
ETSITS 102 250-2 V1.6.2 (2008-09)

Technical Specification

Speech Processing, Transmission and Quality Aspects (STQ); QoS aspects for popular services in GSM and 3G networks; Part 2: Definition of Quality of Service parameters and their computation

Reference

RTS/STQ-000135m

Keywords

3G, GSM, network, QoS, service, speech

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008. All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM, **TIPHON**TM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.

3GPP[™] is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

Intell	lectual Property Rights	17
Forev	word	17
Intro	oduction	18
1	Scope	19
2	References	19
2.1	Normative references	
2.2	Informative references	
3	Definitions and abbreviations	21
3.1	Definitions	
3.2	Abbreviations	
4	QoS Parameter Basics	25
4.1	General Overview.	25
4.2	FTP, HTTP and E-Mail Issues	25
4.2.1		
4.3	Timeouts	28
5	Service independent QoS Parameters	28
5.1	Radio Network Unavailability [%]	28
5.1.1	Abstract Definition	28
5.1.2	Abstract Equation	28
5.1.3	Trigger Points	28
5.2	Network Non-Accessibility [%]	
5.2.1		
5.2.2	1	
5.2.3		
5.3	Attach Failure Ratio [%]	
5.3.1		
5.3.2	1	
5.3.3		
5.4	Attach Setup Time [s]	
5.4.1 5.4.2		
5.4.2	1	
5.4.5 5.5	PDP Context Activation Failure Ratio [%]	
5.5.1		
5.5.2		
5.5.3		
5.6	PDP Context Activation Time [s]	
5.6.1		
5.6.2		
5.6.3	<u>.</u>	
5.7	PDP Context Cut-off Ratio [%]	
5.7.1		
5.7.2	Abstract Equation	33
5.7.3	Trigger Points	33
5.8	Data Call Access Failure Ratio [%]	34
5.8.1		
5.8.2	1	
5.8.3	66	
5.9	Data Call Access Time [s]	
5.9.1		
5.9.2	1	
5.9.3		
5.10	DNS Host Name Resolution Failure Ratio [%]	35

5.10.1	Abstract Definition	
5.10.2	Abstract Equation	
5.10.3	Trigger Points	
5.11	DNS Host Name Resolution Time [s]	
5.11.1	Abstract Definition	
5.11.2	Abstract Equation	
5.11.3	Trigger Points	36
6	Direct Services QoS Parameters	37
6.1	File Transfer (FTP)	
6.1.1	FTP {Download Upload} Service Non-Accessibility [%]	
6.1.1.1	Abstract Definition.	
6.1.1.2		
6.1.1.3	1	
6.1.2	FTP {Download Upload} Setup Time [s]	
6.1.2.1	Abstract Definition.	
6.1.2.2		
6.1.2.3	•	
6.1.3	FTP {Download Upload} IP-Service Access Failure Ratio [%]	
6.1.3.1	Abstract Definition.	
6.1.3.2		
6.1.3.3		
6.1.4	FTP {Download Upload} IP-Service Setup Time [s]	
6.1.4.1	Abstract Definition.	
6.1.4.2		
6.1.4.3	•	
6.1.5	FTP {Download Upload} Session Failure Ratio [%]	
6.1.5.1	Abstract Definition.	
6.1.5.2		
6.1.5.3		
6.1.6	FTP {Download Upload} Session Time [s]	
6.1.6.1	Abstract Definition	
6.1.6.2	Abstract Equation	41
6.1.6.3	Trigger Points	41
6.1.7	FTP {Download Upload} Mean Data Rate [kbit/s]	42
6.1.7.1	Abstract Definition	42
6.1.7.2	Abstract Equation	42
6.1.7.3	Trigger Points	42
6.1.8	FTP {Download Upload} Data Transfer Cut-off Ratio [%]	43
6.1.8.1	Abstract Definition	
6.1.8.2	1	
6.1.8.3	Trigger Points	43
6.2	Mobile Broadcast	43
6.2.1	Mobile Broadcast Network Non-Availability {Broadcast Bearer}	
6.2.1.1	Abstract Definition	
6.2.1.2	1	
6.2.1.3		
6.2.2	Mobile Broadcast Program Menu Non-Accessibility {Bootstrapping Bearer, ESG Retrieval Bearer}	
6.2.2.1	Abstract Definition	46
6.2.2.2		46
6.2.2.3		
6.2.3	Mobile Broadcast Program Menu Access Time {Bootstrapping Bearer, ESG Retrieval Bearer}	
6.2.3.1	Abstract Definition	
6.2.3.2	1	
6.2.3.3		
6.2.4	Mobile Broadcast Channel Non-Accessibility {Broadcast Bearer}	
6.2.4.1	Abstract Definition	
6.2.4.2		
6.2.4.3		
6.2.5	Mobile Broadcast Channel Access Time {Broadcast Bearer}	
6.2.5.1	Abstract Definition	
6252	Abstract Equation	48

6.2.5.3	Trigger Points	48
6.2.6	Mobile Broadcast Interactivity Response Failure Ratio {Mobile Network Bearer} {Broadcast	
	Bearer}	48
6.2.6.1	Abstract Definition	48
6.2.6.2	Abstract Equation	48
6.2.6.3	Trigger Points	49
6.2.7	Mobile Broadcast Interactivity Response Time {Mobile Network Bearer} {Broadcast Bearer}	49
6.2.7.1	Abstract Definition	49
6.2.7.2	Abstract Equation	49
6.2.7.3	Trigger Points	49
6.2.8	Mobile Broadcast Session Cut-off Ratio {Broadcast Bearer}	51
6.2.8.1	Abstract Definition	51
6.2.8.2	Abstract Equation	51
6.2.8.3	Trigger Points	51
6.2.9	Mobile Broadcast Service Integrity {Broadcast Bearer}	51
6.2.10	Mobile Broadcast Reproduction Soft Cut-off Ratio {Broadcast Bearer}	51
6.2.10.1	Abstract Definition	51
6.2.10.2	Abstract Equation	52
6.2.10.3	Trigger Points	52
6.2.11	Mobile Broadcast Reproduction Hard Cut-off Ratio {Broadcast Bearer}	52
6.2.11.1	Abstract Definition	52
6.2.11.2	Abstract Equation	52
6.2.11.3	Trigger Points	52
6.2.12	Mobile Broadcast Audio Quality {Broadcast Bearer}	
6.2.12.1	Abstract Definition	53
6.2.12.2	Abstract Equation	53
6.2.12.3	Trigger Points	53
6.2.13	Mobile Broadcast Video Quality {Broadcast Bearer}	53
6.2.13.1	Abstract Definition	53
6.2.13.2	Abstract Equation	53
6.2.13.3	Trigger Points	53
6.3	Ping	
6.3.1	Ping Round Trip Time [ms]	
6.3.1.1	Abstract Definition	
6.3.1.2	Abstract Equation	
6.3.1.3	Trigger Points	
6.4	Push to Talk over Cellular (PoC)	
6.4.1	Definitions	
6.4.2	Generic Signal Flow	
6.4.3	PoC Registration Failure Ratio [%]	
6.4.3.1	Abstract Definition	
6.4.3.2	Abstract Equation	
6.4.3.3	Trigger Points	
6.4.4	PoC Registration Time [s]	
6.4.4.1	Abstract Definition	
6.4.4.2	Abstract Equation	
6.4.4.3	Trigger Points	
6.4.5	PoC Publish Failure Ratio [%]	
6.4.5.1	Abstract Definition	
6.4.5.2	Abstract Equation	
6.4.5.3	Trigger Points	
6.4.6	PoC Publish Time [s]	
6.4.6.1	Abstract Equation	
6.4.6.2	Abstract Equation	
6.4.6.3	Trigger Points	
6.4.7	PoC Registration Failure Ratio (long) [%]	
6.4.7.1	Abstract Equation	
6.4.7.2	Abstract Equation	
6.4.7.3	Trigger Points	
6.4.8 6.4.8.1	PoC Registration Time (long) [s]	
0.4.8.1 6.4.8.2	Abstract Equation	02 62

6.4.8.3	Trigger Points	
6.4.9	PoC Session Initiation Failure Ratio (on-demand) [%]	63
6.4.9.1	Abstract Definition	63
6.4.9.2	Abstract Equation	63
6.4.9.3	Trigger Points	64
6.4.10	PoC Session Initiation Time (on-demand) [s]	64
6.4.10.1	Abstract Definition	64
6.4.10.2	Abstract Equation	64
6.4.10.3	Trigger Points	
6.4.11	PoC Session Media Parameters Negotiation Failure Ratio (pre-established) [%]	
6.4.11.1	Abstract Definition	
6.4.11.2	Abstract Equation	
6.4.11.3	Trigger Points	
6.4.12	PoC Session Media Parameters Negotiation Time (pre-established) [s]	
6.4.12.1	Abstract Definition	
6.4.12.2	Abstract Equation	
6.4.12.3	Trigger Points	
6.4.13	PoC Session Initiation Failure Ratio (pre-established) [%]	
6.4.13.1	Abstract Definition	
6.4.13.2	Abstract Equation	
6.4.13.3	Trigger Points	
6.4.14	PoC Session Initiation Time (pre-established) [s]	
6.4.14.1	Abstract Definition	
6.4.14.2 6.4.14.3	Abstract EquationTrigger Points	
6.4.14.3 6.4.15	PoC Session Setup Failure Ratio (on-demand) [%]	
6.4.15.1	Abstract Definition	
6.4.15.1	Abstract Equation	
6.4.15.3	Trigger Points	
6.4.16	PoC Session Setup Failure Ratio (pre-established) [%]	
6.4.16.1	Abstract Definition	
6.4.16.2	Abstract Equation	
6.4.16.3	Trigger Points	
6.4.17	PoC Session Setup Time [s]	
6.4.17.1	Abstract Definition:	72
6.4.17.2	Abstract Equation	
6.4.17.3	Trigger Points	
6.4.18	PoC Push to Speak Failure Ratio [%]	
6.4.18.1	Abstract Definition	
6.4.18.2	Abstract Equation	
6.4.18.3	Trigger Points	
6.4.19	PoC Push to Speak Time [s]	
6.4.19.1	Abstract Definition	
6.4.19.2	Abstract Equation	
6.4.19.3	Trigger Points	
6.4.20 6.4.20.1	PoC Session Leaving Failure Ratio (on-demand) [%]	
6.4.20.1	Abstract Equation	
6.4.20.3	Trigger Points	
6.4.21	PoC Session Leaving Time (on-demand) [s]	
6.4.21.1	Abstract Definition	
6.4.21.2	Abstract Equation	
6.4.21.3	Trigger Points	
6.4.22	PoC Session Leaving Failure Ratio (pre-established) [%]	
6.4.22.1	Abstract Definition	
6.4.22.2	Abstract Equation	
6.4.22.3	Trigger Points	
6.4.23	PoC Session Leaving Time (pre-established) [s]	
6.4.23.1	Abstract Definition	
6.4.23.2	Abstract Equation	
6.4.23.3	Trigger Points	
6.4.24	PoC Deregistration Failure Ratio [%]	77

6.4.24.1	Abstract Definition	77
6.4.24.2	Abstract Equation	78
6.4.24.3	Trigger Points	78
6.4.25	PoC Deregistration Time [s]	78
6.4.25.1	Abstract Definition	78
6.4.25.2	Abstract Equation	78
6.4.25.3	Trigger Points	79
6.4.26	PoC Busy Floor Response Failure Ratio [%]	79
6.4.26.1	Abstract Definition	79
6.4.26.2	Abstract Equation	79
6.4.26.3	Trigger Points	80
6.4.27	PoC Busy Floor Response Time [s]	80
6.4.27.1	Abstract Definition	80
6.4.27.2	Abstract Equation	80
6.4.27.3	Trigger Points	81
6.4.28	PoC Talk Burst Request Failure Ratio [%]	81
6.4.28.1	Abstract Definition	81
6.4.28.2	Abstract Equation	81
6.4.28.3	Trigger Points	81
6.4.29	PoC Talk Burst Request Time [s]	82
6.4.29.1	Abstract Definition	82
6.4.29.2	Abstract Equation	82
6.4.29.3	Trigger Points	82
6.4.30	PoC Talk Burst Cut-off Ratio [%]	82
6.4.30.1	Abstract Definition	82
6.4.30.2	Abstract Equation	83
6.4.30.3	Trigger Points	83
6.4.31	PoC Talk Burst Packet Drop Ratio [%]	
6.4.31.1	Abstract Definition	84
6.4.31.2	Abstract Equation	
6.4.31.3	Trigger Points	
6.4.32	PoC Voice Transmission Delay (first) [s]	84
6.4.32.1	Abstract Definition	
6.4.32.2	Abstract Equation	
6.4.32.3	Trigger Points	85
6.4.33	PoC Voice Transmission Delay (others) [s]	85
6.4.33.1	Abstract Definition	85
6.4.33.2	Abstract Equation	86
6.4.33.3	Trigger Points	86
6.4.34	PoC Speech Quality	86
6.4.35	Group Management QoS Parameter	86
6.4.36	Group Document related QoS Parameter	86
6.4.37	Instant Message QoS Parameter	86
6.5	Streaming Video	86
6.5.1	Definitions	
6.5.1.1	Streaming Session or Session	86
6.5.2	Prerequisites	
6.5.3	Streaming Scenarios	
6.5.3.1	Generic Streaming Signalling Flow	
6.5.3.2	Parameter Overview Chart	
6.5.4	Streaming Service Non-Accessibility [%]	88
6.5.4.1	Abstract Definition	
6.5.4.2	Abstract Equation	88
6.5.4.3	Trigger Points	88
6.5.5	Streaming Service Access Time [s]	
6.5.5.1	Abstract Definition	
6.5.5.2	Abstract Equation	
6.5.5.3	Trigger Points	
6.5.6	Streaming Reproduction Cut-off Ratio [%]	
6.5.6.1	Abstract Definition	
6.5.6.2	Abstract Equation	89
6563	Trigger Points	99

6.5.7	Streaming Audio Quality	
6.5.7.1	Abstract Definition	
6.5.7.2	Abstract Equation	90
6.5.7.3	Trigger Points	90
6.5.8	Streaming Video Quality	90
6.5.8.1	Abstract Definition	90
6.5.8.2	Abstract Equation	
6.5.8.3	Trigger Points	
6.5.9	Streaming Audio/Video De-Synchronization	
6.5.9.1	Abstract Definition	
6.5.9.2	Abstract Equation	
6.5.9.3	Trigger Points	
6.5.10	Streaming Reproduction Start Failure Ratio [%]	
6.5.10.1	Abstract Definition	
6.5.10.2	Abstract Equation	
6.5.10.2	Trigger Points	
6.5.11	Streaming Reproduction Start Delay [s]	
6.5.11.1	Abstract Definition	
6.5.11.2	Abstract Equation	
6.5.11.3	Trigger Points	
6.5.12	Teardown Failure Ratio [%]	
6.5.12.1	Abstract Definition	
6.5.12.2	Abstract Equation	
6.5.12.3	Trigger Points	
6.5.13	Teardown Time [s]	
6.5.13.1	Abstract Definition	
6.5.13.2	Abstract Equation	
6.5.13.3	Trigger Points	
6.5.14	Rebuffering Failure Ratio [%]	
6.5.14.1	Abstract Definition	93
6.5.14.2	Abstract Equation	93
6.5.14.3	Trigger Points	93
6.5.15	Rebuffering Time [s]	93
6.5.15.1	Abstract Definition	93
6.5.15.2	Abstract Equation	94
6.5.15.3	Trigger Points	94
6.6	Telephony	94
6.6.1	Telephony Service Non-Accessibility [%]	
6.6.1.1	Abstract Definition	
6.6.1.2	Abstract Equation	
6.6.1.3	Trigger Points	
6.6.2	Telephony Setup Time [s]	
6.6.2.1	Abstract Definition	
6.6.2.2	Abstract Equation	
6.6.2.3	Trigger Points	
6.6.3	Telephony Speech Quality on Call Basis	
6.6.3.1	Abstract Definition	
6.6.3.2	Abstract Equation	
6.6.3.3	Trigger Points	
	Telephony Speech Quality on Sample Basis	
6.6.4 6.6.4.1		
	Abstract Equation	
6.6.4.2	Abstract Equation	
6.6.4.3	Trigger Points	
6.6.5	Telephony Cut-off Call Ratio [%]	
6.6.5.1	Abstract Definition	
6.6.5.2	Abstract Equation	
6.6.5.3	Trigger Points	
6.7	Video Telephony	
6.7.1	Network Accessibility/Availability	
6.7.2	Parameter Overview Chart	
6.7.3	VT Service Non-Accessibility [%]	
6731	Abstract Definition	103

6.7.3.2	Abstract Equation	103
6.7.3.3	Trigger Points	
6.7.4	VT Service Access Time [s]	
6.7.4.1	Abstract Definition	
6.7.4.2	Abstract Equation	
6.7.4.3	Trigger Points	
6.7.5	VT Audio/Video Setup Failure Ratio [%]	
6.7.5.1	Abstract Definition	
6.7.5.2	Abstract Equation	
6.7.5.3	Trigger Points	
6.7.6	VT Audio/Video Setup Time [s]	
6.7.6.1	Abstract Definition	
6.7.6.2	Abstract Equation	
6.7.6.3	Trigger Points	
6.7.7	VT Cut-off Call Ratio [%]	
6.7.7.1	Abstract Definition	
6.7.7.2	Abstract Equation	
6.7.7.3	Trigger Points	
6.7.8	VT Speech Quality on Call Basis	
6.7.8.1	Abstract Definition	
6.7.8.2	Abstract Equation	
6.7.8.3	Trigger Points	
6.7.9	VT Speech Quality on Sample Basis	
6.7.9.1	Abstract Definition	
6.7.9.2	Abstract Equation	
6.7.9.3	Trigger Points	
6.7.10	VT Video Quality	
6.7.10.1	Abstract Definition	
6.7.10.2	Abstract Equation	
6.7.10.3	Trigger Points	
6.7.11	VT End-To-End Mean One-Way Transmission Time [s]	
6.7.11.1	Abstract Definition	
6.7.11.2	Abstract Equation	
6.7.11.3	Trigger Points	
6.7.12	VT Audio/Video Synchronization [%]	
6.7.12.1	Abstract Definition	
6.7.12.2	Abstract Equation	
6.7.12.3	Trigger Points	
6.7.13	Signalling Diagrams	
6.8	Web Browsing (HTTP)	
6.8.1	HTTP Service Non-Accessibility [%]	
6.8.1.1	Abstract Definition	
6.8.1.2	Abstract Equation	
6.8.1.3	Trigger Points	
6.8.2	HTTP Setup Time [s]	
6.8.2.1	Abstract Definition	
6.8.2.2	Abstract Equation	
6.8.2.3	Trigger Points	
6.8.3	HTTP IP-Service Access Failure Ratio [%]	
6.8.3.1	Abstract Definition	
6.8.3.2	Abstract Equation	
6.8.3.3	Trigger Points	
6.8.4	HTTP IP-Service Setup Time [s]	
6.8.4.1	Abstract Definition	
6.8.4.2	Abstract Equation	
6.8.4.3	Trigger Points	
6.8.5	HTTP Session Failure Ratio [%]	
6.8.5.1	Abstract Definition	
6.8.5.2	Abstract Equation	
6.8.5.3	Trigger Points	
6.8.6	HTTP Session Time [s]	
6861	Abstract Definition	118

6.8.6.2	Abstract Equation	118
6.8.6.3	Trigger Points	119
6.8.7	HTTP Mean Data Rate [kbit/s]	119
6.8.7.1	Abstract Definition.	119
6.8.7.2	Abstract Equation	119
6.8.7.3	Trigger Points	119
6.8.8	HTTP Data Transfer Cut-off Ratio [%]	
6.8.8.1	Abstract Definition	
6.8.8.2	Abstract Equation	
6.8.8.3	Trigger Points	
6.9	Web Radio	
6.9.1	General	
6.9.2	Preconditions	
6.9.3	Special remarks on Internet radio audio playback and buffering	
6.9.4	Transaction Definition from Customer's perspective	
6.9.5	Result Definition	
6.9.6	KPI Overview	
6.9.7	Web Radio EPG Retrieval Failure Ratio [%]	
6.9.7.1	Abstract Definition.	
6.9.7.2	Abstract Equation	
6.9.7.3	Trigger Points	
6.9.8	Web Radio EPG Retrieval Time [s]	
6.9.8.1	Abstract Definition	
6.9.8.2	Abstract Equation	
6.9.8.3	Trigger Points	
6.9.9	Web Radio Tune-in Failure Ratio [%]	
6.9.9.1	Abstract Definition	
6.9.9.2	Abstract Equation	
6.9.9.3	Trigger Points	
6.9.10	Web Radio Tune-in Time [s]	
6.9.10.1	Abstract Definition	
6.9.10.1	Abstract Equation	
6.9.10.3 6.9.11	Trigger Points	
	Web Radio Reproduction Set-up Failure Ratio [%]	
6.9.11.1 6.9.11.2	Abstract Definition	
	Abstract Equation	
6.9.11.3	Trigger Points	
6.9.12	Web Radio Reproduction Set-Up Time [s]	
6.9.12.1	Abstract Definition	
6.9.12.2	Abstract Equation	
6.9.12.3	Trigger Points	
6.9.13	Web Radio Reproduction Cut-off Ratio [%]	
6.9.13.1	Abstract Definition	
6.9.13.2	Abstract Equation	
6.9.13.3	Trigger Points	
6.9.14	Web Radio Audio Quality	
6.10	WLAN service provisioning with HTTP based authentication	
6.10.1	Generic Signal Flow	
6.10.2	WLAN Scan Failure Ratio [%]	
6.10.2.1	Abstract Definition	
6.10.2.2	Abstract Equation	
6.10.2.3	Trigger Points	
6.10.3	WLAN Time to Scan [s]	
6.10.3.1	Abstract Definition	
6.10.3.2	Abstract Equation	
6.10.3.3	Trigger Points	
6.10.4	WLAN PS Data Service Provisioning Failure Ratio [%]	
6.10.4.1	Abstract Definition	
6.10.4.2	Abstract Equation	
6.10.4.3	Trigger Points	
6.10.5	WLAN PS Data Service Provisioning Time [s]	
6.10.5.1	Abstract Definition	13(

6.10.5.2	Abstract Equation	130
6.10.5.3	Trigger Points	
6.10.6	WLAN Association Failure Ratio [%]	
6.10.6.1	Abstract Definition	
6.10.6.2	Abstract Equation	
6.10.6.3	Trigger Points	
6.10.7	WLAN Association Time [s]	
6.10.7.1	Abstract Definition	
6.10.7.2	Abstract Equation	
6.10.7.3	Trigger Points	
6.10.8	WLAN IP Address Allocation Failure Ratio [%]	
6.10.8.1	Abstract Definition	
6.10.8.2	Abstract Equation	
6.10.8.3	Trigger Points	
6.10.9	WLAN IP Address Allocation Time [s]	
6.10.9.1	Abstract Definition	
6.10.9.1	Abstract Equation	
6.10.9.3	Trigger Points	
	WLAN Landing Page Download Failure Ratio [%]	
6.10.10		
6.10.10.1	Abstract Equation	
6.10.10.2	Abstract Equation	
6.10.10.3	Trigger Points	
6.10.11	WLAN Landing Page Download Time [s]	
6.10.11.1	Abstract Definition	
6.10.11.2	Abstract Equation	
6.10.11.3	Trigger Points	
6.10.12	WLAN Landing Page Password Retrieval Failure Ratio [%]	
6.10.12.1	Abstract Definition	
6.10.12.2	Abstract Equation	
6.10.12.3	Trigger Points	
6.10.13	WLAN Landing Page Password Retrieval Time [s]	
6.10.13.1	Abstract Definition	
6.10.13.2	Abstract Equation	
6.10.13.3	Trigger Points	
6.10.14	WLAN Landing Page Authorization Failure Ratio [%]	
6.10.14.1	Abstract Definition	
6.10.14.2	Abstract Equation	
6.10.14.3	Trigger Points	
6.10.15	WLAN Landing Page Authorization Time [s]	
6.10.15.1	Abstract Definition	
6.10.15.2	Abstract Equation	
6.10.15.3	Trigger Points	
6.10.16	WLAN Re-accessibility Failure Ratio [%]	
6.10.16.1	Abstract Definition	
6.10.16.2	Abstract Equation	
6.10.16.3	Trigger Points	
6.10.17	WLAN Re-accessibility Time [s]	
6.10.17.1	Abstract Definition	
6.10.17.2	Abstract Equation	
6.10.17.3	Trigger Points	
6.10.18	WLAN Logout Page Download Failure Ratio [%]	138
6.10.18.1	Abstract Definition	
6.10.18.2	Abstract Equation	
6.10.18.3	Trigger Points	
6.10.19	WLAN Logout Page Download Time [s]	138
6.10.19.1	Abstract Definition	138
6.10.19.2	Abstract Equation	
6.10.19.3	Trigger Points	138
6.11	Wireless Application Protocol (WAP)	
6.11.1	WAP Activation Failure Ratio [%] (WAP 1.x only)	140
6.11.1.1	Abstract Definition	140
6 11 1 2	Abstract Equation	140

6.11.1.3	Trigger Points	
6.11.2	WAP Activation Time [s] (WAP 1.x only)	
6.11.2.1	Abstract Definition	140
6.11.2.2	Abstract Equation	141
6.11.2.3	Trigger Points	141
6.11.3	WAP {Page} IP Access Failure Ratio [%] (WAP 2.x only)	141
6.11.3.1	Abstract Definition	141
6.11.3.2	Abstract Equation	141
6.11.3.3	Trigger Points	
6.11.4	WAP {Page} IP Access Setup Time [s] (WAP 2.x only)	142
6.11.4.1	Abstract Definition	
6.11.4.2	Abstract Equation	
6.11.4.3	Trigger Points	
6.11.5	WAP {Page} Session Failure Ratio [%]	
6.11.5.1	Abstract Definition	
6.11.5.2	Abstract Equation	
6.11.5.3	Trigger Points	
6.11.6	WAP {Page} Session Time [s]	
6.11.6.1	Abstract Definition	
6.11.6.2	Abstract Equation	
6.11.6.3	Trigger Points	
6.11.7	WAP {Page} Request Failure Ratio [%]	
6.11.7.1 6.11.7.2	Abstract Definition	
	Abstract Equation	
6.11.7.3	Trigger Points	
6.11.8	WAP {Page} Request Time [s]	
6.11.8.1	Abstract Definition	
6.11.8.2	Abstract Equation	
6.11.8.3	Trigger Points	
6.11.9	WAP {Page} Mean Data Rate [kbit/s]	
6.11.9.1	Abstract Definition	
6.11.9.2	Abstract Equation	
6.11.9.3	Trigger Points	
6.11.10	WAP {Page} Data Transfer Cut-off Ratio [%]	
6.11.10.1	Abstract Definition	
6.11.10.2	Abstract Equation	
6.11.10.3	Trigger Points	
6.11.11	WAP {Page} Data Transfer Time [s]	
6.11.11.1	Abstract Definition	
6.11.11.2	Abstract Equation	
6.11.11.3	Trigger Points	146
7 Sto	ore and formered (C & E) Services Oos Deremeters	1.16
	ore-and-forward (S&F) Services QoS Parameters	
	Generic Store-and-forward Parameters	
7.1.1	Parameter Overview Chart	
7.1.2	{Service} Message Upload Failure Ratio [%]	
7.1.2.1	Abstract Definition	
7.1.2.2	Abstract Equation	
7.1.2.3	Trigger Points	
7.1.3	{Service} Message Upload Time [s]	
7.1.3.1	Abstract Definition	
7.1.3.2	Abstract Equation	
7.1.3.3	Trigger Points	
7.1.4	{Service} Message Upload Access Failure Ratio [%]	
7.1.4.1	Abstract Definition	
7.1.4.2	Abstract Equation	149
7.1.4.3	Trigger Points	
7.1.5	{Service} Message Upload Access Time [s]	150
7.1.5.1	Abstract Definition	150
7.1.5.2	Abstract Equation	
7.1.5.3	Trigger Points	
7.1.6	{Service} Message Upload Data Transfer Cut-off Ratio [%]	

7.1.6.1	Abstract Definition	150
7.1.6.2	Abstract Equation	150
7.1.6.3	Trigger Points	150
7.1.7	{Service} Message Upload Data Transfer Time [s]	150
7.1.7.1	Abstract Definition	
7.1.7.2	Abstract Equation	
7.1.7.3	Trigger Points	
7.1.8	{Service} Notification Start Failure Ratio [%]	
7.1.8.1	Abstract Definition.	
7.1.8.2	Abstract Equation	
7.1.8.3	Trigger Points	
7.1.9	{Service} Notification Start Time [s]	
7.1.9.1	Abstract Definition	
7.1.9.2	Abstract Equation	
7.1.9.3	Trigger Points	
7.1.9.3 7.1.10	{Service} Notification Download Failure Ratio [%]	
7.1.10 7.1.10.1	Abstract Definition	
7.1.10.1	Abstract Equation	
7.1.10.3	Trigger Points	
7.1.11	{Service} Notification Download Time [s]	
7.1.11.1	Abstract Definition	
7.1.11.2	Abstract Equation	
7.1.11.3	Trigger Points	
7.1.12	{Service} Notification Download Access Failure Ratio [%]	
7.1.12.1	Abstract Definition	
7.1.12.2	Abstract Equation	
7.1.12.3	Trigger Points	
7.1.13	{Service} Notification Download Access Time [s]	
7.1.13.1	Abstract Definition	
7.1.13.2	Abstract Equation	
7.1.13.3	Trigger Points	
7.1.14	{Service} Notification Data Transfer Cut-off Ratio [%]	
7.1.14.1	Abstract Definition	153
7.1.14.2	Abstract Equation	153
7.1.14.3	Trigger Points	153
7.1.15	{Service} Notification Data Transfer Time [s]	153
7.1.15.1	Abstract Definition	153
7.1.15.2	Abstract Equation	154
7.1.15.3	Trigger Points	154
7.1.16	{Service} Message Download Failure Ratio [%]	
7.1.16.1	Abstract Definition	
7.1.16.2	Abstract Equation	
7.1.16.3	Trigger Points	
7.1.17	{Service} Message Download Time [s]	
7.1.17.1	Abstract Definition	
7.1.17.2	Abstract Equation	
7.1.17.3	Trigger Points	
7.1.18	{Service} Message Download Access Failure Ratio [%]	
7.1.18.1	Abstract Definition	
7.1.18.2	Abstract Equation	
7.1.18.2	•	
	Trigger Points.	
7.1.19	{Service} Message Download Access Time [s]	
7.1.19.1	Abstract Equation	
7.1.19.2	Abstract Equation	
7.1.19.3	Trigger Points	
7.1.20	{Service} Message Download Data Transfer Cut-off Ratio [%]	
7.1.20.1	Abstract Definition	
7.1.20.2	Abstract Equation	
7.1.20.3	Trigger Points	
7.1.21	{Service} Message Download Data Transfer Time [s]	
7.1.21.1	Abstract Definition	
7.1.21.2	Abstract Equation	156

7.1.21.3	Trigger Points	156
7.1.22	{Service} Notification and Message Download Failure Ratio [%]	156
7.1.22.1	Abstract Definition	156
7.1.22.2	Abstract Equation	156
7.1.22.3	Trigger Points	156
7.1.23	{Service} Notification and Message Download Time [s]	156
7.1.23.1	Abstract Definition	156
7.1.23.2	Abstract Equation	157
7.1.23.3	Trigger Points	157
7.1.24	{Service} End-to-End Failure Ratio [%]	157
7.1.24.1	Abstract Definition	157
7.1.24.2	Abstract Equation	157
7.1.24.3	Trigger Points	157
7.1.25	{Service} End-to-End Time [s]	157
7.1.25.1	Abstract Definition	157
7.1.25.2	Abstract Equation	157
7.1.25.3	Trigger Points	157
7.2	E-Mail	158
7.2.1	Parameter Overview Chart	158
7.2.2	E-Mail {Download Upload} Service Non-Accessibility [%]	158
7.2.2.1	Abstract Definition	158
7.2.2.2	Abstract Equation	159
7.2.2.3	Trigger Points	159
7.2.3	E-Mail {Download Upload} Setup Time [s]	159
7.2.3.1	Abstract Definition	159
7.2.3.2	Abstract Equation	159
7.2.3.3	Trigger Points	
7.2.4	E-Mail {Download Upload} IP-Service Access Failure Ratio [%]	160
7.2.4.1	Abstract Definition	160
7.2.4.2	Abstract Equation	
7.2.4.3	Trigger Points	
7.2.5	E-Mail {Download Upload} IP-Service Setup Time [s]	
7.2.5.1	Abstract Definition	
7.2.5.2	Abstract Equation	
7.2.5.3	Trigger Points	
7.2.6	E-Mail {Download Upload} Session Failure Ratio [%]	
7.2.6.1	Abstract Definition	
7.2.6.2	Abstract Equation	
7.2.6.3	Trigger Points	
7.2.7	E-Mail {Download Upload} Session Time [s]	
7.2.7.1	Abstract Definition	
7.2.7.2	Abstract Equation	
7.2.7.3	Trigger Points	
7.2.8	E-Mail {Download Upload} Mean Data Rate [kbit/s]	
7.2.8.1	Abstract Definition	
7.2.8.2	Abstract Equation	
7.2.8.3	Trigger Points.	
7.2.9	E-Mail {Download Upload} Data Transfer Cut-off Ratio [%]	
7.2.9.1 7.2.9.2	Abstract Equation	
	Abstract Equation	
7.2.9.3 7.3	Trigger Points	
7.3 7.3.1		
7.3.1 7.3.2	Parameter Overview Chart	
7.3.2 7.3.2.1	Abstract Definition	
7.3.2.1 7.3.2.2	Abstract Equation	
7.3.2.2 7.3.2.3	Trigger Points	
7.3.2.3 7.3.3	MMS Retrieval Failure Ratio [%]	
7.3.3.1	Abstract Definition	
7.3.3.1	Abstract Equation	
7.3.3.2	Trigger Points	
7.3.3.3 7.3.4	MMS Send Time [s]	170

7.3.4.	1 Abstract Def	nition	170
7.3.4.	2 Abstract Equ	ation	170
7.3.4.		S	
7.3.5		Γime [s]	
7.3.5.		nition	
7.3.5. 7.3.5.	1	ations	
7.3.5. 7.3.6		on Failure Ratio [%]	
7.3.6. 7.3.6.		nition	
7.3.6.		ation	
7.3.6.	1	S	
7.3.7		on Time [s]	
7.3.7.	1 Abstract Def	nition	172
7.3.7.	2 Abstract Equ	ation	172
7.3.7.		S	
7.3.8		d Failure Ratio [%]	
7.3.8.		nition	
7.3.8. 7.3.8.	1	ation	
7.3.6. 7.3.9		sd Delivery Time [s]	
7.3.9. 7.3.9.		nition	
7.3.9.		ation	
7.3.9.	1	S	
7.4	22	ice (SMS)	
7.4.1	Parameter Overv	iew Chart	175
7.4.2		n-Accessibility MO [%]	
7.4.2.		nition	
7.4.2.	1	ation	
7.4.2.		S	
7.4.3 7.4.3.		ay MO [s]	
7.4.3. 7.4.3.		nitionation	
7.4.3. 7.4.3.	1	S	
7.4.4	20	n Failure Ratio [%]	
7.4.4.		nition	
7.4.4.		ation	
7.4.4.		S	
7.4.5		l Delivery Time [s]	
7.4.5.		nition	
7.4.5.		ation	
7.4.5.	3 Trigger Poin	S	179
Anno	ex A (informative):	Examples for measuring trigger points	181
Anno	ex B (informative):	Streaming explanations	182
B.1	Streaming Hyperlink	Description	182
Anno	ex C (informative):	Push to Talk over Cellular Information	183
C.1	Signal Grouping		187
C.2	PoC Service Registra	tion	189
C.3	PoC Publish		189
C.4	PoC Session Initiation	n, Originating Part	189
C.5	PoC Session Initiation	n, Terminating Part	191
C.6	Media Streaming		192
C.7	Talk Burst Request		193
C.8	Leaving PoC Session		193

C.9	Deregistration	1	94
Annex	x D (informative):	Bibliography1	95
Histor	v	1	96

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Speech Processing, Transmission and Quality Aspects (STQ).

The present document is part 2 of a multi-part deliverable covering the QoS aspects for popular services in GSM and 3G networks, as identified below:

- Part 1: "Identification of Quality of Service criteria";
- Part 2: "Definition of Quality of Service parameters and their computation";
- Part 3: "Typical procedures for Quality of Service measurement equipment";
- Part 4: "Requirements for Quality of Service measurement equipment";
- Part 5: "Definition of typical measurement profiles";
- Part 6: "Post processing and statistical methods".

Part 1 identifies QoS aspects for popular services in GSM and 3G networks. For each service chosen QoS indicators are listed. They are considered to be suitable for the quantitative characterization of the dominant technical QoS aspects as experienced from the end-customer perspective.

Part 2 defines QoS parameters and their computation for popular services in GSM and 3G networks. The technical QoS indicators, listed in part 1, are the basis for the parameter set chosen. The parameter definition is split into three parts:

- the abstract definition which contains a generic description of the parameter;
- the abstract equation; and
- the respective trigger points.

Only measurement methods not dependent on any infrastructure provided are described in the present document. The harmonized definitions given in the present document are considered as the prerequisites for comparison of QoS measurements and measurement results.

Part 3 describes typical procedures used for QoS measurements over GSM and 3G networks, along with settings and parameters for such measurements.

Part 4 defines the minimum requirements of QoS measurement equipment for GSM and 3G networks in the way that the values and trigger points needed to compute the QoS parameter as defined in part 2 can be measured following the procedures defined in part 3. Test equipment fulfilling the specified minimum requirements will allow to perform the proposed measurements in a reliable and reproducible way.

Part 5 specifies test profiles which are required to enable benchmarking of different GSM or 3G networks both within and outside national boundaries. These profiles are necessary for comparing "like-for-like" performance in case that a specific set of tests is carried out by different customers.

Part 6 describes procedures to be used for statistical calculations in the field of QoS measurement of GSM and 3G networks using probing systems.

Introduction

All the defined quality of service parameters and their computations are based on field measurements. This indicates that the measurements were made from customers point of view (full end-to-end perspective, taking into account the needs of testing).

It is assumed that the end customer can handle his mobile and the services he wants to use (operability is not evaluated at this time). For the purpose of measurement it is assumed:

- that the service is available and not barred for any reason;
- routing is defined correctly without errors; and
- the target subscriber equipment is ready to answer the call.

Speech quality values from completed speech quality samples measured should only be employed by calls ended successfully for statistical analysis if the parameter speech quality per call is reported.

However, measured values from calls ended unsuccessfully (e.g. dropped) should be available for additional evaluations (e.g. with the speech quality per sample parameter) and therefore must be stored.

Further preconditions may apply when reasonable.

1 Scope

The present document defines QoS parameters and their computation for popular services in GSM and 3G networks.

The technical QoS indicators, listed in TS 102 250-1 [4], are the basis for the parameter set chosen. The parameter definition is split into three parts:

- the abstract definition which contains a generic description of the parameter;
- the abstract equation; and
- the respective trigger points.

Only measurement methods not dependent on any infrastructure provided are described in the present document.

NOTE: Computation of certain parameters may vary depending on the respective cellular system, i.e. GSM or 3GPP specified 3G system. In this case respective notification is provided.

The harmonized definitions given in the present document are considered as the prerequisites for comparison of QoS measurements and measurement results.

Other standardization bodies, namely the CBMS group in the DVB Forum and the BCAST group in OMA, requested an approved document for QoS parameters in Mobile Broadcast to be used as a reference in their documents. Therefore, the parameters described below should be approved even if technical trigger points still can not be defined in most of the cases. This is due to missing stable specifications in the mentioned bodies. If these specifications are available, the information will be added to enhance the parameter definitions given in the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or non-specific.

- For a specific reference, subsequent revisions do not apply.
- Non-specific reference may be made only to a complete document or a part thereof and only in the following cases:
 - if it is accepted that it will be possible to use all future changes of the referenced document for the purposes of the referring document;
 - for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

For online referenced documents, information sufficient to identify and locate the source shall be provided. Preferably, the primary source of the referenced document should be cited, in order to ensure traceability. Furthermore, the reference should, as far as possible, remain valid for the expected life of the document. The reference shall include the method of access to the referenced document and the full network address, with the same punctuation and use of upper case and lower case letters.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.

2.1 Normative references

[20]

The following referenced documents are indispensable for the application of the present document. For dated references, only the edition cited applies. For non-specific references, the latest edition of the referenced document (including any amendments) applies.

