ETSI TS 102 232-6 V3.3.1 (2014-03)

Lawful Interception (LI);
Handover Interface and
Service-Specific Details (SSD) for IP delivery;
Part 6: Service-specific details for PSTN/ISDN services
Contents

Intellectual Property Rights ... 4
Foreword .. 4
1 Scope .. 5
2 References ... 5
2.1 Normative references ... 5
2.2 Informative references ... 6
3 Definitions and abbreviations ... 6
3.1 Definitions ... 6
3.2 Abbreviations .. 6
4 General ... 7
4.1 Approach ... 7
4.2 Reference model .. 7
5 Headers, data exchange and networks ... 7
5.1 Approach ... 7
5.2 Structures .. 7
5.3 Definition of a communications session .. 7
6 Intercept Related Information (IRI) and Content of Communication (CC) ... 8
6.1 Definition of IRI events and CC events .. 8
6.2 CC format .. 8
6.3 Supplementary information ... 8
6.3.1 Requirements for supplementary information 8
6.3.2 Supplementary information ... 9
6.3.3 Sending supplementary information .. 9
6.3.4 Identification of CCLinks .. 9
Annex A (normative): ASN.1 for IRI and CC ... 11
A.1 Note on integrating ASN.1 structures ... 11
A.2 ASN.1 definitions .. 11
Annex B (informative): Change request history .. 14
History ... 15
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards”, which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Lawful Interception (LI).

The present document is part 6 of a multi-part deliverable. Full details of the entire series can be found in TS 102 232-1 [2].

The ASN.1 module is also available as an electronic attachment to the original document from the ETSI site (see clause A.2 for more details).
1 Scope

The present document contains service-specific details for the handover of the lawfully intercepted PSTN/ISDN Services (including emulated services such as those defined in ES 282 002 [3]) using packet-based techniques as defined in TS 102 232-1 [2].

2 References

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

2.1 Normative references

The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 101 671: "Lawful Interception (LI); Handover interface for the lawful interception of telecommunications traffic".

NOTE: Periodically TS 101 671 is published as ES 201 671. A reference to the latest version of the TS as above reflects the latest stable content from ETSI/TC LI.

[2] ETSI TS 102 232-1: "Lawful Interception (LI); Handover Interface and Service-Specific Details (SSD) for IP delivery; Part 1: Handover specification for IP delivery".

[3] ETSI ES 282 002: "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); PSTN/ISDN Emulation Sub-system (PES); Functional architecture".

[8] ETSI TS 187 005: "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); NGN Lawful Interception; Stage 1 and Stage 2 definition".

[10] IETF RFC 3551: "RTP Profile for Audio and Video Conferences with Minimal Control".

2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1] ETSI TR 102 053: "Telecommunications security; Lawful Interception (LI); Notes on ISDN lawfull interception functionality".

[i.2] ETSI TR 102 503: "Lawful Interception (LI); ASN.1 Object Identifiers in Lawful Interception and Retained data handling Specifications".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 102 232-1 [2] and TS 101 671 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASN.1</td>
<td>Abstract Syntax Notation One</td>
</tr>
<tr>
<td>CC</td>
<td>Content of Communication</td>
</tr>
<tr>
<td>CIN</td>
<td>Communications Identity Number</td>
</tr>
<tr>
<td>CR</td>
<td>Change Request</td>
</tr>
<tr>
<td>CSP</td>
<td>Communications Service Provider</td>
</tr>
<tr>
<td>HI2</td>
<td>Handover Interface 2 (for Intercept Related Information)</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IRI</td>
<td>Intercept Related Information</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated Services Digital Network</td>
</tr>
<tr>
<td>ITU-T</td>
<td>International Telecommunication Union - Telecommunication Standardization Sector</td>
</tr>
<tr>
<td>LEA</td>
<td>Law Enforcement Agency</td>
</tr>
<tr>
<td>LEMF</td>
<td>Law Enforcement Monitoring Facility</td>
</tr>
<tr>
<td>LI</td>
<td>Lawful Interception</td>
</tr>
<tr>
<td>MF</td>
<td>Mediation Function (at CSP)</td>
</tr>
<tr>
<td>NGN</td>
<td>Next Generation Network</td>
</tr>
<tr>
<td>OID</td>
<td>Object Identifier</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>PES</td>
<td>PSTN/ISDN Emulation Subsystem</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switched Telephone Network</td>
</tr>
<tr>
<td>RTP</td>
<td>Real-time Transport Protocol</td>
</tr>
<tr>
<td>SDP</td>
<td>Session Description Protocol</td>
</tr>
<tr>
<td>TC</td>
<td>Technical Committee</td>
</tr>
<tr>
<td>TISPAN</td>
<td>Telecommunications and Internet converged Services and Protocols for Advanced Networking</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UDPTL</td>
<td>Facsimile UDP Transport Layer (protocol)</td>
</tr>
</tbody>
</table>

