
ETSI TS 101 993 V1.1.1 (2002-03)
Technical Specification

Digital Audio Broadcasting (DAB);
A Virtual Machine for DAB: DAB Java Specification

European Broadcasting Union Union Européenne de Radio-Télévision

EBU·UER

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)2

Reference
DTS/JTC-DAB-27

Keywords
API, audio, broadcasting, DAB, data, digital

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.
© European Broadcasting Union 2002.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)3

Contents

Intellectual Property Rights ..5

Foreword...5

Introduction ..5

1 Scope ..6

2 References ..6

3 Definitions and abbreviations...6
3.1 Definitions..6
3.2 Abbreviations ...7

4 The DAB package ..7
4.0 Summary ..7
4.1 The communication concept...7
4.1.1 The communication between the application and the DAB package..7
4.2 Commands..8
4.3 Examples ..11
4.3.1 EPG...11
4.3.2 Ticker..17
4.4 Command Types ..19
4.4.1 Tuning...20
4.4.2 Searching ..21
4.4.3 Scanning ...22
4.4.4 Accessing service directory information...23
4.4.5 Accessing service information..24
4.4.6 Monitoring reception quality ..25
4.4.7 Selecting an audio service...26
4.4.8 Selecting a slideshow or a dynamic label service ...27
4.4.9 Selecting a broadcast website service ...28
4.4.10 Selecting an object ..29
4.4.11 Selecting a component stream ..34
4.4.12 Operation control ..35
4.4.13 Retrieving location information..36
4.5 Dependencies between the commands ...36
4.6 Client registration ...37
4.7 The package structure...38

5 The runtime package ..43
5.0 Summary ..43
5.1 The DAB Application Model ...43
5.2 Control of Java applications ...45
5.2.1 Packaging..45
5.2.2 Loading classes ...46
5.2.3 Control of applications..46
5.2.3.1 Application context ...46
5.2.3.2 Proxy ...46
5.2.3.3 Example ..48
5.3 Security management ...50
5.4 Resource management..52
5.4.1 Model..52
5.4.2 Conflict Resolution ...53
5.5 Configuration management ..57

6 The User I/O Package...58
6.1 Signalling ...58
6.1.1 DAB Java User Application Profile (DJUAP)...58
6.1.2 Platform ..58

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)4

6.1.3 Version..58
6.1.4 Content..58
6.1.5 Access ...58
6.1.6 Defined profiles ..59
6.1.6.1 Standard Personal Java Profile (SPJP) ..59
6.1.6.2 Network enabled Personal Java Profile (NPJP) ..59
6.2 DABJava platforms ..59
6.2.1 PersonalJava 1.1 ...59
6.2.1.1 Core Packages ...59
6.2.1.2 DABJava profiles: specific packages. ...60
6.2.1.2.1 Standard Personal Java Profile (SPJP) ..60
6.2.1.2.2 Network-enabled Personal Java Profile (NPJP) ..60

Annex A (normative): The DAB Java Classes...61

A.1 Package dab..61

A.2 Package dab.si ..113

A.3 Package dab.events...121

A.4 Package dab.data ..145

Annex B (informative): Bibliography...159

History ..160

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by the Joint Technical Committee (JTC) Broadcast of the
European Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the
European Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about 60
countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

Introduction
This clause contains an extension of the DAB specifications to provide a Java-based software framework for developing
portable DAB data services applications.

A task force (Task Force Virtual Machine) was established inside the EUREKA 147 Consortium to discuss and to
specify a Virtual Machine for executing applications. The concept of Virtual Machine is related to the requirements of
providing a type of application that can be executed independently from hardware specific configuration.

Due to its strong flexibility and commercial success, Java was chosen as a base technology for solving the requirements
of a portable environment and for specifying a set of API designed for the DAB environment.

A DAB extension to the Java API have been designed by the members of the Task Force for virtual Machine: such
extension provides the software framework for designing, implementing and executing portable applications
specifically targeted to the DAB system.

The DAB Java Framework is divided in three basics module or packages: a DAB specific extension of the Java API, a
runtime support for the DAB applications execution environment, and a DAB I/O package for signalling the DAB Java
extension over the DAB signal.

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)6

1 Scope
The present document specifies a DAB related API for Java. This API enables the download of Java programs via DAB
and their control of their execution. Additionally, it provides an interface to the functionality of DAB.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

[1] ETSI EN 301 234 (V1.2.1 onwards): "Digital Audio Broadcasting (DAB); Multimedia Object
Transfer (MOT) protocol".

[2] ETSI TS 101 812: "Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP)
Specification".

[3] ETSI EN 300 401: "Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile,
portable and fixed receivers".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

application controller: This entity is part of the runtime framework and is responsible for the control of a downloaded
application. It acts as an intermediate between the application that initiated the download and the downloaded
application.

command: transaction between a DAB client and the DAB package. It consists of a request, which is sent from the
client to the package and confirmations and notifications, which are sent from the package to the client.

DAB resource: collection of hardware and software components that reside on a DAB terminal

NOTE: For example, hardware resources are audio, video, input devices, DAB receiver settings and commands;
software resources are DAB Platform API access, DAB terminal API access, etc.

package: This is used throughout the text in two ways. First, it designates a Java package. Additionally, it also
designates a component in DAB Java.

virtual component: PAD user application, which is treated like a regular (audio or data) component

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)7

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
DAB Digital Audio Broadcasting
EPG Electronic Programme Guide
FIG Fast Information Group
IO Input/Output
JDK Java Development Kit
MOT Multimedia Object Transfer
NPJP Network-enabled Personal Java Profile
PAD Programme Associated Data
SPJP Standard Personal Java Profile
UA User Apllication
VM Virtual Machine (not only the Java Virtual Machine, but also in the sense of the whole runtime

environment for DABJava)
WIRC WorldDAB Information and Registration Centre, Wyvil Court, Wyvil Road, LONDON SW8 2TG,

England, Tel: +44 171 896 90 51, Fax: +44 171 896 90 55, E-mail: worlddab-irc@worlddab.org

4 The DAB package

4.0 Summary
The DAB package enables applications (and applets) to access DAB resources. In clause 4.1 the basic and high-level
communication concept is described. The former is based on the Event-Listener pattern. The latter consists of
transactions, so called commands, in which the application sends requests to the package and the package responds with
confirmations and notifications. In clause 4.2 the particular commands and resulting patterns are presented. The use of
these commands is exemplified in clause 4.3. For each command there is a typical interaction. This is described in
clause 4.4. In clause 4.5 the dependencies between the commands are explained. The commands can be only be used if
the client is registered. This is shown in clause 4.6. Clause 4.7 consists of a description of the classes, which are
contained in the package.

4.1 The communication concept
This clause describes the communication concepts for the use of the DAB package. The DAB package provides
high-level access to the services of the Digital Audio Broadcasting (DAB) System. The package uses the Event-Listener
pattern (see Bibliography, "Design Pattern, Element of Reusable Object-oriented Software by Erich Gamma") for the
communication between the DAB system and the application. On top on this basic communication pattern a transaction
concept is defined (e.g. to deal with ongoing events).

4.1.1 The communication between the application and the DAB package

The DAB package provides an asynchronous interface. If an application calls a method of DABSource (the basic
interface), the result is not passed back as a return value. Instead the method initiates a new transaction and just returns.
This transaction will generate events for intermediate or final results that are passed to the application using the
DABListener interface.

This mechanism for passing back results to the application, follows the Event-Listener pattern. The package acts as a
source for events that are distributed to all components which implement the DABListener interface and which are
registered as listeners.

mailto:worlddab-irc@worlddab.org

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)8

The following piece of code shows, how to use this in an application:

import dab.*;

public class MyApplication extends DABAdapter {
private DABClient dabClient=new DABClient();

public void start() {
// Configuration
dabClient.open();
// Registration
dabClient.addDABListener(this);
…

// Initiate request for object
dabClient.selectObjectReq(…);

…
dabClient.removeDABListener(this);

}

public void selectObjectCnf(SelectObjectCnfEvent e) {
…

}
The class MyApplication is subclassing DABAdapter to act as a DABListener. DAPAdapter is an auxiliary
class, which implements the DABListener with empty methods. The variable dabClient is used to interface to the
DAB package. Before the client can be used, the connection to the receiver has to be set up using open. The next step
is to register the application, so that it gets events. This is achieved by calling addDABListener. When we initiate a
request like selectObjectReq (see table 1), the package will call our selectObjectCnf method for events of
type SelectObjectCnfEvent. In the end the application calls removeDABListener to stop any event
distribution to itself.

4.2 Commands
The basic transaction model in the DAB package is that a client issues requests and the DAB package responds with
confirmations and notifications. Such a transaction is called a command. A command is initiated by a request and is
finalized by a confirmation.

If notifications are sent while a command is executed, the notification informs about the progress of the transaction.
Notifications are also used in situations when a DAB client requests particular information which cannot be delivered
immediately or in situations where updates may occur after the first request for information has been satisfied. In the
latter case notifications are delivered after the confirmation until the command is explicitly cancelled.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)9

Table 1: Commands

Command Request Notification
(in between)

Confirmation Notification
(following)

Pattern Req Cnf
Tune tuneReq - tuneCnf -
GetEnsembleInfo getEnsembleInfoReq - getEnsembleInfoCnf -
GetServiceInfo getServiceInfoReq - getServiceInfoCnf -
GetComponentInfo getComponentInfoReq - getComponentInfoCnf -
SelectComponent selectComponentReq - selectComponentCnf -
SelectApplication selectApplicationReq - selectApplicationCnf -
SelectComponentStream selectComponentStreamReq - selectComponentStream

Cnf
-

Pattern Req Ntf Cnf
Search searchReq searchNtf searchCnf -
Scan ScanReq scanNtf scanCnf

Pattern Req Cnf Ntf
SelectSI selectSIReq - SelectSICnf siNtf
SelectReceptionInfo selectReceptionInfoReq - selectReceptionInfoCnf receptionInfoNtf
SelectObject selectObjectReq - selectObjectCnf objectNtf
GetLocationInfo getLocationInfoReq - getLocationInfoCnf locationInfoNtf
OperationControl operationControlReq - operationControlCnf ServiceFollowingNtf,

drcModeNtf
SystemFailure SystemFailureNtf

To summarize this, commands are executed by sending requests, confirmations and notifications. Three different
command patterns are used in the DAB package (see figure 1). All commands are listed in table 1 sorted by the pattern
type (endings with Req = request, Cnf = confirmation, Ntf = notification). The patterns describe only the message
sequence for one command. If commands are interleaved which means two commands running at the same time an
arbitrary sequence of message types is possible.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)10

(CommandName)Req

(CommandName)Cnf

time

(CommandName)Req

(CommandName)Cnf

time

(Command)Ntf

(Command)Ntf

(Command)Ntf

(CommandName)Req

(CommandName)Cnf

time

(Command)Ntf

(Command)Ntf

(Command)Ntf

a) Req - Cnf Command Pattern

b) Req - Ntf - Cnf Command Pattern

c) Req - Cnf - Ntf Command Pattern

Figure 1: Command patterns

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)11

The asynchronous messaging approach fits well with the requirements of a broadcast based information system. In a
broadcast system only unidirectional communication from the service provider to the client is possible. Therefore
clients have to be prepared that changes might occur at anytime. A DAB ensemble is able to provide several services
simultaneously. The number of services or their type can change at anytime. Also the reception conditions of a DAB
receiver in a mobile environment might change very often. The DAB package keeps track on all these dynamic aspects
of a broadcast system and informs a connected client by sending update notifications.

Interleaved started commands are also processed interleaved as far as the semantic of the commands allows this, e.g. it
is possible to change the volume while a SelectObject command is pending. If two commands cannot be processed
interleaved the one which has been sent first is also processed first.

4.3 Examples
The following examples demonstrate the use of commands in typical areas like service information access and service
presentation. In the first example a simple EPG is described. The second example shows a stock market ticker.

4.3.1 EPG

In the following we will show how to use the Java DAB interface for an EPG application. We will focus on the main
steps for initializing and controlling the DAB system. Basically, we need only two main classes: a DABListener
(usually on the application side, in our case the EPG class) and a DABClient (the main entry for controlling the DAB
receiver - see figure 2).

DABListenerAdapter

serviceInfoNtf()
tuneCnf()
selectComponentCnf()

MyEPG

initEPG()
startEPG()
stopEPG()

DABClient

public void addDABListener()
public void removeDABListener()
publiv void open()
public void close()
public void selectServiceInfoReq()
public void tuneReq()

DABListener

Figure 2: The classes of the EPG

Before making any actions to the DAB receiver we have to initialize it, and register a DABListener (or an adapter
class) for the incoming messages: in our case the EPG application class implements the listener interface directly.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)12

This leads to the following initialization code:

public class MyEPG implements DABListenerAdapter {

static public void main(String[] args){

...

initEPG();

startEPG(frequency);

...

pause EPG();

}

}

The implementation of the main MyEPG methods are:

public void initEPG(){

DABClient dab = new DABClient();

dab.addDABListener(this);

try {

System.out.println("Sending Open Request");

dab.open();

System.out.println("... Open Request sent");

}catch(DABException e){

System.out.println("Caught exception during open
request:"+e.toString());

}

} // end initEPG() method

public void stopEPG(){

try {

dab.close();

dab.removeDABListener(this);

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)13

}catch(DABException e){

System.out.println("Caught exception during open
request:"+e.toString());

}

finally{

System.exit(0);

}

} // end stopEPG() method

NOTE 1: The open() method is synchronous, i.e. the application is blocked until the method returns.

NOTE 2: The registration procedure (dab.addDABListener(…)) should be done in relation to an open(),
but absolutely before using any asynchronous methods (see the EPG example).

NOTE 3: The closing procedure is symmetric to the opening: first we close the connection to the DAB system and
then we annul the registration as a DABListener.

After the initialization steps we implement the basic exchange of messages for controlling the audio services in the
DAB ensemble.

We will focus our attention on the following set of asynchronous methods:

on the DAB side:

• dab.tuneReq(frequency, mode);

• dab.selectServiceInfoReq(true,true,true,true);

on the DABListener side:

• public void selectServiceInfoCnf(SelectServiceInfoCnfEvent e)

• public void serviceInfoNtf(ServiceInfoNtfEvent e)

• public void tuneCnf(TuneCnfEvent e)

with the events:

• TuneCnfEvent

• SelectServiceInfoCnfEvent

• ServiceInfoNtfEvent

After tuning to a specific frequency, we register MyEPG for receiving notification messages about the available services
on the DAB ensemble (EnsembleInfo, ServiceInfo, ComponentInfo). The usage of the information received
by the DABClient is a task that is specific to the application. Here, we demonstrate it selecting an audio component.

public void startEPG(int frequency){

try {

dab.tuneReq(

frequency, DABConstants.transmissionModeAutomatic);

}catch(DABException e){

}

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)14

// to be continued

}

// DABListener interface

public void tuneCnf(TuneCnfEvent e){

int result = e.getResult();

int tunedFrequency = e.getTuneFrequency();

System.out.println(

"Tune cnf received,

result ="+Integer.toString(result)+"+

Frequency = "+Integer.toString(tunedFrequency));

return;

}

A tune request message is sent for tuning to a specific frequency (in Hz), using a specific mode (see note 4). If it is
successful, a tune confirmation message is delivered and the receiver is tuned to the requested ensemble (see note 5).

NOTE 4: In the DAB specification several modes are specified for the transmission of a DAB ensemble: some
DAB receivers can automatically detect the specific transmission mode of an ensemble, in others such a
parameter has to be done explicitly (see DAB specification).

NOTE 5: Other more sophisticated tuning actions can be done using the scanReq() method (see DAB Java API).

public void startEPG(){

// continued

try {

dab.selectServiceInfoReq(true,true,true,true);

}catch(DABException e){

}

}

// DABListener interface

public void serviceInfoNtf(ServiceInfoNtfEvent e){

int notificationType;

EnsembleInfo ensembleInfo;

ServiceInfo serviceInfo;
ComponentInfo componentInfo;

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)15

notificationType = e.getNotification();

switch(notificationType){

case DABConstants.notificationEnsembleAdded:

case DABConstants.notificationEnsembleRemoved:

case DABConstants.notificationEnsembleChanged:

ensembleInfo = e.getEnsembleInfo();

// notify the Application of an Emsemble info

break;

case DABConstants.notificationServiceAdded:

case DABConstants.notificationServiceRemoved:

case DABConstants.notificationServiceChanged:

serviceInfo = e.getServiceInfo();

// notify the Application of a Service info

break;

case DABConstants.notificationComponentAdded:

case DABConstants.notificationComponentRemoved:

case DABConstants.notificationComponentChanged:

componentInfo = e.getComponentInfo();

// notify the Application of a Component info

break;

}

return;

}

The application uses selectServiceInfoReq for receiving information about all available DAB components
(ensemble, services, components). After receiving a confirmation of the request, the DABClient will notify every
change in the DAB signal information (addition, changing, and removing of ensemble, services, and components).
Specifically in this case we ask to receive with the notification the information related to the particular info object
(see DAB Java specification for details).

The information is delivered to the application using a special event; the usage of the carried information depends on
the application strategy.

The final step for our simple EPG is to select a particular audio component, supposed that we have collected all the
information about the services and services components available for the selected ensemble. We assume that the user
has selected a service component somehow and that the EPG has identified the selected component.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)16

public void selectAudio(ComponentInfo componentInfo){

if(componentInfo.getType() ==

DABConstants.componentTypeForegroundSound)

{

try {

dab.selectComponentReq(

componentInfo.getId(),

DABConstants.selectionModeReplace);

}catch(Exception _e){

}

}

}

// DABListener interface

public void selectComponentCnf(SelectComponentCnfEvent e){

System.out.println(

"Result"+Integer.toString(e.getResult()));

return;

}

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)17

4.3.2 Ticker

The next example, a stock market ticker, demonstrates how DAB Java applications can access data broadcast on DAB.
The ticker consists of two classes - as it is displayed in figure 3. The Ticker class is the application’s envelope, which
it is responsible for the application lifecycle and the presentation of the information. The Decoder uses the DAB
interface to receive the information and retrieve the content from the delivered data objects. Ticker communicates
with Decoder uses the event-listener pattern. Additionally, it controls the lifecycle of the decoder. In the remaining
part of this clause we will only show, how the decoder is implemented - as the Ticker class is not dependent on the
DAB interface.

Ticker

DAB Java

Decoder

Stock Data

DAB data (MOT objects)

Application

Figure 3: The architecture of the ticker

The decoder is implemented as follows:

import dab.*;

public class Decoder extends DABAdapter {

private DABClient dabClient;

private StockListener listener=null;

private ServiceInfoId serviceId=null;

The variable dabClient contains the interface to DAB. listener contains the receiver of stock events (i.e. a
Ticker object). The serviceId specifies the identifier of the DAB service which contains the stock data.

public Decoder() {

dabClient = new DABClient();

}

When the decoder is created, we also create a DAB client. Note, that the client is not yet configured. This means the
decoder is ready for decoding, but no actual action is taken.

public void startDecoding(ServiceInfoId serviceId) throws Exception{

this.serviceId = serviceId;

dabClient.open();

dabClient.addDABListener(this);

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)18

dabClient.selectComponentReq(serviceId,

DABConstants.selectionModeAdd);

}

The decoding is started with startDecoding. First the DAB client is configured. The open call sets up the
connection to the receiver. After that the decoder registers itself as a listener of DAB events (it is a subclass of
DABAdapter, which is an adapter class of the DABListener interface). Then, the service is selected using
selectComponentReq. We will assume that the ticker service will follow the slideshow user application model.
This means objects will be delivered after the confirmation selectComponentCnf is sent. Here, the confirmation
is ignored (the method needs not to be implemented as the default implementation in DABAdapter exactly behaves
like that).

public void stopDecoding() throws Exception {

dabClient.selectComponentReq(serviceId,

DABConstants.selectionModeRemove);

dabClient.removeDABListener(this);

dabClient.close();

}

In stopDecoding we do the reverse setup. First the service is stopped and then the client is shut down.

public void addStockListener(StockListener listener) {
this.listener = listener;

}

public void removeStockListener(StockListener listener) {

this.listener = null;

}

private void notifyStockEvent(StockEvent e) {

if (listener != null)

listener.stockEvent(e);

}

The communication with the Ticker object uses the event-listener model. Thus, the Ticker object has to register
itself as a listener calling addStockListener. With removeStockListener the object will no longer receive events.
Stock events are distributed using notifyStockEvent.

public void objectNtf(ObjectNtfEvent e) {

synchronized (this) {

Stock[] stocks;

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)19

try {

stocks = decode(((MOTObject)e.getObject()).getBody());

} catch (Exception _) {

return;

}

for (int i = 0; i < stocks.length; i++)

notifyStockEvent(new StockEvent(this, stocks[i]));

}

}

When startDecoding was called, the decoder will receive object notifications, which means that the method
objectNtf is called from the DAB VM. First, we will decode the delivered DAB object. Note, that it needs to be cast
to a MOTObject, because we assume the stock data is transported using the MOT protocol [1]. The result is a list of
stocks that are delivered as StockEvents one by one.

4.4 Command Types
The commands supported by the DAB package can be categorized as follows.

• Selecting an Ensemble:

- Tune: Tune directly to a specified frequency.

- Search: Search for an Ensemble.

• Accessing Service Directory:

- SelectSI: Subscribe to Service Directory information.

- GetEnsembleInfo: Get information about a specified ensemble.

- GetServiceInfo: Get information about a specified service.

- GetComponentInfo: Get information about a specified component.

• Monitoring Reception Conditions:

- SelectReceptionInfo: Subscribe to Reception Condition information.

• Selecting Services:

- SelectComponent: Start or stop a service. In case of an audio service decoding of audio samples is started
automatically. In case of a data service, the service can be accessed with the SelectObject command.

- SelectApplication: Launch a Java application.

- SelectComponentStream: Get access to the packet stream of the component.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)20

• Selecting Objects:

- SelectObject: Request data objects for delivery with or without automatic updating.

• Scanning for DAB Services:

- Scan: Scan a specified frequency range for DAB Ensembles and update the Service Directory.

• Miscellaneous:

- OperationControl: access and modify parameters of the receiver.

- GetLocationInfo: retrieve location information from the receiver.

In the following clauses the typical use of these command types is presented (the launch of Java applications is
explained in the runtime package). Note, that in the message sequence charts the arguments of the calls do not represent
actual parameters. Only qualitative information is shown to simplify the charts.

4.4.1 Tuning

Application DAB Package

tuneReq(Frequency)

tuneCnf(ReceptionQuality)

Figure 4: Tuning to an ensemble

The receiver is tuned by calling tuneReq. The receiver will tune to the requested frequency and respond afterwards
with tuneCnf confirmation. The confirmation contains information about the reception quality.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)21

4.4.2 Searching

Application DAB Package

searchReq(SearchMethod)

searchNtf(Started)

searchNtf(ProgressInfo)

searchNtf(ProgressInfo)

searchCnf(ReceptionState)

Figure 5: Searching for an ensemble

To search for some ensemble, the application calls searchReq. The package will respond with a notification that the
search has started. Other notifications are sent in between depending on the search method (e.g. a 16 kHz step was
made). The transaction ends with a searchCnf confirmation containing the resulting state of the search process.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)22

4.4.3 Scanning

Scanning means looking for ensembles on a specified range. Essentially, it is like searching except that the scanning
process looks for all ensembles in the range. When the command has been issued, notification will be sent, after the
scanning has been started. Further notifications are sent during the scan, which inform about the progress. When the
scan is terminated, a confirmation is sent, which contains information about the scan and the state of the receiver.

Application DAB Package

scanReq(SearchMethod)

scanNtf(Started)

scanNtf(ProgressInfo)

scanNtf(ProgressInfo)

scanCnf(ReceptionState)

Figure 6: Scanning

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)23

4.4.4 Accessing service directory information

Application DAB Package

selectSIReq(ServiceElementType)

selectSICnf()

siNtf(Id1, ServiceElementType, Added)

siNtf(Id2, ServiceElementType, Added)

siNtf(IdN, ServiceElementType, Added)

siNtf(Id2, ServiceElementType, Changed)

siNtf(Id3, ServiceElementType, Removed)

siNtf(IdM, ServiceElementType, Added)

selectSIReq(Off)

selectSICnf()

Subscribe to Service
Directory Information

Stop subscription

informed about
available services

keep informed about
available services

Figure 7: Accessing service directory information

The application, which likes to subscribe to information about the service directory of the tuned ensemble, calls
selectSIReq specifying the service element type.