ITU-T Recommendation P.862: "Perceptual evaluation of speech quality (PESQ): An objective [1] method for end-to-end speech quality assessment of narrowband telephone networks and speech [2] WAP-206-MMSCTR-20020115-a: "Wireless Application Protocol; Multimedia Messaging Service; Client Transactions Specification". [3] Void. ETSI TS 102 250-1: "Speech Processing, Transmission and Quality Aspects (STQ); QoS aspects [4] for popular services in GSM and 3G networks; Part 1: Identification of Quality of Service criteria". [5] ETSI TS 102 250-3: "Speech Processing, Transmission and Quality Aspects (STQ); QoS aspects for popular services in GSM and 3G networks; Part 3: Typical procedures for Quality of Service measurement equipment". ITU-R Recommendation BS.1387-1: "Method for objective measurements of perceived audio [6] quality". IETF RFC 3550 (2003): "RTP: A Transport Protocol for Real-Time Applications". [7] IETF RFC 2326 (1998): "Real Time Streaming Protocol (RTSP)". [8] [9] ITU-T Recommendation P.862.1: "Mapping function for transforming P.862 raw result scores to MOS-LQO". ETSI TS 124 008: "Digital cellular telecommunications system (Phase 2+): Universal Mobile [10] Telecommunications System (UMTS); Mobile radio interface Layer 3 specification; Core network protocols; Stage 3 (3GPP TS 24.008 Release 7)". [11] ETSI TS 145 008: "Digital cellular telecommunications system (Phase 2+); Radio subsystem link control (3GPP TS 45.008 Release 6)". [12] ETSI TS 129 002: "Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Mobile Application Part (MAP) specification (3GPP TS 29.002 Release 6)". ETSI TS 123 246: "Universal Mobile Telecommunications System (UMTS); Multimedia [13] Broadcast/Multicast Service (MBMS); Architecture and functional description (3GPP TS 23.246 Release 6)". [14] Push to talk over Cellular (PoC) - Architecture, OMA approved Version 1.0. [15] Push to talk over Cellular (PoC) - User Plane, OMA approved Version 1.0. Push to talk over Cellular (PoC) - Control Plane, OMA approved Version 1.0. [16] [17] IETF RFC 3903: "Session Initiation Protocol (SIP) Extension for Event State Publication". ITU-T Recommendation P.862.2: "Wideband extension to P.862 for the assessment of wideband [18] telephone networks and speech codecs". [19] ITU-T Recommendation P.862.3: "Application guide for objective quality measurement based on Recommendations P.862, P862.1 and P.862.2".

performance including dependability".

ITU-T Recommendation E.800: "Terms and definitions related to quality of service and network

[21]	ETSI TS 127 007: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
	Telecommunications System (UMTS); AT command set for User Equipment (UE)
	(3GPP TS 27.007)".

- [22] ETSI TS 125 304: "Universal Mobile Telecommunications System (UMTS); User Equipment (UE) procedures in idle mode and procedures for cell reselection in connected mode (3GPP TS 25.304)".
- [23] ITU-T Recommendation P.800.1: "Mean Opinion Score (MOS) terminology".
- [24] ETSI TS 127 005: "Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Use of Data Terminal Equipment Data Circuit terminating Equipment (DTE-DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)".

2.2 Informative references

The following referenced documents are not essential to the use of the present document but they assist the user with regard to a particular subject area. For non-specific references, the latest version of the referenced document (including any amendments) applies.

- [i.1] ETSI TS 102 250-5: "Speech Processing, Transmission and Quality Aspects (STQ); QoS aspects for popular services in GSM and 3G networks; Part 5: Definition of typical measurement profiles".
- [i.2] ETSI Directives.

NOTE: Available at http://portal.etsi.org/Directives/home.asp.

3 Definitions and abbreviations

3.1 Definitions

For all QoS parameter definitions within the present document, the second column of the trigger point table - "Trigger Points" (from customer's point of view) - is mandatory (if present) for all QoS parameter definitions. In the case that the measurement system is capable of tracking details presented in the third column - "Technical Description" - the specific points indicated are also mandatory.

For the purposes of the present document, the terms and definitions given in the ETSI Directives [i.2] and the following apply:

1-1 PoC session: feature enabling a PoC user to establish a PoC session with another PoC user

ad-hoc PoC group session: PoC session for multiple PoC users that does not involve the use or definition of a pre-arranged or chat PoC group

automatic answer: terminal accepts the invitation automatically if resources are available

bearer: resource in the broadcast transport system that allows the transmission of data to the terminal or from the terminal

NOTE: We distinguish between Broadcast Bearer and Mobile Network Bearer. The latter one is synonymously referred to as Interactivity Channel.

bootstrapping: mechanism where the broadcast signal is accessed for the first time within a service usage

NOTE: Parts of this procedure are the synchronization to the signal and its decoding so that afterwards a list of available channels is accessible and presented to the user.

bootstrapping bearer: bearer on which the bootstrapping procedure is executed

broadcast bearer: bearer supporting the broadcast service (e.g. DVB-H, MBMS, etc.)

NOTE: The broadcast signal is transmitted via this bearer.

chat PoC group: persistent group in which each member individually joins the PoC session i.e. the establishment of a PoC session to a chat PoC group does not result in other members of the chat PoC group being invited

chat PoC group session: PoC session established to a chat PoC group

confirmed indication: signalling message returned by the PoC server to confirm that the PoC server, all other network elements intermediary to the PoC server and a terminating terminal are able and willing to receive media

content: in case of a FTP session content is a file, in case of a HTTP session it is a web page and the content of an e-Mail session is the text of the e-Mail

ESG retrieval bearer: bearer which is used to retrieve the ESG information

last data packet: packet that is needed to complete the transmission of the content on the receiving side

NOTE: For FTP download, the last data packet contains a set TCP FIN flag bit.

manual answer: PoC user accepts the invitation manually

mobile broadcast service: end-to-end system for delivery of any types of digital content and services towards a mobile terminal using IP-based mechanisms

mobile network bearer: bearer provided by a mobile network operator (e.g. GSM, GPRS, UMTS, etc.) to establish interactivity within the Mobile Broadcast Service

on-demand session: PoC session set-up mechanism in which all media parameters are negotiated at PoC session establishment

NOTE: The on-demand sessions are defined by the OMA PoC specification as mandatory for PoC enabled user equipment, whereas pre-established sessions are defined as optional.

PoC session: established connection between PoC users where the users can communicate using voice one at a time

PoC user: user of the PoC service

pre-arranged PoC group session: persistent PoC session that has an associated set of PoC members

NOTE: The establishment of a PoCsSession to a pre-arranged PoC group results in inviting all members of the defined group.

pre-established session: SIP session established between the terminal and the PoC server that performs the participating PoC function

NOTE: The terminal establishes the pre-established session prior to making requests for PoC sessions to other PoC users.

service provider: operating company of a PLMN

service user: end customer who uses the services of a PLMN by means of a UE, e.g. a mobile phone or data card

talk burst: flow of media, e.g. some seconds of speech, from a terminal while that has the permission to send media

talk burst control: control mechanism that arbitrates requests from the terminals, for the right to send media

TBCP Talk Burst Granted: used by the PoC server to notify the terminal that it has been granted permission to send a talk burst

NOTE: See [14] for possible floor states.

TBCP Talk Burst Idle: used by the PoC server to notify all terminals that no one has the permission to send a talk burst at the moment and that it may accept the "TBCP Talk Burst Request" message

NOTE: See [14] for possible floor states.

TBCP Talk Burst Request: used by the terminal to request permission from the PoC server to send a talk burst

NOTE: See [14] for possible floor states.

terminal: shall be used when referring to a PoC enabled user equipment which is a user equipment implementing a PoC client

NOTE: See [13].

unconfirmed indication: indication returned by the PoC server to confirm that it is able to receive media and believes the terminal is able to accept media

NOTE: The PoC server sends the unconfirmed indication prior to determining that all egress elements are ready or even able to receive media.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

3G 3rd Generation

3GPP Third Generation Partnership Project

AAL2 Asynchronous Transfer Mode Adaptation Layer type 2

ACK Acknowledgement ACM Address Complete

ALCAP Access Link Control Application Protocol

Acknowledged Mode AM ANSwer Message **ANS** Access Point Name APN AT Command **ATtention Command** ATtention Dial ATD ATtention Dial Tone **ATDT CCCH** Common Control CHannel **CRLF** Carriage Return Line Feed

CS Circuit Switched

CUT PoC Session CUT-off (PoC)
DCCH Dedicated Control CHannel

DCE Data Circuit-terminating Equipment

DCH Data CHannel

DCH-FP Data CHannel Frame Protocol
DELAY Talk Burst DELAY (PoC)
DeREG PoC DeREGistration (PoC)
DLDT DownLink Direct Transfer
DNS Domain Name Service
DP Detection Point

DROP Talk Burst DROP (PoC)

DT Direct Transfer

FIN

DTE Data Terminal Equipment
EPG Electronic Program Guide
ESG Electronic Service Guide
FACH Forward Access CHannel

FTP File Transfer Protocol
GGSN Gateway GPRS Support Node
GMSC Gateway Mobile Switching Centre
GPRS General Packet Radio Service

TCP FINish flag

GSM Global System for Mobile communications

HLR Home Location Register
HTTP HyperText Transfer Protocol
IAM Initial Address Message

ICMP Internet Control Message Protocol

IMEI International Mobile Equipment Identification

INIT PoC Session INITiation

IP Internet Protocol ISUP ISDN User Part

IWMSC Inter Working Mobile Switching Centre

KPI Key Performance Indicator

L1 Layer 1 L3 Layer 3

LEAVE PoC Session LEAVing MB Mobile Broadcast

MBMS Multimedia Broadcast/Multicast Service

MGW Media GateWay

MMS Multimedia Messaging Service
MMSC Multimedia Messaging Service Centre

MO Mobile Originated MOS Mean Opinion Score

MOS-LQO Mean Opinion Score - Listening speech Quality Objective

MS Mobile Station

MSC Mobile Switching Centre
MT Mobile Terminated
NBAP Node B Application Part
OMA Open Mobile Alliance
PDP Packet Data Protocol

PEP Performance Enhancement Proxy
PLMN Public Land Mobile Network
PoC Push to talk over Cellular
POP3 Post Office Protocol version 3

PS Packet Switched
PtS Push to Speech
PUB PoC PUBlish
QoS Quality of Service
RAB Radio Access Bearer
RACH Random Access CHannel

RANAP Radio Access Network Application Protocol

RAS Remote Access Service REG long PoC REGistration and Publish

REG POC REGistration
REL Release Message

RNC Radio Network Controller
RRC Radio Resource Control
RTCP Real Time Control Protocol

RTP Real Time Protocol

RTSP Real Time Streaming Protocol

RX Reception

SCCP Signalling Connection Control Part
SDCCH Stand-alone Dedicated Control CHannel

SDP Session Description Protocol
SGSN Serving GPRS Support Node
SIP Session Initiation Protocol
SMS Short Message Service
SMSC Short Message Service Centre
SMTP Simple Mail Transfer Protocol

SpQ Speech Quality

SRTP Secure Real-time Transfer Protocol

SYN TCP SYNchronize flag
TBCP Talk Burst Control Protocol
TBF Temporary Block Flow
TCP Transmission Control Protocol

TCP-HS Transmission Control Protocol HandShake

TX Transmission

UDP User Datagram Protocol
UE User Equipment
ULDT UpLink Direct Transfer
UM Unacknowledged Mode

UMTS Universal Mobile Telecommunications System

VLR Visitor Location Register

VT Video Telephony

WAP Wireless Application Protocol

WCDMA Wideband Code Division Multiple Access

WGR WAP Get Request
WSP Wireless Session Protocol
WTP Wireless Transport Protocol

4 QoS Parameter Basics

4.1 General Overview

Figure 1 shows a model for quality of service parameters. This model has four layers.

The first layer is the Network Availability, which defines QoS rather from the viewpoint of the service provider than the service user. The second layer is the Network Access. From the service user's point of view this is the basic requirement for all the other QoS aspects and parameters. The third layer contains the other three QoS aspects Service Access, Service Integrity and Service Retainability. The different services are located in the fourth layer. Their outcome are the QoS parameters.

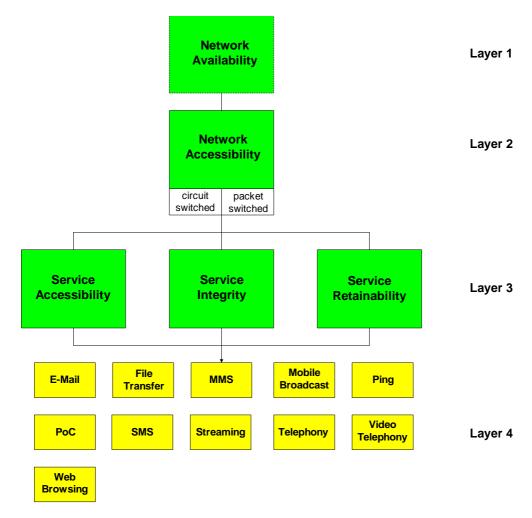


Figure 1: QoS aspects and the corresponding QoS parameters

4.2 FTP, HTTP and E-Mail Issues

Currently two main views about the best way to reflect the user's experience for these services are in place:

- One preferring the payload throughput philosophy and the other preferring the transaction throughput philosophy:
 - Method A defines trigger points which are as independent as possible from the service used, therefore representing a more generic view (payload throughput).
 - Method B defines trigger points on application layer, therefore representing a more service oriented view (transaction throughput).

An example of the different trigger points defined for each set is illustrated in figures 2 and 3. The start trigger point for the Mean Data Rate for Web browsing is either the reception of the first packet containing data content (Method A) or the sending of the HTTP GET command (Method B).

A field test system compliant to the present document shall measure both sets (Method A and B) of QoS indicators using commercial UEs.

In addition a set of technical QoS indicators is defined that covers the attach and PDP context activation procedure. Field test systems shall be able to measure these QoS indicators.

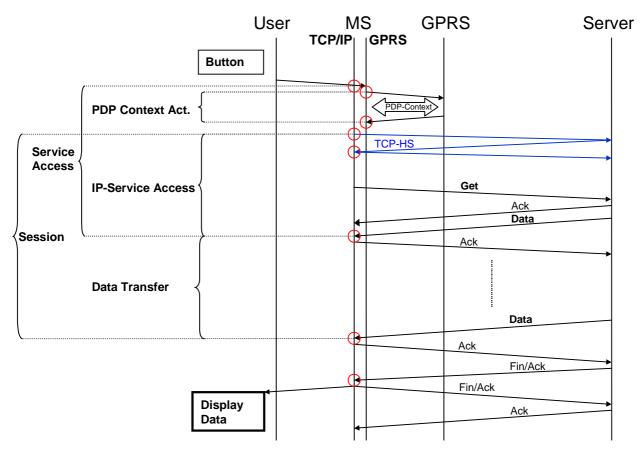


Figure 2: Key Performance Indicators Version A (example: HTTP via GPRS)

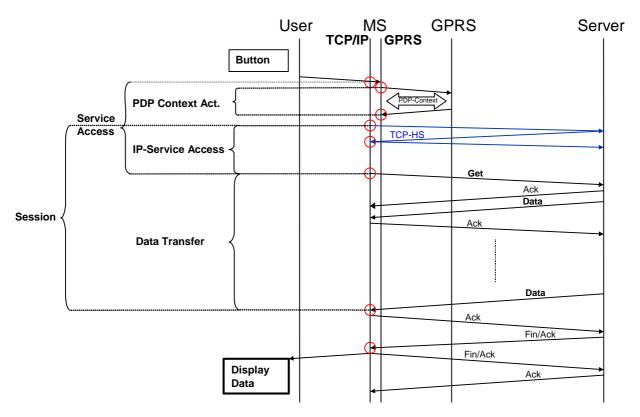


Figure 3: Key Performance Indicators Version B (Example: HTTP via GPRS)

4.2.1 Performance Enhancement Proxies

Performance Enhancement Proxies (PEP, also called accelerators) are network elements employed to improve the performance of the data services offered by the mobile operator. To achieve this goal such proxies typically employ different techniques:

- Content filtering (elimination of content of a certain type, e.g. audio files).
- Lossless content compression (e.g. compression of HTML or other text like files).
- Lossy content compression (e.g. recalculation of JPG files to a lower colour deepness or resolution of detail richness).
- Protocol optimization (e.g. for HTTP, POP3).

By these means PEPs achieve a reduction of the amount of data transferred from or to the end-user and thus a reduction of the transfer time. Some of these techniques will have an impact on content integrity and/or on the content quality as perceived by the end-user.

The following guidelines apply whenever Performance Enhancement Proxies are employed:

- When reporting mean data rates it shall be observed that the actual amount of transferred user data (rather than the original amount of hosted data) is used for calculations.
- When reporting session times it is recommended that an indication of the impact of the enhancement techniques on the content quality is given e.g. the content compression ratio (amount of received and uncompressed data divided by the amount of originally hosted data).

4.3 Timeouts

In day-to-day testing it is necessary to define timeout values for specific service transactions as testing time is a limited resource. These timeouts have a direct impact on the respective QoS parameters. A small timeout value for instance will result in higher failure ratio parameters while a large timeout value will lead to lower throughput rates and transfer times.

With respect to this document an expired timeout means that the stop trigger point given in the definition of the QoS parameter definition was not reached.

For more information on detailed timeout values for specific services please refer to TS 102 250-5 [i.1].

5 Service independent QoS Parameters

5.1 Radio Network Unavailability [%]

5.1.1 Abstract Definition

Probability that the mobile services are not offered to a user.

5.1.2 Abstract Equation

Radio Network Unavailability [%] =
$$\frac{\text{probing attempts with mobile services not available}}{\text{all probing attempts}} \times 100$$

5.1.3 Trigger Points

GSM:

Event from abstract equation	Trigger point from customer's point of view	Technical condition
Probing attempt	Not applicable.	Check C1-Criteria.
Mobile services available		GSM: C1-Criteria > 0. Any emergency camping on any other than the target networks is considered as no network.
Mobile services not available	Technical condition not met.	

GPRS:

Event from abstract equation	Trigger point from customer's point of view	Technical condition
Probing attempt	Not applicable.	Check GRPS specific signalling contained within System Information 3.
Mobile service available	Not applicable.	Specific signalling contained in System Information 3 exists on cell selection.
Mobile service not available	Technical condition not met.	

UMTS (WCDMA):

Event from abstract equation	Trigger point from customer's point of view	Technical condition
Probing attempt	Not applicable.	Check S-Criteria.
Mobile services available		WCDMA: S-Criteria satisfied. Any emergency camping on any other than the target networks is considered as no network.
Mobile services not available	Technical condition not met.	

- NOTE 1: For information on how the C1-criteria is defined please refer to TS 145 008 [11].
- NOTE 2: For information on how the S-criteria is defined please refer to TS 125 304 [22].
- NOTE 3: When the test mobile operates in dual-mode (GSM/UMTS) than the judgement on Radio Network Unavailability is made with respect to the radio access technology in which the test device is at the moment of the check.
- NOTE 4: The target networks could constitute of more than one network, e.g. to cover national or international roaming.

5.2 Network Non-Accessibility [%]

5.2.1 Abstract Definition

Probability that the user cannot perform a successful registration on the PLMN.

5.2.2 Abstract Equation

Network Non - Accessibility [%] =
$$\frac{\text{unsuccessful registrations on the PLMN}}{\text{all registration attempts}} \times 100$$

5.2.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Registration attempt	Start: User turns UE on.	Start: Not assignable.
Successful registration	. ,	Stop: "AT+CREG?" returns the value "1" for <stat> (CS), "AT+CGREG?" returns the value "1" for <stat> (PS).</stat></stat>
Unsuccessful registration	Stop trigger point not reached.	

- NOTE 1: The AT command "AT+CREG?" will return the value "1" for <stat> if the UE is registered on the home network, both for GSM and UMTS, i.e. it cannot differentiate if the UE is registered to GSM or UMTS (see TS 127 007 [21]). Conform to this behaviour "AT+CGREG?" returns the value "1" for <stat> if the UE is registered either to GPRS or UMTS.
- NOTE 2: AT+CREG? and AT+CGREG? both return the access technology (<AcT>) selected by the UE when the unsolicited result code mode is enabled (<n>=2). In this case the value returned for <AcT> is "0" for GSM and "2" for UMTS.

5.3 Attach Failure Ratio [%]

5.3.1 Abstract Definition

The attach failure ratio describes the probability that a subscriber cannot attach to the PS network.

5.3.2 Abstract Equation

Attach Failure Ratio [%] =
$$\frac{\text{unsuccessful attach attempts}}{\text{all attach attempts}} \times 100$$

5.3.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Attach attempt	Start: Customer turns the UE on.	Start: UE sends the attach request message.
	Stop: Attach logo appears in the display of the UE.	Stop: UE receives the attach accept message.
Unsuccessful attach	Stop trigger point not reached.	

Remarks:

• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the attach failure ratio. The chosen trigger points must be as close as possible to the lower layer events. The following example provides a possible solution.

If the mobile fulfils TS 127 007 [21] then the following method (via AT interface) can be used for measuring the attach failure ratio:

- Start trigger: AT+CGATT = 1 ordered via the AT interface when the mobile is in detached state (use AT+CGATT? to check the state);
- Stop trigger: Any answer received from the mobile or timeout occurred. OK answer handled as a positive answer, any other as a negative one.
- GPRS: Indicator will only be updated by event (a loss of SI13 signalling or a coverage hole will not be detected if no attach, routing area update or TBF request is initiated).
- It might occur that the mobile station sends more than one attach request towards the SGSN, since retries are necessary. A maximum of four retries are possible (timer T3310 expires after 15 seconds for each attempt, see TS 124 008 [10]). Therefore the timeout interval for the attach procedure is 75 seconds, i.e. if the attach procedure was not completed after 75 seconds it is considered as failure.

These retries should not have impact on the attach failure ratio, since only one attach request message should be counted in the calculation.

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1).

5.4 Attach Setup Time [s]

5.4.1 Abstract Definition

This attach setup time describes the time period needed to attach to the PS network.

5.4.2 Abstract Equation

Attach Setup Time
$$[s] = (t_{attach complete} - t_{attach request})[s]$$

Remarks:

• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the attach setup time. The chosen trigger points must be as close as possible to the lower layer events. The following example provides a possible solution.

If the mobile fulfils TS 127 007 [21] then the following method (via AT interface) can be used for measuring the attach setup time:

- Start trigger: AT+CGATT = 1 ordered via the AT interface when the mobile is in detached state (use AT+CGATT? to check the state);
- Stop trigger: Any answer received from the mobile or timeout occurred. OK answer handled as a positive answer, any other as a negative one. If a positive answer is received the time period can be calculated.
- The difference between an attach of a known subscriber and an unknown subscriber will be reflected in the time period indicating the attach setup time. In case of an unknown subscriber (meaning that the SGSN has changed since the detach, or if it is the very first attach of the mobile to the network), the SGSN contacts the HLR in order to receive the subscriber data. The attach setup time of an unknown subscriber will be slightly longer than the one of a known subscriber.
- While determining the average attach setup time only successful attach attempts are included in the calculations.
- The PS bearer has to be active in the cell used by a subscriber (see clause 5.1).

5.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{attach request:} Time of attach request		Start: Point of time when the UE sends the attach request message.
	Stop: Attach logo appears in the display of the UE.	Stop: Point of time when the UE receives the attach accept message.

5.5 PDP Context Activation Failure Ratio [%]

5.5.1 Abstract Definition

The PDP context activation failure ratio denotes the probability that the PDP context cannot be activated. It is the proportion of unsuccessful PDP context activation attempts and the total number of PDP context activation attempts.

5.5.2 Abstract Equation

PDP Context Activation Failure Ratio [%] = $\frac{\text{unsuccessful PDP context activation attempts}}{\text{all PDP context activation attempts}} \times 100$

5.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Service access attempt	Start: Customer initiates the	Start: UE sends the first "Activate PDP context
	service access.	Request" message (Layer 3).
Successful attempt	Stop: PDP context logo appears in	Stop: UE receives the "Activate PDP context
·	the display of the UE.	Accept" message (Layer 3).
Unsuccessful attempt	Stop trigger point not reached.	

Remarks:

• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the PDP context activation failure ratio. The chosen trigger points must be as close as possible to the lower layer events. The following example provides a possible solution.

If the mobile fulfils TS 127 007 [21] and if no authentification is needed to activate the PDP context then the following method (via AT interface) can be used for measuring the PDP context activation failure ratio:

- Start trigger: AT+CGACT = 1,1 ordered via the AT interface when the mobile has no active context using the selected APN (use AT+CGACT? to check the state);
- Stop trigger: Any answer received from the mobile or timeout occurred. OK answer handled as a positive answer, any other as a negative one. If a positive answer is received the time period can be calculated.

The PDP context should be defined with the AT+CGDCONT command.

- It might occur that the mobile station sends more than one PDP context activation request towards the SGSN, since retries are necessary. A maximum of four retries are possible (timer T3380 expires after 30 seconds for each attempt, see TS 124 008 [10]). Therefore the timeout interval for the PDP context activation procedure is 150 seconds, i.e. if the PDP context activation procedure was not completed after 150 seconds it is considered as failure.
- These retries should not have impact on the activation failure ratio, since only one PDP context activation request message should be counted in the calculation.
- The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3).

5.6 PDP Context Activation Time [s]

5.6.1 Abstract Definition

This parameter describes the time period needed for activating the PDP context.

5.6.2 Abstract Equation

PDP Context Activation Time [s] =
$$(t_{PDP context activation accept} - t_{PDP context activation request})[s]$$

Remarks:

• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the PDP context activation time. The chosen trigger points must be as close as possible to the lower layer events. The following example provides a possible solution.

If the mobile fulfils TS 127 007 [21] and if no authentification is needed to activate the PDP context then the following method (via AT interface) can be used for measuring the PDP context activation time:

- Start trigger: AT+CGACT = 1,1 ordered via the AT interface when the mobile has no active context using the selected APN (use AT+CGACT? to check the state);
- Stop trigger: Any answer received from the mobile or timeout occurred. OK answer handled as a positive answer, any other as a negative one. If a positive answer is received the time period can be calculated.

The PDP context should be defined with the AT+CGDCONT command.

- While determining the average PDP context activation time only successful activation attempts are included in the calculations.
- The PDP context activation time should be determined per service, since the service might have impact on the actual activation time, e.g. different Access Point Names (APNs) for WAP.
- The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3).

5.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{PDP context activation request} : Time of PDP context activation request		Start: Point of time when the UE sends the "Activate PDP context Request" message (Layer 3).
t _{PDP context activation accept} : Time when PDP context activation complete	Stop: PDP context logo appears in the display of the UE.	Stop: Point of time when the UE receives the "Activate PDP context Accept" message (Layer 3).

5.7 PDP Context Cut-off Ratio [%]

5.7.1 Abstract Definition

The PDP context cut-off ratio denotes the probability that a PDP context is deactivated without being initiated intentionally by the user.

5.7.2 Abstract Equation

PDP Context Cut - off Ratio [%] =
$$\frac{\text{PDP context losses not initiated by the user}}{\text{all successfully activated PDP contexts}} \times 100$$

5.7.3 Trigger Points

Different trigger points for a PDP context deactivation not initiated intentionally by the user are possible: SGSN failure or GGSN failure on which the PDP context will be deactivated by the SGSN or GGSN.

Remark:

Precondition for measuring this parameter is that a PDP context was successfully established first.

5.8 Data Call Access Failure Ratio [%]

5.8.1 Abstract Definition

A subscriber (A-party) wants to take advantage of a given service offering (as shown by the network ID in the display of his user equipment) and establish a data call to a B-party. The failure of the data call access from initiating the data call to alerting or a busy signal is covered by this parameter.

5.8.2 Abstract Equation

Data Call Access Failure Ratio [%] =
$$\frac{\text{unsuccessful data call accesses}}{\text{all data call access attempts}} \times 100$$

5.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Data call access attempt	Start: CONNECT button is pressed.	Start: A CHANNEL_REQUEST message is sent over the RACH.
Successful data call access	Stop: Alert or busy signal occurs/connection established.	Stop: Reception of CONNECT ACK at the A-party.
Unsuccessful data call access	Stop trigger point not reached.	

Remark:

• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the data call access failure ratio. The chosen trigger points must be as close as possible to the lower layer events. The following example provides a possible solution.

If the mobile fulfils TS 127 007 [21] then the following method (via AT interface) can be used for measuring the data call access failure ratio:

- Start trigger: ATD + dial number (MSISDN) ordered via the AT interface when there is no ongoing call;
- Stop trigger: Any answer received from the mobile or timeout occurred. CONNECT answer handled as a positive answer, any other as a negative one. AT+CEER command can be used to read out the error cause.

5.9 Data Call Access Time [s]

5.9.1 Abstract Definition

A subscriber (A-party) wants to take advantage of a given service offering (as shown by the network ID in the display of his user equipment) and establish a data call to a B-party. The time elapsing from initiating the data call to alerting or a busy signal is covered by this parameter. This parameter is not calculated unless the call attempt is successful and not cut off beforehand.

5.9.2 Abstract Equation

Data Call Access Time [s] =
$$(t_{\text{successful call access}} - t_{\text{initiation of data call}})$$
[s]

5.9.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{initiation of data call} : Time of initiation of data call		Start: A CHANNEL_REQUEST message is sent over the RACH.
t _{Psuccessful call access} : Time of successful data call access		Stop: Reception of CONNECT ACK at the A-party.

Remark:

• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the data call access time. The chosen trigger points must be as close as possible to the lower layer events. The following example provides a possible solution.

If the mobile fulfils TS 127 007 [21] then the following method (via AT interface) can be used for measuring the data call access time:

- Start trigger: ATD + dial number (MSISDN) ordered via the AT interface when there is no ongoing call;
- Stop trigger: Any answer received from the mobile or timeout occurred. CONNECT answer handled as a positive answer, any other as a negative one. The AT+CEER command can be used to read out the error cause. If a positive answer is received the time period can be calculated.

5.10 DNS Host Name Resolution Failure Ratio [%]

5.10.1 Abstract Definition

The DNS host name resolution failure ratio is the probability that a host name to host address translation of a DNS resolver was not successful.

Remarks:

- this QoS parameter is only relevant for packet switched services;
- resolutions of different host names shall not be compared directly, since the time to perform a search in the DNS server differs depending on the host name;
- resolutions involving different DNS name servers are not directly comparable;
- resolutions utilizing TCP can not be directly compared to resolutions using UDP, since messages carried by UDP are restricted to 512 bytes. UDP is the recommended method for standard queries on the Internet.

5.10.2 Abstract Equation

DNS Host Name Resolution Failure Ratio [%] = $\frac{\text{unsuccessful DNS host name resolution requests}}{\text{DNS host name resolution requests}} \times 100$

5.10.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Host name resolution request	Start: Request to resolve a host name.	Start: Protocol: DNS. Data packet containing DNS type A (host address) "Standard query" message for the desired host name.
Successful host name resolution request	Stop: Host address resolved successfully.	Stop: Protocol: DNS. Data packet received containing a type A (host address) "Standard query response, No error" response, the respective type A "Standard query" query and an answer including the desired host name to host address translation.
Unsuccessful host name resolution request	Stop: Host address not resolved.	Stop trigger point not reached.

Precondition for measurement:

• The resolver shall not have direct access to any local DNS name server or any name server's zone.

5.11 DNS Host Name Resolution Time [s]

5.11.1 Abstract Definition

The DNS host name resolution time is the time it takes to perform a host name to host address translation.

Remarks:

- this QoS parameter is only relevant for packet switched services;
- resolutions of different host names shall not be compared directly, since the time to perform a search in the DNS server differs depending on the host name;
- resolutions involving different DNS name servers are not directly comparable;
- resolutions utilizing TCP can not be directly compared to resolutions using UDP, since messages carried by UDP are restricted to 512 bytes. UDP is the recommended method for standard queries on the Internet.

5.11.2 Abstract Equation

DNS Host Name Resolution Time [s] =
$$(t_{StandardQueryResponse} - t_{StandardQuery})$$
[s]

5.11.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{StandardQuery:} Host name resolution request	Start: Request to resolve a host address from DNS server.	Start: Protocol: DNS. Data packet containing DNS type A (host address) "Standard query" query for the desired host name.
t _{StandardQueryResponse:} Host name resolution request answered	Stop: Host address received from DNS server.	Stop: Protocol: DNS. Data packet received containing a type A (host address) "Standard query response, No error" response, the respective type A "Standard query" query and an answer including the desired host name to host address translation.

Precondition for measurement:

- The resolver shall not have direct access to any local DNS name server or any name server's zone.
- For static measurement methodologies, as defined in TS 102 250-3 [5], the queried DNS name server shall have any data related to the host name to be resolved available as authoritative data in one of the name server's zones, so that no recursive lookups have to be performed and no use of cached information will be required.
- If the related data is not stored locally in the name server's zone, the resolution time would vary due to DNS
 caching strategies.

6 Direct Services QoS Parameters

6.1 File Transfer (FTP)

6.1.1 FTP {Download|Upload} Service Non-Accessibility [%]

6.1.1.1 Abstract Definition

The service accessibility ratio denotes the probability that a subscriber cannot establish a PDP context and access the service successfully.

6.1.1.2 Abstract Equation

 $FTP \{Download | Upload\} Service Non - Accessibility [\%] = \\ \frac{unsuccessful \ attempts \ to \ reach \ the \ point \ when \ content \ is \ sent \ or \ received}{all \ attempts \ to \ reach \ the \ point \ when \ content \ is \ sent \ or \ received} \times 100$

6.1.1.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Service access attempt	Start: Customer initiates the service access.	Start: ATD command.
Successful attempt	Stop: File download starts.	Stop Method A: Reception of the first data packet containing content. Stop Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.
Unsuccessful attempt	Stop trigger point not reached.	passive mode confidencials on the data societ.

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Service access attempt	Start: Customer initiates the service access.	Start: ATD command.
Successful attempt	Stop: File upload starts.	Stop Method A: Sending of the first data packet containing content.
		Stop Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.
Unsuccessful attempt	Stop trigger point not reached.	

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3).

6.1.2 FTP {Download|Upload} Setup Time [s]

6.1.2.1 Abstract Definition

The setup time describes the time period needed to access the service successfully, from starting the dial-up connection to the point of time when the content is sent or received.

6.1.2.2 Abstract Equation

$$FTP \{Download | Upload\} Setup Time [s] = (t_{service access successful} - t_{service access start})[s]$$

6.1.2.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{service access start} : Time of service access attempt	Start: Customer initiates the service access.	Start: ATD command.
t _{service access successful} : Time of successful service access		Stop Method A: Reception of the first data packet containing content. Stop Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{service access start} : Time of service access attempt	Start: Customer initiates the service access.	Start: ATD command.
t _{service access successful} : Time of successful service access	Stop: File upload starts.	Stop Method A: Sending of the first data packet containing content.
		Stop Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3).

6.1.3 FTP {Download|Upload} IP-Service Access Failure Ratio [%]

6.1.3.1 Abstract Definition

The IP-service access ratio denotes the probability that a subscriber cannot establish an TCP/IP connection to the server of a service successfully.

6.1.3.2 Abstract Equation

 $FTP \{Download | Upload\} IP - Service Access Failure Ratio [\%] = \frac{unsuccessful \ attempts \ to \ establish \ an \ IP \ connection \ to \ the \ server}{all \ attempts \ to \ establish \ an \ IP \ connection \ to \ the \ server} \times 100$

6.1.3.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
IP-Service access attempt	Start: Customer initiates file download.	Start: First [SYN] sent on the data socket.
Successful attempt	Stop: File download starts.	Stop Method A: Reception of the first data packet containing content.
		Stop Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.
Unsuccessful attempt	Stop trigger point not reached.	

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
IP-Service access attempt	Start: Customer initiates file upload.	Start: First [SYN] sent on the data socket.
Successful attempt	Stop: File upload starts.	Stop Method A: Sending of the first data packet containing content.
		Stop Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.
Unsuccessful attempt	Stop trigger point not reached.	··

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.1.4 FTP {Download|Upload} IP-Service Setup Time [s]

6.1.4.1 Abstract Definition

The IP-service setup time is the time period needed to establish an TCP/IP connection to the server of a service, from sending the initial query to a server to the point of time when the content is sent or received.

6.1.4.2 Abstract Equation

$$FTP \{Download | Upload\} IP - Service Setup Time [s] = \left(t_{IP - Service access successful} - t_{IP - Service access start}\right) [s]$$

6.1.4.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{IP-Service access start} : Time of IP-Service access attempt	Start: Customer initiates file download.	Start: First [SYN] sent.
t _{IP-Service access successful} : Time of successful IP-Service access	Stop: File download starts.	Stop Method A: Reception of the first data packet containing content.
		Stop Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{IP-Service access start} : Time of IP-Service access attempt	Start: Customer initiates file upload.	Start: First [SYN] sent.
t _{IP-Service access successful} : Time of successful IP-Service access	Stop: File upload starts.	Stop Method A: Sending of the first data packet containing content.
		Stop Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.1.5 FTP {Download|Upload} Session Failure Ratio [%]

6.1.5.1 Abstract Definition

The session failure ratio is the proportion of uncompleted sessions and sessions that were started successfully.

6.1.5.2 Abstract Equation

$$FTP \{Download \mid Upload\} Session Failure Ratio [\%] = \frac{uncompleted sessions}{successfully started sessions} \times 100$$

6.1.5.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully started session	Start: Customer initiates file download.	Start: First [SYN] sent on the control socket.
Completed session		Stop: Reception of the last data packet containing content.
Uncompleted session	Stop trigger point not reached.	

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
ļ ,	Start: Customer initiates file upload.	Start: First [SYN] sent on the control socket.
•	Stop: File upload successfully completed.	Stop: Reception of the [FIN, ACK] for the last data packet containing content.
Uncompleted session	Stop trigger point not reached.	

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.1.6 FTP {Download|Upload} Session Time [s]

6.1.6.1 Abstract Definition

The session time is the time period needed to successfully complete a PS data session.

6.1.6.2 Abstract Equation

$$FTP \{Download | Upload \} Session Time [s] = (t_{session end} - t_{session start})[s]$$

6.1.6.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
SESSION STAIL	Start: Customer initiates file download.	Start: First [SYN] sent on the control socket.
		Stop: Reception of the last data packet containing content.

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
started session	Start: Customer initiates file upload.	Start: First [SYN] sent on the control socket.
t _{session end} : Time when session completed		Stop: Reception of the [FIN, ACK] for the last data packet containing content.

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.1.7 FTP {Download|Upload} Mean Data Rate [kbit/s]

6.1.7.1 Abstract Definition

After a data link has been successfully established, this parameter describes the average data transfer rate measured throughout the entire connect time to the service. The data transfer shall be successfully terminated. The prerequisite for this parameter is network and service access.

6.1.7.2 Abstract Equation

$$FTP \{Download | Upload \} Mean Data Rate [kbit/s] = \frac{user data transferred [kbit]}{(t_{data transfer complete} - t_{data transfer start})[s]}$$

6.1.7.3 Trigger Points

The average throughput is measured from opening the data connection to the end of the successful transfer of the content (file).

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{data transfer start} : Time of successfully started data transfer	Start: File download starts.	Start Method A: Reception of the first data packet containing content.
		Start Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.
t _{data transfer complete} : Time when data transfer complete	Stop: File download successfully completed.	Stop: Reception of the last data packet containing content.

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{data transfer start} : Time of successfully started data transfer	Start: File upload starts.	Start Method A: Sending of the first data packet containing content.
		Start Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections; sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.
t _{data transfer complete} : Time when data transfer complete	Stop: File upload successfully completed.	Stop: Reception of the [FIN, ACK] for the last data packet containing content.

Remark:

• The mobile station is already attached (see clause 5.3), a PDP context is activated (see clause 5.5) and a service was accessed successfully (see Service Non-Accessibility).

6.1.8 FTP {Download|Upload} Data Transfer Cut-off Ratio [%]

6.1.8.1 Abstract Definition

The data transfer cut-off ratio is the proportion of incomplete data transfers and data transfers that were started successfully.

6.1.8.2 Abstract Equation

6.1.8.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully started data transfer	Start: File download starts.	Start Method A: Reception of the first data packet containing content.
		Start Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the [SYN, ACK] for passive mode connections on the data socket.
Complete data transfer	Stop: File download successfully completed.	Stop: Reception of the last data packet containing content.
Incomplete data transfer	Stop trigger point not reached.	

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully started data transfer	Start: File upload starts.	Start Method A: Sending of the first data packet containing content.
		Start Method B: Reception of the [ACK] from the [SYN, ACK] for active mode connections, sending of the [ACK] for the[SYN, ACK] for passive mode connections on the data socket.
Complete data transfer	Stop: File upload successfully completed.	Stop: Reception of the [FIN, ACK] for the last data packet containing content.
Incomplete data transfer	Stop trigger point not reached.	

Remark:

• The mobile station is already attached (see clause 5.3), a PDP context is activated (see clause 5.5) and a service was accessed successfully (see Service Non-Accessibility).

6.2 Mobile Broadcast

Mobile Broadcast is an end-to-end broadcast system for delivery of any types of digital content and services using IP-based mechanisms. An inherent part of the Mobile Broadcast system is that it comprises of a unidirectional broadcast path (e.g. DVB-H, MBMS, and other broadcast bearers) and a bidirectional mobile/cellular interactivity path (e.g. GSM, GPRS, UMTS). The Mobile Broadcast Service is thus a platform for convergence of services from mobile/cellular and broadcast/media domains.

Figure 4 depicts the basis for a generic service concept for mobile broadcast. As being a composite service, two different bearers may be involved in mobile broadcast services. Unidirectional broadcast information is transmitted over the broadcast channel, whereas interactive procedures are related to the interactivity channel provided by a mobile network. The independent procedures at both bearers may interact with each other and build a common end-to-end procedure.

In general, this concept is not dedicated to specific bearer technologies. Different bearer technologies and their combinations are thinkable of.

Remarks:

- However, the concept depends for example on the implementation of the Electronic Service Guide (ESG). If
 the ESG implementation does not allow the user to recognize the reception of ESG information, the according
 parameters shall have to be adapted.
- Content encryption may be a central element of DVB-H implementations. This issue is not dealt with explicitly
 in what follows and needs further consideration.