NOTE: CSP covers all Access Providers, Network Operators and Service Providers.
4 General

4.1 Approach

The present document forms part 6 of the TS 102 232 family of standards, in that it is a service-specific component of the TS 102 232-1 [2] framework.

For ISDN interception TS 101 671 [1] defines the interception behaviour that leads to visible IRI events on the handover interface. TR 102 053 [i.1] provides detailed guidance in support of TS 101 671 [1].

The present document provides a model for handover that may be used in conjunction with the interception domain specification TS 187 005 [8]. TS 187 005 [8] also provides an overview of the document structure within the NGN LI domain.

4.2 Reference model

![Reference model diagram](image)

Figure 1: Reference model

5 Headers, data exchange and networks

5.1 Approach

5.2 Structures

IRI events from TS 101 671 [1] are sent using the structure ETSI671IRI. Supplementary information IRI (defined in clause 6.3) is sent using the structure pstnIsdnIRI and/or the structure pstnIsdnCC (see clause A.2). CC is sent using the structure pstnIsdnCC (see clauses 6.2 and A.3).

5.3 Definition of a communications session

A new Communications Identity Number (or CIN) is assigned each time a new communications session begins. See TS 101 671 [1] for the definition of communications session.

Typically, a new communications session is defined to begin (i.e. a new CIN is assigned) when each IRI-BEGIN message is sent (as listed in TS 101 671 [1]), then all further IRI and CC relating to that session has the same CIN. Typically, a REPORT record would form a communications session in its own right. If CC or an IRI record is generated for a session before the IRI-BEGIN is sent (e.g. through fault situations, or owing to unexpected latency), the CSP shall still ensure that all IRI and CC in the communication session has the same CIN.
6 Intercept Related Information (IRI) and Content of Communication (CC)

6.1 Definition of IRI events and CC events

IRI events are defined as per TS 101 671 [1]. CC is sent on all occasions that CC would be sent under TS 101 671 [1]. Further details for ISDN are provided by the state model and message sequence diagrams in TR 102 053 [i.1]; in particular see clause 6 of TR 102 053 [i.1].

6.2 CC format

The PstnIsdnCC structure shall contain the application layer traffic. Currently supported application layer protocols are RTP and UDPTL [11]. The CC shall also contain the application layer header, UDP header and IP header, except by agreement between CSP and LEA.

NOTE: CSPs and LEAs may choose to omit headers because they are unavailable at the point of interception.

The SupplementaryInfo FrameType field indicates which headers are present in a given CC stream. If all headers are present, the FrameType field may be omitted.

In the case where the RTP header is unavailable, one may be inserted by the mediation function, subject to agreement between LEA and CSP. The addition of an inserted RTP header may aid processing the audio stream at the receiver. When an artificial header is used, this shall be signalled using the artificialRtpFrame parameter of the FrameType structure.

The content (RTP or UDPTL payload) shall be a complete, unmodified copy of CC information that is part of the target communication.

The RTP header shall accurately describe the target communication.

The information contained in the IP and UDP header does not necessarily relate to any media flow as seen by the target.

IP and UDP headers shall not be inserted to the intercepted material by the mediation function if they are unavailable.

If encryption has been applied within the CSP's domain and under their control, either it shall be removed or full details of the encryption including keys shall be supplied.

Typically under PSTN/ISDN the RTP codec used is Recommendation ITU-T G.711 [6]. The codec in use shall be signalled as described in clause 6.3.

