Digital Audio Broadcasting (DAB); MOT SlideShow; User Application Specification
Contents

Intellectual Property Rights ...5
Foreword ...5
1 Scope ...6
2 References ..6
 2.1 Normative references ..6
 2.2 Informative references ...6
3 Abbreviations ..7
4 Introduction ...7
5 Operation of the SlideShow user application ...9
 5.1 Transport ..9
 5.2 Storage and memory management ..9
 5.2.1 Simple profile ..10
 5.2.2 Enhanced profile ...10
 5.3 Presentation ...11
 5.4 Timing ...11
 5.5 Header update ..12
6 Interface to the Transport layer MOT ..12
 6.1 MOT ContentTypes and ContentSubTypes ...12
 6.1.1 ContentType "Image" ...13
 6.1.1.1 ContentSubType "JFIF" (JPEG) ...13
 6.1.1.2 ContentSubType "PNG" ...13
 6.1.2 ContentType "MOT transport" ...13
 6.1.2.1 ContentSubType "Header update" ...13
 6.1.2.2 ContentSubType "Header only" ..13
 6.2 MOT Parameters for the slide objects ..14
 6.2.1 ContentName ..14
 6.2.2 TriggerTime ..14
 6.2.3 ExpireTime ...15
 6.2.4 Category/SlideID ...15
 6.2.5 CategoryTitle ...15
 6.2.6 ClickThroughURL ..15
 6.2.7 AlternativeLocationURL ..15
 6.2.8 Alert ...16
 6.3 MOT parameters for the Header update ..16
 6.3.1 ContentName ..16
 6.3.2 TriggerTime ..16
 6.3.3 Category/SlideID ...17
 6.4 Optional MOT features ...17
8 Other requirements ...17
 8.1 Display restrictions ..17
 8.1.1 Simple profile ..17
 8.1.2 Enhanced profile ...18
 8.2 URL Handling ..18
 8.2.1 ClickThroughURL ...19
 8.2.2 AlternativeLocationURL ...19
 8.3 Object and buffer sizes ..19
 8.3.1 Simple profile ..20
 8.3.2 Enhanced profile ...20
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European Broadcasting Union (EBU), Comité Européen de Normalisation ÉLECTrotechnique (CENELEC) and the European Telecommunications Standards Institute (ETSI).

NOTE 1: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body by including in the Memorandum of Understanding also CENELEC, which is responsible for the standardization of radio and television receivers. The EBU is a professional association of broadcasting organizations whose work includes the co-ordination of its members’ activities in the technical, legal, programme-making and programme-exchange domains. The EBU has active members in about 60 countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

The Eureka Project 147 was established in 1987, with funding from the European Commission, to develop a system for the broadcasting of audio and data to fixed, portable or mobile receivers. Their work resulted in the publication of European Standard, EN 300 401 [1], for DAB (see note 2) which now has worldwide acceptance. The members of the Eureka Project 147 are drawn from broadcasting organizations and telecommunication providers together with companies from the professional and consumer electronics industry.

NOTE 2: DAB is a registered trademark owned by one of the Eureka Project 147 partners.
1 Scope

The present document describes the protocol required to create the DAB user application "SlideShow".

The "SlideShow" user application applies the DAB-MOT protocol (EN 301 234 [3]) and allows a service provider to deliver a sequence of slides which carry information in the form of images.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

2.1 Normative references

The following referenced documents are necessary for the application of the present document.

[1] ETSI EN 300 401: "Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers".

[2] ETSI TS 101 756: "Digital Audio Broadcasting (DAB); Registered Tables".

[3] ETSI EN 301 234: "Digital Audio Broadcasting (DAB); Multimedia Object Transfer (MOT) protocol".

2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.2] IETF RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1".

[i.3] INTERNET-DRAFT <draft-daviel-http-geo-header-01.txt> April 2000: "Geographic extensions for HTTP transactions".

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

- APNG: Animated Portable Network Graphics
- CD: Compact Disc
- DAB: Digital Audio Broadcasting
- DLS: Dynamic Label Segment
- FEC: Forward Error Correction
- FIDC: Fast Information Data Channel
- FIG: Fast Information Group
- HTML: Hyper Text Markup Language
- HTTP: Hyper Text Transfer Protocol
- IP: Internet Protocol
- IS: International Standard
- ISO: International Standards Organisation
- JFIF: JPEG File Interchange Format
- JPEG: Joint Pictures Expert Group
- MJD: Modified Julian Date
- MOT: Multimedia Object Transfer
- MSC: Main Service Channel
- PAD: Programme Associated Data
- PNG: Portable Network Graphics
- PPI: Pixels Per Inch
- UI: User Interface
- URL: Universal Resource Locator
- UTC: Universal Time Coordinated
- UTF: Unicode TransForm
- VGA: Video Graphics Array
- X-PAD: eXtended Programme Associated Data

4 Introduction

SlideShow provides the user with a sequence of slides which carry information in the form of images. The slides will be presented on an appropriate display.

The main use for this user application is to visualize an audio programme. Examples are:

- news programme items complemented by photos from the reported events;
- programme items with popular songs accompanied by photos of the favourite groups or the covers of the CD the songs are taken from;
- images for advertising, brand reinforcement or promotional purposes.

The simple SlideShow presents each image in turn, each new slide replacing the one already on the screen. The enhanced SlideShow allows service providers to supply slides with additional parameters. For example, categorization parameters allow some or all slides to be grouped into categories which can then be explored interactively by users with suitably equipped decoders.

The user application may also be provided as a stand-alone data service.

SlideShow allows JPEG and PNG images to be transmitted, which may be formed by compositing graphics, photographs and text.

Once activated, the SlideShow is a service provider-driven user application, which does not require any interaction from the user (except in the interactive mode). Each slide appears automatically on the display and is replaced under the control of the service provider.
The SlideShow can be transmitted in the following ways:

- in the PAD of an audio service component of a programme or data service;
- as a secondary service component of a programme or data service (in this case the SlideShow will be a packet mode service component);
- as the primary service component of a data service (in this case the SlideShow will be a packet mode service component).

SlideShow receivers shall be able to decode the application data from both PAD and packet mode service components.

The SlideShow user application is designed to allow different levels of sophistication for both the broadcast content and the receiver complexity. As such, two profiles are defined:

- simple;
- enhanced.

The profile in use is not signalled to receivers explicitly; rather the user application is designed such that the simple receiver is not confused by the reception of an enhanced SlideShow, but a simple receiver will generally give a degraded user experience compared to an enhanced receiver.

The simple profile was specified in version 2.1.1 of the present document. It defines a simple receiver behaviour that receives, decodes, renders and displays a single image at a time. This profile is only suitable for receivers with very restricted resources.