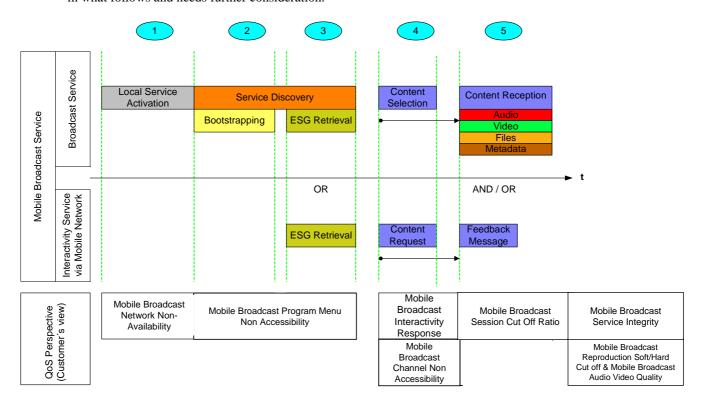


Figure 4: Service phases of mobile broadcast

From a customer's point of view, the usage cycle of mobile broadcast services can be divided into:

- Terminal registration Local service activation: The broadcast receiver is switched on and the terminal registers to the broadcast bearer. This procedure includes the detection of a broadcast service signal.
- Bootstrapping: During this phase, the detected broadcast signal is decoded. At the end of this phase, a list of receivables channels is available. Each channel offers additional information via its own Electronic Service Guide (ESG).
- ESG Retrieval: At this stage, the information where to find ESG information is available. After a channel is selected, the channel related information is received, decoded and presented to the user. For example, an overview over the current and following programs can be shown on the display. The ESG information itself can be retrieved either via the broadcast bearer or via the interactivity service, for example via a WAP portal.

- Service discovery: This phase includes the bootstrapping phase and the ESG retrieval phase. Please note that manual channel selection may lead to an additional delay between both phases. During this phase, the detected broadcast signal is decoded. Afterwards, the information where to find Electronic Service Guide (ESG) information is available. The ESG information itself can be retrieved either via the broadcast bearer or via the interactivity service, for example via a WAP portal.
- Content reception: The generic term "content" comprises all kinds of content that can be transferred via the broadcast service. Examples for this kind of data are audio and video streams, file downloads and related metadata which describes the carried content.
- Interactivity based procedures: These procedures allow the interactive use of the mobile broadcast service. In general, all transmission capabilities offered by the mobile network can be used for this issue. Examples are:
 - Content requests via a WAP GET request;
 - SMS voting;
 - Request to receive ESG information via MMS service; or
 - Voice control to request a dedicated file via the broadcast service.

The technical interpretation of this generic usage cycle leads to the phases:

- Mobile Broadcast Network Non-Accessibility.
- Mobile Broadcast Program Menu Non-Accessibility.
- Mobile Broadcast Channel Non-Accessibility.
- Mobile Broadcast Interactivity Response.
- Mobile Broadcast Session Cut Off Ratio.
- Mobile Broadcast Service Integrity.

The mentioned phases are covered by the parameters described subsequently.

6.2.1 Mobile Broadcast Network Non-Availability (Broadcast Bearer)

6.2.1.1 Abstract Definition

Probability that the Mobile Broadcast Services are not offered to an end-customer by the target network indicators on the User Equipment (UE) in idle mode.

6.2.1.2 Abstract Equation

Mobile Broadcast Network Non - Accessibility [%] = $\frac{\text{unsuccessful Mobile Broadcast registration attempts}}{\text{all Mobile Broadcast registration attempts}} \times 100$

6.2.1.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Mobile Broadcast registration	Start: Start of registration	Tbd.
attempt	procedure performed by the UE.	
Unsuccessful Mobile Broadcast registration attempt	Stop: "Mobile Broadcast icon", which indicates successfully registration, is not displayed on the UE.	Tbd.

Preconditions for measurement:

- The terminal shall be in an area which is intended to be covered by the broadcast service.
- The receiver responsible for the reception of Mobile Broadcast services shall be activated and initialized.

6.2.2 Mobile Broadcast Program Menu Non-Accessibility {Bootstrapping Bearer, ESG Retrieval Bearer}

6.2.2.1 Abstract Definition

This parameter describes the probability that the Mobile Broadcast Program Menu is successfully accessible by the user when requested.

Remark:

• This parameter depends on the actual implementation of the service discovery procedures (e.g. use of cached bootstrapping and/or ESG information).

6.2.2.2 Abstract Equation

Mobile Broadcast Program Menu Non - Accessibility [%] = $\frac{\text{unsuccessful program menu access attempts}}{\text{all program menu access attempts}} \times 100$

6.2.2.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Mobile Broadcast Program Menu access attempt	Start: Request to use the Mobile Broadcast service on the UE (push on TV button).	Start: Tbd.
	Stop: Mobile Broadcast service is not available on the UE (no TV channel list displayed).	Stop: Tbd.

Preconditions for measurement:

• Mobile Broadcast Network Availability must be given.

6.2.3 Mobile Broadcast Program Menu Access Time {Bootstrapping Bearer, ESG Retrieval Bearer}

6.2.3.1 Abstract Definition

The parameter Mobile Broadcast Program Menu Access Time is the time period elapsed between a session start attempt of the Mobile Broadcast service and the reception of the complete menu channels list. Hereby, the time the device requires to discover the available channels for the first time is considered.

6.2.3.2 Abstract Equation

$$Mobile\ Broadcast\ Program\ Menu\ Access\ Time\ [s] = \Big(t_{program\ menu\ reception} - t_{program\ menu\ request}\Big)[s]$$

6.2.3.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Mobile Broadcast Program Menu	Start: First request of the Mobile Broadcast service on the UE.	Start: Tbd.
	Stop: Mobile Broadcast channel list is given within a pre-determined time.	Stop: Tbd.

Preconditions for measurement:

• Mobile Broadcast Network Availability must be given.

6.2.4 Mobile Broadcast Channel Non-Accessibility (Broadcast Bearer)

6.2.4.1 Abstract Definition

Probability that the requested Mobile Broadcast channel is not started to be delivered to the user. This parameter applies also to zapping situations in which the customer changes the offered streaming content frequently in short intervals.

6.2.4.2 Abstract Equation

Mobile Broadcast Channel Non - Accessibility [%] =
$$\frac{\text{unsuccessful channel access attempts}}{\text{all channel attempts}} \times 100$$

6.2.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
·	Start: Request Channel button pressed by user/request attempt from device.	Start: Tbd.
attempt	Stop: Missing indication of reception of channel content (channel displayed).	Stop: Tbd.

Preconditions for measurement:

- Mobile Broadcast Network Availability must be given.
- Mobile Broadcast Program Menu Accessibility must be successful.

6.2.5 Mobile Broadcast Channel Access Time {Broadcast Bearer}

6.2.5.1 Abstract Definition

The parameter Mobile Broadcast Channel Access Time is the time period elapsed between the user's request to access the channel and the Channel reception/displayed.

6.2.5.2 Abstract Equation

$$Mobile\,Broadcast\,Channel\,Access\,Time\,[s] = \Big(t_{channel\,reception}\,-\,t_{channel\,request}\Big)[s]$$

6.2.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
i channel reduest.	Start: Request channel button pressed by user.	Start: Tbd.
t _{channel reception:} Channel reception time	Stop: reception of channel content (channel displayed).	Stop: Tbd.

Preconditions for measurement:

- Mobile Broadcast Network Availability must be given.
- Mobile Broadcast Program Menu Accessibility must be successful.

6.2.6 Mobile Broadcast Interactivity Response Failure Ratio {Mobile Network Bearer} {Broadcast Bearer}

6.2.6.1 Abstract Definition

The Mobile Broadcast Interactivity Response Failure Ratio measures the probability that a service request of a Mobile Broadcast service via an interactive channel does not result in an expected reaction (i.e. changes in content updated due to user's interaction, reception of any kind of notification to the user, etc.) on either the broadcast bearer or the mobile network bearer.

6.2.6.2 Abstract Equation

Mobile Broadcast Interactivity Response Failure Ratio [%] = <u>unsuccessful Mobile Broadcast service outcomes/repsonses</u> <u>all Mobile Broadcast service requests over interactive channel</u> ×100

6.2.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Mobile Broadcast service request over interactive channel	Start: Request of the Mobile Broadcast service on the UE.	Start: Tbd. Content Request on Interactivity Channel: Trigger points are chosen according to parameter definitions for SMS, MMS, GPRS and PS-UMTS in the present document.
Unsuccessful Mobile Broadcast service outcome/response	Stop: User's interactivity is not reflected in updated content or indicated at the device.	Stop: Tbd. Negative result code or timeout related to Interactivity Channel: Trigger points are chosen according to parameter definitions for SMS, MMS, GPRS and PS-UMTS in the present document.

Preconditions for measurement:

- For broadcast bearer:
 - Mobile Broadcast Network Availability must be given.
- For mobile network bearer:
 - Mobile Network Availability must be given.
 - Mobile Network Service Accessibility for circuit switched or packet switched data services must be given.

6.2.7 Mobile Broadcast Interactivity Response Time {Mobile Network Bearer} {Broadcast Bearer}

6.2.7.1 Abstract Definition

The parameter Mobile Broadcast Interactivity Response Time is the time elapsed between a service request attempt of the Mobile Broadcast service via an interactive channel and the reception of a notification to the user.

6.2.7.2 Abstract Equation

Mobile Broadcast Interactivity Response Time [s] =
$$(t_{\text{service repsonse}} - t_{\text{service request}})$$
[s]

6.2.7.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{service request:} Mobile Broadcast service request over interactive channel	Start: Request of the Mobile Broadcast service on the UE.	Start: Tbd. Content Request on Interactivity Channel: Trigger points are chosen according to parameter definitions for SMS, MMS, GPRS and PS-UMTS in the present document.
t _{service responce:} Successful Mobile Broadcast service outcome/response	Stop: User's interactivity is not reflected in updated content or indicated at the device.	Stop: Tbd. Negative result code or timeout related to Interactivity Channel: Trigger points are chosen according to parameter definitions for SMS, MMS, GPRS and PS-UMTS in the present document.

Preconditions for measurement:

- For broadcast bearer:
 - Mobile Broadcast Network Availability must be given.
- For mobile network bearer:
 - Mobile Network Availability must be given.
 - Mobile Network Service Accessibility for circuit switched or packet switched data services must be given.

6.2.8 Mobile Broadcast Session Cut-off Ratio (Broadcast Bearer)

6.2.8.1 Abstract Definition

Session Cut Off denotes the probability of abnormal termination of the specific service requested by the user.

6.2.8.2 Abstract Equation

Mobile Broadcast Session Cut - off Ratio [%] =
$$\frac{\text{unsuccessfully terminated sessions}}{\text{all successfully established sessions}} \times 100$$

6.2.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully established sessions	Start: Channel reproduction started.	Start: Tbd.
Unsuccessfully terminated sessions	Stop: Channel reproduction terminated abnormally (exit from service).	Stop: Tbd.

Preconditions for measurement:

- Mobile Broadcast Network Availability must be given.
- Mobile Broadcast Program Menu Accessibility must be successful.
- Mobile Broadcast Channel Accessibility must be successful.

6.2.9 Mobile Broadcast Service Integrity (Broadcast Bearer)

Mobile Broadcast technology paves the way for network operators and service providers to offer a huge palette of mobile services, which can be divided in the following categories:

- Streaming services.
- Packet switched data services.
- Short Message Service (SMS).
- Multimedia Message Service (MMS).
- Wireless Application Protocol (WAP).
- Digital Video Broadcasting Handheld (DVB-H).

According to ITU-T Recommendation E.800 [20], the Service Integrity describes the Quality of Service during service use. Since the above mentioned services are already offered in other scenarios, in the present document only a reference to the already defined QoS parameters will be made. Important to bear in mind is the fact that for Mobile Broadcast Service, only the abstract definition of the parameters applies, since the underlying protocol stack may not be the same.

6.2.10 Mobile Broadcast Reproduction Soft Cut-off Ratio {Broadcast Bearer}

6.2.10.1 Abstract Definition

Reproduction Soft Cut Off denotes the probability that the end-customer can't see normally the channel when connected to the specific service.

6.2.10.2 Abstract Equation

Mobile Broadcast Reproduction Soft Cut - off Ratio [%] =
$$\frac{\sum (t_{\text{fluid audio/video restart}} - t_{\text{signal weak}})}{t_{\text{reproduction finished}}} \times 100$$

6.2.10.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
tsignal weak	Start: Channel displays e.g. blue screen "TV signal weak search of the signal in progress".	Start: Tbd.
tfluid audio/video restart	Stop: The service restarts normally.	Stop: Tbd.
t _{reproduction started} Start: Begin of reproduction.		Start: Tbd.
treproduction finished	Stop: End of reproduction.	Stop: Tbd.

Preconditions for measurement:

- Mobile Broadcast Network Availability must be given.
- Mobile Broadcast Program Menu Accessibility must be successful.
- Mobile Broadcast Channel Accessibility must be successful.

6.2.11 Mobile Broadcast Reproduction Hard Cut-off Ratio {Broadcast Bearer}

6.2.11.1 Abstract Definition

Reproduction Hard Cut Off denotes that the end-customer can't see normally the channel when connected to the specific service.

6.2.11.2 Abstract Equation

$$\begin{aligned} \text{Mobile Broadcast Reproduction Hard Cut - off Ratio} [\%] = \\ \frac{\sum \left(t_{\text{Fluid audio/video restart}} - t_{\text{signal absent}}\right)}{t_{\text{reproduction finished}}} \times 100 \end{aligned}$$

6.2.11.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
^t signal absent	Start: Channel displays e.g. blue screen "TV signal absent tuning in progress".	Start: Tbd.
t _{fluid} audio/video restart	Stop: The service restarts normally.	Stop: Tbd.
t _{reproduction} started	Start: Begin of reproduction.	Start: Tbd.
t _{reproduction finished}	Stop: End of reproduction.	Stop: Tbd.

Preconditions for measurement:

- Mobile Broadcast Network Availability must be given.
- Mobile Broadcast Program Menu Accessibility must be successful.
- Mobile Broadcast Channel Accessibility must be successful.

6.2.12 Mobile Broadcast Audio Quality (Broadcast Bearer)

6.2.12.1 Abstract Definition

Mobile Broadcast Audio Quality describes the audio quality as perceived by the end-user. Since the streams can contain but not only speech information, an algorithm like ITU Recommendation P.862 [6] is not suitable for all scenarios and should not be used.

An audio algorithm, such as ITU-T Recommendation P.862 [6] may be used.

6.2.12.2 Abstract Equation

Tbd.

6.2.12.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Tbd.	Start: Begin of audio reproduction.	Start: Tbd.
Tbd.	Stop: End of audio reproduction.	Stop: Tbd.

Preconditions for measurement:

- Mobile Broadcast Network Availability must be given.
- Mobile Broadcast Program Menu Accessibility must be successful.
- Mobile Broadcast Channel Accessibility must be successful.

6.2.13 Mobile Broadcast Video Quality (Broadcast Bearer)

6.2.13.1 Abstract Definition

Mobile Broadcast Video Quality describes the video quality as perceived by the end-user.

6.2.13.2 Abstract Equation

Tbd.

6.2.13.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part	
Tbd.	Start: Begin of video reproduction.	Start: Tbd.	
Tbd.	Stop: End of video reproduction.	Stop: Tbd.	

Preconditions for measurement:

- Mobile Broadcast Network Availability must be given.
- Mobile Broadcast Program Menu Accessibility must be successful.

Mobile Broadcast Channel Accessibility must be successful.

For wireless application protocol services, a reference from the Open Mobile Alliance (OMA) should be added (if available).

6.3 Ping

6.3.1 Ping Round Trip Time [ms]

6.3.1.1 Abstract Definition

The round trip time is the time required for a packet to travel from a source to a destination and back. It is used to measure the delay on a network at a given time. For this measurement the service must already be established.

6.3.1.2 Abstract Equation

Ping Round Trip Time [ms] =
$$(t_{packet received} - t_{packet sent})$$
[ms]

6.3.1.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part	
sent	S	Start: ICMP echo request sent.	
t _{packet received} : Time when packet is received	Stop: Echo reply is displayed.	Stop: ICMP echo reply received by the sender.	

As an alternative the measurement of the round trip time can done by evaluating the TCP handshake:

- Start: Point of time when the [SYN] is sent.
- Stop: Point of time when the [SYN, ACK] is received.

This applies to all services that are TCP based, e.g. file transfer (FTP), web browsing (HTTP) and E-Mail (POP3, SMTP).

6.4 Push to Talk over Cellular (PoC)

The present clause describes QoS parameters for the Push to Talk over Cellular (PoC) service as described in [14], [15], [16] and [17].

To point out the development and effectiveness of these QoS parameters, a generic PoC signal flow is given. Here, some restricted information on the application layer is given. These events only show important user interactions. In this context it is important to point out that the present document does not focus on the application layer or the user plane as described in [15].

The SDP is not mentioned as an alternative to RTP in [14], [15] and [16]. Thus, trigger points defined on the SDP layer are out of scope of the present document.

NOTE: All Quality of Service parameters defined for the PoC service which do not rely on RTP in terms of trigger point definition are to be applied when measuring a PoC service utilizing SRTP.

Furthermore, some typical PoC signal flows are given in an informative annex together with some signal grouping. Here, signals have been grouped together in order the give a better insight into the signal flow details and their relation to some specific group of PoC QoS parameters.

The Push to Talk over Cellular (PoC) service is characterized by a half duplex form of communication, whereby one end-user will communicate with other end-users by pressing a button, or an equivalent function, on a terminal. In the following text it will be assumed without loss of generality that the terminal has a PoC button.

It is important to keep in mind that measurement equipment and techniques used can affect the data collected. The measurement equipment and techniques should be defined and their effects documented for all tests.

Remarks:

- All end trigger points defined in the present document will occur after the appropriate start trigger points. The message flow between each two trigger points is described in the text or there is a reference to a figure that visualizes the message flow.
- All SIP and RTP messages that are sent during a PoC session utilize UDP as transport layer.
- If a trigger point (technical description/protocol part) in the present document states: "First data packet sent..." then the time stamp shall be the point in time when the message is posted to the UDP transport layer.
- If a trigger point (technical description/protocol part) in the present document states: "First data packet received..." then the time stamp shall be the point in time when the message is received on the UDP transport layer.
- Trigger points for failure ratios (technical description/protocol part) may state: "No message received by the terminal within a pre-determined time", which means that the PoC server timed out. Here, the exact timeout has to be specified.
- If the present document states: "active PoC talk session", then a PoC session with at least two joining parties is meant, regardless of the kind of session (1-1, ad-hoc group talk, pre-arranged group talk or chat). Furthermore, one of the participating terminals shall create and send data packets containing speech data (RTP media stream).
- Unless explicitly stated differently, all terminals participating in PoC sessions shall not generate notification
 messages. Otherwise, "SIP NOTIFY" messages might get sent to these clients leading to possible impacts on
 the measurement results.

6.4.1 Definitions

For PoC, there are differences between on-demand and pre-established PoC sessions which need to be taken into account. Thus, a direct comparison between these session types shall be avoided.

Another difference to be aware of is the form of indication used. If confirmed indication is used, the initiator has to wait for the "talk burst granted" indication until at least one invited user has accepted the invitation. If unconfirmed indication is used, at least one invited user has to be registered and uses automatic answer. This results in different message flows as well as in different response times (especially if media buffering is supported by the PoC server).

Particularities occur when using a pre-arranged PoC group session. In this kind of session the initiator invites a group of users. With confirmed indication at least one user has to accept the invitation but with unconfirmed indication the right-to-speak is granted at once; regardless if a user of the group is connected to the PoC service or not.

Table 1 gives an overview of the defined QoS parameters. Groups of parameters are introduced to visualize interdependencies. The reason is that certain measurements can only take place if several preconditions are fulfilled.

Table 1: QoS parameter and required preconditions

QoS Grou	p	Description	QoS parameter in this group	Preconditions
REG		PoC Registration	6.4.3, 6.4.4	-
PUB		PoC Publish	6.4.5, 6.4.6	REG
REG long		PoC Registration + PoC Publish	6.4.6.3, 6.4.7.3	-
	INIT	PoC Session Initiation	6.4.8.3,6.4.9.3	PUB
On demand	SETUP	PoC Session Setup	6.4.14.3, 6.4.17	-
l _ e	PtS	Push to Speech	6.4.18, 6.4.19	PUB
On	LEAVE	PoC Session Leaving	6.4.20, 6.4.21	INIT or SETUP
sh	NEGO	PoC Media Parameters Negotiation	6.4.10.3, 6.4.11.3	PUB
establish	INIT	PoC Session Initiation	6.4.12.3, 6.4.14	NEGO
sts	SETUP	PoC Session Setup	6.4.16, 6.4.17	-
T	PtS	Push to Speech	6.4.18, 6.4.19	PUB
Pre ed	LEAVE	PoC Session Leaving	6.4.22, 6.4.23	INIT or SETUP
DeREG		PoC Deregistration	6.4.24, 6.4.25	REG or SETUP
BUSY		Busy Floor Response	6.4.26, 6.4.27	SETUP or PtS
REQ		Talk Burst Request	6.4.28, 6.4.29	SETUP or PtS
CUT		PoC Session Cut-off	6.4.30	SETUP or PtS
DROP		Talk Burst Drop	6.4.31	SETUP or PtS
DELAY		Talk Burst Delay	6.4.32, 6.4.33	SETUO or PtS

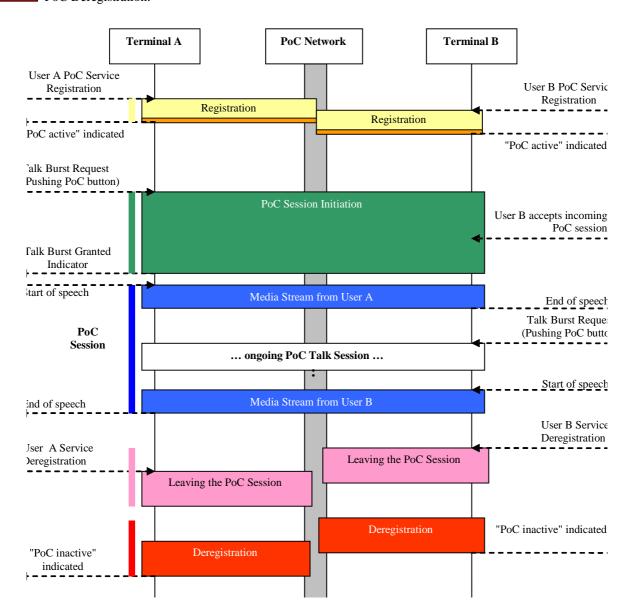
6.4.2 Generic Signal Flow

This clause gives an overview of some signal flows evolving from PoC sessions. In figure 5, a generic signal flow is given. Here, the main parts of a PoC session, also including the registration of the PoC service, are visualized. These are: PoC service registration (including PoC service settings publishment), PoC session initiation, PoC talk session, PoC session leaving and finally the PoC service deregistration.

Most of the PoC relevant (application layer-) events generated from or receivable by the user are included in this figure. These events are represented as dashed lines.

In the present document greyed lines are optional signals which do not have to be send (like the "SIP NOTIFY" message which will only be send by the PoC server if the "norefersub" option tag was included in the "SIP REFER" request (see [16])). Provisional SIP responses as described in [6] (e.g. "SIP 100 Trying") are greyed for clarity. These messages are provisional responses and shall be turned off during measurements.

A generic PoC session:


PoC Registration.

PoC Session Initiation.

PoC Talk Session.

Leaving PoC Session.

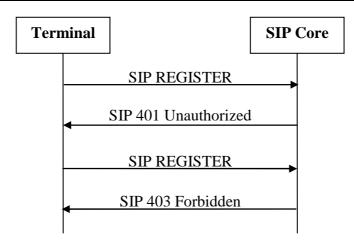
PoC Deregistration.

NOTE: Here, the dashed arrows indicate events generated from or receivable by the user.

Figure 5: Generic PoC session signal flow (including PoC service registration) on application layer

6.4.3 PoC Registration Failure Ratio [%]

6.4.3.1 Abstract Definition


The PoC registration failure ratio is the probability that the terminal can not register with the Push to Talk over Cellular service when requested.

Remark:

• The terminal shall not be registered to the PoC service.

6.4.3.2 Abstract Equation

PoC Registration Failure Ratio [%] = $\frac{\text{unsuccessful PoC registration attempts}}{\text{all PoC registration attempts}} \times 100$

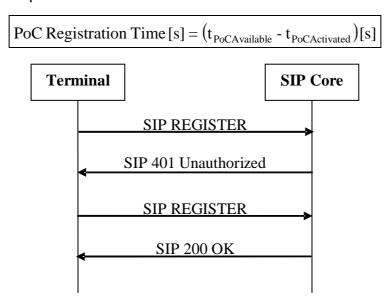
NOTE: Figure 6 shows an example for an unsuccessful PoC registration. After the first "SIP REGISTER" request the terminal has to answer to a WWW- authentication challenge (see [16]). If the terminal does not answer correctly to this challenge, the SIP core will send a "SIP 403 Forbidden" message.

Figure 6: Unsuccessful PoC registration example

6.4.3.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC registration attempt	Start: Activation of the PoC	Start: Protocol: SIP.
	service on the terminal.	First data packet sent by the terminal containing a "SIP REGISTER" message.
Successful PoC	Stop: PoC available is	Stop: Protocol: SIP.
registration attempt	indicated.	First data packet received containing a "SIP 200 OK" message.
Unsuccessful PoC Stop: PoC available	Stop: Protocol: SIP.	
registration attempt	indication is not given within a pre-determined time.	Case 1: Second data packet received by the terminal (after sending the "SIP REGISTER" message) containing a message different to "SIP 200 OK". This message may be implementation-dependent (see [16]).
		Case 2: First data packet received by the terminal (after the authentication procedure) containing a message different to "SIP 200 OK".
		Case 3: No message received by the terminal within a pre-determined time.

6.4.4 PoC Registration Time [s]


6.4.4.1 Abstract Definition

The PoC registration time is the time period between the registration request of the PoC service and being registered to the PoC service.

Remark:

• The terminal shall not be registered to the PoC service.

6.4.4.2 Abstract Equation

NOTE: Figure 7 shows an example of a successful PoC registration (see [16]). In contrast to figure 11, the terminal answered correctly to the authentication challenge (the second "SIP REGISTER" message).

Figure 7: Successful PoC registration example

6.4.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC registration attempt	Start: Activation of the PoC service on the terminal.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP REGISTER" message.
t _{PoCAvailable:} Time of successful PoC registration attempt	Stop: PoC available is indicated.	Stop: Protocol: SIP. First data packet received containing a "SIP 200 OK" message.

6.4.5 PoC Publish Failure Ratio [%]

6.4.5.1 Abstract Definition

The PoC publish failure ratio is the probability that the terminal can not successfully publish his PoC service settings to the PoC server, after the terminal is registered to the PoC service.

Remarks:

- To set, update or refresh the PoC service settings, the terminal generates a "SIP PUBLISH" request with XML MIME content according to rules and procedures of [17].
- The terminal shall be registered to the PoC service.
- PoC enabled user equipment may combine the PoC registration and the PoC publish request and may not give
 the user the possibility to do these actions separately.

6.4.5.2 Abstract Equation

PoC Publish Failure Ratio [%] =
$$\frac{\text{unsuccessful PoC publish attempts}}{\text{all PoC publish attempts}} \times 100$$

6.4.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC publish attempt	Start: Attempt to publish the terminals PoC service settings.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP PUBLISH" message.
Successful PoC publish attempt	Stop: PoC service settings are published.	Stop: Protocol: SIP. First data packet received containing a "SIP 200 OK" message.
Unsuccessful PoC publish attempt	Stop: PoC service settings are not published.	Stop: Protocol: SIP Case 1: Data packet received by the terminal containing a message different to "SIP 200 OK". Case 2: No message received by the terminal within a pre-determined time.

6.4.6 PoC Publish Time [s]

6.4.6.1 Abstract Definition

The PoC publish time is the period of time that it takes to publish the terminal's PoC service settings to the PoC server.

- To set, update or refresh the PoC service settings, the terminal generates a "SIP PUBLISH" request with XML MIME content according to rules and procedures of [17].
- The terminal shall be registered to the PoC service.
- PoC enabled user equipment may combine the PoC registration and the PoC publish request and may not give
 the user the possibility to do these actions separately.

6.4.6.2 Abstract Equation

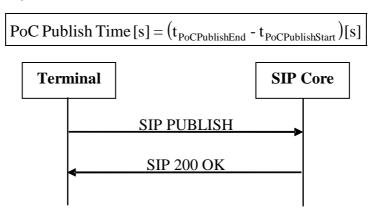


Figure 8: Example for a successful publish of PoC service settings

6.4.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{PoCPublishStart:} Time of PoC publish attempt	the terminals BoC	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP PUBLISH" message.
t _{PoCPublishEnd:} Time of successful PoC publish attempt	settings are published	Stop: Protocol: SIP. First data packet received containing a "SIP 200 OK" message.

6.4.7 PoC Registration Failure Ratio (long) [%]

6.4.7.1 Abstract Definition

The PoC registration failure ratio (long) is the probability that the terminal can not successfully be registered to the PoC service and publish his PoC service settings.

Remarks:

- This QoS parameter is a combination of the PoC registration parameter (see clause 6.4.3) and the PoC publish parameter (see clause 6.4.5). It ought to reflect the behaviour of PoC enabled user equipment that may do the PoC publish automatically after the PoC register.
- The terminal shall not be registered to the PoC service.

6.4.7.2 Abstract Equation

PoC Registration Failure Ratio (long) [%] =
$$\frac{R + P}{\text{all PoC registration (long) attempts}} \times 100$$

6.4.7.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC registration attempt	Start: Activation of the PoC service on the terminal.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP REGISTER" message.
Successful PoC publish attempt	Stop: PoC service settings are published.	Stop: Protocol: SIP. First data packet received containing a "SIP 200 OK" message.
Unsuccessful PoC publish attempt	Stop: PoC service settings are not published.	

6.4.8 PoC Registration Time (long) [s]

6.4.8.1 Abstract Definition

The PoC registration time (long) is the combined duration for a SIP registration and a SIP publish.

Remarks:

- This QoS parameter is a combination of the PoC registration parameter (see clause 6.4.3) and the PoC publish parameter (see clause 6.4.5). It ought to reflect the behaviour of PoC enabled user equipment that may do the PoC publish automatically after the PoC register.
- The terminal shall not be registered to the PoC service.

6.4.8.2 Abstract Equation

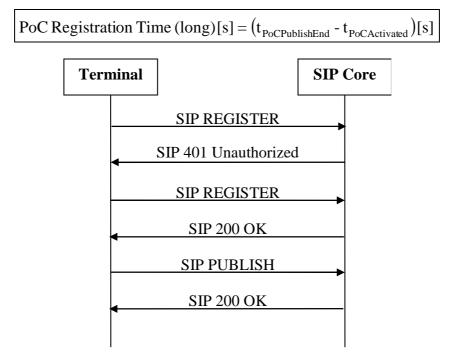


Figure 9: Example for a successful PoC Registration (long)

6.4.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Pocactivated:	PoC service on the	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP REGISTER" message
	Stop: PoC service settings are published.	Stop: Protocol: SIP. First data packet received containing a "SIP 200 OK" message.

6.4.9 PoC Session Initiation Failure Ratio (on-demand) [%]

6.4.9.1 Abstract Definition

The PoC session Initiation failure ratio (on-demand) is the probability that a PoC session can not be successfully initiated. A PoC session is initiated when the user pushes the PoC button on the terminal (and thereby requests a talk burst) and is granted a talk burst (see figure 10).

Remarks:

- The terminal notifies the user about the granted Talk Burst (e.g. by a "beep"-tone).
- There shall be at least one other participating terminal and the floor shall be idle. In particular, no other terminal shall create and send data packets containing speech data (RTP media stream).
- All terminals shall be registered to the PoC service and shall have successfully published their PoC service settings.
- There are different signal flows for confirmed and for unconfirmed invitations. In the confirmed case, at least one of the invited users has to accept the invitation to the PoC session in order to get the talk burst granted (see [16]). If the PoC server supports media buffering, the talk burst confirm is send after the first received auto-answer. This automatic answer mode shall be used for the measurements and media buffering shall not be supported. In both cases (confirmed and unconfirmed) the trigger points for the measurement are the same. Measurement data of confirmed and unconfirmed measurements can not be directly compared.
- This parameter is applicable to different kinds of PoC session initiations, which has an impact on the comparability of the measurement data.
- The initial "SIP INVITE" message accepted by the PoC server is an implicit talk burst request.

6.4.9.2 Abstract Equation

PoC Session Initiation Failure Ratio (on - demand) [%] = $\frac{\text{unsuccessful PoC session initiations}}{\text{all PoC session initiations}} \times 100$

6.4.9.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC session initiation attempt	Start: PoC button is pushed.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP INVITE" message.
Successful PoC session initiation attempt	Stop: Talk burst granted is indicated.	Stop: Protocol: RTCP:TBCP First data packet received by the terminal containing "RTCP:TBCP Talk Burst Granted".
Unsuccessful PoC session initiation attempt	ssion initiation granted indication.	Stop: Protocol: SIP; RTCP:TBCP. Case 1: First data packet received by the terminal (after sending a "SIP INVITE" message) containing an error message or redirection message (e.g. a "403 Forbidden" or "488 Not Acceptable Here" message).
		Case 2: First data packet received by the terminal (after sending a "SIP INVITE" message and receiving a "SIP 200 OK" message) containing a message different to the "RTCP:TBCP Talk Burst Granted" message, e.g. "404 Not Found", "SIP 486 Busy Here" or "SIP 403 Forbidden" message.
		Case 3: No message received by the terminal within a pre-determined time.

6.4.10 PoC Session Initiation Time (on-demand) [s]

6.4.10.1 Abstract Definition

The PoC session initiation time (on-demand) is the time period between pushing the PoC button on the terminal in order to initiate a PoC session and being granted the talk burst, e.g. indicated by a "beep"-tone on the terminal.

Remarks:

- The terminal notifies the user about the granted talk burst (e.g. by a "beep"-tone).
- There shall be at least one other participating terminal and the floor shall be idle. In particular, no other terminal shall create and send data packets containing speech data (RTP media stream).
- All terminals shall be registered to the PoC service and shall have successfully published their PoC service settings.
- There are different signal flows for confirmed and for unconfirmed invitations. In the confirmed case, at least one of the invited users has to accept the invitation to the PoC session in order to get the talk burst granted (see [15]). If the PoC server supports media buffering, the talk burst confirm is send after the first received auto-answer. This automatic answer mode shall be used for the measurements and media buffering shall not be supported. In both cases (confirmed and unconfirmed) the trigger points for the measurement are the same. Measurement data of confirmed and unconfirmed measurements can not be directly compared.
- This parameter is applicable to different kinds of PoC session initiations, which has an impact on the comparability of the measurement data.
- The initial "SIP INVITE" message accepted by the PoC server is an implicit talk burst request.

6.4.10.2 Abstract Equation

PoC Session Initiation Time (on - demand)[s] =
$$(t_{beep \, received} - t_{PoC \, button \, pressed})[s]$$

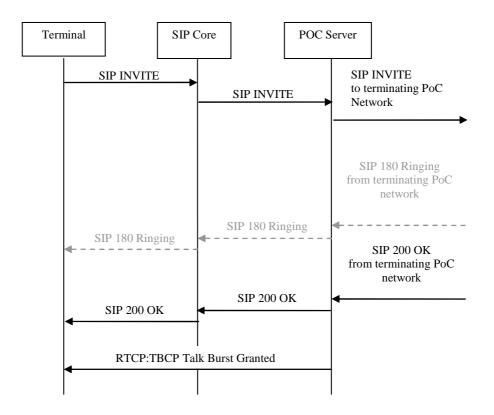


Figure 10: Implicit talk burst request procedure at the initiation of the PoC session

Remark:

• The dashed arrows in figure 10 only occur in case of a confirmed invitation with manual answer. In this case the time that elapses between the "SIP INVITE" message and the reception of the "SIP 200 OK" message depends on how fast an invited user on the terminating side accepts the invitation.

6.4.10.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{PoC button pressed:} Time of PoC session initiation attempt		Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP INVITE" message.
t _{beep received:} Time of successful PoC session initiation attempt	Stop: Talk burst granted is indicated.	Stop: Protocol: RTCP:TBCP First data packet received by the terminal containing "RTCP:TBCP Talk Burst Granted".

6.4.11 PoC Session Media Parameters Negotiation Failure Ratio (pre-established) [%]

6.4.11.1 Abstract Definition

The PoC session media parameters negotiation failure ratio (pre-established) is the probability that a negotiation procedure of media parameters for a posterior pre-established session can not be successfully accomplished.

Remarks:

• The initial "SIP INVITE" message accepted by the PoC server is not an implicit talk burst request.

- All terminals shall be registered to the PoC service and shall have successfully published their PoC service settings.
- "The PoC server performing the controlling PoC function shall determine the codec(s) and media parameters that should be used in the PoC session. The preferred media parameters should be determined according to the lowest negotiated media parameters (e.g. bandwidth) of the terminals that have joined the PoC session (see [14], page 102)".
- "User plane adaptation may be triggered e.g. by roaming or when a new terminal with lower media parameters enters the PoC session (see [15], page 103)".

6.4.11.2 Abstract Equation

PoC Session Media Parameters Negotiation Failure Ratio (pre - established) [%] = $\frac{\text{unsuccessful negotiation attempts}}{\text{all negotiation attempts}} \times 100$

6.4.11.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC session media parameters negotiation attempt	Start: PoC terminal initiates media parameters negotiation.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP INVITE" message with media parameters.
Successful PoC session media parameters negotiation attempt	Stop: Successful parameter negotiation indication.	Stop: Protocol: SIP. First "SIP Ack" data packet sent by the terminal after the reception of a "SIP OK" message.
Unsuccessful PoC session media parameters negotiation attempt	Stop: Media parameter negotiation is rejected or not indicated.	Stop: Protocol: SIP. Case 1: First data packet received by the terminal (after sending a "SIP INVITE" message and receiving a "SIP 100 TRYING" message) containing a message different to "SIP 200 OK"; e.g. a ""sIP 403 Forbidden" or "SIP 488 Not Acceptable Here" message. Case 2: No message received by the terminal within a pre-determined time.

6.4.12 PoC Session Media Parameters Negotiation Time (pre-established) [s]

6.4.12.1 Abstract Definition

The PoC session media parameters negotiation time (pre-established) describes the time period needed to accomplish a successful negotiation of media parameters.

- The initial "SIP INVITE" message accepted by the PoC server is not an implicit talk burst request.
- All terminals shall be registered to the PoC service and shall have successfully published their PoC service settings.
- "The PoC server performing the controlling PoC function shall determine the codec(s) and media parameters that should be used in the PoC session. The preferred media parameters should be determined according to the lowest negotiated media parameters (e.g. bandwidth) of the terminals that have joined the PoC session (see [14], page 102)".

• "User plane adaptation may be triggered e.g. by roaming or when a new terminal with lower media parameters enters the PoC session (see [14], page 103)".

6.4.12.2 Abstract Equation

 $PoC \ Session \ Media \ Parameters \ Negotiation \ Time \ (pre - established) \ [s] = \Big(t_{ok \ received} - t_{negotiation \ initiation}\Big) \ [s]$

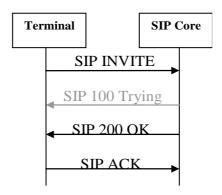


Figure 11: Media parameters negotiation for pre-established session

6.4.12.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{negotiation initiation:} Time of PoC pre-established session media parameters negotiation attempt	Start: PoC terminal initiates media parameters negotiation.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP INVITE" message with Media Parameters.
t _{ok received:} Time of successful PoC pre-established session media parameters negotiation attempt	Stop: Successful parameter negotiation indication.	Stop: Protocol: SIP. First "SIP Ack" data packet sent by the terminal after the reception of a "SIP OK" message.

6.4.13 PoC Session Initiation Failure Ratio (pre-established) [%]

6.4.13.1 Abstract Definition

The PoC session initiation failure ratio (pre-established) is the probability that a pre-established session can not be successfully initiated. After the negotiation of media parameters, a pre-established session is initiated when the user pushes the PoC button on the terminal (and thereby requests the talk burst) and is granted the talk burst.

- The terminal notifies the user about the granted talk burst (e.g. by a "beep"-tone).
- The initial "SIP REFER" message accepted by the PoC server is an implicit talk burst request.
- There shall be at least one other participating terminal and the floor shall be idle. In particular, no other terminal shall create and send data packets containing speech data (RTP media stream).
- The terminals shall have negotiated the session media parameters with the PoC server.
- All terminals in the PoC session shall be configured to use the auto-answer mode procedure (see [16]).

- There are different signal flows for confirmed and for unconfirmed invitations. In the confirmed case, at least one of the invited users has to accept the invitation to the PoC session in order to get the talk burst granted. The terminals on the terminating side may be configured to confirm the invitation automatically. This auto-answer mode should be used for measurements. In both cases (confirmed and unconfirmed) the trigger points for the measurement are the same. Measurement data of confirmed and unconfirmed measurements can not be directly compared.
- This parameter is applicable to different kinds of PoC session initiations, which has an impact on the comparability of the measurement data.

