ETSITS 101 969 vi.1.1 200105

Technical Specification

Methods for Testing and Specification (MTS);
Abstract Syntax Notation One (ASN.1) encoding rules;
Specification of Encoding Control Notation (ECN)

[Draft ITU-T Recommendation X.692]

ETSI %

2 ETSI TS 101 969 V1.1.1 (2001-05)

Reference
DTS/MTS-00068

Keywords
ASN.1, coding, protocol, MTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: 43349294 4200 Fax: +334 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.
All rights reserved.

ETSI

http://www.etsi.org/
http://www.etsi.org/tb/status
C:ETSITemplatesETSI 'new' deliverableseditor@etsi.fr

3 ETSI TS 101 969 V1.1.1 (2001-05)

Contents

INtellectual Property RIGNESoooeii et s et e e st e e snt e e ntee e e teeesneeeeneeeaneeeenes 10
0] Yo o OSSPSR 10
g1 0o 1 o o o OSSR 10
1 00 o PP PR PTRP 12
2 N[00 A T L= = =00t S 12
21 Identical International SEANTAITS.ooueiiiiie e bbb e nree 12
22 AdAItIONAl FEFEIENCES.......eeiieie ittt b e b e b e b e b e s bt s bt e s bt e st e e abe e sbeeebeesbeenbeebe e 13
3 = 11 oo =TSSR 13
31 ASNLL AEfINITIONS. ...ttt ittt ettt b e bt b e b e bt e bt e bt e bt e be e bt e bt e bt e be e abeeabeeabeenbeebe e 13
3.2 ECN-SPECITIC AEfiNITIONS.......c.eeiieiieeeee et sb e bbb e e b e b e e sbeesbeesbeesreesreen 13
4 F Y o]0 (=Y = 1o 0SSR USRS 16
5 DEfiNitioN OF ECN SYNMEBX......cetietieiiieetiesiee ettt ettt e e sbe et beesbe e asneebeesbneannennneens 16
6 Encoding conventions and NOLBLTON............ciuireiiie e sir e siee et et e st e seee e tee st e e sneeeesaeesseeenneeas 16
7 THEECN CharaCler SEL......co ittt e st e et e e st e e snteeeneeeeneeesnseeennsenans 17
8 T NN L= g o= 1 1= 111 RS 17
81 ENCOdiNg ObJECE FEfEIENCES ..ot b e e b e bt bt b e e sb e e sbeesbeesreesree 18
8.2 ENcoding ObjECt St FEFEIENCES.eo ittt ettt bbb b e sb e e sbe e sbeesbeesreesreens 18
8.3 ENCOOING ClaSS TEfEIENCES.o ittt bbbt b e sb e b s bt e sb e e s b e e s beesb e e beesbeesbeesbeesreen 18
8.4 RESEIVEA WOIT TTEITIS ...ttt sb e bbbt s bt sb e e sb e e sb e e s be e s b e e st e e beenbeesbeesbeesbeesbeesreen 19
8.5 Reserved encoding Class NaME ITEIMS........ocuiiiiie ittt r e b e r e n e sreesree 20
8.6 INON-ECN TEEM .ttt bttt h et et e e bt s he e st e b e s bt e Re e e e sbeeheemeebeebesbesbesneenbenrens 21
9 L0 N g o1 o £ PSPPSR 21
9.1 Encoding Control Notation (ECN) SPECITiCALIONS..........ciueeiieiieiieie ettt 21
9.2 ENCOOING ClBSSES ...ttt b e bttt et e bt et e e bt e be e bt st e e sbeesbeesbeesbeesreens 21
9.3 ENCOOING SITUCIUMES......c.eee ettt et h e he e s he e ae e s he e s heesaeesb e e sbeesbeesbeesbeesreen 22
9.4 ENCOOING ODJECES ...ttt a e he e she e he e s b e e sbe e saeesb e e sbeesbeesbeesbeesreen 22
9.5 ENCOOING ODJECT SELS. ...ttt bbbt bbbt b e b e b e e bt e b e e b e e b e e s e e sbeesbeesbeesbeesreen 23
9.6 Defining New eNCOOING ClASSESooiiiiieiee ettt r e e sreesreesree 23
9.7 Defining ENCOING ODJECEScouviiiiieiie ettt sb e b b e s b e sb e e st e e beesbeesbeesbeesbeesbeenreen 24
9.8 Differential enCOdiNg-0ECOUING.c.utiiieiieieeie ettt sttt st sre e b e e b e e sbeesreesbeesbeesreesreesreens 25
9.9 ENcoders OptioNSiN @NCOOINGS.eeveeriereereeie ettt ettt ettt ettt r e et bt b e b st e b e e sneeaneebeesreesbeesreen 25
9.10 Properties of encoding OJECEScouiiiii et 25
911 PAIAIMELENT ZELTNON. ...ttt bbbt bt s bt e s bt e s bt e bt e bt e bt eaneeaeeeaeeehbeesbeesbeesbeesbeesbeenreen 26
9.12 (€T01Y/= 3[04 T PP TP PP RO PR PPN 26
9.13 General asPECES OF ENCOINGS.eeurierietiei ettt ettt ettt b e b e e beesb e e be e sbe e beebeebeenbe e s 27
9.14 Identification of iNfOrmMatioN &l EMENTS..........oiiiiieii bbb e 27
9.15 Reference parameters and deterMINANTSoouiiiiiiiie e sr e sr e e sreesree 28
9.16 Replacement Classes a0 SITUCLUMES.........coueiieiiie ittt sttt sttt she e sbeesbe e saeesbeesbeesbeesreesreesreen 28
9.17 Mapping abstract values onto fields of encoding SITUCIUNES..........cocviiiiiiiiie e 29
9.18 Contents of Encoding Definition MOUIES.............coouiiiiiiiii e 30
9.19 Contents of the ENcoding Link MOQUIE............oiiiiiiiii e 30
9.20 Defining encodings for primitive enCoding ClaSSES........c.uuiiiaiiieiieieeee et 30
9.21 APPIICELTON OF BNCOUINGS. ...t ettt ettt b ettt b e e b e e bt b e e e e e eabe e be e sbeenbeenbe e 32
9.22 Combined enCOOING ODJECT SELcouiiiiiiiet ettt e e e e b b e b e 33
9.23 PN o] o] 1Yo 1o gl o o] o | N T TSP PP PP PRR PR 33
9.24 (670 0o 1 Telg =!I = g Telo’s [Lo AT TR PP UP PR 34
9.25 Changesto ASN.1 Recommendations | International Standards..............coceereerienienienieneese e 34
10 Identifying encoding classes, encoding objects, and encoding ObjeCt SELScceeveeriirieesie i 35
11 ENCOGING ASN.L EYPES. ... eiitieiteiite ettt ettt s ettt e e s b e e et e st e sbeeans e e s e e sbeeanneeneenneeanneenneens 38

ETSI

111
11.2
11.3
114

12
121
12.2

13
131
13.2

14

15

151
152
153

16

16.1
16.2
16.3
16.4
16.5

17

171
17.2
17.3
17.4
17.5
17.6
17.7
17.8

18
181
18.2

19

191
19.2
19.3
194
195
19.6
19.7

20

21
211
21.2
21.3
21.4
215
21.6
217
21.8
21.9
21.10
21.11
21.12

4 ETSI TS 101 969 V1.1.1 (2001-05)

(T 11 - USRS 38
Built-in encoding classes used for implicitly generated encoding SITUCIUNES..........ooovveieiieiecneene e 38
Simplification and expansion of ASN.1 notation for encoding PUIPOSESeeieereerieenieeieesee e 39
Theimplicitly generated encoding SITUCIUNE.........c.veiiiiiieie e 41
The Encoding LinK MOAUIE (ELM) ..ot 42
SEUCIUNE OF tNEELIM ...ttt ettt ettt ettt s et a e e et e e e bt e e st e e e saeeesmteessbeeesneeesnbeesnrenans 42
ENCOOING TYPES. ...ttt a e h e h e ae e s h e he e e he e ehe e ehe e she e eheesheesbeesbeesbeesbeesreenreen 43
APPIICELTION OF ENCOUINGS ...ttt e et e b e s an e abe e e e e r e e b e e nneeenns 43
(€1 11 - | T TPV P TR 43
The combined encoding object sat and itS aPPlICALTON.coiieiieiiee e 44
The Encoding Definition Modul€ (EDM)ccoueiiiiiiieie e 46
TRETENAMES CIAUSE. ...ttt ettt b et b e sae et e b et e e nn e 47
Explicitly generated and eXported SITUCIUNEScc.veiiiiieiie sttt sre e e 47
NBIMIE CHBNGES. ...ttt ae e bt a bt e ab e eab e e ae e eae e e aseeaneeasesaeesbeesbeesbeesbeesbeenreens 48
Specifying the region for NAME CNANGES. ..o e b e 49
ENCOUING ClaSS 8SSIGNIMENEScoutieiieiii ettt ettt ettt et s e e e et e e s ae e s sneenbeesnnennneen 50
(€1 11 = | T PPV P VP TP PR 50
ENCoding SrUCIUNE AEfINMITIONcotiiiieie ettt s b e bbb e sb e e sbeesbeesreesbeesreen 52
AErNative ENCOTING SITUCLUIE........civietiete ettt ettt sttt sb et s bbb b s an e e e e sseesaee e abeeabeenbeebe e e 54
REPELitionN ENCOTING SITUCLUNE ...ttt sb bbb e s b e e sb e e sb e e s b e e nbeenbeesbeesbeesbeesreen 55
Concatenation ENCOTING SITUCKUNEeeueitieteeteeie ettt ettt sttt e e s b e sbeesbeesbe e ebeebeebe e 55
ENcoding ODJECt 8SSIgNMENTSoiiiiiiieee e nne e 56
€1 11 - | T T PP P TP PP TP PR 56
Encoding With @ defiNed SYNTAXcoiiiiiiiie st sr e b e sreesreesree 57
Encoding with encoding OJECE SELSeiiiiiiiie it sb e bbb e b e sreesreesree 58
ENcoding USING VAU MADPINGS.cc.veeureeureereeie et ere et eseese s eseesseasseeseesseesseesseesneeasesnnesnneeneesbeesbeesreens 58
ENcoding @n NCOING SITUCIUNE.........eeieieieeiie ettt sttt st sb e b b e b e sb e e sb e e sbeesbeesbeesbeesbeesbeesreens 59
Differential enCOdiNg-0ECOUING.c.ueeiieiieii ettt sb e b b e sb e e sbeesreesbeesbeesbeesreesreens 61
ENcoding With éNCOOEI'S OPLIONS.........eoiiiiiriiiiie ittt sttt sr e b b s b e sb e e b e b e e b e e sreesreesreen 61
Non-ECN definition of encoding O] ECLS.........eoiuiiiieiieiiiie et sree 62
ENcoding 0DjeCt SEt @SSIGNMENTSoiiiiieeie et ene e 62
(€1C 11 = | T PP P TR VP UP PR 62
BUilt-in encOding OBJECE SELS.eoiiiie e sb e sb e sb e sreesreenree 63
MBPPING VAIUES ...ttt ettt b ettt e R e e et et e e e se e et e e abe e s sn e e nneenneeannennneen 64
(€1 11 - | T T TP TPV P TP PRPR 64
MapPINgG DY EXPIICIT VBIUES.........eeiieiieeeeee ettt b bbb b b e e b e e sbeesreesreesreen 65
Mapping by MEIChING TIEIUSooiiieeee et sr et sbe e sreesreesree 66
Mapping by #TRANSFORM encOtiNg OJECEScouviiiiiiiieiieiitie ettt neee 67
Mapping by abstract VAIUE OFENNGeeeieiieieiie ettt bbb b b e sbeesbeesreesreesree 67
Mapping by value diStriBULIONcouoiieiee e bbb sree 68
MappiNg iNtEgEr VAIUESTO DTScveiiiiiiieiieitiee ettt bbb e sreesreesreesree 69
Defining encoding 0bjectS USING AEfiNEA SYMEAXc..verrieriierieeieesee et nee s 70
Types used in defined Syntax SPECITICALION.cicviiiieiie e 71
TR UNIT EYPE ettt b ettt bbbt bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e ebe e ebe e abe e beere e 71
The ENCOINGSPACESIZE LY.ttt sttt b e bbbt sb e sb e s b e e sb e e nbe e sbe e be e abeenbeebe e 72
The EncodingSpaceDeter MiNatiOn TYPE..........oiviiieieeiee ittt ettt ettt sb e bbb b r e e sre b 72
The UnusedBitSDeterMiNation YRcivieiteeie ettt sttt ettt ettt sbe bt r e n e n e nbeenre e 73
The OptionalityDEterMINGLi ON TY[E.....c.ve ittt e e bbb e e sb e b e sbe e b e sbeenbeenre e 73
The AlternativeDeter MiNatiON TYPE........eoitieirieie ettt b e bt b e abe e nbeenne e 74
The RepetitionSpaceDeterMiNatiON TYPEcivieiieieee et re b 75
THE JUSEITI CBLION TYP ..ottt b e bbbt bt bt ettt b et e e e an e e sbe e be e bt e nbe e b e 75
L= = o (o[g To Y o= PP P PRSPPI 76
The Pattern and NON-NUI-Pattern TYPES.c..eoiieiieii e re e 76
The RANGECONITION LYee ittt ettt b e b e bt b e bt b e n e e r e e r e e n e e b e e nbe e nbeenre e 77
The SizeRaANGECONITION LY.ee ittt b e b e e bt b e r e e r e n e b e sbe e nreenre e 77

ETSI

5 ETSI TS 101 969 V1.1.1 (2001-05)

21.13 The Reversal SPECI TICati ON TYPR......oiei e e b e bbb et sbe b b 78
21.14 THE RESUILSI ZE TYPE. ..ttt bbbt bt b e b e e e bt e e bt e bt e be e b e et e e abe e be e nbeenbeebe e 78
22 Commonly used encoding ParaMELEr GIOUPSeereerurerreereessreareesseesseesseesseesseesreesseesseessessseessnes 79
221 RePIaCeMENt SPECITICAIIONeeeietieii ettt b e sb e b e e s b e e sbe e sbeesbeesbeesbeesbeesbeesreen 79
2211 Encoding parameters, SyNntax, @0 PUMPOSE.coueereeriereereereeseeseeseeseeseeseeseeseeneeneeseeseeseenesanas 79
22.1.2 SPECITICALION FESIITCHIONS ...ttt b e bbbt e sb e e b e bt bt bt e n et e e be e beenbeebe e 80
22.1.3 [pTe0 e (= g o1 o 1RSSR 81
2214 DIECOTET ACLIONSeeeteeieete ettt ettt sttt et e bt be bt et e be s bt b e e he e besbeeb e e he e b e s b e nbeeheembenbeebeembesbesbesbeenneseeneas 82
22.2 Pre-alignment and padding SPECITICALTIONeoiuiiiieiiee et sree 82
2221 Encoding parameters, Syntax, @0 PUMPOSE.cveereeriereereeteeseeseeseebeeseeseese e st eseeseeseeseeneenesnnes 82
22.2.2 SPECITICALION CONSITAINTS. ...t eete ettt ettt sttt sttt b et sb e e sb e be e sb e e bt e b e e bt e b e eaneeabeenbe e beenbeebe e 83
22.2.3 (00 e (= g o1 o 1RSSR 83
2224 D c oo s = g o100 L SO PR TPO PP TRRTRO 83
22.3 Start POINTET SPECITICAIIONeeteeteeteet ettt es e sa e e i e s be e sbee s beenbeebeebeenbe e 83
2231 Encoding parameters, Syntax, N0 PUIPOSE.cveereereereereereereeseeseebeereeseeseeseeseeneeseeseeseenesnnes 83
22.3.2 SPECITICALION CONSITAINTS. ... euteeiee ettt sttt sttt e b et e s bt bt e b e e sb e e bt e b e bt e bt e b e enbeenbeeabeenbeebeenee 84
22.3.3 g Te0 e (= g o o PSR 84
2234 D cwlols = g o100 L ST OO U PO TPOPPTOTRRTRO 84
22.4 ENcoding SPace SPECITICALIONc..eereieieieeiee ettt sttt sttt bbb e e sb e e sbeesbeesbeenbeesbeesbeesbeesreen 85
2241 Encoding parameters, Syntax, @0 PUMPOSE.oueereeriereereeteeteeseeseebeeseeseeseeseeneeneeseeseeneenesanes 85
2242 SPECITICALION FESIITCHIONS ...ttt b e b et b e b e sb e e b e e b e bbb e be e b e e beenbeebe e 85
2243 (000 (= g o1 o 1 PSRRI 86
2244 DECOUES @CHIONSecuteeute ettt ettt e ettt et bbbt sh et b et eb e eb e e eb e e e b e e sbe e nbeesbe e se e e mn e enneenneennennn s 86
225 OptiONElILY OELEITNINGLIONeeiieiiitieite ettt ettt s e s e s ae e sae e e bt e be e b e e beebe e 87
2251 Encoding parameters, Syntax, @0 PUIPOSE.cueerietiereeeeereereeseeseeseeseeseeseeseeseeneeseeseeseenesnns 87
2252 SPECITICALION FESIITCHIONS ...ttt b e bbbt e b e sb e e b e e bttt b e e b et e e be e beenbeebe e 87
2253 [pTe0 e (= g o o £ RSP TS 88
2254 D c oo s = g oo LS TSRO U PP OPRTO RPN 89
22.6 AIENELiVE AELEMINGLIONeiitieieie ittt sttt b e b et b e e bt bt s e e e e e eae e s abeesbeenbeenbeebe e 89
22.6.1 Encoding parameters, Syntax, @0 PUIPOSE.ccueereetieteeeeereereeseeseebeeseeseese e st eseeseeseeneeneenesanes 89
22.6.2 SPECITICALION FESIITCHIONS ...ttt bttt b et b e bt sb e bt e b e bt bt e b e be e be e beenbeebe e 89
22.6.3 ENCOOEY BCHONS......cueiieeeeeee ettt et b e et e et e bt e bt e bt e es e s an e enneennennnesans 90
22.6.4 DECOUES @CHIONSecueeeute ettt ettt h bbbt sb et she e b et eb e eb e e b e e e be e sb e e eb e e sbe e me e e nn e enneenneennennn s 90
22.7 RePELiti 0N SPACE SPECITICALION.eeveeieie ittt sb e bbb e b e e sr e e sbeesbeesbeesbeesreen 91
2271 Encoding parameters, Syntax, @0 PUIMPOSE.cueerierieieereeseereeseeseebeeseeseese e st eseeseeneeseeneenesnnes 91
22.7.2 SPECITICALION CONSITAINTS. ...t euee et ettt sttt sttt sb ettt e e sb e e s b e sb e skt e bt e b e bt e b e e b e abeenbeeabeenbeebe e 92
22.7.3 ENCOOEY BCHONS......cceeeieieiee ettt b e bttt e et e bt e bt s ee e e anesaneannennn e e 92
2274 DECOUES @CHIONS ...ttt ettt ettt e bbbt h et s b et b et eb e eb e e eb e e b e e eb e e ebeenbe e me e e enesnneenn e ennesnn s 93
22.8 Value padding and JUSLITICALTON.eeiieiieieie ettt b e e sb e e nbe e re e 94
2281 Encoding parameters, Syntax, @0 PUIMPOSE.ccveereeriereereeseeseeseeseebeeseeseeseeseeseeseeneeseeneenesanas 94
22.8.2 SPECITICALION FESIITCHIONS ...ttt sttt bttt ettt b e e b e sb e e bt bt bt e b e e n e e be e nbeesbeenbeebe e 95
22.8.3 ENCOOEY BCHONS......cueeieee ittt b et ab e bt e et e bt e bt e bt s ae e e an e annesnnennnesnns 95
2284 D cwlols = g o100 L OO TR OT PSPPI 95
229 I dentification handle SPECITICALION.eeieeiieii ettt e b e sreesreesree 96
2291 Encoding parameters, Syntax, N0 PUIMPOSE.ccveerieriereeeeereeseeseeseeseeseeseeseeseeseeneeneeneenseenesanes 96
2292 SPECITICALION CONSITAINTS......eeiute et ettt sttt b et e bt s bt b e e sb e e bt e b e e bt e b e eabeenbeenbeeabeenbeebe e 96
2293 ENCOOEIS BCLTONS. ...ttt ettt ettt b et e bt e bt e bt e bt e bt ese e eanesnneanneennennns 96
2294 DECOUEIS ACHIONS. ...t ettt ettt ettt ettt ettt et e bt e bt e st e bt et e e bt e bt e st e bt e bt e b e ess e eanesnnesnnennnesnns 97
22.10 CoNCALENELi 0N SPECHTICALIONeeeiieeiieee ittt ettt st b e et b b e b 97
22.101 Encoding parameters, Syntax, @0 PUIPOSE.cueerierirreereeiresieesseesieesseeseeesseesssesaeesbeesseesseesneesseensnesnnes 97
22.10.2 SPECITICALION CONSITAINTS......ee vttt sttt sttt bttt et e e sb e s b e e bt e sb e bt e bt e b e e b e e abe e abeenbeenbeenbeebeenee 97
22.10.3 ENCOOEY BCHIONS......ccueeieeeeeeeee ettt e et b e bt a bt et e e bt e et e ee e e abesnneannennnesnns 97
22.10.4 D c oo s = g o0 L TSRO U P TPO PR TRRTRO 98
22.11 Contained type encoding SPECITICALIONc..eeitieiieiieiie et bbb 98
22111 Encoding parameters, Syntax, a0 PUINPOSE.cueertrrerieereseresiee st sieesseeseeesseesssesseesbeesseesseesseesseessnesnnes 98
22.11.2 ENCOOEY BCHONS......cueieeeeeieee ettt e et b e ae e bt e st e bt et e e ee e e anesnnesnneannennns 98
22113 D c oo s = g o100 L ST OO TP TP PPTOTRRTRO 99
22.12 Bit reversal SECITICAIIONcveiiieie ettt b e bt bt e n e neeb e b e e b e nre e nreenree 99
22121 Encoding parameters, Syntax, and PUIPOSE.cueertererteereeiresiresieesieesseesseesseesssesseesbeesseesseesneenseesnnesnns 99
22122 SPECITICALION CONSITAINTS. ...t eueeeiee ettt ettt sttt bt b e bt sb e b e b e e sb e e bt e b e e b e e b e e b e sbeenbeenbeenbeebe e 99
22.12.3 ENCOOEY BCHONS......ccueiieeeieee ettt b e e et b e bt e bt e st et e e bt e an e e enesnnenaneannesnns 99

ETSI

6 ETSI TS 101 969 V1.1.1 (2001-05)

22124 D= ol (= = o o0 1< USRS 100
23 Defined syntax specification for bitfield and constructor Classes..........ocvvveevevcieeriee e 100
231 Defining encoding objects for classesin the aternatives Calegory.........oovereeierieree e 100
2311 THE AEfINE SYNEBX ...ttt h bbbt a et sa et as e sae e san e san e s e snne e 100
23.1.2 PUIPOSE AN FESIITICHIONS...... ettt b bbb b e e b e b e e s b e e bt e beebe e b e 101
23.1.3 [pTel0 e (= g o1 o 1R 101
2314 DL ool (= g o0 OSSPSR 102
23.2 Defining encoding objects for classesin the DItString Categorycooovierieieeieic e 102
2321 THE AEfINE SYNEBX ...ttt ae bt ae et sas e eae e ean e san e snnesnnesans 102
23.2.2 Mode for the encoding of classes in the bitString Category...........ouueiiiiierieniereeee e 103
23.2.3 PUIPOSE AN FESIIICHIONS ...ttt sttt ettt e be b e 103
23.24 (oo e (= g o1 o £ S PRR 104
23.25 D C oo s = g o100 L TP VPV PR TR 104
233 Defining encoding objects for classesin the boolean Caegoryooverierieiieiini e 104
2331 THE AEfINE SYNEBX....c.eeiieiiieeeiiee ettt h et a et eh et a et s et sas e sas e san e snn e ennesnnesans 104
23.3.2 PUIPOSE AN FESIIICHIONS ...ttt b bbb b e e b e b e e s b e e be e bt e be e b e 106
23.33 0 o00 e = =it o]0 LSS RSP URSR 106
2334 DL ool (= g o0 SRR 107
234 Defining encoding objects for classesin the characterstring Category.........oveveereerieeieenee e 107
234.1 THE EfiNE SYNEBX ...ttt bbbt e e bbbt s he e b e bt be e e e sbesbeebeenbe b e 107
23.4.2 Mode for the encoding of classes in the charaCterstring Categoryocceeveerieieeniene e 108
23.4.3 PUIPOSE AN FESIIICHIONS ...ttt ab e et e bbb e 108
2344 [0Tol0e = =i o]0 LSS TSRS SR 109
2345 DIECOTET ACLIONS ...ttt ettt et sttt ettt be st e e e s bt bt bt eae e e be e bt sbeeae et e s b e eb e eae e eenbeebeembesbenbeeneeneeneeee 109
235 Defining encoding objects for classesin the concatenation CaegOrYcuvieereereereeneeiieniesee e 109
2351 THE EfiNE SYNEAX ...ttt bttt sttt ae e s bt b e s bt e b e bt beeneesbesbeebeenbe e e 109
23.5.2 PUIPOSE AN FESIIICHIONS ...ttt b bbb bt e bt e bt e s b e et e beebe e b e 111
2353 0 el0e = =it o]0 LSS UP R 111
2354 DL ool (= g o 10 USSP 112
23.6 Defining encoding objects for classesin the iNteger CaLEJONY........oiuiiiirierienieieee et 112
23.6.1 THE AEfINE SYNEBX ...ttt h bbbt sh et et s st see e san e san e nnesnnesans 112
23.6.2 PUIPOSE AN FESIITICHIONS ...ttt bbbt b b e b e b e e b e et e bt e be e be e 112
23.6.3 0 ol0e = =it o]0 LSS UPR 112
23.6.4 DL ool (= g o0 TSP 112
23.7 Defining encoding objects for the #CONDITIONAL-INT ClaSS.......cccviieiiiiiiiiieiieresee s 113
23.7.1 THE AEfINE SYNEBX ...ttt a et a et eb et e et a et ae e as e san e annesnnesnne e 113
23.7.2 PUIPOSE AN FESIITICHIONS ...ttt b bbb bt e b e b e e b e et et e b e b e 114
23.7.3 g o00e = =it o]0 LSS RSOSSN 115
23.74 DL ool (= g o0 SRR UR R 116
23.8 Defining encoding objects for classesin the NUIl CALEJOIYoiveiiiiieeiieeieeee e 116
2381 THE AEfINEU SYNEBX ...ttt e bt se bbbt h et ae e se et sae e ean e sanesnnesnne e 116
23.8.2 PUIPOSE AN FESIIICHIONS ...ttt b bbb b e e b e b e e s b e e be e beebe e b e 117
23.8.3 ENCOOEY BCHONS......ccueieieeeit ettt b et b et b e bt e bt e bt e be e bt e bt e be e bt ebe e 117
2384 DL ool (= g o 10 ST UR R 118
239 Defining encoding objects for classesin the OCtELSIIiNg CALEJOIYeoieereeriieiienienee e 118
2391 THE AEfINE SYNEBX ...ttt a et sae bt h et sae e se et sae e san e snn e nnesnne e 118
23.9.2 Mode for the encoding of classes in the OCtEfSIriNG CALEQONYcccvervirierieiiereeeee e 119
23.9.3 PUIPOSE AN FESIIICHIONS ...ttt ettt et b b e 119
2394 ENCOOEY BCHONS......cueiieeiiiei ettt st st st e e e ean e e bt e bt e bt e b e b e 120
2395 DL ool (= g o 10 SRR 120
23.10 Defining encoding objects for classesin the optionality CalEJOrY..........couiiirriereereeiieiese e 121
23.10.1 THE AEfINE SYNTBX ...ttt h e re et eb et eb bbbt see e sanesan e snnesnnesnns 121
23.10.2 PUIPOSE AN FESIIICHIONS ...ttt ab e ettt be b e 121
23.10.3 ENCOOEY BCHIONS......cueiieeieiee ettt a e ab e st ettt et e bt b e b e 122
23.104 DIECOTET ACLIONS ...ttt ettt st sttt sttt be et e s bt bt s bt eae e e be e bt eb e eaeebeebesbeeae e b e et e ebeenbesbesbeeneeeeneeee 122
2311 Defining encoding objects for classesin the pad CaEJOrY.........ccveiiiierieieneee s 122
23111 THE AEfINE SYNTBX ...ttt h bbbt eb et rb et sa et see e san e sanensnesnnesans 122
23.11.2 PUIPOSE AN FESIIICHIONS ...ttt b e ettt be b 123
23.11.3 ENCOOEY BCHIONS......cueiieiiiiie ettt a e s s bt s ettt e bt e bt et e b e 123
23.11.4 DIECOTET ACLIONS ...ttt ettt sttt et be bt ae e bt be s bt e st e sbe e bt ebeeaeebesbeeb e eae e b et e ebeenbesbesbeeneeeeneeee 124
23.12 Defining encoding objects for classesin the repetition CalegOry..........oviierieiieieeienesee e 124

ETSI

7 ETSI TS 101 969 V1.1.1 (2001-05)

23121 THE AEfINE SYNTBX ...ttt sttt h bbbt ebe et sae e sae e san e san e snnesnnesnns 124
23.12.2 PUIPOSE AN FESIIICHIONS ...ttt be b e 124
23.12.3 [pTele e (= g o1 o £ RSP 124
23.124 D= ol (= = o o g 1< PR 125
23.13 Defining encoding objects for the #CONDITIONAL-REPETITION ClaSS........cccovviiiiiiiiiiiieiic e 125
23131 THE AEfINE SYNTAX ...ttt ettt et b e bt e bt e bt e b e e bt san e snnesnnesnnesnns 125
23132 PUIPOSE AN FESIIICHIONS ...ttt b bbb b e e b e be e s bt e be e bt e be e b e 126
23.13.3 [Tel0 e (= g o1 o 1SR 127
23.134 D= ol (= = o o0 1< SRR 127
23.14 Defining encoding objects for classesin thetag CalegOrycceoieiieieieeieeieeee e 128
23141 THE AEfINE SYNTBX ...ttt b bbbt eh et bt she e sbe e san e san e en e snnesans 128
23.14.2 PUIPOSE AN FESIIICHIONS ...ttt s b e b bt e bbb e 129
23.14.3 (00 e (= g o1 o £ ST PR 129
23.14.4 DIECOTET ACLIONS ... ettt ettt sttt e et be bt et e s bt s besb e e st e sb e e bt sbeeae e b e sbeebeeae e benbesbeembesbesbeeneeee e ee 130
23.15 Defining encoding objects for classesin the other Categories.vvviiriereeriereee e 130
24 Defined syntax specification for the #TRANSFORM encoding Class..........cooovveeenieniciiieesecsee 130
24.1 Summary of encoding parameters and defiNed SYNTAX..........cuovviiiiiieiierie e e 130
24.2 Source and target Of traNSIONMIS..........oiii et nbe b 132
24.3 TRE INE-T0-TNE TrANSFONM ...ttt sat e e st e e st e e e be e e beeeae e e ebeeesbeeesneeesntens 133
24.4 The bool-t0-B00l traNSfOrM........oe e as 133
24.5 RILa1] oo To I (o ui T o1 (= 1 {0 o VR RTRPRR 134
24.6 The iNt-t0-DO0I trANSFOMML......c.eei ettt e et e e rbe e e ne e e sbe e e sbeeesneeesneeas 134
24.7 The iNt-10-CharSTraNSIOIMottt e e sae e e st e e e sbee e sneeesneeas 134
24.8 The INt-10-DITS TraANSIOINM. sttt e et e e ae e e st e e e sbeeesneeesneeas 135
24.9 The DItSTO-INt traANSFONM.... e ettt e et e e ae e e saee st e e e sbeeesaeeesneeas 136
24.10 The char-t0-DitS TraNSIONM ...t sate e st e e sbe e e saee e sneeas 137
24.11 The DitStO-Char tranNSfOrM ...t ettt e sbe e e seee e snee s 138
24.12 The Dit-10-DItS TraNS O ...ttt sb e e sae e s b e e nbe e e saeeesneeas 139
24.13 The DitStO-DItS trANSIONM ...ttt et e sbe e e seee e snee s 139
25 Complete encodings and the #OUTER ClESS..........oooviiiieiiiiieeeseee e 140
251 General rulesfor encoding aNd AECOUING.eeiueiiieiie et 140
25.2 Encoding parameters, syntax, and purpose for the #HOUTER ClaSS.........cccovieiiniiniiiiiiee e 140
25.3 Encoder actionSfOr #HOUTERoiiii ittt ettt et e et e e saee e sabe e snbeeenbeeenees 141
254 Decoder actionS fOr ZOUTER...........ci ittt e st e st e e st e e naee e snbeeenbeeesees 141
Annex A (nor mative): Addendum to ITU-T Rec. X.680 | ISO/IEC 8824-1........ccccccvrivveneennnnnn. 143
Al EXportsand impOrtS ClAUSES..........oouiiiieiiiee et 143
A.2 Addition of "REFERENCE" ...ttt e ettt e e sseeeste e e snteeenneeesnteeesnseesneeeans 144
A.3 Notation for CharaCter String VAIUES............couiiiiiiie e 144
Annex B (nor mative): Addendum to ITU-T Rec. X.681 | ISO/IEC 8824-2..........ccocvevveiininnns 145
2 D = 1 Tl o] SRR 145
B.2 Additional 1EXICal ITEIMS ... it e et e e st e et eenne e e e teeenneeas 145
B.3 Addition Of "ENCODING-CLASS oottt see et e et e st easteeeseeeesneeesneeesnseeenneeas 145
B.4 FieldSPEC @0QITIONS.......coiieiiieee ettt r ettt n e n e 146
B.5 Fixed-type value liSt fleld SPEC.....ooo ittt e e e e s 146
B.6 Fixed-class encoding ObjeCt fIEld SPEC.........coiiiiiiiiieree e 146
B.7 Variable-classencoding Object fileld SPECccoveiiiieieee e e s 147
B.8 Fixed-class encoding 0bject Set fIeld SPECoiveiiieiie e 147
B.9 Fixed-class encoding object list fileld SPEC.......overeiee e 147
B.10 ENCOING ClaSS fIEld SPECeeiuiiiiieiee et n e 148
B.11 Encoding ObjeCt lISt NOLALION.........coeieeeee ettt ettt e et e e e e e e eeeenneeas 148

ETSI

8 ETSI TS 101 969 V1.1.1 (2001-05)

B.12 Primitivefield NAIMES.ooiiiiie ettt et 148
B.13 Additional FESENVE WOITSeeiiiiiiieii ettt ettt et e e een e e ne e e 148
B.14 Definition of encoding ODJECESoiueiiiiiiei et 149
B.15 AdAItIONSTO "SELING"eeeieeiteeieesee ettt ettt e et e she e e ne e abe e sn e e nr e e ne e ne e 149
B.16 ENCOAING ClaSS fIEld tYPE ..ottt e 150
Annex C (nor mative): Addendum to ITU-T Rec. X.683 | ISO/IEC 8824-4..........cccccvvevcenaannnnns 151
C.1 Paramelerized aSSIQNMENTSccueiiiieieeiie ittt ettt e et e e s aeeesn e beesbe e s nn e e b e e sseeanneenns 151
C.2 Parameterized encoding @SSIGNIMENEScoveiieerirerreeieessee et reesse e e ereesneessneareesneeaneeenes 151
C.3 Referencing parameterized defiNitioNSoeeiiiiiieie e 152
C.4 ACUEl PArAIMELES [IS.....ei it e bt e ne e e 153
Annex D (infor mative): EXAMPIES ... s 154
D.1 GENEral BXAMPIES ...ttt b et n e Rt et b et ne e 154
D.11 An encoding object for abo0IEaN tYPEc.ei i 154
D.1.2 An encoding ODJECE fOr 8N INEEGEY TYPE......ei ittt bbbt r e b neesreesree 155
D.1.3 Another encoding ObjeCt fOr an INTEGEY TYPE.......eoviiie ettt sre e e 155
D.14 An encoding object for an integer type With NOIESooiiiiiii e 155
D.15 A more complex encoding Object fOr an INTEGEY TYPEcoivieiirieeee ettt 155
D.1.6 Positive integers eNCOded iN BCDcc.iiiiiiiieiieieeee bbb b s snnas 156
D.1.7 An encoding ODJECE OF CIASSHBITSooiieeeee bbbt sr e bbb sre e e 157
D.1.8 An encoding Object fOr @ OCLELSLIING TYPEeereeieet ettt bbbt sr e sr e ne e sreesree 157
D.1.9 An encoding object for a CharaCter SITNG LYPE.veieiiie ettt sb e sre e sr e e 158
D.1.10 Mapping character ValUESTO DIt VAIUES..........coeiiiiiieiieieee e 158
D.1.11 Anencoding ObjeCt fOr @ SRQUENCE LYPEuviuriirieiieeiie ettt ettt et e be b e 158
D.1.12 Anencoding Object fOr @ ChOICE LYPEeiuieiieiiee e be e e 159
D.1.13 Encoding abitstring containing another @NCOINGcccveeiiiiiiiieiiee e 160
(D200 7 AN e = g Toce o [g To o o = ol = PSPPSR UPPTP TR 160
D 0 S = 1Y o (= 0T 0 F SRR 160
D 0 T N N I L= 1T T 1o TSRS 161
D.1.17 EDM QEFINITIONS. .. c.uiiuiiiiieiteeieiee sttt sttt sttt b et a e b e b e e st e s et e s beeheeme e b e ebeebeenbesbeemeesbesbeeneennesee e 161
D.2 SpeCialization EXAMPIES.coiiiiieeiie ettt b et r e n et n e n e ne s 161
D.21 Encoding by distributing values to an alternative encoding StTUCLUIe...........coiveiieiieeiienee e 162
D.22 Encoding by mapping ordered abstract values to an alternative encoding Structure............cccceeeveeieenieenene 162
D.23 Compression of NON-CONLINUOUS VAU FBNGJES.ccueeiuieiieeiieesieesiee st e steesteesbe e b bt be b b sre b snesneenne e 163
D.24 Compression of non-continuous value ranges USING atranSfOrMcoveieeieeiienieree e 163
D.25 Compression of an unevenly distributed value set by mapping ordered abstract values.............ccccoeeveennenee. 164
D.2.6 Presence of an optional component depending on the value of another component............cccecevcviiernenen. 164
D.2.7 The presence of an optional component depends on some external Condition............cccocveveeieeiieieeieeneens 165
D.2.8 AVANTADIE TENGIN TS ...ttt sb e bbb e e b e e sreesreenree 165
D.2.9 EQUA TENGEN TISES. ...t b e b e b e b e bt et e et sb et en e smn e nnnesnnennns 166
D.2.10 Uneven choice alternative probabilitiES..........cc.eiiuiriiiiiiiiii e e e 167
D.2. 11 A VEISION LIMESSAL.ueeueeueiiteauteaueeastess st aseesaseaa st sa bt aaeeeabeea bt ea bt e s bt e e bt e e bt ea bt e bt e bt e a bt ea bt e bt e bt e nbeenbeebeebeenee 168
D.2.12 TheenCodiNg ODJECE SEL.......ooiiiiieiieiet ettt b e bt e bt b e e bttt e b e e bt e bt e b e 168
D.2.13 ELM dEfiNITIONS....cuiieieiiieiteieeee ettt sttt et b e b st e b e e e b e bt e e e b e e beeheen bt sbe e e e nbenbeene e e e e 169
D.2.14 ASN.L AEFINITIONS....coteitietietiet ettt a et s e bt s e bt et e s ae e eae e s ae e ea e e e bt e b e e bt e b b e re e 169
D.2.15 EDM AEfiNITIONS......cotieiietieiieiieie ettt a e b b e e b e s be e e b e e b e e e bt et e e b e e b e b e re e 169
D.3 Explicitly generated Structure @XamplESooeiiiieiieii e 170
D.31 Sequence with optional components defined by 8 POINEErocviiiiiiie i 170
D.3.2 Addition of a boolean type as a presence deterMiNaNT...........ooeieieie e 170
D.3.3 Sequence with optional componentsidentified by a unique tag and delimited by alength field 171
D.34 SequENCE-Of TYPE WITR @ COUNT ..o b re e re e 172
D.35 = pTe'ele [[gTo o o = oi NS AR RPN 173
D.3.6 ELM Qi NITIONS. ..ottt bbbt bbbt bt b e ae e b e eb e e bt e b e s b e s b e e aeenbe b e nbe e e e e e 173
D.3.7 ASNLL AEfINITIONS.eeteeteeitee sttt ettt e e st r et e st e ae e eas e s aneeanesaeeshneesbeesreesbeesreesreenreen 173

ETSI

9 ETSI TS 101 969 V1.1.1 (2001-05)

D.3.8 LT 1Y o = T Tl i o] TR 174
D.4 Legacy ProtOCOI EXAIMPIE..... ..o ittt e b e n e 174
D41 oo 0 (o) o SRR 174
D.4.2 Encoding definition for the top-level MeSSage SITUCIUIE.c..eevieiieiieeeeeee e 176
D.4.3 Encoding definition for ameSSage SITUCIUNE.........eoviiiiiieeieeeee et 176
D.4.4 Encoding for the SEqUENCE TYPE "B ..o e 177
D.45 Encoding for an octet-aligned sequence-of type with alength determinant............cccooceviiieiieenicienicnne 177
D.4.6 Encoding for an octet-aligned sequence-of type which continues to the end of the PDU.............ccccceeveenee 177
D.4.7 Y 1= 1 T oL SRR 178
D.4.8 =T 1Y e = T Tl o T RS 178
Annex E (informative): Support for Huffman encodings...........ccceieeiierieeneeiie e 179
Annex F (infor mative): Additional information on the Encoding Control Notation (ECN) 181
Annex G (informative): Summary of the ECN NOLaLIONcceeiiiieiiiiieeieeie e 182
G.1 Terminal SYMBOIS ... oottt s e et e e st e e sate e e sneeeeneeesreeennreeennes 182
O (070 1o 1o T 184
L T (o PSPPSR PRSP 198

ETSI

10 ETSI TS 101 969 V1.1.1 (2001-05)

Intellectual Property Rights

IPRs essential or potentially essentia to the present document may have been declared to ETSI. The information
pertaining to these essential 1PRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which isavailable from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS).

Introduction

The Encoding Control Notation (ECN) isa notation for specifying encodings of ASN.1 types that differ from those
provided by standardized encoding rules. ECN can be used to encode all types of an ASN.1 specification, but can also
be used with standardized encoding rules such as BER or PER (ITU-T Rec. X.690 | ISO/IEC 8825-1 and ITU-T Rec.
X.691 | ISO/IEC 8825-2) to specify only the encoding of types that have special requirements.

An ASN.1 type specifies a set of abstract values. Encoding rules specify the representation of these abstract valuesasa
series of hits. ECN isdesigned to meet the following encoding needs:

a) Theneed to write ASN.1 types (and get the support of ASN.1 tools in implementations) for established
("legacy") protocols where the encoding is already determined and differs from all standardized encoding rules.

b) The need to produce encodings that are minor variations on standardized rules.

The linkage provided in an ECN specification to an ASN.1 specification iswell-defined and machine processable, so
encoders and decoders can be automatically generated from the combined specifications. Thisisa significant factor in
reducing both the amount of work and the possibility of errorsin making interoperable systems. Another significant
advantage is the ability to provide automatic tool support for testing.

These advantages are available with ASN.1 alone when standardized encoding rules suffice, but the ECN work provides
these advantages in circumstances where the standardized encoding rules are not sufficient.

NOTE 1: Currently ECN supports only binary-based encodings, but could be extended in the future to cover
character-based encodings.

Annex A formsan integral part of the present document, and details modifications to be made to ITU-T Rec. X.680 |
I SO/IEC 8824-1 to support the notation used in the present document.

Annex B forms an integral part of the present document, and details modifications to be madeto ITU-T Rec. X.681 |
I SO/IEC 8824-2 to support the notation used in the present document.

Annex C forms an integral part of the present document, and details modifications to be madeto ITU-T Rec. X.683 |
I SO/IEC 8824-4 to support the notation used in the present document.

NOTE 2: Itisnot intended that annexes A, B and C be progressed as amendments to the referenced
Recommendations | International Standards. The modifications are solely for the purpose of ECN
definition (see clauses 5 and 9.24).

ETSI

http://www.etsi.org/ipr

11 ETSI TS 101 969 V1.1.1 (2001-05)

Annex D does not form an integral part of the present document, and contains examples of the use of ECN.

Annex E does not form an integral part of the present document and provides more detail on the support for Huffman
encodingsin ECN.

Annex F does not form an integral part of the present document, and identifies a Web site providing access to further
information and links relevant to ECN.

Annex G does not form an integral part of the present document, and provides a summary of ECN using the notation of
clause 5.

ETSI

12 ETSI TS 101 969 V1.1.1 (2001-05)

1 Scope

The present document defines a notation for specifying encodings of ASN.1 types or of parts of types.
It provides several mechanismsfor such specification, including:

- direct specification of the encoding using standardized notation;

- gpecification of the encoding by reference to standardized encoding rules;

- gpecification of the encoding of an ASN.1 type by reference to an encoding structure;

- gpecification of the encoding using non-ECN notation.

It also provides the means to link the specification of encodings to the type definitions to which they are to be applied.

2 Normative references

Thefollowing International Standards contain provisions which, through reference in this text, constitute provisions of
the present document. At the time of publication, the editions indicated were valid. All Internationa Standards are
subject to revision, and parties to agreements based on the present document are encouraged to investigate the
possibility of applying the most recent edition of the Standards listed below. Members of IEC and 1SO maintain
registers of currently valid International Standards.

2.1 Identical International Standards

ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1 (1998): "Information technology - Abstract Syntax Notation
One (ASN.1): Specification of basic notation”.

ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2 (1998): "Information technology - Abstract Syntax Notation
One (ASN.1): Information object specification".

ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3 (1998): "Information technology - Abstract Syntax Notation
One (ASN.1): Congraint specification”.

ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4 (1998): "Information technology - Abstract Syntax Notation
One (ASN.1): Parameterization of ASN.1 specifications’.

ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1 (1998): "Information technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Digtinguished Encoding Rules
(DER)".

ITU-T Recommendation X.691 (1997) | ISO/IEC 8825-2 (1998): "Information technology - ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)".

NOTE 1: Notwithstanding the |SO publication date, the above specifications are normally referred to as
"ASN.1: 1997".

NOTE 2: The above references shall be interpreted as references to the identified Recommendations | International
Standards together with all their published amendments and technical corrigenda.

ETSI

13 ETSI TS 101 969 V1.1.1 (2001-05)

2.2 Additional references

I SO/IEC 10646-1 (1993): "Information technology - Universal Multiple-Octet Coded Character Set (UCS) -
Part 1: Architecture and Basic Multilingual Plane".

NOTE: The above reference shall be interpreted as areference to | SO/IEC 10646-1 together with all its published
amendments and technical corrigenda.

ITU-T Recommendation X.660 | | SO/IEC 9834: "Information technology - Open Systems Interconnection - Procedures
for the operation of OSl Registration Authorities: General procedures'.

3 Definitions

For the purposes of the present document, the following terms and definitions apply.

3.1 ASN.1 definitions

The present document uses the terms defined in clause 3 of ITU-T Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 |
ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3, ITU-T Rec. X.683 | ISO/IEC 8824-4, ITU-T Rec. X.690 |
ISO/IEC 8825-1 and ITU-T Rec. X.691 | ISO/IEC 8825-2.

3.2 ECN-specific definitions

3.21 alignment point: point in an encoding (usually its start) which serves as areference point when an encoding
specification requires alignment to some boundary

3.22 auxiliary field: field of areplacement structure (that is added in the ECN specification) whose value is set
directly by the encoder without the use of any abstract value provided by the application

NOTE: An example of an auxiliary field is alength determinant for an integer encoding or for arepetition.

3.2.3 Dbit-field: contiguous bits or octets in an encoding which are decoded as a whole, and which either represent an
abstract value, or provide information (such as alength determinant for some other field - see 3.2.30) needed for
successful decoding, or both

NOTE: Itisinlegacy protocolsthat "or both" sometimes occurs.

3.24 bit-field class: encoding class whose objects specify the encoding of abstract values (of some ASN.1 type) into
bits

NOTE: Other encoding classes are concerned with more genera encoding procedures, such as those required to
determine the end of repetitions of bit-field class encodings, or to determine which of a set of alternative
bit-field encodings is present.

3.25 bounds condition: condition on the existence of bounds of an integer field (and whether they allow negative
values or not) which, if satisfied, means that specified encoding rules are to be applied

3.2.6 choice deter minant: bit-field which determines which of several possible encodings (each representing
different abstract values) is present in some other bit-field

3.2.7 combined encoding object set: temporary set of encoding objects produced by the combination of two sets of
encoding objects for the purpose of applying encodings

3.2.8 conditional encoding: encoding which isto be applied only if some specified bounds condition or size range
condition is satisfied

3.29 containing type: ASN.1 type (or encoding structure field) where a contents constraint has been applied to the
values of that type (or to the values associated with that encoding structure field)

NOTE: The ASN.1 types to which a contents constraint (using "CONTAINING"/"ENCODED BY") can be
applied are the bitstring and the octetstring types.

ETSI

14 ETSI TS 101 969 V1.1.1 (2001-05)
3.210 current application point: point in an encoding structure at which a combined encoding object set is being
applied

3.211 differential encoding-decoding: specification of rules for a decoder that require the acceptance of encodings
that cannot be produced by an encoder conforming to the current specification

NOTE: Differential encoding-decoding supports the specification of decoding by a decoder (conforming to an
initia version of a standard) which isintended to enable it to successfully decode encodings produced by
alater version of that standard. Thisis sometimesreferred to as support for extensibility.

3.212 encoding class: set of all possible encodings for a specific part of the procedures needed to perform the
encoding or decoding of an ASN.1 type

NOTE: Encoding classes are defined for the encoding of primitive ASN.1 types, but are also defined for the
procedures associated with ASN.1 tag notation, the use of "OPTIONAL" and for encoding constructors.

3.2.13 encoding class category: grouping of encoding classes with some common characteristics
NOTE: Examplesaretheinteger category, the encoding constructor category, and the bit-field category.

3.2.14 encoding constructor: encoding class whose encoding objects define procedures for combining, selecting, or
repeating parts of an encoding.
(Examples arethe #ALTERNATIVES, #CHOICE, #CONCATENATION, #SEQUENCE, etc classes).

3.215 Encoding Definition M odules (EDM): modules that define encodings for application in the Encoding Link
Module

3.216 Encoding Link Module (ELM): (unique, for any given application) modul e that assigns encodings to ASN.1
types

3.2.17 encoding object: specification of some part of the procedures needed to perform the encoding or decoding of
an ASN.1type

NOTE: Encoding objects can specify the encoding of primitive ASN.1 types, but can also specify the procedures
associated with ASN.1 tag notation, the use of "OPTIONAL" and with encoding constructors.

3.218 encoding object set: set of encoding objects

NOTE: An encoding object set isnormally used in the Encoding Link Module to determine the encoding of all
the top-level types used in an application.

3.219 encoding parameter: piece of information used to define an encoding using the notation specified in
clauses 23, 24 and 25 of the present document

3.220 encoding space: number of bits (or octets, words or other units) used to encode an abstract value into a
bit-field (see 9.20.5)

3.2.21 encoding structure: structure of an encoding, defined either from the structure of an ASN.1 type definition, or
in an EDM using bit-field classes and encoding constructors

NOTE 1: Use of an encoding structureis only one of several mechanisms (but an important one) that the Encoding
Control Notation provides for the definition of encodings for ASN.1 types.

NOTE 2: Definition of an encoding structure is also the definition of a corresponding encoding class.

3.2.22 explicitly generated encoding structure: encoding structure derived from an implicitly generated encoding
structure by use of the renames clause in an EDM

3.2.23 extensibility: provisionsin an early version of a sandard that are designed to maximize the interworking of
implementations of that early version with the expected implementations of alater version of that standard

ETSI

15 ETSI TS 101 969 V1.1.1 (2001-05)
3.224 fully-qualified name: reference to an encoding class that includes either the name of the EDM modulein
which that encoding class was defined, or the name of the ASN.1 module in which it was generated

NOTE: A fully-qualified name (see production "External EncodingClassReference” in 10.6) has to be used in the
body of a moduleif the encoding classis an implicitly generated encoding structure whose nameisthe
same as areserved class name, or if use of the name alone would produce ambiguity due to multiple
imports of classes with that name. (See A.1/12.15).

3.2.25 generated encoding structure: implicitly or explicitly generated encoding structure whose purposeisto
define the encodings of the corresponding ASN.1 type through application of encodingsin the ELM

3.226 governor: part of an ECN specification which determines the syntactic form (and semantics) of some other
part of the ECN specification

NOTE: A governor isan encoding class reference, and it determines the syntax to be used for the definition of an
encoding object (of that class). The concept isthe same as the concept of atype referencein ASN.1 acting
asthe governor for ASN.1 value notation.

3.2.27 identification handle: part of an encoding which serves to distinguish encodings of one encoding class from
those of other encoding classes

NOTE: TheASN.1 Basic Encoding Rules use tags to provide identification handlesin BER encodings.

3.2.28 implicitly generated encoding structur e: encoding structure that isimplicitly generated and exported
whenever atypeisdefined in an ASN.1 module

3.2.29 initial application point: point in an encoding structure at which any given combined encoding object set is
first applied (in the ELM and in EDMS)

3.230 length determinant: bit-field that determines the length of some other bit-field

3.231 negativeinteger value: valuelessthan zero

3.2.32 non-negativeinteger value: value greater than or equal to zero

3.2.33 non-positive integer value: value lessthan or equal to zero

3.2.34 optional bit-field: bit-field that is sometimes included (to encode an abstract value) and is sometimes omitted
3.2.35 positiveinteger value: value greater than zero

3.2.36 presence deter minant: bit-field that determines whether an optional bit-field is present or not

3.2.37 primitive class: encoding class which isnot an encoding structure, and which cannot be de-referenced to some
other class (see 16.1.14)

3.2.38 replacement structure: parameterized structure used to replace some or dl parts of a construction before
encoding the construction

3.239 sdf-delimiting encoding: encoding for a set of abstract values such that there isno abstract value that has an
encoding that isan initial sub-string of the encoding of any other abstract valuein the set

NOTE: Thisincludesnot only fixed-length encodings of a bounded integer, but also encodings generally
described as "Huffman encodings' (see annex E).

3.240 sizerange condition: condition on the existence of effective size constraints on a string or repetition field (and
whether the constraint includes zero, and/or allows multiple sizes) which, if satisfied, means that specified encoding
rules areto be applied

3.241 source governor (or source class): governor that determines the notation for specifying abstract values
associ ated with a source class when mapping them to atarget class

3.242 sart pointer: auxiliary field indicating the presence or absence of an optional bit-field, and in the case of
presence, containing the offset from the current position to the bit-field

3.243 target governor (or target class): governor that determines the notation for specifying abstract values
associ ated with atarget class when mapping to them from a source class

ETSI

16 ETSI TS 101 969 V1.1.1 (2001-05)
3.244 top-level type(s): those ASN.1 type(s) in an application that are used by the application in ways other than to
define the components of other ASN.1 types
NOTE 1: Top-leved types may aso be used (but usualy are not) as components of other ASN.1 types.

NOTE 2: Top-leve types are sometimes referred to as "the application's messages’, or "PDUS". Such types are
normally treated specialy by todls, as they form the top-level of programming language data-structures
that are presented to the application.

3.245 transforms: encoding objects of the class #TRANSFORM which specify that the encoding of the abstract
values associated with some classisto be the encoding of different abstract values associated with the same or a
different class

NOTE: Transformscan be used, for example, to specify simple arithmetic operations on integer values, or to map
integer values into characterstrings or bitstrings.

3.2.46 value encoding: theway in which an encoding spaceis used to represent an abstract value (see 9.20.5)

4 Abbreviations

For the purposes of the present document, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
BCD Binary Coded Decimal
BER Basic Encoding Rules of ASN.1
CER Canonical Encoding Rules of ASN.1
DER Distinguished Encoding Rules of ASN.1
ECN Encoding Control Notation for ASN.1
EDM Encoding Definition Module
ELM Encoding Link Module
PDU Protocol Data Unit
PER Packed Encoding Rules of ASN.1

5 Definition of ECN syntax

5.1 The present document employs the notational convention defined in ITU-T Rec. X.680 | ISO/IEC 8824-1,
clause 5, but usestheterm "ECN lexical item" asa synonym for the term "item" used in that clause.

5.2 The present document employs the notation for information object classes defined in ITU-T Rec. X.681 |
I SO/IEC 8824-2 as modified by annex B.

5.3 The present document references productions defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 as modified by
annex A, ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified by annex B, and ITU-T Rec. X.683 | ISO/IEC 8824-4 as
modified by annex C.

6 Encoding conventions and notation

6.1 The present document defines the value of each octet in an encoding by use of the terms "most significant bit" and
"least significant bit".

NOTE: Lower layer specifications use the same notation to define the order of bit transmission on a serial line, or
the assignment of bitsto parallel channels.

6.2 For the purpose of the present document, the bits of an octet are numbered from 8 to 1, where bit 8 isthe "most
significant bit" and bit 1 isthe "least significant bit".

ETSI

17 ETSI TS 101 969 V1.1.1 (2001-05)

6.3 For the purposes of the present document, encodings are defined as a string of bits starting from a"leading bit"
through to a "trailing bit". On transmission, thefirst eight bits of this string of bits starting with the "leading bit" shall be
placed in the firg transmitted octet with the leading bit as the most significant bit of that octet. The next eight bits shall
be placed in the next octet, and so on. If the encoding isnot a multiple of eight bits, then the remaining bits shall be
tranamitted as if they were bits 8 downwards of a subsequent octet.

NOTE: A complete ECN encoding is not necessarily always a multiple of eight bits, but an ECN specification can
determine the addition of padding to ensure this property.

6.4 When figures are shown in the present document, the "leading bit" is aways shown on theleft of the figure.

7 The ECN character set

7.1 Useof theterm "character” throughout the present document refersto the characters specified in
I SO/IEC 10646-1, and full support for all possible ECN specifications can require the representation of all these
characters.

7.2 With the exception of comment (asdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.6), non-ECN definition of
encoding objects (see 17.8) and character string values, ECN specifications use only the characterslisted in table 1.

7.3 ECN lexica itemsdefined in clause 8 consist of a sequence of the characterslisted in table 1.

NOTE: Additional restrictions on the permitted characters for each lexical item are specified in clause 8.

Table 1: ECN characters

0to9 (DIGIT ZERO to DIGIT 9)

AtoZ (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER 2)

atoz (LATIN SMALL LETTER A to LATIN SMALL LETTER Z)
" (QUOTATION MARK)

(NUMBER SIGN)

(AMPERSAND)

(APOSTROPHE)

(LEFT PARENTHESIS)

(RIGHT PARENTHESIS)

(COMMA)

(HYPHEN-MINUS)

(FULL STOP)

(COLON)

(SEMICOLON)

(EQUALS SIGN)

(LEFT CURLY BRACKET)

(VERTICAL LINE)

(RIGHT CURLY BRACKET)

- R0 H

1 - N~

~— —] - e

7.4 Thereshadl be no significance placed on the typographical style, size, color, intensity, or other display
characteristics.

7.5 Theupper and lower-case letters shall be regarded as distinct.

8 ECN lexical items

In addition to the ASN.1 (lexical) items specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 11, the present
document uses ECN lexical items specified in the following clauses. The general rules specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 11.1 apply in this clause.

NOTE: Annex G listsall lexical itemsand all the productions used in the present document, identifying those that
aredefined in ITU-T Rec.X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2 and ITU-T Rec.
X.683 | ISO/IEC 8824-4.

ETSI

18 ETSI TS 101 969 V1.1.1 (2001-05)

8.1 Encoding object references
Name of item - encodingobjectreference

An "encodingobjectreference” shall consist of the sequence of characters specified for a"valuereference” in ITU-T Rec.
X.680 | ISO/IEC 8824-1, 11.4. In analysing an instance of use of this notation, an "encodingobjectreference” is
distinguished from an "identifier” by the context in which it appesrs.

8.2 Encoding object set references

Name of item - encodingobjectsetreference

An "encodingobjectsetreference" shall condst of the sequence of characters specified for a"typereference” in ITU-T
Rec. X.680 | ISO/IEC 8824-1, 11.2. It shall not be one of the character sequenceslisted in 8.4.

8.3 Encoding class references

Name of item - encodingclassreference

An "encodingclassreference” shall consist of the character "#" followed by the sequence of characters specified for a
"typereference” in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.2. It shall not be one of the character sequenceslisted in 8.5
except in an EDM importslist (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.19, as modified by A.1) or in an

"External EncodingClassReference” (see the note on 14.11).

ETSI

8.4 Reserved word items

Names of reserved word items:

ALL
AS
BEG N

ENCCDE- DECODE

ENCCDI NG- DEFI NI TI ONS
END

EXCEPT

EXPORTS

FALSE

FI ELDS

FROM

GENERATES

LI NK- DEFI NI TI ONS
MAPPI NG

MAX

M N

M NUS- I NFI NI TY
NON- ECN- BEG N

NON- ECN- END

NULL

OPTI ONAL- ENCODI NG
OPTI ONS

ORDERED

QUTER

PER- BASI C- ALI GNED
PER- BASI C- UNALI GNED
PER- CANONI CAL- ALI GNED
PER- CANONI CAL- UNALI GNED
PLUS- I NFI NI TY
REFERENCE

REMAI NDER

RENAMES

S| ZE

STRUCTURE
STRUCTURED

TO

TRANSFCORMS

TRUE

UNI ON

USE

USE- SET

VALUES

W TH

Items with the above names shall consist of the sequence of charactersin the name.

19

ETSI TS 101 969 V1.1.1 (2001-05)

NOTE: Thewords (seel TU-T Rec. X.681 | ISO/IEC 8824-2, 7.9) used in the definition of encoding classes
(withina"WITH SYNTAX" statement) in clause 23 are not reserved words (see also B.13).

ETSI

20 ETSI TS 101 969 V1.1.1 (2001-05)

8.5 Reserved encoding class name items

Names of reserved encoding class nameitems:

#ALTERNATI VES
#BI TS

#BI T- STRI NG
#BMPSt ri ng

#BOOL

#BOOLEAN
#CHARACTER- STRI NG
#CHARS

#CHO CE
#CONCATENATI ON
#CONDI TI ONAL- | NT
#CONDI TI ONAL- REPETI TI ON
#ENMBEDDED- PDV
#ENCODI NGS
#ENUMERATED
#EXTERNAL
#Cener al i zedTi ne
#General String
#G aphicString
#1 A5String

#1 NT

#1 NTEGER

#NUL

#NULL
#NumericString
#OBJECT- | DENTI FI ER
#OCTETS

#OCTET- STRI NG
#OPEN- TYPE

#OPTI ONAL

#OUTER

#PAD

#Printabl eString
#REAL

#RELATI VE- O D
#REPETI TI ON
#SEQUENCE
#SEQUENCE- OF
#SET

#SET- OF

#TAG

#Tel etexString
#TRANSFORM

#Uni versal String
#UTCTi me

#UTF8St ri ng

#Vi deot exStri ng
#Vi si bl eString

Items with the above names shall consigt of the sequence of charactersin the name.

ETSI

21 ETSI TS 101 969 V1.1.1 (2001-05)

8.6 Non-ECN item

Name of item — anystringexceptnonecnend

An "anystringexceptnonecnend” shall consist of one or more characters from the |SO/IEC 10646-1 character set, except
that it shall not be the character sequence "NON-ECN-END" nor shall that character sequence appear within it.

9 ECN Concepts

This clause describes the main concepts underlying the present document.

9.1 Encoding Control Notation (ECN) specifications

9.1.1 ECN specifications consist of one or more Encoding Definition Modules (EDMs) which define encoding rules
for ASN.1 types, and asingle Encoding Link Module (ELM) that applies those encoding rules to ASN.1 types.

9.1.2 Themost important part of ECN isthe concept of an encoding structur e definition. ASN.1 is used to define
complex abstract values using primitive types and constructors. In the same way, complex encodings can be defined
using a smilar notation where construction mechanisms are used to combine simple bit-fields into more complex
encodings, and eventually into complete messages. Thisis called encoding structure definition. In using ECN with
ASN.1, itisnecessary in principleto:

a) define the abstract syntax (the set of abstract values to be communicated, and their sesmantics); and
b) the encoding structure (the structure of fields) used to carry these abstract values; and
C) tordatethe components of the abstract value to the encoding structure fields; and

d) to define the encoding of each encoding structure field and mechanisms for identifying repetitions of fields and
identification of alternatives, etc.

9.1.3 The above process normally takes part in several stages. First an ASN.1 definition is produced detailing the
abstract syntax. From this a crude encoding structure is automatically generated (conceptually within the ASN.1
module). Thisimplicitly generated structure contains only fields that carry the application semantics, without fields for
things like length determination, alternative selection, and so on.

9.1.4 Thisstructure can be transformed by a series of mechanismsinto the structure of fields that is actually required,
including all fields needed to support the decoding activity (determinants). These mechanisms all involve some form of
replacement of a simplefield carrying application semantics by a more complex structure. Such replacements form an
important part of ECN specification.

9.1.5 Wecan further define encoding objectsfor each of thefieldsin the final structure. These determine not only the
encoding of fields, but also the way in which one field determines the length (for example) of another, or hasits
optionality resolved.

9.1.6 The above definitions occur in Encoding Definition Modules (EDMs). Thelast step isto apply a set of defined
encoding objects to the final encoding structure in order to completel y determine an encoding. Thisis donein the
Encoding Link Module (ELM).

9.2 Encoding classes

9.21 Anencoding classisanimplicit property of all ASN.1 types, and represents the set of all possible encoding
specifications for that type. It provides areference that allows Encoding Definition Modules to define encoding rules
for encoding structure fields corresponding to the type. Encoding class names begin with the character "#".

EXAMPLE: Encoding rules for the ASN.1 built-in type "INTEGER" are defined by reference to the encoding
class#INTEGER, and encoding rules for a user-defined type "My-Type" are defined by reference
to the encoding class #My-Type.

ETSI

22 ETSI TS 101 969 V1.1.1 (2001-05)

9.2.2 Thereare severa kinds of encoding classes:

9.2.2.1 Built-in encoding classes. There are built-in encoding classes with names such as#INTEGER and
#BOOLEAN. These enable the definition of special encodings for primitive ASN.1 types. There are also built-in
encoding classes for encoding constructors such as #SEQUENCE, #SEQUENCE-OF and #CHOICE (see as0 9.3.2),
and for the definition of encoding rules for handling optionality through #OPTIONAL. Encoding of tags is supported by
the #TAG class. Finally, there are some built-in classes (#OUTER, #TRANSFORM and others) that allow the definition
of encoding procedures which are part of the encoding/decoding process, but which do not directly relate to any actua
bit-field or ASN.1 construct.