6.3 Supplementary information

6.3.1 Requirements for supplementary information

It is required that the LEA has enough information to decode and comprehend the traffic delivered over the Handover Interface. The following information is required:

- Description of the format of the CC, to allow the LEMF to understand the information within the CC.
6.3.2 Supplementary information

Supplementary information is defined to be the following set of information.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Status</th>
<th>ASN.1 field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media format</td>
<td>Mandatory</td>
<td>mediaFormat</td>
<td>This field signals the codec used, as defined in RFC 3551 [10]. The supplementary info shall contain only one media format (send another supplementary information messages if the format changes).</td>
</tr>
<tr>
<td>Media attributes</td>
<td>Conditional (i.e. mandatory under the conditions listed)</td>
<td>mediaAttributes</td>
<td>If any extra information (beyond the Media Format) is needed to understand the delivered CC then it shall be sent here, in the format defined in the a= field of SDP (see RFC 4566 [7]). Typically, media attributes shall be present if and only if the media format is 32 or above.</td>
</tr>
<tr>
<td>Encryption key</td>
<td>Conditional</td>
<td>encryptionKey</td>
<td>See clause 6.2.</td>
</tr>
<tr>
<td>Session name</td>
<td>Optional</td>
<td>sessionName</td>
<td>If present in the target communication (e.g. SDP 's=' field), it may be present in supplementary information as decided by national agreement.</td>
</tr>
<tr>
<td>Session information</td>
<td>Optional</td>
<td>sessionInfo</td>
<td>If present in the target communication (e.g. SDP 'i=' field), it may be present in the target communication, it may be present as decided by national agreement.</td>
</tr>
<tr>
<td>Copy of SDP message</td>
<td>Optional</td>
<td>copyOfSDPMessage</td>
<td>In addition to the above information, an SDP message may be included here.</td>
</tr>
<tr>
<td>Frame type</td>
<td>Optional</td>
<td>frameType</td>
<td>If one or more headers are missing from the intercepted content, this structure has to be used to signal what is being delivered.</td>
</tr>
<tr>
<td>Alternate Protocol</td>
<td>Optional</td>
<td>alternateProtocol</td>
<td>If a complete IP, UDP or application frame is available and the payload is not RTP, this field has to be used to signal the type of application layer traffic.</td>
</tr>
</tbody>
</table>

6.3.3 Sending supplementary information

Supplementary information shall be sent as soon as possible for a communications session, and should be sent before CC is available.

If supplementary information is not available before the CC, under no circumstances shall CC be buffered or delayed. If supplementary information is critical to interpreting the CC, then CSPs shall ensure their systems are designed to avoid any delay in sending supplementary information.

If the communications session contains traffic in more than one direction, then one set of supplementary information shall be sent for each direction present. Under some circumstances, the traffic sent in one direction will have a different set of supplementary information from traffic sent in the other direction (e.g. traffic to the target uses a different codec compared to traffic going from the target). Under these circumstances, the direction flag shall always be present and correct for all CC PDUs, and only the values "To Target" and "From Target" shall be used.

If the supplementary information changes during a session (e.g. change of codec) then a new set of supplementary information shall be sent as soon as possible (it should be sent before the change occurs). It is required that the LEMF can identify the point in the CC stream at which the change took place. If it is not clear from the CC, then the CSP should populate the field "First PDU number" within the structure "InformationAppliesTo", to state the sequence number of the first CC-PDU to which the new supplementary information applies.

Supplementary information shall be sent as IRI and/or in CC-PDUs (in this case at least in the first PDU and in the following PDUs only if there are any changes during the session).

6.3.4 Identification of CCLinks

TS 101 671 [1] identifies certain occasions when different CCLinks are established (e.g. multi-party calls).

If there are a number of different CCLinks (see TS 101 671 [1]), then one set of supplementary information shall be sent for each CC Link and the CCLinkID represent the CCLink that this information applies to. Within each CC Link, traffic in different directions shall be isolated and identified as described in clause 6.3.3.
Note that the sequence numbering of CC-PDUs is not affected by the CCLink counter (i.e. do not maintain separate sequence number counts for separate CCLinks).
Annex A (normative):
ASN.1 for IRI and CC

A.1 Note on integrating ASN.1 structures

IRI information structures are defined by the ASN.1 in TS 101 671 [1]. The headers that shall be applied to all IRI are defined in TS 102 232-1 [2]. There is some overlap between these structures, in that some fields which are present in TS 101 671 [1] IRI-Parameters are then repeated in the TS 102 232 PSHeader construction. In particular, there are the following overlaps: Lawful Intercept Identifier, Communication Identifier, TimeStamp.