6.4.13.2 Abstract Equation

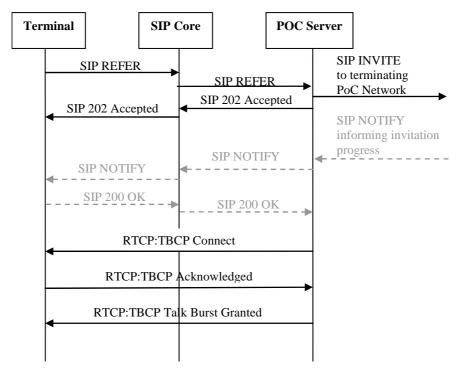
 $\begin{aligned} & \text{PoC Session Initiation Failure Ratio (pre - established)[\%] =} \\ & \frac{\text{unsuccessful pre - established session initiation attempts}}{\text{all pre - established session initiation attempts}} \times 100 \end{aligned}$

6.4.13.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC session initiation	Start: PoC button is pushed.	Start: Protocol: SIP.
attempt		First data packet sent by the terminal containing a "SIP
		REFER" message with the PoC session URL.
Successful PoC session	Stop: Talk burst granted is	Stop: Protocol: RTCP:TBCP.
initiation attempt	indicated.	First data packet received by the terminal containing "Talk
		Burst Granted" message.
Unsuccessful PoC	Stop: Missing talk burst	Stop: Protocol: SIP; RTCP:TBCP.
session initiation attempt	granted indication.	Case 1: First data packet received by the terminal (after
		sending a "SIP REFER" message) containing a message
		different to the "SIP 202 Accepted" message.
		Case 2: Data packet received by the terminal (after sending a
		"SIP REFER" message and receiving a "SIP 202 Accepted"
		message) containing a message different to "SIP NOTIFY",
		"RTCP:TBCP Connect" or "RTCP:TBCP Talk Burst Granted"
		(e.g. "SIP 404 Not Found", "SIP 486 Busy Here" or "SIP 403
		Forbidden" message).
		Case 3: No message received by the terminal within a
		pre-determined time.

6.4.14 PoC Session Initiation Time (pre-established) [s]

6.4.14.1 Abstract Definition


The PoC session initiation time (pre-established) is the time period between pushing the PoC button on the terminal in order to initiate a pre-established session and being granted the talk burst, e.g. indicated by a "beep"-tone on the terminal.

- The terminal notifies the user about the granted talk burst (e.g. by a "beep"-tone).
- The initial "SIP REFER" message accepted by the PoC server is an implicit talk burst request.
- There shall be at least one other participating terminal and the floor shall be idle. In particular, no other terminal shall create and send data packets containing speech data (RTP media stream).
- The terminals shall have negotiated the session media parameters with the PoC server.
- All terminals in the PoC session shall be configured to use the auto-answer mode procedure (see [16]).

- There are different signal flows for confirmed and for unconfirmed invitations. In the confirmed case, at least one of the invited users has to accept the invitation to the PoC session in order to get the talk burst granted. The terminals on the terminating side may be configured to confirm the invitation automatically. This auto-answer mode should be used for measurements. In both cases (confirmed and unconfirmed) the trigger points for the measurement are the same. Measurement data of confirmed and unconfirmed measurements can not be directly compared.
- This parameter is applicable to different kinds of PoC session initiations, which has an impact on the comparability of the measurement data.

6.4.14.2 Abstract Equation

PoC Session Initiation Time (pre - established) [s] = $(t_{beep \, received} - t_{PoC \, button \, pressed})$ [s]

NOTE: The dashed arrows in figure 12 only occur in case of a confirmed, manual answer invitation. In this case the time period between the "SIP INVITE" message and the reception of the "Talk Burst Granted" message depends on how fast an invited user on the terminating side answers to the invitation. Furthermore, the "SIP NOTIFY" message is defined as optional (see [15]) and might not be sent by the server at all. For this reason the automatic answer mode shall be used during measurements.

Figure 12: Talk burst request procedure of a pre-established PoC session

6.4.14.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{PoC button pressed:} Time of PoC session initiation attempt	Start: Push PoC button.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP REFER" message with the PoC session description.
t _{beep received:} Time of successful PoC session initiation attempt	Stop: Talk burst granted is indicated.	Stop: Protocol: RTCP:TBCP. First data packet received by the terminal containing "Talk Burst Granted" message.

6.4.15 PoC Session Setup Failure Ratio (on-demand) [%]

6.4.15.1 Abstract Definition

The PoC session setup failure ratio (on-demand) is the probability that a terminal can not successfully register to the PoC service and initialize an on-demand session.

Remarks:

- This QoS parameter is a combination of the PoC registration parameter and the PoC session initiation parameter. It is ought to reflect the behaviour of PoC enabled user equipment.
- Data between confirmed and unconfirmed measurements cannot be compared directly.

6.4.15.2 Abstract Equation

Let *R* be the number of unsuccessful registration attempts and let *S* be the number of unsuccessful session initiations following a successful registration.

Then:

PoC Session Setup Failure Ratio (on - demand) [%] =
$$\frac{R + S}{\text{all PoC session setup attempts}} \times 100$$

6.4.15.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
	Start: Activation of the PoC service on the terminal.	Start: Protocol: SIP.
		First data packet sent by the terminal containing a "SIP REGISTER" message.
Successful PoC session	Stop: PoC available is	Stop: Protocol: RTCP:TBCP
initiation attempt	indicated.	First data packet received by the terminal containing "RTCP;TBCP Talk Burst Granted".
Unsuccessful PoC	Stop: Missing Talk Burst	Stop: Protocol: SIP; RTCP:TBCP.
session initiation attempt Granted indic	Granted indication.	Case 1: First data packet received by the terminal (after sending a "SIP INVITE" message) containing an error message or redirection message (e.g. a "403 Forbidden" or "488 Not Acceptable Here" message).
		Case 2: First data packet received by the terminal (after sending a "SIP INVITE" message and receiving a "SIP 200 OK" message) containing a message different to the "RTCP:TBCP Talk Burst Granted" message, e.g. "404 Not Found", "SIP 486 Busy Here" or "SIP 403 Forbidden" message.
		Case 3: No message received by the terminal within a pre-determined time.

6.4.16 PoC Session Setup Failure Ratio (pre-established) [%]

6.4.16.1 Abstract Definition

The PoC session setup failure ratio (pre-established) is the probability that a terminal can not successful register to the PoC service and initialize a pre-established session.

Remarks:

- This QoS parameter is a combination of the PoC registration parameter and the PoC session initiation parameter. It is ought to reflect the behaviour of PoC enabled user equipment.
- Data between confirmed and unconfirmed measurements cannot be compared directly.

6.4.16.2 Abstract Equation

Let *R* be the number of unsuccessful registration attempts and let *S* be the number of unsuccessful pre-established session media parameters negotiations following a successful registration. Let *T* be the number of unsuccessful session initiation attempts, which followed after a successful registration and after a successful pre-established session media parameters negotiation.

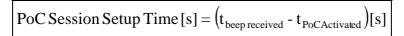
Then:

PoC Session Setup Failure Ratio (pre - established) [%] =
$$\frac{R + S + T}{\text{all PoC session setup attempts}} \times 100$$

6.4.16.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC registration attempt	Start: Activation of the PoC service on the terminal.	Start: Protocol: SIP.
		First data packet sent by the terminal containing a "SIP REGISTER" message.
	Stop: PoC available is indicated.	Stop: Protocol: RTCP:TBCP
initiation attempt		First data packet received by the terminal containing "RTCP;TBCP Talk Burst Granted".
Unsuccessful PoC	indication.	Stop: Protocol: SIP; RTCP:TBCP.
session initiation attempt inc		Case 1: First data packet received by the terminal (after sending a "SIP REFER" message) containing a message different to the "SIP 202 Accepted" message.
		Case 2: Data packet received by the terminal (after sending a "SIP REFER" message and receiving a "SIP 202 Accepted" message) containing a message different to "SIP NOTIFY", "RTCP:TBCP Connect" or "RTCP:TBCP Talk Burst Granted" (e.g. "SIP 404 Not Found", "SIP 486 Busy Here" or "SIP 403 Forbidden" message).
		Case 3: No message received by the terminal within a pre-determined time.

6.4.17 PoC Session Setup Time [s]


6.4.17.1 Abstract Definition:

The PoC session setup time is the time period for the registration to the PoC service plus the time period for the initiation of a PoC session.

Remarks:

- This QoS parameter is a combination of the PoC registration parameter and the PoC session initiation parameter. It is ought to reflect the behaviour of PoC enabled user equipment.
- Data between confirmed and unconfirmed measurements cannot be compared directly.
- Data between on-demand sessions and pre-established sessions cannot be compared directly.

6.4.17.2 Abstract Equation

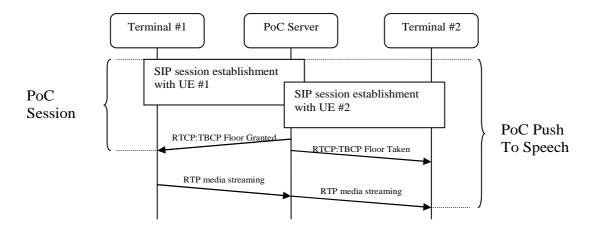


Figure 13: PoC session setup time and PoC push to speak time

6.4.17.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{PoCActivated:} Time of		Start: Protocol: SIP.
PoC registration attempt		First data packet sent by the terminal containing a "SIP REGISTER" message
t _{beep received:} Time of successful PoC registration attempt	'	Stop: Protocol: RTCP:TBCP First data packet received by the terminal containing "RTCP;TBCP Talk Burst Granted".

6.4.18 PoC Push to Speak Failure Ratio [%]

6.4.18.1 Abstract Definition

The PoC Push to speak failure ratio is the probability that terminal A can not successfully set up a PoC session and start with speech leading to no other terminal receiving speech.

Remarks:

- This QoS parameter is a combination of the PoC session setup parameter and the PoC talk burst cut-off parameter (see clause 6.4.30). It is ought to reflect the behaviour of PoC enabled user equipment.
- All terminals shall be registered to the PoC service and shall have successfully published their PoC service settings.
- Data between confirmed and unconfirmed measurements cannot be compared directly.

6.4.18.2 Abstract Equation

Let *S* be the number of unsuccessful PoC session setup attempts and let *T* be the number of talk burst cut-offs following a successful PoC session setup.

Then:

PoC Push to Speak Failure Ratio [%] =
$$\frac{S + T}{\text{all PoC push to speak attempts}} \times 100$$

6.4.18.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC registration	Start: Activation of the PoC	Start: Protocol: SIP.
attempt	service on the terminal.	First data packet sent by the terminal containing a "SIP REGISTER" message.
No unintended speech	Stop: Sound received by	Stop: Protocol: RTP.
cut-off on terminal B		First data packet received by terminal B containing speech data.
Unintended speech cut-off on terminal B	Stop: Terminal B does not receive speech or does not	Stop: Protocol: RTP.
cut-on on terminal B	receive the whole speech.	Case 1: No packet containing speech data (RTP media stream) received by terminal B within a pre-determined time. The timeout should be chosen greater than the average voice delay (see clause 6.6.32).
		Case 2: The media stream is only partially received by terminal B. Some of the data packets containing speech data (RTP media stream) have not been received by terminal B.

6.4.19 PoC Push to Speak Time [s]

6.4.19.1 Abstract Definition

The PoC push to speak time is the period of time that it takes to setup a PoC session and start with speech in addition to the delay until terminal B receives the speech (as defined in clause 6.4.32).

Remarks:

- This QoS parameter is a combination of the PoC session setup time parameter and the PoC voice transmission delay parameter (see clause 6.4.32). It ought to reflect the behaviour of PoC enabled user equipment.
- All terminals shall be registered to the PoC service and shall have successfully published their PoC service settings.
- Data between confirmed and unconfirmed measurements cannot be compared directly.

6.4.19.2 Abstract Equation

PoC Push to Speak Time [s] =
$$(t_{B_hears} - t_{PoCActivated})[s]$$

6.4.19.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{PoCActivated:} Time of		Start: Protocol: SIP.
PoC registration attempt		First data packet sent by the terminal containing a "SIP REGISTER" message.
t _{B_hears:} Time of output at terminal B		Stop: Protocol: RTP. First data packet received by terminal B containing speech data.

6.4.20 PoC Session Leaving Failure Ratio (on-demand) [%]

6.4.20.1 Abstract Definition

The PoC session leaving failure ratio (on-demand) is the probability that the user can not leave the PoC session he is participating.

Remarks:

- When a PoC session is left, the terminal is still registered to the PoC service.
- PoC enabled user equipment may not give the user the possibility to leave a PoC session explicitly. The PoC session leave request may only be sent when the terminal deregisters from the PoC service.
- The terminal shall be registered to the PoC service participating in a PoC session.

6.4.20.2 Abstract Equation

 $\begin{aligned} & \text{PoC Session Leaving Failure Ratio (on - demand)[\%] =} \\ & \frac{\text{unsuccessful PoC session leaving attempts}}{\text{all PoC session leaving attempts}} \times 100 \end{aligned}$

6.4.20.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC session leaving	Start: Leaving the participating	Start: Protocol: SIP.
attempt	PoC session.	First data packet sent by the terminal containing a "SIP BYE" message.
Successful PoC session	Stop: PoC session left is	Stop: Protocol: SIP.
leaving attempt	pt indicated.	First data packet received by the terminal containing a "SIP 200 OK" message.
Unsuccessful PoC	Stop: Terminal is still connected	Stop: Protocol: SIP.
session leaving attempt to	to the PoC session.	Case 1: First data packet received by the terminal (after sending the "SIP BYE" message) containing a message different to "SIP 200 OK".
		Case 2: No message received by the terminal within a pre-determined time.

6.4.21 PoC Session Leaving Time (on-demand) [s]

6.4.21.1 Abstract Definition

The PoC session leaving time (on-demand) is the time period between sending the on-demand session leaving request and being disconnected from the on-demand session.

Remarks:

- When a PoC session is left, the terminal is still registered to the PoC service.
- PoC enabled user equipment may not give the user the possibility to leave a PoC session explicitly. The PoC session leave request may only be sent when the terminal de-registers from the PoC service.
- The terminal shall be registered to the PoC service participating in a PoC session.

6.4.21.2 Abstract Equation

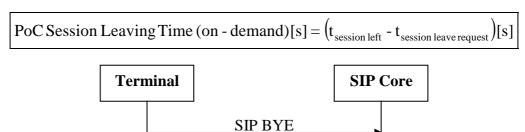


Figure 14: Successful PoC session leaving

SIP 200 OK

6.4.21.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
	Start: Leaving the participating PoC session.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP BYE" message.
		Stop: Protocol: SIP. First data packet received by the terminal containing a "SIP 200 OK" message.

6.4.22 PoC Session Leaving Failure Ratio (pre-established) [%]

6.4.22.1 Abstract Definition

The PoC session leaving failure ratio (pre-established) is the probability that the user can not leave the PoC pre-established session he is participating.

Remark:

- The PoC session was established using pre-established signalling.
- The terminal may not give the user the possibility to leave a PoC session explicitly. The PoC session leave request may only be sent when the terminal deregisters from the PoC service.

6.4.22.2 Abstract Equation

PoC Session Leaving Failure Ratio (pre - established) [%] = $\frac{\text{unsuccessful PoC session leaving attempts}}{\text{all PoC session leaving attempts}} \times 100$

6.4.22.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC session leaving attempt	Start: Leaving the participating PoC session.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP REFER BYE" message.
Successful PoC session leaving attempt	Stop: Terminal has successfully left the PoC session.	Stop: Protocol: SIP. First data packet received by the terminal containing a "SIP 202 ACCEPTED" message.
Unsuccessful PoC session leaving attempt	Stop: Terminal is still connected to the PoC session.	Stop: Protocol: SIP Case 1: First data packet received by the terminal (after sending the "SIP REFER BYE" message) containing a message different to "SIP 202 Accepted". Case 3: No message received by the terminal within a pre-determined time.

6.4.23 PoC Session Leaving Time (pre-established) [s]

6.4.23.1 Abstract Definition

The PoC session leaving time (pre-established) is the time period between sending the PoC session leaving request and being disconnected from the Pre-established session.

Remark:

- The PoC session was established using Pre-established signalling.
- The terminal may not give the user the possibility to leave a PoC session explicitly. The PoC session leave request may only be sent when the terminal deregisters from the PoC service.

6.4.23.2 Abstract Equation

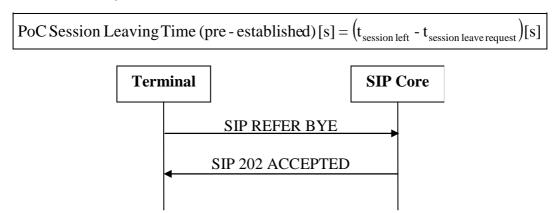


Figure 15: Successful PoC session leaving (Pre-established session)

6.4.23.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
i session leave request.	Start: Leaving the participating PoC session.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP REFER BYE" message.
t _{session left:} Time of successful PoC session leaving attempt	Stop: Terminal has successfully left the PoC session.	Stop: Protocol: SIP. First data packet received by the terminal containing a "SIP 202 ACCEPTED" message.

6.4.24 PoC Deregistration Failure Ratio [%]

6.4.24.1 Abstract Definition

The PoC deregistration failure ratio is the probability that the user can not be deregistered from the Push to Talk over Cellular service when requested.

Remark:

• The terminal shall be registered to the PoC service.

6.4.24.2 Abstract Equation

PoC Deregistration Failure Ratio [%] =
$$\frac{\text{unsuccessful PoC deregistration attempts}}{\text{all PoC deregistration attempts}} \times 100$$

6.4.24.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
	Start: Deactivation of the PoC service on the terminal.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP Register" message, where the "Expires" header is set to 0.
Successful PoC deregistration attempt	Stop: PoC unavailable is indicated.	Stop: Protocol: SIP. First data packet received by the terminal containing a "SIP 200 OK" message.
Unsuccessful PoC deregistration attempt	Stop: PoC unavailable indication is not given within a predetermined time.	Stop: Protocol: SIP. Case 1: First data packet received by the terminal (after sending the second "SIP REGISTER" message) containing a message different to "SIP 200 OK". Case 2: No message received by the terminal within a pre-determined time.

6.4.25 PoC Deregistration Time [s]

6.4.25.1 Abstract Definition

The PoC deregistration time is the time period between the deregistration request and the successful deregistration from the PoC service.

Remark:

• The terminal shall be registered to the PoC service.

6.4.25.2 Abstract Equation

PoC Deregistration Time
$$[s] = (t_{PoC deregistered} - t_{deregistration request})[s]$$

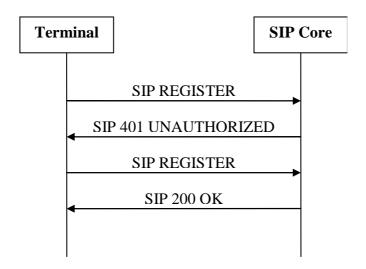


Figure 16: Successful PoC deregistration example

6.4.25.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{deregistration} request: Time of PoC deregistration attempt	Start: Deactivation of the PoC service on the terminal.	Start: Protocol: SIP. First data packet sent by the terminal containing a "SIP Register" message, where the "Expires" header is set to 0.
t _{PoC} deregistered: Time of successful PoC deregistration attempt	Stop: PoC unavailable is indicated.	Stop: Protocol: SIP. First data packet received by the terminal containing a "SIP 200 OK" message.

6.4.26 PoC Busy Floor Response Failure Ratio [%]

6.4.26.1 Abstract Definition

The PoC busy floor response failure ratio is the probability that, once in a PoC session, the talk burst request from the terminal fails.

Remark:

- The terminal shall be within an active PoC talk session. Thus, there shall be at least one other participating terminal
- For the special case of requesting the idle floor, there are defined further QoS parameters (see clauses 6.4.28 and 6.4.29).

6.4.26.2 Abstract Equation

PoC Busy Floor Response Failure Ratio [%] =
$$\frac{\text{unsuccessful talk burst requests}}{\text{all talk burst requests}} \times 100$$

6.4.26.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC talk burst request	Start: Push PoC button.	Start: Protocol: RTCP:TBCP. First data packet sent by the terminal containing a "RTCP:TBCP Talk Burst Request" message.
Successful PoC talk burst request	Stop: Current floor state is indicated.	Stop: Protocol: RTCP:TBCP. First data packet received by the terminal containing information about the floor state.
Unsuccessful PoC talk burst request	Stop: No talk burst response is indicated (e.g. grant, queued).	Stop: Protocol: RTCP:TBCP. No message received by the terminal within a pre-determined time.

6.4.27 PoC Busy Floor Response Time [s]

6.4.27.1 Abstract Definition

The PoC busy floor response time is the is the time period between requesting the talk burst and receiving the indication the floor is busy within an already established PoC session.

Remarks:

- The terminal shall be within an active PoC talk session. Thus, there shall be at least one other participating terminal
- For the special case of requesting the idle floor, there are defined further QoS parameters (see clauses 6.4.28 and 6.4.29).

6.4.27.2 Abstract Equation

PoC Busy Floor Response Time [s] = $(t_{floor response} - t_{floor request})$ [s]

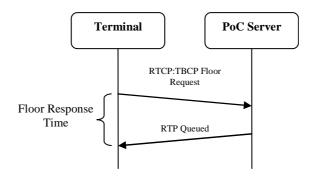


Figure 17: Example for a busy floor response

6.4.27.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{floor request:} Time of PoC talk burst request		Start: Protocol: RTCP:TBCP. First data packet sent by the terminal containing a "RTCP:TBCP Talk Burst Request" message.
HOOF TESPOTISE.	indicated.	Stop: Protocol: RTCP:TBCP. First data packet received by the terminal containing information about the floor state.

6.4.28 PoC Talk Burst Request Failure Ratio [%]

6.4.28.1 Abstract Definition

The PoC talk burst request failure ratio is the probability that, once in a PoC session, the terminal's request of the idle floor fails.

Remarks:

- The terminal shall be within an active PoC session.
- There shall be at least one other participating terminal and the floor shall be idle. In particular, no other terminal shall create and send data packets containing speech data (RTP media stream).
- This parameter is defined explicitly because the server's response time and failure ratio to a request of the idle floor may be different to the response time and response failure ratio of a busy floor.

6.4.28.2 Abstract Equation

PoC Talk Burst Request Failure Ratio [%] =
$$\frac{\text{unsuccessful talk burst requests}}{\text{all talk burst requests}} \times 100$$

6.4.28.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC talk burst request	Start: Push PoC button.	Start: Protocol: RTCP:TBCP. First data packet sent by the terminal containing a "RTCP:TBCP Talk Burst Request" message.
Successful PoC talk burst request	Stop: Talk burst granted is indicated.	Stop: Protocol: RTCP:TBCP. First data packet received by the terminal containing a "RTCP:TBCP Talk Burst Granted" message.
Unsuccessful PoC talk burst request	Stop: Talk burst granted is not indicated.	Stop: Protocol: RTCP:TBCP. Case 1: First data packet received by the terminal containing a floor state different to "RTCP:TBCP Talk Burst Granted". Possible floor states are listed in [14]. Case 2: No message received by the terminal within a predetermined time.

6.4.29 PoC Talk Burst Request Time [s]

6.4.29.1 Abstract Definition

The PoC talk burst request time is the time period between requesting the talk burst and being granted the previously idle floor within an already established PoC session.

Remarks:

- The terminal shall be within an active PoC session.
- There shall be at least one other participating terminal and the floor shall be idle. In particular, no other terminal shall create and send data packets containing speech data (RTP media stream).
- This parameter is defined explicitly because the server's response time and failure ratio to a request of the idle floor may be different to the response time and response failure ratio of a busy floor.

6.4.29.2 Abstract Equation

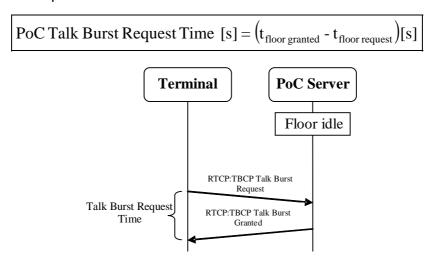


Figure 18: Example for a successful talk burst request

6.4.29.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{floor request:} Time of PoC	Start: Push PoC button.	Start: Protocol: RTCP:TBCP.
talk burst request		First data packet sent by the terminal containing a "RTCP:TBCP Talk Burst Request" message.
t _{floor granted:} Time of	Stop: Talk burst granted is	Stop: Protocol: RTCP:TBCP.
successful PoC talk burst request	indicated.	First data packet received by the terminal containing a "RTCP:TBCP Talk Burst Granted" message.

6.4.30 PoC Talk Burst Cut-off Ratio [%]

6.4.30.1 Abstract Definition

The PoC talk burst cut-off ratio is the probability that the terminal on the originating side (terminal A) has the floor and creates and sends data packets containing speech data (RTP media stream), but the stream does not arrive (or arrives only partly) at the terminating side (terminal B).

Remarks:

- There shall be at least one other active participating terminal and the floor shall be granted to terminal A. In particular, no other terminal shall create and send data packets containing speech data (RTP media stream).
- The implementation of a stop-talking timer is mandatory on the server side. When a user is granted a talk burst, the PoC server resets this stop-talking timer. When the timer expires, the PoC server revokes the talk burst from the user (see [14]). Hence this situation (talk burst revoked because of a timeout) shall not be considered for measurements.
- The time of a talk burst shall be shorter than the network-defined stop-talking timeout.

6.4.30.2 Abstract Equation

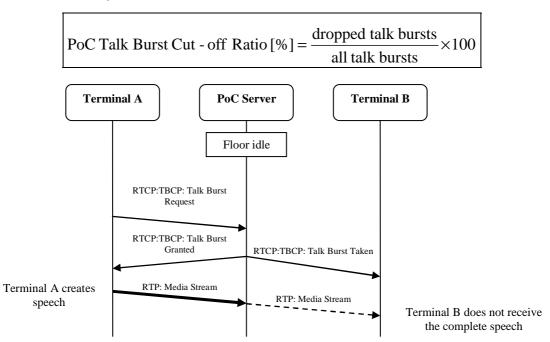


Figure 19: PoC talk burst cut-off

6.4.30.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC talk burst granted	Start: Talk burst granted is	Start: Protocol: RTP.
and start of speech on terminal A	indicated. Speech starts.	First data packet sent by terminal A containing speech data.
No unintended speech	Stop: Sound received by	Stop: Protocol: RTP.
cut-off on terminal B	terminal B.	First data packet received by terminal B containing speech data.
Unintended speech cut-off on terminal B	Stop: Terminal B does not receive speech or does not	Stop: Protocol: RTP.
	receive the whole speech.	Case 1: No packet containing speech data (RTP media stream) received by terminal B within a pre-determined time. The timeout should be chosen greater than the average voice delay (see clause 6.6.32).
		Case 2: The media stream is only partially received by terminal B. Some of the data packets containing speech data (RTP media stream) have not been received by terminal B.

6.4.31 PoC Talk Burst Packet Drop Ratio [%]

6.4.31.1 Abstract Definition

The PoC talk burst packet drop ratio is the ratio between the number of data packets containing speech data sent by the terminal on the originating side (terminal A) and the number of data packets containing speech data received on the terminating side (terminal B).

Remarks:

- There shall be at least one other active participating terminal and the floor shall be granted to terminal A. In particular, no other terminal shall create and send data packets containing speech data (RTP media stream).
- The implementation of a stop-talking timer is mandatory on the server side. When a user is granted a Talk Burst, the PoC server resets this stop-talking timer. When the timer expires, the PoC server revokes the talk burst from the user (see [14]). Hence this situation (talk burst revoked because of a timeout) shall not be considered for measurements.
- The time of a talk burst shall be shorter than the network-defined stop-talking timeout.

This ratio shall get calculated on a per-burst basis.

6.4.31.2 Abstract Equation

PoC Talk Burst Packet Drop Ratio [%] =
$$\frac{\text{dropped RTP speech packets}}{\text{all sent RTP speech packets}} \times 100$$

6.4.31.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
PoC talk burst granted	Start: Talk burst granted is	Stop: Protocol: RTP.
and start of speech on terminal A	indicated. Speech starts.	First data packet sent by terminal A containing speech data.
End of speech on terminal B	Stop: End of speech is indicated or timeout occurred after	Stop: Protocol: RTP.
	terminal B has received speech.	Case 1: First packet received by the terminal containing a "RTP: Last Packet" message after a data packet containing speech data has been received by terminal B.
		Case 2: No packet containing a "RTP: Last Packet" message received by terminal B within a pre-determined time after a data packet containing speech data has been received by terminal B.

6.4.32 PoC Voice Transmission Delay (first) [s]

6.4.32.1 Abstract Definition

The parameter PoC voice transmission delay (first) describes the period of time between a terminal sending speech data (RTP media stream) and the first terminal receiving the speech data for the first talk burst after a PoC session has been established successfully.

Remarks:

• Without loss of generality, the PoC session consists only of two active terminals (A and B) and terminal A is trying to create and send data packets containing speech data (RTP media stream). Thus, terminal B is the one who should receive the corresponding RTP media stream.

- Server side buffering has a high impact on measurement results. Depending on the configuration of the server, the PoC voice transmission delay (first) might in fact just describe the transmission delay between the server and terminal B. To avoid buffering at server side, confirmed indication shall be used.
- Terminal A shall create an RTP media stream immediately after being granted the talk burst.
- This parameter is measured on the transport layer. Thus the measured value may be smaller than the real user
 perceived voice delay. The perceived delay also depends on the encoding/decoding speed of the terminals.

6.4.32.2 Abstract Equation

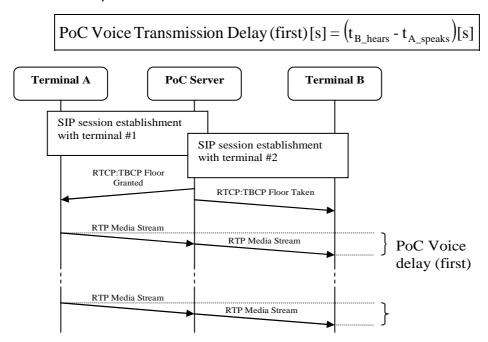


Figure 20: PoC voice transmission delay (first) and PoC voice transmission delay (others)

6.4.32.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{A_speaks:} Time of input at	Start: Terminal A got the	Start: Protocol: RTP.
terminal A	talk burst granted and creates an RTP media stream (starts talking).	First data packet sent by terminal A containing speech data.
t _{B_hears:} Time of output at	Stop: Sound received by	Stop: Protocol: RTP.
terminal B	terminal B.	First data packet received by terminal B containing speech data.

6.4.33 PoC Voice Transmission Delay (others) [s]

6.4.33.1 Abstract Definition

The parameter PoC voice transmission delay (others) describes the period of time between a terminal sending speech data (RTP media stream) and the first terminal receiving the speech data (within an already established PoC session).

Remarks:

• Without loss of generality, the PoC session consists only of two active terminals (A and B) and terminal A is trying to create and send data packets containing speech data (RTP media stream). Thus, terminal B is the one who should receive the corresponding RTP media stream.

- Server side buffering has a high impact on measurement results. Depending on the configuration of the server, the PoC voice transmission delay (first) might in fact just describe the transmission delay between the server and terminal B. To avoid buffering at server side, confirmed indication shall be used.
- Terminal A shall create an RTP media stream immediately after being granted the talk burst.
- This parameter is measured on the transport layer. Thus the measured value may be smaller than the real user perceived voice delay. The perceived delay also depends on the encoding/decoding speed of the terminals.
- The voice delays on the terminating site depend on where the terminals are located (e.g. in another cell or another network).

6.4.33.2 Abstract Equation

PoC Voice Transmission Delay (others)[s] =
$$(t_{B_hears} - t_{A_speaks})[s]$$

6.4.33.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{A_speaks:} Time of input at	Start: Terminal A got the talk	Start: Protocol: RTP.
terminal A	burst granted and creates an RTP media stream (starts talking).	First data packet sent by terminal A containing speech data.
t _{B_hears:} Time of output at	Stop: Sound received at	Stop: Protocol: RTP.
terminal B	terminal B.	First data packet received by terminal B containing speech data.

6.4.34 PoC Speech Quality

To be defined.

6.4.35 Group Management QoS Parameter

To be defined.

6.4.36 Group Document related QoS Parameter

To be defined.

6.4.37 Instant Message QoS Parameter

To be defined.

6.5 Streaming Video

6.5.1 Definitions

6.5.1.1 Streaming Session or Session

RFC 2326 [8] defines a session as "a complete RTSP "transaction", e.g. the viewing of a movie. A session typically consists of a client setting up a transport mechanism for the continuous media stream (SETUP), starting the stream with PLAY or RECORD, and closing the stream with TEARDOWN".

Referring to figure 21 this means that the session starts at (B) and stops at (G).

6.5.2 Prerequisites

Precondition	Covered by	Reference document	Comment
Network Accessibility	Network Accessibility Indicator		
given			
PDP context activated			

6.5.3 Streaming Scenarios

The following two clauses describe different streaming scenarios. The first one is a generic approach in order to understand the main principles and identify the relevant protocols and communication procedures.

6.5.3.1 Generic Streaming Signalling Flow

A generic signal flow description for streaming is shown in figure 21. The client communicates with the web server and media server entities and uses different protocols during the complete procedure, e.g. RTP, RTSP, RTCP, HTTP.

The next table gives a basic description of the protocols and their usage.

Protocol	Reference in figure 21	Description	
HTTP	Α	Used for the retrieval of the streaming file description data.	
RTSP	B,C,F,G	RTSP is an application-level protocol. It provides different methods for the control of real-time data, e.g. audio/video (see note 1).	
RTP	D	RTP is used for the transmission of real-time data, e.g. audio/video (see note 2).	
RTCP	E	RTCP is the control protocol for RTP. Ist main function is the provision of a quality feedback.	
NOTE 1: RT	NOTE 1: RTSP is not responsible for the delivery of the data, this is done by RTP.		
NOTE 2: RTI	NOTE 2: RTP is only used for the delivery of the data. No control and/or QoS are included.		

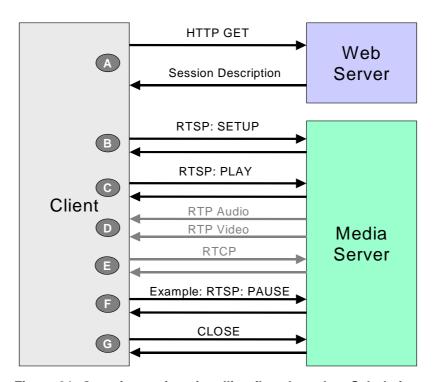


Figure 21: Generic session signalling flow, based on Schulzrinne

Referring to figure 21 and the definition of a session in clause 4.8.1.1 it is possible to divide the communication of the client with the server side in two phases:

• In the first phase the client communicates with the web server in order to get a description of the file to be streamed. The used protocol is HTTP. Starting point is (A) and ending point is (B).

• In the second phase starts the communication with the media server which is finally delivering the stream. This means that the session starts at (B) and stops at (G). Different protocols are used in this phase (RTSP, RTP, RTCP).

6.5.3.2 Parameter Overview Chart

Figure 22 gives an overview of the defined QoS parameters with their trigger points from customer's point of view.

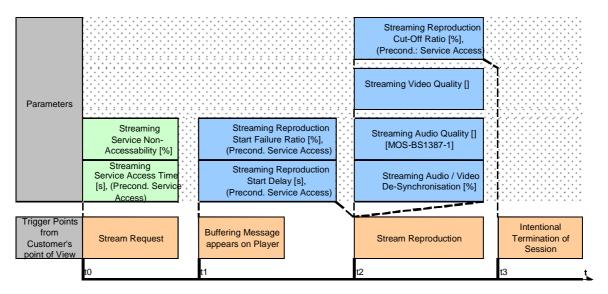


Figure 22: Parameter overview with trigger points

6.5.4 Streaming Service Non-Accessibility [%]

6.5.4.1 Abstract Definition

The parameter Streaming Service Non-Accessibility describes the probability that the first data packet of the stream cannot be received by the UE when requested by the user. The "packet reception" is completed by appearance of the "buffering" message on the player at user side.

The first data packet refers to RTP protocol.

6.5.4.2 Abstract Equation

Streaming Service Non - Accessibility [%] =
$$\frac{\text{unsuccessful stream request attempts}}{\text{all stream request attempts}} \times 100$$

6.5.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Service access attempt	Start: Stream request.	Start: WAP 1.x, WAP 2.x: WSP Disconnect; WAP 2.x: TCP SYN towards streaming platform.
Successful attempt	Stop: "Buffering" message.	Stop: Reception of first data packet.
Unsuccessful attempt	Stop trigger point not reached.	

6.5.5 Streaming Service Access Time [s]

6.5.5.1 Abstract Definition

The parameter Streaming Service Access Time describes the duration of a service access from requesting the stream at the portal until the reception of the first stream data packet at the UE.

The first data packet refers to RTP protocol.

6.5.5.2 Abstract Equation

Streaming Service Access Time [s] =
$$(t_{\text{reception of first data packet}} - t_{\text{stream request}})$$
[s]

6.5.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{stream request} : Time when stream is requested	Start: Stream request.	Start: WAP 1.x, WAP 2.x: WSP Disconnect; WAP 2.x: TCP SYN towards streaming platform.
t _{reception of first data packet} : Time when first data packet is received	Start: "Buffering" message.	Stop: Reception of first data packet.

6.5.6 Streaming Reproduction Cut-off Ratio [%]

6.5.6.1 Abstract Definition

The parameter Streaming Reproduction Cut-off Ratio describes the probability that a successfully started stream reproduction is ended by a cause other than the intentional termination by the user.

6.5.6.2 Abstract Equation

Streaming Reproduction Cut - off Ratio [%] = $\frac{\text{unintenionally terminated stream reproductions}}{\text{all successfully started stream reproductions}} \times 100$

6.5.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully started media streaming reproduction	Start: Stream reproduction starts.	Start: Streaming player signals the start of the stream reproduction.
Intentional terminated streaming reproduction	Stop: User presses the "Exit" button or end of stream is reached.	Stop: RTSP Teardown method sent by UE and reception of confirmation "RTSP 200 OK" from media server.
Unintentional terminated streaming reproduction	Stop trigger point not reached.	
NOTE: Not all players may signal the reproduction start.		

Some players do not send this TEARDOWN command at the end of the stream but a PAUSE command or in some cases nothing at all. On the server side a logic can then identify the status of the streams/clients.

Used players should send the RTSP:TEARDOWN command in order to give a stable trigger point for measurements.

6.5.7 Streaming Audio Quality

6.5.7.1 Abstract Definition

The parameter Streaming Audio Quality describes the audio quality as perceived by the end-user. Since the streams can contain and not only speech information, an algorithm like P.862 is not suitable for all scenarios.

ITU-R has defined an algorithm defined for audio information. It can be found in [6].

6.5.7.2 Abstract Equation

To be defined.

6.5.7.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Tbd	Start: Begin of audio stream reproduction.	Start: Streaming players signal when the reproduction of the stream starts.
Tbd	Stop: End of audio stream reproduction.	Stop: RTSP: TEARDOWN.

6.5.8 Streaming Video Quality

6.5.8.1 Abstract Definition

The parameter Streaming Video Quality measures the quality of the video stream.

NOTE 1: Although evaluation algorithms exist, there are no standardized solutions yet.

NOTE 2: Standardization process of evaluation algorithms is on-going and new recommendations are expected during the ITU study period 2005-2008.

6.5.8.2 Abstract Equation

NOTE 1: Although evaluation algorithms exist, there are no standardized solutions yet.

NOTE 2: Standardization process of evaluation algorithms is on-going and new recommendations are expected during the ITU study period 2005-2008.

6.5.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Tbd		Start: Streaming players signal when the reproduction of the stream starts.
Tbd	Stop: End of video stream reproduction.	Stop: RTSP: TEARDOWN.

6.5.9 Streaming Audio/Video De-Synchronization

6.5.9.1 Abstract Definition

The parameter Streaming Audio/Video De-Synchronization describes the percentage of times that time difference of the audio and video signal at the user side exceeds a predefined threshold.

6.5.9.2 Abstract Equation

No validated or standardized algorithm has been selected for the evaluation for video streaming content quality.

6.5.9.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Tbd	Start: Begin of audio stream reproduction.	Start: Streaming players signal when the reproduction of the stream starts.
Tbd	Stop: End of audio stream reproduction.	Stop: RTSP: TEARDOWN.

6.5.10 Streaming Reproduction Start Failure Ratio [%]

6.5.10.1 Abstract Definition

The parameter Streaming Reproduction Start Failure Ratio describes the probability of unsuccessful stream reproduction.

NOTE: This parameter can be affected:

- by the player;
- by the UE performance.

6.5.10.2 Abstract Equation

Streaming Reproduction Start Failure Ratio [%] =
$$\frac{\text{reproduction failures}}{\text{all successful service accesses}} \times 100$$

6.5.10.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Service access attempt	Start: "Buffering" message.	Start: Reception of first data packet.
Successful reproduction	Stop: Stream reproduction.	Stop: Streaming players signal when the reproduction of the stream starts.
Unsuccessful reproduction	Stop trigger point not reached.	

6.5.11 Streaming Reproduction Start Delay [s]

6.5.11.1 Abstract Definition

The parameter Streaming Reproduction Delay describes the duration between the reception at UE of the first stream data packet and the start of the reproduction of the stream on the UE.

NOTE: This parameter can be affected:

- by the player;
- by the UE performance.

6.5.11.2 Abstract Equation

Streaming Reproduction Start Delay
$$[s] = (t_{start of stream reproduction} - t_{reception of first data packet})[s]$$

6.5.11.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
treception of first data packet	Start: "Buffering" message.	Start: Reception of first data packet.
tstart of stream reproduction		Stop: Streaming players signal when the reproduction of the stream starts.