After the confirmation is sent, the package will transmit notifications back to the application. New service elements are
indicated in the notification with the flag "Added", for elements that have changed "Changed" is set and for elements
that are removed "Removed" is set.

The application finishes the subscription calling selectSIReq.

Note, that application can determine, whether it likes to get the respective objects of the service directory (e.g. the
ensemble information) directly using this mechanism or indirectly using the other mechanism which is shown in the
next clause.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)24

4.4.5 Accessing service information

Application DAB Package

Access Ensemble
Information

Access Service
Information

Access Component
Information

siNtf(Id1, Type = Ensemble, Added or Changed)

siNtf(Id2, Type = Service, Added or Changed)

getServiceInfoCnf(Id2, Service Info)

siNtf(Id3, Type = Component, Added or Changed)

getEnsembleInfoReq(Id1)

getEnsembleInfoCnf(Id1, Ensemble Info)

getServiceInfoReq(Id2)

getComponentInfoReq(Id3)

getComponentInfoCnf(Id3, Component Info)

Figure 8: Accessing service information

Apart from getting service information directly (see the previous clause), the application can also use the ServiceInfo
command to retrieve the respective service information objects. It has to specify the service identifier in the siReq
request. The confirmation will then contain the requested object.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)25

4.4.6 Monitoring reception quality

Application DAB Package

Monitor Reception
Quality

Stop monitorring

keep informed about
reception quality
changes

receptionInfoNtf(Synchronization, Biterrorrate, Muting)

receptionInfoNtf(Synchronization, Biterrorrate, Muting)

selectReceptionInfoReq(MonitoringItems)

selectReceptionInfoCnf()

selectReceptionInfoReq(Off)

selectReceptionInfoCnf()

Figure 9: Monitoring reception quality

The reception quality can be monitored using the SelectReceptionInfo command. The application has to make a
selectReceptionInfoReq request specifying what parameters are monitored. Then it will receive
receptionInfoNtf notifications as long as the monitoring is not stopped
(selectionReceptionInfoReq(Off)).

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)26

4.4.7 Selecting an audio service

Application DAB Package

Start audio
service

Stop audio
service

selectComponentReq(ComponentId, Add or Replace)

selectComponentCnf(ComponentId)

selectComponentReq(ComponentId, Remove)

selectComponentCnf(ComponentId)

Audio Service
is playing

Figure 10: Selecting audio service

An audio service is started with the SelectComponent command. The application calls selectComponentReq passing the
identifier of the audio component. The package will start the audio service and sends back a confirmation.

To stop this audio service, the application calls selectComponentReq again now specifying that the component has to be
removed. When the package responds with a confirmation, the audio service was stopped.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)27

4.4.8 Selecting a slideshow or a dynamic label service

Application DAB Package

Start Slideshow or
Dynamic Label service

Stop service

Service content is
delivered by ObjectNtf
messages

selectComponentReq(ComponentId, Add or Replace)

selectComponentCnf(ComponentId)

selectComponentReq(ComponentId, Remove)

selectComponentCnf(ComponentId)

objectNtf(ComponentId, ObjectId, Object)

objectNtf(ComponentId, ObjectId, Object)

objectNtf(ComponentId, ObjectId, Object)

Figure 11: Selecting a slideshow or a dynamic label service

An application selects a slideshow or a dynamic label service with the SelectComponent command. When the request
selectComponentReq with the respective service identifier is issued, the service will be started and a confirmation
is sent back. The application will then receive objectNtf notifications containing objects of the service. To stop the
service, selectComponentReq is called again setting selectionMode to selectionModeRemove. The
removal of the service will be confirmed.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)28

4.4.9 Selecting a broadcast website service

Application DAB Package

Start Broadcast
Website service

Stop service

Service objects are
requested by the
client and delivered by
ObjectNtf messages

selectComponentReq(ComponentId, Add or Replace)

selectComponentCnf(ComponentId)

selectComponentReq(ComponentId, Remove)

selectComponentCnf(ComponentId)

selectObjectCnf(ComponentId, ObjectId1, AccessTime)

objectNtf(ComponentId, ObjectId1, StartObject)

objectNtf(ComponentId, ObjectId2, Object)

selectObjectReq(ComponentId, StartObject)

selectObjectReq(ComponentId, ObjectId2)

selectObjectCnf(ComponentId, ObjectId2, AccessTime)

Figure 12: Selecting a broadcast website service

For running a Broadcast Website service the component has to be selected. This is accomplished calling
selectComponentReq with the respective service identifier. The start of the service will be confirmed by the package.

The actual objects of the service are retrieved with the selectObject command. Usually, the start object is demanded
first. For that, a selectObjectReq request is issued with the service identifier of the component and the object
identifier of the start object. The DAB package will send back a confirmation including the likely access time. The
actual object is received with an objectNtf notification. All other objects of the service are requested and delivered
similarly.

The service is stopped calling selectComponentReq specifying the removal of the service.

Note, that the SelectComponent command can be used to improve the access time of the requested time (e.g. especially
caching the objects of the service).

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)29

4.4.10 Selecting an object

Application DAB Package

Object Cached

Object Not Cached

Object Not Cached
Cancel Selection before Delivery

selectObjectReq(ComponentId, ObjectId, Once)

selectObjectCnf(ComponentId, ObjectId, Now)

objectNtf(ComponentId, ObjectId, Object)

selectObjectReq(ComponentId, ObjectId, Once)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

objectNtf(ComponentId, ObjectId, Object)

selectObjectReq(ComponentId, ObjectId, Once)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

selectObjectReq(ComponentId, ObjectId, Off)

selectObjectCnf(ComponentId, ObjectId)

Figure 13: Selecting an object with selection mode Once

There are several cases for object selection depending on the selection mode, on the caching and on changing state
between the selection modes. In figure 13 the simplest case is shown, in which an object is selected only one time.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)30

The reaction of the package for the selection depends on whether the object is cached or not. If the object is cached, a
confirmation is sent back indicating that the object is directly available. The actual object is delivered with the
objectNtf notification. When the object is not cached, the confirmation will indicate the access time. The application
may also cancel the selection of an object in between. For that, a SelectObject command is issued specifying "Off" for
the selection.

The application may wish to get updates from an object which was selected with SelectionMode=Once. This
behaviour is shown in the upper half of figure 14. Because of the change of the selection mode the application has to
switch off the delivery of the object.

In the lower half of figure 14, it is demonstrated, that when the application requests an object another time just once,
that was not delivered yet, the object will be delivered only one time.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)31

Application DAB Package

Object Not Cached
Change SelectionMode To Update

Object Not Cached
Change SelectionMode To Once

AccessTime2 < AccessTime1

Version 1

Version n

selectObjectReq(ComponentId, ObjectId, Once)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

selectObjectReq(ComponentId, ObjectId, Update)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

objectNtf(ComponentId, ObjectId, Object)

objectNtf(ComponentId, ObjectId, Object)

selectObjectReq(ComponentId, ObjectId, Off)

selectObjectCnf(ComponentId, ObjectId)

selectObjectReq(ComponentId, ObjectId, Once)

selectObjectCnf(ComponentId, ObjectId, AccessTime1)

selectObjectReq(ComponentId, ObjectId, Once)

selectObjectCnf(ComponentId, ObjectId, AccessTime2)

objectNtf(ComponentId, ObjectId, Object)

Figure 14: Selecting an object and changing selection mode from Once

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)32

Figure 15 shows the behaviour of the package, when the update selection mode was chosen. Note, that only one
confirmation is sent to indicate the access time for the first version of the requested object.

Application DAB Package

Object Cached

Version 1

Version n

Object Not Cached

Object Not Cached
Cancel Selection before Delivery

Version 1

Version n

selectObjectReq(ComponentId, ObjectId, Update)

selectObjectCnf(ComponentId, ObjectId, Now)

objectNtf(ComponentId, ObjectId, Object)

objectNtf(ComponentId, ObjectId, Object)

selectObjectReq(ComponentId, ObjectId, Off)

selectObjectCnf(ComponentId, ObjectId)

selectObjectReq(ComponentId, ObjectId, Update)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

objectNtf(ComponentId, ObjectId, Object)

objectNtf(ComponentId, ObjectId, Object)

selectObjectReq(ComponentId, ObjectId, Off)

selectObjectCnf(ComponentId, ObjectId)

selectObjectReq(ComponentId, ObjectId, Update)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

selectObjectReq(ComponentId, ObjectId, Off)

selectObjectCnf(ComponentId, ObjectId)

Figure 15: Selecting an object with selection mode Update

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)33

Application DAB Package

Object Not Cached
Change SelectionMode To Once after at least one delivery

Version1

Version2

Version 2 or higher

This is a new selection

Object Not Cached
Change SelectionMode To Once before delivery

selectObjectReq(ComponentId, ObjectId, Update)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

selectObjectReq(ComponentId, ObjectId, Once)

objectNtf(ComponentId, ObjectId, Object)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

objectNtf(ComponentId, ObjectId, Object)

objectNtf(ComponentId, ObjectId, Object)

selectObjectReq(ComponentId, ObjectId, Update)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

selectObjectReq(ComponentId, ObjectId, Once)

selectObjectCnf(ComponentId, ObjectId, AccessTime)

objectNtf(ComponentId, ObjectId, Object)

Figure 16: Selecting an object and changing selection mode from Update

In figure 16 the state change from selection mode Update to Once is shown. Note, that after the transition the object
will be sent again.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)34

4.4.11 Selecting a component stream

Application DAB Package

selectComponentSteamReq(ComponentId, SelectionMode)

selectComponentStreamCnf(Result, InputStream, StreamType)

No further reads
are possible

InputStream

<<create object>>

read()

<<return result of read>>

close()

Figure 17: Selecting a component stream

Stream data can be accessed using the selectComponentStreamReq request. The confirmation that is sent back to the
client carries an input stream object. That object provides stream data until close is called.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)35

4.4.12 Operation control

Application DAB Package

Get some attribute

Set some attribute

operationControlReq(operationControlGetXXX, AnyValue)

operationControlCnf(Result, GetXXX, CurrentValue)

operationControlReq(operationControlSetXXX, NewValue)

operationControlCnf(Result, SetXXX, OldValue)

Figure 18: Setting and getting operation attributes

In figure 18, it is displayed, how operation attributes are retrieved or are modified. The XXX is a placeholder for some
attribute, e.g. Volume with the respective GetVolume and SetVolume operations.

In a get operation the given attribute value in the request is not considered. With regards to a set operation the given
value will replace the current one, which is delivered back in the confirmation.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)36

4.4.13 Retrieving location information

Application DAB Package

Once

DeliveredTimeDelta
ms have passed

Period By time

getLocationInfoReq(Type, LocationInfoOnce, AnyDelta, DesiredAccuracy)

locationInfoNtf(Timestamp, LocationInfo, RegionIds)

getLocationInfoReq(Type, LocationInfoPeriodByTime, DesiredTimeDelta, DesiredAccuracy)

getLocationInfoCnf(Result, LocationInfoOnce, AnyDelta, DeliveredAccuracy)

getLocationInfoCnf(Result, LocationInfoPeriodByTime, DeliveredTimeDelta, DeliveredAccuracy)

locationInfoNtf(Timestamp, LocationInfo, RegionIds)

locationInfoNtf(Timestamp+DeliveredTimeDelta, LocationInfo, RegionIds)

getLocationInfoReq(Type, LocationInfoStop, AnyDelta, AnyAccuracy)

getLocationInfoCnf(Result, LocationInfoStop, AnyDelta, AnyAccuracy)

Figure 19: Retrieving location information

Location information can be retrieved in different modes. In the pull mode, LocationInfoOnce, only a single notification
is sent. In the push modes, LocationInfoByTime and LocationInfoByDistance, are sent in regular intervals until the
subscription is stopped.

4.5 Dependencies between the commands
Certain commands have influence on the outcome of other commands - mainly because the DAB receiver has a state. In
particular:

• Current ensemble: If the current ensemble is modified (e.g. by the means of tune, search, or scan), all
transactions which depend on this information are terminated. The exception from this rule is service
information, which still can be received - even when the ensemble is changed. But as the information is not
updated, only the old data is delivered (using the internal service directory).

• Selection of components: It is possible to select more than one data or stream component simultaneously. But
only one audio component can be selected. A PAD component is only available, when the associated audio
component was selected. Objects can only be requested when the respective component was selected.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)37

4.6 Client registration
Clients have a state with respect to the used DAB receiver. They are either disconnected or connected. Transactions can
only be processed in the connected state (otherwise an exception is thrown).

Application DAB Package

open()

close()

open(DABReceiverAddress)

Client disconnected

Client connected to
default receiver

Client disconnected

close()

Client disconnected

Client connected to
specified receiver

Figure 20: Client registration

A newly generated instance of DABClient is in the disconnected state. It is set to the connected state calling open in
DABClient. It will be disconnected if close is called. This behaviour is depicted in figure 20. Note, that the second
version only needs to be supported if multiple receivers are available.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)38

4.7 The package structure
The classes of the dab package are shown in figure 21 (the details are given in the javadoc specification of the DAB
Java package). Note, in contrast to the specification in the annex this and the following figures do not contain any
classes or methods which are related to runtime issues (see the following clause).

DABSource and DABListener are the main classes. The DABSource interface contains the requests and the
DABListener interface contains the notifications and confirmations.

Usually, these two classes will not be used directly. The DABClient class which implements DABSource is the
standard interface to the DAB system. It also includes an interface to register new DAB listeners. The DABAdapter
class provides an implementation of DABListener based on dummy methods, so that applets, which use only a part
of the functionality of the DAB package, need not to implement all methods of DABListener.
DABReceiverAddress is an abstract class that can be used to support multiple DAB tuners.

DABException is the superclass of all exceptions used inside the package. It is particularly used to generalize from
all exceptions in DABSource. The DABNotAvailableException is thrown in the data classes when optional
attributes are currently not available or not available at all. DABConnectionException is thrown, if there are
problems with the connection to the receiver.

DABConstants contains all constants that are used in the rest of the package.

The package has three sub-packages: si, data and events. The package si contains classes describing service
information; data contains various data classes that are not directly related to service information; events contains
all event classes.

The structure of si is shown in figure 22. The class SIId is an abstract class for referencing service information.
EnsembleId, ServiceId and ComponentId, which are all derived from SIId, represent the identifier for the
respective service information type. The classes EnsembleInfo, ServiceInfo, and ComponentInfo reflect the
respective levels in the hierarchy of service information.

In the data package (see figure 23) the other data classes are collected. DABObject is a generic class to represent all
kind of data transported via DAB. MOTObject is a subclass of DABObject which models only data objects
transmitted in the MOT protocol [1]. Additionally, there is derived class, DLSObject, for data of a DLS data service.
MOTObject has two subclasses MOTDirectoryObject and BWSObject, which model MOTDirectories (in the
data carousal) and objects of a BWS data service respectively. The interface MOTObjectHeader is used to specify
information, which is provided both in MOTObject and in an entry in a MOT directory.

There is one more specialization, BWSDirectoryObject, a subclass of MOTDirectoryObject. This class
specifies additional information in a directory, which is available only for BWS services. BWSDirectoryIndex is a
helper class for that.

For the purpose of referencing the different kinds data objects (of type DABObject), ObjectId may be used.

The classes Label, AnnouncementSupport, ProgrammeNumber, SubscriberType and ProgrammeType
are auxiliary classes used to model attributes inside the service information classes and DABObject. LocationInfo
models location information.

Finally, we have the events package (see figure 24). DABEvent is the superclass of all events used by the package.
The particular events are divided into confirmation and notification events related to the respective method in
DABListener. Note, that there is no direct reference of DABEvent in DABListener, the associative link was only
used to simplify the diagram.

Note, that there are no direct associations between EnsembleInfo, ServiceInfo, ComponentInfo and
DABObject. For this the service and object identifiers are used. This means, that the service identifiers inside
EnsembleInfo refer to services, the service identifiers inside ServiceInfo refer to components and so on.

To reduce the complexity of the class diagrams only the associations inside the data classes are indicated.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)39

DABAdapter

DABConstants

DABClient

addDABListener()
removeDABListener()
open()
open()
close()

DABReceiverAddress
DABNotAvailableException DABConnectionException

data eventssi

DABEvent
(f rom ev ents)

DABListener

tuneCnf()
searchCnf()
searchNtf()
selectSICnf()
siNtf()
getEnsembleInfoCnf()
getServiceInfoCnf()
getComponentInfoCnf()
selectReceptionInfoCnf()
receptionInfoNtf()
selectComponentCnf()
selectObjectCnf()
objectNtf()
operationControlCnf()
componentNtf()
drcModeNtf()
getLocationInfoCnf()
locationInfoNtf()
scanCnf()
scanNtf()
selectComponentStreamCnf()
serviceFollowingNtf()
systemFailureNtf()

<<Interface>>

DABException

DABSource

tuneReq()
searchReq()
selectSIReq()
getEnsembleInfoReq()
getServiceInfoReq()
getComponentInfoReq()
selectReceptionInfoReq()
selectComponentReq()
selectObjectReq()
operationControlReq()
getLocationInfoReq()
scanReq()
selectComponentStreamReq()

<<Interface>>

Figure 21: The classes of the dab (main) package

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)40

SIId

EnsembleId ServiceId

AnnouncementSupport
(from data)

ProgrammeType
(from data)

ComponentId

ObjectId
(f rom data)

EnsembleInfo

Label
(f rom data)

ComponentInfo

ProgrammeNumber
(from data)

ServiceInfo

Figure 22: The Classes of the si package

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)41

AnnouncementSupport ProgrammeType

DABObject

DLSObject

LocationInfoObjectId

MOTObject

Label

ProgrammeNumber

BWSDirectoryObject

BWSDirectoryIndex
*

1

MOTDirectoryObject

MOTObjectHeader
<<Interface>>

*

1

SubscriberInfo

BWSObject

*

1

1

*

Figure 23: The classes of the data package

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)42

DABEvent

ComponentNtfEvent

GetEnsembleInfoCnfEvent

GetLocationInfoCnfEvent

GetServiceInfoCnfEvent

LocationInfoNtfEvent

ObjectNtfEvent

OperationControlCnfEvent

ReceptionInfoNtfEvent

ScanCnfEvent ScanNtfEventSearchCnfEvent

SearchNtfEvent

SelectComponentCnfEvent

SelectComponentStreamCnfEvent

SelectObjectCnfEvent

SelectReceptionInfoCnfEvent

SelectSICnfEvent

ServiceFollowingNtfEvent

SINtfEvent

SystemFailureNtfEvent

TuneCnfEvent

DRCModeEvent

GetComponentInfoCnfEvent

Figure 24: The classes of the events package

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)43

5 The runtime package

5.0 Summary
The DAB runtime package deals with the basic runtime components that support the execution environment for a DAB
terminal. It consists of the following parts:

• DAB application model. This part defines a lifecycle for DAB Java applications based on the Xlet model of
JavaTV.

• Control of Java Applications. Here, we specify how an application is launched and how its state can be
controlled.

• Security Management. This part handles the security issues with regard to DAB Java applications.

• Resource Management. The resource management provides mechanisms for sharing resources between
different DAB Java applications.

• Configuration Management. This part deals with handling of the internal profile (i.e. the profile information
that is available to the application).

5.1 The DAB Application Model
The Xlet model from Java TV (see Bibliography, "DVB Java Specification") is used for all applications, which are
downloaded via DAB. The state machine of the Xlet is described in the following state model (see figure 25). The
application controller can control the Xlet component calling specific methods from one side and the Xlet can notify the
application controller about the changes of his internal state (see the class diagram in figure 26). After the Xlet code is
loaded, it can be instantiated (calling the new operator). When initXlet() is called, the method should initialize all
the resources needed by the Xlet and put the Xlet in the PAUSED state. The life of the Xlet then is controlled calling
respectively the startXlet() and pauseXlet(). Additionally, the Xlet can notify the host application about the
internal state changes using the XletContext (see figure 26): for example, if no further computation is possible, the Xlet
can go in the PAUSED state and can notify with the paused methods the host application.

The final step of the lifecycle of the Xlet is reached, when destroyXlet() method is called. The Xlet then has to
deallocate all used resources.

START
LOADED

PAUSED

ACTIVE

DESTROYED END
new

initXlet

destroyXlet

destroyXlet

pauseXlet

startXlet

destroyXlet

garbage collected

Figure 25: The Xlet Model

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)44

XletContext

destroyed()
resumeRequest()
paused()
getXletProperties()

Xlet

initXlet()
startXlet()
pauseXlet()
destryXlet()

Figure 26: Context for the Xlet model

Moreover application designers are supposed to check the host environment to control if the needed resources are
accessible: graphical interfaces, display area, DAB specific commands, etc. In the Xlet implementation this action is
performed passing an array of strings to the loaded component using the XletContext
getXletProperties(String), where all the necessary variables are parameterized (see clause 5.5).

The following example demonstrates the some of Xlet methods. It is the main class of the stock market ticker
(see above):

public void initXlet(XletContainer cxt){

buffer = "";

decoder=new Decoder((ServiceInfoId)cxt.getXletProperty("dab.xlet.componentId"));

started = false;

containerPanel =

(java.awt.Panel) ctxt.getXletProperty("dab.xlet.panelContainer");

containerPanel.add(this);

}

public void startXlet()

throws XletStateChangeException{

if (!started) {

requestForStop = false;

thread = new Thread(this);

thread.start();

decoder.addStockListener(this);

decoder.startDecoding();

started = true;

}

else {

thread.resume();

}

}

};

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)45

5.2 Control of Java applications
Two types of Java-based user applications are supported as it shown in figure 27. One choice are Java applications,
which are embedded in HTML pages. The other choice are applications running in some sort of framework or EPG. The
Java application can be distributed as a set of packages, which are transported using the MOT protocol [1]. Such an
application is described by a profile, which specifies the required platform, the application model and the application
type. If an application is chosen for execution, the launch procedure is initiated: the procedure consists in loading the
classes (archive), in setting up a runtime context to the application and in initializing the application itself.

<HTML>

</HTML>

<XLET>

</XLET>

EPG

TICKER

Figure 27: Environments for DAB Java applications

In the following clauses these different aspects are described.

5.2.1 Packaging

A Java-based user application is distributed as a sequence of MOT Objects, which contain collection of classes in the
JAR format (see Bibliography, "JAR Archive Documentation"). Apart from object code such a jar file can also contain
arbitrary data files. Additionally, a so-called Manifest file can be used for configuration issues (see clause 5.5).

The Manifest file inside a Jar archive contains meta-information about the content of the archive (see Bibliography,
"Manifest"). With regard to the launching procedure the following attributes are used:

• Class-Path: This attribute specifies a sequence of relative URLs, which refer to other distribution objects.
These paths will be used to resolve dependencies when loading classes from the archive. Each URL has to
correspond to an identifier of a MOT object.

• Main-Class: If this attribute is set, the application launcher will execute the designated class (the name has to
be a relative URL). If this attribute is not set, then the MOT object identifier (obtained by the getID() method
on the ObjectId class) is used to identify the main class name (the object identifier has to have the form <relative
path-name>/<classname>.class)

The following information can also be included inside the Manifest file for describing the content and for repeating
attributes available at the FIC level (these values should not be used for system settings):

• Platform : the supported platform (see clause 6.3)

• Access: the access pattern (see clause 5.3)

The respective type for the MOT object is 6 ="system" and the subtype is 1="Java" (see [1]).

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)46

5.2.2 Loading classes

The class loader used in the runtime package has to support the loading of classes transported via DAB (see clause
5.2.1). When a non-system class is referenced, its name (including the package path) is mapped to a relative URL
(e.g. MPEG.Decoder is mapped to MPEG/Decoder.class). Then, the respective class file is searched first in the current
distribution object. If it is not found, the search is continued in the list of distribution objects designated by the
Class-Path attribute in the Manifest file (continuing from left to right). The search will stop, when the class file is
found or all distribution objects were tried.

Additionally, the class loader has to take care for updates. In general, the class loader will only consider the newest
version of a distribution object. If an update of such a distribution object happens during the loading of classes, the class
loader shall stop the loading of the current class and restart the process for all classes of the application using the newest
version.