The present document follows TS 102 232-1 [2] for header information and requires that the TS 102 232 header shall be populated. For ease of interoperability the present document recommends that repeated fields should be populated in both the TS 102 232 and TS 101 671 [1] parts of the header.

A.2 ASN.1 definitions

The ASN.1 definitions are contained in a .txt file (PstnIsdnPDU,ver5.txt contained in archive ts_10223206v030301p0.zip) which accompanies the present document.

The ASN.1 (Recommendation ITU-T X.680 [4]) module that represents the information in the present document and meets all stated requirements is shown below. TR 102 503 [i.2] gives an overview of the relevant Object Identifiers (OID) used in ASN.1 modules of the Lawful Intercept specifications and points to the specification where the modules can be found.

```asn
-- =================================================================
-- Description of the PstnIsdn PDU
-- =================================================================

PstnIsdnPDU
{itu-t(0) identified-organization(4) etsi(0) securityDomain(2) lawfulIntercept(2) li-ps(5)
pstnIsdn(6) version5(5)}

DEFINITIONS IMPLICIT TAGS ::= BEGIN

IMPORTS

-- from TS 102 232-01 [2]

PayloadDirection
FROM LI-PS-PDU
{itu-t(0) identified-organization(4) etsi(0) securityDomain(2) lawfulIntercept(2) li-ps(5)
genHeader(1) version18(18)};

-- =================================================================
-- Object Identifier Definition
-- =================================================================

-- definitions are relative to

-- (itu-t(0) identified-organization(4) etsi(0) securityDomain(2) lawfulIntercept(2))
pstnIsdnIRIObjId RELATIVE-OID ::= {li-ps(5) pstnIsdn(6) version5(5) iRI(1)}
pstnIsdnCCObjId RELATIVE-OID ::= {li-ps(5) pstnIsdn(6) version5(5) cC(2)}

-- =================================================================
```

ETSI
--- Description of the PstnIsdn IRI ---

PstnIsdnIRI ::= SEQUENCE {
 pstnIsdnIRIObjId [0] RELATIVE-OID,
 pstnIsdnIRIContents [1] PstnIsdnIRIContents
}

PstnIsdnIRIContents ::= CHOICE {
 supplementaryInfo [0] SupplementaryInfo,
 ...
}

SupplementaryInfo ::= SEQUENCE {
 informationAppliesTo [0] InformationAppliesTo,
 -- Identifies the PDUs to which this info applies
 mediaFormat [1] INTEGER (0..127),
 -- As defined in RFC 3551 [10]
 mediaAttributes [2] OCTET STRING OPTIONAL,
 -- Format as per RFC 4566 [7]
 -- Clause 6.3 describes when the mediaAttributes shall be present
 encryptionKey [3] OCTET STRING OPTIONAL,
 -- Format as per RFC 4566 [7]
 sessionName [4] OCTET STRING OPTIONAL,
 -- Format as per RFC 4566 [7]
 sessionInfo [5] OCTET STRING OPTIONAL,
 -- Format as per RFC 4566 [7]
 copyOfSdpMessage [6] OCTET STRING OPTIONAL,
 -- Format as per RFC 4566 [7]
 ...
 frameType [7] FrameType OPTIONAL,
 -- Populated if one or more protocol layers are missing from CC data
 -- May be omitted if all headers are present.
 -- Used to identify the protocol of packets sent in pstnIsdnCCContents
}

InformationAppliesTo ::= SEQUENCE {
 -- Identifies the PDUs to which a piece of supplementary information applies
 payloadDirection [0] PayloadDirection,
 -- The direction of the traffic to which this info applies
 cCLinkID [1] INTEGER (0..65535) OPTIONAL,
 -- If there are multiple CCLinks, this field states CCLink to which this info applies
 firstPDUSequence [2] INTEGER (0..4294967295) OPTIONAL,
 -- The supplementary info applies to all PDUs with this sequence number and above
 ...
}