6.5.12 Teardown Failure Ratio [%]

6.5.12.1 Abstract Definition

The parameter Teardown Failure Ratio describes the probability that the "Teardown" RTSP message is sent from the UE client to the server and no "200 OK" RTSP response is received from the server.

6.5.12.2 Abstract Equation

Teardown Failure Ratio [%] =
$$\frac{\text{cases without teardown server response}}{\text{all teardown attempts by UE client}} \times 100$$

6.5.12.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Teardown attempt	Start: User presses the "Stop" button.	Start: RTSP: TEARDOWN.
Successful Teardown	Stop: Stream is torn down.	Stop: RTSP: 200 OK.
Unsuccessful Teardown	Stop trigger point not reached.	

Some players do not send this TEARDOWN command at the end of the stream but a PAUSE command or in some cases nothing at all. On the server side a logic can then identify the status of the streams/clients.

Used players should send the RTSP:TEARDOWN command in order to give a stable trigger point for measurements.

6.5.13 Teardown Time [s]

6.5.13.1 Abstract Definition

The parameter Teardown Failure Ratio describes the duration between the UE client sending the "Teardown" RTSP message and the "200 OK" RTSP response from the server.

6.5.13.2 Abstract Equation

$$Teardown Time [s] = (t_{server repsonse to teardown message} - t_{UE client sending teardown message})[s]$$

6.5.13.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
OL client sending teardown message	Start: User presses the "Stop" button.	Start: RTSP: TEARDOWN.
t _{server} response to teardown message	Stop: Stream is torn down.	Stop: RTSP: 200 OK.

Some players do not send this TEARDOWN command at the end of the stream but a PAUSE command or in some cases nothing at all. On the server side a logic can then identify the status of the streams/clients.

Used players should send the RTSP:TEARDOWN command in order to give a stable trigger point for measurements.

6.5.14 Rebuffering Failure Ratio [%]

6.5.14.1 Abstract Definition

The parameter Rebuffering Failure Ratio describes the probability that a stream goes into rebuffering mode and does not restart the stream reproduction, afterwards.

6.5.14.2 Abstract Equation

Rebuffering Failure Ratio [%] =
$$\frac{\text{unsuccessful rebuffering attempts}}{\text{all rebuffering attempts}} \times 100$$

6.5.14.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Rebuffering attempt	Start: "Buffering" message appears.	Start: Streaming player signals the start of the stream buffering.
Successful continuation of reproduction	Stop: Stream reproduction continues.	Stop: Streaming player signals the continuation of the stream reproduction.
Unsuccessful continuation of reproduction	Stop trigger point not reached.	

6.5.15 Rebuffering Time [s]

6.5.15.1 Abstract Definition

The parameter Rebuffering Time describes the duration between a stream going into rebuffering mode and continuation of the stream, afterwards.

6.5.15.2 Abstract Equation

Rebuffering Time [s] =
$$(t_{\text{continuation of stream}} - t_{\text{rebuffering message appears}})[s]$$

6.5.15.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
trebuffering message appears	Start: "Buffering" message appears.	Start: Streaming player signals the start of the stream buffering.
Continuation of Stream		Stop: Streaming player signals the continuation of the stream reproduction.

6.6 Telephony

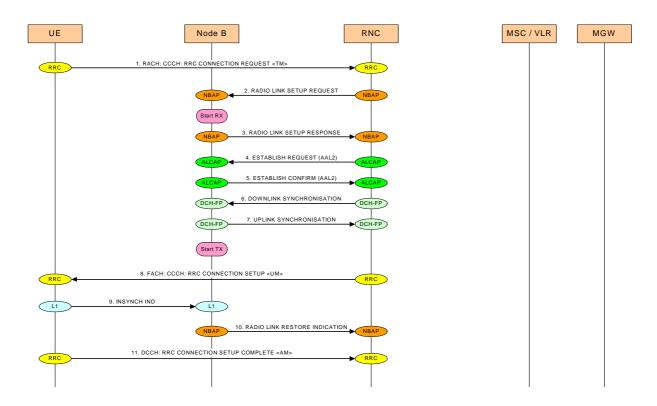
6.6.1 Telephony Service Non-Accessibility [%]

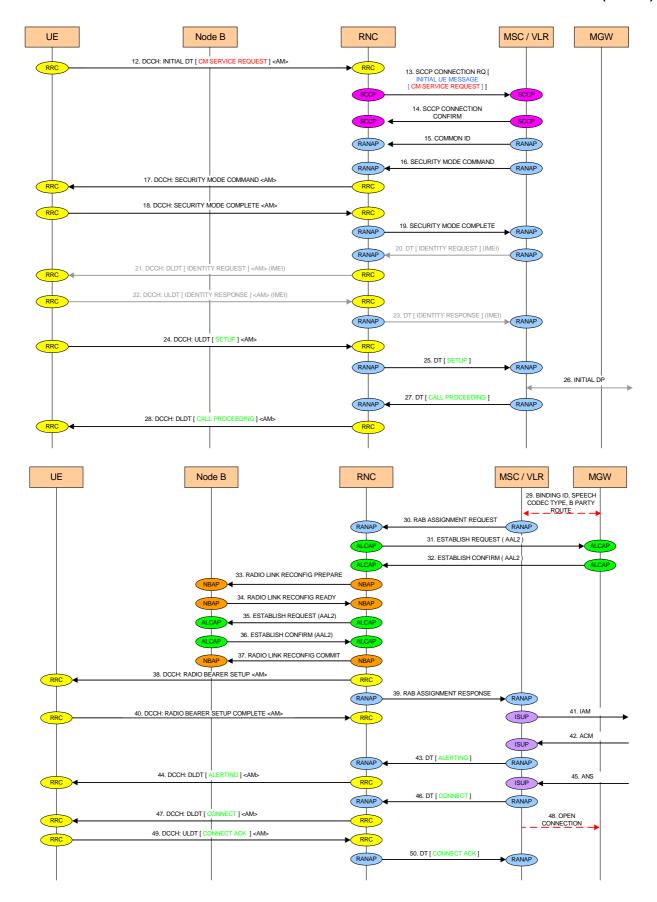
6.6.1.1 Abstract Definition

Probability that the end-customer cannot access the Mobile Telephony Service when requested if it is offered by display of the network indicator on the mobile equipment.

NOTE: Due to network problems and despite B-party being not busy (see preconditions for measurement), it may even be possible for the A-party to receive a busy or not reachable signal. In this case, since no ALERTING message will be sent, the test sample will be treated as a failure.

6.6.1.2 Abstract Equation


Telephony Service Non - Accessibility [%] =
$$\frac{\text{unsuccessful call attempts}}{\text{all call attempts}} \times 100$$


6.6.1.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part	
Call attempt	Start: Push Send button.	Start: The first RRC CONNECTION REQUEST with Establishment Cause "Originating Conversational Call" message carried on the CCCH logical channel and mapped to the RACH transport channel is sent. (figure 23; signalling point number 1).	
		Comment: It is possible that more than one RRC CONNECTION REQUEST message per call attempt is sent. Only the first RRC CONNECTION REQUEST with Establishment Cause "Originating Conversational Call" should be taken into account for the calculation.	
		It is possible that the RRC connection is already established because of an e.g. Location Update, then the start trigger is not reachable. In this case the current test sample should be deleted.	
Successful call	Stop: Alerting tone is heard by the	Stop: The ALERTING message on the DCCH logical	
attempt	A-party coming from B-party	channel is passed:	
	AND	from the B-party to the MSC (uplink) AND	
	B-party rings.	from the MSC to the A-party (downlink) to indicate that the A-party rings. (Figure 2; signalling point number 4).	
Unsuccessful call attempt	Stop trigger point not reached.		
	OTE: With automatic tools there is not a significant difference between consider the alerting or the connect message, as the answer machine should always answer immediately.		

Preconditions for measurement:

Precondition	Covered by	Reference document
CS network available	Radio Network Unavailability	
CS attach successful		
B-party shall not be busy		

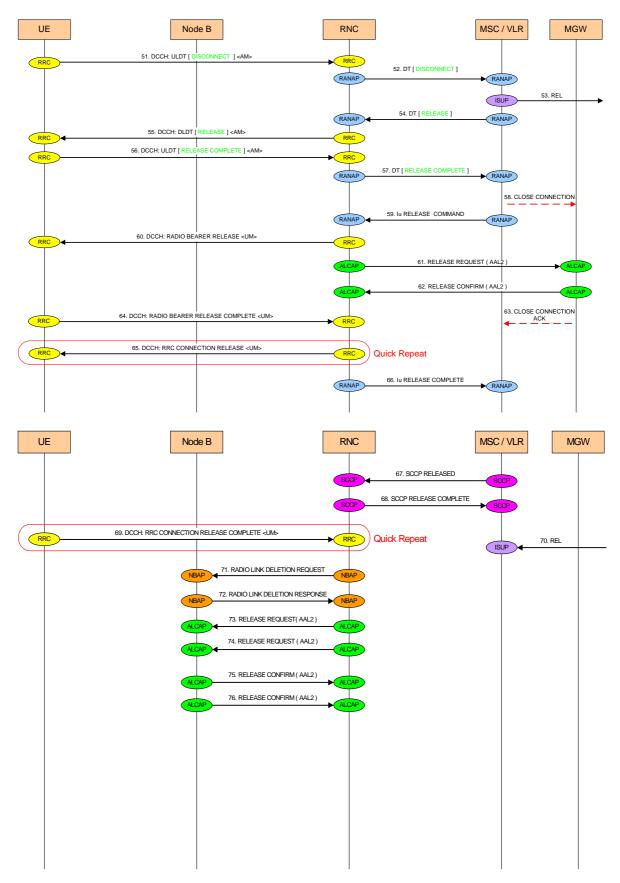


Figure 23: 3G Voice Signalling Flow Chart: Mobile Originated Call Establishment Procedure

6.6.2 Telephony Setup Time [s]

6.6.2.1 Abstract Definition

Time between sending of complete address information and receipt of call set-up notification.

6.6.2.2 Abstract Equation

Telephony Setup Time [s] =
$$(t_{connect established} - t_{customer presses send button on UE})[s]$$

- t₂: point of time where connect is established (e.g. alerting or subscriber busy is detected by test equipment), see note.
- t₁: point of time where the customer presses the send button on mobile equipment.

NOTE: This parameter is not calculated unless the telephony call setup attempt is successful. It is assumed that early traffic channel assignment is used.

6.6.2.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
tcustomer presses send button on UE: Time of call attempt	Start: Push send button.	Start: The first RRC CONNECTION REQUEST with Establishment Cause "Originating Conversational Call" message carried on the CCCH logical channel and mapped to the RACH transport channel is sent. (Figure 2; signalling point number 1). Comment: It is possible that more than one RRC CONNECTION REQUEST message per call attempt is sent. Only the first RRC CONNECTION REQUEST with Establishment Cause "Originating Conversational Call" should be taken into account for the calculation. It is possible that the RRC connection is already established because of an e.g. Location
		Update, then the start trigger is not reachable. In this case the current test sample should be deleted.
t _{connection established} : Time when connection is established (successful call attempt)	Stop: Alerting tone is heard by the A-party coming from the B-party AND	Stop: The ALERTING message on the DCCH logical channel is passed: 1. from the B-party to the MSC (uplink) AND
	B-party rings.	from the MSC to the A-party (downlink) to indicate that the A-party rings. (Figure 2; signalling point number 44).
NOTE: With automatic tools there is not a significant difference between consider the alerting or the connect message, as the answer machine should always answer immediately.		

Preconditions for measurement:

Precondition	Covered by	Reference document
CS network available	Radio Network Unavailability	
CS attach successful		
CS service access successful	Telephony Service Non-Accessibility	

6.6.3 Telephony Speech Quality on Call Basis

6.6.3.1 Abstract Definition

Indicator representing the quantification of the end-to-end speech transmission quality of the Mobile Telephony Service. This parameter computes the speech quality on the basis of completed calls.

6.6.3.2 Abstract Equation

The validation of the end-to-end quality is made using the MOS_{_LQO} scale. This scale describes the opinion of customers with voice transmission and its troubles (noise, robot voice, echo, dropouts, etc.). The speech quality measurement is taken per call. An aggregation should be made on one value for speech quality per call.

Reference: ITU-T Recommendation P.862 [1] in conjunction with ITU-T Recommendation P.862.1 [9].

Telephony Speech Quality on Call Basis (received A - party) = f(MOS - LQO)Telephony Speech Quality on Call Basis (received B - party) = f(MOS - LQO)

Optionally it might be useful to aggregate both speech quality values into one. In this case the worst of both shall be used. This aggregated speech quality value shall be called SpQ (min).

6.6.3.3 Trigger Points

NOTE: The acoustic behaviour of terminals is not part of this speech quality measurement.

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Not applicable.	Start: Interchange speech samples between A-party and B-party.	Start: A CONNECT message on the DCCH logical channel is passed from the MSC to the UE to indicate that the called user's end has been connected. (Figure 2; signalling point number 47).
Not applicable.	Stop: Release of connection.	Stop: A DISCONNECT message on the DCCH logical channel is sent from the UE (message sent when the user ends the call). (Figure 2; signalling point number 51).

6.6.4 Telephony Speech Quality on Sample Basis

6.6.4.1 Abstract Definition

Indicator representing the quantification of the end-to-end speech transmission quality of the Mobile Telephony Service. This parameter computes the speech quality on a sample basis.

6.6.4.2 Abstract Equation

The validation of the end-to-end quality is made using the MOS scale. This scale describes the opinion of customers with voice transmission and its troubles (noise, robot voice, echo, dropouts, etc.). The speech quality measurement is taken per sample. An aggregation for measurement campaigns or parts of it should be made on speech sample basis.

NOTE: Reference: ITU-T Recommendation P.862 [1] in conjunction with ITU-T Recommendation P.862.1 [9].

 $\label{eq:control_equality} Telephony \, Speech \, Quality \, on \, Sample \, Basis \, (received \, A - party) = MOS - LQO \, \\ Telephony \, Speech \, Quality \, on \, Sample \, Basis \, (received \, B - party) = MOS - LQO \, \\ Telephony \, Speech \, Quality \, on \, Sample \, Basis \, (received \, B - party) = MOS - LQO \, \\ Telephony \, Speech \, Quality \, on \, Sample \, Basis \, (received \, B - party) = MOS - LQO \, \\ Telephony \, Speech \, Quality \, on \, Sample \, Basis \, (received \, B - party) = MOS - LQO \, \\ Telephony \, Speech \, Quality \, on \, Sample \, Basis \, (received \, B - party) = MOS - LQO \, \\ Telephony \, Speech \, Quality \, on \, Sample \, Basis \, (received \, B - party) = MOS - LQO \, \\ Telephony \, Speech \, Quality \, on \, Sample \, Basis \, (received \, B - party) = MOS - LQO \, \\ Telephony \, Speech \, Quality \, on \, Sample \, Sa$

Optionally it might be useful to aggregate both speech quality values into one. In this case the worst of both shall be used. This aggregated speech quality value shall be called SpQ (min).

6.6.4.3 Trigger Points

The same as for Speech Quality on call basis (see clause 4.3.3.2).

NOTE: The acoustic behaviour of terminals is not part of this speech quality measurement.

6.6.5 Telephony Cut-off Call Ratio [%]

6.6.5.1 Abstract Definition

Probability that a successful call attempt is ended by a cause other than the intentional termination by A- or B-party.

6.6.5.2 Abstract Equation

Telephony Cut - off Call Ratio [%] =
$$\frac{\text{unintentionally terminated telephony calls}}{\text{all successful telephony call attempts}} \times 100$$

6.6.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successful telephony call attempt	Start: Alerting or busy tone heard by the A-party coming from B-party.	Start: The CONNECT message on the DCCH logical channel is passed from the MSC to the UE to indicate that the connection has been established. (Figure 2; signalling point number 47). NOTE: With automatic tools there is not a significant difference between consider the alerting or the connect message, as the answer machine should always answer immediately.
Intentionally terminated telephony call	Stop: Release of connection directly by A- or B-party.	Stop: A DISCONNECT message on the DCCH logical channel is sent from the UE (message sent when the user ends the call). (Figure 2; signalling point number 51).
Unintentionally terminated telephony call	Stop trigger point not reached.	

6.7 Video Telephony

6.7.1 Network Accessibility/Availability

Network availability and network accessibility are measured independently from the service, and will not be described further in this clause. Network availability and network accessibility are pre-conditions for the performance of the measurement of QoS.

6.7.2 Parameter Overview Chart

To get a better overview of the following parameters, figure 24 shows all steps of a Video Telephony call from origin to destination, and the related QoS parameters.

Preconditions for the measurements: It should be a bi-directional Video Telephony call. Both sides should allow the transmission of both audio and video.

Explanation: The upper half considers the trigger points and parameters at the originated side and the lower half at the terminated side. The rectangles are connected to the trigger points that are relevant for analysis. For example: "t3, orig. side" (triggerpoint at originated side) and "t3, term. side" (triggerpoint at terminated side) are points of time that describe a similar event but it could be passed at slightly different times. The preconditions are specified in brackets behind the parameter name. The technical triggers are defined for positive successful cases, if the VT works fine. For failures the triggers are the opposite, this means the non-existence of the message indicates the failure. The bold lines behind the trigger points tx are the used one and the dashed one are unused.

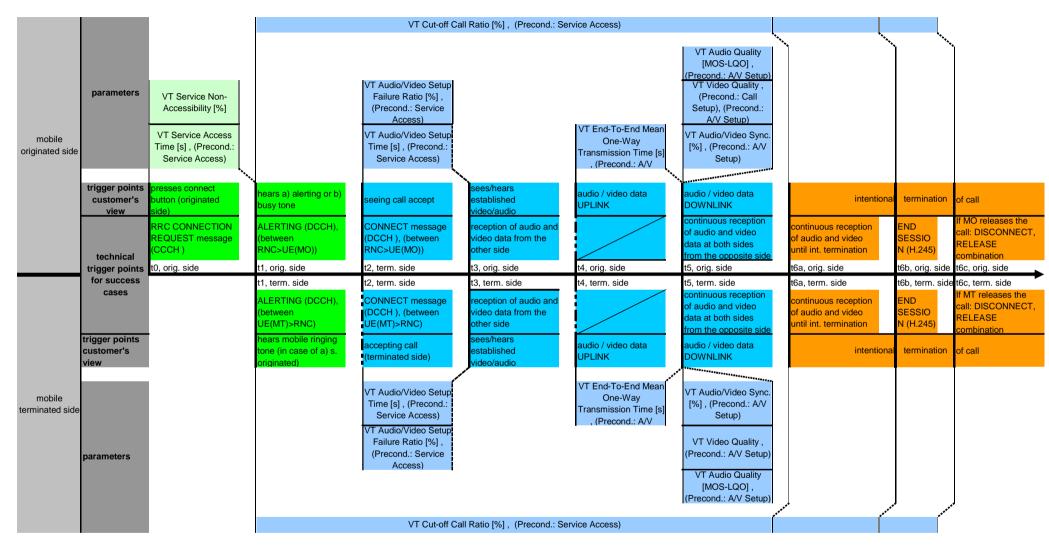


Figure 24: Parameter overview with trigger points

6.7.3 VT Service Non-Accessibility [%]

6.7.3.1 Abstract Definition

Probability that the end-customer cannot access the service when requested while it is offered by network indication on the mobile equipment.

NOTE: Due to network problems and despite MO side being not busy (see preconditions for measurement), it may even be possible for the MO side to receive a busy or not reachable signal. In this case, since no ALERTING message will be sent, the test sample will be treated as a failure.

6.7.3.2 Abstract Equation

VT Service Non - Accessibility [%] =
$$\frac{\text{unsuccessful video telephony call access attempts}}{\text{all video telephony call access attempts}} \times 100$$

6.7.3.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Video Telephony call attempt	Start: Push Send button.	Start: The first RRC CONNECTION REQUEST with Establishment Cause "originating conversational call message carried on the CCCH logical channel and mapped to the RACH transport channel is sent. (clause 6.7.13, signalling point number 1)
		Comment: It is possible that more than one RRC CONNECTION REQUEST message per call attempt is sent. Only the first RRC CONNECTION REQUEST with Establishment Cause "Originating Conversational Call should be taken into account for the calculation.
		It is possible that the RRC connection is already established because of an e.g. Location Update, then the start trigger is not reachable. In this case the current test sample should be deleted.
Successful Video Telephony call attempt	Stop: Alerting tone is heard by the MO side coming from the MT side	Stop: The ALERTING message on the DCCH logical channel is passed: 1. from the UE at MT side to MSC (uplink)
	AND	AND 2. from the MSC to the UE at MO side (downlink) to
	MT side rings.	indicate that the MT side rings. (clause 6.7.13, signalling point number 44)
Unsuccessful Video Telephony call attempt	Stop trigger point not reached.	Stop trigger point not reached.

Preconditions for measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful		
MT side shall not be busy		

6.7.4 VT Service Access Time [s]

6.7.4.1 Abstract Definition

Time between pushing send button after input of MSISDN and receipt of alerting at MO side.

Remark:

• This parameter is not calculated unless the video telephony call access attempt is successful. At MT side the mobile shall ring.

6.7.4.2 Abstract Equation

VT Service Access Time [s] =
$$(t_{alerting tone} - t_{push send button})$$
[s]

6.7.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{push send button} : Time of Video Telephony call attempt	Start: Push Send button.	Start: The first RRC CONNECTION REQUEST with Establishment Cause "originating conversational call message carried on the CCCH logical channel and mapped to the RACH transport channel is sent. (clause 6.7.13, signalling point number 1)
		Comment: It's possible that more than one RRC CONNECTION REQUEST message per call attempt is sent. Only the first RRC CONNECTION REQUEST with Establishment Cause "Originating Conversational Call should be taken into account for the calculation.
		It is possible that the RRC connection is already established because of an e.g. Location Update, then the start trigger is not reachable. In this case the current test sample should be deleted.
t _{alerting tone} : Time of successful Video Telephony call attempt	Stop: Alerting tone is heard by the MO side coming from the MT side	Stop: The ALERTING message on the DCCH logical channel is passed: 1. from the UE at MT side to MSC (uplink)
receptiony call attempt	AND MT side rings.	AND 2. from the MSC to the UE at MO side (downlink) to indicate that the MT side rings. (clause 6.7.13, signalling point number 44)

Preconditions for measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful		
UMST CS service access	VT Service Access Failure Ratio	

6.7.5 VT Audio/Video Setup Failure Ratio [%]

6.7.5.1 Abstract Definition

Probability of audio/video setup failure after service access. The audio/video setup is successful if audio and video output is performed at both sides.

Remarks:

• This parameter reports a failure if the end-trigger is not reached at both sides.

- This parameter is not calculated unless the VT service access attempt is successful.
- This parameter depends on the mobile used and on the multimedia protocol stack implemented (e.g. answer fast feature).

6.7.5.2 Abstract Equation

VT Audio/Video Setup Failure Ratio [%] =
$$\frac{\text{audio/video setup failures}}{\text{all accepted calls at MT side}} \times 100$$

6.7.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Audio/video setup attempt	Start: MO sees the call acceptance from the MT side.	Start: The CONNECT message on the DCCH logical channel is passed from the MSC to the UE at MO side to indicate that the connection has been established. (clause 6.7.13, signalling point number 47)
Audio/Video Setup Success	Stop: Start of the audio and video output at both sides.	Stop: Start of reception of audio and video data at both sides from the opposite side. Comment: All four data streams shall be received for a success.
Audio/Video Setup Failure	Stop trigger point not reached.	Stop trigger point not reached.

Preconditions of measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful		
UMTS CS service access	VT Service Non-Accessibility	
successful	-	

6.7.6 VT Audio/Video Setup Time [s]

6.7.6.1 Abstract Definition

The elapsed time from the MT call acceptance indicated at MO side until audio and video output starts at both sides.

Remarks:

- This parameter should report the worse time of both sides.
- This parameter is not calculated unless the VT audio/video setup attempt is successful.
- This parameter depends on the mobile used and on the multimedia protocol stack implemented (e.g. answer fast feature).

6.7.6.2 Abstract Equation

$$VT \ Audio/Video \ Setup \ Time \ [s] = \Big(t_{audio/video \ start} - t_{MT \ accepts \ call}\Big)[s]$$

6.7.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{MT accepts call} : Time of beginning of audio/video setup	Start: MO sees the call acceptance from the MT side.	Start: The CONNECT message on the DCCH logical channel is passed from the MSC to the UE at MO side to indicate that the connection has been established. (clause 6.7.13, signalling point number 47)
t _{audio/video start} : Time of successful audio/video setup	Stop: Start of the audio and video output at both sides.	Stop: Start of reception of audio and video data at both sides from the opposite side + constant time value for decoding. Comment: All four data streams shall be received for a success.

Preconditions for measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful		
UMTS CS audio/video setup successful	VT Audio/Video Setup Failure	
	Ratio	

6.7.7 VT Cut-off Call Ratio [%]

6.7.7.1 Abstract Definition

Probability that a successful service access is ended by a cause other than the intentional termination of the user (calling or called party).

Remark:

- This parameter is not calculated unless the VT service access attempt is successful. A VT call is considered dropped:
 - if the call acceptance fails after alerting;
 - if audio/video setup fails; or
 - if either the audio, the video or both are lost at one or both sides for an interruption timeout and before the end of "predefined call duration".

The "predefined call duration" is the difference between the indication of the call acceptance at MO side and the intentional release of the call.

6.7.7.2 Abstract Equation

$$VT \ Cut - off \ Call \ Ratio \ [\%] = \frac{video \ telephony \ dropped \ calls}{all \ successful \ video \ telephony \ service \ access \ attempts} \times 100$$

6.7.7.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successful Video Telephony service	Start: Alerting tone is heard by the MO side coming from MT side	Start: The ALERTING message on the DCCH logical channel is passed:
access attempt	AND	1. from the UE at MT side to MSC (uplink) AND
	MT side rings.	2. from the MSC to the UE at MO side (downlink) to indicate that the MT side rings. (clause 6.7.13, signalling point number 1)
Video Telephony successful call	Stop: No loss of video and/or audio without any intention by MO or MT side longer than the interruption timeout within the predefined call duration.	Stop: 1. If the test system can capture audio/video information: Continuous reception of audio and video data at both sides from the opposite side without an interruption longer than the interruption timeout until intentional call release.
		2. If the test system cannot capture audio/video information: The following information shall not be seen in signalling before intentional call release but they shall be seen after the intentional call release: • H.245 EndSession command (endSessionCommand disconnect) OR • the following trigger combination (all triggers on the DCCH logical channel): [M1: DISCONNECT (uplink).] AND [M2: DISCONNECT (downlink) or RELEASE (downlink)] (clause 6.7.13, signalling point number 51)
		Comment: In some cases the mobiles use not the EndSession command but only the DISCONNECT or RELEASE command.
Video Telephony dropped calls	Stop trigger point not reached.	Stop trigger point not reached.

If the reception of audio and/or video is interrupted shortly before the predefined call duration, then the call duration shall be extended to check if the interruption persists for the interruption timeout or not. If the interruption is shorter than the interruption timeout the call shall be released immediately and rated as success otherwise the sample shall be rated as failure and the call will be released.

Preconditions for measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful		
UMTS CS service access successful	VT Service Non-Accessibility	

6.7.8 VT Speech Quality on Call Basis

6.7.8.1 Abstract Definition

Indicator representing the quantification of the end-to-end speech transmission quality of the Video Telephony service. This parameter computes the speech quality on the basis of completed calls.

Remarks:

- This parameter is not calculated unless the VT audio/video setup attempt is successful.
- The speech quality measurement is taken per call. An aggregation for measurement campaigns or parts of it should be made on speech sample basis.
- The acoustic behaviour of terminals is not part of this audio quality measurement. The modelling of the acoustic part of the handset-terminals (e.g. frequency shaping) is incorporated in the speech quality assessment algorithm. Therefore the test mobiles used have to be connected at their electrical interfaces and not coupled acoustically. it has to be taken into account that a detailed way for insertion and capturing of audio signals is described in ITU-T Recommendation P.862.3 [19].
- For wideband (7 kHz) applications a standardized algorithm is available in ITU-T Recommendation P.862.2 [18].
- Evaluation of a MO DL or MT DL and also for these both directions (sum) is possible by calculating the mean value of the results from all samples.
- Experience has shown a high variable delay in video calls.
- ITU-T Recommendation P.862 [1] is not approved for testing such video call applications. It has to be taken into account that further studies including auditory tests of video calls have to be conducted.

6.7.8.2 Abstract Equation

ITU-T Recommendation P.862 [1] (02/2001) together with the related mapping given in ITU-T Recommendation P.862.1 [9] (10/2003) is recommended. This algorithm describes the opinion of customers related to voice transmission quality (300 through 3400 Hz) and its connected impairments (background noise, unnatural voice, temporal clipping and interruptions, etc.).

The speech quality measurement is taken per call (the evaluation algorithm is currently under study in ETSI STQ MOBILE WG) and per direction (DL at MO, DL at MT).

After mapping the raw P.862 results according to ITU-T Recommendation P.862.1 [9], the speech quality assessment is presented in a MOS-like scale between 1 and 5 called MOS Listening Quality Objective (MOS-LQO), as defined in ITU-T Recommendation P.800.1 [23].

6.7.8.3 Trigger Points

Event from abstract	Trigger point from customer's point	Technical description/protocol part
equation	of view	
Successful	Start: Start of the audio and video	Start: Start of reception of audio and video data at both
Audio/Video Setup	output at both sides.	sides from the opposite side.
Attempt		
		Comment: All four data streams shall be received for a
		success.
End of call (only	Stop: End of call.	Stop:
intentional)		End of continuous reception of audio and video data at
		both sides from the opposite side because of:
		intentional call release.

Preconditions for measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful		
UMTS CS service access successful	VT Service Non-Accessibility	
UMTS CS audio/video setup successful	VT Audio/Video Setup Failure Ratio	

6.7.9 VT Speech Quality on Sample Basis

6.7.9.1 Abstract Definition

Indicator representing the quantification of the end-to-end speech transmission quality as perceived by the user. This parameter computes the speech quality on a sample basis.

Remarks:

- This parameter is not calculated unless the VT audio/video setup attempt is successful.
- Speech quality values from all video telephony calls should be taken into consideration for statistical quality analysis.
- The speech quality measurement is taken per sample. An aggregation for measurement campaigns or parts of it should be made on speech sample basis. Only complete received samples of a dropped call are evaluable.
- The acoustic behaviour of terminals is not part of this audio quality measurement. The modelling of the acoustic part of the handset-terminals (e.g. frequency shaping) is incorporated in the speech quality assessment algorithm. Therefore the test mobiles used have to be connected at their electrical interfaces and not coupled acoustically. It has to be taken into account that a detailed way for insertion and capturing of audio signals is described in the new ITU-T Recommendation P.862.3 [19].
- For wideband (7 kHz) applications a standardized algorithm is available in ITU-T Recommendation P.862.2 [18].
- Evaluation of a MO DL or MT DL and also for these both directions (sum) is possible by calculating the mean value of the results from all samples.
- Experience has shown a high variable delay in video calls.
- P.862 is not approved for testing such video call applications. It has to be taken into account that further studies including auditory tests of video calls have to be conducted.

6.7.9.2 Abstract Equation

 $\label{eq:VTSpeech} VT\,Speech\,Quality\,on\,Sample\,Basis\,(received\,A-party) = MOS-LQO\\ VT\,Speech\,Quality\,on\,Sample\,Basis\,(received\,B-party) = MOS-LQO$

ITU-T Recommendation P.862 [1] (02/2001) together with the related mapping given in ITU-T Recommendation P.862.1 [9] (10/2003) is recommended. This algorithm describes the opinion of customers related to voice transmission quality (300 through 3400 Hz) and its connected impairments (background noise, unnatural voice, temporal clipping and interruptions, etc.).

The speech quality measurement is taken per sample and per direction (DL at MO, DL at MT).

After mapping the raw P.862 results according to ITU-T Recommendation P.862.1 [9], the speech quality assessment is presented in a MOS-like scale between 1 and 5 called MOS Listening Quality Objective (MOS-LQO), as defined in ITU-T Recommendation P.800.1 [23].

6.7.9.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successful Audio/Video Setup Attempt	Start: Start of the audio and video output at both sides.	Start: Start of reception of audio and video data at both sides from the opposite side.
		Comment: All four data streams shall be received for a success.
End of call (intentional or dropped)	Stop: End of call.	Stop: End of continuous reception of audio and video data at both sides from the opposite side because of: • an interruption for a predefined duration or longer OR • intentional call release.

Preconditions for measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful	Attach Failure Ratio	
UMTS CS service access successful	VT Service Non-Accessibility	
UMTS CS audio/video setup successful	VT Audio/Video Setup Failure Ratio	

6.7.10 VT Video Quality

6.7.10.1 Abstract Definition

End-to-end quality of the video signal as perceived by the end user during a VT call. This parameter computes the video quality on a sample basis.

Remarks:

- This parameter is not calculated unless the VT audio/video setup attempt is successful.
- Video quality values from all video telephony calls should be taken into consideration for statistical quality analysis.
- The video quality measurement is taken per sample. An aggregation for measurement campaigns or parts of it should be made on video sample basis. Only complete received samples of a dropped call are evaluable.
- Evaluation of a MO DL or MT DL and also for these both directions (sum) is possible by calculating the mean value of the results from all samples.

6.7.10.2 Abstract Equation

To be specified.

6.7.10.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successful audio/video setup attempt	Start: Start of the audio and video output at both sides.	Start: Start of reception of audio and video data at both sides from the opposite side.
		Comment: All four data streams shall be received for a success.
End of call (intentional or dropped)	Stop: End of call.	Stop: End of continuous reception of audio and video data at both sides from the opposite side because of: • an interruption for a predefined duration or longer; OR • intentional call release.

Preconditions for measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful	Attach Failure Ratio	
UMTS CS service access successful	VT Service Non-Accessibility	
UMTS CS audio/video Setup successful	VT Audio/Video Setup Failure Ratio	

6.7.11 VT End-To-End Mean One-Way Transmission Time [s]

6.7.11.1 Abstract Definition

Delay time from input of the signal at MS (MO/MT) (mic/cam) to output of the signal at MS (MT/MO) (loudspeaker/display).

Remark:

• This parameter is not calculated unless the VT audio/video setup attempt is successful.

6.7.11.2 Abstract Equation

Time from input of the signal at MS (MO/MT) to output at MS (MT/MO).

Aggregation Algorithm: ((Transmission Time MO ->MT) + (Transmission Time MT->MO))/2.

In case of a symmetrical channel one party could be configured as loopback device. The other one can determine the double delay by correlating transmit and receive signal. The delay should be measured after the loopback at the top of the radio bearer.

As the delay of the codec is almost constant for a specific mobile implementation, the codec delay could be considered by a mobile depending offset. In each direction one shall add the encoder and the decoder times. For the whole loopback one shall calculate the following times:

MO>MT	Encoding of audio/video (slowest is used)	a
	Transmission of audio/video (slowest is used)	b
	Decoding of audio/video (slowest is used)	С
MT>MO	Encoding of audio/video (slowest is used)	d
	Transmission of audio/video (slowest is used)	е
	Decoding of audio/video (slowest is used)	f

VT End - to - End Mean One - Way Transmission Time [s] =
$$\frac{a+b+c+d+e+f}{2}$$
 [s]

6.7.11.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successful audio/video setup attempt	Start: Start of the audio and video output at both sides.	Start: Start of reception of audio and video data at both sides from the opposite side.
		Comment: All four data streams shall be received for a
		success.
End of call (intentional or dropped)	Stop: End of call.	Stop: End of continuous reception of audio and video data at both sides from the opposite side because of: an interruption for a predefined duration or longer; OR intentional call release.

Preconditions for measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful	Attach Failure Ratio	
UMTS CS service access successful	VT Service Non-Accessibility	
UMTS CS audio/video Setup successful	VT Audio/Video Setup Failure Ratio	

6.7.12 VT Audio/Video Synchronization [%]

6.7.12.1 Abstract Definition

Percentage of times that the time differences of the audio and video signal at the user side exceeds a predefined threshold.

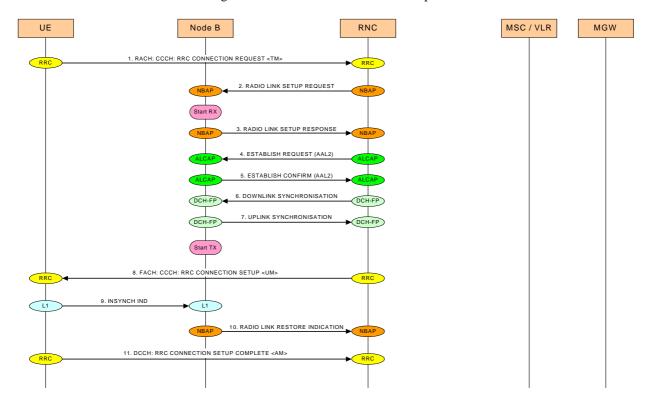
Remarks:

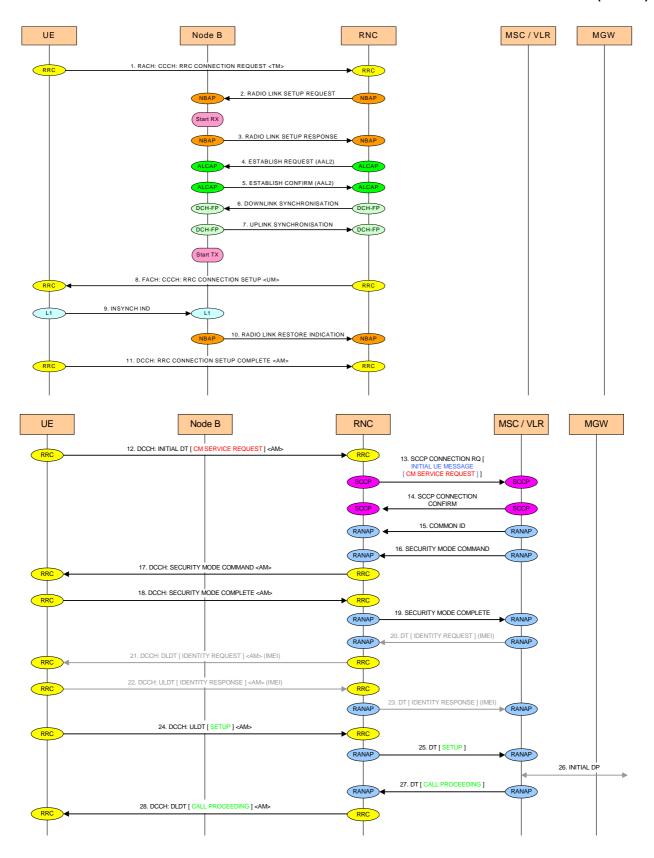
- This parameter is not calculated unless the VT audio/video setup attempt is successful.
- Only if audio and video use different bearers this indicator would reflect the behaviour of the network and the mobiles.

6.7.12.2 Abstract Equation

To be specified.

6.7.12.3 Trigger Points


Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successful audio/video setup attempt	Start: Start of the audio and video output at both sides.	Start: Start of reception of audio and video data at both sides from the opposite side.
·		Comment: All four data streams shall be received for a success.
End of call (intentional or dropped)	Stop: End of call.	Stop: End of continuous reception of audio and video data at both sides from the opposite side because of: • an interruption for a predefined duration or longer; OR • intentional call release.


Preconditions for measurement:

Precondition	Covered by	Reference document
UMTS CS available	Radio Network Unavailability	
UMTS CS attach successful	Attach Failure Ratio	
UMTS CS service access successful	VT Service Non-Accessibility	
UMTS CS audio/video Setup successful	VT Audio/Video Setup Failure Ratio	

6.7.13 Signalling Diagrams

These are the flow charts of a mobile originated call until the call release. The point of view is the MO side.

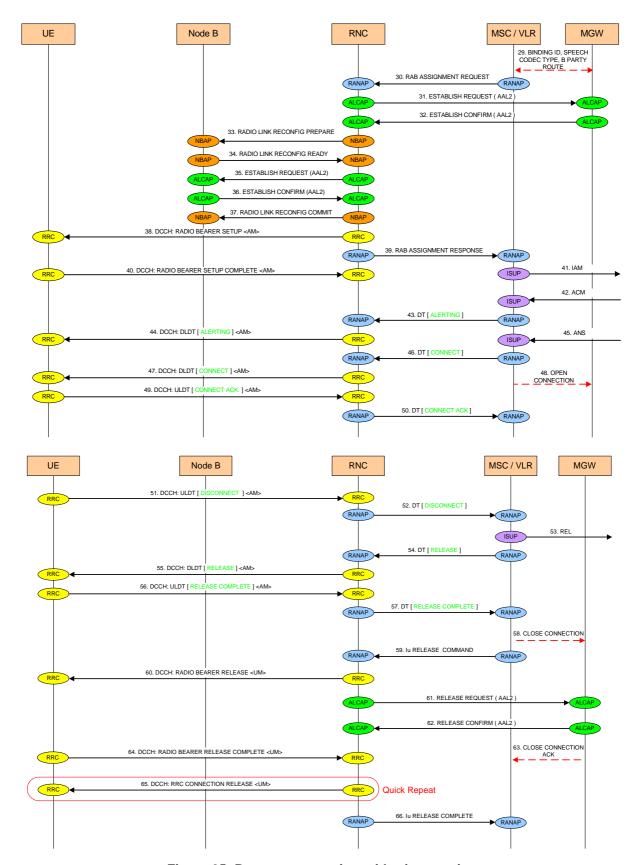


Figure 25: Parameter overview with trigger points

6.8 Web Browsing (HTTP)

6.8.1 HTTP Service Non-Accessibility [%]

6.8.1.1 Abstract Definition

The service non-accessibility ratio denotes the probability that a subscriber cannot establish a PDP context and access the service successfully.