The enhanced profile extends the simple profile by defining control mechanisms to greatly enhance the presentation to the user. This includes the ability to present the slides independently of the transmission order and to transmit a series of slides in advance of the display time, thus allowing the images to play faster than would be permitted by a simple profile receiver. Animation of PNG images is also enabled.

Additionally, the enhanced profile may support the categorization of slides which allows an interactive mode in which the normal sequence of slides is suspended and instead the user can navigate the received images according to the categories assigned by the service provider.

A receiver supporting the interactive mode shall cache the received slides in their Holding Buffer and provide an interactive UI, which allows the selection of received categories and browsing through the received slides of each category.

![Figure 4.1: Example of interactive mode UI for a touch screen device showing received categories on the left and the currently selected image (informative)](image-url)
5 Operation of the SlideShow user application

5.1 Transport

The SlideShow user application uses the MOT protocol: Each slide, together with its parameters, is taken as one MOT object; it is segmented and its segments are transferred according to the rules of the MOT protocol. MOT headers and bodies are used. MOT directories are not used.

A SlideShow may be transferred either in the PAD part of an MSC stream audio sub-channel or in a MSC packet mode data sub-channel.

Wireless broadcast channels like DAB may be disturbed and so bit errors may corrupt the objects. Therefore the objects should be repeated sufficiently, applying one of the repetition methods offered by the MOT protocol and/or the DAB system itself.

The application provider shall transmit the segments of each MOT body contiguously, and shall not interleave segments of different MOT bodies. Header Updates may be interleaved between header segments and/or body segments, and the receiver shall correctly decode and process these updates which will usually be transmitted to update a TriggerTime parameter for a previously transmitted MOT object. The receiver shall also continue reassembly of the MOT object whose transmission was interrupted by the Header Update(s).

In order to efficiently manage memory, the receiver may assume that receipt of a new MOT body infers that all prior MOT bodies have been completed, and may clear the Assembly Buffer of incompletely received MOT bodies and Header segments. The slides will experience different delays (according to different reception conditions in different places), until the complete object is assumed to be available in an error-free state at the majority of terminals within the intended coverage area. If the service provider wants to ensure a precise start of the slide presentation, he has to start the transmission of the MOT Body sufficiently in advance, either with the TriggerTime parameter set to a time in the future, or without a TriggerTime parameter and subsequently transmit a Header Update to amend the TriggerTime to a new time or to "Now".

Annex B provides important advisory information on timing issues for manufacturers when rendering Slideshow as part of an audio service, and particularly in the case where the audio may be significantly time-shifted through use of pause functionality, or recording and subsequent playback.

5.2 Storage and memory management

The user application requires the receiving terminal conceptually to control a number of buffers.

NOTE: Actual implementations may achieve identical results using fewer buffers than those shown here.

In the conceptual model, one buffer is used to re-assemble incoming MOT object Segments into a complete MOT object. Complete MOT objects are passed to the Holding buffer.

A simple profile receiver will immediately render the image into a rendering buffer. When the image is triggered, the already rendered image will be copied to the screen buffer.

An enhanced profile receiver is fast enough to render an image in real-time. Therefore it will await a valid TriggerTime before starting the rendering process. When triggered, images are rendered and immediately displayed. When in interactive mode, if supported, the receiver provides a dedicated UI, where the user has the ability to interactively select a category and view the cached slides from the category. For this purpose the slides cached in the Holding buffer are retrieved based on their category information to be rendered and displayed.

The buffer sizes shall be determined by the maximum MOT object size and the rendered image size, as given in clause 8.2. If a SlideShow is a packet mode service component of the currently selected service and the user selects another service with the same SlideShow as a service component, then the buffers shall be preserved and the SlideShow shall be continued. A SlideShow in PAD shall be continued if the user switches to another service using the same audio service component.

Buffers shall not be cleared in the event of a temporary interruption to the service through poor reception; the most recently displayed image shall remain on the screen.
5.2.1 Simple profile

The successful reception of an MOT object causes the object to pass from the Reassembly Buffer to the Holding Buffer, overwriting any object previously stored there. This happens regardless of whether the rendering of the previous object has been completed or not.

The image is decompressed from the Holding Buffer to a bitmap format in the Rendering Buffer which is only large enough to hold a single image.

At the TriggerTime, the bitmap is moved from the Rendering Buffer to the Screen Buffer/Display and is presented to the user.

All buffers shall be cleared when the application is terminated, either by a change in the signalling of FIG0/13, or by the user ending the SlideShow application.

5.2.2 Enhanced profile

The successful reception of a complete MOT object causes the object to pass from the Reassembly Buffer to the Holding Buffer which is large enough to hold multiple images along with their relevant ContentName and TriggerTime parameters.

If the Holding Buffer has insufficient space to store a newly reassembled image, the receiver should delete images, with the following prioritisation, one by one until sufficient space has been freed:

- Slides with no TriggerTime nor Category/Slide ID (or Category/Slide ID == 0),
- The slide with the earliest TriggerTime (in the past), with no Category/Slide ID (or Category/Slide ID == 0).
• The oldest received slide with a valid Category/Slide ID, with no TriggerTime or a TriggerTime in the past.

In the normal mode, at TriggerTime the image is decompressed from the Holding Buffer to a bitmap format and then immediately copied to the Display.

In the interactive mode, the holding buffer makes slides available based on the selection of categories by the user; the required image is decompressed from the Holding Buffer to a bitmap format and then immediately copied to the Display.

When the application is terminated, either by a change in the signalling of FIG0/13, or by the user ending the SlideShow application (e.g. by tuning the device to a different service) the device may clear all image data in the buffers. However, if the Holding Buffer contains slides with an ExpireTime MOT parameter (see clause 6.2) at a value greater than the current time, devices may preserve (unnoticeable for the user) the image information of these slides in the Holding Buffer even when the device is tuned to another service. This allows sophisticated SlideShow implementations to provide a better user experience avoiding a "cold start" of the SlideShow with empty buffers.

5.3 Presentation

The SlideShow user application works with one display only: it can display only one slide at a time. In the normal mode each image replaces the previous one, and remains on the display until it is in turn replaced. There is no explicit way of removing a slide from the display. In the event that the SlideShow application is terminated, either by the service provider or by user action, the screen should return to a relevant user display, for example a full-screen Dynamic Label display.

In the interactive mode of the enhanced profile, the device presents an overview of categories received so far and allows the user to choose one category out of this list. Choosing a category allows the user to view all the slides received under this category.

5.4 Timing

In the normal mode the presentation time of each slide is controlled by the service provider by using the TriggerTime parameter.

The MOT Parameter "TriggerTime" (clause 6.2.2) defines the time at which the display shall be updated by rendering the image from the Holding Buffer to the Display (enhanced profile) or by copying the image from the rendering buffer to the Display (simple profile).