9.2.2.2 Encoding classesfor implicitly generated encoding structur es. These have names consisting of the
character "#" followed by the "typereference’ appearing in a"TypeAssignment” in an ASN.1 module. Such encoding
classes are implicitly generated whenever a (non-parameterized) "typereference” isassigned in an ASN.1 module, and
can beimported into an Encoding Definition Module to enable the definition of special encodings for the corresponding
ASN.1 type. These encoding classes represent the structure of an ASN.1 encoding, and are formed from the built-in
encoding classes mirroring the structure of the ASN.1 type definition.

9.2.2.3 Encoding classesfor user-defined encoding structur es. These are encoding classes defined by the ECN user
by specifying an encoding structure (see 9.3) as a structure made up of bit-fields and encoding constructors. These
encoding structures are similar to the implicitly generated encoding structures, but the ECN user has full control of their
structure. These classes enable complex encoding rules to be defined, and areimportant for the use of ASN.1 with ECN
for specifying legacy protocols, where additional bit-fields are needed in the encoding for determinants.

9.2.2.4 Encoding classesfor explicitly generated encoding structur es. These are encoding classes produced from
an implicitly generated encoding structure by selectively changing the names of certain classesin order to indicate
places where specialized encodings are needed for optionality, sequence-of termination, etc.

9.3 Encoding structures

9.3.1 Encoding structure definitions have some similarity to ASN.1 type definitions, and have a name beginning with
the character "#", then an upper-case letter. Each encoding structure definition defines anew encoding class (the set of
all possible encodings of that encoding structure). Encoding structures are formed from fields which are either built-in
encoding classes or the names of other encoding structures, combined using encoding constructors (which represent the
set of all possible encoding rules that support their type of construction mechanism, and are hence called encoding
classes). (See D.2.8.4 for an example of an encoding structure definition).

9.3.2 Themost basic encoding constructors are #CONCATENATION, #REPETITION, and #ALTERNATIVES,
corresponding roughly to ASN.1 sequence (and set), sequence-of (and set-of), and choice types. Thereisalso an
encoding class #OPTIONAL that represents the optional presence of encodings, corresponding roughly to ASN.1
"DEFAULT" and "OPTIONAL" markers.

9.3.3 An encoding structure definition defines a structure-based encoding class. Such classes cannot have the same
names as encoding classes that areimported into the module. (See ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.12, as
modified by A.1 of the present document).

9.3.4 Encoding structure names can be exported and imported between Encoding Definition Modules and can be used
whenever an encoding class name in the bit-field category is required.

9.35 Vauesof ASN.1 types (primitive or user-defined) can be mapped to fields of an encoding structure, and
encoding rules for that structure then provide encodings of the ASN.1 type. (Vaues mapped to encoding structures can
be further mapped to fields of more complex encoding structures). This provides a very powerful mechanism for
defining complex encoding rules.

9.4 Encoding objects

9.4.1 Encoding objects represent the specific definition of encoding rules for a given encoding class. Usually therules
relate to the actual bitsto be produced, but can also specify procedures related to encoding and decoding, for example
the way in which the presence or absence of optional e ements is determined.

9.4.2 In order tofully define the encoding of ASN.1 types (typically the top-level type(s) of an application), it is
necessary to define (or obtain from standardized encoding rules) encoding objects for all the classes that correspond to
components of those ASN.1 types and for the encoding constructors that are used.

ETSI

23 ETSI TS 101 969 V1.1.1 (2001-05)

9.4.3 For legacy protocals, this may have to be done by defining a separate encoding object for every component of
an ASN.1 type, but it is more commonly possible to use encoding objects defined by standardized encoding rules (such
as PER).

9.4.4 Although BER and PER encoding specifications pre-date ECN, within the ECN model they smply define
encoding objects for all classes corresponding to the ASN.1 primitive types and constructors (that is, for all the built-in
encoding classes). BER and PER are also considered to provide encoding objects for encoding classes used in the
definition of encoding structures (see 18.2).

9.5 Encoding object sets

9.5.1 Encoding objects can be grouped into sets in the same way as information objectsin ASN.1, and it isthese sets
of encoding objects that are (in an ELM) applied to an ASN.1 type to determine its encoding. The governor used when
forming these encoding object setsis the reserved word #ENCODINGS. (See D.1.14 for an example).

9.5.2 A fundamental rule of encoding object set construction isthat any set can contain only one encoding object of a
given encoding class (see also 9.6.2). Thusthere isno ambiguity when an encoding object set isapplied to atypeto
define its encoding.

9.5.3 Therearebuilt-in encoding object setsfor al the variants of BER and PER, and these can be used to complete
sets of user-defined encoding objects.

9.6 Defining new encoding classes

9.6.1 Those familiar with ASN.1 will be aware that a type assignment can be used to create new names (new types)
from, for example, the types"INTEGER" or "BOOLEAN". The new namesidentify typesthat are the same as
"INTEGER" or "BOOLEAN", but carry different semantics. This concept is extended in ECN to allow the creation (in a
class assignment — see 16.1.1) of new names (new classes) for constructors such as#SEQUENCE. The new names
identify classes that perform asimilar function in structuring encodings (for example, concatenation), but which areto
have different encoding objects applied to them. A new class name assigned for an old class retains certain
characteristics of that old class. So an assignment such as "#My-Sequence ::= #SEQUENCE" createsthe new class
name #My-Sequence which is ill an encoding class concerned with the concatenation of components. We say that

such encoding classes are in the same category.

9.6.2 If anew encoding classis created from an existing encoding class, encoding objects of both the old encoding
class and the new encoding class can appear in an encoding object set.

9.6.3 All built-in encoding classes are derived from one of a small number of primitive encoding classes. Thus
#SEQUENCE and #SET are both derived from the #CONCATENATION class, #INTEGER and #ENUMERATED are
both derived from the #INT class, and the classes for the different ASN.1 character string types are al derived from the
#CHARS class. An encoding structure (for example, one implicitly generated from an ASN.1 type) can contain amix of
different classes all derived from the same primitive class, enabling different encodings to be applied to #SEQUENCE
and #SET (for example).

9.6.4 Itisoften convenient to put encoding classes into categories, based on the primitive class they are derived from.
Thus we say that #NTEGER, #ENUMERATED and #INT (and any class derived from them in a class assignment
statement such as "#My-int ::= #INT") arein theinteger category. There are also categoriesthat group together a
number of very different classes that share some characteristic. Thus any classthat can have abstract values directly
associated with it, and hence which produces bitsin an encoding, is said to be in the bit-field category. Classesthat are
responsible for grouping or repeating encodings (for example classes in the alternatives or the repetition category) arein
the encoding constructor category. There are a so two classes whaose encoding objects define procedures not directly
related to constructing an encoding (#TRANSFORM and #OUTER): these are described as being in the encoding
procedure category. Encoding structures are defined using classesin the hit-field category that are combined using
classes in the encoding constructor category, together with classes in the optionality (representing encoding procedures
for resolving optionality) and tag (representing encoding of tags) categories. All such classes are in the encoding
structure category (and also in the hit-field category). In general, a classisin more than one category —if itisin the
integer category or the encoding structure category, it isalsoin the bit-field category; if it isin the alternatives category
itisalso in the encoding congtructor category, and so on.

ETSI

24 ETSI TS 101 969 V1.1.1 (2001-05)

9.6.5 For the primitive classes, the category is directly assigned. For classes created in an encoding class assignment
statement, the category is determined by the notation to the right of the "::=" symbal. If that notation is an encoding
structure definition, then the classis in both the encoding structure category and in the bit-field category. If the notation
isasimple classreference name, then the category of the new classis the same as the category of the class being
assigned.

9.6.6 The categories of encoding class (see 16.1.3) are:

9.6.6.1 Thehit-field category (classes that correspond to actua fidldsin an encoding such as# NTEGER, or to more
complex structures).

9.6.6.2 Thealternatives category (classesthat are derived by class assignment from #ALTERNATIVES).

9.6.6.3 The concatenation category (classes that are derived by class assignment from #CONCATENATION).
9.6.6.4 Therepetition category (classes that are derived by class assignment from #REPETITION).

9.6.6.5 The optionality category (classes that are derived by class assignment from #OPTIONAL).

9.6.6.6 Theencoding congructor category (classes that arein the alternatives, concatenation, or repetition categories).
9.6.6.7 Thetag category (classesthat are derived by class assignment from #TAG).

9.6.6.8 Theencoding procedure category (classes not directly related to ASN.1 constructs, and which cannot be
assigned new names - #OUTER, #TRANSFORM, #CONDITIONAL-INT, #CONDITIONAL-REPETITION).

9.6.6.9 Categoriesfor classes derived from classes in the primitive bit-field category (the boolean, bitstring,
characterdtring, integer, null, objectidentifier, octetstring, opentype, pad, and red categories).

9.7 Defining encoding objects

There are eight mechanisms available for defining an encoding object of a given encoding class. They arenot al
available for all encoding classes.

9.7.1 Thefirstisto specify it as the same as some other defined encoding object of the required class. This does
nothing more than provide a synonym for encoding objects.

9.7.2 The second, available for arestricted set of encoding classes, isto use a defined syntax (see 17.2) to specify the
information needed to define an encoding object of that class. Much of the information needed is common to all
encoding classes, but some of the information always depends on the specific encoding class. (See D.1.1.2 for an
example of defining an encoding object of class #BOOLEAN which contains encodings for the ASN.1 type bool ean).

9.7.3 Thethird, available for al encoding classes, isto define an encoding object as the encoding of the required class
which is contained in some existing encoding object set. Thisismainly of usein naming an encoding object for a
particular classthat will perform BER or PER encodings for that class.

NOTE: Thiscan often be useful, but requires knowledge of the encodings produced by standardized encoding
rules.

9.7.4 Thefourth isto map the abstract values associated with an encoding class ("#A", say) to abstract values

associ ated with another (typically more complex) encoding class ("#B", say), and to define an encoding object for "#B"
(using any of the available mechanisms). An encoding object for the abstract values associated with "#A" can now be
defined as the application to the corresponding abstract values associated with "#B" of the encoding object for "#B".
(See D.2.8.3 for an example). There are many variants of this (see 9.16).

NOTE: Thisisthemodd underlying the definition of an object for encoding an integer type in BER. Theinteger
is mapped to an encoding structure that contains atag class field, a primitive/constructor boolean, atag
number field, and a value part that encodes the abstract values of the original integer.

9.7.5 Thefifth mechanism isto define an encoding object for a class (for example, one corresponding to a
user-defined ASN.1 type) by separately defining encoding objects for the components and for the encoding constructor
used in defining the encoding class.

ETSI

25 ETSI TS 101 969 V1.1.1 (2001-05)

9.7.6 Thesixth isto define an encoding object for differential encoding-decoding (see 9.8), using two separate
encoding objects, one of which defines the encoder's behaviour, and the other of which tells a decoder what encoding
should be assumed.

NOTE: An examplewould beto encode afield which is"reserved for future use" asall zeros, but to accept any
value when decoding.

9.7.7 The seventh isto define an encoder's option encoding object, which containsalist of encoding objects of the
same class. It isan encoder's choice which encoding object from the list isto be applied.

9.7.8 Finally, an encoding object can be defined using non-ECN notation. Thisis afacility to allow use of any desired
notation (including natural language) to define the encoding object (see D.2.7.3).

NOTE: Non-ECN notation should be used with caution, astool-support for implementation is generally not
possiblein this case.

9.8 Differential encoding-decoding

9.8.1 Differential encoding-decoding istheterm applied to a specification that requires an implementation to accept
(when decoding) bit-patterns that arein addition to those that it is permitted to generate when performing encoding.

9.8.2 Differential encoding-decoding underlies all support for "extensibility” (the ability for an implementation of an
earlier version of a standard to have good interworking capability with an implementation of a later version of the
standard).

9.8.3 The precise nature of differential encoding-decoding can be quite complex. It normally includes the requirement
that a decoder accepts (and silently ignores) padding fields (usually variable length) which later versions of a slandard
will use for the transfer of information additional to that transferred in the early version communication.

9.8.4 Support for differential encoding-decoding in ECN is provided by syntax that enables the definition of an
encoding object (for any class) that encapsulates two encoding objects. Each encoding object defines rules for encoding.
Thefirst encoding object defines the rules that an encoder uses. The decoder uses the second encoding object asa
specification of the way the encoding was done.

NOTE: InECN, therulesadecoder uses (in an early version of a sandard) are always expressed by giving the
rules for encoding that it should assume its communicating partner is using. The decoding rules are not
given as explicit decoding rules. The ECN specifier will ensure that such decoding rules provide any
necessary "extensibility”.

9.9 Encoders options in encodings

9.9.1 Encoders optionsin protocols are generally regarded today as something to be avoided, but ECN hasto provide
support for such optionsif a protocol designer decides (or has in the past decided) to indude them.

9.9.2 When values are being encoded into an encoding space, it is possible to specify that the size of the encoding
space (see 9.20) isan encoder's option, provided there is some form of length determinant associated with the encoding.
(The extent of the encoder's options may be limited by the maximum value that can be encoded in the length
determinant). This provides a detailed level of support for encoder's options.

9.9.3 A moreglobal mechanismissimilar to the support for differential encoding-decoding (see 9.8), but in this case
an encoding object for aclass can be defined as an encoder's choice of any encoding object from alist of defined
encoding objects for that class. In addition to specifying thelist of possible encodings, it is also necessary to provide the
specification of an encoding object for a classin the alternatives category (see 9.6). This encoding object specifies the
encodings and procedures needed to enable a decoder to determine which encoding object was used by the encoder.

9.10 Properties of encoding objects

9.10.1 Encoding objects have some genera properties. In most cases, they completely define an encoding, but in some
cases they are encoding constructor s, that is, they define only structural aspects of the encoding, requiring encoding
objects for the encoding structure's components to compl ete the definition of an encoding.

ETSI

26 ETSI TS 101 969 V1.1.1 (2001-05)

9.10.2 Another key feature of an encoding object isthat it may require information from the environment whereits
rules are eventually applied. One aspect of the environment that is fully supported is the presence of boundsin the
ASN.1 type definition, provided they are "PER-visible" (see ITU-T Rec. X.691 | ISO/IEC 8825-2, 9.3).

NOTE: A somewhat different (and not standardized) external dependency would be the definition of anon-ECN
encoding object for an #ALTERNATIVES encoding class which determines the sel ected aternative
based on external data such asthe channel the messageis being sent on.

9.10.3 A third key feature isthat an encoding object may exhibit an identification handlein itsencodings. Thisisa
part of all the encodings that it produces and distinguishes its encodings from encodings of other encoding objects (of
any class) that exhibit the same identification handle. Identification handles have to be visi ble to decoders without
knowledge of either the encoding class or the abstract value that was encoded (but with knowledge of the name of the
identification handle that is being used). This concept models (and generalizes) the use of tagsin BER encodings. the
tag value in BER can be determined without knowledge of the encoding class, for all BER encodings, and serves to
identify the encoding for resolution of optionality, ordering of sets, and choice alternatives.

9.11 Parameterization

9.11.1 Aswith ASN.1 types and values, encoding objects, encoding object sets and encoding classes can be
parameterized. Thisisjust an extension of the norma ASN.1 mechanism.

9.11.2 A primary use of parameterization isin the definition of an encoding object that needs the identification of a
determinant to compl ete the definition of the encoding (see 9.13.2). (See D.1.11.3 for an example of a parameterized
ECN definition).

9.11.3 Another important use of parameterization isin the definition of an encoding structure that will be used to
replace many different classes in an encoding (see also 9.16.5). For example, the mechanism used to handle optionality
is often an immediately (mandatory) preceding "presence-hit" for each optional component. A parameterized structure
can be defined consisting of a concatenation of a #BOOLEAN (used as a presence determinant) followed by an optional
component defined as a dummy parameter (which will be ingtantiated with the element that the structure will replace),
and whose presence is determined by the #BOOLEAN. The original #OPTIONAL encoding procedure is now defined
as the replacement of the origina component with this mandatory structure, using the original optional component as
the actual parameter. (D.3.2 isamore complete example of this process).

9.11.4 Dummy parameters may be encoding objects, encoding object sets, encoding classes, references to encoding
structure fields, and values of any of the ASN.1 types used in the built-in encoding classes defined in clause 23, as
specified in ITU-T Rec. X.683 | ISO/IEC 8824-4 as modified by C.1 of the present document.

9.11.5 Themodification of parameterization syntax that is specified in annex C requires the use of the symbol "{<"
(without spaces) instead of "{" to start adummy or actual parameter list, and of ">}" to end one.

NOTE: Thiswas doneto make parsing of ECN syntax eader for computers, and to avoid ambiguity when
user-defined classes are used in sructure definitions in place of #SEQUENCE, #CHOICE,
#REPETITION, #SEQUENCE-OF, or #SET-OF.

9.12 Governors

9.12.1 The concept of a governor and of governed notation will be familiar from ASN.1 value notation, where thereis
always a type definition that "governs' the value notation and determines its syntax and meaning.

9.12.2 The same concept extends to the definition of encoding objects of a given encoding class. The syntax for
defining an encoding object of class #BOOLEAN (for example) isvery different from the syntax for defining an
encoding object of class#INTEGER (for example). In all cases where an encoding object definition isrequired, thereis
some associated notation that defines the class of that encoding object, and "governs' the syntax to be used in its
specification.

9.12.3 TheECN syntax requires governors that are encoding classes to be class reference names, or parameterized
classreference names.

9.12.4 If the governed notation is areference name for an encoding object, then that encoding object isrequired to be
of the same class as the governor (see 17.1.6).

ETSI

27 ETSI TS 101 969 V1.1.1 (2001-05)

9.13 General aspects of encodings

9.13.1 ECN provides support for a number of techniques typically used in defining encoding rules (not just those
techniques used in BER or PER). For example, it recognizes that optionality can be resolved in any of three ways: by
use of a presence determinant, by use of an identification handle (see 9.13.3), or by reaching the end of a
length-delimited container (or the end of the PDU) before the optional element appears.

9.13.2 Similarly, it recognizesthat delimitation of repetitions can be done (for example) by:
- Some form of length count.
- Detecting the end of a container (or PDU) in which it is the last item.
- Use of an identification handle on each of the repetitions and on following encodings (see 9.13.3).

- Some terminating pattern that can never occur in an encoding in the repeated series. (A simple exampleisa
null-terminated character string).

- Use of a"more bit" with each element, set to one to indicate that another repetition follows, and set to zero to
indicate the end of the repetition.

ECN supports al these mechaniams for delimitation of repetitions, and similar mechanisms for identification of
alternatives and for resolution of optionality.

9.13.3 Inaddition to terminating repetitions, the identification handle technique can &l so be used to determine the
presence of optional elements or of alternatives. The mechanism is similar in all these cases. Encodings for all values of
any given "possible next class’ encoding will have the same bit-pattern (their identification) at some place in their
encoding (the handle), but the identification for different "possible next class’ encodingswill be different for each one.
All such encodings can be interpreted by a decoder as an encoding of any "possible next class’, and the identification
for thehandle will determine which "possible next class' encoding is present. The concept is similar to that of using
tags for such purposes in BER. Identification handles have names that are required to be unique within an ECN
specification.

9.13.4 Itisimportant hereto note that ECN allows the definition of encodings in a very flexible way, but cannot
guarantee that an encoding specification is correct - that is, that a decoder can successful recover the original abstract
values from an encoding. For example, an ECN specifier could assign the same bit-pattern for boolean values true and
false. Thiswould be an error, and in this case atool could fairly easily detect the error. Another error would be to claim
that an encoding was self-delimiting (and required no length determinant), when in fact it was not. Thiserror could also
be detected by atool. In more subtle and complex cases, however, atool may find it very hard to diagnose an erroneous
(onethat cannot always be successfully decoded) specification.

9.14 Identification of information elements

9.14.1 Many protocols have an encoding (usually of afixed number of bits) to identify what are often called
"information elements’ or "data elements’ in a protocol. These identifications correspond roughly to ASN.1 tags, but
are usually less complex. They are often used asidentification handles, but are not always so used.

9.14.2 ECN containsa#TAG class to support the definition of the encoding of information element identifiers
through use of the ASN.1 tag notation. (It also supports the inclusion of such eements within an encoding structure
with no referenceto ASN.1 tags).

9.14.3 When an encoding structureisimplicitly generated from an ASN.1 type (see clause 11), any textually-present
ASN.1 tag notation generates an instance of the #TAG class, with the number of the ASN.1 tag associated with that
instance of the #TAG class. An encoding for this encoding class can be defined in asimilar way to an encoding for the
#INTEGER class, and will encode the number in the tag notation.

9.14.4 Thefull ASN.1 tag-list (multiple tags each with a class and number) is notionally associated with al the
abstract values of atagged type, in accordance with the ASN.1 model. Such information is, however, only accessiblein
the current version of ECN through a non-ECN definition of an encoding object (see 9.7.8). The generation of a#TAG
class is a separate mechanism, is smpler and more specific, and has full support within ECN.

ETSI

28 ETSI TS 101 969 V1.1.1 (2001-05)

9.145 Itis, however, important to note that for the purposes of generating a#TAG class, it isonly textual ly-present
tag notation that isvisible. Universal class tags and tags generated by automatic tagging are not visible. Smilarly, the
class of any textually present tag notation isignored. Only the tag number is available to encoding objects of the #TAG
class.

9.15 Reference parameters and determinants

9.15.1 A very common (but not the only) way of determining the presence of an optional field, thelength of a
repetition, or the selection of an alternative isto include (somewhere in the message) a determinant field. Determinant
fields have to be identified if this mechanism isused for determination, and this frequently requires adummy parameter
of an encoding object definition, with the actual parameter, providing the encoding structure fieldname of the
determinant, being supplied when the encoding object is applied to an encoding structure.

9.15.2 A new concept - areference parameter - isintroduced to satisfy the need for adummy parameter that
references an encoding structure field. The governor isthe reserved word "REFERENCE", and the alowed notation for
an actua parameter with this governor isany encoding structure field name within the encoding structure to which an
encoding object or encoding object set with such a parameter is being applied (see 17.5.16). (See D.1.11.3 for an
example of references to encoding structure fiel dnames).

9.16 Replacement classes and structures

9.16.1 When writing ASN.1 specifications for legacy protocols (or in order to generate specialized encodings for new
protocols), it isnormal to ignore encoding issues and, in particular, determinant fields that are present solely to support
decoding. Only fields of relevance to application code (carrying application semantics) are indluded in the ASN.1
specification.

9.16.2 When such protocol s use more than one encoding mechanism to support (for example) "SEQUENCE OF"
constructionsin different places in the protocol, it isnot possible (nor would it be appropriate) to formally specify this
within the ASN.1 itsdlf.

9.16.3 Thismeansthat theimplicitly generated encoding structure will not distinguish between such congructions,
nor will it contain encoding-related fields for determinants, and it is necessary to modify it to "correct” both problems
before a Sructureis available that matches the encoding requirements.

9.16.4 Thefirst and simplest modification isto replace some instances of a class (within the implicitly generated
structure) with new class names that have been assigned the old class in a class assignment statement. Thisis done by
creating an explicitly generated structure using arenames clause in an EDM. This clause imports an implicitly
generated structure from an ASN.1 modul e and makes specified replacements of (textual) occurrences of named classes.
The replacement can be of all occurrences textually within alist of implicitly generated classes (corresponding to the
ASN.1 type definitionsin amodule), or within components of one of those classes, or "all occurrences except” thosein
agiven definition or a given component (see 15.3). It isimportant here to note that these replacements are restricted to
the use of classes that have been defined with an encoding class assignment statement that assigns the name of a
replacement classto an old class (for example: "#Replacement-class ::= #0ld-class"), so this mechaniam is sometimes
colloquially referred to as "coloring”. The "coloring” identifies those parts of the specification that require different
encodings from other parts. (An example of "coloring” is given in D.3.8).

9.16.5 Even with "coloring", the explicitly generated encoding structure, like the implicitly generated encoding
structure, contains only fields corresponding to the fields in the ASN.1 specification, and it is usually necessary to
modify the generated structures to add fields for determinants, etc. A new replacement structur e is needed (for al or
part of the origina structure), with added fields. It isalso important to identify (for each field in the original structure)
which fields of the replacement structure (and what abstract values of that field) are used to carry the semantics of the
original abstract values. We talk about mapping the abstract values from the original structure to the replacement
structure.

9.16.6 There are many mechanisms for defining an encoding object for an existing structure as an encoding object for
atotally different replacement structure, with defined value mappings between the old structure and the replacement
structure. These mechanisms are described in 9.17.

ETSI

29 ETSI TS 101 969 V1.1.1 (2001-05)

9.16.7 A smpler Stuation frequently occurs, however, in which the designer requiresthe old structureto form (in its
entirety) a single component of the replacement structure, with all abstract values being mapped from the old structure
to the corresponding value of that component of the replacement structure. For this mechanism to be of general use, the
replacement structure needs to have a dummy parameter for this single component, and for it to be instantiated with the
actual parameter set to the old structure. Thiswas described in 9.11.3.

9.16.8 When defining encoding objects for a class (any class), it isaways possible to specify that the first action of
that encoding object is to replace the classit is encoding with a parameterized replacement structure, ingtantiated as
described in 9.16.7, and with abstract values mapped from the old class to the component.

9.16.9 Itisalso possibleto define encoding objects for the #OPTIONAL class (or for any class of the optional
category) that replace the optional element with a parameterized replacement structure (frequently one containing a
#BOOLEAN fidd as a presence determinant). (An example of thisis given in D.3.2.3).

9.16.10 For constructor classes such as#CONCATENATION, #REPETITION, and so on, it isalso possible to define
encoding objects that replace not the entire structure, but each component separately (or just mandatory, or just
optional, components).

9.16.11 A more advanced, but powerful, mechanism isto require the replacement action to also include the insertion
of a specified field at thehead or at the end of a#CONCATENATION (or similar structure). In this case the
replacement structure will contain afurther dummy parameter which isa"REFERENCE" parameter. The ingtantiation
of the replacement structure has the corresponding actual parameter set to a pointer to theinserted structure. (An
example of thisisgiven in D.3.1.5).

9.17 Mapping abstract values onto fields of encoding structures

9.17.1 There are 9x mechanisms provided for this.

9.17.2 Thefirst isto map specified abstract values associated with one smple encoding classto specified abstract
val ues associated with another simple encoding class. This can be used in many ways. For example, values of a
character string (of digits) can be mapped to integer values (and hence encoded as integer values). Vaues of an
enumerated type can be mapped to integer values, and so on (see 19.2). (See D.1.10.2 for an example).

9.17.3 The second isto map acomplete field of one encoding structure into afield of a compatible encoding structure,
which can contain additional fields - typically for use as length or choice determinants (see 19.3). (See D.2.8.3 for an
example).

9.17.4 Thethirdisto map by transforming all the abstract val ues associated with one encoding class into abstract
values associated with a different (typically, but not necessarily) encoding class, using atransform function. With this
mechanism, it is, for example, possible to map an #INTEGER into a#CHARS to obtain characters that can then be
encoded in whatever way is desired (for example, Binary-Coded Decimal or ASCII). (See D.1.6.3 for an example).
Transform functions are encoding objects of the class#TRANSFORM. They not only can transform between different
encoding classes, but can also be used to define simple arithmetic functions such as multiplication by a fixed value,
subtraction of afixed value, and so on. When applied in succession, they enable general arithmetic to be specified
(see 19.4). (See D.2.4.2 for an example).

9.17.5 The fourth mapping mechanism isto use a defined ordering of the abstract values of certain types and
constructions, and to map according to the ordering. This provides a very powerful means of encoding abstract values
associ ated with one encoding class asif they were abstract val ues associated with awholly unrelated encoding class
(522 19.5). (See D.1.4.2 for an example).

9.17.6 The fifth mechanism isto digribute the abstract values (using val ue range notation) associated with one
encoding class (typically #iNTEGER) into the fields of another encoding class. (See 19.6 and D.2.1.3 for examples).

9.17.7 The fina mechanism allows the ECN specifier to provide an explicit mapping from integer values (which may
have been produced by earlier mappings from, for example, an #ENUMERATED class) to the bits that are to be used to
encode those values. Thisisintended to support Huffman encodings, where the frequency of occurrence of each value
is (at least approximately) known, and where the optimum encoding is required. Annex E describes Huffman encodings
in more detail, and gives examples of this mechanism, together with areference to software that will generate the ECN
syntax for these mappings, given only the relative frequency with which each value of theinteger is expected to be used
(s2219.7).

ETSI

30 ETSI TS 101 969 V1.1.1 (2001-05)

9.18 Contents of Encoding Definition Modules

9.18.1 Encoding Definition Modules (or EDMS) contain export and import statements exactly like ASN.1 (but can
import only encoding objects, encoding object sets, and encoding classes from other EDM modules, or from ASN.1
modules in the case of implicitly generated encoding structures).

9.18.2 An EDM can aso contain arenames clause (see clause 15) which references implicitly generated encoding
structures from one or more ASN.1 modules and generates, by "coloring” them (see 9.16.4), an explicitly generated
encoding structure for each one. These explicitly generated encoding structures are available for use within the EDM,
but are also automatically exported for possible import into the Encoding Link Module.

9.18.3 It would be unusual (but not illega) for the sameimplicitly generated encoding structure to be referenced in
both an imports clause and in arenames clause in an EDM. In this case, any reference to either of these classesin the
body of the EDM requires the use of a fully-qualified name (see "External EncodingClassReference” in 10.6).

9.184 The body of an EDM module contains:

- "EncodingObjectAssignment” statements that define and name an encoding object for some encoding class
(there are seven forms of this statement, discussed in 9.7 and defined in clause 17).

- "EncodingObjectSetAssignment” statements that define sets of encoding objects (see clause 17).
- "EncodingClassAssignment” statements that define and name new encoding classes (see clause 15).
9.185 TheEDM can aso contain parameterized versions of these statements, as specified in clause 14 and in C.1.

9.18.6 Encoding objects can be defined for built-in encoding classes within any EDM module. Encoding objects can
be defined for a generated encoding structure only in EDM modul es that import the implicitly generated encoding
structure from the ASN.1 modul e that defines the corresponding type (using either an imports or arenames clause), or
that import the generated encoding structure from an EDM module that has exported it.

NOTE: If animplicitly generated encoding structure happens to have a name that is the same as areserved
encoding class name (see 8.5), it can still be imported into an EDM, but must be referenced in the body of
the EDM using a fully-qualified name (see "Externa EncodingClassReference” in 10.6).

9.19 Contents of the Encoding Link Module

9.19.1 All applications of the Encoding Control Notation require the identification of a single Encoding Link Module
(or ELM).

9.19.2 The ELM module applies encoding object setsto ASN.1 types (formally, to a generated encoding Structure
corresponding to the ASN.1 type). These encoding object sets (or their constituent encoding objects) areimported into
the ELM module from one or more EDM modules.

9.19.3 There arerestrictions on the application of encoding object setsto ensure that there isno ambiguity about the
actual encoding rules that are being applied (see 12.2.5). For example, it isnot permitted for an ELM to apply more than
one encoding object set to a specific implicitly generated structure.

9.19.4 Itispossiblein ample casesfor an ELM module to contain just a Sngle statement (following an imports
clause) that applies an encoding object set to theimplicitly generated encoding structure corresponding to the single
top-level type of an application. (See D.1.15 for an example).

9.20 Defining encodings for primitive encoding classes

9.20.1 Encoding rules for some primitive encoding classes can be defined using a user-friendly syntax which is
specified in the "WITH SYNTAX" statements of encoding class definitions (see clauses 23 and 25). This syntax can
also be used to define encoding rules for encoding classes derived from these primitive encoding classes (by encoding
class assignment statements).

9.20.2 Thenotation used for the encoding class definitionsin clauses 23 and 25 is based on the notation used for
information object class definition. This syntax (and its associated semantics) is defined by referenceto ITU-T Rec.
X.681 | ISO/IEC 8824-2 as modified by annex B of the present document.

ETSI

31 ETSI TS 101 969 V1.1.1 (2001-05)

9.20.3 Theencoding class definition specifies the information that has to be supplied in order to define encoding rules
for particular encoding classes. The set of encoding rulesthat can be defined in thisway isnot, of course, al possible
rules, but is believed to cover the encoding specifications that ECN usersare likely to require.

9.20.4 These encoding class definitions specify a series of fields (with corresponding ASN.1 types and semantics).
Encoding rules are specified by providing values for these fields. The values of these fields are effectively providing the
values of a series of encoding parameters which collectively define an encoding.

NOTE: Theuse of theterm "encoding parameter” above should not be confused with dummy and actual
parameters of an ASN.1 or ECN construct.

9.20.5 Themeaning of the values of these encoding parametersis specified using an encoding model (see figure 1)
where the value of each bit-field class produces a value encoding which is placed (I€ft or right justified) into an
encoding space.

9.20.6 The encoding space may have its leading edge aigned to some boundary (such as an octet boundary) by
encoding space pre-padding, and its Size can be fixed or variable. The value encoding fits within it, perhaps lft or right
justified, and with padding around it. If the size of the encoding space is variable, then either the value encoding hasto
be sl f-delimiting, or there has to be some external mechanism to enable a decoder to determine the size of the encoding
space. Several mechanisms are available for this determination.

9.20.7 Finadly, the complete encoding space with the value encoding and any value pre-padding and value
post-padding, is mapped to bits-on-the-line with an optional specification of bit-rever sal. This handles encodings that
require "most significant byte first" or "most significant byte last” for integers, or that require the bits within an octet to
be in the reverse of the normal order.

9.20.8 Thusthere arethree broad categories of information needed:
- thefirg relates to the encoding space in which the encoding is placed;

- the second relates to the way an abstract value is mapped to bits (value encoding), and the positioning of those
bits within the encoding space; and

- thethird relates to any required bit-reversals.

9.20.9 Figure 1 shows the encoding space (with pre-padding) and the value encoding (with value pre-padding and
value post-padding). Figure 1 dso illustrates the specification of an encoding space unit. The encoding space is aways
an integral multiple of this specified number of hits.

9.20.10 If the encoding space isnot the same size for al values encoded by an encoding object, then some additiona
mechanism is needed to determine the actual encoding space used in an instance of an encoding.

9.20.11 Itisalso possible to specify an arbitrary amount of encoder pre-padding (beyond that needed for alignment)
that ends when the value of an earlier start pointer field identifies the start an e ement.

9.20.12 The stepsin a definition of an encoding for a primitive bit-field encoding class are

- Specify thealignment (if any) required for the leading edge of the encoding space (relative to the alignment
point - normally the start of the encoding of the top-leve type, that is, the type to which an encoding object set is
applied in the ELM). (See 22.2).

- Specify the form of any necessary padding to that point (encoding space pre-padding). (See 22.2).
- Specify (if necessary) afield that provides a pointer to the start-point of the encoding space. (See 22.3).
- Specify the encoding of abstract values into bits (value encoding).

- Specify the units of the encoding space (the encoding space will always be an integral multiple of these units).
(See 22.4).

- Specify the size of the encoding space in these units. Thismay be fixed (using knowledge of integer or size
bounds associated with the abstract values to be encoded), or variable (different for each abstract value). The
specification may also (in all cases) specify the use of alength determinant that has to be encoded with the
length of thefield, and either enables decoding or provides redundant information (in the case of afixed-size
encoding space) that a decoder can check. (See 22.4).

ETSI

32 ETSI TS 101 969 V1.1.1 (2001-05)

- Specify the alignment of the value encoding within the encoding space. (See 22.8).

- Specify the form of any necessary padding from the start of the encoding space to the start of the value encoding
(value pre-padding). (See 22.8).

- Specify the form of any necessary padding between the end of the value encoding and the end of the encoding
space (value post-padding). (See 22.8).

- Specify any necessary hit-reversals of the encoding space contents before adding the bits to the encoding done so
far. (See 22.12).

: Alignment from start of encoding
Value pre-padding

Encoding space
Encoding so far

Encoding space \ 1001100100100100
g pre-padding —» < /\ “

/
S L

Value post-padding |
Encoding space unﬁ E_/al ue-encoding :|

- /
N

Encoding then added to bits-on-the-line,
possibly with bit, octet, etc. reversal

10101

Figure 1: Encoding space, value-encoding and padding concepts

9.20.13 Encoding parameters are available to support the specification of the encoding rules for all these steps.

9.20.14 Inredl cases, only some (or none!) of these encoding parameters will have unusual values, and defaults
operate if they are not specified. (See D.1.3 for an example of the definition of the encoding for an integer that is
right-aligned in a fixed two-octet field, starting at an octet boundary).

9.21 Application of encodings

9.21.1 Application of encodings (encoding rules) to encoding structuresis akey part of the ECN work, but is very
distinct from the definition of the encoding rules. Final application of encodings (to an encoding structure generated
from an ASN.1 type definition) only occurs within an Encoding Link Module, but application of encodings to fields of
an encoding structure may be used in the definition of encodingsfor alarger encoding structure.

9.21.2 Encodings are applied by reference to an encoding object set (or to a single encoding object). Such application
can occur in an EDM in the definition of encoding objects for any class (including encoding objects for a generated
encoding structure and for a user-defined encoding structure). Such application in an EDM ismerely the definition of
more encoding objects for that encoding class: The definitive application to an actual type occurs only in the ELM.

ETSI

33 ETSI TS 101 969 V1.1.1 (2001-05)

9.21.3 When a set of encoding objectsis being applied, it dways resultsin a complete encoding specification for the
encoding classes to which the objects are applied. If, in any given application, encodings are needed for encoding
classes (present within an encoding structure being encoded) for which there are no encoding objects in the set being
applied, then thisisan error (see 13.2.11).

NOTE: Although the specification of the encoding rules will be complete, the precise form of the actual encoding
(for example, the presence or absence of encoding space pre-padding, or the effect of the values of
bounds referenced in the encoding rules) can only be determined when the encoding definition is applied
to atop-level ASN.1 type.

9.21.4 There aretwo exceptionsto 9.21.3. Thefirst exception iswhen the (ASN.1-like) parameterization mechanism
is used to define a parameterized encoding object. In such cases the complete encoding is only defined following
instantiation with actua parameters. The second exception is when an encoding object is defined for an encoding
congtructor (#CONCATENATION, #ALTERNATIVES, #REPETITION, #SEQUENCE, etc.). In thislatter case, the
encoding rules associated with the encoding class simply define the rules associated with the structuring aspects. A
complete encoding specification for an encoding structure using these encoding classes will requirerules for encoding
the components of that encoding structure.

NOTE: Thereisadistinction here between encoding objects of class #SEQUENCE (an encoding congtructor) and
encoding objects for an implicitly generated encoding structure "#My-Type" (which happensto be
defined using the ASN.1 type "SEQUENCE"). The latter isnot an encoding constructor, and encoding
objects of thisclasswill provide full encoding rules for the encoding of values of type "My-Type".

9.22 Combined encoding object set

9.22.1 In order to provide a complete encoding, the ECN user can supply a primary encoding object set, and a second
encoding object set introduced by the reserved words "COMPLETED BY™.

9.22.2 Theencoding object set that is applied is defined to be the combined encoding object set formed by adding to
the firgt set encoding objects for any encoding class for which the first set is lacking an encoding object and the second
set contains one (see 13.2). A frequent set to use with "COMPLETED BY™ isthe built-in set
"PER-BASIC-UNALIGNED". (See D.1.15 for an example of the application of a combined encoding object set).

9.22.3 While an encoding object set can contain only one encoding object for a class #SEQUENCE-OF (for example),
it can also contain an encoding object for a class #Special-sequence-of (for example) which isdefined as
"#Special-sequence-of ::= #SEQUENCE-OF". An explicitly generated encoding structure can have both the
#SEQUENCE-OF class and al so the #Specia-sequence-of classin its definition. In thisway, a single combined
encoding object set can be applied to produce standard encodings for some of the original "SEQUENCE OF"
constructs, and specialized encodings for others.

9.23 Application point

9.23.1 Inany given application of encodings, thereisa defined sarting point (for the ELM, it isthe top-level
generated encoding structure(s) to which encodings are being applied). Thisis called the "initial application point” for
the structure that is being encoded by the ELM.

9.23.2 The combined encoding object set isapplied to a generated encoding structure, and it is the encodings defined
for the abstract values of this encoding structure that encode the abstract values of the ASN.1 type.

9.23.3 If thereisan encoding object in the combined encoding object set that matches a bit-field encoding class
(initially a generated encoding structure) at the application point, it is applied and the process terminates. Otherwise the
class at the application point is"expanded” by de-referencing. This expansion by de-referencing will continue until
either an encoding object is found, or a primitive class isreached. If the class at the application point is an encoding
constructor, and thereis an encoding object for that encoding constructor (#CHOICE, #SEQUENCE,
#SEQUENCE-OF, etc.), then it is applied, and the application point then passes to each component (asa paralld
activity).

9.234 Inamore complex case, there may be an #OPTIONAL class following a component class (and one or more
#TAG classes preceding it). The application point passes first to the #OPTIONAL, and the encoding object for that
class may replace the component (see 9.16.9). Then the application point passes to the tags, and findly to the
component itself.

ETSI

34 ETSI TS 101 969 V1.1.1 (2001-05)

9.24 Conditional encodings

9.24.1 Mention has already been made of the #TRANSFORM encoding class as a means of performing smple
arithmetic on integer values (see 9.17.3). This encoding class does, however, play a more fundamenta rolein the
specification of encodings for some primitive classes. In general, the specification of encodings for many of the ASN.1
built-in typesis atwo or athree stage process, using encoding objects of class #TRANSFORM and (for example) of
class #CONDITIONAL-INT or #CONDITIONAL-REPETITION.

9.24.2 The#TRANSFORM, #CONDITIONAL-INT, and #CONDITIONAL-REPETITION encoding classes are
restricted in their use. Encoding objects can only be defined for these classes using either the syntax of clauses 24, 23.7
and 23.13 respectivey, or by non-ECN definition of an encoding object, and they can only be used in the definition of
other encoding objects. They cannot appear in encoding object sets or be applied directly to encode fields of encoding
structures (see 18.1.6).

9.24.3 Encoding specification for encoding classes in theinteger category proceeds as follows: Encodings (of the
#CONDITIONAL-INT encoding class) are defined for a particular bounds condition, specifying the container sze
(and how it isdelimited), the transform of theinteger to bits (using either two's complement or positive integer
encodings), and the way these bits fit into the container. (An example of a bounds condition is the existence of an upper
bound and anon-negative lower bound). Thisis called a conditional encoding. The encoding of the classin theinteger
category is defined asalist of these conditional encodings, with the actual encoding to be applied in any given
circumstance being the onethat is earliest in the list whose bounds condition is satisfied. (See D.1.5.4 for an example).

9.24.4 Encoding specification for encoding classes in the repetition category use the #CONDITIONAL-REPETITION
encoding class, which defines the way in which the encoding space for the repeated items is delimited and how the
repeated encodings are to be placed into it, for a given range condition, again producing a conditional encoding. As
with the encoding of classesin the integer category, the final encoding isdefined asalist of conditional encodings.

9.245 Encoding specification for the encoding classes in the octets category proceeds as follows: First,
#TRANSFORM encoding objects are defined to map a single octet to a self-delimiting bitstring. Second, one or more
#CONDITIONAL-REPETITION encoding objects (for specific size-range conditions) are defined to take each of the
bitstrings (transformed from an octet in the octet string) and to concatenate them into a delimited container (the
definition of such encoding objects is not specific to encoding #OCTETS). Thefinal encoding of the class in the octets
category is defined asalist of #CONDITIONAL-REPETITION encoding objects. (See D.1.8.2 for an example).

9.24.6 Encoding specifications for encoding classes in the bitstring category proceeds as follows: First,
#TRANSFORM encoding objects are defined to map a single bit into a bitstring, similar to the encoding of an integer
into bits, but in this case the mapping of the bit must be to a self-delimiting string. Secondly, one or more
#CONDITIONAL-REPETITION encoding objects are defined for the repetition of the bits (these could be the same
encoding objects that were defined for use with an encoding class in the repetition or octetstring categories). Findly, the
encoding of the classin the bitstring category is defined asalist of the #CONDITIONAL-REPETITION encoding
objects. (See D.1.7.3 for an example).

9.24.7 Encoding specifications for encoding classes in the characterstring category proceeds as follows: First,
#TRANSFORM encoding objects are defined to map a single character to a self-delimiting bitstring, using several
possible mechanisms for defining the encoding of the character, and using the effective a phabet constraint whereit is
available. Secondly, one or more #CONDITIONAL-REPETITION encoding objects are defined, and finally the
encoding of the class in the charactergtring category is defined asalist of these. (See D.1.9.2 for an example).

9.25 Changes to ASN.1 Recommendations | International
Standards

9.25.1 The present document references other ASN.1 Recommendations | International Standardsin order to defineits
notation without repetition. For such references to be correct, the semantics of the notation (for example the imports
clause, parameterization, and information object definition) needs to be extended to recognize the reference names of
encoding classes, encoding objects, and so on that form part of ECN.

9.25.2 Thereisaso aneed to extend the information object class notation to allow fields that arelists of values or
objects, not just unordered sets of objects, in order to alow the use of that notation in the definition of ECN syntax for
the definition of encoding objects of certain classes.

ETSI

35 ETSI TS 101 969 V1.1.1 (2001-05)

9.25.3 Findly, therulesfor parameterization are relaxed to alow a dummy parameter of an encoding object reference
(being assigned in an assignment statement) to be used as an actua parameter of the encoding class reference which
governs the notation defining the encoding object reference name. In particular, a parameterized encoding class can be
used as a governor in an encoding object assignment statement (see C.2/8.4), with the actual parameter being a dummy
parameter of the encoding object that is being defined.

9.25.4 These modificationsto other ASN.1 Recommendations | International Standards are specified in annexes A to
C, and are soldly for the purposes of the present document.

10 Identifying encoding classes, encoding objects, and
encoding object sets

10.1 Many of the productions within the present document require that an encoding class, encoding object, or
encoding object set be identified.

10.2 For each of these, there are five ways in which identification can be made:
a) using asmplereference name;
b) using a built-in reference name (not applicable for encoding objects, as there are no built-in encoding objects);
¢) using an external reference (also called a fully-qualified name);
d) using a parameterized reference;
€) in-line definition.

NOTE: The parameterized reference form may be used with a ssimple reference name or with an external
reference (see C.3).

10.3 Thereareproductions (or lexical items) for al of these means of identification. There are also productions that
allow several dternatives. These lexical items or production names are used where appropriate in other productions, and
are defined in the remainder of this clause.

10.4 Thelexical itemsfor use of asimplereference name are;

encodi ng cl ass "encodi ngcl assreference" (see 8.3)
encodi ng obj ect "encodi ngobj ectreference" (see 8.1)
encodi ng obj ect set "encodi ngobj ect setreference" (see 8.2)

10.4.1 An "encodingclassreference” isaname which iseither:
a) assigned an encoding class in an "EncodingClassAssignment” (see clause 16); or is
b) imported into an EDM from some other EDM from which it has been exported; or is

¢) imported as the name of an implicitly generated encoding structure from an ASN.1 module (see 14.11), or from
an EDM module into which it was imported; or is

d) generated by arenames clausein the EDM (see clause 15).
NOTE: Only classesthat are generated encoding structures can be imported into an ELM (see 12.1.8).
10.4.2 An "encodingclassreference” shal not be imported from an EDM module (as specified in 10.4.1) unless either:
a) itisdefined in or imported into the referenced module, and that modul e has no exports clause; or
NOTE: If thereferenced module has no exports clause, thisis equivalent to exporting everything.

b) itisdefined in or imported into the referenced module, and appears as a symbol in the exports clause of that
module; or

¢) itisone of the reference names explicitly generated by a renames clause in the module from which it is being
imported.

ETSI

36 ETSI TS 101 969 V1.1.1 (2001-05)
10.4.3 Animplicitly generated encoding structure reference never appearsin the exports clause of any ASN.1 module,
but can always be imported from any ASN.1 modulein which the corresponding type is defined and exported.

10.4.4 Animplicitly generated encoding structure reference shall not appear in the exports clause of the EDM module
in which it is generated, but any use of it in another EDM or the ELM requires its importation.

10.4.5 An "encodingobjectreference” isaname which isether:
a) assigned an encoding object in an "EncodingObjectAssignment” (see clause 17) in an EDM; or is

b) imported into an EDM or an ELM from some other EDM in which it is either assigned an encoding object or is
imported.

10.4.6 An "encodingobjectreference” shall not be imported from an EDM if the referenced module has an exports
clause and the "encodingobjectreference” does not appear asa symbol in that exports clause.

NOTE: If thereferenced module has no exports clause, thisis equivaent to exporting everything.
10.4.7 An "encodingobjectsetreference” isaname which iseither:
a) assigned an encoding object set in an "EncodingObjectSetAssignment™ (see clause 18) in an EDM; or is

b) imported into an EDM or an ELM from some other EDM in which it is either assigned an encoding object set or
isimported.

10.4.8 An "encodingobjectsetreference” shall not be imported from an EDM if the referenced modul e has an exports
clause and the "encodingobjectsetreference” does not appear as a symboal in that exports clause.

NOTE: If thereferenced module has no exports clause, thisis equivaent to exporting everything.

10.5 The productionsfor use of a built-in reference name are:

encodi ng cl ass "Bui |l ti nEncodi ngC assRef erence" (see 16.1.6)
encodi ng object set "Bui |l ti nEncodi ngObj ect Set Ref erence" (see 18.2.1)

10.6 The productionsfor use of an external reference name are:
Ext er nal Encodi ngCl assRef erence :: =
nodul eref erence "." encodi ngcl assref erence |
nodul ereference "." BuiltinEncodi ngCl assRef erence

Ext er nal Encodi ngQbj ect Ref erence :: =
nodul eref erence "." encodi ngobj ectreference

Ext er nal Encodi ngbj ect Set Ref erence :: =
nodul eref erence "." encodi ngobj ect setreference

10.6.1 The"modulereference’ isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.5, and identifies a module which
isreferenced in theimportslist of the EDM or ELM.

10.6.2 The "Externa EncodingClassReference” dternative that includes a "BuiltinEncodingClassReference” shall be
used in the body of an EDM if and only if there is a generated encoding structure (whose name is the same asthat of a
"BuiltinEncodingClassReference”) which is either:

a) defined implicitly in the ASN.1 modul e referenced by the "modul ereference” (see 11.4.1); or

b) imported into another EDM referenced by the "modul ereference” and exported from that module; or

C) generated in arenames clause of another EDM referenced by the "modul ereference”; or

d) generated in thisEDM in arenames clause, in which case the "modul ereference” shall refer to thisEDM.

NOTE: The"BuiltinEncodingClassReference" name can appear asa " Symbol” in the imports clause (see A.1).

ETSI

37 ETSI TS 101 969 V1.1.1 (2001-05)

10.6.3 The productions defined in 10.6 (except as specified in 10.6.2) shall be used if and only if the corresponding
simple reference name has been imported from the modul e identified by the "modul ereference”, and either:

a) identicd reference names have been imported from different modules, or have been generated in arenames
clausein thisEDM, or have been both imported and generated; or

b) the smplereference nameisa "BuiltinEncodingClassReference” (see 10.5); or
¢) both conditionshold.

10.7 A parameterized reference is areference name defined in a " ParameterizedAssignment™ (see C.1) and supplied
with an actual parameter in accordance with the syntax of C.3. The productionsinvolved are:

encodi ng cl asses "Par anet eri zedEncodi ngd assAssi gnment"” (see C. 1)
"Par anet eri zedEncodi ngd ass" (see C.3)

encodi ng objects "Par anet eri zedEncodi ngQbj ect Assi gnment"” (See C. 1)
"Par anet eri zedEncodi ngCbj ect” (See C.3)

encodi ng object sets " Par anet eri zedEncodi ngQbj ect Set Assi gnnent" (See C. 1)
"Par anet eri zedEncodi ngObj ect Set"” (See C. 3)

10.8 The productionsthat allow all forms of identification are:

encodi ng cl asses "Encodi ngd ass" (See cl ause 16.1.4)
encodi ng objects "Encodi ngCbj ect” (See cl ause 17.1.4)
encodi ng object sets "Encodi ngCbj ect Set" (See cl ause 19.1)

10.9 The productions which allow all forms except in-line definition, are:

encodi ng cl asses " Def i nedEncodi ngd ass" and "DefinedOr BuiltinEncodi ngCl ass"
encodi ng objects " Def i nedEncodi ngObj ect "
encodi ng object sets " Def i nedEncodi ngObj ect Set"” and "DefinedOr Builti nEncodi ngQObj ect Set "

except that built-in encoding classes and built-in encoding object sets are not alowed by " DefinedEncodingClass' and
"DefinedEncodingObjectSet".

NOTE: A further production " SimpleDefinedEncodingClass' isalso used. Thisis defined in C.3 and alows only
"encodingclassreference” and "External EncodingClassReference’”.

10.9.1 The "DefinedEncodingClass’ and "DefinedOrBuiltinEncodingClass are:

Def i nedEncodi ngCl ass :: =
Encodi ngcl assr ef erence |
Ext er nal Encodi ngCl assRef erence |
Par armet eri zedEncodi ngCl ass

Defi nedOrBui | ti nEncodi ngCl ass :: =
Def i nedEncodi ngCl ass
Bui | ti nEncodi ngCl assRef erence

10.9.2 The "DefinedEncodingObject” is:

Def i nedEncodi ngObj ect :: =
encodi ngobj ectref erence |
Ext er nal Encodi ngbj ect Ref erence |
Par amet eri zedEncodi ngObj ect

10.9.3 The "DefinedEncodingObjectSet” and " DefinedOrBuiltinEncodingObjectSet” are;

Def i nedEncodi ngOhj ect Set :: =
Encodi ngobj ect setreference |
Ext er nal Encodi ngQbj ect Set Ref er ence |
Par armet eri zedEncodi ngObj ect Set

Def i nedOr Bui | ti nEncodi ngQbj ect Set :: =
Def i nedEncodi ngOhj ect Set |
Bui | ti nEncodi ngOhj ect Set Ref er ence

ETSI

38 ETSI TS 101 969 V1.1.1 (2001-05)

11 Encoding ASN.1 types

11.1 General

11.1.1 For al ASN.1 types, thereisa corresponding implicitly generated encoding structure. This encoding structure
isimplicitly generated for each ASN.1 type assignment, and is automatically exported from the ASN.1 module. (It does,
however, have to be imported into an EDM moduleiif it isto be used). The name of the corresponding encoding
structure is the name of the type preceded by a character "#". This encoding structure defines an encoding class, and is
called an implicitly generated encoding structure.

11.1.2 There may also be one or more explicitly generated encoding structur es. These are generated in an EDM
using arenames clause.

11.1.3 Theencoding of an ASN.1 typeisformaly defined as theresult of encodings applied to precisely one of the
encoding structures (implicitly or explicitly) generated from the ASN.1 type. The encodings are applied by statements
in the ELM (see clause 12), using encoding objects in a combined encoding object set. An ELM shall apply encodings
to at most one of the generated encoding structures corresponding to any given ASN.1 type.

11.1.4 Theimplicitly generated encoding structure is defined by first simplifying and expanding the ASN.1 notation
(as specified in 11.3), and then by mapping ASN.1 types, type constructors and component names into corresponding
built-in encoding classes, encoding constructors and encoding structure fieldnames.

11.1.5 An explicitly generated encoding structure is defined by making specified changes to the implicitly generated
encoding structure using a renames clause.

11.1.6 Each fidd of a generated encoding structure has associated with it the abstract values of the corresponding
type, and constraint-related information derived from the ASN.1 type definition (see 11.4.2). Encodings of the abstract
values of the generated encoding structure are defined to be the encodings for the corresponding abstract values of the
original ASN.1 type.

11.1.7 Thisclause 11 specifies:

a) The built-in encoding classes that are used in defining the implicitly generated encoding structures
corresponding to ASN.1 types (see 11.2).

NOTE: Clause 16.1.14 specifies additional classes that are used in the definition of user-defined encoding
structures.

b) Transformations of the ASN.1 syntax (simplification and expansion) before the implicitly generated structure are
produced (see 11.3).

¢) Theimplicitly generated encoding structure for any ASN.1 type (see 11.4).

11.2 Built-in encoding classes used for implicitly generated
encoding structures

11.2.1 Theencoding classes used for implicitly generated encoding structures, and the ASN. 1 types or constructors to
which they correspond arelisted in table 2.

11.2.2 Column 1 givesthe ASN.1 notation which isreplaced by an encoding class in the implicitly generated
encoding structure. Column 2 gives the encoding class that replaces the column 1 notation. Column 3 gives the
primitive class that the column 2 classis derived from.

ETSI

39

ETSI TS 101 969 V1.1.1 (2001-05)

Table 2: Encoding classes for ASN.1 notation

ASN. 1 notation

BI T STRI NG
BOOLEAN
CHARACTER STRI NG
CHO CE

EVMBEDDED PDV
ENUVERATED
EXTERNAL

| NTEGER

NULL

OBJECT | DENTI FI ER
OCTET STRI NG
open type notation
OPTI ONAL

REAL

RELATI VE- O D
SEQUENCE
SEQUENCE OF

SET

SET OF

General i zedTi me
UTCTi ne

BMPSt ri ng

General String
Graphi cString

| A5String
NumericString
Printabl eString
Tel et exString

Uni versal String
UTF8Stri ng

Vi deot exString

Vi sibleString
Textual |y present tag
not ati on

11.3
purposes

Encodi ng C ass
#BI T- STRI NG
#BOOLEAN
#CHARACTER- STRI NG
#CHO CE
#ENVBEDDED- PDV
#ENUMERATED
#EXTERNAL

#1 NTEGER

#NULL

#OBJECT- | DENTI FI ER
#OCTET- STRI NG
#OPEN- TYPE

#OPTI ONAL

#REAL

#RELATI VE- O D
#SEQUENCE
#SEQUENCE- OF
#SET

#SET- OF

#Cener al i zedTi ne
#UTCTi me

#BMPSt ri ng
#General String
#G aphicString
#1 A5String
#NumericString
#Printabl eString
#Tel etexString
#Uni versal String
#UTF8St ri ng

#Vi deot exStri ng
#Vi si bl eString
#TAG

Primtive C ass
#BI TS

#BOOL

#OPEN- TYPE
#ALTERNATI VES
#OPEN- TYPE

#1 NT

#OPEN- TYPE

#1 NT

#NUL

#OBJECT- | DENTI FI ER
#OCTETS

#OPEN- TYPE
#OPTI ONAL
#REAL

#OBJECT- | DENTI FI ER
#CONCATENATI ON
#REPETI TI ON
#CONCATENATI ON
#REPETI TI ON
#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#TAG

Simplification and expansion of ASN.1 notation for encoding

11.3.1 ECN assumesthat certain ASN.1 syntactic constructs have been expanded (or reduced) into equivalent or

simpler constructions.

NOTE: Thetypes defined by the smpler constructions are capable of carrying the same set of abstract values as
the original ASN.1 syntactic structures, and those abstract values are mapped to the simpler constructions.

11.3.2 Theexpanson or simplification of ASN.1 syntactic productionsis either:

a) fully-defined in clause 11.3.4 below; or

b) referenced in those clauses as"See 11.3.2 b" and fully-defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 (including

annex F) with all published amendments and technica corrigenda; or

c) referenced in those clauses as"See 11.3.2 ¢ and fully-defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 with all
published amendments and technical corrigenda.

d) referenced in those clauses as"See 11.3.2 d" and fully-defined in ITU-T Rec. X.683 | ISO/IEC 8824-4 with al
published amendments and technical corrigenda.

11.3.3 The ASN.1 syntactic constructs removed by the expansions and simplifications below are not referenced

further in the present document.

ETSI

40 ETSI TS 101 969 V1.1.1 (2001-05)

11.3.4 Thefollowing expansions and smplifications shall be applied to all ASN.1 modules:
11.34.1 Thefollowing transformations are not recursive and hence are applied only once:

a) All "ValueSetTypeAssignment”s shall be replaced by their equivalent "TypeAssignment"s with subtype
constraints. (See 11.3.2 b).

b) The ASN.1"INSTANCE OF" construction shall be expanded into its equivalent sequence type. (See 11.3.2 ¢).
¢) "TypeFromObject” shall be replaced with the type that isreferenced. (See 11.3.2 ¢).
d) "VaueSetFromObjects' shall be replaced with the type that is referenced. (See 11.3.2 ¢).

11.3.4.2 Thefollowing transformations shall be applied recursively in the specified order, until afixed-point is
reached:

a) All ASN.1 parameterization shall be fully resolved by the substitution of actual parameters for dummy
parameters. (See11.3.2 d).

NOTE: Thismeansthat where ASN.1 type notation contains an instantiation of an ASN.1 parameterized type,
that instantiation becomes an inline definition.

b) All "ComponentsOf"s shall be expanded to their full form. (See 11.3.2 b).
c) All uses of "SelectionType" shall beresolved. (See 11.3.2 b).
11.3.4.3 Thefollowing transformations shall then be applied:

a) Named number ligs in integer type definitions shall be removed. Named numbers are not visible to ECN. ECN
seesasingle #INTEGER class (possibly with bounds as specified in 11.3.4.3 ¢).

b) Named bit listsin bitstring definitions shall be removed. Named bitsare not visible to ECN.

¢) All non-PER-visible constraint notation, except the contents constraint, shall be discarded. PER-visible
constraints shall be resolved to provide the following values that can be referenced in the definition of encoding
rules:

i) an upper bound on integers and enumerations,
ii) alower bound on integers and enumerations;
iii) the PER effective alphabet and effective size constraints (see ITU-T Rec. X.691 | ISO/IEC 8825-2, 9.3).

d) If thereisa contents constraint with a"CONTAINING" construction, then the existence of the contents
constraint, its contentstype, and the presence or absence of an "ENCODED BY" clause become properties
associ ated with the abstract values of such a constrained octetstring or bitstring type, and the constraint shall then
be discarded. If thereisa contents constraint with no "CONTAINING" construction, then it isnot visibleto ECN
and shall be discarded.

NOTE: When specifying encodings for values with an associated contents constraint, a separate combined
encoding object set can be supplied to encode the contents type. This can be specified to over-ride or not
to over-ride any "ENCODED BY" that is present, asa designer's option (see 11.3 and 13.2).

e) All tagging which isnot textually present in the ASN.1 notation shall be ignored in the mapping to encoding
structures, but (in order to model BER encodings and PER procedures) the full tag-list of a type becomes a
property of the field of the encoding structure to which the corresponding val ues are mapped.

f) Textually present tag notation has the class of the tag removed.

g) "DEFAULT Value' shal bereplaced by "OPTIONAL-ENCODING #OPTIONAL" and the default valueis
associated with the field of the structure to which the ASN.1 component is mapped.

h) "OPTIONAL" shall bereplaced by "OPTIONAL-ENCODING #OPTIONAL".
i) "T61String" shall bereplaced by #TeletexString.
j) "1S0646String” shall be replaced by #VisibleString.

ETSI

41 ETSI TS 101 969 V1.1.1 (2001-05)

11.3.4.4 Finally, the following transformations shall then be applied:

a) Automatic allocation of values to enumerations (if applicable) shal be performed. The "ENUMERATED"
syntax shall be replaced by the #ENUMERATED encoding class with an upper bound and lower bound set.
(See11.3.4.3¢).

NOTE 1: The#ENUMERATED class de-referencesto the #INT class (see 11.2.2), and the enumerations map into
bounded integer values of the class. The actual names of enumerations are not visible to ECN.

b) All occurrences of "EncodingClassFieldType" that refer to atypefield, avariable-type valuefield, or a
variable-type value set field shall be replaced by the #OPEN-TY PE encoding class. (See 11.3.2 ¢).

c) Extensibility markersand version bracketsin sequence, set and choice constructions are removed, but (in order
to model BER encodings and PER procedures) the identification of a component as part of the root or of
version 1, version 2, etc becomes a property of the component, and the existence of the extensibility marker
becomes a property of the class the construction mapsto.

d) Theextensibility marker in constraintsis removed, but the existence of the extensibility marker becomes a
property of the class and whether an abstract valueisin theroot or isin an extension becomes a property of the
abstract value.

NOTE 2: The propertiesreferenced in items c) and d) above can only be interrogated through non-ECN definition
of encoding objects in this version of the present document. Full support for extensibility is expected to
be provided in alater version of the present document.

11.35 With these transformations, all ASN.1 type-related constructs have corresponding encoding classes, listed in
table 2. The implicitly generated encoding structure shall be constructed by mapping the ASN.1 type-related constructs
in column 1 to the classes in column 2 of table 2 (as specified in 11.4).

11.4 The implicitly generated encoding structure

11.4.1 Thereisanimplicitly generated structure for each ASN.1 type definition with a name constructed from the
ASN.1 type reference name by the pre-fixing of a"#" character. Where afully-qualified name isrequired for an
implicitly generated encoding structure, that fully-qualified name shall include the "Modul el dentifier” of the ASN.1
module containing the type definition. (An example of an implicitly generated structureis givenin D.1.9.2).

NOTE: Animplicitly generated structure is generated and exported for each ASN.1 typein an ASN.1 module
whether or not that typeislisted in the"EXPORTS' clause.

11.4.2 Theimplicitly generated encoding structure has the same structure as the ASN.1 type definition, with:
a) ASN.1 component identifiers mapped to encoding structure fieldnames.
b) ASN.1 notation in column 1 of table 2 is mapped to the built-in encoding classesin column 2 of table 2.
NOTE 1: Each textually present tag mapsinto a"[#TAG]" construction in the implicitly generated structure.

¢) ASN.1"DefinedType's are mapped to an encoding class name derived from the typereference by the addition of
acharacter "#'. If atypeisimported into the ASN.1 module, any "External EncodingClassReference” to the
corresponding class in an implicitly generated structure shall reference the ASN.1 module that contains the
definition of thereferenced type.

NOTE 2: If theresulting class isthe name of a built-in encoding class, then al referencesto it in either therenames
clause, or inthe ELM, will use the "External EncodingClassReference” notation.

d) Abstract values are mapped from afield of the type definition to the corresponding field of the encoding
structure.

€) Upper and lower bounds on integer and enumerated types and all effective size constraints and effective al phabet
constraints (see ITU-T Rec. X.691 | ISO/IEC 8825-2, 9.3) are mapped from the type definition to the
corresponding field of the encoding structure.

f) Thetag number of textually present tags maps to the corresponding #TAG class.

ETSI

42 ETSI TS 101 969 V1.1.1 (2001-05)

11.4.3 All implicitly generated encoding structures can be encoded by the built-in encoding object sets (see 18.2), and
will produce the same encodings as are specified by the corresponding The present document for those encodings when
applied to ASN.1 types.

12 The Encoding Link Module (ELM)

NOTE: Therearetwo top-level productionsin ECN, the "ELMDefinition™ specified in this clause and the
"EDMD¢finition" specified in clause 14. These specify the syntax for defining the ELM and EDMs
respectively.

12.1 Structure of the ELM

12.1.1 The"ELMDs¢finition" is:
ELMDefinition ::=
Modul el denti fi er
LI NK- DEFI NI TI ONS
BEG N
ELMVbdul eBody
END

12.1.2 Inany given application of ECN, there shall be precisdly one ELM which determines the encoding of all the
messages used in that application.