6.8.1.2 Abstract Equation

HTTP Service Non - Accessibility [%] = $\frac{\text{unsuccessful attempts to reach the point when content is received}}{\text{all attempts to reach the point when content is received}} \times 100$

6.8.1.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Service access attempt	Start: Customer initiates the service access.	Start: ATD command.
Successful attempt	Stop: First content is received.	Stop Method A: Reception of the first data packet containing content. Stop Method B: Sending of the first GET command.
Unsuccessful attempt	Stop trigger point not reached.	

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3).

6.8.2 HTTP Setup Time [s]

6.8.2.1 Abstract Definition

The setup time describes the time period needed to access the service successfully, from starting the dial-up connection to the point of time when the content is sent or received.

6.8.2.2 Abstract Equation

HTTP Setup Time [s] =
$$(t_{\text{service access successful}} - t_{\text{service access start}})$$
[s]

6.8.2.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{service access start} : Time of service access attempt	Start: Customer initiates the service access.	Start: ATD command.
t _{service access successful} : Time of successful service access	Stop: First content is received.	Stop Method A: Reception of the first data packet containing content.
		Stop Method B: Sending of the first GET command.

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3).

6.8.3 HTTP IP-Service Access Failure Ratio [%]

6.8.3.1 Abstract Definition

The IP-service access ratio denotes the probability that a subscriber cannot establish an TCP/IP connection to the server of a service successfully.

6.8.3.2 Abstract Equation

HTTP IP - Service Access Failure Ratio [%] = $\frac{\text{unsuccessful attempts to establish an IP connection to the server}}{\text{all attempts to establish an IP connection to the server}} \times 100$

6.8.3.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
IP-Service access attempt	Start: Customer enters the URL and hits "Return".	Start: First [SYN] sent.
Successful attempt	Stop: Web page download starts.	Stop Method A: Reception of the first data packet containing content. Stop Method B: Sending of the first GET
		command.
Unsuccessful attempt	Stop trigger point not reached.	

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.8.4 HTTP IP-Service Setup Time [s]

6.8.4.1 Abstract Definition

The IP-service setup time is the time period needed to establish an TCP/IP connection to the server of a service, from sending the initial query to a server to the point of time when the content is sent or received.

6.8.4.2 Abstract Equation

$$HTTP\ IP\ -\ Service\ Setup\ Time\ [s] = \big(t_{IP\ -\ Service\ access\ successful}\ -\ t_{IP\ -\ Service\ access\ start}\big)[s]$$

6.8.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{IP-Service access start} : Time of IP- Service access attempt	Start: Customer enters the URL and hits "Return".	Start: First [SYN] sent.
t _{IP-Service access successful} : Time of successful IP-Service access	Stop: Web page download starts.	Stop Method A: Reception of the first data packet containing content.
		Stop Method B: Sending of the first GET command.

Remark: The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.8.5 HTTP Session Failure Ratio [%]

6.8.5.1 Abstract Definition

The completed session ratio is the proportion of uncompleted sessions and sessions that were started successfully.

6.8.5.2 Abstract Equation

HTTP Session Failure Ratio [%] =
$$\frac{\text{uncompleted sessions}}{\text{successfully started sessions}} \times 100$$

6.8.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
,	Start: Customer enters the URL and hits "Return".	Start: First [SYN] sent.
		Stop: Reception of the last data packet containing content.
Uncompleted session	Stop trigger point not reached.	

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.8.6 HTTP Session Time [s]

6.8.6.1 Abstract Definition

The session time is the time period needed to successfully complete a PS data session.

6.8.6.2 Abstract Equation

$$HTTP \, Session \, Time \, [s] = \big(t_{session \, end} \, \text{--} \, t_{session \, start} \big) [s]$$

6.8.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
started session	Start: Customer enters the URL and hits "Return".	Start: First [SYN] sent.
		Stop: Reception of the last data packet containing content.

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.8.7 HTTP Mean Data Rate [kbit/s]

6.8.7.1 Abstract Definition

After a data link has been successfully established, this parameter describes the average data transfer rate measured throughout the entire connect time to the service. The data transfer shall be successfully terminated. The prerequisite for this parameter is network and service access.

6.8.7.2 Abstract Equation

HTTP Mean Data Rate [kbit/s] =
$$\frac{\text{user data transferred [kbit]}}{\left(t_{\text{data transfer complete}} - t_{\text{data transfer start}}\right)[s]}$$

6.8.7.3 Trigger Points

The average throughput is measured from opening the data connection to the end of the successful transfer of the content (web page).

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{data transfer start} : Time of successfully started data transfer	Start: Web page download starts.	Start Method A: Reception of the first data packet containing content. Start Method B: Sending of the first GET command.
	Stop: Web page download successfully completed.	Stop: Reception of the last data packet containing content.

Remark:

• The mobile station is already attached (see clause 5.3), a PDP context is activated (see clause 5.5) and a service was accessed successfully (see Service Non-Accessibility).

6.8.8 HTTP Data Transfer Cut-off Ratio [%]

6.8.8.1 Abstract Definition

The data transfer cut-off ratio is the proportion of incomplete data transfers and data transfers that were started successfully.

6.8.8.2 Abstract Equation

HTTP Data Transfer Cut - off Ratio [%] =
$$\frac{\text{incomplete data transfers}}{\text{successfully started data transfers}} \times 100$$

6.8.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully started data transfer	Start: Web page download starts.	Start Method A: Reception of the first data packet containing content. Start Method B: Sending of the first GET
		command.
Complete data transfer	Stop: Web page download successfully completed.	Stop: Reception of the last data packet containing content.
Incomplete data transfer	Stop trigger point not reached.	

Remark:

• The mobile station is already attached (see clause 5.3), a PDP context is activated (see clause 5.5) and a service was accessed successfully (see Service Non-Accessibility).

6.9 Web Radio

6.9.1 General

Web Radio is a term used for different types of audio streaming. Most popular, according to current perception, is the proprietary but de-facto-standard SHOUTCAST type which is used by WinAmp and AOL. There is an open source variant (ICECAST). The following descriptions refer to Shoutcast, if not mentioned otherwise.

A typical Web radio basic scenario starts with starting up the respective client's Web Radio functionality.

First step is retrieval of an Electronic Program Guide (EPG), typically in the form of a station list naming station name, genre of content offered by this station, and stream rate (which gives user's a hint on expected audio quality). This EPG is typically retrieved from a fixed-URL server, e.g. www.shoutcast.com.

NOTE: Remark: For other clients and types of Web Radio, clients such as Windows Media Player or iTunes accessing respective portals are used.

Next step is selection of a station from the list. This triggers an attempt to open the respective stream and start to receive content. Typically, before audio reproduction starts, the client will do some seconds of buffering.

6.9.2 Preconditions

With reference to the technical description above, the following KPI belong to the basic scenario only which is characterized as follows:

- EPG retrieval is not part of the scenario (because in typical listening situations this is done once for multiple-station access). It is assumed that the station ID is already known.
- EPG retrieval can be seen, however, as a kind of scenario extension.

6.9.3 Special remarks on Internet radio audio playback and buffering

Characteristic for Internet Radio audio playback is the fact that with a typical client application, no quality impairment other than gaps in reproduction occur. In other words, there is no poor MOS value or other continuous quality indicator, but simply "silence" for a period of time which cannot be estimated by the user. This fact is important when it comes to the definition of a useful KPI for audio quality.

Since the service is TCP-based and uses buffering, playback will continue until the buffer is empty. The buffer has a fixed maximum size, equalling a constant maximum playback time. If the buffer is full, the whole mechanism can be modelled by a simple differential model where new data flows in with a network-dependent data rate and flows out with a constant rate (playback stream rate).

In the stationary case with buffer completely filled, incoming throughput is equal to playback stream rate, independent of the maximum throughput the network can deliver. If the buffer is less than full due to a previous drop in incoming data rate, incoming data rate will be higher (at the maximum throughput the network/IP level chain can deliver at this time) until the buffer is full again.

6.9.4 Transaction Definition from Customer's perspective

A Web Radio transaction consists of a single tune-in to a selected station, followed by music playback for a given time.

- It is assumed that all servers being accessed (tune-in information server, stream server) are basically accessible
 and have sufficient downstream bandwidth.
- It is assumed that the length of the tune-in list is not relevant for KPI precision under given conditions (time effects caused by different lengths of tune-in list to be negligible.

6.9.5 Result Definition

With respect to the technical description, a full Web Radio transaction has one of the following results.

Result	Definition
Successful	At least one packet of content was successfully received, and no time-out condition occurred up to the end of the scheduled playback time
Dropped	The conditions for successful transaction was not met. Examples: Unsuccessful access to the tune-in or stream server, loss of internet connection during playback, or a gap in playback longer than a pre-defined time-out value.

It shall be noted that according to this definition, a Web Radio transaction where effectively no useable audio playback was possible is still considered to be technically successful. It is assumed that the fact that the transaction was useless and probably most annoying to the customer is reflected in another QoS describing subjective quality. Therefore, the situation is qualitatively equivalent to a technically stable speech telephony call with extremely poor audio MOS score.

There is no "Failed" result because it is assumed that all phases of the transaction are part of service usage, and the impact of unsuccessful phases is equally negative in the user's perception. Failure therefore is always attributed to earlier phase such as establishment of basic internet access, or DNS access. This is, however, subject to discussion with respect to the A/B method distinction.

6.9.6 KPI Overview

The following graph shows phases in web radio usage and the coverage by KPI defined.

Phase (user perspective)	Retrieve EPG	Select station	List	en to selected station
Phase (KPI coverage)			Reproduction	
	EPG Retrieval	Tune-in	set-up	
				Reproduction

Please note that for the sake of "user perspective" Reproduction set-up and Reproduction are NOT seamlessly connected. Reproduction set-up KPI are provided for diagnostic purposes.

6.9.7 Web Radio EPG Retrieval Failure Ratio [%]

6.9.7.1 Abstract Definition

This parameter denotes the probability that a subscriber cannot access the Web Radio EPG successfully.

6.9.7.2 Abstract Equation

Web Radio EPG Retrieval Failure Ratio [%] =
$$\frac{\text{unsuccessful attempts to access the EPG}}{\text{all attempts to access the EPG}} \times 100$$

6.9.7.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
EPG retrieval attempt	Start: Customer accesses Web Radio EPG.	Start: HTTP GET on EPG URL.
Successful attempt		Stop: Successful reception of EPG content (HTTP 200 OK, eventually followed by additional blocks).
Unsuccessful attempt	Stop trigger point not reached.	

6.9.8 Web Radio EPG Retrieval Time [s]

6.9.8.1 Abstract Definition

This parameter describes the time period needed to access the Web Radio EPG successfully.

6.9.8.2 Abstract Equation

Web Radio EPG Retrieval Time [s] =
$$(t_{Stop_ER} - t_{Start_ER})[s]$$

6.9.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
attempt	Radio EPG.	Start: Time of sending the HTTP GET on EPG URL.
t _{Stop_ER} : Time of successful EPG retrieval attempt	Stop: EPG content successfully received.	Stop: Time of successful reception of EPG content (HTTP 200 OK, eventually followed by additional blocks).

6.9.9 Web Radio Tune-in Failure Ratio [%]

6.9.9.1 Abstract Definition

This parameter denotes the probability that a subscriber cannot obtain the tune-in information for a Web Radio streaming server successfully.

6.9.9.2 Abstract Equation

Web Radio Tune - in Failure Ratio [%] =
$$\frac{\text{unsuccessful tune - in attempts}}{\text{all tune - in attempts}} \times 100$$

6.9.9.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Tune-in attempt	Start: Attempt to retrieve tune-in information.	Start: Obtain tune-in information via a HTTP GET to a location obtained from EPG.
Successful attempt	Stop: Receive tune-in information.	Stop: Successful reception of tune-in information (HTTP 200 OK, eventually followed by additional blocks).
Unsuccessful attempt	Stop trigger point not reached.	

6.9.10 Web Radio Tune-in Time [s]

6.9.10.1 Abstract Definition

This parameter describes the time period needed to obtain the tune-in information for a Web Radio streaming server successfully.

6.9.10.2 Abstract Equation

Web Radio Tune - in Time
$$[s] = (t_{Stop_TI} - t_{Start_TI})[s]$$

6.9.10.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Statt 11	Start: Attempt to retrieve tune-in information.	Start: Time when HTTP GET is issued to a location obtained from EPG.
t _{Stop_TI} : Time of successful tune-in attempt		Stop: Time of successful reception of tune-in information (HTTP 200 OK, eventually followed by additional blocks).

6.9.11 Web Radio Reproduction Set-up Failure Ratio [%]

6.9.11.1 Abstract Definition

This parameter denotes the probability that a subscriber cannot successfully start listening to a given Web Radio station.

6.9.11.2 Abstract Equation

Web Radio Reproduction Set - up Failure Ratio [%] = $\frac{\text{unsuccessful reproduction set - up attempts}}{\text{all reproduction set - up attempts}} \times 100$

6.9.11.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Reproduction Set-up attempt	Start: Attempt to retrieve audio	Start: Attempt to retrieve audio content from
	stream.	stream server listed in tune-in information
		(HTTP GET).
Successful reproduction set-up	Stop: Indication that player starts	Stop: Reception of first block of content (audio
attempt	buffering (may not be visible in all	data).
	players).	
Unsuccessful attempt	Stop trigger point not reached.	

6.9.12 Web Radio Reproduction Set-Up Time [s]

6.9.12.1 Abstract Definition

This parameter describes the time period from request of audio stream from Stream Server to reception of first data packet of audio content.

Remark:

• Actual start of reproduction from user's point of view will be this time plus the buffer-fill time which may be specific to a web radio client application.

6.9.12.2 Abstract Equation

Web Radio Reproduction Set - up Time [s] =
$$(t_{Stop_RP} - t_{Start_RP})[s]$$

6.9.12.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
I Statt RF		Start: Time when HTTP GET is issued to Stream Server.
I SIUD INF.		Stop: Receive first encoded audio data (client application is buffering).

Remark:

Indicators listed under "customer's point of view", may not be shown by actual Web Radio client applications.

6.9.13 Web Radio Reproduction Cut-off Ratio [%]

6.9.13.1 Abstract Definition

This parameter denotes the probability that a subscriber cannot successfully complete stream reproduction from a given Web Radio station for a given period of time.

Remark:

• Typically, web radio client applications use buffering; therefore actual audible reproduction will start a certain time after reception of first data packet. This parameter covers the whole reproduction time, starting from reception of the first data packet to avoid making assumptions for buffer length.

6.9.13.2 Abstract Equation

Web Radio Reproduction Cut - off Ratio [%] =
$$\frac{\text{unsuccessful listening attempts}}{\text{all listening attempts}} \times 100$$

6.9.13.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Listening attempt	stream.	Start: Attempt to retrieve audio content from stream server listed in tune-in information (HTTP GET).
Successful listening attempt		Stop: Reach the end of intended stream playback time without break in IP connection.
Unsuccessful attempt	Stop trigger point not reached.	

6.9.14 Web Radio Audio Quality

Due to the nature of Web radio which is using TCP connections, expected degradation effects are audio "gaps" (silence) only, resulting in buffer-empty condition resulting from insufficient bandwidth.

At this point in time, no commonly accepted definition of perceived audio quality under these conditions exists. Definition of such a MOS value would be outside of the scope of the STQ MOBILE group anyway. It is clear that for such a perceptual measure, all aspects of possible audio gaps need to be taken into account, namely:

- gap duration.
- frequency of gaps.
- time between gaps.

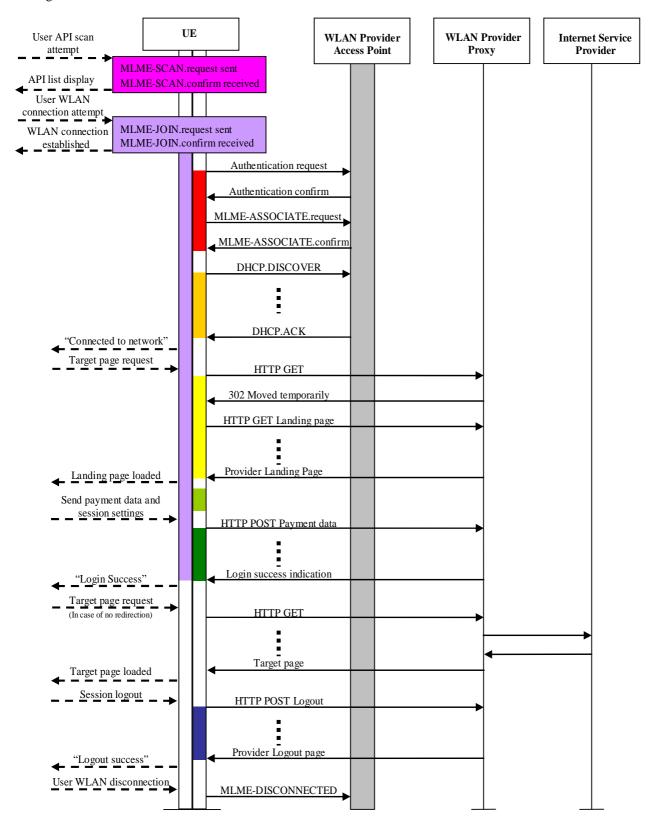
For the time being, it is recommended to report the basic data on gaps on an event basis only.

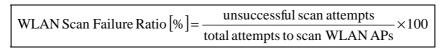
In any case, codec and stream rate (encoded bit rate) needs to be part of measurement definition since it will have decisive impact on results.

6.10 WLAN service provisioning with HTTP based authentication

6.10.1 Generic Signal Flow

KPI legend:




Figure 26: Generic Signal Flow

6.10.2 WLAN Scan Failure Ratio [%]

6.10.2.1 Abstract Definition

The WLAN scan failure ratio denotes the probability that no desired active APs could be found in an area where WLAN should be present.

6.10.2.2 Abstract Equation

WLAN UE

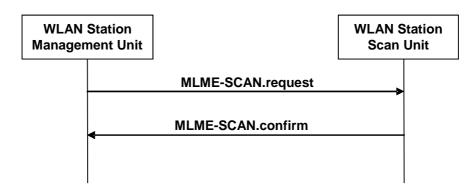


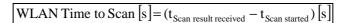
Figure 27: SCAN Signal Flow

6.10.2.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Scan attempt	Start: Customer attempts to scan for available APs	Start: First "MLME-SCAN.request" containing the target SSID sent
Successful scan attempt	Stop: List of available APs is displayed including desired SSID	Stop: "MLME-SCAN.confirm containing the target SSID received
Unsuccessful scan attempt	Stop trigger not reached	

Preconditions for measurement:

- It is possible that a scan to all access points in the area (Broadcast) is answered by an access point other than the desired one. To make sure that only the correct access point answers, the scan request shall contain the desired SSID.
- Usually, operating systems keep a list of preferred access points and sporadically scan for these access points automatically. These automated scans shall be deactivated and the list shall be kept empty.


For further study: It should be analysed if the time to scan can vary depending on the applied scan method, i.e. if an aimed scan with the target operator"s SSID leads to faster/slower confirmation than a broadcast scan to all access points in the area.

6.10.3 WLAN Time to Scan [s]

6.10.3.1 Abstract Definition

WLAN time to scan denotes the time it takes to scan for available access points.

6.10.3.2 Abstract Equation

WLAN UE

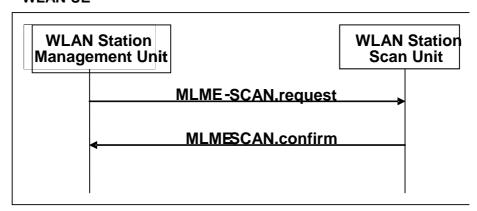


Figure 28: SCAN Signal Flow

6.10.3.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{Scan started:} Time of scan attempt	Start: Customer attempts to scan for available APs.	Start: First "MLME-SCAN.request" containing the target SSID sent.
	•	Stop: "MLME-SCAN.confirm" containing the target SSID received.

Preconditions for measurement:

- It is possible that a scan to all access points in the area (Broadcast) is answered by another access point than the desired one. To make sure that only the correct access point answers, the scan request shall contain the desired SSID.
- Usually, operating systems keep a list of preferred access points and sporadically scan for these access points automatically. These automated scans shall be deactivated and the list shall be kept empty.

NOTE: The authorization time that is consumed for entering and receiving the password has an effect on the time to scan.

For further study: It should be analysed if the time to scan can vary depending on the applied scan method, i.e. if an aimed scan with the target operator's SSID leads to faster/slower confirmation than a broadcast scan to all access points in the area.

6.10.4 WLAN PS Data Service Provisioning Failure Ratio [%]

6.10.4.1 Abstract Definition

The WLAN PS data service provisioning failure ratio denotes the probability that a customer cannot get in position to access services in a WLAN area.

6.10.4.2 Abstract Equation

WLAN PS Data Service Provisioning Failure Ratio [%] = $\frac{\text{unsuccessful connect attempts}}{\text{all connect attempts}} \times 100$

WLAN UE

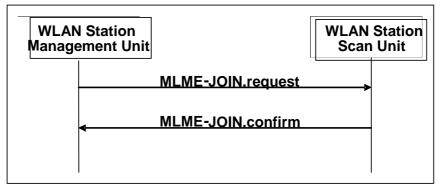


Figure 29: JOIN Signal Flow

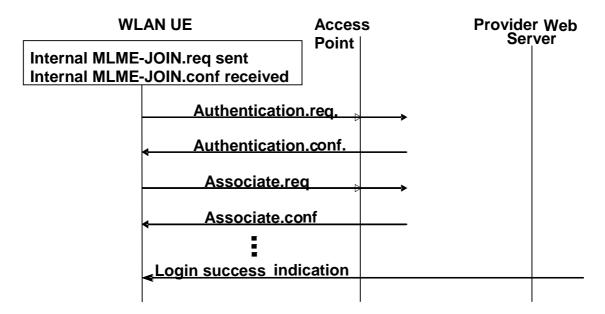
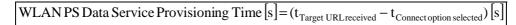


Figure 30: WLAN PS Data Service Provisioning Signal Flow

6.10.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Connect attempt	Start: Customer attempts to connect to the wireless network.	Start: First "MLME-JOIN.request" sent.
Successful connect attempt	Stop: Authorization confirmed by receiving login success indication.	Stop: Reception of the first data packet of a page indicating login success.
Unsuccessful connect attempt	Stop trigger not reached.	


- NOTE 1: After authorization, some operators will automatically redirect the user to the URL that was entered in the initial portal access attempt which led to the landing page redirection. Other operators display a login success page of sorts and do not redirect users to their initially entered URL.
- NOTE 2: The implicit authorization failure ratio also depends on the authorization method, e.g. voucher received by SMS versus credit card. Thus, measurements based on different authorization method can not be compared.

6.10.5 WLAN PS Data Service Provisioning Time [s]

6.10.5.1 Abstract Definition

The WLAN PS data service provisioning time denotes the time it takes until the user is authorized in WLAN and in position to access services.

6.10.5.2 Abstract Equation

WLAN UE

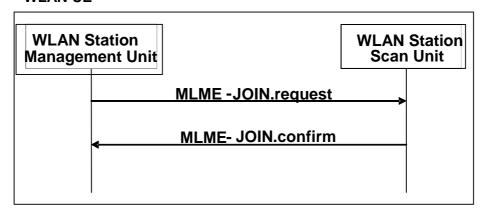


Figure 31: JOIN Signal Flow

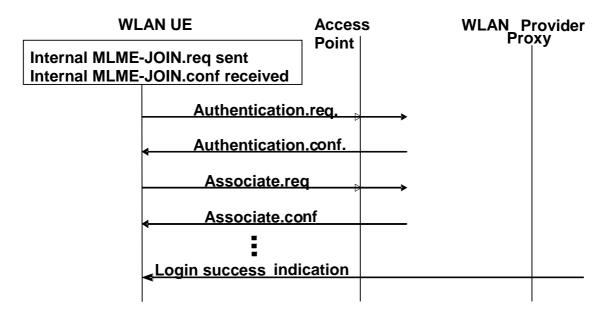
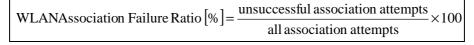


Figure 32: WLAN PS Data Service Provisioning Signal Flow

6.10.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
i Connect obtion selected.	Start: Customer attempts to connect to wireless network.	Start: First 'MLME-JOIN.request" sent.
	Stop: Authorization confirmed by receiving login success indication.	Stop: Reception of the first data packet of a page indicating login success.


- NOTE 1: After authorization, some operators will automatically redirect the user to the URL that was entered in the initial portal access attempt which led to the landing page redirection. Other operators display a login success page of sorts and do not redirect users to their initially entered URL.
- NOTE 2: The implicit authorization time also depends on the authorization method, e.g. voucher received by SMS versus credit card. Thus, measurements based on different authorization method can not be compared.
- NOTE 3: The implicit authorization time that is consumed for entering and receiving the password has an effect on the PS data service provisioning time.

6.10.6 WLAN Association Failure Ratio [%]

6.10.6.1 Abstract Definition

The WLAN association failure ratio denotes the probability that a user cannot establish a radio link with the chosen access point.

6.10.6.2 Abstract Equation

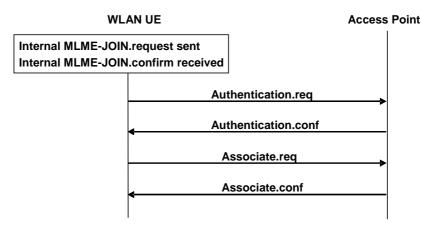


Figure 33: WLAN ASSOCIATION Signal Flow

6.10.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
	Start: Customer attempts to connect to wireless network.	Start: First "MLME-JOIN.request" sent.
		Stop: "MLME-ASSOCIATE.confirm" received with status code "success".
Unsuccessful association attempt	Stop trigger not reached.	

6.10.7 WLAN Association Time [s]

6.10.7.1 Abstract Definition

The WLAN association time denotes the time it takes to associate with the chosen access point.

6.10.7.2 Abstract Equation

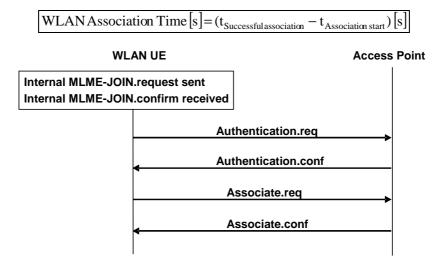


Figure 34: WLAN ASSOCIATION Signal Flow

6.10.7.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
I ASSOCIATION Start.	Start: Customer attempts to connect to wireless network	Start: First "MLME-JOIN.request" sent
i Successiui association.		Stop: "MLME-ASSOCIATE.confirm" received with status code "success"

NOTE: The authorization time that is consumed for entering and receiving the password has an effect on the association time.

6.10.8 WLAN IP Address Allocation Failure Ratio [%]

6.10.8.1 Abstract Definition

The WLAN IP address allocation failure ratio denotes the probability that a user is not allocated an IP address by the access point.

6.10.8.2 Abstract Equation

WLAN IP Address Allocation Failure Ratio [%] =
$$\frac{\text{unsuccessful attempts to allocate IP address}}{\text{all IP address allocation requests}} \times 100$$

6.10.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
IP address allocation request	Start: Attempt to acquire network address and display of status.	Start: First "DHCP.DISCOVER" sent.
Successful attempt to allocate IP address	Stop: Connection to network established and displayed.	Stop: "DHCP.ACK" received with valid IP address.
Unsuccessful attempt to allocate IP address	Stop trigger not reached.	

6.10.9 WLAN IP Address Allocation Time [s]

6.10.9.1 Abstract Definition

The WLAN IP address allocation time denotes the time it takes the access point to allocate an IP address to the user's system.

6.10.9.2 Abstract Equation

WLAN IP Address Allocation Time
$$[s] = (t_{IP \, reception} - t_{IP \, allocation \, start}) [s]$$

6.10.9.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
	Start: Attempt to acquire network address and display of status.	Start: First "DHCP.DISCOVER" sent.
I IF TECEDITOTI.	Stop: Connection to network established and displayed.	Stop: "DCHP.ACK" received with valid IP address.

NOTE: The authorization time that is consumed for entering and receiving the password has an effect on the IP address allocation time.

6.10.10 WLAN Landing Page Download Failure Ratio [%]

6.10.10.1 Abstract Definition

The WLAN landing page download failure ratio denotes the probability that the landing page to which a user will be redirected for login to the WLAN cannot be successfully downloaded after requesting the target page.

6.10.10.2 Abstract Equation

WLAN Landing Page Download Failure Ratio [%] = $\frac{\text{unsuccessful landing page download attempts}}{\text{all landing page download attempts}} \times 100$

6.10.10.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Landing page download attempt	Start: Customer enters target URL and requests the desired page.	Start: "HTTP_GET" for the target page sent.
Successful landing page download attempt		Stop: Last HTTP data packet of the landing page received.
Unsuccessful landing page download attempt	Stop trigger not reached.	

Preconditions for measurement:

- The measurement system shall be disconnected from the WLAN prior to each measurement cycle.
- The cache shall be emptied prior to each measurement cycle and keep alive shall be deactivated/suppressed.

6.10.11 WLAN Landing Page Download Time [s]

6.10.11.1 Abstract Definition

The WLAN landing page download time denotes the time it takes for redirection and download of the landing page provided to login to the WLAN successfully, after the user has tried to access some webpage.

6.10.11.2 Abstract Equation

WLAN Landing Page Download Time
$$[s] = (t_{Landing page successfully downloaded} - t_{Webpage resquest sent})[s]$$

6.10.11.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{Webpage request sent:} Time of landing page download attempt	Start: Customer enters target URL and requests the desired page.	Start: "HTTP_GET" for the target page sent.
t _{Landing} page successfully downloaded: Time of successful landing page download attempt		Stop: Last HTTP data packet of the landing page received.

Preconditions for measurement:

- The measurement system shall be disconnected from the WLAN prior to each measurement cycle.
- The cache shall be emptied prior to each measurement cycle and keep alive shall be deactivated/suppressed.

NOTE: The authorization time that is consumed for entering and receiving the password has an effect on the landing page download time.

6.10.12 WLAN Landing Page Password Retrieval Failure Ratio [%]

6.10.12.1 Abstract Definition

The WLAN landing page password retrieval failure ratio denotes the probability that the password to get submitted via the landing page is not received by the customer.

6.10.12.2 Abstract Equation

WLAN Landing Page Password Retrieval Failure Ratio [%]=	unsuccessful password retrieval attempts \$\times 100\$	l
WEATVEatiding Fage Fassword Redieval Fatigle Radio [/0]=	all password retrieval attempts	

6.10.12.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Password retrieval attempt	Start: Authorization form filled in and submitted.	Start: "TCP SYN."
Successful password retrieval attempt	Stop: Depending on used service, e.g. SMS with password received successfully.	Stop: Depending on used service, e.g. SMS with password received successfully.
Unsuccessful password retrieval attempt	Stop trigger not reached.	

NOTE: The password retrieval failure ratio can be neglected when the credit card payment method is used.

6.10.13 WLAN Landing Page Password Retrieval Time [s]

6.10.13.1 Abstract Definition

The WLAN landing page password retrieval time denotes the time it takes to request and receive a password to get submitted via the landing page.

6.10.13.2 Abstract Equation

WLAN Landing Page Password Retrieval Time
$$[s] = (t_{Password received} - t_{Authorisation request submitted}) [s]$$

6.10.13.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Authorisation request submitted.	Start: Authorization form filled in and submitted.	Start: "TCP SYN".
successful password retrieval		Stop: Depending on used service, e.g. SMS with password received successfully.

NOTE 1: The password retrieval time can be neglected when the credit card payment method is used.

NOTE 2: The authorization time that is consumed for entering and receiving the password has an effect on the landing page password retrieval time.

6.10.14 WLAN Landing Page Authorization Failure Ratio [%]

6.10.14.1 Abstract Definition

The WLAN landing page authorization failure ratio denotes the probability that the customer authorization process via the landing page is not successful.

6.10.14.2 Abstract Equation

WLAN Landing Page Authorisation Failure Ratio [%] = $\frac{\text{unsuccessful authorisation attempts}}{\text{all authorisation attempts}} \times 100$

6.10.14.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Authorization attempt	Start: Password or payment data is submitted.	Start: "HTTP POST" sent.
Successful authorization attempt	Stop: Authorization confirmed by receiving login success indication.	Stop: Reception of the first data packet of a page indicating login success.
Unsuccessful authorization attempt	Stop Trigger not reached.	

- NOTE 1: After authorization, some operators will automatically redirect the user to the URL that was entered in the initial portal access attempt which led to the landing page redirection. Other operators will display a login success page of sorts and not redirect the user to the initially entered URL.
- NOTE 2: The authorization failure ratio also depends on the authorization method, e.g. voucher received by SMS versus credit card. Thus, measurements based on different authorization method can not be compared.

6.10.15 WLAN Landing Page Authorization Time [s]

6.10.15.1 Abstract Definition

The WLAN landing page authorization time denotes the time it takes to perform user authorization via the landing page.

6.10.15.2 Abstract Equation

WLAN Landing Page Authorisation Time
$$[s] = (t_{Authorisation \ confirmed} - t_{Password \ is \ submitted})[s]$$

6.10.15.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
i assword is submitted.	Start: Password or payment data is submitted.	Start: "HTTP POST" sent.
		Stop: Reception of the first data packet of a page indicating login success.

- NOTE 1: After authorization, some operators will automatically redirect the user to the URL that was entered in the initial portal access attempt which led to the landing page redirection. Other operators display a login success page of sorts and do not redirect users to their initially entered URL.
- NOTE 2: The authorization time also depends on the authorization method, e.g. voucher received by SMS versus credit card. Thus, measurements based on different authorization method can not be compared.
- NOTE 3: The authorization time that is consumed for entering and receiving the password has an effect on the landing page authorization time.

6.10.16 WLAN Re-accessibility Failure Ratio [%]

6.10.16.1 Abstract Definition

The WLAN re-accessibility failure ratio denotes the probability that re-accessing the access point is not successful because of a WLAN failure.

6.10.16.2 Abstract Equation

WLAN Re - accessibility Failure Ratio [%] = $\frac{\text{unsuccessful attempts reaccess}}{\text{all attempts to reaccess}} \times 100$

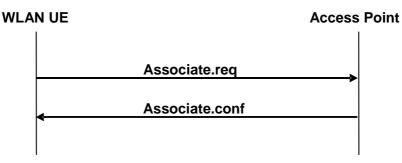


Figure 35: WLAN RE-ASSOCIATION Signal Flow

6.10.16.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Attempt to reaccess	Start: Access point is displayed in	Start: First "MLME-ASSOCIATE.request" sent
	the list of available access points.	after radio signal is sufficient again.
Successful attempt to reaccess	Stop: Message that the WLAN	Stop: "MLME-ASSOCIATE.confirm" has been
	adapter is ready (MAC address of	received with status code "success".
	AP is available).	
Unsuccessful attempt to	Stop trigger point not reached.	
reaccess		

6.10.17 WLAN Re-accessibility Time [s]

6.10.17.1 Abstract Definition

The WLAN re-accessibility time denotes the time it takes to re-establish a lost radio link with the access point after the signal is sufficient again.

6.10.17.2 Abstract Equation

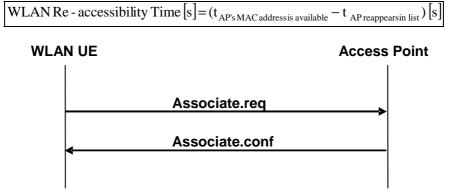


Figure 36: WLAN RE-ASSOCIATION Signal Flow

6.10.17.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
10 1000000	the list of available access points.	Start: First "MLME-ASSOCIATE.request" sent after radio signal is sufficient again.
t _{AP"s MAC} address is available: Time of successful attempt to reaccess	Stop: message that the WLAN adapter is ready.	Stop: "MLME-ASSOCIATE.confirm" has been received with status code "success".

NOTE: The authorization time that is consumed for entering and receiving the password has an effect on the re-accessibility time.

6.10.18 WLAN Logout Page Download Failure Ratio [%]

6.10.18.1 Abstract Definition

The WLAN logout page download failure ratio denotes the probability that the logout process is not successful.

6.10.18.2 Abstract Equation

WLAN Logout Page Download Failure Ratio
$$\left[\%\right] = \frac{\text{unsuccessful logout page download attempts}}{\text{all logout page download attempts}} \times 100$$

6.10.18.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Logout page download attempt	Start: Decision to logout is submitted	Start: "HTTP POST" sent
Successful logout page download attempt	Stop: Logout confirmed by receiving logout page	Stop: Reception of first data packet of logout page
Unsuccessful logout page download attempt	Stop Trigger not reached	

6.10.19 WLAN Logout Page Download Time [s]

6.10.19.1 Abstract Definition

The WLAN logout page download time denotes the time it takes to perform user logout.

6.10.19.2 Abstract Equation

6.10.19.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{Logout procedure start:} Time of logout page download attempt	Start: Decision to logout is submitted.	Start: "HTTP POST" sent.
t _{Logout confirmed:} Time of successful logout page download attempt	Stop: Logout confirmed by receiving logout page.	Stop: Reception of first data packet of logout page.

NOTE: The authorization time that is consumed for entering and receiving the password has an effect on the logout page download time.

6.11 Wireless Application Protocol (WAP)

WAP (Wireless Application Protocol) is a specification for a set of communication protocols to standardize the way that wireless devices, such as cellular telephones and radio transceivers, can be used for Internet access, including e-mail, the World Wide Web, newsgroups, and instant messaging. Devices and service systems that use WAP are able to interoperate.

The WAP layers are:

- Wireless Application Environment (WAE).
- Wireless Session Layer (WSL).
- Wireless Transport Layer Security (WTLS).
- Wireless Transport Layer (WTP).

WAP is a technology designed to allow efficient transmission of optimized Internet content to cell phones.

The parameters of clause 6.11 are represented in figure 37.

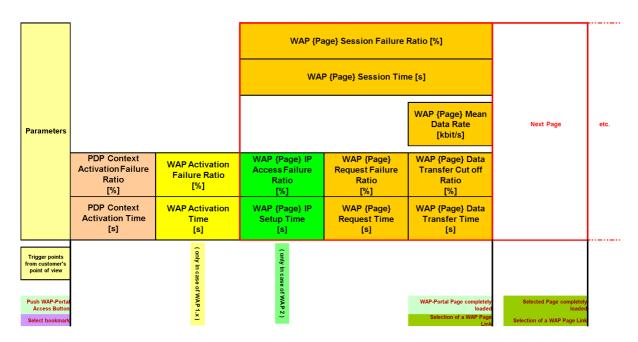


Figure 37: Parameter and service overview

The Technical description/protocol part of the Parameters of the whole clause are represented in the following "WAP Message Sequence Chart".

UE		WWP
1	oPDP Context Activation Request>>>	2
4	<>< PDP Context Activation ACCEPTo	3
5	o WSP Connect or TCP SYN>>>	6
8	<>< WSP Connect Reply or TCP SYN ACKo	7
9	o WTP ACK or TCP ACK>>>	10
11	o WSP or HTTP Get Request>>>	12
14	<>< First Data Packet containing contento	13
	:	
16	< Last Data Packet containing contento	15

Figure 38: WAP Message Sequence Chart

NOTE: WSP Connection usually occurs once per session, TCP connection is more frequent.

6.11.1 WAP Activation Failure Ratio [%] (WAP 1.x only)

6.11.1.1 Abstract Definition

The parameter WAP Activation Failure Ratio describes the probability that the WAP session could not be activated in case of WAP 1.x connection-mode session service.

6.11.1.2 Abstract Equation

WAP Activation Failure Ratio [%] =
$$\frac{\text{unsuccessful WAP activation attempts}}{\text{all WAP activation attempts}} \times 100$$

6.11.1.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description / protocol part
WAP activation attempt	Not applicable.	Start: WSP Connect procedure.
Successful WAP activation attempt	Not applicable.	Stop: Reception of the WSP Connect Reply.
Unsuccessful WAP activation attempt	Stop trigger point not reached.	

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3).

6.11.2 WAP Activation Time [s] (WAP 1.x only)

6.11.2.1 Abstract Definition

The parameter WAP Activation Time describes the time it takes to activate the WAP session in case of WAP 1.x connection-mode session service.

6.11.2.2 Abstract Equation

WAP Activation Time [s] =
$$(t_{\text{WAPsession established}} - t_{\text{WAPsession activation request}})[s]$$

6.11.2.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{WAP session activation request:} Time of WAP session activation request.	Not applicable.	Start: WSP Connect procedure
t _{WAP session established:} Time when WAP session established.	Not applicable.	Stop: Reception of the WSP Connect Reply

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3). Only successful measurements are taken into account to calculate the average time.

6.11.3 WAP {Page} IP Access Failure Ratio [%] (WAP 2.x only)

6.11.3.1 Abstract Definition

The parameter WAP {Page} IP Access Failure Ratio denotes the probability that a subscriber cannot establish a TCP/IP connection to the WAP server successfully.

NOTE: This parameter can only be calculated in case of follow up page, if the TCP/IP connection is not persistent.