5.2.3 Control of applications

If an application is chosen for execution, the controller will use its DABClient object to load the application. The
result of the operation is a proxy object, which has methods for controlling the application state.

5.2.3.1 Application context

The class DABClient provides a method for loading applications (selectApplicationReq). This method uses
the given user application context and id for the start object to load the application. When the transaction is completed,
a SelectApplicationCnfEvent is sent to the listener. When the loading was successful, a proxy object is
returned in the event.

5.2.3.2 Proxy

Applications are controlled (indirectly) using a simplified version of the org.dvb.application.AppProxy
interface (from the MHP specification [2]). The concept is an indirect control of applications. This means if for example
an application likes to stop another application, it calls the respective method in the AppProxy interface. The application
controller, which implements the interface, will then call the method in the application.

The DABAppProxy interface offers methods to change the state of the controlled application. Each time it is checked,
whether the application is permitted to issue the request for a state change. Additionally, there are methods to be
notified about state changes.

For the notification of state changes, the classes dab.events.AppStateChangeEvent and
dab.AppStateChangeEventListener are used.

The AppStateChangeEventListener class was modified to comply with the convention to indicate the event
source. For that an additional interface AppStateChangeEventSource was defined. Finally, there is no
application identifier (the reference to the proxy object can be used for that purpose).

There are six states defined for the application proxy (as it is shown in figure 28). The proxy is in the NotLoaded state
when it is created and returned by selectApplicationCnf to the application. This means that the requested
application was not yet (down-)loaded. When load is called the application will be loaded and the state of the proxy is
now Loaded. The proxy move on to Inited when init is called. As part of the state change initXlet is invoked
in the loaded application.

The pause action is possible for two states. If the proxy is in the Inited state, the proxy is just moved to the
Paused state. If it was in the Started state, additionally pauseXlet is called.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)47

The start action is valid for the first four states in figure 4. It is effectively a composite action, whose effect depends on
the state of the proxy:

1) NotLoaded: load, init, pause, resume

2) Loaded: init, pause, resume

3) Inited: pause, resume

4) Paused: resume

The resume action can only be invoked, when the proxy is in Paused. It invokes startXlet and sets the proxy to
Started. The proxy can be set to the Destroyed state from any other state using stop. During the state change
stopXlet is called. Each state change is signalled to all AppStateChangeEvent listeners accordingly.

NotLoaded

Inited

Destroyed

Paused

Started

Loaded

stop

start

pause resume

load

init

pause

Figure 28: Proxy states

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)48

5.2.3.3 Example

In figure 28, it is shown how some application is loaded and how it gets controlled. First, the controller (here an EPG)
has to select the component. In the second step the application is loaded. In the third step the application is started (an
example for control). In the fourth step the EPG will register for state changes. In the fifth step it receives a state change
event. Note, that the messages that are sent to and from the application container are labelled with stereotypes, as they
depend on the implementation.

EPG DABClient ApplicationContainer ApplicationDABAppProxy

selectComponentReq(componentId, ...)

selectComponentCnf(...)

Select the
user
application

selectApplicationReq(componentId, objectId)

<<create>>

selectApplicationCnf(..., AppProxy)

start()

<<order the
container to start the
application>>

initXlet() and startXlet()

addAppStateChangeListener(this)

paused()<<indicate the
pausing>>

stateChange(event)

Load an
application
inside the
component

Start the loaded
application

Register for
notification of

a state
change ...

<<load and create>>

Figure 29: Launching an application

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)49

Example of selection of a Java object from an EPG application:

private void selectJava(ComponentInfo _component){

try {

…

dab.selectApplicationReq(_component.getId(),jarObject);

} catch (DABException _e) {

}

return;

}

…

the confirmation event carries the "Proxy" object for controlling the loaded application

public void selectApplicationCnf(SelectApplicationCnfEvent _e){

if(_e.getResult() == 0){

// Xlet container (implementation specific)

javaXletAppViewer = new XletAppViewer();

javaAppProxy = _e.getApplicationProxy();

if(javaAppProxy == null){

return;

}

javaXletAppViewer.setXletAppProxy(javaAppProxy);

javaXletAppViewer.show();

}

return;

}

….

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)50

5.3 Security management
The DAB security model (see figure 30) that we present here is independent from the different security architectures
presented in the different JDK releases (see Bibliography, "Implementing Protection Domains in the Java Development
Kit 1.2" and "Java Security Architecture"). This means, the developer of the DAB VM may choose the security
architecture that fits best to his/her own implementation requirements.

The security framework presented here is based on three main subsystems: policy profiling, resource access and
security implementation subsystem.

POLICY RESOURCES

Downloaded
Application

DAB
SECURITY

Resources are the controlled
resources provided by the DAB Client:
- MOT objects
- tuning
- service selection
- etc

Policy consists on a series of application profiles and a
series of actions allowed; example:
Application Profiles:
EPG, Ticker, Game;
Actions:
- set Volume
- retrieve objects depending on the types (html, java,
audio, etc)

Internal implementation of the
security mechanism. The system
developer may choose the
security architecture of the platform
(JDK 1.1. or JDK 1.2)

Figure 30: The DAB security model

The only access to DAB resources allowed to downloaded applications from the DAB channel is through the
DABClient class; the security subsystem checks this accesses: the security system can return silently or throws a
Java.lang.SecurityException (see clause 5.5 for other possible way to access system properties).

For simplifying the management of the security settings security profiles may be used. Three profiles are defined: EPG,
MediaPresenter, and NODABAccess (see clause 6.3 for the coding). The EPG defines the class of applications that are
allowed maximum access to the DAB terminal. The MediaPresenter profile refers to the applications that are
allowed to access limited resources (for example only data file transmitted in the channel from where they are
downloaded). Ultimately the NoDABAccess profile: such profile can only use few terminal resources (Video, audio)
but no DAB access is allowed.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)51

In table 2 it is demonstrated, how these security profiles can be used to differentiate between the DAB commands
considering the caller.

Table 2: Example of access to DAB resources vs. security profiles

Method name EPG MediaPresenter NoDABAccess
void getComponentInfoReq(ServiceInfoId serviceId) totally no no

void setEnsembleInfoReq(ServiceInfoId serviceId) totally no no

void getServiceInfoReq(ServiceInfoId serviceId) totally partially no

void scanReq(int searchMode, int tables, int
startFrequency, int stopFrequency, int tansmissionModes,
int notifications)

totally no no

void searchReq(int searchMode, int tables, int
startFrequency, int stopFrequency, int
transmissionModes, int notifications)

totally no no

void selectComponentReq(ServiceInfoId serviceId, int
selectionMode)

totally partially no

void selectObjectReq(ServiceInfoId serviceId, ObjectId
objectId, int requestMode, boolean replaceSelections,
int deliveryMode, int cacheHint)

totally partially partially

void selectReceptionInfoReq(boolean
synchronizationNotification, boolean
bitErrorRateNotifcations, boolean
muteStateNotifications, boolean requestOnce)

totally partially no

void selectServiceInfoReq(boolean ensembleInfo, boolean
serviceInfo, boolean componentInfo, boolean
autoDelivery)

totally partially no

void setVolumeReq(int volume) totally partially partially

void tuneReq(int tuneFrequency, byte transmissionMode) totally no no

String System.getProperties(String) totally partially no

String System.setProperties(String,String) totally no no

void selectApplicationReq(ServiceInfoId serviceId,
ObjectId objectId)

totally no no

org.dvb.aplication.AppProxy methods totally no no

Imagine the following scenario. An EPG application is downloaded from some channel (XXX Radio); the application
can control the volume of the platform because is specified in the profile. The implementation of the YYY company
provides a fine-grained security mechanism: the user can set min, max, normal volume for every different application
profile and for every different content provider. The implementation of the ZZZ Company is more profile-oriented and
it controls only the profile of the downloaded application. The internal mechanisms used in the two implementations are
hidden to the loaded application.

For instance, we have the following code fragment in an application:

try {

dab.open();

}catch(SecurityException e){

// …

}

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)52

try{

dab.setVolumeReq(10);

}catch(SecurityException e){

//…

}

In the VM it is implemented as follows:

public void open() throws DABException, SecurityException

{

// perform a DAB security check using the AccessController

AccessController.checkPermission(new DABRuntimePermission("open"));

// the AC throws a securityException if the policy settings do not allow the
permission

receiver = DABSystem.getReceiver();

receiver.addReceiverListener(this);

}

5.4 Resource management
Resource management is used to share exclusive resources among different concurrently active clients. In the case of
the DAB VM such kinds of resources are mostly related to the constraint set by the DAB receiver: e.g. only one
ensemble can be accessed at the same time. We will present a model for the resource management and describe how
resource conflicts are resolved within this model.

5.4.1 Model

The resource management is opaque. But resource conflicts are signalled. This means that the allocation of resources
during a transaction is not visible outside the API. The VM has to care for all issues of resource management like
allocation of resources, their release and deadlock avoidance. If the VM cannot allocate the required resources, the
conflict resolution is initiated (see clause 5.4.2). If the conflict resolution fails, the failure of the transaction is indicated
to the requesting client.

For the indication of failures because of resource conflicts a dedicated exception is used:

class ResourceConflictException extends DABException {

ResourceConflictException() {}

ResourceConflictException(String message) {}

}

It is expected, when a request is issued (e.g. calling selectReceptionInfoReq) and the request fails due to resource
conflicts, the ResourceConflictException is thrown.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)53

5.4.2 Conflict Resolution

The VM handles the conflict resolution and negotiates with the involved parties. The conflict resolution consists of four
turns (i.e. phases).

1) Proceed: Ask the requesting client for commitment despite resource conflicts.

2) Probe: If the client insists on his request, all other clients which own needed resources are asked whether they
like to release their resources. If there is at least one who does not like to release a needed resource, the conflict
resolution fails.

3) Stop: If all clients agreed to the request, they are actually asked to release the resources. When all clients have
released the resources, the transaction is restarted.

4) Preempt: If there are some clients, which did not release the resources in the last turn, then these are preempted
from the resources.

NOTE 1: In case a client does not respond to such requests, it is up to the VM to handle such behaviour. Typically,
a timeout needs to be introduced and a default response has to be defined (e.g. it is assumed that the client
agreed to release the resource). Like security management that should be configurable by the user.

NOTE 2: When clients are asked to release their resources (also for the willingness to do so), not the actual
resources are specified but rather the related operation. That means the VM has to track the relationship
between resources and operations.

The API supports the conflict resolution by the following notification:

interface DABListener {

…

conflictResolutionNtf (ConflictResolutionNtfEvent event);

}

class ConflictResolutionNtfEvent {

int getTransaction() {…}

int getTurn() {…}

int getOperation() {…}

int getSuboperation() {…}

}

class DABConstants {

…

public static final int conflictResolutionTurnProceed=0;

public static final int conflictResolutionTurnProbe=1;

public static final int conflictResolutionTurnStop=2;

public static final int conflictResolutionTurnPreempt=3;

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)54

public static final int conflictResolutionOperationNone=0;

… // plus constants for all

// available operations (see DABSource)

}

The related event, ConflictResolutionNtfEvent, contains the information about the action:

1) getTransaction delivers the transaction number. This can be used to provide a transaction context.

2) getTurn returns a code for the turn of the resource conflict resolution protocol:

- conflictResolutionTurnProceed: This is sent to the client which requested the operation. It
indicates that there is a resource conflict. The client is asked whether he likes to proceed.

- conflictResolutionTurnProbe: This notification is sent to all clients in order to probe for their
willingness to release the needed resources.

- conflictResolutionTurnStop: The client is asked to stop the indicated operation in order to release
the resources.

- conflictResolutionTurnPreempt: The client is informed that the indicated operation was stopped.
This action shall normally only be taken, when the client failed to do a stop in the previous turn.

3) getOperation gives back a code of the involved operation (see extensions to DABConstants).

4) getSuboperation returns a code for the suboperation, which depends on the operation code. This is useful
for "aggregated" operations like operationControl.

The response to the notifications described above are given using a request in DABSource:

interface DABSource {

…

respondConflictResolutionReq(int transaction,

int turn,

int operation,

int suboperation,

int answer);

}

class DABConstants {

…

public static final int conflictResolutionAnswerNo=0;

public static final int conflictResolutionAnswerYes=1;

}

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)55

The argument answer refers to the answer with respect to the notification. The following values are possible:

• Turn Proceed

- conflictResolutionAnswerYes: The client likes to have his request continued so that the
negotiations for resources may start.

- conflictResolutionAnswerNo: The client agrees to stop the request, which will result in a
ResourceConflictException (see above).

• Turn Probe

- conflictResolutionAnswerYes: The client is willing to stop the operation.

- conflictResolutionAnswerNo: The client does not agree to stop the operation.

• Turn Stop

- The request confirms that the operation was stopped by the client. No special value has to be specified for
answer.

The other arguments of this request correspond to the attributes in the ConflictResolutionNtfEvent.

A confirmation will be sent for this request:

interface DABListener {

…

respondConflictResolutionCnf(conflictResolutionCnfEvent);

}

class conflictResolutionCnfEvent {

int getResult();

}

The method getResult returns the result of the request.

The following example demonstrates these extensions. For this, we assume that we have selected an audio programme
in a resident EPG and started a stock market ticker. Additionally, we have just launched a new EPG (which a provided
by a broadcaster), which likes to do scanning.

In figure 31 it is indicated, how the emerging resource conflict is resolved. The VM signals the downloaded EPG the
resource conflict (other applications have selected components inside the current ensemble).

The downloaded EPG decides to proceed with the conflict resolution. The VM then sends notifications to the resident
EPG and to the ticker to probe for their agreement to stop the selections. When the agreement is given, they are actually
asked to stop the selections. After that is done, the transaction for the scan is started and the scanReq call returns to
the client.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)56

Downloaded
EPG

VM Resident EPG Ticker

scanReq(...)

conflictResolutionNtf(new ConflictResolutionNtfEvent(..., conflictResolutionTurnProceed, conflictResolutionOperationScan, ...))

respondConflictResolutionReq(..., conflictResolutionAnswerYes)

respondConflictResolutionCnf(...)

conflictResolutionNtf(new ConflictResolutionNtfEvent(..., conflictResolutionTurnProbe, conflictResolutionOperationSelectComponent, ...))

<<return of scanReq>>

Initiate conflict
resolution
because of
resource conflicts

Turn Proceed

Turn Probe

conflictResolutionNtf(new ConflictResolutionNtfEvent(..., conflictResolutionTurnProbe, conflictResolutionOperationSelectComponent, ...))

respondConflictResolutionReq(..., conflictResolutionAnswerYes)

respondConflictResolutionReq(..., conflictResolutionAnswerYes)

respondConflictResolutionCnf(...)

respondConflictResolutionCnf(...)

Turn Stop
conflictResolutionNtf(new ConflictResolutionNtfEvent(..., conflictResolutionTurnStop, conflictResolutionOperationSelectComponent, ...))

conflictResolutionNtf(new ConflictResolutionNtfEvent(..., conflictResolutionTurnStop, conflictResolutionOperationSelectComponent, ...))

respondConflictResolutionReq(..., conflictResolutionAnswerYes)

respondConflictResolutionReq(..., conflictResolutionAnswerYes)

respondConflictResolutionCnf(...)

respondConflictResolutionCnf(...)

Conflict
Resolution
succeeded

Figure 31: Example of conflict resolution

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)57

5.5 Configuration management
Configuration Management is related to the capability to profile the characteristics of the host terminal in a fine-grained
manner.

Downloaded applications have to use a standard mechanism for determining the environment of the terminal for
adapting their UI or their input routines. Additionally, the hosting environment has to give the application hooks to the
runtime environment.

This leads to two classes of attributes, which the Xlet is interested in: platform scoped profile attributes and Xlet scoped
profile attributes.

There is a very simple mechanism inside the Java runtime environment that permits to specify a set of properties for the
Runtime system. Such properties are pairs of string values (key,value): for example:

- Java.home=c:\jdk1_2

- os.name=NT

These properties are set using methods located in the Java.lang.System class: System.setProperty(String key, String
value) and String System.getProperty(String value).

Table 3: Predefined Xlet properties

dab.xlet.componentId The component identifier from which the Xlet was loaded (of
type dab.ServiceInfoId)

dab.xlet.objectId The object identifier of the main archive of the Xlet (of type
dab.ObjectId)

dab.xlet.panelContainer A reference to the GUI of the Xlet (of type Java.awt.Panel)
dab.xlet.datastream.in The standard input stream (of type

Java.io.DataInputStream)
dab.xlet.datastream.out The standard output stream (of type

Java.io.DataOutputStream)
dab.xlet.datastream.err The standard error stream (of type

Java.io.DataOutputStream)
dab.xlet.platform The platform (of type Integer)
dab.xlet.accessType The access type (of type Integer)
Dab.xlet.content The content type (of type Integer)

For all the other attributes that are Xlet dependent we use the getXletProperties method of the XletContext. This method
differs slightly from the System method: it returns objects (not strings). Using this method we can give to the Xlet
objects needed for its runtime execution (see table: panelContainer, datastream.in, etc). In table 3, the predefined
properties are listed.

The following example demonstrates the different attribute mechanisms:

Inside the application framework before activating the Xlet:

Panel xletPanel = new Panel();

appProxy.setAppProperty("dab.xlet.panelContainer",xletPanel);

appProxy.setAppProperty("dab.xlet.datastream.out",System.out);

Inside the Xlet:

public void initXlet(XletContext ctx) throws XletStateChangeException {

xPanel = (Java.awt.Panel) ctx.getXletProperty("dab.xlet.panelContainer");
xOut = (Java.io.DataStream) ctx.getXletProperty("dab.xlet.datastream.out");

};

Note, that the code contains no error checks.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)58

6 The User I/O Package
The DAB User IO package specifies the Java platform that should be supported for DABJava. It also defines the
profiles for DABJava and the method for signalling the profile using the FIG0/13 User Application Type
(see EN 300 401 [3]).

The DAB Java User IO package consists of the following parts:

• Signalling. This part defines the signalling in DAB of the DABJava profiles.

• DABJava platform. This part defines the current defined platforms and profiles that are used in DABJava
devices. In the future other profiles can be added to the stadard following the rules defined in clause 6.1.

6.1 Signalling

6.1.1 DAB Java User Application Profile (DJUAP)

DABJava is defined as a User Application (UA) type within FIG 0/13 (see EN 300 401 [3]). The DABJava UA
parameters "Platform" and "Version" are used to signal the DABJava profile or application environment. They are
carried in the User Application specific part of the FIG 0/13.

6.1.2 Platform

The DABJava UA parameter "Platform" signals the major version of the application environment (e.g. SPJP or NPJP).
It should be a number between 0 and 255. New platform numbers must be registered at the WIRC by registration of a
new DJUAP with the parameter "Version" set to 0.

DJUA platforms are not necessarily compatible with each other. This means that although platform A may partly cover
platform B, an application for platform A will not necessarily run in the application environment of platform B.

6.1.3 Version

The UA parameter "Version" signals the minor version of the application environment. It should be a number between 0
and 255. New version numbers are obtained from the WIRC by updating an existing platform specification. The new
version number shall be the previous version number increased by 1.

DABJava UA versions must be backwards compatible. That means that for a certain Platform where version A is older
than version B, then an application written for version A must run in the application environment defined in version B.

6.1.4 Content

The UA parameter "Content" signals the application type. It should be a number between 0 and 255. New version
numbers are obtained from the WIRC by updating an existing platform specification. The new version number shall be
the previous version number increased by 1.

6.1.5 Access

The UA parameter "Access" signals the access type. It should be a number between 0 and 255. New version numbers
are obtained from the WIRC by updating an existing platform specification. The new version number shall be the
previous version number increased by 1.

The following values are predefined:

0) EPG

1) MediaPresenter

2) NoDABAccess

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)59

6.1.6 Defined profiles

The currently defined profiles are described in details in clause 6.2, and they are signalled as follows:

6.1.6.1 Standard Personal Java Profile (SPJP)

The SPJP supports the APIs and the application environment of PersonalJava without the package "Java.net".

The UA parameters for this profile are:

Name Value
Platform 0
Version 0
Content 0 to 255
Access 0 to 2

6.1.6.2 Network enabled Personal Java Profile (NPJP)

The NPJP supports the APIs and the application environment of PersonalJava together with the class
"org.dvb.net.DatagramSocketBufferControl" and the interface "Javax.tv.net.InterfaceMap" defined in the Java TV API
Specification (see Bibliography).

The UA parameters for this profile are:

Name Value
Platform 1
Version 0
Content 0 to 255
Access 0 to 2

6.2 DABJava platforms

6.2.1 PersonalJava 1.1

Two profiles have been defined for DAB Java based on Personal Java. They modify the packages from
PersonalJava 1.1 (see Bibliography) as shown in the following.

6.2.1.1 Core Packages

The packages used in PersonalJava 1.1 and common to the 2 profiles (6.16.1 and 6.1.6.2) are shown below, the
supported packages are slightly modified for DAB Java profiles as described in clause 6.2.3:

• Java.applet

• Java.awt

• Java.awt.datatransfer

• Java.awt.event

• Java.awt.image

• Java.awt.peer

• Java.beans

• Java.io (file support is optional)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)60

• Java.lang

• Java.lang.reflect

• Java.math (package is optional)

• Java.net (some protocols are optional)

• Java.rmi (package is optional)

• Java.rmi.dgc (package is optional)

• Java.rmi.registry (package is optional)

• Java.rmi.server (package is optional)

• Java.security (package is optional)

• Java.security.acl (package is unsupported)

• Java.security.interfaces (package is optional)

• Java.sql (package is optional)

• Java.text

• Java.text.resources (modified and optional)

• Java.util

• Java.util.zip

6.2.1.2 DABJava profiles: specific packages.

6.2.1.2.1 Standard Personal Java Profile (SPJP)

• Java.applet (package is optional)

• Java.beans (package is optional)

• Java.net (package is unsupported)

6.2.1.2.2 Network-enabled Personal Java Profile (NPJP)

• Java.applet (package is optional)

• Java.beans (package is optional)

• org.dvb.net.DatagramSocketBufferControl is added (see Bibliography, "DVB Java Specification")

• Javax.tv.net.InterfaceMap is added (see Bibliography, "DVB Java Specification")

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)61

Annex A (normative):
The DAB Java Classes

A.1 Package dab
public class dab.DABAdapter implements dab.DABListener

The DABAdapter class provides default methods for the implementation of a DABListener.

The default behaviour is that incoming events are ignored.

See Also

dab.DABListener DABListener

Version

1.01

Constructors public DABAdapter()

Methods public void tuneCnf(TuneCnfEvent e)

public void searchCnf(SearchCnfEvent e)

public void searchNtf(SearchNtfEvent e)

public void scanCnf(ScanCnfEvent e)

public void scanNtf(ScanNtfEvent e)

public void selectSICnf(SelectSICnfEvent e)

public void siNtf(SINtfEvent e)

public void getEnsembleInfoCnf(GetEnsembleInfoCnfEvent e)

public void getServiceInfoCnf(GetServiceInfoCnfEvent e)

public void getComponentInfoCnf(GetComponentInfoCnfEvent e)

public void selectReceptionInfoCnf(SelectReceptionInfoCnfEvent e)

public void receptionInfoNtf(ReceptionInfoNtfEvent e)

public void selectComponentCnf(SelectComponentCnfEvent e)

public void selectComponentStreamCnf(SelectComponentStreamCnfEvent e)

public void componentNtf(ComponentNtfEvent e)

public void selectObjectCnf(SelectObjectCnfEvent e)

public void selectApplicationCnf(SelectApplicationCnfEvent e)

public void objectNtf(ObjectNtfEvent e)

public void getLocationInfoCnf(GetLocationInfoCnfEvent e)

public void locationInfoNtf(LocationInfoNtfEvent e)

public void conflictResolutionNtf(ConflictResolutionNtfEvent e)

public void respondConflictResolutionCnf(RespondConflictResolutionCnfEvent e)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)62

public void operationControlCnf(OperationControlCnfEvent e)

public void serviceFollowingNtf(ServiceFollowingNtfEvent e)

public void drcModeNtf(DRCModeNtfEvent e)

public void systemFailureNtf(SystemFailureNtfEvent e)

public interface dab.DABSource

DABSource defines the interface of a DAB resource (usually a DAB receiver). The interface is asynchronous. When an
application issues a requests, it gets back the results as confirmation and notification events. Look at the particular
methods for more details.