There are five cases for the value TriggerTime:

• TriggerTime greater than current UTC time and MJD date. The image is intended for display at the specified point in the future. The receiver shall hold the image in the Holding Buffer (or Rendering Buffer) until this time is reached.

• TriggerTime equal to the current UTC time and MJD date. The image shall be shown on the receiver's display. If the image is directly rendered from the Holding Buffer into the Display, then the rendering delay shall be taken into account when determining the start of the rendering process.

• TriggerTime less than the current UTC time and MJD date. If the reception of an MOT object completes later than the value of TriggerTime, the image shall be held in the Holding Buffer, but shall not be displayed until a new TriggerTime is received for this object, or the buffer space is required for a later image.

• TriggerTime "Now". The image shall be shown on the Display with minimal delay. "Now" is a specially signalled value (see clause 6.2.2) and only applies at the instant of reception - images in the Holding Buffer with a TriggerTime of "Now" should be displayed only once, unless a new TriggerTime of "Now" is subsequently received through the reception of a Header Update (see clause 5.5).
• No TriggerTime.
 The image shall be held in the Holding Buffer, but shall not be displayed until a valid TriggerTime is received. If buffer space is required, the device may delete the image out of the Holding Buffer even if it has not been displayed.

If any service within an ensemble contains a SlideShow using TriggerTime with values other than "Now", it is mandatory to transmit FIG0/10. It is strongly recommended to use the long form of FIG0/10 (i.e. including seconds and milliseconds) transmitted every 10 seconds (repetition rate "C") or faster. If this is not possible and the short form of FIG0/10 is used, it should be transmitted every second (repetition rate "B") or faster, and the rate should be increased during the 5 seconds before and after the transition of the minute's edge.

In order to act upon TriggerTime, the receiver shall maintain an internal clock to a resolution of 1 second. It is recommended that this internal clock be continuously maintained through use of a battery backup or similar. The internal clock shall be synchronized to an accuracy of 1 second using FIG0/10 where it is transmitted. In the case of "short" form FIG0/10, the internal clock shall be set at the transition of a minute (i.e. when the value of "seconds" is 0), since seconds are not transmitted in the "short" form. In the event that the internal clock has never been synchronized to FIG0/10 transmitted from any ensemble, only objects with TriggerTime "Now" may be displayed. It shall not be possible for the user to amend the value of the internal clock; it shall only be set through synchronization to FIG0/10.

Receiver manufacturers implementing functionality that allows audio to be delayed paused or time-shifted should refer to annex B for advisory information on handling SlideShow in these circumstances.

In the interactive mode the presentation time of each slide is controlled by the user.

5.5 Header update

An MOT object may be transmitted without the TriggerTime parameter, and shall be held in the Holding Buffer. The TriggerTime may be subsequently transmitted as a Header update, using the ContentName to uniquely identify the target MOT object to update. The receiver shall then process the image, based on its actual TriggerTime, according to the cases above.

6 Interface to the Transport layer MOT

The SlideShow user application is implemented in the DAB system by transferring the slides including all necessary control information, as objects according to the Multimedia Object Transfer protocol used with the two Transport Mechanisms:

• "MSC stream audio" (PAD part).
• "MSC packet mode data".

The Transport Mechanisms "MSC stream data" and "FIDC" shall not be used for the SlideShow application.

NOTE: Forward Error Correcting schemes such as "FEC for MSC packet mode" (see EN 300 401 [1], clause 5.3.5), may be used.

MOT Headers and Bodies are used. MOT Directory shall not be used.

6.1 MOT ContentTypes and ContentSubTypes

According to the MOT protocol, each object has to be characterized by its ContentType and ContentSubType (see EN 301 234 [3] and TS 101 756 [2]). The user application requires this information in order to address the corresponding content decoders correctly. The following types are the only ones permitted for the use in the SlideShow user application.
6.1.1 ContentType "Image"

6.1.1.1 ContentSubType "JFIF" (JPEG)

For an image/jpeg content all receivers shall conform to the following restrictions:

- a receiver shall support baseline coding as a minimum;
- a receiver need not support progressive and/or multiscan coding;
- a receiver need not support arithmetic entropy coding;
- a receiver shall support JPEG files with up to 4 components (colour channels) at a resolution of up to 8 bits/component.

A receiver shall ignore any images it is unable to decode.

6.1.1.2 ContentSubType "PNG"

The ContentSubType PNG shall be used to indicate either a still or animated PNG image.

For an image/png content all receivers shall display the default frame of the image.

A still PNG image shall conform to version 1.1 of the PNG specification (ISO/IEC IS 15948 [4]), and shall be supported by all receivers.

An animated PNG image shall conform to version 1.0 of the APNG specification, as defined in annex A. The minimum frame display time, determined by the parameters delay_num and delay_den in the Frame Control Chunk (fcTL) shall not be less than 100 ms. This enforces a maximum frame-rate for animation of 10 frames per second. If a receiver is unable to support this frame-rate, it shall display the default frame of this image and not attempt animation.

A receiver shall ignore any images it is unable to decode, and shall ignore any extension chunks within the image that it cannot decode.

6.1.2 ContentType "MOT transport"

6.1.2.1 ContentSubType "Header update"

In addition to the objects carrying the slides themselves, special objects with ContentType "MOT transport" and ContentSubType "Header update" can be used to transmit the TriggerTime and/or Category/SlideID for the presentation of an object previously broadcast.

6.1.2.2 ContentSubType "Header only"

In addition to the objects carrying the slides themselves, special objects with ContentType "MOT transport" and ContentSubType "Header only" can be used to specify an object with no image data (body) but instead only an AlternativeLocationURL, meaning the slide is only displayable by IP-connected devices (see clause 6.2.7).
6.2 MOT Parameters for the slide objects

Only the MOT parameters listed in the table below may be used with the SlideShow application. All other parameters shall be ignored by the receiver.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Id</th>
<th>Specified in</th>
<th>Mandatory for service provider</th>
<th>Mandatory for receiver</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContentName</td>
<td>0x0C</td>
<td>MOT EN 301 234 [3]</td>
<td>Yes</td>
<td>Yes</td>
<td>Single</td>
</tr>
<tr>
<td>TriggerTime</td>
<td>0x05</td>
<td>The present document</td>
<td>No (if not present, the object shall be triggered by a "Header update" (see 6.3) or it will never be presented)</td>
<td>Yes</td>
<td>Single</td>
</tr>
<tr>
<td>ExpireTime</td>
<td>0x04</td>
<td>The present document</td>
<td>No</td>
<td>No</td>
<td>Single</td>
</tr>
<tr>
<td>Category/SlideID</td>
<td>0x25</td>
<td>The present document</td>
<td>No</td>
<td>Yes</td>
<td>Single</td>
</tr>
<tr>
<td>CategoryTitle</td>
<td>0x26</td>
<td>The present document</td>
<td>No</td>
<td>No (But has to be received at least once. see 6.2.5.2)</td>
<td>Single</td>
</tr>
<tr>
<td>ClickThroughURL</td>
<td>0x27</td>
<td>The present document</td>
<td>No</td>
<td>No</td>
<td>Single</td>
</tr>
<tr>
<td>AlternativeLocationURL</td>
<td>0x28</td>
<td>The present document</td>
<td>No</td>
<td>No</td>
<td>Single</td>
</tr>
<tr>
<td>Alert</td>
<td>0x29</td>
<td>The present document</td>
<td>No</td>
<td>No</td>
<td>Single</td>
</tr>
</tbody>
</table>