6.11.3.2 Abstract Equation

$$WAP \{Page\} IP Access Failure Ratio [\%] = \frac{unsuccessful WAP IP Access attempts}{all WAP IP Access attempts} \times 100$$

6.11.3.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description / protocol part
WAP IP access attempt	Start: Selecting the link of a WAP page or applying an entered URL	Start: Sending of First TCP SYN
	Not applicable.	Stop: Sending of the first HTTP GET
access attempt		command
Unsuccessful WAP IP	Stop trigger point not reached.	
access attempt		

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.11.4 WAP {Page} IP Access Setup Time [s] (WAP 2.x only)

6.11.4.1 Abstract Definition

The WAP {Page} IP Access Time is the time period needed to establish a TCP/IP connection to the WAP server, from sending the initial query to a server to the point of time when the content is demanded.

NOTE: This parameter can only be calculated in case of follow up page, if the TCP/IP connection is not persistent.

6.11.4.2 Abstract Equation

$$WAP \{Page\} IP Access Time [s] = (t_{WAPIP connection established} - t_{WAPIP connection request}) [s]$$

6.11.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
	Start: Selecting the link of a WAP page or applying an entered URL.	Start: Sending of First TCP SYN.
t _{WAP IP connection established:} Time of WAP IP connection established.	1	Stop: Sending of the first HTTP GET command.

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5). Only successful measurements are taken into account to calculate the average time.

6.11.5 WAP {Page} Session Failure Ratio [%]

6.11.5.1 Abstract Definition

The parameter WAP {Page} Session Failure Ratio is the proportion of unsuccessful WAP page access attempts and sessions that were started successfully.

6.11.5.2 Abstract Equation

WAP {Page} Session Failure Ratio [%] =
$$\frac{\text{unsuccessful WAP page access attempts}}{\text{all WAP page access attempts}} \times 100$$

6.11.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
WAP page access	Start:	Start:
attempt	Selecting the link of a WAP page or	WAP1.x: Sending of WSP Get Request
	applying an entered URL.	WAP2.x:
		a) Sending of First TCP SYN (if available); or
		b) Sending of HTTP Get Request (only if first TCP
		SYN is not available).
Successful WAP page	Stop: The requested WAP page is	Stop:
access attempt	completely loaded.	WAP1.x/WAP2.x: Reception of the last data packet
		containing the corresponding content.
Unsuccessful WAP	Stop trigger point not reached.	
page access attempt		
NOTE: In case of WAP 2.x the start trigger should be the first TCP SYN (a). If the TCP/IP connection is not		
re-established before the request of the new page (next page part), the start Trigger has to be the first		
respective HTTP Get Request (b).		

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.11.6 WAP {Page} Session Time [s]

6.11.6.1 Abstract Definition

The parameter WAP {Page} Session Time provides the time in seconds between selection of a specific WAP page and the successful load of the page.

6.11.6.2 Abstract Equation

$$WAP{Page}SessionTime[s] = (t_{appearanceWAPpage} - t_{selectionWAPpage})[s]$$

6.11.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{selection} WAP page: Time of selection of the WAP page	Start: Selecting the link of a WAP page or applying an entered URL.	Start: WAP1.x: Sending of first WSP Get Request. WAP2.x: a) Sending of First TCP SYN (if available); or b) Sending of HTTP Get Request (only if first TCP SYN is not available).
tappearance WAP page: Time of appearance of the WAP page	Stop: The requested WAP page is completely loaded.	Stop: WAP1.x/WAP2.x: Reception of the last data packet containing the corresponding content.
NOTE: In case of WAP 2.x the start trigger should be the first TCP SYN (a). If the TCP/IP connection is not re-established before the request of the new page (next page part), the start Trigger has to be the first respective HTTP Get Request (b).		

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5). Only successful measurements are taken into account to calculate the average time.

6.11.7 WAP {Page} Request Failure Ratio [%]

6.11.7.1 Abstract Definition

The WAP {Page} Request Failure Ratio denotes the probability that a WAP page request is not successful after a timeout period.

6.11.7.2 Abstract Equation

WAP {Page} Request Failure Ratio [%] =
$$\frac{\text{unsuccessful WAP page request attempts}}{\text{all WAP page request attempts}} \times 100$$

6.11.7.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
WAP page request	Start: Selecting the link of the WAP	Start:
attempt	page.	WAP1.x: Sending of WSP Get Request
		WAP2.x: Sending of HTTP Get Request.
Successful WAP page request attempt	Stop: Download begins.	Stop: WAP1.x/WAP2.x: Reception of the first data packet containing content.
Unsuccessful WAP page request attempt	Stop trigger point not reached.	

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.11.8 WAP {Page} Request Time [s]

6.11.8.1 Abstract Definition

The parameter WAP {Page} Request Time describes the duration between selection of a specific WAP page and the reception of the first data packet containing WAP page content.

6.11.8.2 Abstract Equation

WAP{Page}Request Time
$$[s] = (t_{first data packet reception} - t_{selection WAP page})[s]$$

6.11.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Scientific the viva site.	Start: Selecting the link of the WAP page.	Start: WAP1.x: Sending of WSP Get Request WAP2.x: Sending of HTTP Get Request.
t _{first data packet reception:} Time of first data packet reception.	Stop: Download begins.	Stop: WAP1.x/WAP2.x: Reception of the first data packet containing content.

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5). Only successful measurements are taken into account to calculate the average time.

6.11.9 WAP {Page} Mean Data Rate [kbit/s]

6.11.9.1 Abstract Definition

The WAP {Page} Mean Data Rate denotes the average data rate (WAP throughput) in kbit/s.

6.11.9.2 Abstract Equation

$$WAP \{Page\} Mean Data Rate [kbit/s] = \frac{WAP \, page \, size [kbyte] \cdot 8}{(t_{last \, data \, packet \, reception} - t_{first \, data \, packet \, reception}) [s]}$$

6.11.9.3 Trigger Points

The average throughput is measured from opening the data connection to the end of the successful transfer of the content (file, WAP page).

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{first} data packet reception: Time of first data packet reception	Start: Download begins.	Start: WAP1.x/WAP2.x: Reception of the first data packet containing content.
t _{last data packet reception:} Time of last data packet reception	Stop: Download is completed.	Stop: WAP1.x/WAP2.x: Reception of the last data packet containing the corresponding content.

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.11.10 WAP {Page} Data Transfer Cut-off Ratio [%]

6.11.10.1 Abstract Definition

The WAP {Page} Data Transfer Cut off Ratio denotes the probability that a data download is incomplete after a timeout period (the download is aborted).

6.11.10.2 Abstract Equation

6.11.10.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
WAP page transfer	Start: Download begins.	Start:
attempt		WAP1.x/WAP2.x: Reception of the first data packet
		containing content.
Successful WAP	Stop: Download is completed.	Stop:
page transfer		WAP1.x/WAP2.x: Reception of the last data packet
attempt		containing the corresponding content.
Incomplete WAP	Stop trigger point not reached.	
page transfer		
attempt		

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

6.11.11 WAP {Page} Data Transfer Time [s]

6.11.11.1 Abstract Definition

The parameter WAP {Page} Data Transfer Time describes the duration between the reception of the first data packet and the last data packet containing WAP page content.

6.11.11.2 Abstract Equation

$$WAP \{Page\} Data\ Transfer\ Time\ [s] = (t_{last\ data\ packet\ reception} - t_{first\ data\ packet\ reception})\ [s]$$

6.11.11.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{first} data packet reception: Time of first data packet reception	Start: Download begins.	Start: WAP1.x/WAP2.x: Reception of the first data packet containing content.
t _{last data packet reception:} Time of last data packet reception	Stop: Download is completed.	Stop: WAP1.x/WAP2.x: Reception of the last data packet containing the corresponding content.

Remark:

• The bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5). Only successful measurements are taken into account to calculate the average time.

7 Store-and-forward (S&F) Services QoS Parameters

The "Store-and-forward" concept can be used for every non realtime service called "Background Class", which uses the following communication concept. We have two clients and one or more servers in the middle for each service.

- the A-party uploads a message to a server.
- this server forwards this message to another server (this step is optional).
- the server notifies the B-party that a new message is available.
- the B-party downloads this message.

The customers experience is similar in all services which follows the "Store-and-forward" approach.

In this raster, it's possible to fill in nearly all parameters which is done in the following clauses.

At the beginning of each service-dependent-clause, you will find figure 39 (7.1.1) in an aligned version according to the service. The parameter names are therefore replaced. Empty parameter boxes means that the parameter is not already defined.

7.1 Generic Store-and-forward Parameters

This clause "Generic Store-and-forward Parameters" should be used for all services which works as described in the introduction of clause 7 and isn't defined already within this clause separately. Especially services who use proprietary or encrypted communication between the user devices are dedicated to use the following generic described parameter concept.

7.1.1 Parameter Overview Chart

All services within this clause "Store-and-forward (S&F) Services QoS Parameters" complie to the same structure as it's displayed in figure 39. The blue part is the upload part of a message from the A-party to a server. The green part is the notification part. The B-party will be informed about a new message. At the end the message will be downloaded at the B-party side from a server, explained with the orange boxes.

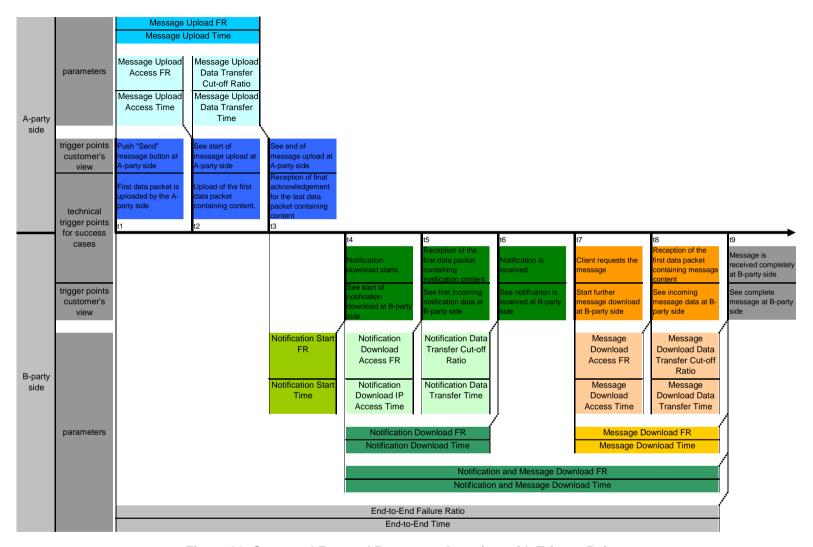


Figure 39: Store and Forward Parameter Overview with Trigger Points

7.1.2 {Service} Message Upload Failure Ratio [%]

7.1.2.1 Abstract Definition

The parameter indicates the probability of message upload failures from the message device to the server. This transmission is successful for the parameter, if the message is marked as sent.

7.1.2.2 Abstract Equation

{Service} Message Upload Failure Ratio [%] =
$$\frac{\text{unsuccessful message upload}}{\text{message upload attempt}} \times 100$$

7.1.2.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Message upload attempt	Push "Send" message button at A-party side.
Successful message upload	See end of message upload at A-party side.
Unsuccessful message upload	Stop trigger point not reached.

7.1.3 {Service} Message Upload Time [s]

7.1.3.1 Abstract Definition

The parameter indicates the time from pushing "send" message button on the message device until message is uploaded and marked as sent.

7.1.3.2 Abstract Equation

$$\{Service\} Message \ Upload \ Time \ [s] = \Big(t_{successful \ message \ upload} - t_{message \ upload \ attempt} \Big) [s]$$

7.1.3.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Message upload attempt	Push "Send" message button at A-party side.
Successful message upload	See end of message upload at A-party side.

Preconditions for measurement:

• Message Upload shall be successful.

7.1.4 {Service} Message Upload Access Failure Ratio [%]

7.1.4.1 Abstract Definition

The parameter indicates the probability that the customer cannot successfully establish a data connection to the message server to upload messages.

7.1.4.2 Abstract Equation

{Service} Message Upload Access Failure Ratio [%] =
$$\frac{\text{unsuccessful service access}}{\text{service access attempt}} \times 100$$

7.1.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Service Access attempt	Push "Send" message button at A-party side.
Successful Service Access	See start of message upload at A-party side.
Unsuccessful Service Access	Stop trigger point not reached.

7.1.5 {Service} Message Upload Access Time [s]

7.1.5.1 Abstract Definition

The parameter indicates the time from establishment attempt of a data connection to the message server to upload messages until the upload of the first message content.

7.1.5.2 Abstract Equation

[Service] Message Upload Access Time [s] =
$$(t_{\text{successful service access}} - t_{\text{service access attempt}})$$
[s]

7.1.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Service Access attempt	Push "Send" message button at A-party side.
Successful Service Access	See start of message upload at A-party side.

Preconditions for measurement:

Message Upload Access shall be successful.

7.1.6 {Service} Message Upload Data Transfer Cut-off Ratio [%]

7.1.6.1 Abstract Definition

The parameter indicates the probability that a data transfer of a message upload is incomplete or failed after the established access to the server.

7.1.6.2 Abstract Equation

{Service} Message Upload Data Transfer Cut - off Ratio [%] =
$$\frac{\text{incomplete data transfer}}{\text{data transfer attempt}} \times 100$$

7.1.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Data transfer attempt	First data packet is sent by the A-party side.
Complete data transfer	See end of message upload at A-party side.
Incomplete data transfer	Stop trigger point not reached.

7.1.7 {Service} Message Upload Data Transfer Time [s]

7.1.7.1 Abstract Definition

The parameter indicates the time from opening the data connection until the end of the successful transfer of message content.

7.1.7.2 Abstract Equation

{Service} Message Upload Data Transfer Time $[s] = (t_{end of transfer} - t_{start of transfer})[s]$

7.1.7.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Data transfer attempt	First data packet is sent by the A-party side.
Complete data transfer	See end of message upload at A-party side.

Preconditions for measurement:

• Message Upload Data Transfer shall be successful.

7.1.8 {Service} Notification Start Failure Ratio [%]

7.1.8.1 Abstract Definition

Probability that the B-party side cannot see the start of the notification transmission after successful upload of the message by the A-party side.

7.1.8.2 Abstract Equation

{Service} Notification Start Failure Ratio [%] =
$$\frac{\text{unsuccessful notification start}}{\text{succesful sent message}} \times 100$$

7.1.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Successful sent message	See end of message upload at A-party side.
Successful start of notification download	See start of notification download at B-party side.
Unsuccessful start of notification download	Stop trigger point not reached.

7.1.9 {Service} Notification Start Time [s]

7.1.9.1 Abstract Definition

The parameter indicates the time from finished upload of a message at A-party side until start of notification download at B-party side.

7.1.9.2 Abstract Equation

{ Service} Notification Start Time [s] =
$$(t_{\text{successful sent message}} - t_{\text{successful start of notification download}})$$
[s]

7.1.9.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Successful sent message	See end of message upload at A-party side.
Successful start of notification download	See start of notification download at B-party side.

Preconditions for measurement:

• Notification Start shall be successful.

7.1.10 {Service} Notification Download Failure Ratio [%]

7.1.10.1 Abstract Definition

The parameter indicates the probability that the end-customer can"t download the notification of a new message.

7.1.10.2 Abstract Equation

{Service} Notification Download Failure Ratio [%] =
$$\frac{\text{unsuccessful download of notification}}{\text{notification download attempt}} \times 100$$

7.1.10.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Notification download attempt	See start of notification download at B-party side.
Successful download of notification	See notification is received at B-party side.
Unsuccessful download of notification	Stop trigger point not reached.

7.1.11 {Service} Notification Download Time [s]

7.1.11.1 Abstract Definition

The parameter indicates the time from start until the end of the notification download.

7.1.11.2 Abstract Equation

$$\{Service\}\ Notification\ Download\ Time\ [s] = \left(t_{successful\ download\ of\ notification} - t_{notification\ download\ attempt}\right)[s]$$

7.1.11.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Notification download attempt	See start of notification download at B-party side.
Successful download of notification	See notification is received at B-party side.

Preconditions for measurement:

• Message Notification Download shall be successful.

7.1.12 {Service} Notification Download Access Failure Ratio [%]

7.1.12.1 Abstract Definition

The parameter indicates the probability that the customer cannot successfully establish a data connection to the message server to download the notification data of a new message.

7.1.12.2 Abstract Equation

{Service} Notification Download Access Failure Ratio [%] = $\frac{\text{unsuccessful received first data packet}}{\text{notification download attempt}} \times 100$

7.1.12.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Notification download attempt	See start of notification download at B-party side.
Successful received first data packet	See first incoming notification data at B-party side.
Unsuccessful received first data packet	Stop trigger point not reached.

7.1.13 {Service} Notification Download Access Time [s]

7.1.13.1 Abstract Definition

The parameter indicates the time from start of data connection to the message server to download the notification data of a new message until the reception of the first data of this notification.

7.1.13.2 Abstract Equation

$$\{Service\}\ Notification\ Download\ Access\ Time\ [s] = \Big(t_{\text{successful received first data\ packet}} - t_{\text{notification\ download\ attempt}}\Big)[s]$$

7.1.13.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Notification download attempt	See start of notification download at B-party side.
Successful received first data packet	See first incoming notification data at B-party side.

Preconditions for measurement:

• Notification Download Access shall be successful.

7.1.14 {Service} Notification Data Transfer Cut-off Ratio [%]

7.1.14.1 Abstract Definition

The parameter indicates the probability that a data transfer of a notification download is incomplete or failed after the established access to the server.

7.1.14.2 Abstract Equation

{Service} Notification Data Transfer Cut - off Ratio [%] =
$$\frac{\text{incomplete notification data transfer}}{\text{notification data transfer attempt}} \times 100$$

7.1.14.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Notification Data Transfer attempt	See first incoming notification data at B-party side.
Complete notification data transfer	See notification is received at B-party side.
Incomplete notification data transfer	Stop trigger point not reached.

7.1.15 {Service} Notification Data Transfer Time [s]

7.1.15.1 Abstract Definition

The parameter indicates the time from start until end of complete notification data download.

7.1.15.2 Abstract Equation

[Service] Notification Data Transfer Time [s] = $(t_{complete notification data transfer} - t_{notification data transfer attempt})$ [s]

7.1.15.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Notification Data Transfer attempt	See first incoming notification data at B-party side.
Complete notification data transfer	See notification is received at B-party side.

Preconditions for measurement:

• Notification Data Transfer shall be successful.

7.1.16 {Service} Message Download Failure Ratio [%]

7.1.16.1 Abstract Definition

The parameter indicates the probability that the complete message download cannot be completed successfully.

7.1.16.2 Abstract Equation

{Service} Message Download Failure Ratio [%] =
$$\frac{\text{unsuccessful message download}}{\text{message download attempt}} \times 100$$

7.1.16.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Message download attempt	Start message download at B-party side.
Successful message download	See complete message at B-party side.
Unsuccessful message download	Stop trigger point not reached.

7.1.17 {Service} Message Download Time [s]

7.1.17.1 Abstract Definition

The parameter indicates the time from start until end of complete message download.

7.1.17.2 Abstract Equation

 $[Service] Notification Data Transfer Time [s] = (t_{successful message download} - t_{message download attempt})[s]$

7.1.17.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Message download attempt	Start message download at B-party side.
Successful message download	See complete message at B-party side.

Preconditions for measurement:

Message Download shall be successful.

7.1.18 {Service} Message Download Access Failure Ratio [%]

7.1.18.1 Abstract Definition

The parameter indicates the probability that the customer cannot successfully establish a data connection to the message server to download messages.

7.1.18.2 Abstract Equation

{Service} Message Download Access Failure Ratio [%] =
$$\frac{\text{unsuccessful service access}}{\text{service access attempt}} \times 100$$

7.1.18.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Service Access attempt	Start message download at B-party side.
Successful Service Access	See incoming message data at B-party side.
Unsuccessful Service Access	Stop trigger point not reached.

7.1.19 {Service} Message Download Access Time [s]

7.1.19.1 Abstract Definition

The parameter indicates the time from start of data connection to the message server to download the message until the reception of the first data of this message.

7.1.19.2 Abstract Equation

$$\{Service\} \ Message \ Download \ Access \ Time \ [s] = \Big(t_{successful \ message \ service \ access} - t_{service \ access \ attempt} \Big) [s]$$

7.1.19.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Service Access attempt	Start message download at B-party side.
Successful Service Access	See incoming message data at B-party side.

Preconditions for measurement:

Message Download Access shall be successful.

7.1.20 {Service} Message Download Data Transfer Cut-off Ratio [%]

7.1.20.1 Abstract Definition

The parameter indicates the probability that a data transfer of the message download is incomplete or failed after the established access to the server.

7.1.20.2 Abstract Equation

{Service} Message Download Data Transfer Cut - off Ratio [%] =
$$\frac{\text{incomplete data transfer}}{\text{data transfer attempt}} \times 100$$

7.1.20.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Data Transfer attempt	See incoming message data at B-party side.
Complete data transfer	See complete message at B-party side.
Incomplete data transfer	Stop trigger point not reached.

7.1.21 {Service} Message Download Data Transfer Time [s]

7.1.21.1 Abstract Definition

The parameter indicates the time from start of message data download until successful complete download of all message data.

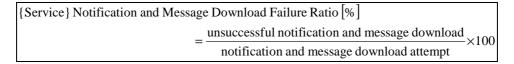
7.1.21.2 Abstract Equation

{Service} Message Download Data Transfer Time
$$[s] = (t_{complete data transfer} - t_{data transfer attempt})[s]$$

7.1.21.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Data Transfer attempt	See incoming message data at B-party side.
Complete data transfer	See complete message at B-party side.

Preconditions for measurement:


Message Download Data Transfer shall be successful.

7.1.22 {Service} Notification and Message Download Failure Ratio [%]

7.1.22.1 Abstract Definition

The parameter indicates the probability that the notification and message download cannot be completed successfully.

7.1.22.2 Abstract Equation

7.1.22.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Notification and message download attempt	See start of notification download at B-party side
Successful notification and message download	See complete message at B-party side.
Unsuccessful notification and message download	Stop trigger point not reached.

7.1.23 {Service} Notification and Message Download Time [s]

7.1.23.1 Abstract Definition

The parameter indicates the time from start of data connection to the message server to download the notification data of a new message until the successful complete download of the message.

7.1.23.2 Abstract Equation

$$\begin{aligned} & \{Service\} \, Notification \, and \, Message \, Download \, Time \, [s] \\ &= \Big(t_{successful \, notification \, and \, message \, download} - t_{notification \, and \, message \, download \, attempt} \Big) [s] \end{aligned}$$

7.1.23.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Notification and message download attempt	See start of notification download at B-party side.
Successful notification and message download	See complete message at B-party side.

Preconditions for measurement:

• Notification and Message Download shall be successful.

7.1.24 {Service} End-to-End Failure Ratio [%]

7.1.24.1 Abstract Definition

The parameter indicates the probability that the complete service usage from start of message upload at the A-party side until the complete message download at the B-party side cannot be completed successfully. This transmission is unsuccessful, if the message upload, the notification (if possible) or the message download fails.

7.1.24.2 Abstract Equation

{Service} End - to - End Failure Ratio [%] =
$$\frac{\text{unsuccessful message download}}{\text{message upload attempt}} \times 100$$

7.1.24.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view
Message upload attempt	Push "Send" message button at A-party side.
Successful message download	See complete message at B-party side.
Unsuccessful message download	Stop trigger point not reached.

7.1.25 {Service} End-to-End Time [s]

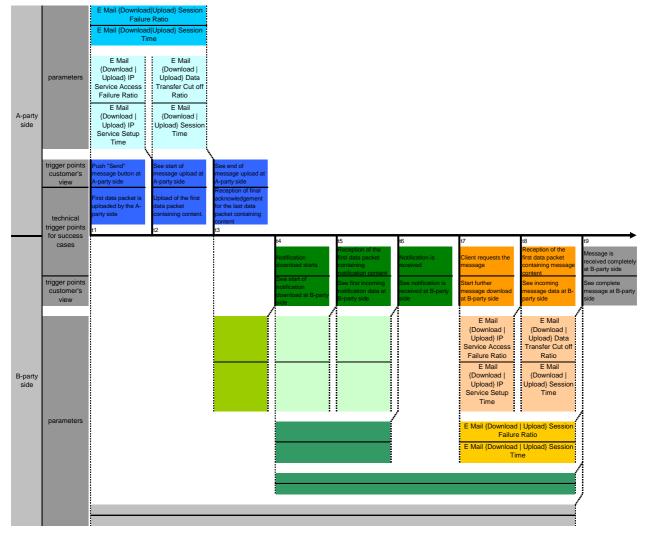
7.1.25.1 Abstract Definition

The parameter indicates the time from start until end of message upload at A-party side until the successful complete download of the message at B-party side.

7.1.25.2 Abstract Equation

{Service} End - to - End Time [s] =
$$(t_{\text{successful message download}} - t_{\text{message upload attempt}})$$
[s]

7.1.25.3 Trigger Points


Event from abstract equation	Trigger point from customer's point of view
Message upload attempt	Push "Send" message button at A-party side.
Successful message download	See complete message at B-party side.

Preconditions for measurement:

• End-to- End service usage shall be successful.

7.2 E-Mail

7.2.1 Parameter Overview Chart

Special Parameter:

E-Mail {Download|Upload} Service Non-Accessibility

E-Mail {Download|Upload} Setup Time

E Mail (Download) Upload) Mean Data Rate

Figure 40: E-Mail Parameter Overview with Trigger Points

7.2.2 E-Mail {Download|Upload} Service Non-Accessibility [%]

7.2.2.1 Abstract Definition

The service non-accessibility ratio denotes the probability that a subscriber cannot establish a PDP context and access the service successfully.

7.2.2.2 Abstract Equation

 $E - Mail \{Download | Upload\} Service Non - Accessibility [\%] = \\ \frac{unsuccessful \ attempts \ to \ reach \ the \ point \ when \ content \ is \ sent \ or \ received}{all \ attempts \ to \ reach \ the \ point \ when \ content \ is \ sent \ or \ received} \times 100$

7.2.2.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Service access attempt	Start: Customer initiates the service access.	Start: ATD command.
Successful attempt	Stop: First content is received.	Stop Method A: Reception of the first data packet containing content. Stop Method B: Send RETR command.
Unsuccessful attempt	Stop trigger point not reached.	

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Service access attempt	Start: Customer initiates the service access.	Start: ATD command.
Successful attempt	Stop: First content is sent.	Stop Method A: Sending of the first data packet containing content.
		Stop Method B: Reception of the positive acknowledgement (250) for the HELO command which was sent from the client before. This definition applies to the "none login procedure", for other login procedures the trigger point has to be defined.
Unsuccessful attempt	Stop trigger point not reached.	

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3).

7.2.3 E-Mail {Download|Upload} Setup Time [s]

7.2.3.1 Abstract Definition

The setup time describes the time period needed to access the service successfully, from starting the dial-up connection to the point of time when the content is sent or received.

7.2.3.2 Abstract Equation

$$E - Mail \{Download | Upload\} Setup Time [s] = \left(t_{service access successful} - t_{service access start}\right) [s]$$

7.2.3.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{service access start} : Time of service access attempt	Start: Customer initiates the service access.	Start: ATD command.
t _{service access successful} : Time of successful service access	·	Stop Method A: Reception of the first data packet containing content.
		Stop Method B: Send RETR command.

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{service access start} : Time of service access attempt	Start: Customer initiates the service access.	Start: ATD command.
t _{service access successful} : Time of successful service access	Stop: First content is sent.	Stop Method A: Sending of the first data packet containing content. Stop Method B: Reception of the positive acknowledgement (250) for the HELO command which was sent from the client
		before. This definition applies to the "none login procedure", for other login procedures the trigger point has to be defined.

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3).

7.2.4 E-Mail {Download|Upload} IP-Service Access Failure Ratio [%]

7.2.4.1 Abstract Definition

The IP-service access ratio denotes the probability that a subscriber cannot establish an TCP/IP connection to the server of a service successfully.

7.2.4.2 Abstract Equation

 $E - Mail \{Download | Upload\} IP - Service Access Failure Ratio [\%] = \\ \frac{unsuccessful \ attempts \ to \ establish \ an \ IP \ connection \ to \ the \ server}{all \ attempts \ to \ establish \ an \ IP \ connection \ to \ the \ server} \times 100$

7.2.4.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
IP-Service access attempt	Start: Customer initiates e-Mail download.	Start: First [SYN] sent.
Successful attempt	Stop: E-Mail download starts.	Stop Method A: Reception of the first data packet containing content. Stop Method B: Send RETR command.
Unsuccessful attempt	Stop trigger point not reached.	

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
IP-Service access attempt	Start: Customer initiates e-Mail upload.	Start: First [SYN] sent.
Successful attempt	Stop: E-Mail upload starts.	Stop Method A: Sending of the first data packet containing content.
		Stop Method B: Reception of the positive acknowledgement (250) for the HELO command which was sent from the client before. This definition applies to the "none login procedure", for other login procedures the trigger point has to be defined.
Unsuccessful attempt	Stop trigger point not reached.	

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

7.2.5 E-Mail {Download|Upload} IP-Service Setup Time [s]

7.2.5.1 Abstract Definition

The IP-service setup time is the time period needed to establish an TCP/IP connection to the server of a service, from sending the initial query to a server to the point of time when the content is sent or received.

7.2.5.2 Abstract Equation

$$\label{eq:energy} \begin{split} E - Mail \{Download | Upload \} IP - Service Setup Time [s] = \\ & \left(t_{IP\text{-}Service access successful} - t_{IP\text{-}Service access start}\right) [s] \end{split}$$

7.2.5.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{IP-Service access start} : Time of IP- Service access attempt	Start: Customer initiates e-Mail download.	Start: First [SYN] sent.
t _{IP-Service access successful} : Time of successful IP-Service access		Stop Method A: Reception of the first data packet containing content.
		Stop Method B: Send RETR command.

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{IP-Service access start} : Time of IP- Service access attempt	Start: Customer initiates e-Mail upload.	Start: First [SYN] sent.
t _{IP-Service} access successful: Time of successful IP-Service access	Stop: E-Mail upload starts.	Stop Method A: Sending of the first data packet containing content. Stop Method B: Reception of the positive acknowledgement (250) for the HELO command which was sent from the client before. This definition applies to the "none login procedure", for other login procedures the trigger point has to be defined.

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (cf-PDP Context Activation Failure Ratio).

7.2.6 E-Mail (Download|Upload) Session Failure Ratio [%]

7.2.6.1 Abstract Definition

The completed session ratio is the proportion of uncompleted sessions and sessions that were started successfully.

7.2.6.2 Abstract Equation

$$E - Mail \{Download | Upload\} Session Failure Ratio [\%] = \frac{uncompleted sessions}{successfully started sessions} \times 100$$

7.2.6.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully started session	Start: Customer initiates e-Mail download.	Start: First [SYN] sent.
Completed session	Stop: E-Mail download successfully completed.	Stop Method A: Reception of the last data packet containing content. Stop Method B: Reception of the last data packet containing the finish sequence (CRLF.CRLF).
Uncompleted session	Stop trigger point not reached.	,

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully started session	Start: Customer initiates e-Mail upload.	Start: First [SYN] sent.
Completed session	Stop: E-Mail upload successfully completed.	Stop Method A: Reception of the [FIN, ACK] for the last data packet containing content. Stop Method B: Reception of the positive acknowledgement (250) for the EOM command.
Uncompleted session	Stop trigger point not reached.	

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

7.2.7 E-Mail (Download|Upload) Session Time [s]

7.2.7.1 Abstract Definition

The session time is the time period needed to successfully complete a PS data session.

7.2.7.2 Abstract Equation

$$E - Mail \{Download | Upload\} Session Time[s] = (t_{session end} - t_{session start})[s]$$

7.2.7.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{session start} : Time of successfully started session	Start: Customer initiates e-Mail download.	Start: First [SYN] sent.
t _{session end} : Time when session completed		Stop Method A: Reception of the last data packet containing content.
		Stop Method B: Reception of the last data packet containing the finish sequence (CRLF.CRLF).

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{session start} : Time of successfully started session	Start: Customer initiates e-Mail upload.	Start: First [SYN] sent.
t _{session end} : Time when session completed	Stop: E-Mail upload successfully completed.	Stop Method A: Reception of the [FIN, ACK] for the last data packet containing content. Stop Method B: Reception of the positive acknowledgement (250) for the EOM command.

Remark:

• The PS bearer has to be active in the cell used by a subscriber (see clause 5.1) and the mobile station has to be attached (see clause 5.3) as well as the respective PDP context has to be activated (see clause 5.5).

7.2.8 E-Mail {Download|Upload} Mean Data Rate [kbit/s]

7.2.8.1 Abstract Definition

After a data link has been successfully established, this parameter describes the average data transfer rate measured throughout the entire connect time to the service. The data transfer shall be successfully terminated. The prerequisite for this parameter is network and service access.

7.2.8.2 Abstract Equation

$$E - Mail \{Download | Upload \} Mean Data Rate [kbit/s] = \\ \frac{user data \ transferred [kbit]}{(t_{data \ transfer \ complete} - t_{data \ transfer \ start})[s]}$$

7.2.8.3 Trigger Points

The average throughput is measured from opening the data connection to the end of the successful transfer of the content (file, e-mail or web page).

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{data transfer start} : Time of successfully started data transfer	Start: E-Mail download starts.	Start Method A: Reception of the first data packet containing content.
		Start Method B: Send RETR command.
t _{data transfer complete} : Time when data transfer complete		Stop Method A: Reception of the last data packet containing content.
		Stop Method B: Reception of the data packet containing the finish sequence (CRLF.CRLF).

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{data transfer start} : Time of successfully started data transfer	Start: E-Mail upload starts.	Start Method A: Sending of the first data packet containing content.
		Start Method B: Reception of the positive acknowledgement (250) for the HELO command which was sent from the client before. This definition applies to the "none login procedure", for other login procedures the trigger point has to be defined.
t _{data transfer complete} : Time when data transfer complete	Stop: E-Mail upload successfully completed.	Stop Method A: Reception of the [FIN, ACK] for the last data packet containing content.
		Stop Method B: Reception of the positive acknowledgement (250) for the EOM command.

Remark:

• The mobile station is already attached (see clause 5.3), a PDP context is activated (see clause 5.5) and a service was accessed successfully (see Service Non-Accessibility).

7.2.9 E-Mail {Download|Upload} Data Transfer Cut-off Ratio [%]

7.2.9.1 Abstract Definition

The data transfer cut-off ratio is the proportion of incomplete data transfers and data transfers that were started successfully.

7.2.9.2 Abstract Equation

$$E - Mail \{Download | Upload\} Data Transfer Cut - off Ratio [\%] = \frac{incomplete data transfers}{successfully started data transfers} \times 100$$

7.2.9.3 Trigger Points

Download:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully started data transfer	Start: E-Mail download starts.	Start Method A: Reception of the first data packet containing content.
		Start Method B: Send RETR command.
Complete data transfer	Stop: E-Mail download successfully completed.	Stop Method A: Reception of the last data packet containing content.
		Stop Method B: Reception of the data packet containing the finish sequence (CRLF.CRLF).
Incomplete data transfer	Stop trigger point not reached.	

Upload:

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully started data transfer	Start: E-Mail upload starts.	Start Method A: Sending of the first data packet containing content.
		Start Method B: Reception of the positive acknowledgement (250) for the HELO command which was sent from the client before. This definition applies to the "none login procedure", for other login procedures the trigger point has to be defined.
Complete data transfer	Stop: E-Mail upload successfully completed.	Stop Method A: Reception of the [FIN, ACK] for the last data packet containing content. Stop Method B: Reception of the positive acknowledgement (250) for the EOM command.
Incomplete data transfer	Stop trigger point not reached.	

Remark:

• The mobile station is already attached (see clause 5.3), a PDP context is activated (see clause 5.5) and a service was accessed successfully (see Service Non-Accessibility).

7.3 Multimedia Messaging Service (MMS)

NOTE: It is important to keep in mind that measurement equipment and techniques used can affect the data collected. The measurement equipment and techniques should be defined and their effects documented for all tests. One example of this is the effect of Windows RAS on the setup of PDP Context (see TS 102 250-3 [5]).

7.3.1 Parameter Overview Chart

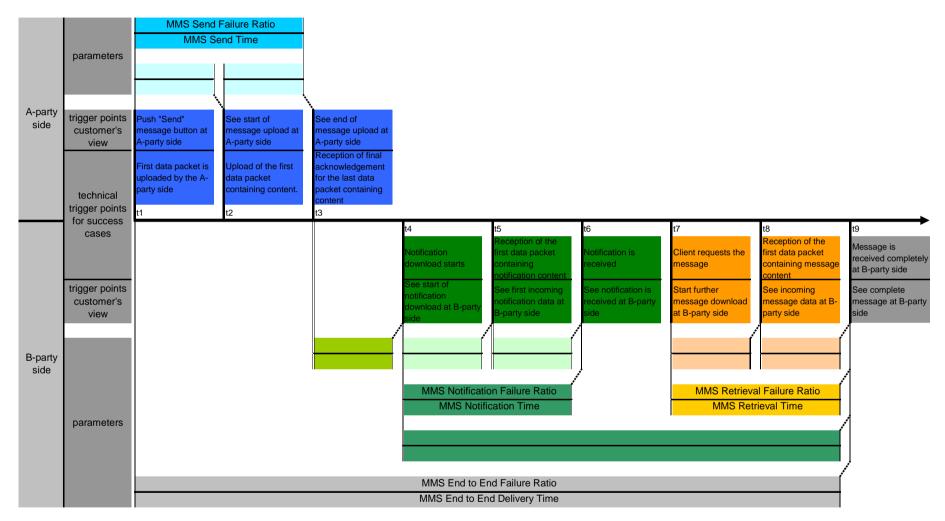


Figure 41: MMS Parameter Overview with Trigger Points

7.3.2 MMS Send Failure Ratio [%]

7.3.2.1 Abstract Definition

The parameter MMS Send Failure Ratio describes the probability that a MMS-message can not be send by the subscriber, although he has requested to do so by pushing the "send button".

7.3.2.2 Abstract Equation

MMS Send Failure Ratio [%] =
$$\frac{\text{unsuccessful MMS send attempts}}{\text{all MMS send attempts}} \times 100$$

7.3.2.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
MMS Send Attempt	Pushing of send button.	The send button initiates the <i>PDP context activation</i> of the MS (MO), followed by a connection to the WAP Gateway, and to the MMSC. (See trigger 1 in figure 42).
Unsuccessful MMS Send Attempt	Do not see "Message sent".	The <i>m</i> -send.conf (see [2]) (where Response Status: \$80 = M_RS_OK) is not received by the MS(MO). (See trigger 18 in figure 42). (see notes 1 to 3). "MMS unsuccessful send attempt timeout" as specified in TS 102 250-5 [i.1].

- NOTE 1: The phase where the WAP session will be deactivated is not covered by this indicator. Some mobiles might not support the sending/receiving of the next MMS unless the WAP session is disconnected properly.
- NOTE 2: A forwarding of a MMS without reception of a positive m-send.conf (where Response Status: \$80 = M_RS_OK) shall be counted as failure.
- NOTE 3: Only MMS sent within the timeouts will be considered.

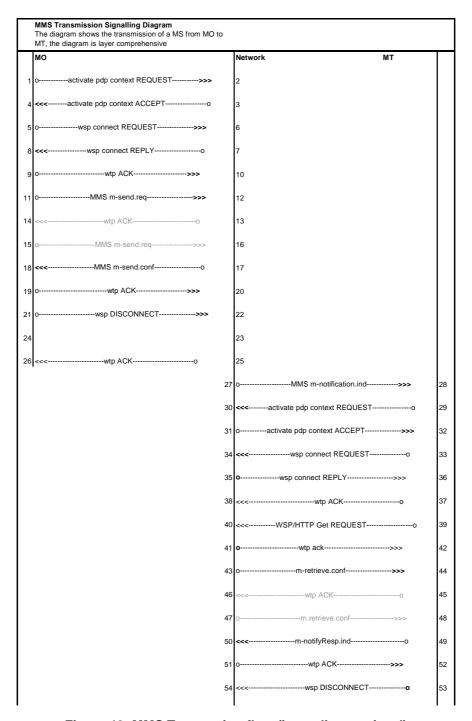


Figure 42: MMS Transaction flow (immediate retrieval)

7.3.3 MMS Retrieval Failure Ratio [%]

7.3.3.1 Abstract Definition

The parameter MMS Retrieval Failure Ratio describes the probability that the MMS-message can not be downloaded by the MT mobile, which received a MMS notification before.

Remark:

The MMS notification is a push-message. This message either initiates the download of the MMS content by starting a "WAP Get Request" (when the mobile is switched to automatic mode) or enables the user to manually start this "Wap Get Request" (when the mobile is switched to manual mode). The measurements will be done either using the setting "Automatic Download" (e.g. the download follows the immediate retrieval transaction flow) or following the delayed retrieval. In case of delayed retrieval the wait time between the notification response (m-notifyResp.ind) and the WSP/HTTP get request (WSP/HTTP Get.req) must be set to zero. Please refer to figure 5 in [2] for the delayed retrieval transaction flow.