See Also

dab.DABListener DABListener

Version

1.07

Methods public void tuneReq(

int tuneFrequency,

int transmissionMode)

The tuneReq request initiates the Tune command. The Tune command sets directly a specified DAB
frequency. A DAB receiver must be tuned to a DAB frequency and synchronized in order to get
access to DAB services. A tuned DAB receiver tries automatically to synchronize on a DAB
Ensemble.

The Tune command is used to select a specified DAB frequency. The tuneReq request initiates the
Tune command. Depending on the specification for the Transmissionmode it is tested if a DAB
Ensemble can be detected. If the connected DAB receiver supports automatic detection the default
setting for transmissionMode (=DABConstants.transmissionModeAutomatic) can be used. Otherwise
it has to be specified which transmission modes should be tested. The result of the command is
delivered by the tuneCnf confirmation. All currently existing selections of audio and data services or
selections of data objects are automatically stopped before tuning is performed by the DAB receiver.

Parameters

• tuneFrequency - This parameter specifies the frequency the DAB receiver will be tuned to
in Hertz.

• transmissionModes - This parameter specifies the transmission modes a DAB receiver
tests for DAB Ensembles. The default value is DABConstants.transmissionModeAutomatic
which means that the receiver is automatically detecting the transmission mode. The
parameter is a flag field supporting the following flags which can be specified together:

• DABConstants.transmissionModeAutomatic: The transmission mode is automatically
detected. All other flags are ignored in this case.

• DABConstants.transmissionMode1: At the specified frequency it is tested if a DAB
Ensemble is sent in transmission mode 1.

• DABConstants.transmissionMode2: At the specified frequency it is tested if a DAB
Ensemble is sent in transmission mode 2.

• DABConstants.transmissionMode3: At the specified frequency it is tested if a DAB
Ensemble is sent in transmission mode 3.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)63

• DABConstants.transmissionMode4: At the specified frequency it is tested if a DAB
Ensemble is sent in transmission mode 4.

See Also

dab.DABListener#tuneCnf tuneCnf

dab.DABSource#searchReq searchReq

dab.DABListener#searchCnf searchCnf

dab.DABListener#searchNtf searchNtf

public void searchReq(

int searchMode,

int tables,

int startFrequency,

int stopFrequency,

int transmissionModes,

int notifications)

The searchReq request initiates a Search command. The Search command searches for a DAB
Ensemble according to a specified search mode. After a successful execution of the Search
command a DAB Ensemble has been found, the state Tuned is entered and the DAB receiver tries to
synchronize automatically to the found DAB Ensemble.

The Search command is used to search for a DAB Ensemble. The searchReq request initiates the
search and specifies the frequencies and transmission modes to test. Additionally the notifications
can be specified which the DAB client gets while the command is executed. Searching for an
ensemble may require a substantial amount of time from only a second up to several minutes. This
depends also on the search mode specified. If the reception conditions are bad it is possible that no
DAB Ensemble at all is detected. In order to stop searching for a DAB Ensemble the Tune command
can be used which tunes the DAB Receiver to a certain frequency independent from the reception
conditions. The start of searching is indicated by a SearchNtf event with a status code 'Started'. In this
case the state machine of Tune State enters the state Searching (see Figure 4). In case that the
previous state was Tuned all currently existing selections of services or objects are stopped
automatically. While searching is performed several notifications delivering information about the
current status are sent to the client. The command ends with a SearchCnf event.

Parameters

• searchMode - This parameter specifies the way the DAB receiver is searching for a DAB
Ensemble. The default value is searchSearchAutomatic which means it is searching
according to a default method. The parameter is a flag field supporting the following flags
which can be specified together:

• DABConstants.SearchModeAutomatic: default method

• DABConstants.SearchMode16kHzSteps: The frequency range is searched in
16 kHz steps. This is a very intensive search which means that command execution
can take a large amount of time.

• DABConstants.SearchModeUp: The search direction is from low to high
frequencies.

• DABConstants.SearchModeDown: The search direction is from high to low
frequencies.

• DABConstants.SearchModeUseTables: The search is based on the specified
frequency tables.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)64

• DABConstants.SearchModeUseFrequencyRange: The search is based on the
specified frequency range.

• DABConstants.SearchModeContinuous: The search is looping over the specified
frequency range until a DAB Ensemble has been found. The default is to stop after
the specified frequency range has been checked once.

• tables - This parameter specifies frequency tables the receiver uses in order to search
for DAB Ensembles. The parameter is a flag field supporting the following flags which
can be specified together:

• DABConstants.searchCEPTFrequencyTableBandIII: The frequencies according to
the CEPT frequency table for Band III are tested for DAB Ensembles.

• DABConstants.SearchCEPTFrequencyTableLBand: The frequencies according to
the CEPT L-Band table are tested for DAB Ensembles.

• DABConstants.SearchCanadaFrequencyTableLBand: The frequencies according to
the Canadian L-Band table are tested for DAB Ensembles.

• transmissionModes - This parameter specifies the transmission modes a DAB receiver
tests for DAB Ensembles. The default value is
DABConstants.transmissionModeAutomatic which means that the receiver is
automatically detecting the transmission mode. The parameter is a flag field supporting
the following flags which can be specified together:

• transmissionModeAutomatic: The transmission mode is automatically detected. All
other flags are ignored.

• transmissionMode1: At the specified frequency it is tested if a DAB Ensemble is sent
in transmission mode 1.

• transmissionMode2: At the specified frequency it is tested if a DAB Ensemble is sent
in transmission mode 2.

• transmissionMode3: At the specified frequency it is tested if a DAB Ensemble is sent
in transmission mode 3.

• transmissionMode4: At the specified frequency it is tested if a DAB Ensemble is sent
in transmission mode 4.

• notifications - This parameter specifies the type of notifications the client wants to get
while the Seek command is performed. The parameter is a flag field supporting the
following flags which can be specified together:

• notificationsOff: No intermediate notifications are sent. Only a SearchNtf notification
which informs about the start of searching is sent.

• notifications16kHzSteps: With each 16 kHz step a notification is sent. This is only
possible if 16 kHz step searching is specified as search mode.

• notificationsTableEntry: With each table entry frequency a notification is sent. This is
the default value.

See Also

dab.DABListener#searchCnf searchCnf

dab.DABListener#searchNtf searchNtf

dab.DABSource#tuneReq tuneReq

dab.DABListener#tuneCnf tuneCnf

public void scanReq(

int searchMode,

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)65

int tables,

int startFrequency,

int stopFrequency,

int tansmissionModes,

int notifications)

The ScanReq request initiates a Scan command. The Scan command is used in order to perform a
search for all available DAB Ensembles in a specified frequency range. Depending on the frequency
range and the search mode this operation may require a substantial amount of time from only a
second up to several minutes. The command is started by the ScanReq request and is finished with
the ScanCnf confirmation. In between ScanNtf notification are sent in order to inform about the
current status of scanning if notifications are requested.

In case of searching from lower to higher frequencies (searchMode=DABConstants.searchModeUp)
the value of startFrequency is not allowed to be larger than the value of stopFrequency. In case of
searching from higher to lower frequencies (searchMode=DABConstants.searchModeDown) the
value of startFrequency is not allowed to be smaller than the value of stopFrequency.

Parameters

• searchMode - This parameter specifies the way the DAB Receiver is searching for a
DAB Ensemble. The default value is DABConstants.searchModeAutomatic which means
it is searching according to a default method. The parameter is a flag field supporting the
following flags which can be specified together:

• DABConstants.searchModeAutomatic: default method

• DABConstants.searchMode16kHzSteps: The frequency range is searched in 16 kHz
steps.

• DABConstants.searchModeUp: The search direction is from low to high frequencies.

• DABConstants.searchModeDown: The search direction is from high to low
frequencies.

• DABConstants.searchModeUseTables: The search is based on the specified
frequency tables.

• DABConstants.searchModeUseFrequencyRange: The search is based on the
specified frequency range.

• DABConstants.searchModeContinuous: The search is looping over the specified
frequency range until a DAB Ensemble has been found. The default is to stop after
the specified frequency range has been checked once.

• tables - This parameter specifies frequency tables the receiver uses in order to search
for DAB Ensembles. The parameter is a flag field supporting the following flags which
can be specified together:

• DABConstants.searchCEPTFrequencyTableBandIII: The frequencies according to
the CEPT frequency table for Band III are tested for DAB Ensembles.

• DABConstants.searchCEPTFrequencyTableLBand: The frequencies according to
the CEPT L-Band table are tested for DAB Ensembles.

• DABConstants.searchCanadaFrequencyTableLBand: The frequencies according to
the Canadian L-Band table are tested for DAB Ensembles.

• startFrequency - This parameter specifies the start frequency at which the DAB
Receiver starts its search for DAB Ensembles.

• stopFrequency - This parameter specifies the stop frequency at which the DAB
Receiver stops its search for DAB Ensembles.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)66

• transmissionModes - This parameter specifies the transmission modes a DAB Receiver
should look for DAB Ensembles. The default value is
DABConstants.transmissionModeAutomatic which means that the receiver is
automatically detecting the transmission mode. The parameter is a flag field supporting
the following flags which can be specified together:

• DABConstants.transmissionModeAutomatic: The transmission mode is
automatically detected.

• DABConstants.transmissionMode1: At the specified frequency it is tested if a DAB
Ensemble is sent in transmission mode 1.

• DABConstants.transmissionMode2: At the specified frequency it is tested if a DAB
Ensemble is sent in transmission mode 2.

• DABConstants.transmissionMode3: At the specified frequency it is tested if a DAB
Ensemble is sent in transmission mode 3.

• DABConstants.transmissionMode4: At the specified frequency it is tested if a DAB
Ensemble is sent in transmission mode 4.

• notifications - This parameter specifies the type of notifications wanted by the
application while the Seek command is performed. The parameter is a flag field
supporting the following flags which can be specified together:

• DABConstants.notificationsOff: No notifications are sent.

• DABConstants.notifications16kHzSteps: With each 16 kHz step a notification is sent.

• DABConstants.notificationsTableEntry: With each table entry frequency a
notification is sent. This is the default value.

See Also

dab.DABListener#scanCnf scanCnf

dab.DABListener#scanNtf scanNtf

public void selectSIReq(

boolean ensembleInfo,

boolean serviceInfo,

boolean componentInfo,

boolean autoDelivery)

The selectSIReq method initiates a SelectSI command. The SelectSI command starts, stops or
changes subscription to Service Directory Information.

The SelectSI command allows a DAB client to subscribe for Service Directory Information. The
Service Directory contains all available ensembles, services, components and related information.
The subscription is requested by the selectSIReq request and is confirmed with the selectSICnf
confirmation. The subscription level can be changed by another SelectSI command. This includes the
termination of subscription.

After a successful subscription a connected client receives SINtf notifications. Just after the
subscription has been activated the complete content of the Service Directory is mapped on SINtf
notifications. This means for each stored instance of an service element (ensemble, service and
component) is a SINtf notification sent which indicates that this service element is available (Added).
As time goes on SINtf notifications are sent which indicate that a new service element is available
(Added), that an existing is no longer available (Removed) or that its attributes have changed
(Changed).

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)67

By use of autoDelivery it can be specified if SINtf sends only a notification or a notification together
with the related information object. If subscription is terminated by setting ensembleInfo, serviceInfo
and componentInfo to false, then autoDelivery has no meaning.

By selecting a certain subscription level the client is informed about all currently known service
elements by sending related SINtf notifications. This means if a client subscribes for service-specific
notifications and seven services exist at this time, then seven SINtf(DABConstants.serviceAdded)
notifications are generated. The client is not informed about known ensembles or components. As
time goes on the client is informed when new services are added, known services are removed or
changed. If a currently selected subscription level is increased meaning that more notification types
are subscribed then the client is informed about all currently known service elements that are related
to the new subscribed notification type. This means if a subscription is changed from service-specific
to service-specific and component-specific change notifications, then for each currently known
Component a SINtf(DABConstants.componentAdded) notification is generated.

As time goes on the client is informed when new services or components are added, known services
or components are removed or changed. If a currently selected subscription level is decreased
meaning that less notification types are subscribed then the client is informed only about notifications
related to the remaining subscribed notification types. This means if a subscription is changed from
service-specific and component-specific to service-specific notifications, then the client is informed
when new services are added, known services are removed or changed. But the client is no longer
notified about changes related to components.

Parameters

• ensembleInfo - This parameter specifies if ensemble-specific notifications will be sent to the
DAB client. The following values are supported:

• true: The DAB client is notified about DABConstants.ensembleAdded,
DABConstants.ensembleChanged and DABConstants.ensembleRemoved events. This is
the default setting.

• false: The DAB client is not notified about DABConstants.ensembleAdded,
DABConstants.ensembleChanged and DABConstants.ensembleRemoved events.

• serviceInfo - this parameter specifies if service-specific notifications will be sent to the DAB
client. The following values are supported:

• true: The DAB client is notified about DABConstants.serviceAdded,
DABConstants.serviceChanged and DABConstants.serviceRemoved events. This is the
default setting.

• false: The DAB client is not notified about DABConstants.serviceAdded,
DABConstants.serviceChanged and DABConstants.serviceRemoved events.

• componentInfo - This parameter specifies if component-specific notifications will be sent to
the DAB client. The following values are supported:

• true: The DAB client is notified about DABConstants.componentAdded,
DABConstants.componentChanged and DABConstants.componentRemoved events. This
is the default setting.

• false: The DAB client is not notified about DABConstants.componentAdded,
DABConstants.componentChanged and DABConstants.componentRemoved events.

• autoDelivery - This parameter specifies if the information related to the notification is sent
together with the notification (SINtf) or not. The following values are supported:

• true: The SINtf notification delivers the notification together with the information object.
The information object is sent together with the notification if the notification type is
-Added or -Changed. In case of -Removed no information object is sent because it is no
longer existing. This is the default setting.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)68

• false: The SINtf notification delivers only the notification. The information object
(EnsembleInfo, ServiceInfo or ComponentInfo) itself can be obtained by use of
getEnsembleInfoReq, getServiceInfoReq or getComponentInfoReq.

See Also

dab.DABListener#selectSICnf selectSICnf

dab.DABListener#siNtf siNtf

public void getEnsembleInfoReq(EnsembleId id)

The getEnsembleInfoReq method initiates a GetEnsembleInfo command. The GetEnsembleInfo
command requests information about the specified DAB Ensemble.

The GetEnsembleInfo command provides a DAB client with information about a specified DAB
Ensemble, e.g. Label, No of Services, and so on. The command is initiated by a getEnsembleInfoReq
request and is finished by a getEnsembleInfoCnf confirmation.

Parameters

• id - This parameter is a handle identifying the DAB Ensemble.

See Also

dab.DABListener#getEnsembleInfoCnf getEnsembleInfoCnf

public void getServiceInfoReq(ServiceId id)

The getServiceInfoReq requests initiates a GetServiceInfo command. The GetServiceInfo command
requests information about a specified DAB Service.

The GetServiceInfo command provides a DAB client with information about a specified DAB Service,
e.g. Label, No of Components, and so on. The command is initiated by a getServiceInfoReq request
and is finished by a getServiceInfoCnf confirmation.

Parameters

• id - This parameter is a handle identifying the DAB Service.

See Also

dab.DABListener#getServiceInfoCnf getServiceInfoCnf

public void getComponentInfoReq(ComponentId componentId)

The getComponentInfoReq request initiates a GetComponentInfo command. The GetComponentInfo
command requests information about a specified DAB Component.

The GetComponentInfo command provides a DAB client with information about a specified DAB
Component, e.g. Label, Language and so on. The command is initiated calling getComponentInfoReq
and is finished by a call to getComponentInfoCnf.

Parameters

• serviceId - This parameter is a handle identifying the DAB Component.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)69

See Also

dab.DABListener#getComponentInfoCnf getComponentInfoCnf

public void selectReceptionInfoReq(

boolean synchronizationNotification,

boolean bitErrorRateNotifcations,

boolean muteStateNotifications,

boolean requestOnce)

The selectReceptionInfoReq request initiates the SelectReceptionInfo command. The
SelectReceptionInfo command starts, stops or changes subscription to state change notifications
concerning reception conditions. It is possible to monitor synchronization, biterrorrate and audio
decoder muting.

The SelectReceptionInfo command allows a DAB client to subscribe for state change notifications
concerning reception conditions in terms of synchronization, biterrorrate and audio decoder muting.
The subscription is requested by the selectReceptionInfoReq request and is confirmed with the
selectReceptionInfoCnf confirmation. The subscription level can be changed by another
SelectReceptionInfo command. This includes stopping of subscription. After a successful subscription
the calling DAB client receives ReceptionInfoNtf notifications when state changes occur.

Parameters

• synchronizationNotification - This parameter specifies if the calling client is notified
about state changes concerning DAB signal synchronization. If the parameter is set to
true (default) notifications are provided, if it is set to false no notifications are provided.

• bitErrorRateNotifications - This parameter specifies if the calling client is notified about
state changes concerning the biterrorrate. If the parameter is set to true (default)
notifications are provided, if it is set to false no notifications are provided.

• muteStateNotifications - This parameter specifies if the calling client is notified about
state changes concerning the mute state of the audio decoder. If the parameter is set to
true (default) notifications are provided, if it is set to false no notifications are provided.

• requestOnce - This parameter specifies if the reception condition information is wanted
only once. In this case the reception condition is once detected and the DAB client
informed by one and only one receptionInfoNtf call.

See Also

dab.DABListener#selectReceptionInfoCnf selectReceptionInfoCnf

dab.DABListener#receptionInfoNtf receptionInfoNtf

public void selectComponentReq(

ComponentId id,

int selectionMode)

The selectComponentReq request initiates the SelectComponent command. The SelectComponent
command starts or stops an application delivered in a DAB Component.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)70

The SelectComponent command allows to start or stop applications delivered in DAB components. In
general more than one component of the same DAB Ensemble can be selected simultaneously. It is
possible to select one audio component, all programme-associated data components of the selected
audio component and more than one independent data component at the same time. The selection of
a component is requested by the selectComponentReq request and is confirmed by the
selectComponentCnf confirmation. It is possible that a component is removed from a DAB Ensemble
which means it is no longer broadcast and therefore no longer available. This is indicated by a SINtf
call and means that the selection is removed automatically. If the selection of a component is
removed also all existing object selections belonging to the component are removed.

If the user application is a slide show or a dynamic label, its objects are delivered automatically (using
objectNtf notifications) after the SelectComponent confirmation was sent.

If the selected component is an audio service, its PAD data services become available as . This
means service information is generated for all PAD services and they can be selected. If the selection
of the audio service is stopped, also all PAD services are stopped and they are not available
anymore.

If the component is not in the current ensemble, it depends on the implementation whether it is
selected nevertheless.

Parameters

• id - This parameter is a pointer to the identifier of the DAB Component which is to be
selected. If all component selections should be removed (set selectionMode to
DABConstants.selectionModeRemoveAll) this parameter is ignored and should be set to
null.

• selectionMode - This parameter specifies the selection mode for the component. The
following flags are supported:

• DABConstants.selectionModeReplace: All currently selected components of the same
type are stopped and the specified component is to be started. The same type means
an audio component replaces any other selected audio component, a data component
replaces all other selected independent data components and a programme-associated
data component replaces all other selected programme-associated data components.

• DABConstants.selectionModeAdd: The application delivered by the specified
component is to be started. Other selected components are not affected.

• DABConstants.selectionModeRemove: The selection of the specified component is
stopped.

• DABConstants.selectionModeRemoveAll: All existing component selections are
removed. Set serviceId to null in this case.

See Also

dab.DABListener#selectComponentCnf selectComponentCnf

dab.DABListener#siNtf siNtf

dab.DABSource#selectObjectReq serviceObjectReq

public void selectComponentStreamReq(ComponentId componentId)

The following request provides access to the DAB transport streams. The requested stream is
delivered back in the confirmation, which ends the command.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)71

Parameters

• componentId - the service identifier of the component which carries the stream

See Also

dab.DABListener#selectComponentStreamCnf selectComponentStreamCnf

public void selectApplicationReq(

ComponentId serviceId,

ObjectId objectId)

The selectApplicationReq selects applications

The SelectApplication command enables a client to load and control an application. The request is
confirmed with the selectApplicationCnf confirmation.

Parameters

• serviceId - the component in which the application is located

• objectId - the id of the start object

See Also

dab.DABListener#selectApplicationCnf selectApplicationCnf

public void selectObjectReq(

ComponentId id,

ObjectId objectId,

int requestMode,

boolean replaceSelections,

int deliveryMode,

int cacheHint)

The selectObjectReq request initiates the SelectObject command. The SelectObject command
selects an object from a selected DAB Component. This includes requesting an object from a data
component, delivery after reception and notification of updates as long as the object is selected.

The SelectObject command selects an object from a selected component. Selection means it is
requested for delivery and if wanted also updates of the object are delivered. Additionally it is possible
to give some hints for caching. More than one object and also from more than one component can be
selected simultaneously. The selection of an object is requested by the selectObjectReq request and
is confirmed by the selectObjectCnf confirmation. The object is delivered using the objectNtf method.
This includes first-time delivery and all updates. Beyond starting or stopping a selection it is possible
to remove all other selections belonging to the same component by setting parameter
replaceSelections to true. It is possible that a component is removed from a DAB Ensemble. This is
indicated by a serviceInfoNtf call. In this case also the selected objects of the service are no longer
selected.

It is possible that an object is removed from current on-air service. This is indicated by an objectNtf
call. In this case the selections for this object are automatically disabled.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)72

Currently object selection makes only sense with applications of type BroadcastWebSite. Objects of
applications like Slideshows or Dynamic Label are delivered automatically by objectNtf calls.

Parameters

• id - This parameter identifies the selected component the object is belonging to.

• objectId - This parameter identifies the object which is to be selected.

• selectionMode - This parameter specifies the selection mode of the object. The following
values are supported:

• DABConstants.requestModeOff: This is used in order to stop the selection of objects
which are requested with the request mode DABConstants.requestModeUpdate. It is
not needed for objects which are requested with the DABConstants.requestModeOnce
flag except for the case that a SelectObjectReq is pending and the delivery is no longer
wanted.

• DABConstants.requestModeOnce: The object is requested for one-time delivery. After
the first reception from the broadcast channel the object is delivered to the connected
DAB client. The client is not notified about new versions.

• DABConstants.requestModeUpdate: The object is requested for update delivery. After
the first reception from the broadcast channel the object is delivered to the connected
client. Additionally each new version of the object is delivered.

• replaceSelections - This parameter specifies if all current object selections belonging to the
component identified by serviceId are replaced with this selection. If this parameter is set to
true, then all selections are removed. If this parameter is set to false, then existing selections
remain unchanged.

• deliveryMode - This parameter specifies the delivery mode of the object. The following
values are supported:

• DABConstants.deliveryModeComplete: Only the complete object is delivered to the
DAB client.

• DABConstants.deliveryModePartial: The object may be delivered in parts.

• cacheHint - This parameter specifies a hint for caching of the selected object.

See Also

dab.DABListener#selectObjectCnf selectObjectCnf

dab.DABListener#objectNtf objectNtf

public void getLocationInfoReq(

int type,

int mode,

int desiredDelta,

int desiredAccuracy)

The getLocationInfoReq initiates the GetLocationInfoCommand.

Parameters

• type - This parameter indicates the type of location information, that is requested. Supported
flags are DABConstants.LocationInfoPosition and DABConstants.LocationInfoRegionId.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)73

• mode - The information is delivered according to the values of this parameter:

• DABConstants.LocationInfoOnce: the information is delivered only one time. The
parameter desiredDelta is not considered.

• DABConstants.LocationInfoPeriodByTime: The information is delivered in intervals
given by the value of desiredDelta (in milliseconds)

• DABConstants.LocationInfoPeriodByDistance: The information is delivered after the
distance has passed given by the value of desiredDelta (in meters)

• DABConstants.LocationInfoStop: The delivery of information is stopped. The parameter
desiredDelta is not considered.

desiredDelta - see description of the mode parameter

desiredAccuracy - This parameter indicates the desired accuracy in meters. The value is only
considered if type&DABConstants.LocationInfoPosition!=0 <P> This command is optional and may
only partially be supported (e.g. only mode=DABConstants.LocationInfoOnce and
mode=DABConstants.LocationInfoStop) or may not be supported at all.