NOTE: The ASN.1 type(s) defining "messages’ are often referred to as "top-level types'.
12.1.3 The production "Moduleldentifier” (and its semantics) is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1.

12.1.4 The"Moduleldentifier" provides unambiguous identification of any modulein the set of all ASN.1, ELM, and
EDM modules.

12.1.5 The"ELMModuleBody" is:

ELMVbdul eBody :: =
I mports ?
Encodi ngAppl i cati onLi st

Encodi ngAppl i cationList ::=
Encodi ngAppl i cati on
Encodi ngAppl i cationLi st ?

12.1.6 The production "Imports’ (and its semantics) isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1, 12.15,
and 12.16, asmodified by A.1 of the present document.

12.1.7 The "External EncodingClassReference” shall not be used in the "Imports’ unlessrequired by 15.1.6.1.
12.1.8 The"Imports' makes available within the ELM:

12.1.9 implicitly generated encoding structures from an ASN.1 module;

12.1.10 explicitly generated encoding structures from an EDM module;

NOTE: When an ELM imports an explicitly generated encoding structure from an EDM, the renames clauses in
other EDMs have no effect on the encoding of that structure (see 15.2.4).

12.1.11 objects and encoding object sets from an EDM module.

12.1.12 The"EncodingApplicationList" isrequired to contain at |east one "EncodingApplication”, as the sole function
of an ELM isto apply encodings.

ETSI

43 ETSI TS 101 969 V1.1.1 (2001-05)

12.2 Encoding types
12.21 An"EncodingApplication” is:

Encodi ngApplication ::=
ENCODE
Si npl eDef i nedEncodi ngCl ass ", " +
Conbi nedEncodi ngs

12.2.2 An"EncodingApplication” defines the encoding of the ASN.1 types corresponding to the
"SimpleDefinedEncodingClass'es which shall be generated encoding structures. The encoding of the types is specified
by the "CombinedEncodings' applied to the generated encoding structures as specified in 13.2.

NOTE: It will be common for an ELM to encode a single type of a single module, but where multiple types are
encoded, ECN tool-vendors may (but need not) assume that thisimplicitly identifies top-level types
needing support in generated data-structures.

12.2.3 Encodings applied to a generated encoding structure corresponding to an ASN.1 type defined in some ASN.1
module are linked solely to the use of that type as application messages. They have no implications on the encoding of
that type when referenced by other types or when exported from that ASN.1 module and imported into a different
ASN.1 module.

12.2.4 Theencoding of thetypein a content constraint isthat specified by the encoding object applied to the
containing class in the octetstring or bitstring category, and can be any combined encoding object set, or can be the
combined encoding object set that was applied to the containing class in the octetstring or bitstring category.

12.25 An ELM shall not apply encodings more than once to the same ASN.1 type.

NOTE: Therulesof application of encodings (specified in clause 13) mean that an "EncodingApplication”
completely defines the encoding of atype unlessit contains an instance of a contents constraint.

13 Application of encodings

13.1 General

13.1.1 Encodings are applied by the ELM to a generated structure (or independently to multiple generated structures)
using a "CombinedEncodings' definition as specified in 13.1.3. This clause, together with 13.2, specifies the application
of "CombinedEncodings’ to a generated encoding structure.

13.1.2 IntheELM, the application is to the generated encoding structuresidentified in the "EncodingApplication™.
Later clauses also specify the application of encodingsto al or part of an arbitrary encoding structure definition. This
clauseisapplicable in both cases.

13.1.3 The"CombinedEncodings" is:
Conbi nedEncodi ngs :: =
W TH
Pri mar yEncodi ngs
Conpl eti onCl ause ?
Conpl eti onCl ause ::=
COWPLETED BY
Secondar yEncodi ngs
Pri maryEncodi ngs ::= Encodi ngObj ect Set
Secondar yEncodi ngs :: = Encodi ngObj ect Set
13.1.4 "EncodingObjectSet” is defined in 18.1.1.

13.1.5 Theuse of "CombinedEncodings' is specified in 13.2.

ETSI

44 ETSI TS 101 969 V1.1.1 (2001-05)

13.2 The combined encoding object set and its application

13.21 A combined encoding object set isformed from the "CombinedEncodings' production (see 13.1.3) as
follows:

13.2.2 If thereisno "CompletionClause”, then the "PrimaryEncodings' form the combined encoding object set.
13.2.3 Otherwise,
a) all encoding objectsin the "PrimaryEncodings’ are placed in the combined encoding object s&t, then

b) every encoding object in the" SecondaryEncodings' is added to the combined encoding object set if (and only if)
thereis no encoding object aready in the combined encoding object set that has the same encoding class
(see 17.1.6 and 9.22.2).

13.2.4 Fallowing this conceptual construction of the combined encoding object set, encoding commences with the
"encodingclassreference” name of the encoding structures identified in the encoding application (see 13.1.2 and 17.5).

13.25 Wherethereare several encoding applicationsin the ELM, therules of 12.2 ensure that applications are
non-overlapping. They proceed independently. Similarly, the applications of encodings to encoding structuresin EDMs
(specified in 13.2.10) are always non-overlapping. The following clauses provide therules for application to asingle
encoding structure.

13.2.6 Encoding objects from the combined encoding object set are applied at an application point. The application
point isinitially the "encodingclassreference” for a generated encoding structure (when application isin the ELM, as
specified in 13.1.2) or isacomponent of an encoding structure (when application isin an EDM, as specified in 17.5).

13.2.7 Any encoding classin the alternatives, concatenation, and repetition categories (see 16.1.8, 16.1.9 and 16.1.10)
is an encoding constructor.

13.2.8 Theterm "component” in the following text refers to any of the following:

a) thedternatives of a constructor that isin the alternatives category;

b) thefield following a constructor that isin therepetition category;

¢) the components of a constructor that is in the concatenation category;

d) acontained type (atype specified in a contents constraint);

€) thetype chosen (in an instance of communication) for use with a class in the open-type category.
13.29 At later stagesin these procedures, the application point may be on any of the following:

a) An encoding class name. Thisis completely encodable using the specification in an encoding object of the same
class (see 17.1.6).

b) An encoding constructor (see 16.2.12). The construction procedures can be determined by the specification
contained in an encoding object of the encoding constructor class, but that encoding object does not determine
the encoding of the components. The specification of the encoding object that is applied may require that one or
more of the components of the constructor are replaced by other (parameterized) structures before the application
point passes to the components.

¢) A classinthe bitstring or octetstring category that has a contained type as a property associated with the values
(see 11.3.4.3 d). The encoding of the contained type depends on whether thereisan "ENCODED BY™ present,
and on the specification of the encoding object being applied (see 22.11).

d) A component which isan encoding class (possibly preceded by one or more classes in the tag category),
followed by an encoding classin the optionality category. The procedures and encodings for determining
presence or absence are determined by the specification contained in an encoding object of the class in the
optionality category. This encoding object may also require the replacement of the encoding class (together with
all its preceding classes in the tag category) with a (parameterized) replacement structure before that classis
encoded. The application point then passesto the first classin the tag category (if any), or to the component, or
to itsreplacement.

ETSI

45 ETSI TS 101 969 V1.1.1 (2001-05)

€) An encoding class preceded by one or more encoding classes in the tag category. The tag number associated with
the classin the tag category is encoded using the specification in an encoding object of the classin the tag
category, and the application point then passesto the next tag, if any, or to the tagged class.

f) Any other built-in encoding class. Thisis completely encodable using the specification contained in an encoding
object of that class.

13.2.10 Encoding proceeds as follows:

13.2.10.1 If the combined encoding object set contains an encoding object of the same class (see 17.1.6) asthe current
application point, then that encoding object is applied. This application may cause replacement of one or more
components of the class to which the encoding is being applied. If the combined encoding object set does not contain
such an encoding object, then either:

a) the encoding class at the current application point is areference to another encoding class; in thiscaseitis
de-referenced, and the procedures of 13.2.10 arerecursively applied; or

b) the encoding classat the current application point is not areference to another encoding class; in this case the
ECN specification isin error.

13.2.10.2 If an encoding has been applied at the application point to the encoding class, and it is not in the optionality
or tag category and does not have any components (see 13.2.7), then that application completely determinesthe
encoding of the class and terminates these procedures.

13.2.10.3 If an encoding has been applied at the application point to an encoding classthat isin the optionality
category then the application point passes to the (possibly tagged) optional element.

13.2.10.4 If an encoding has been applied at the application point to an encoding classthat isin the tag category then
the application point passes to the next tag class or to the tagged eement, and the procedures of 13.2.10 are recursively

applied.

13.2.10.5 If an encoding has been applied at the application point to an encoding class that has components which
arenot a contained type, then the procedures of 13.2.10 are applied recursively to each component.

NOTE: Thisimpliesthat the current combined encoding object set is applied to the type chosen (in an ingtance of
communication) for use with a class in the open-type category (see 13.2.8¢).

13.2.10.6 If an encoding has been applied to an encoding class at the gpplication point that has a component that is a
classin the bitstring or octetstring category with a contained type associated with the values, then there are four cases
that can occur:

a) The contents constraint contains an "ENCODED BY", and the encoding object for this class either does not
contain a specification of the encoding of the contained type, or specifiesthat it should not override an
"ENCODED BY" (see 22.11). In this case the "ENCODED BY" specification shall be used for the contained
type, and the application point passes to the contained type using this encoding specification.

b) The contents constraint containsan "ENCODED BY", but the encoding object for this class contains a
specification of the encoding of the contained type, and specifies that it should override an "ENCODED BY". In
this case, the specification in the encoding object shall be applied to the contained type, and the application point
passes to the contained type using this encoding specification.

€) The contents constraint does not contain an "ENCODED BY" and the encoding object for this class contains a
specification of the encoding of the contained type. In this case, the specification in the encoding object is
applied to the contained type, and the application point passes to the contained type using this encoding
specification.

d) The contents constraint does not contain an "ENCODED BY", and the encoding object for this class does not
contain a specification of the encoding of the contained type. In this case the combined encoding object set being
applied to the class shall aso be applied to the contents type, and the application point passes to the contained
type using this encoding specification.

13.2.10.7 If thereisno encoding object in the combined encoding object set of the same class (see 17.1.6) asthe
current application point, and the current application point isareference name, then it is de-referenced and these
procedures are applied recursively to the new encoding structure.

ETSI

46 ETSI TS 101 969 V1.1.1 (2001-05)

13.2.10.8 Otherwise the ECN specificationisin error.

13.211 The above algorithm can be summarized asfollows. The combined encoding object set isapplied in a
top-down manner. If in this process an encoding structure reference nameis encountered and there isan object in the
combined encoding object set that can encode it, that object determines its encoding. Otherwise, the reference nameis
expanded by de-referencing. If at any stage an encoding is required (and does not exist) for an encoding class that
cannot be de-referenced, then the ECN specification isincorrect, and the combined encoding classis said to be
incomplete. When a primitive bit-field classis reached, the encoding terminates with the encoding of that class, except
that if it has a contained type, encoding proceeds to the generated encoding structure corresponding to the contained
type. When atype with components is reached, the process continues by applying the combined encoding object set to
each component independently. When tags and optionality are involved, the optionality class is encoded first, then the
first tag class, and finally the dement. When encodings are applied to constructor classes they may cause replacement
of one or more components. When they are applied to an optionality class they may cause replacement of the entire
element (gpart from the optionality class, but including any tag classes).

13.2.12 Inthe encoding process, encoding objects applied to encoding constructors (and to classes in the optionality
category) may require that the encoding objects applied to their components exhibit identification handles (of a given
name) to resolve alternatives, or optionality, or order in a set-like concatenation. If in this case the encodings of the
components do not exhibit the required identification handles, then the ECN specification isin error.

NOTE: Thisproblemismost likely to arise if BER encoding objects are applied to encoding constructors and not
to their components, as BER is heavily reliant on identification handles. PER encoding objects make no
use of identification handles.

14 The Encoding Definition Module (EDM)

NOTE: Therearetwo top-level productionsin ECN, the "EDMDefinition" specified in this clause and the
"ELMDefinition" specified in clause 12. These specify the syntax for defining EDMs and the ELM
respectively.

14.1 The"EDMDefinition" is

EDVDefinition ::=
Modul el denti fi er
ENCCODI NG- DEFI NI TI ONS
BEG N
EDMVbdul eBody
END

14.2 Inany given application of ECN, there are zero, one or more EDMs which define encoding objects for
application in the ELM.

NOTE: If thereare zero EDMSs, then only built-in encoding object sets can be used in the ELM.
14.3 The production "Moduleldentifier” (and its semantics) isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1.

14.4 The"Moduleldentifier" provides unambiguous identification of any modulein the set of all ASN.1, ELM, and
EDM modules.

145 The"EDMModuleBody" is:

EDMVbdul eBody :: =
Exports ?
RenamesAndExports ?
I mports ?

EDMAssi gnment Li st ?

EDMAssi gnment Li st :: =
EDMAssi gnment
EDMAssi gnment Li st ?

EDMAssi gnment :: =
Encodi ngCl assAssi gnnent |
Encodi ngOhj ect Assi gnnment |
Encodi ngObj ect Set Assi gnment |
Par amet eri zedAssi gnnent

ETSI

47 ETSI TS 101 969 V1.1.1 (2001-05)

14.6 The productions "Exports' and "Imports’ (and their semantics) are defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 12.1, as modified by A.1 of the present document.

14.7 The"Exports' makes available for import into other EDMs (and the ELM) any reference name defined in or
imported into the current EDM. The"Symbol" in the "Exports’ can reference any encoding class (except a built-in
encoding class), an encoding object, or an encoding object set. The " Symbol" shall have been defined in this EDM, or
imported into it.

NOTE: When the name of an imported implicitly generated encoding structureis a built-in encoding class
reference, it can be used within the EDM with a fully-qualified name, but cannot be exported from the
EDM (however, encoding structures defined using it can, of course, be exported).

14.8 The production "RenamesAndExports’ is defined in clause 15.

14.9 The"RenamesAndExports' (called the renames clause) makes available (within the EDM) explicitly generated
encoding structures derived from the implicitly generated encoding structuresin specified ASN.1 modules. It also
makes these explicitly generated encoding structures available for import into other EDMs (and the ELM).

(See clause 15).

14.10 The"Imports' makes available (within the EDM) encoding classes, encoding objects and encoding object sets
exported from other EDMs or automatically exported from ASN.1 modules.

14.11 All ASN.1 modules that define non-parameterized type reference names automatically produce and export an
implicitly generated encoding structure of the same name preceded by the character "#". Such encoding classes can be
imported into an EDM from that ASN.1 module.

NOTE: Where such names are the same as built-in encoding class names, then the external form of reference, as
specified in A.1, hasto be used in the body of the importing module, and in any renames clause.

14.12 Each "EDMAssignment” defines areference name, and may make use of other reference names. Each reference
name used in amodule shall either be imported into that module or shall be defined precisdly once within that module.

14.13 Thereisno requirement that any reference name used in one assignment be defined (in another assignment
statement) textually before its use.

14.14 Theproductionsin "EDMAssignment" are defined in subsequent clauses as follows:

Encodi ngCl assAssi gnnent Cl ause 16
Encodi ngOhj ect Assi gnnment Cl ause 17
Encodi ngObj ect Set Assi gnmrent Cl ause 18
Par amet eri zedAssi gnnent Clause C. 1

NOTE: The"ParameterizedAssignment” allows the parameterization of an "EncodingClassAssignment”, an
"EncodingObjectAssignment”, and an "EncodingObjectSetA ssignment”, as specified in C.1.

15 The renames clause

15.1 Explicitly generated and exported structures

15.1.1 The production "RenamesAndExports’ is.

RenamesAndExports ::=
RENAMES
ExplicitGenerationList ";"
ExplicitGenerationList ::=
ExplicitGeneration
ExplicitGenerationList ?
ExplicitGeneration ::=
Opt i onal NaneChanges
FROM d obal Mbdul eRef er ence
Opt i onal NaneChanges :: =
NanmeChanges | GENERATES

NOTE: An example of the use of the renames clause to produce explicitly generated encoding structuresis given
in D.3.8.

ETSI

48 ETSI TS 101 969 V1.1.1 (2001-05)

15.1.2 The production "GlobalModuleReference” isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1 and shall
identify an ASN.1 module.

15.1.3 The"RenamesAndExports' is caled arenames clause.

15.1.4 Each "ExplicitGeneration” generates, and exports from this module, an explicitly generated encoding structure
for each of theimplicitly generated encoding structures of the ASN.1 modul e referenced by " Global Modul eReference’.
Each field of the explicitly generated encoding structure has associated with it the same abstract values asthe
corresponding field of the implicitly generated encoding structure (which are those associated with the corresponding
field of the ASN.1 type from which it was generated).

15.1.5 Theseexplicitly generated encoding structures have the same simple reference name as the implicitly generated
encoding structure from which they were formed (but are distinct classes). Where afully-qualified nameisrequired for
an explicitly generated encoding structure, that fully-qualified name shall indlude the "Modulel dentifier” of the EDM
modul e containing the renames clause, as specified in 15.1.6.

NOTE: Theimplicitly generated encoding structures used in their generation have the same simple reference
name, but their fully-qualified name includes the "Modulel dentifier” of the ASN.1 module in which the
corresponding type was defined.

15.1.6 If an EDM produces explicitly generated encoding structures from more than one ASN.1 module, it is possible
that some of these structures may have the same simple encoding class names. In this case, therestrictions of 15.1.6.1
and 15.1.6.2 shall apply.

15.1.6.1 If any of these structures are imported into another EDM or into the ELM, then the imports clause shall
reference them using the "Externa EncodingClassReference" containing the "modul ereference” used asthe ASN.1
module reference in the replaces clause of the EDM modul e which generated them.

15.1.6.2 If any of these structures are referenced in the body of this EDM, then the reference shall be an
"External EncodingClassReference” containing the "modul ereference” used asthe ASN.1 module reference in the
replaces clause of this EDM module.

15.1.7 The"Externa EncodingClassReference’ notation shall not be used in an imports clause except where required
by clause 15.1.6.

15.1.8 If aname which has been imported using an "External EncodingClassRefererence” is used in the body of a
module, then the simple "encodingclassreference” can be used unless an "External EncodingClassReference” isrequired
as specified in clause 15.1.6.2.

15.1.9 If the"OptionaNameChanges' is"GENERATES', then al the explicitly generated encoding structures are the
same structure as the implicitly generated encoding structures used in their generation, except as specified in 15.1.11.

15.1.10 If "OptionalNameChanges' is"NameChanges', then 15.1.11 still applies, but the explicitly generated
encoding structures are further modified as specified in 15.2.

15.1.11 Consider an implicitly generated encoding structure (A say) which contains an encoding class referenceto
some other implicitly generated encoding structure (B say). Then:

a) If thisrenames clause (in any of its "ExplicitGeneration”s) produces an explicitly generated encoding structure
corresponding to B (B1 say), then the corresponding reference in the explicitly generated encoding structure
corresponding to A isareferenceto B1.

b) If thereisno explicitly generated encoding structure corresponding to B, then thereference in the generated
encoding structure corresponding to A isareferenceto B.

15.2 Name changes

15.21 The"NameChanges' productionis:
NanmeChanges :: =
NameChange
NanmeChanges ?

NameChange :: =
Ori gi nal Cl assNane

ETSI

49 ETSI TS 101 969 V1.1.1 (2001-05)

AS

NewCl assNane

I'N
NaneChangeDonai n

Original Gl assNanme :: = Sinpl eDefinedEncodi ngCl ass | BuiltinEncodi ngCl assRef erence

NewCl assNane ::= encodi ngcl assreference

15.2.2 Each "NameChanges' specifies that, in the generation of explicitly generated encoding structures, all
occurrences of "Origina ClassName" within "NameChangeDomain™ in the implicitly generated encoding structures are
to be renamed as the class "NewClassName". "NameChangeDomain" is specified in 15.3, and identifies one or more
implicitly generated encoding structures (or components of those structures) from the ASN.1 modul e referenced by the
"GlobalModuleReference” in the "ExplicitGeneration”.

NOTE 1: Thisenables different encodings to be applied to some occurrences of a class from that applied to other
OCCurrences.

NOTE 2: Thisimpliesthat "Origina ClassName" can only be a name implicitly generated from an ASN.1 type, that
is, the name of a user-defined ASN.1 type (preceded by "#"), or one of the class nameslisted in column 2
of table 2.

15.2.3 References by "Origina ClassName" to fields of theimplicitly generated encoding structure which correspond
to use of "External TypeReference" in the ASN.1 type definition shall usethe "SimpleDefinedEncodingClass' notation
with the same "modulereference” asthe "External TypeReference”. Otherwise, if the "DefinedType" (preceded by a "#")
isnot a"BuiltinEncodingClassReference’, a simple "encodingclassreference” shal be used. If a"typereference’
(preceded by a"#") isa "BuiltinEncodingClassReference” then the "SimpleDefinedEncodingClass' notation shall be
used with the same "modul ereference” as the ASN.1 module that generated the implicitly generated encoding structure.

15.2.4 When an ELM imports an explicitly generated encoding structure from an EDM, renames clauses in other
EDMs have no effect on the encoding of that structure.

NOTE: Thismeansin practicethat al the "coloring” (see 9.16.4) needed for any particular message, has to be
doneinasingle EDM.

15.25 The"NewClassName" shall be defined in an encoding class assignment statement (see clause 16) of the form:

<NewCl assNane> ::= <Ori gi nal Cl assNanme>

where "<NewClassName>" and "<Original ClassName>" are the names of the new and original classes appearing in the
"NameChanges' production. The assignment shall be in the EDM module with the renames clause.

15.3 Specifying the region for name changes

15.3.1 The production "NameChangeDomain" is:

NameChangeDonai n :: =
I ncl udedRegi ons
Exception ?
Exception ::=
EXCEPT
Excl udedRegi ons
I ncl udedRegi ons :: =
ALL | RegionLi st
Excl udedRegi ons :: = Regi onLi st
Regi onList ::=
Region "," +
Region ::=
Si npl eDef i nedEncodi ngd ass |
Conmponent Ref er ence
Conmponent Ref erence :: =
Si nmpl eDef i nedEncodi ngC ass

i Henti fier
15.3.2 Each "SimpleDefinedEncodingClass’ shall be the name of an implicitly generated encoding structure from the

ASN.1 modul e referenced by the "GlobalModul eReference” in the "ExplicitGeneration”. When used in "Region”, it
identifies the whole of that encoding structure definition.

ETSI

50 ETSI TS 101 969 V1.1.1 (2001-05)

NOTE: The"Externa EncodingClassReference” form of " SimpleDefinedEncodingClass' isused if the referenced
classisderived from a"typereference’ name which (when preceded by "#") isa
"BuiltinEncodingClassReference” (see 15.2.3).

15.3.3 Each "identifier" shall be the "identifier" in a"NamedField" of the implicitly generated encoding structure
identified by the "encodingclassreference” in the "ComponentReference”. The "ComponentReference” identifies the
entire definition of that component of that encoding structure.

15.3.4 Thedefinitionsidentified by different "Region"sin "RegionList" shall be digoint. A definition isidentified by
"RegionList" if and only if itisidentified by a"Region” in "RegionList".

15.35 If "IncludedRegions’ is"ALL", it identifies all partsof all theimplicitly generated encoding structures from
the ASN.1 module referenced by the "Global M oduleReference” in the "ExplicitGeneration”.

15.3.6 Thedefinitionsidentified by the "ExcludedRegions' shall be aproper subset of the definitionsidentified by the
"IncludedRegions’.

15.3.7 The"NameChangeDomain" specification identifies the definitions in which the name changes are to be made.
The definitionsin the "NameChangeDomain" are the definitions identified by the "IncludedRegions' which are not also
identified by "ExcludedRegions'.

16 Encoding class assignments

16.1 General

16.1.1 The "EncodingClassAssignment” is:

Encodi ngCl assAssi gnnent ::=
encodi ngcl assref erence

E-nizodi ngCl ass
16.1.2 The "EncodingClassAssignment” assignsthe "EncodingClass' to the "encodingclassreference’.

NOTE: Any "EncodingObject” notation that was valid with "EncodingClass' as a governor isvalid with
"encodingclassreference” asagovernor.

16.1.3 An encoding classisin one of the following categories:
a) thebit-field category (see 16.1.7);
b) the aternatives category (see 16.1.8);
¢) the concatenation category (see 16.1.9);
d) therepetition category (see 16.1.10);
€) the optionality category (see 16.1.11);
f) thetag category (see 16.1.12);
g) the encoding procedure category (see 16.1.13).

NOTE: Thereisalso an encoding constructor category that consists of all classesin the alternatives,
concatenation, and repetition categories.

16.1.4 The"EncodingClass' is:.
Encodi ngC ass :: =
Bui | ti nEncodi ngCl assRef erence |

Encodi ngStructure

16.1.5 "BuiltinEncodingClassReference" is defined in 16.1.6. The category of each built-in encoding classisthe
category implied by the name of the production.

ETSI

16.1.6 The"BuiltinEncodingClassReference” is:

Bui | ti nEncodi ngCl assReference :: =
Bitfiel dCl assReference

Al ternativesC assRef erence

Concat enat i onCl assRef erence
RepetitionCl assRef erence
OptionalityC assReference

TagCl assRef erence

Encodi ngPr ocedur eCl assRef erence

16.1.7 The"BitfieldClassReference” is:

Bitfiel dCl assReference ::=
#NUL
#BOOL
#1 NT
#BI TS
#OCTETS
#CHARS
#PAD
#Bl T- STRI NG
#BOOLEAN
#CHARACTER- STRI NG
#ENMBEDDED- PDV
#ENUMERATED
#EXTERNAL
#1 NTEGER
#NULL
#OBJECT- | DENTI FI ER
#OCTET- STRI NG
#OPEN- TYPE
#REAL
#RELATI VE- O D
#Cener al i zedTi ne
#UTCTi me
#BMPSt ri ng
#General String
#G aphicString
#1 A5String
#NumericString
#Printabl eString
#Tel etexString
#Uni versal String
#UTF8St ri ng
#Vi deot exStri ng
#Vi si bl eString

16.1.8 The"AlternativesClassReference’ is:

Al ternativesCl assReference :: =
#ALTERNATI VES
#CHO CE

16.1.9 The"ConcatenationClassReference’ is.

16.1.10

16.1.11

16.1.12

Concat enati onCl assRef erence :: =
#CONCATENATI ON

#SEQUENCE

#SET

The "RepetitionClassReference” is:
RepetitionCl assReference ::=
#REPETI TI ON

#SEQUENCE- OF
#SET- OF

The "OptionalityClassReference” is

OptionalityC assReference :: =
#OPTI ONAL

The "TagClassReference” is

TagCl assReference :: =
#TAG

51

ETSI

ETSI TS 101 969 V1.1.1 (2001-05)

16.1.13 The "EncodingProcedureClassReference” is:

Encodi ngPr ocedur eCl assRef erence ::

#TRANSFORM
#CONDI TI ONAL- | NT

#CONDI Tl ONAL- REPETI Tl ON

#OUTER

52 ETSI TS 101 969 V1.1.1 (2001-05)

16.1.14 Some of these classes are defined to be primitive, and can only be encoded by encoding objects of their own
class. Others are derived from a primitive class through class assignment statements, and can be de-referenced to these
classes. The following are the primitive classes that each built-in classis derived from through class assignment
statements. When defining encoding objects of derived classes, any syntax permitted for the corresponding primitive
class can be used for the derived class:

Built-in class
#ALTERNATI VES
#BI TS

#Bl T- STRI NG
#BOOL

#BOOLEAN
#CHARACTER- STRI NG
#CHARS

#CHO CE
#CONCATENATI ON
#CONDI Tl ONAL- | NT

#CONDI TI ONAL- REPETI Tl ON

#ENMBEDDED- PDV
#ENUMERATED
#EXTERNAL

#1 NT

#1 NTEGER

#NUL

#NULL

#OBJECT- | DENTI FI ER
#OCTETS

#OCTET- STRI NG
#OPEN- TYPE

#OPTI ONAL

#OUTER

#PAD

#REAL

#RELATI VE- O D
#REPETI TI ON
#SEQUENCE
#SEQUENCE- OF
#SET

#SET- OF

#TAG

#TRANSFORM
#Cener al i zedTi ne
#UTCTi nme

#BMPSt ri ng
#General String
#G aphicString
#1 A5String
#NumericString
#Printabl eString
#Tel etexString
#Uni versal String
#UTF8St ri ng

#Vi deot exStri ng
#Vi si bl eString

Derived from

(primtive constructor)
(primtive bitstring)

#BI TS

(primtive bitstring)

#BOOL

#CHARS

(primtive bitstring)
#ALTERNATI VES

(primtive constructor)
(primtive, other procedures)
(primtive, other procedures)
#OPEN- TYPE

#1 NT

#OPEN- TYPE

(primtive bitstring)

#1 NT

(primtive bitstring)

#NUL

(primtive bitstring)
(primtive bitstring)

#OCTETS

(primtive bitstring)
(primtive, other procedures)
(primtive, other procedures)
(primtive bitstring)
(primtive bitstring)
#OBJECT- | DENTI FI ER
(primtive constructor)
#CONCATENATI ON

#REPETI TI ON

#CONCATENATI ON

#REPETI TI ON

(primtive bitstring)
(primtive, other procedures)
#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

16.2 Encoding structure definition

16.21 The"EncodingStructure” is:

Encodi ngStructure ::=
TaggedStructure
Unt aggedStructure

TaggedStructure ::=

e

Tagd ass

ETSI

53 ETSI TS 101 969 V1.1.1 (2001-05)

TagVal ue ?
"

Encodi ngStructure

Unt aggedStructure ::=
Def i nedEncodi ngCl ass
Encodi ngSt ruct ureFi el d |
Encodi ngSt ruct ur eDef n

TagC ass ::=
Def i nedEncodi ngCl ass
TagCl assRef erence

TagVal ue :: =
"“(" nunber ")"

16.2.2 An "EncodingStructure" defines a structure-based encoding class using the notation specified below. This
notation permits the definition of arbitrary encoding classes using built-in encoding classes and defined encoding
classes (which may be generated encoding structures) for bit-fields, encoding congtructors, and the encoding procedure
classesin the optionality category. All classes defined by "EncodingStructure” arein the bit-field category. (Examples
of an encoding structure assignment illustrating many of the syntactic structuresisgiven in D.2.8.4and D.2.2.3isan
example of the use of #TAG).

16.2.3 The"DefinedEncodingClass' is specified in 10.9.1 and shall be a hit-field class.

16.2.4 The "DefinedEncodingClass’ in the "TagClass' shall be a class in the tag category (see 16.1.3).

16.25 The"number" in "TagVaue" specifies a tag number which isassociated with the classin the tag category.
16.2.6 The"EncodingStructureField" is:

Encodi ngStructureField ::=

#NUL

#BOOL

#1 NT Bounds?
#BI TS Si ze?
#OCTETS Si ze?
#CHARS Si ze?
#PAD

#Bl T- STRI NG Si ze?
#BOOLEAN

#CHARACTER- STRI NG
#ENMBEDDED- PDV

#ENUMERATED Bounds?
#EXTERNAL

#| NTEGER Bounds?
#NULL

#OBJECT- | DENTI FI ER

#OCTET- STRI NG Si ze?
#OPEN- TYPE

#REAL

#RELATI VE- O D

#General i zedTi e

#UTCTi me

#BMPSt ri ng Si ze?
#General String Si ze?
#G aphicString Si ze?
#1 A5String Si ze?
#NumericString Si ze?
#Printabl eString Si ze?
#Tel etexString Si ze?
#Uni versal String Si ze?
#UTF8St ri ng Si ze?
#Vi deot exStri ng Si ze?
#Vi si bl eString Si ze?

16.2.7 The"EncodingStructureFied"s represents all possible bitstring encodings for the corresponding ASN. 1 types,
and can be assigned values of those types in a value mapping (see clause 19).

16.2.8 The ASN.1 values which can be associated with each primitive field are as follows:

#NUL The null val ue
#BOOL The bool ean val ues
#1 NT The integer val ues
#BI TS Bitstring val ues

ETSI

54 ETSI TS 101 969 V1.1.1 (2001-05)

#OCTETS Cctetstring val ues
#CHARS Character string val ues
#PAD None

#OBJECT- | DENTI FI ER Obj ect identifier values
#OPEN- TYPE Open type val ues

#REAL Real val ues

#TAG Tag nunbers

NOTE: The#PAD fied cannot have associated ASN.1 values, and isnever visible outside the encoding and
decoding procedures.

16.29 The"Bounds' and "Size" specify the bounds or effective size constraint respectively on the abstract values that
can be mapped to thefield (see clause 19).

NOTE: Effective alphabet constraints cannot be assigned in an encoding structure definition. They can only be
assigned through the value mappings of clause 19.

16.2.10 "Bounds' and "Size"' are:

Bounds ::= "(" EffectiveRange ")"
Ef fecti veRange :: =
M nMax |
Fi xed
Si ze := "(" SIZE SizeEffectiveRange ")"

Si zeEffecti veRange :: =
"(" EffectiveRange ")"

M nMax ::=
Val ueOrM n
Val ueOr Max

ValueOMn ::=
Si gnedNurber |
M N

Val ueOrMax ::=
Si gnedNurber |
MAX

Fi xed ::= Si gnedNunber

16.2.11 "MIN" and "MAX" specify that thereisno lower or upper bound respectively. "MIN" shall not be used in
"Size". "Fixed" meansasingle value or asingle sze. "SignedNumber” is specified in ITU-T Rec. X.680 |

ISO/IEC 8824-1, 18.1. It shall be non-negative when used in "Size". "VaueOrMin" and "VaueOrMax" specify lower
and upper bounds respectively.

16.2.12 The "EncodingStructureDefn" is:

Encodi ngStruct ureDefn :: =
AlternativesStructure |
RepetitionStructure |
Concat enati onStructure

16.2.13 These encoding structures are defined in the following clauses:

Al ternativesStructure 16. 3
RepetitionStructure 16.4
Concat enati onStructure 16.5

16.3 Alternative encoding structure

16.3.1 The"AlternativesStructure' is:

Al ternativesStructure ::=
Al ternativesd ass

{
NanedFi el ds
"y

ETSI

55 ETSI TS 101 969 V1.1.1 (2001-05)

AlternativesC ass ::=
Def i nedEncodi ngCl ass
Al ternativesC assRef erence

NanmedFi el ds ::= NanedField "," +

NanedField ::=
identifier
Encodi ngStructure

16.3.2 The"AlternativesStructure" identifies the presence in an encoding of precisely one of the "EncodingStructure’'s
inits"NamedFields'. The "DefinedEncodingClass' shall be a class in the aternatives category (see 16.1.8). The
mechanisms used to identify which of the "EncodingStructure’s is present in an encoding are specified by an encoding
object of the "AlternativesClass'.

16.3.3 The"AlternativesStructure" is an encoding constructor: when an encoding object set is applied to this structure
as specified in 13.2, the encoding of the "AlternativesClass' determines the selection of alternatives, and the application
point then proceeds to each of the "EncodingStructuresin its "NamedFields’.

16.4 Repetition encoding structure

16.4.1 The"RepetitionStructure’ is:

RepetitionStructure ::=
Repetitiond ass

Encodi ngStructure
Si ze?

RepetitionC ass ::=
Def i nedEncodi ngCl ass |
RepetitionC assRef erence

16.4.2 The"RepetitionStructure" identifies the presence in an encoding of repeated occurrences of the
"EncodingStructure” in the production. The optional "Siz€" construction (see 16.2.9) specifies bounds on the number of
repetitions. The mechanisms used to identify how many repetitions of the "EncodingStructure” are present in an
encoding are specified by an encoding object of the "RepetitionClass' class. The "DefinedEncodingClass' shall bea
classin the repetition category (see 16.1.10).

16.4.3 The"RepetitionStructure” isan encoding constructor: when an encoding object is applied to this structure as
specified in clause 13.2, the encoding of the "RepetitionClass’ determines the mechanisms for determining the number
of repetitions, and the application point then proceeds to the "EncodingStructure” in the production.

NOTE: Thecharacters"{" and"}" are used in this construction, but are not present in the related ASN.1
"SEQUENCE OF" construction. This was done to help avoid syntactic ambiguitiesin structure definition.

16.5 Concatenation encoding structure

16.5.1 The"ConcatenationStructure” is:

Concat enationStructure ::=
Concat enati onCl ass
g

Concat Conponent s

"y

Concat enationClass ::=
Def i nedEncodi ngCl ass
Concat enat i onCl assRef er ence

Concat Conponents :: =
Concat Conponent ", " *

Concat Conponent ::=

NanedFi el d
Concat Conponent Presence ?

ETSI

56 ETSI TS 101 969 V1.1.1 (2001-05)

Concat Conponent Presence :: =
OPTIl ONAL- ENCODI NG
Optional Cl ass

Optional Cdass ::=
Def i nedEncodi ngCl ass |
OptionalityC assReference

16.5.2 The"ConcatenationStructure” identifies the presence in an encoding of zero or one encodings for each of the
"EncodingStructure”’sin its "NamedField's. The "DefinedEncodingClass' in the "ConcatenationClass' shall be aclass
in the concatenation category (see 16.1.9), and the "DefinedEncodingClass' in the "Optional Class’ shall beaclassin
the optionality category (see 16.1.3).

16.5.3 If "ConcatComponentPresence” is absent from a " Component”, then the "EncodingStructure” in that named
field shall appear precisaly once in the encoding.

16.5.4 If "ConcatComponentPresence” is present, the mechanism used to determine whether thereis an encoding of
the corresponding "EncodingStructure” is specified by the encoding object which encodes the "Optional Class'.

16.5.5 The order in which the encodings of each "NamedField" appear in an encoding of the concatenation (and the
means of identifying which "NamedField" an encoding represents) is determined by an encoding object of the
"ConcatenationClass' class.

16.5.6 The"ConcatenationStructure” isan encoding constructor: when an encoding object is applied to this structure
as specified in clause 13.2, the encoding of the "ConcatenationClass' determines the concatenation procedures and the
application point then proceeds to each of the "EncodingStructure'sin its named fields.

17 Encoding object assignments

17.1 General

17.1.1 The"EncodingObjectAssignment” is:

Encodi ngOhj ect Assi gnnent :: =
encodi ngobj ectref erence
Def i nedOr Bui | ti nEncodi ngCl ass

E-nizodi ngOhj ect

17.1.2 The"EncodingObjectAssignment” defines the "encodingobjectreference” as an encoding object reference to
the "EncodingObject”, which isrequired to be a production which generates an object of the encoding class
"DefinedOrBuiltinEncodingClass'. (D.1.2.2, D.1.7.3 and D.1.8.2 provide examples of encoding object assignment for
the different syntactic constructions for "EncodingObject” specified bel ow).

17.1.3 The"DefinedOrBuiltinEncodingClass' is called the governor of the "EncodingObject” notation in this
production.

NOTE 1: Whenever the "EncodingObject” production appearsin ECN, there isagovernor, and the syntax of the
governed notation depends on the encoding class of the governor.

NOTE 2: The syntax of the governed notation has been designed so that a parser can find the end of it without
knowledge of the governor.

17.1.4 The"EncodingObject” is:

Encodi ngObj ect :: =
Def i nedEncodi ngOhj ect
Def i nedSynt ax
EncodeWth
EncodeByVal ueMappi ng
EncodeStructure
Encodi ngOpt i onsEncodi ngbj ect
Di fferential EncodeDecode(bj ect
NonECNEncodi ngObj ect

ETSI

57 ETSI TS 101 969 V1.1.1 (2001-05)

17.1.5 "DefinedEncodingObject” identifies an encoding object and is specified in 10.9.2. The
"DefinedEncodingObject” shall be of the same encoding class as the governor, or of a class which can be obtained from
the governor by de-referencing. The "encodingobjectreference” being defined exhibits an identification handle if and
only if the "DefinedEncodingObject” exhibits that identification handle.

17.1.6 Inthe present document, "the same encoding class' and "the same class' shall be interpreted as meaning that
the notation used for defining the two classes shall be the same encoding class reference name.

17.1.7 Theremaining productions of "EncodingObject” are defined in the following clauses and provide alternative
means of defining encoding objects of the governor class:

Def i nedSynt ax 17.2 with clauses 20 to 25
EncodeWth 17.3
EncodeByVal ueMappi ng 17. 4
EncodeStructure 17.5
Di fferential EncodeDecodebj ect 17.6
Encodi ngOpt i onsEncodi ngbj ect 17.7
NonECNEncodi ngObj ect 17.8

17.2 Encoding with a defined syntax

17.21 The"DefinedSyntax" production is specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.5, asmodified by
B.15 of the present document, and is used for the definition of encoding objects for a governing encoding class. The
detailed syntax for doing thisis specified in clauses 23 to 25, and the semantics of the constructsis specified in
clause 22.

17.2.2 Thisnotation for defining encoding objects is only available for the governing encoding classesin the
categories (or of the class) listed in table 3. The syntax to be used for each encoding object is the "DefinedSyntax" for
the corresponding primitive encoding class (specified in clauses 23 to 25).

NOTE 1: The use of this syntax frequently requires theinclusion of a parameter for a determinant. Parameterized
encoding objects with such parameters are only useful for application to an encoding structure in the
EDM, or for inclusion as encoding objects to be applied as part of a replacement action. They cannot be
applied in the ELM.

NOTE 2: Thisnotation enables usersto specify encoding objects which encode #SET in the way PER normally
encodes #SEQUENCE, and vice versa. Users are expected to be responsible in their use of this notation.

Table 3: Categories and classes supported by a defined syntax

nul

bool ean

i nt eger
bitstring
octetstring
characterstring
pad

alternatives
repetition
concat enati on
optionality
#CONDI TI ONAL- | NT
#CONDI TI ONAL- REPETI TI ON
tag

#TRANSFORM
#OUTER

17.2.3 Theinformation required to specify an encoding object of one of these classesis specified by the definition of
the encoding classin clauses 23 to 25.

17.2.4 If agovernor for avalue of one of the fields of the encoding class isneeded for use in a dummy parameter list,
then the notation "EncodingClassFieldType" (specified in B.16) shall be used. No other use shall be made of the
"EncodingClassFieldType" notation.

17.25 Wherethe syntax defined in clause 23 requires the provision of a"REFERENCE", this can only be supplied in
this construction by using adummy parameter of the encoding object that is being defined.

ETSI

58 ETSI TS 101 969 V1.1.1 (2001-05)

17.2.6 The defined syntax specifies whether the "encodingobjectreference” being defined exhibits an identification
handle

17.3 Encoding with encoding object sets

17.3.1 The"EncodeWith" is:

EncodeWth ::=
"{" ENCODE Conbi nedEncodi ngs "}"

17.3.2 "CombinedEncodings' and its application to an encoding class are specified in clause 13.

17.3.3 The encoding object defined by the "EncodeWith" is the application of the "CombinedEncodings’ to the
encoding classthat isthe governor (see 17.1.3) of the "EncodeWith" notation.

17.34 Itisaspecification error if this does not produce a complete encoding specification for the governor class.

17.3.5 If an encoding object set in the "CombinedEncodings’ is parameterized with a parameter that isa
"REFERENCE", the actual parameter supplied in this construction can only be a dummy parameter of the encoding
object that is being defined.

17.3.6 Intheapplication of encodings specified in clause 13, thereis an encoding object (A say) which produces the
first bit-field in the resulting encoding. The "encodingobjectreference” being defined exhibits an identification handleiif
and only if the encoding object A exhibitsthat identification handle.

17.4 Encoding using value mappings

17.41 The"EncodeByVaueMapping" is:
EncodeByVal ueMapping :: =
i

USE

Def i nedOr Bui | ti nEncodi ngCl ass
MAPPI NG

Val ueMappi ng

W TH

Val ueMappi ngEncodi ngQbj ect s

Val ueMappi ngEncodi ngbj ects :: =
Encodi ngOhj ect |
Def i nedOr Bui | ti nEncodi ngObj ect Set

17.4.2 The production "DefinedOrBuiltinEncodingClass’ and its semantics are defined in 10.9.1. It shall beaclassin
the bit-field category (see 16.1.7).

17.4.3 The production "ValueMapping" is specified in 19.1.5, and shall be amapping of values associated with the
governing encoding class to the class identified by the " DefinedOrBuiltinEncodingClass'.

17.4.4 The"VaueMappingEncodingObjects’ specifies the encoding of the "DefinedOrBuiltinEncodingClass’. The
"EncodingObject" shall define an encoding object using notation governed by that class, or by a classto which it can be
de-referenced (see 17.1.3). The "DefinedOrBuiltinEncodingObjectSet” can alternatively be used to specify the encoding
of the "DefinedOrBuiltinEncodingClass' and shall contain sufficient encoding objects to fully specify the encoding of
that class.

17.45 The syntax for "EncodingObject” allows both in-line definition of encoding objects (recursive application of
this clause) and the use of reference names. (D.2.9.3 gives an example of in-line definition to perform two value
mappings in a single assignment).

17.4.6 Wherethe "EncodingObject” requires the provision of a"REFERENCE", this can only be supplied in this
construction by using adummy parameter of the encoding object that is being defined.

17.4.7 Wherethere are bounds on fields of the "DefinedOrBuiltinEncodingClass', then values shall not be mapped to
those fields that violate the specified bounds.

ETSI

59 ETSI TS 101 969 V1.1.1 (2001-05)

17.4.8 If the"EncodingObject" alternative of "ValueMappingEncodingObjects’ is used, then the
"encodingobjectreference” being defined exhibits an identification handleif and only if the "EncodingObject” exhibits
that identification handle. If the " DefinedOrBuiltinEncodingObjectSet” alternative of "V alueMappingEncodingObjects’
is used to define the encoding of the "DefinedOrBuiltinEncodingClass’, then determination of whether the
"encodingobjectreference” exhibits an identification handleis in accordance with 17.3.6.

17.5 Encoding an encoding structure

1751 The"EncodeStructure" is
EncodeStructure ::=
"y
ENCODE STRUCTURE
g
Conmponent Encodi ngLi st
Struct ureEncodi ng ?
"y
Conbi nedEncodi ngs ?
"y
StructureEncoding ::=

STRUCTURED W TH
TagAndSt r uct ur eEncodi ngEncodi ngObj ect

TagAndStruct ureEncoding :: =
Encodi ngOr UseSet |
TagEncodi ng TagAndStruct ur eEncodi ng

TagEncoding ::= "[" Encodi ngOrUseSet "]"

Encodi ngOr UseSet :: =
Encodi ngOhj ect |
USE- SET

17.5.2 The"EncodeStructure" can be used to define an encoding only if the governing encoding structureisa
construction defined using a classin the alternatives, concatenation, or repetition category, or aclassin one of these
categories preceded by one or more classes in the tag category. This classis called the governing encoding constructor.

17.5.3 "StructureEncoding", if this production is present, shall define an encoding for the governing encoding
constructor and for any preceding classes in the tag category. If the production is absent, the "CombinedEncodings’
shall be present, and shall contain encoding objects which can encode the governing encoding constructor and any
preceding classes in the tag category, otherwise the ECN specification isin error.

NOTE: "CombinedEncodings' hasto be present if the " StructureEncoding” is absent, because a compl ete
encoding has to be produced. If it isdesired to defer the specification of part of an encoding, then a
dummy parameter should be used.

17.5.4 Thenumber of "TagEncoding"sin the "TagAndStructureEncoding” shall exactly equal the number of classes
of thetag category preceding the governing encoding constructor, and shall correspond to those classes in textual order.
They shall be governed by those classes.

NOTE: Thenumber of classesin the tag category may be zero.

1755 If the"EncodingOrUseSet" in the "TagAndStructureEncoding” is an "EncodingObject”, it shall be governed by
the governing encoding constructor.

1756 If "USE-SET" isspecified in any "EncodingOrUseSet”, then the encoding of the corresponding classis
obtained by applying the "CombinedEncodings’, which shall be present, and shall be sufficient to encode the
corresponding class, otherwise the ECN specificationisin error.

17.5.7 The"ComponentEncodingList" is:

Conmponent Encodi ngLi st ::=
Conmponent Encoding "," *

Conmponent Encoding :: =

NonOpt i onal Conponent Encodi ngSpec |
Opt i onal Conponent Encodi ngSpec

ETSI

60 ETSI TS 101 969 V1.1.1 (2001-05)

17.5.8 There shal be at most one "ComponentEncoding" for each component of the governing encoding constructor.
The "ComponentEncodings shall bein the same textual order.

NOTE: The absence of "ComponentEncoding"s can be detected by following named fields, or by the end of the
"ComponentEncodingList".

17.5.9 The "Optional ComponentEncodingSpec™ shall be used if and only if the component is optional (i.e., is
followed by an encoding class in the optionality category.

17.5.10 If the"ComponentEncodingList" is empty, then the "CombinedEncodings' must be present, and is required,
on gpplication to the component (see 13.2), to provide a complete encoding of that component, otherwise it isan error
in the ECN specification.

NonOpt i onal Conponent Encodi ngSpec :: =
identifier ?
TagAndEl enent Encodi ng

Opt i onal Conponent Encodi ngSpec :: =
identifier
TagAndEl enent Encodi ng
OPTI ONAL- ENCODI NG
Opt i onal Encodi ng

TagAndEl enent Encoding :: =
Encodi ngOr UseSet |
TagEncodi ng TagAndEl enent Encodi ng

Opti onal Encodi ng ::= Encodi ngOrWth

17511 The"identifier" shall be the "identifier" of the component of the governor. The "identifier in
"NonOptional ComponentEncodingSpec™ shall be omitted if and only if the governing encoding constructor isa classin
the repetition category.

17.5.12 "TagAndElementEncoding” in the "ComponentEncoding” shall provide a complete encoding for that
component (including any classes in the tag category that are prefixed to the element).

17.5.13 Thenumber of "TagEncoding"sin the "TagAndElementEncoding” shall exactly equal the number of classes
of thetag category at the start of the element, and correspond to those classesin textual order.

NOTE: Thismay be zero.

17.5.14 The"EncodingObject"s in the "EncodingOrUseSet"s in the "TagAndElementEncoding” shall be governed by
the corresponding encoding classin the component. If an "EncodingOrUseSet” is "USE-SET" then the encoding of the
corresponding class is obtained by applying the "CombinedEncodings’ which shall be present.

17.5.15 The "EncodingOrUseSet" in the "OptionalEncoding” shall completely encode the optionality class of that
component. If an "EncodingOrUseSet” is"USE-SET" then the encoding of the corresponding classis obtained by
applying the "CombinedEncodings’ which shall be present.

17.5.16 If a"REFERENCE" isneeded asan actua parameter of any of the encoding objects or encoding object sets
used in this production, then it can either be supplied as a dummy parameter of the encoding object that is being
defined, or it can be supplied as any of the "identifier"sthat are textually present in the construction. If the
"REFERENCE" isrequired to identify a container, it can also be supplied as:

a) "STRUCTURE" (provided the constructor for the structure being encoded is not an alternative category) when it
refersto that structure;

b) "OUTER" when it refers to the container of the compl ete encoding.

NOTE: The"EncodeStructure” isthe only production in which "REFERENCE"s can be supplied, except through
the use of dummy parameters.

17.5.17 Determination of whether the "encodingobjectreference” being defined exhibits an identification handleisin
accordance with 17.3.6.

ETSI

61 ETSI TS 101 969 V1.1.1 (2001-05)

17.6 Differential encoding-decoding

17.6.1 The"Differentia EncodeDecodeObject" is:
Di fferenti al EncodeDecodeObj ect ::=

Iz
ENCODE- DECODE
SpecFor Encodi ng
DECODE AS | F
SpecFor Decoder s
"y

SpecFor Encodi ng :: = Encodi ngObj ect
SpecFor Decoders ::= Encodi ngbj ect
17.6.2 The "DifferentialEncodingObject” specifies rules for encoding abstract val ues associated with the class of the

governor of thisnotation, and (separately) rulesto be used by decoders for recovering abstract values from encodings
that are assumed to have been produced by encoding objects of the class of the governor.

17.6.3 The"SpecForEncoding” shall be applied by encoders. Decoders shall decode as if the encoder had applied the
" SpecForDecoders’.

NOTE 1: The"SpecForDecoders' is still an encoding specification. It tells decoders to assume that encoders have
used the present document.

NOTE 2: The behavior of decoders that decode on the assumption that an encoder has used the " SpecForDecoders’,
but detect encoding errors, isnot sandardized.

17.6.4 The"SpecForEncoding” and the " SpecForDecoders’ encoding objects shall not have been defined using
"ENCODE-DECODE", nor shall any encoding objects used in their definition have been defined using "ENCODE-
DECODE".

NOTE: Thisrestriction is present because otherwise specification of the meaning of the encode/decode
construction would become more complex with no added functionality.

17.6.5 The "encodingobjectreference” being defined exhibits an identification handle if and only if the same
identification handle is being exhibited by the " SpecForEncoding” and by the " SpecForDecoders”.

17.7 Encoding with encoder's options

17.7.1 The "EncodingOptionsEncodingObject” is:
Encodi ngOpt i onsEncodi ngChj ect :: =

OPTI ONS
Encodi ngOpt i onsLi st
W TH Al t er nati vesEncodi ngQbj ect

"y
Encodi ngOpt i onsLi st ::= Encodi ngObj ect Li st

Al t ernati vesEncodi nglbj ect ::= Encodi ngQbj ect

17.7.2 The "EncodingOptionsEncodingObject” specifies that the encoder may encode (subject to 17.7.5) using any of
the "EncodingObject”s in the "EncodingOptionsList”. These "EncodingObject”s shall all be encoding objects of the
governing class.

NOTE: New implementations are strongly recommended to encode using the earliest "EncodingObject” in the list
that is capable of encoding the abstract value to be encoded (see 17.7.5). The encoder's options
specification is provided only because it is necessary to reflect options provided in legacy protocols. All
the encoder's options encodings can, of course, occur when decoding.

17.7.3 The"AlternativesEncodingObject” shall be an encoding object of any classin the alternatives category, and
encoders and decoders shall use the encodings and procedures specified by that encoding object asif the encoder's
options were encodings for components of an instance of that class.

ETSI

62 ETSI TS 101 969 V1.1.1 (2001-05)

NOTE: If the"AlternativesEncodingObject” is parameterized with areference parameter, then the
"encodingobjectreference” being defined has to be parameterized with a dummy reference parameter that
is used as the actual parameter for the "AlternativesEncodingObject".

17.7.4 If the"AlternativesEncodingObject” specifies determination by use of a specified identification handle, then al
"EncodingObject"s in the "EncodingOptionsList” shall exhibit that identification handle.

17.7.5 Theencoder shdl restrict its choice of "EncodingObject”s in the "EncodingOptionsList” to those that provide
encodings for the actua abstract value being encoded. It isan ECN specification or application error if thereisnot at
least one such "EncodingObject” for any abstract value that is to be encoded.

NOTE 1: Itispossible that the sets of abstract values encoded by the "EncodingObject”sin the
"EncodingOptionsList” are digoint. Thisisnot an error, and can be a convenient way of specifying
different structures for encoding different ranges of abstract values of the governing class, for example
short form and long form encodings where the short form is mandatory for small values.

NOTE 2: Itispossible to use an encoder's options encoding object as the " SpecForDecoders’ (see 17.6), where the
"SpecForEncoding” is an encoder's options encoding object that contains exactly one of the optionsin the
"SpecForDecoders'. Thisisanother approach to extensibility.

17.8 Non-ECN definition of encoding objects

17.8.1 The"NonECNEnNncodingObject” is:

NonECNEncodi ngObj ect : : =
NON- ECN- BEGI N
Assi gnedl dentifier
anystri ngexcept nonecnend
NON- ECN- END

17.8.2 The"NonECNEnNcodingObject" shall specify an encoding object of the governor class (see 17.1.3). The
notation used to do thisis contained in "anystringexceptnonecnend” and is not standardized.

17.8.3 The production "Assignedidentifier" and its semantics isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1,
asmodified by A.1 of the present document. It identifies the notation used in the "anystringexceptuserdefinedend” to
specify the encoding.

17.8.4 If the"empty" alternative of "Assignedidentifier” is used, then the notation is determined by means outside of
the present document.

17.85 Theassignment of object identifiersto any notation for use in "anystringexceptnonecnend” follows the normal
rules for the assignment of object identifiers as specified inthe ITU-T Rec. X.660 | ISO/IEC 9834 series.

17.8.6 Anidentification handleis exhibited by the "encodingobjectreference" being defined if and only if the
"anystringexceptnonecnend” specifiesthat it does so. The means of such specification isnot defined in this
Recommendeation | International Standard.

18 Encoding object set assignments

18.1 General

18.1.1 The "EncodingObjectSetAssignment” is:

Encodi ngObj ect Set Assi gnment :: =
encodi ngobj ect setref erence
#ENCODI NGS

Eﬁcodi ngOhj ect Set
Conpl eti onCl ause ?

Encodi ngObj ect Set :: =
Def i nedEncodi ngOhbj ect Set |
Encodi ngOhj ect Set Spec

ETSI

63 ETSI TS 101 969 V1.1.1 (2001-05)

18.1.2 The "EncodingObjectSet" notation is governed by the reserved word #ENCODINGS, and shall satisfy the
conditions given below.

18.1.3 "DefinedEncodingObjectSet" isdefined in 10.9.3.
18.1.4 The"EncodingObjectSetSpec” is:
Encodi ngObj ect Set Spec :: =

Encodi ngObj ects Uni onMark *
"y

Encodi nglbj ects ::=
Def i nedEncodi ngOhj ect |
Def i nedEncodi nghj ect Set

Uni onMark ::=
e
UNI ON

18.1.5 "EncodingObjectSetSpec" defines an encoding object set using one or more encoding objects or encoding
object sets.

18.1.6 Encoding objects forming an encoding object set shall al be of distinct encoding classes, and shall not be
classes in the encoding procedure category unless they are of the #OUTER class (see 16.1.13).

NOTE: Anencoding object set isused for defining other encoding object sets, for defining encoding objectsin
the EDM, and for import into the ELM for the application of encodings.

18.1.7 If "CompletionClause" is present, then the encoding object set defined by "EncodingObjectSetSpec” is
considered to be "PrimaryEncodings' (see 13.2), and the encoding object set assigned to the
"encodingobjectsetreference” isthe combined encoding object set formed as specified in 13.2.

18.2 Built-in encoding object sets

18.2.1 The"BuiltinEncodingObjectSetReference” is:

Bui | ti nEncodi ngOhj ect Set Ref erence :: =
PER- BASI C- ALI GNED
PER- BASI C- UNALI GNED
PER- CANONI CAL- ALI GNED
PER- CANONI CAL- UNALI GNED
BER
CER
DER

18.2.2 These encoding object set names reference the sets of encoding objects defined by ITU-T Rec. X.690 |
ISO/IEC 8825-1 and ITU-T Rec. X.691 | ISO/IEC 8825-2. The object identifiersfor the encoding rules providing these
encoding object sets are given in table 4.

NOTE: These Recommendations | International Standards were written before this ECN, the present document,
and do not use the encoding object terminology. They define, for example, the way an ASN.1
"INTEGER" or "BOOLEAN" typeis to be encoded. This should be interpreted as the definition of an
encoding object of class#INTEGER or class #BOOLEAN.

Table 4: Built-in encoding object set names and associated object identifiers

PER- BASI C- ALI GNED {joint-iso-itu-t(1) packed-encoding(3) basic(0) aligned(0)}

PER- BASI C- UNALI GNED {joint-iso-itu-t(1l) packed-encoding(3) basic(0) unaligned(1)}
PER- CANONI CAL- ALI GNED {joint-iso-itu-t(1) packed-encodi ng(3) canonical (1) aligned(0)}
PER- CANONI CAL- UNALI GNED {j oi nt-iso-itu-t(1) packed-encodi ng(3) canonical (1) unaligned(1)}

BER {joint-iso-itu-t(1) asnl(1l) basic-encoding(1l)}
CER {joint-iso-itu-t(1) asnl(1) ber-derived(2) canonical-encoding(0)}
DER {joint-iso-itu-t(1) asnl(1) ber-derived(2)

di sti ngui shed- encodi ng(1)}

ETSI

64 ETSI TS 101 969 V1.1.1 (2001-05)

18.2.3 These encoding object sets are each a complete set of encoding objects which can be applied to any encoding
structure (either implicitly generated from an ASN.1 type or defined by the user) to specify the corresponding BER or
PER encodings.

18.2.4 Theabove sets all contain encoding objects for the dasses used in implicitly generated encoding structures
(see 11.2) which are different for each set of encoding rules. They also each contain identical encoding objects for the
classes #INT, #BOOL, #NUL, #CHARS, #OCTETS, #BITS, #CONCATENATION. They do not contain encoding
objects for #ALTERNATIVES, #REPETITION, and #PAD.

18.25 These encoding classes represent basic building blocks of encodings, and are encoded ssimply by all the above
built-in encoding object sets. The encoding objects for these classes specify encodings as follows:

18.25.1 #INT isencoded as a PER-BASIC-UNALIGNED #INTEGER encoding, provided it isbounded. It isan ECN
design error if the #INT does not have both alower and an upper bound when this encoding object is applied to the
#INT.

18.25.2 #BOOL and #NUL are encoded as PER-BASIC-UNALIGNED #BOOLEAN and #NULL respectively.

18.25.3 #CHARS, #OCTETS, and #BITS are encoded as PER-BASIC-UNALIGNED "UTF8String",
#OCTET-STRING, and #BIT-STRING, respectively, provided they are asingle size. Itisan ECN design error if
#CHARS, #OCTETS, or #BITS do not have an effective size constraint restricting them to a single size.

18.2.5.4 #CONCATENATION isencoded as a PER-BASIC-UNALIGNED encoding of a #SEQUENCE with no
optional elements. If these encoding objects are applied to a#CONCATENATION with optional elements, thenitisan
ECN specification error.

18.2.6 The#OPEN-TY PE encoding objectsin the BER, CER, and DER built-in encoding object sets produce no
additional encoding for the #OPEN-TY PE class. When these encoding objects are applied to a class in the open-type
category, itisan ECN specification error if the encodings of the values of the type chosen (in an instance of
communication) for use with the #OPEN-TY PE class are not sdlf-delimiting.

NOTE: The combined encoding object set applied to the type chosen for use with the #OPEN-TY PE classis
always the same as the combined encoding object set applied to the #OPEN-TY PE class (see 13.2.10.5).

19 Mapping values

19.1 General

19.1.1 Thisclause specifies the syntax for mapping values to be encoded by the fields of one encoding structure
(which may be a generated encoding structure or any other encoding structure) to the fields of another encoding
structure.

NOTE: The power provided in asingle use of this notation has been limited (to avoid complexity). More complex
mappings can be achieved by using multiple instances of "EncodeByVaueMapping” (see 17.4 and the
examplein D.1.10.2). These mapping mechanisms can be extended and generalized, but thiswill not be
done unless further user requirements are identified.

19.1.2 In specifying the "EncodeByValueMapping” notation (see 17.4.1) the "DefinedOrBuiltinEncodingClass' in the
"EncodingObjectAssignment” (see 17.1.1), of which itisapart, is called the source governor or the source encoding
class (depending on context). The "DefinedOrBuiltinEncodingClass' in the "EncodeByValueMapping"” itself is called
the target governor or the target encoding class (depending on context).

19.1.3 Both the source governor and the target governor may be encoding classes preceded by classesin thetag
category. Where the following text requires that the source or target class bein a specified category, thisincudesthe
case where these classes are preceded by classes in the tag category.

19.1.4 Theencodings specified for values mapped to the target encoding class become encodings of those valuesin
the source encoding class.

ETSI

65 ETSI TS 101 969 V1.1.1 (2001-05)

NOTE 1: If thetotal ECN specification maps only some of the values from an ASN.1 type into encodings, that is
not an error. It isa constraint imposed by ECN on the values that can be used by the application. Such
constraints should normally be identified by comment in either the ASN.1 specification or in the ECN
specification.

NOTE 2: If thetotal ECN specification maps two values into the same encoding produced by a single encoding
object, then that isan ECN specification error. Such errors can be detected by ECN tools, but rules for
their avoidance are not compl ete in the present document, and responsibility rests with the ECN user.

19.1.5 The"VaueMapping" is:

Val ueMapping ::=
Mappi ngByExpl i ci t Val ues
Mappi ngByMat chi ngFi el ds
Mappi ngBy Tr ansf or mEncodi ngObj ect s
Mappi ngByAbst ract Val ueOrderi ng
Mappi ngByVal ueDi stri bution
Mappi nglnt ToBits

NOTE: All occurrences of this syntax are preceded by the reserved word "MAPPING". (D.1.2.2, D.1.4.2,
D.1.10.2, and D.2.1.3 and annex E give examples of the definition of encodings using each of these value

mappings).
19.1.6 The"VaueMapping" productions are specified as follows:

Mappi ngByExpl i ci t Val ues 19.2
Mappi ngByMat chi ngFi el ds 19.3
Mappi ngBy Tr ansf or mEncodi ngObj ect s 19.4
Mappi ngByAbst r act Val ueOrderi ng 19.5
Mappi ngByVal ueDi stri bution 19.6
Mappi nglnt ToBits 19.7

NOTE: Itisfrequently the case that several of the value mappings can be used to define the same encoding, but
some will produce a more obvious or less verbose specification than others. ECN designers should select
carefully the form of value mapping to be used.

19.2 Mapping by explicit values

19.2.1 Thisclause provides notation for specifying the mapping of values between different primitive bit-field
encoding classes. (D.1.10.2 gives an example).

19.2.2 Thisclause uses the notation for ASN.1 values (ASN.1 value notation) specified in ITU-T Rec. X.680 |
I SO/IEC 8824-1 for the type which corresponds to an encoding class.

19.2.3 Table 5 specifiesthe ASN.1 value notation to be used with each governing encoding class. In each casethe
class may or may not have an associated size or value range constraint.

19.2.4 ECN supports mapping by explicit values (either to or from the encoding class) for al encoding classes in the
categories listed in column 1 of table 5. Column 2 of the table specifies the value notation (as either an ASN.1
production or by referenceto aclause of ITU-T Rec. X.680 | ISO/IEC 8824-1 or both) that shall be used when an
encoding classin the category listed in column 1 is specified as the governor of the notation. It also specifies the clause
in ITU-T Rec. X.680 | ISO/IEC 8824-1 that defines the value notation.

NOTE: Noneof the following ASN.1 value notations can use "DefinedValue's (as defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 13.1) because "valuereference”s cannot be imported nor defined in an EDM or ELM
module.