FrameType ::= ENUMERATED {
 ipFrame (0),
 -- All headers are present. Use AlternateProtocol to signal the contents if not RTP
 udpFrame (1),
 -- IP header is missing. Use AlternateProtocol to signal the contents if not RTP
 applicationFrame (2),
 -- UDP and IP headers are missing. Use AlternateProtocol to signal the contents if not RTP
 audioFrame (3),
 -- All headers are missing
 ...
 artificialRtpFrame (4)
 -- UDP and IP headers are missing, artificial RTP frame has been added
}
AlternateProtocol ::= ENUMERATED
{
 uDPTL(1),
 -- pstnIsdnCCContents parameter contains UDPTL packets [11]
}

-- Description of the PstnIsdn CC
-- ==

PstnIsdnCC ::= SEQUENCE
{
 pstnIsdnCCObjId [0] RELATIVE-OID,
 pstnIsdnCCContents [1] OCTET STRING,
 -- See clause 6.2 for definition of format of PstnIsdn CC
 cCLinkID [2] INTEGER (0..65535) OPTIONAL,
 -- Shall be present if multiple CCLinks are used (see clause 6.3.4)
 ...,
 supplementaryInfo [3] SupplementaryInfo OPTIONAL
 -- Shall be present at least in the first PDU
}

END -- end of PstnIsdnPDU
Annex B (informative):
Change request history

<table>
<thead>
<tr>
<th>TC LI approval Date</th>
<th>Version</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2006</td>
<td>2.1.1</td>
<td>First publication of the TS after approval by ETSI/TC LII#13 (6-8 September 2006, Stockholm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version 2.1.1 prepared by Mark Shepherd (HO UK) (Rapporteur)</td>
</tr>
</tbody>
</table>
| April 2007 | 2.2.1 | Included Change Request:
| | | TS102232-06CR001r1 (cat B) on Clarification of use of RTP/UDP/IP headers
| | | This CR was approved by TC LII#15 (23-25 April 2007; Riga)
| | | Version 2.2.1 prepared by Peter van der Arend (KPN) (Chairman TC LI)
| | | Rapporteur of this specification is Mark Shepherd (HO UK) |
| May 2008 | 2.3.1 | Included Change Requests:
| | | TS102232-06CR002r1 (cat C) on Some comment and modification on the identification CCLinks defined in the clause 6.3.4
| | | This CR was approved by TC LI#16 (2-4 October 2007; Berlin)
| | | TS102232-06CR003r1 (cat B) on SupplementaryInfo in PstnIsdnCC
| | | This CR was approved by TC LI#18 (27-29 May 2008; Chania)
| | | Version 2.3.1 prepared by Peter van der Arend (KPN) (Chairman TC LI)
| | | Rapporteur of this specification is Mark Shepherd (NTAC) |
| May 2012 | 3.1.1 | Included Change Request:
| | | TS102232-06CR004r1 (cat B) on Addition of rtpframe parameter
| | | This CR was approved by TC LI#30 (14-16 May 2012, Amsterdam)
| | | The ASN.1 definitions are contained in a .txt file (PstnIsdnPDU,ver4.txt) which accompanies the present document
| | | Version 3.1.1 prepared by Peter van der Arend (Vodafone) (Chairman TC LI)
| | | Rapporteur of this specification is Mark Shepherd (NTAC) |
| June 2013 | 3.2.1 | Included Change Request:
| | | TS102232-06CR005r1 (cat C) on supplementary Information
| | | Version 3.2.1 prepared by the Rapporteur |
| February 2014 | 3.3.1 | Included Change Request:
| | | TS102232-06CR006r2 (cat B) on addition of UDPTL
| | | This CR was approved as TD022r2 by TCLI#35 Milan
| | | Version 3.3.1 prepared by the Rapporteur |
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2.1.1</td>
</tr>
<tr>
<td>V2.2.1</td>
</tr>
<tr>
<td>V2.3.1</td>
</tr>
<tr>
<td>V3.1.1</td>
</tr>
<tr>
<td>V3.2.1</td>
</tr>
<tr>
<td>V3.3.1</td>
</tr>
</tbody>
</table>