See Also

dab.DABListener#getLocationInfoCnf getLocationInfoCnf

dab.DABListener#locationInfoNtf locationInfoNtf

public void respondConflictResolutionReq(

int transaction,

int turn,

int operation,

int suboperation,

int answer)

The respondConflictResolutionReq is used to respond to a resource conflict notification.

Parameters

• transaction - the identifier of the transaction of the resource conflict

• turn - the code of the turn (see DABConstants.conflictResolutionTurn*)

• operation - the code of the operation (see DABConstants.conflictResolutionOperation*)

• suboperation - the code of the suboperation (see
DABConstants.conflictResolutionSuboperation*)

• answer - the actual answer (see DABConstants.conflictResolutionAnswer*)

See Also

dab.DABListener#conflictResolutionNtf conflictResolutionNtf

dab.DABListener#respondConflictResolutionCnf respondConflictResolutionCnf

public void operationControlReq(

int attribute,

Object value)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)74

The OperationControl command enables the DAB client to change or read receiver parameters. The
command is initiated by operationControlReq and is finalized by the confirmation
operationControlReq.

Parameters

• attribute - The parameter can be set as follows:

• DABConstants.operationControlSetVolume: The volume of the receiver is set. The
parameter value has to be of type Integer in the range from 0 to 100 (percent).

• DABConstants.operationControlGetVolume: The volume of the receiver is read. The
parameter value is not considered.

• DABConstants.operationControlSetServiceFollowing: The service following feature
is changed. Value has to be of type Boolean. If it is set to true and the receiver
supports service following, then service following for services is switched on. If it is
set to false, service following is switched off.

• DABConstants.operationControlGetServiceFollowing: Read the state of the service
following. The parameter value is not considered.

• DABConstants.operationControlGetServiceFollowingNotifications: Instruct the
package to send service following notifications. If the parameter value (of type
Boolean) is set to true, the notifications are sent. If it is set to false, then no further
notifications are sent.

• DABConstants.operationControlSetDRCMode: Sets the DRC (Dynamic range
control) mode. The DAB concept provides the option of Dynamic Range Control
(DRC). The information is generated from the broadcaster's side (transported inside
PAD, Programme Associated Data) to influence the audio output signal's dynamic
range. The audio output signal will be modified if the option is activated with this call.
<P> Value has to be of type Boolean. If it is set to true and the receiver supports
DRC, then the DRC mode for audio services is switched on. If it is set to false, the
DRC mode is switched off.

• DABConstants.operationControlGetDRCMode: Read the state of the DRC mode.
The parameter value is not considered.

• DABConstants.operationControlGetDRCModeNotifications: Instruct the package to
send DRC mode notifications. If the parameter value (of type Boolean) is set to true,
the notifications are sent. If it is set to false, then no further notifications are sent.

• value - see description of attribute

See Also

dab.DABListener#operationControlCnf operationControlCnf

dab.DABListener#serviceFollowingNtf serviceFollowingNtf

dab.DABListener#drcModeNtf drcModeNtf

public interface dab.DABAppProxy implements dab.AppStateChangeEventSource

This interface can be used to control applications that were launched using selectApplicationReq in DABSource.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)75

See Also

"Digital Video Broadcasting (DVB) Multimedia Home Platform (MHP), TS 101 812"

Version

0.2

Methods public void addAppStateChangeEventListener(AppStateChangeEventListener listener)

adds a listener for application state changes

public void removeAppStateChangeEventListener(AppStateChangeEventListener listener)

removes a listener for application state changes

public int getState()

returns the current state of the application (see the defined constants)

Throws

Java.lang.SecurityException - the exception is thrown if the caller is not permitted to retrieve the
application state

public void load()

loads the classes of the application. The state of the application changes to LOADED.

This action is only successful, if the application was not loaded before.

A state change event is signalled in any case.

Throws

Java.lang.SecurityException - the exception is thrown if the caller is not permitted to load the
application

public void init()

initialises the application. The routine initXlet in the related application will be called. The application
is afterwards in the INITED state.

This action is only successful, if the application was not initialized before. If the application was not
loaded, the application will first be loaded and and then initialized.

A state change event is signalled in any case. An additional state change is signalled if the
application also has to be loaded. In this case first the state change to LOADED is signalled and
afterwards that one to INITED.

Throws

Java.lang.SecurityException - the exception is thrown if the caller is not permitted to initialize the
application

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)76

See Also

dab.xlet.Xlet Xlet

public void pause()

pauses the application. The routine pauseXlet in the related application will be called. The application
is afterwards in the PAUSED state.

This action is only successful, if the application is either in the INITED state or in the STARTED state.

A state change event is signalled in any case.

Throws

Java.lang.SecurityException - the exception is thrown if the caller is not permitted to pause the
application

See Also

dab.xlet.Xlet Xlet

public void resume()

resumes the application. The routine startXlet in the related application will be called. The application
is afterwards in the STARTED state.

This action is only successful, if the application was in the PAUSED state.

A state change event is signalled in any case.

Throws

Java.lang.SecurityException - the exception is thrown if the caller is not permitted to resume the
application

See Also

dab.xlet.Xlet Xlet

public void start()

starts the application. The routine startXlet in the related application will be called. The application is
afterwards in the STARTED state.

This action is only successful, if the application was not paused or destroyed. If the application was
not loaded, the application will first be loaded, then initialized and finally be started. If the application
was not initialized, the application will be initialized and then started.

A state change event is signalled in any case. Additional state changes will also be signalled (e.g.
NOT_LOADED - LOADED - INITED - STARTED).

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)77

Throws

Java.lang.SecurityException - the exception is thrown if the caller is not permitted to start the
application

See Also

dab.xlet.Xlet Xlet

public void stop(boolean forced)

requests to stop the application. The routine destroyXlet in the related application will be called. The
application is afterwards in the DESTROYED state.

This action is only successful, if the application was not destroyed.

A state change event is signalled in any case.

Parameters

• forced - if set to true the application is asked to stop and may refuse. if set to false, the
application is stopped in any case.

Throws

Java.lang.SecurityException - the exception is thrown if the caller is not permitted to stop the
application

See Also

dab.xlet.Xlet Xlet

public void setAppProperty(

String key,

Object value)

sets a property of the application.

Parameters

• key - the name of the property

• value - the new value of the property

Throws

Java.lang.SecurityException - the exception is thrown if the caller is not permitted to set an
property of the application

public Java.lang.Object getAppProperty(String key)

gets a property of the application. It returns the value of the property or NULL if the property is not
defined.

Parameters

• key - the name of the property

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)78

Throws

Java.lang.SecurityException - the exception is thrown if the caller is not permitted to retrieve an
property of the application

Fields public static final DESTROYED

the final state of the application - no further actions are possible

public static final NOT_LOADED

the application was selected, but is not yet loaded

public static final LOADED

the application is loaded

public static final INITED

the application is loaded and initialized, but there is no activity yet

public static final PAUSED

the application is paused, which means it is not active

public static final STARTED

the application is active

public class dab.DABException extends Java.lang.Exception

DABException is the superclass for exceptions inside the DAB package.

Version

1.0

Constructors public DABException()

public DABException(String msg)

public class dab.DABConnectionException extends dab.DABException

The DABConnectionException is thrown when there are problems with the connection between the DAB client and the
receiver.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)79

Version

1.0

Constructors public DABConnectionException()

public class dab.DABReceiverAddress

DABReceiverAddress is used to specify the location of DAB receivers.

Version

1.0

Constructors public DABReceiverAddress(String address)

Generates a DABReceiverAddress object from a textual representation of the address. Note, that the
actual format of address depends on the implementation

See Also

DABReceiverAddress#getAddress getAddress

Methods public Java.lang.String toString()

Generates a textual representation of the object.

public Java.lang.String getAddress()

Generates a textual representation of the object, that can be used to construct a DABReceiverAdress
object

public interface dab.AppStateChangeEventSource

An interface that can be used to identify an application by its related controller.

Version

0.2

public class dab.DABClient implements dab.DABSource

The DABClient class is used to access a DAB resource. Usually the DAB resource might be a receiver that resides on
the same host or is at least directly connected to it. But, it could also be a network device.

Note, that the actual interface is defined in DABSource.

See Also

dab.DABSource DABSource

Version

1.05

Constructors public DABClient()

Create a DABClient object

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)80

Methods public synchronized void addDABListener(DABListener listener)

Register a DAB listener. DAB events, that relate to this client, are distributed to all registered
listeners.

See Also

dab.events.DABEvent DABEvent

DABListener DABListener

dab.DABClient#removeDABListener removeDABListener

public synchronized void removeDABListener(DABListener listener)

Removes the given listener from the list of DAB Listeners.

See Also

DABListener DABListener

dab.DABClient#addDABListener addDABListener

public void open()

A connection to the default receiver is opened.

Throws

DABException - when the client could not be registered

SecurityException - when the application controlling the DABClient does not have the permission
to call the open method

public void open(DABReceiverAddress receiverAddress)

A connection to the given receiver is opened. This method is only supported in configurations with
multiple receivers.

Parameters

• receiverAddress - This parameter specifies the address of the receiver to be used

Throws

DABException - when the client could not be registered

SecurityException - when the application controlling the DABClient does not have the permission
to call the open method

public void close()

The connection to the current receiver is closed. All ongoing transactions of the client are cancelled.

Throws

DABException - when no connection was opened

public void tuneReq(

int tuneFrequency,

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)81

int transmissionMode)

public void searchReq(

int searchMode,

int tables,

int startFrequency,

int stopFrequency,

int transmissionModes,

int notifications)

public void scanReq(

int searchMode,

int tables,

int startFrequency,

int stopFrequency,

int transmissionModes,

int notifications)

public void selectSIReq(

boolean ensembleInfo,

boolean serviceInfo,

boolean componentInfo,

boolean autoDelivery)

public void getEnsembleInfoReq(EnsembleId id)

public void getServiceInfoReq(ServiceId id)

public void getComponentInfoReq(ComponentId id)

public void selectReceptionInfoReq(

boolean synchronizationNotification,

boolean bitErrorRateNotifications,

boolean muteStateNotifications,

boolean requestOnce)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)82

public void selectComponentReq(

ComponentId id,

int selectionMode)

public void selectComponentStreamReq(ComponentId componentId)

public void selectApplicationReq(

ComponentId componentId,

ObjectId objectId)

public void selectObjectReq(

ComponentId id,

ObjectId objectId,

int requestMode,

boolean replaceSelections,

int deliveryMode,

int cacheHint)

public void getLocationInfoReq(

int type,

int mode,

int desiredDelta,

int desiredAccuracy)

public void respondConflictResolutionReq(

int transaction,

int turn,

int operation,

int suboperation,

int answer)

public void operationControlReq(

int attribute,

Object value)

public class dab.ResourceConflictException extends dab.DABException

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)83

The exception indicates unsolved resource conflicts.

Version

0.2

public interface dab.DABListener implements Java.util.EventListener

DABListener defines the interface for DAB listeners.

Version

1.06

Methods public void tuneCnf(TuneCnfEvent e)

The TuneCnf method finalizes a Tune command and is sent as a response to a TuneReq message. It
provides information about the currently selected DAB frequency and reception conditions.

The Tune command is used to select a specified DAB frequency. The tuneReq request initiates the
Tune command. tuneCnf finalizes the Tune command and provides information about the reception
state. This includes the selected frequency, the detected transmission mode and the synchronization
state of the receiver.

See Also

dab.DABSource#tuneReq tuneReq

dab.DABSource#searchReq searchReq

dab.DABListener#searchCnf searchCnf

public void searchCnf(SearchCnfEvent e)

The searchCnf method finalizes a Search command and provides information about the command
status, currently selected DAB frequency and current reception conditions.

The Search command is used in order to search for a DAB Ensemble according to a specified search
mode. Searching for a DAB Ensemble can take a large amount of time. The start of searching is
indicated by a 'Started' searchNtf message. Other searchNtf messages inform a DAB client about
search progress. It is finalized by delivery of the searchCnf message. It informs about the command
status, the selected frequency and the synchronization state. No further searchNtf messages will be
delivered after the delivery of the searchCnf message.

See Also

dab.DABSource#searchReq searchReq

dab.DABListener#searchNtf searchNtf

public void searchNtf(SearchNtfEvent e)

A SearchNtf event is sent after a search for a DAB Ensemble was started searchReq. It informs about
the start of searching and about the progress of searching. A SearchCnf event finalizes a Search
command. No more SearchNtf events are sent after a SearchCnf event was sent.

The SearchNtf event is sent after the searching for a DAB Ensemble has been started and while
searching is in progress in order to provide information about the current status of searching. The
'Started' notification is sent in any case. Progress notifications are only sent if notifications have been
requested with the related SearchReq message. No further notifications will be sent after a SearchCnf
message is delivered.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)84

See Also

dab.DABSource#searchReq searchReq

dab.DABListener#searchCnf searchCnf

public void scanCnf(ScanCnfEvent e)

The ScanCnf message finalizes a Scan command. It informs about the result of scanning and the
current tune state.

The Scan command is used in order to perform a search for all available DAB Ensembles in a
specified frequency range. Depending on the frequency range and the search mode this operation
may require a substantial amount of time from only a second up to several minutes. The command is
started by the ScanReq message and is finished with the ScanCnf message. In between ScanNtf
messages are sent in order to inform about the current status of searching if notifications are
requested.

The ScanCnf message indicates that the scan command is finished and informs about the current
tune state. As a result of performing the scan command the service information database is filled with
information. If a SI subscription is running several SINtf messages are delivered to the connected
application.

See Also

dab.DABSource#scanReq scanReq

dab.DABListener#scanNtf scanNtf

public void scanNtf(ScanNtfEvent e)

The ScanNtf message is sent after a search for all available DAB Ensembles in a specified frequency
range is started by the ScanReq message. The ScanNtf message provides information about the
current status of searching for all available DAB Ensembles in a specified frequency range. It is
delivered to the connected application after the search has been started by the ScanReq message
and notifications have been requested. No further notifications will be sent after a ScanCnf message
is delivered.

See Also

dab.DABSource#scanReq scanReq

dab.DABListener#scanCnf scanCnf

public void selectSICnf(SelectSICnfEvent e)

The selectSICnf method finalizes a SelectSI command and indicates current settings. The SelectSI
command starts, stops or changes subscription to Service Directory Information.

The SelectSI command allows a DAB client to subscribe for Service Directory Information. The
subscription is requested by the selectSIReq method and is confirmed with the SelectSICnf method.
The subscription level can be changed by another SelectSI command. This includes the termination
of subscription. After a successful subscription a connected client receives siNtf calls when the
Service Directory changes.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)85

See Also

dab.DABSource#selectSIReq selectSIReq

dab.DABListener#siNtf siNtf

public void siNtf(SINtfEvent e)

The siNtf notification is sent as a consequence of subscribing to Service Directory Information.

A call to siNtf indicates that the Service Directory has changed. The type of change is signalled and a
handle to the changed service element is provided. If AutoDelivery is activated the changed
information object itself is delivered together with the notification. Otherwise it can be requested with
getEnsembleInfo, getServiceInfo or getComponentInfo. siNtf message is called as a result of the
subscription to Service Directory Information.

See Also

dab.DABSource#selectSIReq selectSIReq

dab.DABListener#selectSICnf selectSICnf

public void getEnsembleInfoCnf(GetEnsembleInfoCnfEvent e)

The GetEnsembleInfoCnf method finalizes the GetEnsembleInfo command and delivers information
about a requested DAB Ensemble to a DAB client.

The GetEnsembleInfo command provides a DAB client with information about a specified DAB
Ensemble, e.g. Label, No of Services, and so on. The command is initiated by a getEnsembleInfoReq
request and is finished by a getEnsembleInfoCnf call.

See Also

dab.DABSource#getEnsembleInfoReq getEnsembleInfoReq

dab.si.EnsembleInfo EnsembleInfo

public void getServiceInfoCnf(GetServiceInfoCnfEvent e)

A call to the getServiceInfoCnf method finalizes the GetServiceInfo command and delivers
information about a requested DAB Service to a DAB client.

The GetServiceInfo command provides a DAB client with information about a specified DAB Service,
e.g. Label, No of Services, and so on. The command is initiated by a getServiceInfoReq message and
is finished by a getServiceInfoCnf message.

See Also

dab.DABSource#getServiceInfoReq getServiceInfoReq

public void getComponentInfoCnf(GetComponentInfoCnfEvent e)

The GetComponentInfoCnf message finalizes the GetComponentInfo command and delivers
information about a requested DAB Component to a DAB client.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)86

The GetComponentInfo command provides a DAB client with information about a specified DAB
Component, e.g. Label, Language and so on. The command is initiated by a GetComponentInfoReq
request and is finished by a call to getComponentInfoCnf message.

See Also

dab.DABSource#getComponentInfoReq getComponentInfoReq

dab.si.ComponentInfo ComponentInfo

public void selectReceptionInfoCnf(SelectReceptionInfoCnfEvent e)

The selectReceptionInfoCnf method finalizes the SelectReceptionInfo command. It informs about the
command status and the current subscription level.

The selectReceptionInfo method allows a DAB client to subscribe for state change notifications
concerning reception conditions in terms of synchronization, biterrorrate and audio decoder muting.
The subscription is requested by selectReceptionInfoReq and is confirmed with
selectReceptionInfoCnf. The subscription level can be changed by another SelectReceptionInfo
command. This includes stopping of subscription. After a successful subscription the calling DAB
client receives receptionInfoNtf calls when state changes occur.

See Also

dab.DABSource#selectReceptionInfoReq selectReceptionInfoReq

dab.DABListener#receptionInfoNtf receptionInfoNtf

public void receptionInfoNtf(ReceptionInfoNtfEvent e)

The receptionInfoNtf method is called as a consequence of subscribing to state changes in
synchronization, biterrorrate and audio decoder muting.

receptionInfoNtf indicates that the synchronization state, biterrorrate or mute state has changed (see
ReceptionInfoNtfEvent). The ReceptionInfoNtf message is provided to a connected client as a result
of subscription to state change notifications concerning reception conditions (selectReceptionInfoReq
and selectReceptionInfoCnf messages).

See Also

dab.DABSource#selectReceptionInfoReq selectReceptionInfoReq

dab.DABListener#selectReceptionInfoCnf selectReceptionInfoCnf

public void selectComponentCnf(SelectComponentCnfEvent e)

The SelectComponentCnf confirmation finalizes the SelectComponent command. It informs about the
command status and the selection status of the specified component.

The SelectComponent command allows to start or stop applications delivered in DAB components. In
general more than one component of the same DAB Ensemble can be selected simultaneously. It is
possible to select one audio component, all programme-associated data components of the selected
audio component and more than one independent data component at the same time. The selection of
a component is requested by the selectComponentReq message and is confirmed by a
selectComponentCnf call. It is possible that a component is removed from a DAB Ensemble which
means it is no longer broadcast and therefore no longer available. This is indicated by a SINtf call and
means that the selection is removed automatically.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)87

See Also

dab.DABSource#selectComponentReq selectComponentReq

dab.DABListener#siNtf siNtf

public void selectComponentStreamCnf(SelectComponentStreamCnfEvent e)

The selectComponentStreamCnf method returns the requested stream (if the command was
successful) and informs about the result of the command.

See Also

dab.DABSource#selectComponentStreamReq selectComponentStreamReq

public void componentNtf(ComponentNtfEvent e)

The componentNtf method is called if there are changes to the selection mode of a component. This
typically happens, when the selection of a component is stopped.

Note, that this notification will be produced due to internal reasons (e.g. after tuning to another
ensemble) and not in response to a selectComponentReq request (that is handled by
selectComponentCnf).

public void selectObjectCnf(SelectObjectCnfEvent e)

The SelectObjectCnf method finalizes the SelectObject command. The SelectObject command
selects an object from a selected DAB Component. This includes requesting an object from a data
component, delivery after reception and notification of updates as long as the object is selected.

The SelectObject command selects an object from a selected component. Selection means it is
requested for delivery and if wanted also updates of the object are delivered. Additionally it is possible
to give some hints for caching. More than one object and also from more than one component can be
selected simultaneously. The selection of an object is requested by selectObjectReq and is confirmed
by calling selectObjectCnf. The object is delivered using objectNtf. This includes first-time delivery
and all updates. Beyond starting or stopping a selection it is possible to remove all other selections
belonging to the same component by setting parameter replaceSelections to true. It is possible that a
component is removed from a DAB Ensemble. This is indicated by a call to siNtf. In this case also the
selected objects of the service are no longer selected. It is possible that an object is removed from
current on-air service. This is indicated by calling objectNtf. In this case the selections for this object
are automatically disabled. Currently object selection makes only sense with applications of type
BroadcastWebSite. Objects of applications like Slideshows or Dynamic Label are delivered
automatically using objectNtf.

See Also

dab.DABSource#selectObjectReq selectObjectReq

dab.DABListener#objectNtf objectNtf

public void selectApplicationCnf(SelectApplicationCnfEvent e)

The method is called as a consequence of selecting an application from a data component by use of
the SelectApplication command. It delivers a proxy to control the application.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)88

See Also

dab.DABSource#selectApplicationReq selectApplicationReq

public void objectNtf(ObjectNtfEvent e)

The objectNtf method is called as a consequence of selecting objects from a data component by use
of the SelectObject command. It delivers a selected object partially or complete to a DAB client.

objectNtf is used to deliver a selected object to the connected DAB client. Depending on the request
mode the object is delivered only once or more than once in case of updates. If the object cannot be
delivered in-time as indicated by a call to selectObjectCnf, then objectNtf informs about the delay. If
transmission of a selected object is stopped, objectNtf informs about the termination of the object
transmission and the object selection. It is possible that a DAB Component is removed from a DAB
Ensemble. This is indicated by a call to siNtf. In this case also the selected objects of the component
are no longer selected. No termination messages are sent for terminated object selections resulting
from termination of a component.

See Also

dab.DABSource#selectObjectReq selectObjectReq

dab.DABListener#selectObjectCnf selectObjectCnf

dab.data.DABObject DABObject

public void getLocationInfoCnf(GetLocationInfoCnfEvent e)

getLocationInfoCnf confirms the getLocationInfo command. This means the delivery of location
information will start from now on.

See Also

dab.DABSource#getLocationInfoReq getLocationInfoReq

dab.DABListener#locationInfoNtf locationInfoNtf

public void locationInfoNtf(LocationInfoNtfEvent e)

locationInfoNtf notifies about location information.

See Also

dab.DABSource#getLocationInfoReq getLocationInfoReq

dab.DABListener#getLocationInfoCnf getLocationInfoCnf

public void conflictResolutionNtf(ConflictResolutionNtfEvent e)

The method is called for notifying the listener of resource conflicts. The listener can react to this event
using the request respondConflictResolutionReq.

See Also

dab.DABSource#respondConflictResolutionReq respondConflictResolutionReq

dab.DABListener#respondConflictResolutionCnf respondConflictResolutionCnf

public void respondConflictResolutionCnf(RespondConflictResolutionCnfEvent e)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)89

The method is called for confirming a reaction to a resource conflict.

See Also

dab.DABSource#respondConflictResolutionReq respondConflictResolutionReq

dab.DABListener#conflictResolutionNtf conflictResolutionNtf

public void operationControlCnf(OperationControlCnfEvent e)

The confirmation indicates the result of the operationControl command.

See Also

dab.DABSource#operationControlReq operationControlReq

public void serviceFollowingNtf(ServiceFollowingNtfEvent e)

The notification informs about service following actions.

See Also

dab.DABSource#operationControlReq operationControlReq

public void drcModeNtf(DRCModeNtfEvent e)

The notification informs about DRC mode changes.

See Also

dab.DABSource#operationControlReq operationControlReq

public void systemFailureNtf(SystemFailureNtfEvent e)

SystemFailureNtf notifies about severe problems with the hardware or the middleware
(e.g. breakdown of the communication to the DAB receiver). This should not be confused with the
indication of errors for a particular command, which relates only to the command itself.

Typically, after the notification is sent, the package can no longer be used or needs to be reinitialized.

public class dab.DABNotAvailableException extends dab.DABException

The DABNotAvailableException is thrown when particular data is currently not available or even not at all available. This
usually happens with respect to so-called optional attributes.