6.2.1 ContentName

According to the MOT protocol, the ContentName is needed for identifying and handling the object in the memory management. Therefore its use is mandatory within the SlideShow user application. The ContentName shall be changed with each new image.

The application provider may re-use a ContentName value after an appropriate interval. On reception of an object with a ContentName that already exists in the Holding Buffer, the receiver shall overwrite the prior version with the newly received object. If the object is also being displayed, the Display shall not be affected. If the object is an animated image, animation shall be stopped and the default image shall be displayed.

6.2.2 TriggerTime

This parameter specifies the time at which the presentation takes place. The TriggerTime activates the object according to its ContentType. The value of the parameter field is coded in the UTC plus MJD format (see EN 301 234 [3], clause 6.2.4.1).

If an object should be presented as soon as it is received, a TriggerTime of "Now" is used. This is indicated by setting the TriggerTime validity flag to 0.

The service provider controls the presentation of the object by setting this MOT parameter. If a SlideShow MOT Object is broadcast with no TriggerTime parameter, it can only be presented by the terminal if this slide object is subsequently followed by a "Header update" object with the TriggerTime for that object.
Simple profile: The TriggerTime may only be provided once. The receiver is only permitted to display the object once, then discard the object and ignore subsequent TriggerTime updates.

Enhanced profile: The TriggerTime may be provided multiple times through a series of Header update objects. The receiver is required to act upon all TriggerTime changes if the target object is still in the Holding Buffer.

6.2.3 ExpireTime

This parameter specifies the time after which presentation is no longer valid. Once this is reached or passed, the receiver shall remove the object from any cache. The value of the parameter field is coded in the time format specified in EN 301 234 [3], clause 6.2.4.1.

The ExpireTime may only be provided once. The receiver should ignore subsequent ExpireTime updates.

Receiver implementations which provide a better user experience by caching slides across service boundaries shall only cache slides containing this MOT parameter.

6.2.4 Category/SlideID

Simple profile: Category/SlideID parameter is not relevant for Simple profile.

Enhanced profile: The Category/SlideID identifies the category and sequence order inside the category of the slide. The Category/SlideID is a 16-bit field divided into two 8-bit segments. The upper part assigns the slide to a particular category. The lower part defines the slide order inside this category.

When a slide is received containing a Category/SlideID parameter value which matches that of a slide already in the Holding Buffer, the newer slide is stored with this Category/SlideID value in the Holding Buffer and the Category/SlideID value of the older slide shall be removed (the slide itself is retained).

The value 0x0000 shall not be used, except to remove the Category/SlideID from a previously delivered object.

6.2.5 CategoryTitle

Simple profile: CategoryTitle parameter is not relevant for Simple profile.

Enhanced profile: The CategoryTitle parameter contains the category title as a variable length string using UTF-8 coding up to a maximum length of 128 bytes. It is used to provide a user readable title of the category in the UI.

If a CategoryTitle is changed (an object is received with the same upper 8-bit Category/SlideID value as an already received object but with a new value of the CategoryTitle parameter) the already presented CategoryTitle on the UI shall not be changed. In this way consistency for the user while viewing is achieved. Changes of the CategoryTitle may be visible after a service change or a reload of the interactive mode.

It is not necessary that every slide within a particular category contains this parameter; however the receiver shall not present any categories in the interactive mode unless a corresponding CategoryTitle has been received.

6.2.6 ClickThroughURL

This describes a URL that may be used by a device to respond to a user action (e.g. tapping the screen while the slide is displayed) to show a linked X(HTML) resource within a capable application on the device, e.g. an integrated web browser.

For example, a web page giving further information/content related to the slide.

The URL is specified as a string using UTF-8 encoding, up to a maximum of 512 bytes.

6.2.7 AlternativeLocationURL

This describes a URL that may be used by the device to acquire the slide content using an HTTP request over an IP connection. This may be specified for an MOT object that has slide content within its body data, indicating an alternative means of acquisition. It may also be specified for an MOT object that has no body data, indicating that this slide can only be acquired over an IP connection, and thus should be ignored by devices without an IP connection.
The URL is specified as a string using UTF-8 encoding, up to a maximum of 512 bytes.

6.2.8 Alert

The Alert parameter provides a means whereby the service provider may indicate an interruption to the interactive mode. It is encoded as an 8-bit integer. The following values are defined:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Shall not be used</td>
</tr>
<tr>
<td>0x01</td>
<td>Emergency warning. Receiver shall present the slide immediately and may provide an appropriate user notification (e.g. acoustic signal) and switch back to the normal mode of the SlideShow presentation.</td>
</tr>
<tr>
<td>0x02 to 0xff</td>
<td>Reserved for future use</td>
</tr>
</tbody>
</table>

NOTE: The occurrence of this parameter does not alter the Trigger Time requirements (see clause 5.4).

6.3 MOT parameters for the Header update

The "Header update" object allows either the TriggerTime or Category/SlideID or both to be updated. All other parameters shall be ignored by the receiver. The ContentName shall be accompanied by either or both of TriggerTime and Category/SlideID.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Id</th>
<th>Specified in</th>
<th>Mandatory for service provider</th>
<th>Mandatory for receiver</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContentName</td>
<td>0x0C</td>
<td>MOT EN 301 234 [3]</td>
<td>Yes</td>
<td>Yes</td>
<td>Single</td>
</tr>
<tr>
<td>TriggerTime</td>
<td>0x05</td>
<td>The present document</td>
<td>No</td>
<td>Yes</td>
<td>Single</td>
</tr>
<tr>
<td>Category/SlideID</td>
<td>0x25</td>
<td>The present document</td>
<td>No</td>
<td>Yes (if interactive mode supported)</td>
<td>Single</td>
</tr>
</tbody>
</table>

6.3.1 ContentName

This parameter is used to link the Header update to the slide object, the TriggerTime and/or Category/SlideID of which is to be updated.