Table 5: Categories of encoding classes and value notation used in mapping by explicit values

Cat egory of governing encodi ng cl ass ASN. 1 val ue notation
bitstring "bstring" or "hstring"

(see ITUT Rec. X.680 | ISOIEC 8824-1, 11.9 and 11.10)
bool ean " Bool eanVal ue"

(see ITUT Rec. X.680 | ISOIEC 8824-1, 17.3)
characterstring "RestrictedCharacterStringVal ue"

(see I TU-T Rec. X. 680 | ISOIEC 8824-1, 36.7)

ETSI

66 ETSI TS 101 969 V1.1.1 (2001-05)

i nteger " Si gnedNunber "
(see I TU-T Rec. X. 680 | ISOIEC 8824-1, 18.1)
nul | "Nul | Val ue"
(see |ITU-T Rec. X. 680 | ISOIEC 8824-1, 23.3)
obj ectidentifier "Definitiveldentifier" (see A1)
octetstring "bstring" or "hstring"
(see I TU-T Rec. X. 680 | ISOIEC 8824-1, 11.9 and 11.10)
real " Real Val ue"
(see |ITU-T Rec. X. 680 | |ISOIEC 8824-1, 20.6)
tag "nunber"

(see ITU-T Rec. X. 680 | ISOIEC 8824-1, 11.8)

19.25 The"MappingByExplicitVaues' is.

Mappi ngByExplicitValues ::=
VALUES

wp

MappedVval ues "," +
wy

MappedVal ues :: =
MappedVal uel
TO
MappedVal ue2

MappedVal uel :: = Val ue

MappedVal ue2 :: = Val ue

19.2.6 The"MappedValuel" shal be value notation governed by the source governor and "MappedVaue2" shall be
value notation governed by the target governor (see 19.1.2). The value in the source specified by "MappedValuel” is
mapped to the value in the target specified by "MappedValue2".

19.2.7 Thereareno boundsor effective size constraints associated with the target encoding class as aresult of the
"MappingByExplicitVaues', but any already present shall not be violated.

19.3 Mapping by matching fields

19.3.1 Thismapping is provided primarily to enable the encoding of an ASN.1 type to be defined as the encoding of
an encoding structure that has fields corresponding to the components of the type, but also has added fields for
determinants.

19.3.2 The"MappingByMatchingFieds' is

Mappi ngByMat chi ngFields ::=
FI ELDS

19.3.3 If either the source or the target encoding classes are user-defined encoding structures (see 9.2.2.3) or
generated encoding structures, then these references are resolved (but references within the resulting structures are not).
After resolution, the source and the target encoding classes shall start with the same encoding constructor (of any
category), and the resulting encoding structures are called the source and target encoding structures respectively.

19.3.4 No further resolution of references takes place during these procedures.

19.35 All fieldnamesthat are visible (after the de-referencing specified in 19.3.3) in the source encoding structure
shall be distinct, and all fieldnamesthat arevisiblein the target encoding structure shall be distinct.

NOTE: Fieddnamesin unresolved references are not visible to these procedures.

19.3.6 For every fiddnamethat is visible in the source encoding structure, there shall be a component in the target
encoding structure with the same fiel dname and with the same encoding class (see 17.1.6).

19.3.7 All abstract values are mapped from each of the fields in the source encoding structure to the fields with the
same name (and encoding class) in the target encoding structure. Additiona fieldsin the target encoding structure do
not acquire abstract values. In a correct ECN specification, the value of such fields hasto be specified by reference as a
determinant.

ETSI

67 ETSI TS 101 969 V1.1.1 (2001-05)

19.3.8 Bounds and effective size and al phabet constraints on source fields are mapped to the target fields, and replace
any bounds and effective size and permitted al phabet constraints already present on the target field.

NOTE: Any bounds, effective size and permitted a phabet constraints on the target field are dwayslost in this
mapping.

19.4 Mapping by #TRANSFORM encoding objects

19.4.1 Thismapping permits one or more #TRANSFORM encoding objects to be applied to produce the mapping.

19.4.2 The#TRANSFORM encoding classisdefined in clause 24. It enables encoding objects to be specified which
will transform source abstract values into result abstract values. The rules for forming an ordered list of transforms (for
"TransformList") are specified in clause 24. The complete list is defined to transform from a source to a resullt.

NOTE: Examplesof mappings defined with these transforms are given in D.1.2.2 and D.2.4.2. The examplein
D.1.6.3 shows the use of this production to define BCD encodings of an ASN.1 integer.

19.4.3 The"MappingByTransformEncodingObjects’ is:

Mappi ngBy Tr ansf or mEncodi ngObj ects :: =
TRANSFORMVS

Tr ansf or nLi st

nye
Transfornlist ::= Transform"," +

Transform :: = Encodi ngObj ect
19.4.4 All the "EncodingObject”s in the " TransformList" shall be governed by the encoding class #TRANSFORM.

19.45 Thetarget and source classes for this mapping (see 19.1.2) shall be of the bitstring, boolean, characterstring,
integer, or octetstring category. The source of the first transform in thelist and the result of the last transform in the list
shall agree with the category of the source and target categories as specified in 24.2.7.

19.4.6 All "Transform"sin the "TransformList" shall be reversible transforms.
NOTE: Clause 24 specifies, for each transform, the conditions under which it is defined to be reversible.

19.4.7 If any bounds listed for the target encoding class are violated in the mapping (by any of the abstract valuesin
the source encoding class), thisis not an error, but such values are not mapped, and do not appear in the target encoding
class. Thus, there may be no encoding in the resulting specification for such values, and such arestriction should be
identified by comment in the ASN.1 specification or in the ECN specification.

19.5 Mapping by abstract value ordering

1951 Thisisavery powerful form of mapping which enables abstract val ues associated with simple encoding classes
to be distributed into the fields of complex encoding structures, and for abstract val ues associated with complex
encoding structures to be mapped to smple encoding classes such as#INT. It isalso ameans of "compacting” integer
values or enumerationsinto a contiguous set of integer values.

19.5.2 The"MappingByAbstractValueOrdering” is:

Mappi ngByAbstract Val ueOrdering ::=
ORDERED VALUES

19.5.3 For this mapping, al encoding class names are de-referenced (recursively), and theresult shall beaclassin the
null, boolean, integer or real category, or shall be a construction defined using a class in the alternatives category.

19.54 An ordering of abstract valuesis defined for encoding classes in the following categories: null, boolean, integer
(but only if it has alower bound), real (but only if it is constrained to afinite number of values), and for any encoding
structure defined using a class in the alternatives category whose alternatives all have a defined ordering.

NOTE: Thetag numbers associated with classes in the tag category are not abstract values.

ETSI

68 ETSI TS 101 969 V1.1.1 (2001-05)

1955 Classesin thenull category have asingle abstract value. Classes in the boolean category are defined to have
"TRUE" before "FALSE". Classes in the integer category are defined to have higher integer values following lower
integer values. Classes in thereal category are defined to have higher values following lower values.

NOTE: Thenumber of abstract values associated with a class in theinteger category isnot necessarily finite.

19.5.6 Any bounds present in the source or destination shall be taken fully into account in determining the ordered set
of abstract values.

19.5.7 The ordering of the abstract values associated with a classin the alternatives category (all of whose alternatives
have a defined ordering of abstract values) is defined to be the (ordered) abstract values from the textually first
aternative, followed by those from the textually second alternative, and so on to the textually last alternative.

19.5.8 Themapping isdefined from the abstract values in the first encoding class to the abstract valuesin the second
encoding class by their position in the above ordering.

19.5.9 Notethat the above rules ensurethat there isa defined first value in each ordering, and a defined next value.
There need not be a defined last value (either or both sets may beinfinite).

19.5.10 If the number of abstract valuesin the destination ordering isless than the number of abstract valuesin the
source ordering, thisisnot an error. However, the ECN specification will be unable to encode some of the abstract
values of the ASN.1 specification and this should be identified by comment in either the ASN.1 specification or the
ECN specification.

19.5.11 If the number of abstract valuesin the destination ordering exceeds those in the source ordering, then there
may be some ECN-defined encodings that have no ASN.1 abstract value, and will never be generated.

19.5.12 Thismapping can also be applied in all cases where the only abstract valuesin the target structure are those
associated with a single instance of the same class as the source structure.

NOTE: Thiscasewould occur if thetarget structure were the same as the source structure preceded by one or
more instances of classes in the tag category.

19.6 Mapping by value distribution

19.6.1 Thismapping takesranges of values from an encoding classin the integer category, mapping each rangeto a
different integer field in amore complex encoding structure. Fields which receive no abstract values shall have their
values determined by the application of determinants.

19.6.2 All encoding structure names are de-referenced (recursively) before the application of this mapping.
19.6.3 The source encoding class shall then be a class in the integer category.

19.6.4 Thetarget encoding class may be any encoding structure, but all fieldnames in the entire encoding structure
shall be distinct.

19.6.5 The"MappingByValueDistribution” is:

Mappi ngByVal ueDi stribution ::=
DI STRI BUTI ON

Distribution "," +

e

Distribution ::=
Sel ect edVal ues
TO
identifier

Sel ect edVal ues :: =
Sel ect edVal ue |
Di stri buti onRange |
REMAI NDER

Di stributionRange ::=
Di stri buti onRangeVal uel

Di stri buti onRangeVal ue2

ETSI

69 ETSI TS 101 969 V1.1.1 (2001-05)

Sel ect edVal ue :: = Si gnedNunber
Di stri butionRangeVal uel ::= Si gnedNunber
Di stri butionRangeVal ue2 ::= Si gnedNunber

19.6.6 "SignedNumber" is specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.1.
19.6.7 "DistributionRangeValuel" shall be less than "DistributionRangeValue2".

19.6.8 Thevalue specified by "SdectedValue" in "SelectedValues', or the set of values greater than or equal to
"DistributionRangeValuel" and less than or equa to "DistributionRangeVaue?", are mapped to the field specified by
"identifier".

19.6.9 Thereserved word "REMAINDER" shall only be used once for the last " SelectedValues', and specifies all
abstract values in the source encoding class that have not been distributed by earlier "SelectedValues'.

19.6.10 A value shall not be mapped to more than one target field, but several "SelectedValues' may have the same
destination.

19.6.11 Values shall not be mapped to thetarget if they violate any bounds present on the target. This mapping does
not affect the bounds on the target.

19.7 Mapping integer values to bits

19.7.1 Thismapping takes single values or ranges of values from an encoding class in the integer category, mapping
each integer valueto a bitstring value.

NOTE: Thismapping isintended to support self-delimiting encodings of integers, such as Huffman encodings.
(See annex E for further discussion and examples of Huffman encodings).

19.7.2 The source encoding class shall be aclassin theinteger category.
19.7.3 The destination encoding class shall be aclassin the bitstring category.

19.7.4 The"MappingIntToBits" is:
Mappi ngl nt ToBits ::=

TO BI TS

{
Mappedl nt ToBits "," +

Mappedl nt ToBits :: =
Si ngl el nt Val Map |
I nt Val RangeMap

19.7.5 Each"SinglelntVaMap" mapsasingle integer valueto a single hitstring value.

19.7.6 Each "IntValRangeMap" maps arange of contiguous and increasing integer values to arange of contiguous
and increasing hitstring values.

19.7.7 Bitstring values are defined to be contiguous if:
a) they areadl the samelength in bits;

b) when interpreted as a positive integer value, the corresponding integer values are contiguous and increasing
integer values.

19.7.8 Only values specified in the mapping are encodable. Other abstract values of the source are not mapped and
cannot be encoded by the encoding object defined by the encoding object assignment using this construct.

NOTE: Thislimitation of the encoding should be reflected by constraints on the ASN.1 type to which itis
applied, or by comment in the ASN.1 specification or in the ECN specification.

ETSI

70 ETSI TS 101 969 V1.1.1 (2001-05)

19.79 The"SinglelntValMap" is:

SinglelntVal Map :: =
I nt Val ue
TO
Bi t Val ue

I ntVal ue ::= Si gnedNunber
BitValue ::=

bstring |
hstring

19.7.10 The"SignedNumber", "bstring”, and "hstring" are specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.1,
11.9, and 11.10, respectively.

19.7.11 The"SinglelntValMap" maps the specified integer value to the specified bitstring value

19.7.12 The"IntVaRangeMap" is:
I nt Val RangeMap :: =
I nt Range
TO
Bi t Range

I nt Range :: =
I nt RangeVal uel

| nt RangeVal ue2

Bi t Range :: =
Bi t RangeVal uel

Bi- t RangeVal ue2

I nt RangeVal uel :: = Si gnedNunber

I nt RangeVal ue2 :: = Si gnedNunber

Bi t RangeVal uel :: =
bstring |
hstring

Bi t RangeVal ue2 :: =
bstring |
hstring

19.7.13 The bitstrings "BitRangeValuel" and "BitRangeValue2" shall be the same number of hits.
19.7.14 Thevalue"IntRangeVaue2" shall be greater than the value "IntRangeValuel”.

19.7.15 When interpreted as a positive integer encoding (see ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.3),
"BitRangeValue2" shall represent an integer value ("B", say) greater than that represented by "BitRangeVauel”
("A", say), and the difference between the integer values corresponding to "BitRangeValue2" and "BitRangeValuel"
("B" - "A") shall equal the difference between the values of "IntRangeValue2" and "IntRangeValuel".

19.7.16 The"BitRange" represents the ordered set of bitstrings corresponding to the integer values between "A" and
"B".

19.7.17 The"IntVaRangeMap" maps each of the integersin the specified range to the corresponding bitstring value
in the "BitRange". (Annex E gives examples of an "IntVa RangeMap").

20 Defining encoding objects using defined syntax

20.1 Clauses 21 to 25 specify the information needed to define encoding objects for each encoding class category, and
the syntax to be used. This syntax is called the defined syntax, and is specified using the information object class
notation of ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified by annex B of the present document.

20.2 The defined syntax for each category can aso be used to define encoding objects for structures which are classes
of that category, preceded by one or moreinstances of a classin the tag category. Where the following text requires that
aclass bein a specified category, thisincludes the case where the classis preceded by classes in the tag category.

ETSI

71 ETSI TS 101 969 V1.1.1 (2001-05)

20.3 The use of the modified information object class notation is soldly for use within the present document.

20.4 Theuse of the defined syntax notation to define encoding objects is specified in 17.2. The defined syntax for
defining encoding objects shall be the syntax specified by the"WITH SYNTAX" statementsin clauses 23 to 25.

20.5 The"WITH SYNTAX" statementsimpose constraints on the setting of some encoding parameters, in
conjunction with other encoding parameters, to enforce some (but not all) semantic constraints. Other constraints on the
use of the"WITH SYNTAX" statements are specified in text.

20.6 The defined syntax for each encoding class specifies a number of encoding parameterswhich can be supplied
with values of the ASN.1 types defined in clause 21 (or in some cases with other encoding classes and encoding
objects) in order to provide the information needed to specify an encoding object of that class. Theinformation needed
to define an encoding object isin general a combination of encoding parameter values, together with the particular
instance of defined syntax used to specify those values.

NOTE: Thisdiffersfrom theuse of a"WITH SYNTAX" statement in normal information object definition,
where the semantics associated with the information object depends solely on the values set for thefields
of the information object class, not on the form of the"WITH SYNTAX" statement used to set those
values (see B.14).

20.7 Theencoding parameters specified in clauses 23 to 25 operate together in encoding parameter groups and use
values of ASN.1 typesfor their definition. Clause 21 specifies the meaning of values of the types commonly used in the
specification of these encoding parameters.

20.8 Some definitive text in clauses 21 and 22 is copied into clauses 22 to 25. Where this occurs, the copied text is
"grayed-out”, and areferenceis given to the definitive text.

20.9 Clause 25 specifies anumber of transformsthat can be applied to abstract values. Several encoding parameter
groupsrequire alist of transformsthat are to be applied by an encoder. For decoding to be possible, the transforms
applied by an encoder have to be reversible by a decoder in order to recover the original abstract values. Clauses 23 and
24 specify when transforms have to be reversible, and clause 25 specifies the conditions under which any given
transform isreversible.

21 Types used in defined syntax specification

NOTE: All ASN.1 type definitions given here assume automatic tags and no extensibility.

21.1 The Unit type

21.1.1 The"Unit" typeis:
Unit ::= INTEGER {repetitions(0), bit(1l), nibble(4), octet(8), wordl6(16), dword32(32)} (O0..256)
21.1.2 Thedefault value for thistypeis always "bit".

21.1.3 An encoding parameter of thistype specifies the unit in which other encoding parameters or determinant fields
are counting.

21.1.4 Thevalue of an encoding parameter of thistypeisrestricted in all cases but one to the non-zero values. In these
cases the encoding parameter specifies a number of bits. That number of bits determines the unit in which other
encoding parameters or determinant fields are counting.

21.1.5 When used in the definition of an encoding object of a classin the repetition category, the value "repetitions’ is
also allowed, and specifies that the associated count gives the number of repetitions in the encoding.

ETSI

72 ETSI TS 101 969 V1.1.1 (2001-05)

21.2 The EncodingSpaceSize type

21.21 The"EncodingSpaceSize" typeis:

Encodi ngSpaceSi ze ::= | NTEGER
{ encoder-option-w th-determ nant(-3),
vari abl e-wi t h-det erm nant (-2),
sel f-delimting-values(-1),
fixed-to-max(0)} (-2..MAX)

21.2.2 Thedefault value for thistypeis aways "sdlf-delimiting-values'.
21.2.3 An encoding parameter of thistype specifies the Sze of the encoding space (see 9.20.5).

21.2.4 Positive (non-zero) values specify a fixed size for the encoding space, as the value of type "Unit" multiplied by
the value of type "EncodingSpaceSize", in bits. If the value of type "Unit" is "repetitions’, then the encoding space size
may be variable, but is aways an integral number of repetitions.

21.2.5 The value "encoder-option-with-determinant” specifies that the size of the encoding space may vary according
to the abstract value being encoded, and that the encoder shall choose the encoding space size, recording the chosen
sizein the associated determinant. In this case, a value of type "EncodingSpaceDetermination” isrequired.

NOTE: A value of type "EncodingSpaceDetermination” (to determine the encoding space size) isrequired in this
case (and in the case of 21.2.6), but the provision of adeterminant isallowed in al the other cases, to
support encodings (Smilar to BER) that use length determinants even when they are redundant. Any
difference between the two determinationsis an error. It may, however, not always be possible to
determine whether thisisan ECN specification error or isan application error, but conforming encoders
arerequired not to transmit such encodings.

21.2.6 The value "variable-with-determinant” specifies that the size of the encoding space may vary according to the
abstract value being encoded, and that the precise means of determining the size of the encoding space will be specified
using a setting of the "EncodingSpaceDetermination” type (see 21.3). In this case, avalue of type
"EncodingSpaceDetermination” isrequired.

21.2.7 Thevalue"sdf-delimiting-values' specifies that the value encoding is self-delimiting, that is, each value
encodes into a multiple of the specified value of type "Unit". There shall be no pair of abstract values for which the
encoding of one abstract value isthefirst part of the encoding of the other abstract value.

NOTE: A decoder can (after possible determination of unused bits and justification) determine the end of the
encoding space by matching the encoding of each possible abstract value with the encoding that is being
examined. Precisdly one will match in encodings produced by a conforming encoder. Decoders may
develop more efficient but equival ent approaches.

21.2.8 Thevalue "fixed-to-max" specifies that the encoding spaceisto be the same for the encoding of all abstract
values. It specifies that the size of the encoding space isto be the smallest multiple of "Unit" that can contain the
specified encoding of any one (all) of the abstract values.

NOTE 1: A special caseiswhen thereisasingle abstract value whose value encoding is zero bits. Thisresultsin an
empty encoding space (zero hits).

NOTE 2: If such a specification is applied when a maximum size cannot be determined (for example, for encoding
an unbounded integer), thisisan ECN specification error, but conforming encoders are required to refuse
to generate encodingsin such cases.

21.3 The EncodingSpaceDetermination type

21.31 The "EncodingSpaceDetermination” typeis:
Encodi ngSpaceDet ermi nati on ::= ENUMERATED {added-field, asnl-field, container}
21.3.2 Thedefault value for thistypeis always "added-field".

21.3.3 Anencoding parameter of thistype specifies the way in which the encoding space is determined when an
encoding parameter of type "EncodingSpaceSize" is set to "variabl e-with-determinant-mechanism”.

ETSI

73 ETSI TS 101 969 V1.1.1 (2001-05)

21.34 Thevalue "added-field" requires the specification of a"REFERENCE" to another field that does not carry
application semantics (i.e., does not appear within the ASN.1 specification). The encoding specification determines how
an encoder isto set the value of thisfield from the size (in encoding space units) of the encoding space.

21.35 Thevalue"asnl-fied" requires the specification of a"REFERENCE" to another field whose valueis set from
the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification). The encoding specification
determines how a decoder isto obtain the size of the encoding space from the value of thisfield. A conforming encoder
shall not produce encodings in which the decoder's transforms of thisfield do not correctly identify the end of the
encoding space.

21.3.6 Thevalue"container" requires either the specification of a"REFERENCE" to another field whose encoding
class (the container) has alength determinant and whaose contents include this encoding space, or of a specification that
the end of the PDU determines the end of the encoding space (using "OUTER"). The encoding space terminates when
the specified container terminates or when the end of the PDU is encountered. The present document can only be used if
the encoding space of the element being encoded is the last encoding to be placed in the container.

NOTE: Itisan ECN encoder's eror (possibly resulting from an ECN specification or application error) if
additional encodings are placed in the container.

21.4 The UnusedBitsDetermination type

21.41 The"UnusedBitsDetermination” typeis:

UnusedBi t sDet erm nation ::= ENUMERATED {added-field, asnl-field, not-needed}
21.4.2 Thedefault value for thistype is aways "added-field".

21.4.3 An encoding parameter of thistype specifies the way in which adecoder can determine the unused bits when a
value encoding is left or right justified in an encoding space.

21.44 Thevalue "added-field" requires the specification of a"REFERENCE" to another field that does not carry
application semantics (i.e. does not appear within the ASN.1 specification). The encoding specification determines how
an encoder isto determine the number of unused bits, and how to set the value of this field from the number of unused
bits.

21.45 Thevaue"asnl-fied" requires the specification of a"REFERENCE" to another field whose valueis set from
the abstract syntax (i.e. a corresponding field appears within the ASN.1 specification). The encoding specification
determines how a decoder isto determine the number of unused bits from the value of thisfield. A conforming encoder
shall not produce encodings in which the decoder's transforms of thisfield do not correctly identify the number of
unused hits.

21.4.6 Thevalue"not-needed" identifies that a decoder does not require an explicit determinant in order to discover
the number of unused bits. The number of unused bits will be deducible from the encoding specification without
knowledge of the actual abstract value that has been encoded. This determination is described for each value encoding.

21.5 The OptionalityDetermination type

21.51 The"OptionalityDetermination” typeis:

OptionalityDetermination ::= ENUVERATED
{added-field, asnl-field, container, handle, pointer}

21.5.2 Thedefault value for thistype is aways "added-field".

21.5.3 An encoding parameter of thistype specifies the way in which the presence or absence of an optional element
is determined.

21.5.4 Thevalue"added-field" requires the specification of a"REFERENCE" to another field that does not carry
application semantics (i.e., does not appear within the ASN.1 specification). The ECN specification will also include an
encoding parameter that specifies how an encoder isto set the value of thisfield from a conceptual boolean value which
it trueif the optional dement is present and falseif the optional e ement is absent.

ETSI

74 ETSI TS 101 969 V1.1.1 (2001-05)

21.55 Thevaue"asnl-fied" requires the specification of a"REFERENCE" to another field whose valueis set from
the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification). The specification will also
include an encoding parameter that specifies how a decoder is to determine the presence or absence of the optional
element from the value of thisfield. A conforming encoder shall ensure that the value of thisfield correctly determines
the presence or absence of the optional field.

21.5.6 Thevalue"container" requires either the specification of a"REFERENCE" to another field whose encoding
class (the container) has a length determinant and whose contents include this optional element, or of a specification
that the container isthe end of the PDU (using "OUTER"). If the container end is present when a decoder islooking for
the start of this optional € ement, then the decoder shall determine that this optional e ement is absent.

NOTE: The present document can only be used if the abstract values being encoded are such that no further
encodings are to be placed in the container. This may require restrictions to be placed on the abstract
values of the ASN.1 type, for example, to prohibit theinclusion of alater optional e ement unless all
earlier optional dementsare present. It is either an ECN specification error or an application error if
additional encodings are to be placed in the container following a component whose optimality is
determined in thisway, but a conforming encoder shall not generate such encodings.

21.5.7 Thevalue"handl€" requiresthat an identification handle be specified. Thisidentification handle shall be
exhibited by the optional e ement and by any possi ble alternative encoding that can follow if this optional elementis
absent. This handle value specifies that a decoder shall determine that the element is present if and only if decoding the
remaining parts of the encoding produces a value for the specified identification handle which matches that of the
optional element. If the end of any open container (or the end of the PDU) isreached before the identification handle
can be decoded, then thisis an encoding error. It isan ECN specification error if this does not result in correct
identification of the presence or absence of an encoding of the optional € ement, but conforming encoders shall not
generate such encodings.

21.5.8 Thevalue "pointer" requiresthe specification of a start-of-encoding "REFERENCE" to ancther field. If that
field is zero, then this element is absent. If it isnon-zero, then therules for a start-of-encoding pointer apply (see 22.3).

21.6 The AlternativeDetermination type

21.6.1 The"AlternativeDetermination” typeis:

Al ternativeDeterm nation ::= ENUMERATED {added-field, asnl-field, handle}
21.6.2 Thedefault value for thistype is aways "added-field".

21.6.3 An encoding parameter of thistype specifies the way in which adecoder determines which aternativeis
present in an encoding of a classin the alternatives category.

21.6.4 Thevalue "added-field" requires the specification of a"REFERENCE" to another field that does not carry
application semantics (i.e., does not appear within the ASN.1 specification). The specification will also include an
encoding parameter that specifies how an encoder isto set the value of thisfield from a conceptual integer value that
identifies each alternative (using an order specified in other encoding parameters).

21.6.5 Thevaue"asnl-fied" requires the specification of a"REFERENCE" to another field whose valueis set from
the abstract syntax (i.e., appears within the ASN.1 specification). The specification will aso include an encoding
parameter that specifies how a decoder isto determine (from the value of the referenced field) a conceptua integer
value which identifies the alternative (using an order specified in other encoding parameters).

21.6.6 Thevalue "handl€" requiresthat an identification handle be specified. Thisidentification handle shall be
exhibited by all of the alternativesin the class, and each alternative shall have a different value for this alternative.
(Violation of thisruleisan ECN specification error, but conforming encoders arerequired not to generate encodings
wherethisruleisviolated). This value specifies that a decoder shall determine the dternative that is present by
decoding the remaining parts of the encoding to produce a value for the specified identification handle. The alternative
whose identification handle matches this value is the alternative that is present. If the end of any open container (or the
end of the PDU) isreached before the identification handle can be decoded, or if the value of the identification handle
does not match that of any alternative, then thisisan encoding error.

ETSI

75 ETSI TS 101 969 V1.1.1 (2001-05)

21.7 The RepetitionSpaceDetermination type

21.7.1 The"RepetitionSpaceDetermination” typeis:

RepetitionSpaceDet erm nation ::= ENUMERATED
{added-field, asnl-field, container, pattern, handle, not-needed}

21.7.2 Thedefault value for thistype is aways "added-field".

21.7.3 An encoding parameter of thistype specifies the way in which adecoder determines the end of the encoding
gpace in an encoding of a class in the repetition category. It replaces use of an encoding parameter of type
"EncodingSpaceDetermination” in the encoding of repetitions.

21.7.4 Thevalue "added-field" requires the specification of a"REFERENCE" to another field that does not carry
application semantics (i.e., does not appear within the ASN.1 specification). The encoding specification determines how
an encoder isto set the value of thisfield from the size (in repetition space units) of the repetition space.

21.75 Thevalue"asnl-field" requires the specification of a"REFERENCE" to another field whose value is set by the
application (i.e., appears within the ASN.1 specification). The encoding specification determines how a decoder isto
obtain the size (in repetition space units) of the encoding space from the value of thisfield. A conforming encoder shal
not produce encodings in which the decoder's transforms of this field do not correctly identify the end of the encoding
space.

21.7.6 Thevalue"container" requires either the specification of a"REFERENCE" to another field whose encoding
class (the container) has a length determinant and whose contents include the encoding class in the repetition category,
or of a specification (using "OUTER") that the end of the PDU determines the end of the repetitions. The repetitions
terminate when the specified container terminates or when, following the compl ete encoding of one repetition, the end
of the PDU is encountered.

NOTE: The present document can only be used if the encoding of the (repetition category) classisthelast
encoding to be placed in the container. It isan ECN specification error if additional encodings are placed
in the container, but conforming encoders shall not generate such encodings.

21.7.7 Thevalue "pattern” specifies that some specified pattern of bits (see 21.10) will terminate the repetitions. In
this case additional encoding parameters will require the insertion by an encoder of a specified pattern, and the detection
of this pattern by a decoder. It isan ECN specification error if the encoding of the pattern can be theinitial part of the
encoding of an abstract value of arepetition. A conforming encoder shall detect such errors and shall not generate
encodings that violate thisrule.

NOTE: An exampleisanull-terminated character string whaose contents are not allowed to include anull
character.

21.7.8 Thevalue "handl€" requiresthat an identification handle be specified. Thisidentification handle shall be
exhibited by the element being repeated, and by all possible (taking account of optionality) following elements.

21.7.9 Thevalue "not-needed" specifies that the number of repetitionsis fixed in the abstract syntax.

NOTE: Itisan ECN specification error (which shall be detected and blocked by encoders) if thisencoding is
specified and the number of repetitions are not so restricted, or if the application violates that restriction.

21.8 The Justification type

21.81 The"Judtification" typeis:

Justification ::= CHO CE
{ left I NTEGER (0. . MAX),
ri ght | NTEGER (0..MAX)}
21.8.2 Thedefault value for thistypeis always "right:0".

21.8.3 An encoding parameter of thistype specifiesright or Ieft justification of the encoding of a value within the
encoding space, with an offset in bits from the ends of the encoding space.

ETSI

76 ETSI TS 101 969 V1.1.1 (2001-05)

21.84 The"left" alternative specifies that the leading bit of the value encoding is positioned relative to the leading
edge of the encoding space. The integer value specifies the number of bits between the leading edge of the encoding
gpace and the leading hit of the value encoding.

NOTE: If thevalue encoding isnot fixed length or self-delimiting, then the use of value padding in afixed size
container can in some circumstances makeit impossible for a decoder to recover the original abstract
values. Thiswould be an ECN specification error.

21.85 The"right" dternative specifies that the trailing bit of the value encoding is positioned rdl ative to the trailing
edge of the encoding space. The integer value specifies the number of bits between the trailing bit of the value encoding
and thetrailing edge of the encoding space.

21.8.6 The setting of the bits (if any) before or after the value encoding is determined by encoding parameters of type
"Padding" and "Pattern” (see 21.9 and 21.10).

21.9 The Padding type

2191 The"Padding" typeis:

Paddi ng :: = ENUMERATED {zero, one, pattern, encoder-option}
21.9.2 Thedefault value for an encoding parameter of thistypeis aways "zero".

21.9.3 An encoding parameter of thistype specifies details of the padding for pre-padding, for classesin the pad
category, and for the post-padding of a PDU specified in the #OUTER encoding class.

21.94 If thevalueis"zero", then the padding is with zero hit.
21.95 If thevalueis"one", then the padding iswith one hit.
21.9.6 |If thevalueis"pattern” then the bits are set according to the encoding parameter of type "Pattern” (see 21.10).

21.9.7 If thevalueis "encoder-option”, then the encoder freely chooses the bit values.

21.10 The Pattern and Non-Null-Pattern types

21.10.1 The"Pattern” typeis:

Pattern ::= CHO CE
{bits BI T STRI NG,
octets OCTET STRI NG,
char8 I A5String,
char 16 BMPSt ri ng,
char 32 Uni versal Stri ng,
any-of-length | NTEGER (1..MAX),
di fferent ENUMERATED {any} }

21.10.2 The"Non-Null-Pattern” typeis:

Non-Nul | -Pattern ::= Pattern (ALL EXCEPT (bits:'"B | octets:'""H | char8:"" | charl6:"" | char32:"")
21.10.3 Thedefault value for an encoding parameter of this typeis always "bits.'0'B".

21.10.4 The"hits' or "octets' aternative specifies a pattern of length and value equal to the given bitstring or octet
string respectively.

21.10.5 The"char8" alternative specifies a (multiple of 8-bits) pattern where each character in the given stringis
converted to its ISO/IEC 10646-1 value as an 8-hit value.

21.10.6 The"charl6" alternative specifies a (multiple of 16-bits) pattern where each character in the given string is
converted to its ISO/IEC 10646-1 value as a 16-hit value.

21.10.7 The"char32" alternative specifies a (multiple of 32-hits) pattern where each character in the given string is
converted to its ISO/IEC 10646-1 value as a 32-hit value.

ETSI

77 ETSI TS 101 969 V1.1.1 (2001-05)

21.10.8 The"any-of-length" alternative specifies a size for the pattern, but leaves the actual value of the pattern asan
encoder's option.

21.109 The"different:any" valueis permitted only when thereis another encoding parameter of type "Pattern” in the
same parameter group. In this case, either (but not both) of the encoding parameters of type "Pattern” can be set to
"different:any”. The "different:any” value specifies that the length of the pattern shall be the same asthe length of the
pattern specified for the other encoding parameter. It also specifies that itsvalueis an encoder's option, provided that
the value is different from the value of the pattern specified for the other encoding parameter.

21.10.10 When used for pre-padding and for justification (but not for other uses), the "Non-Null-Pattern” is used, and
the pattern istruncated and/or replicated as necessary to provide sufficient bits for the pre-padding, value pre-padding,
or value post-padding.

21.10.11 The "different:any” value of type "Pattern” is excluded from most uses of this type. When a parameter of
type "Pattern” is used to specify the pattern for a boolean value ("TRUE", say), then the value "different:any” can be
used to specify the pattern for the other boolean value ("FALSE" in this case). When used in this way, "different:any”
means an encoder's option for the pattern. The encoder may use any pattern it chooses, but it shall be of the same length
as the other pattern and shall differ from it in at least one bit position.

21.11 The RangeCondition type

21.11.1 The"RangeCondition" typeis:
RangeCondi ti on ::= ENUVERATED
{unbounded- or - no- | ower - bound,

sem - bounded- wi t h- negati ves,
bounded- wi t h- negati ves,

sem - bounded- wi t hout - negati ves,
bounded- wi t hout - negati ves}

21.11.2 Thedefault value for an encoding parameter of this type is always "unbounded-or-no-lower-bound".

21.11.3 An encoding parameter of type "RangeCondition” is used in the specification of a predicate which tests the
existence and nature of bounds on the integer values associated with an encoding classin theinteger category.

21.11.4 Thepredicateis satisfied for each enumeration value if and only if the following conditions are satisfied by
the bounds on the encoding classin the integer category:

a) unbounded-or-no-lower -bound: either there are no bounds, or esethereis only an upper bound but no lower
bound;

b) semi-bounded-with-negatives. thereisalower bound that is less than zero, but no upper bound;
¢) bounded-with-negatives: thereis alower bound that isless than zero, and an upper bound;

d) semi-bounded-without-negatives: thereisalower bound that is greater than or equal to zero, but no upper
bound;

€) bounded-without-negatives: thereisalower bound that is greater than or equal to zero, and an upper bound.

NOTE: For any given set of bounds, exactly one predicate will be satisfied.

21.12 The SizeRangeCondition type

21.12.1 The"SizeRangeCondition" typeis:

Si zeRangeCondi ti on :: = ENUMVERATED
{no-ub-with-zero-1hb,
ub-wi t h-zero-1b,
no- ub-wi t h-non-zero-1b,
ub-w t h-non-zero-1b,
fixed-size}

21.12.2 Thedefault value for an encoding parameter of this type is always "no-ub-with-zero-1b".

ETSI

78 ETSI TS 101 969 V1.1.1 (2001-05)
21.12.3 An encoding parameter of type "SizeRangeCondition” is used to test properties of the boundsin an effective
size constraint associated with a class in therepetition or characterstring category.

21.12.4 Thepredicateis satisfied for each enumeration valueif and only if the effective size constraint satisfies the
following conditions:

a) no-ub-with-zero-1b: thereisno upper bound on the size and the lower bound is zero;

b) ub-with-zero-Ib: thereisan upper bound on the size and the lower bound is zero;

¢) no-ub-with-non-zer o-Ib: thereis no upper bound on the size and the lower bound isnon-zero;
d) ub-with-non-zero-Ib: thereisan upper bound on the size and the lower bound is non-zero;

e) fixed-size: the lower bound and the upper bound on the size are the same value.

NOTE: Only the"fixed-size" case overlapswith other predicates.

21.13 The ReversalSpecification type

21.13.1 The"Reversal Specification” typeis:

Rever sal Speci fi cation ::= ENUMERATED
{no-reversal,
reverse-bits-in-units,
reverse-half-units,
reverse-bits-in-half-units}
21.13.2 Thedefault value for an encoding parameter of thistype is always "no-reversal”.

21.13.3 Anencoding parameter of type "Reversal Specification” is used in thefinal transform of bits from an encoding
space into an output buffer for transmission (with the reverse transform being applied for decoding).

NOTE: Bitsinserted asaresult of pre-padding specified by an encoding object do not form part of the encoding
to which bit-reversal specified by that encoding object, but may be subject to bit-reversal specified by an
encoding object for a container in which the complete encoding is embedded.

21.13.4 Values of thistype are always used in conjunction with an encoding parameter of type "Unit" that specifies a
unit sizein bits (see 21.1).

21.135 Itisan ECN specification error if the values "reverse-half-units' and "reverse-bits-in-half-units" are used
when the encoding parameter of type "Unit" is not an even number of hits.

21.13.6 The enumerations specify (in the order of enumerations listed above) either:
a) noreversal of hits, or
b) reversal of the order of half-units (without changing the order of bitsin each haf unit), or
¢) reversal of the order of bitsin each half-unit but without reversing the order of the half-units, or
d) reversal of the order of the bitsin each unit.

21.13.7 Itisan ECN specification error if the number of bitsin an encoding to which bit-reversal isapplied isnot an
integral multiple of "Unit".

21.13.8 Bit-reversal can be specified for the encoding of all classes that can appear asfields of encoding structures,
except an encoding class of the alternatives category, which does not use the encoding space concept.

21.14 The ResultSize type

21.14.1 The"ResultSize" typeis:.

Resul t Si ze ::= | NTEGER {variabl e(-1), fixed-to-max(0)} (-1..MAX)

21.14.2 Thedefault value for an encoding parameter of thistypeis always "variable".

ETSI

79 ETSI TS 101 969 V1.1.1 (2001-05)

21.14.3 An encoding parameter of thistype specifies the size of theresult in a#TRANSFORM class.

21.14.4 Thevalue"variable" specifies that the size of the s TRANSFORM result will vary for different abstract
values, and is determined by the detailed specification of the transform.

21.14.5 Thevalue "fixed-to-max" specifies that the size of the # TRANSFORM result is to be the same for the
transform of all abstract values. It specifies that the target size isto be the smallest size that can contain the specified
encoding of any one (all) of the abstract values. The precise details of the present document are defined for each
transform in which values of this type are used.

21.14.6 A positive value of type "ResultSize" specifies that the size of the #TRANSFORM result isfixed. Thisvalue
isused in the specification of the actud transform.

22 Commonly used encoding parameter groups

This clause specifies groups of encoding parameters that are commonly used in the defined syntax (see clause 20). The
purpose of each group, therestrictions on both the values of encoding parameters and the syntax that can be used, as
wdll asthe encoder and decoder actions for each group are also specified.

22.1 Replacement specification

There are three variants of replacement specification:

a) Full replacement specification: thisisused for classesin the concatenation category, where replacement can be
of the entire sructure, or can selectively replace optiona and non-optiona components.

b) Structure or component replacement specification: thisisused for classes in the alternatives category and for the
#CONDITIONAL-REPETITION encoding class, where replacement can be of the entire structure or of the
component.

NOTE: When an encoding object of the #CONDITIONAL-REPETITION class is used to define encodings for a
classin the bitgtring, characterstring, or octetstring category, it can only perform structure-only
replacement.

¢) Structure-only replacement specification: thisisused for classes that do not have components.

22.1.1 Encoding parameters, syntax, and purpose

22.1.1.1 Full replacement specification uses the following encoding parameters:

&#Repl acenent - structure OPTI ONAL,
&#Repl acenent - struct ure2 OPTI ONAL,
&r epl acenent - st ruct ur e- encodi ng- obj ect &#Repl acenent - structure OPTI ONAL,
&r epl acenent - st ruct ur e- encodi ng- obj ect 2 &#Repl acenent - struct ure2 OPTI ONAL,
&#tHead- end- structure OPTIl ONAL,
&#tHead- end- st ruct ure2 OPTI ONAL

22.1.1.2 Thesyntax to be used for full replacement specification shall be:

[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COVPONENTS]
[OPTI ONALS]
[NON- OPTI ONALS]
W TH &#Repl acenent - structure
[ENCODED BY &r epl acenent - struct ur e- encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]
[AND OPTI ONALS W TH &#Repl acenent - struct ur e2
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect 2
[NSERT AT HEAD &#Head- end-structure2]]]]

ETSI

80 ETSI TS 101 969 V1.1.1 (2001-05)

22.1.1.3 Structure or component replacement specification uses the following encoding parameters

&#Repl acement - structure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &#Repl acenment - structure OPTI ONAL,
&#tHead- end- structure OPTI ONAL

22.1.1.4 Thesyntax to be used for structure or component replacement specification shall be:

[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COVPONENTS]
W TH &Repl acenment - structure
[ENCODED BY &r epl acenent - struct ur e- encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]]

22115 Structure-only replacement specification uses the following encoding parameters:

&#Repl acenent - structure OPTI ONAL,
&r epl acenent - struct ure- encodi ng- obj ect &#Repl acenment-structure OPTI ONAL

22.1.1.6 Thesyntax to be used for structure-only replacement specification shall be:

[REPLACE
[STRUCTURE]
W TH &#Repl acenent -structure
[ENCODED BY &r epl acenent - struct ur e- encodi ng- obj ect]]

22.1.1.7 Useof the"WITH SYNTAX" for these encoding parameter groups specifies that either:

a) the encoding classto which this encoding object is applied isto be replaced completely ("REPLACE
STRUCTURE"); in the case of an encoding class in the optionality category, the entire element isreplaced; in
the case of a #CONDITIONAL-REPETITION encoding object used in defining an encoding object for aclassin
the bitstring, characterstring, octetstring or repetition category, then (if the range condition is satisfied), the entire
bitstring, characterstring, octetstring or repetition structureis replaced; or

b) all its components (except for the structure-only specification) are to be replaced (with the same replacement
action for all components) ("REPLACE COMPONENT" or "REPLACE ALL COMPONENTS"); or

¢) alitsoptional components (only for full replacement specification) areto be replaced ("REPLACE
OPTIONALS"; or

d) all itsnon-optional components (only for full replacement specification) areto be replaced ("REPLACE
NON-OPTIONALS"); or

e) all its components (only for full replacement specification) are to be replaced, with different replacement actions
for optionals and for non-optionals ("REPLACE NON-OPTIONALS AND OPTIONALS").

22.1.1.8 "REPLACE COMPONENT" isasynonym for "REPLACE ALL COMPONENTS". It would be normal but
not required to use thisif thereis only a single component.

22119 Theoptional "ENCODED BY"s specify an encoding object for the replacement structure.
221110 Theoptional "INSERT AT HEAD"s specify an encoding structure (the head-end insertion) to be inserted

before all components of the (constructor) class performing the replacement. Thereis one head-end insertion for each
component that is replaced, and they areinserted in the order of the origina components.

22.1.2 Specification restrictions

22121 Exactly one of the permitted syntaxes between "REPLACE" and "WITH" shall be used.

22.1.2.2 The"WITH" replacement structures shall be parameterized encoding structures with a Sngle encoding class
parameter. When they are specified in the above defined syntax, the class reference name only of the structure shall be
given. It shall not have any parameter ligt in this use of the names.

ETSI

8l ETSI TS 101 969 V1.1.1 (2001-05)

22.1.2.3 These parameterized structures are instantiated during the replacement action with an actual parameter as
specified in 22.1.3. The use of the dummy parameter in the replacement parameterized structures shall be consistent
with the class of the actual parameter that will be supplied in the replacement action.

NOTE: Inparticular, if "REPLACE STRUCTURE" isused for an encoding class in the tag category, the dummy
parameter can only occur in the replacement structure where an encoding class in the tag category is
permitted.

22124 The"ENCODED BY" encoding objects shall be parameterized encoding objects for the"WITH" encoding
structures. They shall have a dummy parameter (#D, say) that is an encoding class, and they shall have been defined in
a parameterized encoding object assignment in which the governor was the corresponding "WITH" parameterized
encoding structure, instantiated with #D. When they are specified in the above defined syntax, the encoding object
reference name only shall be given. They shall not have any parameter list in this use of the names.

22125 They areinstantiated during the replacement action with an actual parameter which isthe same as the actual
parameter used to instantiate the corresponding "WITH" replacement encoding structures. They may also have:

- (optionally) another (but only one) dummy parameter that is an encoding object set; when they are instantiated
during the replacement action, the actual parameter for this dummy parameter is the current combined encoding
object set;

- (conditionally) another (but only one) dummy parameter that isa"REFERENCE" parameter. This parameter
shall be present if and only if "INSERT AT HEAD" is specified. When the encoding objects are instantiated
during the replacement action, the actual parameter for this dummy parameter is areference to the corresponding
"INSERT AT HEAD" structure.

22.1.2.6 All fidds of the replacement structure that are not part of the encoding class parameter are auxiliary fields,
and shall be set by the encoding of the replacement structure.

22.1.2.7 The"INSERT AT HEAD" encoding structures shall not have dummy parameters. All their fields are
auxiliary fields, and shall be set by the "ENCODED BY" encoding object through its"REFERENCE" parameter.

22.1.2.8 If an encoding object hasa"REPLACE STRUCTURE" clausg, it shal not have an "INSERT AT HEAD"
clause.

22.1.3 Encoder actions

22.1.3.1 If an encoding object of a classin the bit-field or tag categories specifies "REPLACE STRUCTURE", then
an encoder shall replace the structure with an instantiation of the replacement structure, using the name of the original
structure asthe actual parameter.

22.1.3.2 If an encoding object of a classin the encoding constructor category specifies"REPLACE STRUCTURE",
then an encoder shall replace the entire construction with an instantiation of the replacement structure, using the entire
original construction asthe actual parameter.

22.1.3.3 If an encoding object of a classin the optionality category specifies "REPLACE STRUCTURE", then an
encoder shall replace the entire optional component with anon-optional instantiation of the replacement structure. The
actual parameter shall be a hidden structure name (which matches no other structure, and which can never have
encoding objects). Thishidden structure name shall de-reference to the entire origina optional component (including
any classes in the tag category) except for the classin the optionality category.

22.1.34 If an encoding object of any class specifies"REPLACE COMPONENT", "REPLACE ALL
COMPONENTS', "REPLACE OPTIONAL COMPONENTS', or "REPLACE NON-OPTIONAL COMPONENTS",
then an encoder shall replace the entire specified component(s) with a non-optional ingtantiation of the replacement
structure. The actual parameter shall be ahidden structure name (which matches no other structure, and which can
never have encoding objects). Thishidden structure name shall de-reference to the entire original optional component
(including any classes in the tag category) except for any class in the optionality category.

22.1.35 All abstract values and tag values of the origina structure or component shall be mapped to corresponding
abstract values and tag numbersin the actual parameter of the replacement structure. Values of other fieldsin the
replacement structure shall be set according to the specification in the replacement structure encoding object.

ETSI

82 ETSI TS 101 969 V1.1.1 (2001-05)

22.1.3.6 If ahead-end insertion is specified, then the encoder shall insert the head-end structure before all components
of the structure whose encoding object is performing the replacement. Head-end insertions shall be inserted in the same

textual order asthe components being replaced. The values of fields of this structure shall be set in accordance with the

specification in the replacement structure encoding object.

NOTE: Thesestructures will normally be asimpleinteger field providing alocation determinant for the field
being replaced.

22.1.3.7 Theencoder shall instantiate the replacement structure encoding—object(s) with actual parameters as follows:

a) The dummy parameter that is an encoding class shall be given an actual parameter that isthe same as the actual
parameter of the instantiation of the replacement structure.

b) The dummy parameter (if any) that is a"REFERENCE" parameter shall be given an actual parameter that isa
reference to the inserted head-end structure.

¢) Thedummy parameter (if any) that is an encoding object set (whose governor is#ENCODINGS) shall be given
an actual parameter that is the current combined encoding object set.

22.1.3.8 Theencoder shall then usethisingantiated encoding object to encode the corresponding replacement
structure instead of the combined encoding object set.

NOTE: Theencoding of the head-end insertionsis determined by the application of the current combined
encoding object set.

22.1.4 Decoder actions

A decoder shall generate (for an application) the abstract values of the original structure that was being encoded, hiding
any replacement activity (even if performed by repeated application of replacements).

22.2 Pre-alignment and padding specification

22.2.1 Encoding parameters, syntax, and purpose

22211 Pre-alignment and padding specification uses the following encoding parameters:

&encodi ng- space-pre-alignment-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,
&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B

22.21.2 Thesyntax to be used for pre-alignment and padding specification shal be:

[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-alignment -unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

22.2.1.3 Thedefinition of types used in pre-alignment and padding specification is:

Unit ::= | NTECER {repetitions(0), bit(1l), nibble(4), octet(8),
wor d16(16), dword32(32)} (O0..256) -- (see 21.1)
Paddi ng ::= ENUMERATED {zero, one, pattern, encoder-option} -- (see 21.9)
Pattern ::= CHO CE
{bits BI T STRI NG,
octets OCTET STRI NG,
char 8 | A5String,
char 16 BMPSt ri ng,
char 32 Uni versal String,
any-of -1 engt h | NTEGER (1..MAX),
di fferent ENUVERATED {any} }
Non-Nul | -Pattern ::= Pattern (ALL EXCEPT (bits:'"B | octets:""H | char8:"" |
char16:"" | char32:"") -- (see 21.10)

ETSI

83 ETSI TS 101 969 V1.1.1 (2001-05)

22.21.4 The pre-alignment encoding parameters use a value of type "Unit" to specify that a container isto start at a
multiple of "Unit" bits from the alignment point. The alignment point isthe start of the encoding of the type to which an
ELM applied an encoding, except when reset for the encoding of a contained type by the use of a #OUTER encoding
object (see clause 25). Encoding parameters of type "Padding” and "Pattern” are used to control the bitsthat provide
padding to the required alignment. Specification of "ALIGNED TO NEXT" produces the minimum number of inserted
bits. Specification of "ALIGNED TO ANY" leaves the actua number of inserted bits (subject to the above restriction to
amultiple of "Unit") as an encoders option, and requires the specification of a start pointer.

22.2.2 Specification constraints

22221 Atmost oneof "NEXT" and "ANY" shal be specified. When not specified, "NEXT" is assumed.
22222 If"ALIGNED TO ANY" is specified, then the encoding object specification shall include the
"START-POINTER" clause.

22.2.3 Encoder actions

22231 If"NEXT" isspecified (or is defaulted), the encoder shall insert the minimum number of bits necessary to
ensure that the total number of bits in the encoding (from the alignment point) isa multiple of the encoding parameter
of type "Unit".

22.2.3.2 If"ANY" is specified, the encoder shall insert an encoder-dependent number of bits, provided that the total
number of bitsin the encoding (from the alignment point) isa multiple of the encoding parameter of type "Unit".

22.2.3.3 Theinserted bitsshall be set so that thefirg inserted bit istheleading bit of "Pattern”, and so on. If more bits
are needed than are present in the encoding parameter of type "Pattern”, then the pattern shall be re-used, most
significant bit first.

22.2.4 Decoder actions

22.2.4.1 Thedecoder shall determine the number of inserted bits from the encoder actionsif "NEXT" is specified.

22.2.4.2 Thedecoder shall determine the number of inserted bits from the start pointer specification if "ANY™ is
specified.

22.2.4.3 Inall cases, the decoder shall discard the inserted bits transparently to the application. It shall not diagnose an
encoder or a specification error if the bits are not in agreement with the specified encoders actions.

22.3 Start pointer specification

22.3.1 Encoding parameters, syntax, and purpose

22.3.1.1 Start pointer specification uses the following encoding parameters:

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nt er-encoder -t ransfornms #TRANSFORM ORDERED OPTI ONAL

22.3.1.2 Thesyntax to be used for start pointer specification shall be:

[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORMS &St art - poi nt er-encoder -transforns]]

22.3.1.3 Thedefinition of the type used in start pointer specification is:

Unit ::= INTECGER {repetitions(0), bit(1), nibble(4), octet(8),
wor d16(16), dword32(32)} (0..256) -- (see 21.1)

ETSI

84 ETSI TS 101 969 V1.1.1 (2001-05)

22.31.4 The present document identifies the start of the encoding space for an element. If the start of the encoding
space for the lement isan offset of "n" "MULTIPLE OF" units, then the value placed in the"START-POINTER"
reference field is the value obtained by applying "ENCODER-TRANSFORMS' to "n".

NOTE 1: If "MULTIPLE OF" isnot "bits", thisimpliesthat that offset from the start of the "START-POINTER"
reference field to the start of the encoding space is required to be an integral multiple of "MULTIPLE
OF" units.

NOTE 2: Therewill in generd be encodings of other eements, and perhaps of other start-pointers between the
"START-POINTER" reference field and the start of the encoding of this element.

22.3.2 Specification constraints

22.32.1 If "ENCODER-TRANSFORMS" isnot present, then "START-POINTER" shall be a classin the integer
category.

22.3.2.2 If "ENCODER-TRANSFORMS' is present, then "START-POINTER" shall be a class with a category that
can encode a value of theresult of the fina transform in "ENCODER-TRANSFORMS'.

22.3.2.3 All transformsin the"ENCODER-TRANSFORMS' shall bereversible, and thefirst transform shall have a
source which isinteger.

22.3.3 Encoder actions

22.33.1 Theencoder shall determinethe number "n" of "MULTIPLE OF" unitsfrom the start of the encoding of the
"START-POINTER" fidld (after any pre-alignment of that field) to the start of the encoding of the dement with the
start-pointer specification (after any pre-alignment of that element). It isan ECN specification error if "n" isnot
integral. If the element being encoded is optional, and is absent, then "n" shall be set to zero.

22.33.2 Thevalue"n" shall be transformed using the "ENCODER-TRANSFORMS® (if present) to produce a
conceptual value"m". If thisresulting value "m" isnot an abstract value that can be associated with the encoding class
of the"START-POINTER", then it isan ECN specification error, and encoding shall not proceed. Otherwise the value
"m" shall be the value encoded in the field referenced by "START-POINTER".

NOTE: Theencoding object applied to the field referenced by "START-POINTER" will determine the encoding
of thevalue "m".

22.3.4 Decoder actions

22.34.1 Thedecoder shall determinethe conceptual value "m™ in the field referenced by "START-POINTER", and
shall use knowledge of the encoder's actions to reverse the transforms (if any) to produce the integer value "n".

22.3.4.2 If "n" iszero, then the decoder shall diagnose an encoder's error if the el ement being decoded is not an
optional element with an optionality specification determining optionality by the start pointer. If "'n" is zero, and the
element being decoded is an optional element with an optionality specification determining optionality by the start
pointer, then the decoder shall determine that the element isabsent.

22.34.3 Thevalue"n" ismultiplied by "MULTIPLE OF", and the start of the encoding of the "START-POINTER"
field isadded to produce a position "p". If "p" isaposition in the encoding that is earlier than the current decoding
point, then the decoder shall diagnose an encoding error.

22344 If"p"isapostion in the encoding that is equal to or beyond the current decoding point, then the decoder
shall silently ignore all bits up to position "p", and shall continue decoding of this e ement from position "p".

ETSI

85 ETSI TS 101 969 V1.1.1 (2001-05)

22.4 Encoding space specification

22.4.1 Encoding parameters, syntax, and purpose

22.41.1 Encoding space specification uses the following encoding parameters:

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space-uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,

&encodi ng- space- det erm nati on Encodi ngSpaceDet er mi nati on
DEFAULT added-fi el d,

&encodi ng- space-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL

22.4.1.2 Thesyntax to be used for encoding space specification shall be:

ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng- space-unit]]
[DETERM NED BY &encodi ng- space- det erm nati on]
[USI NG &encodi ng- space-reference
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Decoder - t r ansf or ns] |

22.41.3 Thedefinition of types used in the present document is:

Encodi ngSpaceSi ze :: = | NTEGER
{encoder-option-w th-determ nant(-3),
vari abl e-wi t h-determ nant (-2),
self-delimting-values(-1),

fixed-to-max(0)} (-2..MAX) -- (see 21.2)
Unit ::= | NTEGER

{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),

dwor d32(32)} (0..256) -- (see 21.1)
Encodi ngSpaceDet ermi nati on ::= ENUVERATED

{added-field, asnl-field, container} -- (see 21.3)

22414 The purpose of the present document isto determine encoder and decoder actionsto ensure that a decoder
can correctly determine the end of an encoding space.

NOTE: An actual value encoding does not necessarily fill the entire encoding space, and recovery of the value
encoding by a decoder will in general also require actions specified for value padding and justification
(see 22.8).

22415 Themeaning of the encoding parameters of type "Unit", "EncodingSpaceSize", and
"EncodingSpaceDetermination” were given in 21.1, 21.2, and 21.3. Together these specify the way in which the end of
the encoding space for this element is determined.

NOTE: "Variable-with-determinant” can be specified even if the encoding space isfixed size, if the ECN
specifier requires that alength determinant isto be included, even if not needed.

22416 The"USING" specification isareference which enables a decoder to determine the end of the encoding
space. It isareferenceto an auxiliary field or to afield carrying abstract values, or to a container, depending on the
value of "DETERMINED BY".

22.4.2 Specification restrictions

22421 If"SIZE" is"variable-with-determinant” and "DETERMINED BY" isnot present, then the default value
("added-fidld") is assumed.

22422 "USING" shall be specified if and only if "SIZE" is "variable-with-determinant”.

22.42.3 "ENCODER-TRANSFORMS' shall be present only if "DETERMINED BY" isset to (or defaultsto)
"added-field". The "USING" reference in this case shall be an auxiliary field of category bitstring, characterstring or
integer.

ETSI

86 ETSI TS 101 969 V1.1.1 (2001-05)

22.4.2.4 All transforms specified in "ENCODER-TRANSFORMS' shall be reversible transforms. The first transform
shall have a source which isinteger and the last transform shall have aresult which can be encoded by the class of the
field referenced by "USING".

22425 "DECODER-TRANSFORMS" shall be present only if "DETERMINED BY" isset to "asnl1-field". Thefirst
transform shall have a source which is the same as the category of the field referenced by "USING" which shall not be
an auxiliary fidd. Thelast transform shall have aresult which isinteger.

22426 The"USING" reference, if present, shall be afield that is present in the encoding earlier than the field being
encoded. It isan application or an ECN specification error if, in an instance of encoding, the field being encoded is
present but the "USING" reference fidld is absent (through the exercise of optionality).

22.42.7 |f "DETERMINED BY" is"container", the "USING" reference shall be to a concatenation or to arepetition
(or to a bitgtring or octetstring with a contained type) in which the element being encoded is a component (or a
component of a component, to any depth). It isan application or an ECN specification error if, in an instance of
encoding, later el ements within the same concatenation or repetition are to be encoded.

22.42.8 The present document is considered set if the "ENCODING-SPACE" keyword isused, and it is mandatory
for it to be set in all placesin the defined syntax where it is allowed. Defaulting all encoding parameters of this group
(e.g., use of "ENCODING-SPACE" done) would not satisfy the above constraints.

22.4.3 Encoder actions
22.43.1 Encodersshall not generate encodingsif the conditions of 22.4.2 arenot satisfied.

22432 |If"SIZE" isapositive value, then the encoding spaceis that multiple of "MULTIPLE OF" units and thereis
no further encoder action.

22433 If"SIZE" isnot set to a positive value, then the encoder shall determine the size ("s', say) of the encoding
spacein "MULTIPLE OF" units from the value encoding specification. This determination is specified in the clauses on
value encoding specification.

22434 If "SIZE" is"encoder-option-with-determinant” then the encoder (as an encoder's option) may increase the
size"s' (asdetermined in 22.4.3.3) in "MULTIPLE OF" units from that determined from the value encoding
specification to any value which can be encoded in the associated determinant.

22435 If"SIZE" is"fixed-to-max" or to "sdf-delimiting-values’, then there isno further encoder action.

22.4.3.6 If"SIZE" is"variable-with-determinant” and "DETERMINED BY" is"container”, then thereis no further
encoder action.

22.4.3.7 |If "DETERMINED BY" is"added-field", then the encoder shall apply the transforms specified by
"ENCODER-TRANSFORMS' (if any) to the value"'s" to produce a value that shall be encoded in the"USING"
reference.

NOTE: Theencoding of the "USING" reference (bit-field "A", say) in this case appears earlier in the encoding
than the encoding of thisfield (bit-field "B", say), and an encoder will need to defer the encoding of
bit-field "A" until the value to be encoded has been determined by the encoding of bit-field "B".

22438 If "DETERMINED BY" is"asnl-field" then the encoder shall check that the value in the "USING" reference
when transformed by the "DECODER-TRANSFORMS' (if any) isequal to "'s". It isan application error if this
condition is not met, and encoding shall not proceed.

22.4.4 Decoder actions

22441 |If"SIZE" isapositive value, then the decoder determines the encoding space as that multiple of
"MULTIPLE OF" units,

22442 If"SIZE" is"fixed-to-max" or to "sdf-delimiting-values’, then the decoder shall determine the end of the
encoding space in accordance with the specification of the value encoding. This determination is specified in the clauses
on value encoding specification.

22443 If "SIZE" is"variable-with-determinant” and "DETERMINED BY" is set to "container”, then the decoder
shall use the end of the container specified by "USING" as the end of the encoding space.

ETSI

87 ETSI TS 101 969 V1.1.1 (2001-05)

22444 If"SIZE" is"variable-with-determinant” and "DETERMINED BY" is set to (or defaultsto) "added-field",
then the decoder shall recover thevalue"s" by applying thereversal of the "ENCODER-TRANSFORMS' (if any) to
the value of the "USING" reference.

22445 If "DETERMINED BY" is"asnl-field" then the decoder shall recover the value"'s" by applying the
"DECODER-TRANSFORMS' (if any) to the value of that field.

22.5 Optionality determination

22.5.1 Encoding parameters, syntax, and purpose

22511 Optionality determination uses the following encoding parameters:

&optionality-determ nation OptionalityDetermnation

DEFAULT added-fi el d,
&optionality-reference REFERENCE OPTI ONAL,
&Encoder -t ransf orms #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t ransf or ms #TRANSFORM ORDERED OPTI ONAL,
&handl e-i d Printabl eString

DEFAULT "def aul t - handl e"

22.5.1.2 Thesyntax to be used for optionality determination shall be:

PRESENCE
[DETERM NED BY &optionality-determ nation
[HANDLE &handl e-i d]]
[USI NG &optionality-reference
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Decoder - t r ansf or ns] |

22513 Thedefinition of types used in optiondity determination is:

OptionalityDetermnation ::= ENUMERATED
{added-field, asnl-field, container, handle, pointer} -- (see 21.5)

22514 The purpose of the present document isto specify rules that ensure that a decoder can correctly determine
whether an encoder has encoded a value of an optional element. Where a pointer is used to determine optionality,
pre-alignment and gtart pointer specification isalso required.

22.5.1.5 An encoder will encode the value of an optional element if required to do so by the application, unless such
an encoding would bein violation of rules governing the presence of optional elements.

NOTE: Anexample of violation of such arulewould be where the presence of an (absent) optional element was
to be determined by the end of a container, and the application requested that later optiona elementsin
the same container be encoded.

22516 Thepresent document isconsidered set if the "PRESENCE" keyword isused, and it is mandatory for it to be
set in al places in the defined syntax whereit isallowed. Defaulting all other parts of this defined syntax (e.g., use of
"PRESENCE" alone) would not satisfy the above constraints.

22.5.2 Specification restrictions

22521 |If "DETERMINED BY" isnot present, then the default value ("added-field") is assumed.

22.52.2 "HANDLE" shall not be specified unless"DETERMINED BY" is"handl€e".

22.52.3 "USING" shal not be specified if "DETERMINED BY" is"handl€" or "pointer".

22524 |f "DETERMINED BY" is"pointer”, there shall be a"START-POINTER" specification in the same
encoding object (see 22.3).

NOTE: A dtart pointer specification normally also needs a pre-alignment specification with "ALIGNED TO
ANY" (see 22.2).

ETSI

88 ETSI TS 101 969 V1.1.1 (2001-05)

22525 If"HANDLE" is specified, then the d ement whose presence is being determined, together with all following
optional and the next mandatory element (if any) shall all be encoded by encoding objects whaose specification exhibits
and defines an identification handle with the same name as "HANDLE", and with the same set of bits forming the
identification handle. The value of the bits forming the identification handle shal be different for all these elements.

NOTE: Itisarequirement that the bitsthat form an identification handle shall have the same value for al abstract
values encoded by an encoding object exhibiting that identification handle.

2252.6 "ENCODER-TRANSFORMS" shall be present only if "DETERMINED BY" is set to (or defaultsto)
"added-field". The "USING" reference in this case shall be an auxiliary field of category bitstring, boolean,
characterdtring or integer.

22527 All transforms specified in "ENCODER-TRANSFORMS' shall be reversible transforms. The first transform
shall have a source which is boolean and the last transform shall have aresult which can be encoded by the class of the
field referenced by "USING".

22528 "DECODER-TRANSFORMS" shall be present only if "DETERMINED BY" isset to "asnl1-field". Thefirst
transform shall have a source which is the same as the category of the field referenced by "USING" which shall not be
an auxiliary fidd. Thelast transform shall have aresult which isboolean.

22529 The"USING" reference, if present, shall be afield that is present in the encoding earlier than the field whose
presence is being determined. It is an application or an ECN specification error if, in an instance of encoding, the
"USING" reference field is required by a decoder but is absent (through the exercise of optionality).

225210 If "DETERMINED BY" is"container”, the "USING" reference shall be to a concatenation or to arepetition
(or to a bitgtring or octetstring with a contained type) in which the element being encoded is a component (or a
component of a component, to any depth). It isan application or an ECN specification error if, in an instance of
encoding, later e ementswithin the same concatenation or repetition are to be encoded when the element whose
optionality is being determined is absent.

225211 If "DETERMINED BY" is"container", then it isan ECN specification error if any of the abstract values of
the optional e ement have an encoding that is zero bits.

22.5.3 Encoder actions
22531 Encodersshall not generate encodingsif the conditions of 22.5.2 are not satisfied.

22.5.3.2 An encoder shall determine whether the application wishes the optional element to be encoded, and shall
create a conceptual boolean value "eement-is-present” set to "TRUE" if a value of the element isto be encoded, and to
"FALSE" otherwise.

22533 If "DETERMINED BY" is"added-field", then the encoder shall apply the transforms specified by
"ENCODER-TRANSFORMS' (if any) to the conceptual boolean value "e ement-is-present” to produce a value that
shall be encoded in the "USING" reference.

NOTE: Theencoding of the "USING" reference in this case appears earlier in the encoding than the encoding of
this field, and an encoder will need to suspend the encoding of that field until the value to be encoded has
been determined by the encoding of this field.