Version

1.0

Constructors public DABNotAvailableException()

public interface dab.AppStateChangeEventListener implements Java.util.EventListener

AppStateChangeEventListener defines the interface for events originating from the DABAppProxy.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)90

See Also

"Digital Video Broadcasting (DVB) Multimedia Home Platform (MHP), TS 101 812"

DABAppProxy DABAppProxy

Version

0.2

Methods public void stateChange(AppStateChangeEvent event)

This method is used to signal a state change for the related application.

public class dab.DABConstants

DABConstants contains the constants that are used inside the whole package (including the subpackages).

If you would like to add any new constants, please contact WorldDAB Information and Registration Centre, Wyvil Court,
Wyvil Road, LONDON SW8 2TG, England, Tel: +44 171 896 90 51, Fax: +44 171 896 90 55,
E-mail: worlddab-irc@worlddab.org.

Version

1.07

Constructors public DABConstants()

Methods public static Java.lang.String result2String(int result)

The method returns a string for the given result code. It is a textual explanation of the result.

Fields public static final resultOK

no problems occurred

public static final resultNotSupported

the requested operation is not supported

public static final resultFatalError

a system error occurred (either related to hardware or to the operating system)

public static final resultInternalError

an internal error occurred in the DAB VM (e.g. an implementation error)

public static final resultInvalidParameter

the value of some parameter is not correct

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)91

public static final resultOutOfMemory

the system ran out of memory

public static final resultNonApplicableFunction

the operation is not applicable in the current context

public static final resultEnsembleNotFound

the requested/indicated ensemble was not found

public static final resultServiceNotFound

the requested/indicated service was not found

public static final resultComponentNotFound

the requested/indicated component was not found

public static final resultObjectNotSelected

the indicated object was not be selected (in advance)

public static final resultApplicationNotFound

the requested/indicated application was not found

public static final transmissionModeAutomatic

public static final transmissionMode1

public static final transmissionMode2

public static final transmissionMode3

public static final transmissionMode4

public static final transmissionModeUnknown

public static final searchModeAutomatic

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)92

public static final searchMode16 kHzSteps

public static final searchModeUp

public static final searchModeDown

public static final searchModeUseTables

public static final searchModeUseFrequencyRange

public static final searchModeContinuous

public static final searchCEPTFrequencyTableBandIII

public static final searchCEPTFrequencyTableLBand

public static final searchCanadaFrequencyTableLBand

public static final notificationOff

public static final notificationFrequencyStep

public static final notification16kHzStep

public static final notificationTableEntry

public static final notificationEnsembleFound

public static final notificationSearchStarted

public static final notificationNone

public static final notificationEnsembleAdded

public static final notificationEnsembleRemoved

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)93

public static final notificationEnsembleChanged

public static final notificationServiceAdded

public static final notificationServiceRemoved

public static final notificationServiceChanged

public static final notificationComponentAdded

public static final notificationComponentRemoved

public static final notificationComponentChanged

public static final selectionModeReplace

public static final selectionModeAdd

public static final selectionModeRemove

public static final selectionModeRemoveAll

public static final requestModeOff

public static final requestModeOnce

public static final requestModeUpdate

public static final deliveryModeComplete

public static final deliveryModePartial

public static final syncStateSynchronizationStateUnknown

public static final syncStateNotSynchronized

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)94

public static final syncStateDABSignalDetected

public static final syncStateTimeAndFrequencySynchronized

public static final syncStateFICReadable

public static final tuneStateUnknown

public static final tuneStateNotTuned

public static final tuneStateTuning

public static final tuneStateSearching

public static final tuneStateTuned

public static final updatedNone

public static final updatedLabel

public static final updatedCountry

public static final updatedFrequency

public static final updatedDate

public static final updatedTime

public static final updatedTimeOffset

public static final updatedRegion

public static final updatedStaticProgrammeType

public static final updatedDynamicProgrammeType

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)95

public static final updatedAnnouncement

public static final updatedLanguage

public static final updatedRegionId

public static final updatedRegionLabel

public static final updatedAnnouncementSupport

public static final updatedStartObject

public static final updatedObjectDirectory

public static final updatedProgrammeNumber

public static final updatedAudioComponent

public static final updatedBitrate

public static final syncUpdateSynchronizationState

public static final syncUpdateBitErrorRateState

public static final syncUpdateMuteState

public static final bitErrorRateLevelUnknown

public static final bitErrorRateLevel1

public static final bitErrorRateLevel2

public static final bitErrorRateLevel3

public static final bitErrorRateLevel4

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)96

public static final bitErrorRateLevel5

public static final muteStateUnknown

public static final muteStateMuting

public static final muteStatePartialMuting

public static final muteStateNotMuting

public static final selectionStateOk

public static final selectionStateDelayed

public static final selectionStateTerminated

public static final serviceSelectorNone

public static final serviceSelectorLabel

public static final serviceSelectorCountry

public static final serviceSelectorFrequency

public static final serviceSelectorDate

public static final serviceSelectorTime

public static final serviceSelectorTimeOffset

public static final serviceSelectorRegion

public static final serviceSelectorStaticProgrammeType

public static final serviceSelectorDynamicProgrammeType

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)97

public static final serviceSelectorAnnouncement

public static final serviceSelectorLanguage

public static final serviceSelectorRegionId

public static final serviceSelectorRegionLabel

public static final serviceSelectorAnnouncementSupport

public static final serviceSelectorStartObject

public static final serviceTypeAudioService

public static final serviceTypeDataService

public static final announcementAlarm

public static final announcementRoadTrafficFlash

public static final announcementTransportFlash

public static final announcementWarning_Service

public static final announcementNewsFlash

public static final announcementAreaWeatherFlash

public static final announcementEventAnnouncement

public static final announcementSpecialEvent

public static final announcementReserved1

public static final announcementReserved2

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)98

public static final announcementReserved3

public static final announcementReserved4

public static final announcementReserved5

public static final announcementReserved6

public static final announcementReserved7

public static final announcementReserved8

public static final countryAlbania

public static final countryAlgeria

public static final countryAndorra

public static final countryAustria

public static final countryAzores_Portugal

public static final countryBelgium

public static final countryBelarus

public static final countryBosniaHerzegovina

public static final countryBulgaria

public static final countryCanaries_Spain

public static final countryCroatia

public static final countryCyprus

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)99

public static final countryCzechRepublic

public static final countryDenmark

public static final countryEgypt

public static final countryEstonia

public static final countryFaroe_Denmark

public static final countryFinland

public static final countryFrance

public static final countryGermany1

public static final countryGermany2

public static final countryGibraltar_UnitedKingdom

public static final countryGreece

public static final countryHungary

public static final countryIceland

public static final countryIraq

public static final countryIreland

public static final countryIsrael

public static final countryItaly

public static final countryJordan

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)100

public static final countryLatvia

public static final countryLebanon

public static final countryLibya

public static final countryLiechtenstein

public static final countryLithuania

public static final countryLuxembourg

public static final countryMacedonia

public static final countryMadeira_Portugal

public static final countryMalta

public static final countryMoldova

public static final countryMonaco

public static final countryMorocco

public static final countryNetherlands

public static final countryNorways

public static final countryPalestine

public static final countryPoland

public static final countryPortugal

public static final countryRomania

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)101

public static final countryRussianFederation

public static final countrySanMarino

public static final countrySlovakia

public static final countrySlovenia

public static final countrySpain

public static final countrySweden

public static final countrySwitzerland

public static final countrySyrianArabRepublic

public static final countryTunisia

public static final countryTurkey

public static final countryUkraine

public static final countryUnitedKingdom

public static final countryVaticanCityState

public static final countryYugoslavia

public static final acsNone

public static final acsNR_MSK

public static final acsEuroCryptEN50094

public static final acsReserverd1

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)102

public static final acsReserverd2

public static final acsReserverd3

public static final acsReserverd4

public static final acsReserverd5

public static final componentTypeUnspecified

public static final componentTypeForegroundSound

public static final componentTypeBackgroundSound

public static final componentTypeMultichannelAudio

public static final componentTypeTrafficMessageChannel

public static final componentTypeEmergencyWarningSystem

public static final componentTypeInteractiveTextTransmissionSystem

public static final componentTypePaging

public static final componentTypeDynamicLabel

public static final componentTypeSlideshow

public static final componentTypeBroadcastWebSite

public static final componentTypeJava

public static final componentTypeIPTunneling

public static final languageUnkown

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)103

public static final languageAlbanian

public static final languageBreton

public static final languageCatalan

public static final languageCroatian

public static final languageWelsh

public static final languageCzech

public static final languageDanish

public static final languageGerman

public static final languageEnglish

public static final languageSpanish

public static final languageEsperanto

public static final languageEstonian

public static final languageBasque

public static final languageFaroese

public static final languageFrench

public static final languageFrisian

public static final languageIrish

public static final languageGaelic

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)104

public static final languageGalician

public static final languageIcelandic

public static final languageItalian

public static final languageLappish

public static final languageLatin

public static final languageLatvian

public static final languageLuxembourgian

public static final languageLithuanian

public static final languageHungarian

public static final languageMaltese

public static final languageDutch

public static final languageNorwegian

public static final languageOccitan

public static final languagePolish

public static final languagePortuguese

public static final languageRomanian

public static final languageRomansh

public static final languageSerbian

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)105

public static final languageSlovak

public static final languageSlovene

public static final languageFinnish

public static final languageSwedish

public static final languageTurkish

public static final languageFlemish

public static final languageWalloon

public static final language2C

public static final language2D

public static final language2E

public static final language2F

public static final languageNational30

public static final languageNational31

public static final languageNational32

public static final languageNational33

public static final languageNational34

public static final languageNational35

public static final languageNational36

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)106

public static final languageNational37

public static final languageNational38

public static final languageNational39

public static final languageNational3A

public static final languageNational3B

public static final languageNational3C

public static final languageNational3D

public static final languageNational3E

public static final languageNational3F

public static final languageAmharic

public static final languageArabic

public static final languageArmenian

public static final languageAssamese

public static final languageAzerbijani

public static final languageBambora

public static final languageBelorussian

public static final languageBengali

public static final languageBulgarian

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)107

public static final languageBurmese

public static final languageChinese

public static final languageChurash

public static final languageDari

public static final languageFulani

public static final languageGeorgian

public static final languageGreek

public static final languageGujurati

public static final languageGurani

public static final languageHausa

public static final languageHebrew

public static final languageHindi

public static final languageIndonesian

public static final languageJapanese

public static final languageKannada

public static final languageKazakh

public static final languageKhmer

public static final languageKorean

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)108

public static final languageLaotian

public static final languageMacedonian

public static final languageMalagasay

public static final languageMalaysian

public static final languageMoldavian

public static final languageMarathi

public static final languageNdebele

public static final languageNepali

public static final languageOriya

public static final languagePapamiento

public static final languagePersian

public static final languagePunjabi

public static final languagePushtu

public static final languageQuechua

public static final languageRussian

public static final languageRuthenian

public static final languageSerbo_Croat

public static final languageShona

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)109

public static final languageSinhalese

public static final languageSomali

public static final languageSranan_Tongo

public static final languageSwahili

public static final languageTadzhik

public static final languageTamil

public static final languageTatar

public static final languageTelugu

public static final languageThai

public static final languageUkrainian

public static final languageUrdu

public static final languageUzbek

public static final languageVietnamese

public static final languageZulu

public static final language44

public static final language43

public static final language42

public static final language41

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)110

public static final languageBackgroundSoundCleanFeed

public static final charsetCompleteEBULatin

public static final charsetEBUCyrillicGreek

public static final charsetEBUArabic_HebrewETC

public static final charsetISOLatinAlphabetNo2

public static final serviceElementTypeUndefined

public static final serviceElementTypeEnsemble

public static final serviceElementTypeService

public static final serviceElementTypeComponent

public static final locationInfoOnce

public static final locationInfoPeriodByTime

public static final locationInfoPeriodByDistance

public static final locationInfoStop

public static final locationInfoPosition

public static final locationInfoRegionId

public static final operationControlSetVolume

public static final operationControlGetVolume

public static final operationControlSetServiceFollowing

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)111

public static final operationControlGetServiceFollowing

public static final operationControlGetServiceFollowingNotifications

public static final operationControlSetDRCMode

public static final operationControlGetDRCMode

public static final operationControlGetDRCModeNotifications

public static final serviceFollowingLeavingService

public static final serviceFollowingTryingAlternativeService

public static final serviceFollowingSelectingService

public static final streamTypeAudio

public static final streamTypePacket

public static final streamTypeStream

public static final streamTypeXPAD

public static final streamTypeFIDC

public static final subscriberInfoNoCA

public static final subscriberInfoNoAlgorithm

public static final subscriberInfoNoSubscription

public static final subscriberInfoExpiredSubscription

public static final conflictResolutionTurnProceed

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)112

public static final conflictResolutionTurnProbe

public static final conflictResolutionTurnStop

public static final conflictResolutionTurnPreempt

public static final conflictResolutionOperationNone

public static final conflictResolutionOperationTuneReq

public static final conflictResolutionOperationSearchReq

public static final conflictResolutionOperationScanReq

public static final conflictResolutionOperationSelectSIReq

public static final conflictResolutionOperationGetEnsembleInfoReq

public static final conflictResolutionOperationGetServiceInfoReq

public static final conflictResolutionOperationGetComponentInfoReq

public static final conflictResolutionOperationSelectReceptionInfoReq

public static final conflictResolutionOperationSelectComponentReq

public static final conflictResolutionOperationSelectComponentStreamReq

public static final conflictResolutionOperationSelectObjectReq

public static final conflictResolutionOperationGetLocationInfoReq

public static final conflictResolutionOperationOperationControlReq

public static final conflictResolutionOperationSelectApplicationReq

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)113

public static final conflictResolutionSuboperationNone

public static final conflictResolutionAnswerNo

public static final conflictResolutionAnswerYes

A.2 Package dab.si
public abstract class dab.si.SIId

The SIId is an identifier for a DAB Ensemble, a DAB Service or a DAB Service Component. It defines a handle to one of
these service elements and is used to start and stop services or to query service information.

The identifier for each entity is globally unique. This means an identifier for a component or service includes information
about the service context as for instance two services are considered different even if they have the same (DAB) service
identifier.

Version

1.07

Constructors public SIId()

Methods public int compareTo(Object object)

This method compares the object with the given object. The behaviour is the same as it is specified
in the compareTo method of the Java.lang.Comparable interface.

public int compareTo(SIId siid)

This method compares the object with the given object. The behaviour is the same as it is specified
in the compareTo method of the Java.lang.Comparable interface.

public Java.lang.String getId()

Returns an external representation of the identifier in a textual format. The returned value can be
used to construct a service identifier.

public class dab.si.EnsembleId extends dab.si.SIId

The EnsembleId is an identifier for a DAB ensemble.

Version

1.03

Constructors public EnsembleId(String Id)

Constructs an EnsembleId object from the given string.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)114

See Also

SIId#getId getId

public EnsembleId(EnsembleId id)

Constructs a copy of the given EnsembleId object.

public class dab.si.ServiceInfo

ServiceInfo is used to represent a service.

Version

1.04

Constructors protected ServiceInfo(

ServiceId id,

int type,

EnsembleId parent,

ComponentId[] componentIds,

boolean isLocal,

int accessControlSystem,

boolean hasLabel,

Label label,

boolean hasLanguage,

int language,

boolean hasIsPrimary,

boolean isPrimary,

boolean hasRegionId,

int regionId,

boolean hasRegionLabel,

Label regionLabel,

boolean hasStaticProgrammeType,

ProgrammeType staticProgrammeType,

boolean hasDynamicProgrammeType,

ProgrammeType dynamicProgrammeType,

boolean hasProgrammeNumber,

ProgrammeNumber programmeNumber,

boolean hasTimeOffset,

int timeOffset,

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)115

boolean hasAnnouncementSupport,

AnnouncementSupport announcementSupport,

boolean hasCountry,

int country)

Methods public dab.si.ServiceId getId()

Returns the id of the service

public int getType()

Returns the service type (see DABConstants.serviceType*)

public dab.si.EnsembleId getParent()

Returns the parent ensemble

public dab.si.ComponentId[] getComponentIds()

Returns a reference to ids of the components of the service

public boolean isLocalService()

Indicates whether the service is local or not

public int getAccessControlSystem()

Returns the access control system (see DABConstants.acs*)

public dab.data.Label getLabel()

Returns the label of the service

Throws

DABNotAvailableException - when the label is not available

public int getLanguage()

Returns the language of the service (see DABConstants.language*)

Throws

DABNotAvailableException - when the language is not available

public boolean isPrimaryComponentLanguage()

Indicates, whether the language of the service is the language of the primary component

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)116

Throws

DABNotAvailableException - when the information is not available

public int getRegionId()

Returns the region id of the service

Throws

DABNotAvailableException - when the id is not available

public dab.data.Label getRegionLabel()

Returns the region label of the service

Throws

DABNotAvailableException - when the label is not available

public dab.data.ProgrammeType getStaticProgrammeType()

Returns the static programme type

Throws

DABNotAvailableException - when the programme type is not available

public dab.data.ProgrammeType getDynamicProgrammeType()

Returns the dynamic programme type

Throws

DABNotAvailableException - when the programme type is not available

public dab.data.ProgrammeNumber getProgrammeNumber()

Returns the programme number

Throws

DABNotAvailableException - when not available

public int getTimeOffset()

Returns the time offset of the service (with respect to the time of the ensemble). The result is
returned in minutes. It ranges from -12 hours to 12 hours.

Throws

DABNotAvailableException - when the offset is not available

See Also

EnsembleInfo#getDate getDate

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)117

public dab.data.AnnouncementSupport getAnnouncementSupport()

Returns the information about announcement support

Throws

DABNotAvailableException - when the announcement support is not available

public int getCountry()

Returns the country information of the service (see DABConstants.country*)

Throws

DABNotAvailableException - when the country information is not available

public class dab.si.ComponentInfo

ComponentInfo is used to represent components.

Version

1.06

Constructors protected ComponentInfo(

ComponentId id,

int type,

byte[] data,

boolean isPrimary,

ServiceId[] parentIds,

int accessControlSystem,

boolean hasLabel,

Label label,

boolean hasLanguage,

int language,

boolean hasStartObjectId,

ObjectId startObjectId,

boolean hasObjectDirectoryId,

ObjectId objectDirectoryId,

boolean hasAudioComponent,

ComponentId audioComponent,

boolean hasBitrate,

int bitrate)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)118

Methods public dab.si.ComponentId getId()

Returns the id of the component

public int getType()

Returns the type of the component. This is essentially the user application type
(see DABConstants.componentType*)

public byte[] getData()

Returns the application specific data of the component (i.e. the user application data).

public boolean isPrimary()

Indicates whether the component is primary or not

public int getAccessControlSystem()

Returns the access control system of the component (see DABConstants.acs*)

public dab.si.ServiceId[] getParentIds()

Returns a reference to the ids of the parents

public dab.data.Label getLabel()

Returns the label of the component

Throws

DABNotAvailableException - when the label is not available

public int getLanguage()

Returns the language information (see DABConstants.language*)

Throws

DABNotAvailableException - when the information is not available

public dab.data.ObjectId getStartObjectId()

Returns the id of the start object

Throws

DABNotAvailableException - when the start object is not available

public dab.data.ObjectId getObjectDirectoryId()

Returns the id of the object directory

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)119

Throws

DABNotAvailableException - when the object directory is not available

public int getBitrate()

Returns the maximum bitrate of the component in bits per second.

Throws

DABNotAvailableException - when the bitrate is not available

public dab.si.ComponentId getAudioComponent()

Returns the SIId of the related audio component. Note, that the object has to be a PAD component;
otherwise null is returned.

Throws

DABNotAvailableException - when not available

public class dab.si.ComponentId extends dab.si.SIId

The ComponentId is an identifier for a DAB component.

Version

1.03

Constructors public ComponentId(String Id)

Constructs a ComponentId object from the given string.

See Also

SIId#getId getId

public ComponentId(ComponentId id)

Constructs a copy of the given ComponentId object.

public class dab.si.ServiceId extends dab.si.SIId

The ServiceId is an identifier for a DAB service.

Version

1.05

Constructors public ServiceId(String Id)

Constructs a ServiceId object from the given string.

See Also

SIId#getId getId

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)120

public ServiceId(ServiceId id)

Constructs a copy of the given ServiceId object.

See Also

SIId#getId getId

Methods public boolean sameService(ServiceId id)

returns true, if id and the called object belong to the same service; otherwise false is returned.

public class dab.si.EnsembleInfo

EnsembleInfo represents information about a particular ensemble.

Version

1.03

Constructors protected EnsembleInfo(

EnsembleId id,

ServiceId[] serviceIds,

int frequency,

int transmissionMode,

boolean hasDate,

Date date,

boolean hasLabel,

Label label,

boolean hasCountry,

int country)

Methods public dab.si.ServiceId[] getServiceIds()

Returns a reference to the ids for the services that are contained in the ensemble

public dab.si.EnsembleId getId()

Returns the id of the ensemble

public int getFrequency()

Returns the frequency of the ensemble in Hz

public int getTransmissionMode()

Returns the transmission Mode (see DABConstants.transmissionMode*)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)121

public dab.data.Label getLabel()

Returns the label of the ensemble

Throws

DABNotAvailableException - if the label is not available

public int getCountry()

Returns country information about the ensemble (see DABConstants.country*)

Throws

DABNotAvailableException - if the country information is not available

public Java.util.Date getDate()

Returns date and time associated with the ensemble (given as local time)

Throws

DABNotAvailableException - if the date is not available

A.3 Package dab.events
public class dab.events.DABEvent extends Java.util.EventObject

DABEvent is the superclass for all events used inside the DAB package.

Version

1.01

Constructors protected DABEvent(DABSource source)

public class dab.events.ComponentNtfEvent extends dab.events.DABEvent

Version

1.02

Constructors protected ComponentNtfEvent(

DABSource source,

int reason,

ComponentId componentId,

int selectionMode)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)122

Methods public int getReason()

Returns the reason for change of the selectionMode (the code is compatible with
DABConstants.result*).

public dab.si.ComponentId getComponentId()

Returns the component which is involved

public int getSelectionMode()

Returns the new selection mode for the component.

See Also

dab.events.SelectComponentCnfEvent#getSelectionMode getSelectionMode

public class dab.events.OperationControlCnfEvent extends dab.events.DABEvent

OperationControlCnfEvent is generated in response to an operationControlReq request.

See Also

dab.DABListener#operationControlCnf operationControlCnf

Version

1.01

Constructors protected OperationControlCnfEvent(

DABSource source,

int result,

int attribute,

Object value)

Create an OperationControlCnfEvent object.

Methods public int getResult()

Returns the status of the OperationControl command. If it is equal to DABConstants.resultOK, the
command was successful. Otherwise an error has occurred.

public int getAttribute()

Returns the attribute of the receiver that was involved (see DABConstants.operationControl*)

public Java.lang.Object getValue()

Returns a copy of the attribute's value. This is either the actual value, when a read request was
issued, or the former value when a change request was issued.

- DABConstants.operationControlSetVolume: The former volume of the receiver is returned. It is
of type Integer in the range from 0 to 100 (percent).

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)123

- DABConstants.operationControlGetVolume: The current volume of the receiver is returned. It is
of type Integer in the range from 0 to 100 (percent).

- DABConstants.operationControlSetServiceFollowing: The former state of the service following
feature is returned. It is of type Boolean: true indicates that the service following was switched
on, false indicates that it was switched off.

- DABConstants.operationControlGetServiceFollowing: The current state of the service following
feature is returned. It is of type Boolean: true indicates that the service following is switched on,
false indicates that it is switched off.

- DABConstants.operationControlGetServiceFollowingNotifications: null is returned.

- DABConstants.operationControlSetDRCMode: The former state of the DRCMode following
feature is returned. It is of type Boolean: true indicates that the DRCMode was switched on,
false indicates that it was switched off.

- DABConstants.operationControlGetDRCMode: The current state of DRC mode is returned. It is
of type Boolean: true indicates that the DRC mode is switched on, false indicates that it is
switched off.

- DABConstants.operationControlGetDRCModeNotifications: null is returned.

See Also

dab.DABSource#operationControlReq operationControlReq

public class dab.events.RespondConflictResolutionCnfEvent extends dab.events.DABEvent

Constructors protected RespondConflictResolutionCnfEvent(

DABSource source,

int _result)

Methods public int getResult()

Returns the status of the respondConflictResolution command. If it is equal to
DABConstants.resultOK, the command was successful. Otherwise an error has occurred.

public class dab.events.GetComponentInfoCnfEvent extends dab.events.DABEvent

The GetComponentInfoCnfEvent is generated in response to a GetComponentInfoReq request.