7.3.3.2 Abstract Equation

MMS Delivery Failure Ratio [%] =
$$\frac{\text{unsuccessful MMS delivery attempts}}{\text{all MMS delivery attempts}} \times 100$$

7.3.3.3 Trigger Points

(MT) Wap Get Request MT. to the MS (MT), this mobile activates a PDP-context an contacts the MMSC via the WAP Gateway (See trigger 29 in figure 42). Unsuccessful MMS Retrieval Attempt (MT) Stop: No MMS-message is received. Stop: The <i>m-notifyResp.ind</i> (see [2]) is not sent by the MS (MT). (See trigger 49 in figure 42). (see notes 1 and 2). "MMS unsuccessful Retrieval timeout" as specified in TS 102 250-5 [i.1]. NOTE 1: The phase where the WAP session will be deactivated is not covered by this indicator. Some mobiles	Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Retrieval Attempt (MT) received. MS (MT). (See trigger 49 in figure 42). (see notes 1 and 2). "MMS unsuccessful Retrieval timeout" as specified in TS 102 250-5 [i.1]. NOTE 1: The phase where the WAP session will be deactivated is not covered by this indicator. Some mobiles	(MT) Wap Get Request MT. to the MS (MT), this mobile activates a PDP-context and contacts the MMSC via the WAP Gateway (See trigger 29 in figure 42).		
	Retrieval Attempt (MT) received. MS (MT). (See trigger 49 in figure 42). (see notes 1 and 2). "MMS unsuccessful Retrieval timeout" as specified in TS 102 250-5 [i.1].		
might not support the sending/receiving of the next MMS unless the WAP session is disconnected properly.			

7.3.4 MMS Send Time [s]

7.3.4.1 Abstract Definition

A subscriber uses the Multimedia Messaging Service (as indicated by the network ID in his mobile phone display). The time elapsing from pushing the send button after the editing of a MMS-message to the completion of the data transfer is described by this parameter.

NOTE: Possible measurement scenarios for time indicators of MMS may vary in the number of involved MMSCs. With increasing MMS-traffic or internetwork-traffic surveillance, the number of MMSCs involved will increase also. Number of MMSCs involved is therefore a measurement condition to be discussed.

7.3.4.2 Abstract Equation

$$MMS \, Send \, Time \, [s] = \Big(t_{MMStoMMSC complete} - t_{sendButton}\Big)[s]$$

7.3.4.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{sendButton}	Start: Send button is pushed.	Start: The send button initiates the <i>PDP context activation</i> of the MS(MT), followed by a connection to the WAP Gateway (See trigger 1 in figure 42). (see notes 1 and 2). "MMS unsuccessful send transfer timeout" as specified in TS 102 250-5 [i.1].
^t MMStoMMSCcomplete	Stop: MMS-message is completely transmitted to MMS-C.	Stop: The <i>m</i> -send.conf (see [2]) (where Response Status: \$80 = M_RS_OK) is not received by the MS(MO). (see trigger 18 in figure 42).

NOTE 1: The phase, where the WAP session will be deactivated is not covered by this indicator. Some mobiles might not support the sending/receiving of the next MMS unless the WAP session is disconnected properly.

NOTE 2: Only MMS send within the timeouts will be considered.

7.3.5 MMS Retrieval Time [s]

7.3.5.1 Abstract Definition

The reception of a MMS-message works as follows: A push-sms is sent to the receiver's mobile. In automatic mode, the push sms initiates a WAP-connection to download the MMS from the MMS-C. The initiation of the WAP connection is called the WAP GET REQUEST (WGR). The time elapsing between the WGR and the completion of the download of the MMS will be described by the parameter MMS Retrieval Time.

Possible measurement scenarios for time indicators of MMS may vary in the number of involved MMSCs. With increasing MMS-traffic or internetwork-traffic surveillance, the number of MMSCs involved will increase also. Number of MMSCs involved is therefore a measurement condition to be discussed.

7.3.5.2 Abstract Equation

$$MMS \ Delivery \ Time \ [s] = \Big(t_{MMS from MMSC complete} - t_{initWGR} \, \Big) [s]$$

7.3.5.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{initWGR}		Start: The <i>m-Notification.ind</i> (see [2] is delivered to the MS (MT). This initiates the <i>PDP context activation</i> . (See trigger 29 in figure 42).
^t MMSfromMMSCcomplete	Stop: MMS-message is received completely.	Stop: The <i>m-notifyResp.Ind</i> (see [2]) is sent by the MS (MT). (See trigger 49 in figure 42). (see notes 1 and 2) "MMS successful retrieval timeout" as specified in TS 102 250-5 [i.1].

NOTE 1: The phase, where the WAP session will be deactivated is not covered by this indicator. Some mobiles might not support the sending/receiving of the next MMS unless the WAP session is disconnected properly.

NOTE 2: Only MMS received within the timeouts will be considered.

7.3.6 MMS Notification Failure Ratio [%]

7.3.6.1 Abstract Definition

The parameter MMS Notification Failure Ratio [%] describes the probability that the Multimedia Messaging Service (MMS) is not able to deliver the Notification of a MMS-message to the b-parties mobile.

7.3.6.2 Abstract Equation

MMS Notification Failure Ratio [%] =
$$\frac{\text{failed MMS - notifications}}{\text{successfully submitted MMS}} \times 100$$

7.3.6.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
Successfully submitted	Start: Reception of the	Start: The <i>m-send.conf</i> (see [2]) (where Response
MMS MO	acknowledgement from	Status: $$80 = M_RS_OK$) is not received by the MS(MO).
	the MMS-C MO	(See trigger 18 in figure 42).
	(i.e. "Message sent").	(see notes 1 and 2)
Failed MMS-Notifications	Stop: Failure delivery	Stop: m- notification.ind (see [2]) is not delivered to the
	(non-delivery) of the	MS(MT).
	Notification-SMS.	(See trigger 28 in figure 42).
		(see note 3)
		"MMS successful notification timeout" as specified in
		TS 102 250-5 [i.1].

- NOTE 1: The phase where the WAP session will be deactivated is not covered by this indicator. Some mobiles might not support the sending/receiving of the next MMS unless the WAP session is disconnected properly.
- NOTE 2: Only the accepted MMS has to be considered (see the response status = \$80 in the sendconf) MMS with negative response but delivered can added alternatively.
- NOTE 3: Only Notifications received within the timeouts will be considered as successful.

7.3.7 MMS Notification Time [s]

7.3.7.1 Abstract Definition

A subscriber uses the Multimedia Messaging Service. The time elapsing from the complete submission of the Multimedia-Message to the MMSC to the reception of the Notification (MT) is the MMS Notification Delay.

Possible measurement scenarios for time indicators of MMS may vary in the number of involved MMSCs. With increasing MMS-traffic or internetwork-traffic surveillance, the number of MMSCs involved will increase also. Number of MMSCs involved is therefore a measurement condition to be discussed.

7.3.7.2 Abstract Equation

MMS Notification Time [s] =
$$(t_{recNotif} - t_{MMSsubmit})$$
[s]

7.3.7.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
^t MMSsubmit	Start: The MMS is submitted successfully.	Start: The <i>m-send.conf</i> (see [2]), (where Response Status: \$80 = M_RS_OK) is not received by the MS(MO). (See trigger 18 in figure 42). (see notes 1 and 2).
trecNotif	Stop: Time when the notification is received (MT).	Stop: <i>m-Notif.ind</i> (see [2]) is received by MS (MT) (See trigger 28 in figure 42). (see note 3). "MMS successful notification timeout" as specified in TS 102 250-5 [i.1].

- NOTE 1: The phase, where the WAP session will be deactivated is not covered by this indicator. Some mobiles might not support the sending/receiving of the next MMS unless the WAP session is disconnected properly.
- NOTE 2: The phase, where the WAP session will be deactivated is not covered by this indicator. Some mobiles might not support the sending/receiving of the next MMS unless the WAP session is disconnected properly.
- NOTE 3: Only Notifications received within the timeouts will be considered as successful.

7.3.8 MMS End-to-End Failure Ratio [%]

7.3.8.1 Abstract Definition

The parameter MMS end-to-end failure ratio describes the probability that the Multimedia Messaging Service (MMS) is not able to deliver a MMS-message after the "send button" has been pushed or the MO party has not received an acknowledgement of the successful transmission from the MMSC.

7.3.8.2 Abstract Equation

MMS End - to - End Failure Ratio [%] =
$$\frac{\text{unsuccessfully delivered MMS - messages}}{\text{all MMS send attempts}} \times 100$$

End-to-end parameter measurement may optionally be derived by concatenating the component measurements.

7.3.8.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
MMS Send Attempt by MS(MO)	Start: Pushing of send button.	Start: The send button initiates the <i>PDP context activation</i> of the MS, followed by a connection to the WAP Gateway. (See trigger 1 in figure 42). (see note 1).
Unsuccessful MMS Retrieval Attempt of MS(MT)	Stop: No MMS-message is received (MT) or no acknowledgement from the MMSC is received at MS (MO).	Stop: The <i>m</i> -send.conf (where Response Status: \$80 = M_RS_OK) is not received by the MS(MO). (See trigger 18 in figure 42) or the <i>m</i> -notifyResp. ind (see [2]) (see is not sent by the MS (MT)). (See trigger 18 and 49 in figure 42). (see notes 2 and 3). MMS unsuccessful End-to-End timeout as specified in TS 102 250-5 [i.1].

- NOTE 1: The forwarding of a MMS by the MMSC to the MS (MT) might be possible without the reception of the *m-send.conf* MS (MO) (see [2]), (where response status is \$80 = M RS OK).
- NOTE 2: The phase where the WAP session will be deactivated is not covered by this indicator. Some mobiles might not support the sending/receiving of the next MMS unless the WAP session is disconnected properly.
- NOTE 3: Only MMS received within the timeouts will be considered.

7.3.9 MMS End-to-End Delivery Time [s]

7.3.9.1 Abstract Definition

A subscriber uses the Multimedia Messaging Service (as indicated by the network ID in his mobile phone display). The time elapsing from pushing of the "send button" to the reception of the MMS by the b-parties mobile is the MMS End-to-end Delivery Time.

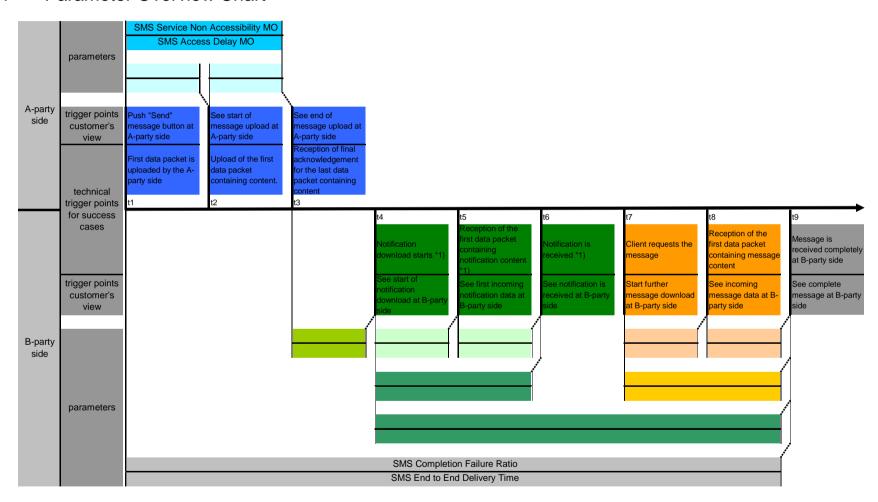
This parameter is not calculated if the MO party has not received an acknowledgement of the successful transmission from the MMSC.

The size of a MMS varies. In comparison to SMS, the size has noticeable impact on the submission time. So, a typical sized MM is used for this measurement. See Auxiliary (Network Performance-) Parameter "MMS Average Size".

- NOTE 1: Possible measurement scenarios for time indicators of MMS may vary in the number of involved MMSCs. With increasing MMS-traffic or internetwork-traffic surveillance, the number of MMSCs involved will increase also. Number of MMSCs involved is therefore a measurement condition to be discussed.
- NOTE 2: End-to-end parameter measurement may optionally be derived by concatenating the component measurements.

7.3.9.2 Abstract Equation

MMS End - to - End Delivery Time [s] =
$$(t_{MMSrec} - t_{sendAttempt})$$
[s]


7.3.9.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
t _{send} Attempt	Start: Time when the "send button" is pushed.	Start: The send button initiates the <i>PDP context activation</i> of the MS (MO), followed by a connection to the WAP Gateway. (See trigger 1 in figure 42). (see note 1).
t _{MMSrec}	Stop: Time when the MMS is received at the b-parties mobile.	Stop: The M-resp.ind (see [2]) is received completely by the MS (MT), and the MS (MT) sends the m-notify-resp.ind (See trigger 49 in figure 42). (see notes 2 to 4). "MMS successful End-to-end timeout" as specified in TS 102 250-5 [i.1].

- NOTE 1: The forwarding of a MMS by the MMSC to the MS (MT) might be possible without the reception of the *m*-send.conf MS (MO).
- NOTE 2: Parameter not calculated if the m-send.conf (where Response Status: \$80 = M_RS_OK) is not received by MS (MO) (See trigger 18 in figure 42).
- NOTE 3: The phase where the WAP session will be deactivated is not covered by this indicator. Some mobiles might not support the sending/receiving of the next MMS unless the WAP session is disconnected properly.
- NOTE 4: Only MMS received within the timeouts will be considered

7.4 Short Message Service (SMS)

7.4.1 Parameter Overview Chart

^{*1)} For the SMS service a paging is proceed within the notification phase.

Figure 43: SMS Parameter Overview with Trigger Points

7.4.2 SMS Service Non-Accessibility MO [%]

7.4.2.1 Abstract Definition

Probability that the end-customer cannot access the Short Message Service when requested while it is offered by display of the network indicator on the Mobile Equipment.

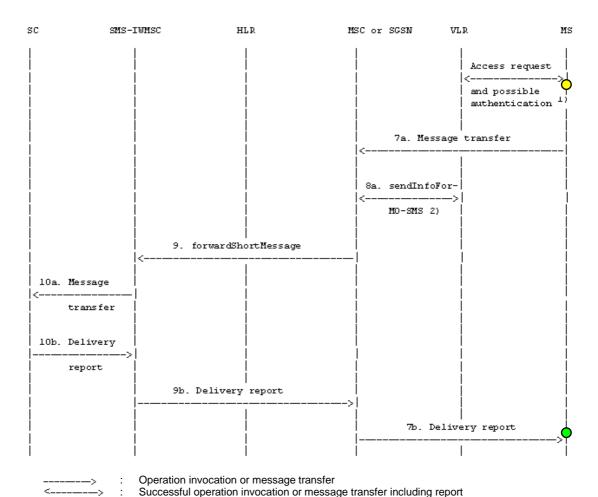
7.4.2.2 Abstract Equation

For the trigger point explained here, the connection over the air interface must be tested (e.g. Layer-3).

Only the first try should be measured. If the Short Message is established with the second try, it shall not be counted.

SMS Service Non - Accessibility MO[%] =
$$\frac{\text{unsuccessful SMS service attempts}}{\text{all SMS service attempts}} \times 100$$

7.4.2.3 Trigger Points


Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
SMS service attempt	Start: Push send button (initiate sending a SMS).	Stop: The "Access request" is sent by the MS (MO) (yellow point in figure 27). Detailed: CM Service Request is sent from MO.
Successful SMS service attempt	Stop: Receive the acknowledgement from the SMSC in the MO-party.	Stop: "Delivery report" is received in the MS (MO) (green point in figure 27). Detailed: CP_DATA (RP_ACK) is received by MO.
Unsuccessful SMS service attempt	Stop trigger point not reached.	

Remark:

• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the SMS service non-accessibility. The chosen trigger points must be as close as possible to the lower layer events.

If the mobile fulfils TS 127 005 [24] then the following method (via AT interface) can be used for measuring the SMS service non-accessibility:

- Start trigger: AT+CMGS = <len> or <MSISDN> (parameter depends on the +CMGF setting, PDU or text mode) ordered via the AT interface;
- Stop trigger: Any answer received from the mobile or timeout occurred. OK answer handled as a positive answer, any other as a negative one.

NOTE 1: Described in TS 124 008 [10] and TS 129 002 [12].

NOTE 2: This operation is not used by the SGSN.

Figure 44: SMS Transaction flow - MO

7.4.3 SMS Access Delay MO [s]

7.4.3.1 Abstract Definition

Time between sending a Short Message to a Short Message Centre (SMSC) and receiving the notification from the Short Message Centre.

7.4.3.2 Abstract Equation

SMS Access Delay MO [s] =
$$(t_{receive} - t_{sendSMS})$$
[s]

 $t_{receive}$: Time when the mobile equipment receives the confirmation from the SMS Centre.

t_{sendSMS}: Time when the customer sends his SMS to the SMS Centre.

7.4.3.3 Trigger Points

Event from abstract equation	Trigger point from customer's point of view	Technical description/protocol part
^t sendSMS	Start: Push send button (initiate sending a SMS).	Start: The "Access request" is sent by the MS (MO) (yellow point in figure 27). Detailed: CM Service Request is sent from MO.
t _{receive}	Stop: Acknowledgement from the SMSC is received in MO-party.	Stop: "Delivery report" is received in the MS (MO) (green point in figure 27). Detailed: CP_DATA (RP_ACK) is received by MO.

Remark:

• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the SMS access delay. The chosen trigger points must be as close as possible to the lower layer events.

If the mobile fulfils TS 127 005 [24] then the following method (via AT interface) can be used for measuring the SMS access delay:

- Start trigger: AT+CMGS = <len> or <MSISDN> (parameter depends on the +CMGF setting, PDU or text mode) ordered via the AT interface;
- Stop trigger: Any answer received from the mobile or timeout occurred. OK answer handled as a positive answer, any other as a negative one.

7.4.4 SMS Completion Failure Ratio [%]

7.4.4.1 Abstract Definition

Ratio of not received and sent test SMS from one mobile to another mobile part, excluding duplicate received and corrupted test SMS.

A corrupted test SMS is a SMS with at least one bit error.

For test and measurement purposes a message is considered valid if it is delivered successfully within a time window defined.

7.4.4.2 Abstract Equation

SMS Completion Failure Ratio [%] =

 $\frac{\text{unsuccessfully received test SMS - duplicate received test SMS - corrupted test SMS}}{\text{all sent test SMS}} \times 100$

7.4.4.3 Trigger Points

Event from abstract	Trigger point from customer's point	Technical description/protocol part
equation	of view	
SMS service attempt	Start: Push send button (Initiate	Start: The "Access request" is sent by the MS (MO)
	sending a SMS).	(yellow point in figure 27).
		Detailed: CM Service Request is sent from MO.
Successfully received	Stop: The Short Message is received	Stop: "Message transfer" is received in the MS (MT)
test SMS	by MT-party's mobile.	(green point in figure 28).
		Detailed: CP_DATA (RP_ACK) is received by MT.
Unsuccessfully	Stop trigger point not reached.	
received test SMS		

Remark:

• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the SMS completion failure ratio. The chosen trigger points must be as close as possible to the lower layer events.

If the mobile fulfils TS 127 005 [24] then the following method (via AT interface) can be used for measuring the SMS completion failure ratio:

- Start trigger: AT+CMGS = <len> or <MSISDN> (parameter depends on the +CMGF setting, PDU or text mode) ordered via the AT interface;
- Stop trigger: CMTI event received on the receiver side (CMGR=<n> gives back the received SMS, or CMGL="ALL" or CMGL=4 all of the received ones). In order to receive CMTI events they have to be activated at the B-party with the AT+CNMI command.

The calculation of duplicate or corrupted received SMS is a post processing issue.

7.4.5 SMS End-to-End Delivery Time [s]

7.4.5.1 Abstract Definition

Time between sending a Short Message to a Short Message Centre and receiving the very same Short Message on another mobile equipment.

7.4.5.2 Abstract Equation

SMS End - to - End Delivery Time [s] =
$$(t_{receiveSMS} - t_{sendSMS})$$
[s]

t_{receive SMS}: Time when the mobile equipment 2 receives the Short Message from mobile equipment 1.

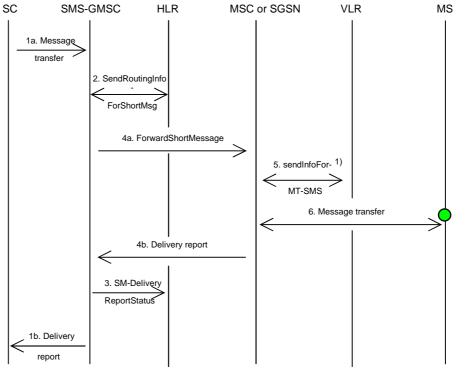
t_{send SMS}: Time when the customer sends his Short Message to the SMS Centre.

7.4.5.3 Trigger Points

- Start SMS service attempt: Initiate sending a SMS.
- End SMS service attempt: Receiving SMS on Mobile Equipment 2.

Event from abstract	Trigger point from customer's point	Technical description/protocol part
equation	of view	
t _{sendSMS}	Start: Push send button (Initiate	Start: The "Access request" is sent by the MS (MO)
55.135.11.5	sending a SMS).	(yellow point in figure 27).
		Detailed: CM Service Request is sent from MO.
t _{receiveSMS}	Stop: The short message is received by	Stop: "Message transfer" is received in the MS (MT)
Todalvodillo	MT-party's mobile.	(green point in figure 28).
		Detailed: CP_DATA (RP_ACK) is received by MT.

Remark:


• The defined technical description/protocol part trigger points are on the lowest protocol layer. If this layer is not available, e.g. because the measurement equipment does not provide this layer, then upper protocol layer events can be used to measure the SMS end-to-end delivery time. The chosen trigger points must be as close as possible to the lower layer events.

If the mobile fulfils TS 127 005 [24] then the following method (via AT interface) can be used for measuring the SMS end-to-end delivery time:

- Start trigger: AT+CMGS = <len> or <MSISDN> (parameter depends on the +CMGF setting, PDU or text mode) ordered via the AT interface;

- Stop trigger: CMTI event received on the receiver side (CMGR=<n> gives back the received SMS, or CMGL="ALL" or CMGL=4 all of the received ones). In order to receive CMTI events they have to be activated at the B-party with the AT+CNMI command.

The calculation of duplicate or corrupted received SMS is a post processing issue.

Operation invocation or message transfer.

Successful operation invocation or message transfer including report.

NOTE: This operation is not used by the SGSN.

Figure 45: SMS Transaction flow - MT

Annex A (informative): Examples for measuring trigger points

- SMS-Service:
 - Layer 3 Messages:
 - Start SMS Service Attempt: generating random access (chan_request SDCCH) at mobile equipment.
 - Successful SMS Service Attempt receiving cp_data (rp_ack) at mobile equipment.
 - Receiving SMS on Mobile Equipment 2: receiving cp_data (rp_ack) at mobile equipment.

Annex B (informative): Streaming explanations

RTP - Real Time Protocol:

The Real Time Protocol is used for the transmission of real-time data, e.g. audio, video, simulation data over multicast or unicast network services. No QoS functionality is implemented.

RTP is designed to be independent from the underlying transport and network layers. For a complete description refer to [7].

RTCP - Real Time Control Protocol:

The Real Time Control Protocol as control protocol for the RTP. It allows the monitoring of the data delivery and provides a minimal control and identification functionality. RTCP is designed to be independent from the underlying transport and network layers.

For a complete description of the RTCP refer to [7].

RTSP - Real Time Streaming Protocol:

The Real Time Streaming Protocol is used for the overall control of the streaming session.

For a complete description of the RTSP refer to [8].

Most important methods of RTSP:

- DESCRIBE: The DESCRIBE method retrieves the description of a presentation or media object identified by the request URL from a server. It may use the Accept header to specify the description formats that the client understands. The server responds with a *description* of the requested resource. The DESCRIBE reply-response pair constitutes the media initialization phase of RTSP [8].
- SETUP: Causes the server to allocate resources for a stream and start an RTSP session [8].
- PLAY: Play is send from the client to the server and informs the server to start the transmission of data as specified by the SETUP method [8].
- PAUSE: Send from client to server. Temporarily halts the stream transmission without freeing server resources. These resources can only be freed after a specified time [8].
- RECORD: This method initiates recording a range of media data according to the presentation description [8].
- TEARDOWN: Frees resources associated with the stream. The RTSP session ceases to exist on the server [8].

B.1 Streaming Hyperlink Description

The following syntax for the hyperlink is used in order to access streaming content on the server:

protocol://address:port/path/file

Protocol	Used protocol. E.g. rtsp://
Address	Address of the used streaming server
Port	Port used by the server for answering request
Path	Path to the file to be streamed
File	The streaming file to be reproduced and its extension

Annex C (informative): Push to Talk over Cellular Information

Figures 29 to 32 visualize signal flows of typical PoC Sessions. The figures include the signal flows on the transport layer as well as some restricted information on the application layer. To keep the flows concise, some signals are not pictured. So it is possible to obtain signal flows universally valid for different kinds of PoC Sessions. Figures 29 to 32 show particularities using Unconfirmed Indication with Media Buffering as well as differences between Pre-established and On-demand PoC Sessions.

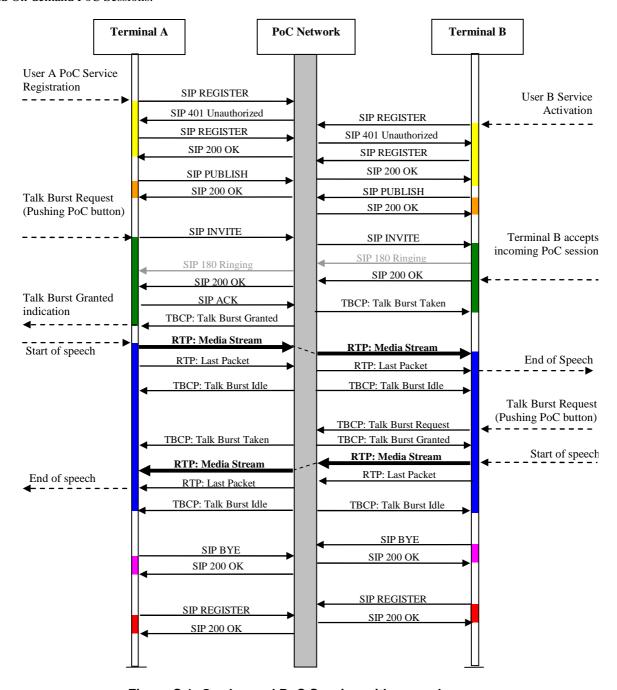
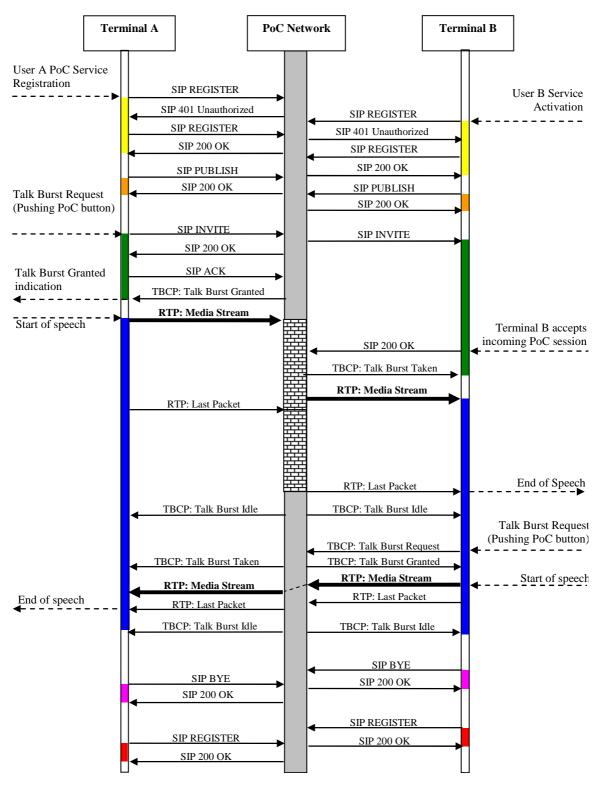



Figure C.1: On-demand PoC Session with manual-answer

NOTE: The PoC Server supports Media Buffering and sends the Talk Burst confirm message after receiving the first automatic-answer message.

Figure C.2: Unconfirmed On-demand Ad-hoc PoC Group Session with automatic-answer

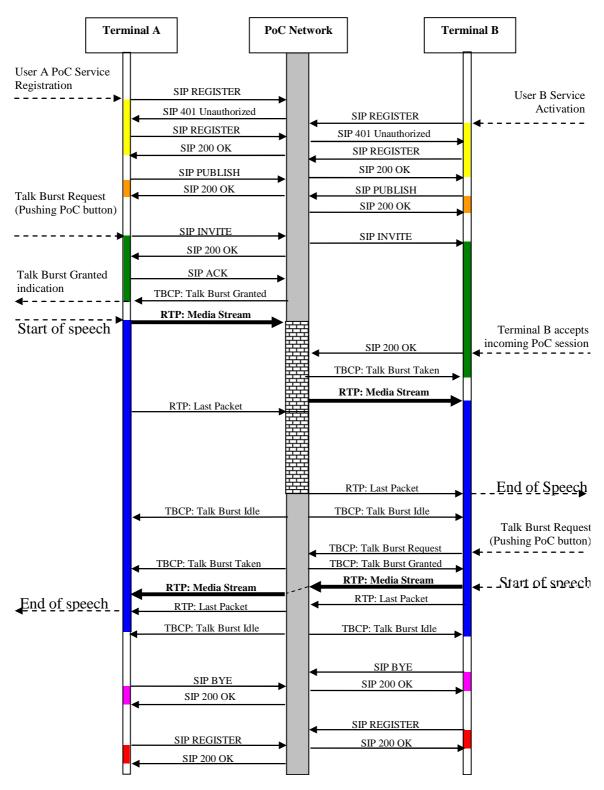


Figure C.3: Confirmed Pre-established session with manual-answer

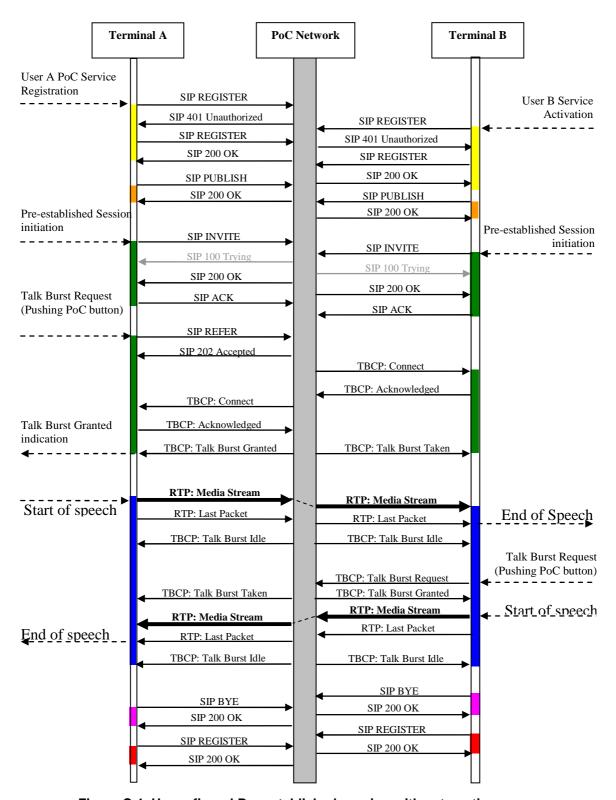


Figure C.4: Unconfirmed Pre-established session with automatic-answer

C.1 Signal Grouping

This clause defines groups of signals which will in the following be referred to as building blocks of PoC signal flows, or just building blocks. These building blocks are derived from [13], [14], [15], representing only parts of a complete signal flow as seen in figures 29 to 32. Here, different building blocks of the same kind correspond to the same QoS group. The aim of the definition of such building blocks is to give detailed information on the different signal flows.

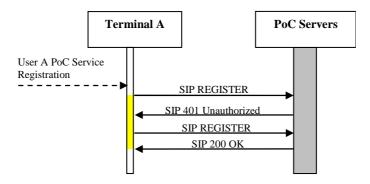
Remark: In the QoS parameter defining clause of the present document, most signal flows shown are less detailed. The reason for this is that these flows are only used to visualize the relevant trigger points of the corresponding QoS parameter with respect to their occurrence over time.

The relationship between building blocks and QoS groups is pictured in the following table. In contrast to the signal flows given to illustrate QoS parameter definition, only flows leading to a positive result are given. The only exception from this is the signal flow for a queued talk burst request which was added for sufficiency.

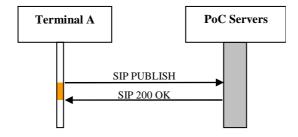
A distinction has been made between On-demand and Pre-established PoC Sessions since here different building blocks are needed. Crosses are indicating the blocks needed for the corresponding QoS group. For simplicity some crosses are greyed. These crosses indicate that a choice between Confirmed and Unconfirmed Indication has to be made.

Further parameters for the "Session SETUP" are the following:

- Session SETUP alternative 1: confirmed with auto-answered on terminating side.
- Session SETUP alternative 2: confirmed with manual answered on terminating side.
- Session SETUP alternative 3: unconfirmed with auto-answered on terminating side.
- Session SETUP alternative 4: unconfirmed with manual answered on terminating side.

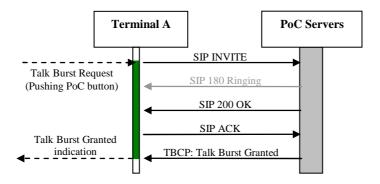

Remark:

- Only the QoS groups relevant to the building blocks are shown in table C.1.
- Building blocks not related to any QoS group are omitted in table C.1.
- Building blocks can be identified by their number as specified in table C.1.

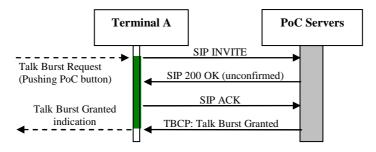

Table C.1: Assignment of PoC Session parts to building blocks

DeREG			×																		×
	LEAVE		×	×																×	
Pre-established	PtS		×	×			×	×	×			×	×	×	×	×	×	\times			
	Sessio n SETUP	4	×	×			×		×				×								
		က	×	×			×		×			×									
lab tab		7	×	×			×	×					×								
esi	S S	_	×	×			×	×				×									
re-(INIT	INIT		×			×	×	×												
	NEGO		×	×			×														
	LEAVE		×	×															×		
5	PtS		×	×	×	×				×	×			×	×	×	×	×			
ä		4	×	×		×					×										
Ĕ	ië P	က	×	×		×				×											
β̈	Sessio n SETUP	7	×	×	×						×										
On-demand	S S	_	×	×	×					×											
	INIT		×	×	×	×															
R	REG long		×	×																	
<u>''</u>	BUD			×																	
PUB REG			×																		
	KLG																				
Building blocks (below) & QoS groups (right hand side)		PoC Service	PoC Publish	PoC On-deman	PoC On-deman	PoC Pre-establi	PoC Pre-establi	PoC Pre-establi	PoC On-deman	PoC On-deman	PoC Pre-establi	PoC Pre-establi	Media Stream	Media Stream	Media Stream	Talk Burst Request	Queued Talk Burst	Leaving PoC	Leaving PoC	Deregistrat ion	
			-	2	3a	3b	3c	3d	Зе	4a	4b	4c	4d	5а	2b	2c	q9	90	7a	d7	8

C.2 PoC Service Registration

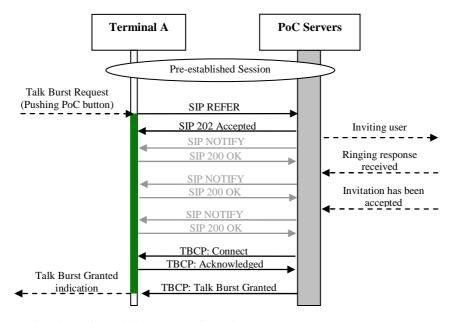


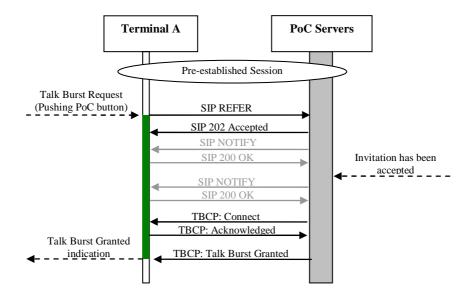
C.3 PoC Publish



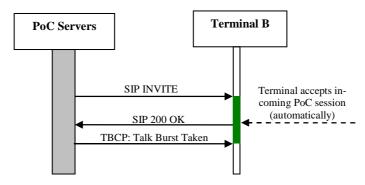
C.4 PoC Session Initiation, Originating Part

a) PoC On-demand Session Initiation, confirmed.

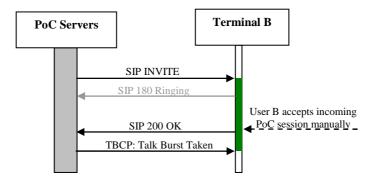

b) PoC On-demand Session Initiation, unconfirmed.


c) PoC Pre-established Session Media Parameters Negotiation.

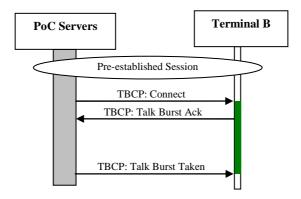
d) PoC Pre-established Session Initiation, confirmed.

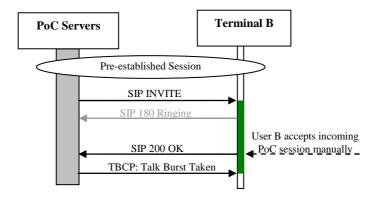


e) PoC pre-established Session Initiation, unconfirmed.

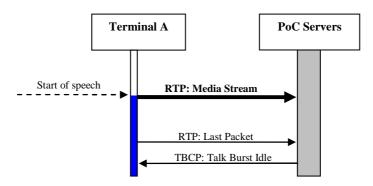


C.5 PoC Session Initiation, Terminating Part

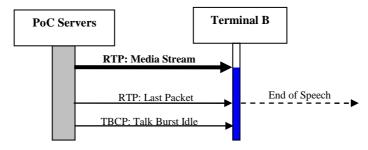

f) PoC On-demand Session, automatic answer.


g) PoC On-demand Session, manual answer.

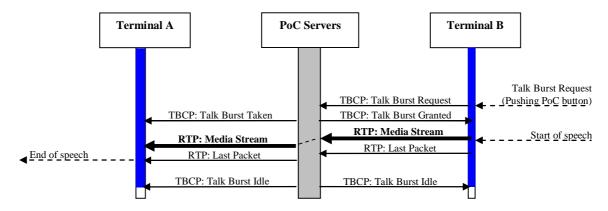
h) PoC Pre-established Session, automatic answer.



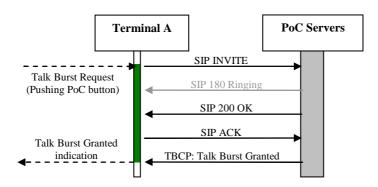
i) PoC Pre-established Session, manual answer.



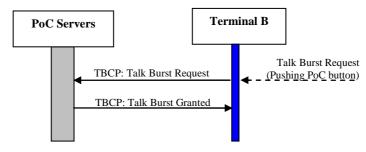
C.6 Media Streaming


a) First Media Stream from User A to PoC Server.

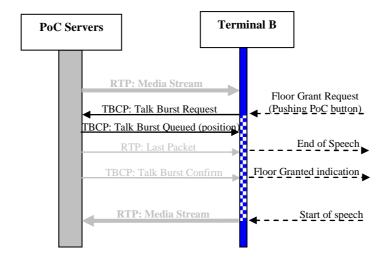
b) First Media Stream from PoC Server to User B (without Media Buffering).



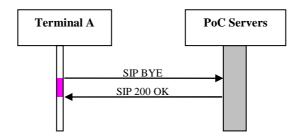
c) Last Media Stream from User B to User A via PoC Network (without Media Buffering), including Talk Burst Request of User B.



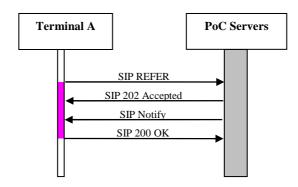
C.7 Talk Burst Request


a) Implicit Talk Burst Request (On-demand Session Initiation).

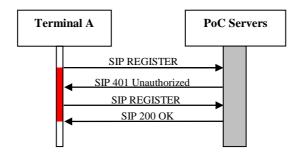
b) Explicit Talk Burst Request.



c) Queued Talk Burst Request.



C.8 Leaving PoC Session


a) Leaving On-demand PoC Session.

b) Leaving Pre-established PoC Session.

C.9 Deregistration

Annex D (informative): Bibliography

- Internet Media-on-Demand: "The Real-Time Streaming Protocol", Schulzrinne, Henning, 2001.
- ETSI TS 123 107: "Universal Mobile Telecommunications System (UMTS); Quality of Service (QoS) concept and architecture (3GPP TS 23.107 Release 5)".
- ETSI EN 300 911: "Digital cellular telecommunications system (Phase 2+) (GSM); Radio subsystem link control (GSM 05.08 Release 1999)".
- ETSI EN 302 304: "Digital Video Broadcasting (DVB); Transmission System for Handheld Terminals" (DVB-H).
- ETSI Draft: Use Cases and Services for IP Datacast over DVB-H, available via DVB Forum, document tm-cbms1166.
- ETSI Draft: IP-Datacast over DVB-H: "Electronic Service Guide (ESG), available via DVB Forum, document tm-cbms1199".
- IETF RFC 2617: "HTTP Authentication: Basic and Digest Access Authentication".
- IETF RFC 3261: "sIP: Session Initiation Protocol".
- DVB Blue Book A100: "IP Datacast over DVB-H: Service Purchase and Protection (SPP)"; Digital Video Broadcasting Project (http://www.dvb.org).

History

Document history						
V1.1.1	October 2003	Publication				
V1.2.1	June 2004	Publication				
V1.3.1	July 2005	Publication				
V1.4.1	March 2006	Publication				
V1.5.1	October 2007	Publication				
V1.6.1	June 2008	Publication				
V1.6.2	September 2008	Publication				