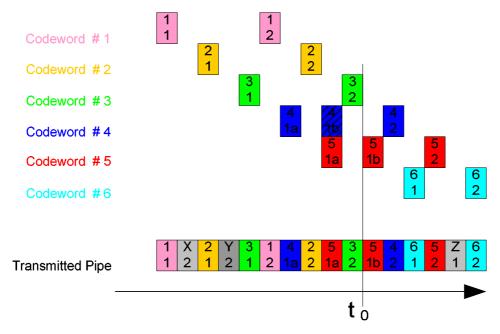



Figure 9: Shorter disperser delay after reconfiguration

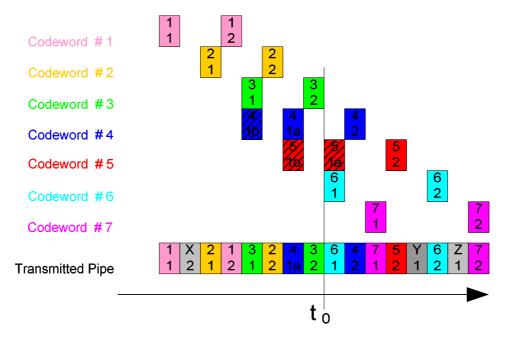



Figure 10: Longer disperser delay after reconfiguration

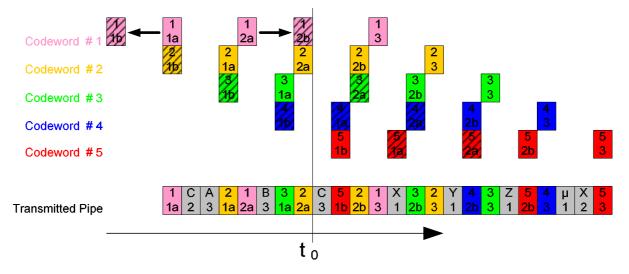



Figure 11: Other example of disperser reconfiguration

- Code rate of pipe changes:
  - Lower code rate after reconfiguration: IU\_Per\_CW increases, i.e. dispersers are extended, new taps are added after the existing taps; new taps are initialized with content zero; new coderate and disperser width become effective at reconfiguration instant (i.e. receiver can use lower coderate only after the end-to-end delays of the interleaver).
  - Higher code rate after reconfiguration: last taps are killed, new coderate and disperser width become effective before reconfiguration instant (that instant minus the interleaver's end-to-end delay); flushing of the dying taps is continued until the reconfiguration instant by feeding them with zero input, this is done in order to transmit the last valid IUs still contained in these taps; after the reconfiguration instant, the superfluous taps are dead and discarded.
- Throughput of S-TS changes (i.e. changing pipe width in case of constant code rate); this is a simple re-allocation/re-scheduling of the slots to all S-TS of the pipe:
  - If total throughput of pipe remains constant: no changes.
  - If total throughput of the pipe becomes higher: Pipe\_Width\_Slots increases; new slots are added after the existing slots of pipe and new dispersers are initialized with content zero, new slot allocation becomes effective at reconfiguration instant (i.e. receiver outputs higher throughput only after the end-to-end delays of the interleaver).
  - If total throughput of pipe becomes lower: Pipe\_Width\_Slots decreases; last slots are killed, new slot allocation becomes effective before reconfiguration instant (that instant minus the interleaver's end-to-end delay); flushing of the dying slots is continued until the reconfiguration instant by feeding them with zero input, this is done in order to transmit the last valid IUs still contained in these slots; after the reconfiguration instant, the superfluous slots are dead and discarded.

# Annex A (informative): Time slicing can be achieved on two layers

- Physical Layer: since each time slice is a one-to-one mapping of an S-TS, the PL can simply extract the desired S-TS ID from the C-TS multiplex and hand it over to the SL. Switching on and off of the analogue and digital components inside the PL is handled by the PL itself.
- Link Layer: this mode is not supported by the present document.

# Annex B (informative): Bibliography

ETSI TR 102 525: "Satellite Earth Stations and Systems (SES); Satellite Digital Radio (SDR) service; Functionalities, architecture and technologies, Technologies for the radio interface".

ETSI TS 102 551-1: "Satellite Earth Stations and Systems (SES); Satellite Digital Radio (SDR) Systems; Inner Physical Layer of the Radio Interface Part 1 - Single Carrier Transmission".

ETSI TS 102 551-2: "Satellite Earth Stations and Systems (SES); Satellite Digital Radio (SDR) Systems; Inner Physical Layer of the Radio Interface Part 2; Multiple Carrier Transmission".

3GPP2 C.S0002-D: "Physical Layer Standard for cdma2000 Spread Spectrum Systems, Release C". <a href="http://www.3gpp2.org/Public\_html/specs/C.S0002-D\_v2.0\_051006.pdf">http://www.3gpp2.org/Public\_html/specs/C.S0002-D\_v2.0\_051006.pdf</a>

ISO/IEC 13818-1: "Information Technology - Generic Coding of moving pictures and associated audio - Part 1: Systems".

# History

|        | Document history |             |  |  |  |  |
|--------|------------------|-------------|--|--|--|--|
| V1.1.1 | November 2006    | Publication |  |  |  |  |
| V1.2.1 | January 2007     | Publication |  |  |  |  |
|        |                  |             |  |  |  |  |
|        |                  |             |  |  |  |  |
|        |                  |             |  |  |  |  |