See Also

dab.DABListener#getComponentInfoCnf getComponentInfoCnf

Version

1.01

Constructors protected GetComponentInfoCnfEvent(

DABSource source,

int result,

ComponentInfo componentInfo)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)124

Create a GetComponentInfoCnfEvent object.

Methods public int getResult()

Returns the status of the GetComponentInfo command. If it is equal to DABConstants.resultOK, the
command was successful. Otherwise an error has occurred.

public dab.si.ComponentInfo getComponentInfo()

Returns information about the subscribed DAB Component.

public class dab.events.SelectSICnfEvent extends dab.events.DABEvent

The SelectSICnfEvent is generated in response to a selectSIReq request.

See Also

dab.DABListener#selectSICnf selectSICnf

Version

1.02

Constructors protected SelectSICnfEvent(

DABSource source,

int result,

boolean ensembleInfo,

boolean serviceInfo,

boolean componentInfo,

boolean autoDelivery)

Creates a SelectSICnfEvent.

Methods public int getResult()

Returns the status of the SelectSI command. If it is equal to DABConstants.resultOK, the command
was successful. Otherwise an error has occurred.

public boolean getEnsembleInfo()

Returns the ensemble info. This value specifies if the DAB client is subscribed to ensemble-specific
notifications. The following values are supported:

- true: The client is notified about ensembleAdded, ensembleChanged and ensembleRemoved
events.

- false: The client is not notified about ensembleAdded, ensembleChanged and
ensembleRemoved events.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)125

public boolean getServiceInfo()

Returns service info. This value specifies if the DAB client is subscribed to service-specific
notifications. The following values are supported:

- true: The client is notified about serviceAdded, serviceChanged and serviceRemoved events.

- false: The client is not notified about serviceAdded, serviceChanged and serviceRemoved
events.

public boolean getComponentInfo()

Returns component info. This value specifies if the client is subscribed to component-specific
notifications. The following values are supported:

- true: The client is notified about componentAdded, componentChanged and
componentRemoved events.

- false: The client is not notified about componentAdded, componentChanged and
componentRemoved events.

public boolean getAutoDelivery()

Returns auto delivery. This value specifies if the information related to the notification is sent
together with the notification (serviceInfoNtf) or not. The following values are supported:

- true: The serviceInfoNtf method delivers the notification together with the information object.
This is only possible for -Added and -Changed notifications but not for -Removed because in the
latter case the service element is no longer existing.

- false: The serviceInfoNtf method delivers only the notification. The information object
(EnsembleInfo, ServiceInfo or ComponentInfo) itself can be obtained by use of
getEnsembleInfoReq, getServiceInfoReq or getComponentInfoReq.

public class dab.events.SelectApplicationCnfEvent extends dab.events.DABEvent

SelectApplicationCnfEvent is generated in response to a selectApplicationReq request.

See Also

dab.DABSource#selectApplicationReq selectApplicationReq

Version

0.2

Constructors protected SelectApplicationCnfEvent(

DABSource source,

int result,

DABAppProxy proxy)

Creates a SelectApplicationCnfEvent object.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)126

Methods public int getResult()

Returns the status of the SelectApplication command. If it is equal to DABConstants.resultOK, the
command was successful. Otherwise an error has occurred.

public dab.DABAppProxy getApplicationProxy()

Returns the proxy for the loaded application. The value is null, when result !=
DABConstants.resultOK

public class dab.events.SelectComponentStreamCnfEvent extends dab.events.DABEvent

SelectComponentStreamCnfEvent is generated in response to a selectComponentStreamReq.

Version

1.02

Constructors protected SelectComponentStreamCnfEvent(

DABSource source,

int result,

int streamType,

InputStream stream)

Methods public int getResult()

Returns the status of the SelectComponentStream command. If it is equal to DABConstants.resultOK,
the command was successful. Otherwise an error has occurred.

public int getStreamType()

Returns the type of the stream (see DABConstants.streamType*).

public Java.io.InputStream getStream()

Returns the stream.

public class dab.events.TuneCnfEvent extends dab.events.DABEvent

The TuneCnfEvent is generated in response to a tuneReq request.

See Also

dab.DABListener#tuneCnf tuneCnf

Version

1.01

Constructors protected TuneCnfEvent(

DABSource source,

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)127

int result,

int tuneState,

int tuneFrequency,

int transmissionMode,

int synchronizationState)

Creates a TuneCNfEvent.

Methods public int getResult()

Returns the status of the Tune command. If it is equal to DABConstants.resultOK, the command was
successful. Otherwise an error has occurred.

public int getTuneState()

Returns the current tune state independent from the command result indicated by result. The
following values are supported:

- tuneStateNotTuned: The DAB receiver is not tuned to a known frequency. An error has occurred
in this case and the following parameters are undefined.

- tuneStateTuned: The DAB receiver is tuned to a frequency specified by tuneFrequency and the
following parameters are defined.

public int getTuneFrequency()

Return the frequency currently in use.

public int getTransmissionMode()

Returns the DAB transmission mode the DAB receiver has detected. The following values are
supported:

- DABConstants.transmissionMode1: The found DAB Ensemble is sent in Transmissionmode 1.

- DABConstants.transmissionMode2: The found DAB Ensemble is sent in Transmissionmode 2.

- DABConstants.transmissionMode3: The found DAB Ensemble is sent in Transmissionmode 3.

- DABConstants.transmissionMode4: The found DAB Ensemble is sent in Transmissionmode 4.

- DABConstants.transmissionModeUnknown: The transmission mode is unknown.

public int getSynchronizationState()

Returns the current synchronization state of the DAB Receiver. The following values are supported:

- DABConstants.stateNotSynchronized: The DAB Receiver is not synchronized. This is the lowest
level of synchronization.

- DABConstants.stateDABSignaldetected: The DAB Receiver has detected a DAB Signal.

- DABConstants.stateTimeAndFrequencySynchronized: The DAB Receiver is time and frequency
synchronized

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)128

- DABConstants.stateFICReadable: The Service Information channel is readable. This is the
highest level of synchronization.

public class dab.events.GetServiceInfoCnfEvent extends dab.events.DABEvent

The GetServiceInfoCnfEvent is generated in response to a GetServiceInfoReq request.

See Also

dab.DABListener#getServiceInfoCnf getServiceInfoCnf

Version

1.01

Constructors protected GetServiceInfoCnfEvent(

DABSource source,

int result,

ServiceInfo serviceInfo)

Creates a GetServiceInfoCnfEvent object.

Methods public int getResult()

Returns the status of the GetServiceInfo command. If it is equal to DABConstants.resultOK, the
command was successful. Otherwise an error has occurred.

public dab.si.ServiceInfo getServiceInfo()

Returns a reference to an object which provides information about the DAB Service.

public class dab.events.GetLocationInfoCnfEvent extends dab.events.DABEvent

The GetLocationInfoCnfEvent is generated in response to a getLocationInfoReq request.

See Also

dab.DABListener#getLocationInfoCnf getLocationInfoCnf

Version

1.01

Constructors protected GetLocationInfoCnfEvent(

DABSource source,

int result,

int mode,

int deliveredDelta,

int deliveredAccuracy)

Creates a GetLocationInfoCnfEvent object.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)129

Methods public int getResult()

Returns the status of the GetLocationInfo command. If it is equal to DABConstants.resultOK, the
command was successful. Otherwise an error has occurred.

public int getMode()

Returns the mode of the GetLocationInfo command.

See Also

dab.DABSource#getLocationInfoReq getLocationInfoReq

public int getDeliveredDelta()

Returns the delivered delta of the GetLocationInfo command.

See Also

dab.DABSource#getLocationInfoReq getLocationInfoReq

public int getDeliveredAccuracy()

Returns the delivered accuracy of the GetLocationInfo command.

See Also

dab.DABSource#getLocationInfoReq getLocationInfoReq

public class dab.events.ScanCnfEvent extends dab.events.DABEvent

ScanCnfEvent is generated in response to a scanReq request.

See Also

dab.DABSource#scanReq scanReq

Version

1.01

Constructors protected ScanCnfEvent(

DABSource source,

int result,

int tuneState,

int tuneFrequency,

int transmissionModes,

int noOfEnsemblesFound)

Creates a ScanCnfEvent object.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)130

Methods public int getResult()

Returns the status of the Scan command. If it is equal to DABConstants.resultOK, the command was
successful. Otherwise an error has occurred.

public int getTuneState()

Returns the current tune state. The following values are supported:

- DABConstants.tuneStateNotTuned: The DAB Receiver is not tuned to a known frequency.

- DABConstants.tuneStateTuned: The DAB Receiver is tuned to a frequency specified by
tuneFrequency.

public int getTuneFrequency()

Returns the currently tuned frequency.

public int getTransmissionModes()

Returns the transmission modes a DAB Receiver should look for DAB Ensembles. The default value
is DABConstants.transmissionModeAutomatic which means that the receiver is automatically
detecting the Transmissionmode. The returned value is a flag field supporting the following flags
which can be specified together:

- DABConstants.transmissionModeAutomatic: The Transmissionmode is automatically detected

- DABConstants.transmissionMode1: At the specified frequency it is tested if a DAB Ensemble is
sent in Transmissionmode 1.

- DABConstants.transmissionMode2: At the specified frequency it is tested if a DAB Ensemble is
sent in Transmissionmode 2.

- DABConstants.transmissionMode3: At the specified frequency it is tested if a DAB Ensemble is
sent in Transmissionmode 3.

- DABConstants.transmissionMode4: At the specified frequency it is tested if a DAB Ensemble is
sent in Transmissionmode 4.

public int getNoOfEnsemblesFound()

Returns the number of DAB Ensembles that have been found during the execution of the scan
command.

public class dab.events.ConflictResolutionNtfEvent extends dab.events.DABEvent

Constructors protected ConflictResolutionNtfEvent(

DABSource source,

int _transaction,

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)131

int _turn,

int _operation,

int _suboperation)

Methods public int getTransaction()

Delivers the transaction number. This can be used to provide a transaction context.

public int getTurn()

Returns a code for the turn of the resource conflict resolution protocol:

- DABConstants.conflictResolutionTurnProceed: This is sent to the client which requested the
operation. It indicates that there is a resource conflict. The client is asked whether he likes to
proceed.

- DABConstants.conflictResolutionTurnProbe: This notification is sent to all clients in order to probe
for their willingness to release the needed resources.

- conflictResolutionTurnStop: The client is asked to stop the indicated operation in order to release
the resources.

- DABConstants.conflictResolutionTurnPreempt: The client is informed that the indicated operation
was stopped. This action shall normally only be taken, when the client failed to do a stop in the
previous turn.

public int getOperation()

Gives back a code of the involved operation (see DABConstants.conflictResolutionOperation*)

public int getSuboperation()

Gives back a code of the involved suboperation (see DABConstants.conflictResolutionSuboperation*)

public class dab.events.GetEnsembleInfoCnfEvent extends dab.events.DABEvent

The GetEnsembleInfoCnfEvent is generated in response to a GetEnsembleInfoReq request.

See Also

dab.DABListener#getEnsembleInfoCnf getEnsembleInfoCnf

Version

1.01

Constructors protected GetEnsembleInfoCnfEvent(

DABSource source,

int result,

EnsembleInfo ensembleInfo)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)132

Creates a GetEnsembleInfoCnfEvent object.

Methods public int getResult()

Returns the status of the GetEnsembleInfo command. If it is equal to DABConstants.resultOK, the
command was successful. Otherwise an error has occurred.

public dab.si.EnsembleInfo getEnsembleInfo()

Returns a reference to an object which provides information about a DAB Ensemble.

public class dab.events.AppStateChangeEvent extends Java.util.EventObject

AppStateChangeEvent reflects state changes in an application.

See Also

dab.AppStateChangeEventListener AppStateChangeEventListener

"Digital Video Broadcasting (DVB) Multimedia Home Platform (MHP), TS 101 812"

Version

0.2

Constructors protected AppStateChangeEvent(

AppStateChangeEventSource source,

int fromState,

int toState,

boolean failed)

Methods public int getFromState()

Returns the state from which the application was switching

public int getToState()

Returns the state to which the application switched

public boolean hasFailed()

Indicates whether the switching failed (=true) or not (=false)

public class dab.events.SINtfEvent extends dab.events.DABEvent

The SINtfEvent is generated in response to a selectSIReq request.

See Also

dab.DABListener#siNtf siNtf

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)133

Version

1.04

Constructors protected SINtfEvent(

DABSource source,

int notification,

int updateFlags,

SIId serviceInfoId,

EnsembleInfo ensembleInfo,

ServiceInfo serviceInfo,

ComponentInfo componentInfo)

Creates a SINtfEvent object.

Methods public int getNotification()

Returns the notification type. The following values are supported:

Ensemble-related notification:

- ensembleAdded: A new DAB Ensemble is available.

- ensembleRemoved: A known DAB Ensemble is no longer available. All dependent services and
components are also no longer available.

- ensembleChanged: A known DAB Ensemble has changed which means its attributes have
changed. This case signals changes to the ensemble itself and not changes in linking to child
services. This means if a child service is added or removed this is not indicated by an
ensembleChanged notification.

Service-related notification:

- serviceAdded: A new DAB Service is available.

- serviceRemoved: A known DAB Service is no longer available. All dependent components are
also no longer available.

- serviceChanged: A known DAB Service has changed which means its attributes have changed.
This case signals changes to the service itself and not changes in linking to child components.
This means if a child component is added or removed this is not indicated by a
DABConstants.serviceChanged notification.

Component-related notification:

- componentAdded: A new DAB Component is available.

- componentRemoved: A known DAB Component is no longer available.

- componentChanged: A known DAB Component has changed which means its attributes have
changed.

public int getUpdateFlags()

Returns more detailed information about which part of the Service Directory has changed. The value
is a flag field and supports the following flags depending on the service element type.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)134

In case of a DABConstants.ensembleAdded or DABConstants.ensembleChanged notification the
following values are defined:

- DABConstants.updatedLabel: The Ensemble label has changed.

- DABConstants.updatedCountry: The Country information which specifies which area is covered
by the Ensemble has changed.

In case of a DABConstants.serviceAdded or DABConstants.serviceChanged notification the following
values are defined:

- DABConstants.updatedLabel: The Service label has changed.

- DABConstants.updatedCountry: The Country information which specifies which area is covered
by the Service has changed.

- DABConstants.updatedTimeOffset: The time offset for the specified Service has changed.

- DABConstants.updatedRegion: The region has changed.

- DABConstants.updatedStaticProgrammeType: The static programme type information of the
specified audio service has changed.

- DABConstants.updatedDynamicProgrammeType: The static programme type information of the
specified audio service has changed.

- DABConstants.updatedAnnouncement: The announcement information of the specified audio
service has changed.

- DABConstants.updatedLanguage: The language information of the specified audio service has
changed.

- DABConstants.updatedRegionId: The region identifier has changed.

- DABConstants.updatedRegionLabel: The region label has changed.

- DABConstants.updatedAnnouncementSupport: The announcement support information of the
specified audio service has changed.

- DABConstants.updatedProgrammeNumber: The programme number has changed

In case of a DABConstants.componentAdded or DABConstants.componentChanged notification the
following values are defined:

- DABConstants.updatedLabel: The component label has changed.

- DABConstants.updatedLanguage: The language information of the specified audio component
has changed.

- DABConstants.updatedStartObject: In case of a BroadcastWebSite application carried in the
related component this indicates that the start object (homepage) is known.

- DABConstants.updatedObjectDirectory: The MOT object directory has changed

- DABConstants.updatedAudioComponent: The link to the audio component has changed

- DABConstants.updatedBitrate: The bitrate has changed.

public dab.si.SIId getServiceInfoId()

Returns the instance of the service element (Ensemble, Service, Component) that has changed. It
can be used in order to request the related information object with the getEnsembleInfo,
getServiceInfo or getComponentInfo command.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)135

public dab.si.EnsembleInfo getEnsembleInfo()

If notification signals an ensemble-related notification of type DABConstants.ensembleAdded or
DABConstants.ensembleChanged and AutoDelivery has been activated with the subscription, then
the returned value refers to an ensemble information object. If AutoDelivery is not activated or this is a
service-related or component-related notification then null is returned.

public dab.si.ServiceInfo getServiceInfo()

If notification signals a service-related notification of type DABConstants.serviceAdded or
DABConstants.serviceChanged and AutoDelivery has been activated with the subscription, then the
returned value refers to a service information object. If AutoDelivery is not activated or this is an
ensemble-related or component-related notification then null is returned.

public dab.si.ComponentInfo getComponentInfo()

If notification signals a component-related notification of type DABConstants.componentAdded or
DABConstants.componentChanged and AutoDelivery has been activated with the subscription, then
the value refers to a component information object. If AutoDelivery is not activated or this is an
ensemble-related or service-related notification then null is returned.

public class dab.events.SearchNtfEvent extends dab.events.DABEvent

SearchNtfEvent is generated in response to a searchReq request.

See Also

dab.DABListener#searchNtf searchNtf

Version

1.01

Constructors protected SearchNtfEvent(

DABSource source,

int tuneFrequency,

int notifications)

Creates a SearchNtfEvent.

Methods public int getTuneFrequency()

Returns the currently tuned frequency in Hertz.

public int getNotifications()

Returns the notification type. The value is a flag field supporting the following flags which can be
specified together:

- notifications16kHzSteps: A 16 kHz step has been made.

- notificationsTableEntry: A frequency of the specified frequency table has been reached.

- notificationsSearchStarted: Searching for a DAB Ensemble has been started.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)136

public class dab.events.SearchCnfEvent extends dab.events.DABEvent

SearchCnfEvent is generated in response to a searchReq request.

See Also

dab.DABListener#searchCnf searchCnf

Version

1.01

Constructors protected SearchCnfEvent(

DABSource source,

int result,

int tuneState,

int tuneFrequency,

int transmissionMode,

int synchronizationState)

Create a SearchCnfEvent

Methods public int getResult()

Returns the result. This value indicates the status of the Tune command. If it is equal to
DABConstants.resultOK, the command was successful. Otherwise an error has occurred.

public int getTuneState()

Return the tune state. This value indicates the current tune state independent from the command
result indicated by result. The following values are supported:

- DABConstants.stateNotTuned: The DAB receiver is not tuned to a known frequency. An error has
ccurred in this case and the following parameters are undefined.

- DABConstants.stateTuned: The DAB receiver is tuned to a frequency specified by tuneFrequency
and the following parameters are defined.

public int getTuneFrequency()

Return the tune frequency in use.

public int getTransmissionMode()

Returns the transmission mode. This value specifies the DAB transmission mode the DAB receiver
has detected. The following values are supported:

- DABConstants.transmissionMode1: The found DAB Ensemble is sent in Transmissionmode 1.

- DABConstants.transmissionMode2: The found DAB Ensemble is sent in Transmissionmode 2.

- DABConstants.transmissionMode3: The found DAB Ensemble is sent in Transmissionmode 3.

- DABConstants.transmissionMode4: The found DAB Ensemble is sent in Transmissionmode 4.

- DABConstants.transmissionModeUnknown: The transmission mode is unknown.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)137

public int getSynchronizationState()

Returns the synchronization state. This value specifies the current synchronization state of the DAB
Receiver. The following values are supported:

- DABConstants.stateNotSynchronized: The DAB Receiver is not synchronized. This is the lowest
level of synchronization.

- DABConstants.stateDABSignaldetected: The DAB Receiver has detected a DAB Signal.

- DABConstants.stateTimeAndFrequencySynchronized: The DAB Receiver is time and frequency
synchronized

- DABConstants.stateFICReadable: The Service Information channel is readable. This is the
highest level of synchronization.

public class dab.events.SelectReceptionInfoCnfEvent extends dab.events.DABEvent

The SelectReceptionInfoCnfEvent is generated in response to a selectReceptionInfoReq request.

See Also

dab.DABSource#selectReceptionInfoReq selectReceptionInfoReq

Version

1.01

Constructors protected SelectReceptionInfoCnfEvent(

DABSource source,

int result,

boolean synchronizationNotifications,

boolean bitErrorRateNotifications,

boolean muteStateNotifications)

Creates a SelectReceptionInfoCnfEvent object.

Methods public int getResult()

Returns the status of the SelectReceptionInfo command. If it is equal to DABConstants.resultOK, the
command was successful. Otherwise an error has occurred.

public boolean getSynchronizationNotifications()

Returns synchronization notifications. The value specifies if the client is notified about state changes
concerning DAB signal synchronization. If the returned value is true notifications are provided, if it is
false no notifications are provided.

public boolean getBitErrorRateNotifications()

Returns bit error rate notifications. The value specifies if the client is notified about state changes
concerning the biterrorrate. If the returned is true notifications are provided, if it is false no
notifications are provided.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)138

public boolean getMuteStateNotifications()

Returns mute state notifications. This value specifies if the client is notified about state changes
concerning the mute state of the audio decoder. If the returned value is true notifications are provided,
if it is false no notifications are provided.

public class dab.events.SelectObjectCnfEvent extends dab.events.DABEvent

The SelectObjectCnfEvent is generated in response to a selectObjectReq request.

See Also

dab.DABSource#selectObjectReq selectObjectReq

Version

1.02

Constructors protected SelectObjectCnfEvent(

DABSource source,

int result,

ComponentId componentId,

ObjectId objectId,

int requestMode,

boolean replaceSelections,

Date accessTime)

Creates a SelectObjectCnfEvent object.

Methods public int getResult()

Returns the status of the SelectObject command. If it is equal to DABConstants.resultOK, the
command was successful. Otherwise an error has occurred.

public dab.si.ComponentId getComponentId()

Returns the component the object is belonging to.

public dab.data.ObjectId getObjectId()

Returns the selected object

public int getRequestMode()

Returns the current selection mode for the specified object.

- DABConstants.requestModeOff: The object selection is removed.

- DABConstants.requestModeOnce: The object is requested for one-time delivery. After the first
reception from the broadcast channel the object is delivered to the connected DAB client. The
client is not notified about new versions.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)139

- DABConstants.requestModeUpdate: The object is requested for update delivery. After the first
reception from the broadcast channel the object is delivered to the connected client. Additionally
each new version of the object is delivered.

public boolean getReplaceSelections()

Returns all current object selections belonging to the component identified by serviceInfoId are
replaced with this selection. If the returned value is true, then all selections are removed. If the
returned value is false, then existing selections remain unchanged.

public Java.util.Date getAccessTime()

Returns the expected relative access time for delivery of the object.

public class dab.events.ServiceFollowingNtfEvent extends dab.events.DABEvent

The ServiceFollowingNtfEvent is generated when a service following action is taken by the receiver.

See Also

dab.DABListener#serviceFollowingNtf serviceFollowingNtf

Version

1.02

Constructors protected ServiceFollowingNtfEvent(

DABSource source,

int action,

EnsembleId ensembleId,

ComponentId componentId)

Creates a ServiceFollowingNtfEvent event.

Methods public int getAction()

Returns the service following action code. The following codes are possible:

- DABConstants.ServiceFollowingLeavingService: The service following has started. The current
ensemble and service are left.

- DABConstants.ServiceFollowingTryingAlternativeService: An alternative frequency is tried.

- DABConstants.ServiceFollowingSelectingService: The service following is finished. The receiver is
tuned to a new ensemble and audio service.

public dab.si.EnsembleId getEnsembleId()

Returns the service identifier of the ensemble that is involved in the action

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)140

public dab.si.ComponentId getComponentId()

Returns the service identifier of the component that is involved in the action

public class dab.events.SystemFailureNtfEvent extends dab.events.DABEvent

The System-Failure event is generated when a fatal error has happened in the system.

Version

1.02

Constructors protected SystemFailureNtfEvent(

DABSource source,

int reason)

Methods public int getReason()

Returns the reason for the system failure (the codes are compatible with DABConstants.result*)

public class dab.events.SelectComponentCnfEvent extends dab.events.DABEvent

The SelectComponentCnfEvent is generated in response to a selectComponentReq request.

See Also

dab.DABListener#selectComponentCnf selectComponentCnf

Version

1.02

Constructors protected SelectComponentCnfEvent(

DABSource source,

int result,

ComponentId componentId,

int selectionMode)

Create a SelectComponentCnfEvent object.