Simple profile: The ContentName shall refer to the slide that was sent directly before the "Header update". It is not possible to send multiple slides in advance and trigger any one of those. If the "Header update" does not refer to the slide in the holding/rendering buffer then both the "Header update" and the slide shall be removed from their respective buffer in the receiver.

Enhanced profile: The ContentName shall refer to a previously transmitted MOT object (from this service). It is possible to send multiple MOT objects with different ContentName values, and provide subsequent Header Update objects using ContentName to identify which object in the Holding Buffer to update. Header Update objects that refer to an object not in the Holding Buffer may be ignored. Header Updates may cause previously displayed images to be displayed again.

6.3.2 TriggerTime

This parameter carries the updated TriggerTime for the object specified by ContentName.
6.3.3 Category/SlideID

This parameter is used to change the category and/or ordering of a previously delivered slide or to remove the Category/SlideID parameter.

Simple profile: The update shall be ignored (Category/SlideID parameter is not relevant for Simple profile).

Enhanced profile: The Category/SlideID parameter of the object specified by ContentName shall be updated according to the value sent in this update.

When an update is received containing a Category/SlideID parameter value which matches that of another object in the Holding Buffer, the Category/SlideID value of the other object shall be removed (the slide itself is retained).

If the update contains 0x0000 the previously stored values for the object specified by ContentName shall be discarded, effectively removing it from interactive display mode.

6.4 Optional MOT features

Because SlideShow is intended to be a simple application, the following optional MOT features shall not be used:

- Conditional Access on MOT level: scrambling on MOT level is limited to MOT directory mode. However, scrambling on subchannel or on datagroup level is permitted for the SlideShow.
- Compression on transport level (MOT level): images in JPEG and PNG formats are already compressed, so further compression on transport level would not be advantageous.
- MOT Directory: The MOT Directory shall not be transmitted, and therefore the caching functionality of Directory cannot be implemented. Clause 5.3.1 specifies memory management for caching content.

7 Application signalling

The use of the SlideShow user application within a DAB ensemble shall be signalled by the use of FIG 0/13. The UserApplicationType value is given in TS 101 756 [2].

No user application data bytes shall be conveyed in this FIG. The receiver shall discard all user application data bytes.

NOTE: Although two profiles are defined, the profile is not explicitly signalled.

8 Other requirements

8.1 Display restrictions

Images may be broadcast at any size, shape and colour depth allowed by the image formats supported subject to the restrictions in clause 6.1.1. Pixels are always square.

It is strongly recommended that images intended for SlideShow applications accompanying audio services are authored at a resolution 320 × 240 pixels in landscape format, to prevent rescaling distortion in receivers. Deviation from these dimensions may create significantly sub-optimal display.

8.1.1 Simple profile

Receivers shall be able to display an image at a resolution of 320 × 240 pixels at a colour/grey scale depth of 8 bits per pixel (¼-VGA). If a receiver cannot display an image natively at this resolution, it is permitted to rescale it provided the aspect ratio is maintained and the image is fully visible.

If a slide is broadcast which is smaller than 320 × 240 pixels, then it shall be displayed in the centre of the screen surrounded by a black background if needed.
Content providers need to be aware that if they broadcast an image larger than 320 × 240 pixels, it may be cropped by the receiver or not displayed at all. Receivers are only permitted to crop at the right hand side and at the bottom of the image.

8.1.2 Enhanced profile

Receivers are strongly recommended to implement a display equal to or larger than 320 × 240 pixels, at a colour depth of at least 15 bits per pixel. Receivers shall not implement SlideShow on displays smaller than 160 × 120 pixels.

The SlideShow application display may be rotated to best fit the physical display aspect ratio (portrait or landscape), assuming that the majority of content will be formatted to fit a landscape display. However the orientation of the SlideShow application display shall be consistent across all services, and individual images received by the application shall not be rotated on a case-by-case basis.

The original aspect ratio of the image shall always be preserved.

Images may be scaled at factors of 150 % or greater in order to maximize the available physical display space.

It is mandatory to implement a scale factor of 50 %, and this is the only downscaling factor permitted.

The use of anti-aliasing and similar techniques is strongly recommended to optimize the quality of the scaled images.

In interactive mode, if supported, the following applies:

- The user shall be allowed to switch to interactive mode.
- The device shall offer a menu view where the user shall be able to get an overview about the already received slide categories, which contain at least one displayable slide.
- When browsing through a category the user shall always know which slide (slide x of y) is currently present.
- Navigating to a certain slide may be possible via arrow keys, numbers, touchscreen (gestures), etc.
- The user shall be able to navigate into a certain category and back into the menu view.
- The user shall be allowed to leave the interactive mode (switch back to normal mode).

8.2 URL Handling

A Click-ThroughURL MOT parameter defines a web page that is shown on the device as a result of user prompting (e.g. clicking a button or tapping the screen) when the slide is being displayed. This web page will then launch in a web browser on the device and be displayed to the user.

An AlternateLocationURL MOT parameter defines a URL that may be used by devices as an alternative path to acquire the slide image, over an available IP channel, should one exist.

Both parameters define HTTP URLs that are applicable only to the slide they are sent with.

The following general guidance is given with regard to these URLs:

- Service providers shall not send, and devices shall ignore, URLs with a scheme other than http.
- Service providers shall not respond with, and devices shall ignore, requests for HTTP authentication.
- Devices are recommended to include the HTTP request header User-Agent when using either URL, to assist in returning a more appropriate resource for that device. The header value shall not contain any user-identifiable information.
- Devices shall handle HTTP status codes denoting errors or resource redirections in the expected way, and avoid unnecessary interruption to the user experience. It is recommended that the device follow standard best-practices when dealing with status codes other than 200 (OK), including limiting the number of redirections followed.
- Devices and service providers are recommended to follow standard HTTP practices for caching, in order to minimize bandwidth usage [i.2], particularly use of the HTTP headers Expires, Last-Modified and If-Modified-Since.

- Devices are recommended to include their geographical location, if available, to enable the service provider to return a more appropriate resource. This should take the form of additional parameters in the HTTP request for the resource, as per [i.3].

<table>
<thead>
<tr>
<th>Header Name</th>
<th>Description</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>geo.position</td>
<td>Geographical coordinates as ordered Latitude and Longitude separated by a semicolon (",")</td>
<td>No</td>
</tr>
<tr>
<td>geo.region</td>
<td>Geographical region, taken from the reserved list in ISO 3166-2 [i.1]</td>
<td>No</td>
</tr>
</tbody>
</table>

8.2.1 ClickThroughURL

A device without the means to display X(HTML) content shall ignore a ClickThroughURL and not indicate to the user that one is available, nor perform any actions on user interaction.