22534 If "DETERMINED BY" is"asn1-field" then the encoder shall check that the value in the USING reference
when transformed by the "DECODER-TRANSFORMS' (if any) is a boolean value equal to the conceptual value
"element-is-present”. It isan application error if this condition isnot met, and encoding shall not proceed.

22535 |If "DETERMINED BY™" is"container" there isno further action needed by the encoder, except to detect an
error and to cease encoding if the application requests the encoding of further el ementsin the"USING" container when
the conceptual value "eement-is-present” is false for this optiona e ement.

22.53.6 If "DETERMINED BY" is"handl€" thereisno further action needed by the encoder.

22537 If "DETERMINED BY" is"pointer" then there are no encoder actions needed except those of the
accompanying pre-alignment (if any) and start pointer specifications.

ETSI

89 ETSI TS 101 969 V1.1.1 (2001-05)

22.5.4 Decoder actions

22541 |If "DETERMINED BY" is st to (or defaultsto) "added-field", then the decoder shall recover the value
"dement-is-present” by applying thereversal of the "ENCODER-TRANSFORMS" (if any) to the value of the USING
reference.

22542 If "DETERMINED BY" is"asnl-fied" then the decoder shall recover the conceptual value
"element-is-present” by applying the "DECODER-TRANSFORMS® (if any) to the value of that field.

22543 If "DETERMINED BY" is"container" then the decoder shall set the conceptual value "element-is-present” to
"TRUE" if and only if thereis at least one bit remaining in the "USING" container.

22544 |If "DETERMINED BY" is"handl€e", then the decoder shall determine the value of the bits associated with
the specified "HANDLE". If these bits match those encoded by (all) abstract values of the optional eement, then the
decoder shall set the conceptual value "element-is-present” to "TRUE", otherwise the decoder shall set it to "FALSE".

22545 If "DETERMINED BY" is"pointer" then the decoder shall proceed as specified in 22.3 in order to determine
the conceptual value of "dement-is-present”.

22.5.4.6 If thedecoder determines (by any of the above means) that the conceptual value "el ement-is-present” is
"FALSE", then decoding proceeds to the next el ement, otherwise the decoder expects an encoding of a value of the
optional element and will diagnose an encoding error if oneisnot present.

22.6 Alternative determination

22.6.1 Encoding parameters, syntax, and purpose

22.6.1.1 Alternative determination uses the following encoding parameters:

&al ternative-determ nation Al ternativeDeterm nation
DEFAULT added-field,
&al ternative-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&handl e-i d Printabl eString
DEFAULT "def aul t - handl e",
&al ternative-ordering ENUMERATED {t extual , tag}

DEFAULT t ext ual

22.6.1.2 Thesyntax to be used for alternative determination shall be:

ALTERNATI VE
[DETERM NED BY &al ternative-determ nation
[HANDLE &handl e-i d]]
[USI NG &al ternative-reference
[ORDER &al t ernati ve-ordering]
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Decoder - t r ansf or ns] |
22.6.1.3 Thedefinition of types used for alternative determination is
Al ternativeDeterm nation ::= ENUVERATED {added-field, asnl-field, handle} -- (see 21.6)

22.6.1.4 The purpose of the present document isto determine the rules that ensure that a decoder can correctly
identify which component of an encoding class in the alternatives category has been encoded.

22.6.2 Specification restrictions

22.6.21 If "DETERMINED BY" isnot present, then the default value ("added-field") is assumed.
22.6.2.2 "HANDLE" shall not be specified unless"DETERMINED BY" is"handl€e".

22.6.2.3 "USING" shall not be specified if "DETERMINED BY" is"handl€".

ETSI

90 ETSI TS 101 969 V1.1.1 (2001-05)

22.6.24 If "HANDLE" is specified, then al the alternatives of the encoding classin the alternatives category shall be
encoded by encoding objects whose specification exhibits and defines an identification handle with the same name as
"HANDLE", and with the same set of bits forming the identification handle. The value of the bits forming the
identification handle shall be different for all these alternatives.

NOTE: Itisarequirement that the bitsthat form an identification handle shall have the same value for al abstract
values encoded by an encoding object exhibiting that identification handle.

22.6.25 "ENCODER-TRANSFORMS" shall be present only if "DETERMINED BY" is set to (or defaultsto)
"added-field". Thefirst transform shall have a source which isinteger and the last transform shall have aresult which
can be encoded by the class of the field referenced by "USING".

22.6.26 All transforms specified in "ENCODER-TRANSFORMS' shall be reversible transforms.

22.6.2.7 "DECODER-TRANSFORMS" shall be present only if "DETERMINED BY" isset to "asnl1-field". Thefirst
transform shall have a source which is the same as the category of the field referenced by "USING" which shall not be
an auxiliary fidd. Thelast transform shall have aresult which isinteger.

22.6.2.8 The"USING" reference, if present, shall be afield that is present in the encoding earlier than the encoding of
the dternative. It isan application or an ECN specification error if, in an instance of encoding, the "USING" reference
field isrequired by a decoder but is absent (through the exercise of optiondity).

22.6.2.9 The present document is considered set if the"ALTERNATIVE" keyword is used, and it is mandatory for it
to be set in al places in the defined syntax whereit isalowed. Defaulting al other parts of this defined syntax (e.g., use
of "ALTERNATIVE" alone) would not satisfy the above constraints.

22.6.2.10 If "ORDER" is"tag", then every aternative shall start with an encoding classin thetag category. The tag
number associated with this classis called the component-tag.

22.6.211 The component-tags of each alternative shall be distinct.

22.6.3 Encoder actions
22.6.3.1 Encoders shall not generate encodings if the conditions of 22.6.2 are not satisfied.

22.6.3.2 An encoder shall determine which alternative the application wishes to be encoded, and shal create a
conceptual integer value "alternative-index” to identify that alternative.

22.6.3.3 Thevaue"atenative-index" shall be zero for thefirst alternative, one for the next, and so on, where the
order of the alternatives is determined by "ORDER".

22.6.3.4 If "ORDER" is"textual", the textual order in the ASN.1 type specification or the ECN sructure definition
shall be used. If "ORDER" is "tag", then the order shall be that of the tag numbers in the component-tags (lowest tag
number first).

22.6.35 If "DETERMINED BY" is"added-field", then the encoder shall apply the transforms specified by
"ENCODER-TRANSFORMS' (if any) to the conceptual value "alternative-index" to produce a value that shall be
encoded in the"USING" reference.

NOTE: Theencoding of the"USING" reference in this case appears earlier in the encoding than the encoding of
the aternative, and an encoder will need to suspend the encoding of that field until the alternative to be
encoded has been determined.

22.6.3.6 If "DETERMINED BY" is"asnl-field" then the encoder shall check that the value in the USING reference
when transformed by the "DECODER-TRANSFORMS' (if any) is an integer value equal to the conceptud value
"alternative-index". It isan application error if this condition is not met, and encoding shall not proceed.

22.6.3.7 If "DETERMINED BY" is"handl€" thereisno further action needed by the encoder.

22.6.4 Decoder actions
22.6.4.1 Thedecoder shall use"ORDER" as specified for encoder actionsto determine the alternative-index value that

is associated with each alternative, and shall assume the presence of an encoding of the associated alternative once an
"alternative-index" conceptual value has been determined.

ETSI

91 ETSI TS 101 969 V1.1.1 (2001-05)

22.6.4.2 If "DETERMINED BY" is st to (or defaultsto) "added-field", then the decoder shall recover the value
"alternative-index" by applying thereversal of the "ENCODER-TRANSFORMS" (if any) to the value of the "USING"
reference.

22.6.4.3 If "DETERMINED BY" is"asn1-field" then the decoder shall recover the conceptual value
"alternative-index" by applying the "DECODER-TRANSFORMS' (if any) to the value of that field.

22.6.4.4 If "DETERMINED BY" is"handl€", then the decoder shall determine the value of the bits associated with
the specified "HANDLE". These bits shall be compared to those encoded by each of the aternatives. If none match,
then the decoder shall diagnose an encoder's error. Otherwise the conceptual value "alternative-index” shall be set to the
matching alternative.

22.7 Repetition space specification

22.7.1 Encoding parameters, syntax, and purpose

22.7.1.1 Repetition space specification uses the following encoding parameters:

&repetition-space-size Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&repetition-space-unit Uni t
DEFAULT bi t,
&repetition-space-detern nation Repetiti onSpaceDet ernmi nation
DEFAULT added-fi el d,
&mai n-reference REFERENCE OPTI ONAL,
&Encoder -t ransf ornms #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t ransf orms #TRANSFORM ORDERED OPTI ONAL,
&handl e-i d Printabl eString
DEFAULT "defaul t - handl e",
& erm nation-pattern Non- Nul | - Pattern (ALL EXCEPT

di fferent:any) DEFAULT '0'B

22.7.1.2 Thesyntax to be used for repetition space specification shall be:

REPETI TI ON- SPACE

[SI ZE &repetition-space-size
[MULTI PLE OF &repetition-space-unit]]

[DETERM NED BY &repetition-space-determ nation
[HANDLE &handl e-i d]]

[USI NG &mai n-ref erence
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t r ansf or ns] |

[PATTERN &t erm nati on-pattern]

22.7.1.3 Thedefinition of types used in the present document is:

Encodi ngSpaceSi ze ::= | NTEGER
{encoder - option-wi th-determ nant (-3),
vari abl e-wi t h-determ nant (-2),
sel f-delimting-values(-1),

fixed-to-max(0)} (-2..MAX) -- (see 21.2)
Unit ::= | NTEGER

{repetitions(0), bit(1l), nibble(4), octet(8), wordl6(16),

dwor d32(32)} (0..256) -- (see 21.1)
RepetitionSpaceDeterm nation ::= ENUVERATED

{added-field, asnl-field, container, pattern, handle, not-needed} -- (see 21.7)
Non-Nul | -Pattern ::= Pattern

(ALL EXCEPT (bits:'"B | octets:""H | char8:"" | charl16:"" | char32:"") -- (see 21.10)

22.7.1.4 The purpose of the present document isto determine encoder and decoder actionsto ensure that a decoder
can correctly determine the end of the encoding space occupied by a repetition.

NOTE: An actual repetition encoding does not necessarily fill the entire encoding space, and recovery of the

repetition encoding by a decoder will in general also require actions specified for value padding and
justification (see 22.8).

ETSI

92 ETSI TS 101 969 V1.1.1 (2001-05)

22.7.1.5 Themeaning of the encoding parameters of type "Unit", "EncodingSpaceSize", and
"RepetitionSpaceDetermination” were given in 21.1, 21.2, and 21.7. Together these specify the way in which the end of
the encoding space for repetitions is determined.

NOTE: If the ECN specifier requiresthat alength determinant isto be included, the value
"variable-with-determinant” of "SIZE" can be specified even if the repetition spaceisfixed size.

22.7.1.6 The"USING" specification isareferenceto an auxiliary field or to afield carrying abstract values, or to a
container, depending on the value of "DETERMINED BY".

22.7.2 Specification constraints

22721 If"SIZE" is"variable-with-determinant” and "DETERMINED BY" isnot present, then the default value
("added-field") is assumed.

22.7.2.2 "USING" shall be specified if and only if "SIZE" is "variable-with-determinant” and "DETERMINED BY" is
"added-fidd" or "asnl-fidd", or "container".

22.7.2.3 "ENCODER-TRANSFORMS" shall be present only if "DETERMINED BY" is set to (or defaultsto)
"added-field". Thefirst transform shall have a source which isinteger and the last transform shall have aresult which
can be encoded by the class of the field referenced by "USING".

22.7.24 All transforms specified in "ENCODER-TRANSFORMS' shall be reversible transforms.

22725 "DECODER-TRANSFORMS" shall be present only if "DETERMINED BY" isset to "asnl1-field". Thefirst
transform shall have a source which is the same as the category of the field referenced by "USING" which shall not be
an auxiliary fiedld. Thelast transform shall have aresult which isinteger.

22726 The"USING" reference, if present, shall be afield that is present in the encoding earlier than the field being
encoded. It isan application or an ECN specification error if, in an ingtance of encoding, the field being encoded is
present but the "USING" reference field is absent (through the exercise of optionality).

22.7.2.7 |f "DETERMINED BY" is"container", the "USING" reference shall be to a concatenation or to arepetition
(or to a bitgtring or octetstring with a contained type) in which the repetition being encoded is a component (or a
component of a component, to any depth). It isan application or an ECN specification error if, in an instance of
encoding, later el ementswithin the same concatenation or repetition are to be encoded.

22.7.2.8 "HANDLE" shall be specified only if "SIZE" is "variable-with-determinant” and "DETERMINED BY" is
"handl€".

22.7.29 If "HANDLE" is specified, then the repeated element, together with any element which (through the use of
optionality) may follow therepeated element shall al be encoded by encoding objects whose specification exhibits and
defines an identification handle with the same name as "HANDLE", and with the same set of bits forming the
identification handle. The value of the bits forming the identification handle in the repeating element shall be different
from those of any possible following € ement.

NOTE: Itisarequirement that the bitsthat form an identification handle shall have the same value for al abstract
values encoded by an encoding object exhibiting that identification handle.

22.7.210 "PATTERN" shall be specified only if "SIZE" is"variable-with-determinant” and "DETERMINED BY" is
"pattern”.

22.7.2.11 "PATTERN" shall not betheinitial sub-string of the encoding of any value of the repeated element.

NOTE: Thereisno prohibition on the occurrence of "PATTERN" within an encoding of the repested element
other than at its start.

22.7.2.12 The present document is considered set if the "REPETITION-SPACE" keyword isused, and it is mandatory
for it to be set in all placesin the defined syntax where it is allowed. Defaulting all other parts of this defined syntax
(e.g., use of "REPETITION-SPACE" alone) would not satisfy the above constraints.

22.7.3 Encoder actions

22.7.3.1 Encodersshall not generate encodings if the conditions of 22.7.2 are not satisfied.

ETSI

93 ETSI TS 101 969 V1.1.1 (2001-05)

22.7.3.2 If"SIZE" isa positive value, then the encoding spaceis that multiple of "MULTIPLE OF" units. If
"MULTIPLE OF" isrepetitions, then the encoder shall cease encoding if the abstract value to be encoded isnot "SIZE"
repetitions, diagnosing a specification or application error.

22.7.3.3 If"SIZE" isnot set to a positive value, then the encoder shall determinethesize"s' of the repetition spacein
"MULTIPLE OF" units from the value encoding specification. This determination is specified in the clauses on value
encoding specification.

22.7.34 If "SIZE" is "encoder-option-with-determinant” then the encoder (as an encoder's option) may increase the
Size's' (asdetermined in 22.7.3.3) in "MULTIPLE OF" units from that determined from the value encoding
specification to any value which can be encoded in the associated determinant.

22.7.35 If "SIZE" is"fixed-to-max" or to "self-delimiting-values’, then thereisno further encoder action.

22.7.3.6 If"SIZE" is"variable-with-determinant” and "DETERMINED BY" is"container”, then thereis no further
encoder action.

22.7.3.7 |f "DETERMINED BY" is"added-field", then the encoder shall apply the transforms specified by
"ENCODER-TRANSFORMS' (if any) to the value"'s" to produce a value that shall be encoded in the"USING"
reference.

NOTE: Theencoding of the"USING" reference in this case appears earlier in the encoding than the encoding of
the repetition, and an encoder will need to suspend the encoding of that field until the repetition to be
encoded has been determined.

22.7.3.8 If "DETERMINED BY" is"asn1-field" then the encoder shall check that the value in the "USING" reference
when transformed by the "DECODER-TRANSFORMS' (if any) isequal to"'s". It isan application error if this
condition is not met, and encoding shall not proceed.

22.7.3.9 If "DETERMINED BY" is"handl€" thereisno further action needed by the encoder.

22.7.3.10 If "DETERMINED BY" is"pattern”, then the encoder shall check that the specified pattern isnot an initial
substring of any of the encodings of the repeated element, and shall cease encoding if this check fails, diagnosing a
specification or application error. The encoder shall add the pattern "PATTERN" to the end of the encoding of the
repetition.

22.7.4 Decoder actions

22.7.4.1 If"SIZE" isapoditive value, then the decoder determines the encoding space as that multiple of
"MULTIPLE OF" units. If "MULTIPLE OF" isrepetitions, then the actual end of the repetition space is determined by
decoding and counting repetitions.

22.74.2 If"SIZE" isnot set to a positive value, then the encoder shall determinethesize"s’ of the repetition spacein
"MULTIPLE OF" units from the value encoding specification. This determination is specified in the clauses on value
encoding specification.

22743 If"SIZE" is"variable-with-determinant” and "DETERMINED BY" isset to "container”, then the decoder
shall use the end of the container specified by "USING" as the end of the encoding space.

22744 If"SIZE" is"variable-with-determinant” and "DETERMINED BY" isset to (or defaultsto) "added-field",
then the decoder shall recover thevalue"s" by applying thereversal of the "ENCODER-TRANSFORMS' (if any) to
the value of the"USING" reference.

22745 If "DETERMINED BY" is"asn1-field" then the decoder shall recover the value"'s" by applying the
"DECODER-TRANSFORMS' (if any) to the value of that field.

22.74.6 If "DETERMINED BY" is"handl€", then the decoder shall determine the bits associated with the
identification handle and attempt to decode the following element (in parallel) as either a further repetition or asa
following element, using the value of the bitsin theidentification handle to distinguish these alternatives. If decoding
succeeds for more than one of these, it isan encoding error. If it succeeds for none of these it isan encoding or a
specification error.

ETSI

22747

94 ETSI TS 101 969 V1.1.1 (2001-05)

If "DETERMINED BY" is"pattern” then the decoder shall, at the start of decoding each repetition, check

whether "PATTERN" is present. If "PATTERN" is present, the bits of pattern shall be discarded, and the repetition

terminated.

22.8

22.8.1

Value padding and justification

Encoding parameters, syntax, and purpose

22.81.1 Vaue padding and justification uses the following encoding parameters:

&val ue-justification

&val ue- pre- paddi ng

&val ue-pre-pattern

&val ue- post - paddi ng

&val ue- post-pattern
&unused- bi t s- det ermi nati on

&unused- bi ts-reference

Justification DEFAULT right:O0,
Paddi ng DEFAULT zer o,

Non- Nul | - Pattern DEFAULT bits:'0'B
Paddi ng DEFAULT zero,

Non- Nul | - Pattern DEFAULT bits:'0'B
UnusedBi t sDet ermi nati on

DEFAULT added-field,

REFERENCE OPTI ONAL,

&Encoder - unused- bi t s-transforns
&Decoder - unused- bi t s-transforns

#TRANSFORM CRDERED OPTI ONAL,
#TRANSFORM CRDERED OPTI ONAL

22.8.1.2 Thesyntax to be used for value padding and justification shall be:
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pre- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bit s-determ nati on]
[USI NG &unused- bits-reference
[ENCODER- TRANSFORMS &Encoder - unused- bi t s-t ransf or ns]
[DECODER- TRANSFORMS &Decoder - unused- bits-transforms]]]]

22.8.1.3 Thedefinition of typesused in justification is:

Justification ::= CHO CE

{ left | NTEGER (0. . MAX)

ri ght | NTEGER (0..MAX)} - (see 21.8)
Paddi ng ::= ENUMERATED {zero, one, pattern, encoder-option} - (see 21.9)
Pattern ::= CHO CE
{bits BI T STRI NG,
octets OCTET STRI NG,
char 8 | A5String,
char 16 BMPSt ri ng,
char 32 Uni ver sal Stri ng,
any-of -1 ength | NTEGER (1..MAX),
di fferent ENUMERATED {any} }
Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:''B | octets:''H| char8:"" |
char16:"" | char32:"") - (see 21.10)
UnusedBi t sDet ermi nati on ::= ENUMERATED
{added-field, asnl-field, not-needed} - (see 21.4)

22.8.1.4 The purpose of the present document isto determine the way in which an encoder places avalue encoding in
an encoding space, and enables a decoder to determine the position of the value encoding.

22.8.1.5 The precise number of bits to be added by an encoder depends on both the encoding space specification and
on the value encoding specification, and is specified for each instance of value encoding.

22.81.6 "USING" isareference that enables a decoder to determine the number of padding bitsinserted. Itisa
reference to an auxiliary field or to afield carrying abstract values, depending on "DETERMINED BY".

ETSI

95 ETSI TS 101 969 V1.1.1 (2001-05)

22.8.2 Specification restrictions

22.82.1 Thenumber of bits specified in justification shall be less than or equal to the total number of padding bits"b"
(see below).

22.8.2.2 "USING" shall be specified if and only if "DETERMINED BY" isnot "not-needed".

22.8.2.3 "ENCODER-TRANSFORMS" shall be present only if "DETERMINED BY" is set to (or defaultsto)
"added-field". Thefirst transform shall have a source which isinteger and the last transform shall have aresult which
can be encoded by the class of the field referenced by "USING".

22.8.24 All transforms specified in "ENCODER-TRANSFORMS' shall bereversible transforms.

22825 "DECODER-TRANSFORMS" shall be present only if "DETERMINED BY" isset to "asnl1-field". Thefirst
transform shall have a source which is the same as the category of the field referenced by "USING" which shall not be
an auxiliary fiedd. Thelast transform shall have aresult which isinteger.

22826 The"USING" reference, if present, shall be afield that is present in the encoding earlier than the field being
encoded. It isan application or an ECN specification error if, in an ingtance of encoding, the field being encoded is
present but the "USING" reference field is absent (through the exercise of optionality).

22.8.2.7 The present document is considered set if the "VALUE" keyword isused. Actionsif it isnot set are specified
in all places wherethat syntax is permitted.

22.8.3 Encoder actions
22.8.3.1 Encoders shall not generate encodings if the conditions of 22.8.2 are not satisfied.

22.8.3.2 The present document isapplied if and only if the encoding space or the repetition space encoding
specification, together with the value encoding specification, determine that there may be added padding bits around the
value or repetition encoding within the encoding or repetition space. L et the determined number of added padding bits
in an instance of encoding be "b" (where "b" is greater than or equal to 0).

22.83.3 If"JUSTIFIED" is"right:n", then "b"-"n" bits shall be added as pre-padding before the value or repetition
encoding, and "n" bits shall be added as post-padding after it.

22.834 If"JUSTIFIED" is"left:n", then "n" bits shall be added as pre-padding before the value or repetition
encoding, and "B"-"n" bits shall be added as post-padding after it.

22.8.35 Thepadding bits shall be set in accordance with the "PRE-PADDING" and "POST-PADDING"
specifications, with the leading bit of the pattern asthe first inserted bit in each case.

22.8.3.6 If "DETERMINED BY" is"not-needed" then this completes the encoders actions.

22.8.3.7 If "DETERMINED BY" is "added-field", then the encoder shall apply the transforms specified by
"ENCODER-TRANSFORMS' (if any) to the value "b" to produce a value that shall be encoded in the"USING"
reference.

NOTE: Theencoding of the"USING" reference in this case appears earlier in the encoding than the encoding of
thisfield, and an encoder will need to suspend the encoding of that field until the value to be encoded has
been determined by the encoding of this field.

22.83.8 If "DETERMINED BY" is"asnl-field" then the encoder shall check that the value in the "USING" reference
when transformed by the "DECODER-TRANSFORMS' (if any) isequal to "b". It isan application eror if this
condition is not met, and encoding shall not proceed.

22.8.4 Decoder actions

22.84.1 If "DETERMINED BY" is"not-needed”, then the decoder shall determine the value of "b" as determined by
the specification of value encoding and encoding space or repetition determination.

22.84.2 If "DETERMINED BY" is st to (or defaultsto) "added-field", then the decoder shall recover the value "b"
by applying thereversal of the "ENCODER-TRANSFORMS® (if any) to the value of the "USING" reference.

ETSI

96 ETSI TS 101 969 V1.1.1 (2001-05)

22.84.3 If "DETERMINED BY" is"asnl-field" then the decoder shall recover the value "b" by applying the
"DECODER-TRANSFORMS' (if any) to the value of that field.

22.8.4.4 Thedecoder shall usethe"JUSTIFIED" and the value of "b" to determine the position of the value encoding
within the encoding space, and shall ignore the value of all padding bits.

22.9 Identification handle specification

22.9.1 Encoding parameters, syntax, and purpose

22.9.1.1 Identification handle specification uses the following encoding parameters:

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons I NTEGER (0..MAX) OPTI ONAL

22.9.1.2 Thesyntax to be used for identification handle specification shall be:

[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]

22.9.1.3 The present document is used to identify that an encoding object exhibits an identification handle within all
its encodings. The name of the identification handleis specified, and the bitsthat are associated with that identification
handle, but the value of those bits is determined by other parts of the encoding specification.

22914 Thelist of positionsin "AT" shall be the positions of the bits forming the identification handle in the final
encoding, after any encoder bit-reversal actions have occurred except those bit-reversals that result from the
specification of an encoding object in the #OUTER class.

22.9.2 Specification constraints

22.9.21 Inany application of ECN, al identification handles with the same name shall specify the same set of bits for
the location of the identification handle.

NOTE: Thereisno genera requirement that the value of the bitsfor an identification handle (exhibited by
different classes) should be distinct, but distinct values arerequired when the identification handleis used
to resolve optionality, alternative selection, or repetition termination.

22.9.2.2 TheECN specifier shall ensure that any encoding object exhibiting an identification handle produces the
same value for the bits in the identification handle for every abstract valuethat is encoded.

22.9.2.3 If an encoding class in the repetition category exhibits an identification handle, then that identification handle
shall also be exhibited by the repeated element.

22.9.24 If an encoding class in the alternatives category exhibits an identification handle, then that identification
handle shall also be exhibited by all aternatives.

22.9.25 If an encoding class in the concatenation category exhibits an identification handle, then the bits contributing
to that identification handle are not required to be part of the encoding of the first component, but may be part of the
first and subsequent component encodings.

22.9.26 Thepresent document is considered set if the "EXHIBITS-HANDLE" keyword isused. If it isnot set then
thereis no identification handle exhibited.
22.9.3 Encoders actions

22.9.3.1 |If an encoding object exhibits an identification handle, the encoder shall check that the encoding of all
abstract values have the same value for the bitsin the identification handle, and shall diagnose a specification or
application error otherwise.

ETSI

97 ETSI TS 101 969 V1.1.1 (2001-05)

22.9.4 Decoders actions

22.94.1 Thereareno decoders actions directly resulting from the exhibition of an identification handle. Decoder
actions only result from use of the identification handle to determine optionality, end of repetitions, or choice of
alternatives.

22.10 Concatenation specification

22.10.1 Encoding parameters, syntax, and purpose

22.10.1.1 Concatenation specification uses the following encoding parameters:

&concat enat i on- or der ENUMERATED {t extual, tag, randon}
DEFAULT textual,

&concat enati on-al i gnment ENUMERATED { none, aligned}
DEFAULT al i gned,

&concat enat i on- handl e Printabl eString

DEFAULT "def aul t - handl e"

22.10.1.2 The syntax to be used for concatenation specification shal be:

[CONCATENATI ON
[ORDER &concat enati on- order]
[ALI GNMENT &concat enati on-al i gnnent]
[HANDLE &concat enati on-handl e]]

22.10.1.3 The present document determines the order in which the elements of an encoding class in the concatenation
category are encoded, the means an encoder uses to identify each component, and any pre-alignment padding that isto
be provided between components.

22.10.2 Specification constraints

22.10.2.1 If "ORDER" is"random", then "HANDLE" assumes the default value of "default-handle” if not set, and all
components shall exhibit "THANDLE" with digtinct values for the bitsin the identification handle.

22.10.22 If "ALIGNMENT" is"aligned", then the pre-alignment specification assumes the default value unless set.

22.10.2.3 If acomponent hasits own explicit pre-alignment, thisis applied after any pre-alignment of the component
resulting from the setting of "ALIGNMENT" in the encoding class of the concatenation category.

NOTE: Theequivalent function isnot provided for repetitions, asit can be achieved more simply by
pre-alignment of the single component.

22.10.24 If "ORDER" is"tag", then every component shall start with an encoding classin the tag category. Thetag
number associated with this classis called the component-tag.

22.10.25 The component-tags of each alternative shall be distinct.

22.10.2.6 The present document is considered set if the"CONCATENATION" keyword isused. If it isnot set then
encoders and decoders act asif it was set with each encoding parameter taking its default value.

22.10.3 Encoder actions

22.10.31 If "ORDER" is "textua", the textual order in the ASN.1 type specification or the ECN sructure definition
shall be used.

22.10.3.2 If "ORDER" is"tag", then the order shall be that of the tag numbersin the component-tags (lowest tag
number first).

22.10.3.3 If "ORDER"is"random", then the encoder shall determine the order of concatenation without constraint.

22.10.3.4 If "ALIGNMENT" is"none", the encoder shall juxtapose the encodings of components with no inserted
bits.

ETSI

98 ETSI TS 101 969 V1.1.1 (2001-05)

22.10.35 If "ALIGNMENT" is"aligned", then the encoder shall apply the pre-alignment specification of the classin
the concatenation category before encoding each component, except that a pre-alignment specification of "ALIGNED
TO ANY" shall be interpreted as a specification of "ALIGNED TO NEXT" (see 22.2).

NOTE 1: Thisis because there can only be a single start pointer for "ALIGNED TO ANY".
NOTE 2: Any pre-alignment specified for a component (including "ALIGNED TO ANY") is applied after the
above actions.
22.10.4 Decoder actions

22.10.41 When decoding a component, adecoder shall first perform the decoder actions associated with the
pre-dignment specification for "ALIGNMENT" if it is set to "aligned”, treating "ALIGNED TO ANY" as"ALIGNED
TO NEXT" (see22.2). If "ALIGNMENT" is set to "none”, then the decoder shall proceed directly to decoding the
component.

22.10.4.2 The decoder shall determinethe order of the components from the defined order for the encoder if
"ORDER" is"textud" or "tag".

22.10.4.3 If "ORDER" is"random"”, the decoder shall determine the order of the components by examining the value
of the bits associated with "HANDLE".

22.10.4.4 Each component has a distinct value for the bits associated with "HANDLE" that enables the component to
be identified. Decoding shall proceed until an abstract value for every component has been obtained, and an encoder
shall diagnose an encoder's error if more than one encoding isidentified for a component, or if unexpected values
appear for identification handles during the decoding.

NOTE: Unexpected values can occur as part of extensibility provision, but thisisnot supported in this version of
the present document, and such occurrences shall be treated as encoder errors.

22.11 Contained type encoding specification

22.11.1 Encoding parameters, syntax, and purpose

221111 The contained type encoding specification uses the following encoding parameters:

&Pri mar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&Secondar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&over -ri de- encoded- by BOOLEAN DEFAULT FALSE

22.11.1.2 The syntax to be used for contained type encoding specification shall be:

[CONTENTS- ENCODI NG &Pri mar y- encodi ng- obj ect - set
[COWPLETED BY &Secondary- encodi ng- obj ect - set]
[OVERRI DE &over -ri de-encoded- by]]

22.11.1.3 The purpose of the present document isto determine the encoding of a contained type, and whether an
ASN.1 "ENCODED BY™" contents constraint associated with that contained type shall be overridden.

22.11.1.4 The present document provides either one or two encoding object sets. If two are provided, they are
combined according to clause 13.2 to produce a combined encoding object set.

221115 The present document is considered set if the"CONTENTS-ENCODING" keyword is used.

22.11.2 Encoder actions
221121 If "CONTENTS-ENCODING" is not s&t, then a contained type shall be encoded using the combined

encoding object set applied to the container if "ENCODED BY" is not present in the ASN.1 contents constraint,
otherwise with the encoding rules specified by the "ENCODED BY" statement.

ETSI

99 ETSI TS 101 969 V1.1.1 (2001-05)

22.11.22 If "CONTENTS-ENCODING" is set, the combined encoding object set formed from "COMPLETED BY"
shall be applied to the contained type if "ENCODED BY" isnot present in the ASN.1 contents constraint, or if
"ENCODED BY" ispresent and "OVERRIDE" is"TRUE". Otherwise the combined encoding set applied to the
containing type shall be applied to the contained type.

22.11.3 Decoder actions

22.11.3.1 A decoder shall decode the contained type in accordance with the encoding applied by the encoder, as
specified above.

22.12 Bit reversal specification

22.12.1 Encoding parameters, syntax, and purpose

22.12.1.1 Bit reversal specification uses the following encoding parameter:

&bit-reversal Rever sal Speci fi cation
DEFAULT no-rever sal

22.12.1.2 The syntax to be used for bit reversal specification shall be:

[BI T- REVERSAL &bit-reversal]

22.12.1.3 Thedefinition of types used inthisgroup is:

Rever sal Speci fication ::= ENUMERATED
{no-reversal,
reverse-bits-in-units,
reverse-hal f-units,
reverse-bits-in-half-units} -- (see 21.13)

22.12.1.4 The purpose of the present document isto enable the order of bitsin the final encoding to be different from
those hits generated as part of an encoding-space or repetition-space, or in the complete encoding of a PDU (see
clause 25).

NOTE 1: Bit reversal can be specified for individual bit-field encodings and also for the results of concatenation or
repetition. Care should be taken to ensure that one reversal does not negate the other.

NOTE 2: Bit reversal appliesto the contents of an encoding space or repetition space (including any value
pre-padding or post-padding), but does not apply to any pre-alignment padding.

22.12.2 Specification constraints

22.12.2.1 The present document is only avail able when an encoding space or repetition space encoding isrequired,
and within #OUTER.

22.12.2.2 "BIT-REVERSAL" shall not be "reverse-half-units' or "reverse-bits-in-half-units’ unless"MULTIPLE OF"
is set to an even number of bits for the encoding space or repetition space or #OUTER reversal. (This requirement
means that a value of "repetitions’ for "MULTIPLE OF" isnot alowed in this case).

22.12.2.3 "BIT-REVERSAL" shall not be set unless"MULTIPLE-OF" isrepetitions or is greater than one hit.

22.12.2.4 The present document is considered set if the"BIT-REVERSAL" keyword isused. If it isnot set then
encoders and decoders act asif it was set with the encoding parameter taking its default value.

22.12.3 Encoder actions

22.12.3.1 Except when performing #OUTER actions, an encoder shall divide the contents of the encoding space or
repetitions space into "MULTIPLE OF" unitsunless"MULTIPLE OF" is"repetitions'. If "MULTIPLE OF" is
"repetitions’, then the entire encoding space shall be treated as a single unit. When performing bit-reversal for
#OUTER, the entire encoding (after any "PADDING" has been applied) shall be divided into "MULTIPLE OF" units. It
isan ECN specification error if the entire encoding isnot an integral multiple of "MULTIPLE OF" units.

ETSI

100 ETSI TS 101 969 V1.1.1 (2001-05)

22.12.3.2 Theencoder shal do noreversal (the default value), or shall reverse the bitsin each unit, or shall reverse the
half-units (without changing the order of bitsin each half-unit) or shall reverse the bits within each haf-unit, as
specified by the value of "BIT-REVERSAL".

22.12.4 Decoder actions

22.12.4.1 Thedecoder shal first determine (see encoding space and repetition space specification) the end of the
encoding space or repetition space or (for bit-reversal specification within #OUTER) the end of the entire encoding, and
shall then perform the reversal actions specified for the encoder before continuing with decoding.

NOTE: Performing the samereversals will recover the origina bit-order.

23 Defined syntax specification for bitfield and
constructor classes

This clause provides the full syntax for defining encoding objects of each encoding class in the different categories.
NOTE: Encoder and decoder actions are specified in the following clauses as conditional on a parameter group

being set. A group isset if and only if theinitial keyword of the group is present in the specification of the
encoding object.

23.1 Defining encoding objects for classes in the alternatives
category

23.1.1 The defined syntax

The syntax for defining encoding objects for classes in the alternatives category is defined as:

#ALTERNATI VES :: = ENCODI NG CLASS {
- Structure or conponent replacenent specification (see 22.1)
&#Repl acenent - structure OPTIl ONAL,
&#Repl acenent - st ruct ure2 OPTIl ONAL,
&r epl acenment - st ruct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,
&r epl acenment - st ruct ur e- encodi ng- obj ect 2 &*#Repl acenent - st ruct ure2 OPTI ONAL,
&#Head- end-structure OPTI ONAL,
&#Head- end- struct ure2 OPTI ONAL,
- Pre-alignnent and paddi ng specification (see 22.2)
&encodi ng- space- pre-al i gnnent - uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space- pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
- Alternative determ nation (see 22.6)
&al ternative-determ nation Al ternativeDeterm nation
DEFAULT added-field,
&al ternative-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,
&handl e-i d Printabl eString
DEFAULT "def aul t - handl e",
&al ternative-ordering ENUMERATED {t extual , tag}

DEFAULT t extual ,
- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL

ETSI

101 ETSI TS 101 969 V1.1.1 (2001-05)

} W TH SYNTAX {
[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COVPONENTS]
[OPTI ONALS]
[NON- OPTI ONALS]
W TH &#Repl acenent - structure
[ENCODED BY &repl acenent - struct ur e-encodi ng- obj ect
[NSERT AT HEAD &#Head-end-structure]]
[AND OPTI ONALS W TH &#Repl acenent - st ruct ur e2
[ENCODED BY &repl acenent - struct ur e-encodi ng- obj ect 2
[NSERT AT HEAD &#Head-end-structure2]]] 1
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-al i gnment -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

[START- PO NTER &start-pointer

[MULTI PLE OF &start-pointer-unit]

[ENCODER- TRANSFORMS &St art - poi nt er-encoder-transforns]]
ALTERNATI VE

[DETERM NED BY &al ternative-determ nation
[HANDLE &handl e-id]]
[USI NG &al ternative-reference
[ORDER &al t ernati ve-ordering]
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder - t r ansf or ns] |
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]

23.1.2 Purpose and restrictions

23.1.2.1 Thissyntax is used to define the start of the encoding space for an encoding classin the alternatives category,
the determination of the alternative that has been encoded, and an optional declaration that al encodings exhibit a
specified identification handle.

23.1.2.2 If "REPLACE STRUCTURE" is s&t, then no other encoding parameter groups shall be set.

23.1.2.3 Encodings of this class do not exhibit an identification handle unless "EXHIBITS HANDLE" is et (even if
all components exhibit an identification handle, that may or may not be the same).

23124 If "EXHIBITSHANDLE" is sat, then encodings of all the alternatives of this class arerequired to exhibit the
defined identification handle.

NOTE: Thiswould normally require that every component had a"EXHIBITS HANDLE" set to the same value,
unless a head-end insertion exhibited the identification handle (see 9.10.3).
23.1.3 Encoder actions

23.1.3.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement;
b) pre-dignment and padding;
C) dstart pointer;
d) alternative determination;

€) identification handle.

ETSI

102 ETSI TS 101 969 V1.1.1 (2001-05)

23.1.4 Decoder actions

23.1.4.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;
b) start pointer;

c) aternative determination.

23.2 Defining encoding objects for classes in the bitstring
category

23.2.1 The defined syntax

The syntax for defining encoding objects for classes in the bitstring category is defined as:

#BI TS :: = ENCODI NG CLASS {
-- Pre-alignnment and paddi ng specification (see 22.2)
&encodi ng- space-pre-al i gnment -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,
&encodi ng- space-pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)

DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTIl ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
-- Bits val ue encoding
&val ue-reversal BOOLEAN DEFAULT FALSE,
&Encoder -t ransf orms #TRANSFORM ORDERED OPTI ONAL,
&Bits-repetition-encodi ngs #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&bits-repetition-encoding #CONDI TI ONAL- REPETI TI ON OPTI ONAL
-- ldentification handle specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
-- Contained type encoding specification (see 22.11)
&Pri mary- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&Secondar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&over -ri de- encoded- by BOOLEAN DEFAULT FALSE
} WTH SYNTAX {
[ALI GNED TO
[NEXT]
[ANY]

&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORMS &St art - poi nter-encoder-transforns]]
[VALUE- REVERSAL &val ue-reversal]
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[REPETI TI ON- ENCODI NGS &Bits-repetition-encodings]
[REPETI TI ON- ENCODI NG &bi ts-repetition-encoding]

[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]
[CONTENTS- ENCODI NG &Pri mar y- encodi ng- obj ect - set

[COWPLETED BY &Secondary- encodi ng- obj ect - set]

[OVERRI DE &over -ri de-encoded- by]]

ETSI

103 ETSI TS 101 969 V1.1.1 (2001-05)

23.2.2 Model for the encoding of classes in the bitstring category
23.2.2.1 Themodd of bits encodingsis:

a) the order of bitsin the bitstring can be reversed;

b) the bitsare then considered asarepetition of hit;

¢) thereisan optiona transform (specified by "ENCODER-TRANSFORMS") in which each bit istransformed into
a (sdlf-delimiting) bitstring;

d) ether "REPETITION-ENCODING" or "REPETITION-ENCODINGS" specify how the repetition of the
sequences of hits (or of the original bits, if "ENCODER-TRANSFORMS' is not set) are to be encoded.

NOTE: Thesole purpose of allowing "REPETITION-ENCODING" aswell as"REPETITION-ENCODINGS" is
to provide a syntax that does not contain a double curly-bracket ("{{") in the common case of a single
conditional encoding. Use of "REPETITION-ENCODINGS" when thereis a single conditional encoding
is deprecated but is allowed.

23.2.2.2 Bounds (if present) on the class being encoded (aclass in the bitstring category) are bounds on the number of
bitsin the bitstring forming each abstract value.

23.2.2.3 When considered as arepetition of a bit, these bounds shall be interpreted as bounds on the number of
repetitions, and can be used in the specification of the encoding objects of class #CONDITIONAL-REPETITION that
are used in the specification of this encoding object.

23.2.3 Purpose and restrictions

23.23.1 Thissyntax is used to define the start of the encoding space for aclassin the bitstring category, the encoding
of the abstract values of that class, an optional declaration that all bits encodings exhibit a specified identification
handle, a specification of how to encode a contained type.

23.2.3.2 If "REPLACE" is s&t, then no other encoding parameter groups shall be set.

23.2.33 The#CONDITIONAL-REPETITION that is applied by this encoding object shall not specify "REPLACE"
unlessit is"REPLACE STRUCTURE".

23.2.3.4 Thefirg transformin "ENCODER-TRANSFORMS' (if any) shall have a source that is asingle bit and the
last transform shall have aresult that is bitstring. The bitstrings produced for a one-bit and for a zero-bit shall form a
self-delimiting set (see 3.2.39).

NOTE: Thismeansthat thefinal transformisrequired to be salf-delimiting.
23.235 The"ENCODER-TRANSFORMS' shall be reversible transforms.
23.23.6 Exactly oneof "REPETITION-ENCODING" and "REPETITION-ENCODINGS" shall be st.

23.2.3.7 If an encoding object in the"REPETITION-ENCODINGS' list isdefined using "IF", then all preceding
encoding objectsin that list shall be defined using "1F".

23.2.3.8 If "DETERMINED BY" is"not-needed" in one or more of the "REPETITION-ENCODING(S)"
specifications, then the abstract values of the original bitstring to which that encoding object isapplied shall be
constrained to afinite self-delimiting set that can be identified from the ECN specification.

NOTE: Thiswould be the case if the bitstring values resulted from a Huffman-style encoding (see annex E)
specified by mapping integer values to bits (see 19.7), or if the bitstring values had an ECN-visible bound
restricting them to a fixed number of bits.

23.239 If"EXHIBITSHANDLE" is set, then all encodings of values associated with this class shall exhibit the
specified identification handle.

NOTE: Thiswill in genera require restrictions on the abstract values of the associated type or the addition of
redundant bitsin the transform into bits, or both.

ETSI

104 ETSI TS 101 969 V1.1.1 (2001-05)

23.2.4 Encoder actions

23.2.4.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;

b) start pointer;

¢) bitsvalue encoding (see 23.2.4.2);

d) identification handle;

€) contained type encoding.
23.24.2 For bits value encoding, the encoder shall:

a) reversethe order of bitsin the entire bitstring abstract value if "VALUE-REVERSAL" isset to "TRUE";

b) treat the bitstring value as arepetition of a bit;

c) apply the specified "ENCODER-TRANSFORMS' (if any) to each bit to produce a repetition of bits;

d) encode the repetition by applying thefirst "REPETITION-ENCODING(S)" whose condition is satisfied.
23.2.4.3 lItisan ECN specification error if thereisno "REPETITION-ENCODING(S)" whose condition is satisfied.

23.2.5 Decoder actions

23.25.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-alignment and padding;

b) start pointer;

¢) bitsvalue decoding (see 23.2.5.2);
d) contained type decoding.

23.2.5.2 For bits value decoding, the decoder shall usethe"REPETITION-ENCODING(S) " to determine the
repetition space and to recover the original bit order usng the "BIT-REVERSAL" specification.

23.25.3 If "ENCODER-TRANSFORMS" is s, then the decoder shall use the self-delimiting property of the
encoding of each bit to determine the end of each repetition, and shall reverse the transforms to recover the original
bitstring value.

23254 If "VALUE-REVERSAL" isset to "TRUE", then the final order of the bitsin the bitstring abstract value
shall be reversed.

23.3 Defining encoding objects for classes in the boolean
category

23.3.1 The defined syntax

The syntax for defining encoding objects for classes in the boolean category is defined as:

#BOOL ::= ENCODI NG CLASS ({
- Structure-only replacenent specification (see 22.1)
&#Repl acenent - struct ure OPTI ONAL,
&r epl acenent - struct ur e- encodi ng- obj ect &#Repl acenent - structure OPTI ONAL,

ETSI

105 ETSI TS 101 969 V1.1.1 (2001-05)

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space- pre-al i gnnent -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space- pre-pattern Non- Nul | - Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
-- Encodi ng space specification (see 22.4)
&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space-uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,
&encodi ng- space-det erm nati on Encodi ngSpaceDet er mi nati on
DEFAULT added-field,
&encodi ng- space-reference REFERENCE OPTI ONAL,
&Encoder - transf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
-- Bool ean val ue encodi ng
&val ue-true-pattern Pattern DEFAULT bits:'1'B,
&val ue-fal se-pattern Pattern DEFAULT bits:'O0'B,
-- Val ue padding and justification (see 22.8)
&val ue-justification Justification DEFAULT right:DO,
&val ue- pre- paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post -pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&unused- bi t s-det ermi nati on UnusedBi t sDet er m nati on
DEFAULT added-field,
&unused- bi ts-reference REFERENCE OPTI ONAL,
&Encoder - unused- bi t s-transf orns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - unused- bi t s-transf orns #TRANSFORM ORDERED OPTI ONAL,
-- ldentification handle specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi tions I NTEGER (0..MAX) OPTI ONAL,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} W TH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent -structure
[ENCODED BY &repl acenent - struct ure-encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORMS &St art - poi nter-encoder-transforns]]

ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space- det erm nati on]
[USI NG &encodi ng- space-reference
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Decoder - t r ansf or ns] |
[TRUE- PATTERN &val ue-true-pattern]
[FALSE- PATTERN &val ue-fal se-pattern]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pre- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]

ETSI

106 ETSI TS 101 969 V1.1.1 (2001-05)

[UNUSED BI TS
[DETERM NED BY &unused-bits-determn nation]
[USI NG &unused- bits-reference
[ENCODER- TRANSFORMS &Encoder - unused- bi t s-t ransf or ns]
[DECODER- TRANSFORMS &Decoder - unused-bits-transforns]]]]
[EXHI BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]
[BI T- REVERSAL &bit-reversal]

23.3.2 Purpose and restrictions

23.321 Thissyntax is used to define the start of the encoding space for aclassin the bool ean category, the encoding
of the abstract values of that class, their positioning within the encoding space, an optional declaration that all bits
encodings exhibit a specified identification handle, and possible bit-reversal of the encoding space for the boolean.

23.3.2.2 If "REPLACE" is s&t, then no other encoding parameter groups shall be set.
23.3.2.3 Atmost oneof "TRUE-PATTERN" and "FALSE-PATTERN" shall be set to "different:any”.

23.3.24 If thealternative "any-of-length" is selected for either pattern (or both), then the length in bits of the two
patterns shall be different.

23325 If "ENCODING-SPACE SIZE" is"sdf-ddimiting”, then "TRUE-PATTERN" and "FALSE-PATTERN"
shall form a salf-delimiting set (see 3.2.39).

23.3.2.6 "UNUSED BITS DETERMINED BY" shall not be "not-needed" unless:

a) both patterns are integral multiples of "ENCODING-SPACE MULTIPLE OF" unitsand "ENCODING SPACE
SIZE" is "variable-with-determinant™; or

b) both patterns are the same length; or
¢) "JUSTIFIED" is"left" and the patterns form a self-delimiting set; or
d) "JUSTIFIED" is"right" and the reverse of the patterns form a self-delimiting set (see 3.2.39).

23.3.3 Encoder actions

23.3.3.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement;

b) pre-dignment and padding;

C) start pointer;

d) encoding space (see 23.3.3.2);
e) value encoding (see 23.3.3.3);
f) value padding and justification;
g) identification handle

h) bit reversal.

23.33.2 If "ENCODING-SPACE SIZE" isnot st to a positive value, then the encoding space size s’ isthe smallest
number of "MULTIPLE OF" units (subject to 23.3.3.3) that can accommodate the pattern of the value that isto be
encoded.

23.3.3.3 Anencoder (asan encoder's option) may increase the encoding space size"'s' (asdetermined in 23.3.3.2) in
"MULTIPLE OF" units (subject to any restrictions that the range of values of any "added-field" or "asn1-field"
imposes) if the "ENCODINGOSPACE SIZE" is set to "encoder-opti on-with-determinant”.

23.3.3.4 Thenumber of unused bits can be determined from the value "s" and from the pattern of the value to be
encoded.

ETSI

107 ETSI TS 101 969 V1.1.1 (2001-05)

23.3.3.5 If the number of unused bitsis non-zero, then "VALUE-JUSTIFICATION" shall be applied, using ether the
set values or the default values.
23.3.4 Decoder actions

23.3.4.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;
b) start pointer;
¢) encoding space;
d) bit reversdl,;
€) value padding and justification;
f) value decoding (see 23.3.4.2).
23.34.2 Vaue decoding shall be performed by identifying the "TRUE-PATTERN" or the "FALSE-PATTERN" by:
a) using an "UNUSED BITS" determination, if any; or

b) using the sdlf-delimiting property of the patterns or their reversals.

23.4 Defining encoding objects for classes in the characterstring
category

23.4.1 The defined syntax

The syntax for defining encoding objects for classes in the characterstring category is defined as:

#CHARS :: = ENCODI NG CLASS {
- Pre-alignnent and paddi ng specification (see 22.2)
&encodi ng- space- pre-al i gnnent -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space- pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTIl ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM CORDERED OPTI ONAL,
- Chars val ue encodi ng
&val ue-reversal BOOLEAN DEFAULT FALSE,
&Encoder -t ransf orms #TRANSFORM ORDERED,
&Char s-repetition-encodi ngs #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&char s-repetition-encodi ng #CONDI Tl ONAL- REPETI TI ON OPTI ONAL,
- ldentification handl e specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
} W TH SYNTAX {
[ALI GNED TO
[NEXT]
[ANY]

&encodi ng- space- pre-al i gnnent -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nter-encoder-transforns]]

ETSI

108 ETSI TS 101 969 V1.1.1 (2001-05)

[VALUE- REVERSAL &val ue-reversal]

ENCCDER- TRANSFORMS &Encoder - transf ornms

[REPETI TI ON- ENCODI NGS ~ &Chars-repeti tion-encodi ngs]

[REPETI TI ON- ENCODI NG &char s-repetition-encodi ng]

[EXHI BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]

23.4.2 Model for the encoding of classes in the characterstring category
23.42.1 Themodd of charactergring encodingsis:

a) the order of charactersin the character string can be reversed;

b) the charsare considered as arepetition of a char;

¢) thereisarequired transform (specified by "ENCODER-TRANSFORMS') in which each character is
transformed into a self-delimiting bitstring;

d) ether "REPETITION-ENCODING" or "REPETITION-ENCODINGS" specify how the repetition of bitstring is
to be encoded.

NOTE: Thesole purpose of allowing "REPETITION-ENCODING" aswell as"REPETITION-ENCODINGS" is
to provide a syntax that does not contain a double curly-bracket ("{{") in the common case of a single
conditional encoding. Use of "REPETITION-ENCODINGS" when thereis a single conditional encoding
is deprecated but is allowed.

23.4.2.2 Bounds (if present) on the class being encoded (a class in the characterstring category) are bounds on the
number of charsin the character string forming each abstract value.

23.4.2.3 When considered as arepetition of chars, these bounds shall be interpreted as bounds on the number of
repetitions, and can be used in the specification of the encoding objects of class #REPETITION-ENCODING that are
used in the specification of this encoding object.

23.4.3 Purpose and restrictions

23.43.1 Thissyntax is used to define the start of the encoding space for a classin the characterstring category, the
encoding of the abstract values associated with that class, an optional declaration that all chars encodings exhibit a
specified identification handle.

23.4.32 The#CONDITIONAL-REPETITION that is applied by this encoding object shall not specify "REPLACE"
unlessit is"REPLACE STRUCTURE".

23.4.3.3 Thefirg transform of "ENCODER-TRANSFORMS® (if any) shall have a source that is a single character
and the last transform shall have aresult that is bitstring. The bitstrings produced for the set of al charactersto be
encoded shall form a self-delimiting set (see 3.2.39).

NOTE: Thismeansthat thefinal transform isrequired to be salf-delimiting.
23434 The"ENCODER-TRANSFORMS' shal be reversible transforms.
23435 Exactly oneof "REPETITION-ENCODING" and "REPETITION-ENCODINGS" shall be st.

23.4.3.6 If anencoding object in the"REPETITION-ENCODINGS' list isdefined using "IF", then all preceding
encoding objectsin that list shall be defined using "IF".

23.4.3.7 If"EXHIBITSHANDLE" is set, then all encodings of values associated with this class shall exhibit the
specified identification handle.

NOTE: Thiswill in general requirerestrictions on the abstract values of the associated type, or theinclusion of
redundant bitsin the encoding of each character, or both.

ETSI

109 ETSI TS 101 969 V1.1.1 (2001-05)

23.4.4 Encoder actions

23.4.4.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;

b) start pointer;

¢) charsvalue encoding (see 23.4.4.3);

d) repetition encoding as specified by the first "REPETITION-ENCODING(S)" whose condition is satisfied;

€) identification handle specification.
23.4.4.2 Itisan ECN specification error if thereisno "REPETITION-ENCODING(S)" whose condition is satisfied.
23.44.3 For characterstring val ue encoding, the encoder shall:

a) reversethe order of charactersin the entire character string abstract value if "VALUE-REVERSAL" is set to
TRUE;

b) treat the characterstring value of chars as arepetition of char;
c) apply the specified "ENCODER TRANSFORMS' (if any) to each char to produce a repetition of bits;
d) encode therepetition by applying the "REPETITION-ENCODING(S)".

23.4.5 Decoder actions

23.45.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;

b) start pointer;

C) repetition decoding as specified by the first "REPETITION-ENCODING(S)" whose condition is satisfied;
d) charactersring value decoding (see 23.4.5.2).

23.45.2 For characterstring val ue decoding, the decoder shall use the "REPETITION-ENCODING(S)" to determine
the repetition space and to recover the original characters. If "ENCODER-TRANSFORMS' is s, then the decoder
shall use the self-delimiting (which includes a possible fixed length) property of the encoding of each character to
determine the end of each repetition, and shall reverse the transformsto recover a characterstring value.

23453 If"VALUE-REVERSAL" isset to"TRUE", then the final order of the charactersin the characterstring
abstract value shall be reversed.

23.5 Defining encoding objects for classes in the concatenation
category

23.5.1 The defined syntax

The syntax for defining encoding objects for classes in the concatenation category is defined as:

#CONCATENATI ON : : = ENCODI NG CLASS {
- Full replacenment specification (see 22.1)
&#Repl acenent - struct ure OPTI ONAL,
&#Repl acenent - st ruct ure2 OPTI ONAL,
&r epl acenent - struct ur e- encodi ng- obj ect &#Repl acenent - structure OPTI ONAL,
&r epl acenent - struct ur e- encodi ng- obj ect 2 &#Repl acenment - st ruct ure2 OPTI ONAL,
&#tHead- end- st ructure OPTI ONAL,
&#tHead- end- st ruct ure2 OPTIl ONAL,

ETSI

110 ETSI TS 101 969 V1.1.1 (2001-05)

-- Pre-alignnment and paddi ng specification (see 22.2)

&encodi ng- space- pre-al i gnnent -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,
&encodi ng- space- pre-pattern Non- Nul | - Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
-- Encodi ng space specification (see 22.4)
&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space-uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,
&encodi ng- space-det erm nati on Encodi ngSpaceDet er mi nati on
DEFAULT added-fi el d,
&encodi ng- space-reference REFERENCE OPTI ONAL,
&Encoder - t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
-- Concatenation specification (see 22.10)
&concat enat i on- order ENUMERATED {t extual, tag, randon}
DEFAULT textual,
&concat enat i on- al i gnnment ENUMERATED { none, aligned}
DEFAULT al i gned,
&concat enat i on- handl e Printabl eString

DEFAULT "def aul t - handl e",

-- Val ue padding and justification (see 22.8)

&val ue-justification Justification DEFAULT right:DO0,
&val ue- pre-paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post -pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&unused- bi t s-det ermi nati on UnusedBi t sDet er m nati on
DEFAULT added-field,
&unused- bi ts-reference REFERENCE OPTI ONAL,
&Encoder - unused- bi t s-transf orns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - unused- bi t s-transf orns #TRANSFORM ORDERED OPTI ONAL,
-- ldentification handle specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi tions I NTEGER (0..MAX) OPTI ONAL,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fi cation
DEFAULT no-rever sal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COVPONENTS]
[OPTI ONALS]
[NON- OPTI ONALS]
W TH &#Repl acenent -structure
[ENCODED BY &repl acenent - struct ure-encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]
[AND OPTI ONALS W TH &#Repl acenent - struct ure2
[ENCODED BY &repl acenent - st ruct ur e- encodi ng- obj ect 2
[NSERT AT HEAD &#Head- end-structure2]]]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORMS &St art - poi nter-encoder-transforns]]

ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]

ETSI

111 ETSI TS 101 969 V1.1.1 (2001-05)

[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-ref erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t ransf or ns]]
[CONCATENATI ON
[ORDER &concat enati on-or der]
[ALI GNVENT &concat enati on-al i gnnent]
[HANDLE &concat enati on- handl e]]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pre- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue-post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bits-determ nation]
[USI NG &unused- bits-reference
[ENCODER- TRANSFORMS &Encoder - unused- bi t s-t ransf or ns]
[DECODER- TRANSFORMS &Decoder - unused-bits-transforns]]]]
[EXHI BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]
[BI T- REVERSAL &bit-reversal]
}

23.5.2 Purpose and restrictions

23.5.2.1 Thissyntax is used to define the start of the encoding space for a classin the concatenation category, the way
in which the encodings of the components are to be combined, their positioning within the encoding space, an optional
declaration that al encodings exhibit a specified identification handle, and possible bit-reversal of the encoding space.

23.5.2.2 If "REPLACE STRUCTURE" is s&t, then no other encoder parameter groups shall be set.
23523 "ENCODING-SPACE SIZE" shall be either "variable-with-determinant” or "salf-delimiting-values'.

23524 If"EXHIBITSHANDLE" is set then the encoding of all possible abstract val ues associated with this class
shall exhibit the defined identification handle

NOTE: Thiswould often be achieved by ensuring that the first component of the concatenation, or a head-end
insert, exhibited the identification handle.
23.5.3 Encoder actions

23.5.3.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement;

b) pre-dignment and padding;

C) dtart pointer;

d) encoding space (see 23.5.3.2);

€) concatenation;

f) value padding and justification;

g) identification handle specification;
h) bit reversal.

23.5.3.2 If "ENCODING SPACE" is"variable-with-determinant”, it shall be the minimum number of "MULTIPLE
OF" units needed to contain the concatenation.

ETSI

112 ETSI TS 101 969 V1.1.1 (2001-05)

23.5.4 Decoder actions

23.5.4.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;

b) start pointer;

¢) encoding space;

d) bit reversal,;

€) value padding and justification;

f) concatenation.

23.6 Defining encoding objects for classes in the integer
category

23.6.1 The defined syntax

The syntax for defining encoding objects for classes in theinteger category is defined as

#I NT ::= ENCODI NG CLASS {
- I nteger encoding
&l nt eger - encodi ngs #CONDI TI ONAL- | NT ORDERED OPTI ONAL,
& nt eger - encodi ng #CONDI T1 ONAL- | NT OPTI ONAL

} WTH SYNTAX {
[ENCODI NGS &l nt eger - encodi ngs]
[ENCODI NG &i nt eger - encodi ng]

}

23.6.2 Purpose and restrictions

23.6.2.1 Thissyntax is used to define the encoding of a class in the integer category by specifying one or more
encodings of the #CONDITIONAL-INT class.

23.6.2.2 Exactly one of "ENCODING" and "ENCODINGS' shall be .

NOTE: Thesole purpose of allowing "ENCODING" aswell as "ENCODINGS" isto provide a syntax that does
not contain a double curly-bracket ("{{") in the common case of a single encoding object. Use of
"ENCODINGS' when thereis a 9ngle encoding object is deprecated but is alowed.

23.6.2.3 If an encoding object in the"ENCODINGS® list is defined using "IF", then all preceding encoding objectsin
that list shall be defined using "1F".
23.6.3 Encoder actions

23.6.3.1 Theencoder shall sdlect and apply the first #CONDITIONAL-INT encoding object in "ENCODING(S)"
whose conditions are satisfied. It isan ECN specification error if none of the conditional encodings have conditions that
are satisfied.

NOTE: It would be unusual but not illegal if there were #CONDITIONAL-INT encoding objects present that
could never be used because the conditions on use of earlier encoding objects would always be satisfied.
23.6.4 Decoder actions

23.6.4.1 Thedecoder shall select and usethefirst #CONDITIONAL-INT encoding object in "ENCODING(S)" whose
conditions are satisfied.

ETSI

113 ETSI TS 101 969 V1.1.1 (2001-05)

23.7 Defining encoding objects for the #CONDITIONAL-INT
class

23.7.1 The defined syntax
The syntax for defining encoding objects for the #CONDITIONAL-INT classis defined as:

#CONDI Tl ONAL- I NT :: = ENCODI NG CLASS {
-- Condition (see 21.11)
& ange-condi tion RangeCondi ti on OPTI ONAL,
-- Structure-only replacenent specification (see 22.1)
&#Repl acenent - structure OPTIl ONAL,
&r epl acenment - st ruct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space- pre-al i gnnent -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space- pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
-- Encodi ng space specification (see 22.4)
&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space-uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,
&encodi ng- space-det erm nati on Encodi ngSpaceDet er mi nati on
DEFAULT added-field,
&encodi ng- space-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,
-- Val ue encodi ng
&Transform #TRANSFORM ORDERED OPTI ONAL,
&encodi ng ENUVMERATED

{positive-int, twos-conplenent,
reverse-positive-int, reverse-twos-conpl enent}
DEFAULT twos-conpl enent,

-- Val ue padding and justification (see 22.8)

&val ue-justification Justification DEFAULT right:O,
&val ue- pre-paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post -pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&unused- bi t s-det ermi nati on UnusedBi t sDet er m nati on
DEFAULT added-field,
&unused- bi ts-reference REFERENCE OPTI ONAL,
&Encoder - unused- bi t s-transf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - unused- bi t s-transf or ns #TRANSFORM ORDERED OPTI ONAL,
-- ldentification handle specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..NMAX) OPTI ONAL,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[I F & ange-condition] [ELSE]
[REPLACE
[STRUCTURE]
W TH &#Repl acenent -structure
[ENCODED BY &repl acenent - struct ure-encodi ng- obj ect]]

ETSI

114 ETSI TS 101 969 V1.1.1 (2001-05)

[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-al i gnment -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

START- PO NTER &start-pointer
p
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORMS &St art - poi nt er-encoder -transforns]]

ENCODI NG- SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-ref erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t ransf or ns]]
[TRANSFORVS &Tr ansf or ns]
[ENCODI NG &encodi ng]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pre- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue-post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bits-determ nation]
[USI NG &unused- bi ts-reference
[ENCODER- TRANSFORMS &Encoder - unused- bi t s-t ransf or ns]
[DECODER- TRANSFORMS &Decoder - unused- bits-transformnms]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]
[BI T- REVERSAL &bit-reversal]

23.7.2 Purpose and restrictions

23.7.21 Thissyntax is used to define a#CONDITIONAL-INT encoding object. The only use of such an encoding
object isin the specification of an encoding object of a classin the integer category.

23.7.2.2 Thesyntax allows the specification of a single condition on the bounds of the integer for this encoding to be
applied (use of "IF"). It also allows the specification that there isno condition. The use of "ELSE", or omission of both
"IF" and "ELSE" specifies that thereisno condition.

23.7.2.3 Using this syntax the ECN specifier can define the start of the encoding space for the encoding of a classin
the integer category, the encoding of the abstract values associated with that class, their positioning within the encoding
space, and possible bit-reversal of the encoding space.

23.7.24 Atmost oneof "IF" and "ELSE" shal be present.
23.7.25 If "REPLACE" is s&t, then no other encoding parameter groups shall be set.

23.7.26 Thefirg transform of "TRANSFORMS', if present, shall have a source that isinteger and the last transform
shall have aresult that isinteger. All transformsin the list shall be reversible.

NOTE: Thetest for the"IF" condition takes place on the bounds of the original value, and is not affected by these
transforms.

23.7.27 The"INT-TO-INT" transform with the value "subtract:lower-bound" shall beincluded only if the "IF"
condition restricts the application of this encoding to classes of theinteger category with alower bound, and (if present)
shall bethefirst transform in thelist.

23.7.28 The"ENCODING-SPACE SIZE" shall not be "fixed-to-max" unlessthe"IF" condition restricts the encoding
to a class with both an upper and alower bound.

23.7.2.9 "ENCODING-SPACE SIZE" shall not be set to "sdf-delimiting-values'.

23.7.210 If "EXHIBITSHANDLE" is set, then the specifier assertsthat the encoding of all values exhibits the
identification handle.

NOTE: Thiswill normally require use of "VALUE-PADDING" with justification from theleft to alow the
padding to exhibit the identification handle.

ETSI

115 ETSI TS 101 969 V1.1.1 (2001-05)

23.7.3 Encoder actions

23.7.3.1 Theencoder shall detect an ECN specification or application error if any of therestrictionsin 23.7.2 are
violated.

23.7.3.2 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement;
b) pre-dignment and padding;
C) start pointer;
d) encoding space;
€) value encoding (see below);
f) value padding and justification;
g) identification handle
h) bit reversal.
23.7.3.3 Theencoder shall apply the"TRANSFORMS', if any to the value being encoded.
23.7.3.4 Theencoder shall use the following table giving the range of integer values that can be encoded in "n" hits:

" ENCODI NG' M n val ue Max val ue
"positive-int" 0 2n_1
"reverse-positive-int" 0 2n_1q
"t wos- conpl enent " .on-1 on-1_1
"reverse-twos-conpl enent” _on-1 on-1_1

23.7.35 The"ENCODING" parameter selects the encoding as 2's-complement encoding or as a positive integer
encoding, or asthereversal of one of these. The specification of 2's-complement encoding and positive integer encoding
isgivenin ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3. A reversal of these encodings is an encoding in which,
following production of the"n" bits, the order of the"n" bitsisreversed.