Methods public int getResult()

Returns the status of the SelectComponent command. If it is equal to DABConstants.resultOK, the
command was successful. Otherwise an error has occurred.

public dab.si.ComponentId getComponentId()

Returns the component which delivers the started or stopped application.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)141

public int getSelectionMode()

Return the selection mode for the component. The following flags are supported:

- DABConstants.selectionModeReplace: All former selected components of the same type are
stopped and the specified component is started. The same type means an audio component
replaces any other selected audio component, a data component replaces all other selected i
ndependent data components and a programme-associated data component replaces all other
selected programme-associated data components.

- DABConstants.selectionModeAdd: The application delivered by the specified component is
started. Other selected components are not affected.

- DABConstants.selectionModeRemove: The selection of the specified component is removed.

- DABConstants.selectionModeRemoveAll: All existing component selections are removed. The
parameter serviceId is set to null in this case.

public class dab.events.DRCModeNtfEvent extends dab.events.DABEvent

The DRCModeNtfEvent is generated when a DRC mode change is taken by the receiver.

See Also

dab.DABListener#serviceFollowingNtf serviceFollowingNtf

Version

1.02

Constructors protected DRCModeNtfEvent(

DABSource source,

boolean currentState)

Creates a DRCModeNtfEvent event.

Methods public boolean getMode()

Returns the DRC mode. The return value is true, if it is now switched on; it is false when it is now
switched off.

public class dab.events.ReceptionInfoNtfEvent extends dab.events.DABEvent

ReceptionInfoNtfEvent is generated in response to a selectReceptionInfoReq request.

See Also

dab.DABListener#receptionInfoNtf receptionInfoNtf

Version

1.01

Constructors protected ReceptionInfoNtfEvent(

DABSource source,

int updateFlags,

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)142

int synchronizationState,

int bitErrorRateState,

int muteState)

Creates a ReceptionInfoNtfEvent object.

Methods public int getUpdateFlags()

Returns the updateFlags. This value is a flag field which indicates if synchronization, biterrorrate
and/or mute state has changed. The following values are supported:

- DABConstants.syncUpdateSynchronizationState: The synchronization state has changed. The
new state is specified by synchronizationState.

- DABConstants.syncUpdateBitErrorRateState: The biterrorrate state has changed. The new state
is specified by bitErrorRateState.

- DABConstants.syncUpdateMuteState: The mute state has changed. The new state is specified by
muteState.

public int getSynchronizationState()

Returns the synchronization state. This value specifies the current synchronization state of the DAB
Receiver. The following values are supported:

- DABConstants.stateSynchronizationStateUnknown: The synchronization state is not known.

- DABConstants.stateNotSynchronized: The DAB Receiver is not synchronized. This is the lowest
level of synchronization.

- DABConstants.stateDABSignaldetected: The DAB Receiver has detected a DAB Signal.

- DABConstants.stateTimeAndFrequencySynchronized: The DAB Receiver is time and frequency
synchronized

- DABConstants.stateFICReadable: The Service Information channel is readable. This is the
highest level of synchronization.

public int getBitErrorRateState()

Returns the bit error rate state. This value specifies the current biterrorrate state. The following values
are supported:

- DABConstants.bitErrorRateLevelUnknown: The current biterrrorrate is unknown.

- DABConstants.bitErrorRateLevel1: The biterrorrate is smaller than 5e-4.

- DABConstants.bitErrorRateLevel2: The biterrorrate is smaller than 5e-3.

- DABConstants.bitErrorRateLevel3: The biterrorrate is smaller than 5e-2.

- DABConstants.bitErrorRateLevel4: The biterrorrate is smaller than 1e-1.

- DABConstants.bitErrorRateLevel5: The biterrorrate is equal or larger than 1e-1.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)143

public int getMuteState()

Returns the mute state. This value specifies the current mute state. The following values are
supported:

- DABConstants.muteStateUnknown: The current mute state is unknown.

- DABConstants.muteStateMuting: The DAB Receiver is permanently muting.

- DABConstants.muteStatePartialMuting: Some audio frames were muted.

- DABConstants.muteStateNotMuting: No frame was muted.

public class dab.events.ScanNtfEvent extends dab.events.DABEvent

ScanNtfEvent is generated in response to a scanReq request.

See Also

dab.DABSource#scanReq scanReq

Version

1.01

Constructors protected ScanNtfEvent(

DABSource source,

int tuneFrequency,

int notifications)

Creates a ScanNtfEvent object.

Methods public int getTuneFrequency()

Returns the currently tuned frequency in Hertz.

public int getNotifications()

Returns the notification type. The returned value is a flag field supporting the following flags which
can be specified together:

- DABConstants.notifications16kHzSteps: A 16 kHz step has been made.

- DABConstants.notificationsTableEntry: A frequency of the specified frequency table has been
reached.

- DABConstants.notificationsEnsembleFound: A DAB Ensemble has been found.

public class dab.events.ObjectNtfEvent extends dab.events.DABEvent

The ObjectNtfEvent is generated in response to an ObjectNtfReq request.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)144

See Also

dab.DABListener#objectNtf objectNtf

Version

1.02

Constructors protected ObjectNtfEvent(

DABSource source,

ComponentId componentId,

ObjectId objectId,

int selectionState,

DABObject object)

Creates an ObjectNtfEvent event.

Methods public dab.si.ComponentId getComponentId()

Returns the component the object is belonging to.

public dab.data.ObjectId getObjectId()

Returns the id of the selected object.

public int getSelectionState()

Returns the current selection state. The following values are supported:

- DABConstants.selectionStateOK: This message delivers a selected object to the connected DAB
client. The object is available by parameter object.

- DABConstants.selectionStateDelayed: Delivery of the selected object is delayed.

- DABConstants.selectionStateTerminated: Transmission of the selected object is terminated. The
object selection is removed.

public dab.data.DABObject getObject()

Returns a reference to a DAB object. As the DABObject class is just an abstraction of data objects,
you have to check the actual type of the returned object (e.g. instance of MOTObject) to know which
kind of object is delivered.

public class dab.events.LocationInfoNtfEvent extends dab.events.DABEvent

The LocationInfoNtfEvent represents notifications related to the GetLocationInfo command.

See Also

dab.DABListener#locationInfoNtf locationInfoNtf

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)145

Version

1.02

Constructors protected LocationInfoNtfEvent(

DABSource source,

Date timestamp,

int[] regionIds,

LocationInfo info)

Creates a LocationInfoNtfEvent object.

Methods public Java.util.Date getTimestamp()

Returns the timestamp

public int[] getRegionIds()

Returns the list of region identifiers. When no region ids are available or are not requested, the result
is an empty array.

public dab.data.LocationInfo getLocationInfo()

Returns the location info. When the location info was not requested, the result is null.

A.4 Package dab.data
public class dab.data.BWSDirectoryIndex

The BWSDirectoryIndex class represents profile information in a BWS directory

Version

1.01

Constructors public BWSDirectoryIndex()

Methods public int getProfileId()

returns the profile id that this index is for

public Java.lang.String getIndexName()

returns the index page name

public class dab.data.ProgrammeNumber

ProgrammeNumber represents a programme number that can be used for "programming" a service.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)146

Version

1.00

Constructors public ProgrammeNumber()

Methods public Java.util.Date getTransmissionTime()

returns the transmission time

public boolean isInterrupted()

signals, whether the programme is interrupted by later continued

public boolean isRedirected()

signals, whether the programme is redirected to a different service and time

See Also

dab.data.ProgrammeNumber#getNewService getNewService

public dab.si.ServiceId getNewService()

returns the ServiceId of the new service when the programme is redirected

See Also

dab.data.ProgrammeNumber#isRedirected isRedirected

public abstract class dab.data.DABObject

The DABObject class represents all kind of data that is transported via DAB.

Version

1.01

Constructors public DABObject()

public class dab.data.MOTObject extends dab.data.DABObject implements dab.data.MOTObjectHeader

The MOTObject represents data that is transported via the MOT protocol.

Version

1.06

Constructors public MOTObject()

Methods public int getContentType()

Returns the content type (the main category)

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)147

public int getContentSubtype()

Returns the content subtype (the exact type)

public byte[] getBody()

Returns the body of the object (the actual content)

public Java.lang.String getContentDescription()

Returns the content description

Throws

DABNotAvailableException - when the content description is not available

public int getContentDescriptionCharset()

Returns the charset of the content description (see DABConstants.charset*)

Throws

DABNotAvailableException - when the charset is not available

public Java.lang.String getContentName()

Returns the content name

Throws

DABNotAvailableException - when the content name is not available

public int getContentNameCharset()

Returns the charset of the content name (see DABConstants.charset*)

Throws

DABNotAvailableException - when the charset is not available

public dab.data.Label getLabel()

Returns the label

Throws

DABNotAvailableException - when the priority is not available

public int getPriority()

Returns the priority (0=lowest priority; 255=highest priority)

Throws

DABNotAvailableException - when the priority is not available

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)148

public int getRepetitionDistance()

Returns the repetition distance (in ms)

Throws

DABNotAvailableException - when the repetition distance is not available

public int getVersionNumber()

Returns the version number of the object

Throws

DABNotAvailableException - when the version is not available

public boolean getValidity()

Returns false, if validity is now; otherwise true. Note, if the validity is set to false the referred time
routines have to be ignored.

See Also

dab.data.MOTObject#getCreationTime getCreationTime

dab.data.MOTObject#getStartValidity getStartValidity

dab.data.MOTObject#getExpireTime getExpireTime

dab.data.MOTObject#getTriggerTime getTriggerTime

public Java.util.Date getCreationTime()

Returns the authoring date of the object

Throws

DABNotAvailableException - when not available

See Also

dab.data.MOTObject#getValidity getValidity

public Java.util.Date getStartValidity()

Returns the date after which the object is valid

Throws

DABNotAvailableException - when not available

See Also

dab.data.MOTObject#getValidity getValidity

public Java.util.Date getExpireTime()

Returns the date after which the object is not valid anymore

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)149

Throws

DABNotAvailableException - when not available

See Also

dab.data.MOTObject#getValidity getValidity

public Java.util.Date getTriggerTime()

Returns the date for presenting the object

Throws

DABNotAvailableException - when not available

See Also

dab.data.MOTObject#getValidity getValidity

public Java.lang.String toString()

Returns a textual representation of the object

public Java.lang.String getMimeType()

Returns the MIME type of the object

public int getCompressionType()

Returns the compression type of the object

Throws

DABNotAvailableException - when the content description is not available

public class dab.data.MOTDirectoryObject extends dab.data.MOTObject

The MOTDirectoryObject class represents a MOT carousel directory of a component

Version

1.01

Constructors public MOTDirectoryObject()

Methods public int getNumberOfObjects()

Returns number of objects described by the directory

public int getCarouselPeriod()

Returns maximum time (in tenths of second) for the carousel to cycle

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)150

public dab.data.MOTObjectHeader[] getContents()

Returns MOT Headers for objects described by the directory

public class dab.data.ProgrammeType

ProgrammeType represents provided programme types of a certain service. It consists of an international code, an
optional coarse code and two optional fine codes.

Version

1.01

Constructors public ProgrammeType(

int internationalCode,

byte[] fineCode,

boolean hasCoarseCode,

int coarseCode)

Methods public int getInternationalCode()

Returns the international code

public int getCoarseCode()

Returns the coarse code

Throws

DABNotAvailableException - when the code is not available

public byte[] getFineCode()

Returns a reference to the fine codes

public class dab.data.BWSObject extends dab.data.MOTObject

The BWSObject class represents data that is part of the BWS service

Version

1.01

Constructors public BWSObject()

Methods public Java.lang.String getAdditionalHeader()

Returns the additional header (the HTTP header field)

Throws

DABNotAvailableException - when the content description is not available

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)151

public byte[] getProfileSubset()

Returns the list of profiles for which the object is relevant

Throws

DABNotAvailableException - when the content description is not available

public int getCryptoAlgorithm()

Returns the crypto algorithm for the object

public int getScramblingMode()

Returns the scrambling mode for the object

public dab.data.SubscriberInfo getSubscriberInfo()

Returns information about how to subscribe to the service

Throws

DABNotAvailableException - when the content description is not available

public class dab.data.Label

Label models a textual string which is used in the DAB System for service labels, object labels and so on. It contains a
text with max. 16 characters. Additionally the character set is indicated and it is specified how the label is to be displayed
on a display with less than 16 characters.

Version

1.01

Constructors public Label(

int charSet,

String label,

int characterFlagField)

Methods public int getCharset()

Returns the charset (see DABConstants.charset*)

public int getCharacterFlagField()

Returns the character flag field

public Java.lang.String getLabel()

Returns the content of the label

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)152

public class dab.data.AnnouncementSupport

AnnouncementSupport represents supported announcement types of a certain DAB service, e.g. News, Traffic and so
on.

Version

1.01

Constructors public AnnouncementSupport(int announcementSupportFlags)

Methods public boolean equals(int announcementSupportFlags)

Returns true when this object supports all the given flags; otherwise false

public boolean support(int announcement)

Returns true when the announcement is supported; otherwise false

public class dab.data.BWSDirectoryObject extends dab.data.MOTDirectoryObject

The BWSDirectoryObject class represents the carousel directory of a BWS user application.

Version

1.01

Constructors public BWSDirectoryObject()

Methods public dab.data.BWSDirectoryIndex[] getDirectoryIndex()

returns a list of profile index pages

public class dab.data.SubscriberInfo

SubscriberInfo contains information how to subscribe to a service.

Version

1.00

Constructors public SubscriberInfo()

Methods public int getReason()

returns a flag field (see DABConstants.subscriberInfo*) that explains why the related BWS object
could not be descrambled

public int getEncryptionSpecificFlags()

returns a flag field that can be used for redirection purposes

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)153

public Java.lang.String getContentName()

returns the content name of the alternative object

public interface dab.data.MOTObjectHeader

The MOTObjectHeader represents the header information of an MOT object

Version

1.02

Methods public int getContentType()

Returns the content type (the main category)

public int getContentSubtype()

Returns the content subtype (the exact type)

public Java.lang.String getContentDescription()

Returns the content description

Throws

DABNotAvailableException - when the content description is not available

public int getContentDescriptionCharset()

Returns the charset of the content description (see DABConstants.charset*)

Throws

DABNotAvailableException - when the charset is not available

public Java.lang.String getContentName()

Returns the content name

Throws

DABNotAvailableException - when the content name is not available

public int getContentNameCharset()

Returns the charset of the content name (see DABConstants.charset*)

Throws

DABNotAvailableException - when the charset is not available

public dab.data.Label getLabel()

Returns the label

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)154

Throws

DABNotAvailableException - when the priority is not available

public int getPriority()

Returns the priority (0=lowest priority; 255=highest priority)

Throws

DABNotAvailableException - when the priority is not available

public int getRepetitionDistance()

Returns the repetition distance (in ms)

Throws

DABNotAvailableException - when the repetition distance is not available

public int getVersionNumber()

Returns the version number of the object

Throws

DABNotAvailableException - when the version is not available

public boolean getValidity()

returns false, if validity is now; otherwise true. Note, if the validity is set to false the referred time
routines have to be ignored.

See Also

dab.data.MOTObjectHeader#getCreationTime getCreationTime

dab.data.MOTObjectHeader#getStartValidity getStartValidity

dab.data.MOTObjectHeader#getExpireTime getExpireTime

dab.data.MOTObjectHeader#getTriggerTime getTriggerTime

public Java.util.Date getCreationTime()

returns the authoring date of the object

Throws

DABNotAvailableException - when not available

See Also

dab.data.MOTObjectHeader#getValidity getValidity

public Java.util.Date getStartValidity()

returns the date after which the object is valid

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)155

Throws

DABNotAvailableException - when not available

See Also

dab.data.MOTObjectHeader#getValidity getValidity

public Java.util.Date getExpireTime()

returns the date after which the object is not valid anymore

Throws

DABNotAvailableException - when not available

See Also

dab.data.MOTObjectHeader#getValidity getValidity

public Java.util.Date getTriggerTime()

returns the date for presenting the object

Throws

DABNotAvailableException - when not available

See Also

dab.data.MOTObjectHeader#getValidity getValidity

public Java.lang.String getMimeType()

Returns the MIME type of the object

public int getCompressionType()

Returns the compression type of the object

Throws

DABNotAvailableException - when the content description is not available

public class dab.data.LocationInfo

LocationInfo represents location data this is returned by the GetLocationInfo command.

Note, if the quality is below zero, than all other attributes are invalid.

The used coordinates have the same reference system as GPS.

Version

1.01

Constructors public LocationInfo()

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)156

Methods public int getLongitude()

Returns the longitude in 100 000ths of a degree (from +180 degrees for easterly longitudes to
-180 degrees for westerly longitudes).

public int getLatitude()

Returns the latitude in 100 000ths of a degree (from +90 degrees for northerly latitudes to
-90 degrees for southerly latitudes).

public int getAltitude()

Returns the altitude in meters above ground.

public int getVelocity()

Returns the velocity in 100 000ths of a meter per second.

public int getDirection()

Returns the direction in 100 000ths of a degree (range: [0,360[in degrees; 0 degrees points
to north).

public int getQuality()

Returns the overall quality of the data. The range is from +100 (best) to -100 (worst).
Negative values indicate invalid data.

public class dab.data.ObjectId

The ObjectId is an identifier for objects carried in a data service channel. It is used to request objects and for
identification of delivered objects to the application.

Version

1.04

Constructors public ObjectId()

Constructs an ObjectId object

public ObjectId(ObjectId objectId)

Constructs a copy of the given ObjectId.

See Also

ObjectId#getId getId

public ObjectId(String stringId)

Constructs an ObjectId object from the given string.

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)157

See Also

ObjectId#getId getId

Methods public int compareTo(Object objectId)

This method compares the object with the given object. The behavior is the same as it is
specified in the compareTo method of the Java.lang.Comparable interface.

public int compareTo(ObjectId objectId)

This method compares the object with the given object. The behaviour is the same as it is
specified in the compareTo method of the Java.lang.Comparable interface.

public Java.lang.String getId()

Returns an external representation of the identifier in a textual format. The returned value can
be used to construct an object id.

public class dab.data.DLSObject extends dab.data.DABObject

The DLSObject represents data of the Dynamic Label Service.

Version

1.02

Constructors public DLSObject()

Methods public byte[] getRawDynamicLabelSegment()

Returns an array of bytes containing the DLS as it is.

Remark : The CRC check for the DLS must be successfully passed

public Java.lang.String getDynamicLabelSegment()

Returns the DLS converted to Unicode and without control characters

Remark : Not all codetables for Unicode may be implemented on the receiver

Throws

DABNotAvailableException - when the information is not available

public int getCharSet()

Returns the charSet of the DLS (see DABConstants.charset*)

Throws

DABNotAvailableException - when the information is not available

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)158

public int getCharacterFlagField()

Returns the CharacterFlagField for the DLS

Throws

DABNotAvailableException - when the information is not available

public int getEndofHeadlinePosition()

Returns the position of the last character belonging to the Headline inside the DLS

Throws

DABNotAvailableException - when the information is not available

public int[] getPreferedLineBreakPositions()

Returns the positions of the last character before a line break suggested by the broadcaster

Throws

DABNotAvailableException - when the information is not available

public int[] getPreferedWordBreakPositions()

Returns the positions of the last character before a word break suggested by the broadcaster

Throws

DABNotAvailableException - when the information is not available

public int getSegmentNumber()

Returns the SegmentNumber

Throws

DABNotAvailableException - when the information is not available

public boolean isToggle()

Returns the Toggle Flag

Throws

DABNotAvailableException - when the information is not available

public boolean isCommand()

Returns the Command Flag

Throws

DABNotAvailableException - when the information is not available

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)159

Annex B (informative):
Bibliography
Implementing Protection Domains in the Java Development Kit 1.2 (Li Gong and Roland Schemers) - Proceeding of
Internet Society …

Java Security Architecture (http://Java.sun.com/…/security-spec.html)

Security reference Model for JDK 1.0.2 by M. Erdos, B. Hartman, M. Mueller (13 November 1996) - Sun specification

Java TV API Specification (http://java.sun.com/products/javatv/)

DVB Java specification (http://www.dvb.org/dvb_technology/framesets/standspec-fr.html)

Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM - ME)
interface (GSM 11.14 version 7.2.0 Release 1998)

Connected, Limited Device Configuration (March 8, 2000)
(http://Java.sun.com/aboutJava/communityprocess /jsr/jsr_030_j2melc.html)

PDA Profile for J2ME (http://Java.sun.com/aboutJava/communityprocess/jsr/jsr_075_pda.html)

J2ME Connected Device Configuration (http://Java.sun.com/aboutJava/communityprocess/ jsr/jsr_036_j2mecd.html)

Requirements for Runtime Package (TF VM 44 - GNM - 17.2.2000)

JAR Archive documentation (http://www.Javasoft.com/j2se/1.3/docs/guide/jar/index.html)

Manifest (http://www.Javasoft.com/j2se/1.3/docs/guide/jar/jar.html#The META-INF directory)

The HAVi Specification. (http://www.havi.org)

PersonalJava 1.1 http://Java.sun.com/products/personalJava/

PersonalJava datasheet (http://Java.sun.com/products/personalJava/pJava_ds.html)

DAB Java: The Runtime Package, WorldDAB TF-VM (Antonio Barletta)

DAB Java User Application Signalling, WorldDAB TF-VM

PersonalJava and J2ME http://Java.sun.com/products/personalJava/faq.html#A11

Design Pattern, Element of Reusable Object-oriented Software by Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides (Addison-Wesley - ISBN0201633612)

http://java.sun.com/products/javatv/
http://www.dvb.org/dvb_technology/framesets/standspec-fr.html
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_030_j2melc.html
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_075_pda.html
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_036_j2mecd.html
http://www.javasoft.com/j2se/1.3/docs/guide/jar/index.html
http://www.havi.org/
http://java.sun.com/products/personaljava/
http://java.sun.com/products/personaljava/pjava_ds.html
http://java.sun.com/products/personaljava/faq.html

ETSI

ETSI TS 101 993 V1.1.1 (2002-03)160

History

Document history

V1.1.1 March 2002 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 The DAB package
	4.0 Summary
	4.1 The communication concept
	4.1.1 The communication between the application and the DAB package

	4.2 Commands
	4.3 Examples
	4.3.1 EPG
	4.3.2 Ticker

	4.4 Command Types
	4.4.1 Tuning
	4.4.2 Searching
	4.4.3 Scanning
	4.4.4 Accessing service directory information
	4.4.5 Accessing service information
	4.4.6 Monitoring reception quality
	4.4.7 Selecting an audio service
	4.4.8 Selecting a slideshow or a dynamic label service
	4.4.9 Selecting a broadcast website service
	4.4.10 Selecting an object
	4.4.11 Selecting a component stream
	4.4.12 Operation control
	4.4.13 Retrieving location information

	4.5 Dependencies between the commands
	4.6 Client registration
	4.7 The package structure

	5 The runtime package
	5.0 Summary
	5.1 The DAB Application Model
	5.2 Control of Java applications
	5.2.1 Packaging
	5.2.2 Loading classes
	5.2.3 Control of applications
	5.2.3.1 Application context
	5.2.3.2 Proxy
	5.2.3.3 Example

	5.3 Security management
	5.4 Resource management
	5.4.1 Model
	5.4.2 Conflict Resolution

	5.5 Configuration management

	6 The User I/O Package
	6.1 Signalling
	6.1.1 DAB Java User Application Profile (DJUAP)
	6.1.2 Platform
	6.1.3 Version
	6.1.4 Content
	6.1.5 Access
	6.1.6 Defined profiles
	6.1.6.1 Standard Personal Java Profile (SPJP)
	6.1.6.2 Network enabled Personal Java Profile (NPJP)

	6.2 DABJava platforms
	6.2.1 PersonalJava 1.1
	6.2.1.1 Core Packages
	6.2.1.2 DABJava profiles: specific packages.
	6.2.1.2.1 Standard Personal Java Profile (SPJP)
	6.2.1.2.2 Network-enabled Personal Java Profile (NPJP)

	Annex A (normative): The DAB Java Classes
	A.1 Package dab
	A.2 Package dab.si
	A.3 Package dab.events
	A.4 Package dab.data

	Annex B (informative): Bibliography
	History