If the device has the means to display X(HTML) content, for example by using a web browser, then it should switch to this content on user interaction. The user shall then actively choose to switch back to the SlideShow interface in order to resume viewing slides.

The device is recommended to continue receiving the SlideShow service in the background, and may or may not decide to continue receiving the broadcast audio based on whether there is any audio associated with the content at the URL location. The device may choose to use user preference when making this decision.

8.2.2 AlternativeLocationURL

When acquiring an image using the AlternativeLocationURL, devices are recommended to include the following HTTP headers in their request, indicating the display dimensions and resolution density of the device, to assist in returning a more appropriate resource for that device:

<table>
<thead>
<tr>
<th>Header Name</th>
<th>Description</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display-Height</td>
<td>Visible device screen height, in pixels</td>
<td>No (default is 240 pixels)</td>
</tr>
<tr>
<td>Display-Width</td>
<td>Visible device screen width, in pixels</td>
<td>No (default is 320 pixels)</td>
</tr>
<tr>
<td>Display-PPI</td>
<td>Visible device pixel density, in pixels per inch (PPI)</td>
<td>No (default is 72 PPI)</td>
</tr>
</tbody>
</table>

A device holding a slide in its cache with a TriggerTime in the future, and an AlternateLocationURL may acquire the associate image before the time to be displayed, in order to minimize delays at trigger time.

Devices are recommended to consider always fetching the slide from its AlternateLocationURL, if provided, and display the resulting slide even if the MOT object includes a slide in its body data. The service provider may choose to send more appropriate content for the device from this URL - for example, based on the user agent and other headers of the HTTP request, or on the devices apparent location.

Once the image has been acquired and is to be displayed, the device shall examine the dimensions and content type of the image, as these may differ from that requested.

The device may fit the image to the display by means of padding and scaling, but shall preserve the aspect ratio of the original image.

8.3 Object and buffer sizes

The following restrictions apply to objects in the application. If an object exceeds the maximum size, or is signalled to do so, it may be ignored by the receiver.

The following requirements apply to the conceptual buffers in the receiver. Actual implementations may differ from this provided that the result is the same as the conceptual model would have produced.
8.3.1 Simple profile

All receivers shall be able to decode images up to a file size (JPEG or PNG) of 50 kbytes (51 200 bytes). The Holding Buffer shall be large enough for one image.

NOTE: This requirement implies a minimum Assembly Buffer size in excess of 50 kbytes (51 200 bytes).

8.3.2 Enhanced profile

All receivers shall be able to decode images up to an MOT object size (Body + Header) of 450 kbytes (460 800 bytes). The Holding Buffer shall be at least 450 kbytes (460 800 bytes) and be able to store between 1 and 64 images. When multiple images are stored, each image may be a different size and/or colour depth.

NOTE: This requirement implies a minimum Assembly Buffer size of 450 kbytes (460 800 bytes).
Annex A (normative):
APNG 1.0 Specification - Animated Portable Network Graphics

A.1 Introduction

APNG is an extension of the PNG [4] format, adding support for animated images.

APNG is backwards-compatible with PNG; any PNG decoder should be able to ignore the APNG-specific chunks and display a single image.

A.1.1 Terminology

The "default image" is the image described by the standard 'IDAT' chunks, and is the image that is displayed by decoders that do not support APNG.

The "canvas" is the area on the output device on which the frames are to be displayed. The contents of the canvas are not necessarily available to the decoder. As per the PNG Specification, if a 'bKGD' chunk exists it may be used to fill the canvas if there is no preferable background.

The "output buffer" is a pixel array with dimensions specified by the width and height parameters of the PNG 'IHDR' chunk. Conceptually, each frame is constructed in the output buffer before being composited onto the canvas. The contents of the output buffer are available to the decoder. The corners of the output buffer are mapped to the corners of the canvas.

"Fully transparent black" means red, green, blue and alpha components are all set to zero.

For purposes of chunk descriptions, an "unsigned int" shall be a 32-bit unsigned integer in network byte order limited to the range 0 to (2^31)-1; an "unsigned short" shall be a 16-bit unsigned integer in network byte order with the range 0 to (2^16)-1; a "byte" shall be an 8-bit unsigned integer with the range 0 to (2^8)-1.

A.1.2 Error Handling

APNG is designed to allow incremental display of frames before the entire image has been read. This implies that some errors may not be detected until partway through the animation. It is strongly recommended that when any error is encountered decoders should discard all subsequent frames, stop the animation, and revert to displaying the default image. A decoder which detects an error before the animation has started should display the DEFAULT image. An error message may be displayed to the user if appropriate.

A.2 Structure

An APNG stream is a normal PNG stream as defined in the PNG Specification [4], with three additional chunk types describing the animation and providing additional frame data.

To be recognized as an APNG, an 'acTL' chunk shall appear in the stream before any 'IDAT' chunks. The 'acTL' structure is described below.

Conceptually, at the beginning of each play the output buffer shall be completely initialized to a fully transparent black rectangle, with width and height dimensions from the 'IHDR' chunk.

The default image may be included as the first frame of the animation by the presence of a single 'fcTL' chunk before 'IDAT'. Otherwise, the default image is not part of the animation.
Subsequent frames are encoded in 'fdAT' chunks, which have the same structure as 'IDAT' chunks, except preceded by a sequence number. Information for each frame about placement and rendering is stored in 'fcTL' chunks. The full layout of 'fdAT' and 'fcTL' chunks is described below.

The boundaries of the entire animation are specified by the width and height parameters of the PNG 'IHDR' chunk, regardless of whether the default image is part of the animation. The default image should be appropriately padded with fully transparent pixels if extra space will be needed for later frames.

Each frame is identical for each play, therefore it is safe for applications to cache the frames.

A.2.1 Chunk sequence numbers

The 'fcTL' and 'fdAT' chunks have a 4 byte sequence number. Both chunk types share the sequence. The purpose of this number is to detect (and optionally correct) sequence errors in an Animated PNG, since the PNG specification does not impose ordering restrictions on ancillary chunks.

The first 'fcTL' chunk shall contain sequence number 0, and the sequence numbers in the remaining 'fcTL' and 'fdAT' chunks shall be in order, with no gaps or duplicates.

The tables below illustrate the use of sequence numbers for images with more than one frame and more than one 'fdAT' chunk.