23.7.3.6 Anencoder shall detect an ECN specification or an application error if avalueisto be encoded into a number
of bitswhich isinsufficient, as specified in 23.7.3.4.

23.7.3.7 If the"ENCODING-SPACE SIZE" isa positive integer, then its size in bitsis calculated as " SIZE"
multiplied by "MULTIPLE OF" units. If "VALUE-PADDING" isnot set, then this shall be the number of bits"n" that
the integer shall encode into and there are no unused bits. If "VALUE-PADDING" is s&t, then the number of bits that
the integer shall encode into isreduced by the integer value "m" specified for "JUSTIFIED", and there will be"m"
unused hits.

23.7.3.8 If the"ENCODING-SPACE SIZE" is "fixed-to-max", then the encoder shall determine the minimum number
of "MULTIPLE OF" unitsthat has sufficient bitsto encode any of the values of the class, and shall proceed (as
specified above) asif "SIZE" were apositive integer set to that value.

23.7.3.9 If the"ENCODING-SPACE SIZE" is "variable-with-determinant”, then the encoder shall determinethe
minimum number of "MULTIPLE OF" units ("s", say) that has sufficient bitsto encode the actual abstract value being
encoded, and shall proceed (as specified above) asif "SIZE" were a positive integer set to that value.

23.7.3.10 Theencoder (asan encoder's option) may increase"'s' (asdetermined in 23.7.3.9) in "MULTIPLE OF" units
(subject to any restrictions that the range of values of any "added-field" or "asn1-field" imposes) if
"ENCODING-SPACE SIZE" is set to "encoder-option-with-determinant”.

23.7.3.11 Theencoder shall then proceed (as specified above) asif "SIZE" were apositive integer setto s’

ETSI

116 ETSI TS 101 969 V1.1.1 (2001-05)

23.7.4 Decoder actions

23.7.4.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;

b) start pointer;

¢) encoding space;

d) bit reversal,;

€) value padding and justification;
f) value decoding (see 23.7.4.2).

23.7.4.2 Thedecoder shall recover the integer value from the bits used to encode it, decoding according to the
specified encoding, and shall then reverse the "TRANSFORMS" (if specified) to recover the original abstract value.

23.8 Defining encoding objects for classes in the null category

23.8.1 The defined syntax

The syntax for defining encoding objects for classes in the null category is defined as:

#NUL :: = ENCODI NG CLASS {
-- Structure-only replacenent specification (see 22.1)
&#Repl acenent - structure OPTIl ONAL,
&r epl acenment - st ruct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space- pre-al i gnnent -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space- pre-pattern Non- Nul | - Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
-- Encodi ng space specification (see 22.4)
&encodi ng- space- si ze Encodi ngSpaceSi ze

DEFAULT sel f-del i mting-val ues,
&encodi ng- space-uni t Unit (ALL EXCEPT repetitions)

DEFAULT bi t,
&encodi ng- space- det erm nati on Encodi ngSpaceDet er mi nati on

DEFAULT added-field,
&encodi ng- space-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,

-- Value pattern
&val ue-pattern Pattern (ALL EXCEPT different: any)
DEFAULT bits:''B,

-- Val ue padding and justification (see 22.8)

&val ue-justification Justification DEFAULT right:O,
&val ue- pre- paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B
&unused- bi t s-det ermi nati on UnusedBi t sDet er m nati on

DEFAULT added-field,
&unused- bi ts-reference REFERENCE OPTI ONAL,
&Encoder - unused- bi t s-transf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - unused- bi t s-transf or ns #TRANSFORM ORDERED OPTI ONAL,

ETSI

117 ETSI TS 101 969 V1.1.1 (2001-05)

- ldentification handl e specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,

- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} W TH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent -structure
[ENCODED BY &r epl acenent - struct ure-encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

- tart-pointer
START- PO NTER &s poi
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORMS &St art - poi nter-encoder-transforns]]

ENCODI NG- SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-reference
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Decoder - t r ansf or ns] |
[PATTERN &val ue-pattern]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pre- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bit s-determ nati on]
[USI NG &unused-bits-reference
[ENCODER- TRANSFORMS &Encoder - unused- bi t s-transf or ns]
[DECODER- TRANSFORMS &Decoder - unused- bits-transforms]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]
[BI T- REVERSAL &bit-reversal]

23.8.2 Purpose and restrictions
23.8.2.1 Thissyntax is used to define the encoding of a classin the null category.
23.82.2 If"REPLACE STRUCTURE" is s&t, then no other encoding parameter groups shall be set.

23.8.2.3 If the"ENCODING-SPACE SIZE" ispositive, it shall be sufficient to hold the size of the "PATTERN"
together with any bits added asaresult of a"VALUE-PADDING" specification.

23.824 If"PATTERN" isnot an integral multiple of the "ENCODING-SPACE MULTIPLE OF" unit, then
"VALUE-PADDING" shall be st.
23.8.3 Encoder actions

23.8.3.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement;

b) pre-alignment and padding;
C) start pointer;

d) encoding space;

€) value encoding (see 23.8.3.2);

ETSI

118 ETSI TS 101 969 V1.1.1 (2001-05)

f) value padding and justification;
g) identification handle
h) bit reversal.

23.8.3.2 Thevalue encoding shall be the bits of the "PATTERN". If the "ENCODING-SPACE SIZE" is
"variable-with-determinant”, it shall be the minimum number of "MULTIPLE OF" units needed to contain the pattern.

23.8.3.3 If "ENCODING-SPACE SIZE" is"variable-with-determinant” or "encoder-option-with-determinant”, it shall
be the minimum number of "MULTIPLE OF" units needed to contain the pattern ("'s’, say), subject to 23.8.3.4.

23.8.3.4 An encoder (asan encoder's option) may increase s’ (as determined in 23.8.3.3) in "MULTIPLE OF" units
(subject to any restrictions that the range of values of any "added-field" or "asn1-field" imposes) if
"ENCODING-SPACE SIZE" is set to "encoder-option-with-determinant”.

23.8.4 Decoder actions

23.8.4.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-alignment and padding;

b) start pointer;

¢) encoding space;

d) bit reversal,;

€) value padding and justification.

23.8.4.2 Thedecoder shall determinethe size of the null pattern, and identify those bits in the encoding, but shall
silently accept any value for those bits.

23.9 Defining encoding objects for classes in the octetstring
category

23.9.1 The defined syntax

The syntax for defining encoding objects for classes in the octetstring category is defined as:

#OCTETS :: = ENCODI NG CLASS {
- Pre-alignnent and paddi ng specification (see 22.2)
&encodi ng- space-pre-al i gnnent - uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space-pre-pattern Non- Nul | - Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

- Start pointer specification (see 22.3)

&start - pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nt er - encoder -transf orns #TRANSFORM ORDERED OPTI ONAL,

- Cctets val ue encodi ng
&val ue-reversal BOOLEAN DEFAULT FALSE,
&Encoder -t ransf or nms #TRANSFORM ORDERED OPTI ONAL,
& ct et s-repetition-encodi ngs #CONDI Tl ONAL- REPETI TI ON ORDERED

OPTI ONAL,

&oct et s-repetition-encodi ng #CONDI TI ONAL- REPETI TI ON OPTI ONAL

- ldentification handl e specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0.. MAX) OPTI ONAL,

ETSI

119 ETSI TS 101 969 V1.1.1 (2001-05)

- Contained type encoding specification (see 22.11)

&Pri mary-encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&Secondar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&over-ride-encoded- by BOOLEAN DEFAULT FALSE
} W TH SYNTAX {
[ALI GNED TO
[NEXT]
[ANY]

&encodi ng- space-pre-al i gnment -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

[START- PO NTER &start-pointer

[MULTI PLE OF &start-pointer-unit]

[ENCODER- TRANSFORMS &St art - poi nt er-encoder-transforns]]
[VALUE- REVERSAL &val ue-reversal]

[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[REPETI TI ON- ENCODI NGS &Cctets-repetition-encodi ngs]
[REPETI TI ON- ENCODI NG &oct et s-repetition-encodi ng]
[EXHI BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]
[CONTENTS- ENCODI NG &Pr i mar y- encodi ng- obj ect - set
[COWPLETED BY &Secondary-encodi ng- obj ect - set]
[OVERRI DE &over-ride-encoded- by]]

23.9.2 Model for the encoding of classes in the octetstring category
23.9.21 Themode of octetstring encoding is.

a) Theorder of octetsin the octetstring can be reversed.

b) The octets are then considered as arepetition of an octet.

¢) Thereisan optional transform (specified by "ENCODER-TRANSFORMS') in which each octet is transformed
into a salf-delimiting bitstring.

d) Either "REPETITION-ENCODING" or "REPETITION-ENCODINGS" specify how the repetition of octet is to
be encoded.

NOTE: Thesole purpose of allowing "REPETITION-ENCODING" aswell as"REPETITION-ENCODINGS" is
to provide a syntax that does not contain a double curly-bracket ("{{") in the common case of asingle
conditional encoding. Use of "REPETITION-ENCODINGS" when thereis a single conditional encoding
is deprecated but is allowed.

23.9.2.2 Bounds (if present) on the class being encoded (a class in the octetstring category) are bounds on the number
of octets in the octetstring forming each abstract value.

23.9.23 When considered as arepetition of an octet, these bounds shall be interpreted as bounds on the number of
repetitions, and can be used in the specification of the encoding objects of class #CONDITIONAL-REPETITION that
are used in the specification of this encoding object.

23.9.3 Purpose and restrictions

23.9.3.1 Thissyntax is used to define the start of the encoding space for a class in the octetstring category, the
encoding of the abstract values associated with that class, an optional declaration that all octetstring encodings exhibit a
specified identification handle, a specification of how to encode a contained type.

23.9.3.2 If "REPLACE" is s¢t, then no other encoding parameter groups shall be set.

23.9.33 The#CONDITIONAL-REPETITION that is applied by this encoding object shall not specify "REPLACE"
unlessit is"REPLACE STRUCTURE".

23.9.34 Thefirg transform of "ENCODER-TRANSFORMS' (if any) shall have a source that is bitstring and the last
transform shall have aresult that is a self-delimiting bitstring (see 3.2.39).

23.9.35 The"ENCODER-TRANSFORMS" shdl bereversible transforms.
23.9.3.6 Exactly oneof "REPETITION-ENCODING" and "REPETITION-ENCODINGS" shall be set.

ETSI

120 ETSI TS 101 969 V1.1.1 (2001-05)
23.9.3.7 If an encoding object in the"REPETITION-ENCODINGS' list isdefined using "IF", then all preceding
encoding objectsin that list shall be defined usng "1F".

23.9.38 If"EXHIBITSHANDLE" iss&t, then all encodings of values of this class shall exhibit the specified
identification handle.

NOTE: Thiswill in genera require restrictions on the abstract values of the associated type.

23.9.4 Encoder actions

23.9.4.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;

b) start pointer;

¢) value encoding as specified below;

d) repetition encoding as specified by the first "REPETITION-ENCODING(S)" whose condition is satisfied;

€) identification handle;

f) contained type encoding.
23.9.4.2 For value encoding, the encoder shall:

a) reversethe order of octetsin the entire octetstring abstract value if "VALUE-REVERSAL" is set to "TRUE";

b) treat the octetstring value as a repetition of octet;

c) apply the"ENCODER-TRANSFORMS' (if any) to each octet to produce a repetition of bitstring;

NOTE: If thereareno transforms, each octet forms a bitstring.

d) encode the repetition by applying thefirst "REPETITION-ENCODING(S)" whose condition is satisfied.
23.9.4.3 Itisan ECN specification error if thereisno "REPETITION-ENCODING(S)" whose condition is satisfied.

23.9.5 Decoder actions

23.9.5.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;
b) start pointer;
¢) value decoding (see 23.9.5.2);
d) contained type decoding.
23.9.5.2 Thedecoder shall reverse the "ENCODER TRANSFORMS' (if any) to recover the original octets.

23953 If"VALUE-REVERSAL" isset to "TRUE", then the final order of the octets in the octetstring abstract value
shall be reversed.

ETSI

121 ETSI TS 101 969 V1.1.1 (2001-05)

23.10 Defining encoding objects for classes in the optionality
category

23.10.1 The defined syntax

The syntax for defining encoding objects for classes in the optionality category is defined as:

#OPTI ONAL :: = ENCODI NG CLASS {
-- Structure-only replacenent specification (see 22.1)
&#Repl acenent - structure OPTIl ONAL,
&r epl acenment - st ruct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space- pre-al i gnnent -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space- pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
-- Optionality determ nation (see 22.5)
&optionality-determ nation OptionalityDeterm nation

DEFAULT added-field,
&optionality-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,
&handl e-i d Printabl eString

DEFAULT "def aul t - handl e"
} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent -structure
[ENCODED BY &r epl acenent - struct ure-encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

[START- PO NTER &start-pointer

[MULTI PLE OF &start-pointer-unit]

[ENCODER- TRANSFORMS &St art - poi nter-encoder-transforns]]
PRESENCE

[DETERM NED BY &optionality-determ nation
[HANDLE &handl e-id]]

[USI NG &optionality-reference
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Decoder - t r ansf or ns] |

}
23.10.2 Purpose and restrictions

23.10.21 Thissyntax is used to define the encoding of a class in the optionality category.
23.10.2.2 If "REPLACE STRUCTURE" is set, then no other encoding parameter groups shall be set.

ETSI

122 ETSI TS 101 969 V1.1.1 (2001-05)

23.10.3 Encoder actions

23.10.3.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement (see 23.10.3.2);
b) pre-dignment and padding;
C) start pointer;

d) optionality determination.

23.10.3.2 If "REPLACE STRUCTURE" is set then the entire element (including any classes in the tag category, but
excluding the optionality category class) is provided as the actual parameter for the replacement structure, which
becomes a mandatory element.

23.10.4 Decoder actions

23.10.4.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;
b) start pointer;

c) optionality determination.

23.11 Defining encoding objects for classes in the pad category

23.11.1 The defined syntax

The syntax for defining encoding objects for classes in the pad category is defined as:

#PAD :: = ENCODI NG CLASS {
- Structure-only replacenent specification (see 22.1)
&#Repl acenent - structure OPTIl ONAL,
&r epl acenment - st ruct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,

- Pre-alignnent and paddi ng specification (see 22.2)

&encodi ng- space- pre-al i gnnent -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space- pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder -transforns #TRANSFORM ORDERED OPTI ONAL,
- Encodi ng space specification (see 22.4)
&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space-uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,
&encodi ng- space-det erm nati on Encodi ngSpaceDet er mi nati on
DEFAULT added-field,
&encodi ng- space-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM CORDERED OPTI ONAL,

- Val ue encodi ng
&pad- pattern Pattern (ALL EXCEPT different:any)
DEFAULT bits:''B

- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0. . MAX) OPTI ONAL,

ETSI

123 ETSI TS 101 969 V1.1.1 (2001-05)

- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} W TH SYNTAX {
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-al i gnment -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

START- PO NTER &start-pointer
p
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORMS &St art - poi nt er-encoder-transforns]]

ENCODI NG- SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-ref erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t ransf or ns]]
[PATTERN &pad- pattern]
[EXHI BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]
[BI T- REVERSAL &bit-reversal]

23.11.2 Purpose and restrictions
23.11.21 Thissyntax is used to define the encoding of a classin the pad category.

23.11.2.2 If "ENCODING-SPACE SIZE" ispositive, "PATTERN" shall not be of zero length, and isreplicated and
truncated to fill the encoding space.

23.11.2.3 If "REPLACE STRUCTURE" is set, then no other encoding parameter group shall be set.

23.11.3 Encoder actions

23.11.3.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement;

b) pre-dignment and padding;
C) dstart pointer;

d) encoding space;

€) value encoding (see below);
f) identification handle;

g) bitreversal.

23.11.3.2 1f "ENCODING-SPACE SIZE" is positive, the value shall be the "PATTERN", replicated and truncated to
fill the encoding space.

23.11.3.3 If "ENCODING-SPACE SIZE" is "fixed-to-max", or is "variable-with-determinant” or is
"encoder-option-with-determinant”, then the encoding space shall be the smallest number of "MULTIPLE OF" units
that is greater than the sze of "PATTERN" ("'s’, say), and the "PATTERN" shall then be replicated and truncated to fill
that space (but see 23.11.3.4).

NOTE: Thiswill be an empty encoding spaceif the "PATTERN" isnull.

23.11.34 An encoder (asan encoder's option) may increase"'s’ (as determined in 23.11.3.3) in "MULTIPLE OF"
units (subject to any restrictions that the range of values of any "added-field" or "asn1-field" imposes) if
"ENCODING-SPACE SIZE" is set to "encoder-option-with-determinant”.

ETSI

124 ETSI TS 101 969 V1.1.1 (2001-05)

23.11.4 Decoder actions

23.11.4.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;
b) start pointer;

c) bitreversdl,;

d) encoding space.

23.11.4.2 Thedecoder shal determinethe dze of the pad value encoding, and identify those bits in the encoding, but
shall silently accept any value for those bits.

23.12 Defining encoding objects for classes in the repetition
category

23.12.1 The defined syntax

The syntax for defining encoding objects for classes in the repetition category is defined as

#REPETI TI ON : : = ENCODI NG- CLASS {

- Repetition encoding
&Repeti tion-encodi ngs #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&repetition-encodi ng #CONDI Tl ONAL- REPETI TI ON OPTI ONAL

} WTH SYNTAX {
[REPETI TI ON- ENCODI NGS &Repeti ti on-encodi ngs]
[REPETI TI ON- ENCODI NG &r epeti ti on-encodi ng]

}

23.12.2 Purpose and restrictions

23.12.2.1 Thissyntax is used to define the encoding of a classin therepetition category by specifying one or more
encodings of the #CONDITIONAL-REPETITION class.

23.12.2.2 Exactly one of "REPETITION-ENCODING" and "REPETITION-ENCODINGS" shall be set.

NOTE: Thesole purpose of allowing "REPETITION-ENCODING" aswell as"REPETITION-ENCODINGS" is
to provide a syntax that does not contain a double curly-bracket ("{{") in the common case of asingle
encoding object. Use of "REPETITION-ENCODINGS" when thereis a single encoding object is
deprecated but is allowed.

23.12.2.3 If an encoding object in the "REPETITION-ENCODINGS' list isdefined using "IF", then all preceding
encoding objectsin that list shall be defined using "1F".
23.12.3 Encoder actions

23.12.31 Theencoder shall sdect and apply the first #CONDITIONAL-REPETITION encoding object in
"ENCODING(S)" whose conditions are satisfied. It isan ECN specification error if none of the conditional encodings
have conditions that are satisfied.

NOTE: It would be unusual but not illegal if there were #CONDITIONAL-REPETITION encoding objects
present that could never be used because the conditions on use of earlier encoding objects would always
be satisfied.

ETSI

125 ETSI TS 101 969 V1.1.1 (2001-05)

23.12.4 Decoder actions

23.12.4.1 Thedecoder shall sdect and use thefirst #CONDITIONAL-REPETITION encoding object in
"ENCODING(S)" whose conditions are satisfied.

23.13 Defining encoding objects for the #CONDITIONAL-
REPETITION class

23.13.1 The defined syntax
The syntax for defining encoding objects for the #CONDITIONAL- REPETITION classis defined as:

#CONDI TI ONAL- REPETI TI ON : : = ENCODI NG CLASS {
-- Condition (see 21.12)
&si ze-range-condi tion Si zeRangeCondi ti on OPTIl ONAL,
-- Structure or conponent replacenment specification (see 22.1)
&#Repl acenent - structure OPTIl ONAL,
&r epl acenment - st ruct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,
&#Head- end- structure OPTI ONAL,
-- Pre-alignment and padding specification (see 22.2)
&encodi ng- space- pre-al i gnnent -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space- pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
-- Repetition space specification (see 22.7)
&repetition-space-size Encodi ngSpaceSi ze

DEFAULT sel f-delimting-val ues,
&repetition-space-unit Uni t

DEFAULT bi t,
& epetition-space-determ nation RepetitionSpaceDet ern nation

DEFAULT added-field,
&mai n-r ef erence REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&handl e-i d Printabl eString

DEFAULT "def aul t - handl e",
& erm nation-pattern Non- Nul | -Pattern (ALL EXCEPT

di fferent:any) DEFAULT 'O0'B,
-- Repetition alignnment
&repetition-alignment ENUMERATED { none, al i gned}
DEFAULT none,

-- Val ue padding and justification (see 22.8)

&val ue-justification Justification DEFAULT right:O,
&val ue- pre- paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post -pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&unused- bi t s-determ nati on UnusedBi t sDet er mi nati on
DEFAULT added-field,
&unused- bi ts-reference REFERENCE OPTI ONAL,
&Encoder - unused- bi t s-transforns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - unused- bi t s-transforns #TRANSFORM ORDERED OPTI ONAL,
-- ldentification handl e specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

ETSI

126 ETSI TS 101 969 V1.1.1 (2001-05)

} W TH SYNTAX {
[IF &size-range-condition] [ELSE]
[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COVPONENTS]
W TH &Repl acenent -structure
[ENCODED BY &r epl acenent - struct ure-encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

- tart-pointer
START- PO NTER &s poi
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nter-encoder-transforns]]

REPETI TI ON- SPACE
[SI ZE &repetition-space-size
[MULTI PLE OF &repetition-space-unit]]
[DETERM NED BY &repetition-space-determ nation
[HANDLE &handl e-id]]
[USI NG &mai n-ref erence
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Decoder - t r ansf or ns] |
[PATTERN &t erm nati on-pattern]
[ALI GNMENT &repetition-alignnent]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bit s-determ nati on]
[USI NG &unused-bits-reference
[ENCODER- TRANSFORMS &Encoder - unused- bi t s-t ransf or ns]
[DECODER- TRANSFORMS &Decoder - unused- bits-transforms]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]
[BI T- REVERSAL &bit-reversal]

23.13.2 Purpose and restrictions

23.13.21 Thissyntax is used to define the encoding of a classin therepetition category subject to satisfaction of a
condition based on the bounds of the repetition (use of "IF"). It aso alows the specification that there isno condition.
The use of "ELSE", or omission of both "IF" and "ELSE" specifies that thereis no condition.

231322 Atmost oneof "IF" and "ELSE" shall be present.
23.13.2.3 If "REPLACE STRUCTURE" is set, then no other encoding parameter groups shall be set.

23.13.24 If "EXHIBITSHANDLE" is set, thisassertsthat all encodings of this class exhibit the specified
identification handle.

NOTE: Thiswould normally, but not necessarily, mean that every instance of the component exhibited the entire
identification handle.

23.13.25 If the"REPETITION-SPACE SIZE" is"sdf-delimiting-values’, then the number of repetitions shall be
constrained by bounds to asingle value.

ETSI

127 ETSI TS 101 969 V1.1.1 (2001-05)

23.13.3 Encoder actions

23.13.3.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement;

b) pre-dignment and padding;

C) start pointer;

d) repetition space;

€) repetition encoding (see 23.13.3.4);
f) value padding and justification;

g) identification handle

h) bit reversal.

23.13.3.2 If "ALIGNMENT" isset to "aligned", then the sattings of pre-alignment and padding shall be used to
pre-align each encoding of the component.

NOTE: Thisisperformed before any pre-alignment specified by the component.

23.13.3.3 The complete encodings of the components (with any pre-alignment however specified) shall be
concatenated to form the bits for the value of the repetition.

23.13.3.4 If the"REPETITION-SPACE SIZE" is "variable-with-determinant” or "encoder-opti on-with-determinant”,
then the size shall be the smallest multiple of "MULTIPLE OF" units ("s', say) that will contain the value of the
repetition (but see 23.13.3.5).

23.13.35 An encoder (asan encoder's option) may increase"'s’ (as determined in 23.13.3.4) in "MULTIPLE OF"
units (subject to any restrictions that the range of values of any "added-field" or "asn1-field" imposes) if
"ENCODING-SPACE SIZE" is set to "encoder-option-with-determinant”.

23.13.3.6 Therepetition valueisthen placed in the encoding spacein using "VALUE-PADDING" (or its default
valueif it isnot set) if there are any unused bits.
23.13.4 Decoder actions

23.13.4.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;

b) start pointer;

C) repetition space;

d) bit reversal,;

e) value padding and justification;

f) repetition decoding (see 23.13.4.2).

23.13.4.2 Each repetition shall be extracted, and decoded in accordance with the encoding specification of the
component of the repetition class.

ETSI

128 ETSI TS 101 969 V1.1.1 (2001-05)

23.14 Defining encoding objects for classes in the tag category

23.14.1 The defined syntax

The syntax for defining encoding objects for classes in the tag category is defined as:

#TAG : : = ENCODI NG CLASS {
-- Structure-only replacenent specification (see 22.1)
&#Repl acenent - structure OPTI ONAL,
&r epl acenment - st ruct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space- pre-al i gnnent -uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,
&encodi ng- space- pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
-- Encodi ng space specification (see 22.4)
&encodi ng- space- si ze Encodi ngSpaceSi ze

DEFAULT sel f-delimting-val ues,
&encodi ng- space-uni t Unit (ALL EXCEPT repetitions)

DEFAULT bi t,
&encodi ng- space-det erm nati on Encodi ngSpaceDet er mi nati on

DEFAULT added-field,
&encodi ng- space-reference REFERENCE OPTI ONAL,
&Encoder -t ransf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t ransf or ns #TRANSFORM ORDERED OPTI ONAL,
-- Val ue padding and justification (see 22.8)
&val ue-justification Justification DEFAULT right:O0,
&val ue- pre-paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post -pattern Non- Nul | - Patt ern DEFAULT bits:'0'B
&unused- bi t s-det ermi nati on UnusedBi t sDet er m nati on

DEFAULT added-field,
&unused- bi ts-reference REFERENCE OPTI ONAL,
&Encoder - unused- bi t s-transf orns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - unused- bi t s-transf orns #TRANSFORM ORDERED OPTI ONAL,
-- ldentification handle specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi tions I NTEGER (0. . MAX) OPTI ONAL,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent -structure
[ENCODED BY &repl acenent - struct ure-encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]

[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORMS &St art - poi nter-encoder-transforns]]

ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space- det erm nati on]
[USI NG &encodi ng- space-reference
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Decoder - t r ansf or ns] |
[VALUE- PADDI NG

ETSI

129 ETSI TS 101 969 V1.1.1 (2001-05)

[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pre- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue-post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bits-determ nation]
[USI NG &unused- bi ts-reference
[ENCODER- TRANSFORMS &Encoder - unused- bi t s-t ransf or ns]
[DECODER- TRANSFORMS &Decoder - unused-bits-transforns]]]]
[EXHI BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons]
[BI T- REVERSAL &bit-reversal]
}

23.14.2 Purpose and restrictions

23.14.2.1 Thissyntax is used to define the encoding of a classin the tag category.

23.14.2.2 1f "REPLACE STRUCTURE" is set, then no other specifications shal be set.

23.14.2.3 The"ENCODING-SPACE SIZE" shall not be "fixed-to-max" or "salf-ddimiting-values'.

23.14.3 Encoder actions

23.14.3.1 For any encoding parameter group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement;

b) pre-dignment and padding;

C) dstart pointer;

d) encoding space;

€) value encoding (see 23.14.3.3);
f) value padding and justification;
g) identification handle

h) bit reversal.

23.14.3.2 Theencoder shal determine the minimum number of bits"n" needed to encode the tag number asthe
smallest value of "n" such that 2"-1 is greater than or equal to thetag number. If "n" is zero, it shall beincreased to 1.

23.14.3.3 Theencoding shall be a positive integer encoding. The specification of a positive integer encoding is given
in ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3.

23.14.34 An encoder shall detect an ECN specification error if atag number is to be encoded into anumber of bits
which isinsufficient, as specified above.

23.14.35 If "ENCODING-SPACE SIZE" isapositiveinteger, then itssizein bitsis calculated as " SIZE" multiplied
by "MULTIPLE OF" units. If "VALUE-PADDING" isnot set, then this shall be the number of bits "n" that thetag
number shall encode into and there are no unused bits. If "VALUE-PADDING" is set, then the number of bits that the
tag number shall encode into isreduced by the integer value "m" specified for "JUSTIFIED", and there will be "m"
unused hits.

23.14.3.6 If "ENCODING-SPACE SIZE" is "variable-with-determinant” or "encoder-option-with-determinant”, then
the encoder shall determine the minimum number of "MULTIPLE OF" unitsthat has sufficient bits to encode the tag
number ("s", say), and shall proceed (as specified above) asif "SIZE" were a positive integer set to that value (but

see 23.14.3.7).

23.14.3.7 An encoder (as an encoder's option) may increase"'s’ (as determined in 23.14.3.6) in "MULTIPLE OF"
units (subject to any restrictions that the range of values of any "added-field" or "asn1-fidd" imposes) if
"ENCODING-SPACE SIZE" is set to "encoder-option-with-determinant”.

ETSI

130 ETSI TS 101 969 V1.1.1 (2001-05)

23.14.4 Decoder actions

23.14.4.1 For any encoding parameter group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;

b) start pointer;

¢) encoding space;

d) bit reversal,;

€) value padding and justification;
f) value decoding.

23.14.4.2 The decoder shal recover the tag number from the bits used to encode it, decoding from a positive integer
encoding.

23.15 Defining encoding objects for classes in the other
categories

In this version of the present document there isno defined syntax for classes in the following categories:

obj ect-identifier
open-type
real

24 Defined syntax specification for the #TRANSFORM
encoding class

24.1 Summary of encoding parameters and defined syntax

24.11 The syntax for defining encoding objects for the #TRANSFORM class shall be:

#TRANSFORM : : = ENCODI NG CLASS {
- int-to-int (see 24.3)

& nt-to-int CHO CE
{increment | NTEGER (1..MNAX),
decr enent I NTEGER (1..MAX),
mul tiply | NTEGER (2. . MNAX),
di vi de | NTEGER (2. . MAX),
negat e ENUMERATED({ val ue},
nodul o | NTEGER (2. . MNAX),
subtract ENUMERATED({ | ower - bound}
} OPTI ONAL,

-- bool -t o-bool (see 24.4)

&bool -t o- bool CHO CE
{l ogi cal ENUMERATED({ not } }

DEFAULT 1 ogi cal : not,
- bool-to-int (see 24.5)
&bool -t o-int ENUVMERATED {true-zero, true-one}
DEFAULT true-one,

- int-to-bool (see 24.6)

& nt-to-bool ENUMERATED {zero-true, zero-false}
DEFAULT zero-fal se,

&l nt-to-bool-true-is | NTEGER OPTI ONAL,

&l nt-to-bool -fal se-is | NTEGER OPTI ONAL,

ETSI

-- int-to-chars (see 24.7)
& nt-to-chars-size
& nt-to-chars-plus
& nt-to-chars-pad

131

ETSI TS 101 969 V1.1.1 (2001-05)

Resul t Si ze DEFAULT vari abl e,
BOOLEAN DEFAULT FALSE,
ENUMERATED

{spaces,

-- int-to-bits (see 24.8)
& nt-to-bits-encoded-as ENUVERATED

{positive-int,

zeros} DEFAULT zer os,

t wos- conpl enment }

DEFAULT twos-conpl enent,

& nt-to-bits-unit Uni t

& nt-to-bits-size

-- bits-to-int (see 24.9)
&bi ts-to-int-decoded-assuni ng ENUVMERATED

{positive-int,

(1..MAX) DEFAULT bit,
Resul t Si ze DEFAULT vari abl e,

t wos- conpl enment }

DEFAULT twos-conpl enent,

-- char-to-bits (see 24.10)
&char -t o-bits-encoded- as ENUVERATED
{is010646, conpact,
DEFAULT conpact,
&Char-to-bits-chars
ORDERED OPTI ONAL,
&Char -t o- bi t s-val ues
&char-to-bits-unit
&char-to-bits-size

Uni t

-- bits-to-char (see 24.11)

&bi t s-t o- char - decoded- assumi ng ENUMERATED
{is010646, mapped}
DEFAULT i s010646,
&Bi t s-to- char-val ues
&Bi ts-to-char-chars

ORDERED OPTI ONAL,

-- bit-to-bits (see 24.12)
&bit-to-bits-one
&bit-to-bits-zero

-- bits-to-bits (see 24.13)
&Sour ce- val ues
&Resul t - val ues

BI T STRI NG ORDERED,
BI T STRI NG ORDERED

} WTH SYNTAX {

-- Only one of the follow ng clauses can be used.
[INT-TO- I NT & nt-to-int]

[BOOL- TO- BOOL [AS &bool -t o-bool]]

[BOOL- TO- | NT AS &bool -to-int]

[I NT- TO- BOOL
[AS & nt-to-bool]
[TRUE-1S &l nt-to-bool -true-is]
[FALSE-1S &l nt-to-bool -fal se-is]]

[I NT- TO- CHARS
[SI ZE & nt-to-chars-size]
[PLUS- SI GN &i nt -to-chars-plus]
[PADDI NG &i nt -t o- char s- pad]]

[INT-TOBITS
[AS & nt-to-bits-encoded-as]
[SI ZE & nt-to-bits-size]
[MULTIPLE OF & nt-to-bits-unit]]

[BITS-TO I NT
[AS &bits-to-int-decoded-assum ng]]

[CHAR-TO-BI TS
[AS &char-to-bits-encoded- as]
[CHAR- LI ST &Char-to-bits-chars]
[BI TS-LI ST &Char -t o-bits-val ues]
[SI ZE &char-to-bits-size]
[MULTI PLE OF &char-to-bits-unit]]

ETSI

mapped}

Uni versal String (SIZE(1))

BI T STRI NG ORDERED OPTI ONAL,
(1..MAX) DEFAULT bit,
Resul t Si ze DEFAULT vari abl e,

BI T STRI NG ORDERED OPTI ONAL,
Uni versal String (SIZE(1))

Non- Nul | - Patt ern DEFAULT bits:'1'B,
Non- Nul | - Patt ern DEFAULT bits:'0'B,

132 ETSI TS 101 969 V1.1.1 (2001-05)

[BI TS- TO- CHAR
[AS &bits-to-char-decoded-assum ng]
[BITS-LI ST &Bits-to-char-val ues]

[CHAR- LI ST &Bits-to-char-chars]]

[BIT-TO-BITS
[ZERO- PATTERN &bi t-to-bits-zero]
[ONE- PATTERN &bi t-to-bits-one]]

[BITS-TO-BITS
SOURCE- LI ST &Sour ce-val ues
RESULT- LI ST &Resul t - val ues]

24.2 Source and target of transforms

24.21 The#TRANSFORM encoding class allows the specification of procedures which transform input abstract
values (the source) into output abstract values of the same or a different type (theresult). The sourceis either theresult
of aprevious transform, or is obtained from a source class (see 19.4). Theresult is either the source for afollowing
transform, or becomes associated with atarget class (see 19.4).

NOTE: Clause 23 also uses transforms whose source is a single bit and a single character.

24.2.2 Thesetransformsare used in the definition of value mappings and in the definition of encoding objects for
bit-field encoding classes (see clauses 20 to 23).

24.2.3 The source and result are indicated by words ("INT-TO-INT", "BOOL-TO-BOOL", etc) in the specification of
a#TRANSFORM encoding object, and are defined in the associated text.

24.2.4 Clauses 24.2.4.1 t0 24.2.4.3 specify rules for using transforms in succession, and for the source and target
classes of alist of transforms.

24.2.4.1 When encoding objects of the class #TRANSFORM are specified in an ordered list, the source of a following
#TRANSFORM encoding object shall be the result of the preceding #TRANSFORM encoding object.

24.2.4.2 For thefirst and last of an ordered list of transforms used in the definition of encoding objects in clauses 22
and 23, text in those clauses specifies the source for the first transform and the required result for the last transform.

24.2.4.3 For thefirst and last of an ordered list of transforms used in the specification of value mapping by transforms
in 19.4, text in that clause specifies a source class and a target class, both of which will be of the bitstring, boolean,
characterdtring, integer or octetstring category (see 19.4.2). Therequired source for the first transform and the required
result of the last transform (for each of these categories) are gpecified in 24.2.7.

24.25 Textin this clause specifies the source of a transform and the result of atransform asasingle hit, bitstring,
boolean, single character, characterstring or integer.

24.2.6 A sourceor target that isa single bit or asingle character occurs only when successive transforms have these as
output and input, or as specified in clauses 22 and 23. Thefirst transform of the ordered list referenced in 19.4 shdl not
have a source which isasingle bit or a single character. Thelast transform of the ordered list referenced in 19.4 shall

not have atarget which isasingle bit or a single character.

24.2.7 When used in 19.4, the source for the first transform and the target for the last transform shall be the same as
the category of the source encoding class and target encoding class (respectively), with the following exceptions. When
the category of the source encoding class is octetstring, the source for the first transform shall be bitstring (treating each
octetstring value as a bitstring value). When thelast transform is"BITS-TO-BITS" with "MULTIPLE OF" set to 8, the
target class may be octetstring.

ETSI

133 ETSI TS 101 969 V1.1.1 (2001-05)

24.3 The int-to-int transform

NOTE: Examplesof thistransform are givenin D.1.2.2.

24.3.1 Theint-to-int transform uses the following encoding parameter:

& nt-to-int CHO CE
{increment | NTEGER (1..MAX),
decr enment I NTEGER (1..MAX),

mul tiply I NTEGER (2. . MAX),

di vi de I NTEGER (2. . MAX),

negat e ENUMERATED{ val ue},

nodul o I NTEGER (2. . MAX),
subtract ENUMERATED({ | ower - bound}
} OPTI ONAL

24.3.2 The syntax for theint-to-int transform shal be:
[INT-TO- I NT & nt-to-int]

24.3.3 Both the source and result of thistransform areinteger. There are no bounds associated with the result unless
thisisthe last transform in a mapping by transforms (see 19.4) and the target class of the mapping by transforms has
bounds. In that case, the transform can only be applied to source integer values that map into the bounds of the target
class.

24.3.4 Anint-to-int transform is defined by giving avalueto "INT-TO-INT", permitting any given encoding object to
specify precisaly one arithmetic operation. General arithmetic can, however, be defined by the use of alist of transforms
(thisis permitted wherever transformsinvolving integers are all owed).

24.35 Thevalues"increment:n", "decrement:n”, "multiply:n", "negate:n" have their normal mathematical meaning.
24.3.6 Thevaue"dividen" is defined to produce an integer result which isthe integer valuethat is closest to the
mathematical result, but is no further from zero than that result. In programming terms, "divide:n" truncates towards
zero, so avalue of -1 with "divide:2" will give zero.

24.3.7 Thetransform for the value "modulo:n” is defined as follows: Let "i* be the original integer value, let the

transform be "modulo:n”. Let "j" be theresult of applying "divide:n” followed by "multiply:n" to "i". Then "modulo:n"

applied to "i" is defined to be the same as applying "decrement:j" to "i".

24.3.8 Thetransform for the value "subtract:lower-bound” shall only be used as the first of an ordered list of
transforms. The source shall have alower bound.

24.39 Thistransform is defined to be reversible for the following values: "increment:n”, "decrement:n", "multiply:n",

"negate:n”, "subtract:lower-bound". The values "divide:n" and "modulo:n™ shall not be used wherereversible

transforms are required.

24.4 The bool-to-bool transform

24.4.1 The bool-to-boal transform uses the following encoding parameter:
&bool -t o- bool CHO CE
{l ogi cal ENUVMERATED({ not } }
DEFAULT 1 ogi cal : not
24.4.2 The syntax for the bool-to-bool transform shall be:
[BOOL- TO- BOOL [AS &bool -t o-bool]]
24.4.3 Both the source and result of this transform are bool ean.

24.44 Thereisonly onevaluefor "BOOL-TO-BOOL", "AS logical:not", which may be omitted. This transform
converts boolean "TRUE" to "FALSE", and vice-versa.

24.45 Thistransform is defined to bereversible.

ETSI

134 ETSI TS 101 969 V1.1.1 (2001-05)

24.5 The bool-to-int transform

24.5.1 The bool-to-int transform uses the following encoding parameter:

&bool -t o-int ENUMERATED {true-zero, true-one}
DEFAULT true-one

24.5.2 The syntax for the bool-to-int transform shall be:

[BOOL- TO- I NT AS &bool -to-int]

24.5.3 The source for thistransform isboolean and theresult isinteger with the value zero or one. Theresult hasno
associated bounds.

2454 Thevaue"true-zero" of "BOOL-TO-INT" producesinteger O for "TRUE" and integer 1 for "FALSE". The
value "true-one" produces integer 1 for "TRUE" and integer O for "FALSE".

2455 Thistransform is defined to bereversible.

24.6 The int-to-bool transform

24.6.1 Theint-to-bool transform uses the following encoding parameters:

& nt -t o-bool ENUMERATED {zero-true, zero-false}
DEFAULT zero-fal se,

& nt-to-bool-true-is | NTEGER OPTI ONAL,

& nt-to-bool -fal se-is | NTEGER OPTI ONAL

24.6.2 The syntax for theint-to-bool transform shall be:
[1 NT- TO- BOOL
[AS & nt-to-bool]
[TRUE-1S &l nt-to-bool -true-is]
[FALSE-1S &l nt-to-bool-fal se-is]]
24.6.3 The source for thistransform isinteger and theresult is bool ean.

24.6.4 Atmost oneof "AS', "TRUE-IS" and "FALSE-IS" can be s&t. If none are s&t, then the default value for "AS"
is assumed.

2465 If "AS' isset (or is defaulted), then the value "zero-true” produces "TRUE" for the value zero and "FALSE"
for all non-zero values, and the value "zero-false" produces "FALSE" for the value zero and "TRUE" for all non-zero
values.

24.6.6 If "TRUE-IS' issdt, thelist of integer values for "TRUE-IS" produces "TRUE" and all other integer values
produce "FALSE".

24.6.7 1f "FALSE-IS' isset, thelist of integer values for "FALSE-IS" produces "FALSE" and all other integer values
produce "TRUE".

24.6.8 Thistransform shall not be used when reversible transforms are required.

24.7 The int-to-chars transform

24.7.1 Theint-to-charstransform uses the following encoding parameters

& nt-to-chars-size Resul t Si ze DEFAULT vari abl e,
& nt-to-chars-plus BOOLEAN DEFAULT FALSE,
& nt -to-chars-pad ENUVMERATED

{spaces, zeros} DEFAULT zeros

24.7.2 The syntax for the int-to-chars transform shall be:

[I NT- TO- CHARS
[SI ZE & nt-to-chars-size]
[PLUS- SI GN &i nt -t o-chars-pl us]
[PADDI NG &i nt -t o- char s- pad]]

ETSI

135 ETSI TS 101 969 V1.1.1 (2001-05)

24.7.3 The sourcefor thistransform isinteger, and theresult is characterstring.
24.7.4 "SIZE", "PLUS-SIGN", and "PADDING" all have default values and can be omitted.
24.75 "SIZE" specifies either:
a) afixed sizein charactersfor theresulting size (a positive value of "SIZE"); or
b) that avariable length string of charactersisto be produced (the value "variable" of "SIZE"); or

¢) afixed-sizejust large enough to contain the transform of all abstract valuesin the source class (the value
"fixed-to-max" of "SIZE").

24.7.6 "SIZE" shall not be set to "fixed-to-max" unless thisisthefirst transform in an ordered set, and the source class
has both lower and upper bounds. Thisis synonymous with the specification of a positive value equal to the smallest
value needed to contain the transform of every abstract value within the bounds.

24.7.7 Theinteger valueisfirst converted to a decimal representation with no leading zeros and with a pre-fixed "-"
(HYPHEN-MINUY) if it isnegative. If, and only if, "PLUS-SIGN" is st to true, positive valueshavea"+" (PLUS
SIGN) pre-fixed to the digits.

24.7.8 Themost significant digit shall be at the leading end of the characterstring.

24.79 If "SIZE" is"variabl€", then thisisthe resulting string of characters. In this caseit isnot an error to specify a
value for "PADDING", but the value isignored.

24.7.10 If "SIZE" isapositive value or "fixed-to-max", and the resulting string (in an instance of application of this
transform during encoding) istoo large for the fixed size, then thisis an ECN specification or application error.

NOTE: Ingeneral it will only be possible for atool to diagnose this error at encode time, asrestrictions on
possible abstract values may not be formally present in the ASN.1 specification.

24.7.11 If "SIZE" isapositive value or "fixed-to-max", and the gtring is smaller than the fixed size, then it is padded
with either " " (SPACE) or "0" (DIGIT ZERO), determined by the value of "PADDING", pre-fixed to produce the
specified size.

24.7.12 Thistransform is defined to bereversible.

24.8 The int-to-bits transform

NOTE: An exampleof thistransformisgivenin D.1.5.5.

24.8.1 Theint-to-bits transform uses the following encoding parameters:

& nt-to-bits-encoded-as ENUVMERATED
{positive-int, twos-conplenent}
DEFAULT twos-conpl enent,

& nt-to-bits-unit Unit (1..MAX) DEFAULT bit,

& nt-to-bits-size Resul t Si ze DEFAULT vari abl e

24.8.2 The syntax for theint-to-chars transform shal be:

[INT-TO-BITS
[AS & nt-to-bits-encoded-as]
[SI ZE & nt-to-bits-size]
[MULTIPLE OF & nt-to-bits-unit]]

24.8.3 The sourcefor thistransform isinteger and theresult is bitstring. There are no bounds associated with the
result. The following clauses use the term resulting bitstring for theresult of this transform.

24.84 "AS',"SIZE", and"MULTIPLE OF" have default values and need not be set.

24.85 "SIZE" shall not be set to "fixed-to-max" unless thisisthe first transform in an ordered set in the syntax
defined in 19.4, and the source class has both lower and upper bounds. This is synonymous with the specification of a
positive value equal to the smallest value needed to contain the transform of every abstract value within the bounds.

ETSI

136 ETSI TS 101 969 V1.1.1 (2001-05)

24.86 "AS' sdectsthe encoding of theinteger as either a 2's-complement encoding or as a positive integer encoding.
The definition of these encodingsisgivenin ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2and 8.3.3.

24.8.7 Themost significant bit shall be at the leading end of the bitstring.

24.8.8 Theinteger shdl first be encoded into the minimum number of bits necessary to produce an initial bitstring.
Thismeansthat a positive integer encoding shall not have zero asthe leading bit (unless thereisa single zero bit in the
encoding), and a 2's-complement encoding shall not have two successive leading zero bits or two successive leading
one bits.

2489 If "AS' isset to "podtive-int”, and the value to be transformed is negative, thisisan ECN specification or an
application error.

NOTE: Ingeneral it will only be possible for atool to check for thiserror at encode time, asrestrictions on
possible abstract values may not be formally present in the ASN.1 specification.

24.810 If "SIZE" is"variable", then theinitial bitstring becomes the resulting bitstring. In this caseit isnot an error to
specify avalue for "MULTIPLE OF", but the value isignored.

24.811 |If "SIZE" isapositive value, the size of the resulting bitstring shall be "MULTIPLE OF" multiplied by
"SIZE".

24.8.12 1f "SIZE" is"fixed-to-max", then the size of the resulting bitstring shall be the smallest multiple of
"MULTIPLE OF" that islarge enough to receive the encoding of any abstract value of the class to which the transform
isapplied.

24.8.13 If theinitial bitgtring (in an instance of application of thistransform during encoding) istoo large for the fixed
size, then thisisan ECN specification or an application error.

NOTE: Ingeneral it will only be possible for atool to check for thiserror at encode time, asrestrictions on
possible abstract values may not be formally present in the ASN.1 specification.

24.8.14 If theinitia bitsring issmaller than the specified size, then for a positive integer encoding it shall have zero
bits prefixed to produce the resulting bitstring. If the encoding is 2's-complement, then it shall have bits prefixed equal
in valueto the original leading bit to produce the resulting bitstring.

24.8.15 Thistransform isdefined to bereversible. Thistransform produces a self-delimiting bitstring if and only if
"SIZE" isnot "variable".

24.9 The bits-to-int transform

24.9.1 The bitsto-int transform uses the following encoding parameter:
&bi ts-to-int-decoded-assum ng ENUVMERATED

{positive-int, twos-conplenent}
DEFAULT twos-conpl enent

24.9.2 The syntax for the bits-to-int transform shall be:

[BITS-TO I NT
[AS &bits-to-int-decoded-assum ng]]

24.9.3 The sourcefor thistransform is bitstring and theresult isinteger. There are no bounds associated with the
result.

24.9.4 Theinteger value shall be produced by interpreting the bits as 2's-complement or as a positive integer
encoding, as specified in ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3. Thevalue of "AS" (or itsdefault value if
not set) determines the encoding to be assumed.

24.95 Thistransform shall not be used where reversible transforms are required.

ETSI

137 ETSI TS 101 969 V1.1.1 (2001-05)

24.10 The char-to-bits transform

24.10.1 The char-to-bits transform uses the following encoding parameters:

&char -t o- bi ts- encoded- as ENUMERATED
{is010646, conpact, mapped}
DEFAULT conpact,

&Char-to-bits-chars Uni versal String (SIZE(1))
ORDERED OPTI ONAL,

&Char -t o- bi t s-val ues Bl T STRI NG ORDERED OPTI ONAL,

&char-to-bits-unit Unit (1..MAX) DEFAULT bit,

&char-to-bits-size Resul t Si ze DEFAULT vari abl e

24.10.2 The syntax for the char-to-bits transform shal be:

[CHAR-TO-BI TS
[AS &char -t o-bits-encoded- as]
[CHAR- LI ST &Char-to-bits-chars]
[BI TS-LI ST &Char -t o-bits-val ues]
[SI ZE &char-to-bits-size]
[MULTI PLE OF &char-to-bits-unit]]

24.10.3 The sourcefor thistransform isasingle character and theresult is bitgtring.

24.10.4 Wherethefollowing text refersto a possible "effective permitted al phabet constraint”, such a constraint exists
if and only if the transformisthefirst in an ordered list used in 23.4 and the classto which the encoding object is
applied has an effective permitted al phabet constraint.

24105 "AS',"SIZE" and "MULTIPLE OF" all have default values and need not be set. "CHAR-LIST" and
"BITSLIST" areonly used if "AS" is set to "mapped”, in which case their presence is mandatory, and they shall then
contain at least one element in the ordered list.

24.10.6 ECN supports only charactersin the ISO/IEC 10646-1 character set. Where ASN.1 types such as
"General String" arein use, characters outside of this character set can in theory appear. Such charactersare not
supported by this transform.

24.10.7 1f "AS' is"mapped", then the transform is specified by the values of "CHAR-LIST" and "BITS-LIST", both
of which shall be specified, and the values of "MULTIPLE OF" and "SIZE" areignored. The transform is specified in
24.10.7.110 24.10.7.5.

24.10.7.1 "CHAR-LIST" and"BITS-LIST" arerespectively alist of single characters and of bitstring values. (These
parametersareignored if "AS" isnot set to "mapped”).

24.10.7.2 Thereshall be an equal number of valuesin each list, and all character valuesin "CHAR-LIST" shall be
distinct.

24.10.7.3 Theencoding of a character in "CHAR-LIST" isthe bitstring specified in the corresponding position in
"BITSLIST".

24.10.7.4 If inaninstance of application of thistransform a character isto be transformed that is not in the
"CHAR-LIST", thisisan ECN specification or an application error.

NOTE: Ingenerd it will only be possible for atool to check for thiserror at encode time, asrestrictions on
possible abstract values may not be formally present in the ASN.1 specification.

24.10.75 Inthiscase ("AS" set to "mapped”), the transform is defined to be reversibleif and only if the set of all
bitstring valuesin "BITS-LIST" are distinct. Theresult is self-delimiting if the bitstring valuesin "BITS-LIST" are
self-delimiting (see 3.2.41).

24.10.8 If "AS'is"is010646", the transform is specified in 24.10.8.1 to 24.10.8.5.
24.10.8.1 The character isfirst converted to an integer with the numerical value specified in ISO/IEC 10646-1.
NOTE: ISO/IEC 10646-1 includesthe so-called ASCII control characters, which have positionsin row 1.

24.10.8.2 If the character isfrom a character string that has an associated effective alphabet constraint (see 24.10.4),
then the integer has effective size constraints just sufficient to contain the numerical values of all charactersin the
effective permitted a phabet.

ETSI

138 ETSI TS 101 969 V1.1.1 (2001-05)

24.10.8.3 If thereis no effective alphabet constraint, then the integer has an associated effective size constraint of
0..32 767.

24.10.84 Thisinteger valueisthen converted to bits using the transform:

INT-TO-BITS -- (see 24.8)
AS positive-int
S| ZE <si ze>
MULTI PLE OF <nul ti pl e- of >

where "<gze>" isthe value of "SIZE" and "<multiple-of>" is the value of "MULTIPLE OF" for the char-to-bits
transform. ("SIZE" and "MULTIPLE OF"' take their default values if not set).

24.10.85 Inthiscase ("AS" st to "is010646"), the transform is defined to be reversible. It produces a self-delimiting
string of bitsif and only if "SIZE" isnot "variable".

24.10.9 If "AS'is"compact", thenitisan ECN specification error if there isno effective permitted a phabet
constraint, otherwise the transform is specified in 24.10.9.1 to 24.10.9.4.

24.10.9.1 All charactersin the effective permitted alphabet are placed in canonical order using their 1SO/IEC 10646-1
value, lowest valuefirst. Thefirst in thelist isthen assigned theinteger value zero, the next one, and so on.

24.10.9.2 If the effective permitted alphabet contains"n" characters, then the integer has an effective size constraint of
0..n-1.

24.10.9.3 Thisinteger isthen converted to bits usng the transform:

INT-TO-BITS -- (see 24.8)
AS positive-int
S| ZE <si ze>
MULTI PLE OF <nul ti pl e- of >

where "<gze>" isthe value of "SIZE" and "<multiple-of>" is the value of "MULTIPLE OF" for the char-to-bits
transform. ("SIZE" and "MULTIPLE OF"' take their default values if not set).

NOTE: The PER encoding of character string types uses the equivalent of "compact" only if the application of
this algorithm reduces the number of bits required to encode characters (using "fixed-to-max™). This
degree of control isnot possible in this version of the present document.

24.10.9.4 Inthiscase ("AS' st to "compact”), the transform is defined to be reversible. It produces a self-delimiting
string of bitsif and only if "SIZE" isnot "variable".

24.11 The bhits-to-char transform

24.11.1 The bitsto-char transform uses the following encoding parameters:

&bi ts-to-char-decoded-assum ng ENUVMERATED
{is010646, mapped}
DEFAULT i s010646,
&Bi t s-t o- char - val ues BI T STRI NG ORDERED OPTI ONAL,
&Bits-to-char-chars Uni versal String (SIZE(1))
ORDERED OPTI ONAL

24.11.2 The syntax for the bits-to-char transform shall be:

[BI TS- TO CHAR
[AS &bits-to-char-decoded-assuni ng]
[BI TS-LI ST &Bits-to-char-val ues]
[CHAR- LI ST &Bits-to-char-chars]]

24.11.3 The sourcefor thistransform is bitstring and theresult isa single character.
NOTE: Thistransform cannot be used as the last transform in an ordered list.

24114 1f "AS'is"is010646", then the bitstring shall be interpreted as a positive integer encoding which containsthe
I SO/IEC 10646-1 numerical value of a character. It isan ECN specification error if the integer value exceeds 32 767.

24.11.5 1If "AS"is"mapped”, then the transform is specified by the values of "CHAR-LIST" and "BITS-LIST". The
transformisdefined in 24.11.5.1t0 24.11.5.5.

ETSI

139 ETSI TS 101 969 V1.1.1 (2001-05)
241151 "CHAR-LIST" and"BITS-LIST" arerespectively alist of single characters and of bitstring values. (These
parametersareignored if "AS" isnot set to "mapped”).

24.11.5.2 Thereshall be an equa number of valuesin each list, and all character valuesand all bitstring valuesin the
list shdl be distinct.

24.11.5.3 Theencoding of a character in the"CHAR-LIST" lig is the bitstring specified in the corresponding position
inthe"BITSLIST".

24.11.54 If inaninstance of application of thistransform abitstring isto be transformed that isnot in the
"BITSLIST", thisisan ECN specification or an application error.

NOTE: Ingeneral it will only be possible for atool to check for thiserror at encode time, asrestrictions on
possible abstract values may not be formally present in the ASN.1 specification.

24.11.55 Thetransform isdefined to bereversible.

24.12 The bhit-to-bits transform

24.12.1 The bit-to-bits transform uses the following encoding parameters.

&bit-to-bits-one Non- Nul | - Patt ern DEFAULT bits:'1'B,
&it-to-bits-zero Non- Nul | - Pattern DEFAULT bits:'0'B

24.12.2 The syntax for the bit-to-bits transform shall be:

[BIT-TO-BITS
[ZERO- PATTERN &bit-to-bits-zero]
[ONE- PATTERN &bi t-to-bits-one]]

24.12.3 The sourcefor thistransform isasingle bit from either:
a) aprevious transform that produced a hit; or
b) the specification of an encoding for the hitstring category (see 23.2);
and the result is a bitstring.
24.12.4 At most one of "ZERO-PATTERN" and "ONE-PATTERN" shall be "different:any”.

NOTE: A value of "different:any” here means a pattern that is not the same as the other pattern, but is the same
length.

24.12.5 The"any-of-length" alternative shal not be used for either "ZERO-PATTERN" or "ONE-PATTERN".

24.12.6 Ifthehitissetto zero, theresult isthe "ZERO-PATTERN". If the bit is set to one, theresult isthe
"ONE-PATTERN".

24.12.7 Itisan ECN specification error if "ZERO-PATTERN" and "ONE-PATTERN" arethe same, or if oneisan
initial sub-string of the other.

24.12.8 Thistransform is defined to be reversible and the result is self-delimiting.

24.13 The bits-to-bits transform

24131 The bits-to-bits transform uses the following encoding parameters:

&Sour ce-val ues BI T STRI NG ORDERED,
&Resul t - val ues BI T STRI NG ORDERED

24.13.2 The syntax for the bits-to-bits transform shall be:

[BITS-TO-BITS
SOURCE- LI ST &Sour ce-val ues
RESULT- LI ST &Resul t - val ues]

24.13.3 Thesourcefor thistransform ishitstring and theresult is bitstring.

ETSI

140 ETSI TS 101 969 V1.1.1 (2001-05)

24134 "SIZE" and "MULTIPLE OF" both have default values and need not be set. "SOURCE-LIST" and
"RESULT-LIST" arerequired, and shall contain at |east one element in the ordered list.

24135 Thetransform is specified by the values of "SOURCE-LIST" and "RESULT-LIST".

24.13.6 Thereshall be an equal number of bitstring valuesin each list, and all bitstring valuesin "SOURCE-LIST"
shall be distinct.

24.13.7 Thetransform of a bitstring in "SOURCE-LIST" is the bitstring specified in the corresponding position in
"RESULT-LIST".

24.13.8 If, in aninstance of application of this transform, a source bitstring isnot in the "SOURCE-LIST", thisisan
ECN specification or an application error.

NOTE: Ingeneral it will only be possible for atool to check for thiserror at encode time, asrestrictions on
possible abstract values may not be formally present in the ASN.1 specification.

24.13.9 Thetransform isdefined to be reversibleif and only if the set of all bitstring valuesin "RESULT-LIST" are
distinct. Theresult is sdf-delimiting if the bitstring valuesin "RESULT-LIST" are distinct and sdlf-delimiting
(see 3.2.42).

25 Complete encodings and the #0OUTER class

25.1 General rules for encoding and decoding

25.1.1 If thereisno encoding object of the #OUTER class (see 25.2) in the combined encoding object set being to a
typein the ELM, then the encoder and decoder shall assume encoding object of this classin which all encoding
parameters have their default values.

25.1.2 Itisan encoder error (which shal be detected by a decoder) if therules for determining the size of a container
result in the end of the container being detected when there are still elementswithin the container for which encodings
are expected but have not yet occurred, unless all such elements are optional with optionality determined by the end of
the container.

NOTE: The container may be a concatenation or arepetition, or may be the end of the PDU.

25.2 Encoding parameters, syntax, and purpose for the #OUTER
class

25.21 The syntax for defining encoding objects of the #OUTER class is defined as
#OUTER : : = ENCODI NG CLASS {
- Alignment point

&al i gnment - poi nt ENUVERATED
{unchanged, reset } DEFAULT reset,

- Paddi ng
&post - paddi ng- uni t Unit (1..MAX) DEFAULT octet,
&post - paddi ng Paddi ng DEFAULT zero,
&post - paddi ng- pattern Non- Nul | - Pattern (ALL EXCEPT ot her)

DEFAULT bits:'0'B,

- Bit reversal specification (see 22.12)
&bit -reversal Rever sal Speci fication
DEFAULT no-reversal,

- Added bits action
&added-bits ENUVERATED
{hard-error, signal-application,
silently-ignore, next-value}
DEFAULT hard-error

} WTH SYNTAX {

ETSI

141 ETSI TS 101 969 V1.1.1 (2001-05)

[ALI GNMENT &al i gnnent - poi nt]
[PADDI NG
[MULTI PLE OF &post - paddi ng-uni t]
[POST- PADDI NG &post - paddi ng
[PATTERN &post - paddi ng-pattern]]]
[BI T- REVERSAL &bit-reversal]
[ADDED BI TS DECODI NG &added- bi t s]

}

25.2.2 Encoding objects of the #OUTER class specify encoder and decoder actionsin relation to the entire encoding
of atype which is encoded by ether:

a) application of an encoding in the ELM; or
b) application of an encoding to a contained type.
25.2.3 Threeindependent specifications can be made (see 25.2.4 t0 25.2.6).

25.24 The"ALIGNMENT" specification is applicable only for a contained type, and determines whether the
alignment point is to be reset to the head of the container or is to be the same asthat in use for the encoding of the
container.

25.25 The"PADDING" specification determines that the entire encoding is to be padded with trailing bits to make
the number of bits from the alignment point an integral multiple of some unit.

25.26 The"ADDED BITS DECODING" specification is applicable only to encoders, and determines the action to be
taken if there are further bitsin the PDU after decoding according to encoding specifications has been compl eted.

NOTE: Thisprovision isprimarily to provide a simple mechanism for extensbility without use of the ASN.1
extensibility marker. A later version of the present document is expected to give enhanced support for
extensibility.

25.27 "ALIGNMENT", "PADDING", and "ADDED BITS DECODING" all take their default valuesif not set or if
thereisno encoding object of class #OUTER in the combined encoding object set.

NOTE: The default values are those used by the encoding object of class #OUTER for PER basic unaligned.

25.3 Encoder actions for #OUTER

2531 If "ALIGNMENT" is"unchanged", then the alignment point used in encoding a contained type shall be the
alignment point used in encoding the container.

25.3.2 If "ALIGNMENT" is"reset", then the dignment point used in encoding a contained type shall be the start of
the encoding of that type.

25.3.3 If "PADDING" is s¢t, then the encoder shall add bits in accordance with the value of "PADDING" and
"PATTERN" to make the number of bits from the alignment point amultiple of "MULTIPLE OF" units. "PATTERN"
shall be replicated and truncated as necessary.

25.3.4 Theencoder shall diagnose an ECN specification or application error if the encoding isfor atype in a contents
constraint on an octetstring, and the encoding of the type (after al specified "PADDING" actions) isnot an integral
multiple of eight hits.

25.35 If bit-reversal is set, the encoder actions specified in 22.12 shall be applied using the value of "MULTIPLE
OF" specified for (or defaulted in) "PADDING".

25.3.6 Theencoder shall ignore"ADDED BITS DECODING".

25.4 Decoder actions for #OUTER

25.4.1 |If bit-reversal is set, the decoder actions specified in 22.12 shall be applied using the value of "MULTIPLE
OF" specified for (or defaulted in) "PADDING".

25.4.2 If "ALIGNMENT" is"unchanged", then the alignment point used in encoding a contained type shall be the
alignment point used in encoding the container.

ETSI

142 ETSI TS 101 969 V1.1.1 (2001-05)
2543 If "ALIGNMENT" is"reset", then the dignment point used in encoding a contained type shall be the start of
the encoding of that type.

25.4.4 The decoder shall determinethe bits added by "PADDING" (if any), and shall silently ignore the added hits, no
matter what their value.

25.45 If the PDU (or the container of a contained type) contains further bits after the end of the encoding, then the
decoder shall take the following actions:

a) if "ADDED BITS DECODING" is "hard-error": diagnose an encoder error;

b) if "ADDED BITS DECODING" is"signal-application™: ignore all further bits and signal the application that
there may be critical extensionsto the protocal;

c) if "ADDED BITS DECODING" is "silently-ignore": ignore all further bits;

d) if "ADDED BITS DECODING" is "next-value": cease decoding and expect the application to initiate decoding
of anew value from the remaining bits.

ETSI

143 ETSI TS 101 969 V1.1.1 (2001-05)

Annex A (normative):
Addendum to ITU-T Rec. X.680 | ISO/IEC 8824-1

This annex specifies the modifications that are to be applied when productions and/or clauses from ITU-T Rec.
X.680 | ISO/IEC 8824-1 arereferenced in the present document.

A.1 Exports and imports clauses

The productions " Assignedidentifier”, "Symbol" and "Reference" of 12.1, aswell asclauses 12.12, 12.15, and 12.19 of
ITU-T Rec. X.680 | ISO/IEC 8824-1 are modified as follows:

12.1 Assignedldentifier ::= Definitiveldentifier

Synmbol ::=
Ref erence |
Bui | ti nEncodi ngCl assRef erence |
Par anet eri zedRef er ence

Reference ::=
encodi ngcl assref erence |
Ext er nal Encodi ngCl assRef erence |

encodi ngobj ectref erence |
encodi ngobj ect setref erence

NOTE 1: The production "Assignedidentifier” is changed because "valuereferences can neither be defined nor
imported into ELM or EDM modules.

NOTE 2: "BuiltinEncodingClassReference" can only be used as a"Symbol" in an imports clause. The use of
production "External EncodingClassReference” in "Reference” is explained in 14.11.

12.12 When the "SymbolsExported” alternative of "Exports’ is selected, then each "Symbol" in " Symbol sExported”
shall satisfy one and only one of the following conditions.

a) itisdefined in the module from which it is being exported; or

b) it appears exactly once in the " Symbolsimported” aternative of "Imports* in the module from which it isbeing
exported.

12.15 When the "Symbolsimported” alternative of "Imports’ is selected:
a) each "Symbol" in "SymbolsFromModul€e" shall either

1) bedefined in the body of the module denoted by the " Global M odul eReference” in " Symbol sfromModul e,
or

2) bepresent precisely once in the imports clause of the module denoted by the "Global Modul eReference” in
" SymbolsFromModul €".

NOTE: Thisdoesnot prohibit the same symbol name defined in two different modules from being imported into
another module. However, if the same " Symbol™ name appears more than once in the imports clause of
module "A", that "Symbol" name cannot be exported from "A" for import to another module "B".

b) all the"SymbolsFromModul€e" in the "SymbolsFromModuleList” shall include occurrences of
"Global ModuleReference” such that:

i) the"modulereference” in them areall different from each other (whether they are ASN.1, or EDM modules)
and from the "modul ereference” associated with the referencing module; and

ii) the"Assignedidentifier", when non-empty, denotes object identifier values which are al different from each
other and from the object identifier value (if any) associated with the referencing module.

ETSI

144 ETSI TS 101 969 V1.1.1 (2001-05)

A.2 Addition of "REFERENCE"

NOTE: Thismodification isintroduced for the sole purpose of clause 23.
The production "Type" in ITU-T Rec. X.680 | ISO/IEC 8824-1, 16.1, is modified asfollows:

Type ::=
Bui I ti nType |
Ref er encedType |
Const rai nedType |
REFERENCE

A.3 Notation for character string values

The production "CharsDefn" of ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7, ismodified as follows:

CharsDefn ::=
cstring |

Quadrupl e |
Tupl e |
Absol ut eChar Ref erence

Absol ut eChar Reference :: =
Modul el denti fi er

val uer ef erence

The "AbsoluteCharReference” is a fully-qualified name which references a character string value (of type IA5String or
BMPString) defined in the ASN1-CHARACTER-MODULE (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 37.1).

ETSI

145 ETSI TS 101 969 V1.1.1 (2001-05)

Annex B (normative):
Addendum to ITU-T Rec. X.681 | ISO/IEC 8824-2

This annex specifies the modifications that are to be applied when productions and/or clauses from ITU-T Rec.
X.681 | ISO/IEC 8824-2 arereferenced in the present document.

B.1 Definitions

The following definitions are added to ITU-T Rec. X.681 | ISO/IEC 8824-2, 3.4:
encoding class field type: type specified by reference to some type field of an encoding object class
encoding classfield: field which contains an arbitrary encoding class

encoding aobject field: field which contains an encoding object of some specified encoding class

Such afield is either of fixed-class or of variable-class. In the former case, the class of the encoding object is fixed by
the field specification. In the latter case, the class of the encoding object is contained is some (specific) encoding class
field of the same encoding object.

encoding object list field: field which contains an ordered non-empty list of encoding objects of some specified
encoding class

encoding object set field: field which contains a set of encoding objects of some specified encoding class

value ligt field: field which contains an ordered (possibly empty) list of values of some specified type

B.2 Additional lexical items

NOTE: Thismodification isintroduced for the sole purpose of clause 23.
The following definitions are added to ITU-T Rec. X.681 | ISO/IEC 8824-2, 7:
B.21 Encoding object list field references
Name of item — encodingobjectlistfieldreference

An "encodingobjectlistfiel dreference” shall consst of an ampersand ("&") immediately followed by a sequence of
characters as specified for an "objectsetreference” in ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.3.

B.2.2 Encoding classfield references
Name of item — encodingclassfiel dreference

An "encodingclassfieldreference” shall consist of an ampersand ("&") immediately followed by a number sign ("#")
which itself isimmediately followed by a sequence of characters as specified for an "encodingclassreference” in 8.3.

B.3 Addition of "ENCODING-CLASS"

NOTE: Thismodification isintroduced for the sole purpose of clause 23.

Replace the reserved word "CLASS" with "ENCODING-CLASS' in ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.3.

ETSI

146 ETSI TS 101 969 V1.1.1 (2001-05)

B.4 FieldSpec additions

NOTE: Thismodification isintroduced for the sole purpose of clause 23.
ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.4, ismodified as follows:

Fi el dSpec ::=

Fi xedTypeVal ueFi el dSpec |
Fi xedTypeVal ueSet Fi el dSpec |
Fi xedTypeVal ueli st Fi el dSpec |
Fi xedCl assEncodi ngObj ect Fi el dSpec |
Vari abl eCl assEncodi ngbj ect Fi el dSpec |
Fi xedd assEncodi ngObj ect Set Fi el dSpec |
Fi xedd assEncodi ngObj ect Li st Fi el dSpec |
Encodi ngCl assFi el dSpec

B.5 Fixed-type value list field spec

NOTE: Thismodification isintroduced for the sole purpose of clause 23.

A "FixedTypeValuelListFieldSpec" specifies that the field is a fixed-type value list field (see B.1 of the present
document):

Fi xedTypeVal ueli st Fi el dSpec :: =
val uel i stfiel dreference
Def i nedType
ORDERED
Fi xedTypeVal uelLi st Opti onal i t ySpec ?

Fi xedTypeVal uelLi st Opti onal i tySpec ::= OPTI ONAL | DEFAULT Val ueli st

The name of thefidd is"valudisfiedreference’. The "DefinedType" references the type of values contained in the
field. The"FixedTypeValuelListOptionalitySpec”, if present, specifies that the field may be unspecified in an encoding
object definition, or, in the "DEFAULT" case, that omission produces the following "ValueList" (see ITU-T Rec. X.680
| ISO/IEC 8824-1, 25.3), all of whose values shall be of "DefinedType'".

B.6 Fixed-class encoding object field spec
NOTE: Thismodification isintroduced for the sole purpose of clause 23.

A "FixedClassEncodingObjectFieldSpec” specifies that the field is a fixed-class encoding object field (see B.1 of the
present document):

Fi xedd assEncodi ngObj ect Fi el dSpec :: =
obj ectfieldreference
Def i nedOr Bui | ti nEncodi ngCl ass
Encodi ngObj ect Opti onal i t ySpec?

Encodi ngObj ect Optional i tySpec ::= OPTIONAL | DEFAULT Encodi ngObj ect

The name of thefield is"objectfieldreference’. The "DefinedOrBuiltinEncodingClass' references the encoding class of
the encoding object contained in the field (which may be the "EncodingClass' currently being defined). The
"EncodingObjectOptionalitySpec”, if present, specifies that the field may be unspecified in an encoding object
definition, or, in the"DEFAULT" case, that omission produces the following "EncodingObject” (see 17.1.4 of the
present document) which shall be of the "DefinedOrBuiltinEncodingClass’.

ETSI

147 ETSI TS 101 969 V1.1.1 (2001-05)

B.7 Variable-class encoding object field spec

A "VariableClassEncodingObjectFieldSpec” specifies that the field is a variable-class encoding object field (see B.1 of
the present document):

Vari abl eCl assEncodi ngQbj ect Fi el dSpec :: =
obj ectfieldreference
encodi ngcl assfi el dref erence
Encodi ngObj ect Opti onal i t ySpec?

The name of the field is"objectfieldreference”. The "encodingclassfieldreference” references an encoding class field of
the encoding class being specified. The "EncodingObjectOptionalitySpec”, if present, specifies that the encoding object
may be omitted in an encoding object definition, or, in the "DEFAULT" case, that omission produces the following
"EncodingObject”. The "EncodingObjectOptionditySpec” shall be such that:

a) if thetype field denoted by the "encodingclassfiel dreference” has an " EncodingClassOptionalitySpec” of
"OPTIONAL", then the "EncodingObjectOptionalitySpec" shall also be "OPTIONAL"; and

b) if the "EncodingObjectOptionalitySpec” is"DEFAULT EncodingObject”, then the encoding class field denoted
by the "encodingclassfieldreference” shall have an "EncodingClassOptionalitySpec” of "DEFAULT
DefinedOrBuiltinEncodingClass’, and "EncodingObject” shall be an encoding object of that class.

B.8 Fixed-class encoding object set field spec
NOTE: Thismodification isintroduced for the sole purpose of clause 23.

A "FixedClassEncodingObjectSetFieldSpec” specifies that the field is a fixed-class encoding object set field (see B.1 of
the present document):

Fi xedd assEncodi ngObj ect Set Fi el dSpec :: =
obj ectsetfiel dreference
Def i nedOr Bui | ti nEncodi ngCl ass
Encodi ngObj ect Set Opt i onal i t ySpec?

Encodi ngObj ect Set Opti onal itySpec ::= OPTIONAL | DEFAULT Encodi ngObj ect Set

The name of the field is"objectsetfieldreference”. The "DefinedOrBuiltinEncodingClass' references the class of the
encoding objects contained in the field. The "EncodingObjectSetOptionalitySpec”, if present, specifiesthat the field
may be unspecified in an encoding object definition, or, in the "DEFAULT" case, that omission produces the following
"EncodingObjectSet” (see clause 18), all of whose objects shall be of "DefinedOrBuiltinEncodingClass'.

B.9 Fixed-class encoding object list field spec

NOTE: Thismodification isintroduced for the sole purpose of clause 23.

A "FixedClassEncodingObjectListFieldSpec” specifies that the field is a fixed-class encoding object list field (see B.1
of the present document):

Fi xedd assEncodi ngObj ect Li st Fi el dSpec :: =
encodi ngobj ectlistfieldreference
Def i nedOr Bui | ti nEncodi ngCl ass
ORDERED
Encodi ngObj ect Li st Opti onal i t ySpec?

Encodi ngObj ect Li st Opti onal itySpec ::= OPTI ONAL | DEFAULT Encodi ngObj ect Li st

The name of the field is"encodingobjectlistfieldreference”. The "DefinedOrBuiltinEncodingClass' references the class
of the encoding objects contained in the field. The "EncodingObjectListOptionalitySpec”, if present, specifies that the
field may be unspecified in an encoding object definition, or, in the "DEFAULT" case, that omission produces the
following "EncodingObjectList” (see B.11 of the present document), all of whose objects shall be of
"DefinedOrBuiltinEncodingClass'.

ETSI

148 ETSI TS 101 969 V1.1.1 (2001-05)

B.10 Encoding class field spec

NOTE: Thismodification isintroduced for the sole purpose of clause 23.
An "EncodingClassFieldSpec” specifies that the field is an encoding class field (see B.1 of the present document):

Encodi ngCl assFi el dSpec :: =
encodi ngcl assfi el dref erence
Encodi ngCl assOpti onal i t ySpec?

Encodi ngCl assOptionalitySpec ::= OPTIONAL | DEFAULT Defi nedOrBuiltinEncodi ngC ass

The name of the fidld is"encodingclassfieldreference”. If the "EncodingClassOptionalitySpec” is absent, al encoding
object definitions for that class arerequired to include a specification of an encoding class for that field. If
"OPTIONAL" is present, then thefield can be left undefined. If "DEFAULT" is present, then the following
"DefinedOrBuiltinEncodingClass’ provides the default setting for the field if it is omitted in a definition.

B.11 Encoding object list notation

Encodi ngObj ectList ::= "{" Encodi nglbject "," + "}"

The "EncodingObjectList” is an ordered list of one or more encoding objects of the governing class. It is used when the
application applies semanticsto the order of valuesin the list.

EXAMPLE: A lig of #TRANSFORM encoding objectsis applied in the stated order.

NOTE: AsASN.1 hasno concept of object list reference names or assignments, an object list can only be
specified by in-line notation when governed by an object list field type of an encoding class.

B.12 Primitive field names

ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.13, ismodified as follows:

9.13 The construct "PrimitiveFieldName" is used to identify a field relative to the encoding class containing its
specification:
PrimtiveFiel dNane ::=
val uefi el dref erence |

val uesetfiel dreference |
val uel i stfieldreference

B.13 Additional reserved words
ITU-T Rec. X.681 | ISO/IEC 8824-2, 10.6, ismodified as follows:

10.6 A "word" lexical item used asa "Literal" cannot be one of the following:

BEG N

BER

CER

DER

ENCODE

ENCCDE- DECODE

END

FALSE

M NUS- I NFI NI TY

NON- ECN- BEG N

NULL

QUTER

PER- BASI C- ALI GNED

PER- BASI C- UNALI GNED
PER- CANONI CAL- UNALI GNED
PER- CANONI CAL- UNALI GNED

ETSI

149 ETSI TS 101 969 V1.1.1 (2001-05)

PLUS- I NFI NI TY

TRUE

UNI ON

USE

USE- SET

NOTE: Thislist comprises only those ASN.1 reserved words which can appear asthefirst item of a"Value',

"EncodingObject", or "EncodingObjectSet", and a so thereserved word "END". Use of other ECN
reserved words does not cause ambiguity and is permitted. Where the defined syntax isused in an
environment in which a"word" isaso an "encodingobjectsetreference”, the use asa "word" takes
precedence.

B.14 Definition of encoding objects

Therestriction imposed by ITU-T Rec. X.681 | ISO/IEC 8824-2, 10.12.d, isremoved.

NOTE:

This affects the defined syntax for defining encoding objects of some classes (see clauses 23 and 24). It
means, for example, that, for adefined syntax such as:

[BOOL-TO-INT [AS &bool-to-int]]
the user isdlowed to write:
BOOL-TO-INT

when defining an encoding object of this class. In such a case, the "DEFAULT" value associated with the
parameter "&bool-to-int” (i.e., "false-zero") isused in the definition of the transform "BOOL-TO-INT".

B.15

Additions to "Setting"

ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.6, ismodified as follows:

11.6 A "Setting" specifies the setting of some field within an encoding object being defined:

Setting ::=

If thefiddis:

Val ue |
Val ueSet |
Val ueli st |
Encodi ngObj ect |
Encodi ngObj ect Set |
Encodi ngOhj ect Li st |
Def i nedOr Bui | ti nEncodi ngCl ass |
OUTER

a) avaluefidd, the"Vaue' aternative;

b) avalue st field, the "ValueSet" alternative;

c) avauelig fidd, the"ValuelLigt" dternative;

d) an encoding object field, the "EncodingObject” alternative;

€) an encoding object set field, the "EncodingObjectSet” alternative;

f) an encoding object list field, the "EncodingObjectList” aternative;

ETSI

150 ETSI TS 101 969 V1.1.1 (2001-05)

g) an encoding class fidd, the "DefinedOrBuiltinEncodingClass’ alternative;
h) areferencefield, the"Vaue' or the"OUTER" dternative;

shall be selected. For areference field specified using the syntax of clauses 20 to 25, the "Value" shall be adummy
parameter. "OUTER" can be used whenever areferenceisrequired and identifies a container which isthe entire
encoding.

NOTE: Thesetting isfurther restricted as described in ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.5t09.12, and 11.7
to 11.8.

B.16 Encoding class field type

The type that isreferenced by this notation depends on the category of the field name. For the different categories of
field names, B.16.2 to B.16.4 below specify the type that isreferenced.

B.16.1 Thenotation for an encoding class field type shall be "EncodingClassFieldType":

Encodi ngCl assFi el dType ::=
Def i nedOr Bui | ti nEncodi ngCl ass

Fi- el dNanme

wherethe"FieldName" isas specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.14, relative to the encoding class
identified by the "DefinedOrBuiltinEncodingClass'.

B.16.2 For afixed-type value, afixed type value set field, or afixed type valuelist field, the notation denotes the
"Type" that appearsin the specification of that field in the definition of the encoding object class.

B.16.3 Thisnotation isnot permitted if thefield isan encoding object, an encoding object set or an encoding object
list field.

B.16.4 Thenotation for defining avalue of thistype shall be "FixedTypeFieldVal" as defined in ITU-T Rec. X.681 |
ISO/IEC 8824-2, 14.6.

ETSI

151 ETSI TS 101 969 V1.1.1 (2001-05)

Annex C (normative):
Addendum to ITU-T Rec. X.683 | ISO/IEC 8824-4

Thisannex specifies the modifications that need to be applied when productions and/or clauses from ITU-T Rec.
X.683 | ISO/IEC 8824-4 arereferenced in the present document.

C.1 Parameterized assignments

Clauses 8.1 and 8.3 of ITU-T Rec. X.683 | ISO/IEC 8824-4 are modified as follows:

8.1 Thereare parameterized assignment statements corresponding to each of the assignment statements specified in
the present document. The "ParameterizedAssignment” construct is:

Par amet eri zedAssi gnnent ::=
Par anmet eri zedEncodi ngOhj ect Assi gnnment |
Par amet eri zedEncodi ngCl assAssi gnnent |
Par anmet eri zedEncodi ngObj ect Set Assi gnrrent

8.3 ParaneterlList ::="{<" Parameter "," + ">}"
Governor ::=
Encodi ngCl assFi el dType |
REFERENCE |
Def i nedOr Bui | ti nEncodi ngCl ass |
#ENCODI NGS

A "DummyReference” in "Parameter” may stand for:
a) an encoding class, in which case there shall be no "ParamGovernor”;

b) an ASN.1 value, value set, or value list, in which case the "ParamGovernor” shall be present asa " Governor"
that is atype extracted from an encoding class ("EncodingClassFieldType");

¢) an"identifier”, in which case the "ParamGovernor" shall be present asa "Governor” that is"REFERENCE";

d) an encoding object, or an encoding object list, in which case the "ParamGovernor” shall be present asa
"Governor” that is an encoding class ("DefinedOrBuiltinEncodingClass");

€) an encoding object set in which casethe "ParamGovernor” shall be present asa"Governor" that is
"#ENCODINGS'.

NOTE: "DummyGovernor'sarenot allowed in ECN.

C.2 Parameterized encoding assignments

The following productions are added to ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2:

Par amet eri zedEncodi ngCl assAssi gnnent :: =
encodi ngcl assref erence
Par anet er Li st
Encodi ngCl ass

Par amet eri zedEncodi ngObj ect Assi gnnent @ : =
encodi ngobj ectref erence
Par anet er Li st
Def i nedOr Bui | ti nEncodi ngCl ass

E-nizodi ngOhj ect

ETSI

152 ETSI TS 101 969 V1.1.1 (2001-05)

Par anet er i zedEncodi ngObj ect Set Assi gnnent :: =
encodi ngobj ect setref erence
Par amet er Li st
#ENCODI NGS

Encodi ngChj ect Set
ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.4, ismodified as follows:

8.4 The scope of a"DummyReference” appearing in a"ParameterList” isthe "ParameterList” itself, together with that
part of the "ParameterizedAssignment” which followsthe "::=".

In case of a"ParameterizedEncodingObjectAssignment”, the scope extends to the " DefinedOrBuiltinEncodingClass'
which precedes the "::=". The "DummyReference" hides any other "Reference” with the same name in that scope.

NOTE: The special case for "ParameterizedEncodingObjectAssignment” is intended to be used in common with
renames clauses (see D.3.3.3). It allows to write an assignment such as the following in which the dummy
parameter "#Any-Class' of the encoding object "new-component-encoding” is used as an actual
parameter for the encoding class "#New-component™:

new conponent - encodi ng {< #Any-cl ass >} #New conponent {< #Any-class >} ::=
{ -- encoding object definition -- }

C.3 Referencing parameterized definitions

The production "ParameterizedReference” of ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.1, ismodified as follows:

Par anet eri zedRef erence :: =
Ref erence |
Ref erence "{<" ">y

The following productions are added to ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.2:

Par anmet eri zedEncodi ngObj ect :: =
Si npl eDef i nedEncodi ngbj ect
Act ual Par anet er Li st

Si npl eDef i nedEncodi ngChj ect :: =
Ext er nal Encodi ngbj ect Ref erence
Encodi ngobj ectr ef erence

Par amet eri zedEncodi ngObj ect Set :: =
Si nmpl eDef i nedEncodi nghj ect Set
Act ual Par anet er Li st

Si npl eDef i nedEncodi ngbj ect Set :: =
Ext er nal Encodi ngbj ect Set Ref er ence
Encodi ngobj ect setreference

Par anmet eri zedEncodi ngCl ass :: =
Si npl eDef i nedEncodi ngCd ass
Act ual Par anet er Li st

Si npl eDef i nedEncodi ngd ass :: =

Ext er nal Encodi ngC assRef erence
encodi ngcl assref erence

ETSI

153 ETSI TS 101 969 V1.1.1 (2001-05)

C.4 Actual parameter list

ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.5, ismodified as follows:
9.5 The"ActuadParameterList" is

Act ual ParaneterList ::=
"{<" Actual Paraneter "," + ">}"

Act ual Paraneter ::=
Val ue
Val ueSet
Val ueli st
Def i nedOr Bui | ti nEncodi ngCl ass
Encodi ngOhj ect
Encodi ngObj ect Set
Encodi ngOhj ect Li st
identifier
STRUCTURE
OUTER

If the corresponding dummy parameter is:
a) avalue, the"Vaue' aternative;
b) avalue seat, the "VaueSet" dternative,
c) avauelig, the"ValuelLigt" dternative;
d) an encoding class, the "DefinedOrBuiltinEncodingClass' alternative;
€) an encoding object, the "EncodingObject” alternative;
f) an encoding object set, the "EncodingObjectSet” alternative;
g) an encoding object ligt, the "EncodingObjectList” alternative;
h) areference, the "identifier”, "STRUCTURE" or "OUTER" dternative;

shall be selected. "STRUCTURE" shall only by selected when the actual parameter is used as specified in 17.5.16.
"OUTER" can be used whenever areferenceisrequired to identify a container, and identifies the container of the entire
encoding.

ETSI

154 ETSI TS 101 969 V1.1.1 (2001-05)

Annex D (informative):
Examples
This annex contains examples of the use of ECN. The examples are divided into four groups:
- General examples, which show the look-and-fed of ECN definitions (D.1.1to D.1.12.4).

- Specialization examples,which show how to modify some parts of a standardized encoding. Each example hasa
description of the requirements for the encoding and a description of the selected solution and possible
alternative solutions (D.1.1to D.2.11).

- Explicitly generated structure examples,which show the use of explicitly generated structures when the same
specialized encoding is used several times (D.3.1to D.3.4).

- Legacy protocol examples, which show how to construct ECN definitions for a protocol whose message
encodings have been specified using atabular notation (D.4.1 to D.4.8)

D.1 General examples

The examples described in D.1.1to D.1.13 are part of a complete ECN specification whose ELM, ASN.1, and EDM
modules are given in outlinein D.1.14, D.1.16 and D.1.17, and are given completely in a copy of thisannex whichis
available from the website cited in annex F.

D.1.1 An encoding object for a boolean type

D.1.1.1 TheASN.1assignmentis:

Married ::= BOOLEAN

D.1.1.2 Theencoding object assignment (see 23.3.1) is.

bool eanEncodi ng #BOOLEAN :: = {
ENCODI NG SPACE
SIZE 1
MULTI PLE OF bit
TRUE- PATTERN bits:'1'B
FALSE- PATTERN bits:'0' B}

mar ri edEncodi ng-1 #Marri edEncodi ng :: = bool eanEncodi ng

D.1.1.3 Thereisno pre-alignment, and the encoding spaceis one bit, so "Married" is encoded as a bit-field of length
1. Patternsfor "TRUE" and "FALSE" values (in this case asngle bit) are '1'B and '0'B respectively.

D.1.1.4 The values specified above are the values that would be set by default (see 23.3.1) if the corresponding
encoding parameters were omitted, so the same encoding can be achieved with less verbosity by:

marri edEncodi ng-2 #Married ::= {
ENCODI NG SPACE
S| ZE 1}

D.1.1.5 Thisencoding for aboolean is, of course, just what PER provides, and another alternative isto specify the
encoding using the PER encoding object for boolean by way of the syntax provided by 17.3.1.

marri edEncodi ng-3 #Married ::= {
ENCODE W TH PER- BASI C- UNALI GNED}

D.1.1.6 Asthese examples show, there are often cases where ECN provides multiple ways to define an encoding. It is
up to the user to decide which aternative to use, balancing verbosity (stating explicitly values that can be defaulted)
against readability and clarity.

ETSI

155 ETSI TS 101 969 V1.1.1 (2001-05)

D.1.2 An encoding object for an integer type

D.1.21 TheASN.1assignmentsare:
EvenPosi tivelnteger ::= INTEGER (1..MAX) (CONSTRAINED BY {-- Mist be even --})
EvenNegativel nteger ::= INTEGER (MN..-1) (CONSTRAINED BY {-- Mist be even --})

D.1.2.2 Theencoding object assgnments are:
evenPosi tivel nt eger Encodi ng #EvenPositivelnteger ::= {
USE #I NT (0..MAX)
MAPPI NG TRANSFORMS {{| NT- TO- I NT di vi de: 2} }
W TH PER- BASI C- UNALI GNED}
evenNegat i vel nt eger Encodi ng #EvenNegati vel nteger ::= {

USE #I NT (M N.. 0)
MAPPI NG TRANSFORMS {{I NT-TO- I NT di vi de: 2

-- Note: -1/ 2 =0 - see clause 24.3.6 -- }}
W TH PER- BASI C- UNALI GNED}

D.1.2.3 Aneven vaueisdivided by two, and isthen encoded using standardized PER encoding rules for positive and
negative integer types.

D.1.3 Another encoding object for an integer type

D.1.31 Herewe assume the requirement to define an encoding object which encodes an integer in aright-aligned
two-octet field starting at an octet boundary.

D.1.3.2 TheASN.1assignmentis:

Integer ::= I NTEGER(O..65 535)

D.1.3.3 TheEncoding object assignment (see 23.6.1 and 23.7.1) is.
i nteger Ri ght Ali gnedEncodi ng #l nteger ::= {
ENCODI NG {
ALI GNED TO NEXT oct et
ENCODI NG SPACE
S| ZE 16

VAL UE- PADDI NG
JUSTI FIED right: 0}}

D.1.4 An encoding object for an integer type with holes

D.1.41 TheASN.1assignmentis
IntegerWthHol e ::= INTEGER (-256..-1 | 32..1 056)
D.1.4.2 Theencoding object assignment (see 19.5.2) is:

i nt eger Wt hHol eEncodi ng #l ntegerWthHole ::= {
USE #I NT (0..1 280)
MAPPI NG ORDERED VALUES
W TH PER- BASI C- UNALI GNED}

D.1.4.3 "IntegerWithHol€" is encoded as a positive integer. Valuesin therange -256..-1 are mapped to valuesin the
range 0..255 and values in the range 32..1 056 are mapped to 256..1 280.

D.1.5 A more complex encoding object for an integer type

D.1.51 The ASN.1assignmentsare:
Posi tivel nteger ::= I NTEGER (1..MAX)

Negativel nteger ::= INTEGER (M N..-1)

ETSI

156 ETSI TS 101 969 V1.1.1 (2001-05)

D.1.5.2 Theencoding object assgnments are:

posi tivel nt eger Encodi ng #Positivel nteger ::
i nt eger Encodi ng

negat i vel nt eger Encodi ng #Negati vel nteger ::
i nt eger Encodi ng

D.1.5.3 Vauesof "Positivelnteger" and "Negativel nteger” types are encoded by the encoding object
"integerEncoding” as a positive integer or as a twos-complement integer respectively. Thisis defined below, and
provides different encodings depending on the bounds of the type to which it is applied.

D.1.5.4 The"integerEncoding" encoding object defined hereis very powerful, but quite complex. It containsfive
encoding objects of the class#CONDITIONAL-INT; they all define an octet-aligned encoding. When theinteger
values being encoded are bounded, the number of bitsis fixed; when the values are not bounded, the type isrequired to
be thelast in a PDU, and the value isright justified in the remaining octets of the PDU.

D.1.55 Thedefinition of the encoding object (see 23.6.1 and 23.7.1) is.

i nteger Encodi ng #I NT ::= { ENCODI NGS {
{ | F unbounded- or - no- | ower - bound
ENCODI NG SPACE
S| ZE vari abl e-wi t h- det er m nant
DETERM NED BY cont ai ner
USI NG OQUTER
ENCODI NG t wos- conpl enent} |
{ | F bounded-wi t h-negati ves
ENCODI NG SPACE
S| ZE fi xed-t o- max
ENCODI NG t wos- conpl enent} |
{ I'F seni -bounded-w t h-negati ves
ENCODI NG SPACE
S| ZE vari abl e-wi t h- det er m nant
DETERM NED BY cont ai ner
USI NG OUTER
ENCODI NG t wos- conpl enent} |
{ I'F semn -bounded-w t hout - negati ves
ENCODI NG SPACE
S| ZE vari abl e-wi t h- det er m nant
DETERM NED BY cont ai ner
USI NG QUTER
ENCODI NG t wos- conpl enent} |
{ | F bounded-wi t hout - negati ves
ENCODI NG SPACE
S| ZE fi xed-t o- max
ENCODI NG t wos- conpl enent }}}

D.1.6 Positive integers encoded in BCD

D.1.6.1 Thisexample shows how to encode a positive integer in BCD (Binary Coded Decimal) by successive
transforms: from integer to character string then from character string to bitstring.

D.1.6.2 The ASN.1assignmentis:
Posi tivel nteger BCD :: = | NTEGER(0. . MAX)

D.1.6.3 Theencoding object assignment (see 19.4, 24.1 and 23.4.1) is:

posi tivel nt eger BCDEncodi ng #PositivelntegerBCD :: = {
USE #CHARS
MAPPI NG TRANSFORMS{ {
| NT- TO- CHARS
- We convert to characters (e.g., integer 42

- becomes character string "42") and encode the characters
- with the encoding object "nuneric-chars-to-bcdEncodi ng"
S| ZE vari abl e
PLUS- SI GN FALSE}}
W TH nuneri c- chars-t o- bcdEncodi ng }

ETSI

157 ETSI TS 101 969 V1.1.1 (2001-05)

nuneri c- chars-to-bcdEncodi ng #CHARS :: = {
ALI GNED TO NEXT ni bbl e
ENCODER- TRANSFORMS { {
CHAR-TO-BI TS
- We convert each character to a bitstring

--(e.g., character "4" becones '0100'B and "2" becones ' 0010' B)

AS mapped

CHAR-LIST { "O","21","2","3",
"4t mBr e, T,
"8","9"}

BITS-LIST { '0000'B, '0001'B, '0010'B, '0011'B,
'0100' B, '0101'B, '0110'B, '0111'B,
'1000' B, '1001'B }}}
REPETI TI ON- ENCODI NG {
REPETI TI ON- SPACE
- We determne the concatenation of the bitstrings for the
- characters and add a term nator (e.g.,
- '0100'B + '0010' B beconmes '0100 0010 1111'B)
S| ZE vari abl e-wi t h- det er m nant
DETERM NED BY pattern
PATTERN bits:'1111' B}}

D.1.6.4 The positive number isfirst transformed into a character string by the int-to-chars transform using the options
variable length and no plus sign, and in addition the default option of no padding, giving a string containing characters
"0" to "9". Then the character string is encoded such that each character istransformed into a bit pattern, '0000'B for
"0",'0001'B for "1"..., '1001'B for "9". The bitstring is aligned on a nibble boundary and terminates with a specific
pattern '1111'B.

D.1.6.5 A more complex alternative, not shown here, but commonly used, would be to embed the BCD encoding in
an octet string, with an externa boolean identifying whether thereis an unused nibble at the end or not.

D.1.7 An encoding object of class #BITS

D.1.7.1 This example defines an encoding object of class#BITS (see 23.2.1) for a bitstring that is octet-aligned,
padded with 0, and terminated by an 8-bit field containing '00000000'B (it is assumed that an abstract value never
contains eight successive zeros):

D.1.7.2 The ASN.1assignmentis:

BitString ::= BI T STRI NG CONSTRAI NED BY {-- nust not contain eight successive zero bits --})

D.1.7.3 Theencoding object assignment (see 23.2.1, 23.12.1 and 23.13.1) is

bitStringEncoding #BitString ::= {
ALI GNED TO NEXT oct et
REPETI TI ON- ENCODI NG {
REPETI TI ON- SPACE
S| ZE vari abl e-w t h- det er m nant
DETERM NED BY pattern
PATTERN bi ts: ' 00000000' B} }

D.1.7.4 Thisencoding object (of class #BITS) contains an embedded encoding object of class #CONDITIONAL-
REPETITION which specifies the mechanism and the termination pattern.

D.1.7.5 Aswith many of the examplesin this annex, there is heavy reliance here on the defaults provided in clause 23,

and advantage s taken of the ability to define encoding objects in-linerather than separately assigning them to
reference names which are then used in other assignments.

D.1.8 An encoding object for an octetstring type

D.1.8.1 The ASN.1assignmentis.

CctetString ::= OCTET STRI NG

ETSI

158 ETSI TS 101 969 V1.1.1 (2001-05)

D.1.8.2 Theencoding object assignment (see 23.9.1) is.

octet StringEncodi ng #CctetString ::= {
ALI GNED TO NEXT oct et
PADDI NG one
REPETI Tl ON- ENCODI NG {
REPETI TI ON- SPACE
SI ZE vari abl e-wi t h- det er m nant
DETERM NED BY cont ai ner
USI NG OUTER} }

D.1.8.3 Thevalueisoctet-aligned using padding with ones and terminates with the end of the PDU.

D.1.9 An encoding object for a character string type

D.1.9.1 TheASN.1assignmentis:

CharacterString ::= PrintableString

D.1.9.2 Theencoding object assignment (see 23.4.1 and 23.13.1) is:

character StringEncodi ng #CharacterString ::= {
ALI GNED TO NEXT oct et
ENCODER- TRANSFORMS { { CHAR- TO- BI TS AS conpact }}
REPETI TI ON- ENCCDI NG {
REPETI TI ON- SPACE
S| ZE vari abl e-w t h- det er mi nant
DETERM NED BY cont ai ner
USI NG OUTER} }

D.1.9.3 Thesdringisoctet-aligned using padding with "0" and terminates with the end of the PDU; the
character-encoding is specified as "compact”, so each character is encoded in 7 bits using '0000000'B for the first ASCII
character of type PrintableString, '0000001'B for the next, and so on.

D.1.10 Mapping character values to bit values

D.1.10.1 TheASN.1 assignment is:

CharacterStringToBit ::= I A5String ("FIRST" | "SECOND' | "THI RD")
D.1.10.2 Theencoding object assignment (see 19.2) is:

character StringToBi t Encodi ng #CharacterStringToBit ::= {

USE #I NT (0..2)
MAPPI NG VALUES {

"FI RST" TO 0,
" SECOND" TO 1,
"THI RD" TO 2}

W TH i nt eger Encodi ng}
where "integerEncoding” is defined in D.1.5.5.

D.1.10.3 Thethree possible abstract values are mapped to three integer numbers and then those numbers are encoded
in atwo-bit field.

D.1.11 An encoding object for a sequence type

D.1.11.1 Here we encode a sequence type that hasafield "a" which carries application semantics (i.e., isvisibletothe
application), but we also want to use it as a presence determinant for a second (optional) integer field "b". Thereisthen
an octet string that is octet-aligned, and delimited by the end of the PDU. We need to give specialized encodings for the
optionality of b, and we use the speciaized encoding defined in D.1.8 (by reference to the encoding object
"octetStringEncoding”) for the octet string "c". We want to encode everything el se with PER basic unaligned.

ETSI

159 ETSI TS 101 969 V1.1.1 (2001-05)

D.1.11.2 TheASN.1 assignment is:

Sequencel 11 = SEQUENCE {
a BOOLEAN,
b | NTEGER OPTI ONAL,
c OCTET STRI NG

D.1.11.3 TheECN assignments (see 17.5 and 23.10.1) are;

sequencelEncodi ng #Sequencel ::= {
ENCODE STRUCTURE {
b USE- SET OPTI ONAL- ENCODI NG par anet eri zedPr esenceEncoding {< a >},
c octet StringEncodi ng}
W TH PER- BASI C- UNALI GNED}

par anet eri zedPr esenceEncodi ng {< REFERENCE: reference >} #OPTIONAL ::= {
PRESENCE
DETERM NED BY asnl-field
USI NG r ef erence}

D.1.11.4 Noticethat we did not need to provide the "DECODERS-TRANSFORMS" encoding parameter in the
"parameterizedPresenceEncoding” encoding object, because the component "a" was a boolean, and it is assumed that
"TRUE" meant that "b" was present. If, however, "a" had been an integer field, or if the application value of "TRUE"
for "a" actually meant that "b" was absent, then we would have included a "DECODER-TRANSFORMS" encoding
parameter asin D.2.6.

D.1.12 An encoding object for a choice type

D.1.12.1 A choicetype with three alternatives is encoded using the tag number of class context, encoded in athree bit
field, asa sdector. The encoding object of class #ALTERNATIVES specify that the identification handle "Tag" is used
as determinant; the encoding object of class #TAG defines the position of the identification handle (three bits). For each
alternative, the value is encoded with PER basic unaligned.

D.1.12.2 TheASN.1 assignment is:

Choice ::= CHO CE {
bool ean [1] BOOLEAN,
integer [3] | NTECER,
string [5] | A5String}

D.1.12.3 TheECN assignments (see 23.1.1 and 23.14.1) are:

choi ceEncodi ng #Choice ::= {
ENCODE STRUCTURE {

bool ean [tagEncodi ng] USE- SET,
i nteger [tagEncoding] USE- SET,
string [tagEncodi ng] USE- SET
STRUCTURED W TH {

ALTERNATI VE

DETERM NED BY handl e
HANDLE " Tag"}}
W TH PER- BASI C- UNALI GNED}

tagEncodi ng #TAG :: = {
ENCODI NG SPACE {
SI ZE 3
MULTI PLE OF bit
EXH BI TS HANDLE "Tag" AT {0 | 1 | 2}}

D.1.12.4 Perhapsaneater way of providing the first assgnment in D.1.12.3 would be to define anew encoding object
set and apply it as follows:

MyEncodi ngs #ENCODINGS :: = { tagEncoding } COVMPLETED BY PER- BASI C- UNALI GNED

choi ceEncodi ng #Choice ::= {
ENCODE STRUCTURE {
STRUCTURED W TH {
ALTERNATI VE
DETERM NED BY handl e
HANDLE " Tag"}}
W TH MyEncodi ngs}

ETSI

160 ETSI TS 101 969 V1.1.1 (2001-05)

D.1.13 Encoding a bitstring containing another encoding

D.1.13.1 A bitstring value encoded with PER basic unaligned, contains the encoding of a sequence as an integral
number of octets (padded with zeros) but not necessarily aligned on an octet boundary.

D.1.13.2 TheASN.l1 assgnmentsare:

Sequence2 ::= SEQUENCE ({

a BOOLEAN,

b BI T STRI NG (CONTAI NI NG Sequence3) }
Sequence3 ::= SEQUENCE {

a I NTEGER(0. . 10),

b BOOLEAN }

D.1.13.3 The ECN assignments (see 25.2) arel

sequence2Encodi ng #Sequence2 ::= {
ENCODE STRUCTURE {
b cont ai ner Encodi ng }
W TH PER- BASI C- UNALI GNED}

cont ai ner Encodi ng #OUTER :: = {
PADDI NG
MULTI PLE OF octet}

D.1.14 An encoding object set

Thisencoding object set contains encoding definitions for some types specified in the ASN.1 module of D.1.16.

Exanpl elEncodi ngs #ENCODI NGS :: = {
mar ri edEncodi ng- 1
evenPosi ti vel nt eger Encodi ng
evenNegat i vel nt eger Encodi ng
i nt eger Ri ght Al i gnedEncodi ng
i nt eger Wt hHol eEncodi ng
posi tivel nt eger Encodi ng
negati vel nt eger Encodi ng
posi ti vel nt eger BCDEncodi ng
bi t St ri ngEncodi ng
octet Stri ngEncodi ng
character StringEncodi ng
character StringToBi t Encodi ng
sequencelEncodi ng
choi ceEncodi ng
sequence2Encodi ng}

D.1.15 ELM definitions

Thefollowing ELM encodes the ASN.1 module defined in D.1.16, using objects specified in the EDM defined in
D.1.17.

Exanpl el-ELM {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) el mnodul e(l)}
LI NK-DEFI NI TIONS :: =
BEG N

| MPORTS Exanpl elEncodi ngs FROM Exanpl e- EDM
{joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm nodul e(3)}
#Married, #EvenPositivelnteger, #EvenNegativelnteger, #lntegerR ghtAligned,
#l nt eger Wt hHol e, #Positivel nteger, #Negativelnteger, #PositivelntegerBCD,
#BitString, #OctetString, #CharacterString, #CharacterStringToBit, #Sequencel,
#Choi ce, #Sequence?2
FROM Exanpl el- ASN1- Mbdul e
{joint-iso-itu-t(2) asnl(1) ecn(4) exanples(5) asnl-nodul e(2)};
ENCODE #Marri ed,
#EvenPosi ti vel nt eger,
#EvenNegat i vel nt eger,
#1 nt eger Ri ght Al i gned,
#l nt eger Wt hHol e, . #Posi ti vel nt eger,
#Negati vel nt eger, .#Positivel ntegerBCD,
#BitString, .#CctetString,

ETSI

161 ETSI TS 101 969 V1.1.1 (2001-05)

#Character String,
#Character StringToBit,
#Sequencel, #Choi ce,
#Sequence2

W TH Exanpl elEncodi ngs

COWMPLETED BY PER- BASI C- UNALI GNED

END

D.1.16 ASN.1 definitions

D.1.16.1 ThisASN.1 module groupsall the ASN.1 definitions from D.1.1to D.1.12.4 together. They will be encoded
according to the encoding objects defined in the EDM of D.1.17, together with the PER basic unaligned encoding rules.

Exanpl el- ASN1- Modul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodul e(2)}
DEFI NI TI ONS AUTOMATI C TAGS : : =
BEG N
Married ::= BOOLEAN

- etc.

END

D.1.17 EDM definitions

D.1.17.1 ThisEDM module groups all the ECN definitionsfrom D.1.1to D.1.12.4 together.

Exanpl el-EDM {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm nodul e(3)}
ENCODI NG DEFI NI TIONS :: =
BEG N

EXPORTS Exanpl elEncodi ngs;

| MPORTS #Married, #EvenPositivelnteger, #EvenNegativelnteger, #lntegerRi ghtAligned,

#l nt eger Wt hHol e, #Posi tivel nteger, #Negativelnteger, #PositivelntegerBCD, #BitString,
#COctetString, #CharacterString, #CharacterStringToBit, #Sequencel, #Choice, #Sequence2
FROM Exanpl el- ASN1- Mbdul e { joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodul e(2)

h
Exanpl elEncodi ngs #ENCODI NGS :: = {
mar ri edEncodi ng- 1 |
- etc

sequence2Encodi ng}
- etc

END

D.2 Specialization examples

The examplesin this clause show how to modify selected parts of an encoding for given typesin order to minimize the
size of encoded messages. PER basic unaligned encodings normally produce as compact encodings as possible.
However, there are some cases when specialized encodings might be desired:

- thereare some special semantics associated with message components that make it possible to remove some of
the PER-generated auxiliary fields;

- the user wants different encodings for PER auxiliary fields that are generated by default, such as variable-width
determinant fields.

ETSI

162 ETSI TS 101 969 V1.1.1 (2001-05)

The examples are presented using the following format:
- the ASN.1 assignment, which shows the original ASN.1 type definition;

- therequirement, which lists the requirement and the problem with the encoding provided by PER basic
unaligned;

- the encoding object assignment, which shows the resulting encoding specification;
- the encoding structure assignment, if any;

- discussion on how the specidization has been achieved, and other options that might be used.

D.2.1 Encoding by distributing values to an alternative encoding
structure

D.211 TheASN.1assignmentis:

Normal | ySmal | Val ues ::= I NTEGER (0..1 024)
- Usually values are in the range 0..63, but sometinmes the whol e value range i s used.

D.2.1.2 Thereguirement is; PER would encode the type using 10 bits. We wish to minimize the size of the encoding
such that the normal caseis encoded using as few bits as possible.

NOTE: In thisexample we take a simple direct approach. A more sophisticated approach using Huffman
encodingsisgivenin E.1.

D.2.1.3 Theencoding object assignment (see 19.6) is:

nor mal | ySmal | Val uesEncodi ng-1 #Normal | ySmal | Val ues ::= {
USE #Nor mal | ySmal | Val uesSt ruct
MAPPI NG DI STRI BUTI ON {
0..63 TO smal |,

REMAI NDER TO | arge }
W TH PER- BASI C- UNALI GNED}

D.2.1.4 Theencoding structure assignment is:

#Nor mal | ySmal | Val uesStruct ::= #CHO CE {
smal | #I NT (0..63),
| arge #INT (64..1 024)}

D.2.1.5 Vaueswhich are normally used are encoded using the "small” field and the ones used only occasionally are
encoded using the "large” field. The selection between the two is done by a one-bit PER-generated selector field. The
length of the "small" field is 6 bits and the length of the "large” field is 10 bits, so the normal case is encoded using

7 bitsand therare case using 11 hits.

D.2.1.6 Thismapping and the encoding is quite straight-forward, but some further gains can be obtained by mapping
values 64 upwardsinto values zero upwards of thefield "large" (whose lower bound would then be zero), or by
transforming values of the field "large” by a subtraction of 64 before encoding it. Both these options, however, would
be more difficult for areader of the specification to understand and would give only marginal further gains.

D.2.2 Encoding by mapping ordered abstract values to an
alternative encoding structure

D.2.21 Example D.2.1 used explicit definition of how value ranges are mapped to fields of the encoding structure.
The same effect can be achieved more simply by using "mapping by ordered abstract values'. However, as illustration,
we here also modify the requirement: Arbitrarily large values may occasionally occur, and the ASN.1 assignment is
assumed to have its congtraint removed.

ETSI

163 ETSI TS 101 969 V1.1.1 (2001-05)

D.2.2.2 Theencoding object assignments (see 19.5) are:

nor nal | ySnal | Val uesEncodi ng-2 #Nornal | ySnal | Val ues ::= {
USE #Nor nal | ySnal | Val uesStruct 2
MAPPI NG ORDERED VALUES
W TH nor nal | ySnal | Val uesTag- encodi ng}

nor nal | ySnal | Val uesTag- encodi ng #TAG :: = {
S| ZE 1}

D.2.2.3 Theencoding structure assignment is:

#Nor mal | ySmal | Val uesStruct2 ::= #CHO CE {
snal | [#TAG(0)] #I NT (0..63),
| arge [#TAGQ(1)] #INT }

D.2.24 Theresultisvery similar to D.2.1, but now the values above 64 that are mapped to thefield "large” are
encoded from zero upwards. The two alternatives are distinguished by an index of one bit. Another difference isthat the
field "large" isleft unbounded, so the encoding object can encode arbitrarily large integers, but with the cost of alength
fieldin the "large" case. This example can also be used if there is no upper-bound on the values that might occasionally
occur ("large" isnot bounded in the replacement structure). This again illustrates the flexibility available to ECN
specifiersto design encodings to suite their particular requirements.

D.2.3 Compression of non-continuous value ranges

D.2.3.1 Thisexample also uses amapping of ordered abstract values. In this case the mapping is used to compress
gparse valuesin abase ASN.1 specification. The compression could a so have been achieved by defining the ASN.1
abstract value "x" to have the application semantics of "2x", then using asmpler congraint on the ASN.1 integer type.
The assumption in this example, however, isthat the ASN.1 designer chose not to do that, and we arerequired to apply
the compression during the mapping from abstract val ues to encodings.

D.2.32 TheASN.1assignmentis:

Spar seEvenl yDi stributedvalueSet ::= INTEGER (2 | 4| 6 | 8 | 10| 12 | 14 | 16)

D.2.3.3 Therequirement: PER basic unaligned takes only lower bounds and upper bounds into account when
determining the number of bits needed to encode an integer. Thisresultsin unused bit patternsin the encoding. The
encoding can be compressed such that unused bit patterns are omitted, and each value is encoded using the minimum
number of bits.

D.2.34 Theencoding object assignment (see 19.5) is:
spar seEvenl yDi stri but edVal ueSet Encodi ng #Spar seEvenl yDi stri but edVal ueSet ::= {
USE #I NT (0..7)

MAPPI NG ORDERED VALUES
W TH PER- BASI C- UNALI GNED}

D.2.35 Theeight possible abstract values have been mapped to the range 0..7 and will be encoded in a three-bit field.

D.2.4 Compression of non-continuous value ranges using a
transform

D.2.4.1 Example D.2.3 used mapping of ordered abstract values. The same effect can be achieved by using the
#TRANSFORM class.

D.2.4.2 Theencoding object assignment (see 19.4) is:.
spar seEvenl yDi st ri but edVal ueSet Encodi ng- 2 #Spar seEvenl yDi stri but edVal ueSet ::= {
USE #I NT (0..7)
MAPPI NG TRANSFORMS {{I NT- TO-I NT divide: 2}, {INT-TO I NT decrenent: 1}}
W TH PER- BASI C- UNALI GNED}

D.2.4.3 Again, theeight possible abstract values are mapped to therange 0..7 and encoded in athree-hit field.

ETSI

164 ETSI TS 101 969 V1.1.1 (2001-05)

D.2.5 Compression of an unevenly distributed value set by
mapping ordered abstract values

D.251 TheASN.1assignmentis:

Spar seUnevenl yDi stri but edVal ueSet ::= | NTEGER (0| 3| 5] 6] 11] 8)
- Qut of order to illustrate that order does not matter in the constraint

D.2.5.2 Thereguirement isthat the encoding should be such that there are no holes in the encoding patterns used.

D.2.5.3 Theencoding object assignment is:

spar seUnevenl yDi stri but edVal ueSet Encodi ng #Spar seUnevenl yDi stri but edVal ueSet ::= {
USE #I NT (0..5)
MAPPI NG ORDERED VALUES
W TH PER- BASI C- UNALI GNED}

D.2.54 Thedx possible abstract values are mapped to the range 0..5 and encoded in athree-bit field. The mapping is
asfollows: 0-0,3-1,5-2,6-3,8-4and11-5.

D.2.6 Presence of an optional component depending on the value
of another component

D.2.6.1 TheASN.1assignmentis:

Condi ti onal PresenceOnVal ue ::= SEQUENCE {
a I NTEGER (0..4),
b I NTEGER (1..10),
c BOOLEAN OPTI ONAL
-- Condition: "c" is present if "a" is 0, otherwise "c" is absent --,
d BOOLEAN OPTI ONAL
- Condition: "d" is absent if "a" is 1, otherwise "d" is present -- }
-- Note the inplied presence constraints in conmrents.
- Note also that the integer field "a" carries application semantics and has
- values other than zero and one. |f "a" has value 0, both "c¢" and "d" are
- present. If "a" has value 1, both "c¢" and "d" are mssing. |If "a" has
- values 3 or 4, "c" is absent and "d" is present These conditions are very hard to
- express formally using ASN. 1 al one.

D.2.6.2 Requirement: The component "a" acts as the presence determinant for both components "c" and "d", but a
PER encoding would produce two auxiliary bits for the optional components. We require an encoding in which these
auxiliary bits are absent.

D.2.6.3 Theencoding object assignment is:

condi ti onal PresenceOnVal ueEncodi ng #Condi ti onal PresenceOnVal ue :: = {
ENCODE STRUCTURE {
c USE- SET OPTI ONAL- ENCODI NG i s-c-present{< a >},
d USE- SET OPTI ONAL- ENCODI NG i s-d-present{< a >}}
W TH PER- BASI C- UNALI GNED}

is-c-present {< REFERENCE : a >} #OPTIONAL ::= {
PRESENCE
DETERM NED BY asnl-field
USI NG a
DECODER- TRANSFORMS {{I NT-TO-BOOL TRUE-1S {0}}}}
is-d-present {< REFERENCE : a >} #OPTIONAL ::= {
PRESENCE
DETERM NED BY asnl-field
USI NG a

DECODER- TRANSFORMS {{I NT-TO-BOOL TRUE-1S {0 | 2 | 3 | 4}}}}

D.2.6.4 Herewe have asimple, formal, and clear specification of the presence conditionson "c" and "d" which can be
understood by encoder-decoder tools. The ASN.1 comments cannot be handled by tools. The provision of optionality
encoding for "c" and "d" meansthat the PER encoding for "OPTIONAL" isnot used in this case, and there are no

auxiliary bits.

ETSI

165 ETSI TS 101 969 V1.1.1 (2001-05)

D.2.6.5 The parameterized encoding objects "is-c-present” and "is-d-present” specify how presence of the components
is determined during decoding. Note that no transformation is needed (nor permitted) for encoding because the
determinant has application semantics—(i.e., it isvisiblein the ASN.1 type definition). However, a good encoding tool
will police the setting of "a" by the application, to ensure that its valueis consistent with the presence or absence of "c"
and "d" that the application code has determined.

D.2.7 The presence of an optional component depends on some
external condition

D.2.71 TheASN.1assignmentis:

Condi ti onal PresenceOnExt er nal Condi tion ::= SEQUENCE {
a BOOLEAN OPTI ONAL
- Condition: "a" is present if the external condition "C' holds,
- otherwi se "a" absent -- }
- Note that the presence constraint can only be supplied in comment.

D.2.7.2 Requirement: The application code for both a sender and areceiver can evaluate the condition "C" from some
information outside the message. The ECN specifier wishestool s to invoke such code to determine the presence of "a",
rather than using a bit in the encoding.

D.2.7.3 Theencoding object assignment is:

condi ti onal PresenceOnExt er nal Condi ti onEncodi ng #Condi ti onal PresenceOnExt ernal Condition ::= {
ENCODE STRUCTURE {
a USE- SET OPTI ONAL- ENCODI NG i s- a- present }
W TH PER- BASI C- UNALI GNED}

is-a-present #OPTIONAL ::=
NON- ECN-BEG N {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) user-notation(7)}
extern G
extern channel ;
/* ais present only if channel is equal to some value “C' */
int is_a present() {

if(channel == C) return 1;
else return 0; }
NON- ECN- END

D.2.7.4 Becausethe condition is external to the message, the encoding object for determining presence of the
component "a" can only be specified by anon-ECN definition of an encoding object. However, while this saves bits on
the line, many designerswould consider it better to include the bit in the message to reduce the possibility of error, and
to make testing and monitoring easier. Such choices are for the ECN specifier.

D.2.8 A variable length list

D.2.81 TheASN.1assignmentis:

Encl osi ngSt ruct ur eFor Li st ::= SEQUENCE {
l'ist Vari abl eLengt hLi st}

Vari abl eLengt hLi st ::= SEQUENCE (SIZE (0..1 023)) OF INTEGER (1..2)
- Normally the list contains only a few elenents (0..31), but it mght contain many.

D.2.8.2 Thereguirement: PER basic unaligned encodes the length of the list using 10 bits even if normally the length
isin therange 0..31. The requirement isto minimize the size of the encoding of the length determinant in the normal
case whilst still allowing values which rarely occur.

D.2.8.3 Theencoding object assignment is:

encl osi ngStruct ur eFor Li st Encodi ng #Encl osi ngStructureForList ::= {
USE #Encl osi ngSt ruct ur eFor Li st Struct
MAPPI NG FI ELDS

W TH {
ENCODE STRUCTURE {
aux-length 1|ist-IengthEncoding,
list {
ENCODI NG {

REPETI TI ON - SPACE

ETSI

166 ETSI TS 101 969 V1.1.1 (2001-05)

DETERM NED BY added-field
USI NG aux- | ength}}}}
W TH PER- BASI C- UNALI GNED}
-- First mapping: use of an encoding structure with an
-- explicit length determ nant.

l'ist-1engthEncodi ng #AuxVari abl eLi stLength ::= {
USE #AuxVari abl eLi st Lengt hSt ruct -- See D.2.8.4.
MAPPI NG ORDERED VALUES
W TH PER- BASI C- UNALI GNED}
-- Second mapping: list length is encoded as a choice between a short form"normally"
and
-- along form"sonetinmes".

D.2.8.4 Theencoding structure assignments are:

#Encl osi ngStruct ureFor Li st Struct ::= #CONCATENATI ON {
aux-l ength #AuxVar i abl eLi st Lengt h,
list #Vari abl eLengt hLi st}

#AuxVari abl eLi stLength ::= #I NT (0..1 023)

#AuxVar i abl eLi st Lengt hStruct ::= #ALTERNATI VES {
normal |y #I NT (0..31),
soneti mes #INT (32..1 023)}

D.2.8.5 Thelength determinant for the component "lig" isvariable. The length determinant for short list valuesis
encoded using 1 bit for the selection determinant and 5 bits for the length determinant. The length determinant for long
list valuesis encoded using 1 bit for the selection determinant and 10 bitsfor the length determinant.

D.2.9 Equal length lists

D.2.9.1 TheASN.1assignmentis:

Equal Lengt hLi sts ::= SEQUENCE {
listl Listl,
list2 Li st 2}
(CONSTRAI NED BY {

-- "list1" and "list2" always have the same nunber of elenents. --
1}

Listl ::= SEQUENCE (SIZE (0..1 023)) OF BOOLEAN

List2 ::= SEQUENCE (SIZE (0..1 023)) OF INTEGER (1..2)

D.2.9.2 Thereguirementis: "list1" and "list2" have the same number of eements, and the ECN specifier wishesto use
a single length determinant for both lists. (PER would encode length fields for both components).

D.2.9.3 Theencoding object assignment is:

equal Lengt hLi st sEncodi ng #Equal Lengt hLists ::= {
USE #Equal Lengt hLi st sStruct
MAPPI NG FI ELDS

W TH {
ENCODE STRUCTURE {
listl list-wth-determ nant Encodi ng{< aux-length >},
list2 list-with-determ nant Encodi ng{< aux-length >}}

W TH PER- BASI C- UNALI GNED} }

list-with-determ nant Encodi ng {< REFERENCE : |ength-determ nant >} ::= #REPETI TI ON {
ENCODI NG {
REPETI TI ON- SPACE
S| ZE vari abl e-wi t h- det er m nant
MULTI PLE OF repetitions
DETERM NED BY added-fiel d
USI NG | engt h-det er mi nant }}

D.2.9.4 Theencoding structure assignments are:

#Equal Lengt hLi st sStruct ::= #CONCATENATI ON {
aux-l ength #AuxLi st Lengt h,
listl #Li st 1,
list2 #Li st 2}

#AuxLi stLength ::= #I NT (0..1 023)

ETSI

167 ETSI TS 101 969 V1.1.1 (2001-05)

D.2.10 Uneven choice alternative probabilities

D.2.10.1 TheASN.1assgnmentis:

Encl osi ngSt ruct ur eFor Choi ce :: = SEQUENCE {
choi ce UnevenChoi ceProbability }
UnevenChoi ceProbability ::= CHO CE {
frequent1l I NTEGER (1..2),
frequent 2 BOOLEAN,
comonl I NTEGER (1..2),
comon2 BOOLEAN,
comon3 BOOLEAN,
rarel BOOLEAN,
rare2 I NTEGER (1..2),
rare3 I NTEGER (1..2)}

D.2.10.2 Therequirement is. The alternatives of the choice type have different selection probahilities. Thereare
alternatives which appear very frequently ("frequentl” and "frequent2"), or are fairly common (*commonl”,
"common2" and "common3"), or appear only rardy ("rarel”, "rare2" and "rare3"). The encoding for the alternative
determinant should be such that those alternatives that appear frequently have shorter determinant fiel ds than those
appearing rarely.

D.2.10.3 Theencoding structure assignments are:

#Encl osi ngStruct ur eFor Choi ceStruct ::= #CONCATENATI ON {
aux- sel ect or #AuxSel ect or,
choi ce UnevenChoi ceProbability }

-- Explicit auxiliary alternative determ nant for "choice".

#AuxSel ector ::= #INT (0..7)

D.2.10.4 Theencoding object assgnments are:

encl osi ngSt ruct ur eFor Choi ceEncodi ng #Encl osi ngStruct ur eFor Choice ::= {
USE #Encl osi ngSt ruct ur eFor Choi ceSt ruct
MAPPI NG FI ELDS

W TH {
ENCODE STRUCTURE {
aux- sel ector auxSel ect or Encodi ng,
choi ce
ALTERNATI VE

DETERM NED BY added-fiel d

USI NG aux-sel ector}}
W TH PER- BASI C- UNALI GNED} }
-- First mapping: inserts an explicit auxiliary alternative determ nant.
-- This encodi ng object specifies that an auxiliary determ nant is used
-- as an alternative determ nant.

auxSel ect or Encodi ng #AuxSel ector ::= {
USE #BI TS
-- ECN Huf f man
-- RANGE (0..7)
-- (0..1) IS 60%
-- (2..4) 1S 30%
-- (5..7) 1S 10%
-- End Definition
-- Mappi ngs produced by "ECN Public Domain Software for Huffman encodings, version 1"

-- (see E.8)
MAPPI NG TO BI TS {
0.. 1T1TO0'100B .. "11'B,
2.. 4TO0'001'B.. '011'B,
5 TO '0001'B,
6 .. 7 TO '00000'B .. '00001' B}

-- Second nmappi ng: Map determ nant indexes to bitstrings

D.2.10.5 Intheabove, we quantified "frequent”, "common", and "rare" as 60%, 30%, and 10%, respectively, and used
the public domain ECN Huffman generator (see E.8) to determine the optimal bit-patternsto be used for each category.

D.2.10.6 Theaboveisin amathematical sense optimal, but how much difference it makes as a percentage of total
traffic depends on what the other parts of the protocol consist of. Whilst it costs nothing in implementation effort to
produce and use optima encodings (because tools can be used), the ultimate gains may not be significant.

ETSI

168 ETSI TS 101 969 V1.1.1 (2001-05)

D.2.11 A version 1 message

D.2.11.1 ASN.1assignment:

Ver si onlMessage :: = SEQUENCE {
ie-1 BOOLEAN,
ie-2 I NTEGER (0..20)}

Requirement: We want to use PER basic unaigned, but intend to add further fields in version 2, and wish to specify that
version 1 systems should accept and ignore any additional material in the PDU.

D.2.11.2 Therequirement is. we use two encoding structures to encode the message: oneisthe implicitly generated
encoding structure containing only the version 1 fields, and the second is a structure that we define containing the
version 1 fields plus avariable-length padding field that extends to the end of the PDU. The version 1 system uses the
first gructure for encoding, and the second for decoding. Apart from this approach to extensibility, all encodingsare
PER basic unaligned. The version 1 decoding structureis:

#Ver si onlDecodi ngStructure ::= #CONCATENATI ON {
ie-1 #BOOL,
ie-2 #I NT (0..20),

future-additions #PAD}

D.2.11.3 Theencoding object assignments are:

ver si onlMessageEncodi ng #Versi onlMessage ::= {
ENCODE- DECODE
{ ENCODE W TH PER- BASI C- UNALI GNED }
DECODE AS | F decodi ngSpeci ficati on}

decodi ngSpeci ficati on #Versi onlMessage ::= {
USE #Ver si onlDecodi ngStructure
MAPPI NG FI ELDS
W TH {
ENCODE STRUCTURE {
future-additions addi ti onsEncodi ng{< OUTER >} }
W TH PER- BASI C- UNALI GNED} }

addi ti onsEncodi ng {< REFERENCE: det erm nant >} #PAD ::= {
ENCODI NG SPACE
S| ZE vari abl e-wi t h- det er mi nant

DETERM NED BY cont ai ner
USI NG det er mi nant
PAD- SI ZE encoder s-option }

D.2.12 The encoding object set

Thisencoding object set contains encoding definitions for some of the types specified in the ASN.1 module named
"Example2-ASN1-Modul€e" (therest is encoded using PER basic unaligned).

Exanpl e2Encodi ngs #ENCODI NGS :: = {
nor mal | ySmal | Val uesEncodi ng- 1
spar seEvenl yDi st ri but edVal ueSet Encodi ng
spar seUnevenl yDi st ri but edVal ueSet Encodi ng
condi ti onal PresenceOnVal ueEncodi ng
condi ti onal PresenceOnExt er nal Condi ti onEncodi ng
encl osi ngSt ruct ur eFor Li st Encodi ng
equal LenghLi st sEncodi ng
encl osi ngSt ruct ur eFor Choi ceEncodi ng
ver si onlMessageEncodi ng }

ETSI

169 ETSI TS 101 969 V1.1.1 (2001-05)

D.2.13 ELM definitions

Thefollowing ELM isassociated with the ASN.1 module defined in D.2.14, and the EDM defined in D.2.15.

Exanpl e2- ELM {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) el mnodul e(4)}
LI NK- DEFI NI TIONS :: =
BEG N
| MPORTS Exanpl e2Encodi ngs FROM Exanpl e2- EDM
{joint-iso-itu-t(2) asnl(1) ecn(4) exanples(5) edm nodul e(6)}
#Nor nal | ySnal | Val ues, #Spar seEvenl yDi stri but edVal ueSet,
#Spar seUnevenl yDi stri but edVal ueSet, #Condi ti onal PresenceOnVal ue,
#Condi t i onal PresenceOnExt er nal Condi ti on, #Encl osi ngStructureForLi st,
#Equal Lengt hLi sts, #Encl osi ngStruct ur eFor Choi ce, #VersionlMessage
FROM Exanpl e2- ASN1- Mbdul e
{joint-iso-itu-t(2) asnl(1) ecn(4) exanples(5) asnl-nodul e(5)};
ENCODE Nor nal | ySmal | Val ues, SparseEvenl yDi stri but edVal ueSet,
Spar seUnevenl yDi stri but edVal ueSet, Condi ti onal PresenceOnVal ue,
Condi ti onal PresenceOnExt er nal Condi ti on, Encl osi ngStructureForlList,
Equal Lengt hLi sts, Encl osi ngSt ruct ur eFor Choi ce, Versi onlMessage
W TH Exanpl e2Encodi ngs
COWMPLETED BY PER- BASI C- UNALI GNED

END

D.2.14 ASN.1 definitions

Thismodule groups together all the ASN.1 definitions from D.1.1to D.2.11 that will be encoded according to the
encoding objects defined in the EDM, and also lists the other ASN.1 definitions that will be encoded with the PER basic
unaligned encoding rules.

Exanpl e2- ASN1- Modul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanpl es(5) asnl-nodul e(5)}
DEFI NI TI ONS AUTOVATI C TAGS :: =
BEG N
Nor mal | ySmal | Val ues ::= I NTEGER (0..1024)

-- etc

END

D.2.15 EDM definitions

Exanpl e2- EDM {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm nodul e(6)}
ENCODI NG DEFI NI TIONS :: =

BEG N

EXPORTS Exanpl e2Encodi ngs;

| MPORTS #Nor nal | ySnal | Val ues, #Spar seEvenl yDi stri but edVal ue,
#Spar seUnevenl yDi stri but edVval ueSet, #Conditi onal PresenceOnVal ueSet,
#Condi t i onal PresenceOnExt er nal Condi ti on,
#Encl osi ngStruct ur eFor Li st, #Equal Lengt hLi sts, #Encl osi ngStruct ureFor Choi ce,
#Ver si onlMessage
FROM Exanpl e2- ASN1- Mbdul e
{joint-iso-itu-t(2) asnl(1) ecn(4) exanples(5) asnl-nodul e(5)};

Exanpl e2Encodi ngs #ENCODI NGS :: = {
Nor mal | ySmal | Val uesEncodi ng |
-- etc
ext ensi bl eMessageEncodi ng}
-- etc
END

ETSI

170 ETSI TS 101 969 V1.1.1 (2001-05)

D.3 Explicitly generated structure examples

The examples described in D.3.1 to D.3.4 show the use of explicitly generated structures to replace an encoding classin
an implicitly generated encoding structure with a synonymous class. We then produce specialized encodings by
including in the encoding object set an object of the synonymous class.