If the default image is the first frame:

<table>
<thead>
<tr>
<th>Sequence number</th>
<th>Chunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>(none)</td>
<td>'acTL'</td>
</tr>
<tr>
<td>0</td>
<td>'fcTL' first frame</td>
</tr>
<tr>
<td>(none)</td>
<td>'IDAT' first frame/default image</td>
</tr>
<tr>
<td>1</td>
<td>'fcTL' second frame</td>
</tr>
<tr>
<td>2</td>
<td>first 'fdAT' for second frame</td>
</tr>
<tr>
<td>3</td>
<td>second 'fdAT' for second frame</td>
</tr>
</tbody>
</table>

If the default image is not part of the animation:

<table>
<thead>
<tr>
<th>Sequence number</th>
<th>Chunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>(none)</td>
<td>'acTL'</td>
</tr>
<tr>
<td>(none)</td>
<td>'IDAT' default image</td>
</tr>
<tr>
<td>0</td>
<td>'fcTL' first frame</td>
</tr>
<tr>
<td>1</td>
<td>first 'fdAT' for first frame</td>
</tr>
<tr>
<td>2</td>
<td>second 'fdAT' for first frame</td>
</tr>
</tbody>
</table>

Decoders shall treat out-of-order APNG chunks as an error. APNG-aware PNG editors should restore them to correct order using the sequence numbers.

A.2.2 'acTL': The Animation Control Chunk

The 'acTL' chunk is an ancillary chunk as defined in the PNG Specification. It shall appear before the first 'IDAT' chunk within a valid PNG stream.

The 'acTL' chunk contains:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Name</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>num_frames</td>
<td>Number of frames</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>num_plays</td>
<td>Number of times to loop this APNG</td>
<td>0 indicates infinite looping</td>
</tr>
</tbody>
</table>

'num_frames' indicates the total number of frames in the animation. This shall equal the number of 'fcTL' chunks. 0 is not a valid value, 1 is a valid value for a single-frame APNG. If this value does not equal the actual number of frames it should be treated as an error.
'num_plays' indicates the number of times that this animation should play; if it is 0, the animation should play indefinitely. If non-zero, the animation should come to rest on the final frame at the end of the last play.

A.2.3 'fcTL': The Frame Control Chunk

The 'fcTL' chunk is an ancillary chunk as defined in the PNG Specification. It shall appear before the 'IDAT' or 'fdAT' chunks of the frame to which it applies, specifically:

For the default image, if a 'fcTL' chunk is present it shall appear before the first 'IDAT' chunk. Position relative to the 'acTL' chunk is not specified.

For the first frame excluding the default image (which may be either the first or second frame), the 'fcTL' chunk shall appear after all 'IDAT' chunks and before the 'fdAT' chunks for the frame.

For all subsequent frames, the 'fcTL' chunk for frame N shall appear after the 'fdAT' chunks from frame N-1 and before the 'fdAT' chunks for frame N.

Other ancillary chunks are allowed to appear among the APNG chunks, including between 'fdAT' chunks.

Exactly one 'fcTL' chunk is required for each frame.

Format:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Name</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sequence_number (unsigned int)</td>
<td>Sequence number of the animation chunk, starting from 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>width (unsigned int)</td>
<td>Width of the following frame</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>height (unsigned int)</td>
<td>Height of the following frame</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>x_offset (unsigned int)</td>
<td>X position at which to render the following frame</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>y_offset (unsigned int)</td>
<td>Y position at which to render the following frame</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>delay_num (unsigned int)</td>
<td>Frame delay fraction numerator</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>delay_den (unsigned short)</td>
<td>Frame delay fraction denominator</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>dispose_op (unsigned short)</td>
<td>Type of frame area disposal to be done after rendering this frame</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>blend_op (byte)</td>
<td>Type of frame area rendering for this frame</td>
<td></td>
</tr>
</tbody>
</table>

The frame shall be rendered within the region defined by 'x_offset', 'y_offset', 'width', and 'height'. The offsets shall be non-negative, the dimensions shall be positive, and the region may not fall outside of the default image.

Constraints on frame regions:

'x_offset' >= 0
'y_offset' >= 0
'width' > 0
'height' > 0
'x_offset' + 'width' <= 'IHDR' width
'y_offset' + 'height' <= 'IHDR' height

The 'delay_num' and 'delay_den' parameters together specify a fraction indicating the time to display the current frame, in seconds. If the denominator is 0, it is to be treated as if it were 100 (that is, 'delay_num' then specifies 1/100ths of a second). If the value of the numerator is 0 the decoder should render the next frame as quickly as possible, though viewers may impose a reasonable lower bound.

Frame timings should be independent of the time required for decoding and display of each frame, so that animations will run at the same rate regardless of the performance of the decoder implementation.

'disable_op' specifies how the output buffer should be changed at the end of the delay (before rendering the next frame).
Valid values for 'dispose_op' are:

0 APNG_DISPOSE_OP_NONE
1 APNG_DISPOSE_OP_BACKGROUND
2 APNG_DISPOSE_OP_PREVIOUS

APNG_DISPOSE_OP_NONE: no disposal is done on this frame before rendering the next; the contents of the output buffer are left as is.

APNG_DISPOSE_OP_BACKGROUND: the frame's region of the output buffer is to be cleared to fully transparent black before rendering the next frame.

APNG_DISPOSE_OP_PREVIOUS: the frame’s region of the output buffer is to be reverted to the previous contents before rendering the next frame.

If the first 'fcTL' chunk uses a 'dispose_op' of APNG_DISPOSE_OP_PREVIOUS it should be treated as APNG_DISPOSE_OP_BACKGROUND.

'blend_op' specifies whether the frame is to be alpha blended into the current output buffer content, or whether it should completely replace its region in the output buffer.

Valid values for 'blend_op' are:

0 APNG_BLEND_OP_SOURCE
1 APNG_BLEND_OP_OVER

If 'blend_op' is APNG_BLEND_OP_SOURCE all colour components of the frame, including alpha, overwrite the current contents of the frame's output buffer region. If 'blend_op' is APNG_BLEND_OP_OVER the frame should be composited onto the output buffer based on its alpha, using a simple OVER operation as described in the "Alpha Channel Processing" section of the PNG specification [PNG-1.2]. Note that the second variation of the sample code is applicable.

Note that for the first frame the two blend modes are functionally equivalent due to the clearing of the output buffer at the beginning of each play.

The 'fcTL' chunk corresponding to the default image, if it exists, has these restrictions:

The 'x_offset' and 'y_offset' fields shall be 0;

The 'width' and 'height' fields shall equal the corresponding fields from the 'IHDR' chunk.

As noted earlier, the output buffer shall be completely initialized to fully transparent black at the beginning of each play. This is to ensure that each play of the animation will be identical. Decoders are free to avoid an explicit clear step as long as the result is guaranteed to be identical. For example, if the default image is included in the animation, and uses a 'blend_op' of APNG_BLEND_OP_SOURCE, clearing is not necessary because the entire output buffer will be overwritten.

A.2.4 'fdAT': The Frame Data Chunk

The 'fdAT' chunk has the same purpose as an 'IDAT' chunk. It has the same structure as an 'IDAT' chunk, except preceded by a sequence number.