The examples are presented using the following format:

the "ASN.1 type assignment". This givesthe original ASN.1 type definition;

the requirement. Thisliststhe required changes from the encodings provided by PER basic unaligned;

modification of theimplicitly generated encoding structure to produce a new encoding structure;

- the encoding class and encoding object assignments.

D.3.1 Sequence with optional components defined by a pointer

D.3.1.1 TheASN.1assignmentis:

Sequencel ::= SEQUENCE {
conponent1 | NTEGER OPTI ONAL,
conponent 2 | NTECER OPTI ONAL,

conmponent3 VisibleString }

D.3.1.2 Therequirement is: Instead of using the PER bit-map for the two components of type integer marked
"OPTIONAL", the presence and the position of those components are determined by pointers at the beginning of the
encoding of the sequence. Each pointer contains 0 (component absent) or arelative offset to the encoding of the
component which begins on an octet boundary.

D.3.1.3 Theencoding class #]NTEGER is replaced with "# nteger-with-pointer" in the encoding object of
"seguencel-encoding”.

D.3.1.4 Then an encoding object of class "#lnteger-with-pointer” is defined; that encoding object specifies the
alignment on an octet boundary and the pointer (see 22.1 and 22.3).

D.3.1.5 Theencoding class and encoding object assignments are:

sequencel- encodi ng #SEQUENCE :: = {
REPLACE OPTI ONALS
W TH #l| nt eger-wi t h- poi nter
ENCODED BY i nt eger-wi t h- poi nt er - encodi ng
| NSERTED AT HEAD #Poi nter}

#Poi nter ::= # NTEGER
#l nteger-w t h-pointer {< #El ement >} ::= #El enent

i nteger-w th-pointer-encodi ng {< #El enent, REFERENCE: poi nter >}
#l nteger-w t h-poi nter{< #El ement >} ::= {
ENCODI NG {
ALI GNED TO ANY oct et
START- PO NTER poi nter}}

D.3.2 Addition of a boolean type as a presence determinant

D.3.21 The ASN.1assignmentis.

Sequence2 ::= SEQUENCE {
conponent1l BOOLEAN OPTI ONAL,
conponent 2 | NTEGER,
conmponent3 VisibleString OPTI ONAL }

D.3.22 Therequirement is: Instead of using the PER bit-map for components marked "OPTIONAL", the presence of
an optional component isrelated to the value of a unique presence bit which is equal to 1 (component absent), or 0
(component present). In that case, the presence hit is inverted.

ETSI

171 ETSI TS 101 969 V1.1.1 (2001-05)

D.3.2.3 Theencoding structures and encoding objects are defined as follows:

The encoding class #OPTIONAL isrenamed as #Sequence2-optional in the "RENAMES" clause (see D.3.8). Therefore
the "#Sequence2” classisimplicitly replaced with:

#Sequence2 :: = #SEQUENCE
conponent1l #BOOL OPTI ONAL- ENCODI NG #Sequence2- opti onal ,
conponent 2 #l NTEGER,
conponent3 #VisibleString OPTI ONAL- ENCODI NG #Sequence2-opti onal }

where:

#Sequence2-optional ::= #OPTI ONAL

Then an encoding object of class "#Sequence2-optional” is defined; that object, using the replacement group, replaces
the component encoding definition (see 23.10.3.2) with the class "Optional -with-determinant”.

sequence2-opti onal -encodi ng #Sequence2-optional ::= {
REPLACE STRUCTURE
W TH #Opti onal -wi t h- det er mi nant
ENCODED BY opti onal -wi t h-det er mi nant - encodi ng}

That class, which is parameterized by the origina component, belongs to the concatenation category and has two
components: the determinant (bool ean) and the original component.

#0Optional -w t h-det erm nant {< #El enent >} ::= #CONCATENATI ON {
det er m nant #BOOLEAN,
conponent #El ement OPTI ONAL- ENCODI NG #Pr esence- det er mi nant }
where:
#Presence-determ nant ::= #OPTI ONAL

Then an encoding object of class "#Optional-with-determinant” is defined; that object has two dummy parameters: the
class of the component and an encoding object set used to encode everything except determinant and component
optionality:
optional -with-determ nant-encodi ng {< #El enent, #ENCODI NGS: Sequence2-conbi ned- encodi ng-
obj ect-set >}
#0Optional -w t h-det erm nant {< #El ement >} =
ENCODE STRUCTURE {
det ermi nant det er mi nant - encodi ng

conmponent OPTI ONAL- ENCODI NG i f - conponent - present - encodi ng{< determ nant >} }
W TH Sequence2- conbi ned- encodi ng- obj ect -set }

where:
Sequence?2- conbi ned- encodi ng- obj ect-set #ENCODI NGS :: = PER- BASI C- UNALI GNED

The encoding is completely specified by the definition of encoding objects "if-component-present-encoding” and
"determinant-encoding":

if-component-present-encoding { <REFERENCE: presence-hit>} #Presence-determinant ::= {

PRESENCE
DETERM NED BY presence-bit}

det er m nant - encodi ng #BOOLEAN : : = {
TRUE- PATTERN bits:'0' B}

D.3.3 Sequence with optional components identified by a unique
tag and delimited by a length field

D.3.31 The ASN.1assignmentsare:

COctets3 ::= OCTET STRI NG(CONTAI NI NG Sequence3)

Sequence3 ::=SEQUENCE {
conponentl [0] BIT STRI NG (SIZE(O0..2047)) OPTI ONAL,
conponent2 [1] OCTET STRING (S| ZE(O..2047)) OPTI ONAL,
conmponent3 [2] VisibleString (SIZE(O..2047)) OPTI ONAL }

ETSI

172 ETSI TS 101 969 V1.1.1 (2001-05)

D.3.3.2 Therequirement is: Each component isidentified by a tag on four bits and the total length of the sequenceis
specified with afield of eleven bits which precedes the encoding of the first component.

D.3.3.3 Theencoding classes #OCTETS, #OPTIONAL and #TAG arerenamed respectively as #0ctets3,
#Sequence3-optional and #TAG-4-bitsin the"RENAMES' clause (see D.3.8). Then encoding objects of the new
encoding classes are defined.

D.3.34

D.3.35

The encoding class and encoding object assignments for the octet string are:
#Cctets3 ::= #OCTETS

octets3-encodi ng #Cctets3 ::= {
REPLACE STRUCTURE
W TH #Cctets-with-1ength
ENCODED BY oct et s-with-1ength-encodi ng}

#COctets-wi th-1engt h{< #El enent >} ::= CONCATENATI ON {
length #I NT(0..2047),
octets #El enent}

octets-w t h-1ength-encodi ng{< #El ement >} #Octets-with-length{< #El enent >} :

ENCODE STRUCTURE {
octets octets-encodi ng{< length >}}
W TH PER- BASI C- UNALI GNED}

oct et s- encodi ng{< REFERENCE: | engt h >} #OCTETS ::= {
REPETI TI ON- SPACE
DETERM NED BY added-fiel d
USI NG | engt h}

The encoding class and encoding object assignments for the sequence are;

#Sequence3- optional ::= #OPTlI ONAL
sequence3-opti onal -encodi ng #Sequence3-optional ::= {
PRESENCE
DETERM NED BY cont ai ner
USI NG OUTER}
#TAG 4-bits ::= #TAG
tag-4-bits-encodi ng #TAG 4-bits ::= {
ENCODI NG SPACE
S| ZE(4)}

D.3.4 Sequence-of type with a count

D.3.4.1 TheASN.1assignmentis:

Sequencef I ntegers ::= SEQUENCE(SI ZE(0..63)) OF I NTEGER(O..1023)

=

D.3.4.2 Therequirement is: the number of elementsis encoded in asix-bit field preceding the encoding of the first

eement.

D.3.4.3 Theencoding class #SEQUENCE-OF isrenamed as #SequenceOf in the "RENAMES' clause (see D.3.8). An
encoding object of the new encoding class is defined. The encoding class and encoding object assignments are:

#SequenceOf ::= #REPETI TI ON
sequenced - encodi ng #SequenceOf {
ENCODI NG

REPLACE STRUCTURE
W TH #SequenceOf - wi t h- count
ENCODED BY sequenceOf -wi t h- count - encodi ng}}

#SequenceOf -wi t h-count { < #El ement >} ::= #CONCATENATI ON {

count #I NT(O..63),
el enent s #El ement }

ETSI

173 ETSI TS 101 969 V1.1.1 (2001-05)

sequence -w t h- count - encodi ng{ < #El ement >} #Sequence-w th-count{< #El ement >} ::={

ENCODE STRUCTURE {
el ements el enents-encodi ng{< count >}}
W TH PER- BASI C- UNALI GNED}

el ement s- encodi ng{ < REFERENCE: count >} #REPETI TI ON {
ENCODI NG
REPETI TI ON- SPACE
DETERM NED BY added-fi el d,
USI NG count}

D.3.4.4 The count field is encoded using the PER encoding rules for an integer type with the value range constraint
(0..63), which gives asix-bit field.

D.3.5

Encoding object set

The encoding object set contains encoding objects of classes defined in the EDM module.

Exanpl e3Encodi ngs #ENCODI NGS :: = {

D.3.6

sequencel- encodi ng
sequence2-opti onal - encodi ng
oct et s- encodi ng
sequence3-opti onal - encodi ng
t ag- 4- bi t s- encodi ng
sequenceO - encodi ng }

ELM definitions

Thefollowing ELM isassociated with the ASN.1 module defined in D.3.7 and the EDM defined in D.3.8.

Exanpl e3-ELM {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) el mnodul es(8)}
LI NK-DEFI NI TIONS :: =

D.3.7

BEG N

| MPORTS Exanpl e3Encodi ngs, Sequence2- conbi ned- encodi ng- obj ect - set

FROM Exanpl e3-EDM { joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm nodul es(10) }
#Sequencel, #Sequence2, #Cctet3, #Sequence3, #SequenceOf | ntegers

FROM Exanpl e3- ASN1- Mbdul e { joint-iso-itu-t(2) asnl(1l) ecn(4)

exanpl es(5) asnl-nodul es(9);

ENCODE #Sequencel, #Sequence2, #COctet3, #Sequence3, #Sequence |ntegers
W TH Exanpl e3Encodi ngs
COVPLETED BY PER- BAS| C- UNALI GNED

END

ASN.1 definitions

This modul e groups together the ASN.1 definitions from D.3.1 to D.3.4 that will be encoded according to the encoding
objects defined in the EDM of D.3.8.

Exanpl e3- ASN1- Modul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodul e(9)}

DEFI NI TI ONS

AUTOVATI C TAGS :: =

BEGA N

Sequencel ::= SEQUENCE {

conponent 1 BOOLEAN OPTI ONAL,
conponent 2 | NTEGER OPTI ONAL,
component 3 Vi sibleString OPTI ONAL }

-- etc

END

ETSI

174 ETSI TS 101 969 V1.1.1 (2001-05)

D.3.8 EDM definitions

Exanpl e3- EDM {j oi nt-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm nodul e(10)}

ENCCDI NG- DEFI NI TIONS :: =
BEG N

EXPORTS Exanpl e3Encodi ngs;
RENAMES
#OPTI ONAL AS #Sequence2- opt i onal
I' N #Sequence2
#OCTET- STRI NG AS #Cct et s3
I'N ALL
#OPTI ONAL AS #Sequence3- opti onal
I' N #Sequence3
#TAG AS #TAG 4-bits
I N #Sequence3
FROM Exanpl e3- ASN1- Mbdul e { joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodul e(9)};

| MPORTS #Sequencel, #Sequence?2, #Sequence3, #Sequence | nt egers
FROM Exanpl e3- ASN1- Mbdul e { joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodule(9) };

Exanpl e3Encodi ngs #ENCODI NGS r=
sequencel-optional -encodi ng |
- etc
sequenced - encodi ng }
- etc
END

D.4 Legacy protocol example

D.4.1 Introduction

D.4.1.1 Thepurpose of the examplein this clauseisto show how to construct ECN definitions for a protocol whose
message encodings have been specified using tabular notation. The following tables contain the contents of the

messages (only "Messagel” has been shown completely):

Message 1.
8 [7 | 6] 5 | 4 | 2] 1
Octet 1 Message id
Octet 2 A b-flag c-len [reserved
Octet 3 bl b2 reserved |b3 reserved
Octet Y cl c2
Octet Y+1 |c3 reserved
Octet Z di [d2 [d3 [reserved
Message 2:
8 | 7 | 6 | 5 | 4 | 2 | 1
Octet 1 Message id
Octet 2... Something — 1
Message 3:
8 | 7 | 6 | 5 | 4 | 2 | 1
Octet 1 Message id
Octet 2... Something — 2

D.4.12 All the messages have a common heading part (shown in 2] in the tables). In this exampleit is used only for

message identification.

ETSI

175 ETSI TS 101 969 V1.1.1 (2001-05)

D.4.1.3 Message 1 hasthree kinds of fields:
- mandatory fields ("a");
- mandatory fields that are determinants for other fields ("b-flag", "c-len");
- optional fields ("b", "c", and "d").
D.4.1.4 Thefidds"b", "c" and "d" aredl required to start on an octet boundary.

D.4.15 Thefieds"b", "c" and"d" are composed of sub-fields ("b1", "b2", "b3", "c1", etc.) of fixed length. In addition
fields"c" and "d" may appear multiple times (but only one occurrence is shown above). The field "b2" isrequired to
start on anibble boundary.

D.4.1.6 Presence of an optional component isindicated using different methods:
- thefidd"b" ispresent if the value of the"b-flag" field is 1;
- thefield"d" ispresent if there are octets lft in the message.
D.4.1.7 Thelength of afield that can appear multiple timesis determined using different methods:
- the number of repetitions of thefield "c" is governed by the determinant field "c-len”;
- the number of repetitions of thefield "d" is determined by the end of message.

D.4.1.8 Thefollowing ASN.1 module contains definitionsfor the message structures presented above. The following
design decisions have been made:

- thereis one encapsulating type which contains the common definitions for al the messages;

- auxiliary determinant fieldsin messages are visible at the ASN.1 level. Note, thisisdone for smplicity of
exposition in this example, but it should be normal practice to keep such fields out of the ASN.1 definition
unless they carry real application semantics,

- extenshility is expressed in the form of comments;
- paddingisnot visible.
D.4.19 TheASN.1moduleis

LegacyProt ocol - ASN1- Mbdul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodul e(11)}
DEFI NI TI ONS AUTOVATI C TAGS :: =
BEG N
LegacyProt ocol Messages :: = SEQUENCE {
nessage-i d ENUMERATED {nessagel, nessage2, nessage3},
nessages CHO CE {

nmessagel Messagel,
nessage2 Message?2,
nessage3 Message3}}

- The CHO CE is constrained by the value of nessage-id.

Messagel :: = SEQUENCE {

a A

b-flag BOOLEAN,

c-len I NTEGER (0. . nax-c-len),

b B OPTI ONAL, -- determned by "b-flag"

c C, -- determned by "c-len"

d D OPTI ONAL} -- determ ned by end of PDU
A ::= INTEGER (0..7) -- Values 5..7 are reserved for future use.

- Version 1 systens should treat 5 to 7 as 4.

B ::= SEQUENCE {

bl ENUMERATED { e0, el, e2, e3},

b2 BOOLEAN,

b3 I NTEGER (0..3) }

ETSI

176 ETSI TS 101 969 V1.1.1 (2001-05)

C ::= SEQUENCE (SIZE (0..max-c-len)) OF C-elem
C-el em :: = SEQUENCE {
cl BI T STRING (SIZE (4)),
c2 I NTEGER (0..1024) }
D ::= SEQUENCE (Sl ZE (0..nax-d-len)) OF D-elem
D-el em :: = SEQUENCE {
di BOOLEAN,
d2 ENUVERATED { foO, f1, f2, f3, f4, f5, f6, f7 },
d3 I NTEGER (0..7) }
max-c-len I NTEGER ::= 7
max-d-len | NTEGER ::= 20
Message2 :: = SEQUENCE {

- sonething 1 -- }

Message3 :: = SEQUENCE {
- sonething 2 -- }

END

D.4.1.10 The EDM modulein D.4.8 contains encoding definitions for the messages specified in the
"LegacyProtocol-ASN1-Module' ASN.1 module. The following design decisions have been made:

- padding within octetsis explicitly specified as padding fields,
- alignment padding is not specified as explicit padding fields.

D.4.2 Encoding definition for the top-level message structure

D.4.2.1 The encoding object "legacyProtocol M essagesEncoding” specifies how the common parts of the legacy
protocol messages are encoded. The message identifier is specified in ASN.1 as an enumerated type. PER basic
unaligned encodes "message-id" using the minimum number of bits (i.e, 2) but here we would like to have it encoded
using 8 bits. In addition, we have to specify that "message-id" isto be used as a determinant for "messages’.

D.4.2.2 The encoding object "legacyProtocol M essagesEncoding” is:

| egacyProt ocol MessagesEncodi ng #LegacyProt ocol Messages ::= {
ENCODE STRUCTURE {
nessage-i d {
ENCODI NG {
ENCODI NG SPACE
S| ZE 8}},
nessages USE- SET OPTI ONAL- ENCODI NG {
ALTERNATI VE
DETERM NED BY asnl-field
USI NG nessage-i d}}
W TH PER- BASI C- UNALI GNED}

D.4.3 Encoding definition for a message structure
D.4.3.1 Theencoding object "messagelEncoding” specifies how values of "Messagel" are to be encoded:
- thefiedd "b" ispresent if thefield "b-flag” containsvalue "TRUE";

- thefiedd"c" ispresent if thefield "c-len" does not contain value 0. "c-len” also governs the number of € ements
in"c";

- thefidd"d" ispresent if there are still octetsin an encoding for the message.

ETSI

177 ETSI TS 101 969 V1.1.1 (2001-05)

D.4.3.2 Theencoding object for "Messagel” is

nessagelEncodi ng #Messagel ::= {
ENCODE STRUCTURE {
b b- encodi ng
OPTI ONAL- ENCODI NG {
PRESENCE
DETERM NED BY asnl-field
USI NG b-fl ag},
c octet-aligned-seqg-of-with-ext-determnant{< c-len >},
d octet-al i gned-seqg-of-until-end-of-container
W TH PER- BASI C- UNALI GNED}

D.4.4 Encoding for the sequence type "B"

D.4.4.1 Padding of one bit isinserted between thefields "b2" and "b3" ("aux-reserved"). The encoding of "B" is
octet-aligned.

D.4.42 Theencoding for "B" is

b-encoding #B ::= {
ENCODE STRUCTURE {
-- Conponents
b3 {
ALI GNED TO NEXT ni bbl e}
-- Structure
STRUCTURED W TH {
ALI GNED TO NEXT octet }
-- The rest
W TH PER- BASI C- UNALI GNED}

D.4.5 Encoding for an octet-aligned sequence-of type with a
length determinant

D.4.5.1 Oneof the sequence-of types used in thelegacy protocol has an explicit length determinant.

D.4.5.2 Theencoding is octet-aligned. The number of elements count is determined by the field "len™.

octet-aligned-seq-of-wth-ext-determ nant{< REFERENCE : len >} # REPETITION ::= {
ENCODI NG {
ALI GNED TO NEXT oct et
REPETI TI ON- SPACE
DETERM NED BY asnl-field
USI NG | en}}

D.4.6 Encoding for an octet-aligned sequence-of type which
continues to the end of the PDU

D.4.6.1 Theencoding is octet-aligned. The number of elementsis determined by the end of the PDU.
D.4.6.2 Theencoding object is:

octet-aligned-seq-of-until-end-of-container # REPETITION :: = {
ENCODI NG {
REPETI TI ON- SPACE
ALl GNED TO NEXT oct et
DETERM NED BY cont ai ner
USI NG OUTER} }

ETSI

D.4.7

178 ETSI TS 101 969 V1.1.1 (2001-05)

ELM definitions

The ELM for thelegacy protocal is:

LegacyProt ocol - ELM Modul e { joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) el mnodul e(12) }

D.4.8

LI NK-DEFI NI TIONS :: =

BEG N

| MPORTS LegacyPr ot ocol Encodi ngs

FROM LegacyPr ot ocol - EDM Mbdul e

{ joint-iso-itu-t(2) asnl(1) ecn(4) exanples(5) edm nodul e(13) }

#LegacyPr ot ocol Messages
FROM LegacyPr ot ocol - ASN1- Mbdul e { joint-iso-itu-t(2) asnl(1l) ecn(4)
exanpl es(5) asnl-nodul e(11) };
ENCODE LegacyPr ot ocol Messages
W TH LegacyPr ot ocol Encodi ngs
COVPLETED BY PER- BAS| C- UNALI GNED
END

EDM definitions

The EDM definitions are:

LegacyProt ocol - EDM Mbdul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) nodul e(13)}

ENCODI NG DEFI NI TIONS :: =
BEG N
EXPORTS LegacyPr ot ocol Encodi ngs;

| MPORTS #LegacyPr ot ocol Messages
FROM LegacyPr ot ocol - ASNL1- Modul e
{ joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) nodul e(11) };

LegacyPr ot ocol Encodi ngs #ENCODI NGS :: = {

| egacyPr ot ocol MessagesEncodi ng |
nessagelEncodi ng }

etc

END

ETSI

179 ETSI TS 101 969 V1.1.1 (2001-05)

Annex E (informative):
Support for Huffman encodings

E.1 Huffman encodings are the optimum encodings for afinite set of integer values, where the frequency with which
each value will be transmitted is known.

E.2 Theencodingsare self-ddimiting (no length-determinant is needed) and use a small number of bits for frequent
values and alarger number of bits for less frequent values.

E.3 There are many possible Huffman encodings. For example, given any such encoding, simply change al "1"sto
"0"s and vice versa, and you have a different (but just as efficient) Huffman encoding. More subtle changes can also be
made to produce other Huffman encodings that are equally efficient.

E.4 For Huffman encodings to be efficient for decoders, itis desirable that where successive integer values encode
into the same number of bits, those bits should define successive integer values when interpreted as a positive integer
encoding.

E.5 AnECN Huffman encoding has been defined that has this property, and a Microsoft Word 97 macro has been
produced that will generate the syntax for a"MappingIntToBits" mapping (see 19.7) which is both optimal and easy to
decode.

E.6 A version of thisannex is available which contains a macro button that will take a specification of theinteger
values to be encoded and their frequency, and will generate in-line the formal mapping specification conforming to the
ECN notation. (The version of this annex with the associated macro can be obtained from the Web site cited in

annex F).

E.7 Thefollowing text contains three examples of ECN Huffman specification.
E.8 Intheversion with the macro, double clicking the button bel ow:
will add the ECN Huffman mapping specifications to the text.

E.9 Theuse of the version with the macro may wish to modify the specification of the values to be mapped and their
frequencies to see the encodings that are produced in different cases.

NOTE: Intheversion with macros, once encoding specifications have been produced, they can be deleted, the
ECN Huffman specification changed, and the macro button again clicked.

E.10 Theinforma syntax for an ECN Huffman specification should be clear from the following examples. All lines
start with an ASN.1 comment marker ("--").

E.11 Thefirstline (if the macro isto be used) must contain exactly "ECN Huffman" preceded by two hyphensand a
space, but following lines are not case sensitive and may contain more or |ess spaces.

E.12 Thesecond lineisrequired, and specifies the lowest and highest values that are to be mapped. Therange (upper
bound minus lower bound) islimited to 1 000, but can include negative values. Not all valuesin the range need to be

mapped.

E.13 Percentagesare given for either single values or for ranges of values. It isnot necessary for percentages to add
up to 100%, but awarning is given if they do not.

E.14 The"REST" lineis optional, and provides frequencies for any valuesin the range not explicitly listed. If
missing, then the mapped values will only be those explicitly specified.

E.15 Thefinal lineis mandatory, and must contain "End Definition” (in upper or lower case). The formal ECN
encoding specification isinserted (by the macro) after thisline,

ETSI

180 ETSI TS 101 969 V1.1.1 (2001-05)

E.15.1 Thefirstexampleis

ny-int-encodi ngl #W-Special-1 ::=
{ USE #BITS

ECN Huf f man

RANGE (-1..10)

-1 1S 20%

11S 25%

0 1S 15%

(3..6) IS 10%

Rest 1S 2%

End Definition

Mappi ngs produced by "ECN Public Donain Software for Huffnan encodings, version 1"
MAPPI NG TO BI TS {

-1 TO '11'B,

0.. 1TO0'01'B.. '10'B,

2 TO ' 0000001'B ,

3.. 5 TO'0001'B .. '0011' B,

6 TO ' 00001' B,

7 .. 8 TO'0000010'B .. '0000011'B,

9 .. 10 TO '00000000'B .. '00000001'B

}
WTH nmny-self-delimbits-encoding }

E.15.2 The second exampleis:

ny-int-encodi ng2 #MW-Special -2 ::=
{ USE #BITS

ECN Huf f man
RANGE (-10..10)
-10 I'S 20%
11S 25%
5 1S 15%
(7..10) is 10%
End Definition
Mappi ngs produced by "ECN Public Domain Software for Huffnman encodi ngs, version 1"
MAPPI NG TO BI TS {
-10 TO'11'B ,
1 TO0'10'B,
5 TO'01'B,
7 .. 10 TO'0000'B .. '0011'B

}
W TH ny-sel f-del i m bi ts-encodi ng }

E.15.3 Thethird exampleis:

ny-int-encodi ng3 #MW-Special -3 ::=
{ USE #BITS

ECN Huf f man

RANGE (0..1000)

(0..63) 1S 100%

REST 1S 0%

End Definition

Mappi ngs produced by "ECN Public Domain Software for Huffnman encodi ngs"”
MAPPI NG TO BI TS {

0.. 62 TO'000001'B .. '111111'B,

63 TO ' 0000001' B ,

64 .. 150 TO '0000000110101001'B .. '0000000111111111'B,

151 .. 1000 TO ' 00000000000000000'B .. '00000001101010001' B

}
W TH ny-sel f-del i m bi ts-encodi ng }

ETSI

181 ETSI TS 101 969 V1.1.1 (2001-05)

Annex F (informative):

Additional information on the Encoding Control Notation
(ECN)

Additional information and links on the Encoding Control Notation can be found on the following Web site:

e http://asnl.eibd.tm.fr/ecn

ETSI

http://asn1.elibel.tm.fr/ecn/tutorial.htm

182

ETSI TS 101 969 V1.1.1 (2001-05)

Annex G (informative):
Summary of the ECN notation

G.1 Terminal symbols

The following terminal symbols are used in the present document.

G.1.1 Thefollowingitemsare defined in clause 8:

ETSI

183

anystringexceptuserfunctionend
encodingobjectreference
encodingobjectsetreference
encodingclassreference

"l
ALL

AS

BEGIN

BER

BITS

BY

CER

COMPLETED

DECODE

DER

DISTRIBUTION

ENCODE
ENCODE-DECODE
ENCODING-CLASS
ENCODING-DEFINITIONS
END

EXCEPT

EXPORTS

FALSE

FIELDS

FROM

GENERATES

IF

IMPORTS

IN

LINK-DEFINITIONS
MAPPING

MAX

MIN

MINUS-INFINITY
NON-ECN-BEGIN
NON-ECN-END

NULL
OPTIONAL-ENCODING
ORDERED

OUTER
PER-BASIC-ALIGNED
PER-BASIC-UNALIGNED
PER-CANONICAL-ALIGNED
PER-CANONICAL-UNALIGNED
PLUSINFINITY
REFERENCE
REMAINDER

RENAMES

SIZE

STRUCTURE
STRUCTURED

TO

TRANSFORMS

ETSI

TRUE
UNION
USE
USE-SET
VALUES
WITH

ETSI TS 101 969 V1.1.1 (2001-05)

184 ETSI TS 101 969 V1.1.1 (2001-05)

G.1.2 Thefollowingitemisdefined in annex A:
REFERENCE
G.1.3 Thefollowingitemsare defined in ITU-T Rec. X.680 | ISO/IEC 8824-1:

bstring

cstring

hstring

identifier

modul ereference
number
typereference

ALL

EXCEPT
EXPORTS
FALSE

FROM

IMPORTS
MINUS-INFINITY
NULL
PLUSINFINITY
TRUE

G.1.4 Thefollowingitemsare defined in ITU-T Rec. X.681 | ISO/IEC 8824-2:

word
valuefiddreference
valuesetfieldreference

G.1.5 Thefollowingitemsaredefinedin ITU-T Rec. X.683 | I1SO/IEC 8824-4:

<
"5y

G.2 Productions

G.21 Thefollowing productions are used in the present document, with the items defined in G.1 astermina symbols:

ELMDefinition ::=
Modul el denti fi er
LI NK- DEFI NI TI ONS
BEG N
ELMVbdul eBody
END

ELMVbdul eBody :: =
I mports ?
Encodi ngAppl i cati onLi st

Encodi ngAppl i cationList ::=
Encodi ngAppl i cati on
Encodi ngAppl i cati onList ?

Encodi ngApplication ::=
ENCODE
Si nmpl eDef i nedEncodi ngCl ass "," +
Conbi nedEncodi ngs

ETSI

185

Conbi nedEncodi ngs :: =
W TH
Pri mar yEncodi ngs
Conpl eti onCl ause ?

Conpl eti onCl ause :: =
COWPLETED BY
Secondar yEncodi ngs

Pri maryEncodi ngs ::= Encodi ngObj ect Set
Secondar yEncodi ngs :: = Encodi ngObj ect Set

EDVDefinition ::=
Modul el denti fi er
ENCCODI NG- DEFI NI TI ONS
BEG N
EDMVbdul eBody
END

EDMVbdul eBody :: =
Exports ?
RenamesAndExports ?
I mports ?

EDMAssi gnment Li st ?

EDMAssi gnment Li st ::=
EDMAssi gnment
EDMAssi gnment Li st ?

EDMAssi gnment :: =
Encodi ngCl assAssi gnnent |
Encodi ngOhj ect Assi gnnment |
Encodi ngObj ect Set Assi gnmrent |
Par amet eri zedAssi gnnent

RenamesAndExports ::=
RENAMES
ExplicitGenerationList ";"

ExplicitGenerationList ::=
ExplicitGeneration
ExplicitGenerationList ?

ExplicitGeneration ::=
Opt i onal NaneChanges
FROM d obal Mbdul eRef er ence

Opt i onal NaneChanges :: =
NameChanges | GENERATES

NanmeChanges :: =
Ori gi nal Cl assNane

NameChangeDonai n

Origi nal C assNane :: = Sinpl eDefi nedEncodi ngC ass |

NewCl assName :: = encodi ngcl assreference

NameChangeDonai n :: =
I ncl udedRegi ons
Exception ?

Exception ::=
EXCEPT
Excl udedRegi ons

I ncl udedRegi ons :: =
ALL | RegionLis

—

Excl udedRegi ons :: = Regi onLi st

Regi onList ::=
Region "," +

ETSI

ETSI TS 101 969 V1.1.1 (2001-05)

Bui | ti nEncodi ngCl assRef erence

186

Region ::=
Si npl eDef i nedEncodi ngCl ass
Conmponent Ref er ence

Conponent Ref erence :: =
Si npl eDef i nedEncodi ngCl ass

i;:ientifier

Encodi ngCl assAssi gnnent :: =
encodi ngcl assref erence

E-n;:odi ngC ass

Encodi ngCl ass :: =
Bui | ti nEncodi ngCl assRef erence
Encodi ngStructure

Encodi ngObj ect Assi gnnent :: =
encodi ngobj ectref erence
Def i nedOr Bui | ti nEncodi ngCl ass

E-nitodi ngOhj ect

Encodi ngObj ect Set Assi gnment :: =
encodi ngobj ect setref erence
#ENCODI NGS
Encodi ngObj ect Set
Conpl eti onCl ause ?

Encodi ngObj ect Set :: =
Def i nedEncodi ngOhj ect Set
Encodi ngOhj ect Set Spec

Encodi ngStructure ::=
TaggedStructure
Unt aggedStructure

TaggedStructure ::=
"
Tagd ass
TagVal ue ?
"

Encodi ngStructure

Unt aggedStructure ::=
Def i nedEncodi ngCl ass |
Encodi ngStructureFiel d |
Encodi ngSt ruct ur eDef n

TagC ass ::=
Def i nedEncodi ngCl ass
TagCl assRef erence

TagVal ue :: =
"“(" nunber ")"

Encodi ngStruct ureDefn :: =
AlternativesStructure |
RepetitionStructure |
Concat enationStructure

Al ternativesStructure ::=
Al ternativesd ass

NanedFi el ds
"y
AlternativesC ass ::=

Def i nedEncodi ngCl ass
Al ternativesC assRef erence

ETSI

ETSI TS 101 969 V1.1.1 (2001-05)

NanmedFi el ds ::= NanedField "," +

NamedField ::=
identifier
Encodi ngStructure

RepetitionStructure ::=
Repetitiond ass
ni
Encodi ngStructure

Si ze?

RepetitionC ass ::=
Def i nedEncodi ngCl ass
RepetitionC assRef erence

Concat enationStructure ::=
Concat enati onCl ass
g
Concat Conponent s
"y

Concat enationClass ::=
Def i nedEncodi ngCl ass
Concat enat i onCl assRef erence

Concat Conponents :: =
Concat Conponent ", " *

Concat Conponent ::=
NanedFi el d
Concat Conponent Presence ?

Concat Conponent Presence :: =
OPTIl ONAL- ENCODI NG
Opti onal C ass

ional Class ::=
Def i nedEncodi ngCl ass |
OptionalityC assReference

2

Def

nedEncodi ngd ass ::=

Encodi ngcl assr ef erence

Ext er nal Encodi ngCl assRef erence
Par amet eri zedEncodi ngCl ass

Def

nedOr Bui | ti nEncodi ngC ass :: =
Def i nedEncodi ngCl ass
Bui | ti nEncodi ngCl assRef erence

Def

nedEncodi ngCbj ect ::=

Encodi ngobj ectr ef erence

Ext er nal Encodi ngbj ect Ref er ence
Par amet eri zedEncodi ngObj ect

Def

nedEncodi ngCbj ect Set :: =

Encodi ngobj ect setreference

Ext er nal Encodi ngQbj ect Set Ref er ence
Par amet eri zedEncodi ngObj ect Set

Def

nedOr Bui | ti nEncodi ngObj ect Set :: =
Def i nedEncodi ngOhj ect Set
Bui | ti nEncodi ngOhj ect Set Ref er ence

Bui | ti nEncodi ngOhj ect Set Ref erence :: =
PER- BASI C- ALI GNED
PER- BASI C- UNALI GNED
PER- CANONI CAL- ALI GNED
PER- CANONI CAL- UNALI GNED
BER
CER
DER

Ext er nal Encodi ngCl assRef erence :: =

nodul eref erence "." encodi ngcl assref erence
nodul ereference "." BuiltinEncodi ngCl assRef erence

187

ETSI

ETSI TS 101 969 V1.1.1 (2001-05)

188 ETSI TS 101 969 V1.1.1 (2001-05)

Ext er nal Encodi ngObj ect Ref erence :: =
nodul ereference "." encodi ngobj ectreference

Ext er nal Encodi ngbj ect Set Ref erence :: =
nodul ereference "." encodi ngobj ect setreference

Encodi ngObj ect Set Spec :: =
Encodi ngObj ects Uni onMark *
"y

Encodi nglbj ects :: =
Def i nedEncodi ngObj ect |
Def i nedEncodi ngObj ect Set

Uni onMark ::=

UNI ON

Encodi ngObj ect :: =
Def i nedEncodi ngOhj ect
Def i nedSynt ax
EncodeWth
EncodeByVal ueMappi ng
EncodeStructure
Di fferential EncodeDecodebj ect
NonECNEncodi ngObj ect

EncodeWth ::=
"{" ENCODE Conhbi nedEncodi ngs "}"

EncodeByVal ueMapping :: =
USE
Def i nedOr Bui | ti nEncodi ngCl ass
MAPPI NG
Val ueMappi ng
W TH
Val ueMappi ngEncodi ngQbj ect s
"y

Val ueMappi ngEncodi ngbj ects :: =
Encodi ngOhj ect |
Def i nedOr Bui | ti nEncodi ngObj ect Set

Di fferential EncodeDecodeChj ect ::=

ENCODE- DECODE
SpecFor Encodi ng

DECODE AS | F

SpecFor Decoder s

"y
SpecFor Encodi ng :: = Encodi ngbj ect
SpecFor Decoders ::= Encodi ngQbj ect

NonECNEncodi ngObj ect : : =
NON- ECN- BEG N
Assi gnedl dentifier
anystri ngexcept nonecnend
NON- ECN- END

EncodeStructure ::=

ENCCDE STRUCTURE

Conmponent Encodi ngLi st
Struct ureEncodi ng ?
"y
Conbi nedEncodi ngs ?
"y

StructureEncoding ::=

STRUCTURED W TH
Encodi ngOhj ect

ETSI

189

Conponent Encodi ngLi st ::=
Conponent Encoding "," *

Conponent Encoding :: =
NonOpt i onal Conponent Encodi ngSpec |
Opt i onal Conponent Encodi ngSpec

NonOpt i onal Conponent Encodi ngSpec :: =
identifier ?
TagAndEl ement Encodi ng

Opt i onal Conponent Encodi ngSpec :: =
identifier
TagAndEl ement Encodi ng
OPTI ONAL- ENCODI NG
Opt i onal Encodi ng

TagAndEl enent Encoding :: =

Encodi ngOr UseSet

TagEncodi ng TagAndEl enent Encodi ng
TagEncoding ::= "[" Encodi ngOrUseSet "]"
Opti onal Encodi ng ::= Encodi ngOr UseSet
Encodi ngOr UseSet :: =

Encodi ngObj ect |
USE- SET

Bui | ti nEncodi ngCl assRef erence :: =
Bitfiel dCl assReference
Al ternativesC assRef erence
Concat enat i onCl assRef erence
RepetitionC assRef erence
OptionalityC assReference
TagCl assRef erence
Encodi ngPr ocedur eCl assRef erence

Bitfiel dC assReference ::=
#NUL
#BOOL
#1 NT
#BI TS
#OCTETS
#CHARS
#PAD
#BI T- STRI NG
#BOOLEAN
#CHARACTER- STRI NG
#ENMBEDDED- PDV
#ENUMERATED
#EXTERNAL
#1 NTEGER
#NULL
#OBJECT- | DENTI FI ER
#OCTET- STRI NG
#OPEN- TYPE
#REAL
#RELATI VE- O D
#Cener al i zedTi ne
#UTCTi me
#BMPSt ri ng
#General String
#G aphicString
#1 A5String
#NumericString
#Printabl eString
#Tel etexString
#Uni versal String
#UTF8St ri ng
#Vi deot exStri ng
#Vi si bl eString

Al ternativesCl assReference :: =
#ALTERNATI VES
#CHO CE

ETSI

ETSI TS 101 969 V1.1.1 (2001-05)

Concat en

ationCl assReference ::=

#CONCATENATI ON
#SEQUENCE

#SET

Repeti ti
#REPI

onCl assReference :: =
ETI TI ON

#SEQUENCE- OF

#SET

Opt i onal
#OPT

Tagd ass

-OF

ityCl assReference :: =
| ONAL

Ref erence :: =

#TAG

Encodi ng

Procedur eCl assReference ::=

#TRANSFORM
#CONDI T1 ONAL- | NT
#CONDI TI ONAL- REPETI TI ON |

#OUTER
Encodi ngStructureField ::=
#NUL
#BOOL
#1 NT Bounds?
#BI TS Si ze?
#OCTETS Si ze?
#CHARS Si ze?
#PAD
#BI T- STRI NG Si ze?
#BOOLEAN
#CHARACTER- STRI NG
#ENMBEDDED- PDV
#ENUMERATED Bounds?
#EXTERNAL
#1 NTEGER Bounds?
#NULL
#OBJECT- | DENTI FI ER
#OCTET- STRI NG Si ze?
#OPEN- TYPE
#REAL
#RELATI VE- O D
#Cener al i zedTi ne
#UTCTi me
#BMPSt ri ng Si ze?
#General String Si ze?
#G aphicString Si ze?
#1 A5String Si ze?
#NumericString Si ze?
#Printabl eString Si ze?
#Tel etexString Si ze?
#Uni versal String Si ze?
#UTF8St ri ng Si ze?
#Vi deot exStri ng Si ze?
#Vi si bl eString Si ze?
Bounds ::= "(" EffectiveRange ")"
Ef fecti veRange :: =
M nMax
Fi xed
Size ::="(" SIZE Si zeEffectiveRange ")"
Si zeEffectiveRange :: =
"(" EffectiveRange ")"
M nMax ::=
Val ueOr M n
Val ueOr Max
ValuerMn ::=
Si gnedNumnber
M N

190

ETSI

ETSI TS 101 969 V1.1.1 (2001-05)

191

Val ueOrMax ::=
Si gnedNumnber
MAX

Fi xed ::= SignedNunber

Val ueMapping ::=
Mappi ngByExpl i ci t Val ues
Mappi ngByMat chi ngFi el ds
Mappi ngBy Tr ansf or nEncodi ngObj ect s
Mappi ngByAbst r act Val ueOr deri ng
Mappi ngByVal ueDi stri bution
Mappi ngl nt ToBi t s

Mappi ngByExplicitValues ::=
VALUES

MappedVval ues "," +
"y

MappedVal ues :: =
MappedVal uel
TO
MappedVal ue2

MappedVal uel :: = Val ue
MappedVal ue2 :: = Val ue
Mappi ngByMat chi ngFields ::=
FI ELDS
Mappi ngBy Tr ansf or mEncodi ngObj ects :: =
TRANSFORVS
Transf ornli st
"y
TransfornList ::= Transform"," +
Transform :: = Encodi ngObj ect

Mappi ngByAbstract Val ueOrdering ::=
ORDERED VALUES

Mappi ngByVal ueDi stribution ::=
DI STRI BUTI ON
e
Distribution "," +

oy

Distribution ::=
Sel ect edVal ues
TO
identifier

Sel ectedVal ues :: =
Sel ect edVal ue |
Di stri buti onRange |
REMAI NDER

Di stributionRange :: =
Di stri buti onRangeVal uel

Di stri buti onRangeVal ue2

Sel ect edVal ue ::= Si gnedNunber
Di stri buti onRangeVal uel ::= Si gnedNumber
Di stri buti onRangeVal ue2 ::= Si gnedNunmber
Mappi nglnt ToBits ::=

TO BI TS

M}appedl ntToBits "," +

ETSI

ETSI TS 101 969 V1.1.1 (2001-05)

192 ETSI TS 101 969 V1.1.1 (2001-05)

Mappedl nt ToBits ::=
Si ngl el nt Val Map |
I nt Val RangeMap

SinglelntVal Map :: =
I nt Val ue
TO
Bi t Val ue

I nt Val ue ::= SignedNunber
BitValue ::=

Bstring
hstring

I nt Val RangeMap :: =
I nt Range
TO
Bi t Range

I nt Range :: =
I nt RangeVal uel

I nt RangeVal ue2

Bi t Range :: =
Bi t RangeVal uel

Bi- t RangeVal ue2
I nt RangeVal uel :: = Si gnedNunber
I nt RangeVal ue2 :: = Si gnedNunber
Bi t RangeVal uel ::

bstring |
hstring

Bi t RangeVal ue2 ::
bstring |
hstring

G.2.2 Thefollowing productions are defined ITU-T Rec. X.680 | ISO/IEC 8824-1, as modified by annex A, with the
items defined in G.1 asterminal symbols:

NOTE: Struck productions are not allowed in ECN.

Modul el dentifier ::=
nodul er ef er ence
Definitiveldentifier ?

Definitiveldentifier ::=
"{" DefinitiveojldConmponentlList "}"

DefinitiveQbjldConponentList ::=
DefinitiveQbj | dConponent |
DefinitiveQbj|dConmponent DefinitiveObjldConmponent Li st

DefinitiveQbjldConponent ::=
NameFor m |
Defi ni ti veNunber Form |
Def i ni ti veNaneAndNunber For m

NanmeForm :: = identifier

DefinitiveNunber Form :: = nunber

Defi nitiveNaneAndNunber Form :: = identifier "(" DefinitiveNunberForm")"
Exports ::= EXPORTS Synbol sExported? ";"

Synbol sExported ::= Synbol Li st

Imports ::= | MPORTS Synbol sl nported? ";"

Synbol sl mported ::= Synbol sFronmbdul eLi st

ETSI

193 ETSI TS 101 969 V1.1.1 (2001-05)

Synbol sFromvbdul eLi st ::=
Synbol sFromvbdul e |
Synbol sFromvbdul eLi st Synbol sFromivbdul e

Synbol sFromvbdul e :: =
Synbol Li st
FROM
G obal Modul eRef erence

G obal Modul eRef erence :: =
nodul er ef erence Assi gnedl dentifier

Assignedldentifier ::= Definitiveldentifier

Synbol List ::=
Synbol |
Synbol List "," Synbol

Synmbol ::=
Ref er ence
Par anet eri zedRef er ence

Reference ::=
Val uer ef erence
typer ef erence
identifier
encodi ngcl assref erence
encodi ngobj ectref erence
encodi ngobj ect setref erence

Absol ut eReference :: =
Modul el denti fi er

o on

I t enSpec

ItenSpec :: =
Typer ef erence
Itemd "." Conponentld

Itemd ::= ItenSpec

Conponentld ::=
Identifier

nxn

BuiltinValue ::=
Bi t StringVal ue
Bool eanVal ue
Charact er Stri ngVal ue
Choi ceVal ue
EnbeddedPDWVal ue
Enuner at edVal ue
Ext er nal Val ue
I nst anceCf Val ue
I nt eger Val ue
Nul | Val ue
Obj ect l denti fi erVal ue
COct et StringVal ue
Real Val ue
SequenceVal ue
Sequencedf Val ue
Set Val ue
Set Of Val ue

— TaggedValue

BitStringValue ::=
bstring
hstring

nrn ldanti fiar
—aehRtt+++ef

wpn o wmym
T T

lict "1u
=5t 7

ETSI

194

Bool eanVal ue :: =
TRUE
FALSE

CharacterStringValue ::=
Restrict edCharacter StringVal ue |
UnrestrictedCharacterStringVal ue

RestrictedCharacterStringValue ::=

cstring |
Character Stringli st |
Quadrupl e |
Tupl e
CharacterStringList ::= "{" CharSyns "}"
Char Syms ::=
Char sDef n |
CharSyns "," CharsDefn
CharsDefn ::=
cstring |
Quadrupl e |
Tupl e |
Absol ut eRef erence
Quadrupl e ="{" Goup "," Plane "," Row
Group = nunber
Pl ane = nunber
Row = nunber
Cel | = nunber
Tuple ::= "{" Tabl eColum "," Tabl eRow "}"
Tabl eCol utm 1= nunber
Tabl eRow 1= nunber
UnrestrictedCharacterStringVal ue :: = SequenceVal ue
ChoiceValue ::= identifier ":" Value
EnbeddedPDVVal ue ::= SequenceVal ue
Enunerat edValue ::= identifier
Ext er nal Val ue :: = SequenceVal ue

I ntegerValue ::=
Si gnedNumber }

identifiar
HeeRt+++€4

Si gnedNunber :: =
nunber |
"-" nunber

Nul | Val ue ::= NULL

bj ectldentifierValue ::=
"{" ObjldConponentlList "}"—}

bj | dConponent Li st :: =
Obj | dConponent |
Obj | dConmponent Obj | dConponent Li st

bj | dConponent :: =
NameFor m |
Nunmber For m |
NaneAndNunber For m

NanmeForm :: = identifier
Nunmber Form : : =

nunber }
—— DPefinedValue

NameAndNunber Form : : = identifier "(" NunberForm")"

ETSI

Cel |

ETSI TS 101 969 V1.1.1 (2001-05)

e

195 ETSI TS 101 969 V1.1.1 (2001-05)

CctetStringVvalue :: =
bstring
hstring

Real Val ue :: =
Nuner i cReal Val ue
Speci al Real Val ue

Nuneri cReal Val ue :: =
0
SequenceVal ue

Speci al Real Val ue ::
PLUS- I NFI NI TY
M NUS- | NFI NI TY

SequenceVal ue :: =
"{" Conponent Val uelLi st "}"

SISy

Conponent Val ueLi st ::=
NamedVal ue |
Conponent Val ueLi st "," NanedVal ue

NamedVal ue :: =
identifier Value |
Val ue

SequenceO Val ue :: =
"{" ValueList "}"

wm o wye
Val ueList ::=
Val ue
Val ueList "," Val ue
SetVal ue :: =
"{" Conmponent Val uelLi st "}"
wim g
Set Of Val ue ::=
"{" Val ueList "}"
wim oy
Val ueSet ::= "{" El ement Set Specs "}"

El ement Set Specs :: =
Root El enent Set Spec

PRaogt El apmnt Sat Snae " " U "
~OOtEEHERHTSEtSPEE 0 —

" noonw H
0

Root El enent Set Spec :: = El enent Set Spec

El emrent Set Spec :: =
Uni ons |
ALL Excl usi ons

Excl usions ::= EXCEPT Elenents
Unions ::=

I ntersections

UEl ens Uni onMark | ntersections
UEl ens ::= Unions
Intersections ::=

IntersectionEl ements }
: ;

Intersecti onEl enents ::= El ements |—Elers—Exelusions
Uni onMark ::=
wyw |

UNI ON

ETSI

El ements ::=
Subt ypeEl enent s

hiectSat El anmmnt o
=—eHE >

196

oojectoettEEeRERt

"(" El ement Set Spec ")"

Subt ypeEl ements :: =
Si ngl eVal ue

Cont ai nadSubt vna
SoHt—at €

LEASASESias da s S

Val-ueRange

PDarm tt+ ad Al nhahat
ettt EeaArpHaoet

Si zaConstrai nt
SORStHaht

d

€
aConctrai nt
ESORStaht

_|
-

\
vy

— I nnerFypeConstratnts

Si ngl eVal ue ::= Val ue

ETSI TS 101 969 V1.1.1 (2001-05)

G.2.3 Thefollowing productions are defined ITU-T Rec. X.681 | ISO/IEC 8824-2, as modified by annex B, with the

items defined in G.1 asterminal symbols:

DefinedSyntax ::= "{" DefinedSyntaxLi st

Def i nedSynt axLi st ::= DefinedSynt axToken

Def i nedSynt axToken : :
Literal
Setting

Literal ::=
wor d

Setting ::=
Val ue
Val ueSet
Encodi ngOhj ect
Encodi ngObj ect Set
Encodi ngOhj ect Li st

? "

Def i nedSynt axLi st

Encodi ngObj ectList ::= "{" Encodi nglbj ect ",

I nst anceCf Val ue :: = Val ue
Encodi ngCl assFi el dType ::=
Def i nedEncodi ngCl ass

Fi el dName
FieldName ::= PrimtiveFiel dName "."
PrimtiveFi el dName ::=

val uefi el dreference
val uesetfi el dreference

* oy

?

G.24 Thefollowing productions are defined ITU-T Rec. X.683 | ISO/IEC 8824-4 as modified by annex C, with the

items defined in G.1 asterminal symbols:

Par amet eri zedAssi gnnent ::=

Par anmet eri zedEncodi ngOhbj ect Assi gnnment
Par amet eri zedEncodi ngSt ruct ur eAssi gnment
Par armet eri zedEncodi ngObj ect Set Assi gnment

Par armet eri zedEncodi ngObj ect Assi gnnent :: =
encodi ngobj ectref erence
Par anet er Li st
Def i nedEncodi ngCl ass

E-nizodi nghj ect

Par amet eri zedEncodi ngSt ruct ur eAssi gnment :: =
encodi ngcl assref erence
Par anet er Li st

Encodi ngStructure

ETSI

197

Par anet er i zedEncodi ngObj ect Set Assi gnnent :: =
encodi ngobj ect setref erence
Par amet er Li st
Def i nedEncodi ngCl ass

E-n;:odi ngObj ect Set

ParaneterList ::= "{" Paraneter "," + "}"
Parameter ::=
Par anGovernor ":" DummyReference |

DummyRef er ence

Par amCGovernor ::=
Gover nor |
Dumry Gover nor

Governor ::=
Def i nedEncodi ngCl ass |
Encodi ngCl assFi el dType |

REFERENCE
DunmmyGover nor :: = DummyReference
DunmmyRef erence :: = Reference

Par anet eri zedRef erence :: =
Ref er ence
Ref erence "{" "}"

Par anmet eri zedEncodi ngObj ect :: =
Si npl eDef i nedEncodi ngbj ect
Act ual Par anet er Li st

Si npl eDef i nedEncodi ngCbj ect :: =
Ext er nal Encodi ngbj ect Ref erence
encodi ngobj ectref erence

Par amet eri zedEncodi ngObj ect Set :: =
Si npl eDef i nedEncodi nghj ect Set
Act ual Par anet er Li st

Si npl eDef i nedEncodi ngbj ect Set :: =
Ext er nal Encodi ngQbj ect Set Ref erence |
encodi ngobj ect setref erence

Par amet eri zedEncodi ngStructure ::=
Si npl eDef i nedEncodi ngStructure
Act ual Par anet er Li st

Si npl eDef i nedEncodi ngStructure :: =
Ext er nal Encodi ngCl assRef erence |
encodi ngcl assref erence

Act ual ParaneterlList ::= "{" Actual Parameter "," + "}"

Act ual Paraneter ::=
Val ue
Val ueSet
Encodi ngOhj ect
Encodi ngObj ect Set
Encodi ngOhj ect Li st
Absol ut eRef erence

ETSI

ETSI TS 101 969 V1.1.1 (2001-05)

198

ETSI TS 101 969 V1.1.1 (2001-05)

History

Document history

V111

May 2001

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical International Standards
	2.2 Additional references

	3 Definitions
	3.1 ASN.1 definitions
	3.2 ECN-specific definitions

	4 Abbreviations
	5 Definition of ECN syntax
	6 Encoding conventions and notation
	7 The ECN character set
	8 ECN lexical items
	8.1 Encoding object references
	8.2 Encoding object set references
	8.3 Encoding class references
	8.4 Reserved word items
	8.5 Reserved encoding class name items
	8.6 Non-ECN item

	9 ECN Concepts
	9.1 Encoding Control Notation (ECN) specifications
	9.2 Encoding classes
	9.3 Encoding structures
	9.4 Encoding objects
	9.5 Encoding object sets
	9.6 Defining new encoding classes
	9.7 Defining encoding objects
	9.8 Differential encoding-decoding
	9.9 Encoders options in encodings
	9.10 Properties of encoding objects
	9.11 Parameterization
	9.12 Governors
	9.13 General aspects of encodings
	9.14 Identification of information elements
	9.15 Reference parameters and determinants
	9.16 Replacement classes and structures
	9.17 Mapping abstract values onto fields of encoding structures
	9.18 Contents of Encoding Definition Modules
	9.19 Contents of the Encoding Link Module
	9.20 Defining encodings for primitive encoding classes
	9.21 Application of encodings
	9.22 Combined encoding object set
	9.23 Application point
	9.24 Conditional encodings
	9.25 Changes to ASN.1 Recommendations | International Standards

	10 Identifying encoding classes, encoding objects, and encoding object sets
	11 Encoding ASN.1 types
	11.1 General
	11.2 Built-in encoding classes used for implicitly generated encoding structures
	11.3 Simplification and expansion of ASN.1 notation for encoding purposes
	11.4 The implicitly generated encoding structure

	12 The Encoding Link Module (ELM)
	12.1 Structure of the ELM
	12.2 Encoding types

	13 Application of encodings
	13.1 General
	13.2 The combined encoding object set and its application

	14 The Encoding Definition Module (EDM)
	15 The renames clause
	15.1 Explicitly generated and exported structures
	15.2 Name changes
	15.3 Specifying the region for name changes

	16 Encoding class assignments
	16.1 General
	16.2 Encoding structure definition
	16.3 Alternative encoding structure
	16.4 Repetition encoding structure
	16.5 Concatenation encoding structure

	17 Encoding object assignments
	17.1 General
	17.2 Encoding with a defined syntax
	17.3 Encoding with encoding object sets
	17.4 Encoding using value mappings
	17.5 Encoding an encoding structure
	17.6 Differential encoding-decoding
	17.7 Encoding with encoder's options
	17.8 Non-ECN definition of encoding objects

	18 Encoding object set assignments
	18.1 General
	18.2 Built-in encoding object sets

	19 Mapping values
	19.1 General
	19.2 Mapping by explicit values
	19.3 Mapping by matching fields
	19.4 Mapping by #TRANSFORM encoding objects
	19.5 Mapping by abstract value ordering
	19.6 Mapping by value distribution
	19.7 Mapping integer values to bits

	20 Defining encoding objects using defined syntax
	21 Types used in defined syntax specification
	21.1 The Unit type
	21.2 The EncodingSpaceSize type
	21.3 The EncodingSpaceDetermination type
	21.4 The UnusedBitsDetermination type
	21.5 The OptionalityDetermination type
	21.6 The AlternativeDetermination type
	21.7 The RepetitionSpaceDetermination type
	21.8 The Justification type
	21.9 The Padding type
	21.10 The Pattern and Non-Null-Pattern types
	21.11 The RangeCondition type
	21.12 The SizeRangeCondition type
	21.13 The ReversalSpecification type
	21.14 The ResultSize type

	22 Commonly used encoding parameter groups
	22.1 Replacement specification
	22.1.1 Encoding parameters, syntax, and purpose
	22.1.2 Specification restrictions
	22.1.3 Encoder actions
	22.1.4 Decoder actions

	22.2 Pre-alignment and padding specification
	22.2.1 Encoding parameters, syntax, and purpose
	22.2.2 Specification constraints
	22.2.3 Encoder actions
	22.2.4 Decoder actions

	22.3 Start pointer specification
	22.3.1 Encoding parameters, syntax, and purpose
	22.3.2 Specification constraints
	22.3.3 Encoder actions
	22.3.4 Decoder actions

	22.4 Encoding space specification
	22.4.1 Encoding parameters, syntax, and purpose
	22.4.2 Specification restrictions
	22.4.3 Encoder actions
	22.4.4 Decoder actions

	22.5 Optionality determination
	22.5.1 Encoding parameters, syntax, and purpose
	22.5.2 Specification restrictions
	22.5.3 Encoder actions
	22.5.4 Decoder actions

	22.6 Alternative determination
	22.6.1 Encoding parameters, syntax, and purpose
	22.6.2 Specification restrictions
	22.6.3 Encoder actions
	22.6.4 Decoder actions

	22.7 Repetition space specification
	22.7.1 Encoding parameters, syntax, and purpose
	22.7.2 Specification constraints
	22.7.3 Encoder actions
	22.7.4 Decoder actions

	22.8 Value padding and justification
	22.8.1 Encoding parameters, syntax, and purpose
	22.8.2 Specification restrictions
	22.8.3 Encoder actions
	22.8.4 Decoder actions

	22.9 Identification handle specification
	22.9.1 Encoding parameters, syntax, and purpose
	22.9.2 Specification constraints
	22.9.3 Encoders actions
	22.9.4 Decoders actions

	22.10 Concatenation specification
	22.10.1 Encoding parameters, syntax, and purpose
	22.10.2 Specification constraints
	22.10.3 Encoder actions
	22.10.4 Decoder actions

	22.11 Contained type encoding specification
	22.11.1 Encoding parameters, syntax, and purpose
	22.11.2 Encoder actions
	22.11.3 Decoder actions

	22.12 Bit reversal specification
	22.12.1 Encoding parameters, syntax, and purpose
	22.12.2 Specification constraints
	22.12.3 Encoder actions
	22.12.4 Decoder actions

	23 Defined syntax specification for bitfield and constructor classes
	23.1 Defining encoding objects for classes in the alternatives category
	23.1.1 The defined syntax
	23.1.2 Purpose and restrictions
	23.1.3 Encoder actions
	23.1.4 Decoder actions

	23.2 Defining encoding objects for classes in the bitstring category
	23.2.1 The defined syntax
	23.2.2 Model for the encoding of classes in the bitstring category
	23.2.3 Purpose and restrictions
	23.2.4 Encoder actions
	23.2.5 Decoder actions

	23.3 Defining encoding objects for classes in the boolean category
	23.3.1 The defined syntax
	23.3.2 Purpose and restrictions
	23.3.3 Encoder actions
	23.3.4 Decoder actions

	23.4 Defining encoding objects for classes in the characterstring category
	23.4.1 The defined syntax
	23.4.2 Model for the encoding of classes in the characterstring category
	23.4.3 Purpose and restrictions
	23.4.4 Encoder actions
	23.4.5 Decoder actions

	23.5 Defining encoding objects for classes in the concatenation category
	23.5.1 The defined syntax
	23.5.2 Purpose and restrictions
	23.5.3 Encoder actions
	23.5.4 Decoder actions

	23.6 Defining encoding objects for classes in the integer category
	23.6.1 The defined syntax
	23.6.2 Purpose and restrictions
	23.6.3 Encoder actions
	23.6.4 Decoder actions

	23.7 Defining encoding objects for the #CONDITIONAL-INT class
	23.7.1 The defined syntax
	23.7.2 Purpose and restrictions
	23.7.3 Encoder actions
	23.7.4 Decoder actions

	23.8 Defining encoding objects for classes in the null category
	23.8.1 The defined syntax
	23.8.2 Purpose and restrictions
	23.8.3 Encoder actions
	23.8.4 Decoder actions

	23.9 Defining encoding objects for classes in the octetstring category
	23.9.1 The defined syntax
	23.9.2 Model for the encoding of classes in the octetstring category
	23.9.3 Purpose and restrictions
	23.9.4 Encoder actions
	23.9.5 Decoder actions

	23.10 Defining encoding objects for classes in the optionality category
	23.10.1 The defined syntax
	23.10.2 Purpose and restrictions
	23.10.3 Encoder actions
	23.10.4 Decoder actions

	23.11 Defining encoding objects for classes in the pad category
	23.11.1 The defined syntax
	23.11.2 Purpose and restrictions
	23.11.3 Encoder actions
	23.11.4 Decoder actions

	23.12 Defining encoding objects for classes in the repetition category
	23.12.1 The defined syntax
	23.12.2 Purpose and restrictions
	23.12.3 Encoder actions
	23.12.4 Decoder actions

	23.13 Defining encoding objects for the #CONDITIONAL-REPETITION class
	23.13.1 The defined syntax
	23.13.2 Purpose and restrictions
	23.13.3 Encoder actions
	23.13.4 Decoder actions

	23.14 Defining encoding objects for classes in the tag category
	23.14.1 The defined syntax
	23.14.2 Purpose and restrictions
	23.14.3 Encoder actions
	23.14.4 Decoder actions

	23.15 Defining encoding objects for classes in the other categories

	24 Defined syntax specification for the #TRANSFORM encoding class
	24.1 Summary of encoding parameters and defined syntax
	24.2 Source and target of transforms
	24.3 The int-to-int transform
	24.4 The bool-to-bool transform
	24.5 The bool-to-int transform
	24.6 The int-to-bool transform
	24.7 The int-to-chars transform
	24.8 The int-to-bits transform
	24.9 The bits-to-int transform
	24.10 The char-to-bits transform
	24.11 The bits-to-char transform
	24.12 The bit-to-bits transform
	24.13 The bits-to-bits transform

	25 Complete encodings and the #OUTER class
	25.1 General rules for encoding and decoding
	25.2 Encoding parameters, syntax, and purpose for the #OUTER class
	25.3 Encoder actions for #OUTER
	25.4 Decoder actions for #OUTER

	Annex A (normative): Addendum to ITU-T Rec. X.680 | ISO/IEC 8824-1
	A.1 Exports and imports clauses
	A.2 Addition of "REFERENCE"
	A.3 Notation for character string values

	Annex B (normative): Addendum to ITU-T Rec. X.681 | ISO/IEC 8824-2
	B.1 Definitions
	B.2 Additional lexical items
	B.3 Addition of "ENCODING-CLASS"
	B.4 FieldSpec additions
	B.5 Fixed-type value list field spec
	B.6 Fixed-class encoding object field spec
	B.7 Variable-class encoding object field spec
	B.8 Fixed-class encoding object set field spec
	B.9 Fixed-class encoding object list field spec
	B.10 Encoding class field spec
	B.11 Encoding object list notation
	B.12 Primitive field names
	B.13 Additional reserved words
	B.14 Definition of encoding objects
	B.15 Additions to "Setting"
	B.16 Encoding class field type

	Annex C (normative): Addendum to ITU-T Rec. X.683 | ISO/IEC 8824-4
	C.1 Parameterized assignments
	C.2 Parameterized encoding assignments
	C.3 Referencing parameterized definitions
	C.4 Actual parameter list

	Annex D (informative): Examples
	D.1 General examples
	D.1.1 An encoding object for a boolean type
	D.1.2 An encoding object for an integer type
	D.1.3 Another encoding object for an integer type
	D.1.4 An encoding object for an integer type with holes
	D.1.5 A more complex encoding object for an integer type
	D.1.6 Positive integers encoded in BCD
	D.1.7 An encoding object of class #BITS
	D.1.8 An encoding object for an octetstring type
	D.1.9 An encoding object for a character string type
	D.1.10 Mapping character values to bit values
	D.1.11 An encoding object for a sequence type
	D.1.12 An encoding object for a choice type
	D.1.13 Encoding a bitstring containing another encoding
	D.1.14 An encoding object set
	D.1.15 ELM definitions
	D.1.16 ASN.1 definitions
	D.1.17 EDM definitions

	D.2 Specialization examples
	D.2.1 Encoding by distributing values to an alternative encoding structure
	D.2.2 Encoding by mapping ordered abstract values to an alternative encoding structure
	D.2.3 Compression of non-continuous value ranges
	D.2.4 Compression of non-continuous value ranges using a transform
	D.2.5 Compression of an unevenly distributed value set by mapping ordered abstract values
	D.2.6 Presence of an optional component depending on the value of another component
	D.2.7 The presence of an optional component depends on some external condition
	D.2.8 A variable length list
	D.2.9 Equal length lists
	D.2.10 Uneven choice alternative probabilities
	D.2.11 A version 1 message
	D.2.12 The encoding object set
	D.2.13 ELM definitions
	D.2.14 ASN.1 definitions
	D.2.15 EDM definitions

	D.3 Explicitly generated structure examples
	D.3.1 Sequence with optional components defined by a pointer
	D.3.2 Addition of a boolean type as a presence determinant
	D.3.3 Sequence with optional components identified by a unique tag and delimited by a length field
	D.3.4 Sequence-of type with a count
	D.3.5 Encoding object set
	D.3.6 ELM definitions
	D.3.7 ASN.1 definitions
	D.3.8 EDM definitions

	D.4 Legacy protocol example
	D.4.1 Introduction
	D.4.2 Encoding definition for the top-level message structure
	D.4.3 Encoding definition for a message structure
	D.4.4 Encoding for the sequence type "B"
	D.4.5 Encoding for an octet-aligned sequence-of type with a length determinant
	D.4.6 Encoding for an octet-aligned sequence-of type which continues to the end of the PDU
	D.4.7 ELM definitions
	D.4.8 EDM definitions

	Annex E (informative): Support for Huffman encodings
	Annex F (informative): Additional information on the Encoding Control Notation (ECN)
	Annex G (informative): Summary of the ECN notation
	G.1 Terminal symbols
	G.2 Productions

	History