At least one 'fdAT' chunk is required for each frame. The compressed datastream is then the concatenation of the contents of the data fields of all the 'fdAT' chunks within a frame. When decompressed, the datastream is the complete pixel data of a PNG image, including the filter byte at the beginning of each scanline, similar to the uncompressed data of all the 'IDAT' chunks. It utilizes the same bit depth, colour type, compression method, filter method, interlace method, and palette (if any) as the default image.
<table>
<thead>
<tr>
<th>Byte</th>
<th>Name</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sequence_number (unsigned int)</td>
<td>Sequence number of the animation chunk, starting from 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>frame_data (X bytes)</td>
<td>Frame data for this frame</td>
<td></td>
</tr>
</tbody>
</table>

Each frame inherits every property specified by any critical or ancillary chunks before the first 'IDAT' in the file, except the width and height, which come from the 'fcTL' chunk.

If the PNG 'pHYs' chunk is present, the APNG images and their 'x_offset' and 'y_offset' values shall be scaled in the same way as the main image. Conceptually, such scaling occurs while mapping the output buffer onto the canvas.

A.3 Test encoder and sample images

Sample images are available from the APNG implementation page at http://littlesvr.ca/apng/.

An encoder (open source) is available in Mozilla™ versions newer than alpha 4.

An application (open source) using the Mozilla™ encoder to assemble APNGs available here: http://littlesvr.ca/apng/apngedit.html.
Annex B (informative):
Implementing SlideShow with timeshifted audio services

This annex gives specific guidance to manufacturers implementing SlideShow on receiver devices that include functionality to Pause or Record audio services. The recording of audio services may be through direct user intervention, or through the use of background recording enabled through an Electronic Programme Guide or other timer functionality.

It is mandatory that such receivers adjust their implementation of SlideShow to account for the difference between the time of original broadcast and the time of replay, which will recreate the original timing relationship between audio and SlideShow images.

If the receiver is unable to implement adjusted timings, then the SlideShow application should be stopped whenever audio is timeshifted - otherwise it would give an inconsistent and unsatisfactory experience for both users and service providers.

B.1 SlideShow in X-PAD

Figure B.1 illustrates a conceptual system for handling timeshifted audio when the SlideShow component (along with DLS and other applications) is transported in X-PAD.

![Figure B.1: Conceptual System for Timeshifting SlideShow in X-PAD](image)

The receiver should record the entire audio stream, including the X-PAD content. At playback, the entire audio stream is passed to both the audio decoder and the X-PAD decoder, which will recreate the original transmission of both audio and data.

The receiver should also record two additional pieces of information for each recording:

- The original FIG 0/13 signalling at the time of recording, in order to determine if a SlideShow is present and all the parameters needed to decode the SlideShow application (e.g. the used X-PAD Application Types).
- The date and time with a resolution and accuracy of 1s at the moment the recording commences (as derived from FIG0/10).

B.2 SlideShow in Packet Mode or X-PAD

An alternative approach could be equally applicable to SlideShow when transmitted in either Packet Mode or X-PAD, but is potentially more complex.

Whilst recording, the audio SlideShow images could be decoded into individual image files (along with the relevant ContentName and TriggerTime parameters), which would be stored with the recorded audio.
It would also be necessary to record date and time (provided by FIG0/10) with a resolution and accuracy of 1 s at the commencement of the recording.

B.3 Reference time and TriggerTime

The SlideShow application uses an internal timer to reference time.

For a live broadcast, this is synchronized against FIG0/10 as described in clause 5.4. For a timeshifted broadcast, this timer may be initially synchronized against date and time at the commencement of the recording, and adjusted accordingly.

Specifically:

• The reference timer takes into account any position change in the playback stream, such as rewinding, pausing, fast-forwarding or skipping.

• The comparison of TriggerTime (for values other than "Now") is made against the adjusted time.
Annex C (informative):
Use Cases

This annex gives a range of use cases for the functionality specified in the present document.

C.1 AlternativeLocationURLs

The bandwidth of an IP channel is assumed to be greater than that available via DAB broadcast, and although not unconstrained it is typically orders of magnitude greater. This may then be used by Service provider and Device in a number of novel ways.

A device which is not IP-connected will ignore the AlternativeLocationURL and continue to use the slide image as received over broadcast DAB.

Faster image acquisition

The acquisition time of a slide over DAB is a consequence of several factors, with the size of the file usually being the most significant.

For example, consider a SlideShow service with a bandwidth of 12 kbps. A rough estimate for the acquisition time for a slide of 15 kB (ignoring any protocol overheads) would be 10 seconds. Given an average mobile IP-connection bandwidth of 1,5 Mbps, the acquisition time would be 0,08 seconds.

Thus, the AlternativeLocationURL can be used to acquire the image much faster than over DAB broadcast. It may also be used to serve a higher quality, less compressed version of the image, which would be of a larger file size.

Increased image relevance

If a slide is broadcast with an AlternateLocationURL, IP-connected devices may send additional information as part of the HTTP request used to acquire the slide. Some of these are part of the core HTTP specification, such as the User Agent.

This identifies the class and characteristics of the requesting device, and is used in Content Negotiation, with the response being tailored to the most suitable content for the requesting device:

- Image of larger dimensions, to fit higher dimension displays, by using Display Dimension information in the HTTP request to acquire the image.
- Content tailored to the specific device model or range of devices, by using User Agent information in the HTTP request to acquire the image.
- Content tailored to the location of the user, by using a Geo-IP lookup for the device IP address.

Faster carousel rotation

Due to the increased bandwidth available to IP-connected devices, a service provider may use the AlternativeLocationURL to give the impression of faster carousel rotation.

For example, assuming a carousel rotation of one slide every 20 seconds, broadcast over DAB. Within this time, the service provider may send out MOT Objects with an AlternateLocationURL and no body content. For IP-connected devices supporting this additional functionality, this would cause a new image to be acquired and displayed. Devices not supporting this additional functionality would ignore this, and continue to display the last acquired image.
C.2 Interactive mode SlideShow operation when the selected service is changed

The device manufacturer may choose to provide additional memory to allow the continued storage of categorized SlideShow images when the user chooses a different service. The images associated with the original service will be available to the user when they reselect that service. All images and associated metadata that is older than the ExpiryTime is deleted when selecting the service and not available to be viewed. It is highly recommended that all categorized SlideShow images have an ExpiryTime.

When the device is switched off the Holding Buffer is completely cleared.
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.1.1</td>
</tr>
<tr>
<td>V2.1.1</td>
</tr>
<tr>
<td>V2.2.1</td>
</tr>
<tr>
<td>V2.3.1</td>
</tr>
</tbody>
</table>